]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/disk-io.c
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
5a0e3ad6 28#include <linux/slab.h>
784b4e29 29#include <linux/migrate.h>
7a36ddec 30#include <linux/ratelimit.h>
6463fe58 31#include <linux/uuid.h>
803b2f54 32#include <linux/semaphore.h>
7e75bf3f 33#include <asm/unaligned.h>
eb60ceac
CM
34#include "ctree.h"
35#include "disk-io.h"
0b947aff 36#include "hash.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
925baedd 41#include "locking.h"
e02119d5 42#include "tree-log.h"
fa9c0d79 43#include "free-space-cache.h"
70f6d82e 44#include "free-space-tree.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
ebb8765b 52#include "compression.h"
eb60ceac 53
de0022b9
JB
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
319e4d06
QW
58#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
e8c9f186 64static const struct extent_io_ops btree_extent_io_ops;
8b712842 65static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 66static void free_fs_root(struct btrfs_root *root);
fcd1f065 67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 68 int read_only);
143bede5 69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 71 struct btrfs_fs_info *fs_info);
143bede5 72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 73static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 74 struct extent_io_tree *dirty_pages,
75 int mark);
2ff7e61e 76static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 77 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
78static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
79static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 80
d352ac68 81/*
97eb6b69
DS
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
97eb6b69 86struct btrfs_end_io_wq {
ce9adaa5
CM
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
bfebd8b5 92 enum btrfs_wq_endio_type metadata;
ce9adaa5 93 struct list_head list;
8b712842 94 struct btrfs_work work;
ce9adaa5 95};
0da5468f 96
97eb6b69
DS
97static struct kmem_cache *btrfs_end_io_wq_cache;
98
99int __init btrfs_end_io_wq_init(void)
100{
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
fba4b697 104 SLAB_MEM_SPREAD,
97eb6b69
DS
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109}
110
111void btrfs_end_io_wq_exit(void)
112{
5598e900 113 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
114}
115
d352ac68
CM
116/*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
44b8bd7e
CM
121struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
4a69a410
CM
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e 127 int mirror_num;
c8b97818 128 unsigned long bio_flags;
eaf25d93
CM
129 /*
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
132 */
133 u64 bio_offset;
8b712842 134 struct btrfs_work work;
79787eaa 135 int error;
44b8bd7e
CM
136};
137
85d4e461
CM
138/*
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
142 *
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
4008c04a 148 *
85d4e461
CM
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 152 *
85d4e461
CM
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 156 *
85d4e461
CM
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
4008c04a
CM
160 */
161#ifdef CONFIG_DEBUG_LOCK_ALLOC
162# if BTRFS_MAX_LEVEL != 8
163# error
164# endif
85d4e461
CM
165
166static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171} btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 184 { .id = 0, .name_stem = "tree" },
4008c04a 185};
85d4e461
CM
186
187void __init btrfs_init_lockdep(void)
188{
189 int i, j;
190
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
198 }
199}
200
201void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
203{
204 struct btrfs_lockdep_keyset *ks;
205
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
212
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
215}
216
4008c04a
CM
217#endif
218
d352ac68
CM
219/*
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
222 */
b2950863 223static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 224 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 225 int create)
7eccb903 226{
0b246afa 227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5f39d397
CM
228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229 struct extent_map *em;
230 int ret;
231
890871be 232 read_lock(&em_tree->lock);
d1310b2e 233 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 234 if (em) {
0b246afa 235 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 236 read_unlock(&em_tree->lock);
5f39d397 237 goto out;
a061fc8d 238 }
890871be 239 read_unlock(&em_tree->lock);
7b13b7b1 240
172ddd60 241 em = alloc_extent_map();
5f39d397
CM
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
245 }
246 em->start = 0;
0afbaf8c 247 em->len = (u64)-1;
c8b97818 248 em->block_len = (u64)-1;
5f39d397 249 em->block_start = 0;
0b246afa 250 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 251
890871be 252 write_lock(&em_tree->lock);
09a2a8f9 253 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
254 if (ret == -EEXIST) {
255 free_extent_map(em);
7b13b7b1 256 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 257 if (!em)
0433f20d 258 em = ERR_PTR(-EIO);
5f39d397 259 } else if (ret) {
7b13b7b1 260 free_extent_map(em);
0433f20d 261 em = ERR_PTR(ret);
5f39d397 262 }
890871be 263 write_unlock(&em_tree->lock);
7b13b7b1 264
5f39d397
CM
265out:
266 return em;
7eccb903
CM
267}
268
b0496686 269u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 270{
0b947aff 271 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
272}
273
0b5e3daf 274void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 275{
7e75bf3f 276 put_unaligned_le32(~crc, result);
19c00ddc
CM
277}
278
d352ac68
CM
279/*
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
282 */
01d58472
DD
283static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
19c00ddc
CM
285 int verify)
286{
01d58472 287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 288 char *result = NULL;
19c00ddc
CM
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
607d432d 297 unsigned long inline_result;
19c00ddc
CM
298
299 len = buf->len - offset;
d397712b 300 while (len > 0) {
19c00ddc 301 err = map_private_extent_buffer(buf, offset, 32,
a6591715 302 &kaddr, &map_start, &map_len);
d397712b 303 if (err)
8bd98f0e 304 return err;
19c00ddc 305 cur_len = min(len, map_len - (offset - map_start));
b0496686 306 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
307 crc, cur_len);
308 len -= cur_len;
309 offset += cur_len;
19c00ddc 310 }
607d432d 311 if (csum_size > sizeof(inline_result)) {
31e818fe 312 result = kzalloc(csum_size, GFP_NOFS);
607d432d 313 if (!result)
8bd98f0e 314 return -ENOMEM;
607d432d
JB
315 } else {
316 result = (char *)&inline_result;
317 }
318
19c00ddc
CM
319 btrfs_csum_final(crc, result);
320
321 if (verify) {
607d432d 322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
323 u32 val;
324 u32 found = 0;
607d432d 325 memcpy(&found, result, csum_size);
e4204ded 326
607d432d 327 read_extent_buffer(buf, &val, 0, csum_size);
94647322 328 btrfs_warn_rl(fs_info,
5d163e0e 329 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 330 fs_info->sb->s_id, buf->start,
efe120a0 331 val, found, btrfs_header_level(buf));
607d432d
JB
332 if (result != (char *)&inline_result)
333 kfree(result);
8bd98f0e 334 return -EUCLEAN;
19c00ddc
CM
335 }
336 } else {
607d432d 337 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 338 }
607d432d
JB
339 if (result != (char *)&inline_result)
340 kfree(result);
19c00ddc
CM
341 return 0;
342}
343
d352ac68
CM
344/*
345 * we can't consider a given block up to date unless the transid of the
346 * block matches the transid in the parent node's pointer. This is how we
347 * detect blocks that either didn't get written at all or got written
348 * in the wrong place.
349 */
1259ab75 350static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
351 struct extent_buffer *eb, u64 parent_transid,
352 int atomic)
1259ab75 353{
2ac55d41 354 struct extent_state *cached_state = NULL;
1259ab75 355 int ret;
2755a0de 356 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
357
358 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359 return 0;
360
b9fab919
CM
361 if (atomic)
362 return -EAGAIN;
363
a26e8c9f
JB
364 if (need_lock) {
365 btrfs_tree_read_lock(eb);
366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367 }
368
2ac55d41 369 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 370 &cached_state);
0b32f4bb 371 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
372 btrfs_header_generation(eb) == parent_transid) {
373 ret = 0;
374 goto out;
375 }
94647322
DS
376 btrfs_err_rl(eb->fs_info,
377 "parent transid verify failed on %llu wanted %llu found %llu",
378 eb->start,
29549aec 379 parent_transid, btrfs_header_generation(eb));
1259ab75 380 ret = 1;
a26e8c9f
JB
381
382 /*
383 * Things reading via commit roots that don't have normal protection,
384 * like send, can have a really old block in cache that may point at a
01327610 385 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
386 * if we find an eb that is under IO (dirty/writeback) because we could
387 * end up reading in the stale data and then writing it back out and
388 * making everybody very sad.
389 */
390 if (!extent_buffer_under_io(eb))
391 clear_extent_buffer_uptodate(eb);
33958dc6 392out:
2ac55d41
JB
393 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394 &cached_state, GFP_NOFS);
472b909f
JB
395 if (need_lock)
396 btrfs_tree_read_unlock_blocking(eb);
1259ab75 397 return ret;
1259ab75
CM
398}
399
1104a885
DS
400/*
401 * Return 0 if the superblock checksum type matches the checksum value of that
402 * algorithm. Pass the raw disk superblock data.
403 */
ab8d0fc4
JM
404static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405 char *raw_disk_sb)
1104a885
DS
406{
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 int ret = 0;
411
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 u32 crc = ~(u32)0;
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
416
417 /*
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 420 * is filled with zeros and is included in the checksum.
1104a885
DS
421 */
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
425
426 if (memcmp(raw_disk_sb, result, csum_size))
427 ret = 1;
428 }
429
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 431 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
432 csum_type);
433 ret = 1;
434 }
435
436 return ret;
437}
438
d352ac68
CM
439/*
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
442 */
2ff7e61e 443static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 444 struct extent_buffer *eb,
8436ea91 445 u64 parent_transid)
f188591e
CM
446{
447 struct extent_io_tree *io_tree;
ea466794 448 int failed = 0;
f188591e
CM
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
ea466794 452 int failed_mirror = 0;
f188591e 453
a826d6dc 454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
0b246afa 455 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 456 while (1) {
8436ea91 457 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
f188591e 458 btree_get_extent, mirror_num);
256dd1bb
SB
459 if (!ret) {
460 if (!verify_parent_transid(io_tree, eb,
b9fab919 461 parent_transid, 0))
256dd1bb
SB
462 break;
463 else
464 ret = -EIO;
465 }
d397712b 466
a826d6dc
JB
467 /*
468 * This buffer's crc is fine, but its contents are corrupted, so
469 * there is no reason to read the other copies, they won't be
470 * any less wrong.
471 */
472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
473 break;
474
0b246afa 475 num_copies = btrfs_num_copies(fs_info,
f188591e 476 eb->start, eb->len);
4235298e 477 if (num_copies == 1)
ea466794 478 break;
4235298e 479
5cf1ab56
JB
480 if (!failed_mirror) {
481 failed = 1;
482 failed_mirror = eb->read_mirror;
483 }
484
f188591e 485 mirror_num++;
ea466794
JB
486 if (mirror_num == failed_mirror)
487 mirror_num++;
488
4235298e 489 if (mirror_num > num_copies)
ea466794 490 break;
f188591e 491 }
ea466794 492
c0901581 493 if (failed && !ret && failed_mirror)
2ff7e61e 494 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
495
496 return ret;
f188591e 497}
19c00ddc 498
d352ac68 499/*
d397712b
CM
500 * checksum a dirty tree block before IO. This has extra checks to make sure
501 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 502 */
d397712b 503
01d58472 504static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 505{
4eee4fa4 506 u64 start = page_offset(page);
19c00ddc 507 u64 found_start;
19c00ddc 508 struct extent_buffer *eb;
f188591e 509
4f2de97a
JB
510 eb = (struct extent_buffer *)page->private;
511 if (page != eb->pages[0])
512 return 0;
0f805531 513
19c00ddc 514 found_start = btrfs_header_bytenr(eb);
0f805531
AL
515 /*
516 * Please do not consolidate these warnings into a single if.
517 * It is useful to know what went wrong.
518 */
519 if (WARN_ON(found_start != start))
520 return -EUCLEAN;
521 if (WARN_ON(!PageUptodate(page)))
522 return -EUCLEAN;
523
524 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
525 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
526
8bd98f0e 527 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
528}
529
01d58472 530static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
531 struct extent_buffer *eb)
532{
01d58472 533 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
534 u8 fsid[BTRFS_UUID_SIZE];
535 int ret = 1;
536
0a4e5586 537 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
538 while (fs_devices) {
539 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
540 ret = 0;
541 break;
542 }
543 fs_devices = fs_devices->seed;
544 }
545 return ret;
546}
547
0b246afa
JM
548#define CORRUPT(reason, eb, root, slot) \
549 btrfs_crit(root->fs_info, \
550 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
551 btrfs_header_level(eb) == 0 ? "leaf" : "node", \
6b722c17 552 reason, btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
553
554static noinline int check_leaf(struct btrfs_root *root,
555 struct extent_buffer *leaf)
556{
0b246afa 557 struct btrfs_fs_info *fs_info = root->fs_info;
a826d6dc
JB
558 struct btrfs_key key;
559 struct btrfs_key leaf_key;
560 u32 nritems = btrfs_header_nritems(leaf);
561 int slot;
562
f177d739
FM
563 /*
564 * Extent buffers from a relocation tree have a owner field that
565 * corresponds to the subvolume tree they are based on. So just from an
566 * extent buffer alone we can not find out what is the id of the
567 * corresponding subvolume tree, so we can not figure out if the extent
568 * buffer corresponds to the root of the relocation tree or not. So skip
569 * this check for relocation trees.
570 */
571 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
1ba98d08
LB
572 struct btrfs_root *check_root;
573
574 key.objectid = btrfs_header_owner(leaf);
575 key.type = BTRFS_ROOT_ITEM_KEY;
576 key.offset = (u64)-1;
577
0b246afa 578 check_root = btrfs_get_fs_root(fs_info, &key, false);
1ba98d08
LB
579 /*
580 * The only reason we also check NULL here is that during
581 * open_ctree() some roots has not yet been set up.
582 */
583 if (!IS_ERR_OR_NULL(check_root)) {
ef85b25e
LB
584 struct extent_buffer *eb;
585
586 eb = btrfs_root_node(check_root);
1ba98d08 587 /* if leaf is the root, then it's fine */
ef85b25e 588 if (leaf != eb) {
1ba98d08 589 CORRUPT("non-root leaf's nritems is 0",
ef85b25e
LB
590 leaf, check_root, 0);
591 free_extent_buffer(eb);
1ba98d08
LB
592 return -EIO;
593 }
ef85b25e 594 free_extent_buffer(eb);
1ba98d08 595 }
a826d6dc 596 return 0;
1ba98d08 597 }
a826d6dc 598
f177d739
FM
599 if (nritems == 0)
600 return 0;
601
a826d6dc
JB
602 /* Check the 0 item */
603 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
0b246afa 604 BTRFS_LEAF_DATA_SIZE(fs_info)) {
a826d6dc
JB
605 CORRUPT("invalid item offset size pair", leaf, root, 0);
606 return -EIO;
607 }
608
609 /*
610 * Check to make sure each items keys are in the correct order and their
611 * offsets make sense. We only have to loop through nritems-1 because
612 * we check the current slot against the next slot, which verifies the
613 * next slot's offset+size makes sense and that the current's slot
614 * offset is correct.
615 */
616 for (slot = 0; slot < nritems - 1; slot++) {
617 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
618 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
619
620 /* Make sure the keys are in the right order */
621 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
622 CORRUPT("bad key order", leaf, root, slot);
623 return -EIO;
624 }
625
626 /*
627 * Make sure the offset and ends are right, remember that the
628 * item data starts at the end of the leaf and grows towards the
629 * front.
630 */
631 if (btrfs_item_offset_nr(leaf, slot) !=
632 btrfs_item_end_nr(leaf, slot + 1)) {
633 CORRUPT("slot offset bad", leaf, root, slot);
634 return -EIO;
635 }
636
637 /*
638 * Check to make sure that we don't point outside of the leaf,
01327610 639 * just in case all the items are consistent to each other, but
a826d6dc
JB
640 * all point outside of the leaf.
641 */
642 if (btrfs_item_end_nr(leaf, slot) >
0b246afa 643 BTRFS_LEAF_DATA_SIZE(fs_info)) {
a826d6dc
JB
644 CORRUPT("slot end outside of leaf", leaf, root, slot);
645 return -EIO;
646 }
647 }
648
649 return 0;
650}
651
053ab70f
LB
652static int check_node(struct btrfs_root *root, struct extent_buffer *node)
653{
654 unsigned long nr = btrfs_header_nritems(node);
6b722c17
LB
655 struct btrfs_key key, next_key;
656 int slot;
657 u64 bytenr;
658 int ret = 0;
053ab70f 659
da17066c 660 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
053ab70f
LB
661 btrfs_crit(root->fs_info,
662 "corrupt node: block %llu root %llu nritems %lu",
663 node->start, root->objectid, nr);
664 return -EIO;
665 }
6b722c17
LB
666
667 for (slot = 0; slot < nr - 1; slot++) {
668 bytenr = btrfs_node_blockptr(node, slot);
669 btrfs_node_key_to_cpu(node, &key, slot);
670 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
671
672 if (!bytenr) {
673 CORRUPT("invalid item slot", node, root, slot);
674 ret = -EIO;
675 goto out;
676 }
677
678 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
679 CORRUPT("bad key order", node, root, slot);
680 ret = -EIO;
681 goto out;
682 }
683 }
684out:
685 return ret;
053ab70f
LB
686}
687
facc8a22
MX
688static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
689 u64 phy_offset, struct page *page,
690 u64 start, u64 end, int mirror)
ce9adaa5 691{
ce9adaa5
CM
692 u64 found_start;
693 int found_level;
ce9adaa5
CM
694 struct extent_buffer *eb;
695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 696 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 697 int ret = 0;
727011e0 698 int reads_done;
ce9adaa5 699
ce9adaa5
CM
700 if (!page->private)
701 goto out;
d397712b 702
4f2de97a 703 eb = (struct extent_buffer *)page->private;
d397712b 704
0b32f4bb
JB
705 /* the pending IO might have been the only thing that kept this buffer
706 * in memory. Make sure we have a ref for all this other checks
707 */
708 extent_buffer_get(eb);
709
710 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
711 if (!reads_done)
712 goto err;
f188591e 713
5cf1ab56 714 eb->read_mirror = mirror;
656f30db 715 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
716 ret = -EIO;
717 goto err;
718 }
719
ce9adaa5 720 found_start = btrfs_header_bytenr(eb);
727011e0 721 if (found_start != eb->start) {
02873e43
ZL
722 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
723 found_start, eb->start);
f188591e 724 ret = -EIO;
ce9adaa5
CM
725 goto err;
726 }
02873e43
ZL
727 if (check_tree_block_fsid(fs_info, eb)) {
728 btrfs_err_rl(fs_info, "bad fsid on block %llu",
729 eb->start);
1259ab75
CM
730 ret = -EIO;
731 goto err;
732 }
ce9adaa5 733 found_level = btrfs_header_level(eb);
1c24c3ce 734 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
735 btrfs_err(fs_info, "bad tree block level %d",
736 (int)btrfs_header_level(eb));
1c24c3ce
JB
737 ret = -EIO;
738 goto err;
739 }
ce9adaa5 740
85d4e461
CM
741 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
742 eb, found_level);
4008c04a 743
02873e43 744 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 745 if (ret)
a826d6dc 746 goto err;
a826d6dc
JB
747
748 /*
749 * If this is a leaf block and it is corrupt, set the corrupt bit so
750 * that we don't try and read the other copies of this block, just
751 * return -EIO.
