]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/disk-io.c
btrfs: verify the tranisd of the to-be-written dirty extent buffer
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
eb60ceac 46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
8896a08d 113 struct inode *inode;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
1941b64b
QW
117
118 /* Optional parameter for submit_bio_start used by direct io */
119 u64 dio_file_offset;
8b712842 120 struct btrfs_work work;
4e4cbee9 121 blk_status_t status;
44b8bd7e
CM
122};
123
85d4e461
CM
124/*
125 * Lockdep class keys for extent_buffer->lock's in this root. For a given
126 * eb, the lockdep key is determined by the btrfs_root it belongs to and
127 * the level the eb occupies in the tree.
128 *
129 * Different roots are used for different purposes and may nest inside each
130 * other and they require separate keysets. As lockdep keys should be
131 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
132 * by btrfs_root->root_key.objectid. This ensures that all special purpose
133 * roots have separate keysets.
4008c04a 134 *
85d4e461
CM
135 * Lock-nesting across peer nodes is always done with the immediate parent
136 * node locked thus preventing deadlock. As lockdep doesn't know this, use
137 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 138 *
85d4e461
CM
139 * The key is set by the readpage_end_io_hook after the buffer has passed
140 * csum validation but before the pages are unlocked. It is also set by
141 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 142 *
85d4e461
CM
143 * We also add a check to make sure the highest level of the tree is the
144 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
145 * needs update as well.
4008c04a
CM
146 */
147#ifdef CONFIG_DEBUG_LOCK_ALLOC
148# if BTRFS_MAX_LEVEL != 8
149# error
150# endif
85d4e461 151
ab1405aa
DS
152#define DEFINE_LEVEL(stem, level) \
153 .names[level] = "btrfs-" stem "-0" #level,
154
155#define DEFINE_NAME(stem) \
156 DEFINE_LEVEL(stem, 0) \
157 DEFINE_LEVEL(stem, 1) \
158 DEFINE_LEVEL(stem, 2) \
159 DEFINE_LEVEL(stem, 3) \
160 DEFINE_LEVEL(stem, 4) \
161 DEFINE_LEVEL(stem, 5) \
162 DEFINE_LEVEL(stem, 6) \
163 DEFINE_LEVEL(stem, 7)
164
85d4e461
CM
165static struct btrfs_lockdep_keyset {
166 u64 id; /* root objectid */
ab1405aa 167 /* Longest entry: btrfs-free-space-00 */
387824af
DS
168 char names[BTRFS_MAX_LEVEL][20];
169 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 170} btrfs_lockdep_keysets[] = {
ab1405aa
DS
171 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
172 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
173 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
174 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
ab1405aa
DS
175 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
176 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
177 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
178 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
179 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
180 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
181 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
182 { .id = 0, DEFINE_NAME("tree") },
4008c04a 183};
85d4e461 184
ab1405aa
DS
185#undef DEFINE_LEVEL
186#undef DEFINE_NAME
85d4e461
CM
187
188void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 int level)
190{
191 struct btrfs_lockdep_keyset *ks;
192
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
198 break;
199
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
202}
203
4008c04a
CM
204#endif
205
d352ac68 206/*
2996e1f8 207 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 208 */
c67b3892 209static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 210{
d5178578 211 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 212 const int num_pages = num_extent_pages(buf);
a26663e7 213 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 214 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 215 char *kaddr;
e9be5a30 216 int i;
d5178578
JT
217
218 shash->tfm = fs_info->csum_shash;
219 crypto_shash_init(shash);
a26663e7 220 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 221 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 222 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 223
e9be5a30
DS
224 for (i = 1; i < num_pages; i++) {
225 kaddr = page_address(buf->pages[i]);
226 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 227 }
71a63551 228 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 229 crypto_shash_final(shash, result);
19c00ddc
CM
230}
231
d352ac68
CM
232/*
233 * we can't consider a given block up to date unless the transid of the
234 * block matches the transid in the parent node's pointer. This is how we
235 * detect blocks that either didn't get written at all or got written
236 * in the wrong place.
237 */
1259ab75 238static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
239 struct extent_buffer *eb, u64 parent_transid,
240 int atomic)
1259ab75 241{
2ac55d41 242 struct extent_state *cached_state = NULL;
1259ab75
CM
243 int ret;
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
b9fab919
CM
248 if (atomic)
249 return -EAGAIN;
250
2ac55d41 251 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 252 &cached_state);
0b32f4bb 253 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
254 btrfs_header_generation(eb) == parent_transid) {
255 ret = 0;
256 goto out;
257 }
94647322
DS
258 btrfs_err_rl(eb->fs_info,
259 "parent transid verify failed on %llu wanted %llu found %llu",
260 eb->start,
29549aec 261 parent_transid, btrfs_header_generation(eb));
1259ab75 262 ret = 1;
35b22c19 263 clear_extent_buffer_uptodate(eb);
33958dc6 264out:
2ac55d41 265 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 266 &cached_state);
1259ab75 267 return ret;
1259ab75
CM
268}
269
e7e16f48
JT
270static bool btrfs_supported_super_csum(u16 csum_type)
271{
272 switch (csum_type) {
273 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 274 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 275 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 276 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
277 return true;
278 default:
279 return false;
280 }
281}
282
1104a885
DS
283/*
284 * Return 0 if the superblock checksum type matches the checksum value of that
285 * algorithm. Pass the raw disk superblock data.
286 */
ab8d0fc4
JM
287static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
288 char *raw_disk_sb)
1104a885
DS
289{
290 struct btrfs_super_block *disk_sb =
291 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 292 char result[BTRFS_CSUM_SIZE];
d5178578
JT
293 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
294
295 shash->tfm = fs_info->csum_shash;
1104a885 296
51bce6c9
JT
297 /*
298 * The super_block structure does not span the whole
299 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
300 * filled with zeros and is included in the checksum.
301 */
fd08001f
EB
302 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
303 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 304
55fc29be 305 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 306 return 1;
1104a885 307
e7e16f48 308 return 0;
1104a885
DS
309}
310
e064d5e9 311int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 312 struct btrfs_key *first_key, u64 parent_transid)
581c1760 313{
e064d5e9 314 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
315 int found_level;
316 struct btrfs_key found_key;
317 int ret;
318
319 found_level = btrfs_header_level(eb);
320 if (found_level != level) {
63489055
QW
321 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
322 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
323 btrfs_err(fs_info,
324"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
325 eb->start, level, found_level);
581c1760
QW
326 return -EIO;
327 }
328
329 if (!first_key)
330 return 0;
331
5d41be6f
QW
332 /*
333 * For live tree block (new tree blocks in current transaction),
334 * we need proper lock context to avoid race, which is impossible here.
335 * So we only checks tree blocks which is read from disk, whose
336 * generation <= fs_info->last_trans_committed.
337 */
338 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
339 return 0;
62fdaa52
QW
340
341 /* We have @first_key, so this @eb must have at least one item */
342 if (btrfs_header_nritems(eb) == 0) {
343 btrfs_err(fs_info,
344 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
345 eb->start);
346 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
347 return -EUCLEAN;
348 }
349
581c1760
QW
350 if (found_level)
351 btrfs_node_key_to_cpu(eb, &found_key, 0);
352 else
353 btrfs_item_key_to_cpu(eb, &found_key, 0);
354 ret = btrfs_comp_cpu_keys(first_key, &found_key);
355
581c1760 356 if (ret) {
63489055
QW
357 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
358 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 359 btrfs_err(fs_info,
ff76a864
LB
360"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
361 eb->start, parent_transid, first_key->objectid,
362 first_key->type, first_key->offset,
363 found_key.objectid, found_key.type,
364 found_key.offset);
581c1760 365 }
581c1760
QW
366 return ret;
367}
368
d352ac68
CM
369/*
370 * helper to read a given tree block, doing retries as required when
371 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
372 *
373 * @parent_transid: expected transid, skip check if 0
374 * @level: expected level, mandatory check
375 * @first_key: expected key of first slot, skip check if NULL
d352ac68 376 */
5ab12d1f 377static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
378 u64 parent_transid, int level,
379 struct btrfs_key *first_key)
f188591e 380{
5ab12d1f 381 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 382 struct extent_io_tree *io_tree;
ea466794 383 int failed = 0;
f188591e
CM
384 int ret;
385 int num_copies = 0;
386 int mirror_num = 0;
ea466794 387 int failed_mirror = 0;
f188591e 388
0b246afa 389 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 390 while (1) {
f8397d69 391 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 392 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 393 if (!ret) {
581c1760 394 if (verify_parent_transid(io_tree, eb,
b9fab919 395 parent_transid, 0))
256dd1bb 396 ret = -EIO;
e064d5e9 397 else if (btrfs_verify_level_key(eb, level,
448de471 398 first_key, parent_transid))
581c1760
QW
399 ret = -EUCLEAN;
400 else
401 break;
256dd1bb 402 }
d397712b 403
0b246afa 404 num_copies = btrfs_num_copies(fs_info,
f188591e 405 eb->start, eb->len);
4235298e 406 if (num_copies == 1)
ea466794 407 break;
4235298e 408
5cf1ab56
JB
409 if (!failed_mirror) {
410 failed = 1;
411 failed_mirror = eb->read_mirror;
412 }
413
f188591e 414 mirror_num++;
ea466794
JB
415 if (mirror_num == failed_mirror)
416 mirror_num++;
417
4235298e 418 if (mirror_num > num_copies)
ea466794 419 break;
f188591e 420 }
ea466794 421
c0901581 422 if (failed && !ret && failed_mirror)
20a1fbf9 423 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
424
425 return ret;
f188591e 426}
19c00ddc 427
eca0f6f6
QW
428static int csum_one_extent_buffer(struct extent_buffer *eb)
429{
430 struct btrfs_fs_info *fs_info = eb->fs_info;
431 u8 result[BTRFS_CSUM_SIZE];
432 int ret;
433
434 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
435 offsetof(struct btrfs_header, fsid),
436 BTRFS_FSID_SIZE) == 0);
437 csum_tree_block(eb, result);
438
439 if (btrfs_header_level(eb))
440 ret = btrfs_check_node(eb);
441 else
442 ret = btrfs_check_leaf_full(eb);
443
1b417c74
QW
444 if (ret < 0)
445 goto error;
446
447 /*
448 * Also check the generation, the eb reached here must be newer than
449 * last committed. Or something seriously wrong happened.
450 */
451 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
452 ret = -EUCLEAN;
eca0f6f6 453 btrfs_err(fs_info,
1b417c74
QW
454 "block=%llu bad generation, have %llu expect > %llu",
455 eb->start, btrfs_header_generation(eb),
456 fs_info->last_trans_committed);
457 goto error;
eca0f6f6
QW
458 }
459 write_extent_buffer(eb, result, 0, fs_info->csum_size);
460
461 return 0;
1b417c74
QW
462
463error:
464 btrfs_print_tree(eb, 0);
465 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
466 eb->start);
467 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
468 return ret;
eca0f6f6
QW
469}
470
471/* Checksum all dirty extent buffers in one bio_vec */
472static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
473 struct bio_vec *bvec)
474{
475 struct page *page = bvec->bv_page;
476 u64 bvec_start = page_offset(page) + bvec->bv_offset;
477 u64 cur;
478 int ret = 0;
479
480 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
481 cur += fs_info->nodesize) {
482 struct extent_buffer *eb;
483 bool uptodate;
484
485 eb = find_extent_buffer(fs_info, cur);
486 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
487 fs_info->nodesize);
488
489 /* A dirty eb shouldn't disappear from buffer_radix */
490 if (WARN_ON(!eb))
491 return -EUCLEAN;
492
493 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
494 free_extent_buffer(eb);
495 return -EUCLEAN;
496 }
497 if (WARN_ON(!uptodate)) {
498 free_extent_buffer(eb);
499 return -EUCLEAN;
500 }
501
502 ret = csum_one_extent_buffer(eb);
503 free_extent_buffer(eb);
504 if (ret < 0)
505 return ret;
506 }
507 return ret;
508}
509
d352ac68 510/*
ac303b69
QW
511 * Checksum a dirty tree block before IO. This has extra checks to make sure
512 * we only fill in the checksum field in the first page of a multi-page block.
513 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 514 */
ac303b69 515static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 516{
ac303b69 517 struct page *page = bvec->bv_page;
4eee4fa4 518 u64 start = page_offset(page);
19c00ddc 519 u64 found_start;
19c00ddc 520 struct extent_buffer *eb;
eca0f6f6
QW
521
522 if (fs_info->sectorsize < PAGE_SIZE)
523 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 524
4f2de97a
JB
525 eb = (struct extent_buffer *)page->private;
526 if (page != eb->pages[0])
527 return 0;
0f805531 528
19c00ddc 529 found_start = btrfs_header_bytenr(eb);
d3575156
NA
530
531 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
532 WARN_ON(found_start != 0);
533 return 0;
534 }
535
0f805531
AL
536 /*
537 * Please do not consolidate these warnings into a single if.
538 * It is useful to know what went wrong.
539 */
540 if (WARN_ON(found_start != start))
541 return -EUCLEAN;
542 if (WARN_ON(!PageUptodate(page)))
543 return -EUCLEAN;
544
eca0f6f6 545 return csum_one_extent_buffer(eb);
19c00ddc
CM
546}
547
b0c9b3b0 548static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 549{
b0c9b3b0 550 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 551 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 552 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 553 u8 *metadata_uuid;
2b82032c 554
9a8658e3
DS
555 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
556 BTRFS_FSID_SIZE);
944d3f9f
NB
557 /*
558 * Checking the incompat flag is only valid for the current fs. For
559 * seed devices it's forbidden to have their uuid changed so reading
560 * ->fsid in this case is fine
561 */
562 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
563 metadata_uuid = fs_devices->metadata_uuid;
564 else
565 metadata_uuid = fs_devices->fsid;
566
567 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
568 return 0;
569
570 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
571 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
572 return 0;
573
574 return 1;
2b82032c
YZ
575}
576
77bf40a2
QW
577/* Do basic extent buffer checks at read time */
578static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 579{
77bf40a2 580 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 581 u64 found_start;
77bf40a2
QW
582 const u32 csum_size = fs_info->csum_size;
583 u8 found_level;
2996e1f8 584 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 585 const u8 *header_csum;
77bf40a2 586 int ret = 0;
ea466794 587
ce9adaa5 588 found_start = btrfs_header_bytenr(eb);
727011e0 589 if (found_start != eb->start) {
893bf4b1
SY
590 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
591 eb->start, found_start);
f188591e 592 ret = -EIO;
77bf40a2 593 goto out;
ce9adaa5 594 }
b0c9b3b0 595 if (check_tree_block_fsid(eb)) {
02873e43
ZL
596 btrfs_err_rl(fs_info, "bad fsid on block %llu",
597 eb->start);
1259ab75 598 ret = -EIO;
77bf40a2 599 goto out;
1259ab75 600 }
ce9adaa5 601 found_level = btrfs_header_level(eb);
1c24c3ce 602 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
603 btrfs_err(fs_info, "bad tree block level %d on %llu",
604 (int)btrfs_header_level(eb), eb->start);
1c24c3ce 605 ret = -EIO;
77bf40a2 606 goto out;
1c24c3ce 607 }
ce9adaa5 608
c67b3892 609 csum_tree_block(eb, result);
dfd29eed
DS
610 header_csum = page_address(eb->pages[0]) +
611 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 612
dfd29eed 613 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 614 btrfs_warn_rl(fs_info,
ff14aa79
DS
615 "checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
616 eb->start,
dfd29eed 617 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
618 CSUM_FMT_VALUE(csum_size, result),
619 btrfs_header_level(eb));
2996e1f8 620 ret = -EUCLEAN;
77bf40a2 621 goto out;
2996e1f8
JT
622 }
623
a826d6dc
JB
624 /*
625 * If this is a leaf block and it is corrupt, set the corrupt bit so
626 * that we don't try and read the other copies of this block, just
627 * return -EIO.
628 */
1c4360ee 629 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
630 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631 ret = -EIO;
632 }
ce9adaa5 633
813fd1dc 634 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
635 ret = -EIO;
636
0b32f4bb
JB
637 if (!ret)
638 set_extent_buffer_uptodate(eb);
75391f0d
QW
639 else
640 btrfs_err(fs_info,
641 "block=%llu read time tree block corruption detected",
642 eb->start);
77bf40a2
QW
643out:
644 return ret;
645}
646
371cdc07
QW
647static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
648 int mirror)
649{
650 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
651 struct extent_buffer *eb;
652 bool reads_done;
653 int ret = 0;
654
655 /*
656 * We don't allow bio merge for subpage metadata read, so we should
657 * only get one eb for each endio hook.
658 */
659 ASSERT(end == start + fs_info->nodesize - 1);
660 ASSERT(PagePrivate(page));
661
662 eb = find_extent_buffer(fs_info, start);
663 /*
664 * When we are reading one tree block, eb must have been inserted into
665 * the radix tree. If not, something is wrong.
666 */
667 ASSERT(eb);
668
669 reads_done = atomic_dec_and_test(&eb->io_pages);
670 /* Subpage read must finish in page read */
671 ASSERT(reads_done);
672
673 eb->read_mirror = mirror;
674 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
675 ret = -EIO;
676 goto err;
677 }
678 ret = validate_extent_buffer(eb);
679 if (ret < 0)
680 goto err;
681
682 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
683 btree_readahead_hook(eb, ret);
684
685 set_extent_buffer_uptodate(eb);
686
687 free_extent_buffer(eb);
688 return ret;
689err:
690 /*
691 * end_bio_extent_readpage decrements io_pages in case of error,
692 * make sure it has something to decrement.
