]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/disk-io.c
btrfs: replace u_long type cast with unsigned long
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
aac0023c 42#include "block-group.h"
b0643e59 43#include "discard.h"
f603bb94 44#include "space-info.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
c6100a4b 113 void *private_data;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
eaf25d93
CM
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
8b712842 122 struct btrfs_work work;
4e4cbee9 123 blk_status_t status;
44b8bd7e
CM
124};
125
85d4e461
CM
126/*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
4008c04a 136 *
85d4e461
CM
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 140 *
85d4e461
CM
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 144 *
85d4e461
CM
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
4008c04a
CM
148 */
149#ifdef CONFIG_DEBUG_LOCK_ALLOC
150# if BTRFS_MAX_LEVEL != 8
151# error
152# endif
85d4e461
CM
153
154static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159} btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 172 { .id = 0, .name_stem = "tree" },
4008c04a 173};
85d4e461
CM
174
175void __init btrfs_init_lockdep(void)
176{
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187}
188
189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191{
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203}
204
4008c04a
CM
205#endif
206
d352ac68
CM
207/*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
6af49dbd 211struct extent_map *btree_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
212 struct page *page, size_t pg_offset,
213 u64 start, u64 len)
7eccb903 214{
fc4f21b1 215 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
216 struct extent_map *em;
217 int ret;
218
890871be 219 read_lock(&em_tree->lock);
d1310b2e 220 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 221 if (em) {
890871be 222 read_unlock(&em_tree->lock);
5f39d397 223 goto out;
a061fc8d 224 }
890871be 225 read_unlock(&em_tree->lock);
7b13b7b1 226
172ddd60 227 em = alloc_extent_map();
5f39d397
CM
228 if (!em) {
229 em = ERR_PTR(-ENOMEM);
230 goto out;
231 }
232 em->start = 0;
0afbaf8c 233 em->len = (u64)-1;
c8b97818 234 em->block_len = (u64)-1;
5f39d397 235 em->block_start = 0;
d1310b2e 236
890871be 237 write_lock(&em_tree->lock);
09a2a8f9 238 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
239 if (ret == -EEXIST) {
240 free_extent_map(em);
7b13b7b1 241 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 242 if (!em)
0433f20d 243 em = ERR_PTR(-EIO);
5f39d397 244 } else if (ret) {
7b13b7b1 245 free_extent_map(em);
0433f20d 246 em = ERR_PTR(ret);
5f39d397 247 }
890871be 248 write_unlock(&em_tree->lock);
7b13b7b1 249
5f39d397
CM
250out:
251 return em;
7eccb903
CM
252}
253
d352ac68 254/*
2996e1f8
JT
255 * Compute the csum of a btree block and store the result to provided buffer.
256 *
257 * Returns error if the extent buffer cannot be mapped.
d352ac68 258 */
2996e1f8 259static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 260{
d5178578
JT
261 struct btrfs_fs_info *fs_info = buf->fs_info;
262 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc
CM
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
d5178578
JT
270
271 shash->tfm = fs_info->csum_shash;
272 crypto_shash_init(shash);
19c00ddc
CM
273
274 len = buf->len - offset;
d5178578 275
d397712b 276 while (len > 0) {
d2e174d5
JT
277 /*
278 * Note: we don't need to check for the err == 1 case here, as
279 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
280 * and 'min_len = 32' and the currently implemented mapping
281 * algorithm we cannot cross a page boundary.
282 */
19c00ddc 283 err = map_private_extent_buffer(buf, offset, 32,
a6591715 284 &kaddr, &map_start, &map_len);
c53839fc 285 if (WARN_ON(err))
8bd98f0e 286 return err;
19c00ddc 287 cur_len = min(len, map_len - (offset - map_start));
d5178578 288 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
19c00ddc
CM
289 len -= cur_len;
290 offset += cur_len;
19c00ddc 291 }
71a63551 292 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 293
d5178578 294 crypto_shash_final(shash, result);
19c00ddc 295
19c00ddc
CM
296 return 0;
297}
298
d352ac68
CM
299/*
300 * we can't consider a given block up to date unless the transid of the
301 * block matches the transid in the parent node's pointer. This is how we
302 * detect blocks that either didn't get written at all or got written
303 * in the wrong place.
304 */
1259ab75 305static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
306 struct extent_buffer *eb, u64 parent_transid,
307 int atomic)
1259ab75 308{
2ac55d41 309 struct extent_state *cached_state = NULL;
1259ab75 310 int ret;
2755a0de 311 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
312
313 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
314 return 0;
315
b9fab919
CM
316 if (atomic)
317 return -EAGAIN;
318
a26e8c9f
JB
319 if (need_lock) {
320 btrfs_tree_read_lock(eb);
300aa896 321 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
322 }
323
2ac55d41 324 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 325 &cached_state);
0b32f4bb 326 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
327 btrfs_header_generation(eb) == parent_transid) {
328 ret = 0;
329 goto out;
330 }
94647322
DS
331 btrfs_err_rl(eb->fs_info,
332 "parent transid verify failed on %llu wanted %llu found %llu",
333 eb->start,
29549aec 334 parent_transid, btrfs_header_generation(eb));
1259ab75 335 ret = 1;
a26e8c9f
JB
336
337 /*
338 * Things reading via commit roots that don't have normal protection,
339 * like send, can have a really old block in cache that may point at a
01327610 340 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
341 * if we find an eb that is under IO (dirty/writeback) because we could
342 * end up reading in the stale data and then writing it back out and
343 * making everybody very sad.
344 */
345 if (!extent_buffer_under_io(eb))
346 clear_extent_buffer_uptodate(eb);
33958dc6 347out:
2ac55d41 348 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 349 &cached_state);
472b909f
JB
350 if (need_lock)
351 btrfs_tree_read_unlock_blocking(eb);
1259ab75 352 return ret;
1259ab75
CM
353}
354
e7e16f48
JT
355static bool btrfs_supported_super_csum(u16 csum_type)
356{
357 switch (csum_type) {
358 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 359 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 360 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 361 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
362 return true;
363 default:
364 return false;
365 }
366}
367
1104a885
DS
368/*
369 * Return 0 if the superblock checksum type matches the checksum value of that
370 * algorithm. Pass the raw disk superblock data.
371 */
ab8d0fc4
JM
372static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
373 char *raw_disk_sb)
1104a885
DS
374{
375 struct btrfs_super_block *disk_sb =
376 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 377 char result[BTRFS_CSUM_SIZE];
d5178578
JT
378 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
379
380 shash->tfm = fs_info->csum_shash;
381 crypto_shash_init(shash);
1104a885 382
51bce6c9
JT
383 /*
384 * The super_block structure does not span the whole
385 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
386 * filled with zeros and is included in the checksum.
387 */
d5178578
JT
388 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
389 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
390 crypto_shash_final(shash, result);
1104a885 391
51bce6c9
JT
392 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
393 return 1;
1104a885 394
e7e16f48 395 return 0;
1104a885
DS
396}
397
e064d5e9 398int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 399 struct btrfs_key *first_key, u64 parent_transid)
581c1760 400{
e064d5e9 401 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
402 int found_level;
403 struct btrfs_key found_key;
404 int ret;
405
406 found_level = btrfs_header_level(eb);
407 if (found_level != level) {
63489055
QW
408 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
409 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
410 btrfs_err(fs_info,
411"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
412 eb->start, level, found_level);
581c1760
QW
413 return -EIO;
414 }
415
416 if (!first_key)
417 return 0;
418
5d41be6f
QW
419 /*
420 * For live tree block (new tree blocks in current transaction),
421 * we need proper lock context to avoid race, which is impossible here.
422 * So we only checks tree blocks which is read from disk, whose
423 * generation <= fs_info->last_trans_committed.
424 */
425 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
426 return 0;
62fdaa52
QW
427
428 /* We have @first_key, so this @eb must have at least one item */
429 if (btrfs_header_nritems(eb) == 0) {
430 btrfs_err(fs_info,
431 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
432 eb->start);
433 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
434 return -EUCLEAN;
435 }
436
581c1760
QW
437 if (found_level)
438 btrfs_node_key_to_cpu(eb, &found_key, 0);
439 else
440 btrfs_item_key_to_cpu(eb, &found_key, 0);
441 ret = btrfs_comp_cpu_keys(first_key, &found_key);
442
581c1760 443 if (ret) {
63489055
QW
444 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
445 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 446 btrfs_err(fs_info,
ff76a864
LB
447"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
448 eb->start, parent_transid, first_key->objectid,
449 first_key->type, first_key->offset,
450 found_key.objectid, found_key.type,
451 found_key.offset);
581c1760 452 }
581c1760
QW
453 return ret;
454}
455
d352ac68
CM
456/*
457 * helper to read a given tree block, doing retries as required when
458 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
459 *
460 * @parent_transid: expected transid, skip check if 0
461 * @level: expected level, mandatory check
462 * @first_key: expected key of first slot, skip check if NULL
d352ac68 463 */
5ab12d1f 464static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
465 u64 parent_transid, int level,
466 struct btrfs_key *first_key)
f188591e 467{
5ab12d1f 468 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 469 struct extent_io_tree *io_tree;
ea466794 470 int failed = 0;
f188591e
CM
471 int ret;
472 int num_copies = 0;
473 int mirror_num = 0;
ea466794 474 int failed_mirror = 0;
f188591e 475
0b246afa 476 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 477 while (1) {
f8397d69 478 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 479 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 480 if (!ret) {
581c1760 481 if (verify_parent_transid(io_tree, eb,
b9fab919 482 parent_transid, 0))
256dd1bb 483 ret = -EIO;
e064d5e9 484 else if (btrfs_verify_level_key(eb, level,
448de471 485 first_key, parent_transid))
581c1760
QW
486 ret = -EUCLEAN;
487 else
488 break;
256dd1bb 489 }
d397712b 490
0b246afa 491 num_copies = btrfs_num_copies(fs_info,
f188591e 492 eb->start, eb->len);
4235298e 493 if (num_copies == 1)
ea466794 494 break;
4235298e 495
5cf1ab56
JB
496 if (!failed_mirror) {
497 failed = 1;
498 failed_mirror = eb->read_mirror;
499 }
500
f188591e 501 mirror_num++;
ea466794
JB
502 if (mirror_num == failed_mirror)
503 mirror_num++;
504
4235298e 505 if (mirror_num > num_copies)
ea466794 506 break;
f188591e 507 }
ea466794 508
c0901581 509 if (failed && !ret && failed_mirror)
20a1fbf9 510 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
511
512 return ret;
f188591e 513}
19c00ddc 514
d352ac68 515/*
d397712b
CM
516 * checksum a dirty tree block before IO. This has extra checks to make sure
517 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 518 */
d397712b 519
01d58472 520static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 521{
4eee4fa4 522 u64 start = page_offset(page);
19c00ddc 523 u64 found_start;
2996e1f8
JT
524 u8 result[BTRFS_CSUM_SIZE];
525 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 526 struct extent_buffer *eb;
8d47a0d8 527 int ret;
f188591e 528
4f2de97a
JB
529 eb = (struct extent_buffer *)page->private;
530 if (page != eb->pages[0])
531 return 0;
0f805531 532
19c00ddc 533 found_start = btrfs_header_bytenr(eb);
0f805531
AL
534 /*
535 * Please do not consolidate these warnings into a single if.
536 * It is useful to know what went wrong.
537 */
538 if (WARN_ON(found_start != start))
539 return -EUCLEAN;
540 if (WARN_ON(!PageUptodate(page)))
541 return -EUCLEAN;
542
de37aa51 543 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
544 offsetof(struct btrfs_header, fsid),
545 BTRFS_FSID_SIZE) == 0);
0f805531 546
2996e1f8
JT
547 if (csum_tree_block(eb, result))
548 return -EINVAL;
549
8d47a0d8
QW
550 if (btrfs_header_level(eb))
551 ret = btrfs_check_node(eb);
552 else
553 ret = btrfs_check_leaf_full(eb);
554
555 if (ret < 0) {
c06631b0 556 btrfs_print_tree(eb, 0);
8d47a0d8
QW
557 btrfs_err(fs_info,
558 "block=%llu write time tree block corruption detected",
559 eb->start);
c06631b0 560 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
561 return ret;
562 }
2996e1f8 563 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 564
2996e1f8 565 return 0;
19c00ddc
CM
566}
567
b0c9b3b0 568static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 569{
b0c9b3b0 570 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 571 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 572 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
573 int ret = 1;
574
9a8658e3
DS
575 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
576 BTRFS_FSID_SIZE);
2b82032c 577 while (fs_devices) {
7239ff4b
NB
578 u8 *metadata_uuid;
579
580 /*
581 * Checking the incompat flag is only valid for the current
582 * fs. For seed devices it's forbidden to have their uuid
583 * changed so reading ->fsid in this case is fine
584 */
585 if (fs_devices == fs_info->fs_devices &&
586 btrfs_fs_incompat(fs_info, METADATA_UUID))
587 metadata_uuid = fs_devices->metadata_uuid;
588 else
589 metadata_uuid = fs_devices->fsid;
590
591 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
592 ret = 0;
593 break;
594 }
595 fs_devices = fs_devices->seed;
596 }
597 return ret;
598}
599
facc8a22
MX
600static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
601 u64 phy_offset, struct page *page,
602 u64 start, u64 end, int mirror)
ce9adaa5 603{
ce9adaa5
CM
604 u64 found_start;
605 int found_level;
ce9adaa5
CM
606 struct extent_buffer *eb;
607 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 608 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 609 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 610 int ret = 0;
2996e1f8 611 u8 result[BTRFS_CSUM_SIZE];
727011e0 612 int reads_done;
ce9adaa5 613
ce9adaa5
CM
614 if (!page->private)
615 goto out;
d397712b 616
4f2de97a 617 eb = (struct extent_buffer *)page->private;
d397712b 618
0b32f4bb
JB
619 /* the pending IO might have been the only thing that kept this buffer
620 * in memory. Make sure we have a ref for all this other checks
621 */
67439dad 622 atomic_inc(&eb->refs);
0b32f4bb
JB
623
624 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
625 if (!reads_done)
626 goto err;
f188591e 627
5cf1ab56 628 eb->read_mirror = mirror;
656f30db 629 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
630 ret = -EIO;
631 goto err;
632 }
633
ce9adaa5 634 found_start = btrfs_header_bytenr(eb);
727011e0 635 if (found_start != eb->start) {
893bf4b1
SY
636 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
637 eb->start, found_start);
f188591e 638 ret = -EIO;
ce9adaa5
CM
639 goto err;
640 }
b0c9b3b0 641 if (check_tree_block_fsid(eb)) {
02873e43
ZL
642 btrfs_err_rl(fs_info, "bad fsid on block %llu",
643 eb->start);
1259ab75
CM
644 ret = -EIO;
645 goto err;
646 }
ce9adaa5 647 found_level = btrfs_header_level(eb);
1c24c3ce 648 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
649 btrfs_err(fs_info, "bad tree block level %d on %llu",
650 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
651 ret = -EIO;
652 goto err;
653 }
ce9adaa5 654
85d4e461
CM
655 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
656 eb, found_level);
4008c04a 657
2996e1f8 658 ret = csum_tree_block(eb, result);
8bd98f0e 659 if (ret)
a826d6dc 660 goto err;
a826d6dc 661
2996e1f8
JT
662 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
663 u32 val;
664 u32 found = 0;
665
666 memcpy(&found, result, csum_size);
667
668 read_extent_buffer(eb, &val, 0, csum_size);
669 btrfs_warn_rl(fs_info,
670 "%s checksum verify failed on %llu wanted %x found %x level %d",
671 fs_info->sb->s_id, eb->start,
672 val, found, btrfs_header_level(eb));
673 ret = -EUCLEAN;
674 goto err;
675 }
676
a826d6dc
JB
677 /*
678 * If this is a leaf block and it is corrupt, set the corrupt bit so
679 * that we don't try and read the other copies of this block, just
680 * return -EIO.
681 */
1c4360ee 682 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
683 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
684 ret = -EIO;
685 }
ce9adaa5 686
813fd1dc 687 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
688 ret = -EIO;
689
0b32f4bb
JB
690 if (!ret)
691 set_extent_buffer_uptodate(eb);
75391f0d
QW
692 else
693 btrfs_err(fs_info,
694 "block=%llu read time tree block corruption detected",
695 eb->start);
ce9adaa5 696err:
79fb65a1
JB
697 if (reads_done &&
698 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 699 btree_readahead_hook(eb, ret);
4bb31e92 700
53b381b3
DW
701 if (ret) {
702 /*
703 * our io error hook is going to dec the io pages
704 * again, we have to make sure it has something
705 * to decrement
706 */
707 atomic_inc(&eb->io_pages);
0b32f4bb 708 clear_extent_buffer_uptodate(eb);
53b381b3 709 }
0b32f4bb 710 free_extent_buffer(eb);
ce9adaa5 711out:
f188591e 712 return ret;
ce9adaa5
CM
713}
714
4246a0b6 715static void end_workqueue_bio(struct bio *bio)
ce9adaa5 716{
97eb6b69 717 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 718 struct btrfs_fs_info *fs_info;
9e0af237 719 struct btrfs_workqueue *wq;
ce9adaa5 720
ce9adaa5 721 fs_info = end_io_wq->info;
4e4cbee9 722 end_io_wq->status = bio->bi_status;
d20f7043 723
37226b21 724 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 725 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 726 wq = fs_info->endio_meta_write_workers;
a0cac0ec 727 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 728 wq = fs_info->endio_freespace_worker;
a0cac0ec 729 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 730 wq = fs_info->endio_raid56_workers;
a0cac0ec 731 else
9e0af237 732 wq = fs_info->endio_write_workers;
d20f7043 733 } else {
a0cac0ec 734 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
8b110e39 735 wq = fs_info->endio_repair_workers;
a0cac0ec 736 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 737 wq = fs_info->endio_raid56_workers;
a0cac0ec 738 else if (end_io_wq->metadata)
9e0af237 739 wq = fs_info->endio_meta_workers;
a0cac0ec 740 else
9e0af237 741 wq = fs_info->endio_workers;
d20f7043 742 }
9e0af237 743
a0cac0ec 744 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 745 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
746}
747
4e4cbee9 748blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 749 enum btrfs_wq_endio_type metadata)
0b86a832 750{
97eb6b69 751 struct btrfs_end_io_wq *end_io_wq;
8b110e39 752
97eb6b69 753 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 754 if (!end_io_wq)
4e4cbee9 755 return BLK_STS_RESOURCE;
ce9adaa5
CM
756
757 end_io_wq->private = bio->bi_private;
758 end_io_wq->end_io = bio->bi_end_io;
22c59948 759 end_io_wq->info = info;
4e4cbee9 760 end_io_wq->status = 0;
ce9adaa5 761 end_io_wq->bio = bio;
22c59948 762 end_io_wq->metadata = metadata;
ce9adaa5
CM
763
764 bio->bi_private = end_io_wq;
765 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
766 return 0;
767}
768
4a69a410
CM
769static void run_one_async_start(struct btrfs_work *work)
770{
4a69a410 771 struct async_submit_bio *async;
4e4cbee9 772 blk_status_t ret;
4a69a410
CM
773
774 async = container_of(work, struct async_submit_bio, work);
c6100a4b 775 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
776 async->bio_offset);
777 if (ret)
4e4cbee9 778 async->status = ret;
4a69a410
CM
779}
780
06ea01b1
DS
781/*
782 * In order to insert checksums into the metadata in large chunks, we wait
783 * until bio submission time. All the pages in the bio are checksummed and
784 * sums are attached onto the ordered extent record.