752 */
753 if (found_level == 0 && check_leaf(root, eb)) {
754 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
755 ret = -EIO;
756 }
ce9adaa5 757
053ab70f
LB
758 if (found_level > 0 && check_node(root, eb))
759 ret = -EIO;
760
0b32f4bb
JB
761 if (!ret)
762 set_extent_buffer_uptodate(eb);
ce9adaa5 763err:
79fb65a1
JB
764 if (reads_done &&
765 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
fc2e901f 766 btree_readahead_hook(fs_info, eb, ret);
4bb31e92 767
53b381b3
DW
768 if (ret) {
769 /*
770 * our io error hook is going to dec the io pages
771 * again, we have to make sure it has something
772 * to decrement
773 */
774 atomic_inc(&eb->io_pages);
0b32f4bb 775 clear_extent_buffer_uptodate(eb);
53b381b3 776 }
0b32f4bb 777 free_extent_buffer(eb);
ce9adaa5 778out:
f188591e 779 return ret;
ce9adaa5
CM
780}
781
ea466794 782static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 783{
4bb31e92 784 struct extent_buffer *eb;
4bb31e92 785
4f2de97a 786 eb = (struct extent_buffer *)page->private;
656f30db 787 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 788 eb->read_mirror = failed_mirror;
53b381b3 789 atomic_dec(&eb->io_pages);
ea466794 790 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
fc2e901f 791 btree_readahead_hook(eb->fs_info, eb, -EIO);
4bb31e92
AJ
792 return -EIO; /* we fixed nothing */
793}
794
4246a0b6 795static void end_workqueue_bio(struct bio *bio)
ce9adaa5 796{
97eb6b69 797 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 798 struct btrfs_fs_info *fs_info;
9e0af237
LB
799 struct btrfs_workqueue *wq;
800 btrfs_work_func_t func;
ce9adaa5 801
ce9adaa5 802 fs_info = end_io_wq->info;
4246a0b6 803 end_io_wq->error = bio->bi_error;
d20f7043 804
37226b21 805 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
806 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
807 wq = fs_info->endio_meta_write_workers;
808 func = btrfs_endio_meta_write_helper;
809 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
810 wq = fs_info->endio_freespace_worker;
811 func = btrfs_freespace_write_helper;
812 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
813 wq = fs_info->endio_raid56_workers;
814 func = btrfs_endio_raid56_helper;
815 } else {
816 wq = fs_info->endio_write_workers;
817 func = btrfs_endio_write_helper;
818 }
d20f7043 819 } else {
8b110e39
MX
820 if (unlikely(end_io_wq->metadata ==
821 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
822 wq = fs_info->endio_repair_workers;
823 func = btrfs_endio_repair_helper;
824 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
825 wq = fs_info->endio_raid56_workers;
826 func = btrfs_endio_raid56_helper;
827 } else if (end_io_wq->metadata) {
828 wq = fs_info->endio_meta_workers;
829 func = btrfs_endio_meta_helper;
830 } else {
831 wq = fs_info->endio_workers;
832 func = btrfs_endio_helper;
833 }
d20f7043 834 }
9e0af237
LB
835
836 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
837 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
838}
839
22c59948 840int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 841 enum btrfs_wq_endio_type metadata)
0b86a832 842{
97eb6b69 843 struct btrfs_end_io_wq *end_io_wq;
8b110e39 844
97eb6b69 845 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
846 if (!end_io_wq)
847 return -ENOMEM;
848
849 end_io_wq->private = bio->bi_private;
850 end_io_wq->end_io = bio->bi_end_io;
22c59948 851 end_io_wq->info = info;
ce9adaa5
CM
852 end_io_wq->error = 0;
853 end_io_wq->bio = bio;
22c59948 854 end_io_wq->metadata = metadata;
ce9adaa5
CM
855
856 bio->bi_private = end_io_wq;
857 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
858 return 0;
859}
860
b64a2851 861unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 862{
4854ddd0 863 unsigned long limit = min_t(unsigned long,
5cdc7ad3 864 info->thread_pool_size,
4854ddd0
CM
865 info->fs_devices->open_devices);
866 return 256 * limit;
867}
0986fe9e 868
4a69a410
CM
869static void run_one_async_start(struct btrfs_work *work)
870{
4a69a410 871 struct async_submit_bio *async;
79787eaa 872 int ret;
4a69a410
CM
873
874 async = container_of(work, struct async_submit_bio, work);
81a75f67 875 ret = async->submit_bio_start(async->inode, async->bio,
79787eaa
JM
876 async->mirror_num, async->bio_flags,
877 async->bio_offset);
878 if (ret)
879 async->error = ret;
4a69a410
CM
880}
881
882static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
883{
884 struct btrfs_fs_info *fs_info;
885 struct async_submit_bio *async;
4854ddd0 886 int limit;
8b712842
CM
887
888 async = container_of(work, struct async_submit_bio, work);
889 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 890
b64a2851 891 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
892 limit = limit * 2 / 3;
893
ee863954
DS
894 /*
895 * atomic_dec_return implies a barrier for waitqueue_active
896 */
66657b31 897 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 898 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
899 wake_up(&fs_info->async_submit_wait);
900
bb7ab3b9 901 /* If an error occurred we just want to clean up the bio and move on */
79787eaa 902 if (async->error) {
4246a0b6
CH
903 async->bio->bi_error = async->error;
904 bio_endio(async->bio);
79787eaa
JM
905 return;
906 }
907
81a75f67
MC
908 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
909 async->bio_flags, async->bio_offset);
4a69a410
CM
910}
911
912static void run_one_async_free(struct btrfs_work *work)
913{
914 struct async_submit_bio *async;
915
916 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
917 kfree(async);
918}
919
44b8bd7e 920int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
81a75f67 921 struct bio *bio, int mirror_num,
c8b97818 922 unsigned long bio_flags,
eaf25d93 923 u64 bio_offset,
4a69a410
CM
924 extent_submit_bio_hook_t *submit_bio_start,
925 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
926{
927 struct async_submit_bio *async;
928
929 async = kmalloc(sizeof(*async), GFP_NOFS);
930 if (!async)
931 return -ENOMEM;
932
933 async->inode = inode;
44b8bd7e
CM
934 async->bio = bio;
935 async->mirror_num = mirror_num;
4a69a410
CM
936 async->submit_bio_start = submit_bio_start;
937 async->submit_bio_done = submit_bio_done;
938
9e0af237 939 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 940 run_one_async_done, run_one_async_free);
4a69a410 941
c8b97818 942 async->bio_flags = bio_flags;
eaf25d93 943 async->bio_offset = bio_offset;
8c8bee1d 944
79787eaa
JM
945 async->error = 0;
946
cb03c743 947 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 948
67f055c7 949 if (op_is_sync(bio->bi_opf))
5cdc7ad3 950 btrfs_set_work_high_priority(&async->work);
d313d7a3 951
5cdc7ad3 952 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 953
d397712b 954 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
955 atomic_read(&fs_info->nr_async_submits)) {
956 wait_event(fs_info->async_submit_wait,
957 (atomic_read(&fs_info->nr_async_submits) == 0));
958 }
959
44b8bd7e
CM
960 return 0;
961}
962
ce3ed71a
CM
963static int btree_csum_one_bio(struct bio *bio)
964{
2c30c71b 965 struct bio_vec *bvec;
ce3ed71a 966 struct btrfs_root *root;
2c30c71b 967 int i, ret = 0;
ce3ed71a 968
2c30c71b 969 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 970 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 971 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
972 if (ret)
973 break;
ce3ed71a 974 }
2c30c71b 975
79787eaa 976 return ret;
ce3ed71a
CM
977}
978
81a75f67
MC
979static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
980 int mirror_num, unsigned long bio_flags,
eaf25d93 981 u64 bio_offset)
22c59948 982{
8b712842
CM
983 /*
984 * when we're called for a write, we're already in the async
5443be45 985 * submission context. Just jump into btrfs_map_bio
8b712842 986 */
79787eaa 987 return btree_csum_one_bio(bio);
4a69a410 988}
22c59948 989
81a75f67 990static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
eaf25d93
CM
991 int mirror_num, unsigned long bio_flags,
992 u64 bio_offset)
4a69a410 993{
61891923
SB
994 int ret;
995
8b712842 996 /*
4a69a410
CM
997 * when we're called for a write, we're already in the async
998 * submission context. Just jump into btrfs_map_bio
8b712842 999 */
2ff7e61e 1000 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
4246a0b6
CH
1001 if (ret) {
1002 bio->bi_error = ret;
1003 bio_endio(bio);
1004 }
61891923 1005 return ret;
0b86a832
CM
1006}
1007
de0022b9
JB
1008static int check_async_write(struct inode *inode, unsigned long bio_flags)
1009{
1010 if (bio_flags & EXTENT_BIO_TREE_LOG)
1011 return 0;
1012#ifdef CONFIG_X86
bc696ca0 1013 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
1014 return 0;
1015#endif
1016 return 1;
1017}
1018
81a75f67 1019static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
eaf25d93
CM
1020 int mirror_num, unsigned long bio_flags,
1021 u64 bio_offset)
44b8bd7e 1022{
0b246afa 1023 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
de0022b9 1024 int async = check_async_write(inode, bio_flags);
cad321ad
CM
1025 int ret;
1026
37226b21 1027 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
1028 /*
1029 * called for a read, do the setup so that checksum validation
1030 * can happen in the async kernel threads
1031 */
0b246afa
JM
1032 ret = btrfs_bio_wq_end_io(fs_info, bio,
1033 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 1034 if (ret)
61891923 1035 goto out_w_error;
2ff7e61e 1036 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
1037 } else if (!async) {
1038 ret = btree_csum_one_bio(bio);
1039 if (ret)
61891923 1040 goto out_w_error;
2ff7e61e 1041 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
1042 } else {
1043 /*
1044 * kthread helpers are used to submit writes so that
1045 * checksumming can happen in parallel across all CPUs
1046 */
0b246afa 1047 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
61891923
SB
1048 bio_offset,
1049 __btree_submit_bio_start,
1050 __btree_submit_bio_done);
44b8bd7e 1051 }
d313d7a3 1052
4246a0b6
CH
1053 if (ret)
1054 goto out_w_error;
1055 return 0;
1056
61891923 1057out_w_error:
4246a0b6
CH
1058 bio->bi_error = ret;
1059 bio_endio(bio);
61891923 1060 return ret;
44b8bd7e
CM
1061}
1062
3dd1462e 1063#ifdef CONFIG_MIGRATION
784b4e29 1064static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
1065 struct page *newpage, struct page *page,
1066 enum migrate_mode mode)
784b4e29
CM
1067{
1068 /*
1069 * we can't safely write a btree page from here,
1070 * we haven't done the locking hook
1071 */
1072 if (PageDirty(page))
1073 return -EAGAIN;
1074 /*
1075 * Buffers may be managed in a filesystem specific way.
1076 * We must have no buffers or drop them.
1077 */
1078 if (page_has_private(page) &&
1079 !try_to_release_page(page, GFP_KERNEL))
1080 return -EAGAIN;
a6bc32b8 1081 return migrate_page(mapping, newpage, page, mode);
784b4e29 1082}
3dd1462e 1083#endif
784b4e29 1084
0da5468f
CM
1085
1086static int btree_writepages(struct address_space *mapping,
1087 struct writeback_control *wbc)
1088{
e2d84521
MX
1089 struct btrfs_fs_info *fs_info;
1090 int ret;
1091
d8d5f3e1 1092 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1093
1094 if (wbc->for_kupdate)
1095 return 0;
1096
e2d84521 1097 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1098 /* this is a bit racy, but that's ok */
e2d84521
MX
1099 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1100 BTRFS_DIRTY_METADATA_THRESH);
1101 if (ret < 0)
793955bc 1102 return 0;
793955bc 1103 }
0b32f4bb 1104 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1105}
1106
b2950863 1107static int btree_readpage(struct file *file, struct page *page)
5f39d397 1108{
d1310b2e
CM
1109 struct extent_io_tree *tree;
1110 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1111 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1112}
22b0ebda 1113
70dec807 1114static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1115{
98509cfc 1116 if (PageWriteback(page) || PageDirty(page))
d397712b 1117 return 0;
0c4e538b 1118
f7a52a40 1119 return try_release_extent_buffer(page);
d98237b3
CM
1120}
1121
d47992f8
LC
1122static void btree_invalidatepage(struct page *page, unsigned int offset,
1123 unsigned int length)
d98237b3 1124{
d1310b2e
CM
1125 struct extent_io_tree *tree;
1126 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1127 extent_invalidatepage(tree, page, offset);
1128 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1129 if (PagePrivate(page)) {
efe120a0
FH
1130 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1131 "page private not zero on page %llu",
1132 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1133 ClearPagePrivate(page);
1134 set_page_private(page, 0);
09cbfeaf 1135 put_page(page);
9ad6b7bc 1136 }
d98237b3
CM
1137}
1138
0b32f4bb
JB
1139static int btree_set_page_dirty(struct page *page)
1140{
bb146eb2 1141#ifdef DEBUG
0b32f4bb
JB
1142 struct extent_buffer *eb;
1143
1144 BUG_ON(!PagePrivate(page));
1145 eb = (struct extent_buffer *)page->private;
1146 BUG_ON(!eb);
1147 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1148 BUG_ON(!atomic_read(&eb->refs));
1149 btrfs_assert_tree_locked(eb);
bb146eb2 1150#endif
0b32f4bb
JB
1151 return __set_page_dirty_nobuffers(page);
1152}
1153
7f09410b 1154static const struct address_space_operations btree_aops = {
d98237b3 1155 .readpage = btree_readpage,
0da5468f 1156 .writepages = btree_writepages,
5f39d397
CM
1157 .releasepage = btree_releasepage,
1158 .invalidatepage = btree_invalidatepage,
5a92bc88 1159#ifdef CONFIG_MIGRATION
784b4e29 1160 .migratepage = btree_migratepage,
5a92bc88 1161#endif
0b32f4bb 1162 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1163};
1164
2ff7e61e 1165void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1166{
5f39d397 1167 struct extent_buffer *buf = NULL;
2ff7e61e 1168 struct inode *btree_inode = fs_info->btree_inode;
090d1875 1169
2ff7e61e 1170 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1171 if (IS_ERR(buf))
6197d86e 1172 return;
d1310b2e 1173 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
8436ea91 1174 buf, WAIT_NONE, btree_get_extent, 0);
5f39d397 1175 free_extent_buffer(buf);
090d1875
CM
1176}
1177
2ff7e61e 1178int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1179 int mirror_num, struct extent_buffer **eb)
1180{
1181 struct extent_buffer *buf = NULL;
2ff7e61e 1182 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1183 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1184 int ret;
1185
2ff7e61e 1186 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1187 if (IS_ERR(buf))
ab0fff03
AJ
1188 return 0;
1189
1190 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1191
8436ea91 1192 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
ab0fff03
AJ
1193 btree_get_extent, mirror_num);
1194 if (ret) {
1195 free_extent_buffer(buf);
1196 return ret;
1197 }
1198
1199 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1200 free_extent_buffer(buf);
1201 return -EIO;
0b32f4bb 1202 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1203 *eb = buf;
1204 } else {
1205 free_extent_buffer(buf);
1206 }
1207 return 0;
1208}
1209
2ff7e61e
JM
1210struct extent_buffer *btrfs_find_create_tree_block(
1211 struct btrfs_fs_info *fs_info,
1212 u64 bytenr)
0999df54 1213{
0b246afa
JM
1214 if (btrfs_is_testing(fs_info))
1215 return alloc_test_extent_buffer(fs_info, bytenr);
1216 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1217}
1218
1219
e02119d5
CM
1220int btrfs_write_tree_block(struct extent_buffer *buf)
1221{
727011e0 1222 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1223 buf->start + buf->len - 1);
e02119d5
CM
1224}
1225
1226int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1227{
727011e0 1228 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1229 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1230}
1231
2ff7e61e 1232struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
ce86cd59 1233 u64 parent_transid)
0999df54
CM
1234{
1235 struct extent_buffer *buf = NULL;
0999df54
CM
1236 int ret;
1237
2ff7e61e 1238 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1239 if (IS_ERR(buf))
1240 return buf;
0999df54 1241
2ff7e61e 1242 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
0f0fe8f7
FDBM
1243 if (ret) {
1244 free_extent_buffer(buf);
64c043de 1245 return ERR_PTR(ret);
0f0fe8f7 1246 }
5f39d397 1247 return buf;
ce9adaa5 1248
eb60ceac
CM
1249}
1250
01d58472
DD
1251void clean_tree_block(struct btrfs_trans_handle *trans,
1252 struct btrfs_fs_info *fs_info,
d5c13f92 1253 struct extent_buffer *buf)
ed2ff2cb 1254{
55c69072 1255 if (btrfs_header_generation(buf) ==
e2d84521 1256 fs_info->running_transaction->transid) {
b9447ef8 1257 btrfs_assert_tree_locked(buf);
b4ce94de 1258
b9473439 1259 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1260 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1261 -buf->len,
1262 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1263 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1264 btrfs_set_lock_blocking(buf);
1265 clear_extent_buffer_dirty(buf);
1266 }
925baedd 1267 }
5f39d397
CM
1268}
1269
8257b2dc
MX
1270static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1271{
1272 struct btrfs_subvolume_writers *writers;
1273 int ret;
1274
1275 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1276 if (!writers)
1277 return ERR_PTR(-ENOMEM);
1278
908c7f19 1279 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1280 if (ret < 0) {
1281 kfree(writers);
1282 return ERR_PTR(ret);
1283 }
1284
1285 init_waitqueue_head(&writers->wait);
1286 return writers;
1287}
1288
1289static void
1290btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1291{
1292 percpu_counter_destroy(&writers->counter);
1293 kfree(writers);
1294}
1295
da17066c 1296static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1297 u64 objectid)
d97e63b6 1298{
7c0260ee 1299 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1300 root->node = NULL;
a28ec197 1301 root->commit_root = NULL;
27cdeb70 1302 root->state = 0;
d68fc57b 1303 root->orphan_cleanup_state = 0;
0b86a832 1304
0f7d52f4
CM
1305 root->objectid = objectid;
1306 root->last_trans = 0;
13a8a7c8 1307 root->highest_objectid = 0;
eb73c1b7 1308 root->nr_delalloc_inodes = 0;
199c2a9c 1309 root->nr_ordered_extents = 0;
58176a96 1310 root->name = NULL;
6bef4d31 1311 root->inode_tree = RB_ROOT;
16cdcec7 1312 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1313 root->block_rsv = NULL;
d68fc57b 1314 root->orphan_block_rsv = NULL;
0b86a832
CM
1315
