]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/disk-io.c
btrfs: add xxhash64 to checksumming algorithms
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
6d97c6e3 22#include <crypto/hash.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
e089f05c 25#include "transaction.h"
0f7d52f4 26#include "btrfs_inode.h"
0b86a832 27#include "volumes.h"
db94535d 28#include "print-tree.h"
925baedd 29#include "locking.h"
e02119d5 30#include "tree-log.h"
fa9c0d79 31#include "free-space-cache.h"
70f6d82e 32#include "free-space-tree.h"
581bb050 33#include "inode-map.h"
21adbd5c 34#include "check-integrity.h"
606686ee 35#include "rcu-string.h"
8dabb742 36#include "dev-replace.h"
53b381b3 37#include "raid56.h"
5ac1d209 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
ebb8765b 40#include "compression.h"
557ea5dd 41#include "tree-checker.h"
fd708b81 42#include "ref-verify.h"
aac0023c 43#include "block-group.h"
eb60ceac 44
319e4d06
QW
45#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
46 BTRFS_HEADER_FLAG_RELOC |\
47 BTRFS_SUPER_FLAG_ERROR |\
48 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
49 BTRFS_SUPER_FLAG_METADUMP |\
50 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 51
e8c9f186 52static const struct extent_io_ops btree_extent_io_ops;
8b712842 53static void end_workqueue_fn(struct btrfs_work *work);
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
d352ac68 66/*
97eb6b69
DS
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
97eb6b69 71struct btrfs_end_io_wq {
ce9adaa5
CM
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
4e4cbee9 76 blk_status_t status;
bfebd8b5 77 enum btrfs_wq_endio_type metadata;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
97eb6b69
DS
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
fba4b697 88 SLAB_MEM_SPREAD,
97eb6b69
DS
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
e67c718b 95void __cold btrfs_end_io_wq_exit(void)
97eb6b69 96{
5598e900 97 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
98}
99
d352ac68
CM
100/*
101 * async submit bios are used to offload expensive checksumming
102 * onto the worker threads. They checksum file and metadata bios
103 * just before they are sent down the IO stack.
104 */
44b8bd7e 105struct async_submit_bio {
c6100a4b 106 void *private_data;
44b8bd7e 107 struct bio *bio;
a758781d 108 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 109 int mirror_num;
eaf25d93
CM
110 /*
111 * bio_offset is optional, can be used if the pages in the bio
112 * can't tell us where in the file the bio should go
113 */
114 u64 bio_offset;
8b712842 115 struct btrfs_work work;
4e4cbee9 116 blk_status_t status;
44b8bd7e
CM
117};
118
85d4e461
CM
119/*
120 * Lockdep class keys for extent_buffer->lock's in this root. For a given
121 * eb, the lockdep key is determined by the btrfs_root it belongs to and
122 * the level the eb occupies in the tree.
123 *
124 * Different roots are used for different purposes and may nest inside each
125 * other and they require separate keysets. As lockdep keys should be
126 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
127 * by btrfs_root->root_key.objectid. This ensures that all special purpose
128 * roots have separate keysets.
4008c04a 129 *
85d4e461
CM
130 * Lock-nesting across peer nodes is always done with the immediate parent
131 * node locked thus preventing deadlock. As lockdep doesn't know this, use
132 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 133 *
85d4e461
CM
134 * The key is set by the readpage_end_io_hook after the buffer has passed
135 * csum validation but before the pages are unlocked. It is also set by
136 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 137 *
85d4e461
CM
138 * We also add a check to make sure the highest level of the tree is the
139 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
140 * needs update as well.
4008c04a
CM
141 */
142#ifdef CONFIG_DEBUG_LOCK_ALLOC
143# if BTRFS_MAX_LEVEL != 8
144# error
145# endif
85d4e461
CM
146
147static struct btrfs_lockdep_keyset {
148 u64 id; /* root objectid */
149 const char *name_stem; /* lock name stem */
150 char names[BTRFS_MAX_LEVEL + 1][20];
151 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
152} btrfs_lockdep_keysets[] = {
153 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
154 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
155 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
156 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
157 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
158 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 159 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
160 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
161 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
162 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 163 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 164 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 165 { .id = 0, .name_stem = "tree" },
4008c04a 166};
85d4e461
CM
167
168void __init btrfs_init_lockdep(void)
169{
170 int i, j;
171
172 /* initialize lockdep class names */
173 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175
176 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177 snprintf(ks->names[j], sizeof(ks->names[j]),
178 "btrfs-%s-%02d", ks->name_stem, j);
179 }
180}
181
182void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183 int level)
184{
185 struct btrfs_lockdep_keyset *ks;
186
187 BUG_ON(level >= ARRAY_SIZE(ks->keys));
188
189 /* find the matching keyset, id 0 is the default entry */
190 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191 if (ks->id == objectid)
192 break;
193
194 lockdep_set_class_and_name(&eb->lock,
195 &ks->keys[level], ks->names[level]);
196}
197
4008c04a
CM
198#endif
199
d352ac68
CM
200/*
201 * extents on the btree inode are pretty simple, there's one extent
202 * that covers the entire device
203 */
6af49dbd 204struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 205 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 206 int create)
7eccb903 207{
3ffbd68c 208 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 209 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
210 struct extent_map *em;
211 int ret;
212
890871be 213 read_lock(&em_tree->lock);
d1310b2e 214 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 215 if (em) {
0b246afa 216 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 217 read_unlock(&em_tree->lock);
5f39d397 218 goto out;
a061fc8d 219 }
890871be 220 read_unlock(&em_tree->lock);
7b13b7b1 221
172ddd60 222 em = alloc_extent_map();
5f39d397
CM
223 if (!em) {
224 em = ERR_PTR(-ENOMEM);
225 goto out;
226 }
227 em->start = 0;
0afbaf8c 228 em->len = (u64)-1;
c8b97818 229 em->block_len = (u64)-1;
5f39d397 230 em->block_start = 0;
0b246afa 231 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 232
890871be 233 write_lock(&em_tree->lock);
09a2a8f9 234 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
235 if (ret == -EEXIST) {
236 free_extent_map(em);
7b13b7b1 237 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 238 if (!em)
0433f20d 239 em = ERR_PTR(-EIO);
5f39d397 240 } else if (ret) {
7b13b7b1 241 free_extent_map(em);
0433f20d 242 em = ERR_PTR(ret);
5f39d397 243 }
890871be 244 write_unlock(&em_tree->lock);
7b13b7b1 245
5f39d397
CM
246out:
247 return em;
7eccb903
CM
248}
249
d352ac68 250/*
2996e1f8
JT
251 * Compute the csum of a btree block and store the result to provided buffer.
252 *
253 * Returns error if the extent buffer cannot be mapped.
d352ac68 254 */
2996e1f8 255static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 256{
d5178578
JT
257 struct btrfs_fs_info *fs_info = buf->fs_info;
258 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc
CM
259 unsigned long len;
260 unsigned long cur_len;
261 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
262 char *kaddr;
263 unsigned long map_start;
264 unsigned long map_len;
265 int err;
d5178578
JT
266
267 shash->tfm = fs_info->csum_shash;
268 crypto_shash_init(shash);
19c00ddc
CM
269
270 len = buf->len - offset;
d5178578 271
d397712b 272 while (len > 0) {
d2e174d5
JT
273 /*
274 * Note: we don't need to check for the err == 1 case here, as
275 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
276 * and 'min_len = 32' and the currently implemented mapping
277 * algorithm we cannot cross a page boundary.