785 *
786 * At IO completion time the csums attached on the ordered extent record are
787 * inserted into the tree.
788 */
4a69a410 789static void run_one_async_done(struct btrfs_work *work)
8b712842 790{
8b712842 791 struct async_submit_bio *async;
06ea01b1
DS
792 struct inode *inode;
793 blk_status_t ret;
8b712842
CM
794
795 async = container_of(work, struct async_submit_bio, work);
06ea01b1 796 inode = async->private_data;
4854ddd0 797
bb7ab3b9 798 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
799 if (async->status) {
800 async->bio->bi_status = async->status;
4246a0b6 801 bio_endio(async->bio);
79787eaa
JM
802 return;
803 }
804
ec39f769
CM
805 /*
806 * All of the bios that pass through here are from async helpers.
807 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
808 * This changes nothing when cgroups aren't in use.
809 */
810 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 811 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
812 if (ret) {
813 async->bio->bi_status = ret;
814 bio_endio(async->bio);
815 }
4a69a410
CM
816}
817
818static void run_one_async_free(struct btrfs_work *work)
819{
820 struct async_submit_bio *async;
821
822 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
823 kfree(async);
824}
825
8c27cb35
LT
826blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
827 int mirror_num, unsigned long bio_flags,
828 u64 bio_offset, void *private_data,
e288c080 829 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
830{
831 struct async_submit_bio *async;
832
833 async = kmalloc(sizeof(*async), GFP_NOFS);
834 if (!async)
4e4cbee9 835 return BLK_STS_RESOURCE;
44b8bd7e 836
c6100a4b 837 async->private_data = private_data;
44b8bd7e
CM
838 async->bio = bio;
839 async->mirror_num = mirror_num;
4a69a410 840 async->submit_bio_start = submit_bio_start;
4a69a410 841
a0cac0ec
OS
842 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
843 run_one_async_free);
4a69a410 844
eaf25d93 845 async->bio_offset = bio_offset;
8c8bee1d 846
4e4cbee9 847 async->status = 0;
79787eaa 848
67f055c7 849 if (op_is_sync(bio->bi_opf))
5cdc7ad3 850 btrfs_set_work_high_priority(&async->work);
d313d7a3 851
5cdc7ad3 852 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
853 return 0;
854}
855
4e4cbee9 856static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 857{
2c30c71b 858 struct bio_vec *bvec;
ce3ed71a 859 struct btrfs_root *root;
2b070cfe 860 int ret = 0;
6dc4f100 861 struct bvec_iter_all iter_all;
ce3ed71a 862
c09abff8 863 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 864 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 865 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 866 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
867 if (ret)
868 break;
ce3ed71a 869 }
2c30c71b 870
4e4cbee9 871 return errno_to_blk_status(ret);
ce3ed71a
CM
872}
873
d0ee3934 874static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 875 u64 bio_offset)
22c59948 876{
8b712842
CM
877 /*
878 * when we're called for a write, we're already in the async
5443be45 879 * submission context. Just jump into btrfs_map_bio
8b712842 880 */
79787eaa 881 return btree_csum_one_bio(bio);
4a69a410 882}
22c59948 883
9b4e675a
DS
884static int check_async_write(struct btrfs_fs_info *fs_info,
885 struct btrfs_inode *bi)
de0022b9 886{
6300463b
LB
887 if (atomic_read(&bi->sync_writers))
888 return 0;
9b4e675a 889 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 890 return 0;
de0022b9
JB
891 return 1;
892}
893
a56b1c7b 894static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
895 int mirror_num,
896 unsigned long bio_flags)
44b8bd7e 897{
0b246afa 898 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 899 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 900 blk_status_t ret;
cad321ad 901
37226b21 902 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
903 /*
904 * called for a read, do the setup so that checksum validation
905 * can happen in the async kernel threads
906 */
0b246afa
JM
907 ret = btrfs_bio_wq_end_io(fs_info, bio,
908 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 909 if (ret)
61891923 910 goto out_w_error;
08635bae 911 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
912 } else if (!async) {
913 ret = btree_csum_one_bio(bio);
914 if (ret)
61891923 915 goto out_w_error;
08635bae 916 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
917 } else {
918 /*
919 * kthread helpers are used to submit writes so that
920 * checksumming can happen in parallel across all CPUs
921 */
c6100a4b 922 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 923 0, inode, btree_submit_bio_start);
44b8bd7e 924 }
d313d7a3 925
4246a0b6
CH
926 if (ret)
927 goto out_w_error;
928 return 0;
929
61891923 930out_w_error:
4e4cbee9 931 bio->bi_status = ret;
4246a0b6 932 bio_endio(bio);
61891923 933 return ret;
44b8bd7e
CM
934}
935
3dd1462e 936#ifdef CONFIG_MIGRATION
784b4e29 937static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
938 struct page *newpage, struct page *page,
939 enum migrate_mode mode)
784b4e29
CM
940{
941 /*
942 * we can't safely write a btree page from here,
943 * we haven't done the locking hook
944 */
945 if (PageDirty(page))
946 return -EAGAIN;
947 /*
948 * Buffers may be managed in a filesystem specific way.
949 * We must have no buffers or drop them.
950 */
951 if (page_has_private(page) &&
952 !try_to_release_page(page, GFP_KERNEL))
953 return -EAGAIN;
a6bc32b8 954 return migrate_page(mapping, newpage, page, mode);
784b4e29 955}
3dd1462e 956#endif
784b4e29 957
0da5468f
CM
958
959static int btree_writepages(struct address_space *mapping,
960 struct writeback_control *wbc)
961{
e2d84521
MX
962 struct btrfs_fs_info *fs_info;
963 int ret;
964
d8d5f3e1 965 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
966
967 if (wbc->for_kupdate)
968 return 0;
969
e2d84521 970 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 971 /* this is a bit racy, but that's ok */
d814a491
EL
972 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
973 BTRFS_DIRTY_METADATA_THRESH,
974 fs_info->dirty_metadata_batch);
e2d84521 975 if (ret < 0)
793955bc 976 return 0;
793955bc 977 }
0b32f4bb 978 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
979}
980
b2950863 981static int btree_readpage(struct file *file, struct page *page)
5f39d397 982{
71ad38b4 983 return extent_read_full_page(page, btree_get_extent, 0);
5f39d397 984}
22b0ebda 985
70dec807 986static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 987{
98509cfc 988 if (PageWriteback(page) || PageDirty(page))
d397712b 989 return 0;
0c4e538b 990
f7a52a40 991 return try_release_extent_buffer(page);
d98237b3
CM
992}
993
d47992f8
LC
994static void btree_invalidatepage(struct page *page, unsigned int offset,
995 unsigned int length)
d98237b3 996{
d1310b2e
CM
997 struct extent_io_tree *tree;
998 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
999 extent_invalidatepage(tree, page, offset);
1000 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1001 if (PagePrivate(page)) {
efe120a0
FH
1002 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1003 "page private not zero on page %llu",
1004 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1005 ClearPagePrivate(page);
1006 set_page_private(page, 0);
09cbfeaf 1007 put_page(page);
9ad6b7bc 1008 }
d98237b3
CM
1009}
1010
0b32f4bb
JB
1011static int btree_set_page_dirty(struct page *page)
1012{
bb146eb2 1013#ifdef DEBUG
0b32f4bb
JB
1014 struct extent_buffer *eb;
1015
1016 BUG_ON(!PagePrivate(page));
1017 eb = (struct extent_buffer *)page->private;
1018 BUG_ON(!eb);
1019 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1020 BUG_ON(!atomic_read(&eb->refs));
1021 btrfs_assert_tree_locked(eb);
bb146eb2 1022#endif
0b32f4bb
JB
1023 return __set_page_dirty_nobuffers(page);
1024}
1025
7f09410b 1026static const struct address_space_operations btree_aops = {
d98237b3 1027 .readpage = btree_readpage,
0da5468f 1028 .writepages = btree_writepages,
5f39d397
CM
1029 .releasepage = btree_releasepage,
1030 .invalidatepage = btree_invalidatepage,
5a92bc88 1031#ifdef CONFIG_MIGRATION
784b4e29 1032 .migratepage = btree_migratepage,
5a92bc88 1033#endif
0b32f4bb 1034 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1035};
1036
2ff7e61e 1037void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1038{
5f39d397 1039 struct extent_buffer *buf = NULL;
537f38f0 1040 int ret;
090d1875 1041
2ff7e61e 1042 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1043 if (IS_ERR(buf))
6197d86e 1044 return;
537f38f0 1045
c2ccfbc6 1046 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1047 if (ret < 0)
1048 free_extent_buffer_stale(buf);
1049 else
1050 free_extent_buffer(buf);
090d1875
CM
1051}
1052
2ff7e61e
JM
1053struct extent_buffer *btrfs_find_create_tree_block(
1054 struct btrfs_fs_info *fs_info,
1055 u64 bytenr)
0999df54 1056{
0b246afa
JM
1057 if (btrfs_is_testing(fs_info))
1058 return alloc_test_extent_buffer(fs_info, bytenr);
1059 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1060}
1061
581c1760
QW
1062/*
1063 * Read tree block at logical address @bytenr and do variant basic but critical
1064 * verification.
1065 *
1066 * @parent_transid: expected transid of this tree block, skip check if 0
1067 * @level: expected level, mandatory check
1068 * @first_key: expected key in slot 0, skip check if NULL
1069 */
2ff7e61e 1070struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1071 u64 parent_transid, int level,
1072 struct btrfs_key *first_key)
0999df54
CM
1073{
1074 struct extent_buffer *buf = NULL;
0999df54
CM
1075 int ret;
1076
2ff7e61e 1077 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1078 if (IS_ERR(buf))
1079 return buf;
0999df54 1080
5ab12d1f 1081 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1082 level, first_key);
0f0fe8f7 1083 if (ret) {
537f38f0 1084 free_extent_buffer_stale(buf);
64c043de 1085 return ERR_PTR(ret);
0f0fe8f7 1086 }
5f39d397 1087 return buf;
ce9adaa5 1088
eb60ceac
CM
1089}
1090
6a884d7d 1091void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1092{
6a884d7d 1093 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1094 if (btrfs_header_generation(buf) ==
e2d84521 1095 fs_info->running_transaction->transid) {
b9447ef8 1096 btrfs_assert_tree_locked(buf);
b4ce94de 1097
b9473439 1098 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1099 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1100 -buf->len,
1101 fs_info->dirty_metadata_batch);
ed7b63eb 1102 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1103 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1104 clear_extent_buffer_dirty(buf);
1105 }
925baedd 1106 }
5f39d397
CM
1107}
1108
da17066c 1109static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1110 u64 objectid)
d97e63b6 1111{
7c0260ee 1112 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1113 root->fs_info = fs_info;
cfaa7295 1114 root->node = NULL;
a28ec197 1115 root->commit_root = NULL;
27cdeb70 1116 root->state = 0;
d68fc57b 1117 root->orphan_cleanup_state = 0;
0b86a832 1118
0f7d52f4 1119 root->last_trans = 0;
13a8a7c8 1120 root->highest_objectid = 0;
eb73c1b7 1121 root->nr_delalloc_inodes = 0;
199c2a9c 1122 root->nr_ordered_extents = 0;
6bef4d31 1123 root->inode_tree = RB_ROOT;
16cdcec7 1124 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1125 root->block_rsv = NULL;
0b86a832
CM
1126
1127 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1128 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1129 INIT_LIST_HEAD(&root->delalloc_inodes);
1130 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1131 INIT_LIST_HEAD(&root->ordered_extents);
1132 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1133 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1134 INIT_LIST_HEAD(&root->logged_list[0]);
1135 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1136 spin_lock_init(&root->inode_lock);
eb73c1b7 1137 spin_lock_init(&root->delalloc_lock);
199c2a9c 1138 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1139 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1140 spin_lock_init(&root->log_extents_lock[0]);
1141 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1142 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1143 mutex_init(&root->objectid_mutex);
e02119d5 1144 mutex_init(&root->log_mutex);
31f3d255 1145 mutex_init(&root->ordered_extent_mutex);
573bfb72 1146 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1147 init_waitqueue_head(&root->log_writer_wait);
1148 init_waitqueue_head(&root->log_commit_wait[0]);
1149 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1150 INIT_LIST_HEAD(&root->log_ctxs[0]);
1151 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1152 atomic_set(&root->log_commit[0], 0);
1153 atomic_set(&root->log_commit[1], 0);
1154 atomic_set(&root->log_writers, 0);
2ecb7923 1155 atomic_set(&root->log_batch, 0);
0700cea7 1156 refcount_set(&root->refs, 1);
8ecebf4d 1157 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1158 atomic_set(&root->nr_swapfiles, 0);
7237f183 1159 root->log_transid = 0;
d1433deb 1160 root->log_transid_committed = -1;
257c62e1 1161 root->last_log_commit = 0;
7c0260ee 1162 if (!dummy)
43eb5f29
QW
1163 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1164 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1165
3768f368
CM
1166 memset(&root->root_key, 0, sizeof(root->root_key));
1167 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1168 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1169 if (!dummy)
06ea65a3
JB
1170 root->defrag_trans_start = fs_info->generation;
1171 else
1172 root->defrag_trans_start = 0;
4d775673 1173 root->root_key.objectid = objectid;
0ee5dc67 1174 root->anon_dev = 0;
8ea05e3a 1175
5f3ab90a 1176 spin_lock_init(&root->root_item_lock);
370a11b8 1177 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1178#ifdef CONFIG_BTRFS_DEBUG
1179 INIT_LIST_HEAD(&root->leak_list);
1180 spin_lock(&fs_info->fs_roots_radix_lock);
1181 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1182 spin_unlock(&fs_info->fs_roots_radix_lock);
1183#endif
3768f368
CM
1184}
1185
74e4d827 1186static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1187 u64 objectid, gfp_t flags)
6f07e42e 1188{
74e4d827 1189 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1190 if (root)
96dfcb46 1191 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1192 return root;
1193}
1194
06ea65a3
JB
1195#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1196/* Should only be used by the testing infrastructure */
da17066c 1197struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1198{
1199 struct btrfs_root *root;
1200
7c0260ee
JM
1201 if (!fs_info)
1202 return ERR_PTR(-EINVAL);
1203
96dfcb46 1204 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1205 if (!root)
1206 return ERR_PTR(-ENOMEM);
da17066c 1207
b9ef22de 1208 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1209 root->alloc_bytenr = 0;
06ea65a3
JB
1210
1211 return root;
1212}
1213#endif
1214
20897f5c 1215struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1216 u64 objectid)
1217{
9b7a2440 1218 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1219 struct extent_buffer *leaf;
1220 struct btrfs_root *tree_root = fs_info->tree_root;
1221 struct btrfs_root *root;
1222 struct btrfs_key key;
b89f6d1f 1223 unsigned int nofs_flag;
20897f5c 1224 int ret = 0;
33d85fda 1225 uuid_le uuid = NULL_UUID_LE;
20897f5c 1226
b89f6d1f
FM
1227 /*
1228 * We're holding a transaction handle, so use a NOFS memory allocation
1229 * context to avoid deadlock if reclaim happens.