1316 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1317 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1318 INIT_LIST_HEAD(&root->delalloc_inodes);
1319 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1320 INIT_LIST_HEAD(&root->ordered_extents);
1321 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1322 INIT_LIST_HEAD(&root->logged_list[0]);
1323 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1324 spin_lock_init(&root->orphan_lock);
5d4f98a2 1325 spin_lock_init(&root->inode_lock);
eb73c1b7 1326 spin_lock_init(&root->delalloc_lock);
199c2a9c 1327 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1328 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1329 spin_lock_init(&root->log_extents_lock[0]);
1330 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1331 mutex_init(&root->objectid_mutex);
e02119d5 1332 mutex_init(&root->log_mutex);
31f3d255 1333 mutex_init(&root->ordered_extent_mutex);
573bfb72 1334 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1335 init_waitqueue_head(&root->log_writer_wait);
1336 init_waitqueue_head(&root->log_commit_wait[0]);
1337 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1338 INIT_LIST_HEAD(&root->log_ctxs[0]);
1339 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1340 atomic_set(&root->log_commit[0], 0);
1341 atomic_set(&root->log_commit[1], 0);
1342 atomic_set(&root->log_writers, 0);
2ecb7923 1343 atomic_set(&root->log_batch, 0);
8a35d95f 1344 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1345 atomic_set(&root->refs, 1);
8257b2dc 1346 atomic_set(&root->will_be_snapshoted, 0);
55eeaf05 1347 atomic_set(&root->qgroup_meta_rsv, 0);
7237f183 1348 root->log_transid = 0;
d1433deb 1349 root->log_transid_committed = -1;
257c62e1 1350 root->last_log_commit = 0;
7c0260ee 1351 if (!dummy)
06ea65a3
JB
1352 extent_io_tree_init(&root->dirty_log_pages,
1353 fs_info->btree_inode->i_mapping);
017e5369 1354
3768f368
CM
1355 memset(&root->root_key, 0, sizeof(root->root_key));
1356 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1357 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1358 if (!dummy)
06ea65a3
JB
1359 root->defrag_trans_start = fs_info->generation;
1360 else
1361 root->defrag_trans_start = 0;
4d775673 1362 root->root_key.objectid = objectid;
0ee5dc67 1363 root->anon_dev = 0;
8ea05e3a 1364
5f3ab90a 1365 spin_lock_init(&root->root_item_lock);
3768f368
CM
1366}
1367
74e4d827
DS
1368static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1369 gfp_t flags)
6f07e42e 1370{
74e4d827 1371 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1372 if (root)
1373 root->fs_info = fs_info;
1374 return root;
1375}
1376
06ea65a3
JB
1377#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1378/* Should only be used by the testing infrastructure */
da17066c 1379struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1380{
1381 struct btrfs_root *root;
1382
7c0260ee
JM
1383 if (!fs_info)
1384 return ERR_PTR(-EINVAL);
1385
1386 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1387 if (!root)
1388 return ERR_PTR(-ENOMEM);
da17066c 1389
b9ef22de 1390 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1391 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1392 root->alloc_bytenr = 0;
06ea65a3
JB
1393
1394 return root;
1395}
1396#endif
1397
20897f5c
AJ
1398struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1399 struct btrfs_fs_info *fs_info,
1400 u64 objectid)
1401{
1402 struct extent_buffer *leaf;
1403 struct btrfs_root *tree_root = fs_info->tree_root;
1404 struct btrfs_root *root;
1405 struct btrfs_key key;
1406 int ret = 0;
6463fe58 1407 uuid_le uuid;
20897f5c 1408
74e4d827 1409 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1410 if (!root)
1411 return ERR_PTR(-ENOMEM);
1412
da17066c 1413 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1414 root->root_key.objectid = objectid;
1415 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1416 root->root_key.offset = 0;
1417
4d75f8a9 1418 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1419 if (IS_ERR(leaf)) {
1420 ret = PTR_ERR(leaf);
1dd05682 1421 leaf = NULL;
20897f5c
AJ
1422 goto fail;
1423 }
1424
b159fa28 1425 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
20897f5c
AJ
1426 btrfs_set_header_bytenr(leaf, leaf->start);
1427 btrfs_set_header_generation(leaf, trans->transid);
1428 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1429 btrfs_set_header_owner(leaf, objectid);
1430 root->node = leaf;
1431
d24ee97b
DS
1432 write_extent_buffer_fsid(leaf, fs_info->fsid);
1433 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
20897f5c
AJ
1434 btrfs_mark_buffer_dirty(leaf);
1435
1436 root->commit_root = btrfs_root_node(root);
27cdeb70 1437 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1438
1439 root->root_item.flags = 0;
1440 root->root_item.byte_limit = 0;
1441 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1442 btrfs_set_root_generation(&root->root_item, trans->transid);
1443 btrfs_set_root_level(&root->root_item, 0);
1444 btrfs_set_root_refs(&root->root_item, 1);
1445 btrfs_set_root_used(&root->root_item, leaf->len);
1446 btrfs_set_root_last_snapshot(&root->root_item, 0);
1447 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1448 uuid_le_gen(&uuid);
1449 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1450 root->root_item.drop_level = 0;
1451
1452 key.objectid = objectid;
1453 key.type = BTRFS_ROOT_ITEM_KEY;
1454 key.offset = 0;
1455 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1456 if (ret)
1457 goto fail;
1458
1459 btrfs_tree_unlock(leaf);
1460
1dd05682
TI
1461 return root;
1462
20897f5c 1463fail:
1dd05682
TI
1464 if (leaf) {
1465 btrfs_tree_unlock(leaf);
59885b39 1466 free_extent_buffer(root->commit_root);
1dd05682
TI
1467 free_extent_buffer(leaf);
1468 }
1469 kfree(root);
20897f5c 1470
1dd05682 1471 return ERR_PTR(ret);
20897f5c
AJ
1472}
1473
7237f183
YZ
1474static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1475 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1476{
1477 struct btrfs_root *root;
7237f183 1478 struct extent_buffer *leaf;
e02119d5 1479
74e4d827 1480 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1481 if (!root)
7237f183 1482 return ERR_PTR(-ENOMEM);
e02119d5 1483
da17066c 1484 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1485
1486 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1487 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1488 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1489
7237f183 1490 /*
27cdeb70
MX
1491 * DON'T set REF_COWS for log trees
1492 *
7237f183
YZ
1493 * log trees do not get reference counted because they go away
1494 * before a real commit is actually done. They do store pointers
1495 * to file data extents, and those reference counts still get
1496 * updated (along with back refs to the log tree).
1497 */
e02119d5 1498
4d75f8a9
DS
1499 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1500 NULL, 0, 0, 0);
7237f183
YZ
1501 if (IS_ERR(leaf)) {
1502 kfree(root);
1503 return ERR_CAST(leaf);
1504 }
e02119d5 1505
b159fa28 1506 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
5d4f98a2
YZ
1507 btrfs_set_header_bytenr(leaf, leaf->start);
1508 btrfs_set_header_generation(leaf, trans->transid);
1509 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1510 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1511 root->node = leaf;
e02119d5 1512
0b246afa 1513 write_extent_buffer_fsid(root->node, fs_info->fsid);
e02119d5
CM
1514 btrfs_mark_buffer_dirty(root->node);
1515 btrfs_tree_unlock(root->node);
7237f183
YZ
1516 return root;
1517}
1518
1519int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1520 struct btrfs_fs_info *fs_info)
1521{
1522 struct btrfs_root *log_root;
1523
1524 log_root = alloc_log_tree(trans, fs_info);
1525 if (IS_ERR(log_root))
1526 return PTR_ERR(log_root);
1527 WARN_ON(fs_info->log_root_tree);
1528 fs_info->log_root_tree = log_root;
1529 return 0;
1530}
1531
1532int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1533 struct btrfs_root *root)
1534{
0b246afa 1535 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1536 struct btrfs_root *log_root;
1537 struct btrfs_inode_item *inode_item;
1538
0b246afa 1539 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1540 if (IS_ERR(log_root))
1541 return PTR_ERR(log_root);
1542
1543 log_root->last_trans = trans->transid;
1544 log_root->root_key.offset = root->root_key.objectid;
1545
1546 inode_item = &log_root->root_item.inode;
3cae210f
QW
1547 btrfs_set_stack_inode_generation(inode_item, 1);
1548 btrfs_set_stack_inode_size(inode_item, 3);
1549 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1550 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1551 fs_info->nodesize);
3cae210f 1552 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1553
5d4f98a2 1554 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1555
1556 WARN_ON(root->log_root);
1557 root->log_root = log_root;
1558 root->log_transid = 0;
d1433deb 1559 root->log_transid_committed = -1;
257c62e1 1560 root->last_log_commit = 0;
e02119d5
CM
1561 return 0;
1562}
1563
35a3621b
SB
1564static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1565 struct btrfs_key *key)
e02119d5
CM
1566{
1567 struct btrfs_root *root;
1568 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1569 struct btrfs_path *path;
84234f3a 1570 u64 generation;
cb517eab 1571 int ret;
0f7d52f4 1572
cb517eab
MX
1573 path = btrfs_alloc_path();
1574 if (!path)
0f7d52f4 1575 return ERR_PTR(-ENOMEM);
cb517eab 1576
74e4d827 1577 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1578 if (!root) {
1579 ret = -ENOMEM;
1580 goto alloc_fail;
0f7d52f4
CM
1581 }
1582
da17066c 1583 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1584
cb517eab
MX
1585 ret = btrfs_find_root(tree_root, key, path,
1586 &root->root_item, &root->root_key);
0f7d52f4 1587 if (ret) {
13a8a7c8
YZ
1588 if (ret > 0)
1589 ret = -ENOENT;
cb517eab 1590 goto find_fail;
0f7d52f4 1591 }
13a8a7c8 1592
84234f3a 1593 generation = btrfs_root_generation(&root->root_item);
2ff7e61e
JM
1594 root->node = read_tree_block(fs_info,
1595 btrfs_root_bytenr(&root->root_item),
ce86cd59 1596 generation);
64c043de
LB
1597 if (IS_ERR(root->node)) {
1598 ret = PTR_ERR(root->node);
cb517eab
MX
1599 goto find_fail;
1600 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1601 ret = -EIO;
64c043de
LB
1602 free_extent_buffer(root->node);
1603 goto find_fail;
416bc658 1604 }
5d4f98a2 1605 root->commit_root = btrfs_root_node(root);
13a8a7c8 1606out:
cb517eab
MX
1607 btrfs_free_path(path);
1608 return root;
1609
cb517eab
MX
1610find_fail:
1611 kfree(root);
1612alloc_fail:
1613 root = ERR_PTR(ret);
1614 goto out;
1615}
1616
1617struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1618 struct btrfs_key *location)
1619{
1620 struct btrfs_root *root;
1621
1622 root = btrfs_read_tree_root(tree_root, location);
1623 if (IS_ERR(root))
1624 return root;
1625
1626 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1627 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1628 btrfs_check_and_init_root_item(&root->root_item);
1629 }
13a8a7c8 1630
5eda7b5e
CM
1631 return root;
1632}
1633
cb517eab
MX
1634int btrfs_init_fs_root(struct btrfs_root *root)
1635{
1636 int ret;
8257b2dc 1637 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1638
1639 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1640 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1641 GFP_NOFS);
1642 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1643 ret = -ENOMEM;
1644 goto fail;
1645 }
1646
8257b2dc
MX
1647 writers = btrfs_alloc_subvolume_writers();
1648 if (IS_ERR(writers)) {
1649 ret = PTR_ERR(writers);
1650 goto fail;
1651 }
1652 root->subv_writers = writers;
1653
cb517eab 1654 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1655 spin_lock_init(&root->ino_cache_lock);
1656 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1657
1658 ret = get_anon_bdev(&root->anon_dev);
1659 if (ret)
876d2cf1 1660 goto fail;
f32e48e9
CR
1661
1662 mutex_lock(&root->objectid_mutex);
1663 ret = btrfs_find_highest_objectid(root,
1664 &root->highest_objectid);
1665 if (ret) {
1666 mutex_unlock(&root->objectid_mutex);
876d2cf1 1667 goto fail;
f32e48e9
CR
1668 }
1669
1670 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1671
1672 mutex_unlock(&root->objectid_mutex);
1673
cb517eab
MX
1674 return 0;
1675fail:
876d2cf1 1676 /* the caller is responsible to call free_fs_root */
cb517eab
MX
1677 return ret;
1678}
1679
35bbb97f
JM
1680struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1681 u64 root_id)
cb517eab
MX
1682{
1683 struct btrfs_root *root;
1684
1685 spin_lock(&fs_info->fs_roots_radix_lock);
1686 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1687 (unsigned long)root_id);
1688 spin_unlock(&fs_info->fs_roots_radix_lock);
1689 return root;
1690}
1691
1692int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1693 struct btrfs_root *root)
1694{
1695 int ret;
1696
e1860a77 1697 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1698 if (ret)
1699 return ret;
1700
1701 spin_lock(&fs_info->fs_roots_radix_lock);
1702 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1703 (unsigned long)root->root_key.objectid,
1704 root);
1705 if (ret == 0)
27cdeb70 1706 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1707 spin_unlock(&fs_info->fs_roots_radix_lock);
1708 radix_tree_preload_end();
1709
1710 return ret;
1711}
1712
c00869f1
MX
1713struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1714 struct btrfs_key *location,
1715 bool check_ref)
5eda7b5e
CM
1716{
1717 struct btrfs_root *root;
381cf658 1718 struct btrfs_path *path;
1d4c08e0 1719 struct btrfs_key key;
5eda7b5e
CM
1720 int ret;
1721
edbd8d4e
CM
1722 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1723 return fs_info->tree_root;
1724 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1725 return fs_info->extent_root;
8f18cf13
CM
1726 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1727 return fs_info->chunk_root;
1728 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1729 return fs_info->dev_root;
0403e47e
YZ
1730 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1731 return fs_info->csum_root;
bcef60f2
AJ
1732 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1733 return fs_info->quota_root ? fs_info->quota_root :
1734 ERR_PTR(-ENOENT);
f7a81ea4
SB
1735 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1736 return fs_info->uuid_root ? fs_info->uuid_root :
1737 ERR_PTR(-ENOENT);
70f6d82e
OS
1738 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1739 return fs_info->free_space_root ? fs_info->free_space_root :
1740 ERR_PTR(-ENOENT);
4df27c4d 1741again:
cb517eab 1742 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1743 if (root) {
c00869f1 1744 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1745 return ERR_PTR(-ENOENT);
5eda7b5e 1746 return root;
48475471 1747 }
5eda7b5e 1748
cb517eab 1749 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1750 if (IS_ERR(root))
1751 return root;
3394e160 1752
c00869f1 1753 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1754 ret = -ENOENT;
581bb050 1755 goto fail;
35a30d7c 1756 }
581bb050 1757
cb517eab 1758 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1759 if (ret)
1760 goto fail;
3394e160 1761
381cf658
DS
1762 path = btrfs_alloc_path();
1763 if (!path) {
1764 ret = -ENOMEM;
1765 goto fail;
1766 }
1d4c08e0
DS
1767 key.objectid = BTRFS_ORPHAN_OBJECTID;
1768 key.type = BTRFS_ORPHAN_ITEM_KEY;
1769 key.offset = location->objectid;
1770
1771 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1772 btrfs_free_path(path);
d68fc57b
YZ
1773 if (ret < 0)
1774 goto fail;
1775 if (ret == 0)
27cdeb70 1776 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1777
cb517eab 1778 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1779 if (ret) {
4df27c4d
YZ
1780 if (ret == -EEXIST) {
1781 free_fs_root(root);
1782 goto again;
1783 }
1784 goto fail;
0f7d52f4 1785 }
edbd8d4e 1786 return root;
4df27c4d
YZ
1787fail:
1788 free_fs_root(root);
1789 return ERR_PTR(ret);
edbd8d4e
CM
1790}
1791
04160088
CM
1792static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1793{
1794 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1795 int ret = 0;
04160088
CM
1796 struct btrfs_device *device;
1797 struct backing_dev_info *bdi;
b7967db7 1798
1f78160c
XG
1799 rcu_read_lock();
1800 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1801 if (!device->bdev)
1802 continue;
efa7c9f9 1803 bdi = device->bdev->bd_bdi;
ff9ea323 1804 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1805 ret = 1;
1806 break;
1807 }
1808 }
1f78160c 1809 rcu_read_unlock();
04160088
CM
1810 return ret;
1811}
1812
04160088
CM
1813static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1814{
ad081f14
JA
1815 int err;
1816
b4caecd4 1817 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1818 if (err)
1819 return err;
1820
09cbfeaf 1821 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
04160088
CM
1822 bdi->congested_fn = btrfs_congested_fn;
1823 bdi->congested_data = info;
da2f0f74 1824 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
04160088
CM
1825 return 0;
1826}
1827
8b712842
CM
1828/*
1829 * called by the kthread helper functions to finally call the bio end_io
1830 * functions. This is where read checksum verification actually happens
1831 */
1832static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1833{
ce9adaa5 1834 struct bio *bio;
97eb6b69 1835 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1836
97eb6b69 1837 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1838 bio = end_io_wq->bio;
ce9adaa5 1839
4246a0b6 1840 bio->bi_error = end_io_wq->error;
8b712842
CM
1841 bio->bi_private = end_io_wq->private;
1842 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1843 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1844 bio_endio(bio);
44b8bd7e
CM
1845}
1846
a74a4b97
CM
1847static int cleaner_kthread(void *arg)
1848{
1849 struct btrfs_root *root = arg;
0b246afa 1850 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1851 int again;
da288d28 1852 struct btrfs_trans_handle *trans;
a74a4b97
CM
1853
1854 do {
d0278245 1855 again = 0;
a74a4b97 1856
d0278245 1857 /* Make the cleaner go to sleep early. */
2ff7e61e 1858 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1859 goto sleep;
1860
90c711ab
ZB
1861 /*
1862 * Do not do anything if we might cause open_ctree() to block
1863 * before we have finished mounting the filesystem.