278 */
19c00ddc 279 err = map_private_extent_buffer(buf, offset, 32,
a6591715 280 &kaddr, &map_start, &map_len);
c53839fc 281 if (WARN_ON(err))
8bd98f0e 282 return err;
19c00ddc 283 cur_len = min(len, map_len - (offset - map_start));
d5178578 284 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
19c00ddc
CM
285 len -= cur_len;
286 offset += cur_len;
19c00ddc 287 }
71a63551 288 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 289
d5178578 290 crypto_shash_final(shash, result);
19c00ddc 291
19c00ddc
CM
292 return 0;
293}
294
d352ac68
CM
295/*
296 * we can't consider a given block up to date unless the transid of the
297 * block matches the transid in the parent node's pointer. This is how we
298 * detect blocks that either didn't get written at all or got written
299 * in the wrong place.
300 */
1259ab75 301static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
302 struct extent_buffer *eb, u64 parent_transid,
303 int atomic)
1259ab75 304{
2ac55d41 305 struct extent_state *cached_state = NULL;
1259ab75 306 int ret;
2755a0de 307 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
308
309 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
310 return 0;
311
b9fab919
CM
312 if (atomic)
313 return -EAGAIN;
314
a26e8c9f
JB
315 if (need_lock) {
316 btrfs_tree_read_lock(eb);
300aa896 317 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
318 }
319
2ac55d41 320 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 321 &cached_state);
0b32f4bb 322 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
323 btrfs_header_generation(eb) == parent_transid) {
324 ret = 0;
325 goto out;
326 }
94647322
DS
327 btrfs_err_rl(eb->fs_info,
328 "parent transid verify failed on %llu wanted %llu found %llu",
329 eb->start,
29549aec 330 parent_transid, btrfs_header_generation(eb));
1259ab75 331 ret = 1;
a26e8c9f
JB
332
333 /*
334 * Things reading via commit roots that don't have normal protection,
335 * like send, can have a really old block in cache that may point at a
01327610 336 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
337 * if we find an eb that is under IO (dirty/writeback) because we could
338 * end up reading in the stale data and then writing it back out and
339 * making everybody very sad.
340 */
341 if (!extent_buffer_under_io(eb))
342 clear_extent_buffer_uptodate(eb);
33958dc6 343out:
2ac55d41 344 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 345 &cached_state);
472b909f
JB
346 if (need_lock)
347 btrfs_tree_read_unlock_blocking(eb);
1259ab75 348 return ret;
1259ab75
CM
349}
350
e7e16f48
JT
351static bool btrfs_supported_super_csum(u16 csum_type)
352{
353 switch (csum_type) {
354 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 355 case BTRFS_CSUM_TYPE_XXHASH:
e7e16f48
JT
356 return true;
357 default:
358 return false;
359 }
360}
361
1104a885
DS
362/*
363 * Return 0 if the superblock checksum type matches the checksum value of that
364 * algorithm. Pass the raw disk superblock data.
365 */
ab8d0fc4
JM
366static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
367 char *raw_disk_sb)
1104a885
DS
368{
369 struct btrfs_super_block *disk_sb =
370 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 371 char result[BTRFS_CSUM_SIZE];
d5178578
JT
372 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
373
374 shash->tfm = fs_info->csum_shash;
375 crypto_shash_init(shash);
1104a885 376
51bce6c9
JT
377 /*
378 * The super_block structure does not span the whole
379 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
380 * filled with zeros and is included in the checksum.
381 */
d5178578
JT
382 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
383 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
384 crypto_shash_final(shash, result);
1104a885 385
51bce6c9
JT
386 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
387 return 1;
1104a885 388
e7e16f48 389 return 0;
1104a885
DS
390}
391
e064d5e9 392int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 393 struct btrfs_key *first_key, u64 parent_transid)
581c1760 394{
e064d5e9 395 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
396 int found_level;
397 struct btrfs_key found_key;
398 int ret;
399
400 found_level = btrfs_header_level(eb);
401 if (found_level != level) {
63489055
QW
402 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
403 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
404 btrfs_err(fs_info,
405"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
406 eb->start, level, found_level);
581c1760
QW
407 return -EIO;
408 }
409
410 if (!first_key)
411 return 0;
412
5d41be6f
QW
413 /*
414 * For live tree block (new tree blocks in current transaction),
415 * we need proper lock context to avoid race, which is impossible here.
416 * So we only checks tree blocks which is read from disk, whose
417 * generation <= fs_info->last_trans_committed.
418 */
419 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
420 return 0;
62fdaa52
QW
421
422 /* We have @first_key, so this @eb must have at least one item */
423 if (btrfs_header_nritems(eb) == 0) {
424 btrfs_err(fs_info,
425 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
426 eb->start);
427 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
428 return -EUCLEAN;
429 }
430
581c1760
QW
431 if (found_level)
432 btrfs_node_key_to_cpu(eb, &found_key, 0);
433 else
434 btrfs_item_key_to_cpu(eb, &found_key, 0);
435 ret = btrfs_comp_cpu_keys(first_key, &found_key);
436
581c1760 437 if (ret) {
63489055
QW
438 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
439 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 440 btrfs_err(fs_info,
ff76a864
LB
441"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
442 eb->start, parent_transid, first_key->objectid,
443 first_key->type, first_key->offset,
444 found_key.objectid, found_key.type,
445 found_key.offset);
581c1760 446 }
581c1760
QW
447 return ret;
448}
449
d352ac68
CM
450/*
451 * helper to read a given tree block, doing retries as required when
452 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
453 *
454 * @parent_transid: expected transid, skip check if 0
455 * @level: expected level, mandatory check
456 * @first_key: expected key of first slot, skip check if NULL
d352ac68 457 */
5ab12d1f 458static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
459 u64 parent_transid, int level,
460 struct btrfs_key *first_key)
f188591e 461{
5ab12d1f 462 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 463 struct extent_io_tree *io_tree;
ea466794 464 int failed = 0;
f188591e
CM
465 int ret;
466 int num_copies = 0;
467 int mirror_num = 0;
ea466794 468 int failed_mirror = 0;
f188591e 469
0b246afa 470 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 471 while (1) {
f8397d69 472 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 473 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 474 if (!ret) {
581c1760 475 if (verify_parent_transid(io_tree, eb,
b9fab919 476 parent_transid, 0))
256dd1bb 477 ret = -EIO;
e064d5e9 478 else if (btrfs_verify_level_key(eb, level,
448de471 479 first_key, parent_transid))
581c1760
QW
480 ret = -EUCLEAN;
481 else
482 break;
256dd1bb 483 }
d397712b 484
0b246afa 485 num_copies = btrfs_num_copies(fs_info,
f188591e 486 eb->start, eb->len);
4235298e 487 if (num_copies == 1)
ea466794 488 break;
4235298e 489
5cf1ab56
JB
490 if (!failed_mirror) {
491 failed = 1;
492 failed_mirror = eb->read_mirror;
493 }
494
f188591e 495 mirror_num++;
ea466794
JB
496 if (mirror_num == failed_mirror)
497 mirror_num++;
498
4235298e 499 if (mirror_num > num_copies)
ea466794 500 break;
f188591e 501 }
ea466794 502
c0901581 503 if (failed && !ret && failed_mirror)
20a1fbf9 504 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
505
506 return ret;
f188591e 507}
19c00ddc 508
d352ac68 509/*
d397712b
CM
510 * checksum a dirty tree block before IO. This has extra checks to make sure
511 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 512 */
d397712b 513
01d58472 514static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 515{
4eee4fa4 516 u64 start = page_offset(page);
19c00ddc 517 u64 found_start;
2996e1f8
JT
518 u8 result[BTRFS_CSUM_SIZE];
519 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 520 struct extent_buffer *eb;
8d47a0d8 521 int ret;
f188591e 522
4f2de97a
JB
523 eb = (struct extent_buffer *)page->private;
524 if (page != eb->pages[0])
525 return 0;
0f805531 526
19c00ddc 527 found_start = btrfs_header_bytenr(eb);
0f805531
AL
528 /*
529 * Please do not consolidate these warnings into a single if.