1230 */
1231 nofs_flag = memalloc_nofs_save();
96dfcb46 1232 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1233 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1234 if (!root)
1235 return ERR_PTR(-ENOMEM);
1236
20897f5c
AJ
1237 root->root_key.objectid = objectid;
1238 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1239 root->root_key.offset = 0;
1240
4d75f8a9 1241 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1242 if (IS_ERR(leaf)) {
1243 ret = PTR_ERR(leaf);
1dd05682 1244 leaf = NULL;
20897f5c
AJ
1245 goto fail;
1246 }
1247
20897f5c 1248 root->node = leaf;
20897f5c
AJ
1249 btrfs_mark_buffer_dirty(leaf);
1250
1251 root->commit_root = btrfs_root_node(root);
27cdeb70 1252 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1253
1254 root->root_item.flags = 0;
1255 root->root_item.byte_limit = 0;
1256 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1257 btrfs_set_root_generation(&root->root_item, trans->transid);
1258 btrfs_set_root_level(&root->root_item, 0);
1259 btrfs_set_root_refs(&root->root_item, 1);
1260 btrfs_set_root_used(&root->root_item, leaf->len);
1261 btrfs_set_root_last_snapshot(&root->root_item, 0);
1262 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1263 if (is_fstree(objectid))
1264 uuid_le_gen(&uuid);
6463fe58 1265 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1266 root->root_item.drop_level = 0;
1267
1268 key.objectid = objectid;
1269 key.type = BTRFS_ROOT_ITEM_KEY;
1270 key.offset = 0;
1271 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1272 if (ret)
1273 goto fail;
1274
1275 btrfs_tree_unlock(leaf);
1276
1dd05682
TI
1277 return root;
1278
20897f5c 1279fail:
1dd05682
TI
1280 if (leaf) {
1281 btrfs_tree_unlock(leaf);
59885b39 1282 free_extent_buffer(root->commit_root);
1dd05682
TI
1283 free_extent_buffer(leaf);
1284 }
00246528 1285 btrfs_put_root(root);
20897f5c 1286
1dd05682 1287 return ERR_PTR(ret);
20897f5c
AJ
1288}
1289
7237f183
YZ
1290static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1291 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1292{
1293 struct btrfs_root *root;
7237f183 1294 struct extent_buffer *leaf;
e02119d5 1295
96dfcb46 1296 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1297 if (!root)
7237f183 1298 return ERR_PTR(-ENOMEM);
e02119d5 1299
e02119d5
CM
1300 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1301 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1302 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1303
7237f183 1304 /*
27cdeb70
MX
1305 * DON'T set REF_COWS for log trees
1306 *
7237f183
YZ
1307 * log trees do not get reference counted because they go away
1308 * before a real commit is actually done. They do store pointers
1309 * to file data extents, and those reference counts still get
1310 * updated (along with back refs to the log tree).
1311 */
e02119d5 1312
4d75f8a9
DS
1313 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1314 NULL, 0, 0, 0);
7237f183 1315 if (IS_ERR(leaf)) {
00246528 1316 btrfs_put_root(root);
7237f183
YZ
1317 return ERR_CAST(leaf);
1318 }
e02119d5 1319
7237f183 1320 root->node = leaf;
e02119d5 1321
e02119d5
CM
1322 btrfs_mark_buffer_dirty(root->node);
1323 btrfs_tree_unlock(root->node);
7237f183
YZ
1324 return root;
1325}
1326
1327int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1328 struct btrfs_fs_info *fs_info)
1329{
1330 struct btrfs_root *log_root;
1331
1332 log_root = alloc_log_tree(trans, fs_info);
1333 if (IS_ERR(log_root))
1334 return PTR_ERR(log_root);
1335 WARN_ON(fs_info->log_root_tree);
1336 fs_info->log_root_tree = log_root;
1337 return 0;
1338}
1339
1340int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1341 struct btrfs_root *root)
1342{
0b246afa 1343 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1344 struct btrfs_root *log_root;
1345 struct btrfs_inode_item *inode_item;
1346
0b246afa 1347 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1348 if (IS_ERR(log_root))
1349 return PTR_ERR(log_root);
1350
1351 log_root->last_trans = trans->transid;
1352 log_root->root_key.offset = root->root_key.objectid;
1353
1354 inode_item = &log_root->root_item.inode;
3cae210f
QW
1355 btrfs_set_stack_inode_generation(inode_item, 1);
1356 btrfs_set_stack_inode_size(inode_item, 3);
1357 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1358 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1359 fs_info->nodesize);
3cae210f 1360 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1361
5d4f98a2 1362 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1363
1364 WARN_ON(root->log_root);
1365 root->log_root = log_root;
1366 root->log_transid = 0;
d1433deb 1367 root->log_transid_committed = -1;
257c62e1 1368 root->last_log_commit = 0;
e02119d5
CM
1369 return 0;
1370}
1371
62a2c73e
JB
1372struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1373 struct btrfs_key *key)
e02119d5
CM
1374{
1375 struct btrfs_root *root;
1376 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1377 struct btrfs_path *path;
84234f3a 1378 u64 generation;
cb517eab 1379 int ret;
581c1760 1380 int level;
0f7d52f4 1381
cb517eab
MX
1382 path = btrfs_alloc_path();
1383 if (!path)
0f7d52f4 1384 return ERR_PTR(-ENOMEM);
cb517eab 1385
96dfcb46 1386 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
cb517eab
MX
1387 if (!root) {
1388 ret = -ENOMEM;
1389 goto alloc_fail;
0f7d52f4
CM
1390 }
1391
cb517eab
MX
1392 ret = btrfs_find_root(tree_root, key, path,
1393 &root->root_item, &root->root_key);
0f7d52f4 1394 if (ret) {
13a8a7c8
YZ
1395 if (ret > 0)
1396 ret = -ENOENT;
cb517eab 1397 goto find_fail;
0f7d52f4 1398 }
13a8a7c8 1399
84234f3a 1400 generation = btrfs_root_generation(&root->root_item);
581c1760 1401 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1402 root->node = read_tree_block(fs_info,
1403 btrfs_root_bytenr(&root->root_item),
581c1760 1404 generation, level, NULL);
64c043de
LB
1405 if (IS_ERR(root->node)) {
1406 ret = PTR_ERR(root->node);
cb517eab
MX
1407 goto find_fail;
1408 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1409 ret = -EIO;
64c043de
LB
1410 free_extent_buffer(root->node);
1411 goto find_fail;
416bc658 1412 }
5d4f98a2 1413 root->commit_root = btrfs_root_node(root);
13a8a7c8 1414out:
cb517eab
MX
1415 btrfs_free_path(path);
1416 return root;
1417
cb517eab 1418find_fail:
00246528 1419 btrfs_put_root(root);
cb517eab
MX
1420alloc_fail:
1421 root = ERR_PTR(ret);
1422 goto out;
1423}
1424
a98db0f3 1425static int btrfs_init_fs_root(struct btrfs_root *root)
cb517eab
MX
1426{
1427 int ret;
dcc3eb96 1428 unsigned int nofs_flag;
cb517eab
MX
1429
1430 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1431 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1432 GFP_NOFS);
1433 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1434 ret = -ENOMEM;
1435 goto fail;
1436 }
1437
dcc3eb96
NB
1438 /*
1439 * We might be called under a transaction (e.g. indirect backref
1440 * resolution) which could deadlock if it triggers memory reclaim
1441 */
1442 nofs_flag = memalloc_nofs_save();
1443 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1444 memalloc_nofs_restore(nofs_flag);
1445 if (ret)
8257b2dc 1446 goto fail;
8257b2dc 1447
f39e4571
JB
1448 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1449 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1450 btrfs_check_and_init_root_item(&root->root_item);
1451 }
1452
cb517eab 1453 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1454 spin_lock_init(&root->ino_cache_lock);
1455 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1456
1457 ret = get_anon_bdev(&root->anon_dev);
1458 if (ret)
876d2cf1 1459 goto fail;
f32e48e9
CR
1460
1461 mutex_lock(&root->objectid_mutex);
1462 ret = btrfs_find_highest_objectid(root,
1463 &root->highest_objectid);
1464 if (ret) {
1465 mutex_unlock(&root->objectid_mutex);
876d2cf1 1466 goto fail;
f32e48e9
CR
1467 }
1468
1469 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1470
1471 mutex_unlock(&root->objectid_mutex);
1472
cb517eab
MX
1473 return 0;
1474fail:
84db5ccf 1475 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1476 return ret;
1477}
1478
a98db0f3
JB
1479static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1480 u64 root_id)
cb517eab
MX
1481{
1482 struct btrfs_root *root;
1483
1484 spin_lock(&fs_info->fs_roots_radix_lock);
1485 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1486 (unsigned long)root_id);
bc44d7c4 1487 if (root)
00246528 1488 root = btrfs_grab_root(root);
cb517eab
MX
1489 spin_unlock(&fs_info->fs_roots_radix_lock);
1490 return root;
1491}
1492
1493int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1494 struct btrfs_root *root)
1495{
1496 int ret;
1497
e1860a77 1498 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1499 if (ret)
1500 return ret;
1501
1502 spin_lock(&fs_info->fs_roots_radix_lock);
1503 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1504 (unsigned long)root->root_key.objectid,
1505 root);
af01d2e5 1506 if (ret == 0) {
00246528 1507 btrfs_grab_root(root);
27cdeb70 1508 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1509 }
cb517eab
MX
1510 spin_unlock(&fs_info->fs_roots_radix_lock);
1511 radix_tree_preload_end();
1512
1513 return ret;
1514}
1515
bd647ce3
JB
1516void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1517{
1518#ifdef CONFIG_BTRFS_DEBUG
1519 struct btrfs_root *root;
1520
1521 while (!list_empty(&fs_info->allocated_roots)) {
1522 root = list_first_entry(&fs_info->allocated_roots,
1523 struct btrfs_root, leak_list);
1524 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1525 root->root_key.objectid, root->root_key.offset,
1526 refcount_read(&root->refs));
1527 while (refcount_read(&root->refs) > 1)
00246528
JB
1528 btrfs_put_root(root);
1529 btrfs_put_root(root);
bd647ce3
JB
1530 }
1531#endif
1532}
1533
0d4b0463
JB
1534void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1535{
141386e1
JB
1536 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1537 percpu_counter_destroy(&fs_info->delalloc_bytes);
1538 percpu_counter_destroy(&fs_info->dio_bytes);
1539 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1540 btrfs_free_csum_hash(fs_info);
1541 btrfs_free_stripe_hash_table(fs_info);
1542 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1543 kfree(fs_info->balance_ctl);
1544 kfree(fs_info->delayed_root);
00246528
JB
1545 btrfs_put_root(fs_info->extent_root);
1546 btrfs_put_root(fs_info->tree_root);
1547 btrfs_put_root(fs_info->chunk_root);
1548 btrfs_put_root(fs_info->dev_root);
1549 btrfs_put_root(fs_info->csum_root);
1550 btrfs_put_root(fs_info->quota_root);
1551 btrfs_put_root(fs_info->uuid_root);
1552 btrfs_put_root(fs_info->free_space_root);
1553 btrfs_put_root(fs_info->fs_root);
bd647ce3 1554 btrfs_check_leaked_roots(fs_info);
0d4b0463
JB
1555 kfree(fs_info->super_copy);
1556 kfree(fs_info->super_for_commit);
1557 kvfree(fs_info);
1558}
1559
1560
c00869f1
MX
1561struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1562 struct btrfs_key *location,
1563 bool check_ref)
5eda7b5e
CM
1564{
1565 struct btrfs_root *root;
381cf658 1566 struct btrfs_path *path;
1d4c08e0 1567 struct btrfs_key key;
5eda7b5e
CM
1568 int ret;
1569
edbd8d4e 1570 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
00246528 1571 return btrfs_grab_root(fs_info->tree_root);
edbd8d4e 1572 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
00246528 1573 return btrfs_grab_root(fs_info->extent_root);
8f18cf13 1574 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
00246528 1575 return btrfs_grab_root(fs_info->chunk_root);
8f18cf13 1576 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
00246528 1577 return btrfs_grab_root(fs_info->dev_root);
0403e47e 1578 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
00246528 1579 return btrfs_grab_root(fs_info->csum_root);
bcef60f2 1580 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
00246528 1581 return btrfs_grab_root(fs_info->quota_root) ?
bc44d7c4 1582 fs_info->quota_root : ERR_PTR(-ENOENT);
f7a81ea4 1583 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
00246528 1584 return btrfs_grab_root(fs_info->uuid_root) ?
bc44d7c4 1585 fs_info->uuid_root : ERR_PTR(-ENOENT);
70f6d82e 1586 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
00246528 1587 return btrfs_grab_root(fs_info->free_space_root) ?
bc44d7c4 1588 fs_info->free_space_root : ERR_PTR(-ENOENT);
4df27c4d 1589again:
cb517eab 1590 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1591 if (root) {
bc44d7c4 1592 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1593 btrfs_put_root(root);
48475471 1594 return ERR_PTR(-ENOENT);
bc44d7c4 1595 }
5eda7b5e 1596 return root;
48475471 1597 }
5eda7b5e 1598
83db2aad 1599 root = btrfs_read_tree_root(fs_info->tree_root, location);
5eda7b5e
CM
1600 if (IS_ERR(root))
1601 return root;
3394e160 1602
c00869f1 1603 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1604 ret = -ENOENT;
581bb050 1605 goto fail;
35a30d7c 1606 }
581bb050 1607
cb517eab 1608 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1609 if (ret)
1610 goto fail;
3394e160 1611
381cf658
DS
1612 path = btrfs_alloc_path();
1613 if (!path) {
1614 ret = -ENOMEM;
1615 goto fail;
1616 }
1d4c08e0
DS
1617 key.objectid = BTRFS_ORPHAN_OBJECTID;
1618 key.type = BTRFS_ORPHAN_ITEM_KEY;
1619 key.offset = location->objectid;
1620
1621 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1622 btrfs_free_path(path);
d68fc57b
YZ
1623 if (ret < 0)
1624 goto fail;
1625 if (ret == 0)
27cdeb70 1626 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1627
bc44d7c4
JB
1628 /*
1629 * All roots have two refs on them at all times, one for the mounted fs,
1630 * and one for being in the radix tree. This way we only free the root
1631 * when we are unmounting or deleting the subvolume. We get one ref
1632 * from __setup_root, one for inserting it into the radix tree, and then
1633 * we have the third for returning it, and the caller will put it when
1634 * it's done with the root.
1635 */
00246528 1636 btrfs_grab_root(root);
cb517eab 1637 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1638 if (ret) {
00246528 1639 btrfs_put_root(root);
4df27c4d 1640 if (ret == -EEXIST) {
84db5ccf 1641 btrfs_free_fs_root(root);
4df27c4d
YZ
1642 goto again;
1643 }
1644 goto fail;
0f7d52f4 1645 }
edbd8d4e 1646 return root;
4df27c4d 1647fail:
84db5ccf 1648 btrfs_free_fs_root(root);
4df27c4d 1649 return ERR_PTR(ret);
edbd8d4e
CM
1650}
1651
04160088
CM
1652static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1653{
1654 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1655 int ret = 0;
04160088
CM
1656 struct btrfs_device *device;
1657 struct backing_dev_info *bdi;
b7967db7 1658
1f78160c
XG
1659 rcu_read_lock();
1660 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1661 if (!device->bdev)
1662 continue;
efa7c9f9 1663 bdi = device->bdev->bd_bdi;
ff9ea323 1664 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1665 ret = 1;
1666 break;
1667 }
1668 }
1f78160c 1669 rcu_read_unlock();
04160088
CM
1670 return ret;
1671}
1672
8b712842
CM
1673/*
1674 * called by the kthread helper functions to finally call the bio end_io
1675 * functions. This is where read checksum verification actually happens
1676 */
1677static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1678{
ce9adaa5 1679 struct bio *bio;
97eb6b69 1680 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1681
97eb6b69 1682 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1683 bio = end_io_wq->bio;
ce9adaa5 1684
4e4cbee9 1685 bio->bi_status = end_io_wq->status;
8b712842
CM
1686 bio->bi_private = end_io_wq->private;
1687 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1688 bio_endio(bio);
9be490f1 1689 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1690}
1691
a74a4b97
CM
1692static int cleaner_kthread(void *arg)
1693{
1694 struct btrfs_root *root = arg;
0b246afa 1695 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1696 int again;
a74a4b97 1697
d6fd0ae2 1698 while (1) {
d0278245 1699 again = 0;
a74a4b97 1700
fd340d0f
JB
1701 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1702
d0278245 1703 /* Make the cleaner go to sleep early. */
2ff7e61e 1704 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1705 goto sleep;
1706
90c711ab
ZB
1707 /*
1708 * Do not do anything if we might cause open_ctree() to block
1709 * before we have finished mounting the filesystem.
1710 */
0b246afa 1711 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1712 goto sleep;
1713
0b246afa 1714 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1715 goto sleep;
1716
dc7f370c
MX
1717 /*
1718 * Avoid the problem that we change the status of the fs
1719 * during the above check and trylock.
1720 */
2ff7e61e 1721 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1722 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1723 goto sleep;
76dda93c 1724 }
a74a4b97 1725
2ff7e61e 1726 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1727
d0278245 1728 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1729 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1730
1731 /*
05323cd1
MX
1732 * The defragger has dealt with the R/O remount and umount,
1733 * needn't do anything special here.
d0278245 1734 */
0b246afa 1735 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1736
1737 /*
1738 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1739 * with relocation (btrfs_relocate_chunk) and relocation
1740 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1741 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1742 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1743 * unused block groups.