1864 */
0b246afa 1865 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1866 goto sleep;
1867
0b246afa 1868 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1869 goto sleep;
1870
dc7f370c
MX
1871 /*
1872 * Avoid the problem that we change the status of the fs
1873 * during the above check and trylock.
1874 */
2ff7e61e 1875 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1876 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1877 goto sleep;
76dda93c 1878 }
a74a4b97 1879
0b246afa 1880 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
2ff7e61e 1881 btrfs_run_delayed_iputs(fs_info);
0b246afa 1882 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1883
d0278245 1884 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1885 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1886
1887 /*
05323cd1
MX
1888 * The defragger has dealt with the R/O remount and umount,
1889 * needn't do anything special here.
d0278245 1890 */
0b246afa 1891 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1892
1893 /*
1894 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1895 * with relocation (btrfs_relocate_chunk) and relocation
1896 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1897 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1898 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1899 * unused block groups.
1900 */
0b246afa 1901 btrfs_delete_unused_bgs(fs_info);
d0278245 1902sleep:
838fe188 1903 if (!again) {
a74a4b97 1904 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1905 if (!kthread_should_stop())
1906 schedule();
a74a4b97
CM
1907 __set_current_state(TASK_RUNNING);
1908 }
1909 } while (!kthread_should_stop());
da288d28
FM
1910
1911 /*
1912 * Transaction kthread is stopped before us and wakes us up.
1913 * However we might have started a new transaction and COWed some
1914 * tree blocks when deleting unused block groups for example. So
1915 * make sure we commit the transaction we started to have a clean
1916 * shutdown when evicting the btree inode - if it has dirty pages
1917 * when we do the final iput() on it, eviction will trigger a
1918 * writeback for it which will fail with null pointer dereferences
1919 * since work queues and other resources were already released and
1920 * destroyed by the time the iput/eviction/writeback is made.
1921 */
1922 trans = btrfs_attach_transaction(root);
1923 if (IS_ERR(trans)) {
1924 if (PTR_ERR(trans) != -ENOENT)
0b246afa 1925 btrfs_err(fs_info,
da288d28
FM
1926 "cleaner transaction attach returned %ld",
1927 PTR_ERR(trans));
1928 } else {
1929 int ret;
1930
3a45bb20 1931 ret = btrfs_commit_transaction(trans);
da288d28 1932 if (ret)
0b246afa 1933 btrfs_err(fs_info,
da288d28
FM
1934 "cleaner open transaction commit returned %d",
1935 ret);
1936 }
1937
a74a4b97
CM
1938 return 0;
1939}
1940
1941static int transaction_kthread(void *arg)
1942{
1943 struct btrfs_root *root = arg;
0b246afa 1944 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1945 struct btrfs_trans_handle *trans;
1946 struct btrfs_transaction *cur;
8929ecfa 1947 u64 transid;
a74a4b97
CM
1948 unsigned long now;
1949 unsigned long delay;
914b2007 1950 bool cannot_commit;
a74a4b97
CM
1951
1952 do {
914b2007 1953 cannot_commit = false;
0b246afa
JM
1954 delay = HZ * fs_info->commit_interval;
1955 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1956
0b246afa
JM
1957 spin_lock(&fs_info->trans_lock);
1958 cur = fs_info->running_transaction;
a74a4b97 1959 if (!cur) {
0b246afa 1960 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1961 goto sleep;
1962 }
31153d81 1963
a74a4b97 1964 now = get_seconds();
4a9d8bde 1965 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17 1966 (now < cur->start_time ||
0b246afa
JM
1967 now - cur->start_time < fs_info->commit_interval)) {
1968 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1969 delay = HZ * 5;
1970 goto sleep;
1971 }
8929ecfa 1972 transid = cur->transid;
0b246afa 1973 spin_unlock(&fs_info->trans_lock);
56bec294 1974
79787eaa 1975 /* If the file system is aborted, this will always fail. */
354aa0fb 1976 trans = btrfs_attach_transaction(root);
914b2007 1977 if (IS_ERR(trans)) {
354aa0fb
MX
1978 if (PTR_ERR(trans) != -ENOENT)
1979 cannot_commit = true;
79787eaa 1980 goto sleep;
914b2007 1981 }
8929ecfa 1982 if (transid == trans->transid) {
3a45bb20 1983 btrfs_commit_transaction(trans);
8929ecfa 1984 } else {
3a45bb20 1985 btrfs_end_transaction(trans);
8929ecfa 1986 }
a74a4b97 1987sleep:
0b246afa
JM
1988 wake_up_process(fs_info->cleaner_kthread);
1989 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1990
4e121c06 1991 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1992 &fs_info->fs_state)))
2ff7e61e 1993 btrfs_cleanup_transaction(fs_info);
ce63f891
JK
1994 set_current_state(TASK_INTERRUPTIBLE);
1995 if (!kthread_should_stop() &&
0b246afa 1996 (!btrfs_transaction_blocked(fs_info) ||
ce63f891
JK
1997 cannot_commit))
1998 schedule_timeout(delay);
1999 __set_current_state(TASK_RUNNING);
a74a4b97
CM
2000 } while (!kthread_should_stop());
2001 return 0;
2002}
2003
af31f5e5
CM
2004/*
2005 * this will find the highest generation in the array of
2006 * root backups. The index of the highest array is returned,
2007 * or -1 if we can't find anything.
2008 *
2009 * We check to make sure the array is valid by comparing the
2010 * generation of the latest root in the array with the generation
2011 * in the super block. If they don't match we pitch it.
2012 */
2013static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2014{
2015 u64 cur;
2016 int newest_index = -1;
2017 struct btrfs_root_backup *root_backup;
2018 int i;
2019
2020 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2021 root_backup = info->super_copy->super_roots + i;
2022 cur = btrfs_backup_tree_root_gen(root_backup);
2023 if (cur == newest_gen)
2024 newest_index = i;
2025 }
2026
2027 /* check to see if we actually wrapped around */
2028 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2029 root_backup = info->super_copy->super_roots;
2030 cur = btrfs_backup_tree_root_gen(root_backup);
2031 if (cur == newest_gen)
2032 newest_index = 0;
2033 }
2034 return newest_index;
2035}
2036
2037
2038/*
2039 * find the oldest backup so we know where to store new entries
2040 * in the backup array. This will set the backup_root_index
2041 * field in the fs_info struct
2042 */
2043static void find_oldest_super_backup(struct btrfs_fs_info *info,
2044 u64 newest_gen)
2045{
2046 int newest_index = -1;
2047
2048 newest_index = find_newest_super_backup(info, newest_gen);
2049 /* if there was garbage in there, just move along */
2050 if (newest_index == -1) {
2051 info->backup_root_index = 0;
2052 } else {
2053 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2054 }
2055}
2056
2057/*
2058 * copy all the root pointers into the super backup array.
2059 * this will bump the backup pointer by one when it is
2060 * done
2061 */
2062static void backup_super_roots(struct btrfs_fs_info *info)
2063{
2064 int next_backup;
2065 struct btrfs_root_backup *root_backup;
2066 int last_backup;
2067
2068 next_backup = info->backup_root_index;
2069 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2070 BTRFS_NUM_BACKUP_ROOTS;
2071
2072 /*
2073 * just overwrite the last backup if we're at the same generation
2074 * this happens only at umount
2075 */
2076 root_backup = info->super_for_commit->super_roots + last_backup;
2077 if (btrfs_backup_tree_root_gen(root_backup) ==
2078 btrfs_header_generation(info->tree_root->node))
2079 next_backup = last_backup;
2080
2081 root_backup = info->super_for_commit->super_roots + next_backup;
2082
2083 /*
2084 * make sure all of our padding and empty slots get zero filled
2085 * regardless of which ones we use today
2086 */
2087 memset(root_backup, 0, sizeof(*root_backup));
2088
2089 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2090
2091 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2092 btrfs_set_backup_tree_root_gen(root_backup,
2093 btrfs_header_generation(info->tree_root->node));
2094
2095 btrfs_set_backup_tree_root_level(root_backup,
2096 btrfs_header_level(info->tree_root->node));
2097
2098 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2099 btrfs_set_backup_chunk_root_gen(root_backup,
2100 btrfs_header_generation(info->chunk_root->node));
2101 btrfs_set_backup_chunk_root_level(root_backup,
2102 btrfs_header_level(info->chunk_root->node));
2103
2104 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2105 btrfs_set_backup_extent_root_gen(root_backup,
2106 btrfs_header_generation(info->extent_root->node));
2107 btrfs_set_backup_extent_root_level(root_backup,
2108 btrfs_header_level(info->extent_root->node));
2109
7c7e82a7
CM
2110 /*
2111 * we might commit during log recovery, which happens before we set
2112 * the fs_root. Make sure it is valid before we fill it in.
2113 */
2114 if (info->fs_root && info->fs_root->node) {
2115 btrfs_set_backup_fs_root(root_backup,
2116 info->fs_root->node->start);
2117 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2118 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2119 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2120 btrfs_header_level(info->fs_root->node));
7c7e82a7 2121 }
af31f5e5
CM
2122
2123 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2124 btrfs_set_backup_dev_root_gen(root_backup,
2125 btrfs_header_generation(info->dev_root->node));
2126 btrfs_set_backup_dev_root_level(root_backup,
2127 btrfs_header_level(info->dev_root->node));
2128
2129 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2130 btrfs_set_backup_csum_root_gen(root_backup,
2131 btrfs_header_generation(info->csum_root->node));
2132 btrfs_set_backup_csum_root_level(root_backup,
2133 btrfs_header_level(info->csum_root->node));
2134
2135 btrfs_set_backup_total_bytes(root_backup,
2136 btrfs_super_total_bytes(info->super_copy));
2137 btrfs_set_backup_bytes_used(root_backup,
2138 btrfs_super_bytes_used(info->super_copy));
2139 btrfs_set_backup_num_devices(root_backup,
2140 btrfs_super_num_devices(info->super_copy));
2141
2142 /*
2143 * if we don't copy this out to the super_copy, it won't get remembered
2144 * for the next commit
2145 */
2146 memcpy(&info->super_copy->super_roots,
2147 &info->super_for_commit->super_roots,
2148 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2149}
2150
2151/*
2152 * this copies info out of the root backup array and back into
2153 * the in-memory super block. It is meant to help iterate through
2154 * the array, so you send it the number of backups you've already
2155 * tried and the last backup index you used.
2156 *
2157 * this returns -1 when it has tried all the backups
2158 */
2159static noinline int next_root_backup(struct btrfs_fs_info *info,
2160 struct btrfs_super_block *super,
2161 int *num_backups_tried, int *backup_index)
2162{
2163 struct btrfs_root_backup *root_backup;
2164 int newest = *backup_index;
2165
2166 if (*num_backups_tried == 0) {
2167 u64 gen = btrfs_super_generation(super);
2168
2169 newest = find_newest_super_backup(info, gen);
2170 if (newest == -1)
2171 return -1;
2172
2173 *backup_index = newest;
2174 *num_backups_tried = 1;
2175 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2176 /* we've tried all the backups, all done */
2177 return -1;
2178 } else {
2179 /* jump to the next oldest backup */
2180 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2181 BTRFS_NUM_BACKUP_ROOTS;
2182 *backup_index = newest;
2183 *num_backups_tried += 1;
2184 }
2185 root_backup = super->super_roots + newest;
2186
2187 btrfs_set_super_generation(super,
2188 btrfs_backup_tree_root_gen(root_backup));
2189 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2190 btrfs_set_super_root_level(super,
2191 btrfs_backup_tree_root_level(root_backup));
2192 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2193
2194 /*
2195 * fixme: the total bytes and num_devices need to match or we should
2196 * need a fsck
2197 */
2198 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2199 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2200 return 0;
2201}
2202
7abadb64
LB
2203/* helper to cleanup workers */
2204static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2205{
dc6e3209 2206 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2207 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2208 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2209 btrfs_destroy_workqueue(fs_info->endio_workers);
2210 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2211 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2212 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2213 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2214 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2215 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2216 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2217 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2218 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2219 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2220 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2221 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2222 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2223 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2224}
2225
2e9f5954
R
2226static void free_root_extent_buffers(struct btrfs_root *root)
2227{
2228 if (root) {
2229 free_extent_buffer(root->node);
2230 free_extent_buffer(root->commit_root);
2231 root->node = NULL;
2232 root->commit_root = NULL;
2233 }
2234}
2235
af31f5e5
CM
2236/* helper to cleanup tree roots */
2237static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2238{
2e9f5954 2239 free_root_extent_buffers(info->tree_root);
655b09fe 2240
2e9f5954
R
2241 free_root_extent_buffers(info->dev_root);
2242 free_root_extent_buffers(info->extent_root);
2243 free_root_extent_buffers(info->csum_root);
2244 free_root_extent_buffers(info->quota_root);
2245 free_root_extent_buffers(info->uuid_root);
2246 if (chunk_root)
2247 free_root_extent_buffers(info->chunk_root);
70f6d82e 2248 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2249}
2250
faa2dbf0 2251void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2252{
2253 int ret;
2254 struct btrfs_root *gang[8];
2255 int i;
2256
2257 while (!list_empty(&fs_info->dead_roots)) {
2258 gang[0] = list_entry(fs_info->dead_roots.next,
2259 struct btrfs_root, root_list);
2260 list_del(&gang[0]->root_list);
2261
27cdeb70 2262 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2263 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2264 } else {
2265 free_extent_buffer(gang[0]->node);
2266 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2267 btrfs_put_fs_root(gang[0]);
171f6537
JB
2268 }
2269 }
2270
2271 while (1) {
2272 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2273 (void **)gang, 0,
2274 ARRAY_SIZE(gang));
2275 if (!ret)
2276 break;
2277 for (i = 0; i < ret; i++)
cb517eab 2278 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2279 }
1a4319cc
LB
2280
2281 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2282 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2283 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2284 }
171f6537 2285}
af31f5e5 2286
638aa7ed
ES
2287static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2288{
2289 mutex_init(&fs_info->scrub_lock);
2290 atomic_set(&fs_info->scrubs_running, 0);
2291 atomic_set(&fs_info->scrub_pause_req, 0);
2292 atomic_set(&fs_info->scrubs_paused, 0);
2293 atomic_set(&fs_info->scrub_cancel_req, 0);
2294 init_waitqueue_head(&fs_info->scrub_pause_wait);
2295 fs_info->scrub_workers_refcnt = 0;
2296}
2297
779a65a4
ES
2298static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2299{
2300 spin_lock_init(&fs_info->balance_lock);
2301 mutex_init(&fs_info->balance_mutex);
2302 atomic_set(&fs_info->balance_running, 0);
2303 atomic_set(&fs_info->balance_pause_req, 0);
2304 atomic_set(&fs_info->balance_cancel_req, 0);
2305 fs_info->balance_ctl = NULL;
2306 init_waitqueue_head(&fs_info->balance_wait_q);
2307}
2308
6bccf3ab 2309static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2310{
2ff7e61e
JM
2311 struct inode *inode = fs_info->btree_inode;
2312
2313 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2314 set_nlink(inode, 1);
f37938e0
ES
2315 /*
2316 * we set the i_size on the btree inode to the max possible int.