693 */
694 atomic_inc(&eb->io_pages);
695 clear_extent_buffer_uptodate(eb);
696 free_extent_buffer(eb);
697 return ret;
698}
699
8e1dc982 700int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
77bf40a2
QW
701 struct page *page, u64 start, u64 end,
702 int mirror)
703{
704 struct extent_buffer *eb;
705 int ret = 0;
706 int reads_done;
707
708 ASSERT(page->private);
371cdc07
QW
709
710 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
711 return validate_subpage_buffer(page, start, end, mirror);
712
77bf40a2
QW
713 eb = (struct extent_buffer *)page->private;
714
715 /*
716 * The pending IO might have been the only thing that kept this buffer
717 * in memory. Make sure we have a ref for all this other checks
718 */
719 atomic_inc(&eb->refs);
720
721 reads_done = atomic_dec_and_test(&eb->io_pages);
722 if (!reads_done)
723 goto err;
724
725 eb->read_mirror = mirror;
726 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
727 ret = -EIO;
728 goto err;
729 }
730 ret = validate_extent_buffer(eb);
ce9adaa5 731err:
79fb65a1
JB
732 if (reads_done &&
733 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 734 btree_readahead_hook(eb, ret);
4bb31e92 735
53b381b3
DW
736 if (ret) {
737 /*
738 * our io error hook is going to dec the io pages
739 * again, we have to make sure it has something
740 * to decrement
741 */
742 atomic_inc(&eb->io_pages);
0b32f4bb 743 clear_extent_buffer_uptodate(eb);
53b381b3 744 }
0b32f4bb 745 free_extent_buffer(eb);
77bf40a2 746
f188591e 747 return ret;
ce9adaa5
CM
748}
749
4246a0b6 750static void end_workqueue_bio(struct bio *bio)
ce9adaa5 751{
97eb6b69 752 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 753 struct btrfs_fs_info *fs_info;
9e0af237 754 struct btrfs_workqueue *wq;
ce9adaa5 755
ce9adaa5 756 fs_info = end_io_wq->info;
4e4cbee9 757 end_io_wq->status = bio->bi_status;
d20f7043 758
cfe94440 759 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
a0cac0ec 760 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 761 wq = fs_info->endio_meta_write_workers;
a0cac0ec 762 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 763 wq = fs_info->endio_freespace_worker;
a0cac0ec 764 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 765 wq = fs_info->endio_raid56_workers;
a0cac0ec 766 else
9e0af237 767 wq = fs_info->endio_write_workers;
d20f7043 768 } else {
5c047a69 769 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 770 wq = fs_info->endio_raid56_workers;
a0cac0ec 771 else if (end_io_wq->metadata)
9e0af237 772 wq = fs_info->endio_meta_workers;
a0cac0ec 773 else
9e0af237 774 wq = fs_info->endio_workers;
d20f7043 775 }
9e0af237 776
a0cac0ec 777 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 778 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
779}
780
4e4cbee9 781blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 782 enum btrfs_wq_endio_type metadata)
0b86a832 783{
97eb6b69 784 struct btrfs_end_io_wq *end_io_wq;
8b110e39 785
97eb6b69 786 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 787 if (!end_io_wq)
4e4cbee9 788 return BLK_STS_RESOURCE;
ce9adaa5
CM
789
790 end_io_wq->private = bio->bi_private;
791 end_io_wq->end_io = bio->bi_end_io;
22c59948 792 end_io_wq->info = info;
4e4cbee9 793 end_io_wq->status = 0;
ce9adaa5 794 end_io_wq->bio = bio;
22c59948 795 end_io_wq->metadata = metadata;
ce9adaa5
CM
796
797 bio->bi_private = end_io_wq;
798 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
799 return 0;
800}
801
4a69a410
CM
802static void run_one_async_start(struct btrfs_work *work)
803{
4a69a410 804 struct async_submit_bio *async;
4e4cbee9 805 blk_status_t ret;
4a69a410
CM
806
807 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
808 ret = async->submit_bio_start(async->inode, async->bio,
809 async->dio_file_offset);
79787eaa 810 if (ret)
4e4cbee9 811 async->status = ret;
4a69a410
CM
812}
813
06ea01b1
DS
814/*
815 * In order to insert checksums into the metadata in large chunks, we wait
816 * until bio submission time. All the pages in the bio are checksummed and
817 * sums are attached onto the ordered extent record.
818 *
819 * At IO completion time the csums attached on the ordered extent record are
820 * inserted into the tree.
821 */
4a69a410 822static void run_one_async_done(struct btrfs_work *work)
8b712842 823{
8b712842 824 struct async_submit_bio *async;
06ea01b1
DS
825 struct inode *inode;
826 blk_status_t ret;
8b712842
CM
827
828 async = container_of(work, struct async_submit_bio, work);
8896a08d 829 inode = async->inode;
4854ddd0 830
bb7ab3b9 831 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
832 if (async->status) {
833 async->bio->bi_status = async->status;
4246a0b6 834 bio_endio(async->bio);
79787eaa
JM
835 return;
836 }
837
ec39f769
CM
838 /*
839 * All of the bios that pass through here are from async helpers.
840 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
841 * This changes nothing when cgroups aren't in use.
842 */
843 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 844 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
845 if (ret) {
846 async->bio->bi_status = ret;
847 bio_endio(async->bio);
848 }
4a69a410
CM
849}
850
851static void run_one_async_free(struct btrfs_work *work)
852{
853 struct async_submit_bio *async;
854
855 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
856 kfree(async);
857}
858
8896a08d 859blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
8c27cb35 860 int mirror_num, unsigned long bio_flags,
1941b64b 861 u64 dio_file_offset,
e288c080 862 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 863{
8896a08d 864 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
865 struct async_submit_bio *async;
866
867 async = kmalloc(sizeof(*async), GFP_NOFS);
868 if (!async)
4e4cbee9 869 return BLK_STS_RESOURCE;
44b8bd7e 870
8896a08d 871 async->inode = inode;
44b8bd7e
CM
872 async->bio = bio;
873 async->mirror_num = mirror_num;
4a69a410 874 async->submit_bio_start = submit_bio_start;
4a69a410 875
a0cac0ec
OS
876 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
877 run_one_async_free);
4a69a410 878
1941b64b 879 async->dio_file_offset = dio_file_offset;
8c8bee1d 880
4e4cbee9 881 async->status = 0;
79787eaa 882
67f055c7 883 if (op_is_sync(bio->bi_opf))
5cdc7ad3 884 btrfs_set_work_high_priority(&async->work);
d313d7a3 885
5cdc7ad3 886 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
887 return 0;
888}
889
4e4cbee9 890static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 891{
2c30c71b 892 struct bio_vec *bvec;
ce3ed71a 893 struct btrfs_root *root;
2b070cfe 894 int ret = 0;
6dc4f100 895 struct bvec_iter_all iter_all;
ce3ed71a 896
c09abff8 897 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 898 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 899 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 900 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
901 if (ret)
902 break;
ce3ed71a 903 }
2c30c71b 904
4e4cbee9 905 return errno_to_blk_status(ret);
ce3ed71a
CM
906}
907
8896a08d 908static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 909 u64 dio_file_offset)
22c59948 910{
8b712842
CM
911 /*
912 * when we're called for a write, we're already in the async
5443be45 913 * submission context. Just jump into btrfs_map_bio
8b712842 914 */
79787eaa 915 return btree_csum_one_bio(bio);
4a69a410 916}
22c59948 917
f4dcfb30 918static bool should_async_write(struct btrfs_fs_info *fs_info,
9b4e675a 919 struct btrfs_inode *bi)
de0022b9 920{
4eef29ef 921 if (btrfs_is_zoned(fs_info))
f4dcfb30 922 return false;
6300463b 923 if (atomic_read(&bi->sync_writers))
f4dcfb30 924 return false;
9b4e675a 925 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
f4dcfb30
JT
926 return false;
927 return true;
de0022b9
JB
928}
929
1b36294a
NB
930blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
931 int mirror_num, unsigned long bio_flags)
44b8bd7e 932{
0b246afa 933 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 934 blk_status_t ret;
cad321ad 935
cfe94440 936 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
4a69a410
CM
937 /*
938 * called for a read, do the setup so that checksum validation
939 * can happen in the async kernel threads
940 */
0b246afa
JM
941 ret = btrfs_bio_wq_end_io(fs_info, bio,
942 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 943 if (ret)
61891923 944 goto out_w_error;
08635bae 945 ret = btrfs_map_bio(fs_info, bio, mirror_num);
f4dcfb30 946 } else if (!should_async_write(fs_info, BTRFS_I(inode))) {
de0022b9
JB
947 ret = btree_csum_one_bio(bio);
948 if (ret)
61891923 949 goto out_w_error;
08635bae 950 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
951 } else {
952 /*
953 * kthread helpers are used to submit writes so that
954 * checksumming can happen in parallel across all CPUs
955 */
8896a08d
QW
956 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
957 0, btree_submit_bio_start);
44b8bd7e 958 }
d313d7a3 959
4246a0b6
CH
960 if (ret)
961 goto out_w_error;
962 return 0;
963
61891923 964out_w_error:
4e4cbee9 965 bio->bi_status = ret;
4246a0b6 966 bio_endio(bio);
61891923 967 return ret;
44b8bd7e
CM
968}
969
3dd1462e 970#ifdef CONFIG_MIGRATION
784b4e29 971static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
972 struct page *newpage, struct page *page,
973 enum migrate_mode mode)
784b4e29
CM
974{
975 /*
976 * we can't safely write a btree page from here,
977 * we haven't done the locking hook
978 */
979 if (PageDirty(page))
980 return -EAGAIN;
981 /*
982 * Buffers may be managed in a filesystem specific way.
983 * We must have no buffers or drop them.
984 */
985 if (page_has_private(page) &&
986 !try_to_release_page(page, GFP_KERNEL))
987 return -EAGAIN;
a6bc32b8 988 return migrate_page(mapping, newpage, page, mode);
784b4e29 989}
3dd1462e 990#endif
784b4e29 991
0da5468f
CM
992
993static int btree_writepages(struct address_space *mapping,
994 struct writeback_control *wbc)
995{
e2d84521
MX
996 struct btrfs_fs_info *fs_info;
997 int ret;
998
d8d5f3e1 999 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1000
1001 if (wbc->for_kupdate)
1002 return 0;
1003
e2d84521 1004 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1005 /* this is a bit racy, but that's ok */
d814a491
EL
1006 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1007 BTRFS_DIRTY_METADATA_THRESH,
1008 fs_info->dirty_metadata_batch);
e2d84521 1009 if (ret < 0)
793955bc 1010 return 0;
793955bc 1011 }
0b32f4bb 1012 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1013}
1014
70dec807 1015static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1016{
98509cfc 1017 if (PageWriteback(page) || PageDirty(page))
d397712b 1018 return 0;
0c4e538b 1019
f7a52a40 1020 return try_release_extent_buffer(page);
d98237b3
CM
1021}
1022
d47992f8
LC
1023static void btree_invalidatepage(struct page *page, unsigned int offset,
1024 unsigned int length)
d98237b3 1025{
d1310b2e
CM
1026 struct extent_io_tree *tree;
1027 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1028 extent_invalidatepage(tree, page, offset);
1029 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1030 if (PagePrivate(page)) {
efe120a0
FH
1031 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1032 "page private not zero on page %llu",
1033 (unsigned long long)page_offset(page));
d1b89bc0 1034 detach_page_private(page);
9ad6b7bc 1035 }
d98237b3
CM
1036}
1037
0b32f4bb
JB
1038static int btree_set_page_dirty(struct page *page)
1039{
bb146eb2 1040#ifdef DEBUG
139e8cd3
QW
1041 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1042 struct btrfs_subpage *subpage;
0b32f4bb 1043 struct extent_buffer *eb;
139e8cd3
QW
1044 int cur_bit = 0;
1045 u64 page_start = page_offset(page);
1046
1047 if (fs_info->sectorsize == PAGE_SIZE) {
1048 BUG_ON(!PagePrivate(page));
1049 eb = (struct extent_buffer *)page->private;
1050 BUG_ON(!eb);
1051 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1052 BUG_ON(!atomic_read(&eb->refs));
1053 btrfs_assert_tree_locked(eb);
1054 return __set_page_dirty_nobuffers(page);
1055 }
1056 ASSERT(PagePrivate(page) && page->private);
1057 subpage = (struct btrfs_subpage *)page->private;
1058
1059 ASSERT(subpage->dirty_bitmap);
1060 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1061 unsigned long flags;
1062 u64 cur;
1063 u16 tmp = (1 << cur_bit);
1064
1065 spin_lock_irqsave(&subpage->lock, flags);
1066 if (!(tmp & subpage->dirty_bitmap)) {
1067 spin_unlock_irqrestore(&subpage->lock, flags);
1068 cur_bit++;
1069 continue;
1070 }
1071 spin_unlock_irqrestore(&subpage->lock, flags);
1072 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 1073
139e8cd3
QW
1074 eb = find_extent_buffer(fs_info, cur);
1075 ASSERT(eb);
1076 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1077 ASSERT(atomic_read(&eb->refs));
1078 btrfs_assert_tree_locked(eb);
1079 free_extent_buffer(eb);
1080
1081 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1082 }
bb146eb2 1083#endif
0b32f4bb
JB
1084 return __set_page_dirty_nobuffers(page);
1085}
1086
7f09410b 1087static const struct address_space_operations btree_aops = {
0da5468f 1088 .writepages = btree_writepages,
5f39d397
CM
1089 .releasepage = btree_releasepage,
1090 .invalidatepage = btree_invalidatepage,
5a92bc88 1091#ifdef CONFIG_MIGRATION
784b4e29 1092 .migratepage = btree_migratepage,
5a92bc88 1093#endif
0b32f4bb 1094 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1095};
1096
2ff7e61e
JM
1097struct extent_buffer *btrfs_find_create_tree_block(
1098 struct btrfs_fs_info *fs_info,
3fbaf258
JB
1099 u64 bytenr, u64 owner_root,
1100 int level)
0999df54 1101{
0b246afa
JM
1102 if (btrfs_is_testing(fs_info))
1103 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 1104 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
1105}
1106
581c1760
QW
1107/*
1108 * Read tree block at logical address @bytenr and do variant basic but critical
1109 * verification.
1110 *
1b7ec85e 1111 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
1112 * @parent_transid: expected transid of this tree block, skip check if 0
1113 * @level: expected level, mandatory check
1114 * @first_key: expected key in slot 0, skip check if NULL
1115 */
2ff7e61e 1116struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
1117 u64 owner_root, u64 parent_transid,
1118 int level, struct btrfs_key *first_key)
0999df54
CM
1119{
1120 struct extent_buffer *buf = NULL;
0999df54
CM
1121 int ret;
1122
3fbaf258 1123 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
1124 if (IS_ERR(buf))
1125 return buf;
0999df54 1126
5ab12d1f 1127 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1128 level, first_key);
0f0fe8f7 1129 if (ret) {
537f38f0 1130 free_extent_buffer_stale(buf);
64c043de 1131 return ERR_PTR(ret);
0f0fe8f7 1132 }
5f39d397 1133 return buf;
ce9adaa5 1134
eb60ceac
CM
1135}
1136
6a884d7d 1137void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1138{
6a884d7d 1139 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1140 if (btrfs_header_generation(buf) ==
e2d84521 1141 fs_info->running_transaction->transid) {
b9447ef8 1142 btrfs_assert_tree_locked(buf);
b4ce94de 1143
b9473439 1144 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1145 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1146 -buf->len,
1147 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1148 clear_extent_buffer_dirty(buf);
1149 }
925baedd 1150 }
5f39d397
CM
1151}
1152
da17066c 1153static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1154 u64 objectid)
d97e63b6 1155{
7c0260ee 1156 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1157 root->fs_info = fs_info;
cfaa7295 1158 root->node = NULL;
a28ec197 1159 root->commit_root = NULL;
27cdeb70 1160 root->state = 0;
d68fc57b 1161 root->orphan_cleanup_state = 0;
0b86a832 1162
0f7d52f4 1163 root->last_trans = 0;
6b8fad57 1164 root->free_objectid = 0;
eb73c1b7 1165 root->nr_delalloc_inodes = 0;
199c2a9c 1166 root->nr_ordered_extents = 0;
6bef4d31 1167 root->inode_tree = RB_ROOT;
16cdcec7 1168 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1169 root->block_rsv = NULL;
0b86a832
CM
1170
1171 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1172 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1173 INIT_LIST_HEAD(&root->delalloc_inodes);
1174 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1175 INIT_LIST_HEAD(&root->ordered_extents);
1176 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1177 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1178 INIT_LIST_HEAD(&root->logged_list[0]);
1179 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1180 spin_lock_init(&root->inode_lock);
eb73c1b7 1181 spin_lock_init(&root->delalloc_lock);
199c2a9c 1182 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1183 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1184 spin_lock_init(&root->log_extents_lock[0]);
1185 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1186 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1187 mutex_init(&root->objectid_mutex);
e02119d5 1188 mutex_init(&root->log_mutex);
31f3d255 1189 mutex_init(&root->ordered_extent_mutex);
573bfb72 1190 mutex_init(&root->delalloc_mutex);
c53e9653 1191 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1192 init_waitqueue_head(&root->log_writer_wait);
1193 init_waitqueue_head(&root->log_commit_wait[0]);
1194 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1195 INIT_LIST_HEAD(&root->log_ctxs[0]);
1196 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1197 atomic_set(&root->log_commit[0], 0);
1198 atomic_set(&root->log_commit[1], 0);
1199 atomic_set(&root->log_writers, 0);
2ecb7923 1200 atomic_set(&root->log_batch, 0);
0700cea7 1201 refcount_set(&root->refs, 1);
8ecebf4d 1202 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1203 atomic_set(&root->nr_swapfiles, 0);
7237f183 1204 root->log_transid = 0;
d1433deb 1205 root->log_transid_committed = -1;
257c62e1 1206 root->last_log_commit = 0;
e289f03e 1207 if (!dummy) {
43eb5f29
QW
1208 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1209 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1210 extent_io_tree_init(fs_info, &root->log_csum_range,
1211 IO_TREE_LOG_CSUM_RANGE, NULL);
1212 }
017e5369 1213
3768f368
CM
1214 memset(&root->root_key, 0, sizeof(root->root_key));
1215 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1216 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1217 root->root_key.objectid = objectid;
0ee5dc67 1218 root->anon_dev = 0;
8ea05e3a 1219
5f3ab90a 1220 spin_lock_init(&root->root_item_lock);
370a11b8 1221 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1222#ifdef CONFIG_BTRFS_DEBUG
1223 INIT_LIST_HEAD(&root->leak_list);
1224 spin_lock(&fs_info->fs_roots_radix_lock);
1225 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1226 spin_unlock(&fs_info->fs_roots_radix_lock);
1227#endif
3768f368
CM
1228}
1229
74e4d827 1230static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1231 u64 objectid, gfp_t flags)
6f07e42e 1232{
74e4d827 1233 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1234 if (root)
96dfcb46 1235 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1236 return root;
1237}
1238
06ea65a3
JB
1239#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1240/* Should only be used by the testing infrastructure */
da17066c 1241struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1242{
1243 struct btrfs_root *root;
1244
7c0260ee
JM
1245 if (!fs_info)
1246 return ERR_PTR(-EINVAL);
1247
96dfcb46 1248 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1249 if (!root)
1250 return ERR_PTR(-ENOMEM);
da17066c 1251
b9ef22de 1252 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1253 root->alloc_bytenr = 0;
06ea65a3
JB
1254
1255 return root;
1256}
1257#endif
1258
20897f5c 1259struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1260 u64 objectid)
1261{
9b7a2440 1262 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1263 struct extent_buffer *leaf;
1264 struct btrfs_root *tree_root = fs_info->tree_root;
1265 struct btrfs_root *root;
1266 struct btrfs_key key;
b89f6d1f 1267 unsigned int nofs_flag;
20897f5c 1268 int ret = 0;
20897f5c 1269
b89f6d1f
FM
1270 /*
1271 * We're holding a transaction handle, so use a NOFS memory allocation
1272 * context to avoid deadlock if reclaim happens.
1273 */
1274 nofs_flag = memalloc_nofs_save();
96dfcb46 1275 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1276 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1277 if (!root)
1278 return ERR_PTR(-ENOMEM);
1279
20897f5c
AJ
1280 root->root_key.objectid = objectid;
1281 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1282 root->root_key.offset = 0;
1283
9631e4cc
JB
1284 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1285 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1286 if (IS_ERR(leaf)) {
1287 ret = PTR_ERR(leaf);
1dd05682 1288 leaf = NULL;
8a6a87cd 1289 goto fail_unlock;
20897f5c
AJ
1290 }
1291
20897f5c 1292 root->node = leaf;
20897f5c
AJ
1293 btrfs_mark_buffer_dirty(leaf);
1294
1295 root->commit_root = btrfs_root_node(root);
27cdeb70 1296 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1297
f944d2cb
DS
1298 btrfs_set_root_flags(&root->root_item, 0);
1299 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1300 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1301 btrfs_set_root_generation(&root->root_item, trans->transid);
1302 btrfs_set_root_level(&root->root_item, 0);
1303 btrfs_set_root_refs(&root->root_item, 1);
1304 btrfs_set_root_used(&root->root_item, leaf->len);
1305 btrfs_set_root_last_snapshot(&root->root_item, 0);
1306 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1307 if (is_fstree(objectid))
807fc790
AS
1308 generate_random_guid(root->root_item.uuid);
1309 else
1310 export_guid(root->root_item.uuid, &guid_null);
c8422684 1311 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1312
8a6a87cd
BB
1313 btrfs_tree_unlock(leaf);
1314
20897f5c
AJ
1315 key.objectid = objectid;
1316 key.type = BTRFS_ROOT_ITEM_KEY;
1317 key.offset = 0;
1318 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1319 if (ret)
1320 goto fail;
1321
1dd05682
TI
1322 return root;
1323
8a6a87cd 1324fail_unlock:
8c38938c 1325 if (leaf)
1dd05682 1326 btrfs_tree_unlock(leaf);
8a6a87cd 1327fail:
00246528 1328 btrfs_put_root(root);
20897f5c 1329
1dd05682 1330 return ERR_PTR(ret);
20897f5c
AJ
1331}
1332
7237f183
YZ
1333static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1334 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1335{
1336 struct btrfs_root *root;
e02119d5 1337
96dfcb46 1338 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1339 if (!root)
7237f183 1340 return ERR_PTR(-ENOMEM);
e02119d5 1341
e02119d5
CM
1342 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1343 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1344 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1345
6ab6ebb7
NA
1346 return root;
1347}
1348
1349int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1350 struct btrfs_root *root)
1351{
1352 struct extent_buffer *leaf;
1353
7237f183 1354 /*
92a7cc42 1355 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1356 *
92a7cc42
QW
1357 * Log trees are not exposed to user space thus can't be snapshotted,
1358 * and they go away before a real commit is actually done.