1744 */
0b246afa 1745 btrfs_delete_unused_bgs(fs_info);
d0278245 1746sleep:
fd340d0f 1747 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1748 if (kthread_should_park())
1749 kthread_parkme();
1750 if (kthread_should_stop())
1751 return 0;
838fe188 1752 if (!again) {
a74a4b97 1753 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1754 schedule();
a74a4b97
CM
1755 __set_current_state(TASK_RUNNING);
1756 }
da288d28 1757 }
a74a4b97
CM
1758}
1759
1760static int transaction_kthread(void *arg)
1761{
1762 struct btrfs_root *root = arg;
0b246afa 1763 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1764 struct btrfs_trans_handle *trans;
1765 struct btrfs_transaction *cur;
8929ecfa 1766 u64 transid;
a944442c 1767 time64_t now;
a74a4b97 1768 unsigned long delay;
914b2007 1769 bool cannot_commit;
a74a4b97
CM
1770
1771 do {
914b2007 1772 cannot_commit = false;
0b246afa
JM
1773 delay = HZ * fs_info->commit_interval;
1774 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1775
0b246afa
JM
1776 spin_lock(&fs_info->trans_lock);
1777 cur = fs_info->running_transaction;
a74a4b97 1778 if (!cur) {
0b246afa 1779 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1780 goto sleep;
1781 }
31153d81 1782
afd48513 1783 now = ktime_get_seconds();
3296bf56 1784 if (cur->state < TRANS_STATE_COMMIT_START &&
a514d638 1785 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1786 (now < cur->start_time ||
0b246afa
JM
1787 now - cur->start_time < fs_info->commit_interval)) {
1788 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1789 delay = HZ * 5;
1790 goto sleep;
1791 }
8929ecfa 1792 transid = cur->transid;
0b246afa 1793 spin_unlock(&fs_info->trans_lock);
56bec294 1794
79787eaa 1795 /* If the file system is aborted, this will always fail. */
354aa0fb 1796 trans = btrfs_attach_transaction(root);
914b2007 1797 if (IS_ERR(trans)) {
354aa0fb
MX
1798 if (PTR_ERR(trans) != -ENOENT)
1799 cannot_commit = true;
79787eaa 1800 goto sleep;
914b2007 1801 }
8929ecfa 1802 if (transid == trans->transid) {
3a45bb20 1803 btrfs_commit_transaction(trans);
8929ecfa 1804 } else {
3a45bb20 1805 btrfs_end_transaction(trans);
8929ecfa 1806 }
a74a4b97 1807sleep:
0b246afa
JM
1808 wake_up_process(fs_info->cleaner_kthread);
1809 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1810
4e121c06 1811 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1812 &fs_info->fs_state)))
2ff7e61e 1813 btrfs_cleanup_transaction(fs_info);
ce63f891 1814 if (!kthread_should_stop() &&
0b246afa 1815 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1816 cannot_commit))
bc5511d0 1817 schedule_timeout_interruptible(delay);
a74a4b97
CM
1818 } while (!kthread_should_stop());
1819 return 0;
1820}
1821
af31f5e5 1822/*
01f0f9da
NB
1823 * This will find the highest generation in the array of root backups. The
1824 * index of the highest array is returned, or -EINVAL if we can't find
1825 * anything.
af31f5e5
CM
1826 *
1827 * We check to make sure the array is valid by comparing the
1828 * generation of the latest root in the array with the generation
1829 * in the super block. If they don't match we pitch it.
1830 */
01f0f9da 1831static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1832{
01f0f9da 1833 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1834 u64 cur;
af31f5e5
CM
1835 struct btrfs_root_backup *root_backup;
1836 int i;
1837
1838 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1839 root_backup = info->super_copy->super_roots + i;
1840 cur = btrfs_backup_tree_root_gen(root_backup);
1841 if (cur == newest_gen)
01f0f9da 1842 return i;
af31f5e5
CM
1843 }
1844
01f0f9da 1845 return -EINVAL;
af31f5e5
CM
1846}
1847
af31f5e5
CM
1848/*
1849 * copy all the root pointers into the super backup array.
1850 * this will bump the backup pointer by one when it is
1851 * done
1852 */
1853static void backup_super_roots(struct btrfs_fs_info *info)
1854{
6ef108dd 1855 const int next_backup = info->backup_root_index;
af31f5e5 1856 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1857
1858 root_backup = info->super_for_commit->super_roots + next_backup;
1859
1860 /*
1861 * make sure all of our padding and empty slots get zero filled
1862 * regardless of which ones we use today
1863 */
1864 memset(root_backup, 0, sizeof(*root_backup));
1865
1866 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1867
1868 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1869 btrfs_set_backup_tree_root_gen(root_backup,
1870 btrfs_header_generation(info->tree_root->node));
1871
1872 btrfs_set_backup_tree_root_level(root_backup,
1873 btrfs_header_level(info->tree_root->node));
1874
1875 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1876 btrfs_set_backup_chunk_root_gen(root_backup,
1877 btrfs_header_generation(info->chunk_root->node));
1878 btrfs_set_backup_chunk_root_level(root_backup,
1879 btrfs_header_level(info->chunk_root->node));
1880
1881 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1882 btrfs_set_backup_extent_root_gen(root_backup,
1883 btrfs_header_generation(info->extent_root->node));
1884 btrfs_set_backup_extent_root_level(root_backup,
1885 btrfs_header_level(info->extent_root->node));
1886
7c7e82a7
CM
1887 /*
1888 * we might commit during log recovery, which happens before we set
1889 * the fs_root. Make sure it is valid before we fill it in.
1890 */
1891 if (info->fs_root && info->fs_root->node) {
1892 btrfs_set_backup_fs_root(root_backup,
1893 info->fs_root->node->start);
1894 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1895 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1896 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1897 btrfs_header_level(info->fs_root->node));
7c7e82a7 1898 }
af31f5e5
CM
1899
1900 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1901 btrfs_set_backup_dev_root_gen(root_backup,
1902 btrfs_header_generation(info->dev_root->node));
1903 btrfs_set_backup_dev_root_level(root_backup,
1904 btrfs_header_level(info->dev_root->node));
1905
1906 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1907 btrfs_set_backup_csum_root_gen(root_backup,
1908 btrfs_header_generation(info->csum_root->node));
1909 btrfs_set_backup_csum_root_level(root_backup,
1910 btrfs_header_level(info->csum_root->node));
1911
1912 btrfs_set_backup_total_bytes(root_backup,
1913 btrfs_super_total_bytes(info->super_copy));
1914 btrfs_set_backup_bytes_used(root_backup,
1915 btrfs_super_bytes_used(info->super_copy));
1916 btrfs_set_backup_num_devices(root_backup,
1917 btrfs_super_num_devices(info->super_copy));
1918
1919 /*
1920 * if we don't copy this out to the super_copy, it won't get remembered
1921 * for the next commit
1922 */
1923 memcpy(&info->super_copy->super_roots,
1924 &info->super_for_commit->super_roots,
1925 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1926}
1927
bd2336b2
NB
1928/*
1929 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1930 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1931 *
1932 * fs_info - filesystem whose backup roots need to be read
1933 * priority - priority of backup root required
1934 *
1935 * Returns backup root index on success and -EINVAL otherwise.
1936 */
1937static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1938{
1939 int backup_index = find_newest_super_backup(fs_info);
1940 struct btrfs_super_block *super = fs_info->super_copy;
1941 struct btrfs_root_backup *root_backup;
1942
1943 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1944 if (priority == 0)
1945 return backup_index;
1946
1947 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1948 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1949 } else {
1950 return -EINVAL;
1951 }
1952
1953 root_backup = super->super_roots + backup_index;
1954
1955 btrfs_set_super_generation(super,
1956 btrfs_backup_tree_root_gen(root_backup));
1957 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1958 btrfs_set_super_root_level(super,
1959 btrfs_backup_tree_root_level(root_backup));
1960 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1961
1962 /*
1963 * Fixme: the total bytes and num_devices need to match or we should
1964 * need a fsck
1965 */
1966 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1967 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1968
1969 return backup_index;
1970}
1971
7abadb64
LB
1972/* helper to cleanup workers */
1973static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1974{
dc6e3209 1975 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1976 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1977 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1978 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1979 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 1980 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 1981 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1982 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1983 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1984 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1985 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1986 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1987 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1988 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1989 if (fs_info->discard_ctl.discard_workers)
1990 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1991 /*
1992 * Now that all other work queues are destroyed, we can safely destroy
1993 * the queues used for metadata I/O, since tasks from those other work
1994 * queues can do metadata I/O operations.
1995 */
1996 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1997 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
1998}
1999
2e9f5954
R
2000static void free_root_extent_buffers(struct btrfs_root *root)
2001{
2002 if (root) {
2003 free_extent_buffer(root->node);
2004 free_extent_buffer(root->commit_root);
2005 root->node = NULL;
2006 root->commit_root = NULL;
2007 }
2008}
2009
af31f5e5 2010/* helper to cleanup tree roots */
4273eaff 2011static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2012{
2e9f5954 2013 free_root_extent_buffers(info->tree_root);
655b09fe 2014
2e9f5954
R
2015 free_root_extent_buffers(info->dev_root);
2016 free_root_extent_buffers(info->extent_root);
2017 free_root_extent_buffers(info->csum_root);
2018 free_root_extent_buffers(info->quota_root);
2019 free_root_extent_buffers(info->uuid_root);
4273eaff 2020 if (free_chunk_root)
2e9f5954 2021 free_root_extent_buffers(info->chunk_root);
70f6d82e 2022 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2023}
2024
faa2dbf0 2025void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2026{
2027 int ret;
2028 struct btrfs_root *gang[8];
2029 int i;
2030
2031 while (!list_empty(&fs_info->dead_roots)) {
2032 gang[0] = list_entry(fs_info->dead_roots.next,
2033 struct btrfs_root, root_list);
2034 list_del(&gang[0]->root_list);
2035
27cdeb70 2036 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2037 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2038 } else {
2039 free_extent_buffer(gang[0]->node);
2040 free_extent_buffer(gang[0]->commit_root);
00246528 2041 btrfs_put_root(gang[0]);
171f6537
JB
2042 }
2043 }
2044
2045 while (1) {
2046 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2047 (void **)gang, 0,
2048 ARRAY_SIZE(gang));
2049 if (!ret)
2050 break;
2051 for (i = 0; i < ret; i++)
cb517eab 2052 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2053 }
1a4319cc 2054
fe119a6e 2055 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
1a4319cc 2056 btrfs_free_log_root_tree(NULL, fs_info);
171f6537 2057}
af31f5e5 2058
638aa7ed
ES
2059static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2060{
2061 mutex_init(&fs_info->scrub_lock);
2062 atomic_set(&fs_info->scrubs_running, 0);
2063 atomic_set(&fs_info->scrub_pause_req, 0);
2064 atomic_set(&fs_info->scrubs_paused, 0);
2065 atomic_set(&fs_info->scrub_cancel_req, 0);
2066 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2067 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2068}
2069
779a65a4
ES
2070static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2071{
2072 spin_lock_init(&fs_info->balance_lock);
2073 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2074 atomic_set(&fs_info->balance_pause_req, 0);
2075 atomic_set(&fs_info->balance_cancel_req, 0);
2076 fs_info->balance_ctl = NULL;
2077 init_waitqueue_head(&fs_info->balance_wait_q);
2078}
2079
6bccf3ab 2080static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2081{
2ff7e61e
JM
2082 struct inode *inode = fs_info->btree_inode;
2083
2084 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2085 set_nlink(inode, 1);
f37938e0
ES
2086 /*
2087 * we set the i_size on the btree inode to the max possible int.
2088 * the real end of the address space is determined by all of
2089 * the devices in the system
2090 */
2ff7e61e
JM
2091 inode->i_size = OFFSET_MAX;
2092 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2093
2ff7e61e 2094 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2095 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2096 IO_TREE_INODE_IO, inode);
7b439738 2097 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2098 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2099
2ff7e61e 2100 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2101
2ff7e61e
JM
2102 BTRFS_I(inode)->root = fs_info->tree_root;
2103 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2104 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2105 btrfs_insert_inode_hash(inode);
f37938e0
ES
2106}
2107
ad618368
ES
2108static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2109{
ad618368 2110 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2111 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2112 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2113}
2114
f9e92e40
ES
2115static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2116{
2117 spin_lock_init(&fs_info->qgroup_lock);
2118 mutex_init(&fs_info->qgroup_ioctl_lock);
2119 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2120 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2121 fs_info->qgroup_seq = 1;
f9e92e40 2122 fs_info->qgroup_ulist = NULL;
d2c609b8 2123 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2124 mutex_init(&fs_info->qgroup_rescan_lock);
2125}
2126
2a458198
ES
2127static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2128 struct btrfs_fs_devices *fs_devices)
2129{
f7b885be 2130 u32 max_active = fs_info->thread_pool_size;
6f011058 2131 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2132
2133 fs_info->workers =
cb001095
JM
2134 btrfs_alloc_workqueue(fs_info, "worker",
2135 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2136
2137 fs_info->delalloc_workers =
cb001095
JM
2138 btrfs_alloc_workqueue(fs_info, "delalloc",
2139 flags, max_active, 2);
2a458198
ES
2140
2141 fs_info->flush_workers =
cb001095
JM
2142 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2143 flags, max_active, 0);
2a458198
ES
2144
2145 fs_info->caching_workers =
cb001095 2146 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2147
2a458198 2148 fs_info->fixup_workers =
cb001095 2149 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2150
2151 /*
2152 * endios are largely parallel and should have a very
2153 * low idle thresh
2154 */
2155 fs_info->endio_workers =
cb001095 2156 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2157 fs_info->endio_meta_workers =
cb001095
JM
2158 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2159 max_active, 4);
2a458198 2160 fs_info->endio_meta_write_workers =
cb001095
JM
2161 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2162 max_active, 2);
2a458198 2163 fs_info->endio_raid56_workers =
cb001095
JM
2164 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2165 max_active, 4);
2a458198 2166 fs_info->endio_repair_workers =
cb001095 2167 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2168 fs_info->rmw_workers =
cb001095 2169 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2170 fs_info->endio_write_workers =
cb001095
JM
2171 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2172 max_active, 2);
2a458198 2173 fs_info->endio_freespace_worker =
cb001095
JM
2174 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2175 max_active, 0);
2a458198 2176 fs_info->delayed_workers =
cb001095
JM
2177 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2178 max_active, 0);
2a458198 2179 fs_info->readahead_workers =
cb001095
JM
2180 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2181 max_active, 2);
2a458198 2182 fs_info->qgroup_rescan_workers =
cb001095 2183 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2184 fs_info->discard_ctl.discard_workers =
2185 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2186
2187 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2188 fs_info->flush_workers &&
2a458198
ES
2189 fs_info->endio_workers && fs_info->endio_meta_workers &&
2190 fs_info->endio_meta_write_workers &&
2191 fs_info->endio_repair_workers &&
2192 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2193 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2194 fs_info->caching_workers && fs_info->readahead_workers &&
2195 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2196 fs_info->qgroup_rescan_workers &&
2197 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2198 return -ENOMEM;
2199 }
2200
2201 return 0;
2202}
2203
6d97c6e3
JT
2204static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2205{
2206 struct crypto_shash *csum_shash;
b4e967be 2207 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2208
b4e967be 2209 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2210
2211 if (IS_ERR(csum_shash)) {
2212 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2213 csum_driver);
6d97c6e3
JT
2214 return PTR_ERR(csum_shash);
2215 }
2216
2217 fs_info->csum_shash = csum_shash;
2218
2219 return 0;
2220}
2221
63443bf5
ES
2222static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2223 struct btrfs_fs_devices *fs_devices)
2224{
2225 int ret;
63443bf5
ES
2226 struct btrfs_root *log_tree_root;
2227 struct btrfs_super_block *disk_super = fs_info->super_copy;
2228 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2229 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2230
2231 if (fs_devices->rw_devices == 0) {
f14d104d 2232 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2233 return -EIO;
2234 }
2235
96dfcb46
JB
2236 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2237 GFP_KERNEL);
63443bf5
ES
2238 if (!log_tree_root)
2239 return -ENOMEM;
2240
2ff7e61e 2241 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2242 fs_info->generation + 1,
2243 level, NULL);
64c043de 2244 if (IS_ERR(log_tree_root->node)) {
f14d104d 2245 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2246 ret = PTR_ERR(log_tree_root->node);
00246528 2247 btrfs_put_root(log_tree_root);
0eeff236 2248 return ret;
64c043de 2249 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2250 btrfs_err(fs_info, "failed to read log tree");
63443bf5 2251 free_extent_buffer(log_tree_root->node);
00246528 2252 btrfs_put_root(log_tree_root);
63443bf5
ES
2253 return -EIO;
2254 }
2255 /* returns with log_tree_root freed on success */
2256 ret = btrfs_recover_log_trees(log_tree_root);
2257 if (ret) {
0b246afa
JM
2258 btrfs_handle_fs_error(fs_info, ret,
2259 "Failed to recover log tree");
63443bf5 2260 free_extent_buffer(log_tree_root->node);
00246528 2261 btrfs_put_root(log_tree_root);
63443bf5
ES
2262 return ret;
2263 }
2264
bc98a42c 2265 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2266 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2267 if (ret)
2268 return ret;
2269 }
2270
2271 return 0;
2272}
2273
6bccf3ab 2274static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2275{
6bccf3ab 2276 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2277 struct btrfs_root *root;
4bbcaa64
ES
2278 struct btrfs_key location;
2279 int ret;
2280
6bccf3ab
JM
2281 BUG_ON(!fs_info->tree_root);
2282
4bbcaa64
ES
2283 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2284 location.type = BTRFS_ROOT_ITEM_KEY;
2285 location.offset = 0;
2286
a4f3d2c4 2287 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2288 if (IS_ERR(root)) {
2289 ret = PTR_ERR(root);
2290 goto out;
2291 }
a4f3d2c4
DS
2292 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2293 fs_info->extent_root = root;
4bbcaa64
ES
2294
2295 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2296 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2297 if (IS_ERR(root)) {
2298 ret = PTR_ERR(root);
2299 goto out;
2300 }
a4f3d2c4
DS
2301 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2302 fs_info->dev_root = root;
4bbcaa64
ES
2303 btrfs_init_devices_late(fs_info);
2304
2305 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2306 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2307 if (IS_ERR(root)) {
2308 ret = PTR_ERR(root);
2309 goto out;
2310 }
a4f3d2c4
DS
2311 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2312 fs_info->csum_root = root;
4bbcaa64
ES
2313
2314 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2315 root = btrfs_read_tree_root(tree_root, &location);
2316 if (!IS_ERR(root)) {
2317 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2318 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2319 fs_info->quota_root = root;
4bbcaa64
ES
2320 }
2321
2322 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2323 root = btrfs_read_tree_root(tree_root, &location);
2324 if (IS_ERR(root)) {
2325 ret = PTR_ERR(root);
4bbcaa64 2326 if (ret != -ENOENT)
f50f4353 2327 goto out;
4bbcaa64 2328 } else {
a4f3d2c4
DS
2329 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2330 fs_info->uuid_root = root;
4bbcaa64
ES
2331 }
2332
70f6d82e
OS
2333 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2334 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2335 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2336 if (IS_ERR(root)) {
2337 ret = PTR_ERR(root);
2338 goto out;
2339 }
70f6d82e
OS
2340 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341 fs_info->free_space_root = root;
2342 }
2343
4bbcaa64 2344 return 0;
f50f4353
LB
2345out:
2346 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2347 location.objectid, ret);
2348 return ret;
4bbcaa64
ES
2349}
2350
069ec957
QW
2351/*
2352 * Real super block validation
2353 * NOTE: super csum type and incompat features will not be checked here.