2317 * the real end of the address space is determined by all of
2318 * the devices in the system
2319 */
2ff7e61e
JM
2320 inode->i_size = OFFSET_MAX;
2321 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2322
2ff7e61e
JM
2323 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2324 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
2325 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2326 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2327
2ff7e61e 2328 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2329
2ff7e61e
JM
2330 BTRFS_I(inode)->root = fs_info->tree_root;
2331 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2332 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2333 btrfs_insert_inode_hash(inode);
f37938e0
ES
2334}
2335
ad618368
ES
2336static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2337{
2338 fs_info->dev_replace.lock_owner = 0;
2339 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2340 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2341 rwlock_init(&fs_info->dev_replace.lock);
2342 atomic_set(&fs_info->dev_replace.read_locks, 0);
2343 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2344 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2345 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2346}
2347
f9e92e40
ES
2348static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2349{
2350 spin_lock_init(&fs_info->qgroup_lock);
2351 mutex_init(&fs_info->qgroup_ioctl_lock);
2352 fs_info->qgroup_tree = RB_ROOT;
2353 fs_info->qgroup_op_tree = RB_ROOT;
2354 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2355 fs_info->qgroup_seq = 1;
f9e92e40 2356 fs_info->qgroup_ulist = NULL;
d2c609b8 2357 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2358 mutex_init(&fs_info->qgroup_rescan_lock);
2359}
2360
2a458198
ES
2361static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2362 struct btrfs_fs_devices *fs_devices)
2363{
2364 int max_active = fs_info->thread_pool_size;
6f011058 2365 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2366
2367 fs_info->workers =
cb001095
JM
2368 btrfs_alloc_workqueue(fs_info, "worker",
2369 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2370
2371 fs_info->delalloc_workers =
cb001095
JM
2372 btrfs_alloc_workqueue(fs_info, "delalloc",
2373 flags, max_active, 2);
2a458198
ES
2374
2375 fs_info->flush_workers =
cb001095
JM
2376 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2377 flags, max_active, 0);
2a458198
ES
2378
2379 fs_info->caching_workers =
cb001095 2380 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2381
2382 /*
2383 * a higher idle thresh on the submit workers makes it much more
2384 * likely that bios will be send down in a sane order to the
2385 * devices
2386 */
2387 fs_info->submit_workers =
cb001095 2388 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2389 min_t(u64, fs_devices->num_devices,
2390 max_active), 64);
2391
2392 fs_info->fixup_workers =
cb001095 2393 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2394
2395 /*
2396 * endios are largely parallel and should have a very
2397 * low idle thresh
2398 */
2399 fs_info->endio_workers =
cb001095 2400 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2401 fs_info->endio_meta_workers =
cb001095
JM
2402 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2403 max_active, 4);
2a458198 2404 fs_info->endio_meta_write_workers =
cb001095
JM
2405 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2406 max_active, 2);
2a458198 2407 fs_info->endio_raid56_workers =
cb001095
JM
2408 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2409 max_active, 4);
2a458198 2410 fs_info->endio_repair_workers =
cb001095 2411 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2412 fs_info->rmw_workers =
cb001095 2413 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2414 fs_info->endio_write_workers =
cb001095
JM
2415 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2416 max_active, 2);
2a458198 2417 fs_info->endio_freespace_worker =
cb001095
JM
2418 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2419 max_active, 0);
2a458198 2420 fs_info->delayed_workers =
cb001095
JM
2421 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2422 max_active, 0);
2a458198 2423 fs_info->readahead_workers =
cb001095
JM
2424 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2425 max_active, 2);
2a458198 2426 fs_info->qgroup_rescan_workers =
cb001095 2427 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2428 fs_info->extent_workers =
cb001095 2429 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2430 min_t(u64, fs_devices->num_devices,
2431 max_active), 8);
2432
2433 if (!(fs_info->workers && fs_info->delalloc_workers &&
2434 fs_info->submit_workers && fs_info->flush_workers &&
2435 fs_info->endio_workers && fs_info->endio_meta_workers &&
2436 fs_info->endio_meta_write_workers &&
2437 fs_info->endio_repair_workers &&
2438 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2439 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2440 fs_info->caching_workers && fs_info->readahead_workers &&
2441 fs_info->fixup_workers && fs_info->delayed_workers &&
2442 fs_info->extent_workers &&
2443 fs_info->qgroup_rescan_workers)) {
2444 return -ENOMEM;
2445 }
2446
2447 return 0;
2448}
2449
63443bf5
ES
2450static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2451 struct btrfs_fs_devices *fs_devices)
2452{
2453 int ret;
63443bf5
ES
2454 struct btrfs_root *log_tree_root;
2455 struct btrfs_super_block *disk_super = fs_info->super_copy;
2456 u64 bytenr = btrfs_super_log_root(disk_super);
2457
2458 if (fs_devices->rw_devices == 0) {
f14d104d 2459 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2460 return -EIO;
2461 }
2462
74e4d827 2463 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2464 if (!log_tree_root)
2465 return -ENOMEM;
2466
da17066c 2467 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2468
2ff7e61e
JM
2469 log_tree_root->node = read_tree_block(fs_info, bytenr,
2470 fs_info->generation + 1);
64c043de 2471 if (IS_ERR(log_tree_root->node)) {
f14d104d 2472 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2473 ret = PTR_ERR(log_tree_root->node);
64c043de 2474 kfree(log_tree_root);
0eeff236 2475 return ret;
64c043de 2476 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2477 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2478 free_extent_buffer(log_tree_root->node);
2479 kfree(log_tree_root);
2480 return -EIO;
2481 }
2482 /* returns with log_tree_root freed on success */
2483 ret = btrfs_recover_log_trees(log_tree_root);
2484 if (ret) {
0b246afa
JM
2485 btrfs_handle_fs_error(fs_info, ret,
2486 "Failed to recover log tree");
63443bf5
ES
2487 free_extent_buffer(log_tree_root->node);
2488 kfree(log_tree_root);
2489 return ret;
2490 }
2491
2492 if (fs_info->sb->s_flags & MS_RDONLY) {
6bccf3ab 2493 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2494 if (ret)
2495 return ret;
2496 }
2497
2498 return 0;
2499}
2500
6bccf3ab 2501static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2502{
6bccf3ab 2503 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2504 struct btrfs_root *root;
4bbcaa64
ES
2505 struct btrfs_key location;
2506 int ret;
2507
6bccf3ab
JM
2508 BUG_ON(!fs_info->tree_root);
2509
4bbcaa64
ES
2510 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2511 location.type = BTRFS_ROOT_ITEM_KEY;
2512 location.offset = 0;
2513
a4f3d2c4
DS
2514 root = btrfs_read_tree_root(tree_root, &location);
2515 if (IS_ERR(root))
2516 return PTR_ERR(root);
2517 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2518 fs_info->extent_root = root;
4bbcaa64
ES
2519
2520 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2521 root = btrfs_read_tree_root(tree_root, &location);
2522 if (IS_ERR(root))
2523 return PTR_ERR(root);
2524 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2525 fs_info->dev_root = root;
4bbcaa64
ES
2526 btrfs_init_devices_late(fs_info);
2527
2528 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2529 root = btrfs_read_tree_root(tree_root, &location);
2530 if (IS_ERR(root))
2531 return PTR_ERR(root);
2532 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2533 fs_info->csum_root = root;
4bbcaa64
ES
2534
2535 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2536 root = btrfs_read_tree_root(tree_root, &location);
2537 if (!IS_ERR(root)) {
2538 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2539 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2540 fs_info->quota_root = root;
4bbcaa64
ES
2541 }
2542
2543 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2544 root = btrfs_read_tree_root(tree_root, &location);
2545 if (IS_ERR(root)) {
2546 ret = PTR_ERR(root);
4bbcaa64
ES
2547 if (ret != -ENOENT)
2548 return ret;
2549 } else {
a4f3d2c4
DS
2550 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2551 fs_info->uuid_root = root;
4bbcaa64
ES
2552 }
2553
70f6d82e
OS
2554 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2555 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2556 root = btrfs_read_tree_root(tree_root, &location);
2557 if (IS_ERR(root))
2558 return PTR_ERR(root);
2559 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2560 fs_info->free_space_root = root;
2561 }
2562
4bbcaa64
ES
2563 return 0;
2564}
2565
ad2b2c80
AV
2566int open_ctree(struct super_block *sb,
2567 struct btrfs_fs_devices *fs_devices,
2568 char *options)
2e635a27 2569{
db94535d
CM
2570 u32 sectorsize;
2571 u32 nodesize;
87ee04eb 2572 u32 stripesize;
84234f3a 2573 u64 generation;
f2b636e8 2574 u64 features;
3de4586c 2575 struct btrfs_key location;
a061fc8d 2576 struct buffer_head *bh;
4d34b278 2577 struct btrfs_super_block *disk_super;
815745cf 2578 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2579 struct btrfs_root *tree_root;
4d34b278 2580 struct btrfs_root *chunk_root;
eb60ceac 2581 int ret;
e58ca020 2582 int err = -EINVAL;
af31f5e5
CM
2583 int num_backups_tried = 0;
2584 int backup_index = 0;
5cdc7ad3 2585 int max_active;
6675df31 2586 int clear_free_space_tree = 0;
4543df7e 2587
74e4d827
DS
2588 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2589 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2590 if (!tree_root || !chunk_root) {
39279cc3
CM
2591 err = -ENOMEM;
2592 goto fail;
2593 }
76dda93c
YZ
2594
2595 ret = init_srcu_struct(&fs_info->subvol_srcu);
2596 if (ret) {
2597 err = ret;
2598 goto fail;
2599 }
2600
2601 ret = setup_bdi(fs_info, &fs_info->bdi);
2602 if (ret) {
2603 err = ret;
2604 goto fail_srcu;
2605 }
2606
908c7f19 2607 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2608 if (ret) {
2609 err = ret;
2610 goto fail_bdi;
2611 }
09cbfeaf 2612 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2613 (1 + ilog2(nr_cpu_ids));
2614
908c7f19 2615 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2616 if (ret) {
2617 err = ret;
2618 goto fail_dirty_metadata_bytes;
2619 }
2620
908c7f19 2621 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2622 if (ret) {
2623 err = ret;
2624 goto fail_delalloc_bytes;
2625 }
2626
76dda93c
YZ
2627 fs_info->btree_inode = new_inode(sb);
2628 if (!fs_info->btree_inode) {
2629 err = -ENOMEM;
c404e0dc 2630 goto fail_bio_counter;
76dda93c
YZ
2631 }
2632
a6591715 2633 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2634
76dda93c 2635 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2636 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2637 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2638 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2639 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2640 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2641 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2642 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2643 spin_lock_init(&fs_info->trans_lock);
76dda93c 2644 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2645 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2646 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2647 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2648 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2649 spin_lock_init(&fs_info->super_lock);
fcebe456 2650 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2651 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2652 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2653 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2654 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2655 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2656 mutex_init(&fs_info->reloc_mutex);
573bfb72 2657 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2658 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2659 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2660
0b86a832 2661 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2662 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2663 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2664 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2665 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2666 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2667 BTRFS_BLOCK_RSV_GLOBAL);
2668 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2669 BTRFS_BLOCK_RSV_DELALLOC);
2670 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2671 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2672 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2673 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2674 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2675 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2676 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2677 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2678 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2679 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2680 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2681 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2682 atomic64_set(&fs_info->tree_mod_seq, 0);
9e7cc91a 2683 fs_info->fs_frozen = 0;
e20d96d6 2684 fs_info->sb = sb;
95ac567a 2685 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2686 fs_info->metadata_ratio = 0;
4cb5300b 2687 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2688 fs_info->free_chunk_space = 0;
f29021b2 2689 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2690 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2691 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2692 /* readahead state */
d0164adc 2693 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2694 spin_lock_init(&fs_info->reada_lock);
c8b97818 2695
b34b086c
CM
2696 fs_info->thread_pool_size = min_t(unsigned long,
2697 num_online_cpus() + 2, 8);
0afbaf8c 2698
199c2a9c
MX
2699 INIT_LIST_HEAD(&fs_info->ordered_roots);
2700 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7 2701 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2702 GFP_KERNEL);
16cdcec7
MX
2703 if (!fs_info->delayed_root) {
2704 err = -ENOMEM;
2705 goto fail_iput;
2706 }
2707 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2708
638aa7ed 2709 btrfs_init_scrub(fs_info);
21adbd5c
SB
2710#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2711 fs_info->check_integrity_print_mask = 0;
2712#endif
779a65a4 2713 btrfs_init_balance(fs_info);
21c7e756 2714 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2715
a061fc8d
CM
2716 sb->s_blocksize = 4096;
2717 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2718 sb->s_bdi = &fs_info->bdi;
a061fc8d 2719
6bccf3ab 2720 btrfs_init_btree_inode(fs_info);
76dda93c 2721
0f9dd46c 2722 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2723 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2724 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2725
11833d66 2726 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2727 fs_info->btree_inode->i_mapping);
11833d66 2728 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2729 fs_info->btree_inode->i_mapping);
11833d66 2730 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2731 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2732
5a3f23d5 2733 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2734 mutex_init(&fs_info->tree_log_mutex);
925baedd 2735 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2736 mutex_init(&fs_info->transaction_kthread_mutex);
2737 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2738 mutex_init(&fs_info->volume_mutex);
1bbc621e 2739 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2740 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2741 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2742 init_rwsem(&fs_info->subvol_sem);
803b2f54 2743 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2744
ad618368 2745 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2746 btrfs_init_qgroup(fs_info);
416ac51d 2747
fa9c0d79
CM
2748 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2749 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2750
e6dcd2dc 2751 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2752 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2753 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2754 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2755
04216820
FM
2756 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2757
da17066c
JM
2758 /* Usable values until the real ones are cached from the superblock */
2759 fs_info->nodesize = 4096;
2760 fs_info->sectorsize = 4096;
2761 fs_info->stripesize = 4096;
2762
53b381b3
DW
2763 ret = btrfs_alloc_stripe_hash_table(fs_info);
2764 if (ret) {
83c8266a 2765 err = ret;
53b381b3
DW
2766 goto fail_alloc;
2767 }
2768
da17066c 2769 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2770
3c4bb26b 2771 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2772
2773 /*
2774 * Read super block and check the signature bytes only
2775 */
a512bbf8 2776 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2777 if (IS_ERR(bh)) {
2778 err = PTR_ERR(bh);
16cdcec7 2779 goto fail_alloc;
20b45077 2780 }
39279cc3 2781
1104a885
DS
2782 /*
2783 * We want to check superblock checksum, the type is stored inside.
2784 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2785 */
ab8d0fc4 2786 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2787 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2788 err = -EINVAL;
b2acdddf 2789 brelse(bh);
1104a885
DS
2790 goto fail_alloc;
2791 }
2792
2793 /*
2794 * super_copy is zeroed at allocation time and we never touch the
2795 * following bytes up to INFO_SIZE, the checksum is calculated from
2796 * the whole block of INFO_SIZE
2797 */
6c41761f
DS
2798 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2799 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2800 sizeof(*fs_info->super_for_commit));
a061fc8d 2801 brelse(bh);
5f39d397 2802
6c41761f 2803 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2804
1104a885
DS
2805 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2806 if (ret) {
05135f59 2807 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2808 err = -EINVAL;
2809 goto fail_alloc;
2810 }
2811
6c41761f 2812 disk_super = fs_info->super_copy;
0f7d52f4 2813 if (!btrfs_super_root(disk_super))
16cdcec7 2814 goto fail_alloc;
0f7d52f4 2815
acce952b 2816 /* check FS state, whether FS is broken. */
87533c47
MX
2817 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2818 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2819
af31f5e5
CM
2820 /*
2821 * run through our array of backup supers and setup
2822 * our ring pointer to the oldest one
2823 */
2824 generation = btrfs_super_generation(disk_super);
2825 find_oldest_super_backup(fs_info, generation);
2826
75e7cb7f
LB
2827 /*
2828 * In the long term, we'll store the compression type in the super
2829 * block, and it'll be used for per file compression control.
2830 */
2831 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2832
2ff7e61e 2833 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2834 if (ret) {
2835 err = ret;
16cdcec7 2836 goto fail_alloc;
2b82032c 2837 }
dfe25020 2838
f2b636e8
JB
2839 features = btrfs_super_incompat_flags(disk_super) &
2840 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2841 if (features) {
05135f59
DS
2842 btrfs_err(fs_info,
2843 "cannot mount because of unsupported optional features (%llx)",
2844 features);
f2b636e8 2845 err = -EINVAL;
16cdcec7 2846 goto fail_alloc;
f2b636e8
JB
2847 }
2848
5d4f98a2 2849 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2850 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2851 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2852 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2853
3173a18f 2854 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2855 btrfs_info(fs_info, "has skinny extents");
3173a18f 2856
727011e0
CM
2857 /*
2858 * flag our filesystem as having big metadata blocks if
2859 * they are bigger than the page size
2860 */
09cbfeaf 2861 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2862 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2863 btrfs_info(fs_info,
2864 "flagging fs with big metadata feature");
727011e0
CM
2865 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2866 }
2867
bc3f116f 2868 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2869 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2870 stripesize = sectorsize;
707e8a07 2871 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2872 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2873
da17066c
JM
2874 /* Cache block sizes */
2875 fs_info->nodesize = nodesize;
2876 fs_info->sectorsize = sectorsize;
2877 fs_info->stripesize = stripesize;
2878
bc3f116f
CM
2879 /*
2880 * mixed block groups end up with duplicate but slightly offset
2881 * extent buffers for the same range. It leads to corruptions
2882 */
2883 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2884 (sectorsize != nodesize)) {
05135f59
DS
2885 btrfs_err(fs_info,
2886"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2887 nodesize, sectorsize);
bc3f116f
CM
2888 goto fail_alloc;
2889 }
2890
ceda0864
MX
2891 /*
2892 * Needn't use the lock because there is no other task which will
2893 * update the flag.
