]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/disk-io.c
btrfs: root->fs_info cleanup, add fs_info convenience variables
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
5a0e3ad6 28#include <linux/slab.h>
784b4e29 29#include <linux/migrate.h>
7a36ddec 30#include <linux/ratelimit.h>
6463fe58 31#include <linux/uuid.h>
803b2f54 32#include <linux/semaphore.h>
7e75bf3f 33#include <asm/unaligned.h>
eb60ceac
CM
34#include "ctree.h"
35#include "disk-io.h"
0b947aff 36#include "hash.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
925baedd 41#include "locking.h"
e02119d5 42#include "tree-log.h"
fa9c0d79 43#include "free-space-cache.h"
70f6d82e 44#include "free-space-tree.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
ebb8765b 52#include "compression.h"
eb60ceac 53
de0022b9
JB
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
319e4d06
QW
58#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
e8c9f186 64static const struct extent_io_ops btree_extent_io_ops;
8b712842 65static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 66static void free_fs_root(struct btrfs_root *root);
fcd1f065 67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 68 int read_only);
143bede5 69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
143bede5 72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 73static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
48a3b636
ES
78static int btrfs_cleanup_transaction(struct btrfs_root *root);
79static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 80
d352ac68 81/*
97eb6b69
DS
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
97eb6b69 86struct btrfs_end_io_wq {
ce9adaa5
CM
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
bfebd8b5 92 enum btrfs_wq_endio_type metadata;
ce9adaa5 93 struct list_head list;
8b712842 94 struct btrfs_work work;
ce9adaa5 95};
0da5468f 96
97eb6b69
DS
97static struct kmem_cache *btrfs_end_io_wq_cache;
98
99int __init btrfs_end_io_wq_init(void)
100{
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
fba4b697 104 SLAB_MEM_SPREAD,
97eb6b69
DS
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109}
110
111void btrfs_end_io_wq_exit(void)
112{
5598e900 113 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
114}
115
d352ac68
CM
116/*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
44b8bd7e
CM
121struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
4a69a410
CM
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e 127 int mirror_num;
c8b97818 128 unsigned long bio_flags;
eaf25d93
CM
129 /*
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
132 */
133 u64 bio_offset;
8b712842 134 struct btrfs_work work;
79787eaa 135 int error;
44b8bd7e
CM
136};
137
85d4e461
CM
138/*
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
142 *
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
4008c04a 148 *
85d4e461
CM
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 152 *
85d4e461
CM
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 156 *
85d4e461
CM
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
4008c04a
CM
160 */
161#ifdef CONFIG_DEBUG_LOCK_ALLOC
162# if BTRFS_MAX_LEVEL != 8
163# error
164# endif
85d4e461
CM
165
166static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171} btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 184 { .id = 0, .name_stem = "tree" },
4008c04a 185};
85d4e461
CM
186
187void __init btrfs_init_lockdep(void)
188{
189 int i, j;
190
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
198 }
199}
200
201void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
203{
204 struct btrfs_lockdep_keyset *ks;
205
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
212
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
215}
216
4008c04a
CM
217#endif
218
d352ac68
CM
219/*
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
222 */
b2950863 223static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 224 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 225 int create)
7eccb903 226{
0b246afa 227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5f39d397
CM
228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229 struct extent_map *em;
230 int ret;
231
890871be 232 read_lock(&em_tree->lock);
d1310b2e 233 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 234 if (em) {
0b246afa 235 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 236 read_unlock(&em_tree->lock);
5f39d397 237 goto out;
a061fc8d 238 }
890871be 239 read_unlock(&em_tree->lock);
7b13b7b1 240
172ddd60 241 em = alloc_extent_map();
5f39d397
CM
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
245 }
246 em->start = 0;
0afbaf8c 247 em->len = (u64)-1;
c8b97818 248 em->block_len = (u64)-1;
5f39d397 249 em->block_start = 0;
0b246afa 250 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 251
890871be 252 write_lock(&em_tree->lock);
09a2a8f9 253 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
254 if (ret == -EEXIST) {
255 free_extent_map(em);
7b13b7b1 256 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 257 if (!em)
0433f20d 258 em = ERR_PTR(-EIO);
5f39d397 259 } else if (ret) {
7b13b7b1 260 free_extent_map(em);
0433f20d 261 em = ERR_PTR(ret);
5f39d397 262 }
890871be 263 write_unlock(&em_tree->lock);
7b13b7b1 264
5f39d397
CM
265out:
266 return em;
7eccb903
CM
267}
268
b0496686 269u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 270{
0b947aff 271 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
272}
273
0b5e3daf 274void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 275{
7e75bf3f 276 put_unaligned_le32(~crc, result);
19c00ddc
CM
277}
278
d352ac68
CM
279/*
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
282 */
01d58472
DD
283static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
19c00ddc
CM
285 int verify)
286{
01d58472 287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 288 char *result = NULL;
19c00ddc
CM
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
607d432d 297 unsigned long inline_result;
19c00ddc
CM
298
299 len = buf->len - offset;
d397712b 300 while (len > 0) {
19c00ddc 301 err = map_private_extent_buffer(buf, offset, 32,
a6591715 302 &kaddr, &map_start, &map_len);
d397712b 303 if (err)
8bd98f0e 304 return err;
19c00ddc 305 cur_len = min(len, map_len - (offset - map_start));
b0496686 306 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
307 crc, cur_len);
308 len -= cur_len;
309 offset += cur_len;
19c00ddc 310 }
607d432d 311 if (csum_size > sizeof(inline_result)) {
31e818fe 312 result = kzalloc(csum_size, GFP_NOFS);
607d432d 313 if (!result)
8bd98f0e 314 return -ENOMEM;
607d432d
JB
315 } else {
316 result = (char *)&inline_result;
317 }
318
19c00ddc
CM
319 btrfs_csum_final(crc, result);
320
321 if (verify) {
607d432d 322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
323 u32 val;
324 u32 found = 0;
607d432d 325 memcpy(&found, result, csum_size);
e4204ded 326
607d432d 327 read_extent_buffer(buf, &val, 0, csum_size);
94647322 328 btrfs_warn_rl(fs_info,
5d163e0e 329 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 330 fs_info->sb->s_id, buf->start,
efe120a0 331 val, found, btrfs_header_level(buf));
607d432d
JB
332 if (result != (char *)&inline_result)
333 kfree(result);
8bd98f0e 334 return -EUCLEAN;
19c00ddc
CM
335 }
336 } else {
607d432d 337 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 338 }
607d432d
JB
339 if (result != (char *)&inline_result)
340 kfree(result);
19c00ddc
CM
341 return 0;
342}
343
d352ac68
CM
344/*
345 * we can't consider a given block up to date unless the transid of the
346 * block matches the transid in the parent node's pointer. This is how we
347 * detect blocks that either didn't get written at all or got written
348 * in the wrong place.
349 */
1259ab75 350static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
351 struct extent_buffer *eb, u64 parent_transid,
352 int atomic)
1259ab75 353{
2ac55d41 354 struct extent_state *cached_state = NULL;
1259ab75 355 int ret;
2755a0de 356 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
357
358 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359 return 0;
360
b9fab919
CM
361 if (atomic)
362 return -EAGAIN;
363
a26e8c9f
JB
364 if (need_lock) {
365 btrfs_tree_read_lock(eb);
366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367 }
368
2ac55d41 369 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 370 &cached_state);
0b32f4bb 371 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
372 btrfs_header_generation(eb) == parent_transid) {
373 ret = 0;
374 goto out;
375 }
94647322
DS
376 btrfs_err_rl(eb->fs_info,
377 "parent transid verify failed on %llu wanted %llu found %llu",
378 eb->start,
29549aec 379 parent_transid, btrfs_header_generation(eb));
1259ab75 380 ret = 1;
a26e8c9f
JB
381
382 /*
383 * Things reading via commit roots that don't have normal protection,
384 * like send, can have a really old block in cache that may point at a
01327610 385 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
386 * if we find an eb that is under IO (dirty/writeback) because we could
387 * end up reading in the stale data and then writing it back out and
388 * making everybody very sad.
389 */
390 if (!extent_buffer_under_io(eb))
391 clear_extent_buffer_uptodate(eb);
33958dc6 392out:
2ac55d41
JB
393 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394 &cached_state, GFP_NOFS);
472b909f
JB
395 if (need_lock)
396 btrfs_tree_read_unlock_blocking(eb);
1259ab75 397 return ret;
1259ab75
CM
398}
399
1104a885
DS
400/*
401 * Return 0 if the superblock checksum type matches the checksum value of that
402 * algorithm. Pass the raw disk superblock data.
403 */
ab8d0fc4
JM
404static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405 char *raw_disk_sb)
1104a885
DS
406{
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 int ret = 0;
411
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 u32 crc = ~(u32)0;
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
416
417 /*
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 420 * is filled with zeros and is included in the checksum.
1104a885
DS
421 */
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
425
426 if (memcmp(raw_disk_sb, result, csum_size))
427 ret = 1;
428 }
429
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 431 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
432 csum_type);
433 ret = 1;
434 }
435
436 return ret;
437}
438
d352ac68
CM
439/*
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
442 */
f188591e
CM
443static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444 struct extent_buffer *eb,
8436ea91 445 u64 parent_transid)
f188591e 446{
0b246afa 447 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 448 struct extent_io_tree *io_tree;
ea466794 449 int failed = 0;
f188591e
CM
450 int ret;
451 int num_copies = 0;
452 int mirror_num = 0;
ea466794 453 int failed_mirror = 0;
f188591e 454
a826d6dc 455 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
0b246afa 456 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 457 while (1) {
8436ea91 458 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
f188591e 459 btree_get_extent, mirror_num);
256dd1bb
SB
460 if (!ret) {
461 if (!verify_parent_transid(io_tree, eb,
b9fab919 462 parent_transid, 0))
256dd1bb
SB
463 break;
464 else
465 ret = -EIO;
466 }
d397712b 467
a826d6dc
JB
468 /*
469 * This buffer's crc is fine, but its contents are corrupted, so
470 * there is no reason to read the other copies, they won't be
471 * any less wrong.
472 */
473 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
474 break;
475
0b246afa 476 num_copies = btrfs_num_copies(fs_info,
f188591e 477 eb->start, eb->len);
4235298e 478 if (num_copies == 1)
ea466794 479 break;
4235298e 480
5cf1ab56
JB
481 if (!failed_mirror) {
482 failed = 1;
483 failed_mirror = eb->read_mirror;
484 }
485
f188591e 486 mirror_num++;
ea466794
JB
487 if (mirror_num == failed_mirror)
488 mirror_num++;
489
4235298e 490 if (mirror_num > num_copies)
ea466794 491 break;
f188591e 492 }
ea466794 493
c0901581 494 if (failed && !ret && failed_mirror)
ea466794
JB
495 repair_eb_io_failure(root, eb, failed_mirror);
496
497 return ret;
f188591e 498}
19c00ddc 499
d352ac68 500/*
d397712b
CM
501 * checksum a dirty tree block before IO. This has extra checks to make sure
502 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 503 */
d397712b 504
01d58472 505static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 506{
4eee4fa4 507 u64 start = page_offset(page);
19c00ddc 508 u64 found_start;
19c00ddc 509 struct extent_buffer *eb;
f188591e 510
4f2de97a
JB
511 eb = (struct extent_buffer *)page->private;
512 if (page != eb->pages[0])
513 return 0;
0f805531 514
19c00ddc 515 found_start = btrfs_header_bytenr(eb);
0f805531
AL
516 /*
517 * Please do not consolidate these warnings into a single if.
518 * It is useful to know what went wrong.
519 */
520 if (WARN_ON(found_start != start))
521 return -EUCLEAN;
522 if (WARN_ON(!PageUptodate(page)))
523 return -EUCLEAN;
524
525 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
526 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527
8bd98f0e 528 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
529}
530
01d58472 531static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
532 struct extent_buffer *eb)
533{
01d58472 534 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
535 u8 fsid[BTRFS_UUID_SIZE];
536 int ret = 1;
537
0a4e5586 538 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
539 while (fs_devices) {
540 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
541 ret = 0;
542 break;
543 }
544 fs_devices = fs_devices->seed;
545 }
546 return ret;
547}
548
0b246afa
JM
549#define CORRUPT(reason, eb, root, slot) \
550 btrfs_crit(root->fs_info, \
551 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
552 btrfs_header_level(eb) == 0 ? "leaf" : "node", \
6b722c17 553 reason, btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
554
555static noinline int check_leaf(struct btrfs_root *root,
556 struct extent_buffer *leaf)
557{
0b246afa 558 struct btrfs_fs_info *fs_info = root->fs_info;
a826d6dc
JB
559 struct btrfs_key key;
560 struct btrfs_key leaf_key;
561 u32 nritems = btrfs_header_nritems(leaf);
562 int slot;
563
1ba98d08
LB
564 if (nritems == 0) {
565 struct btrfs_root *check_root;
566
567 key.objectid = btrfs_header_owner(leaf);
568 key.type = BTRFS_ROOT_ITEM_KEY;
569 key.offset = (u64)-1;
570
0b246afa 571 check_root = btrfs_get_fs_root(fs_info, &key, false);
1ba98d08
LB
572 /*
573 * The only reason we also check NULL here is that during
574 * open_ctree() some roots has not yet been set up.
575 */
576 if (!IS_ERR_OR_NULL(check_root)) {
577 /* if leaf is the root, then it's fine */
578 if (leaf->start !=
579 btrfs_root_bytenr(&check_root->root_item)) {
580 CORRUPT("non-root leaf's nritems is 0",
581 leaf, root, 0);
582 return -EIO;
583 }
584 }
a826d6dc 585 return 0;
1ba98d08 586 }
a826d6dc
JB
587
588 /* Check the 0 item */
589 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
0b246afa 590 BTRFS_LEAF_DATA_SIZE(fs_info)) {
a826d6dc
JB
591 CORRUPT("invalid item offset size pair", leaf, root, 0);
592 return -EIO;
593 }
594
595 /*
596 * Check to make sure each items keys are in the correct order and their
597 * offsets make sense. We only have to loop through nritems-1 because
598 * we check the current slot against the next slot, which verifies the
599 * next slot's offset+size makes sense and that the current's slot
600 * offset is correct.
601 */
602 for (slot = 0; slot < nritems - 1; slot++) {
603 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
604 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
605
606 /* Make sure the keys are in the right order */
607 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
608 CORRUPT("bad key order", leaf, root, slot);
609 return -EIO;
610 }
611
612 /*
613 * Make sure the offset and ends are right, remember that the
614 * item data starts at the end of the leaf and grows towards the
615 * front.
616 */
617 if (btrfs_item_offset_nr(leaf, slot) !=
618 btrfs_item_end_nr(leaf, slot + 1)) {
619 CORRUPT("slot offset bad", leaf, root, slot);
620 return -EIO;
621 }
622
623 /*
624 * Check to make sure that we don't point outside of the leaf,
01327610 625 * just in case all the items are consistent to each other, but
a826d6dc
JB
626 * all point outside of the leaf.
627 */
628 if (btrfs_item_end_nr(leaf, slot) >
0b246afa 629 BTRFS_LEAF_DATA_SIZE(fs_info)) {
a826d6dc
JB
630 CORRUPT("slot end outside of leaf", leaf, root, slot);
631 return -EIO;
632 }
633 }
634
635 return 0;
636}
637
053ab70f
LB
638static int check_node(struct btrfs_root *root, struct extent_buffer *node)
639{
640 unsigned long nr = btrfs_header_nritems(node);
6b722c17
LB
641 struct btrfs_key key, next_key;
642 int slot;
643 u64 bytenr;
644 int ret = 0;
053ab70f 645
da17066c 646 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
053ab70f
LB
647 btrfs_crit(root->fs_info,
648 "corrupt node: block %llu root %llu nritems %lu",
649 node->start, root->objectid, nr);
650 return -EIO;
651 }
6b722c17
LB
652
653 for (slot = 0; slot < nr - 1; slot++) {
654 bytenr = btrfs_node_blockptr(node, slot);
655 btrfs_node_key_to_cpu(node, &key, slot);
656 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
657
658 if (!bytenr) {
659 CORRUPT("invalid item slot", node, root, slot);
660 ret = -EIO;
661 goto out;
662 }
663
664 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
665 CORRUPT("bad key order", node, root, slot);
666 ret = -EIO;
667 goto out;
668 }
669 }
670out:
671 return ret;
053ab70f
LB
672}
673
facc8a22
MX
674static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
675 u64 phy_offset, struct page *page,
676 u64 start, u64 end, int mirror)
ce9adaa5 677{
ce9adaa5
CM
678 u64 found_start;
679 int found_level;
ce9adaa5
CM
680 struct extent_buffer *eb;
681 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 682 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 683 int ret = 0;
727011e0 684 int reads_done;
ce9adaa5 685
ce9adaa5
CM
686 if (!page->private)
687 goto out;
d397712b 688
4f2de97a 689 eb = (struct extent_buffer *)page->private;
d397712b 690
0b32f4bb
JB
691 /* the pending IO might have been the only thing that kept this buffer
692 * in memory. Make sure we have a ref for all this other checks
693 */
694 extent_buffer_get(eb);
695
696 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
697 if (!reads_done)
698 goto err;
f188591e 699
5cf1ab56 700 eb->read_mirror = mirror;
656f30db 701 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
702 ret = -EIO;
703 goto err;
704 }
705
ce9adaa5 706 found_start = btrfs_header_bytenr(eb);
727011e0 707 if (found_start != eb->start) {
02873e43
ZL
708 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
709 found_start, eb->start);
f188591e 710 ret = -EIO;
ce9adaa5
CM
711 goto err;
712 }
02873e43
ZL
713 if (check_tree_block_fsid(fs_info, eb)) {
714 btrfs_err_rl(fs_info, "bad fsid on block %llu",
715 eb->start);
1259ab75
CM
716 ret = -EIO;
717 goto err;
718 }
ce9adaa5 719 found_level = btrfs_header_level(eb);
1c24c3ce 720 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
721 btrfs_err(fs_info, "bad tree block level %d",
722 (int)btrfs_header_level(eb));
1c24c3ce
JB
723 ret = -EIO;
724 goto err;
725 }
ce9adaa5 726
85d4e461
CM
727 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
728 eb, found_level);
4008c04a 729
02873e43 730 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 731 if (ret)
a826d6dc 732 goto err;
a826d6dc
JB
733
734 /*
735 * If this is a leaf block and it is corrupt, set the corrupt bit so
736 * that we don't try and read the other copies of this block, just
737 * return -EIO.