2354 *
2355 * @sb: super block to check
2356 * @mirror_num: the super block number to check its bytenr:
2357 * 0 the primary (1st) sb
2358 * 1, 2 2nd and 3rd backup copy
2359 * -1 skip bytenr check
2360 */
2361static int validate_super(struct btrfs_fs_info *fs_info,
2362 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2363{
21a852b0
QW
2364 u64 nodesize = btrfs_super_nodesize(sb);
2365 u64 sectorsize = btrfs_super_sectorsize(sb);
2366 int ret = 0;
2367
2368 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2369 btrfs_err(fs_info, "no valid FS found");
2370 ret = -EINVAL;
2371 }
2372 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2373 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2374 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2375 ret = -EINVAL;
2376 }
2377 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2378 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2379 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2380 ret = -EINVAL;
2381 }
2382 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2383 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2384 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2385 ret = -EINVAL;
2386 }
2387 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2388 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2389 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2390 ret = -EINVAL;
2391 }
2392
2393 /*
2394 * Check sectorsize and nodesize first, other check will need it.
2395 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2396 */
2397 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2398 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2399 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2400 ret = -EINVAL;
2401 }
2402 /* Only PAGE SIZE is supported yet */
2403 if (sectorsize != PAGE_SIZE) {
2404 btrfs_err(fs_info,
2405 "sectorsize %llu not supported yet, only support %lu",
2406 sectorsize, PAGE_SIZE);
2407 ret = -EINVAL;
2408 }
2409 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2410 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2411 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2412 ret = -EINVAL;
2413 }
2414 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2415 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2416 le32_to_cpu(sb->__unused_leafsize), nodesize);
2417 ret = -EINVAL;
2418 }
2419
2420 /* Root alignment check */
2421 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2422 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2423 btrfs_super_root(sb));
2424 ret = -EINVAL;
2425 }
2426 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2427 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2428 btrfs_super_chunk_root(sb));
2429 ret = -EINVAL;
2430 }
2431 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2432 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2433 btrfs_super_log_root(sb));
2434 ret = -EINVAL;
2435 }
2436
de37aa51 2437 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2438 BTRFS_FSID_SIZE) != 0) {
21a852b0 2439 btrfs_err(fs_info,
7239ff4b 2440 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2441 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2442 ret = -EINVAL;
2443 }
2444
2445 /*
2446 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2447 * done later
2448 */
2449 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2450 btrfs_err(fs_info, "bytes_used is too small %llu",
2451 btrfs_super_bytes_used(sb));
2452 ret = -EINVAL;
2453 }
2454 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2455 btrfs_err(fs_info, "invalid stripesize %u",
2456 btrfs_super_stripesize(sb));
2457 ret = -EINVAL;
2458 }
2459 if (btrfs_super_num_devices(sb) > (1UL << 31))
2460 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2461 btrfs_super_num_devices(sb));
2462 if (btrfs_super_num_devices(sb) == 0) {
2463 btrfs_err(fs_info, "number of devices is 0");
2464 ret = -EINVAL;
2465 }
2466
069ec957
QW
2467 if (mirror_num >= 0 &&
2468 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2469 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2470 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2471 ret = -EINVAL;
2472 }
2473
2474 /*
2475 * Obvious sys_chunk_array corruptions, it must hold at least one key
2476 * and one chunk
2477 */
2478 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2479 btrfs_err(fs_info, "system chunk array too big %u > %u",
2480 btrfs_super_sys_array_size(sb),
2481 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2482 ret = -EINVAL;
2483 }
2484 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2485 + sizeof(struct btrfs_chunk)) {
2486 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2487 btrfs_super_sys_array_size(sb),
2488 sizeof(struct btrfs_disk_key)
2489 + sizeof(struct btrfs_chunk));
2490 ret = -EINVAL;
2491 }
2492
2493 /*
2494 * The generation is a global counter, we'll trust it more than the others
2495 * but it's still possible that it's the one that's wrong.
2496 */
2497 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2498 btrfs_warn(fs_info,
2499 "suspicious: generation < chunk_root_generation: %llu < %llu",
2500 btrfs_super_generation(sb),
2501 btrfs_super_chunk_root_generation(sb));
2502 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2503 && btrfs_super_cache_generation(sb) != (u64)-1)
2504 btrfs_warn(fs_info,
2505 "suspicious: generation < cache_generation: %llu < %llu",
2506 btrfs_super_generation(sb),
2507 btrfs_super_cache_generation(sb));
2508
2509 return ret;
2510}
2511
069ec957
QW
2512/*
2513 * Validation of super block at mount time.
2514 * Some checks already done early at mount time, like csum type and incompat
2515 * flags will be skipped.
2516 */
2517static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2518{
2519 return validate_super(fs_info, fs_info->super_copy, 0);
2520}
2521
75cb857d
QW
2522/*
2523 * Validation of super block at write time.
2524 * Some checks like bytenr check will be skipped as their values will be
2525 * overwritten soon.
2526 * Extra checks like csum type and incompat flags will be done here.
2527 */
2528static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2529 struct btrfs_super_block *sb)
2530{
2531 int ret;
2532
2533 ret = validate_super(fs_info, sb, -1);
2534 if (ret < 0)
2535 goto out;
e7e16f48 2536 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2537 ret = -EUCLEAN;
2538 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2539 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2540 goto out;
2541 }
2542 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2543 ret = -EUCLEAN;
2544 btrfs_err(fs_info,
2545 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2546 btrfs_super_incompat_flags(sb),
2547 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2548 goto out;
2549 }
2550out:
2551 if (ret < 0)
2552 btrfs_err(fs_info,
2553 "super block corruption detected before writing it to disk");
2554 return ret;
2555}
2556
6ef108dd 2557static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2558{
6ef108dd 2559 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2560 struct btrfs_super_block *sb = fs_info->super_copy;
2561 struct btrfs_root *tree_root = fs_info->tree_root;
2562 bool handle_error = false;
2563 int ret = 0;
2564 int i;
2565
2566 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2567 u64 generation;
2568 int level;
2569
2570 if (handle_error) {
2571 if (!IS_ERR(tree_root->node))
2572 free_extent_buffer(tree_root->node);
2573 tree_root->node = NULL;
2574
2575 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2576 break;
2577
2578 free_root_pointers(fs_info, 0);
2579
2580 /*
2581 * Don't use the log in recovery mode, it won't be
2582 * valid
2583 */
2584 btrfs_set_super_log_root(sb, 0);
2585
2586 /* We can't trust the free space cache either */
2587 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2588
2589 ret = read_backup_root(fs_info, i);
6ef108dd 2590 backup_index = ret;
b8522a1e
NB
2591 if (ret < 0)
2592 return ret;
2593 }
2594 generation = btrfs_super_generation(sb);
2595 level = btrfs_super_root_level(sb);
2596 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2597 generation, level, NULL);
2598 if (IS_ERR(tree_root->node) ||
2599 !extent_buffer_uptodate(tree_root->node)) {
2600 handle_error = true;
2601
2602 if (IS_ERR(tree_root->node))
2603 ret = PTR_ERR(tree_root->node);
2604 else if (!extent_buffer_uptodate(tree_root->node))
2605 ret = -EUCLEAN;
2606
2607 btrfs_warn(fs_info, "failed to read tree root");
2608 continue;
2609 }
2610
2611 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2612 tree_root->commit_root = btrfs_root_node(tree_root);
2613 btrfs_set_root_refs(&tree_root->root_item, 1);
2614
336a0d8d
NB
2615 /*
2616 * No need to hold btrfs_root::objectid_mutex since the fs
2617 * hasn't been fully initialised and we are the only user
2618 */
b8522a1e
NB
2619 ret = btrfs_find_highest_objectid(tree_root,
2620 &tree_root->highest_objectid);
2621 if (ret < 0) {
b8522a1e
NB
2622 handle_error = true;
2623 continue;
2624 }
2625
2626 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2627
2628 ret = btrfs_read_roots(fs_info);
2629 if (ret < 0) {
2630 handle_error = true;
2631 continue;
2632 }
2633
2634 /* All successful */
2635 fs_info->generation = generation;
2636 fs_info->last_trans_committed = generation;
6ef108dd
NB
2637
2638 /* Always begin writing backup roots after the one being used */
2639 if (backup_index < 0) {
2640 fs_info->backup_root_index = 0;
2641 } else {
2642 fs_info->backup_root_index = backup_index + 1;
2643 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2644 }
b8522a1e
NB
2645 break;
2646 }
2647
2648 return ret;
2649}
2650
8260edba 2651void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2652{
76dda93c 2653 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2654 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2655 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2656 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2657 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2658 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2659 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2660 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2661 spin_lock_init(&fs_info->trans_lock);
76dda93c 2662 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2663 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2664 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2665 spin_lock_init(&fs_info->super_lock);
f28491e0 2666 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2667 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2668 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2669 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2670 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2671 mutex_init(&fs_info->reloc_mutex);
573bfb72 2672 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2673 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2674
0b86a832 2675 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2676 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2677 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2678 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2679#ifdef CONFIG_BTRFS_DEBUG
2680 INIT_LIST_HEAD(&fs_info->allocated_roots);
2681#endif
c8bf1b67 2682 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2683 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2684 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2685 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2686 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2687 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2688 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2689 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2690 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2691 BTRFS_BLOCK_RSV_DELREFS);
2692
771ed689 2693 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2694 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2695 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2696 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2697 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2698 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2699 fs_info->metadata_ratio = 0;
4cb5300b 2700 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2701 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2702 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2703 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2704 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2705 /* readahead state */
d0164adc 2706 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2707 spin_lock_init(&fs_info->reada_lock);
fd708b81 2708 btrfs_init_ref_verify(fs_info);
c8b97818 2709
b34b086c
CM
2710 fs_info->thread_pool_size = min_t(unsigned long,
2711 num_online_cpus() + 2, 8);
0afbaf8c 2712
199c2a9c
MX
2713 INIT_LIST_HEAD(&fs_info->ordered_roots);
2714 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2715
638aa7ed 2716 btrfs_init_scrub(fs_info);
21adbd5c
SB
2717#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2718 fs_info->check_integrity_print_mask = 0;
2719#endif
779a65a4 2720 btrfs_init_balance(fs_info);
21c7e756 2721 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2722
0f9dd46c 2723 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2724 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2725 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2726
fe119a6e
NB
2727 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2728 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2729 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2730
5a3f23d5 2731 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2732 mutex_init(&fs_info->tree_log_mutex);
925baedd 2733 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2734 mutex_init(&fs_info->transaction_kthread_mutex);
2735 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2736 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2737 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2738 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2739 init_rwsem(&fs_info->subvol_sem);
803b2f54 2740 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2741
ad618368 2742 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2743 btrfs_init_qgroup(fs_info);
b0643e59 2744 btrfs_discard_init(fs_info);
416ac51d 2745
fa9c0d79
CM
2746 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2747 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2748
e6dcd2dc 2749 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2750 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2751 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2752 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2753 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2754
da17066c
JM
2755 /* Usable values until the real ones are cached from the superblock */
2756 fs_info->nodesize = 4096;
2757 fs_info->sectorsize = 4096;
2758 fs_info->stripesize = 4096;
2759
eede2bf3
OS
2760 spin_lock_init(&fs_info->swapfile_pins_lock);
2761 fs_info->swapfile_pins = RB_ROOT;
2762
9e967495 2763 fs_info->send_in_progress = 0;
8260edba
JB
2764}
2765
2766static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2767{
2768 int ret;
2769
2770 fs_info->sb = sb;
2771 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2772 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2773
ae18c37a
JB
2774 ret = init_srcu_struct(&fs_info->subvol_srcu);
2775 if (ret)
2776 return ret;
2777
2778 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2779 if (ret)
2780 goto fail;
2781
2782 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2783 if (ret)
2784 goto fail;
2785
2786 fs_info->dirty_metadata_batch = PAGE_SIZE *
2787 (1 + ilog2(nr_cpu_ids));
2788
2789 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2790 if (ret)
2791 goto fail;
2792
2793 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2794 GFP_KERNEL);
2795 if (ret)
2796 goto fail;
2797
2798 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2799 GFP_KERNEL);
2800 if (!fs_info->delayed_root) {
2801 ret = -ENOMEM;
2802 goto fail;
2803 }
2804 btrfs_init_delayed_root(fs_info->delayed_root);
2805
53b381b3 2806 ret = btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2807 if (ret)
2808 goto fail;
2809
2810 return 0;
2811fail:
2812 cleanup_srcu_struct(&fs_info->subvol_srcu);
2813 return ret;
2814}
2815
97f4dd09
NB
2816static int btrfs_uuid_rescan_kthread(void *data)
2817{
2818 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2819 int ret;
2820
2821 /*
2822 * 1st step is to iterate through the existing UUID tree and
2823 * to delete all entries that contain outdated data.
2824 * 2nd step is to add all missing entries to the UUID tree.
2825 */
2826 ret = btrfs_uuid_tree_iterate(fs_info);
2827 if (ret < 0) {
c94bec2c
JB
2828 if (ret != -EINTR)
2829 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2830 ret);
97f4dd09
NB
2831 up(&fs_info->uuid_tree_rescan_sem);
2832 return ret;
2833 }
2834 return btrfs_uuid_scan_kthread(data);
2835}
2836
2837static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2838{
2839 struct task_struct *task;
2840
2841 down(&fs_info->uuid_tree_rescan_sem);
2842 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2843 if (IS_ERR(task)) {
2844 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2845 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2846 up(&fs_info->uuid_tree_rescan_sem);
2847 return PTR_ERR(task);
2848 }
2849
2850 return 0;
2851}
2852
ae18c37a
JB
2853int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2854 char *options)
2855{
2856 u32 sectorsize;
2857 u32 nodesize;
2858 u32 stripesize;
2859 u64 generation;
2860 u64 features;
2861 u16 csum_type;
2862 struct btrfs_key location;
ae18c37a
JB
2863 struct btrfs_super_block *disk_super;
2864 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2865 struct btrfs_root *tree_root;
2866 struct btrfs_root *chunk_root;
2867 int ret;
2868 int err = -EINVAL;
2869 int clear_free_space_tree = 0;
2870 int level;
2871
8260edba 2872 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2873 if (ret) {
83c8266a 2874 err = ret;
ae18c37a 2875 goto fail;
53b381b3
DW
2876 }
2877
ae18c37a
JB
2878 /* These need to be init'ed before we start creating inodes and such. */
2879 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2880 GFP_KERNEL);
2881 fs_info->tree_root = tree_root;
2882 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2883 GFP_KERNEL);
2884 fs_info->chunk_root = chunk_root;
2885 if (!tree_root || !chunk_root) {
2886 err = -ENOMEM;
2887 goto fail_srcu;
2888 }
2889
2890 fs_info->btree_inode = new_inode(sb);
2891 if (!fs_info->btree_inode) {
2892 err = -ENOMEM;
2893 goto fail_srcu;
2894 }
2895 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2896 btrfs_init_btree_inode(fs_info);
2897
3c4bb26b 2898 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2899
2900 /*
2901 * Read super block and check the signature bytes only
2902 */
8f32380d
JT
2903 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2904 if (IS_ERR(disk_super)) {
2905 err = PTR_ERR(disk_super);
16cdcec7 2906 goto fail_alloc;
20b45077 2907 }
39279cc3 2908
8dc3f22c
JT
2909 /*
2910 * Verify the type first, if that or the the checksum value are
2911 * corrupted, we'll find out
2912 */
8f32380d 2913 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 2914 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2915 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2916 csum_type);
8dc3f22c 2917 err = -EINVAL;
8f32380d 2918 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
2919 goto fail_alloc;
2920 }
2921
6d97c6e3
JT
2922 ret = btrfs_init_csum_hash(fs_info, csum_type);
2923 if (ret) {
2924 err = ret;
8f32380d 2925 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
2926 goto fail_alloc;
2927 }
2928
1104a885
DS
2929 /*
2930 * We want to check superblock checksum, the type is stored inside.
2931 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2932 */
8f32380d 2933 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 2934 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2935 err = -EINVAL;
8f32380d 2936 btrfs_release_disk_super(disk_super);
141386e1 2937 goto fail_alloc;
1104a885
DS
2938 }
2939
2940 /*
2941 * super_copy is zeroed at allocation time and we never touch the
2942 * following bytes up to INFO_SIZE, the checksum is calculated from
2943 * the whole block of INFO_SIZE
2944 */
8f32380d
JT
2945 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2946 btrfs_release_disk_super(disk_super);
5f39d397 2947
fbc6feae
NB
2948 disk_super = fs_info->super_copy;
2949
de37aa51
NB
2950 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2951 BTRFS_FSID_SIZE));
2952
7239ff4b 2953 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2954 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2955 fs_info->super_copy->metadata_uuid,
2956 BTRFS_FSID_SIZE));
7239ff4b 2957 }
0b86a832 2958
fbc6feae
NB
2959 features = btrfs_super_flags(disk_super);
2960 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2961 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2962 btrfs_set_super_flags(disk_super, features);
2963 btrfs_info(fs_info,
2964 "found metadata UUID change in progress flag, clearing");
2965 }
2966
2967 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2968 sizeof(*fs_info->super_for_commit));
de37aa51 2969
069ec957 2970 ret = btrfs_validate_mount_super(fs_info);
1104a885 2971 if (ret) {
05135f59 2972 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2973 err = -EINVAL;
141386e1 2974 goto fail_alloc;
1104a885
DS
2975 }
2976
0f7d52f4 2977 if (!btrfs_super_root(disk_super))
141386e1 2978 goto fail_alloc;
0f7d52f4 2979
acce952b 2980 /* check FS state, whether FS is broken. */
87533c47
MX
2981 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2982 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2983
75e7cb7f
LB
2984 /*
2985 * In the long term, we'll store the compression type in the super
2986 * block, and it'll be used for per file compression control.