530 * It is useful to know what went wrong.
531 */
532 if (WARN_ON(found_start != start))
533 return -EUCLEAN;
534 if (WARN_ON(!PageUptodate(page)))
535 return -EUCLEAN;
536
de37aa51 537 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
538 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
539
2996e1f8
JT
540 if (csum_tree_block(eb, result))
541 return -EINVAL;
542
8d47a0d8
QW
543 if (btrfs_header_level(eb))
544 ret = btrfs_check_node(eb);
545 else
546 ret = btrfs_check_leaf_full(eb);
547
548 if (ret < 0) {
c06631b0 549 btrfs_print_tree(eb, 0);
8d47a0d8
QW
550 btrfs_err(fs_info,
551 "block=%llu write time tree block corruption detected",
552 eb->start);
c06631b0 553 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
554 return ret;
555 }
2996e1f8 556 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 557
2996e1f8 558 return 0;
19c00ddc
CM
559}
560
b0c9b3b0 561static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 562{
b0c9b3b0 563 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 564 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 565 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
566 int ret = 1;
567
0a4e5586 568 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 569 while (fs_devices) {
7239ff4b
NB
570 u8 *metadata_uuid;
571
572 /*
573 * Checking the incompat flag is only valid for the current
574 * fs. For seed devices it's forbidden to have their uuid
575 * changed so reading ->fsid in this case is fine
576 */
577 if (fs_devices == fs_info->fs_devices &&
578 btrfs_fs_incompat(fs_info, METADATA_UUID))
579 metadata_uuid = fs_devices->metadata_uuid;
580 else
581 metadata_uuid = fs_devices->fsid;
582
583 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
584 ret = 0;
585 break;
586 }
587 fs_devices = fs_devices->seed;
588 }
589 return ret;
590}
591
facc8a22
MX
592static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
593 u64 phy_offset, struct page *page,
594 u64 start, u64 end, int mirror)
ce9adaa5 595{
ce9adaa5
CM
596 u64 found_start;
597 int found_level;
ce9adaa5
CM
598 struct extent_buffer *eb;
599 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 600 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 601 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 602 int ret = 0;
2996e1f8 603 u8 result[BTRFS_CSUM_SIZE];
727011e0 604 int reads_done;
ce9adaa5 605
ce9adaa5
CM
606 if (!page->private)
607 goto out;
d397712b 608
4f2de97a 609 eb = (struct extent_buffer *)page->private;
d397712b 610
0b32f4bb
JB
611 /* the pending IO might have been the only thing that kept this buffer
612 * in memory. Make sure we have a ref for all this other checks
613 */
67439dad 614 atomic_inc(&eb->refs);
0b32f4bb
JB
615
616 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
617 if (!reads_done)
618 goto err;
f188591e 619
5cf1ab56 620 eb->read_mirror = mirror;
656f30db 621 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
622 ret = -EIO;
623 goto err;
624 }
625
ce9adaa5 626 found_start = btrfs_header_bytenr(eb);
727011e0 627 if (found_start != eb->start) {
893bf4b1
SY
628 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
629 eb->start, found_start);
f188591e 630 ret = -EIO;
ce9adaa5
CM
631 goto err;
632 }
b0c9b3b0 633 if (check_tree_block_fsid(eb)) {
02873e43
ZL
634 btrfs_err_rl(fs_info, "bad fsid on block %llu",
635 eb->start);
1259ab75
CM
636 ret = -EIO;
637 goto err;
638 }
ce9adaa5 639 found_level = btrfs_header_level(eb);
1c24c3ce 640 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
641 btrfs_err(fs_info, "bad tree block level %d on %llu",
642 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
643 ret = -EIO;
644 goto err;
645 }
ce9adaa5 646
85d4e461
CM
647 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
648 eb, found_level);
4008c04a 649
2996e1f8 650 ret = csum_tree_block(eb, result);
8bd98f0e 651 if (ret)
a826d6dc 652 goto err;
a826d6dc 653
2996e1f8
JT
654 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
655 u32 val;
656 u32 found = 0;
657
658 memcpy(&found, result, csum_size);
659
660 read_extent_buffer(eb, &val, 0, csum_size);
661 btrfs_warn_rl(fs_info,
662 "%s checksum verify failed on %llu wanted %x found %x level %d",
663 fs_info->sb->s_id, eb->start,
664 val, found, btrfs_header_level(eb));
665 ret = -EUCLEAN;
666 goto err;
667 }
668
a826d6dc
JB
669 /*
670 * If this is a leaf block and it is corrupt, set the corrupt bit so
671 * that we don't try and read the other copies of this block, just
672 * return -EIO.