2894 */
a6fa6fae 2895 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2896
f2b636e8
JB
2897 features = btrfs_super_compat_ro_flags(disk_super) &
2898 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2899 if (!(sb->s_flags & MS_RDONLY) && features) {
05135f59
DS
2900 btrfs_err(fs_info,
2901 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2902 features);
f2b636e8 2903 err = -EINVAL;
16cdcec7 2904 goto fail_alloc;
f2b636e8 2905 }
61d92c32 2906
5cdc7ad3 2907 max_active = fs_info->thread_pool_size;
61d92c32 2908
2a458198
ES
2909 ret = btrfs_init_workqueues(fs_info, fs_devices);
2910 if (ret) {
2911 err = ret;
0dc3b84a
JB
2912 goto fail_sb_buffer;
2913 }
4543df7e 2914
4575c9cc 2915 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818 2916 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
09cbfeaf 2917 SZ_4M / PAGE_SIZE);
4575c9cc 2918
a061fc8d
CM
2919 sb->s_blocksize = sectorsize;
2920 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2921
925baedd 2922 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2923 ret = btrfs_read_sys_array(fs_info);
925baedd 2924 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2925 if (ret) {
05135f59 2926 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2927 goto fail_sb_buffer;
84eed90f 2928 }
0b86a832 2929
84234f3a 2930 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2931
da17066c 2932 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2933
2ff7e61e 2934 chunk_root->node = read_tree_block(fs_info,
0b86a832 2935 btrfs_super_chunk_root(disk_super),
ce86cd59 2936 generation);
64c043de
LB
2937 if (IS_ERR(chunk_root->node) ||
2938 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2939 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2940 if (!IS_ERR(chunk_root->node))
2941 free_extent_buffer(chunk_root->node);
95ab1f64 2942 chunk_root->node = NULL;
af31f5e5 2943 goto fail_tree_roots;
83121942 2944 }
5d4f98a2
YZ
2945 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2946 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2947
e17cade2 2948 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2949 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2950
5b4aacef 2951 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2952 if (ret) {
05135f59 2953 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2954 goto fail_tree_roots;
2b82032c 2955 }
0b86a832 2956
8dabb742
SB
2957 /*
2958 * keep the device that is marked to be the target device for the
2959 * dev_replace procedure
2960 */
9eaed21e 2961 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2962
a6b0d5c8 2963 if (!fs_devices->latest_bdev) {
05135f59 2964 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2965 goto fail_tree_roots;
2966 }
2967
af31f5e5 2968retry_root_backup:
84234f3a 2969 generation = btrfs_super_generation(disk_super);
0b86a832 2970
2ff7e61e 2971 tree_root->node = read_tree_block(fs_info,
db94535d 2972 btrfs_super_root(disk_super),
ce86cd59 2973 generation);
64c043de
LB
2974 if (IS_ERR(tree_root->node) ||
2975 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2976 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2977 if (!IS_ERR(tree_root->node))
2978 free_extent_buffer(tree_root->node);
95ab1f64 2979 tree_root->node = NULL;
af31f5e5 2980 goto recovery_tree_root;
83121942 2981 }
af31f5e5 2982
5d4f98a2
YZ
2983 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2984 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2985 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2986
f32e48e9
CR
2987 mutex_lock(&tree_root->objectid_mutex);
2988 ret = btrfs_find_highest_objectid(tree_root,
2989 &tree_root->highest_objectid);
2990 if (ret) {
2991 mutex_unlock(&tree_root->objectid_mutex);
2992 goto recovery_tree_root;
2993 }
2994
2995 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2996
2997 mutex_unlock(&tree_root->objectid_mutex);
2998
6bccf3ab 2999 ret = btrfs_read_roots(fs_info);
4bbcaa64 3000 if (ret)
af31f5e5 3001 goto recovery_tree_root;
f7a81ea4 3002
8929ecfa
YZ
3003 fs_info->generation = generation;
3004 fs_info->last_trans_committed = generation;
8929ecfa 3005
68310a5e
ID
3006 ret = btrfs_recover_balance(fs_info);
3007 if (ret) {
05135f59 3008 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3009 goto fail_block_groups;
3010 }
3011
733f4fbb
SB
3012 ret = btrfs_init_dev_stats(fs_info);
3013 if (ret) {
05135f59 3014 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3015 goto fail_block_groups;
3016 }
3017
8dabb742
SB
3018 ret = btrfs_init_dev_replace(fs_info);
3019 if (ret) {
05135f59 3020 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3021 goto fail_block_groups;
3022 }
3023
9eaed21e 3024 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 3025
b7c35e81
AJ
3026 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3027 if (ret) {
05135f59
DS
3028 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3029 ret);
b7c35e81
AJ
3030 goto fail_block_groups;
3031 }
3032
3033 ret = btrfs_sysfs_add_device(fs_devices);
3034 if (ret) {
05135f59
DS
3035 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3036 ret);
b7c35e81
AJ
3037 goto fail_fsdev_sysfs;
3038 }
3039
96f3136e 3040 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3041 if (ret) {
05135f59 3042 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3043 goto fail_fsdev_sysfs;
c59021f8 3044 }
3045
c59021f8 3046 ret = btrfs_init_space_info(fs_info);
3047 if (ret) {
05135f59 3048 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3049 goto fail_sysfs;
c59021f8 3050 }
3051
5b4aacef 3052 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3053 if (ret) {
05135f59 3054 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3055 goto fail_sysfs;
1b1d1f66 3056 }
5af3e8cc
SB
3057 fs_info->num_tolerated_disk_barrier_failures =
3058 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
3059 if (fs_info->fs_devices->missing_devices >
3060 fs_info->num_tolerated_disk_barrier_failures &&
3061 !(sb->s_flags & MS_RDONLY)) {
05135f59
DS
3062 btrfs_warn(fs_info,
3063"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
78fa1770
ZL
3064 fs_info->fs_devices->missing_devices,
3065 fs_info->num_tolerated_disk_barrier_failures);
2365dd3c 3066 goto fail_sysfs;
292fd7fc 3067 }
9078a3e1 3068
a74a4b97
CM
3069 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3070 "btrfs-cleaner");
57506d50 3071 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3072 goto fail_sysfs;
a74a4b97
CM
3073
3074 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3075 tree_root,
3076 "btrfs-transaction");
57506d50 3077 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3078 goto fail_cleaner;
a74a4b97 3079
0b246afa
JM
3080 if (!btrfs_test_opt(fs_info, SSD) &&
3081 !btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3082 !fs_info->fs_devices->rotating) {
05135f59 3083 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
c289811c
CM
3084 btrfs_set_opt(fs_info->mount_opt, SSD);
3085 }
3086
572d9ab7 3087 /*
01327610 3088 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3089 * not have to wait for transaction commit
3090 */
3091 btrfs_apply_pending_changes(fs_info);
3818aea2 3092
21adbd5c 3093#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3094 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3095 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3096 btrfs_test_opt(fs_info,
21adbd5c
SB
3097 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3098 1 : 0,
3099 fs_info->check_integrity_print_mask);
3100 if (ret)
05135f59
DS
3101 btrfs_warn(fs_info,
3102 "failed to initialize integrity check module: %d",
3103 ret);
21adbd5c
SB
3104 }
3105#endif
bcef60f2
AJ
3106 ret = btrfs_read_qgroup_config(fs_info);
3107 if (ret)
3108 goto fail_trans_kthread;
21adbd5c 3109
96da0919
QW
3110 /* do not make disk changes in broken FS or nologreplay is given */
3111 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3112 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3113 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3114 if (ret) {
63443bf5 3115 err = ret;
28c16cbb 3116 goto fail_qgroup;
79787eaa 3117 }
e02119d5 3118 }
1a40e23b 3119
6bccf3ab 3120 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3121 if (ret)
28c16cbb 3122 goto fail_qgroup;
76dda93c 3123
7c2ca468 3124 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3125 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3126 if (ret)
28c16cbb 3127 goto fail_qgroup;
90c711ab
ZB
3128
3129 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3130 ret = btrfs_recover_relocation(tree_root);
90c711ab 3131 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3132 if (ret < 0) {
05135f59
DS
3133 btrfs_warn(fs_info, "failed to recover relocation: %d",
3134 ret);
d7ce5843 3135 err = -EINVAL;
bcef60f2 3136 goto fail_qgroup;
d7ce5843 3137 }
7c2ca468 3138 }
1a40e23b 3139
3de4586c
CM
3140 location.objectid = BTRFS_FS_TREE_OBJECTID;
3141 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3142 location.offset = 0;
3de4586c 3143
3de4586c 3144 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3145 if (IS_ERR(fs_info->fs_root)) {
3146 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3147 goto fail_qgroup;
3140c9a3 3148 }
c289811c 3149
2b6ba629
ID
3150 if (sb->s_flags & MS_RDONLY)
3151 return 0;
59641015 3152
f8d468a1
OS
3153 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3154 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3155 clear_free_space_tree = 1;
3156 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3157 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3158 btrfs_warn(fs_info, "free space tree is invalid");
3159 clear_free_space_tree = 1;
3160 }
3161
3162 if (clear_free_space_tree) {
f8d468a1
OS
3163 btrfs_info(fs_info, "clearing free space tree");
3164 ret = btrfs_clear_free_space_tree(fs_info);
3165 if (ret) {
3166 btrfs_warn(fs_info,
3167 "failed to clear free space tree: %d", ret);
6bccf3ab 3168 close_ctree(fs_info);
f8d468a1
OS
3169 return ret;
3170 }
3171 }
3172
0b246afa 3173 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3174 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3175 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3176 ret = btrfs_create_free_space_tree(fs_info);
3177 if (ret) {
05135f59
DS
3178 btrfs_warn(fs_info,
3179 "failed to create free space tree: %d", ret);
6bccf3ab 3180 close_ctree(fs_info);
511711af
CM
3181 return ret;
3182 }
3183 }
3184
2b6ba629
ID
3185 down_read(&fs_info->cleanup_work_sem);
3186 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3187 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3188 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3189 close_ctree(fs_info);
2b6ba629
ID
3190 return ret;
3191 }
3192 up_read(&fs_info->cleanup_work_sem);
59641015 3193
2b6ba629
ID
3194 ret = btrfs_resume_balance_async(fs_info);
3195 if (ret) {
05135f59 3196 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3197 close_ctree(fs_info);
2b6ba629 3198 return ret;
e3acc2a6
JB
3199 }
3200
8dabb742
SB
3201 ret = btrfs_resume_dev_replace_async(fs_info);
3202 if (ret) {
05135f59 3203 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3204 close_ctree(fs_info);
8dabb742
SB
3205 return ret;
3206 }
3207
b382a324
JS
3208 btrfs_qgroup_rescan_resume(fs_info);
3209
4bbcaa64 3210 if (!fs_info->uuid_root) {
05135f59 3211 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3212 ret = btrfs_create_uuid_tree(fs_info);
3213 if (ret) {
05135f59
DS
3214 btrfs_warn(fs_info,
3215 "failed to create the UUID tree: %d", ret);
6bccf3ab 3216 close_ctree(fs_info);
f7a81ea4
SB
3217 return ret;
3218 }
0b246afa 3219 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3220 fs_info->generation !=
3221 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3222 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3223 ret = btrfs_check_uuid_tree(fs_info);
3224 if (ret) {
05135f59
DS
3225 btrfs_warn(fs_info,
3226 "failed to check the UUID tree: %d", ret);
6bccf3ab 3227 close_ctree(fs_info);
70f80175
SB
3228 return ret;
3229 }
3230 } else {
afcdd129 3231 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3232 }
afcdd129 3233 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3234
8dcddfa0
QW
3235 /*
3236 * backuproot only affect mount behavior, and if open_ctree succeeded,
3237 * no need to keep the flag
3238 */
3239 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3240
ad2b2c80 3241 return 0;
39279cc3 3242
bcef60f2
AJ
3243fail_qgroup:
3244 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3245fail_trans_kthread:
3246 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3247 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3248 btrfs_free_fs_roots(fs_info);
3f157a2f 3249fail_cleaner:
a74a4b97 3250 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3251
3252 /*
3253 * make sure we're done with the btree inode before we stop our
3254 * kthreads
3255 */
3256 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3257
2365dd3c 3258fail_sysfs:
6618a59b 3259 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3260
b7c35e81
AJ
3261fail_fsdev_sysfs:
3262 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3263
1b1d1f66 3264fail_block_groups:
54067ae9 3265 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3266 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3267
3268fail_tree_roots:
3269 free_root_pointers(fs_info, 1);
2b8195bb 3270 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3271
39279cc3 3272fail_sb_buffer:
7abadb64 3273 btrfs_stop_all_workers(fs_info);
16cdcec7 3274fail_alloc:
4543df7e 3275fail_iput:
586e46e2
ID
3276 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3277
4543df7e 3278 iput(fs_info->btree_inode);
c404e0dc
MX
3279fail_bio_counter:
3280 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3281fail_delalloc_bytes:
3282 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3283fail_dirty_metadata_bytes:
3284 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3285fail_bdi:
7e662854 3286 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3287fail_srcu:
3288 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3289fail:
53b381b3 3290 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3291 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3292 return err;
af31f5e5
CM
3293
3294recovery_tree_root:
0b246afa 3295 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3296 goto fail_tree_roots;
3297
3298 free_root_pointers(fs_info, 0);
3299
3300 /* don't use the log in recovery mode, it won't be valid */
3301 btrfs_set_super_log_root(disk_super, 0);
3302
3303 /* we can't trust the free space cache either */
3304 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3305
3306 ret = next_root_backup(fs_info, fs_info->super_copy,
3307 &num_backups_tried, &backup_index);
3308 if (ret == -1)
3309 goto fail_block_groups;
3310 goto retry_root_backup;
eb60ceac
CM
3311}
3312
f2984462
CM
3313static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3314{
f2984462
CM
3315 if (uptodate) {
3316 set_buffer_uptodate(bh);
3317 } else {
442a4f63
SB
3318 struct btrfs_device *device = (struct btrfs_device *)
3319 bh->b_private;
3320
fb456252 3321 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3322 "lost page write due to IO error on %s",
606686ee 3323 rcu_str_deref(device->name));
01327610 3324 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3325 * our own ways of dealing with the IO errors
3326 */
f2984462 3327 clear_buffer_uptodate(bh);
442a4f63 3328 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3329 }
3330 unlock_buffer(bh);
3331 put_bh(bh);
3332}
3333
29c36d72
AJ
3334int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3335 struct buffer_head **bh_ret)
3336{
3337 struct buffer_head *bh;
3338 struct btrfs_super_block *super;
3339 u64 bytenr;
3340
3341 bytenr = btrfs_sb_offset(copy_num);
3342 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3343 return -EINVAL;
3344
3345 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3346 /*
3347 * If we fail to read from the underlying devices, as of now
3348 * the best option we have is to mark it EIO.
3349 */
3350 if (!bh)
3351 return -EIO;
3352
3353 super = (struct btrfs_super_block *)bh->b_data;
3354 if (btrfs_super_bytenr(super) != bytenr ||
3355 btrfs_super_magic(super) != BTRFS_MAGIC) {
3356 brelse(bh);
3357 return -EINVAL;
3358 }
3359
3360 *bh_ret = bh;
3361 return 0;
3362}
3363
3364
a512bbf8
YZ
3365struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3366{
3367 struct buffer_head *bh;
3368 struct buffer_head *latest = NULL;
3369 struct btrfs_super_block *super;
3370 int i;
3371 u64 transid = 0;
92fc03fb 3372 int ret = -EINVAL;
a512bbf8
YZ
3373
3374 /* we would like to check all the supers, but that would make
3375 * a btrfs mount succeed after a mkfs from a different FS.
3376 * So, we need to add a special mount option to scan for
3377 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3378 */
3379 for (i = 0; i < 1; i++) {
29c36d72
AJ
3380 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3381 if (ret)
a512bbf8
YZ
3382 continue;
3383
3384 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3385
3386 if (!latest || btrfs_super_generation(super) > transid) {
3387 brelse(latest);
3388 latest = bh;
3389 transid = btrfs_super_generation(super);
3390 } else {
3391 brelse(bh);
3392 }
3393 }
92fc03fb
AJ
3394
3395 if (!latest)
3396 return ERR_PTR(ret);
3397
a512bbf8
YZ
3398 return latest;
3399}
3400
4eedeb75
HH
3401/*
3402 * this should be called twice, once with wait == 0 and
3403 * once with wait == 1. When wait == 0 is done, all the buffer heads
3404 * we write are pinned.
3405 *
3406 * They are released when wait == 1 is done.
3407 * max_mirrors must be the same for both runs, and it indicates how
3408 * many supers on this one device should be written.
3409 *
3410 * max_mirrors == 0 means to write them all.
3411 */
a512bbf8
YZ
3412static int write_dev_supers(struct btrfs_device *device,
3413 struct btrfs_super_block *sb,
3414 int do_barriers, int wait, int max_mirrors)
3415{
3416 struct buffer_head *bh;
3417 int i;
3418 int ret;
3419 int errors = 0;
3420 u32 crc;
3421 u64 bytenr;
a512bbf8
YZ
3422
3423 if (max_mirrors == 0)
3424 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3425
a512bbf8
YZ
3426 for (i = 0; i < max_mirrors; i++) {
3427 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3428 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3429 device->commit_total_bytes)
a512bbf8
YZ
3430 break;
3431
3432 if (wait) {
3433 bh = __find_get_block(device->bdev, bytenr / 4096,
3434 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3435 if (!bh) {
3436 errors++;
3437 continue;
3438 }
a512bbf8 3439 wait_on_buffer(bh);
4eedeb75
HH
3440 if (!buffer_uptodate(bh))
3441 errors++;
3442
3443 /* drop our reference */
3444 brelse(bh);
3445
3446 /* drop the reference from the wait == 0 run */
3447 brelse(bh);
3448 continue;
a512bbf8
YZ
3449 } else {
3450 btrfs_set_super_bytenr(sb, bytenr);
3451
3452 crc = ~(u32)0;
b0496686 3453 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3454 BTRFS_CSUM_SIZE, crc,
3455 BTRFS_SUPER_INFO_SIZE -
3456 BTRFS_CSUM_SIZE);
3457 btrfs_csum_final(crc, sb->csum);
3458
4eedeb75
HH
3459 /*
3460 * one reference for us, and we leave it for the
3461 * caller
3462 */
a512bbf8
YZ
3463 bh = __getblk(device->bdev, bytenr / 4096,
3464 BTRFS_SUPER_INFO_SIZE);
634554dc 3465 if (!bh) {
fb456252 3466 btrfs_err(device->fs_info,
f14d104d
DS
3467 "couldn't get super buffer head for bytenr %llu",
3468 bytenr);
634554dc
JB
3469 errors++;
3470 continue;
3471 }
3472
a512bbf8
YZ
3473 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3474
4eedeb75 3475 /* one reference for submit_bh */
a512bbf8 3476 get_bh(bh);
4eedeb75
HH
3477
3478 set_buffer_uptodate(bh);
a512bbf8
YZ
3479 lock_buffer(bh);
3480 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3481 bh->b_private = device;
a512bbf8
YZ
3482 }
3483
387125fc
CM
3484 /*
3485 * we fua the first super. The others we allow
3486 * to go down lazy.
3487 */
e8117c26 3488 if (i == 0)
70fd7614 3489 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh);
e8117c26 3490 else
70fd7614 3491 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
4eedeb75 3492 if (ret)
a512bbf8 3493 errors++;
a512bbf8
YZ
3494 }
3495 return errors < i ? 0 : -1;
3496}
3497
387125fc
CM
3498/*
3499 * endio for the write_dev_flush, this will wake anyone waiting
3500 * for the barrier when it is done
3501 */
4246a0b6 3502static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3503{
387125fc
CM
3504 if (bio->bi_private)
3505 complete(bio->bi_private);
3506 bio_put(bio);
3507}
3508
3509/*
3510 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3511 * sent down. With wait == 1, it waits for the previous flush.
3512 *
3513 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3514 * capable
3515 */
3516static int write_dev_flush(struct btrfs_device *device, int wait)
3517{
3518 struct bio *bio;
3519 int ret = 0;
3520
3521 if (device->nobarriers)
3522 return 0;
3523
3524 if (wait) {
3525 bio = device->flush_bio;
3526 if (!bio)
3527 return 0;
3528
3529 wait_for_completion(&device->flush_wait);
3530
4246a0b6
CH
3531 if (bio->bi_error) {
3532 ret = bio->bi_error;
5af3e8cc
SB
3533 btrfs_dev_stat_inc_and_print(device,
3534 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3535 }
3536
3537 /* drop the reference from the wait == 0 run */
3538 bio_put(bio);
3539 device->flush_bio = NULL;
3540
3541 return ret;
3542 }
3543
3544 /*
3545 * one reference for us, and we leave it for the
3546 * caller
3547 */
9c017abc 3548 device->flush_bio = NULL;
9be3395b 3549 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3550 if (!bio)
3551 return -ENOMEM;
3552
3553 bio->bi_end_io = btrfs_end_empty_barrier;
3554 bio->bi_bdev = device->bdev;
70fd7614 3555 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
387125fc
CM
3556 init_completion(&device->flush_wait);
3557 bio->bi_private = &device->flush_wait;
3558 device->flush_bio = bio;
3559
3560 bio_get(bio);
4e49ea4a 3561 btrfsic_submit_bio(bio);
387125fc
CM
3562
3563 return 0;
3564}
3565
3566/*
3567 * send an empty flush down to each device in parallel,
3568 * then wait for them
3569 */
3570static int barrier_all_devices(struct btrfs_fs_info *info)
3571{
3572 struct list_head *head;
3573 struct btrfs_device *dev;
5af3e8cc
SB
3574 int errors_send = 0;
3575 int errors_wait = 0;
387125fc
CM
3576 int ret;
3577
3578 /* send down all the barriers */
3579 head = &info->fs_devices->devices;
3580 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3581 if (dev->missing)
3582 continue;
387125fc 3583 if (!dev->bdev) {
5af3e8cc 3584 errors_send++;
387125fc
CM
3585 continue;
3586 }
3587 if (!dev->in_fs_metadata || !dev->writeable)
3588 continue;
3589
3590 ret = write_dev_flush(dev, 0);
3591 if (ret)
5af3e8cc 3592 errors_send++;
387125fc
CM
3593 }
3594
3595 /* wait for all the barriers */
3596 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3597 if (dev->missing)
3598 continue;
387125fc 3599 if (!dev->bdev) {
5af3e8cc 3600 errors_wait++;
387125fc
CM
3601 continue;
3602 }
3603 if (!dev->in_fs_metadata || !dev->writeable)
3604 continue;
3605
3606 ret = write_dev_flush(dev, 1);
3607 if (ret)
5af3e8cc 3608 errors_wait++;
387125fc 3609 }
5af3e8cc
SB
3610 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3611 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3612 return -EIO;
3613 return 0;
3614}
3615
943c6e99
ZL
3616int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3617{
8789f4fe
ZL
3618 int raid_type;
3619 int min_tolerated = INT_MAX;
943c6e99 3620
8789f4fe
ZL
3621 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3622 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3623 min_tolerated = min(min_tolerated,
3624 btrfs_raid_array[BTRFS_RAID_SINGLE].