2987 */
2988 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2989
2ff7e61e 2990 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2991 if (ret) {
2992 err = ret;
141386e1 2993 goto fail_alloc;
2b82032c 2994 }
dfe25020 2995
f2b636e8
JB
2996 features = btrfs_super_incompat_flags(disk_super) &
2997 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2998 if (features) {
05135f59
DS
2999 btrfs_err(fs_info,
3000 "cannot mount because of unsupported optional features (%llx)",
3001 features);
f2b636e8 3002 err = -EINVAL;
141386e1 3003 goto fail_alloc;
f2b636e8
JB
3004 }
3005
5d4f98a2 3006 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3007 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3008 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3009 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3010 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3011 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3012
3173a18f 3013 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3014 btrfs_info(fs_info, "has skinny extents");
3173a18f 3015
727011e0
CM
3016 /*
3017 * flag our filesystem as having big metadata blocks if
3018 * they are bigger than the page size
3019 */
09cbfeaf 3020 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3021 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3022 btrfs_info(fs_info,
3023 "flagging fs with big metadata feature");
727011e0
CM
3024 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3025 }
3026
bc3f116f 3027 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3028 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3029 stripesize = sectorsize;
707e8a07 3030 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3031 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3032
da17066c
JM
3033 /* Cache block sizes */
3034 fs_info->nodesize = nodesize;
3035 fs_info->sectorsize = sectorsize;
3036 fs_info->stripesize = stripesize;
3037
bc3f116f
CM
3038 /*
3039 * mixed block groups end up with duplicate but slightly offset
3040 * extent buffers for the same range. It leads to corruptions
3041 */
3042 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3043 (sectorsize != nodesize)) {
05135f59
DS
3044 btrfs_err(fs_info,
3045"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3046 nodesize, sectorsize);
141386e1 3047 goto fail_alloc;
bc3f116f
CM
3048 }
3049
ceda0864
MX
3050 /*
3051 * Needn't use the lock because there is no other task which will
3052 * update the flag.
3053 */
a6fa6fae 3054 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3055
f2b636e8
JB
3056 features = btrfs_super_compat_ro_flags(disk_super) &
3057 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3058 if (!sb_rdonly(sb) && features) {
05135f59
DS
3059 btrfs_err(fs_info,
3060 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3061 features);
f2b636e8 3062 err = -EINVAL;
141386e1 3063 goto fail_alloc;
f2b636e8 3064 }
61d92c32 3065
2a458198
ES
3066 ret = btrfs_init_workqueues(fs_info, fs_devices);
3067 if (ret) {
3068 err = ret;
0dc3b84a
JB
3069 goto fail_sb_buffer;
3070 }
4543df7e 3071
9e11ceee
JK
3072 sb->s_bdi->congested_fn = btrfs_congested_fn;
3073 sb->s_bdi->congested_data = fs_info;
3074 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3075 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3076 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3077 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3078
a061fc8d
CM
3079 sb->s_blocksize = sectorsize;
3080 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3081 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3082
925baedd 3083 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3084 ret = btrfs_read_sys_array(fs_info);
925baedd 3085 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3086 if (ret) {
05135f59 3087 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3088 goto fail_sb_buffer;
84eed90f 3089 }
0b86a832 3090
84234f3a 3091 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3092 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3093
2ff7e61e 3094 chunk_root->node = read_tree_block(fs_info,
0b86a832 3095 btrfs_super_chunk_root(disk_super),
581c1760 3096 generation, level, NULL);
64c043de
LB
3097 if (IS_ERR(chunk_root->node) ||
3098 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3099 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3100 if (!IS_ERR(chunk_root->node))
3101 free_extent_buffer(chunk_root->node);
95ab1f64 3102 chunk_root->node = NULL;
af31f5e5 3103 goto fail_tree_roots;
83121942 3104 }
5d4f98a2
YZ
3105 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3106 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3107
e17cade2 3108 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3109 offsetof(struct btrfs_header, chunk_tree_uuid),
3110 BTRFS_UUID_SIZE);
e17cade2 3111
5b4aacef 3112 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3113 if (ret) {
05135f59 3114 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3115 goto fail_tree_roots;
2b82032c 3116 }
0b86a832 3117
8dabb742 3118 /*
9b99b115
AJ
3119 * Keep the devid that is marked to be the target device for the
3120 * device replace procedure
8dabb742 3121 */
9b99b115 3122 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3123
a6b0d5c8 3124 if (!fs_devices->latest_bdev) {
05135f59 3125 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3126 goto fail_tree_roots;
3127 }
3128
b8522a1e 3129 ret = init_tree_roots(fs_info);
4bbcaa64 3130 if (ret)
b8522a1e 3131 goto fail_tree_roots;
8929ecfa 3132
75ec1db8
JB
3133 /*
3134 * If we have a uuid root and we're not being told to rescan we need to
3135 * check the generation here so we can set the
3136 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3137 * transaction during a balance or the log replay without updating the
3138 * uuid generation, and then if we crash we would rescan the uuid tree,
3139 * even though it was perfectly fine.
3140 */
3141 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3142 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3143 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3144
cf90d884
QW
3145 ret = btrfs_verify_dev_extents(fs_info);
3146 if (ret) {
3147 btrfs_err(fs_info,
3148 "failed to verify dev extents against chunks: %d",
3149 ret);
3150 goto fail_block_groups;
3151 }
68310a5e
ID
3152 ret = btrfs_recover_balance(fs_info);
3153 if (ret) {
05135f59 3154 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3155 goto fail_block_groups;
3156 }
3157
733f4fbb
SB
3158 ret = btrfs_init_dev_stats(fs_info);
3159 if (ret) {
05135f59 3160 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3161 goto fail_block_groups;
3162 }
3163
8dabb742
SB
3164 ret = btrfs_init_dev_replace(fs_info);
3165 if (ret) {
05135f59 3166 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3167 goto fail_block_groups;
3168 }
3169
9b99b115 3170 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3171
c6761a9e 3172 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3173 if (ret) {
05135f59
DS
3174 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3175 ret);
b7c35e81
AJ
3176 goto fail_block_groups;
3177 }
3178
96f3136e 3179 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3180 if (ret) {
05135f59 3181 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3182 goto fail_fsdev_sysfs;
c59021f8 3183 }
3184
c59021f8 3185 ret = btrfs_init_space_info(fs_info);
3186 if (ret) {
05135f59 3187 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3188 goto fail_sysfs;
c59021f8 3189 }
3190
5b4aacef 3191 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3192 if (ret) {
05135f59 3193 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3194 goto fail_sysfs;
1b1d1f66 3195 }
4330e183 3196
6528b99d 3197 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3198 btrfs_warn(fs_info,
52042d8e 3199 "writable mount is not allowed due to too many missing devices");
2365dd3c 3200 goto fail_sysfs;
292fd7fc 3201 }
9078a3e1 3202
a74a4b97
CM
3203 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3204 "btrfs-cleaner");
57506d50 3205 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3206 goto fail_sysfs;
a74a4b97
CM
3207
3208 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3209 tree_root,
3210 "btrfs-transaction");
57506d50 3211 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3212 goto fail_cleaner;
a74a4b97 3213
583b7231 3214 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3215 !fs_info->fs_devices->rotating) {
583b7231 3216 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3217 }
3218
572d9ab7 3219 /*
01327610 3220 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3221 * not have to wait for transaction commit
3222 */
3223 btrfs_apply_pending_changes(fs_info);
3818aea2 3224
21adbd5c 3225#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3226 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3227 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3228 btrfs_test_opt(fs_info,
21adbd5c
SB
3229 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3230 1 : 0,
3231 fs_info->check_integrity_print_mask);
3232 if (ret)
05135f59
DS
3233 btrfs_warn(fs_info,
3234 "failed to initialize integrity check module: %d",
3235 ret);
21adbd5c
SB
3236 }
3237#endif
bcef60f2
AJ
3238 ret = btrfs_read_qgroup_config(fs_info);
3239 if (ret)
3240 goto fail_trans_kthread;
21adbd5c 3241
fd708b81
JB
3242 if (btrfs_build_ref_tree(fs_info))
3243 btrfs_err(fs_info, "couldn't build ref tree");
3244
96da0919
QW
3245 /* do not make disk changes in broken FS or nologreplay is given */
3246 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3247 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3248 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3249 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3250 if (ret) {
63443bf5 3251 err = ret;
28c16cbb 3252 goto fail_qgroup;
79787eaa 3253 }
e02119d5 3254 }
1a40e23b 3255
6bccf3ab 3256 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3257 if (ret)
28c16cbb 3258 goto fail_qgroup;
76dda93c 3259
bc98a42c 3260 if (!sb_rdonly(sb)) {
d68fc57b 3261 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3262 if (ret)
28c16cbb 3263 goto fail_qgroup;
90c711ab
ZB
3264
3265 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3266 ret = btrfs_recover_relocation(tree_root);
90c711ab 3267 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3268 if (ret < 0) {
05135f59
DS
3269 btrfs_warn(fs_info, "failed to recover relocation: %d",
3270 ret);
d7ce5843 3271 err = -EINVAL;
bcef60f2 3272 goto fail_qgroup;
d7ce5843 3273 }
7c2ca468 3274 }
1a40e23b 3275
3de4586c
CM
3276 location.objectid = BTRFS_FS_TREE_OBJECTID;
3277 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3278 location.offset = 0;
3de4586c 3279
3619c94f 3280 fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true);
3140c9a3
DC
3281 if (IS_ERR(fs_info->fs_root)) {
3282 err = PTR_ERR(fs_info->fs_root);
f50f4353 3283 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3284 fs_info->fs_root = NULL;
bcef60f2 3285 goto fail_qgroup;
3140c9a3 3286 }
c289811c 3287
bc98a42c 3288 if (sb_rdonly(sb))
2b6ba629 3289 return 0;
59641015 3290
f8d468a1
OS
3291 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3292 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3293 clear_free_space_tree = 1;
3294 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3295 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3296 btrfs_warn(fs_info, "free space tree is invalid");
3297 clear_free_space_tree = 1;
3298 }
3299
3300 if (clear_free_space_tree) {
f8d468a1
OS
3301 btrfs_info(fs_info, "clearing free space tree");
3302 ret = btrfs_clear_free_space_tree(fs_info);
3303 if (ret) {
3304 btrfs_warn(fs_info,
3305 "failed to clear free space tree: %d", ret);
6bccf3ab 3306 close_ctree(fs_info);
f8d468a1
OS
3307 return ret;
3308 }
3309 }
3310
0b246afa 3311 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3312 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3313 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3314 ret = btrfs_create_free_space_tree(fs_info);
3315 if (ret) {
05135f59
DS
3316 btrfs_warn(fs_info,
3317 "failed to create free space tree: %d", ret);
6bccf3ab 3318 close_ctree(fs_info);
511711af
CM
3319 return ret;
3320 }
3321 }
3322
2b6ba629
ID
3323 down_read(&fs_info->cleanup_work_sem);
3324 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3325 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3326 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3327 close_ctree(fs_info);
2b6ba629
ID
3328 return ret;
3329 }
3330 up_read(&fs_info->cleanup_work_sem);
59641015 3331
2b6ba629
ID
3332 ret = btrfs_resume_balance_async(fs_info);
3333 if (ret) {
05135f59 3334 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3335 close_ctree(fs_info);
2b6ba629 3336 return ret;
e3acc2a6
JB
3337 }
3338
8dabb742
SB
3339 ret = btrfs_resume_dev_replace_async(fs_info);
3340 if (ret) {
05135f59 3341 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3342 close_ctree(fs_info);
8dabb742
SB
3343 return ret;
3344 }
3345
b382a324 3346 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3347 btrfs_discard_resume(fs_info);
b382a324 3348
4bbcaa64 3349 if (!fs_info->uuid_root) {
05135f59 3350 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3351 ret = btrfs_create_uuid_tree(fs_info);
3352 if (ret) {
05135f59
DS
3353 btrfs_warn(fs_info,
3354 "failed to create the UUID tree: %d", ret);
6bccf3ab 3355 close_ctree(fs_info);
f7a81ea4
SB
3356 return ret;
3357 }
0b246afa 3358 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3359 fs_info->generation !=
3360 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3361 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3362 ret = btrfs_check_uuid_tree(fs_info);
3363 if (ret) {
05135f59
DS
3364 btrfs_warn(fs_info,
3365 "failed to check the UUID tree: %d", ret);
6bccf3ab 3366 close_ctree(fs_info);
70f80175
SB
3367 return ret;
3368 }
f7a81ea4 3369 }
afcdd129 3370 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3371
8dcddfa0
QW
3372 /*
3373 * backuproot only affect mount behavior, and if open_ctree succeeded,
3374 * no need to keep the flag
3375 */
3376 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3377
ad2b2c80 3378 return 0;
39279cc3 3379
bcef60f2
AJ
3380fail_qgroup:
3381 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3382fail_trans_kthread:
3383 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3384 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3385 btrfs_free_fs_roots(fs_info);
3f157a2f 3386fail_cleaner:
a74a4b97 3387 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3388
3389 /*
3390 * make sure we're done with the btree inode before we stop our
3391 * kthreads
3392 */
3393 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3394
2365dd3c 3395fail_sysfs:
6618a59b 3396 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3397
b7c35e81
AJ
3398fail_fsdev_sysfs:
3399 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3400
1b1d1f66 3401fail_block_groups:
54067ae9 3402 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3403
3404fail_tree_roots:
4273eaff 3405 free_root_pointers(fs_info, true);
2b8195bb 3406 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3407
39279cc3 3408fail_sb_buffer:
7abadb64 3409 btrfs_stop_all_workers(fs_info);
5cdd7db6 3410 btrfs_free_block_groups(fs_info);
16cdcec7 3411fail_alloc:
586e46e2
ID
3412 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3413
4543df7e 3414 iput(fs_info->btree_inode);
76dda93c
YZ
3415fail_srcu:
3416 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3417fail:
586e46e2 3418 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3419 return err;
eb60ceac 3420}
663faf9f 3421ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3422
314b6dd0 3423static void btrfs_end_super_write(struct bio *bio)
f2984462 3424{
314b6dd0
JT
3425 struct btrfs_device *device = bio->bi_private;
3426 struct bio_vec *bvec;
3427 struct bvec_iter_all iter_all;
3428 struct page *page;
3429
3430 bio_for_each_segment_all(bvec, bio, iter_all) {
3431 page = bvec->bv_page;
3432
3433 if (bio->bi_status) {
3434 btrfs_warn_rl_in_rcu(device->fs_info,
3435 "lost page write due to IO error on %s (%d)",
3436 rcu_str_deref(device->name),
3437 blk_status_to_errno(bio->bi_status));
3438 ClearPageUptodate(page);
3439 SetPageError(page);
3440 btrfs_dev_stat_inc_and_print(device,
3441 BTRFS_DEV_STAT_WRITE_ERRS);
3442 } else {
3443 SetPageUptodate(page);
3444 }
3445
3446 put_page(page);
3447 unlock_page(page);
f2984462 3448 }
314b6dd0
JT
3449
3450 bio_put(bio);
f2984462
CM
3451}
3452
8f32380d
JT
3453struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3454 int copy_num)
29c36d72 3455{
29c36d72 3456 struct btrfs_super_block *super;
8f32380d 3457 struct page *page;
29c36d72 3458 u64 bytenr;
8f32380d 3459 struct address_space *mapping = bdev->bd_inode->i_mapping;
29c36d72
AJ
3460
3461 bytenr = btrfs_sb_offset(copy_num);
3462 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3463 return ERR_PTR(-EINVAL);
29c36d72 3464
8f32380d
JT
3465 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3466 if (IS_ERR(page))
3467 return ERR_CAST(page);
29c36d72 3468
8f32380d 3469 super = page_address(page);
29c36d72
AJ
3470 if (btrfs_super_bytenr(super) != bytenr ||
3471 btrfs_super_magic(super) != BTRFS_MAGIC) {
8f32380d
JT
3472 btrfs_release_disk_super(super);
3473 return ERR_PTR(-EINVAL);
29c36d72
AJ
3474 }
3475
8f32380d 3476 return super;
29c36d72
AJ
3477}
3478
3479
8f32380d 3480struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3481{
8f32380d 3482 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3483 int i;
3484 u64 transid = 0;
a512bbf8
YZ
3485
3486 /* we would like to check all the supers, but that would make
3487 * a btrfs mount succeed after a mkfs from a different FS.
3488 * So, we need to add a special mount option to scan for
3489 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3490 */
3491 for (i = 0; i < 1; i++) {
8f32380d
JT
3492 super = btrfs_read_dev_one_super(bdev, i);
3493 if (IS_ERR(super))
a512bbf8
YZ
3494 continue;
3495
a512bbf8 3496 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3497 if (latest)
3498 btrfs_release_disk_super(super);
3499
3500 latest = super;
a512bbf8 3501 transid = btrfs_super_generation(super);
a512bbf8
YZ
3502 }
3503 }
92fc03fb 3504
8f32380d 3505 return super;
a512bbf8
YZ
3506}
3507
4eedeb75 3508/*
abbb3b8e 3509 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3510 * pages we use for writing are locked.
4eedeb75 3511 *
abbb3b8e
DS
3512 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3513 * the expected device size at commit time. Note that max_mirrors must be
3514 * same for write and wait phases.
4eedeb75 3515 *
314b6dd0 3516 * Return number of errors when page is not found or submission fails.