673 */
1c4360ee 674 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
675 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
676 ret = -EIO;
677 }
ce9adaa5 678
813fd1dc 679 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
680 ret = -EIO;
681
0b32f4bb
JB
682 if (!ret)
683 set_extent_buffer_uptodate(eb);
75391f0d
QW
684 else
685 btrfs_err(fs_info,
686 "block=%llu read time tree block corruption detected",
687 eb->start);
ce9adaa5 688err:
79fb65a1
JB
689 if (reads_done &&
690 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 691 btree_readahead_hook(eb, ret);
4bb31e92 692
53b381b3
DW
693 if (ret) {
694 /*
695 * our io error hook is going to dec the io pages
696 * again, we have to make sure it has something
697 * to decrement
698 */
699 atomic_inc(&eb->io_pages);
0b32f4bb 700 clear_extent_buffer_uptodate(eb);
53b381b3 701 }
0b32f4bb 702 free_extent_buffer(eb);
ce9adaa5 703out:
f188591e 704 return ret;
ce9adaa5
CM
705}
706
4246a0b6 707static void end_workqueue_bio(struct bio *bio)
ce9adaa5 708{
97eb6b69 709 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 710 struct btrfs_fs_info *fs_info;
9e0af237 711 struct btrfs_workqueue *wq;
ce9adaa5 712
ce9adaa5 713 fs_info = end_io_wq->info;
4e4cbee9 714 end_io_wq->status = bio->bi_status;
d20f7043 715
37226b21 716 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 718 wq = fs_info->endio_meta_write_workers;
a0cac0ec 719 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 720 wq = fs_info->endio_freespace_worker;
a0cac0ec 721 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 722 wq = fs_info->endio_raid56_workers;
a0cac0ec 723 else
9e0af237 724 wq = fs_info->endio_write_workers;
d20f7043 725 } else {
a0cac0ec 726 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
8b110e39 727 wq = fs_info->endio_repair_workers;
a0cac0ec 728 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 729 wq = fs_info->endio_raid56_workers;
a0cac0ec 730 else if (end_io_wq->metadata)
9e0af237 731 wq = fs_info->endio_meta_workers;
a0cac0ec 732 else
9e0af237 733 wq = fs_info->endio_workers;
d20f7043 734 }
9e0af237 735
a0cac0ec 736 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 737 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
738}
739
4e4cbee9 740blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 741 enum btrfs_wq_endio_type metadata)
0b86a832 742{
97eb6b69 743 struct btrfs_end_io_wq *end_io_wq;
8b110e39 744
97eb6b69 745 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 746 if (!end_io_wq)
4e4cbee9 747 return BLK_STS_RESOURCE;
ce9adaa5
CM
748
749 end_io_wq->private = bio->bi_private;
750 end_io_wq->end_io = bio->bi_end_io;
22c59948 751 end_io_wq->info = info;
4e4cbee9 752 end_io_wq->status = 0;
ce9adaa5 753 end_io_wq->bio = bio;
22c59948 754 end_io_wq->metadata = metadata;
ce9adaa5
CM
755
756 bio->bi_private = end_io_wq;
757 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
758 return 0;
759}
760
4a69a410
CM
761static void run_one_async_start(struct btrfs_work *work)
762{
4a69a410 763 struct async_submit_bio *async;
4e4cbee9 764 blk_status_t ret;
4a69a410
CM
765
766 async = container_of(work, struct async_submit_bio, work);
c6100a4b 767 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
768 async->bio_offset);
769 if (ret)
4e4cbee9 770 async->status = ret;
4a69a410
CM
771}
772
06ea01b1
DS
773/*
774 * In order to insert checksums into the metadata in large chunks, we wait
775 * until bio submission time. All the pages in the bio are checksummed and
776 * sums are attached onto the ordered extent record.
777 *
778 * At IO completion time the csums attached on the ordered extent record are
779 * inserted into the tree.
780 */
4a69a410 781static void run_one_async_done(struct btrfs_work *work)
8b712842 782{
8b712842 783 struct async_submit_bio *async;
06ea01b1
DS
784 struct inode *inode;
785 blk_status_t ret;
8b712842
CM
786
787 async = container_of(work, struct async_submit_bio, work);
06ea01b1 788 inode = async->private_data;
4854ddd0 789
bb7ab3b9 790 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
791 if (async->status) {
792 async->bio->bi_status = async->status;
4246a0b6 793 bio_endio(async->bio);
79787eaa
JM
794 return;
795 }
796
ec39f769
CM
797 /*
798 * All of the bios that pass through here are from async helpers.
799 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
800 * This changes nothing when cgroups aren't in use.
801 */
802 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 803 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
804 if (ret) {
805 async->bio->bi_status = ret;
806 bio_endio(async->bio);
807 }
4a69a410
CM
808}
809
810static void run_one_async_free(struct btrfs_work *work)
811{
812 struct async_submit_bio *async;
813
814 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
815 kfree(async);
816}
817
8c27cb35
LT
818blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
819 int mirror_num, unsigned long bio_flags,
820 u64 bio_offset, void *private_data,
e288c080 821 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
822{
823 struct async_submit_bio *async;
824
825 async = kmalloc(sizeof(*async), GFP_NOFS);
826 if (!async)
4e4cbee9 827 return BLK_STS_RESOURCE;
44b8bd7e 828
c6100a4b 829 async->private_data = private_data;
44b8bd7e
CM
830 async->bio = bio;
831 async->mirror_num = mirror_num;
4a69a410 832 async->submit_bio_start = submit_bio_start;
4a69a410 833
a0cac0ec
OS
834 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
835 run_one_async_free);
4a69a410 836
eaf25d93 837 async->bio_offset = bio_offset;
8c8bee1d 838
4e4cbee9 839 async->status = 0;
79787eaa 840
67f055c7 841 if (op_is_sync(bio->bi_opf))
5cdc7ad3 842 btrfs_set_work_high_priority(&async->work);
d313d7a3 843
5cdc7ad3 844 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
845 return 0;
846}
847
4e4cbee9 848static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 849{
2c30c71b 850 struct bio_vec *bvec;
ce3ed71a 851 struct btrfs_root *root;
2b070cfe 852 int ret = 0;
6dc4f100 853 struct bvec_iter_all iter_all;
ce3ed71a 854
c09abff8 855 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 856 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 857 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 858 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
859 if (ret)
860 break;
ce3ed71a 861 }
2c30c71b 862
4e4cbee9 863 return errno_to_blk_status(ret);
ce3ed71a
CM
864}
865
d0ee3934 866static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 867 u64 bio_offset)
22c59948 868{
8b712842
CM
869 /*
870 * when we're called for a write, we're already in the async
5443be45 871 * submission context. Just jump into btrfs_map_bio
8b712842 872 */
79787eaa 873 return btree_csum_one_bio(bio);
4a69a410 874}
22c59948 875
9b4e675a
DS
876static int check_async_write(struct btrfs_fs_info *fs_info,
877 struct btrfs_inode *bi)
de0022b9 878{
6300463b
LB
879 if (atomic_read(&bi->sync_writers))
880 return 0;
9b4e675a 881 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 882 return 0;
de0022b9
JB
883 return 1;
884}
885
a56b1c7b 886static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
887 int mirror_num,
888 unsigned long bio_flags)
44b8bd7e 889{
0b246afa 890 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 891 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 892 blk_status_t ret;
cad321ad 893
37226b21 894 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
895 /*
896 * called for a read, do the setup so that checksum validation
897 * can happen in the async kernel threads
898 */
0b246afa
JM
899 ret = btrfs_bio_wq_end_io(fs_info, bio,
900 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 901 if (ret)
61891923 902 goto out_w_error;
08635bae 903 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
904 } else if (!async) {
905 ret = btree_csum_one_bio(bio);
906 if (ret)
61891923 907 goto out_w_error;
08635bae 908 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
909 } else {
910 /*
911 * kthread helpers are used to submit writes so that
912 * checksumming can happen in parallel across all CPUs
913 */
c6100a4b 914 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 915 0, inode, btree_submit_bio_start);
44b8bd7e 916 }
d313d7a3 917
4246a0b6
CH
918 if (ret)
919 goto out_w_error;
920 return 0;
921
61891923 922out_w_error:
4e4cbee9 923 bio->bi_status = ret;
4246a0b6 924 bio_endio(bio);
61891923 925 return ret;
44b8bd7e
CM
926}
927
3dd1462e 928#ifdef CONFIG_MIGRATION
784b4e29 929static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
930 struct page *newpage, struct page *page,
931 enum migrate_mode mode)
784b4e29
CM
932{
933 /*
934 * we can't safely write a btree page from here,
935 * we haven't done the locking hook
936 */
937 if (PageDirty(page))
938 return -EAGAIN;
939 /*
940 * Buffers may be managed in a filesystem specific way.