738 */
739 if (found_level == 0 && check_leaf(root, eb)) {
740 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
741 ret = -EIO;
742 }
ce9adaa5 743
053ab70f
LB
744 if (found_level > 0 && check_node(root, eb))
745 ret = -EIO;
746
0b32f4bb
JB
747 if (!ret)
748 set_extent_buffer_uptodate(eb);
ce9adaa5 749err:
79fb65a1
JB
750 if (reads_done &&
751 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
fc2e901f 752 btree_readahead_hook(fs_info, eb, ret);
4bb31e92 753
53b381b3
DW
754 if (ret) {
755 /*
756 * our io error hook is going to dec the io pages
757 * again, we have to make sure it has something
758 * to decrement
759 */
760 atomic_inc(&eb->io_pages);
0b32f4bb 761 clear_extent_buffer_uptodate(eb);
53b381b3 762 }
0b32f4bb 763 free_extent_buffer(eb);
ce9adaa5 764out:
f188591e 765 return ret;
ce9adaa5
CM
766}
767
ea466794 768static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 769{
4bb31e92 770 struct extent_buffer *eb;
4bb31e92 771
4f2de97a 772 eb = (struct extent_buffer *)page->private;
656f30db 773 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 774 eb->read_mirror = failed_mirror;
53b381b3 775 atomic_dec(&eb->io_pages);
ea466794 776 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
fc2e901f 777 btree_readahead_hook(eb->fs_info, eb, -EIO);
4bb31e92
AJ
778 return -EIO; /* we fixed nothing */
779}
780
4246a0b6 781static void end_workqueue_bio(struct bio *bio)
ce9adaa5 782{
97eb6b69 783 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 784 struct btrfs_fs_info *fs_info;
9e0af237
LB
785 struct btrfs_workqueue *wq;
786 btrfs_work_func_t func;
ce9adaa5 787
ce9adaa5 788 fs_info = end_io_wq->info;
4246a0b6 789 end_io_wq->error = bio->bi_error;
d20f7043 790
37226b21 791 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
792 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
793 wq = fs_info->endio_meta_write_workers;
794 func = btrfs_endio_meta_write_helper;
795 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
796 wq = fs_info->endio_freespace_worker;
797 func = btrfs_freespace_write_helper;
798 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
799 wq = fs_info->endio_raid56_workers;
800 func = btrfs_endio_raid56_helper;
801 } else {
802 wq = fs_info->endio_write_workers;
803 func = btrfs_endio_write_helper;
804 }
d20f7043 805 } else {
8b110e39
MX
806 if (unlikely(end_io_wq->metadata ==
807 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
808 wq = fs_info->endio_repair_workers;
809 func = btrfs_endio_repair_helper;
810 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
811 wq = fs_info->endio_raid56_workers;
812 func = btrfs_endio_raid56_helper;
813 } else if (end_io_wq->metadata) {
814 wq = fs_info->endio_meta_workers;
815 func = btrfs_endio_meta_helper;
816 } else {
817 wq = fs_info->endio_workers;
818 func = btrfs_endio_helper;
819 }
d20f7043 820 }
9e0af237
LB
821
822 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
823 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
824}
825
22c59948 826int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 827 enum btrfs_wq_endio_type metadata)
0b86a832 828{
97eb6b69 829 struct btrfs_end_io_wq *end_io_wq;
8b110e39 830
97eb6b69 831 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
832 if (!end_io_wq)
833 return -ENOMEM;
834
835 end_io_wq->private = bio->bi_private;
836 end_io_wq->end_io = bio->bi_end_io;
22c59948 837 end_io_wq->info = info;
ce9adaa5
CM
838 end_io_wq->error = 0;
839 end_io_wq->bio = bio;
22c59948 840 end_io_wq->metadata = metadata;
ce9adaa5
CM
841
842 bio->bi_private = end_io_wq;
843 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
844 return 0;
845}
846
b64a2851 847unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 848{
4854ddd0 849 unsigned long limit = min_t(unsigned long,
5cdc7ad3 850 info->thread_pool_size,
4854ddd0
CM
851 info->fs_devices->open_devices);
852 return 256 * limit;
853}
0986fe9e 854
4a69a410
CM
855static void run_one_async_start(struct btrfs_work *work)
856{
4a69a410 857 struct async_submit_bio *async;
79787eaa 858 int ret;
4a69a410
CM
859
860 async = container_of(work, struct async_submit_bio, work);
81a75f67 861 ret = async->submit_bio_start(async->inode, async->bio,
79787eaa
JM
862 async->mirror_num, async->bio_flags,
863 async->bio_offset);
864 if (ret)
865 async->error = ret;
4a69a410
CM
866}
867
868static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
869{
870 struct btrfs_fs_info *fs_info;
871 struct async_submit_bio *async;
4854ddd0 872 int limit;
8b712842
CM
873
874 async = container_of(work, struct async_submit_bio, work);
875 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 876
b64a2851 877 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
878 limit = limit * 2 / 3;
879
ee863954
DS
880 /*
881 * atomic_dec_return implies a barrier for waitqueue_active
882 */
66657b31 883 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 884 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
885 wake_up(&fs_info->async_submit_wait);
886
bb7ab3b9 887 /* If an error occurred we just want to clean up the bio and move on */
79787eaa 888 if (async->error) {
4246a0b6
CH
889 async->bio->bi_error = async->error;
890 bio_endio(async->bio);
79787eaa
JM
891 return;
892 }
893
81a75f67
MC
894 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
895 async->bio_flags, async->bio_offset);
4a69a410
CM
896}
897
898static void run_one_async_free(struct btrfs_work *work)
899{
900 struct async_submit_bio *async;
901
902 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
903 kfree(async);
904}
905
44b8bd7e 906int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
81a75f67 907 struct bio *bio, int mirror_num,
c8b97818 908 unsigned long bio_flags,
eaf25d93 909 u64 bio_offset,
4a69a410
CM
910 extent_submit_bio_hook_t *submit_bio_start,
911 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
912{
913 struct async_submit_bio *async;
914
915 async = kmalloc(sizeof(*async), GFP_NOFS);
916 if (!async)
917 return -ENOMEM;
918
919 async->inode = inode;
44b8bd7e
CM
920 async->bio = bio;
921 async->mirror_num = mirror_num;
4a69a410
CM
922 async->submit_bio_start = submit_bio_start;
923 async->submit_bio_done = submit_bio_done;
924
9e0af237 925 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 926 run_one_async_done, run_one_async_free);
4a69a410 927
c8b97818 928 async->bio_flags = bio_flags;
eaf25d93 929 async->bio_offset = bio_offset;
8c8bee1d 930
79787eaa
JM
931 async->error = 0;
932
cb03c743 933 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 934
1eff9d32 935 if (bio->bi_opf & REQ_SYNC)
5cdc7ad3 936 btrfs_set_work_high_priority(&async->work);
d313d7a3 937
5cdc7ad3 938 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 939
d397712b 940 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
941 atomic_read(&fs_info->nr_async_submits)) {
942 wait_event(fs_info->async_submit_wait,
943 (atomic_read(&fs_info->nr_async_submits) == 0));
944 }
945
44b8bd7e
CM
946 return 0;
947}
948
ce3ed71a
CM
949static int btree_csum_one_bio(struct bio *bio)
950{
2c30c71b 951 struct bio_vec *bvec;
ce3ed71a 952 struct btrfs_root *root;
2c30c71b 953 int i, ret = 0;
ce3ed71a 954
2c30c71b 955 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 956 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 957 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
958 if (ret)
959 break;
ce3ed71a 960 }
2c30c71b 961
79787eaa 962 return ret;
ce3ed71a
CM
963}
964
81a75f67
MC
965static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
966 int mirror_num, unsigned long bio_flags,
eaf25d93 967 u64 bio_offset)
22c59948 968{
8b712842
CM
969 /*
970 * when we're called for a write, we're already in the async
5443be45 971 * submission context. Just jump into btrfs_map_bio
8b712842 972 */
79787eaa 973 return btree_csum_one_bio(bio);
4a69a410 974}
22c59948 975
81a75f67 976static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
eaf25d93
CM
977 int mirror_num, unsigned long bio_flags,
978 u64 bio_offset)
4a69a410 979{
61891923
SB
980 int ret;
981
8b712842 982 /*
4a69a410
CM
983 * when we're called for a write, we're already in the async
984 * submission context. Just jump into btrfs_map_bio
8b712842 985 */
81a75f67 986 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
4246a0b6
CH
987 if (ret) {
988 bio->bi_error = ret;
989 bio_endio(bio);
990 }
61891923 991 return ret;
0b86a832
CM
992}
993
de0022b9
JB
994static int check_async_write(struct inode *inode, unsigned long bio_flags)
995{
996 if (bio_flags & EXTENT_BIO_TREE_LOG)
997 return 0;
998#ifdef CONFIG_X86
bc696ca0 999 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
1000 return 0;
1001#endif
1002 return 1;
1003}
1004
81a75f67 1005static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
eaf25d93
CM
1006 int mirror_num, unsigned long bio_flags,
1007 u64 bio_offset)
44b8bd7e 1008{
0b246afa 1009 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
de0022b9 1010 int async = check_async_write(inode, bio_flags);
cad321ad
CM
1011 int ret;
1012
37226b21 1013 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
1014 /*
1015 * called for a read, do the setup so that checksum validation
1016 * can happen in the async kernel threads
1017 */
0b246afa
JM
1018 ret = btrfs_bio_wq_end_io(fs_info, bio,
1019 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 1020 if (ret)
61891923 1021 goto out_w_error;
81a75f67 1022 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
de0022b9
JB
1023 } else if (!async) {
1024 ret = btree_csum_one_bio(bio);
1025 if (ret)
61891923 1026 goto out_w_error;
81a75f67 1027 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
61891923
SB
1028 } else {
1029 /*
1030 * kthread helpers are used to submit writes so that
1031 * checksumming can happen in parallel across all CPUs
1032 */
0b246afa 1033 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
61891923
SB
1034 bio_offset,
1035 __btree_submit_bio_start,
1036 __btree_submit_bio_done);
44b8bd7e 1037 }
d313d7a3 1038
4246a0b6
CH
1039 if (ret)
1040 goto out_w_error;
1041 return 0;
1042
61891923 1043out_w_error:
4246a0b6
CH
1044 bio->bi_error = ret;
1045 bio_endio(bio);
61891923 1046 return ret;
44b8bd7e
CM
1047}
1048
3dd1462e 1049#ifdef CONFIG_MIGRATION
784b4e29 1050static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
1051 struct page *newpage, struct page *page,
1052 enum migrate_mode mode)
784b4e29
CM
1053{
1054 /*
1055 * we can't safely write a btree page from here,
1056 * we haven't done the locking hook
1057 */
1058 if (PageDirty(page))
1059 return -EAGAIN;
1060 /*
1061 * Buffers may be managed in a filesystem specific way.
1062 * We must have no buffers or drop them.
1063 */
1064 if (page_has_private(page) &&
1065 !try_to_release_page(page, GFP_KERNEL))
1066 return -EAGAIN;
a6bc32b8 1067 return migrate_page(mapping, newpage, page, mode);
784b4e29 1068}
3dd1462e 1069#endif
784b4e29 1070
0da5468f
CM
1071
1072static int btree_writepages(struct address_space *mapping,
1073 struct writeback_control *wbc)
1074{
e2d84521
MX
1075 struct btrfs_fs_info *fs_info;
1076 int ret;
1077
d8d5f3e1 1078 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1079
1080 if (wbc->for_kupdate)
1081 return 0;
1082
e2d84521 1083 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1084 /* this is a bit racy, but that's ok */
e2d84521
MX
1085 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1086 BTRFS_DIRTY_METADATA_THRESH);
1087 if (ret < 0)
793955bc 1088 return 0;
793955bc 1089 }
0b32f4bb 1090 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1091}
1092
b2950863 1093static int btree_readpage(struct file *file, struct page *page)
5f39d397 1094{
d1310b2e
CM
1095 struct extent_io_tree *tree;
1096 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1097 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1098}
22b0ebda 1099
70dec807 1100static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1101{
98509cfc 1102 if (PageWriteback(page) || PageDirty(page))
d397712b 1103 return 0;
0c4e538b 1104
f7a52a40 1105 return try_release_extent_buffer(page);
d98237b3
CM
1106}
1107
d47992f8
LC
1108static void btree_invalidatepage(struct page *page, unsigned int offset,
1109 unsigned int length)
d98237b3 1110{
d1310b2e
CM
1111 struct extent_io_tree *tree;
1112 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1113 extent_invalidatepage(tree, page, offset);
1114 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1115 if (PagePrivate(page)) {
efe120a0
FH
1116 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1117 "page private not zero on page %llu",
1118 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1119 ClearPagePrivate(page);
1120 set_page_private(page, 0);
09cbfeaf 1121 put_page(page);
9ad6b7bc 1122 }
d98237b3
CM
1123}
1124
0b32f4bb
JB
1125static int btree_set_page_dirty(struct page *page)
1126{
bb146eb2 1127#ifdef DEBUG
0b32f4bb
JB
1128 struct extent_buffer *eb;
1129
1130 BUG_ON(!PagePrivate(page));
1131 eb = (struct extent_buffer *)page->private;
1132 BUG_ON(!eb);
1133 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1134 BUG_ON(!atomic_read(&eb->refs));
1135 btrfs_assert_tree_locked(eb);
bb146eb2 1136#endif
0b32f4bb
JB
1137 return __set_page_dirty_nobuffers(page);
1138}
1139
7f09410b 1140static const struct address_space_operations btree_aops = {
d98237b3 1141 .readpage = btree_readpage,
0da5468f 1142 .writepages = btree_writepages,
5f39d397
CM
1143 .releasepage = btree_releasepage,
1144 .invalidatepage = btree_invalidatepage,
5a92bc88 1145#ifdef CONFIG_MIGRATION
784b4e29 1146 .migratepage = btree_migratepage,
5a92bc88 1147#endif
0b32f4bb 1148 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1149};
1150
d3e46fea 1151void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
090d1875 1152{
5f39d397
CM
1153 struct extent_buffer *buf = NULL;
1154 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1155
a83fffb7 1156 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2 1157 if (IS_ERR(buf))
6197d86e 1158 return;
d1310b2e 1159 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
8436ea91 1160 buf, WAIT_NONE, btree_get_extent, 0);
5f39d397 1161 free_extent_buffer(buf);
090d1875
CM
1162}
1163
c0dcaa4d 1164int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
ab0fff03
AJ
1165 int mirror_num, struct extent_buffer **eb)
1166{
1167 struct extent_buffer *buf = NULL;
1168 struct inode *btree_inode = root->fs_info->btree_inode;
1169 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1170 int ret;
1171
a83fffb7 1172 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2 1173 if (IS_ERR(buf))
ab0fff03
AJ
1174 return 0;
1175
1176 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1177
8436ea91 1178 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
ab0fff03
AJ
1179 btree_get_extent, mirror_num);
1180 if (ret) {
1181 free_extent_buffer(buf);
1182 return ret;
1183 }
1184
1185 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1186 free_extent_buffer(buf);
1187 return -EIO;
0b32f4bb 1188 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1189 *eb = buf;
1190 } else {
1191 free_extent_buffer(buf);
1192 }
1193 return 0;
1194}
1195
0999df54 1196struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
a83fffb7 1197 u64 bytenr)
0999df54 1198{
0b246afa
JM
1199 struct btrfs_fs_info *fs_info = root->fs_info;
1200
1201 if (btrfs_is_testing(fs_info))
1202 return alloc_test_extent_buffer(fs_info, bytenr);
1203 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1204}
1205
1206
e02119d5
CM
1207int btrfs_write_tree_block(struct extent_buffer *buf)
1208{
727011e0 1209 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1210 buf->start + buf->len - 1);
e02119d5
CM
1211}
1212
1213int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1214{
727011e0 1215 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1216 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1217}
1218
0999df54 1219struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1220 u64 parent_transid)
0999df54
CM
1221{
1222 struct extent_buffer *buf = NULL;
0999df54
CM
1223 int ret;
1224
a83fffb7 1225 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
1226 if (IS_ERR(buf))
1227 return buf;
0999df54 1228
8436ea91 1229 ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
0f0fe8f7
FDBM
1230 if (ret) {
1231 free_extent_buffer(buf);
64c043de 1232 return ERR_PTR(ret);
0f0fe8f7 1233 }
5f39d397 1234 return buf;
ce9adaa5 1235
eb60ceac
CM
1236}
1237
01d58472
DD
1238void clean_tree_block(struct btrfs_trans_handle *trans,
1239 struct btrfs_fs_info *fs_info,
d5c13f92 1240 struct extent_buffer *buf)
ed2ff2cb 1241{
55c69072 1242 if (btrfs_header_generation(buf) ==
e2d84521 1243 fs_info->running_transaction->transid) {
b9447ef8 1244 btrfs_assert_tree_locked(buf);
b4ce94de 1245
b9473439 1246 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1247 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1248 -buf->len,
1249 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1250 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1251 btrfs_set_lock_blocking(buf);
1252 clear_extent_buffer_dirty(buf);
1253 }
925baedd 1254 }
5f39d397
CM
1255}
1256
8257b2dc
MX
1257static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1258{
1259 struct btrfs_subvolume_writers *writers;
1260 int ret;
1261
1262 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1263 if (!writers)
1264 return ERR_PTR(-ENOMEM);
1265
908c7f19 1266 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1267 if (ret < 0) {
1268 kfree(writers);
1269 return ERR_PTR(ret);
1270 }
1271
1272 init_waitqueue_head(&writers->wait);
1273 return writers;
1274}
1275
1276static void
1277btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1278{
1279 percpu_counter_destroy(&writers->counter);
1280 kfree(writers);
1281}
1282
da17066c 1283static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1284 u64 objectid)
d97e63b6 1285{
7c0260ee 1286 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1287 root->node = NULL;
a28ec197 1288 root->commit_root = NULL;
27cdeb70 1289 root->state = 0;
d68fc57b 1290 root->orphan_cleanup_state = 0;
0b86a832 1291
0f7d52f4
CM
1292 root->objectid = objectid;
1293 root->last_trans = 0;
13a8a7c8 1294 root->highest_objectid = 0;
eb73c1b7 1295 root->nr_delalloc_inodes = 0;
199c2a9c 1296 root->nr_ordered_extents = 0;
58176a96 1297 root->name = NULL;
6bef4d31 1298 root->inode_tree = RB_ROOT;
16cdcec7 1299 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1300 root->block_rsv = NULL;
d68fc57b 1301 root->orphan_block_rsv = NULL;
0b86a832
CM
1302
1303 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1304 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1305 INIT_LIST_HEAD(&root->delalloc_inodes);
1306 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1307 INIT_LIST_HEAD(&root->ordered_extents);
1308 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1309 INIT_LIST_HEAD(&root->logged_list[0]);
1310 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1311 spin_lock_init(&root->orphan_lock);
5d4f98a2 1312 spin_lock_init(&root->inode_lock);
eb73c1b7 1313 spin_lock_init(&root->delalloc_lock);