4eedeb75 3517 */
a512bbf8 3518static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3519 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3520{
d5178578 3521 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3522 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3523 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3524 int i;
a512bbf8 3525 int errors = 0;
a512bbf8 3526 u64 bytenr;
a512bbf8
YZ
3527
3528 if (max_mirrors == 0)
3529 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3530
d5178578
JT
3531 shash->tfm = fs_info->csum_shash;
3532
a512bbf8 3533 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3534 struct page *page;
3535 struct bio *bio;
3536 struct btrfs_super_block *disk_super;
3537
a512bbf8 3538 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3539 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3540 device->commit_total_bytes)
a512bbf8
YZ
3541 break;
3542
abbb3b8e 3543 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3544
d5178578
JT
3545 crypto_shash_init(shash);
3546 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3547 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3548 crypto_shash_final(shash, sb->csum);
4eedeb75 3549
314b6dd0
JT
3550 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3551 GFP_NOFS);
3552 if (!page) {
abbb3b8e 3553 btrfs_err(device->fs_info,
314b6dd0 3554 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3555 bytenr);
3556 errors++;
4eedeb75 3557 continue;
abbb3b8e 3558 }
634554dc 3559
314b6dd0
JT
3560 /* Bump the refcount for wait_dev_supers() */
3561 get_page(page);
a512bbf8 3562
314b6dd0
JT
3563 disk_super = page_address(page);
3564 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3565
314b6dd0
JT
3566 /*
3567 * Directly use bios here instead of relying on the page cache
3568 * to do I/O, so we don't lose the ability to do integrity
3569 * checking.
3570 */
3571 bio = bio_alloc(GFP_NOFS, 1);
3572 bio_set_dev(bio, device->bdev);
3573 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3574 bio->bi_private = device;
3575 bio->bi_end_io = btrfs_end_super_write;
3576 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3577 offset_in_page(bytenr));
a512bbf8 3578
387125fc 3579 /*
314b6dd0
JT
3580 * We FUA only the first super block. The others we allow to
3581 * go down lazy and there's a short window where the on-disk
3582 * copies might still contain the older version.
387125fc 3583 */
314b6dd0 3584 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3585 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3586 bio->bi_opf |= REQ_FUA;
3587
3588 btrfsic_submit_bio(bio);
a512bbf8
YZ
3589 }
3590 return errors < i ? 0 : -1;
3591}
3592
abbb3b8e
DS
3593/*
3594 * Wait for write completion of superblocks done by write_dev_supers,
3595 * @max_mirrors same for write and wait phases.
3596 *
314b6dd0 3597 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3598 * date.
3599 */
3600static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3601{
abbb3b8e
DS
3602 int i;
3603 int errors = 0;
b6a535fa 3604 bool primary_failed = false;
abbb3b8e
DS
3605 u64 bytenr;
3606
3607 if (max_mirrors == 0)
3608 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3609
3610 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3611 struct page *page;
3612
abbb3b8e
DS
3613 bytenr = btrfs_sb_offset(i);
3614 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3615 device->commit_total_bytes)
3616 break;
3617
314b6dd0
JT
3618 page = find_get_page(device->bdev->bd_inode->i_mapping,
3619 bytenr >> PAGE_SHIFT);
3620 if (!page) {
abbb3b8e 3621 errors++;
b6a535fa
HM
3622 if (i == 0)
3623 primary_failed = true;
abbb3b8e
DS
3624 continue;
3625 }
314b6dd0
JT
3626 /* Page is submitted locked and unlocked once the IO completes */
3627 wait_on_page_locked(page);
3628 if (PageError(page)) {
abbb3b8e 3629 errors++;
b6a535fa
HM
3630 if (i == 0)
3631 primary_failed = true;
3632 }
abbb3b8e 3633
314b6dd0
JT
3634 /* Drop our reference */
3635 put_page(page);
abbb3b8e 3636
314b6dd0
JT
3637 /* Drop the reference from the writing run */
3638 put_page(page);
abbb3b8e
DS
3639 }
3640
b6a535fa
HM
3641 /* log error, force error return */
3642 if (primary_failed) {
3643 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3644 device->devid);
3645 return -1;
3646 }
3647
abbb3b8e
DS
3648 return errors < i ? 0 : -1;
3649}
3650
387125fc
CM
3651/*
3652 * endio for the write_dev_flush, this will wake anyone waiting
3653 * for the barrier when it is done
3654 */
4246a0b6 3655static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3656{
e0ae9994 3657 complete(bio->bi_private);
387125fc
CM
3658}
3659
3660/*
4fc6441a
AJ
3661 * Submit a flush request to the device if it supports it. Error handling is
3662 * done in the waiting counterpart.
387125fc 3663 */
4fc6441a 3664static void write_dev_flush(struct btrfs_device *device)
387125fc 3665{
c2a9c7ab 3666 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3667 struct bio *bio = device->flush_bio;
387125fc 3668
c2a9c7ab 3669 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3670 return;
387125fc 3671
e0ae9994 3672 bio_reset(bio);
387125fc 3673 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3674 bio_set_dev(bio, device->bdev);
8d910125 3675 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3676 init_completion(&device->flush_wait);
3677 bio->bi_private = &device->flush_wait;
387125fc 3678
43a01111 3679 btrfsic_submit_bio(bio);
1c3063b6 3680 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3681}
387125fc 3682
4fc6441a
AJ
3683/*
3684 * If the flush bio has been submitted by write_dev_flush, wait for it.
3685 */
8c27cb35 3686static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3687{
4fc6441a 3688 struct bio *bio = device->flush_bio;
387125fc 3689
1c3063b6 3690 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3691 return BLK_STS_OK;
387125fc 3692
1c3063b6 3693 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3694 wait_for_completion_io(&device->flush_wait);
387125fc 3695
8c27cb35 3696 return bio->bi_status;
387125fc 3697}
387125fc 3698
d10b82fe 3699static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3700{
6528b99d 3701 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3702 return -EIO;
387125fc
CM
3703 return 0;
3704}
3705
3706/*
3707 * send an empty flush down to each device in parallel,
3708 * then wait for them
3709 */
3710static int barrier_all_devices(struct btrfs_fs_info *info)
3711{
3712 struct list_head *head;
3713 struct btrfs_device *dev;
5af3e8cc 3714 int errors_wait = 0;
4e4cbee9 3715 blk_status_t ret;
387125fc 3716
1538e6c5 3717 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3718 /* send down all the barriers */
3719 head = &info->fs_devices->devices;
1538e6c5 3720 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3721 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3722 continue;
cea7c8bf 3723 if (!dev->bdev)
387125fc 3724 continue;
e12c9621 3725 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3726 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3727 continue;
3728
4fc6441a 3729 write_dev_flush(dev);
58efbc9f 3730 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3731 }
3732
3733 /* wait for all the barriers */
1538e6c5 3734 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3735 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3736 continue;
387125fc 3737 if (!dev->bdev) {
5af3e8cc 3738 errors_wait++;
387125fc
CM
3739 continue;
3740 }
e12c9621 3741 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3742 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3743 continue;
3744
4fc6441a 3745 ret = wait_dev_flush(dev);
401b41e5
AJ
3746 if (ret) {
3747 dev->last_flush_error = ret;
66b4993e
DS
3748 btrfs_dev_stat_inc_and_print(dev,
3749 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3750 errors_wait++;
401b41e5
AJ
3751 }
3752 }
3753
cea7c8bf 3754 if (errors_wait) {
401b41e5
AJ
3755 /*
3756 * At some point we need the status of all disks
3757 * to arrive at the volume status. So error checking
3758 * is being pushed to a separate loop.
3759 */
d10b82fe 3760 return check_barrier_error(info);
387125fc 3761 }
387125fc
CM
3762 return 0;
3763}
3764
943c6e99
ZL
3765int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3766{
8789f4fe
ZL
3767 int raid_type;
3768 int min_tolerated = INT_MAX;
943c6e99 3769
8789f4fe
ZL
3770 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3771 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3772 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3773 btrfs_raid_array[BTRFS_RAID_SINGLE].
3774 tolerated_failures);
943c6e99 3775
8789f4fe
ZL
3776 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3777 if (raid_type == BTRFS_RAID_SINGLE)
3778 continue;
41a6e891 3779 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3780 continue;
8c3e3582 3781 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3782 btrfs_raid_array[raid_type].
3783 tolerated_failures);
3784 }
943c6e99 3785
8789f4fe 3786 if (min_tolerated == INT_MAX) {
ab8d0fc4 3787 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3788 min_tolerated = 0;
3789 }
3790
3791 return min_tolerated;
943c6e99
ZL
3792}
3793
eece6a9c 3794int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3795{
e5e9a520 3796 struct list_head *head;
f2984462 3797 struct btrfs_device *dev;
a061fc8d 3798 struct btrfs_super_block *sb;
f2984462 3799 struct btrfs_dev_item *dev_item;
f2984462
CM
3800 int ret;
3801 int do_barriers;
a236aed1
CM
3802 int max_errors;
3803 int total_errors = 0;
a061fc8d 3804 u64 flags;
f2984462 3805
0b246afa 3806 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3807
3808 /*
3809 * max_mirrors == 0 indicates we're from commit_transaction,
3810 * not from fsync where the tree roots in fs_info have not
3811 * been consistent on disk.
3812 */
3813 if (max_mirrors == 0)
3814 backup_super_roots(fs_info);
f2984462 3815
0b246afa 3816 sb = fs_info->super_for_commit;
a061fc8d 3817 dev_item = &sb->dev_item;
e5e9a520 3818
0b246afa
JM
3819 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3820 head = &fs_info->fs_devices->devices;
3821 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3822
5af3e8cc 3823 if (do_barriers) {
0b246afa 3824 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3825 if (ret) {
3826 mutex_unlock(
0b246afa
JM
3827 &fs_info->fs_devices->device_list_mutex);
3828 btrfs_handle_fs_error(fs_info, ret,
3829 "errors while submitting device barriers.");
5af3e8cc
SB
3830 return ret;
3831 }
3832 }
387125fc 3833
1538e6c5 3834 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3835 if (!dev->bdev) {
3836 total_errors++;
3837 continue;
3838 }
e12c9621 3839 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3840 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3841 continue;
3842
2b82032c 3843 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3844 btrfs_set_stack_device_type(dev_item, dev->type);
3845 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3846 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3847 dev->commit_total_bytes);
ce7213c7
MX
3848 btrfs_set_stack_device_bytes_used(dev_item,
3849 dev->commit_bytes_used);
a061fc8d
CM
3850 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3851 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3852 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3853 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3854 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3855 BTRFS_FSID_SIZE);
a512bbf8 3856
a061fc8d
CM
3857 flags = btrfs_super_flags(sb);
3858 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3859
75cb857d
QW
3860 ret = btrfs_validate_write_super(fs_info, sb);
3861 if (ret < 0) {
3862 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3863 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3864 "unexpected superblock corruption detected");
3865 return -EUCLEAN;
3866 }
3867
abbb3b8e 3868 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3869 if (ret)
3870 total_errors++;
f2984462 3871 }
a236aed1 3872 if (total_errors > max_errors) {
0b246afa
JM
3873 btrfs_err(fs_info, "%d errors while writing supers",
3874 total_errors);
3875 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3876
9d565ba4 3877 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3878 btrfs_handle_fs_error(fs_info, -EIO,
3879 "%d errors while writing supers",
3880 total_errors);
9d565ba4 3881 return -EIO;
a236aed1 3882 }
f2984462 3883
a512bbf8 3884 total_errors = 0;
1538e6c5 3885 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3886 if (!dev->bdev)
3887 continue;
e12c9621 3888 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3889 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3890 continue;
3891
abbb3b8e 3892 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3893 if (ret)
3894 total_errors++;
f2984462 3895 }
0b246afa 3896 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3897 if (total_errors > max_errors) {
0b246afa
JM
3898 btrfs_handle_fs_error(fs_info, -EIO,
3899 "%d errors while writing supers",
3900 total_errors);
79787eaa 3901 return -EIO;
a236aed1 3902 }
f2984462
CM
3903 return 0;
3904}
3905
cb517eab
MX
3906/* Drop a fs root from the radix tree and free it. */
3907void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3908 struct btrfs_root *root)
2619ba1f 3909{
4df27c4d 3910 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3911 radix_tree_delete(&fs_info->fs_roots_radix,
3912 (unsigned long)root->root_key.objectid);
af01d2e5 3913 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
00246528 3914 btrfs_put_root(root);
4df27c4d 3915 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3916
3917 if (btrfs_root_refs(&root->root_item) == 0)
3918 synchronize_srcu(&fs_info->subvol_srcu);
3919
1c1ea4f7 3920 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3921 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3922 if (root->reloc_root) {
3923 free_extent_buffer(root->reloc_root->node);
3924 free_extent_buffer(root->reloc_root->commit_root);
00246528 3925 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3926 root->reloc_root = NULL;
3927 }
3928 }
3321719e 3929
faa2dbf0
JB
3930 if (root->free_ino_pinned)
3931 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3932 if (root->free_ino_ctl)
3933 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3934 btrfs_free_fs_root(root);
4df27c4d
YZ
3935}
3936
84db5ccf 3937void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3938{
57cdc8db 3939 iput(root->ino_cache_inode);
4df27c4d 3940 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3941 if (root->anon_dev)
3942 free_anon_bdev(root->anon_dev);
dcc3eb96 3943 btrfs_drew_lock_destroy(&root->snapshot_lock);
4df27c4d
YZ
3944 free_extent_buffer(root->node);
3945 free_extent_buffer(root->commit_root);
581bb050
LZ
3946 kfree(root->free_ino_ctl);
3947 kfree(root->free_ino_pinned);
00246528 3948 btrfs_put_root(root);
2619ba1f
CM
3949}
3950
c146afad 3951int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3952{
c146afad
YZ
3953 u64 root_objectid = 0;
3954 struct btrfs_root *gang[8];
65d33fd7
QW
3955 int i = 0;
3956 int err = 0;
3957 unsigned int ret = 0;
3958 int index;
e089f05c 3959
c146afad 3960 while (1) {
65d33fd7 3961 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3962 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3963 (void **)gang, root_objectid,
3964 ARRAY_SIZE(gang));
65d33fd7
QW
3965 if (!ret) {
3966 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3967 break;
65d33fd7 3968 }
5d4f98a2 3969 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3970
c146afad 3971 for (i = 0; i < ret; i++) {
65d33fd7
QW
3972 /* Avoid to grab roots in dead_roots */
3973 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3974 gang[i] = NULL;
3975 continue;
3976 }
3977 /* grab all the search result for later use */
00246528 3978 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7
QW
3979 }
3980 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3981
65d33fd7
QW
3982 for (i = 0; i < ret; i++) {
3983 if (!gang[i])
3984 continue;
c146afad 3985 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3986 err = btrfs_orphan_cleanup(gang[i]);
3987 if (err)
65d33fd7 3988 break;
00246528 3989 btrfs_put_root(gang[i]);
c146afad
YZ
3990 }
3991 root_objectid++;
3992 }
65d33fd7
QW
3993
3994 /* release the uncleaned roots due to error */
3995 for (; i < ret; i++) {
3996 if (gang[i])
00246528 3997 btrfs_put_root(gang[i]);
65d33fd7
QW
3998 }
3999 return err;
c146afad 4000}
a2135011 4001
6bccf3ab 4002int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4003{
6bccf3ab 4004 struct btrfs_root *root = fs_info->tree_root;
c146afad 4005 struct btrfs_trans_handle *trans;
a74a4b97 4006
0b246afa 4007 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4008 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4009 mutex_unlock(&fs_info->cleaner_mutex);
4010 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4011
4012 /* wait until ongoing cleanup work done */
0b246afa
JM
4013 down_write(&fs_info->cleanup_work_sem);
4014 up_write(&fs_info->cleanup_work_sem);
c71bf099 4015
7a7eaa40 4016 trans = btrfs_join_transaction(root);
3612b495
TI
4017 if (IS_ERR(trans))
4018 return PTR_ERR(trans);
3a45bb20 4019 return btrfs_commit_transaction(trans);
c146afad
YZ
4020}
4021
b105e927 4022void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4023{
c146afad
YZ
4024 int ret;
4025
afcdd129 4026 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4027 /*
4028 * We don't want the cleaner to start new transactions, add more delayed
4029 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4030 * because that frees the task_struct, and the transaction kthread might
4031 * still try to wake up the cleaner.
4032 */
4033 kthread_park(fs_info->cleaner_kthread);
c146afad 4034
7343dd61 4035 /* wait for the qgroup rescan worker to stop */
d06f23d6 4036 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4037
803b2f54
SB
4038 /* wait for the uuid_scan task to finish */
4039 down(&fs_info->uuid_tree_rescan_sem);
4040 /* avoid complains from lockdep et al., set sem back to initial state */
4041 up(&fs_info->uuid_tree_rescan_sem);
4042
837d5b6e 4043 /* pause restriper - we want to resume on mount */
aa1b8cd4 4044 btrfs_pause_balance(fs_info);
837d5b6e 4045
8dabb742
SB
4046 btrfs_dev_replace_suspend_for_unmount(fs_info);
4047
aa1b8cd4 4048 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4049
4050 /* wait for any defraggers to finish */
4051 wait_event(fs_info->transaction_wait,
4052 (atomic_read(&fs_info->defrag_running) == 0));
4053
4054 /* clear out the rbtree of defraggable inodes */
26176e7c 4055 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4056
21c7e756
MX
4057 cancel_work_sync(&fs_info->async_reclaim_work);
4058
b0643e59
DZ
4059 /* Cancel or finish ongoing discard work */
4060 btrfs_discard_cleanup(fs_info);
4061
bc98a42c 4062 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4063 /*
d6fd0ae2
OS
4064 * The cleaner kthread is stopped, so do one final pass over
4065 * unused block groups.
e44163e1 4066 */
0b246afa 4067 btrfs_delete_unused_bgs(fs_info);
e44163e1 4068
6bccf3ab 4069 ret = btrfs_commit_super(fs_info);
acce952b 4070 if (ret)
04892340 4071 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4072 }
4073
af722733
LB
4074 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4075 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4076 btrfs_error_commit_super(fs_info);
0f7d52f4 4077
e3029d9f
AV
4078 kthread_stop(fs_info->transaction_kthread);
4079 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4080
e187831e 4081 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4082 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4083
04892340 4084 btrfs_free_qgroup_config(fs_info);
fe816d0f 4085 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4086
963d678b 4087 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4088 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4089 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4090 }
bcc63abb 4091
4297ff84
JB
4092 if (percpu_counter_sum(&fs_info->dio_bytes))
4093 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4094 percpu_counter_sum(&fs_info->dio_bytes));
4095
6618a59b 4096 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4097 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4098
faa2dbf0 4099 btrfs_free_fs_roots(fs_info);
d10c5f31 4100
1a4319cc
LB
4101 btrfs_put_block_group_cache(fs_info);
4102
de348ee0
WS
4103 /*
4104 * we must make sure there is not any read request to
4105 * submit after we stopping all workers.