3625 tolerated_failures);
943c6e99 3626
8789f4fe
ZL
3627 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3628 if (raid_type == BTRFS_RAID_SINGLE)
3629 continue;
3630 if (!(flags & btrfs_raid_group[raid_type]))
3631 continue;
3632 min_tolerated = min(min_tolerated,
3633 btrfs_raid_array[raid_type].
3634 tolerated_failures);
3635 }
943c6e99 3636
8789f4fe 3637 if (min_tolerated == INT_MAX) {
ab8d0fc4 3638 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3639 min_tolerated = 0;
3640 }
3641
3642 return min_tolerated;
943c6e99
ZL
3643}
3644
5af3e8cc
SB
3645int btrfs_calc_num_tolerated_disk_barrier_failures(
3646 struct btrfs_fs_info *fs_info)
3647{
3648 struct btrfs_ioctl_space_info space;
3649 struct btrfs_space_info *sinfo;
3650 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3651 BTRFS_BLOCK_GROUP_SYSTEM,
3652 BTRFS_BLOCK_GROUP_METADATA,
3653 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
5af3e8cc
SB
3654 int i;
3655 int c;
3656 int num_tolerated_disk_barrier_failures =
3657 (int)fs_info->fs_devices->num_devices;
3658
2c458045 3659 for (i = 0; i < ARRAY_SIZE(types); i++) {
5af3e8cc
SB
3660 struct btrfs_space_info *tmp;
3661
3662 sinfo = NULL;
3663 rcu_read_lock();
3664 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3665 if (tmp->flags == types[i]) {
3666 sinfo = tmp;
3667 break;
3668 }
3669 }
3670 rcu_read_unlock();
3671
3672 if (!sinfo)
3673 continue;
3674
3675 down_read(&sinfo->groups_sem);
3676 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2c458045
ZL
3677 u64 flags;
3678
3679 if (list_empty(&sinfo->block_groups[c]))
3680 continue;
3681
3682 btrfs_get_block_group_info(&sinfo->block_groups[c],
3683 &space);
3684 if (space.total_bytes == 0 || space.used_bytes == 0)
3685 continue;
3686 flags = space.flags;
943c6e99
ZL
3687
3688 num_tolerated_disk_barrier_failures = min(
3689 num_tolerated_disk_barrier_failures,
3690 btrfs_get_num_tolerated_disk_barrier_failures(
3691 flags));
5af3e8cc
SB
3692 }
3693 up_read(&sinfo->groups_sem);
3694 }
3695
3696 return num_tolerated_disk_barrier_failures;
3697}
3698
2ff7e61e 3699static int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3700{
e5e9a520 3701 struct list_head *head;
f2984462 3702 struct btrfs_device *dev;
a061fc8d 3703 struct btrfs_super_block *sb;
f2984462 3704 struct btrfs_dev_item *dev_item;
f2984462
CM
3705 int ret;
3706 int do_barriers;
a236aed1
CM
3707 int max_errors;
3708 int total_errors = 0;
a061fc8d 3709 u64 flags;
f2984462 3710
0b246afa
JM
3711 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3712 backup_super_roots(fs_info);
f2984462 3713
0b246afa 3714 sb = fs_info->super_for_commit;
a061fc8d 3715 dev_item = &sb->dev_item;
e5e9a520 3716
0b246afa
JM
3717 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3718 head = &fs_info->fs_devices->devices;
3719 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3720
5af3e8cc 3721 if (do_barriers) {
0b246afa 3722 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3723 if (ret) {
3724 mutex_unlock(
0b246afa
JM
3725 &fs_info->fs_devices->device_list_mutex);
3726 btrfs_handle_fs_error(fs_info, ret,
3727 "errors while submitting device barriers.");
5af3e8cc
SB
3728 return ret;
3729 }
3730 }
387125fc 3731
1f78160c 3732 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3733 if (!dev->bdev) {
3734 total_errors++;
3735 continue;
3736 }
2b82032c 3737 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3738 continue;
3739
2b82032c 3740 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3741 btrfs_set_stack_device_type(dev_item, dev->type);
3742 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3743 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3744 dev->commit_total_bytes);
ce7213c7
MX
3745 btrfs_set_stack_device_bytes_used(dev_item,
3746 dev->commit_bytes_used);
a061fc8d
CM
3747 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3748 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3749 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3750 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3751 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3752
a061fc8d
CM
3753 flags = btrfs_super_flags(sb);
3754 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3755
a512bbf8 3756 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3757 if (ret)
3758 total_errors++;
f2984462 3759 }
a236aed1 3760 if (total_errors > max_errors) {
0b246afa
JM
3761 btrfs_err(fs_info, "%d errors while writing supers",
3762 total_errors);
3763 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3764
9d565ba4 3765 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3766 btrfs_handle_fs_error(fs_info, -EIO,
3767 "%d errors while writing supers",
3768 total_errors);
9d565ba4 3769 return -EIO;
a236aed1 3770 }
f2984462 3771
a512bbf8 3772 total_errors = 0;
1f78160c 3773 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3774 if (!dev->bdev)
3775 continue;
2b82032c 3776 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3777 continue;
3778
a512bbf8
YZ
3779 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3780 if (ret)
3781 total_errors++;
f2984462 3782 }
0b246afa 3783 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3784 if (total_errors > max_errors) {
0b246afa
JM
3785 btrfs_handle_fs_error(fs_info, -EIO,
3786 "%d errors while writing supers",
3787 total_errors);
79787eaa 3788 return -EIO;
a236aed1 3789 }
f2984462
CM
3790 return 0;
3791}
3792
a512bbf8 3793int write_ctree_super(struct btrfs_trans_handle *trans,
2ff7e61e 3794 struct btrfs_fs_info *fs_info, int max_mirrors)
eb60ceac 3795{
2ff7e61e 3796 return write_all_supers(fs_info, max_mirrors);
cfaa7295
CM
3797}
3798
cb517eab
MX
3799/* Drop a fs root from the radix tree and free it. */
3800void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3801 struct btrfs_root *root)
2619ba1f 3802{
4df27c4d 3803 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3804 radix_tree_delete(&fs_info->fs_roots_radix,
3805 (unsigned long)root->root_key.objectid);
4df27c4d 3806 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3807
3808 if (btrfs_root_refs(&root->root_item) == 0)
3809 synchronize_srcu(&fs_info->subvol_srcu);
3810
1c1ea4f7 3811 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3812 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3813 if (root->reloc_root) {
3814 free_extent_buffer(root->reloc_root->node);
3815 free_extent_buffer(root->reloc_root->commit_root);
3816 btrfs_put_fs_root(root->reloc_root);
3817 root->reloc_root = NULL;
3818 }
3819 }
3321719e 3820
faa2dbf0
JB
3821 if (root->free_ino_pinned)
3822 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3823 if (root->free_ino_ctl)
3824 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3825 free_fs_root(root);
4df27c4d
YZ
3826}
3827
3828static void free_fs_root(struct btrfs_root *root)
3829{
57cdc8db 3830 iput(root->ino_cache_inode);
4df27c4d 3831 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2ff7e61e 3832 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
1cb048f5 3833 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3834 if (root->anon_dev)
3835 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3836 if (root->subv_writers)
3837 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3838 free_extent_buffer(root->node);
3839 free_extent_buffer(root->commit_root);
581bb050
LZ
3840 kfree(root->free_ino_ctl);
3841 kfree(root->free_ino_pinned);
d397712b 3842 kfree(root->name);
b0feb9d9 3843 btrfs_put_fs_root(root);
2619ba1f
CM
3844}
3845
cb517eab
MX
3846void btrfs_free_fs_root(struct btrfs_root *root)
3847{
3848 free_fs_root(root);
2619ba1f
CM
3849}
3850
c146afad 3851int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3852{
c146afad
YZ
3853 u64 root_objectid = 0;
3854 struct btrfs_root *gang[8];
65d33fd7
QW
3855 int i = 0;
3856 int err = 0;
3857 unsigned int ret = 0;
3858 int index;
e089f05c 3859
c146afad 3860 while (1) {
65d33fd7 3861 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3862 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3863 (void **)gang, root_objectid,
3864 ARRAY_SIZE(gang));
65d33fd7
QW
3865 if (!ret) {
3866 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3867 break;
65d33fd7 3868 }
5d4f98a2 3869 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3870
c146afad 3871 for (i = 0; i < ret; i++) {
65d33fd7
QW
3872 /* Avoid to grab roots in dead_roots */
3873 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3874 gang[i] = NULL;
3875 continue;
3876 }
3877 /* grab all the search result for later use */
3878 gang[i] = btrfs_grab_fs_root(gang[i]);
3879 }
3880 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3881
65d33fd7
QW
3882 for (i = 0; i < ret; i++) {
3883 if (!gang[i])
3884 continue;
c146afad 3885 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3886 err = btrfs_orphan_cleanup(gang[i]);
3887 if (err)
65d33fd7
QW
3888 break;
3889 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3890 }
3891 root_objectid++;
3892 }
65d33fd7
QW
3893
3894 /* release the uncleaned roots due to error */
3895 for (; i < ret; i++) {
3896 if (gang[i])
3897 btrfs_put_fs_root(gang[i]);
3898 }
3899 return err;
c146afad 3900}
a2135011 3901
6bccf3ab 3902int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3903{
6bccf3ab 3904 struct btrfs_root *root = fs_info->tree_root;
c146afad 3905 struct btrfs_trans_handle *trans;
a74a4b97 3906
0b246afa 3907 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3908 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3909 mutex_unlock(&fs_info->cleaner_mutex);
3910 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3911
3912 /* wait until ongoing cleanup work done */
0b246afa
JM
3913 down_write(&fs_info->cleanup_work_sem);
3914 up_write(&fs_info->cleanup_work_sem);
c71bf099 3915
7a7eaa40 3916 trans = btrfs_join_transaction(root);
3612b495
TI
3917 if (IS_ERR(trans))
3918 return PTR_ERR(trans);
3a45bb20 3919 return btrfs_commit_transaction(trans);
c146afad
YZ
3920}
3921
6bccf3ab 3922void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3923{
6bccf3ab 3924 struct btrfs_root *root = fs_info->tree_root;
c146afad
YZ
3925 int ret;
3926
afcdd129 3927 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
c146afad 3928
7343dd61 3929 /* wait for the qgroup rescan worker to stop */
d06f23d6 3930 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3931
803b2f54
SB
3932 /* wait for the uuid_scan task to finish */
3933 down(&fs_info->uuid_tree_rescan_sem);
3934 /* avoid complains from lockdep et al., set sem back to initial state */
3935 up(&fs_info->uuid_tree_rescan_sem);
3936
837d5b6e 3937 /* pause restriper - we want to resume on mount */
aa1b8cd4 3938 btrfs_pause_balance(fs_info);
837d5b6e 3939
8dabb742
SB
3940 btrfs_dev_replace_suspend_for_unmount(fs_info);
3941
aa1b8cd4 3942 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3943
3944 /* wait for any defraggers to finish */
3945 wait_event(fs_info->transaction_wait,
3946 (atomic_read(&fs_info->defrag_running) == 0));
3947
3948 /* clear out the rbtree of defraggable inodes */
26176e7c 3949 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3950
21c7e756
MX
3951 cancel_work_sync(&fs_info->async_reclaim_work);
3952
c146afad 3953 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
e44163e1
JM
3954 /*
3955 * If the cleaner thread is stopped and there are
3956 * block groups queued for removal, the deletion will be
3957 * skipped when we quit the cleaner thread.
3958 */
0b246afa 3959 btrfs_delete_unused_bgs(fs_info);
e44163e1 3960
6bccf3ab 3961 ret = btrfs_commit_super(fs_info);
acce952b 3962 if (ret)
04892340 3963 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3964 }
3965
87533c47 3966 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
2ff7e61e 3967 btrfs_error_commit_super(fs_info);
0f7d52f4 3968
e3029d9f
AV
3969 kthread_stop(fs_info->transaction_kthread);
3970 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3971
afcdd129 3972 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 3973
04892340 3974 btrfs_free_qgroup_config(fs_info);
bcef60f2 3975
963d678b 3976 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3977 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3978 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3979 }
bcc63abb 3980
6618a59b 3981 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3982 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3983
faa2dbf0 3984 btrfs_free_fs_roots(fs_info);
d10c5f31 3985
1a4319cc
LB
3986 btrfs_put_block_group_cache(fs_info);
3987
2b1360da
JB
3988 btrfs_free_block_groups(fs_info);
3989
de348ee0
WS
3990 /*
3991 * we must make sure there is not any read request to
3992 * submit after we stopping all workers.
3993 */
3994 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3995 btrfs_stop_all_workers(fs_info);
3996
afcdd129 3997 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 3998 free_root_pointers(fs_info, 1);
9ad6b7bc 3999
13e6c37b 4000 iput(fs_info->btree_inode);
d6bfde87 4001
21adbd5c 4002#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4003 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4004 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4005#endif
4006
dfe25020 4007 btrfs_close_devices(fs_info->fs_devices);
0b86a832 4008 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 4009
e2d84521 4010 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4011 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 4012 percpu_counter_destroy(&fs_info->bio_counter);
04160088 4013 bdi_destroy(&fs_info->bdi);
76dda93c 4014 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4015
53b381b3
DW
4016 btrfs_free_stripe_hash_table(fs_info);
4017
cdfb080e 4018 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 4019 root->orphan_block_rsv = NULL;
04216820 4020
34441361 4021 mutex_lock(&fs_info->chunk_mutex);
04216820
FM
4022 while (!list_empty(&fs_info->pinned_chunks)) {
4023 struct extent_map *em;
4024
4025 em = list_first_entry(&fs_info->pinned_chunks,
4026 struct extent_map, list);
4027 list_del_init(&em->list);
4028 free_extent_map(em);
4029 }
34441361 4030 mutex_unlock(&fs_info->chunk_mutex);
eb60ceac
CM
4031}
4032
b9fab919
CM
4033int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4034 int atomic)
5f39d397 4035{
1259ab75 4036 int ret;
727011e0 4037 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4038
0b32f4bb 4039 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4040 if (!ret)
4041 return ret;
4042
4043 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4044 parent_transid, atomic);
4045 if (ret == -EAGAIN)
4046 return ret;
1259ab75 4047 return !ret;
5f39d397
CM
4048}
4049
5f39d397
CM
4050void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4051{
0b246afa 4052 struct btrfs_fs_info *fs_info;
06ea65a3 4053 struct btrfs_root *root;
5f39d397 4054 u64 transid = btrfs_header_generation(buf);
b9473439 4055 int was_dirty;
b4ce94de 4056
06ea65a3
JB
4057#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4058 /*
4059 * This is a fast path so only do this check if we have sanity tests
4060 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4061 * outside of the sanity tests.
4062 */
4063 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4064 return;
4065#endif
4066 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4067 fs_info = root->fs_info;
b9447ef8 4068 btrfs_assert_tree_locked(buf);
0b246afa 4069 if (transid != fs_info->generation)
5d163e0e 4070 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4071 buf->start, transid, fs_info->generation);
0b32f4bb 4072 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4073 if (!was_dirty)
0b246afa 4074 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
e2d84521 4075 buf->len,
0b246afa 4076 fs_info->dirty_metadata_batch);
1f21ef0a
FM
4077#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4078 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
2ff7e61e 4079 btrfs_print_leaf(fs_info, buf);
1f21ef0a
FM
4080 ASSERT(0);
4081 }
4082#endif
eb60ceac
CM
4083}
4084
2ff7e61e 4085static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4086 int flush_delayed)
16cdcec7
MX
4087{
4088 /*
4089 * looks as though older kernels can get into trouble with
4090 * this code, they end up stuck in balance_dirty_pages forever
4091 */
e2d84521 4092 int ret;
16cdcec7
MX
4093
4094 if (current->flags & PF_MEMALLOC)
4095 return;
4096
b53d3f5d 4097 if (flush_delayed)
2ff7e61e 4098 btrfs_balance_delayed_items(fs_info);
16cdcec7 4099
0b246afa 4100 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
e2d84521
MX
4101 BTRFS_DIRTY_METADATA_THRESH);
4102 if (ret > 0) {
0b246afa 4103 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4104 }
16cdcec7
MX
4105}
4106
2ff7e61e 4107void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4108{
2ff7e61e 4109 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4110}
585ad2c3 4111
2ff7e61e 4112void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4113{
2ff7e61e 4114 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4115}
6b80053d 4116
ca7a79ad 4117int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 4118{
727011e0 4119 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
4120 struct btrfs_fs_info *fs_info = root->fs_info;
4121
4122 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
6b80053d 4123}
0da5468f 4124
fcd1f065 4125static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 4126 int read_only)
4127{
c926093e 4128 struct btrfs_super_block *sb = fs_info->super_copy;
319e4d06
QW
4129 u64 nodesize = btrfs_super_nodesize(sb);
4130 u64 sectorsize = btrfs_super_sectorsize(sb);
c926093e
DS
4131 int ret = 0;
4132
319e4d06 4133 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
ab8d0fc4 4134 btrfs_err(fs_info, "no valid FS found");
319e4d06
QW
4135 ret = -EINVAL;
4136 }
4137 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
ab8d0fc4 4138 btrfs_warn(fs_info, "unrecognized super flag: %llu",
319e4d06 4139 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
21e7626b 4140 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4141 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
21e7626b 4142 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4143 ret = -EINVAL;
4144 }
21e7626b 4145 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4146 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
21e7626b 4147 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4148 ret = -EINVAL;
4149 }
21e7626b 4150 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4151 btrfs_err(fs_info, "log_root level too big: %d >= %d",
21e7626b 4152 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4153 ret = -EINVAL;
4154 }
4155
1104a885 4156 /*
319e4d06
QW
4157 * Check sectorsize and nodesize first, other check will need it.