199c2a9c 1314 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1315 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1316 spin_lock_init(&root->log_extents_lock[0]);
1317 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1318 mutex_init(&root->objectid_mutex);
e02119d5 1319 mutex_init(&root->log_mutex);
31f3d255 1320 mutex_init(&root->ordered_extent_mutex);
573bfb72 1321 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1322 init_waitqueue_head(&root->log_writer_wait);
1323 init_waitqueue_head(&root->log_commit_wait[0]);
1324 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1325 INIT_LIST_HEAD(&root->log_ctxs[0]);
1326 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1327 atomic_set(&root->log_commit[0], 0);
1328 atomic_set(&root->log_commit[1], 0);
1329 atomic_set(&root->log_writers, 0);
2ecb7923 1330 atomic_set(&root->log_batch, 0);
8a35d95f 1331 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1332 atomic_set(&root->refs, 1);
8257b2dc 1333 atomic_set(&root->will_be_snapshoted, 0);
55eeaf05 1334 atomic_set(&root->qgroup_meta_rsv, 0);
7237f183 1335 root->log_transid = 0;
d1433deb 1336 root->log_transid_committed = -1;
257c62e1 1337 root->last_log_commit = 0;
7c0260ee 1338 if (!dummy)
06ea65a3
JB
1339 extent_io_tree_init(&root->dirty_log_pages,
1340 fs_info->btree_inode->i_mapping);
017e5369 1341
3768f368
CM
1342 memset(&root->root_key, 0, sizeof(root->root_key));
1343 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1344 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1345 if (!dummy)
06ea65a3
JB
1346 root->defrag_trans_start = fs_info->generation;
1347 else
1348 root->defrag_trans_start = 0;
4d775673 1349 root->root_key.objectid = objectid;
0ee5dc67 1350 root->anon_dev = 0;
8ea05e3a 1351
5f3ab90a 1352 spin_lock_init(&root->root_item_lock);
3768f368
CM
1353}
1354
74e4d827
DS
1355static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1356 gfp_t flags)
6f07e42e 1357{
74e4d827 1358 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1359 if (root)
1360 root->fs_info = fs_info;
1361 return root;
1362}
1363
06ea65a3
JB
1364#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1365/* Should only be used by the testing infrastructure */
da17066c 1366struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1367{
1368 struct btrfs_root *root;
1369
7c0260ee
JM
1370 if (!fs_info)
1371 return ERR_PTR(-EINVAL);
1372
1373 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1374 if (!root)
1375 return ERR_PTR(-ENOMEM);
da17066c 1376
b9ef22de 1377 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1378 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1379 root->alloc_bytenr = 0;
06ea65a3
JB
1380
1381 return root;
1382}
1383#endif
1384
20897f5c
AJ
1385struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1386 struct btrfs_fs_info *fs_info,
1387 u64 objectid)
1388{
1389 struct extent_buffer *leaf;
1390 struct btrfs_root *tree_root = fs_info->tree_root;
1391 struct btrfs_root *root;
1392 struct btrfs_key key;
1393 int ret = 0;
6463fe58 1394 uuid_le uuid;
20897f5c 1395
74e4d827 1396 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1397 if (!root)
1398 return ERR_PTR(-ENOMEM);
1399
da17066c 1400 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1401 root->root_key.objectid = objectid;
1402 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1403 root->root_key.offset = 0;
1404
4d75f8a9 1405 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1406 if (IS_ERR(leaf)) {
1407 ret = PTR_ERR(leaf);
1dd05682 1408 leaf = NULL;
20897f5c
AJ
1409 goto fail;
1410 }
1411
b159fa28 1412 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
20897f5c
AJ
1413 btrfs_set_header_bytenr(leaf, leaf->start);
1414 btrfs_set_header_generation(leaf, trans->transid);
1415 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1416 btrfs_set_header_owner(leaf, objectid);
1417 root->node = leaf;
1418
d24ee97b
DS
1419 write_extent_buffer_fsid(leaf, fs_info->fsid);
1420 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
20897f5c
AJ
1421 btrfs_mark_buffer_dirty(leaf);
1422
1423 root->commit_root = btrfs_root_node(root);
27cdeb70 1424 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1425
1426 root->root_item.flags = 0;
1427 root->root_item.byte_limit = 0;
1428 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1429 btrfs_set_root_generation(&root->root_item, trans->transid);
1430 btrfs_set_root_level(&root->root_item, 0);
1431 btrfs_set_root_refs(&root->root_item, 1);
1432 btrfs_set_root_used(&root->root_item, leaf->len);
1433 btrfs_set_root_last_snapshot(&root->root_item, 0);
1434 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1435 uuid_le_gen(&uuid);
1436 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1437 root->root_item.drop_level = 0;
1438
1439 key.objectid = objectid;
1440 key.type = BTRFS_ROOT_ITEM_KEY;
1441 key.offset = 0;
1442 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1443 if (ret)
1444 goto fail;
1445
1446 btrfs_tree_unlock(leaf);
1447
1dd05682
TI
1448 return root;
1449
20897f5c 1450fail:
1dd05682
TI
1451 if (leaf) {
1452 btrfs_tree_unlock(leaf);
59885b39 1453 free_extent_buffer(root->commit_root);
1dd05682
TI
1454 free_extent_buffer(leaf);
1455 }
1456 kfree(root);
20897f5c 1457
1dd05682 1458 return ERR_PTR(ret);
20897f5c
AJ
1459}
1460
7237f183
YZ
1461static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1462 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1463{
1464 struct btrfs_root *root;
7237f183 1465 struct extent_buffer *leaf;
e02119d5 1466
74e4d827 1467 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1468 if (!root)
7237f183 1469 return ERR_PTR(-ENOMEM);
e02119d5 1470
da17066c 1471 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1472
1473 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1474 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1475 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1476
7237f183 1477 /*
27cdeb70
MX
1478 * DON'T set REF_COWS for log trees
1479 *
7237f183
YZ
1480 * log trees do not get reference counted because they go away
1481 * before a real commit is actually done. They do store pointers
1482 * to file data extents, and those reference counts still get
1483 * updated (along with back refs to the log tree).
1484 */
e02119d5 1485
4d75f8a9
DS
1486 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1487 NULL, 0, 0, 0);
7237f183
YZ
1488 if (IS_ERR(leaf)) {
1489 kfree(root);
1490 return ERR_CAST(leaf);
1491 }
e02119d5 1492
b159fa28 1493 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
5d4f98a2
YZ
1494 btrfs_set_header_bytenr(leaf, leaf->start);
1495 btrfs_set_header_generation(leaf, trans->transid);
1496 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1497 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1498 root->node = leaf;
e02119d5 1499
0b246afa 1500 write_extent_buffer_fsid(root->node, fs_info->fsid);
e02119d5
CM
1501 btrfs_mark_buffer_dirty(root->node);
1502 btrfs_tree_unlock(root->node);
7237f183
YZ
1503 return root;
1504}
1505
1506int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1507 struct btrfs_fs_info *fs_info)
1508{
1509 struct btrfs_root *log_root;
1510
1511 log_root = alloc_log_tree(trans, fs_info);
1512 if (IS_ERR(log_root))
1513 return PTR_ERR(log_root);
1514 WARN_ON(fs_info->log_root_tree);
1515 fs_info->log_root_tree = log_root;
1516 return 0;
1517}
1518
1519int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1520 struct btrfs_root *root)
1521{
0b246afa 1522 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1523 struct btrfs_root *log_root;
1524 struct btrfs_inode_item *inode_item;
1525
0b246afa 1526 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1527 if (IS_ERR(log_root))
1528 return PTR_ERR(log_root);
1529
1530 log_root->last_trans = trans->transid;
1531 log_root->root_key.offset = root->root_key.objectid;
1532
1533 inode_item = &log_root->root_item.inode;
3cae210f
QW
1534 btrfs_set_stack_inode_generation(inode_item, 1);
1535 btrfs_set_stack_inode_size(inode_item, 3);
1536 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1537 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1538 fs_info->nodesize);
3cae210f 1539 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1540
5d4f98a2 1541 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1542
1543 WARN_ON(root->log_root);
1544 root->log_root = log_root;
1545 root->log_transid = 0;
d1433deb 1546 root->log_transid_committed = -1;
257c62e1 1547 root->last_log_commit = 0;
e02119d5
CM
1548 return 0;
1549}
1550
35a3621b
SB
1551static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1552 struct btrfs_key *key)
e02119d5
CM
1553{
1554 struct btrfs_root *root;
1555 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1556 struct btrfs_path *path;
84234f3a 1557 u64 generation;
cb517eab 1558 int ret;
0f7d52f4 1559
cb517eab
MX
1560 path = btrfs_alloc_path();
1561 if (!path)
0f7d52f4 1562 return ERR_PTR(-ENOMEM);
cb517eab 1563
74e4d827 1564 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1565 if (!root) {
1566 ret = -ENOMEM;
1567 goto alloc_fail;
0f7d52f4
CM
1568 }
1569
da17066c 1570 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1571
cb517eab
MX
1572 ret = btrfs_find_root(tree_root, key, path,
1573 &root->root_item, &root->root_key);
0f7d52f4 1574 if (ret) {
13a8a7c8
YZ
1575 if (ret > 0)
1576 ret = -ENOENT;
cb517eab 1577 goto find_fail;
0f7d52f4 1578 }
13a8a7c8 1579
84234f3a 1580 generation = btrfs_root_generation(&root->root_item);
db94535d 1581 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1582 generation);
64c043de
LB
1583 if (IS_ERR(root->node)) {
1584 ret = PTR_ERR(root->node);
cb517eab
MX
1585 goto find_fail;
1586 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1587 ret = -EIO;
64c043de
LB
1588 free_extent_buffer(root->node);
1589 goto find_fail;
416bc658 1590 }
5d4f98a2 1591 root->commit_root = btrfs_root_node(root);
13a8a7c8 1592out:
cb517eab
MX
1593 btrfs_free_path(path);
1594 return root;
1595
cb517eab
MX
1596find_fail:
1597 kfree(root);
1598alloc_fail:
1599 root = ERR_PTR(ret);
1600 goto out;
1601}
1602
1603struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1604 struct btrfs_key *location)
1605{
1606 struct btrfs_root *root;
1607
1608 root = btrfs_read_tree_root(tree_root, location);
1609 if (IS_ERR(root))
1610 return root;
1611
1612 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1613 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1614 btrfs_check_and_init_root_item(&root->root_item);
1615 }
13a8a7c8 1616
5eda7b5e
CM
1617 return root;
1618}
1619
cb517eab
MX
1620int btrfs_init_fs_root(struct btrfs_root *root)
1621{
1622 int ret;
8257b2dc 1623 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1624
1625 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1626 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1627 GFP_NOFS);
1628 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1629 ret = -ENOMEM;
1630 goto fail;
1631 }
1632
8257b2dc
MX
1633 writers = btrfs_alloc_subvolume_writers();
1634 if (IS_ERR(writers)) {
1635 ret = PTR_ERR(writers);
1636 goto fail;
1637 }
1638 root->subv_writers = writers;
1639
cb517eab 1640 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1641 spin_lock_init(&root->ino_cache_lock);
1642 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1643
1644 ret = get_anon_bdev(&root->anon_dev);
1645 if (ret)
876d2cf1 1646 goto fail;
f32e48e9
CR
1647
1648 mutex_lock(&root->objectid_mutex);
1649 ret = btrfs_find_highest_objectid(root,
1650 &root->highest_objectid);
1651 if (ret) {
1652 mutex_unlock(&root->objectid_mutex);
876d2cf1 1653 goto fail;
f32e48e9
CR
1654 }
1655
1656 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1657
1658 mutex_unlock(&root->objectid_mutex);
1659
cb517eab
MX
1660 return 0;
1661fail:
876d2cf1 1662 /* the caller is responsible to call free_fs_root */
cb517eab
MX
1663 return ret;
1664}
1665
35bbb97f
JM
1666struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1667 u64 root_id)
cb517eab
MX
1668{
1669 struct btrfs_root *root;
1670
1671 spin_lock(&fs_info->fs_roots_radix_lock);
1672 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1673 (unsigned long)root_id);
1674 spin_unlock(&fs_info->fs_roots_radix_lock);
1675 return root;
1676}
1677
1678int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1679 struct btrfs_root *root)
1680{
1681 int ret;
1682
e1860a77 1683 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1684 if (ret)
1685 return ret;
1686
1687 spin_lock(&fs_info->fs_roots_radix_lock);
1688 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1689 (unsigned long)root->root_key.objectid,
1690 root);
1691 if (ret == 0)
27cdeb70 1692 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1693 spin_unlock(&fs_info->fs_roots_radix_lock);
1694 radix_tree_preload_end();
1695
1696 return ret;
1697}
1698
c00869f1
MX
1699struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1700 struct btrfs_key *location,
1701 bool check_ref)
5eda7b5e
CM
1702{
1703 struct btrfs_root *root;
381cf658 1704 struct btrfs_path *path;
1d4c08e0 1705 struct btrfs_key key;
5eda7b5e
CM
1706 int ret;
1707
edbd8d4e
CM
1708 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1709 return fs_info->tree_root;
1710 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1711 return fs_info->extent_root;
8f18cf13
CM
1712 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1713 return fs_info->chunk_root;
1714 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1715 return fs_info->dev_root;
0403e47e
YZ
1716 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1717 return fs_info->csum_root;
bcef60f2
AJ
1718 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1719 return fs_info->quota_root ? fs_info->quota_root :
1720 ERR_PTR(-ENOENT);
f7a81ea4
SB
1721 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1722 return fs_info->uuid_root ? fs_info->uuid_root :
1723 ERR_PTR(-ENOENT);
70f6d82e
OS
1724 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1725 return fs_info->free_space_root ? fs_info->free_space_root :
1726 ERR_PTR(-ENOENT);
4df27c4d 1727again:
cb517eab 1728 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1729 if (root) {
c00869f1 1730 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1731 return ERR_PTR(-ENOENT);
5eda7b5e 1732 return root;
48475471 1733 }
5eda7b5e 1734
cb517eab 1735 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1736 if (IS_ERR(root))
1737 return root;
3394e160 1738
c00869f1 1739 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1740 ret = -ENOENT;
581bb050 1741 goto fail;
35a30d7c 1742 }
581bb050 1743
cb517eab 1744 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1745 if (ret)
1746 goto fail;
3394e160 1747
381cf658
DS
1748 path = btrfs_alloc_path();
1749 if (!path) {
1750 ret = -ENOMEM;
1751 goto fail;
1752 }
1d4c08e0
DS
1753 key.objectid = BTRFS_ORPHAN_OBJECTID;
1754 key.type = BTRFS_ORPHAN_ITEM_KEY;
1755 key.offset = location->objectid;
1756
1757 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1758 btrfs_free_path(path);
d68fc57b
YZ
1759 if (ret < 0)
1760 goto fail;
1761 if (ret == 0)
27cdeb70 1762 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1763
cb517eab 1764 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1765 if (ret) {
4df27c4d
YZ
1766 if (ret == -EEXIST) {
1767 free_fs_root(root);
1768 goto again;
1769 }
1770 goto fail;
0f7d52f4 1771 }
edbd8d4e 1772 return root;
4df27c4d
YZ
1773fail:
1774 free_fs_root(root);
1775 return ERR_PTR(ret);
edbd8d4e
CM
1776}
1777
04160088
CM
1778static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1779{
1780 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1781 int ret = 0;
04160088
CM
1782 struct btrfs_device *device;
1783 struct backing_dev_info *bdi;
b7967db7 1784
1f78160c
XG
1785 rcu_read_lock();
1786 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1787 if (!device->bdev)
1788 continue;
04160088 1789 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1790 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1791 ret = 1;
1792 break;
1793 }
1794 }
1f78160c 1795 rcu_read_unlock();
04160088
CM
1796 return ret;
1797}
1798
04160088
CM
1799static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1800{
ad081f14
JA
1801 int err;
1802
b4caecd4 1803 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1804 if (err)
1805 return err;
1806
09cbfeaf 1807 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
04160088
CM
1808 bdi->congested_fn = btrfs_congested_fn;
1809 bdi->congested_data = info;
da2f0f74 1810 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
04160088
CM
1811 return 0;
1812}
1813
8b712842
CM
1814/*
1815 * called by the kthread helper functions to finally call the bio end_io
1816 * functions. This is where read checksum verification actually happens
1817 */
1818static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1819{
ce9adaa5 1820 struct bio *bio;
97eb6b69 1821 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1822
97eb6b69 1823 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1824 bio = end_io_wq->bio;
ce9adaa5 1825
4246a0b6 1826 bio->bi_error = end_io_wq->error;
8b712842
CM
1827 bio->bi_private = end_io_wq->private;
1828 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1829 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1830 bio_endio(bio);
44b8bd7e
CM
1831}
1832
a74a4b97
CM
1833static int cleaner_kthread(void *arg)
1834{
1835 struct btrfs_root *root = arg;
0b246afa 1836 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1837 int again;
da288d28 1838 struct btrfs_trans_handle *trans;
a74a4b97
CM
1839
1840 do {
d0278245 1841 again = 0;
a74a4b97 1842
d0278245 1843 /* Make the cleaner go to sleep early. */
babbf170 1844 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1845 goto sleep;
1846
90c711ab
ZB
1847 /*
1848 * Do not do anything if we might cause open_ctree() to block
1849 * before we have finished mounting the filesystem.
1850 */
0b246afa 1851 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1852 goto sleep;
1853
0b246afa 1854 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1855 goto sleep;
1856
dc7f370c
MX
1857 /*
1858 * Avoid the problem that we change the status of the fs
1859 * during the above check and trylock.
1860 */
babbf170 1861 if (btrfs_need_cleaner_sleep(root)) {
0b246afa 1862 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1863 goto sleep;
76dda93c 1864 }
a74a4b97 1865
0b246afa 1866 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
d0278245 1867 btrfs_run_delayed_iputs(root);
0b246afa 1868 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1869
d0278245 1870 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1871 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1872
1873 /*
05323cd1
MX
1874 * The defragger has dealt with the R/O remount and umount,
1875 * needn't do anything special here.
d0278245 1876 */
0b246afa 1877 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1878
1879 /*
1880 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1881 * with relocation (btrfs_relocate_chunk) and relocation
1882 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1883 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1884 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1885 * unused block groups.