1359 *
1360 * They do store pointers to file data extents, and those reference
1361 * counts still get updated (along with back refs to the log tree).
7237f183 1362 */
e02119d5 1363
4d75f8a9 1364 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1365 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1366 if (IS_ERR(leaf))
1367 return PTR_ERR(leaf);
e02119d5 1368
7237f183 1369 root->node = leaf;
e02119d5 1370
e02119d5
CM
1371 btrfs_mark_buffer_dirty(root->node);
1372 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1373
1374 return 0;
7237f183
YZ
1375}
1376
1377int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1378 struct btrfs_fs_info *fs_info)
1379{
1380 struct btrfs_root *log_root;
1381
1382 log_root = alloc_log_tree(trans, fs_info);
1383 if (IS_ERR(log_root))
1384 return PTR_ERR(log_root);
6ab6ebb7 1385
3ddebf27
NA
1386 if (!btrfs_is_zoned(fs_info)) {
1387 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1388
1389 if (ret) {
1390 btrfs_put_root(log_root);
1391 return ret;
1392 }
6ab6ebb7
NA
1393 }
1394
7237f183
YZ
1395 WARN_ON(fs_info->log_root_tree);
1396 fs_info->log_root_tree = log_root;
1397 return 0;
1398}
1399
1400int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1401 struct btrfs_root *root)
1402{
0b246afa 1403 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1404 struct btrfs_root *log_root;
1405 struct btrfs_inode_item *inode_item;
6ab6ebb7 1406 int ret;
7237f183 1407
0b246afa 1408 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1409 if (IS_ERR(log_root))
1410 return PTR_ERR(log_root);
1411
6ab6ebb7
NA
1412 ret = btrfs_alloc_log_tree_node(trans, log_root);
1413 if (ret) {
1414 btrfs_put_root(log_root);
1415 return ret;
1416 }
1417
7237f183
YZ
1418 log_root->last_trans = trans->transid;
1419 log_root->root_key.offset = root->root_key.objectid;
1420
1421 inode_item = &log_root->root_item.inode;
3cae210f
QW
1422 btrfs_set_stack_inode_generation(inode_item, 1);
1423 btrfs_set_stack_inode_size(inode_item, 3);
1424 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1425 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1426 fs_info->nodesize);
3cae210f 1427 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1428
5d4f98a2 1429 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1430
1431 WARN_ON(root->log_root);
1432 root->log_root = log_root;
1433 root->log_transid = 0;
d1433deb 1434 root->log_transid_committed = -1;
257c62e1 1435 root->last_log_commit = 0;
e02119d5
CM
1436 return 0;
1437}
1438
49d11bea
JB
1439static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1440 struct btrfs_path *path,
1441 struct btrfs_key *key)
e02119d5
CM
1442{
1443 struct btrfs_root *root;
1444 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1445 u64 generation;
cb517eab 1446 int ret;
581c1760 1447 int level;
0f7d52f4 1448
96dfcb46 1449 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1450 if (!root)
1451 return ERR_PTR(-ENOMEM);
0f7d52f4 1452
cb517eab
MX
1453 ret = btrfs_find_root(tree_root, key, path,
1454 &root->root_item, &root->root_key);
0f7d52f4 1455 if (ret) {
13a8a7c8
YZ
1456 if (ret > 0)
1457 ret = -ENOENT;
49d11bea 1458 goto fail;
0f7d52f4 1459 }
13a8a7c8 1460
84234f3a 1461 generation = btrfs_root_generation(&root->root_item);
581c1760 1462 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1463 root->node = read_tree_block(fs_info,
1464 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1465 key->objectid, generation, level, NULL);
64c043de
LB
1466 if (IS_ERR(root->node)) {
1467 ret = PTR_ERR(root->node);
8c38938c 1468 root->node = NULL;
49d11bea 1469 goto fail;
cb517eab
MX
1470 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1471 ret = -EIO;
49d11bea 1472 goto fail;
416bc658 1473 }
5d4f98a2 1474 root->commit_root = btrfs_root_node(root);
cb517eab 1475 return root;
49d11bea 1476fail:
00246528 1477 btrfs_put_root(root);
49d11bea
JB
1478 return ERR_PTR(ret);
1479}
1480
1481struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1482 struct btrfs_key *key)
1483{
1484 struct btrfs_root *root;
1485 struct btrfs_path *path;
1486
1487 path = btrfs_alloc_path();
1488 if (!path)
1489 return ERR_PTR(-ENOMEM);
1490 root = read_tree_root_path(tree_root, path, key);
1491 btrfs_free_path(path);
1492
1493 return root;
cb517eab
MX
1494}
1495
2dfb1e43
QW
1496/*
1497 * Initialize subvolume root in-memory structure
1498 *
1499 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1500 */
1501static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1502{
1503 int ret;
dcc3eb96 1504 unsigned int nofs_flag;
cb517eab 1505
dcc3eb96
NB
1506 /*
1507 * We might be called under a transaction (e.g. indirect backref
1508 * resolution) which could deadlock if it triggers memory reclaim
1509 */
1510 nofs_flag = memalloc_nofs_save();
1511 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1512 memalloc_nofs_restore(nofs_flag);
1513 if (ret)
8257b2dc 1514 goto fail;
8257b2dc 1515
aeb935a4 1516 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
b8f762a2 1517 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1518 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1519 btrfs_check_and_init_root_item(&root->root_item);
1520 }
1521
851fd730
QW
1522 /*
1523 * Don't assign anonymous block device to roots that are not exposed to
1524 * userspace, the id pool is limited to 1M
1525 */
1526 if (is_fstree(root->root_key.objectid) &&
1527 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1528 if (!anon_dev) {
1529 ret = get_anon_bdev(&root->anon_dev);
1530 if (ret)
1531 goto fail;
1532 } else {
1533 root->anon_dev = anon_dev;
1534 }
851fd730 1535 }
f32e48e9
CR
1536
1537 mutex_lock(&root->objectid_mutex);
453e4873 1538 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1539 if (ret) {
1540 mutex_unlock(&root->objectid_mutex);
876d2cf1 1541 goto fail;
f32e48e9
CR
1542 }
1543
6b8fad57 1544 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1545
1546 mutex_unlock(&root->objectid_mutex);
1547
cb517eab
MX
1548 return 0;
1549fail:
84db5ccf 1550 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1551 return ret;
1552}
1553
a98db0f3
JB
1554static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1555 u64 root_id)
cb517eab
MX
1556{
1557 struct btrfs_root *root;
1558
1559 spin_lock(&fs_info->fs_roots_radix_lock);
1560 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1561 (unsigned long)root_id);
bc44d7c4 1562 if (root)
00246528 1563 root = btrfs_grab_root(root);
cb517eab
MX
1564 spin_unlock(&fs_info->fs_roots_radix_lock);
1565 return root;
1566}
1567
49d11bea
JB
1568static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1569 u64 objectid)
1570{
1571 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1572 return btrfs_grab_root(fs_info->tree_root);
1573 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1574 return btrfs_grab_root(fs_info->extent_root);
1575 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1576 return btrfs_grab_root(fs_info->chunk_root);
1577 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1578 return btrfs_grab_root(fs_info->dev_root);
1579 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1580 return btrfs_grab_root(fs_info->csum_root);
1581 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1582 return btrfs_grab_root(fs_info->quota_root) ?
1583 fs_info->quota_root : ERR_PTR(-ENOENT);
1584 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1585 return btrfs_grab_root(fs_info->uuid_root) ?
1586 fs_info->uuid_root : ERR_PTR(-ENOENT);
1587 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1588 return btrfs_grab_root(fs_info->free_space_root) ?
1589 fs_info->free_space_root : ERR_PTR(-ENOENT);
1590 return NULL;
1591}
1592
cb517eab
MX
1593int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1594 struct btrfs_root *root)
1595{
1596 int ret;
1597
e1860a77 1598 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1599 if (ret)
1600 return ret;
1601
1602 spin_lock(&fs_info->fs_roots_radix_lock);
1603 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1604 (unsigned long)root->root_key.objectid,
1605 root);
af01d2e5 1606 if (ret == 0) {
00246528 1607 btrfs_grab_root(root);
27cdeb70 1608 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1609 }
cb517eab
MX
1610 spin_unlock(&fs_info->fs_roots_radix_lock);
1611 radix_tree_preload_end();
1612
1613 return ret;
1614}
1615
bd647ce3
JB
1616void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1617{
1618#ifdef CONFIG_BTRFS_DEBUG
1619 struct btrfs_root *root;
1620
1621 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1622 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1623
bd647ce3
JB
1624 root = list_first_entry(&fs_info->allocated_roots,
1625 struct btrfs_root, leak_list);
457f1864 1626 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1627 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1628 refcount_read(&root->refs));
1629 while (refcount_read(&root->refs) > 1)
00246528
JB
1630 btrfs_put_root(root);
1631 btrfs_put_root(root);
bd647ce3
JB
1632 }
1633#endif
1634}
1635
0d4b0463
JB
1636void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1637{
141386e1
JB
1638 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1639 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1640 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1641 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1642 btrfs_free_csum_hash(fs_info);
1643 btrfs_free_stripe_hash_table(fs_info);
1644 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1645 kfree(fs_info->balance_ctl);
1646 kfree(fs_info->delayed_root);
00246528
JB
1647 btrfs_put_root(fs_info->extent_root);
1648 btrfs_put_root(fs_info->tree_root);
1649 btrfs_put_root(fs_info->chunk_root);
1650 btrfs_put_root(fs_info->dev_root);
1651 btrfs_put_root(fs_info->csum_root);
1652 btrfs_put_root(fs_info->quota_root);
1653 btrfs_put_root(fs_info->uuid_root);
1654 btrfs_put_root(fs_info->free_space_root);
1655 btrfs_put_root(fs_info->fs_root);
aeb935a4 1656 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1657 btrfs_check_leaked_roots(fs_info);
3fd63727 1658 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1659 kfree(fs_info->super_copy);
1660 kfree(fs_info->super_for_commit);
1661 kvfree(fs_info);
1662}
1663
1664
2dfb1e43
QW
1665/*
1666 * Get an in-memory reference of a root structure.
1667 *
1668 * For essential trees like root/extent tree, we grab it from fs_info directly.
1669 * For subvolume trees, we check the cached filesystem roots first. If not
1670 * found, then read it from disk and add it to cached fs roots.
1671 *
1672 * Caller should release the root by calling btrfs_put_root() after the usage.
1673 *
1674 * NOTE: Reloc and log trees can't be read by this function as they share the
1675 * same root objectid.
1676 *
1677 * @objectid: root id
1678 * @anon_dev: preallocated anonymous block device number for new roots,
1679 * pass 0 for new allocation.
1680 * @check_ref: whether to check root item references, If true, return -ENOENT
1681 * for orphan roots
1682 */
1683static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1684 u64 objectid, dev_t anon_dev,
1685 bool check_ref)
5eda7b5e
CM
1686{
1687 struct btrfs_root *root;
381cf658 1688 struct btrfs_path *path;
1d4c08e0 1689 struct btrfs_key key;
5eda7b5e
CM
1690 int ret;
1691
49d11bea
JB
1692 root = btrfs_get_global_root(fs_info, objectid);
1693 if (root)
1694 return root;
4df27c4d 1695again:
56e9357a 1696 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1697 if (root) {
2dfb1e43
QW
1698 /* Shouldn't get preallocated anon_dev for cached roots */
1699 ASSERT(!anon_dev);
bc44d7c4 1700 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1701 btrfs_put_root(root);
48475471 1702 return ERR_PTR(-ENOENT);
bc44d7c4 1703 }
5eda7b5e 1704 return root;
48475471 1705 }
5eda7b5e 1706
56e9357a
DS
1707 key.objectid = objectid;
1708 key.type = BTRFS_ROOT_ITEM_KEY;
1709 key.offset = (u64)-1;
1710 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1711 if (IS_ERR(root))
1712 return root;
3394e160 1713
c00869f1 1714 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1715 ret = -ENOENT;
581bb050 1716 goto fail;
35a30d7c 1717 }
581bb050 1718
2dfb1e43 1719 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1720 if (ret)
1721 goto fail;
3394e160 1722
381cf658
DS
1723 path = btrfs_alloc_path();
1724 if (!path) {
1725 ret = -ENOMEM;
1726 goto fail;
1727 }
1d4c08e0
DS
1728 key.objectid = BTRFS_ORPHAN_OBJECTID;
1729 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1730 key.offset = objectid;
1d4c08e0
DS
1731
1732 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1733 btrfs_free_path(path);
d68fc57b
YZ
1734 if (ret < 0)
1735 goto fail;
1736 if (ret == 0)
27cdeb70 1737 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1738
cb517eab 1739 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1740 if (ret) {
00246528 1741 btrfs_put_root(root);
4785e24f 1742 if (ret == -EEXIST)
4df27c4d 1743 goto again;
4df27c4d 1744 goto fail;
0f7d52f4 1745 }
edbd8d4e 1746 return root;
4df27c4d 1747fail:
e019bdc9
FM
1748 /*
1749 * If our caller provided us an anonymous device, then it's his
1750 * responsability to free it in case we fail. So we have to set our
1751 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1752 * and once again by our caller.
1753 */
1754 if (anon_dev)
1755 root->anon_dev = 0;
8c38938c 1756 btrfs_put_root(root);
4df27c4d 1757 return ERR_PTR(ret);
edbd8d4e
CM
1758}
1759
2dfb1e43
QW
1760/*
1761 * Get in-memory reference of a root structure
1762 *
1763 * @objectid: tree objectid
1764 * @check_ref: if set, verify that the tree exists and the item has at least
1765 * one reference
1766 */
1767struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1768 u64 objectid, bool check_ref)
1769{
1770 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1771}
1772
1773/*
1774 * Get in-memory reference of a root structure, created as new, optionally pass
1775 * the anonymous block device id
1776 *
1777 * @objectid: tree objectid
1778 * @anon_dev: if zero, allocate a new anonymous block device or use the
1779 * parameter value
1780 */
1781struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1782 u64 objectid, dev_t anon_dev)
1783{
1784 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1785}
1786
49d11bea
JB
1787/*
1788 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1789 * @fs_info: the fs_info
1790 * @objectid: the objectid we need to lookup
1791 *
1792 * This is exclusively used for backref walking, and exists specifically because
1793 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1794 * creation time, which means we may have to read the tree_root in order to look
1795 * up a fs root that is not in memory. If the root is not in memory we will
1796 * read the tree root commit root and look up the fs root from there. This is a
1797 * temporary root, it will not be inserted into the radix tree as it doesn't
1798 * have the most uptodate information, it'll simply be discarded once the
1799 * backref code is finished using the root.
1800 */
1801struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1802 struct btrfs_path *path,
1803 u64 objectid)
1804{
1805 struct btrfs_root *root;
1806 struct btrfs_key key;
1807
1808 ASSERT(path->search_commit_root && path->skip_locking);
1809
1810 /*
1811 * This can return -ENOENT if we ask for a root that doesn't exist, but
1812 * since this is called via the backref walking code we won't be looking
1813 * up a root that doesn't exist, unless there's corruption. So if root
1814 * != NULL just return it.
1815 */
1816 root = btrfs_get_global_root(fs_info, objectid);
1817 if (root)
1818 return root;
1819
1820 root = btrfs_lookup_fs_root(fs_info, objectid);
1821 if (root)
1822 return root;
1823
1824 key.objectid = objectid;
1825 key.type = BTRFS_ROOT_ITEM_KEY;
1826 key.offset = (u64)-1;
1827 root = read_tree_root_path(fs_info->tree_root, path, &key);
1828 btrfs_release_path(path);
1829
1830 return root;
1831}
1832
8b712842
CM
1833/*
1834 * called by the kthread helper functions to finally call the bio end_io
1835 * functions. This is where read checksum verification actually happens
1836 */
1837static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1838{
ce9adaa5 1839 struct bio *bio;
97eb6b69 1840 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1841
97eb6b69 1842 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1843 bio = end_io_wq->bio;
ce9adaa5 1844
4e4cbee9 1845 bio->bi_status = end_io_wq->status;
8b712842
CM
1846 bio->bi_private = end_io_wq->private;
1847 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1848 bio_endio(bio);
9be490f1 1849 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1850}
1851
a74a4b97
CM
1852static int cleaner_kthread(void *arg)
1853{
1854 struct btrfs_root *root = arg;
0b246afa 1855 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1856 int again;
a74a4b97 1857
d6fd0ae2 1858 while (1) {
d0278245 1859 again = 0;
a74a4b97 1860
fd340d0f
JB
1861 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1862
d0278245 1863 /* Make the cleaner go to sleep early. */
2ff7e61e 1864 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1865 goto sleep;
1866
90c711ab
ZB
1867 /*
1868 * Do not do anything if we might cause open_ctree() to block
1869 * before we have finished mounting the filesystem.
1870 */
0b246afa 1871 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1872 goto sleep;
1873
0b246afa 1874 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1875 goto sleep;
1876
dc7f370c
MX
1877 /*
1878 * Avoid the problem that we change the status of the fs
1879 * during the above check and trylock.
1880 */
2ff7e61e 1881 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1882 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1883 goto sleep;
76dda93c 1884 }
a74a4b97 1885
2ff7e61e 1886 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1887
d0278245 1888 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1889 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1890
1891 /*
05323cd1
MX
1892 * The defragger has dealt with the R/O remount and umount,
1893 * needn't do anything special here.
d0278245 1894 */
0b246afa 1895 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1896
1897 /*
f3372065 1898 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1899 * with relocation (btrfs_relocate_chunk) and relocation
1900 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1901 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1902 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1903 * unused block groups.
1904 */
0b246afa 1905 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1906
1907 /*
1908 * Reclaim block groups in the reclaim_bgs list after we deleted
1909 * all unused block_groups. This possibly gives us some more free
1910 * space.