4106 */
4107 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4108 btrfs_stop_all_workers(fs_info);
4109
afcdd129 4110 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4111 free_root_pointers(fs_info, true);
9ad6b7bc 4112
4e19443d
JB
4113 /*
4114 * We must free the block groups after dropping the fs_roots as we could
4115 * have had an IO error and have left over tree log blocks that aren't
4116 * cleaned up until the fs roots are freed. This makes the block group
4117 * accounting appear to be wrong because there's pending reserved bytes,
4118 * so make sure we do the block group cleanup afterwards.
4119 */
4120 btrfs_free_block_groups(fs_info);
4121
13e6c37b 4122 iput(fs_info->btree_inode);
d6bfde87 4123
21adbd5c 4124#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4125 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4126 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4127#endif
4128
0b86a832 4129 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4130 btrfs_close_devices(fs_info->fs_devices);
76dda93c 4131 cleanup_srcu_struct(&fs_info->subvol_srcu);
eb60ceac
CM
4132}
4133
b9fab919
CM
4134int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4135 int atomic)
5f39d397 4136{
1259ab75 4137 int ret;
727011e0 4138 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4139
0b32f4bb 4140 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4141 if (!ret)
4142 return ret;
4143
4144 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4145 parent_transid, atomic);
4146 if (ret == -EAGAIN)
4147 return ret;
1259ab75 4148 return !ret;
5f39d397
CM
4149}
4150
5f39d397
CM
4151void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4152{
0b246afa 4153 struct btrfs_fs_info *fs_info;
06ea65a3 4154 struct btrfs_root *root;
5f39d397 4155 u64 transid = btrfs_header_generation(buf);
b9473439 4156 int was_dirty;
b4ce94de 4157
06ea65a3
JB
4158#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4159 /*
4160 * This is a fast path so only do this check if we have sanity tests
52042d8e 4161 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4162 * outside of the sanity tests.
4163 */
b0132a3b 4164 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4165 return;
4166#endif
4167 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4168 fs_info = root->fs_info;
b9447ef8 4169 btrfs_assert_tree_locked(buf);
0b246afa 4170 if (transid != fs_info->generation)
5d163e0e 4171 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4172 buf->start, transid, fs_info->generation);
0b32f4bb 4173 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4174 if (!was_dirty)
104b4e51
NB
4175 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4176 buf->len,
4177 fs_info->dirty_metadata_batch);
1f21ef0a 4178#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4179 /*
4180 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4181 * but item data not updated.
4182 * So here we should only check item pointers, not item data.
4183 */
4184 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4185 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4186 btrfs_print_leaf(buf);
1f21ef0a
FM
4187 ASSERT(0);
4188 }
4189#endif
eb60ceac
CM
4190}
4191
2ff7e61e 4192static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4193 int flush_delayed)
16cdcec7
MX
4194{
4195 /*
4196 * looks as though older kernels can get into trouble with
4197 * this code, they end up stuck in balance_dirty_pages forever
4198 */
e2d84521 4199 int ret;
16cdcec7
MX
4200
4201 if (current->flags & PF_MEMALLOC)
4202 return;
4203
b53d3f5d 4204 if (flush_delayed)
2ff7e61e 4205 btrfs_balance_delayed_items(fs_info);
16cdcec7 4206
d814a491
EL
4207 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4208 BTRFS_DIRTY_METADATA_THRESH,
4209 fs_info->dirty_metadata_batch);
e2d84521 4210 if (ret > 0) {
0b246afa 4211 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4212 }
16cdcec7
MX
4213}
4214
2ff7e61e 4215void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4216{
2ff7e61e 4217 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4218}
585ad2c3 4219
2ff7e61e 4220void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4221{
2ff7e61e 4222 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4223}
6b80053d 4224
581c1760
QW
4225int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4226 struct btrfs_key *first_key)
6b80053d 4227{
5ab12d1f 4228 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4229 level, first_key);
6b80053d 4230}
0da5468f 4231
2ff7e61e 4232static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4233{
fe816d0f
NB
4234 /* cleanup FS via transaction */
4235 btrfs_cleanup_transaction(fs_info);
4236
0b246afa 4237 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4238 btrfs_run_delayed_iputs(fs_info);
0b246afa 4239 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4240
0b246afa
JM
4241 down_write(&fs_info->cleanup_work_sem);
4242 up_write(&fs_info->cleanup_work_sem);
acce952b 4243}
4244
143bede5 4245static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4246{
acce952b 4247 struct btrfs_ordered_extent *ordered;
acce952b 4248
199c2a9c 4249 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4250 /*
4251 * This will just short circuit the ordered completion stuff which will
4252 * make sure the ordered extent gets properly cleaned up.
4253 */
199c2a9c 4254 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4255 root_extent_list)
4256 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4257 spin_unlock(&root->ordered_extent_lock);
4258}
4259
4260static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4261{
4262 struct btrfs_root *root;
4263 struct list_head splice;
4264
4265 INIT_LIST_HEAD(&splice);
4266
4267 spin_lock(&fs_info->ordered_root_lock);
4268 list_splice_init(&fs_info->ordered_roots, &splice);
4269 while (!list_empty(&splice)) {
4270 root = list_first_entry(&splice, struct btrfs_root,
4271 ordered_root);
1de2cfde
JB
4272 list_move_tail(&root->ordered_root,
4273 &fs_info->ordered_roots);
199c2a9c 4274
2a85d9ca 4275 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4276 btrfs_destroy_ordered_extents(root);
4277
2a85d9ca
LB
4278 cond_resched();
4279 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4280 }
4281 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4282
4283 /*
4284 * We need this here because if we've been flipped read-only we won't
4285 * get sync() from the umount, so we need to make sure any ordered
4286 * extents that haven't had their dirty pages IO start writeout yet
4287 * actually get run and error out properly.
4288 */
4289 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4290}
4291
35a3621b 4292static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4293 struct btrfs_fs_info *fs_info)
acce952b 4294{
4295 struct rb_node *node;
4296 struct btrfs_delayed_ref_root *delayed_refs;
4297 struct btrfs_delayed_ref_node *ref;
4298 int ret = 0;
4299
4300 delayed_refs = &trans->delayed_refs;
4301
4302 spin_lock(&delayed_refs->lock);
d7df2c79 4303 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4304 spin_unlock(&delayed_refs->lock);
0b246afa 4305 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4306 return ret;
4307 }
4308
5c9d028b 4309 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4310 struct btrfs_delayed_ref_head *head;
0e0adbcf 4311 struct rb_node *n;
e78417d1 4312 bool pin_bytes = false;
acce952b 4313
d7df2c79
JB
4314 head = rb_entry(node, struct btrfs_delayed_ref_head,
4315 href_node);
3069bd26 4316 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4317 continue;
3069bd26 4318
d7df2c79 4319 spin_lock(&head->lock);
e3d03965 4320 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4321 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4322 ref_node);
d7df2c79 4323 ref->in_tree = 0;
e3d03965 4324 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4325 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4326 if (!list_empty(&ref->add_list))
4327 list_del(&ref->add_list);
d7df2c79
JB
4328 atomic_dec(&delayed_refs->num_entries);
4329 btrfs_put_delayed_ref(ref);
e78417d1 4330 }
d7df2c79
JB
4331 if (head->must_insert_reserved)
4332 pin_bytes = true;
4333 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4334 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4335 spin_unlock(&head->lock);
4336 spin_unlock(&delayed_refs->lock);
4337 mutex_unlock(&head->mutex);
acce952b 4338
f603bb94
NB
4339 if (pin_bytes) {
4340 struct btrfs_block_group *cache;
4341
4342 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4343 BUG_ON(!cache);
4344
4345 spin_lock(&cache->space_info->lock);
4346 spin_lock(&cache->lock);
4347 cache->pinned += head->num_bytes;
4348 btrfs_space_info_update_bytes_pinned(fs_info,
4349 cache->space_info, head->num_bytes);
4350 cache->reserved -= head->num_bytes;
4351 cache->space_info->bytes_reserved -= head->num_bytes;
4352 spin_unlock(&cache->lock);
4353 spin_unlock(&cache->space_info->lock);
4354 percpu_counter_add_batch(
4355 &cache->space_info->total_bytes_pinned,
4356 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4357
4358 btrfs_put_block_group(cache);
4359
4360 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4361 head->bytenr + head->num_bytes - 1);
4362 }
31890da0 4363 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4364 btrfs_put_delayed_ref_head(head);
acce952b 4365 cond_resched();
4366 spin_lock(&delayed_refs->lock);
4367 }
81f7eb00 4368 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4369
4370 spin_unlock(&delayed_refs->lock);
4371
4372 return ret;
4373}
4374
143bede5 4375static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4376{
4377 struct btrfs_inode *btrfs_inode;
4378 struct list_head splice;
4379
4380 INIT_LIST_HEAD(&splice);
4381
eb73c1b7
MX
4382 spin_lock(&root->delalloc_lock);
4383 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4384
4385 while (!list_empty(&splice)) {
fe816d0f 4386 struct inode *inode = NULL;
eb73c1b7
MX
4387 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4388 delalloc_inodes);
fe816d0f 4389 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4390 spin_unlock(&root->delalloc_lock);
acce952b 4391
fe816d0f
NB
4392 /*
4393 * Make sure we get a live inode and that it'll not disappear
4394 * meanwhile.
4395 */
4396 inode = igrab(&btrfs_inode->vfs_inode);
4397 if (inode) {
4398 invalidate_inode_pages2(inode->i_mapping);
4399 iput(inode);
4400 }
eb73c1b7 4401 spin_lock(&root->delalloc_lock);
acce952b 4402 }
eb73c1b7
MX
4403 spin_unlock(&root->delalloc_lock);
4404}
4405
4406static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4407{
4408 struct btrfs_root *root;
4409 struct list_head splice;
4410
4411 INIT_LIST_HEAD(&splice);
4412
4413 spin_lock(&fs_info->delalloc_root_lock);
4414 list_splice_init(&fs_info->delalloc_roots, &splice);
4415 while (!list_empty(&splice)) {
4416 root = list_first_entry(&splice, struct btrfs_root,
4417 delalloc_root);
00246528 4418 root = btrfs_grab_root(root);
eb73c1b7
MX
4419 BUG_ON(!root);
4420 spin_unlock(&fs_info->delalloc_root_lock);
4421
4422 btrfs_destroy_delalloc_inodes(root);
00246528 4423 btrfs_put_root(root);
eb73c1b7
MX
4424
4425 spin_lock(&fs_info->delalloc_root_lock);
4426 }
4427 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4428}
4429
2ff7e61e 4430static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4431 struct extent_io_tree *dirty_pages,
4432 int mark)
4433{
4434 int ret;
acce952b 4435 struct extent_buffer *eb;
4436 u64 start = 0;
4437 u64 end;
acce952b 4438
4439 while (1) {
4440 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4441 mark, NULL);
acce952b 4442 if (ret)
4443 break;
4444
91166212 4445 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4446 while (start <= end) {
0b246afa
JM
4447 eb = find_extent_buffer(fs_info, start);
4448 start += fs_info->nodesize;
fd8b2b61 4449 if (!eb)
acce952b 4450 continue;
fd8b2b61 4451 wait_on_extent_buffer_writeback(eb);
acce952b 4452
fd8b2b61
JB
4453 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4454 &eb->bflags))
4455 clear_extent_buffer_dirty(eb);
4456 free_extent_buffer_stale(eb);
acce952b 4457 }
4458 }
4459
4460 return ret;
4461}
4462
2ff7e61e 4463static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4464 struct extent_io_tree *unpin)
acce952b 4465{
acce952b 4466 u64 start;
4467 u64 end;
4468 int ret;
4469
acce952b 4470 while (1) {
0e6ec385
FM
4471 struct extent_state *cached_state = NULL;
4472
fcd5e742
LF
4473 /*
4474 * The btrfs_finish_extent_commit() may get the same range as
4475 * ours between find_first_extent_bit and clear_extent_dirty.
4476 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4477 * the same extent range.
4478 */
4479 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4480 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4481 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4482 if (ret) {
4483 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4484 break;
fcd5e742 4485 }
acce952b 4486
0e6ec385
FM
4487 clear_extent_dirty(unpin, start, end, &cached_state);
4488 free_extent_state(cached_state);
2ff7e61e 4489 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4490 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4491 cond_resched();
4492 }
4493
4494 return 0;
4495}
4496
32da5386 4497static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4498{
4499 struct inode *inode;
4500
4501 inode = cache->io_ctl.inode;
4502 if (inode) {
4503 invalidate_inode_pages2(inode->i_mapping);
4504 BTRFS_I(inode)->generation = 0;
4505 cache->io_ctl.inode = NULL;
4506 iput(inode);
4507 }
4508 btrfs_put_block_group(cache);
4509}
4510
4511void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4512 struct btrfs_fs_info *fs_info)
c79a1751 4513{
32da5386 4514 struct btrfs_block_group *cache;
c79a1751
LB
4515
4516 spin_lock(&cur_trans->dirty_bgs_lock);
4517 while (!list_empty(&cur_trans->dirty_bgs)) {
4518 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4519 struct btrfs_block_group,
c79a1751 4520 dirty_list);
c79a1751
LB
4521
4522 if (!list_empty(&cache->io_list)) {
4523 spin_unlock(&cur_trans->dirty_bgs_lock);
4524 list_del_init(&cache->io_list);
4525 btrfs_cleanup_bg_io(cache);
4526 spin_lock(&cur_trans->dirty_bgs_lock);
4527 }
4528
4529 list_del_init(&cache->dirty_list);
4530 spin_lock(&cache->lock);
4531 cache->disk_cache_state = BTRFS_DC_ERROR;
4532 spin_unlock(&cache->lock);
4533
4534 spin_unlock(&cur_trans->dirty_bgs_lock);
4535 btrfs_put_block_group(cache);
ba2c4d4e 4536 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4537 spin_lock(&cur_trans->dirty_bgs_lock);
4538 }
4539 spin_unlock(&cur_trans->dirty_bgs_lock);
4540
45ae2c18
NB
4541 /*
4542 * Refer to the definition of io_bgs member for details why it's safe
4543 * to use it without any locking
4544 */
c79a1751
LB
4545 while (!list_empty(&cur_trans->io_bgs)) {
4546 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4547 struct btrfs_block_group,
c79a1751 4548 io_list);
c79a1751
LB
4549
4550 list_del_init(&cache->io_list);
4551 spin_lock(&cache->lock);
4552 cache->disk_cache_state = BTRFS_DC_ERROR;
4553 spin_unlock(&cache->lock);
4554 btrfs_cleanup_bg_io(cache);
4555 }
4556}
4557
49b25e05 4558void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4559 struct btrfs_fs_info *fs_info)
49b25e05 4560{
bbbf7243
NB
4561 struct btrfs_device *dev, *tmp;
4562
2ff7e61e 4563 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4564 ASSERT(list_empty(&cur_trans->dirty_bgs));
4565 ASSERT(list_empty(&cur_trans->io_bgs));
4566
bbbf7243
NB
4567 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4568 post_commit_list) {
4569 list_del_init(&dev->post_commit_list);
4570 }
4571
2ff7e61e 4572 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4573
4a9d8bde 4574 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4575 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4576
4a9d8bde 4577 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4578 wake_up(&fs_info->transaction_wait);
49b25e05 4579
ccdf9b30 4580 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4581
2ff7e61e 4582 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4583 EXTENT_DIRTY);
fe119a6e 4584 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4585
4a9d8bde
MX
4586 cur_trans->state =TRANS_STATE_COMPLETED;
4587 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4588}
4589
2ff7e61e 4590static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4591{
4592 struct btrfs_transaction *t;
acce952b 4593
0b246afa 4594 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4595
0b246afa
JM
4596 spin_lock(&fs_info->trans_lock);
4597 while (!list_empty(&fs_info->trans_list)) {
4598 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4599 struct btrfs_transaction, list);
4600 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4601 refcount_inc(&t->use_count);
0b246afa 4602 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4603 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4604 btrfs_put_transaction(t);
0b246afa 4605 spin_lock(&fs_info->trans_lock);
724e2315
JB
4606 continue;
4607 }
0b246afa 4608 if (t == fs_info->running_transaction) {
724e2315 4609 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4610 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4611 /*
4612 * We wait for 0 num_writers since we don't hold a trans
4613 * handle open currently for this transaction.
4614 */
4615 wait_event(t->writer_wait,
4616 atomic_read(&t->num_writers) == 0);
4617 } else {
0b246afa 4618 spin_unlock(&fs_info->trans_lock);
724e2315 4619 }
2ff7e61e 4620 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4621
0b246afa
JM
4622 spin_lock(&fs_info->trans_lock);
4623 if (t == fs_info->running_transaction)
4624 fs_info->running_transaction = NULL;
acce952b 4625 list_del_init(&t->list);
0b246afa 4626 spin_unlock(&fs_info->trans_lock);
acce952b 4627
724e2315 4628 btrfs_put_transaction(t);
2ff7e61e 4629 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4630 spin_lock(&fs_info->trans_lock);
724e2315 4631 }
0b246afa
JM
4632 spin_unlock(&fs_info->trans_lock);
4633 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4634 btrfs_destroy_delayed_inodes(fs_info);
4635 btrfs_assert_delayed_root_empty(fs_info);
0b246afa
JM
4636 btrfs_destroy_all_delalloc_inodes(fs_info);
4637 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4638
4639 return 0;
4640}
4641
e8c9f186 4642static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4643 /* mandatory callbacks */
0b86a832 4644 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4645 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4646};