1886 */
0b246afa 1887 btrfs_delete_unused_bgs(fs_info);
d0278245 1888sleep:
838fe188 1889 if (!again) {
a74a4b97 1890 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1891 if (!kthread_should_stop())
1892 schedule();
a74a4b97
CM
1893 __set_current_state(TASK_RUNNING);
1894 }
1895 } while (!kthread_should_stop());
da288d28
FM
1896
1897 /*
1898 * Transaction kthread is stopped before us and wakes us up.
1899 * However we might have started a new transaction and COWed some
1900 * tree blocks when deleting unused block groups for example. So
1901 * make sure we commit the transaction we started to have a clean
1902 * shutdown when evicting the btree inode - if it has dirty pages
1903 * when we do the final iput() on it, eviction will trigger a
1904 * writeback for it which will fail with null pointer dereferences
1905 * since work queues and other resources were already released and
1906 * destroyed by the time the iput/eviction/writeback is made.
1907 */
1908 trans = btrfs_attach_transaction(root);
1909 if (IS_ERR(trans)) {
1910 if (PTR_ERR(trans) != -ENOENT)
0b246afa 1911 btrfs_err(fs_info,
da288d28
FM
1912 "cleaner transaction attach returned %ld",
1913 PTR_ERR(trans));
1914 } else {
1915 int ret;
1916
1917 ret = btrfs_commit_transaction(trans, root);
1918 if (ret)
0b246afa 1919 btrfs_err(fs_info,
da288d28
FM
1920 "cleaner open transaction commit returned %d",
1921 ret);
1922 }
1923
a74a4b97
CM
1924 return 0;
1925}
1926
1927static int transaction_kthread(void *arg)
1928{
1929 struct btrfs_root *root = arg;
0b246afa 1930 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1931 struct btrfs_trans_handle *trans;
1932 struct btrfs_transaction *cur;
8929ecfa 1933 u64 transid;
a74a4b97
CM
1934 unsigned long now;
1935 unsigned long delay;
914b2007 1936 bool cannot_commit;
a74a4b97
CM
1937
1938 do {
914b2007 1939 cannot_commit = false;
0b246afa
JM
1940 delay = HZ * fs_info->commit_interval;
1941 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1942
0b246afa
JM
1943 spin_lock(&fs_info->trans_lock);
1944 cur = fs_info->running_transaction;
a74a4b97 1945 if (!cur) {
0b246afa 1946 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1947 goto sleep;
1948 }
31153d81 1949
a74a4b97 1950 now = get_seconds();
4a9d8bde 1951 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17 1952 (now < cur->start_time ||
0b246afa
JM
1953 now - cur->start_time < fs_info->commit_interval)) {
1954 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1955 delay = HZ * 5;
1956 goto sleep;
1957 }
8929ecfa 1958 transid = cur->transid;
0b246afa 1959 spin_unlock(&fs_info->trans_lock);
56bec294 1960
79787eaa 1961 /* If the file system is aborted, this will always fail. */
354aa0fb 1962 trans = btrfs_attach_transaction(root);
914b2007 1963 if (IS_ERR(trans)) {
354aa0fb
MX
1964 if (PTR_ERR(trans) != -ENOENT)
1965 cannot_commit = true;
79787eaa 1966 goto sleep;
914b2007 1967 }
8929ecfa 1968 if (transid == trans->transid) {
79787eaa 1969 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1970 } else {
1971 btrfs_end_transaction(trans, root);
1972 }
a74a4b97 1973sleep:
0b246afa
JM
1974 wake_up_process(fs_info->cleaner_kthread);
1975 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1976
4e121c06 1977 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1978 &fs_info->fs_state)))
4e121c06 1979 btrfs_cleanup_transaction(root);
ce63f891
JK
1980 set_current_state(TASK_INTERRUPTIBLE);
1981 if (!kthread_should_stop() &&
0b246afa 1982 (!btrfs_transaction_blocked(fs_info) ||
ce63f891
JK
1983 cannot_commit))
1984 schedule_timeout(delay);
1985 __set_current_state(TASK_RUNNING);
a74a4b97
CM
1986 } while (!kthread_should_stop());
1987 return 0;
1988}
1989
af31f5e5
CM
1990/*
1991 * this will find the highest generation in the array of
1992 * root backups. The index of the highest array is returned,
1993 * or -1 if we can't find anything.
1994 *
1995 * We check to make sure the array is valid by comparing the
1996 * generation of the latest root in the array with the generation
1997 * in the super block. If they don't match we pitch it.
1998 */
1999static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2000{
2001 u64 cur;
2002 int newest_index = -1;
2003 struct btrfs_root_backup *root_backup;
2004 int i;
2005
2006 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2007 root_backup = info->super_copy->super_roots + i;
2008 cur = btrfs_backup_tree_root_gen(root_backup);
2009 if (cur == newest_gen)
2010 newest_index = i;
2011 }
2012
2013 /* check to see if we actually wrapped around */
2014 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2015 root_backup = info->super_copy->super_roots;
2016 cur = btrfs_backup_tree_root_gen(root_backup);
2017 if (cur == newest_gen)
2018 newest_index = 0;
2019 }
2020 return newest_index;
2021}
2022
2023
2024/*
2025 * find the oldest backup so we know where to store new entries
2026 * in the backup array. This will set the backup_root_index
2027 * field in the fs_info struct
2028 */
2029static void find_oldest_super_backup(struct btrfs_fs_info *info,
2030 u64 newest_gen)
2031{
2032 int newest_index = -1;
2033
2034 newest_index = find_newest_super_backup(info, newest_gen);
2035 /* if there was garbage in there, just move along */
2036 if (newest_index == -1) {
2037 info->backup_root_index = 0;
2038 } else {
2039 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2040 }
2041}
2042
2043/*
2044 * copy all the root pointers into the super backup array.
2045 * this will bump the backup pointer by one when it is
2046 * done
2047 */
2048static void backup_super_roots(struct btrfs_fs_info *info)
2049{
2050 int next_backup;
2051 struct btrfs_root_backup *root_backup;
2052 int last_backup;
2053
2054 next_backup = info->backup_root_index;
2055 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2056 BTRFS_NUM_BACKUP_ROOTS;
2057
2058 /*
2059 * just overwrite the last backup if we're at the same generation
2060 * this happens only at umount
2061 */
2062 root_backup = info->super_for_commit->super_roots + last_backup;
2063 if (btrfs_backup_tree_root_gen(root_backup) ==
2064 btrfs_header_generation(info->tree_root->node))
2065 next_backup = last_backup;
2066
2067 root_backup = info->super_for_commit->super_roots + next_backup;
2068
2069 /*
2070 * make sure all of our padding and empty slots get zero filled
2071 * regardless of which ones we use today
2072 */
2073 memset(root_backup, 0, sizeof(*root_backup));
2074
2075 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2076
2077 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2078 btrfs_set_backup_tree_root_gen(root_backup,
2079 btrfs_header_generation(info->tree_root->node));
2080
2081 btrfs_set_backup_tree_root_level(root_backup,
2082 btrfs_header_level(info->tree_root->node));
2083
2084 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2085 btrfs_set_backup_chunk_root_gen(root_backup,
2086 btrfs_header_generation(info->chunk_root->node));
2087 btrfs_set_backup_chunk_root_level(root_backup,
2088 btrfs_header_level(info->chunk_root->node));
2089
2090 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2091 btrfs_set_backup_extent_root_gen(root_backup,
2092 btrfs_header_generation(info->extent_root->node));
2093 btrfs_set_backup_extent_root_level(root_backup,
2094 btrfs_header_level(info->extent_root->node));
2095
7c7e82a7
CM
2096 /*
2097 * we might commit during log recovery, which happens before we set
2098 * the fs_root. Make sure it is valid before we fill it in.
2099 */
2100 if (info->fs_root && info->fs_root->node) {
2101 btrfs_set_backup_fs_root(root_backup,
2102 info->fs_root->node->start);
2103 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2104 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2105 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2106 btrfs_header_level(info->fs_root->node));
7c7e82a7 2107 }
af31f5e5
CM
2108
2109 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2110 btrfs_set_backup_dev_root_gen(root_backup,
2111 btrfs_header_generation(info->dev_root->node));
2112 btrfs_set_backup_dev_root_level(root_backup,
2113 btrfs_header_level(info->dev_root->node));
2114
2115 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2116 btrfs_set_backup_csum_root_gen(root_backup,
2117 btrfs_header_generation(info->csum_root->node));
2118 btrfs_set_backup_csum_root_level(root_backup,
2119 btrfs_header_level(info->csum_root->node));
2120
2121 btrfs_set_backup_total_bytes(root_backup,
2122 btrfs_super_total_bytes(info->super_copy));
2123 btrfs_set_backup_bytes_used(root_backup,
2124 btrfs_super_bytes_used(info->super_copy));
2125 btrfs_set_backup_num_devices(root_backup,
2126 btrfs_super_num_devices(info->super_copy));
2127
2128 /*
2129 * if we don't copy this out to the super_copy, it won't get remembered
2130 * for the next commit
2131 */
2132 memcpy(&info->super_copy->super_roots,
2133 &info->super_for_commit->super_roots,
2134 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2135}
2136
2137/*
2138 * this copies info out of the root backup array and back into
2139 * the in-memory super block. It is meant to help iterate through
2140 * the array, so you send it the number of backups you've already
2141 * tried and the last backup index you used.
2142 *
2143 * this returns -1 when it has tried all the backups
2144 */
2145static noinline int next_root_backup(struct btrfs_fs_info *info,
2146 struct btrfs_super_block *super,
2147 int *num_backups_tried, int *backup_index)
2148{
2149 struct btrfs_root_backup *root_backup;
2150 int newest = *backup_index;
2151
2152 if (*num_backups_tried == 0) {
2153 u64 gen = btrfs_super_generation(super);
2154
2155 newest = find_newest_super_backup(info, gen);
2156 if (newest == -1)
2157 return -1;
2158
2159 *backup_index = newest;
2160 *num_backups_tried = 1;
2161 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2162 /* we've tried all the backups, all done */
2163 return -1;
2164 } else {
2165 /* jump to the next oldest backup */
2166 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2167 BTRFS_NUM_BACKUP_ROOTS;
2168 *backup_index = newest;
2169 *num_backups_tried += 1;
2170 }
2171 root_backup = super->super_roots + newest;
2172
2173 btrfs_set_super_generation(super,
2174 btrfs_backup_tree_root_gen(root_backup));
2175 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2176 btrfs_set_super_root_level(super,
2177 btrfs_backup_tree_root_level(root_backup));
2178 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2179
2180 /*
2181 * fixme: the total bytes and num_devices need to match or we should
2182 * need a fsck
2183 */
2184 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2185 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2186 return 0;
2187}
2188
7abadb64
LB
2189/* helper to cleanup workers */
2190static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2191{
dc6e3209 2192 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2193 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2194 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2195 btrfs_destroy_workqueue(fs_info->endio_workers);
2196 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2197 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2198 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2199 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2200 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2201 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2202 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2203 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2204 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2205 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2206 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2207 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2208 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2209 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2210}
2211
2e9f5954
R
2212static void free_root_extent_buffers(struct btrfs_root *root)
2213{
2214 if (root) {
2215 free_extent_buffer(root->node);
2216 free_extent_buffer(root->commit_root);
2217 root->node = NULL;
2218 root->commit_root = NULL;
2219 }
2220}
2221
af31f5e5
CM
2222/* helper to cleanup tree roots */
2223static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2224{
2e9f5954 2225 free_root_extent_buffers(info->tree_root);
655b09fe 2226
2e9f5954
R
2227 free_root_extent_buffers(info->dev_root);
2228 free_root_extent_buffers(info->extent_root);
2229 free_root_extent_buffers(info->csum_root);
2230 free_root_extent_buffers(info->quota_root);
2231 free_root_extent_buffers(info->uuid_root);
2232 if (chunk_root)
2233 free_root_extent_buffers(info->chunk_root);
70f6d82e 2234 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2235}
2236
faa2dbf0 2237void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2238{
2239 int ret;
2240 struct btrfs_root *gang[8];
2241 int i;
2242
2243 while (!list_empty(&fs_info->dead_roots)) {
2244 gang[0] = list_entry(fs_info->dead_roots.next,
2245 struct btrfs_root, root_list);
2246 list_del(&gang[0]->root_list);
2247
27cdeb70 2248 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2249 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2250 } else {
2251 free_extent_buffer(gang[0]->node);
2252 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2253 btrfs_put_fs_root(gang[0]);
171f6537
JB
2254 }
2255 }
2256
2257 while (1) {
2258 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2259 (void **)gang, 0,
2260 ARRAY_SIZE(gang));
2261 if (!ret)
2262 break;
2263 for (i = 0; i < ret; i++)
cb517eab 2264 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2265 }
1a4319cc
LB
2266
2267 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2268 btrfs_free_log_root_tree(NULL, fs_info);
2269 btrfs_destroy_pinned_extent(fs_info->tree_root,
2270 fs_info->pinned_extents);
2271 }
171f6537 2272}
af31f5e5 2273
638aa7ed
ES
2274static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2275{
2276 mutex_init(&fs_info->scrub_lock);
2277 atomic_set(&fs_info->scrubs_running, 0);
2278 atomic_set(&fs_info->scrub_pause_req, 0);
2279 atomic_set(&fs_info->scrubs_paused, 0);
2280 atomic_set(&fs_info->scrub_cancel_req, 0);
2281 init_waitqueue_head(&fs_info->scrub_pause_wait);
2282 fs_info->scrub_workers_refcnt = 0;
2283}
2284
779a65a4
ES
2285static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2286{
2287 spin_lock_init(&fs_info->balance_lock);
2288 mutex_init(&fs_info->balance_mutex);
2289 atomic_set(&fs_info->balance_running, 0);
2290 atomic_set(&fs_info->balance_pause_req, 0);
2291 atomic_set(&fs_info->balance_cancel_req, 0);
2292 fs_info->balance_ctl = NULL;
2293 init_waitqueue_head(&fs_info->balance_wait_q);
2294}
2295
6bccf3ab 2296static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0
ES
2297{
2298 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2299 set_nlink(fs_info->btree_inode, 1);
2300 /*
2301 * we set the i_size on the btree inode to the max possible int.