1911 */
1912 btrfs_reclaim_bgs(fs_info);
d0278245 1913sleep:
a0a1db70 1914 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1915 if (kthread_should_park())
1916 kthread_parkme();
1917 if (kthread_should_stop())
1918 return 0;
838fe188 1919 if (!again) {
a74a4b97 1920 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1921 schedule();
a74a4b97
CM
1922 __set_current_state(TASK_RUNNING);
1923 }
da288d28 1924 }
a74a4b97
CM
1925}
1926
1927static int transaction_kthread(void *arg)
1928{
1929 struct btrfs_root *root = arg;
0b246afa 1930 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1931 struct btrfs_trans_handle *trans;
1932 struct btrfs_transaction *cur;
8929ecfa 1933 u64 transid;
643900be 1934 time64_t delta;
a74a4b97 1935 unsigned long delay;
914b2007 1936 bool cannot_commit;
a74a4b97
CM
1937
1938 do {
914b2007 1939 cannot_commit = false;
ba1bc00f 1940 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1941 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1942
0b246afa
JM
1943 spin_lock(&fs_info->trans_lock);
1944 cur = fs_info->running_transaction;
a74a4b97 1945 if (!cur) {
0b246afa 1946 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1947 goto sleep;
1948 }
31153d81 1949
643900be 1950 delta = ktime_get_seconds() - cur->start_time;
3296bf56 1951 if (cur->state < TRANS_STATE_COMMIT_START &&
643900be 1952 delta < fs_info->commit_interval) {
0b246afa 1953 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1954 delay -= msecs_to_jiffies((delta - 1) * 1000);
1955 delay = min(delay,
1956 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1957 goto sleep;
1958 }
8929ecfa 1959 transid = cur->transid;
0b246afa 1960 spin_unlock(&fs_info->trans_lock);
56bec294 1961
79787eaa 1962 /* If the file system is aborted, this will always fail. */
354aa0fb 1963 trans = btrfs_attach_transaction(root);
914b2007 1964 if (IS_ERR(trans)) {
354aa0fb
MX
1965 if (PTR_ERR(trans) != -ENOENT)
1966 cannot_commit = true;
79787eaa 1967 goto sleep;
914b2007 1968 }
8929ecfa 1969 if (transid == trans->transid) {
3a45bb20 1970 btrfs_commit_transaction(trans);
8929ecfa 1971 } else {
3a45bb20 1972 btrfs_end_transaction(trans);
8929ecfa 1973 }
a74a4b97 1974sleep:
0b246afa
JM
1975 wake_up_process(fs_info->cleaner_kthread);
1976 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1977
4e121c06 1978 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1979 &fs_info->fs_state)))
2ff7e61e 1980 btrfs_cleanup_transaction(fs_info);
ce63f891 1981 if (!kthread_should_stop() &&
0b246afa 1982 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1983 cannot_commit))
bc5511d0 1984 schedule_timeout_interruptible(delay);
a74a4b97
CM
1985 } while (!kthread_should_stop());
1986 return 0;
1987}
1988
af31f5e5 1989/*
01f0f9da
NB
1990 * This will find the highest generation in the array of root backups. The
1991 * index of the highest array is returned, or -EINVAL if we can't find
1992 * anything.
af31f5e5
CM
1993 *
1994 * We check to make sure the array is valid by comparing the
1995 * generation of the latest root in the array with the generation
1996 * in the super block. If they don't match we pitch it.
1997 */
01f0f9da 1998static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1999{
01f0f9da 2000 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 2001 u64 cur;
af31f5e5
CM
2002 struct btrfs_root_backup *root_backup;
2003 int i;
2004
2005 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2006 root_backup = info->super_copy->super_roots + i;
2007 cur = btrfs_backup_tree_root_gen(root_backup);
2008 if (cur == newest_gen)
01f0f9da 2009 return i;
af31f5e5
CM
2010 }
2011
01f0f9da 2012 return -EINVAL;
af31f5e5
CM
2013}
2014
af31f5e5
CM
2015/*
2016 * copy all the root pointers into the super backup array.
2017 * this will bump the backup pointer by one when it is
2018 * done
2019 */
2020static void backup_super_roots(struct btrfs_fs_info *info)
2021{
6ef108dd 2022 const int next_backup = info->backup_root_index;
af31f5e5 2023 struct btrfs_root_backup *root_backup;
af31f5e5
CM
2024
2025 root_backup = info->super_for_commit->super_roots + next_backup;
2026
2027 /*
2028 * make sure all of our padding and empty slots get zero filled
2029 * regardless of which ones we use today
2030 */
2031 memset(root_backup, 0, sizeof(*root_backup));
2032
2033 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2034
2035 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2036 btrfs_set_backup_tree_root_gen(root_backup,
2037 btrfs_header_generation(info->tree_root->node));
2038
2039 btrfs_set_backup_tree_root_level(root_backup,
2040 btrfs_header_level(info->tree_root->node));
2041
2042 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2043 btrfs_set_backup_chunk_root_gen(root_backup,
2044 btrfs_header_generation(info->chunk_root->node));
2045 btrfs_set_backup_chunk_root_level(root_backup,
2046 btrfs_header_level(info->chunk_root->node));
2047
2048 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2049 btrfs_set_backup_extent_root_gen(root_backup,
2050 btrfs_header_generation(info->extent_root->node));
2051 btrfs_set_backup_extent_root_level(root_backup,
2052 btrfs_header_level(info->extent_root->node));
2053
7c7e82a7
CM
2054 /*
2055 * we might commit during log recovery, which happens before we set
2056 * the fs_root. Make sure it is valid before we fill it in.
2057 */
2058 if (info->fs_root && info->fs_root->node) {
2059 btrfs_set_backup_fs_root(root_backup,
2060 info->fs_root->node->start);
2061 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2062 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2063 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2064 btrfs_header_level(info->fs_root->node));
7c7e82a7 2065 }
af31f5e5
CM
2066
2067 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2068 btrfs_set_backup_dev_root_gen(root_backup,
2069 btrfs_header_generation(info->dev_root->node));
2070 btrfs_set_backup_dev_root_level(root_backup,
2071 btrfs_header_level(info->dev_root->node));
2072
2073 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2074 btrfs_set_backup_csum_root_gen(root_backup,
2075 btrfs_header_generation(info->csum_root->node));
2076 btrfs_set_backup_csum_root_level(root_backup,
2077 btrfs_header_level(info->csum_root->node));
2078
2079 btrfs_set_backup_total_bytes(root_backup,
2080 btrfs_super_total_bytes(info->super_copy));
2081 btrfs_set_backup_bytes_used(root_backup,
2082 btrfs_super_bytes_used(info->super_copy));
2083 btrfs_set_backup_num_devices(root_backup,
2084 btrfs_super_num_devices(info->super_copy));
2085
2086 /*
2087 * if we don't copy this out to the super_copy, it won't get remembered
2088 * for the next commit
2089 */
2090 memcpy(&info->super_copy->super_roots,
2091 &info->super_for_commit->super_roots,
2092 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2093}
2094
bd2336b2
NB
2095/*
2096 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2097 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2098 *
2099 * fs_info - filesystem whose backup roots need to be read
2100 * priority - priority of backup root required
2101 *
2102 * Returns backup root index on success and -EINVAL otherwise.
2103 */
2104static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2105{
2106 int backup_index = find_newest_super_backup(fs_info);
2107 struct btrfs_super_block *super = fs_info->super_copy;
2108 struct btrfs_root_backup *root_backup;
2109
2110 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2111 if (priority == 0)
2112 return backup_index;
2113
2114 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2115 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2116 } else {
2117 return -EINVAL;
2118 }
2119
2120 root_backup = super->super_roots + backup_index;
2121
2122 btrfs_set_super_generation(super,
2123 btrfs_backup_tree_root_gen(root_backup));
2124 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2125 btrfs_set_super_root_level(super,
2126 btrfs_backup_tree_root_level(root_backup));
2127 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2128
2129 /*
2130 * Fixme: the total bytes and num_devices need to match or we should
2131 * need a fsck
2132 */
2133 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2134 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2135
2136 return backup_index;
2137}
2138
7abadb64
LB
2139/* helper to cleanup workers */
2140static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2141{
dc6e3209 2142 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2143 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2144 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2145 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2146 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2147 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2148 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2149 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2150 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2151 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2152 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2153 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2154 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2155 if (fs_info->discard_ctl.discard_workers)
2156 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2157 /*
2158 * Now that all other work queues are destroyed, we can safely destroy
2159 * the queues used for metadata I/O, since tasks from those other work
2160 * queues can do metadata I/O operations.
2161 */
2162 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2163 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2164}
2165
2e9f5954
R
2166static void free_root_extent_buffers(struct btrfs_root *root)
2167{
2168 if (root) {
2169 free_extent_buffer(root->node);
2170 free_extent_buffer(root->commit_root);
2171 root->node = NULL;
2172 root->commit_root = NULL;
2173 }
2174}
2175
af31f5e5 2176/* helper to cleanup tree roots */
4273eaff 2177static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2178{
2e9f5954 2179 free_root_extent_buffers(info->tree_root);
655b09fe 2180
2e9f5954
R
2181 free_root_extent_buffers(info->dev_root);
2182 free_root_extent_buffers(info->extent_root);
2183 free_root_extent_buffers(info->csum_root);
2184 free_root_extent_buffers(info->quota_root);
2185 free_root_extent_buffers(info->uuid_root);
8c38938c 2186 free_root_extent_buffers(info->fs_root);
aeb935a4 2187 free_root_extent_buffers(info->data_reloc_root);
4273eaff 2188 if (free_chunk_root)
2e9f5954 2189 free_root_extent_buffers(info->chunk_root);
70f6d82e 2190 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2191}
2192
8c38938c
JB
2193void btrfs_put_root(struct btrfs_root *root)
2194{
2195 if (!root)
2196 return;
2197
2198 if (refcount_dec_and_test(&root->refs)) {
2199 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2200 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2201 if (root->anon_dev)
2202 free_anon_bdev(root->anon_dev);
2203 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2204 free_root_extent_buffers(root);
8c38938c
JB
2205#ifdef CONFIG_BTRFS_DEBUG
2206 spin_lock(&root->fs_info->fs_roots_radix_lock);
2207 list_del_init(&root->leak_list);
2208 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2209#endif
2210 kfree(root);
2211 }
2212}
2213
faa2dbf0 2214void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2215{
2216 int ret;
2217 struct btrfs_root *gang[8];
2218 int i;
2219
2220 while (!list_empty(&fs_info->dead_roots)) {
2221 gang[0] = list_entry(fs_info->dead_roots.next,
2222 struct btrfs_root, root_list);
2223 list_del(&gang[0]->root_list);
2224
8c38938c 2225 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2226 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2227 btrfs_put_root(gang[0]);
171f6537
JB
2228 }
2229
2230 while (1) {
2231 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2232 (void **)gang, 0,
2233 ARRAY_SIZE(gang));
2234 if (!ret)
2235 break;
2236 for (i = 0; i < ret; i++)
cb517eab 2237 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2238 }
2239}
af31f5e5 2240
638aa7ed
ES
2241static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2242{
2243 mutex_init(&fs_info->scrub_lock);
2244 atomic_set(&fs_info->scrubs_running, 0);
2245 atomic_set(&fs_info->scrub_pause_req, 0);
2246 atomic_set(&fs_info->scrubs_paused, 0);
2247 atomic_set(&fs_info->scrub_cancel_req, 0);
2248 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2249 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2250}
2251
779a65a4
ES
2252static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2253{
2254 spin_lock_init(&fs_info->balance_lock);
2255 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2256 atomic_set(&fs_info->balance_pause_req, 0);
2257 atomic_set(&fs_info->balance_cancel_req, 0);
2258 fs_info->balance_ctl = NULL;
2259 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2260 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2261}
2262
6bccf3ab 2263static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2264{
2ff7e61e
JM
2265 struct inode *inode = fs_info->btree_inode;
2266
2267 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2268 set_nlink(inode, 1);
f37938e0
ES
2269 /*
2270 * we set the i_size on the btree inode to the max possible int.
2271 * the real end of the address space is determined by all of
2272 * the devices in the system
2273 */
2ff7e61e
JM
2274 inode->i_size = OFFSET_MAX;
2275 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2276
2ff7e61e 2277 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2278 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2279 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2280 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2281 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2282
5c8fd99f 2283 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2284 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2285 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2286 btrfs_insert_inode_hash(inode);
f37938e0
ES
2287}
2288
ad618368
ES
2289static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2290{
ad618368 2291 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2292 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2293 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2294}
2295
f9e92e40
ES
2296static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2297{
2298 spin_lock_init(&fs_info->qgroup_lock);
2299 mutex_init(&fs_info->qgroup_ioctl_lock);
2300 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2301 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2302 fs_info->qgroup_seq = 1;
f9e92e40 2303 fs_info->qgroup_ulist = NULL;
d2c609b8 2304 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2305 mutex_init(&fs_info->qgroup_rescan_lock);
2306}
2307
2a458198
ES
2308static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2309 struct btrfs_fs_devices *fs_devices)
2310{
f7b885be 2311 u32 max_active = fs_info->thread_pool_size;
6f011058 2312 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2313
2314 fs_info->workers =
cb001095
JM
2315 btrfs_alloc_workqueue(fs_info, "worker",
2316 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2317
2318 fs_info->delalloc_workers =
cb001095
JM
2319 btrfs_alloc_workqueue(fs_info, "delalloc",
2320 flags, max_active, 2);
2a458198
ES
2321
2322 fs_info->flush_workers =
cb001095
JM
2323 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2324 flags, max_active, 0);
2a458198
ES
2325
2326 fs_info->caching_workers =
cb001095 2327 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2328
2a458198 2329 fs_info->fixup_workers =
cb001095 2330 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2331
2332 /*
2333 * endios are largely parallel and should have a very
2334 * low idle thresh
2335 */
2336 fs_info->endio_workers =
cb001095 2337 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2338 fs_info->endio_meta_workers =
cb001095
JM
2339 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2340 max_active, 4);
2a458198 2341 fs_info->endio_meta_write_workers =
cb001095
JM
2342 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2343 max_active, 2);
2a458198 2344 fs_info->endio_raid56_workers =
cb001095
JM
2345 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2346 max_active, 4);
2a458198 2347 fs_info->rmw_workers =
cb001095 2348 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2349 fs_info->endio_write_workers =
cb001095
JM
2350 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2351 max_active, 2);
2a458198 2352 fs_info->endio_freespace_worker =
cb001095
JM
2353 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2354 max_active, 0);
2a458198 2355 fs_info->delayed_workers =
cb001095
JM
2356 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2357 max_active, 0);
2a458198 2358 fs_info->readahead_workers =
cb001095
JM
2359 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2360 max_active, 2);
2a458198 2361 fs_info->qgroup_rescan_workers =
cb001095 2362 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2363 fs_info->discard_ctl.discard_workers =
2364 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2365
2366 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2367 fs_info->flush_workers &&
2a458198
ES
2368 fs_info->endio_workers && fs_info->endio_meta_workers &&
2369 fs_info->endio_meta_write_workers &&
2a458198
ES
2370 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2371 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2372 fs_info->caching_workers && fs_info->readahead_workers &&
2373 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2374 fs_info->qgroup_rescan_workers &&
2375 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2376 return -ENOMEM;
2377 }
2378
2379 return 0;
2380}
2381
6d97c6e3
JT
2382static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2383{
2384 struct crypto_shash *csum_shash;
b4e967be 2385 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2386
b4e967be 2387 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2388
2389 if (IS_ERR(csum_shash)) {
2390 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2391 csum_driver);
6d97c6e3
JT
2392 return PTR_ERR(csum_shash);
2393 }
2394
2395 fs_info->csum_shash = csum_shash;
2396
2397 return 0;
2398}
2399
63443bf5
ES
2400static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2401 struct btrfs_fs_devices *fs_devices)
2402{
2403 int ret;
63443bf5
ES
2404 struct btrfs_root *log_tree_root;
2405 struct btrfs_super_block *disk_super = fs_info->super_copy;
2406 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2407 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2408
2409 if (fs_devices->rw_devices == 0) {
f14d104d 2410 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2411 return -EIO;
2412 }
2413
96dfcb46
JB
2414 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2415 GFP_KERNEL);
63443bf5
ES
2416 if (!log_tree_root)
2417 return -ENOMEM;
2418
2ff7e61e 2419 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2420 BTRFS_TREE_LOG_OBJECTID,
2421 fs_info->generation + 1, level,
2422 NULL);
64c043de 2423 if (IS_ERR(log_tree_root->node)) {
f14d104d 2424 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2425 ret = PTR_ERR(log_tree_root->node);
8c38938c 2426 log_tree_root->node = NULL;
00246528 2427 btrfs_put_root(log_tree_root);
0eeff236 2428 return ret;
64c043de 2429 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2430 btrfs_err(fs_info, "failed to read log tree");
00246528 2431 btrfs_put_root(log_tree_root);
63443bf5
ES
2432 return -EIO;
2433 }
2434 /* returns with log_tree_root freed on success */
2435 ret = btrfs_recover_log_trees(log_tree_root);
2436 if (ret) {
0b246afa
JM
2437 btrfs_handle_fs_error(fs_info, ret,
2438 "Failed to recover log tree");
00246528 2439 btrfs_put_root(log_tree_root);
63443bf5
ES
2440 return ret;
2441 }
2442
bc98a42c 2443 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2444 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2445 if (ret)
2446 return ret;
2447 }
2448
2449 return 0;
2450}
2451
6bccf3ab 2452static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2453{
6bccf3ab 2454 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2455 struct btrfs_root *root;
4bbcaa64
ES
2456 struct btrfs_key location;
2457 int ret;
2458
6bccf3ab
JM
2459 BUG_ON(!fs_info->tree_root);
2460
4bbcaa64
ES
2461 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2462 location.type = BTRFS_ROOT_ITEM_KEY;
2463 location.offset = 0;
2464
a4f3d2c4 2465 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2466 if (IS_ERR(root)) {
42437a63
JB
2467 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2468 ret = PTR_ERR(root);
2469 goto out;
2470 }
2471 } else {
2472 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2473 fs_info->extent_root = root;
f50f4353 2474 }
4bbcaa64
ES
2475
2476 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2477 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2478 if (IS_ERR(root)) {
42437a63
JB
2479 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2480 ret = PTR_ERR(root);
2481 goto out;
2482 }
2483 } else {
2484 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2485 fs_info->dev_root = root;
f50f4353 2486 }
820a49da
JB
2487 /* Initialize fs_info for all devices in any case */
2488 btrfs_init_devices_late(fs_info);
4bbcaa64 2489
882dbe0c
JB
2490 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2491 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2492 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2493 root = btrfs_read_tree_root(tree_root, &location);
2494 if (IS_ERR(root)) {
2495 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2496 ret = PTR_ERR(root);
2497 goto out;
2498 }
2499 } else {
2500 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2501 fs_info->csum_root = root;
42437a63 2502 }
f50f4353 2503 }
4bbcaa64 2504
aeb935a4
QW
2505 /*
2506 * This tree can share blocks with some other fs tree during relocation
2507 * and we need a proper setup by btrfs_get_fs_root
2508 */
56e9357a
DS
2509 root = btrfs_get_fs_root(tree_root->fs_info,
2510 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2511 if (IS_ERR(root)) {
42437a63
JB
2512 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2513 ret = PTR_ERR(root);
2514 goto out;
2515 }
2516 } else {
2517 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2518 fs_info->data_reloc_root = root;
aeb935a4 2519 }
aeb935a4 2520
4bbcaa64 2521 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2522 root = btrfs_read_tree_root(tree_root, &location);
2523 if (!IS_ERR(root)) {
2524 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2525 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2526 fs_info->quota_root = root;
4bbcaa64
ES
2527 }
2528
2529 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2530 root = btrfs_read_tree_root(tree_root, &location);
2531 if (IS_ERR(root)) {
42437a63
JB
2532 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2533 ret = PTR_ERR(root);
2534 if (ret != -ENOENT)
2535 goto out;
2536 }
4bbcaa64 2537 } else {
a4f3d2c4
DS
2538 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2539 fs_info->uuid_root = root;
4bbcaa64
ES
2540 }
2541
70f6d82e
OS
2542 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2543 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2544 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2545 if (IS_ERR(root)) {
42437a63
JB
2546 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2547 ret = PTR_ERR(root);
2548 goto out;
2549 }
2550 } else {
2551 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2552 fs_info->free_space_root = root;
f50f4353 2553 }
70f6d82e
OS
2554 }
2555
4bbcaa64 2556 return 0;
f50f4353
LB
2557out:
2558 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2559 location.objectid, ret);
2560 return ret;
4bbcaa64
ES
2561}
2562
069ec957
QW
2563/*
2564 * Real super block validation
2565 * NOTE: super csum type and incompat features will not be checked here.