941 * We must have no buffers or drop them.
942 */
943 if (page_has_private(page) &&
944 !try_to_release_page(page, GFP_KERNEL))
945 return -EAGAIN;
a6bc32b8 946 return migrate_page(mapping, newpage, page, mode);
784b4e29 947}
3dd1462e 948#endif
784b4e29 949
0da5468f
CM
950
951static int btree_writepages(struct address_space *mapping,
952 struct writeback_control *wbc)
953{
e2d84521
MX
954 struct btrfs_fs_info *fs_info;
955 int ret;
956
d8d5f3e1 957 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
958
959 if (wbc->for_kupdate)
960 return 0;
961
e2d84521 962 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 963 /* this is a bit racy, but that's ok */
d814a491
EL
964 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
965 BTRFS_DIRTY_METADATA_THRESH,
966 fs_info->dirty_metadata_batch);
e2d84521 967 if (ret < 0)
793955bc 968 return 0;
793955bc 969 }
0b32f4bb 970 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
971}
972
b2950863 973static int btree_readpage(struct file *file, struct page *page)
5f39d397 974{
d1310b2e
CM
975 struct extent_io_tree *tree;
976 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 977 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 978}
22b0ebda 979
70dec807 980static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 981{
98509cfc 982 if (PageWriteback(page) || PageDirty(page))
d397712b 983 return 0;
0c4e538b 984
f7a52a40 985 return try_release_extent_buffer(page);
d98237b3
CM
986}
987
d47992f8
LC
988static void btree_invalidatepage(struct page *page, unsigned int offset,
989 unsigned int length)
d98237b3 990{
d1310b2e
CM
991 struct extent_io_tree *tree;
992 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
993 extent_invalidatepage(tree, page, offset);
994 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 995 if (PagePrivate(page)) {
efe120a0
FH
996 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
997 "page private not zero on page %llu",
998 (unsigned long long)page_offset(page));
9ad6b7bc
CM
999 ClearPagePrivate(page);
1000 set_page_private(page, 0);
09cbfeaf 1001 put_page(page);
9ad6b7bc 1002 }
d98237b3
CM
1003}
1004
0b32f4bb
JB
1005static int btree_set_page_dirty(struct page *page)
1006{
bb146eb2 1007#ifdef DEBUG
0b32f4bb
JB
1008 struct extent_buffer *eb;
1009
1010 BUG_ON(!PagePrivate(page));
1011 eb = (struct extent_buffer *)page->private;
1012 BUG_ON(!eb);
1013 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1014 BUG_ON(!atomic_read(&eb->refs));
1015 btrfs_assert_tree_locked(eb);
bb146eb2 1016#endif
0b32f4bb
JB
1017 return __set_page_dirty_nobuffers(page);
1018}
1019
7f09410b 1020static const struct address_space_operations btree_aops = {
d98237b3 1021 .readpage = btree_readpage,
0da5468f 1022 .writepages = btree_writepages,
5f39d397
CM
1023 .releasepage = btree_releasepage,
1024 .invalidatepage = btree_invalidatepage,
5a92bc88 1025#ifdef CONFIG_MIGRATION
784b4e29 1026 .migratepage = btree_migratepage,
5a92bc88 1027#endif
0b32f4bb 1028 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1029};
1030
2ff7e61e 1031void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1032{
5f39d397 1033 struct extent_buffer *buf = NULL;
537f38f0 1034 int ret;
090d1875 1035
2ff7e61e 1036 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1037 if (IS_ERR(buf))
6197d86e 1038 return;
537f38f0 1039
c2ccfbc6 1040 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1041 if (ret < 0)
1042 free_extent_buffer_stale(buf);
1043 else
1044 free_extent_buffer(buf);
090d1875
CM
1045}
1046
2ff7e61e
JM
1047struct extent_buffer *btrfs_find_create_tree_block(
1048 struct btrfs_fs_info *fs_info,
1049 u64 bytenr)
0999df54 1050{
0b246afa
JM
1051 if (btrfs_is_testing(fs_info))
1052 return alloc_test_extent_buffer(fs_info, bytenr);
1053 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1054}
1055
581c1760
QW
1056/*
1057 * Read tree block at logical address @bytenr and do variant basic but critical
1058 * verification.
1059 *
1060 * @parent_transid: expected transid of this tree block, skip check if 0
1061 * @level: expected level, mandatory check
1062 * @first_key: expected key in slot 0, skip check if NULL
1063 */
2ff7e61e 1064struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1065 u64 parent_transid, int level,
1066 struct btrfs_key *first_key)
0999df54
CM
1067{
1068 struct extent_buffer *buf = NULL;
0999df54
CM
1069 int ret;
1070
2ff7e61e 1071 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1072 if (IS_ERR(buf))
1073 return buf;
0999df54 1074
5ab12d1f 1075 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1076 level, first_key);
0f0fe8f7 1077 if (ret) {
537f38f0 1078 free_extent_buffer_stale(buf);
64c043de 1079 return ERR_PTR(ret);
0f0fe8f7 1080 }
5f39d397 1081 return buf;
ce9adaa5 1082
eb60ceac
CM
1083}
1084
6a884d7d 1085void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1086{
6a884d7d 1087 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1088 if (btrfs_header_generation(buf) ==
e2d84521 1089 fs_info->running_transaction->transid) {
b9447ef8 1090 btrfs_assert_tree_locked(buf);
b4ce94de 1091
b9473439 1092 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1093 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1094 -buf->len,
1095 fs_info->dirty_metadata_batch);
ed7b63eb 1096 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1097 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1098 clear_extent_buffer_dirty(buf);
1099 }
925baedd 1100 }
5f39d397
CM
1101}
1102
8257b2dc
MX
1103static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1104{
1105 struct btrfs_subvolume_writers *writers;
1106 int ret;
1107
1108 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1109 if (!writers)
1110 return ERR_PTR(-ENOMEM);
1111
8a5a916d 1112 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1113 if (ret < 0) {
1114 kfree(writers);
1115 return ERR_PTR(ret);
1116 }
1117
1118 init_waitqueue_head(&writers->wait);
1119 return writers;
1120}
1121
1122static void
1123btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1124{
1125 percpu_counter_destroy(&writers->counter);
1126 kfree(writers);
1127}
1128
da17066c 1129static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1130 u64 objectid)
d97e63b6 1131{
7c0260ee 1132 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1133 root->node = NULL;
a28ec197 1134 root->commit_root = NULL;
27cdeb70 1135 root->state = 0;
d68fc57b 1136 root->orphan_cleanup_state = 0;
0b86a832 1137
0f7d52f4 1138 root->last_trans = 0;
13a8a7c8 1139 root->highest_objectid = 0;
eb73c1b7 1140 root->nr_delalloc_inodes = 0;
199c2a9c 1141 root->nr_ordered_extents = 0;
6bef4d31 1142 root->inode_tree = RB_ROOT;
16cdcec7 1143 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1144 root->block_rsv = NULL;
0b86a832
CM
1145
1146 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1147 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1148 INIT_LIST_HEAD(&root->delalloc_inodes);