2302 * the real end of the address space is determined by all of
2303 * the devices in the system
2304 */
2305 fs_info->btree_inode->i_size = OFFSET_MAX;
2306 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
f37938e0
ES
2307
2308 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2309 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2310 fs_info->btree_inode->i_mapping);
2311 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2312 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2313
2314 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2315
6bccf3ab 2316 BTRFS_I(fs_info->btree_inode)->root = fs_info->tree_root;
f37938e0
ES
2317 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2318 sizeof(struct btrfs_key));
2319 set_bit(BTRFS_INODE_DUMMY,
2320 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2321 btrfs_insert_inode_hash(fs_info->btree_inode);
2322}
2323
ad618368
ES
2324static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2325{
2326 fs_info->dev_replace.lock_owner = 0;
2327 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2328 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2329 rwlock_init(&fs_info->dev_replace.lock);
2330 atomic_set(&fs_info->dev_replace.read_locks, 0);
2331 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2332 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2333 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2334}
2335
f9e92e40
ES
2336static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2337{
2338 spin_lock_init(&fs_info->qgroup_lock);
2339 mutex_init(&fs_info->qgroup_ioctl_lock);
2340 fs_info->qgroup_tree = RB_ROOT;
2341 fs_info->qgroup_op_tree = RB_ROOT;
2342 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2343 fs_info->qgroup_seq = 1;
f9e92e40 2344 fs_info->qgroup_ulist = NULL;
d2c609b8 2345 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2346 mutex_init(&fs_info->qgroup_rescan_lock);
2347}
2348
2a458198
ES
2349static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2350 struct btrfs_fs_devices *fs_devices)
2351{
2352 int max_active = fs_info->thread_pool_size;
6f011058 2353 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2354
2355 fs_info->workers =
cb001095
JM
2356 btrfs_alloc_workqueue(fs_info, "worker",
2357 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2358
2359 fs_info->delalloc_workers =
cb001095
JM
2360 btrfs_alloc_workqueue(fs_info, "delalloc",
2361 flags, max_active, 2);
2a458198
ES
2362
2363 fs_info->flush_workers =
cb001095
JM
2364 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2365 flags, max_active, 0);
2a458198
ES
2366
2367 fs_info->caching_workers =
cb001095 2368 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2369
2370 /*
2371 * a higher idle thresh on the submit workers makes it much more
2372 * likely that bios will be send down in a sane order to the
2373 * devices
2374 */
2375 fs_info->submit_workers =
cb001095 2376 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2377 min_t(u64, fs_devices->num_devices,
2378 max_active), 64);
2379
2380 fs_info->fixup_workers =
cb001095 2381 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2382
2383 /*
2384 * endios are largely parallel and should have a very
2385 * low idle thresh
2386 */
2387 fs_info->endio_workers =
cb001095 2388 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2389 fs_info->endio_meta_workers =
cb001095
JM
2390 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2391 max_active, 4);
2a458198 2392 fs_info->endio_meta_write_workers =
cb001095
JM
2393 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2394 max_active, 2);
2a458198 2395 fs_info->endio_raid56_workers =
cb001095
JM
2396 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2397 max_active, 4);
2a458198 2398 fs_info->endio_repair_workers =
cb001095 2399 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2400 fs_info->rmw_workers =
cb001095 2401 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2402 fs_info->endio_write_workers =
cb001095
JM
2403 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2404 max_active, 2);
2a458198 2405 fs_info->endio_freespace_worker =
cb001095
JM
2406 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2407 max_active, 0);
2a458198 2408 fs_info->delayed_workers =
cb001095
JM
2409 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2410 max_active, 0);
2a458198 2411 fs_info->readahead_workers =
cb001095
JM
2412 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2413 max_active, 2);
2a458198 2414 fs_info->qgroup_rescan_workers =
cb001095 2415 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2416 fs_info->extent_workers =
cb001095 2417 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2418 min_t(u64, fs_devices->num_devices,
2419 max_active), 8);
2420
2421 if (!(fs_info->workers && fs_info->delalloc_workers &&
2422 fs_info->submit_workers && fs_info->flush_workers &&
2423 fs_info->endio_workers && fs_info->endio_meta_workers &&
2424 fs_info->endio_meta_write_workers &&
2425 fs_info->endio_repair_workers &&
2426 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2427 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2428 fs_info->caching_workers && fs_info->readahead_workers &&
2429 fs_info->fixup_workers && fs_info->delayed_workers &&
2430 fs_info->extent_workers &&
2431 fs_info->qgroup_rescan_workers)) {
2432 return -ENOMEM;
2433 }
2434
2435 return 0;
2436}
2437
63443bf5
ES
2438static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2439 struct btrfs_fs_devices *fs_devices)
2440{
2441 int ret;
2442 struct btrfs_root *tree_root = fs_info->tree_root;
2443 struct btrfs_root *log_tree_root;
2444 struct btrfs_super_block *disk_super = fs_info->super_copy;
2445 u64 bytenr = btrfs_super_log_root(disk_super);
2446
2447 if (fs_devices->rw_devices == 0) {
f14d104d 2448 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2449 return -EIO;
2450 }
2451
74e4d827 2452 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2453 if (!log_tree_root)
2454 return -ENOMEM;
2455
da17066c 2456 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5
ES
2457
2458 log_tree_root->node = read_tree_block(tree_root, bytenr,
2459 fs_info->generation + 1);
64c043de 2460 if (IS_ERR(log_tree_root->node)) {
f14d104d 2461 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2462 ret = PTR_ERR(log_tree_root->node);
64c043de 2463 kfree(log_tree_root);
0eeff236 2464 return ret;
64c043de 2465 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2466 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2467 free_extent_buffer(log_tree_root->node);
2468 kfree(log_tree_root);
2469 return -EIO;
2470 }
2471 /* returns with log_tree_root freed on success */
2472 ret = btrfs_recover_log_trees(log_tree_root);
2473 if (ret) {
0b246afa
JM
2474 btrfs_handle_fs_error(fs_info, ret,
2475 "Failed to recover log tree");
63443bf5
ES
2476 free_extent_buffer(log_tree_root->node);
2477 kfree(log_tree_root);
2478 return ret;
2479 }
2480
2481 if (fs_info->sb->s_flags & MS_RDONLY) {
6bccf3ab 2482 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2483 if (ret)
2484 return ret;
2485 }
2486
2487 return 0;
2488}
2489
6bccf3ab 2490static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2491{
6bccf3ab 2492 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2493 struct btrfs_root *root;
4bbcaa64
ES
2494 struct btrfs_key location;
2495 int ret;
2496
6bccf3ab
JM
2497 BUG_ON(!fs_info->tree_root);
2498
4bbcaa64
ES
2499 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2500 location.type = BTRFS_ROOT_ITEM_KEY;
2501 location.offset = 0;
2502
a4f3d2c4
DS
2503 root = btrfs_read_tree_root(tree_root, &location);
2504 if (IS_ERR(root))
2505 return PTR_ERR(root);
2506 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2507 fs_info->extent_root = root;
4bbcaa64
ES
2508
2509 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2510 root = btrfs_read_tree_root(tree_root, &location);
2511 if (IS_ERR(root))
2512 return PTR_ERR(root);
2513 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2514 fs_info->dev_root = root;
4bbcaa64
ES
2515 btrfs_init_devices_late(fs_info);
2516
2517 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2518 root = btrfs_read_tree_root(tree_root, &location);
2519 if (IS_ERR(root))
2520 return PTR_ERR(root);
2521 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2522 fs_info->csum_root = root;
4bbcaa64
ES
2523
2524 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2525 root = btrfs_read_tree_root(tree_root, &location);
2526 if (!IS_ERR(root)) {
2527 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2528 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2529 fs_info->quota_root = root;
4bbcaa64
ES
2530 }
2531
2532 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2533 root = btrfs_read_tree_root(tree_root, &location);
2534 if (IS_ERR(root)) {
2535 ret = PTR_ERR(root);
4bbcaa64
ES
2536 if (ret != -ENOENT)
2537 return ret;
2538 } else {
a4f3d2c4
DS
2539 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2540 fs_info->uuid_root = root;
4bbcaa64
ES
2541 }
2542
70f6d82e
OS
2543 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2544 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2545 root = btrfs_read_tree_root(tree_root, &location);
2546 if (IS_ERR(root))
2547 return PTR_ERR(root);
2548 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2549 fs_info->free_space_root = root;
2550 }
2551
4bbcaa64
ES
2552 return 0;
2553}
2554
ad2b2c80
AV
2555int open_ctree(struct super_block *sb,
2556 struct btrfs_fs_devices *fs_devices,
2557 char *options)
2e635a27 2558{
db94535d
CM
2559 u32 sectorsize;
2560 u32 nodesize;
87ee04eb 2561 u32 stripesize;
84234f3a 2562 u64 generation;
f2b636e8 2563 u64 features;
3de4586c 2564 struct btrfs_key location;
a061fc8d 2565 struct buffer_head *bh;
4d34b278 2566 struct btrfs_super_block *disk_super;
815745cf 2567 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2568 struct btrfs_root *tree_root;
4d34b278 2569 struct btrfs_root *chunk_root;
eb60ceac 2570 int ret;
e58ca020 2571 int err = -EINVAL;
af31f5e5
CM
2572 int num_backups_tried = 0;
2573 int backup_index = 0;
5cdc7ad3 2574 int max_active;
6675df31 2575 int clear_free_space_tree = 0;
4543df7e 2576
74e4d827
DS
2577 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2578 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2579 if (!tree_root || !chunk_root) {
39279cc3
CM
2580 err = -ENOMEM;
2581 goto fail;
2582 }
76dda93c
YZ
2583
2584 ret = init_srcu_struct(&fs_info->subvol_srcu);
2585 if (ret) {
2586 err = ret;
2587 goto fail;
2588 }
2589
2590 ret = setup_bdi(fs_info, &fs_info->bdi);
2591 if (ret) {
2592 err = ret;
2593 goto fail_srcu;
2594 }
2595
908c7f19 2596 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2597 if (ret) {
2598 err = ret;
2599 goto fail_bdi;
2600 }
09cbfeaf 2601 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2602 (1 + ilog2(nr_cpu_ids));
2603
908c7f19 2604 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2605 if (ret) {
2606 err = ret;
2607 goto fail_dirty_metadata_bytes;
2608 }
2609
908c7f19 2610 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2611 if (ret) {
2612 err = ret;
2613 goto fail_delalloc_bytes;
2614 }
2615
76dda93c
YZ
2616 fs_info->btree_inode = new_inode(sb);
2617 if (!fs_info->btree_inode) {
2618 err = -ENOMEM;
c404e0dc 2619 goto fail_bio_counter;
76dda93c
YZ
2620 }
2621
a6591715 2622 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2623
76dda93c 2624 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2625 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2626 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2627 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2628 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2629 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2630 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2631 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2632 spin_lock_init(&fs_info->trans_lock);
76dda93c 2633 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2634 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2635 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2636 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2637 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2638 spin_lock_init(&fs_info->super_lock);
fcebe456 2639 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2640 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2641 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2642 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2643 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2644 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2645 mutex_init(&fs_info->reloc_mutex);
573bfb72 2646 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2647 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2648 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2649
0b86a832 2650 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2651 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2652 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2653 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2654 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2655 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2656 BTRFS_BLOCK_RSV_GLOBAL);
2657 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2658 BTRFS_BLOCK_RSV_DELALLOC);
2659 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2660 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2661 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2662 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2663 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2664 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2665 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2666 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2667 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2668 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2669 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2670 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2671 atomic64_set(&fs_info->tree_mod_seq, 0);
9e7cc91a 2672 fs_info->fs_frozen = 0;
e20d96d6 2673 fs_info->sb = sb;
95ac567a 2674 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2675 fs_info->metadata_ratio = 0;
4cb5300b 2676 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2677 fs_info->free_chunk_space = 0;
f29021b2 2678 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2679 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2680 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2681 /* readahead state */
d0164adc 2682 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2683 spin_lock_init(&fs_info->reada_lock);
c8b97818 2684
b34b086c
CM
2685 fs_info->thread_pool_size = min_t(unsigned long,
2686 num_online_cpus() + 2, 8);
0afbaf8c 2687
199c2a9c
MX
2688 INIT_LIST_HEAD(&fs_info->ordered_roots);
2689 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7 2690 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2691 GFP_KERNEL);
16cdcec7
MX
2692 if (!fs_info->delayed_root) {
2693 err = -ENOMEM;
2694 goto fail_iput;
2695 }
2696 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2697
638aa7ed 2698 btrfs_init_scrub(fs_info);
21adbd5c
SB
2699#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2700 fs_info->check_integrity_print_mask = 0;
2701#endif
779a65a4 2702 btrfs_init_balance(fs_info);
21c7e756 2703 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2704
a061fc8d
CM
2705 sb->s_blocksize = 4096;
2706 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2707 sb->s_bdi = &fs_info->bdi;
a061fc8d 2708
6bccf3ab 2709 btrfs_init_btree_inode(fs_info);
76dda93c 2710
0f9dd46c 2711 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2712 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2713 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2714
11833d66 2715 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2716 fs_info->btree_inode->i_mapping);
11833d66 2717 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2718 fs_info->btree_inode->i_mapping);
11833d66 2719 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2720 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2721
5a3f23d5 2722 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2723 mutex_init(&fs_info->tree_log_mutex);
925baedd 2724 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2725 mutex_init(&fs_info->transaction_kthread_mutex);
2726 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2727 mutex_init(&fs_info->volume_mutex);
1bbc621e 2728 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2729 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2730 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2731 init_rwsem(&fs_info->subvol_sem);
803b2f54 2732 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2733
ad618368 2734 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2735 btrfs_init_qgroup(fs_info);
416ac51d 2736
fa9c0d79
CM
2737 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2738 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2739
e6dcd2dc 2740 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2741 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2742 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2743 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2744
04216820
FM
2745 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2746
da17066c
JM
2747 /* Usable values until the real ones are cached from the superblock */
2748 fs_info->nodesize = 4096;
2749 fs_info->sectorsize = 4096;
2750 fs_info->stripesize = 4096;
2751
53b381b3
DW
2752 ret = btrfs_alloc_stripe_hash_table(fs_info);
2753 if (ret) {
83c8266a 2754 err = ret;
53b381b3
DW
2755 goto fail_alloc;
2756 }
2757
da17066c 2758 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2759
3c4bb26b 2760 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2761
2762 /*
2763 * Read super block and check the signature bytes only
2764 */
a512bbf8 2765 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2766 if (IS_ERR(bh)) {
2767 err = PTR_ERR(bh);
16cdcec7 2768 goto fail_alloc;
20b45077 2769 }
39279cc3 2770
1104a885
DS
2771 /*
2772 * We want to check superblock checksum, the type is stored inside.
2773 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2774 */
ab8d0fc4 2775 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2776 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2777 err = -EINVAL;
b2acdddf 2778 brelse(bh);
1104a885
DS
2779 goto fail_alloc;
2780 }
2781
2782 /*
2783 * super_copy is zeroed at allocation time and we never touch the
2784 * following bytes up to INFO_SIZE, the checksum is calculated from
2785 * the whole block of INFO_SIZE
2786 */
6c41761f
DS
2787 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2788 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2789 sizeof(*fs_info->super_for_commit));
a061fc8d 2790 brelse(bh);
5f39d397 2791
6c41761f 2792 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2793
1104a885
DS
2794 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2795 if (ret) {
05135f59 2796 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2797 err = -EINVAL;
2798 goto fail_alloc;
2799 }
2800
6c41761f 2801 disk_super = fs_info->super_copy;
0f7d52f4 2802 if (!btrfs_super_root(disk_super))
16cdcec7 2803 goto fail_alloc;
0f7d52f4 2804
acce952b 2805 /* check FS state, whether FS is broken. */
87533c47
MX
2806 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2807 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2808
af31f5e5
CM
2809 /*
2810 * run through our array of backup supers and setup
2811 * our ring pointer to the oldest one
2812 */
2813 generation = btrfs_super_generation(disk_super);
2814 find_oldest_super_backup(fs_info, generation);
2815
75e7cb7f
LB
2816 /*
2817 * In the long term, we'll store the compression type in the super
2818 * block, and it'll be used for per file compression control.
2819 */
2820 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2821
96da0919 2822 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2b82032c
YZ
2823 if (ret) {
2824 err = ret;
16cdcec7 2825 goto fail_alloc;
2b82032c 2826 }
dfe25020 2827
f2b636e8
JB
2828 features = btrfs_super_incompat_flags(disk_super) &
2829 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2830 if (features) {
05135f59
DS
2831 btrfs_err(fs_info,
2832 "cannot mount because of unsupported optional features (%llx)",
2833 features);
f2b636e8 2834 err = -EINVAL;
16cdcec7 2835 goto fail_alloc;
f2b636e8
JB
2836 }
2837
5d4f98a2 2838 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2839 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2840 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2841 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2842
3173a18f 2843 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2844 btrfs_info(fs_info, "has skinny extents");
3173a18f 2845
727011e0
CM
2846 /*
2847 * flag our filesystem as having big metadata blocks if
2848 * they are bigger than the page size
2849 */
09cbfeaf 2850 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2851 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2852 btrfs_info(fs_info,
2853 "flagging fs with big metadata feature");
727011e0
CM
2854 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2855 }
2856
bc3f116f 2857 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2858 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2859 stripesize = sectorsize;
707e8a07 2860 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2861 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2862
da17066c
JM
2863 /* Cache block sizes */
2864 fs_info->nodesize = nodesize;
2865 fs_info->sectorsize = sectorsize;
2866 fs_info->stripesize = stripesize;
2867
bc3f116f
CM
2868 /*
2869 * mixed block groups end up with duplicate but slightly offset
2870 * extent buffers for the same range. It leads to corruptions
2871 */
2872 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2873 (sectorsize != nodesize)) {
05135f59
DS
2874 btrfs_err(fs_info,
2875"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2876 nodesize, sectorsize);
bc3f116f
CM
2877 goto fail_alloc;
2878 }
2879
ceda0864
MX
2880 /*
2881 * Needn't use the lock because there is no other task which will
2882 * update the flag.