2566 *
2567 * @sb: super block to check
2568 * @mirror_num: the super block number to check its bytenr:
2569 * 0 the primary (1st) sb
2570 * 1, 2 2nd and 3rd backup copy
2571 * -1 skip bytenr check
2572 */
2573static int validate_super(struct btrfs_fs_info *fs_info,
2574 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2575{
21a852b0
QW
2576 u64 nodesize = btrfs_super_nodesize(sb);
2577 u64 sectorsize = btrfs_super_sectorsize(sb);
2578 int ret = 0;
2579
2580 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2581 btrfs_err(fs_info, "no valid FS found");
2582 ret = -EINVAL;
2583 }
2584 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2585 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2586 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2587 ret = -EINVAL;
2588 }
2589 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2590 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2591 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2592 ret = -EINVAL;
2593 }
2594 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2595 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2596 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2597 ret = -EINVAL;
2598 }
2599 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2600 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2601 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2602 ret = -EINVAL;
2603 }
2604
2605 /*
2606 * Check sectorsize and nodesize first, other check will need it.
2607 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2608 */
2609 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2610 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2611 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2612 ret = -EINVAL;
2613 }
0bb3eb3e
QW
2614
2615 /*
2616 * For 4K page size, we only support 4K sector size.
2617 * For 64K page size, we support read-write for 64K sector size, and
2618 * read-only for 4K sector size.
2619 */
2620 if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2621 (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2622 sectorsize != SZ_64K))) {
21a852b0 2623 btrfs_err(fs_info,
0bb3eb3e 2624 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2625 sectorsize, PAGE_SIZE);
2626 ret = -EINVAL;
2627 }
0bb3eb3e 2628
21a852b0
QW
2629 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2630 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2631 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2632 ret = -EINVAL;
2633 }
2634 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2635 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2636 le32_to_cpu(sb->__unused_leafsize), nodesize);
2637 ret = -EINVAL;
2638 }
2639
2640 /* Root alignment check */
2641 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2642 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2643 btrfs_super_root(sb));
2644 ret = -EINVAL;
2645 }
2646 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2647 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2648 btrfs_super_chunk_root(sb));
2649 ret = -EINVAL;
2650 }
2651 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2652 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2653 btrfs_super_log_root(sb));
2654 ret = -EINVAL;
2655 }
2656
aefd7f70
NB
2657 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2658 BTRFS_FSID_SIZE)) {
2659 btrfs_err(fs_info,
2660 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2661 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2662 ret = -EINVAL;
2663 }
2664
2665 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2666 memcmp(fs_info->fs_devices->metadata_uuid,
2667 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2668 btrfs_err(fs_info,
2669"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2670 fs_info->super_copy->metadata_uuid,
2671 fs_info->fs_devices->metadata_uuid);
2672 ret = -EINVAL;
2673 }
2674
de37aa51 2675 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2676 BTRFS_FSID_SIZE) != 0) {
21a852b0 2677 btrfs_err(fs_info,
7239ff4b 2678 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2679 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2680 ret = -EINVAL;
2681 }
2682
2683 /*
2684 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2685 * done later
2686 */
2687 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2688 btrfs_err(fs_info, "bytes_used is too small %llu",
2689 btrfs_super_bytes_used(sb));
2690 ret = -EINVAL;
2691 }
2692 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2693 btrfs_err(fs_info, "invalid stripesize %u",
2694 btrfs_super_stripesize(sb));
2695 ret = -EINVAL;
2696 }
2697 if (btrfs_super_num_devices(sb) > (1UL << 31))
2698 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2699 btrfs_super_num_devices(sb));
2700 if (btrfs_super_num_devices(sb) == 0) {
2701 btrfs_err(fs_info, "number of devices is 0");
2702 ret = -EINVAL;
2703 }
2704
069ec957
QW
2705 if (mirror_num >= 0 &&
2706 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2707 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2708 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2709 ret = -EINVAL;
2710 }
2711
2712 /*
2713 * Obvious sys_chunk_array corruptions, it must hold at least one key
2714 * and one chunk
2715 */
2716 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2717 btrfs_err(fs_info, "system chunk array too big %u > %u",
2718 btrfs_super_sys_array_size(sb),
2719 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2720 ret = -EINVAL;
2721 }
2722 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2723 + sizeof(struct btrfs_chunk)) {
2724 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2725 btrfs_super_sys_array_size(sb),
2726 sizeof(struct btrfs_disk_key)
2727 + sizeof(struct btrfs_chunk));
2728 ret = -EINVAL;
2729 }
2730
2731 /*
2732 * The generation is a global counter, we'll trust it more than the others
2733 * but it's still possible that it's the one that's wrong.
2734 */
2735 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2736 btrfs_warn(fs_info,
2737 "suspicious: generation < chunk_root_generation: %llu < %llu",
2738 btrfs_super_generation(sb),
2739 btrfs_super_chunk_root_generation(sb));
2740 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2741 && btrfs_super_cache_generation(sb) != (u64)-1)
2742 btrfs_warn(fs_info,
2743 "suspicious: generation < cache_generation: %llu < %llu",
2744 btrfs_super_generation(sb),
2745 btrfs_super_cache_generation(sb));
2746
2747 return ret;
2748}
2749
069ec957
QW
2750/*
2751 * Validation of super block at mount time.
2752 * Some checks already done early at mount time, like csum type and incompat
2753 * flags will be skipped.
2754 */
2755static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2756{
2757 return validate_super(fs_info, fs_info->super_copy, 0);
2758}
2759
75cb857d
QW
2760/*
2761 * Validation of super block at write time.
2762 * Some checks like bytenr check will be skipped as their values will be
2763 * overwritten soon.
2764 * Extra checks like csum type and incompat flags will be done here.
2765 */
2766static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2767 struct btrfs_super_block *sb)
2768{
2769 int ret;
2770
2771 ret = validate_super(fs_info, sb, -1);
2772 if (ret < 0)
2773 goto out;
e7e16f48 2774 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2775 ret = -EUCLEAN;
2776 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2777 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2778 goto out;
2779 }
2780 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2781 ret = -EUCLEAN;
2782 btrfs_err(fs_info,
2783 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2784 btrfs_super_incompat_flags(sb),
2785 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2786 goto out;
2787 }
2788out:
2789 if (ret < 0)
2790 btrfs_err(fs_info,
2791 "super block corruption detected before writing it to disk");
2792 return ret;
2793}
2794
6ef108dd 2795static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2796{
6ef108dd 2797 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2798 struct btrfs_super_block *sb = fs_info->super_copy;
2799 struct btrfs_root *tree_root = fs_info->tree_root;
2800 bool handle_error = false;
2801 int ret = 0;
2802 int i;
2803
2804 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2805 u64 generation;
2806 int level;
2807
2808 if (handle_error) {
2809 if (!IS_ERR(tree_root->node))
2810 free_extent_buffer(tree_root->node);
2811 tree_root->node = NULL;
2812
2813 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2814 break;
2815
2816 free_root_pointers(fs_info, 0);
2817
2818 /*
2819 * Don't use the log in recovery mode, it won't be
2820 * valid
2821 */
2822 btrfs_set_super_log_root(sb, 0);
2823
2824 /* We can't trust the free space cache either */
2825 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2826
2827 ret = read_backup_root(fs_info, i);
6ef108dd 2828 backup_index = ret;
b8522a1e
NB
2829 if (ret < 0)
2830 return ret;
2831 }
2832 generation = btrfs_super_generation(sb);
2833 level = btrfs_super_root_level(sb);
2834 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
1b7ec85e 2835 BTRFS_ROOT_TREE_OBJECTID,
b8522a1e 2836 generation, level, NULL);
217f5004 2837 if (IS_ERR(tree_root->node)) {
b8522a1e 2838 handle_error = true;
217f5004
NB
2839 ret = PTR_ERR(tree_root->node);
2840 tree_root->node = NULL;
2841 btrfs_warn(fs_info, "couldn't read tree root");
2842 continue;
b8522a1e 2843
217f5004
NB
2844 } else if (!extent_buffer_uptodate(tree_root->node)) {
2845 handle_error = true;
2846 ret = -EIO;
2847 btrfs_warn(fs_info, "error while reading tree root");
b8522a1e
NB
2848 continue;
2849 }
2850
2851 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2852 tree_root->commit_root = btrfs_root_node(tree_root);
2853 btrfs_set_root_refs(&tree_root->root_item, 1);
2854
336a0d8d
NB
2855 /*
2856 * No need to hold btrfs_root::objectid_mutex since the fs
2857 * hasn't been fully initialised and we are the only user
2858 */
453e4873 2859 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2860 if (ret < 0) {
b8522a1e
NB
2861 handle_error = true;
2862 continue;
2863 }
2864
6b8fad57 2865 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2866
2867 ret = btrfs_read_roots(fs_info);
2868 if (ret < 0) {
2869 handle_error = true;
2870 continue;
2871 }
2872
2873 /* All successful */
2874 fs_info->generation = generation;
2875 fs_info->last_trans_committed = generation;
ebde420a 2876 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2877
2878 /* Always begin writing backup roots after the one being used */
2879 if (backup_index < 0) {
2880 fs_info->backup_root_index = 0;
2881 } else {
2882 fs_info->backup_root_index = backup_index + 1;
2883 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2884 }
b8522a1e
NB
2885 break;
2886 }
2887
2888 return ret;
2889}
2890
8260edba 2891void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2892{
76dda93c 2893 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2894 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2895 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2896 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2897 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2898 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2899 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2900 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2901 spin_lock_init(&fs_info->trans_lock);
76dda93c 2902 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2903 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2904 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2905 spin_lock_init(&fs_info->super_lock);
f28491e0 2906 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2907 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2908 spin_lock_init(&fs_info->treelog_bg_lock);
763e2672 2909 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2910 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2911 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2912 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2913 mutex_init(&fs_info->reloc_mutex);
573bfb72 2914 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2915 mutex_init(&fs_info->zoned_meta_io_lock);
de98ced9 2916 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2917
0b86a832 2918 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2919 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2920 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2921 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 2922 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
bd647ce3
JB
2923#ifdef CONFIG_BTRFS_DEBUG
2924 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2925 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2926 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2927#endif
c8bf1b67 2928 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2929 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2930 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2931 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2932 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2933 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2934 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2935 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2936 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2937 BTRFS_BLOCK_RSV_DELREFS);
2938
771ed689 2939 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2940 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2941 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2942 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2943 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2944 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2945 fs_info->metadata_ratio = 0;
4cb5300b 2946 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2947 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2948 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2949 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2950 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2951 /* readahead state */
d0164adc 2952 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2953 spin_lock_init(&fs_info->reada_lock);
fd708b81 2954 btrfs_init_ref_verify(fs_info);
c8b97818 2955
b34b086c
CM
2956 fs_info->thread_pool_size = min_t(unsigned long,
2957 num_online_cpus() + 2, 8);
0afbaf8c 2958
199c2a9c
MX
2959 INIT_LIST_HEAD(&fs_info->ordered_roots);
2960 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2961
638aa7ed 2962 btrfs_init_scrub(fs_info);
21adbd5c
SB
2963#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2964 fs_info->check_integrity_print_mask = 0;
2965#endif
779a65a4 2966 btrfs_init_balance(fs_info);
57056740 2967 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2968
0f9dd46c 2969 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2970 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2971 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2972
fe119a6e
NB
2973 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2974 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2975 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2976
5a3f23d5 2977 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2978 mutex_init(&fs_info->tree_log_mutex);
925baedd 2979 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2980 mutex_init(&fs_info->transaction_kthread_mutex);
2981 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2982 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2983 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2984 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2985 init_rwsem(&fs_info->subvol_sem);
803b2f54 2986 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2987
ad618368 2988 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2989 btrfs_init_qgroup(fs_info);
b0643e59 2990 btrfs_discard_init(fs_info);
416ac51d 2991
fa9c0d79
CM
2992 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2993 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2994
e6dcd2dc 2995 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2996 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2997 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2998 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2999 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 3000
da17066c
JM
3001 /* Usable values until the real ones are cached from the superblock */
3002 fs_info->nodesize = 4096;
3003 fs_info->sectorsize = 4096;
ab108d99 3004 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
3005 fs_info->stripesize = 4096;
3006
eede2bf3
OS
3007 spin_lock_init(&fs_info->swapfile_pins_lock);
3008 fs_info->swapfile_pins = RB_ROOT;
3009
18bb8bbf
JT
3010 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3011 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
3012}
3013
3014static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3015{
3016 int ret;
3017
3018 fs_info->sb = sb;
3019 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3020 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3021
5deb17e1 3022 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3023 if (ret)
c75e8394 3024 return ret;
ae18c37a
JB
3025
3026 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3027 if (ret)
c75e8394 3028 return ret;
ae18c37a
JB
3029
3030 fs_info->dirty_metadata_batch = PAGE_SIZE *
3031 (1 + ilog2(nr_cpu_ids));
3032
3033 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3034 if (ret)
c75e8394 3035 return ret;
ae18c37a
JB
3036
3037 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3038 GFP_KERNEL);
3039 if (ret)
c75e8394 3040 return ret;
ae18c37a
JB
3041
3042 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3043 GFP_KERNEL);
c75e8394
JB
3044 if (!fs_info->delayed_root)
3045 return -ENOMEM;
ae18c37a
JB
3046 btrfs_init_delayed_root(fs_info->delayed_root);
3047
a0a1db70
FM
3048 if (sb_rdonly(sb))
3049 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3050
c75e8394 3051 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3052}
3053
97f4dd09
NB
3054static int btrfs_uuid_rescan_kthread(void *data)
3055{
3056 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3057 int ret;
3058
3059 /*
3060 * 1st step is to iterate through the existing UUID tree and
3061 * to delete all entries that contain outdated data.
3062 * 2nd step is to add all missing entries to the UUID tree.
3063 */
3064 ret = btrfs_uuid_tree_iterate(fs_info);
3065 if (ret < 0) {
c94bec2c
JB
3066 if (ret != -EINTR)
3067 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3068 ret);
97f4dd09
NB
3069 up(&fs_info->uuid_tree_rescan_sem);
3070 return ret;
3071 }
3072 return btrfs_uuid_scan_kthread(data);
3073}
3074
3075static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3076{
3077 struct task_struct *task;
3078
3079 down(&fs_info->uuid_tree_rescan_sem);
3080 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3081 if (IS_ERR(task)) {
3082 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3083 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3084 up(&fs_info->uuid_tree_rescan_sem);
3085 return PTR_ERR(task);
3086 }
3087
3088 return 0;
3089}
3090
8cd29088
BB
3091/*
3092 * Some options only have meaning at mount time and shouldn't persist across
3093 * remounts, or be displayed. Clear these at the end of mount and remount
3094 * code paths.
3095 */
3096void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3097{
3098 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3099 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3100}
3101
44c0ca21
BB
3102/*
3103 * Mounting logic specific to read-write file systems. Shared by open_ctree
3104 * and btrfs_remount when remounting from read-only to read-write.
3105 */
3106int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3107{
3108 int ret;
94846229 3109 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3110 bool clear_free_space_tree = false;
3111
3112 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3113 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3114 clear_free_space_tree = true;
3115 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3116 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3117 btrfs_warn(fs_info, "free space tree is invalid");
3118 clear_free_space_tree = true;
3119 }
3120
3121 if (clear_free_space_tree) {
3122 btrfs_info(fs_info, "clearing free space tree");
3123 ret = btrfs_clear_free_space_tree(fs_info);
3124 if (ret) {
3125 btrfs_warn(fs_info,
3126 "failed to clear free space tree: %d", ret);
3127 goto out;
3128 }
3129 }
44c0ca21 3130
8d488a8c
FM
3131 /*
3132 * btrfs_find_orphan_roots() is responsible for finding all the dead
3133 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3134 * them into the fs_info->fs_roots_radix tree. This must be done before
3135 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3136 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3137 * item before the root's tree is deleted - this means that if we unmount
3138 * or crash before the deletion completes, on the next mount we will not
3139 * delete what remains of the tree because the orphan item does not
3140 * exists anymore, which is what tells us we have a pending deletion.
3141 */
3142 ret = btrfs_find_orphan_roots(fs_info);
3143 if (ret)
3144 goto out;
3145
44c0ca21
BB
3146 ret = btrfs_cleanup_fs_roots(fs_info);
3147 if (ret)
3148 goto out;
3149
8f1c21d7
BB
3150 down_read(&fs_info->cleanup_work_sem);
3151 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3152 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3153 up_read(&fs_info->cleanup_work_sem);
3154 goto out;
3155 }
3156 up_read(&fs_info->cleanup_work_sem);
3157
44c0ca21
BB
3158 mutex_lock(&fs_info->cleaner_mutex);
3159 ret = btrfs_recover_relocation(fs_info->tree_root);
3160 mutex_unlock(&fs_info->cleaner_mutex);
3161 if (ret < 0) {
3162 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3163 goto out;
3164 }
3165
5011139a
BB
3166 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3167 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3168 btrfs_info(fs_info, "creating free space tree");
3169 ret = btrfs_create_free_space_tree(fs_info);
3170 if (ret) {
3171 btrfs_warn(fs_info,
3172 "failed to create free space tree: %d", ret);
3173 goto out;
3174 }
3175 }
3176
94846229
BB
3177 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3178 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3179 if (ret)
3180 goto out;
3181 }
3182
44c0ca21
BB
3183 ret = btrfs_resume_balance_async(fs_info);
3184 if (ret)
3185 goto out;
3186
3187 ret = btrfs_resume_dev_replace_async(fs_info);
3188 if (ret) {
3189 btrfs_warn(fs_info, "failed to resume dev_replace");
3190 goto out;
3191 }
3192
3193 btrfs_qgroup_rescan_resume(fs_info);
3194
3195 if (!fs_info->uuid_root) {
3196 btrfs_info(fs_info, "creating UUID tree");
3197 ret = btrfs_create_uuid_tree(fs_info);
3198 if (ret) {
3199 btrfs_warn(fs_info,
3200 "failed to create the UUID tree %d", ret);
3201 goto out;
3202 }
3203 }
3204
3205out:
3206 return ret;
3207}
3208
ae18c37a
JB
3209int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3210 char *options)
3211{
3212 u32 sectorsize;
3213 u32 nodesize;
3214 u32 stripesize;
3215 u64 generation;
3216 u64 features;
3217 u16 csum_type;
ae18c37a
JB
3218 struct btrfs_super_block *disk_super;
3219 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3220 struct btrfs_root *tree_root;
3221 struct btrfs_root *chunk_root;
3222 int ret;
3223 int err = -EINVAL;
ae18c37a
JB
3224 int level;
3225
8260edba 3226 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3227 if (ret) {
83c8266a 3228 err = ret;
ae18c37a 3229 goto fail;
53b381b3
DW
3230 }
3231
ae18c37a
JB
3232 /* These need to be init'ed before we start creating inodes and such. */
3233 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3234 GFP_KERNEL);
3235 fs_info->tree_root = tree_root;
3236 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3237 GFP_KERNEL);
3238 fs_info->chunk_root = chunk_root;
3239 if (!tree_root || !chunk_root) {
3240 err = -ENOMEM;
c75e8394 3241 goto fail;
ae18c37a
JB
3242 }
3243
3244 fs_info->btree_inode = new_inode(sb);
3245 if (!fs_info->btree_inode) {
3246 err = -ENOMEM;
c75e8394 3247 goto fail;
ae18c37a
JB
3248 }
3249 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3250 btrfs_init_btree_inode(fs_info);
3251
678e71f9 3252 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3253
3254 /*
3255 * Read super block and check the signature bytes only
3256 */
678e71f9 3257 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d
JT
3258 if (IS_ERR(disk_super)) {
3259 err = PTR_ERR(disk_super);
16cdcec7 3260 goto fail_alloc;
20b45077 3261 }
39279cc3 3262
8dc3f22c 3263 /*
260db43c 3264 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3265 * corrupted, we'll find out
3266 */
8f32380d 3267 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3268 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3269 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3270 csum_type);
8dc3f22c 3271 err = -EINVAL;
8f32380d 3272 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3273 goto fail_alloc;
3274 }
3275
83c68bbc
SY
3276 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3277
6d97c6e3
JT
3278 ret = btrfs_init_csum_hash(fs_info, csum_type);
3279 if (ret) {
3280 err = ret;
8f32380d 3281 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3282 goto fail_alloc;
3283 }
3284
1104a885
DS
3285 /*
3286 * We want to check superblock checksum, the type is stored inside.