1149 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1150 INIT_LIST_HEAD(&root->ordered_extents);
1151 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1152 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1153 INIT_LIST_HEAD(&root->logged_list[0]);
1154 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1155 spin_lock_init(&root->inode_lock);
eb73c1b7 1156 spin_lock_init(&root->delalloc_lock);
199c2a9c 1157 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1158 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1159 spin_lock_init(&root->log_extents_lock[0]);
1160 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1161 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1162 mutex_init(&root->objectid_mutex);
e02119d5 1163 mutex_init(&root->log_mutex);
31f3d255 1164 mutex_init(&root->ordered_extent_mutex);
573bfb72 1165 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1166 init_waitqueue_head(&root->log_writer_wait);
1167 init_waitqueue_head(&root->log_commit_wait[0]);
1168 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1169 INIT_LIST_HEAD(&root->log_ctxs[0]);
1170 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1171 atomic_set(&root->log_commit[0], 0);
1172 atomic_set(&root->log_commit[1], 0);
1173 atomic_set(&root->log_writers, 0);
2ecb7923 1174 atomic_set(&root->log_batch, 0);
0700cea7 1175 refcount_set(&root->refs, 1);
ea14b57f 1176 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1177 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1178 atomic_set(&root->nr_swapfiles, 0);
7237f183 1179 root->log_transid = 0;
d1433deb 1180 root->log_transid_committed = -1;
257c62e1 1181 root->last_log_commit = 0;
7c0260ee 1182 if (!dummy)
43eb5f29
QW
1183 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1184 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1185
3768f368
CM
1186 memset(&root->root_key, 0, sizeof(root->root_key));
1187 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1188 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1189 if (!dummy)
06ea65a3
JB
1190 root->defrag_trans_start = fs_info->generation;
1191 else
1192 root->defrag_trans_start = 0;
4d775673 1193 root->root_key.objectid = objectid;
0ee5dc67 1194 root->anon_dev = 0;
8ea05e3a 1195
5f3ab90a 1196 spin_lock_init(&root->root_item_lock);
370a11b8 1197 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1198}
1199
74e4d827
DS
1200static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1201 gfp_t flags)
6f07e42e 1202{
74e4d827 1203 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1204 if (root)
1205 root->fs_info = fs_info;
1206 return root;
1207}
1208
06ea65a3
JB
1209#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1210/* Should only be used by the testing infrastructure */
da17066c 1211struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1212{
1213 struct btrfs_root *root;
1214
7c0260ee
JM
1215 if (!fs_info)
1216 return ERR_PTR(-EINVAL);
1217
1218 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1219 if (!root)
1220 return ERR_PTR(-ENOMEM);
da17066c 1221
b9ef22de 1222 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1223 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1224 root->alloc_bytenr = 0;
06ea65a3
JB
1225
1226 return root;
1227}
1228#endif
1229
20897f5c 1230struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1231 u64 objectid)
1232{
9b7a2440 1233 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1234 struct extent_buffer *leaf;
1235 struct btrfs_root *tree_root = fs_info->tree_root;
1236 struct btrfs_root *root;
1237 struct btrfs_key key;
b89f6d1f 1238 unsigned int nofs_flag;
20897f5c 1239 int ret = 0;
33d85fda 1240 uuid_le uuid = NULL_UUID_LE;
20897f5c 1241
b89f6d1f
FM
1242 /*
1243 * We're holding a transaction handle, so use a NOFS memory allocation
1244 * context to avoid deadlock if reclaim happens.
1245 */
1246 nofs_flag = memalloc_nofs_save();
74e4d827 1247 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1248 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1249 if (!root)
1250 return ERR_PTR(-ENOMEM);
1251
da17066c 1252 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1253 root->root_key.objectid = objectid;
1254 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1255 root->root_key.offset = 0;
1256
4d75f8a9 1257 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1258 if (IS_ERR(leaf)) {
1259 ret = PTR_ERR(leaf);
1dd05682 1260 leaf = NULL;
20897f5c
AJ
1261 goto fail;
1262 }
1263
20897f5c 1264 root->node = leaf;
20897f5c
AJ
1265 btrfs_mark_buffer_dirty(leaf);
1266
1267 root->commit_root = btrfs_root_node(root);
27cdeb70 1268 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1269
1270 root->root_item.flags = 0;
1271 root->root_item.byte_limit = 0;
1272 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1273 btrfs_set_root_generation(&root->root_item, trans->transid);
1274 btrfs_set_root_level(&root->root_item, 0);
1275 btrfs_set_root_refs(&root->root_item, 1);
1276 btrfs_set_root_used(&root->root_item, leaf->len);
1277 btrfs_set_root_last_snapshot(&root->root_item, 0);
1278 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1279 if (is_fstree(objectid))
1280 uuid_le_gen(&uuid);
6463fe58 1281 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1282 root->root_item.drop_level = 0;
1283
1284 key.objectid = objectid;
1285 key.type = BTRFS_ROOT_ITEM_KEY;
1286 key.offset = 0;
1287 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1288 if (ret)
1289 goto fail;
1290
1291 btrfs_tree_unlock(leaf);
1292
1dd05682
TI
1293 return root;
1294
20897f5c 1295fail:
1dd05682
TI
1296 if (leaf) {
1297 btrfs_tree_unlock(leaf);
59885b39 1298 free_extent_buffer(root->commit_root);
1dd05682
TI
1299 free_extent_buffer(leaf);
1300 }
1301 kfree(root);
20897f5c 1302
1dd05682 1303 return ERR_PTR(ret);
20897f5c
AJ
1304}
1305
7237f183
YZ
1306static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1307 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1308{
1309 struct btrfs_root *root;
7237f183 1310 struct extent_buffer *leaf;
e02119d5 1311
74e4d827 1312 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1313 if (!root)
7237f183 1314 return ERR_PTR(-ENOMEM);
e02119d5 1315
da17066c 1316 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1317
1318 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1319 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1320 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1321
7237f183 1322 /*
27cdeb70
MX
1323 * DON'T set REF_COWS for log trees
1324 *
7237f183
YZ
1325 * log trees do not get reference counted because they go away
1326 * before a real commit is actually done. They do store pointers
1327 * to file data extents, and those reference counts still get
1328 * updated (along with back refs to the log tree).