2883 */
a6fa6fae 2884 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2885
f2b636e8
JB
2886 features = btrfs_super_compat_ro_flags(disk_super) &
2887 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2888 if (!(sb->s_flags & MS_RDONLY) && features) {
05135f59
DS
2889 btrfs_err(fs_info,
2890 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2891 features);
f2b636e8 2892 err = -EINVAL;
16cdcec7 2893 goto fail_alloc;
f2b636e8 2894 }
61d92c32 2895
5cdc7ad3 2896 max_active = fs_info->thread_pool_size;
61d92c32 2897
2a458198
ES
2898 ret = btrfs_init_workqueues(fs_info, fs_devices);
2899 if (ret) {
2900 err = ret;
0dc3b84a
JB
2901 goto fail_sb_buffer;
2902 }
4543df7e 2903
4575c9cc 2904 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818 2905 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
09cbfeaf 2906 SZ_4M / PAGE_SIZE);
4575c9cc 2907
a061fc8d
CM
2908 sb->s_blocksize = sectorsize;
2909 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2910
925baedd 2911 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2912 ret = btrfs_read_sys_array(fs_info);
925baedd 2913 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2914 if (ret) {
05135f59 2915 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2916 goto fail_sb_buffer;
84eed90f 2917 }
0b86a832 2918
84234f3a 2919 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2920
da17066c 2921 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2922
2923 chunk_root->node = read_tree_block(chunk_root,
2924 btrfs_super_chunk_root(disk_super),
ce86cd59 2925 generation);
64c043de
LB
2926 if (IS_ERR(chunk_root->node) ||
2927 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2928 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2929 if (!IS_ERR(chunk_root->node))
2930 free_extent_buffer(chunk_root->node);
95ab1f64 2931 chunk_root->node = NULL;
af31f5e5 2932 goto fail_tree_roots;
83121942 2933 }
5d4f98a2
YZ
2934 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2935 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2936
e17cade2 2937 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2938 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2939
5b4aacef 2940 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2941 if (ret) {
05135f59 2942 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2943 goto fail_tree_roots;
2b82032c 2944 }
0b86a832 2945
8dabb742
SB
2946 /*
2947 * keep the device that is marked to be the target device for the
2948 * dev_replace procedure
2949 */
9eaed21e 2950 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2951
a6b0d5c8 2952 if (!fs_devices->latest_bdev) {
05135f59 2953 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2954 goto fail_tree_roots;
2955 }
2956
af31f5e5 2957retry_root_backup:
84234f3a 2958 generation = btrfs_super_generation(disk_super);
0b86a832 2959
e20d96d6 2960 tree_root->node = read_tree_block(tree_root,
db94535d 2961 btrfs_super_root(disk_super),
ce86cd59 2962 generation);
64c043de
LB
2963 if (IS_ERR(tree_root->node) ||
2964 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2965 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2966 if (!IS_ERR(tree_root->node))
2967 free_extent_buffer(tree_root->node);
95ab1f64 2968 tree_root->node = NULL;
af31f5e5 2969 goto recovery_tree_root;
83121942 2970 }
af31f5e5 2971
5d4f98a2
YZ
2972 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2973 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2974 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2975
f32e48e9
CR
2976 mutex_lock(&tree_root->objectid_mutex);
2977 ret = btrfs_find_highest_objectid(tree_root,
2978 &tree_root->highest_objectid);
2979 if (ret) {
2980 mutex_unlock(&tree_root->objectid_mutex);
2981 goto recovery_tree_root;
2982 }
2983
2984 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2985
2986 mutex_unlock(&tree_root->objectid_mutex);
2987
6bccf3ab 2988 ret = btrfs_read_roots(fs_info);
4bbcaa64 2989 if (ret)
af31f5e5 2990 goto recovery_tree_root;
f7a81ea4 2991
8929ecfa
YZ
2992 fs_info->generation = generation;
2993 fs_info->last_trans_committed = generation;
8929ecfa 2994
68310a5e
ID
2995 ret = btrfs_recover_balance(fs_info);
2996 if (ret) {
05135f59 2997 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
2998 goto fail_block_groups;
2999 }
3000
733f4fbb
SB
3001 ret = btrfs_init_dev_stats(fs_info);
3002 if (ret) {
05135f59 3003 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3004 goto fail_block_groups;
3005 }
3006
8dabb742
SB
3007 ret = btrfs_init_dev_replace(fs_info);
3008 if (ret) {
05135f59 3009 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3010 goto fail_block_groups;
3011 }
3012
9eaed21e 3013 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 3014
b7c35e81
AJ
3015 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3016 if (ret) {
05135f59
DS
3017 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3018 ret);
b7c35e81
AJ
3019 goto fail_block_groups;
3020 }
3021
3022 ret = btrfs_sysfs_add_device(fs_devices);
3023 if (ret) {
05135f59
DS
3024 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3025 ret);
b7c35e81
AJ
3026 goto fail_fsdev_sysfs;
3027 }
3028
96f3136e 3029 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3030 if (ret) {
05135f59 3031 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3032 goto fail_fsdev_sysfs;
c59021f8 3033 }
3034
c59021f8 3035 ret = btrfs_init_space_info(fs_info);
3036 if (ret) {
05135f59 3037 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3038 goto fail_sysfs;
c59021f8 3039 }
3040
5b4aacef 3041 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3042 if (ret) {
05135f59 3043 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3044 goto fail_sysfs;
1b1d1f66 3045 }
5af3e8cc
SB
3046 fs_info->num_tolerated_disk_barrier_failures =
3047 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
3048 if (fs_info->fs_devices->missing_devices >
3049 fs_info->num_tolerated_disk_barrier_failures &&
3050 !(sb->s_flags & MS_RDONLY)) {
05135f59
DS
3051 btrfs_warn(fs_info,
3052"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
78fa1770
ZL
3053 fs_info->fs_devices->missing_devices,
3054 fs_info->num_tolerated_disk_barrier_failures);
2365dd3c 3055 goto fail_sysfs;
292fd7fc 3056 }
9078a3e1 3057
a74a4b97
CM
3058 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3059 "btrfs-cleaner");
57506d50 3060 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3061 goto fail_sysfs;
a74a4b97
CM
3062
3063 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3064 tree_root,
3065 "btrfs-transaction");
57506d50 3066 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3067 goto fail_cleaner;
a74a4b97 3068
0b246afa
JM
3069 if (!btrfs_test_opt(fs_info, SSD) &&
3070 !btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3071 !fs_info->fs_devices->rotating) {
05135f59 3072 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
c289811c
CM
3073 btrfs_set_opt(fs_info->mount_opt, SSD);
3074 }
3075
572d9ab7 3076 /*
01327610 3077 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3078 * not have to wait for transaction commit
3079 */
3080 btrfs_apply_pending_changes(fs_info);
3818aea2 3081
21adbd5c 3082#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3083 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
21adbd5c 3084 ret = btrfsic_mount(tree_root, fs_devices,
0b246afa 3085 btrfs_test_opt(fs_info,
21adbd5c
SB
3086 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3087 1 : 0,
3088 fs_info->check_integrity_print_mask);
3089 if (ret)
05135f59
DS
3090 btrfs_warn(fs_info,
3091 "failed to initialize integrity check module: %d",
3092 ret);
21adbd5c
SB
3093 }
3094#endif
bcef60f2
AJ
3095 ret = btrfs_read_qgroup_config(fs_info);
3096 if (ret)
3097 goto fail_trans_kthread;
21adbd5c 3098
96da0919
QW
3099 /* do not make disk changes in broken FS or nologreplay is given */
3100 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3101 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3102 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3103 if (ret) {
63443bf5 3104 err = ret;
28c16cbb 3105 goto fail_qgroup;
79787eaa 3106 }
e02119d5 3107 }
1a40e23b 3108
6bccf3ab 3109 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3110 if (ret)
28c16cbb 3111 goto fail_qgroup;
76dda93c 3112
7c2ca468 3113 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3114 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3115 if (ret)
28c16cbb 3116 goto fail_qgroup;
90c711ab
ZB
3117
3118 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3119 ret = btrfs_recover_relocation(tree_root);
90c711ab 3120 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3121 if (ret < 0) {
05135f59
DS
3122 btrfs_warn(fs_info, "failed to recover relocation: %d",
3123 ret);
d7ce5843 3124 err = -EINVAL;
bcef60f2 3125 goto fail_qgroup;
d7ce5843 3126 }
7c2ca468 3127 }
1a40e23b 3128
3de4586c
CM
3129 location.objectid = BTRFS_FS_TREE_OBJECTID;
3130 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3131 location.offset = 0;
3de4586c 3132
3de4586c 3133 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3134 if (IS_ERR(fs_info->fs_root)) {
3135 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3136 goto fail_qgroup;
3140c9a3 3137 }
c289811c 3138
2b6ba629
ID
3139 if (sb->s_flags & MS_RDONLY)
3140 return 0;
59641015 3141
f8d468a1
OS
3142 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3143 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3144 clear_free_space_tree = 1;
3145 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3146 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3147 btrfs_warn(fs_info, "free space tree is invalid");
3148 clear_free_space_tree = 1;
3149 }
3150
3151 if (clear_free_space_tree) {
f8d468a1
OS
3152 btrfs_info(fs_info, "clearing free space tree");
3153 ret = btrfs_clear_free_space_tree(fs_info);
3154 if (ret) {
3155 btrfs_warn(fs_info,
3156 "failed to clear free space tree: %d", ret);
6bccf3ab 3157 close_ctree(fs_info);
f8d468a1
OS
3158 return ret;
3159 }
3160 }
3161
0b246afa 3162 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3163 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3164 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3165 ret = btrfs_create_free_space_tree(fs_info);
3166 if (ret) {
05135f59
DS
3167 btrfs_warn(fs_info,
3168 "failed to create free space tree: %d", ret);
6bccf3ab 3169 close_ctree(fs_info);
511711af
CM
3170 return ret;
3171 }
3172 }
3173
2b6ba629
ID
3174 down_read(&fs_info->cleanup_work_sem);
3175 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3176 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3177 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3178 close_ctree(fs_info);
2b6ba629
ID
3179 return ret;
3180 }
3181 up_read(&fs_info->cleanup_work_sem);
59641015 3182
2b6ba629
ID
3183 ret = btrfs_resume_balance_async(fs_info);
3184 if (ret) {
05135f59 3185 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3186 close_ctree(fs_info);
2b6ba629 3187 return ret;
e3acc2a6
JB
3188 }
3189
8dabb742
SB
3190 ret = btrfs_resume_dev_replace_async(fs_info);
3191 if (ret) {
05135f59 3192 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3193 close_ctree(fs_info);
8dabb742
SB
3194 return ret;
3195 }
3196
b382a324
JS
3197 btrfs_qgroup_rescan_resume(fs_info);
3198
4bbcaa64 3199 if (!fs_info->uuid_root) {
05135f59 3200 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3201 ret = btrfs_create_uuid_tree(fs_info);
3202 if (ret) {
05135f59
DS
3203 btrfs_warn(fs_info,
3204 "failed to create the UUID tree: %d", ret);
6bccf3ab 3205 close_ctree(fs_info);
f7a81ea4
SB
3206 return ret;
3207 }
0b246afa 3208 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3209 fs_info->generation !=
3210 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3211 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3212 ret = btrfs_check_uuid_tree(fs_info);
3213 if (ret) {
05135f59
DS
3214 btrfs_warn(fs_info,
3215 "failed to check the UUID tree: %d", ret);
6bccf3ab 3216 close_ctree(fs_info);
70f80175
SB
3217 return ret;
3218 }
3219 } else {
afcdd129 3220 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3221 }
afcdd129 3222 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3223
8dcddfa0
QW
3224 /*
3225 * backuproot only affect mount behavior, and if open_ctree succeeded,
3226 * no need to keep the flag
3227 */
3228 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3229
ad2b2c80 3230 return 0;
39279cc3 3231
bcef60f2
AJ
3232fail_qgroup:
3233 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3234fail_trans_kthread:
3235 kthread_stop(fs_info->transaction_kthread);
54067ae9 3236 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3237 btrfs_free_fs_roots(fs_info);
3f157a2f 3238fail_cleaner:
a74a4b97 3239 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3240
3241 /*
3242 * make sure we're done with the btree inode before we stop our
3243 * kthreads
3244 */
3245 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3246
2365dd3c 3247fail_sysfs:
6618a59b 3248 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3249
b7c35e81
AJ
3250fail_fsdev_sysfs:
3251 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3252
1b1d1f66 3253fail_block_groups:
54067ae9 3254 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3255 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3256
3257fail_tree_roots:
3258 free_root_pointers(fs_info, 1);
2b8195bb 3259 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3260
39279cc3 3261fail_sb_buffer:
7abadb64 3262 btrfs_stop_all_workers(fs_info);
16cdcec7 3263fail_alloc:
4543df7e 3264fail_iput:
586e46e2
ID
3265 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3266
4543df7e 3267 iput(fs_info->btree_inode);
c404e0dc
MX
3268fail_bio_counter:
3269 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3270fail_delalloc_bytes:
3271 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3272fail_dirty_metadata_bytes:
3273 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3274fail_bdi:
7e662854 3275 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3276fail_srcu:
3277 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3278fail:
53b381b3 3279 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3280 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3281 return err;
af31f5e5
CM
3282
3283recovery_tree_root:
0b246afa 3284 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3285 goto fail_tree_roots;
3286
3287 free_root_pointers(fs_info, 0);
3288
3289 /* don't use the log in recovery mode, it won't be valid */
3290 btrfs_set_super_log_root(disk_super, 0);
3291
3292 /* we can't trust the free space cache either */
3293 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3294
3295 ret = next_root_backup(fs_info, fs_info->super_copy,
3296 &num_backups_tried, &backup_index);
3297 if (ret == -1)
3298 goto fail_block_groups;
3299 goto retry_root_backup;
eb60ceac
CM
3300}
3301
f2984462
CM
3302static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3303{
f2984462
CM
3304 if (uptodate) {
3305 set_buffer_uptodate(bh);
3306 } else {
442a4f63
SB
3307 struct btrfs_device *device = (struct btrfs_device *)
3308 bh->b_private;
3309
fb456252 3310 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3311 "lost page write due to IO error on %s",
606686ee 3312 rcu_str_deref(device->name));
01327610 3313 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3314 * our own ways of dealing with the IO errors
3315 */
f2984462 3316 clear_buffer_uptodate(bh);
442a4f63 3317 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3318 }
3319 unlock_buffer(bh);
3320 put_bh(bh);
3321}
3322
29c36d72
AJ
3323int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3324 struct buffer_head **bh_ret)
3325{
3326 struct buffer_head *bh;
3327 struct btrfs_super_block *super;
3328 u64 bytenr;
3329
3330 bytenr = btrfs_sb_offset(copy_num);
3331 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3332 return -EINVAL;
3333
3334 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3335 /*
3336 * If we fail to read from the underlying devices, as of now
3337 * the best option we have is to mark it EIO.
3338 */
3339 if (!bh)
3340 return -EIO;
3341
3342 super = (struct btrfs_super_block *)bh->b_data;
3343 if (btrfs_super_bytenr(super) != bytenr ||
3344 btrfs_super_magic(super) != BTRFS_MAGIC) {
3345 brelse(bh);
3346 return -EINVAL;
3347 }
3348
3349 *bh_ret = bh;
3350 return 0;
3351}
3352
3353
a512bbf8
YZ
3354struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3355{
3356 struct buffer_head *bh;
3357 struct buffer_head *latest = NULL;
3358 struct btrfs_super_block *super;
3359 int i;
3360 u64 transid = 0;
92fc03fb 3361 int ret = -EINVAL;
a512bbf8
YZ
3362
3363 /* we would like to check all the supers, but that would make
3364 * a btrfs mount succeed after a mkfs from a different FS.
3365 * So, we need to add a special mount option to scan for
3366 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3367 */
3368 for (i = 0; i < 1; i++) {
29c36d72
AJ
3369 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3370 if (ret)
a512bbf8
YZ
3371 continue;
3372
3373 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3374
3375 if (!latest || btrfs_super_generation(super) > transid) {
3376 brelse(latest);
3377 latest = bh;
3378 transid = btrfs_super_generation(super);
3379 } else {
3380 brelse(bh);
3381 }
3382 }
92fc03fb
AJ
3383
3384 if (!latest)
3385 return ERR_PTR(ret);
3386
a512bbf8
YZ
3387 return latest;
3388}
3389
4eedeb75
HH
3390/*
3391 * this should be called twice, once with wait == 0 and
3392 * once with wait == 1. When wait == 0 is done, all the buffer heads
3393 * we write are pinned.
3394 *
3395 * They are released when wait == 1 is done.
3396 * max_mirrors must be the same for both runs, and it indicates how
3397 * many supers on this one device should be written.
3398 *
3399 * max_mirrors == 0 means to write them all.
3400 */
a512bbf8
YZ
3401static int write_dev_supers(struct btrfs_device *device,
3402 struct btrfs_super_block *sb,
3403 int do_barriers, int wait, int max_mirrors)
3404{
3405 struct buffer_head *bh;
3406 int i;
3407 int ret;
3408 int errors = 0;
3409 u32 crc;
3410 u64 bytenr;
a512bbf8
YZ
3411
3412 if (max_mirrors == 0)
3413 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3414
a512bbf8
YZ
3415 for (i = 0; i < max_mirrors; i++) {
3416 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3417 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3418 device->commit_total_bytes)
a512bbf8
YZ
3419 break;
3420
3421 if (wait) {
3422 bh = __find_get_block(device->bdev, bytenr / 4096,
3423 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3424 if (!bh) {
3425 errors++;
3426 continue;
3427 }
a512bbf8 3428 wait_on_buffer(bh);
4eedeb75
HH
3429 if (!buffer_uptodate(bh))
3430 errors++;
3431
3432 /* drop our reference */
3433 brelse(bh);
3434
3435 /* drop the reference from the wait == 0 run */
3436 brelse(bh);
3437 continue;
a512bbf8
YZ
3438 } else {
3439 btrfs_set_super_bytenr(sb, bytenr);
3440
3441 crc = ~(u32)0;
b0496686 3442 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3443 BTRFS_CSUM_SIZE, crc,
3444 BTRFS_SUPER_INFO_SIZE -
3445 BTRFS_CSUM_SIZE);
3446 btrfs_csum_final(crc, sb->csum);
3447
4eedeb75
HH
3448 /*
3449 * one reference for us, and we leave it for the
3450 * caller
3451 */
a512bbf8
YZ
3452 bh = __getblk(device->bdev, bytenr / 4096,
3453 BTRFS_SUPER_INFO_SIZE);
634554dc 3454 if (!bh) {
fb456252 3455 btrfs_err(device->fs_info,
f14d104d
DS
3456 "couldn't get super buffer head for bytenr %llu",
3457 bytenr);
634554dc
JB
3458 errors++;
3459 continue;
3460 }
3461
a512bbf8
YZ
3462 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3463
4eedeb75 3464 /* one reference for submit_bh */
a512bbf8 3465 get_bh(bh);
4eedeb75
HH
3466
3467 set_buffer_uptodate(bh);
a512bbf8
YZ
3468 lock_buffer(bh);
3469 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3470 bh->b_private = device;
a512bbf8
YZ
3471 }
3472
387125fc
CM
3473 /*
3474 * we fua the first super. The others we allow
3475 * to go down lazy.
3476 */
e8117c26 3477 if (i == 0)
2a222ca9 3478 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
e8117c26 3479 else
2a222ca9 3480 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
4eedeb75 3481 if (ret)
a512bbf8 3482 errors++;
a512bbf8
YZ
3483 }
3484 return errors < i ? 0 : -1;
3485}
3486
387125fc
CM
3487/*
3488 * endio for the write_dev_flush, this will wake anyone waiting
3489 * for the barrier when it is done
3490 */
4246a0b6 3491static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3492{
387125fc
CM
3493 if (bio->bi_private)
3494 complete(bio->bi_private);
3495 bio_put(bio);
3496}
3497
3498/*
3499 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3500 * sent down. With wait == 1, it waits for the previous flush.
3501 *
3502 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3503 * capable
3504 */
3505static int write_dev_flush(struct btrfs_device *device, int wait)
3506{
3507 struct bio *bio;
3508 int ret = 0;
3509
3510 if (device->nobarriers)
3511 return 0;
3512
3513 if (wait) {
3514 bio = device->flush_bio;
3515 if (!bio)
3516 return 0;
3517
3518 wait_for_completion(&device->flush_wait);
3519
4246a0b6
CH
3520 if (bio->bi_error) {
3521 ret = bio->bi_error;
5af3e8cc
SB
3522 btrfs_dev_stat_inc_and_print(device,
3523 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3524 }
3525
3526 /* drop the reference from the wait == 0 run */
3527 bio_put(bio);
3528 device->flush_bio = NULL;
3529
3530 return ret;
3531 }
3532
3533 /*
3534 * one reference for us, and we leave it for the
3535 * caller
3536 */
9c017abc 3537 device->flush_bio = NULL;
9be3395b 3538 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3539 if (!bio)
3540 return -ENOMEM;
3541
3542 bio->bi_end_io = btrfs_end_empty_barrier;
3543 bio->bi_bdev = device->bdev;
37226b21 3544 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
387125fc
CM
3545 init_completion(&device->flush_wait);
3546 bio->bi_private = &device->flush_wait;
3547 device->flush_bio = bio;
3548
3549 bio_get(bio);
4e49ea4a 3550 btrfsic_submit_bio(bio);
387125fc
CM
3551
3552 return 0;
3553}
3554
3555/*
3556 * send an empty flush down to each device in parallel,
3557 * then wait for them
3558 */
3559static int barrier_all_devices(struct btrfs_fs_info *info)
3560{
3561 struct list_head *head;
3562 struct btrfs_device *dev;
5af3e8cc
SB
3563 int errors_send = 0;
3564 int errors_wait = 0;
387125fc
CM
3565 int ret;
3566
3567 /* send down all the barriers */
3568 head = &info->fs_devices->devices;
3569 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3570 if (dev->missing)
3571 continue;
387125fc 3572 if (!dev->bdev) {
5af3e8cc 3573 errors_send++;
387125fc
CM
3574 continue;
3575 }
3576 if (!dev->in_fs_metadata || !dev->writeable)
3577 continue;
3578
3579 ret = write_dev_flush(dev, 0);
3580 if (ret)
5af3e8cc 3581 errors_send++;
387125fc
CM
3582 }
3583
3584 /* wait for all the barriers */
3585 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3586 if (dev->missing)
3587 continue;
387125fc 3588 if (!dev->bdev) {
5af3e8cc 3589 errors_wait++;
387125fc
CM
3590 continue;
3591 }
3592 if (!dev->in_fs_metadata || !dev->writeable)
3593 continue;
3594
3595 ret = write_dev_flush(dev, 1);
3596 if (ret)
5af3e8cc 3597 errors_wait++;
387125fc 3598 }
5af3e8cc
SB
3599 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3600 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3601 return -EIO;
3602 return 0;
3603}
3604
943c6e99
ZL
3605int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3606{
8789f4fe
ZL
3607 int raid_type;
3608 int min_tolerated = INT_MAX;
943c6e99 3609
8789f4fe
ZL
3610 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3611 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3612 min_tolerated = min(min_tolerated,
3613 btrfs_raid_array[BTRFS_RAID_SINGLE].