3287 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3288 */
8f32380d 3289 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 3290 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3291 err = -EINVAL;
8f32380d 3292 btrfs_release_disk_super(disk_super);
141386e1 3293 goto fail_alloc;
1104a885
DS
3294 }
3295
3296 /*
3297 * super_copy is zeroed at allocation time and we never touch the
3298 * following bytes up to INFO_SIZE, the checksum is calculated from
3299 * the whole block of INFO_SIZE
3300 */
8f32380d
JT
3301 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3302 btrfs_release_disk_super(disk_super);
5f39d397 3303
fbc6feae
NB
3304 disk_super = fs_info->super_copy;
3305
0b86a832 3306
fbc6feae
NB
3307 features = btrfs_super_flags(disk_super);
3308 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3309 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3310 btrfs_set_super_flags(disk_super, features);
3311 btrfs_info(fs_info,
3312 "found metadata UUID change in progress flag, clearing");
3313 }
3314
3315 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3316 sizeof(*fs_info->super_for_commit));
de37aa51 3317
069ec957 3318 ret = btrfs_validate_mount_super(fs_info);
1104a885 3319 if (ret) {
05135f59 3320 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3321 err = -EINVAL;
141386e1 3322 goto fail_alloc;
1104a885
DS
3323 }
3324
0f7d52f4 3325 if (!btrfs_super_root(disk_super))
141386e1 3326 goto fail_alloc;
0f7d52f4 3327
acce952b 3328 /* check FS state, whether FS is broken. */
87533c47
MX
3329 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3330 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3331
75e7cb7f
LB
3332 /*
3333 * In the long term, we'll store the compression type in the super
3334 * block, and it'll be used for per file compression control.
3335 */
3336 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3337
6f93e834
AJ
3338 /*
3339 * Flag our filesystem as having big metadata blocks if they are bigger
3340 * than the page size.
3341 */
3342 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3343 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3344 btrfs_info(fs_info,
3345 "flagging fs with big metadata feature");
3346 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3347 }
3348
3349 /* Set up fs_info before parsing mount options */
3350 nodesize = btrfs_super_nodesize(disk_super);
3351 sectorsize = btrfs_super_sectorsize(disk_super);
3352 stripesize = sectorsize;
3353 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3354 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3355
3356 fs_info->nodesize = nodesize;
3357 fs_info->sectorsize = sectorsize;
3358 fs_info->sectorsize_bits = ilog2(sectorsize);
3359 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3360 fs_info->stripesize = stripesize;
3361
2ff7e61e 3362 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3363 if (ret) {
3364 err = ret;
141386e1 3365 goto fail_alloc;
2b82032c 3366 }
dfe25020 3367
f2b636e8
JB
3368 features = btrfs_super_incompat_flags(disk_super) &
3369 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3370 if (features) {
05135f59
DS
3371 btrfs_err(fs_info,
3372 "cannot mount because of unsupported optional features (%llx)",
3373 features);
f2b636e8 3374 err = -EINVAL;
141386e1 3375 goto fail_alloc;
f2b636e8
JB
3376 }
3377
5d4f98a2 3378 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3379 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3380 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3381 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3382 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3383 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3384
3173a18f 3385 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3386 btrfs_info(fs_info, "has skinny extents");
3173a18f 3387
bc3f116f
CM
3388 /*
3389 * mixed block groups end up with duplicate but slightly offset
3390 * extent buffers for the same range. It leads to corruptions
3391 */
3392 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3393 (sectorsize != nodesize)) {
05135f59
DS
3394 btrfs_err(fs_info,
3395"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3396 nodesize, sectorsize);
141386e1 3397 goto fail_alloc;
bc3f116f
CM
3398 }
3399
ceda0864
MX
3400 /*
3401 * Needn't use the lock because there is no other task which will
3402 * update the flag.
3403 */
a6fa6fae 3404 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3405
f2b636e8
JB
3406 features = btrfs_super_compat_ro_flags(disk_super) &
3407 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3408 if (!sb_rdonly(sb) && features) {
05135f59
DS
3409 btrfs_err(fs_info,
3410 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3411 features);
f2b636e8 3412 err = -EINVAL;
141386e1 3413 goto fail_alloc;
f2b636e8 3414 }
61d92c32 3415
95ea0486
QW
3416 if (sectorsize != PAGE_SIZE) {
3417 btrfs_warn(fs_info,
3418 "read-write for sector size %u with page size %lu is experimental",
3419 sectorsize, PAGE_SIZE);
0bb3eb3e 3420 }
c8050b3b
QW
3421 if (sectorsize != PAGE_SIZE) {
3422 if (btrfs_super_incompat_flags(fs_info->super_copy) &
3423 BTRFS_FEATURE_INCOMPAT_RAID56) {
3424 btrfs_err(fs_info,
3425 "RAID56 is not yet supported for sector size %u with page size %lu",
3426 sectorsize, PAGE_SIZE);
3427 err = -EINVAL;
3428 goto fail_alloc;
3429 }
3430 }
0bb3eb3e 3431
2a458198
ES
3432 ret = btrfs_init_workqueues(fs_info, fs_devices);
3433 if (ret) {
3434 err = ret;
0dc3b84a
JB
3435 goto fail_sb_buffer;
3436 }
4543df7e 3437
9e11ceee
JK
3438 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3439 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3440
a061fc8d
CM
3441 sb->s_blocksize = sectorsize;
3442 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3443 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3444
925baedd 3445 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3446 ret = btrfs_read_sys_array(fs_info);
925baedd 3447 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3448 if (ret) {
05135f59 3449 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3450 goto fail_sb_buffer;
84eed90f 3451 }
0b86a832 3452
84234f3a 3453 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3454 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3455
2ff7e61e 3456 chunk_root->node = read_tree_block(fs_info,
0b86a832 3457 btrfs_super_chunk_root(disk_super),
1b7ec85e 3458 BTRFS_CHUNK_TREE_OBJECTID,
581c1760 3459 generation, level, NULL);
64c043de
LB
3460 if (IS_ERR(chunk_root->node) ||
3461 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3462 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3463 if (!IS_ERR(chunk_root->node))
3464 free_extent_buffer(chunk_root->node);
95ab1f64 3465 chunk_root->node = NULL;
af31f5e5 3466 goto fail_tree_roots;
83121942 3467 }
5d4f98a2
YZ
3468 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3469 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3470
e17cade2 3471 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3472 offsetof(struct btrfs_header, chunk_tree_uuid),
3473 BTRFS_UUID_SIZE);
e17cade2 3474
5b4aacef 3475 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3476 if (ret) {
05135f59 3477 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3478 goto fail_tree_roots;
2b82032c 3479 }
0b86a832 3480
8dabb742 3481 /*
bacce86a
AJ
3482 * At this point we know all the devices that make this filesystem,
3483 * including the seed devices but we don't know yet if the replace
3484 * target is required. So free devices that are not part of this
1a9fd417 3485 * filesystem but skip the replace target device which is checked
bacce86a 3486 * below in btrfs_init_dev_replace().
8dabb742 3487 */
bacce86a 3488 btrfs_free_extra_devids(fs_devices);
678e71f9 3489 if (!fs_devices->latest_dev->bdev) {
05135f59 3490 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3491 goto fail_tree_roots;
3492 }
3493
b8522a1e 3494 ret = init_tree_roots(fs_info);
4bbcaa64 3495 if (ret)
b8522a1e 3496 goto fail_tree_roots;
8929ecfa 3497
73651042
NA
3498 /*
3499 * Get zone type information of zoned block devices. This will also
3500 * handle emulation of a zoned filesystem if a regular device has the
3501 * zoned incompat feature flag set.
3502 */
3503 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3504 if (ret) {
3505 btrfs_err(fs_info,
3506 "zoned: failed to read device zone info: %d",
3507 ret);
3508 goto fail_block_groups;
3509 }
3510
75ec1db8
JB
3511 /*
3512 * If we have a uuid root and we're not being told to rescan we need to
3513 * check the generation here so we can set the
3514 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3515 * transaction during a balance or the log replay without updating the
3516 * uuid generation, and then if we crash we would rescan the uuid tree,
3517 * even though it was perfectly fine.
3518 */
3519 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3520 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3521 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3522
cf90d884
QW
3523 ret = btrfs_verify_dev_extents(fs_info);
3524 if (ret) {
3525 btrfs_err(fs_info,
3526 "failed to verify dev extents against chunks: %d",
3527 ret);
3528 goto fail_block_groups;
3529 }
68310a5e
ID
3530 ret = btrfs_recover_balance(fs_info);
3531 if (ret) {
05135f59 3532 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3533 goto fail_block_groups;
3534 }
3535
733f4fbb
SB
3536 ret = btrfs_init_dev_stats(fs_info);
3537 if (ret) {
05135f59 3538 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3539 goto fail_block_groups;
3540 }
3541
8dabb742
SB
3542 ret = btrfs_init_dev_replace(fs_info);
3543 if (ret) {
05135f59 3544 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3545 goto fail_block_groups;
3546 }
3547
b70f5097
NA
3548 ret = btrfs_check_zoned_mode(fs_info);
3549 if (ret) {
3550 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3551 ret);
3552 goto fail_block_groups;
3553 }
3554
c6761a9e 3555 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3556 if (ret) {
05135f59
DS
3557 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3558 ret);
b7c35e81
AJ
3559 goto fail_block_groups;
3560 }
3561
96f3136e 3562 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3563 if (ret) {
05135f59 3564 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3565 goto fail_fsdev_sysfs;
c59021f8 3566 }
3567
c59021f8 3568 ret = btrfs_init_space_info(fs_info);
3569 if (ret) {
05135f59 3570 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3571 goto fail_sysfs;
c59021f8 3572 }
3573
5b4aacef 3574 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3575 if (ret) {
05135f59 3576 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3577 goto fail_sysfs;
1b1d1f66 3578 }
4330e183 3579
007648db
NA
3580 btrfs_free_zone_cache(fs_info);
3581
510bfab0
AJ
3582 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3583 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3584 btrfs_warn(fs_info,
52042d8e 3585 "writable mount is not allowed due to too many missing devices");
2365dd3c 3586 goto fail_sysfs;
292fd7fc 3587 }
9078a3e1 3588
a74a4b97
CM
3589 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3590 "btrfs-cleaner");
57506d50 3591 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3592 goto fail_sysfs;
a74a4b97
CM
3593
3594 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3595 tree_root,
3596 "btrfs-transaction");
57506d50 3597 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3598 goto fail_cleaner;
a74a4b97 3599
583b7231 3600 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3601 !fs_info->fs_devices->rotating) {
583b7231 3602 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3603 }
3604
572d9ab7 3605 /*
01327610 3606 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3607 * not have to wait for transaction commit
3608 */
3609 btrfs_apply_pending_changes(fs_info);
3818aea2 3610
21adbd5c 3611#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3612 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3613 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3614 btrfs_test_opt(fs_info,
cbeaae4f 3615 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3616 fs_info->check_integrity_print_mask);
3617 if (ret)
05135f59
DS
3618 btrfs_warn(fs_info,
3619 "failed to initialize integrity check module: %d",
3620 ret);
21adbd5c
SB
3621 }
3622#endif
bcef60f2
AJ
3623 ret = btrfs_read_qgroup_config(fs_info);
3624 if (ret)
3625 goto fail_trans_kthread;
21adbd5c 3626
fd708b81
JB
3627 if (btrfs_build_ref_tree(fs_info))
3628 btrfs_err(fs_info, "couldn't build ref tree");
3629
96da0919
QW
3630 /* do not make disk changes in broken FS or nologreplay is given */
3631 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3632 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3633 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3634 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3635 if (ret) {
63443bf5 3636 err = ret;
28c16cbb 3637 goto fail_qgroup;
79787eaa 3638 }
e02119d5 3639 }
1a40e23b 3640
56e9357a 3641 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3642 if (IS_ERR(fs_info->fs_root)) {
3643 err = PTR_ERR(fs_info->fs_root);
f50f4353 3644 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3645 fs_info->fs_root = NULL;
bcef60f2 3646 goto fail_qgroup;
3140c9a3 3647 }
c289811c 3648
bc98a42c 3649 if (sb_rdonly(sb))
8cd29088 3650 goto clear_oneshot;
59641015 3651
44c0ca21 3652 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3653 if (ret) {
6bccf3ab 3654 close_ctree(fs_info);
2b6ba629 3655 return ret;
e3acc2a6 3656 }
b0643e59 3657 btrfs_discard_resume(fs_info);
b382a324 3658
44c0ca21
BB
3659 if (fs_info->uuid_root &&
3660 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3661 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3662 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3663 ret = btrfs_check_uuid_tree(fs_info);
3664 if (ret) {
05135f59
DS
3665 btrfs_warn(fs_info,
3666 "failed to check the UUID tree: %d", ret);
6bccf3ab 3667 close_ctree(fs_info);
70f80175
SB
3668 return ret;
3669 }
f7a81ea4 3670 }
94846229 3671
afcdd129 3672 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3673
78db1921
JB
3674 /* Kick the cleaner thread so it'll start deleting snapshots. */
3675 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3676 wake_up_process(fs_info->cleaner_kthread);
3677
8cd29088
BB
3678clear_oneshot:
3679 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3680 return 0;
39279cc3 3681
bcef60f2
AJ
3682fail_qgroup:
3683 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3684fail_trans_kthread:
3685 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3686 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3687 btrfs_free_fs_roots(fs_info);
3f157a2f 3688fail_cleaner:
a74a4b97 3689 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3690
3691 /*
3692 * make sure we're done with the btree inode before we stop our
3693 * kthreads
3694 */
3695 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3696
2365dd3c 3697fail_sysfs:
6618a59b 3698 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3699
b7c35e81
AJ
3700fail_fsdev_sysfs:
3701 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3702
1b1d1f66 3703fail_block_groups:
54067ae9 3704 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3705
3706fail_tree_roots:
9e3aa805
JB
3707 if (fs_info->data_reloc_root)
3708 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3709 free_root_pointers(fs_info, true);
2b8195bb 3710 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3711
39279cc3 3712fail_sb_buffer:
7abadb64 3713 btrfs_stop_all_workers(fs_info);
5cdd7db6 3714 btrfs_free_block_groups(fs_info);
16cdcec7 3715fail_alloc:
586e46e2
ID
3716 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3717
4543df7e 3718 iput(fs_info->btree_inode);
7e662854 3719fail:
586e46e2 3720 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3721 return err;
eb60ceac 3722}
663faf9f 3723ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3724
314b6dd0 3725static void btrfs_end_super_write(struct bio *bio)
f2984462 3726{
314b6dd0
JT
3727 struct btrfs_device *device = bio->bi_private;
3728 struct bio_vec *bvec;
3729 struct bvec_iter_all iter_all;
3730 struct page *page;
3731
3732 bio_for_each_segment_all(bvec, bio, iter_all) {
3733 page = bvec->bv_page;
3734
3735 if (bio->bi_status) {
3736 btrfs_warn_rl_in_rcu(device->fs_info,
3737 "lost page write due to IO error on %s (%d)",
3738 rcu_str_deref(device->name),
3739 blk_status_to_errno(bio->bi_status));
3740 ClearPageUptodate(page);
3741 SetPageError(page);
3742 btrfs_dev_stat_inc_and_print(device,
3743 BTRFS_DEV_STAT_WRITE_ERRS);
3744 } else {
3745 SetPageUptodate(page);
3746 }
3747
3748 put_page(page);
3749 unlock_page(page);
f2984462 3750 }
314b6dd0
JT
3751
3752 bio_put(bio);
f2984462
CM
3753}
3754
8f32380d
JT
3755struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3756 int copy_num)
29c36d72 3757{
29c36d72 3758 struct btrfs_super_block *super;
8f32380d 3759 struct page *page;
12659251 3760 u64 bytenr, bytenr_orig;
8f32380d 3761 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3762 int ret;
3763
3764 bytenr_orig = btrfs_sb_offset(copy_num);
3765 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3766 if (ret == -ENOENT)
3767 return ERR_PTR(-EINVAL);
3768 else if (ret)
3769 return ERR_PTR(ret);
29c36d72 3770
29c36d72 3771 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3772 return ERR_PTR(-EINVAL);
29c36d72 3773
8f32380d
JT
3774 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3775 if (IS_ERR(page))
3776 return ERR_CAST(page);
29c36d72 3777
8f32380d 3778 super = page_address(page);
96c2e067
AJ
3779 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3780 btrfs_release_disk_super(super);
3781 return ERR_PTR(-ENODATA);
3782 }
3783
12659251 3784 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3785 btrfs_release_disk_super(super);
3786 return ERR_PTR(-EINVAL);
29c36d72
AJ
3787 }
3788
8f32380d 3789 return super;
29c36d72
AJ
3790}
3791
3792
8f32380d 3793struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3794{
8f32380d 3795 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3796 int i;
3797 u64 transid = 0;
a512bbf8
YZ
3798
3799 /* we would like to check all the supers, but that would make
3800 * a btrfs mount succeed after a mkfs from a different FS.
3801 * So, we need to add a special mount option to scan for
3802 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3803 */
3804 for (i = 0; i < 1; i++) {
8f32380d
JT
3805 super = btrfs_read_dev_one_super(bdev, i);
3806 if (IS_ERR(super))
a512bbf8
YZ
3807 continue;
3808
a512bbf8 3809 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3810 if (latest)
3811 btrfs_release_disk_super(super);
3812
3813 latest = super;
a512bbf8 3814 transid = btrfs_super_generation(super);
a512bbf8
YZ
3815 }
3816 }
92fc03fb 3817
8f32380d 3818 return super;
a512bbf8
YZ
3819}
3820
4eedeb75 3821/*
abbb3b8e 3822 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3823 * pages we use for writing are locked.
4eedeb75 3824 *
abbb3b8e
DS
3825 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3826 * the expected device size at commit time. Note that max_mirrors must be
3827 * same for write and wait phases.
4eedeb75 3828 *
314b6dd0 3829 * Return number of errors when page is not found or submission fails.