1329 */
e02119d5 1330
4d75f8a9
DS
1331 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1332 NULL, 0, 0, 0);
7237f183
YZ
1333 if (IS_ERR(leaf)) {
1334 kfree(root);
1335 return ERR_CAST(leaf);
1336 }
e02119d5 1337
7237f183 1338 root->node = leaf;
e02119d5 1339
e02119d5
CM
1340 btrfs_mark_buffer_dirty(root->node);
1341 btrfs_tree_unlock(root->node);
7237f183
YZ
1342 return root;
1343}
1344
1345int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1346 struct btrfs_fs_info *fs_info)
1347{
1348 struct btrfs_root *log_root;
1349
1350 log_root = alloc_log_tree(trans, fs_info);
1351 if (IS_ERR(log_root))
1352 return PTR_ERR(log_root);
1353 WARN_ON(fs_info->log_root_tree);
1354 fs_info->log_root_tree = log_root;
1355 return 0;
1356}
1357
1358int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1359 struct btrfs_root *root)
1360{
0b246afa 1361 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1362 struct btrfs_root *log_root;
1363 struct btrfs_inode_item *inode_item;
1364
0b246afa 1365 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1366 if (IS_ERR(log_root))
1367 return PTR_ERR(log_root);
1368
1369 log_root->last_trans = trans->transid;
1370 log_root->root_key.offset = root->root_key.objectid;
1371
1372 inode_item = &log_root->root_item.inode;
3cae210f
QW
1373 btrfs_set_stack_inode_generation(inode_item, 1);
1374 btrfs_set_stack_inode_size(inode_item, 3);
1375 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1376 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1377 fs_info->nodesize);
3cae210f 1378 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1379
5d4f98a2 1380 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1381
1382 WARN_ON(root->log_root);
1383 root->log_root = log_root;
1384 root->log_transid = 0;
d1433deb 1385 root->log_transid_committed = -1;
257c62e1 1386 root->last_log_commit = 0;
e02119d5
CM
1387 return 0;
1388}
1389
35a3621b
SB
1390static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1391 struct btrfs_key *key)
e02119d5
CM
1392{
1393 struct btrfs_root *root;
1394 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1395 struct btrfs_path *path;
84234f3a 1396 u64 generation;
cb517eab 1397 int ret;
581c1760 1398 int level;
0f7d52f4 1399
cb517eab
MX
1400 path = btrfs_alloc_path();
1401 if (!path)
0f7d52f4 1402 return ERR_PTR(-ENOMEM);
cb517eab 1403
74e4d827 1404 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1405 if (!root) {
1406 ret = -ENOMEM;
1407 goto alloc_fail;
0f7d52f4
CM
1408 }
1409
da17066c 1410 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1411
cb517eab
MX
1412 ret = btrfs_find_root(tree_root, key, path,
1413 &root->root_item, &root->root_key);
0f7d52f4 1414 if (ret) {
13a8a7c8
YZ
1415 if (ret > 0)
1416 ret = -ENOENT;
cb517eab 1417 goto find_fail;
0f7d52f4 1418 }
13a8a7c8 1419
84234f3a 1420 generation = btrfs_root_generation(&root->root_item);
581c1760 1421 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1422 root->node = read_tree_block(fs_info,
1423 btrfs_root_bytenr(&root->root_item),
581c1760 1424 generation, level, NULL);
64c043de
LB
1425 if (IS_ERR(root->node)) {
1426 ret = PTR_ERR(root->node);
cb517eab
MX
1427 goto find_fail;
1428 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1429 ret = -EIO;
64c043de
LB
1430 free_extent_buffer(root->node);
1431 goto find_fail;
416bc658 1432 }
5d4f98a2 1433 root->commit_root = btrfs_root_node(root);
13a8a7c8 1434out:
cb517eab
MX
1435 btrfs_free_path(path);
1436 return root;
1437
cb517eab
MX
1438find_fail:
1439 kfree(root);
1440alloc_fail:
1441 root = ERR_PTR(ret);
1442 goto out;
1443}
1444
1445struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1446 struct btrfs_key *location)
1447{
1448 struct btrfs_root *root;
1449
1450 root = btrfs_read_tree_root(tree_root, location);
1451 if (IS_ERR(root))
1452 return root;
1453
1454 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1455 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1456 btrfs_check_and_init_root_item(&root->root_item);
1457 }
13a8a7c8 1458
5eda7b5e
CM
1459 return root;
1460}
1461
cb517eab
MX
1462int btrfs_init_fs_root(struct btrfs_root *root)
1463{
1464 int ret;
8257b2dc 1465 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1466
1467 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1468 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1469 GFP_NOFS);
1470 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1471 ret = -ENOMEM;
1472 goto fail;
1473 }
1474
8257b2dc
MX
1475 writers = btrfs_alloc_subvolume_writers();
1476 if (IS_ERR(writers)) {
1477 ret = PTR_ERR(writers);
1478 goto fail;
1479 }
1480 root->subv_writers = writers;
1481
cb517eab 1482 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1483 spin_lock_init(&root->ino_cache_lock);
1484 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1485
1486 ret = get_anon_bdev(&root->anon_dev);
1487 if (ret)
876d2cf1 1488 goto fail;
f32e48e9
CR
1489
1490 mutex_lock(&root->objectid_mutex);
1491 ret = btrfs_find_highest_objectid(root,
1492 &root->highest_objectid);
1493 if (ret) {
1494 mutex_unlock(&root->objectid_mutex);
876d2cf1 1495 goto fail;
f32e48e9
CR
1496 }
1497
1498 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1499
1500 mutex_unlock(&root->objectid_mutex);
1501
cb517eab
MX
1502 return 0;
1503fail:
84db5ccf 1504 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1505 return ret;
1506}
1507
35bbb97f
JM
1508struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1509 u64 root_id)
cb517eab
MX
1510{
1511 struct btrfs_root *root;
1512
1513 spin_lock(&fs_info->fs_roots_radix_lock);
1514 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1515 (unsigned long)root_id);
1516 spin_unlock(&fs_info->fs_roots_radix_lock);
1517 return root;
1518}
1519
1520int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1521 struct btrfs_root *root)
1522{
1523 int ret;
1524
e1860a77 1525 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1526 if (ret)
1527 return ret;
1528
1529 spin_lock(&fs_info->fs_roots_radix_lock);
1530 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1531 (unsigned long)root->root_key.objectid,
1532 root);
1533 if (ret == 0)
27cdeb70 1534 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1535 spin_unlock(&fs_info->fs_roots_radix_lock);
1536 radix_tree_preload_end();
1537
1538 return ret;
1539}
1540
c00869f1
MX
1541struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1542 struct btrfs_key *location,
1543 bool check_ref)
5eda7b5e
CM
1544{
1545 struct btrfs_root *root;
381cf658 1546 struct btrfs_path *path;
1d4c08e0 1547 struct btrfs_key key;
5eda7b5e
CM
1548 int ret;
1549
edbd8d4e
CM
1550 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1551 return fs_info->tree_root;
1552 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1553 return fs_info->extent_root;
8f18cf13
CM
1554 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1555 return fs_info->chunk_root;
1556 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1557 return fs_info->dev_root;
0403e47e
YZ
1558 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1559 return fs_info->csum_root;
bcef60f2
AJ
1560 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1561 return fs_info->quota_root ? fs_info->quota_root :
1562 ERR_PTR(-ENOENT);
f7a81ea4
SB
1563 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1564 return fs_info->uuid_root ? fs_info->uuid_root :
1565 ERR_PTR(-ENOENT);
70f6d82e
OS
1566 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1567 return fs_info->free_space_root ? fs_info->free_space_root :
1568 ERR_PTR(-ENOENT);
4df27c4d 1569again:
cb517eab 1570 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1571 if (root) {
c00869f1 1572 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1573 return ERR_PTR(-ENOENT);
5eda7b5e 1574 return root;
48475471 1575 }
5eda7b5e 1576
cb517eab 1577 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1578 if (IS_ERR(root))