3614 tolerated_failures);
943c6e99 3615
8789f4fe
ZL
3616 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3617 if (raid_type == BTRFS_RAID_SINGLE)
3618 continue;
3619 if (!(flags & btrfs_raid_group[raid_type]))
3620 continue;
3621 min_tolerated = min(min_tolerated,
3622 btrfs_raid_array[raid_type].
3623 tolerated_failures);
3624 }
943c6e99 3625
8789f4fe 3626 if (min_tolerated == INT_MAX) {
ab8d0fc4 3627 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3628 min_tolerated = 0;
3629 }
3630
3631 return min_tolerated;
943c6e99
ZL
3632}
3633
5af3e8cc
SB
3634int btrfs_calc_num_tolerated_disk_barrier_failures(
3635 struct btrfs_fs_info *fs_info)
3636{
3637 struct btrfs_ioctl_space_info space;
3638 struct btrfs_space_info *sinfo;
3639 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3640 BTRFS_BLOCK_GROUP_SYSTEM,
3641 BTRFS_BLOCK_GROUP_METADATA,
3642 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
5af3e8cc
SB
3643 int i;
3644 int c;
3645 int num_tolerated_disk_barrier_failures =
3646 (int)fs_info->fs_devices->num_devices;
3647
2c458045 3648 for (i = 0; i < ARRAY_SIZE(types); i++) {
5af3e8cc
SB
3649 struct btrfs_space_info *tmp;
3650
3651 sinfo = NULL;
3652 rcu_read_lock();
3653 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3654 if (tmp->flags == types[i]) {
3655 sinfo = tmp;
3656 break;
3657 }
3658 }
3659 rcu_read_unlock();
3660
3661 if (!sinfo)
3662 continue;
3663
3664 down_read(&sinfo->groups_sem);
3665 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2c458045
ZL
3666 u64 flags;
3667
3668 if (list_empty(&sinfo->block_groups[c]))
3669 continue;
3670
3671 btrfs_get_block_group_info(&sinfo->block_groups[c],
3672 &space);
3673 if (space.total_bytes == 0 || space.used_bytes == 0)
3674 continue;
3675 flags = space.flags;
943c6e99
ZL
3676
3677 num_tolerated_disk_barrier_failures = min(
3678 num_tolerated_disk_barrier_failures,
3679 btrfs_get_num_tolerated_disk_barrier_failures(
3680 flags));
5af3e8cc
SB
3681 }
3682 up_read(&sinfo->groups_sem);
3683 }
3684
3685 return num_tolerated_disk_barrier_failures;
3686}
3687
48a3b636 3688static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3689{
0b246afa 3690 struct btrfs_fs_info *fs_info = root->fs_info;
e5e9a520 3691 struct list_head *head;
f2984462 3692 struct btrfs_device *dev;
a061fc8d 3693 struct btrfs_super_block *sb;
f2984462 3694 struct btrfs_dev_item *dev_item;
f2984462
CM
3695 int ret;
3696 int do_barriers;
a236aed1
CM
3697 int max_errors;
3698 int total_errors = 0;
a061fc8d 3699 u64 flags;
f2984462 3700
0b246afa
JM
3701 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3702 backup_super_roots(fs_info);
f2984462 3703
0b246afa 3704 sb = fs_info->super_for_commit;
a061fc8d 3705 dev_item = &sb->dev_item;
e5e9a520 3706
0b246afa
JM
3707 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3708 head = &fs_info->fs_devices->devices;
3709 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3710
5af3e8cc 3711 if (do_barriers) {
0b246afa 3712 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3713 if (ret) {
3714 mutex_unlock(
0b246afa
JM
3715 &fs_info->fs_devices->device_list_mutex);
3716 btrfs_handle_fs_error(fs_info, ret,
3717 "errors while submitting device barriers.");
5af3e8cc
SB
3718 return ret;
3719 }
3720 }
387125fc 3721
1f78160c 3722 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3723 if (!dev->bdev) {
3724 total_errors++;
3725 continue;
3726 }
2b82032c 3727 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3728 continue;
3729
2b82032c 3730 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3731 btrfs_set_stack_device_type(dev_item, dev->type);
3732 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3733 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3734 dev->commit_total_bytes);
ce7213c7
MX
3735 btrfs_set_stack_device_bytes_used(dev_item,
3736 dev->commit_bytes_used);
a061fc8d
CM
3737 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3738 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3739 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3740 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3741 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3742
a061fc8d
CM
3743 flags = btrfs_super_flags(sb);
3744 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3745
a512bbf8 3746 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3747 if (ret)
3748 total_errors++;
f2984462 3749 }
a236aed1 3750 if (total_errors > max_errors) {
0b246afa
JM
3751 btrfs_err(fs_info, "%d errors while writing supers",
3752 total_errors);
3753 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3754
9d565ba4 3755 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3756 btrfs_handle_fs_error(fs_info, -EIO,
3757 "%d errors while writing supers",
3758 total_errors);
9d565ba4 3759 return -EIO;
a236aed1 3760 }
f2984462 3761
a512bbf8 3762 total_errors = 0;
1f78160c 3763 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3764 if (!dev->bdev)
3765 continue;
2b82032c 3766 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3767 continue;
3768
a512bbf8
YZ
3769 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3770 if (ret)
3771 total_errors++;
f2984462 3772 }
0b246afa 3773 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3774 if (total_errors > max_errors) {
0b246afa
JM
3775 btrfs_handle_fs_error(fs_info, -EIO,
3776 "%d errors while writing supers",
3777 total_errors);
79787eaa 3778 return -EIO;
a236aed1 3779 }
f2984462
CM
3780 return 0;
3781}
3782
a512bbf8
YZ
3783int write_ctree_super(struct btrfs_trans_handle *trans,
3784 struct btrfs_root *root, int max_mirrors)
eb60ceac 3785{
f570e757 3786 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3787}
3788
cb517eab
MX
3789/* Drop a fs root from the radix tree and free it. */
3790void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3791 struct btrfs_root *root)
2619ba1f 3792{
4df27c4d 3793 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3794 radix_tree_delete(&fs_info->fs_roots_radix,
3795 (unsigned long)root->root_key.objectid);
4df27c4d 3796 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3797
3798 if (btrfs_root_refs(&root->root_item) == 0)
3799 synchronize_srcu(&fs_info->subvol_srcu);
3800
1c1ea4f7 3801 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3802 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3803 if (root->reloc_root) {
3804 free_extent_buffer(root->reloc_root->node);
3805 free_extent_buffer(root->reloc_root->commit_root);
3806 btrfs_put_fs_root(root->reloc_root);
3807 root->reloc_root = NULL;
3808 }
3809 }
3321719e 3810
faa2dbf0
JB
3811 if (root->free_ino_pinned)
3812 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3813 if (root->free_ino_ctl)
3814 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3815 free_fs_root(root);
4df27c4d
YZ
3816}
3817
3818static void free_fs_root(struct btrfs_root *root)
3819{
57cdc8db 3820 iput(root->ino_cache_inode);
4df27c4d 3821 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3822 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3823 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3824 if (root->anon_dev)
3825 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3826 if (root->subv_writers)
3827 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3828 free_extent_buffer(root->node);
3829 free_extent_buffer(root->commit_root);
581bb050
LZ
3830 kfree(root->free_ino_ctl);
3831 kfree(root->free_ino_pinned);
d397712b 3832 kfree(root->name);
b0feb9d9 3833 btrfs_put_fs_root(root);
2619ba1f
CM
3834}
3835
cb517eab
MX
3836void btrfs_free_fs_root(struct btrfs_root *root)
3837{
3838 free_fs_root(root);
2619ba1f
CM
3839}
3840
c146afad 3841int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3842{
c146afad
YZ
3843 u64 root_objectid = 0;
3844 struct btrfs_root *gang[8];
65d33fd7
QW
3845 int i = 0;
3846 int err = 0;
3847 unsigned int ret = 0;
3848 int index;
e089f05c 3849
c146afad 3850 while (1) {
65d33fd7 3851 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3852 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3853 (void **)gang, root_objectid,
3854 ARRAY_SIZE(gang));
65d33fd7
QW
3855 if (!ret) {
3856 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3857 break;
65d33fd7 3858 }
5d4f98a2 3859 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3860
c146afad 3861 for (i = 0; i < ret; i++) {
65d33fd7
QW
3862 /* Avoid to grab roots in dead_roots */
3863 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3864 gang[i] = NULL;
3865 continue;
3866 }
3867 /* grab all the search result for later use */
3868 gang[i] = btrfs_grab_fs_root(gang[i]);
3869 }
3870 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3871
65d33fd7
QW
3872 for (i = 0; i < ret; i++) {
3873 if (!gang[i])
3874 continue;
c146afad 3875 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3876 err = btrfs_orphan_cleanup(gang[i]);
3877 if (err)
65d33fd7
QW
3878 break;
3879 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3880 }
3881 root_objectid++;
3882 }
65d33fd7
QW
3883
3884 /* release the uncleaned roots due to error */
3885 for (; i < ret; i++) {
3886 if (gang[i])
3887 btrfs_put_fs_root(gang[i]);
3888 }
3889 return err;
c146afad 3890}
a2135011 3891
6bccf3ab 3892int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3893{
6bccf3ab 3894 struct btrfs_root *root = fs_info->tree_root;
c146afad 3895 struct btrfs_trans_handle *trans;
a74a4b97 3896
0b246afa 3897 mutex_lock(&fs_info->cleaner_mutex);
24bbcf04 3898 btrfs_run_delayed_iputs(root);
0b246afa
JM
3899 mutex_unlock(&fs_info->cleaner_mutex);
3900 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3901
3902 /* wait until ongoing cleanup work done */
0b246afa
JM
3903 down_write(&fs_info->cleanup_work_sem);
3904 up_write(&fs_info->cleanup_work_sem);
c71bf099 3905
7a7eaa40 3906 trans = btrfs_join_transaction(root);
3612b495
TI
3907 if (IS_ERR(trans))
3908 return PTR_ERR(trans);
d52c1bcc 3909 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3910}
3911
6bccf3ab 3912void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3913{
6bccf3ab 3914 struct btrfs_root *root = fs_info->tree_root;
c146afad
YZ
3915 int ret;
3916
afcdd129 3917 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
c146afad 3918
7343dd61 3919 /* wait for the qgroup rescan worker to stop */
d06f23d6 3920 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3921
803b2f54
SB
3922 /* wait for the uuid_scan task to finish */
3923 down(&fs_info->uuid_tree_rescan_sem);
3924 /* avoid complains from lockdep et al., set sem back to initial state */
3925 up(&fs_info->uuid_tree_rescan_sem);
3926
837d5b6e 3927 /* pause restriper - we want to resume on mount */
aa1b8cd4 3928 btrfs_pause_balance(fs_info);
837d5b6e 3929
8dabb742
SB
3930 btrfs_dev_replace_suspend_for_unmount(fs_info);
3931
aa1b8cd4 3932 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3933
3934 /* wait for any defraggers to finish */
3935 wait_event(fs_info->transaction_wait,
3936 (atomic_read(&fs_info->defrag_running) == 0));
3937
3938 /* clear out the rbtree of defraggable inodes */
26176e7c 3939 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3940
21c7e756
MX
3941 cancel_work_sync(&fs_info->async_reclaim_work);
3942
c146afad 3943 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
e44163e1
JM
3944 /*
3945 * If the cleaner thread is stopped and there are
3946 * block groups queued for removal, the deletion will be
3947 * skipped when we quit the cleaner thread.
3948 */
0b246afa 3949 btrfs_delete_unused_bgs(fs_info);
e44163e1 3950
6bccf3ab 3951 ret = btrfs_commit_super(fs_info);
acce952b 3952 if (ret)
04892340 3953 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3954 }
3955
87533c47 3956 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3957 btrfs_error_commit_super(root);
0f7d52f4 3958
e3029d9f
AV
3959 kthread_stop(fs_info->transaction_kthread);
3960 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3961
afcdd129 3962 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 3963
04892340 3964 btrfs_free_qgroup_config(fs_info);
bcef60f2 3965
963d678b 3966 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3967 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3968 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3969 }
bcc63abb 3970
6618a59b 3971 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3972 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3973
faa2dbf0 3974 btrfs_free_fs_roots(fs_info);
d10c5f31 3975
1a4319cc
LB
3976 btrfs_put_block_group_cache(fs_info);
3977
2b1360da
JB
3978 btrfs_free_block_groups(fs_info);
3979
de348ee0
WS
3980 /*
3981 * we must make sure there is not any read request to
3982 * submit after we stopping all workers.
3983 */
3984 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3985 btrfs_stop_all_workers(fs_info);
3986
afcdd129 3987 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 3988 free_root_pointers(fs_info, 1);
9ad6b7bc 3989
13e6c37b 3990 iput(fs_info->btree_inode);
d6bfde87 3991
21adbd5c 3992#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3993 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
21adbd5c
SB
3994 btrfsic_unmount(root, fs_info->fs_devices);
3995#endif
3996
dfe25020 3997 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3998 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3999
e2d84521 4000 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4001 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 4002 percpu_counter_destroy(&fs_info->bio_counter);
04160088 4003 bdi_destroy(&fs_info->bdi);
76dda93c 4004 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4005
53b381b3
DW
4006 btrfs_free_stripe_hash_table(fs_info);
4007
cdfb080e 4008 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 4009 root->orphan_block_rsv = NULL;
04216820 4010
0b246afa 4011 lock_chunks(fs_info);
04216820
FM
4012 while (!list_empty(&fs_info->pinned_chunks)) {
4013 struct extent_map *em;
4014
4015 em = list_first_entry(&fs_info->pinned_chunks,
4016 struct extent_map, list);
4017 list_del_init(&em->list);
4018 free_extent_map(em);
4019 }
0b246afa 4020 unlock_chunks(fs_info);
eb60ceac
CM
4021}
4022
b9fab919
CM
4023int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4024 int atomic)
5f39d397 4025{
1259ab75 4026 int ret;
727011e0 4027 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4028
0b32f4bb 4029 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4030 if (!ret)
4031 return ret;
4032
4033 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4034 parent_transid, atomic);
4035 if (ret == -EAGAIN)
4036 return ret;
1259ab75 4037 return !ret;
5f39d397
CM
4038}
4039
5f39d397
CM
4040void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4041{
0b246afa 4042 struct btrfs_fs_info *fs_info;
06ea65a3 4043 struct btrfs_root *root;
5f39d397 4044 u64 transid = btrfs_header_generation(buf);
b9473439 4045 int was_dirty;
b4ce94de 4046
06ea65a3
JB
4047#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4048 /*
4049 * This is a fast path so only do this check if we have sanity tests
4050 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4051 * outside of the sanity tests.
4052 */
4053 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4054 return;
4055#endif
4056 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4057 fs_info = root->fs_info;
b9447ef8 4058 btrfs_assert_tree_locked(buf);
0b246afa 4059 if (transid != fs_info->generation)
5d163e0e 4060 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4061 buf->start, transid, fs_info->generation);
0b32f4bb 4062 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4063 if (!was_dirty)
0b246afa 4064 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
e2d84521 4065 buf->len,
0b246afa 4066 fs_info->dirty_metadata_batch);
1f21ef0a
FM
4067#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4068 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4069 btrfs_print_leaf(root, buf);
4070 ASSERT(0);
4071 }
4072#endif
eb60ceac
CM
4073}
4074
b53d3f5d
LB
4075static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4076 int flush_delayed)
16cdcec7 4077{
0b246afa 4078 struct btrfs_fs_info *fs_info = root->fs_info;
16cdcec7
MX
4079 /*
4080 * looks as though older kernels can get into trouble with
4081 * this code, they end up stuck in balance_dirty_pages forever
4082 */
e2d84521 4083 int ret;
16cdcec7
MX
4084
4085 if (current->flags & PF_MEMALLOC)
4086 return;
4087
b53d3f5d
LB
4088 if (flush_delayed)
4089 btrfs_balance_delayed_items(root);
16cdcec7 4090
0b246afa 4091 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
e2d84521
MX
4092 BTRFS_DIRTY_METADATA_THRESH);
4093 if (ret > 0) {
0b246afa 4094 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4095 }
16cdcec7
MX
4096}
4097
b53d3f5d 4098void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 4099{
b53d3f5d
LB
4100 __btrfs_btree_balance_dirty(root, 1);
4101}
585ad2c3 4102
b53d3f5d
LB
4103void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4104{
4105 __btrfs_btree_balance_dirty(root, 0);
35b7e476 4106}
6b80053d 4107
ca7a79ad 4108int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 4109{
727011e0 4110 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
8436ea91 4111 return btree_read_extent_buffer_pages(root, buf, parent_transid);
6b80053d 4112}
0da5468f 4113
fcd1f065 4114static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 4115 int read_only)
4116{
c926093e 4117 struct btrfs_super_block *sb = fs_info->super_copy;
319e4d06
QW
4118 u64 nodesize = btrfs_super_nodesize(sb);
4119 u64 sectorsize = btrfs_super_sectorsize(sb);
c926093e
DS
4120 int ret = 0;
4121
319e4d06 4122 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
ab8d0fc4 4123 btrfs_err(fs_info, "no valid FS found");
319e4d06
QW
4124 ret = -EINVAL;
4125 }
4126 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
ab8d0fc4 4127 btrfs_warn(fs_info, "unrecognized super flag: %llu",
319e4d06 4128 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
21e7626b 4129 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4130 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
21e7626b 4131 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4132 ret = -EINVAL;
4133 }
21e7626b 4134 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4135 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
21e7626b 4136 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4137 ret = -EINVAL;
4138 }
21e7626b 4139 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4140 btrfs_err(fs_info, "log_root level too big: %d >= %d",
21e7626b 4141 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4142 ret = -EINVAL;
4143 }
4144
1104a885 4145 /*
319e4d06
QW
4146 * Check sectorsize and nodesize first, other check will need it.