4158 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
1104a885 4159 */
319e4d06
QW
4160 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4161 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 4162 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
319e4d06
QW
4163 ret = -EINVAL;
4164 }
4165 /* Only PAGE SIZE is supported yet */
09cbfeaf 4166 if (sectorsize != PAGE_SIZE) {
ab8d0fc4
JM
4167 btrfs_err(fs_info,
4168 "sectorsize %llu not supported yet, only support %lu",
4169 sectorsize, PAGE_SIZE);
319e4d06
QW
4170 ret = -EINVAL;
4171 }
4172 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4173 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 4174 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
319e4d06
QW
4175 ret = -EINVAL;
4176 }
4177 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
ab8d0fc4
JM
4178 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4179 le32_to_cpu(sb->__unused_leafsize), nodesize);
319e4d06
QW
4180 ret = -EINVAL;
4181 }
4182
4183 /* Root alignment check */
4184 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
ab8d0fc4
JM
4185 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4186 btrfs_super_root(sb));
319e4d06
QW
4187 ret = -EINVAL;
4188 }
4189 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
ab8d0fc4
JM
4190 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4191 btrfs_super_chunk_root(sb));
75d6ad38
DS
4192 ret = -EINVAL;
4193 }
319e4d06 4194 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
ab8d0fc4
JM
4195 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4196 btrfs_super_log_root(sb));
75d6ad38
DS
4197 ret = -EINVAL;
4198 }
4199
c926093e 4200 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
ab8d0fc4
JM
4201 btrfs_err(fs_info,
4202 "dev_item UUID does not match fsid: %pU != %pU",
4203 fs_info->fsid, sb->dev_item.fsid);
c926093e
DS
4204 ret = -EINVAL;
4205 }
4206
4207 /*
4208 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4209 * done later
4210 */
99e3ecfc
LB
4211 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4212 btrfs_err(fs_info, "bytes_used is too small %llu",
ab8d0fc4 4213 btrfs_super_bytes_used(sb));
99e3ecfc
LB
4214 ret = -EINVAL;
4215 }
b7f67055 4216 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
99e3ecfc 4217 btrfs_err(fs_info, "invalid stripesize %u",
ab8d0fc4 4218 btrfs_super_stripesize(sb));
99e3ecfc
LB
4219 ret = -EINVAL;
4220 }
21e7626b 4221 if (btrfs_super_num_devices(sb) > (1UL << 31))
ab8d0fc4
JM
4222 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4223 btrfs_super_num_devices(sb));
75d6ad38 4224 if (btrfs_super_num_devices(sb) == 0) {
ab8d0fc4 4225 btrfs_err(fs_info, "number of devices is 0");
75d6ad38
DS
4226 ret = -EINVAL;
4227 }
c926093e 4228
21e7626b 4229 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
ab8d0fc4
JM
4230 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4231 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4232 ret = -EINVAL;
4233 }
4234
ce7fca5f
DS
4235 /*
4236 * Obvious sys_chunk_array corruptions, it must hold at least one key
4237 * and one chunk
4238 */
4239 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
ab8d0fc4
JM
4240 btrfs_err(fs_info, "system chunk array too big %u > %u",
4241 btrfs_super_sys_array_size(sb),
4242 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
ce7fca5f
DS
4243 ret = -EINVAL;
4244 }
4245 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4246 + sizeof(struct btrfs_chunk)) {
ab8d0fc4
JM
4247 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4248 btrfs_super_sys_array_size(sb),
4249 sizeof(struct btrfs_disk_key)
4250 + sizeof(struct btrfs_chunk));
ce7fca5f
DS
4251 ret = -EINVAL;
4252 }
4253
c926093e
DS
4254 /*
4255 * The generation is a global counter, we'll trust it more than the others
4256 * but it's still possible that it's the one that's wrong.
4257 */
21e7626b 4258 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
ab8d0fc4
JM
4259 btrfs_warn(fs_info,
4260 "suspicious: generation < chunk_root_generation: %llu < %llu",
4261 btrfs_super_generation(sb),
4262 btrfs_super_chunk_root_generation(sb));
21e7626b
DS
4263 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4264 && btrfs_super_cache_generation(sb) != (u64)-1)
ab8d0fc4
JM
4265 btrfs_warn(fs_info,
4266 "suspicious: generation < cache_generation: %llu < %llu",
4267 btrfs_super_generation(sb),
4268 btrfs_super_cache_generation(sb));
c926093e
DS
4269
4270 return ret;
acce952b 4271}
4272
2ff7e61e 4273static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4274{
0b246afa 4275 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4276 btrfs_run_delayed_iputs(fs_info);
0b246afa 4277 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4278
0b246afa
JM
4279 down_write(&fs_info->cleanup_work_sem);
4280 up_write(&fs_info->cleanup_work_sem);
acce952b 4281
4282 /* cleanup FS via transaction */
2ff7e61e 4283 btrfs_cleanup_transaction(fs_info);
acce952b 4284}
4285
143bede5 4286static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4287{
acce952b 4288 struct btrfs_ordered_extent *ordered;
acce952b 4289
199c2a9c 4290 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4291 /*
4292 * This will just short circuit the ordered completion stuff which will
4293 * make sure the ordered extent gets properly cleaned up.
4294 */
199c2a9c 4295 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4296 root_extent_list)
4297 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4298 spin_unlock(&root->ordered_extent_lock);
4299}
4300
4301static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4302{
4303 struct btrfs_root *root;
4304 struct list_head splice;
4305
4306 INIT_LIST_HEAD(&splice);
4307
4308 spin_lock(&fs_info->ordered_root_lock);
4309 list_splice_init(&fs_info->ordered_roots, &splice);
4310 while (!list_empty(&splice)) {
4311 root = list_first_entry(&splice, struct btrfs_root,
4312 ordered_root);
1de2cfde
JB
4313 list_move_tail(&root->ordered_root,
4314 &fs_info->ordered_roots);
199c2a9c 4315
2a85d9ca 4316 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4317 btrfs_destroy_ordered_extents(root);
4318
2a85d9ca
LB
4319 cond_resched();
4320 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4321 }
4322 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4323}
4324
35a3621b 4325static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4326 struct btrfs_fs_info *fs_info)
acce952b 4327{
4328 struct rb_node *node;
4329 struct btrfs_delayed_ref_root *delayed_refs;
4330 struct btrfs_delayed_ref_node *ref;
4331 int ret = 0;
4332
4333 delayed_refs = &trans->delayed_refs;
4334
4335 spin_lock(&delayed_refs->lock);
d7df2c79 4336 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4337 spin_unlock(&delayed_refs->lock);
0b246afa 4338 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4339 return ret;
4340 }
4341
d7df2c79
JB
4342 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4343 struct btrfs_delayed_ref_head *head;
c6fc2454 4344 struct btrfs_delayed_ref_node *tmp;
e78417d1 4345 bool pin_bytes = false;
acce952b 4346
d7df2c79
JB
4347 head = rb_entry(node, struct btrfs_delayed_ref_head,
4348 href_node);
4349 if (!mutex_trylock(&head->mutex)) {
4350 atomic_inc(&head->node.refs);
4351 spin_unlock(&delayed_refs->lock);
eb12db69 4352
d7df2c79 4353 mutex_lock(&head->mutex);
e78417d1 4354 mutex_unlock(&head->mutex);
d7df2c79
JB
4355 btrfs_put_delayed_ref(&head->node);
4356 spin_lock(&delayed_refs->lock);
4357 continue;
4358 }
4359 spin_lock(&head->lock);
c6fc2454
QW
4360 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4361 list) {
d7df2c79 4362 ref->in_tree = 0;
c6fc2454 4363 list_del(&ref->list);
1d57ee94
WX
4364 if (!list_empty(&ref->add_list))
4365 list_del(&ref->add_list);
d7df2c79
JB
4366 atomic_dec(&delayed_refs->num_entries);
4367 btrfs_put_delayed_ref(ref);
e78417d1 4368 }
d7df2c79
JB
4369 if (head->must_insert_reserved)
4370 pin_bytes = true;
4371 btrfs_free_delayed_extent_op(head->extent_op);
4372 delayed_refs->num_heads--;
4373 if (head->processing == 0)
4374 delayed_refs->num_heads_ready--;
4375 atomic_dec(&delayed_refs->num_entries);
4376 head->node.in_tree = 0;
4377 rb_erase(&head->href_node, &delayed_refs->href_root);
4378 spin_unlock(&head->lock);
4379 spin_unlock(&delayed_refs->lock);
4380 mutex_unlock(&head->mutex);
acce952b 4381
d7df2c79 4382 if (pin_bytes)
2ff7e61e 4383 btrfs_pin_extent(fs_info, head->node.bytenr,
d7df2c79
JB
4384 head->node.num_bytes, 1);
4385 btrfs_put_delayed_ref(&head->node);
acce952b 4386 cond_resched();
4387 spin_lock(&delayed_refs->lock);
4388 }
4389
4390 spin_unlock(&delayed_refs->lock);
4391
4392 return ret;
4393}
4394
143bede5 4395static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4396{
4397 struct btrfs_inode *btrfs_inode;
4398 struct list_head splice;
4399
4400 INIT_LIST_HEAD(&splice);
4401
eb73c1b7
MX
4402 spin_lock(&root->delalloc_lock);
4403 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4404
4405 while (!list_empty(&splice)) {
eb73c1b7
MX
4406 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4407 delalloc_inodes);
acce952b 4408
4409 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4410 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4411 &btrfs_inode->runtime_flags);
eb73c1b7 4412 spin_unlock(&root->delalloc_lock);
acce952b 4413
4414 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4415
eb73c1b7 4416 spin_lock(&root->delalloc_lock);
acce952b 4417 }
4418
eb73c1b7
MX
4419 spin_unlock(&root->delalloc_lock);
4420}
4421
4422static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4423{
4424 struct btrfs_root *root;
4425 struct list_head splice;
4426
4427 INIT_LIST_HEAD(&splice);
4428
4429 spin_lock(&fs_info->delalloc_root_lock);
4430 list_splice_init(&fs_info->delalloc_roots, &splice);
4431 while (!list_empty(&splice)) {
4432 root = list_first_entry(&splice, struct btrfs_root,
4433 delalloc_root);
4434 list_del_init(&root->delalloc_root);
4435 root = btrfs_grab_fs_root(root);
4436 BUG_ON(!root);
4437 spin_unlock(&fs_info->delalloc_root_lock);
4438
4439 btrfs_destroy_delalloc_inodes(root);
4440 btrfs_put_fs_root(root);
4441
4442 spin_lock(&fs_info->delalloc_root_lock);
4443 }
4444 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4445}
4446
2ff7e61e 4447static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4448 struct extent_io_tree *dirty_pages,
4449 int mark)
4450{
4451 int ret;
acce952b 4452 struct extent_buffer *eb;
4453 u64 start = 0;
4454 u64 end;
acce952b 4455
4456 while (1) {
4457 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4458 mark, NULL);
acce952b 4459 if (ret)
4460 break;
4461
91166212 4462 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4463 while (start <= end) {
0b246afa
JM
4464 eb = find_extent_buffer(fs_info, start);
4465 start += fs_info->nodesize;
fd8b2b61 4466 if (!eb)
acce952b 4467 continue;
fd8b2b61 4468 wait_on_extent_buffer_writeback(eb);
acce952b 4469
fd8b2b61
JB
4470 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4471 &eb->bflags))
4472 clear_extent_buffer_dirty(eb);
4473 free_extent_buffer_stale(eb);
acce952b 4474 }
4475 }
4476
4477 return ret;
4478}
4479
2ff7e61e 4480static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4481 struct extent_io_tree *pinned_extents)
4482{
4483 struct extent_io_tree *unpin;
4484 u64 start;
4485 u64 end;
4486 int ret;
ed0eaa14 4487 bool loop = true;
acce952b 4488
4489 unpin = pinned_extents;
ed0eaa14 4490again:
acce952b 4491 while (1) {
4492 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4493 EXTENT_DIRTY, NULL);
acce952b 4494 if (ret)
4495 break;
4496
af6f8f60 4497 clear_extent_dirty(unpin, start, end);
2ff7e61e 4498 btrfs_error_unpin_extent_range(fs_info, start, end);
acce952b 4499 cond_resched();
4500 }
4501
ed0eaa14 4502 if (loop) {
0b246afa
JM
4503 if (unpin == &fs_info->freed_extents[0])
4504 unpin = &fs_info->freed_extents[1];
ed0eaa14 4505 else
0b246afa 4506 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4507 loop = false;
4508 goto again;
4509 }
4510
acce952b 4511 return 0;
4512}
4513
c79a1751
LB
4514static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4515{
4516 struct inode *inode;
4517
4518 inode = cache->io_ctl.inode;
4519 if (inode) {
4520 invalidate_inode_pages2(inode->i_mapping);
4521 BTRFS_I(inode)->generation = 0;
4522 cache->io_ctl.inode = NULL;
4523 iput(inode);
4524 }
4525 btrfs_put_block_group(cache);
4526}
4527
4528void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4529 struct btrfs_fs_info *fs_info)
c79a1751
LB
4530{
4531 struct btrfs_block_group_cache *cache;
4532
4533 spin_lock(&cur_trans->dirty_bgs_lock);
4534 while (!list_empty(&cur_trans->dirty_bgs)) {
4535 cache = list_first_entry(&cur_trans->dirty_bgs,
4536 struct btrfs_block_group_cache,
4537 dirty_list);
4538 if (!cache) {
0b246afa 4539 btrfs_err(fs_info, "orphan block group dirty_bgs list");
c79a1751
LB
4540 spin_unlock(&cur_trans->dirty_bgs_lock);
4541 return;
4542 }
4543
4544 if (!list_empty(&cache->io_list)) {
4545 spin_unlock(&cur_trans->dirty_bgs_lock);
4546 list_del_init(&cache->io_list);
4547 btrfs_cleanup_bg_io(cache);
4548 spin_lock(&cur_trans->dirty_bgs_lock);
4549 }
4550
4551 list_del_init(&cache->dirty_list);
4552 spin_lock(&cache->lock);
4553 cache->disk_cache_state = BTRFS_DC_ERROR;
4554 spin_unlock(&cache->lock);
4555
4556 spin_unlock(&cur_trans->dirty_bgs_lock);
4557 btrfs_put_block_group(cache);
4558 spin_lock(&cur_trans->dirty_bgs_lock);
4559 }
4560 spin_unlock(&cur_trans->dirty_bgs_lock);
4561
4562 while (!list_empty(&cur_trans->io_bgs)) {
4563 cache = list_first_entry(&cur_trans->io_bgs,
4564 struct btrfs_block_group_cache,
4565 io_list);
4566 if (!cache) {
0b246afa 4567 btrfs_err(fs_info, "orphan block group on io_bgs list");
c79a1751
LB
4568 return;
4569 }
4570
4571 list_del_init(&cache->io_list);
4572 spin_lock(&cache->lock);
4573 cache->disk_cache_state = BTRFS_DC_ERROR;
4574 spin_unlock(&cache->lock);
4575 btrfs_cleanup_bg_io(cache);
4576 }
4577}
4578
49b25e05 4579void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4580 struct btrfs_fs_info *fs_info)
49b25e05 4581{
2ff7e61e 4582 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4583 ASSERT(list_empty(&cur_trans->dirty_bgs));
4584 ASSERT(list_empty(&cur_trans->io_bgs));
4585
2ff7e61e 4586 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4587
4a9d8bde 4588 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4589 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4590
4a9d8bde 4591 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4592 wake_up(&fs_info->transaction_wait);
49b25e05 4593
ccdf9b30
JM
4594 btrfs_destroy_delayed_inodes(fs_info);
4595 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4596
2ff7e61e 4597 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4598 EXTENT_DIRTY);
2ff7e61e 4599 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4600 fs_info->pinned_extents);
49b25e05 4601
4a9d8bde
MX
4602 cur_trans->state =TRANS_STATE_COMPLETED;
4603 wake_up(&cur_trans->commit_wait);
4604
49b25e05
JM
4605 /*
4606 memset(cur_trans, 0, sizeof(*cur_trans));
4607 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4608 */
4609}
4610
2ff7e61e 4611static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4612{
4613 struct btrfs_transaction *t;
acce952b 4614
0b246afa 4615 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4616
0b246afa
JM
4617 spin_lock(&fs_info->trans_lock);
4618 while (!list_empty(&fs_info->trans_list)) {
4619 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4620 struct btrfs_transaction, list);
4621 if (t->state >= TRANS_STATE_COMMIT_START) {
4622 atomic_inc(&t->use_count);
0b246afa 4623 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4624 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4625 btrfs_put_transaction(t);
0b246afa 4626 spin_lock(&fs_info->trans_lock);
724e2315
JB
4627 continue;
4628 }
0b246afa 4629 if (t == fs_info->running_transaction) {
724e2315 4630 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4631 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4632 /*
4633 * We wait for 0 num_writers since we don't hold a trans
4634 * handle open currently for this transaction.
4635 */
4636 wait_event(t->writer_wait,
4637 atomic_read(&t->num_writers) == 0);
4638 } else {
0b246afa 4639 spin_unlock(&fs_info->trans_lock);
724e2315 4640 }
2ff7e61e 4641 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4642
0b246afa
JM
4643 spin_lock(&fs_info->trans_lock);
4644 if (t == fs_info->running_transaction)
4645 fs_info->running_transaction = NULL;
acce952b 4646 list_del_init(&t->list);
0b246afa 4647 spin_unlock(&fs_info->trans_lock);
acce952b 4648
724e2315 4649 btrfs_put_transaction(t);
2ff7e61e 4650 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4651 spin_lock(&fs_info->trans_lock);
724e2315 4652 }
0b246afa
JM
4653 spin_unlock(&fs_info->trans_lock);
4654 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4655 btrfs_destroy_delayed_inodes(fs_info);
4656 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4657 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4658 btrfs_destroy_all_delalloc_inodes(fs_info);
4659 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4660
4661 return 0;
4662}
4663
e8c9f186 4664static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4665 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4666 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4667 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4668 /* note we're sharing with inode.c for the merge bio hook */
4669 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4670};