4eedeb75 3830 */
a512bbf8 3831static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3832 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3833{
d5178578 3834 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3835 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3836 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3837 int i;
a512bbf8 3838 int errors = 0;
12659251
NA
3839 int ret;
3840 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3841
3842 if (max_mirrors == 0)
3843 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3844
d5178578
JT
3845 shash->tfm = fs_info->csum_shash;
3846
a512bbf8 3847 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3848 struct page *page;
3849 struct bio *bio;
3850 struct btrfs_super_block *disk_super;
3851
12659251
NA
3852 bytenr_orig = btrfs_sb_offset(i);
3853 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3854 if (ret == -ENOENT) {
3855 continue;
3856 } else if (ret < 0) {
3857 btrfs_err(device->fs_info,
3858 "couldn't get super block location for mirror %d",
3859 i);
3860 errors++;
3861 continue;
3862 }
935e5cc9
MX
3863 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3864 device->commit_total_bytes)
a512bbf8
YZ
3865 break;
3866
12659251 3867 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3868
fd08001f
EB
3869 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3870 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3871 sb->csum);
4eedeb75 3872
314b6dd0
JT
3873 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3874 GFP_NOFS);
3875 if (!page) {
abbb3b8e 3876 btrfs_err(device->fs_info,
314b6dd0 3877 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3878 bytenr);
3879 errors++;
4eedeb75 3880 continue;
abbb3b8e 3881 }
634554dc 3882
314b6dd0
JT
3883 /* Bump the refcount for wait_dev_supers() */
3884 get_page(page);
a512bbf8 3885
314b6dd0
JT
3886 disk_super = page_address(page);
3887 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3888
314b6dd0
JT
3889 /*
3890 * Directly use bios here instead of relying on the page cache
3891 * to do I/O, so we don't lose the ability to do integrity
3892 * checking.
3893 */
3894 bio = bio_alloc(GFP_NOFS, 1);
3895 bio_set_dev(bio, device->bdev);
3896 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3897 bio->bi_private = device;
3898 bio->bi_end_io = btrfs_end_super_write;
3899 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3900 offset_in_page(bytenr));
a512bbf8 3901
387125fc 3902 /*
314b6dd0
JT
3903 * We FUA only the first super block. The others we allow to
3904 * go down lazy and there's a short window where the on-disk
3905 * copies might still contain the older version.
387125fc 3906 */
314b6dd0 3907 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3908 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3909 bio->bi_opf |= REQ_FUA;
3910
3911 btrfsic_submit_bio(bio);
12659251 3912 btrfs_advance_sb_log(device, i);
a512bbf8
YZ
3913 }
3914 return errors < i ? 0 : -1;
3915}
3916
abbb3b8e
DS
3917/*
3918 * Wait for write completion of superblocks done by write_dev_supers,
3919 * @max_mirrors same for write and wait phases.
3920 *
314b6dd0 3921 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3922 * date.
3923 */
3924static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3925{
abbb3b8e
DS
3926 int i;
3927 int errors = 0;
b6a535fa 3928 bool primary_failed = false;
12659251 3929 int ret;
abbb3b8e
DS
3930 u64 bytenr;
3931
3932 if (max_mirrors == 0)
3933 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3934
3935 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3936 struct page *page;
3937
12659251
NA
3938 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3939 if (ret == -ENOENT) {
3940 break;
3941 } else if (ret < 0) {
3942 errors++;
3943 if (i == 0)
3944 primary_failed = true;
3945 continue;
3946 }
abbb3b8e
DS
3947 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3948 device->commit_total_bytes)
3949 break;
3950
314b6dd0
JT
3951 page = find_get_page(device->bdev->bd_inode->i_mapping,
3952 bytenr >> PAGE_SHIFT);
3953 if (!page) {
abbb3b8e 3954 errors++;
b6a535fa
HM
3955 if (i == 0)
3956 primary_failed = true;
abbb3b8e
DS
3957 continue;
3958 }
314b6dd0
JT
3959 /* Page is submitted locked and unlocked once the IO completes */
3960 wait_on_page_locked(page);
3961 if (PageError(page)) {
abbb3b8e 3962 errors++;
b6a535fa
HM
3963 if (i == 0)
3964 primary_failed = true;
3965 }
abbb3b8e 3966
314b6dd0
JT
3967 /* Drop our reference */
3968 put_page(page);
abbb3b8e 3969
314b6dd0
JT
3970 /* Drop the reference from the writing run */
3971 put_page(page);
abbb3b8e
DS
3972 }
3973
b6a535fa
HM
3974 /* log error, force error return */
3975 if (primary_failed) {
3976 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3977 device->devid);
3978 return -1;
3979 }
3980
abbb3b8e
DS
3981 return errors < i ? 0 : -1;
3982}
3983
387125fc
CM
3984/*
3985 * endio for the write_dev_flush, this will wake anyone waiting
3986 * for the barrier when it is done
3987 */
4246a0b6 3988static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3989{
e0ae9994 3990 complete(bio->bi_private);
387125fc
CM
3991}
3992
3993/*
4fc6441a
AJ
3994 * Submit a flush request to the device if it supports it. Error handling is
3995 * done in the waiting counterpart.
387125fc 3996 */
4fc6441a 3997static void write_dev_flush(struct btrfs_device *device)
387125fc 3998{
e0ae9994 3999 struct bio *bio = device->flush_bio;
387125fc 4000
e26dedd0
WY
4001#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4002 /*
4003 * When a disk has write caching disabled, we skip submission of a bio
4004 * with flush and sync requests before writing the superblock, since
4005 * it's not needed. However when the integrity checker is enabled, this
4006 * results in reports that there are metadata blocks referred by a
4007 * superblock that were not properly flushed. So don't skip the bio
4008 * submission only when the integrity checker is enabled for the sake
4009 * of simplicity, since this is a debug tool and not meant for use in
4010 * non-debug builds.
4011 */
4012 struct request_queue *q = bdev_get_queue(device->bdev);
c2a9c7ab 4013 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 4014 return;
e26dedd0 4015#endif
387125fc 4016
e0ae9994 4017 bio_reset(bio);
387125fc 4018 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 4019 bio_set_dev(bio, device->bdev);
8d910125 4020 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
4021 init_completion(&device->flush_wait);
4022 bio->bi_private = &device->flush_wait;
387125fc 4023
43a01111 4024 btrfsic_submit_bio(bio);
1c3063b6 4025 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 4026}
387125fc 4027
4fc6441a
AJ
4028/*
4029 * If the flush bio has been submitted by write_dev_flush, wait for it.
4030 */
8c27cb35 4031static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 4032{
4fc6441a 4033 struct bio *bio = device->flush_bio;
387125fc 4034
1c3063b6 4035 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 4036 return BLK_STS_OK;
387125fc 4037
1c3063b6 4038 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4039 wait_for_completion_io(&device->flush_wait);
387125fc 4040
8c27cb35 4041 return bio->bi_status;
387125fc 4042}
387125fc 4043
d10b82fe 4044static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4045{
6528b99d 4046 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4047 return -EIO;
387125fc
CM
4048 return 0;
4049}
4050
4051/*
4052 * send an empty flush down to each device in parallel,
4053 * then wait for them
4054 */
4055static int barrier_all_devices(struct btrfs_fs_info *info)
4056{
4057 struct list_head *head;
4058 struct btrfs_device *dev;
5af3e8cc 4059 int errors_wait = 0;
4e4cbee9 4060 blk_status_t ret;
387125fc 4061
1538e6c5 4062 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4063 /* send down all the barriers */
4064 head = &info->fs_devices->devices;
1538e6c5 4065 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4066 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4067 continue;
cea7c8bf 4068 if (!dev->bdev)
387125fc 4069 continue;
e12c9621 4070 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4071 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4072 continue;
4073
4fc6441a 4074 write_dev_flush(dev);
58efbc9f 4075 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4076 }
4077
4078 /* wait for all the barriers */
1538e6c5 4079 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4080 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4081 continue;
387125fc 4082 if (!dev->bdev) {
5af3e8cc 4083 errors_wait++;
387125fc
CM
4084 continue;
4085 }
e12c9621 4086 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4087 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4088 continue;
4089
4fc6441a 4090 ret = wait_dev_flush(dev);
401b41e5
AJ
4091 if (ret) {
4092 dev->last_flush_error = ret;
66b4993e
DS
4093 btrfs_dev_stat_inc_and_print(dev,
4094 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4095 errors_wait++;
401b41e5
AJ
4096 }
4097 }
4098
cea7c8bf 4099 if (errors_wait) {
401b41e5
AJ
4100 /*
4101 * At some point we need the status of all disks
4102 * to arrive at the volume status. So error checking
4103 * is being pushed to a separate loop.
4104 */
d10b82fe 4105 return check_barrier_error(info);
387125fc 4106 }
387125fc
CM
4107 return 0;
4108}
4109
943c6e99
ZL
4110int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4111{
8789f4fe
ZL
4112 int raid_type;
4113 int min_tolerated = INT_MAX;
943c6e99 4114
8789f4fe
ZL
4115 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4116 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4117 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4118 btrfs_raid_array[BTRFS_RAID_SINGLE].
4119 tolerated_failures);
943c6e99 4120
8789f4fe
ZL
4121 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4122 if (raid_type == BTRFS_RAID_SINGLE)
4123 continue;
41a6e891 4124 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4125 continue;
8c3e3582 4126 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4127 btrfs_raid_array[raid_type].
4128 tolerated_failures);
4129 }
943c6e99 4130
8789f4fe 4131 if (min_tolerated == INT_MAX) {
ab8d0fc4 4132 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4133 min_tolerated = 0;
4134 }
4135
4136 return min_tolerated;
943c6e99
ZL
4137}
4138
eece6a9c 4139int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4140{
e5e9a520 4141 struct list_head *head;
f2984462 4142 struct btrfs_device *dev;
a061fc8d 4143 struct btrfs_super_block *sb;
f2984462 4144 struct btrfs_dev_item *dev_item;
f2984462
CM
4145 int ret;
4146 int do_barriers;
a236aed1
CM
4147 int max_errors;
4148 int total_errors = 0;
a061fc8d 4149 u64 flags;
f2984462 4150
0b246afa 4151 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4152
4153 /*
4154 * max_mirrors == 0 indicates we're from commit_transaction,
4155 * not from fsync where the tree roots in fs_info have not
4156 * been consistent on disk.
4157 */
4158 if (max_mirrors == 0)
4159 backup_super_roots(fs_info);
f2984462 4160
0b246afa 4161 sb = fs_info->super_for_commit;
a061fc8d 4162 dev_item = &sb->dev_item;
e5e9a520 4163
0b246afa
JM
4164 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4165 head = &fs_info->fs_devices->devices;
4166 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4167
5af3e8cc 4168 if (do_barriers) {
0b246afa 4169 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4170 if (ret) {
4171 mutex_unlock(
0b246afa
JM
4172 &fs_info->fs_devices->device_list_mutex);
4173 btrfs_handle_fs_error(fs_info, ret,
4174 "errors while submitting device barriers.");
5af3e8cc
SB
4175 return ret;
4176 }
4177 }
387125fc 4178
1538e6c5 4179 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4180 if (!dev->bdev) {
4181 total_errors++;
4182 continue;
4183 }
e12c9621 4184 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4185 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4186 continue;
4187
2b82032c 4188 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4189 btrfs_set_stack_device_type(dev_item, dev->type);
4190 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4191 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4192 dev->commit_total_bytes);
ce7213c7
MX
4193 btrfs_set_stack_device_bytes_used(dev_item,
4194 dev->commit_bytes_used);
a061fc8d
CM
4195 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4196 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4197 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4198 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4199 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4200 BTRFS_FSID_SIZE);
a512bbf8 4201
a061fc8d
CM
4202 flags = btrfs_super_flags(sb);
4203 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4204
75cb857d
QW
4205 ret = btrfs_validate_write_super(fs_info, sb);
4206 if (ret < 0) {
4207 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4208 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4209 "unexpected superblock corruption detected");
4210 return -EUCLEAN;
4211 }
4212
abbb3b8e 4213 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4214 if (ret)
4215 total_errors++;
f2984462 4216 }
a236aed1 4217 if (total_errors > max_errors) {
0b246afa
JM
4218 btrfs_err(fs_info, "%d errors while writing supers",
4219 total_errors);
4220 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4221
9d565ba4 4222 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4223 btrfs_handle_fs_error(fs_info, -EIO,
4224 "%d errors while writing supers",
4225 total_errors);
9d565ba4 4226 return -EIO;
a236aed1 4227 }
f2984462 4228
a512bbf8 4229 total_errors = 0;
1538e6c5 4230 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4231 if (!dev->bdev)
4232 continue;
e12c9621 4233 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4234 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4235 continue;
4236
abbb3b8e 4237 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4238 if (ret)
4239 total_errors++;
f2984462 4240 }
0b246afa 4241 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4242 if (total_errors > max_errors) {
0b246afa
JM
4243 btrfs_handle_fs_error(fs_info, -EIO,
4244 "%d errors while writing supers",
4245 total_errors);
79787eaa 4246 return -EIO;
a236aed1 4247 }
f2984462
CM
4248 return 0;
4249}
4250
cb517eab
MX
4251/* Drop a fs root from the radix tree and free it. */
4252void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4253 struct btrfs_root *root)
2619ba1f 4254{
4785e24f
JB
4255 bool drop_ref = false;
4256
4df27c4d 4257 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
4258 radix_tree_delete(&fs_info->fs_roots_radix,
4259 (unsigned long)root->root_key.objectid);
af01d2e5 4260 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4261 drop_ref = true;
4df27c4d 4262 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4263
1c1ea4f7 4264 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 4265 ASSERT(root->log_root == NULL);
1c1ea4f7 4266 if (root->reloc_root) {
00246528 4267 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4268 root->reloc_root = NULL;
4269 }
4270 }
3321719e 4271
4785e24f
JB
4272 if (drop_ref)
4273 btrfs_put_root(root);
2619ba1f
CM
4274}
4275
c146afad 4276int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4277{
c146afad
YZ
4278 u64 root_objectid = 0;
4279 struct btrfs_root *gang[8];
65d33fd7
QW
4280 int i = 0;
4281 int err = 0;
4282 unsigned int ret = 0;
e089f05c 4283
c146afad 4284 while (1) {
efc34534 4285 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
4286 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4287 (void **)gang, root_objectid,
4288 ARRAY_SIZE(gang));
65d33fd7 4289 if (!ret) {
efc34534 4290 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 4291 break;
65d33fd7 4292 }
5d4f98a2 4293 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4294
c146afad 4295 for (i = 0; i < ret; i++) {
65d33fd7
QW
4296 /* Avoid to grab roots in dead_roots */
4297 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4298 gang[i] = NULL;
4299 continue;
4300 }
4301 /* grab all the search result for later use */
00246528 4302 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4303 }
efc34534 4304 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4305
65d33fd7
QW
4306 for (i = 0; i < ret; i++) {
4307 if (!gang[i])
4308 continue;
c146afad 4309 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
4310 err = btrfs_orphan_cleanup(gang[i]);
4311 if (err)
65d33fd7 4312 break;
00246528 4313 btrfs_put_root(gang[i]);
c146afad
YZ
4314 }
4315 root_objectid++;
4316 }
65d33fd7
QW
4317
4318 /* release the uncleaned roots due to error */
4319 for (; i < ret; i++) {
4320 if (gang[i])
00246528 4321 btrfs_put_root(gang[i]);
65d33fd7
QW
4322 }
4323 return err;
c146afad 4324}
a2135011 4325
6bccf3ab 4326int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4327{
6bccf3ab 4328 struct btrfs_root *root = fs_info->tree_root;
c146afad 4329 struct btrfs_trans_handle *trans;
a74a4b97 4330
0b246afa 4331 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4332 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4333 mutex_unlock(&fs_info->cleaner_mutex);
4334 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4335
4336 /* wait until ongoing cleanup work done */
0b246afa
JM
4337 down_write(&fs_info->cleanup_work_sem);
4338 up_write(&fs_info->cleanup_work_sem);
c71bf099 4339
7a7eaa40 4340 trans = btrfs_join_transaction(root);
3612b495
TI
4341 if (IS_ERR(trans))
4342 return PTR_ERR(trans);
3a45bb20 4343 return btrfs_commit_transaction(trans);
c146afad
YZ
4344}
4345
b105e927 4346void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4347{
c146afad
YZ
4348 int ret;
4349
afcdd129 4350 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4351 /*
4352 * We don't want the cleaner to start new transactions, add more delayed
4353 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4354 * because that frees the task_struct, and the transaction kthread might
4355 * still try to wake up the cleaner.
4356 */
4357 kthread_park(fs_info->cleaner_kthread);
c146afad 4358
78db1921
JB
4359 /*
4360 * If we had UNFINISHED_DROPS we could still be processing them, so
4361 * clear that bit and wake up relocation so it can stop.
4362 */
4363 btrfs_wake_unfinished_drop(fs_info);
4364
7343dd61 4365 /* wait for the qgroup rescan worker to stop */
d06f23d6 4366 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4367
803b2f54
SB
4368 /* wait for the uuid_scan task to finish */
4369 down(&fs_info->uuid_tree_rescan_sem);
4370 /* avoid complains from lockdep et al., set sem back to initial state */
4371 up(&fs_info->uuid_tree_rescan_sem);
4372
837d5b6e 4373 /* pause restriper - we want to resume on mount */
aa1b8cd4 4374 btrfs_pause_balance(fs_info);
837d5b6e 4375
8dabb742
SB
4376 btrfs_dev_replace_suspend_for_unmount(fs_info);
4377
aa1b8cd4 4378 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4379
4380 /* wait for any defraggers to finish */
4381 wait_event(fs_info->transaction_wait,
4382 (atomic_read(&fs_info->defrag_running) == 0));
4383
4384 /* clear out the rbtree of defraggable inodes */
26176e7c 4385 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4386
21c7e756 4387 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4388 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4389 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4390
18bb8bbf
JT
4391 cancel_work_sync(&fs_info->reclaim_bgs_work);
4392
b0643e59
DZ
4393 /* Cancel or finish ongoing discard work */
4394 btrfs_discard_cleanup(fs_info);
4395
bc98a42c 4396 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4397 /*
d6fd0ae2
OS
4398 * The cleaner kthread is stopped, so do one final pass over
4399 * unused block groups.
e44163e1 4400 */
0b246afa 4401 btrfs_delete_unused_bgs(fs_info);
e44163e1 4402
f0cc2cd7
FM
4403 /*
4404 * There might be existing delayed inode workers still running
4405 * and holding an empty delayed inode item. We must wait for
4406 * them to complete first because they can create a transaction.
4407 * This happens when someone calls btrfs_balance_delayed_items()
4408 * and then a transaction commit runs the same delayed nodes
4409 * before any delayed worker has done something with the nodes.
4410 * We must wait for any worker here and not at transaction
4411 * commit time since that could cause a deadlock.
4412 * This is a very rare case.
4413 */
4414 btrfs_flush_workqueue(fs_info->delayed_workers);
4415
6bccf3ab 4416 ret = btrfs_commit_super(fs_info);
acce952b 4417 if (ret)
04892340 4418 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4419 }
4420
af722733
LB
4421 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4422 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4423 btrfs_error_commit_super(fs_info);
0f7d52f4 4424
e3029d9f
AV
4425 kthread_stop(fs_info->transaction_kthread);
4426 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4427
e187831e 4428 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4429 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4430
5958253c
QW
4431 if (btrfs_check_quota_leak(fs_info)) {
4432 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4433 btrfs_err(fs_info, "qgroup reserved space leaked");
4434 }
4435
04892340 4436 btrfs_free_qgroup_config(fs_info);
fe816d0f 4437 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4438
963d678b 4439 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4440 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4441 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4442 }
bcc63abb 4443
5deb17e1 4444 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4445 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4446 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4447
6618a59b 4448 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4449 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4450
1a4319cc
LB
4451 btrfs_put_block_group_cache(fs_info);
4452
de348ee0
WS
4453 /*
4454 * we must make sure there is not any read request to
4455 * submit after we stopping all workers.