4147 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
1104a885 4148 */
319e4d06
QW
4149 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4150 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 4151 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
319e4d06
QW
4152 ret = -EINVAL;
4153 }
4154 /* Only PAGE SIZE is supported yet */
09cbfeaf 4155 if (sectorsize != PAGE_SIZE) {
ab8d0fc4
JM
4156 btrfs_err(fs_info,
4157 "sectorsize %llu not supported yet, only support %lu",
4158 sectorsize, PAGE_SIZE);
319e4d06
QW
4159 ret = -EINVAL;
4160 }
4161 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4162 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 4163 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
319e4d06
QW
4164 ret = -EINVAL;
4165 }
4166 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
ab8d0fc4
JM
4167 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4168 le32_to_cpu(sb->__unused_leafsize), nodesize);
319e4d06
QW
4169 ret = -EINVAL;
4170 }
4171
4172 /* Root alignment check */
4173 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
ab8d0fc4
JM
4174 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4175 btrfs_super_root(sb));
319e4d06
QW
4176 ret = -EINVAL;
4177 }
4178 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
ab8d0fc4
JM
4179 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4180 btrfs_super_chunk_root(sb));
75d6ad38
DS
4181 ret = -EINVAL;
4182 }
319e4d06 4183 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
ab8d0fc4
JM
4184 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4185 btrfs_super_log_root(sb));
75d6ad38
DS
4186 ret = -EINVAL;
4187 }
4188
c926093e 4189 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
ab8d0fc4
JM
4190 btrfs_err(fs_info,
4191 "dev_item UUID does not match fsid: %pU != %pU",
4192 fs_info->fsid, sb->dev_item.fsid);
c926093e
DS
4193 ret = -EINVAL;
4194 }
4195
4196 /*
4197 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4198 * done later
4199 */
99e3ecfc
LB
4200 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4201 btrfs_err(fs_info, "bytes_used is too small %llu",
ab8d0fc4 4202 btrfs_super_bytes_used(sb));
99e3ecfc
LB
4203 ret = -EINVAL;
4204 }
b7f67055 4205 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
99e3ecfc 4206 btrfs_err(fs_info, "invalid stripesize %u",
ab8d0fc4 4207 btrfs_super_stripesize(sb));
99e3ecfc
LB
4208 ret = -EINVAL;
4209 }
21e7626b 4210 if (btrfs_super_num_devices(sb) > (1UL << 31))
ab8d0fc4
JM
4211 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4212 btrfs_super_num_devices(sb));
75d6ad38 4213 if (btrfs_super_num_devices(sb) == 0) {
ab8d0fc4 4214 btrfs_err(fs_info, "number of devices is 0");
75d6ad38
DS
4215 ret = -EINVAL;
4216 }
c926093e 4217
21e7626b 4218 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
ab8d0fc4
JM
4219 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4220 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4221 ret = -EINVAL;
4222 }
4223
ce7fca5f
DS
4224 /*
4225 * Obvious sys_chunk_array corruptions, it must hold at least one key
4226 * and one chunk
4227 */
4228 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
ab8d0fc4
JM
4229 btrfs_err(fs_info, "system chunk array too big %u > %u",
4230 btrfs_super_sys_array_size(sb),
4231 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
ce7fca5f
DS
4232 ret = -EINVAL;
4233 }
4234 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4235 + sizeof(struct btrfs_chunk)) {
ab8d0fc4
JM
4236 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4237 btrfs_super_sys_array_size(sb),
4238 sizeof(struct btrfs_disk_key)
4239 + sizeof(struct btrfs_chunk));
ce7fca5f
DS
4240 ret = -EINVAL;
4241 }
4242
c926093e
DS
4243 /*
4244 * The generation is a global counter, we'll trust it more than the others
4245 * but it's still possible that it's the one that's wrong.
4246 */
21e7626b 4247 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
ab8d0fc4
JM
4248 btrfs_warn(fs_info,
4249 "suspicious: generation < chunk_root_generation: %llu < %llu",
4250 btrfs_super_generation(sb),
4251 btrfs_super_chunk_root_generation(sb));
21e7626b
DS
4252 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4253 && btrfs_super_cache_generation(sb) != (u64)-1)
ab8d0fc4
JM
4254 btrfs_warn(fs_info,
4255 "suspicious: generation < cache_generation: %llu < %llu",
4256 btrfs_super_generation(sb),
4257 btrfs_super_cache_generation(sb));
c926093e
DS
4258
4259 return ret;
acce952b 4260}
4261
48a3b636 4262static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 4263{
0b246afa
JM
4264 struct btrfs_fs_info *fs_info = root->fs_info;
4265
4266 mutex_lock(&fs_info->cleaner_mutex);
acce952b 4267 btrfs_run_delayed_iputs(root);
0b246afa 4268 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4269
0b246afa
JM
4270 down_write(&fs_info->cleanup_work_sem);
4271 up_write(&fs_info->cleanup_work_sem);
acce952b 4272
4273 /* cleanup FS via transaction */
4274 btrfs_cleanup_transaction(root);
acce952b 4275}
4276
143bede5 4277static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4278{
acce952b 4279 struct btrfs_ordered_extent *ordered;
acce952b 4280
199c2a9c 4281 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4282 /*
4283 * This will just short circuit the ordered completion stuff which will
4284 * make sure the ordered extent gets properly cleaned up.
4285 */
199c2a9c 4286 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4287 root_extent_list)
4288 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4289 spin_unlock(&root->ordered_extent_lock);
4290}
4291
4292static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4293{
4294 struct btrfs_root *root;
4295 struct list_head splice;
4296
4297 INIT_LIST_HEAD(&splice);
4298
4299 spin_lock(&fs_info->ordered_root_lock);
4300 list_splice_init(&fs_info->ordered_roots, &splice);
4301 while (!list_empty(&splice)) {
4302 root = list_first_entry(&splice, struct btrfs_root,
4303 ordered_root);
1de2cfde
JB
4304 list_move_tail(&root->ordered_root,
4305 &fs_info->ordered_roots);
199c2a9c 4306
2a85d9ca 4307 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4308 btrfs_destroy_ordered_extents(root);
4309
2a85d9ca
LB
4310 cond_resched();
4311 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4312 }
4313 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4314}
4315
35a3621b
SB
4316static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4317 struct btrfs_root *root)
acce952b 4318{
0b246afa 4319 struct btrfs_fs_info *fs_info = root->fs_info;
acce952b 4320 struct rb_node *node;
4321 struct btrfs_delayed_ref_root *delayed_refs;
4322 struct btrfs_delayed_ref_node *ref;
4323 int ret = 0;
4324
4325 delayed_refs = &trans->delayed_refs;
4326
4327 spin_lock(&delayed_refs->lock);
d7df2c79 4328 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4329 spin_unlock(&delayed_refs->lock);
0b246afa 4330 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4331 return ret;
4332 }
4333
d7df2c79
JB
4334 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4335 struct btrfs_delayed_ref_head *head;
c6fc2454 4336 struct btrfs_delayed_ref_node *tmp;
e78417d1 4337 bool pin_bytes = false;
acce952b 4338
d7df2c79
JB
4339 head = rb_entry(node, struct btrfs_delayed_ref_head,
4340 href_node);
4341 if (!mutex_trylock(&head->mutex)) {
4342 atomic_inc(&head->node.refs);
4343 spin_unlock(&delayed_refs->lock);
eb12db69 4344
d7df2c79 4345 mutex_lock(&head->mutex);
e78417d1 4346 mutex_unlock(&head->mutex);
d7df2c79
JB
4347 btrfs_put_delayed_ref(&head->node);
4348 spin_lock(&delayed_refs->lock);
4349 continue;
4350 }
4351 spin_lock(&head->lock);
c6fc2454
QW
4352 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4353 list) {
d7df2c79 4354 ref->in_tree = 0;
c6fc2454 4355 list_del(&ref->list);
1d57ee94
WX
4356 if (!list_empty(&ref->add_list))
4357 list_del(&ref->add_list);
d7df2c79
JB
4358 atomic_dec(&delayed_refs->num_entries);
4359 btrfs_put_delayed_ref(ref);
e78417d1 4360 }
d7df2c79
JB
4361 if (head->must_insert_reserved)
4362 pin_bytes = true;
4363 btrfs_free_delayed_extent_op(head->extent_op);
4364 delayed_refs->num_heads--;
4365 if (head->processing == 0)
4366 delayed_refs->num_heads_ready--;
4367 atomic_dec(&delayed_refs->num_entries);
4368 head->node.in_tree = 0;
4369 rb_erase(&head->href_node, &delayed_refs->href_root);
4370 spin_unlock(&head->lock);
4371 spin_unlock(&delayed_refs->lock);
4372 mutex_unlock(&head->mutex);
acce952b 4373
d7df2c79
JB
4374 if (pin_bytes)
4375 btrfs_pin_extent(root, head->node.bytenr,
4376 head->node.num_bytes, 1);
4377 btrfs_put_delayed_ref(&head->node);
acce952b 4378 cond_resched();
4379 spin_lock(&delayed_refs->lock);
4380 }
4381
4382 spin_unlock(&delayed_refs->lock);
4383
4384 return ret;
4385}
4386
143bede5 4387static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4388{
4389 struct btrfs_inode *btrfs_inode;
4390 struct list_head splice;
4391
4392 INIT_LIST_HEAD(&splice);
4393
eb73c1b7
MX
4394 spin_lock(&root->delalloc_lock);
4395 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4396
4397 while (!list_empty(&splice)) {
eb73c1b7
MX
4398 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4399 delalloc_inodes);
acce952b 4400
4401 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4402 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4403 &btrfs_inode->runtime_flags);
eb73c1b7 4404 spin_unlock(&root->delalloc_lock);
acce952b 4405
4406 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4407
eb73c1b7 4408 spin_lock(&root->delalloc_lock);
acce952b 4409 }
4410
eb73c1b7
MX
4411 spin_unlock(&root->delalloc_lock);
4412}
4413
4414static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4415{
4416 struct btrfs_root *root;
4417 struct list_head splice;
4418
4419 INIT_LIST_HEAD(&splice);
4420
4421 spin_lock(&fs_info->delalloc_root_lock);
4422 list_splice_init(&fs_info->delalloc_roots, &splice);
4423 while (!list_empty(&splice)) {
4424 root = list_first_entry(&splice, struct btrfs_root,
4425 delalloc_root);
4426 list_del_init(&root->delalloc_root);
4427 root = btrfs_grab_fs_root(root);
4428 BUG_ON(!root);
4429 spin_unlock(&fs_info->delalloc_root_lock);
4430
4431 btrfs_destroy_delalloc_inodes(root);
4432 btrfs_put_fs_root(root);
4433
4434 spin_lock(&fs_info->delalloc_root_lock);
4435 }
4436 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4437}
4438
4439static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4440 struct extent_io_tree *dirty_pages,
4441 int mark)
4442{
0b246afa 4443 struct btrfs_fs_info *fs_info = root->fs_info;
acce952b 4444 int ret;
acce952b 4445 struct extent_buffer *eb;
4446 u64 start = 0;
4447 u64 end;
acce952b 4448
4449 while (1) {
4450 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4451 mark, NULL);
acce952b 4452 if (ret)
4453 break;
4454
91166212 4455 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4456 while (start <= end) {
0b246afa
JM
4457 eb = find_extent_buffer(fs_info, start);
4458 start += fs_info->nodesize;
fd8b2b61 4459 if (!eb)
acce952b 4460 continue;
fd8b2b61 4461 wait_on_extent_buffer_writeback(eb);
acce952b 4462
fd8b2b61
JB
4463 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4464 &eb->bflags))
4465 clear_extent_buffer_dirty(eb);
4466 free_extent_buffer_stale(eb);
acce952b 4467 }
4468 }
4469
4470 return ret;
4471}
4472
4473static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4474 struct extent_io_tree *pinned_extents)
4475{
0b246afa 4476 struct btrfs_fs_info *fs_info = root->fs_info;
acce952b 4477 struct extent_io_tree *unpin;
4478 u64 start;
4479 u64 end;
4480 int ret;
ed0eaa14 4481 bool loop = true;
acce952b 4482
4483 unpin = pinned_extents;
ed0eaa14 4484again:
acce952b 4485 while (1) {
4486 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4487 EXTENT_DIRTY, NULL);
acce952b 4488 if (ret)
4489 break;
4490
af6f8f60 4491 clear_extent_dirty(unpin, start, end);
acce952b 4492 btrfs_error_unpin_extent_range(root, start, end);
4493 cond_resched();
4494 }
4495
ed0eaa14 4496 if (loop) {
0b246afa
JM
4497 if (unpin == &fs_info->freed_extents[0])
4498 unpin = &fs_info->freed_extents[1];
ed0eaa14 4499 else
0b246afa 4500 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4501 loop = false;
4502 goto again;
4503 }
4504
acce952b 4505 return 0;
4506}
4507
c79a1751
LB
4508static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4509{
4510 struct inode *inode;
4511
4512 inode = cache->io_ctl.inode;
4513 if (inode) {
4514 invalidate_inode_pages2(inode->i_mapping);
4515 BTRFS_I(inode)->generation = 0;
4516 cache->io_ctl.inode = NULL;
4517 iput(inode);
4518 }
4519 btrfs_put_block_group(cache);
4520}
4521
4522void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4523 struct btrfs_root *root)
4524{
0b246afa 4525 struct btrfs_fs_info *fs_info = root->fs_info;
c79a1751
LB
4526 struct btrfs_block_group_cache *cache;
4527
4528 spin_lock(&cur_trans->dirty_bgs_lock);
4529 while (!list_empty(&cur_trans->dirty_bgs)) {
4530 cache = list_first_entry(&cur_trans->dirty_bgs,
4531 struct btrfs_block_group_cache,
4532 dirty_list);
4533 if (!cache) {
0b246afa 4534 btrfs_err(fs_info, "orphan block group dirty_bgs list");
c79a1751
LB
4535 spin_unlock(&cur_trans->dirty_bgs_lock);
4536 return;
4537 }
4538
4539 if (!list_empty(&cache->io_list)) {
4540 spin_unlock(&cur_trans->dirty_bgs_lock);
4541 list_del_init(&cache->io_list);
4542 btrfs_cleanup_bg_io(cache);
4543 spin_lock(&cur_trans->dirty_bgs_lock);
4544 }
4545
4546 list_del_init(&cache->dirty_list);
4547 spin_lock(&cache->lock);
4548 cache->disk_cache_state = BTRFS_DC_ERROR;
4549 spin_unlock(&cache->lock);
4550
4551 spin_unlock(&cur_trans->dirty_bgs_lock);
4552 btrfs_put_block_group(cache);
4553 spin_lock(&cur_trans->dirty_bgs_lock);
4554 }
4555 spin_unlock(&cur_trans->dirty_bgs_lock);
4556
4557 while (!list_empty(&cur_trans->io_bgs)) {
4558 cache = list_first_entry(&cur_trans->io_bgs,
4559 struct btrfs_block_group_cache,
4560 io_list);
4561 if (!cache) {
0b246afa 4562 btrfs_err(fs_info, "orphan block group on io_bgs list");
c79a1751
LB
4563 return;
4564 }
4565
4566 list_del_init(&cache->io_list);
4567 spin_lock(&cache->lock);
4568 cache->disk_cache_state = BTRFS_DC_ERROR;
4569 spin_unlock(&cache->lock);
4570 btrfs_cleanup_bg_io(cache);
4571 }
4572}
4573
49b25e05
JM
4574void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4575 struct btrfs_root *root)
4576{
0b246afa 4577 struct btrfs_fs_info *fs_info = root->fs_info;
c79a1751
LB
4578 btrfs_cleanup_dirty_bgs(cur_trans, root);
4579 ASSERT(list_empty(&cur_trans->dirty_bgs));
4580 ASSERT(list_empty(&cur_trans->io_bgs));
4581
49b25e05 4582 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4583
4a9d8bde 4584 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4585 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4586
4a9d8bde 4587 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4588 wake_up(&fs_info->transaction_wait);
49b25e05 4589
67cde344
MX
4590 btrfs_destroy_delayed_inodes(root);
4591 btrfs_assert_delayed_root_empty(root);
49b25e05 4592
49b25e05
JM
4593 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4594 EXTENT_DIRTY);
6e841e32 4595 btrfs_destroy_pinned_extent(root,
0b246afa 4596 fs_info->pinned_extents);
49b25e05 4597
4a9d8bde
MX
4598 cur_trans->state =TRANS_STATE_COMPLETED;
4599 wake_up(&cur_trans->commit_wait);
4600
49b25e05
JM
4601 /*
4602 memset(cur_trans, 0, sizeof(*cur_trans));
4603 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4604 */
4605}
4606
48a3b636 4607static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4608{
0b246afa 4609 struct btrfs_fs_info *fs_info = root->fs_info;
acce952b 4610 struct btrfs_transaction *t;
acce952b 4611
0b246afa 4612 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4613
0b246afa
JM
4614 spin_lock(&fs_info->trans_lock);
4615 while (!list_empty(&fs_info->trans_list)) {
4616 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4617 struct btrfs_transaction, list);
4618 if (t->state >= TRANS_STATE_COMMIT_START) {
4619 atomic_inc(&t->use_count);
0b246afa 4620 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4621 btrfs_wait_for_commit(root, t->transid);
4622 btrfs_put_transaction(t);
0b246afa 4623 spin_lock(&fs_info->trans_lock);
724e2315
JB
4624 continue;
4625 }
0b246afa 4626 if (t == fs_info->running_transaction) {
724e2315 4627 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4628 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4629 /*
4630 * We wait for 0 num_writers since we don't hold a trans
4631 * handle open currently for this transaction.
4632 */
4633 wait_event(t->writer_wait,
4634 atomic_read(&t->num_writers) == 0);
4635 } else {
0b246afa 4636 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4637 }
4638 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4639
0b246afa
JM
4640 spin_lock(&fs_info->trans_lock);
4641 if (t == fs_info->running_transaction)
4642 fs_info->running_transaction = NULL;
acce952b 4643 list_del_init(&t->list);
0b246afa 4644 spin_unlock(&fs_info->trans_lock);
acce952b 4645
724e2315
JB
4646 btrfs_put_transaction(t);
4647 trace_btrfs_transaction_commit(root);
0b246afa 4648 spin_lock(&fs_info->trans_lock);
724e2315 4649 }
0b246afa
JM
4650 spin_unlock(&fs_info->trans_lock);
4651 btrfs_destroy_all_ordered_extents(fs_info);
724e2315
JB
4652 btrfs_destroy_delayed_inodes(root);
4653 btrfs_assert_delayed_root_empty(root);
0b246afa
JM
4654 btrfs_destroy_pinned_extent(root, fs_info->pinned_extents);
4655 btrfs_destroy_all_delalloc_inodes(fs_info);
4656 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4657
4658 return 0;
4659}
4660
e8c9f186 4661static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4662 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4663 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4664 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4665 /* note we're sharing with inode.c for the merge bio hook */
4666 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4667};