4456 */
4457 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4458 btrfs_stop_all_workers(fs_info);
4459
0a31daa4
FM
4460 /* We shouldn't have any transaction open at this point */
4461 ASSERT(list_empty(&fs_info->trans_list));
4462
afcdd129 4463 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4464 free_root_pointers(fs_info, true);
8c38938c 4465 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4466
4e19443d
JB
4467 /*
4468 * We must free the block groups after dropping the fs_roots as we could
4469 * have had an IO error and have left over tree log blocks that aren't
4470 * cleaned up until the fs roots are freed. This makes the block group
4471 * accounting appear to be wrong because there's pending reserved bytes,
4472 * so make sure we do the block group cleanup afterwards.
4473 */
4474 btrfs_free_block_groups(fs_info);
4475
13e6c37b 4476 iput(fs_info->btree_inode);
d6bfde87 4477
21adbd5c 4478#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4479 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4480 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4481#endif
4482
0b86a832 4483 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4484 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4485}
4486
b9fab919
CM
4487int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4488 int atomic)
5f39d397 4489{
1259ab75 4490 int ret;
727011e0 4491 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4492
0b32f4bb 4493 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4494 if (!ret)
4495 return ret;
4496
4497 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4498 parent_transid, atomic);
4499 if (ret == -EAGAIN)
4500 return ret;
1259ab75 4501 return !ret;
5f39d397
CM
4502}
4503
5f39d397
CM
4504void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4505{
2f4d60df 4506 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4507 u64 transid = btrfs_header_generation(buf);
b9473439 4508 int was_dirty;
b4ce94de 4509
06ea65a3
JB
4510#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4511 /*
4512 * This is a fast path so only do this check if we have sanity tests
52042d8e 4513 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4514 * outside of the sanity tests.
4515 */
b0132a3b 4516 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4517 return;
4518#endif
b9447ef8 4519 btrfs_assert_tree_locked(buf);
0b246afa 4520 if (transid != fs_info->generation)
5d163e0e 4521 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4522 buf->start, transid, fs_info->generation);
0b32f4bb 4523 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4524 if (!was_dirty)
104b4e51
NB
4525 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4526 buf->len,
4527 fs_info->dirty_metadata_batch);
1f21ef0a 4528#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4529 /*
4530 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4531 * but item data not updated.
4532 * So here we should only check item pointers, not item data.
4533 */
4534 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4535 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4536 btrfs_print_leaf(buf);
1f21ef0a
FM
4537 ASSERT(0);
4538 }
4539#endif
eb60ceac
CM
4540}
4541
2ff7e61e 4542static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4543 int flush_delayed)
16cdcec7
MX
4544{
4545 /*
4546 * looks as though older kernels can get into trouble with
4547 * this code, they end up stuck in balance_dirty_pages forever
4548 */
e2d84521 4549 int ret;
16cdcec7
MX
4550
4551 if (current->flags & PF_MEMALLOC)
4552 return;
4553
b53d3f5d 4554 if (flush_delayed)
2ff7e61e 4555 btrfs_balance_delayed_items(fs_info);
16cdcec7 4556
d814a491
EL
4557 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4558 BTRFS_DIRTY_METADATA_THRESH,
4559 fs_info->dirty_metadata_batch);
e2d84521 4560 if (ret > 0) {
0b246afa 4561 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4562 }
16cdcec7
MX
4563}
4564
2ff7e61e 4565void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4566{
2ff7e61e 4567 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4568}
585ad2c3 4569
2ff7e61e 4570void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4571{
2ff7e61e 4572 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4573}
6b80053d 4574
581c1760
QW
4575int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4576 struct btrfs_key *first_key)
6b80053d 4577{
5ab12d1f 4578 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4579 level, first_key);
6b80053d 4580}
0da5468f 4581
2ff7e61e 4582static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4583{
fe816d0f
NB
4584 /* cleanup FS via transaction */
4585 btrfs_cleanup_transaction(fs_info);
4586
0b246afa 4587 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4588 btrfs_run_delayed_iputs(fs_info);
0b246afa 4589 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4590
0b246afa
JM
4591 down_write(&fs_info->cleanup_work_sem);
4592 up_write(&fs_info->cleanup_work_sem);
acce952b 4593}
4594
ef67963d
JB
4595static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4596{
4597 struct btrfs_root *gang[8];
4598 u64 root_objectid = 0;
4599 int ret;
4600
4601 spin_lock(&fs_info->fs_roots_radix_lock);
4602 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4603 (void **)gang, root_objectid,
4604 ARRAY_SIZE(gang))) != 0) {
4605 int i;
4606
4607 for (i = 0; i < ret; i++)
4608 gang[i] = btrfs_grab_root(gang[i]);
4609 spin_unlock(&fs_info->fs_roots_radix_lock);
4610
4611 for (i = 0; i < ret; i++) {
4612 if (!gang[i])
4613 continue;
4614 root_objectid = gang[i]->root_key.objectid;
4615 btrfs_free_log(NULL, gang[i]);
4616 btrfs_put_root(gang[i]);
4617 }
4618 root_objectid++;
4619 spin_lock(&fs_info->fs_roots_radix_lock);
4620 }
4621 spin_unlock(&fs_info->fs_roots_radix_lock);
4622 btrfs_free_log_root_tree(NULL, fs_info);
4623}
4624
143bede5 4625static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4626{
acce952b 4627 struct btrfs_ordered_extent *ordered;
acce952b 4628
199c2a9c 4629 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4630 /*
4631 * This will just short circuit the ordered completion stuff which will
4632 * make sure the ordered extent gets properly cleaned up.
4633 */
199c2a9c 4634 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4635 root_extent_list)
4636 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4637 spin_unlock(&root->ordered_extent_lock);
4638}
4639
4640static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4641{
4642 struct btrfs_root *root;
4643 struct list_head splice;
4644
4645 INIT_LIST_HEAD(&splice);
4646
4647 spin_lock(&fs_info->ordered_root_lock);
4648 list_splice_init(&fs_info->ordered_roots, &splice);
4649 while (!list_empty(&splice)) {
4650 root = list_first_entry(&splice, struct btrfs_root,
4651 ordered_root);
1de2cfde
JB
4652 list_move_tail(&root->ordered_root,
4653 &fs_info->ordered_roots);
199c2a9c 4654
2a85d9ca 4655 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4656 btrfs_destroy_ordered_extents(root);
4657
2a85d9ca
LB
4658 cond_resched();
4659 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4660 }
4661 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4662
4663 /*
4664 * We need this here because if we've been flipped read-only we won't
4665 * get sync() from the umount, so we need to make sure any ordered
4666 * extents that haven't had their dirty pages IO start writeout yet
4667 * actually get run and error out properly.
4668 */
4669 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4670}
4671
35a3621b 4672static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4673 struct btrfs_fs_info *fs_info)
acce952b 4674{
4675 struct rb_node *node;
4676 struct btrfs_delayed_ref_root *delayed_refs;
4677 struct btrfs_delayed_ref_node *ref;
4678 int ret = 0;
4679
4680 delayed_refs = &trans->delayed_refs;
4681
4682 spin_lock(&delayed_refs->lock);
d7df2c79 4683 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4684 spin_unlock(&delayed_refs->lock);
b79ce3dd 4685 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4686 return ret;
4687 }
4688
5c9d028b 4689 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4690 struct btrfs_delayed_ref_head *head;
0e0adbcf 4691 struct rb_node *n;
e78417d1 4692 bool pin_bytes = false;
acce952b 4693
d7df2c79
JB
4694 head = rb_entry(node, struct btrfs_delayed_ref_head,
4695 href_node);
3069bd26 4696 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4697 continue;
3069bd26 4698
d7df2c79 4699 spin_lock(&head->lock);
e3d03965 4700 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4701 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4702 ref_node);
d7df2c79 4703 ref->in_tree = 0;
e3d03965 4704 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4705 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4706 if (!list_empty(&ref->add_list))
4707 list_del(&ref->add_list);
d7df2c79
JB
4708 atomic_dec(&delayed_refs->num_entries);
4709 btrfs_put_delayed_ref(ref);
e78417d1 4710 }
d7df2c79
JB
4711 if (head->must_insert_reserved)
4712 pin_bytes = true;
4713 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4714 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4715 spin_unlock(&head->lock);
4716 spin_unlock(&delayed_refs->lock);
4717 mutex_unlock(&head->mutex);
acce952b 4718
f603bb94
NB
4719 if (pin_bytes) {
4720 struct btrfs_block_group *cache;
4721
4722 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4723 BUG_ON(!cache);
4724
4725 spin_lock(&cache->space_info->lock);
4726 spin_lock(&cache->lock);
4727 cache->pinned += head->num_bytes;
4728 btrfs_space_info_update_bytes_pinned(fs_info,
4729 cache->space_info, head->num_bytes);
4730 cache->reserved -= head->num_bytes;
4731 cache->space_info->bytes_reserved -= head->num_bytes;
4732 spin_unlock(&cache->lock);
4733 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4734
4735 btrfs_put_block_group(cache);
4736
4737 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4738 head->bytenr + head->num_bytes - 1);
4739 }
31890da0 4740 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4741 btrfs_put_delayed_ref_head(head);
acce952b 4742 cond_resched();
4743 spin_lock(&delayed_refs->lock);
4744 }
81f7eb00 4745 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4746
4747 spin_unlock(&delayed_refs->lock);
4748
4749 return ret;
4750}
4751
143bede5 4752static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4753{
4754 struct btrfs_inode *btrfs_inode;
4755 struct list_head splice;
4756
4757 INIT_LIST_HEAD(&splice);
4758
eb73c1b7
MX
4759 spin_lock(&root->delalloc_lock);
4760 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4761
4762 while (!list_empty(&splice)) {
fe816d0f 4763 struct inode *inode = NULL;
eb73c1b7
MX
4764 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4765 delalloc_inodes);
fe816d0f 4766 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4767 spin_unlock(&root->delalloc_lock);
acce952b 4768
fe816d0f
NB
4769 /*
4770 * Make sure we get a live inode and that it'll not disappear
4771 * meanwhile.
4772 */
4773 inode = igrab(&btrfs_inode->vfs_inode);
4774 if (inode) {
4775 invalidate_inode_pages2(inode->i_mapping);
4776 iput(inode);
4777 }
eb73c1b7 4778 spin_lock(&root->delalloc_lock);
acce952b 4779 }
eb73c1b7
MX
4780 spin_unlock(&root->delalloc_lock);
4781}
4782
4783static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4784{
4785 struct btrfs_root *root;
4786 struct list_head splice;
4787
4788 INIT_LIST_HEAD(&splice);
4789
4790 spin_lock(&fs_info->delalloc_root_lock);
4791 list_splice_init(&fs_info->delalloc_roots, &splice);
4792 while (!list_empty(&splice)) {
4793 root = list_first_entry(&splice, struct btrfs_root,
4794 delalloc_root);
00246528 4795 root = btrfs_grab_root(root);
eb73c1b7
MX
4796 BUG_ON(!root);
4797 spin_unlock(&fs_info->delalloc_root_lock);
4798
4799 btrfs_destroy_delalloc_inodes(root);
00246528 4800 btrfs_put_root(root);
eb73c1b7
MX
4801
4802 spin_lock(&fs_info->delalloc_root_lock);
4803 }
4804 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4805}
4806
2ff7e61e 4807static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4808 struct extent_io_tree *dirty_pages,
4809 int mark)
4810{
4811 int ret;
acce952b 4812 struct extent_buffer *eb;
4813 u64 start = 0;
4814 u64 end;
acce952b 4815
4816 while (1) {
4817 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4818 mark, NULL);
acce952b 4819 if (ret)
4820 break;
4821
91166212 4822 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4823 while (start <= end) {
0b246afa
JM
4824 eb = find_extent_buffer(fs_info, start);
4825 start += fs_info->nodesize;
fd8b2b61 4826 if (!eb)
acce952b 4827 continue;
fd8b2b61 4828 wait_on_extent_buffer_writeback(eb);
acce952b 4829
fd8b2b61
JB
4830 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4831 &eb->bflags))
4832 clear_extent_buffer_dirty(eb);
4833 free_extent_buffer_stale(eb);
acce952b 4834 }
4835 }
4836
4837 return ret;
4838}
4839
2ff7e61e 4840static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4841 struct extent_io_tree *unpin)
acce952b 4842{
acce952b 4843 u64 start;
4844 u64 end;
4845 int ret;
4846
acce952b 4847 while (1) {
0e6ec385
FM
4848 struct extent_state *cached_state = NULL;
4849
fcd5e742
LF
4850 /*
4851 * The btrfs_finish_extent_commit() may get the same range as
4852 * ours between find_first_extent_bit and clear_extent_dirty.
4853 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4854 * the same extent range.
4855 */
4856 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4857 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4858 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4859 if (ret) {
4860 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4861 break;
fcd5e742 4862 }
acce952b 4863
0e6ec385
FM
4864 clear_extent_dirty(unpin, start, end, &cached_state);
4865 free_extent_state(cached_state);
2ff7e61e 4866 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4867 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4868 cond_resched();
4869 }
4870
4871 return 0;
4872}
4873
32da5386 4874static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4875{
4876 struct inode *inode;
4877
4878 inode = cache->io_ctl.inode;
4879 if (inode) {
4880 invalidate_inode_pages2(inode->i_mapping);
4881 BTRFS_I(inode)->generation = 0;
4882 cache->io_ctl.inode = NULL;
4883 iput(inode);
4884 }
bbc37d6e 4885 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4886 btrfs_put_block_group(cache);
4887}
4888
4889void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4890 struct btrfs_fs_info *fs_info)
c79a1751 4891{
32da5386 4892 struct btrfs_block_group *cache;
c79a1751
LB
4893
4894 spin_lock(&cur_trans->dirty_bgs_lock);
4895 while (!list_empty(&cur_trans->dirty_bgs)) {
4896 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4897 struct btrfs_block_group,
c79a1751 4898 dirty_list);
c79a1751
LB
4899
4900 if (!list_empty(&cache->io_list)) {
4901 spin_unlock(&cur_trans->dirty_bgs_lock);
4902 list_del_init(&cache->io_list);
4903 btrfs_cleanup_bg_io(cache);
4904 spin_lock(&cur_trans->dirty_bgs_lock);
4905 }
4906
4907 list_del_init(&cache->dirty_list);
4908 spin_lock(&cache->lock);
4909 cache->disk_cache_state = BTRFS_DC_ERROR;
4910 spin_unlock(&cache->lock);
4911
4912 spin_unlock(&cur_trans->dirty_bgs_lock);
4913 btrfs_put_block_group(cache);
ba2c4d4e 4914 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4915 spin_lock(&cur_trans->dirty_bgs_lock);
4916 }
4917 spin_unlock(&cur_trans->dirty_bgs_lock);
4918
45ae2c18
NB
4919 /*
4920 * Refer to the definition of io_bgs member for details why it's safe
4921 * to use it without any locking
4922 */
c79a1751
LB
4923 while (!list_empty(&cur_trans->io_bgs)) {
4924 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4925 struct btrfs_block_group,
c79a1751 4926 io_list);
c79a1751
LB
4927
4928 list_del_init(&cache->io_list);
4929 spin_lock(&cache->lock);
4930 cache->disk_cache_state = BTRFS_DC_ERROR;
4931 spin_unlock(&cache->lock);
4932 btrfs_cleanup_bg_io(cache);
4933 }
4934}
4935
49b25e05 4936void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4937 struct btrfs_fs_info *fs_info)
49b25e05 4938{
bbbf7243
NB
4939 struct btrfs_device *dev, *tmp;
4940
2ff7e61e 4941 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4942 ASSERT(list_empty(&cur_trans->dirty_bgs));
4943 ASSERT(list_empty(&cur_trans->io_bgs));
4944
bbbf7243
NB
4945 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4946 post_commit_list) {
4947 list_del_init(&dev->post_commit_list);
4948 }
4949
2ff7e61e 4950 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4951
4a9d8bde 4952 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4953 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4954
4a9d8bde 4955 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4956 wake_up(&fs_info->transaction_wait);
49b25e05 4957
ccdf9b30 4958 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4959
2ff7e61e 4960 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4961 EXTENT_DIRTY);
fe119a6e 4962 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4963
d3575156
NA
4964 btrfs_free_redirty_list(cur_trans);
4965
4a9d8bde
MX
4966 cur_trans->state =TRANS_STATE_COMPLETED;
4967 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4968}
4969
2ff7e61e 4970static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4971{
4972 struct btrfs_transaction *t;
acce952b 4973
0b246afa 4974 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4975
0b246afa
JM
4976 spin_lock(&fs_info->trans_lock);
4977 while (!list_empty(&fs_info->trans_list)) {
4978 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4979 struct btrfs_transaction, list);
4980 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4981 refcount_inc(&t->use_count);
0b246afa 4982 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4983 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4984 btrfs_put_transaction(t);
0b246afa 4985 spin_lock(&fs_info->trans_lock);
724e2315
JB
4986 continue;
4987 }
0b246afa 4988 if (t == fs_info->running_transaction) {
724e2315 4989 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4990 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4991 /*
4992 * We wait for 0 num_writers since we don't hold a trans
4993 * handle open currently for this transaction.
4994 */
4995 wait_event(t->writer_wait,
4996 atomic_read(&t->num_writers) == 0);
4997 } else {
0b246afa 4998 spin_unlock(&fs_info->trans_lock);
724e2315 4999 }
2ff7e61e 5000 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 5001
0b246afa
JM
5002 spin_lock(&fs_info->trans_lock);
5003 if (t == fs_info->running_transaction)
5004 fs_info->running_transaction = NULL;
acce952b 5005 list_del_init(&t->list);
0b246afa 5006 spin_unlock(&fs_info->trans_lock);
acce952b 5007
724e2315 5008 btrfs_put_transaction(t);
2ff7e61e 5009 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 5010 spin_lock(&fs_info->trans_lock);
724e2315 5011 }
0b246afa
JM
5012 spin_unlock(&fs_info->trans_lock);
5013 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
5014 btrfs_destroy_delayed_inodes(fs_info);
5015 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 5016 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 5017 btrfs_drop_all_logs(fs_info);
0b246afa 5018 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 5019
5020 return 0;
5021}
ec7d6dfd 5022
453e4873 5023int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
5024{
5025 struct btrfs_path *path;
5026 int ret;
5027 struct extent_buffer *l;
5028 struct btrfs_key search_key;
5029 struct btrfs_key found_key;
5030 int slot;
5031
5032 path = btrfs_alloc_path();
5033 if (!path)
5034 return -ENOMEM;
5035
5036 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5037 search_key.type = -1;
5038 search_key.offset = (u64)-1;
5039 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5040 if (ret < 0)
5041 goto error;
5042 BUG_ON(ret == 0); /* Corruption */
5043 if (path->slots[0] > 0) {
5044 slot = path->slots[0] - 1;
5045 l = path->nodes[0];
5046 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5047 root->free_objectid = max_t(u64, found_key.objectid + 1,
5048 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5049 } else {
23125104 5050 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5051 }
5052 ret = 0;
5053error:
5054 btrfs_free_path(path);
5055 return ret;
5056}
5057
543068a2 5058int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5059{
5060 int ret;
5061 mutex_lock(&root->objectid_mutex);
5062
6b8fad57 5063 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5064 btrfs_warn(root->fs_info,
5065 "the objectid of root %llu reaches its highest value",
5066 root->root_key.objectid);
5067 ret = -ENOSPC;
5068 goto out;
5069 }
5070
23125104 5071 *objectid = root->free_objectid++;
ec7d6dfd
NB
5072 ret = 0;
5073out:
5074 mutex_unlock(&root->objectid_mutex);
5075 return ret;
5076}