1579 return root;
3394e160 1580
c00869f1 1581 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1582 ret = -ENOENT;
581bb050 1583 goto fail;
35a30d7c 1584 }
581bb050 1585
cb517eab 1586 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1587 if (ret)
1588 goto fail;
3394e160 1589
381cf658
DS
1590 path = btrfs_alloc_path();
1591 if (!path) {
1592 ret = -ENOMEM;
1593 goto fail;
1594 }
1d4c08e0
DS
1595 key.objectid = BTRFS_ORPHAN_OBJECTID;
1596 key.type = BTRFS_ORPHAN_ITEM_KEY;
1597 key.offset = location->objectid;
1598
1599 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1600 btrfs_free_path(path);
d68fc57b
YZ
1601 if (ret < 0)
1602 goto fail;
1603 if (ret == 0)
27cdeb70 1604 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1605
cb517eab 1606 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1607 if (ret) {
4df27c4d 1608 if (ret == -EEXIST) {
84db5ccf 1609 btrfs_free_fs_root(root);
4df27c4d
YZ
1610 goto again;
1611 }
1612 goto fail;
0f7d52f4 1613 }
edbd8d4e 1614 return root;
4df27c4d 1615fail:
84db5ccf 1616 btrfs_free_fs_root(root);
4df27c4d 1617 return ERR_PTR(ret);
edbd8d4e
CM
1618}
1619
04160088
CM
1620static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1621{
1622 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1623 int ret = 0;
04160088
CM
1624 struct btrfs_device *device;
1625 struct backing_dev_info *bdi;
b7967db7 1626
1f78160c
XG
1627 rcu_read_lock();
1628 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1629 if (!device->bdev)
1630 continue;
efa7c9f9 1631 bdi = device->bdev->bd_bdi;
ff9ea323 1632 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1633 ret = 1;
1634 break;
1635 }
1636 }
1f78160c 1637 rcu_read_unlock();
04160088
CM
1638 return ret;
1639}
1640
8b712842
CM
1641/*
1642 * called by the kthread helper functions to finally call the bio end_io
1643 * functions. This is where read checksum verification actually happens
1644 */
1645static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1646{
ce9adaa5 1647 struct bio *bio;
97eb6b69 1648 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1649
97eb6b69 1650 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1651 bio = end_io_wq->bio;
ce9adaa5 1652
4e4cbee9 1653 bio->bi_status = end_io_wq->status;
8b712842
CM
1654 bio->bi_private = end_io_wq->private;
1655 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1656 bio_endio(bio);
9be490f1 1657 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1658}
1659
a74a4b97
CM
1660static int cleaner_kthread(void *arg)
1661{
1662 struct btrfs_root *root = arg;
0b246afa 1663 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1664 int again;
a74a4b97 1665
d6fd0ae2 1666 while (1) {
d0278245 1667 again = 0;
a74a4b97 1668
fd340d0f
JB
1669 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1670
d0278245 1671 /* Make the cleaner go to sleep early. */
2ff7e61e 1672 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1673 goto sleep;
1674
90c711ab
ZB
1675 /*
1676 * Do not do anything if we might cause open_ctree() to block
1677 * before we have finished mounting the filesystem.
1678 */
0b246afa 1679 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1680 goto sleep;
1681
0b246afa 1682 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1683 goto sleep;
1684
dc7f370c
MX
1685 /*
1686 * Avoid the problem that we change the status of the fs
1687 * during the above check and trylock.
1688 */
2ff7e61e 1689 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1690 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1691 goto sleep;
76dda93c 1692 }
a74a4b97 1693
2ff7e61e 1694 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1695
d0278245 1696 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1697 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1698
1699 /*
05323cd1
MX
1700 * The defragger has dealt with the R/O remount and umount,
1701 * needn't do anything special here.
d0278245 1702 */
0b246afa 1703 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1704
1705 /*
1706 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1707 * with relocation (btrfs_relocate_chunk) and relocation
1708 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1709 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1710 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1711 * unused block groups.
1712 */
0b246afa 1713 btrfs_delete_unused_bgs(fs_info);
d0278245 1714sleep:
fd340d0f 1715 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1716 if (kthread_should_park())
1717 kthread_parkme();
1718 if (kthread_should_stop())
1719 return 0;
838fe188 1720 if (!again) {
a74a4b97 1721 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1722 schedule();
a74a4b97
CM
1723 __set_current_state(TASK_RUNNING);
1724 }
da288d28 1725 }
a74a4b97
CM
1726}
1727
1728static int transaction_kthread(void *arg)
1729{
1730 struct btrfs_root *root = arg;
0b246afa 1731 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1732 struct btrfs_trans_handle *trans;
1733 struct btrfs_transaction *cur;
8929ecfa 1734 u64 transid;
a944442c 1735 time64_t now;
a74a4b97 1736 unsigned long delay;
914b2007 1737 bool cannot_commit;
a74a4b97
CM
1738
1739 do {
914b2007 1740 cannot_commit = false;
0b246afa
JM
1741 delay = HZ * fs_info->commit_interval;
1742 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1743
0b246afa
JM
1744 spin_lock(&fs_info->trans_lock);
1745 cur = fs_info->running_transaction;
a74a4b97 1746 if (!cur) {
0b246afa 1747 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1748 goto sleep;
1749 }
31153d81 1750
afd48513 1751 now = ktime_get_seconds();
3296bf56 1752 if (cur->state < TRANS_STATE_COMMIT_START &&
a514d638 1753 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1754 (now < cur->start_time ||
0b246afa
JM
1755 now - cur->start_time < fs_info->commit_interval)) {
1756 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1757 delay = HZ * 5;
1758 goto sleep;
1759 }
8929ecfa 1760 transid = cur->transid;
0b246afa 1761 spin_unlock(&fs_info->trans_lock);
56bec294 1762
79787eaa 1763 /* If the file system is aborted, this will always fail. */
354aa0fb 1764 trans = btrfs_attach_transaction(root);
914b2007 1765 if (IS_ERR(trans)) {
354aa0fb
MX
1766 if (PTR_ERR(trans) != -ENOENT)
1767 cannot_commit = true;
79787eaa 1768 goto sleep;
914b2007 1769 }
8929ecfa 1770 if (transid == trans->transid) {
3a45bb20 1771 btrfs_commit_transaction(trans);
8929ecfa 1772 } else {
3a45bb20 1773 btrfs_end_transaction(trans);
8929ecfa 1774 }
a74a4b97 1775sleep:
0b246afa
JM
1776 wake_up_process(fs_info->cleaner_kthread);
1777 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1778
4e121c06 1779 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1780 &fs_info->fs_state)))
2ff7e61e 1781 btrfs_cleanup_transaction(fs_info);
ce63f891 1782 if (!kthread_should_stop() &&
0b246afa 1783 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1784 cannot_commit))
bc5511d0 1785 schedule_timeout_interruptible(delay);
a74a4b97
CM
1786 } while (!kthread_should_stop());
1787 return 0;
1788}
1789
af31f5e5
CM
1790/*
1791 * this will find the highest generation in the array of
1792 * root backups. The index of the highest array is returned,
1793 * or -1 if we can't find anything.
1794 *
1795 * We check to make sure the array is valid by comparing the
1796 * generation of the latest root in the array with the generation
1797 * in the super block. If they don't match we pitch it.
1798 */
1799static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1800{
1801 u64 cur;
1802 int newest_index = -1;
1803 struct btrfs_root_backup *root_backup;
1804 int i;
1805
1806 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1807 root_backup = info->super_copy->super_roots + i;
1808 cur = btrfs_backup_tree_root_gen(root_backup);
1809 if (cur == newest_gen)
1810 newest_index = i;
1811 }
1812
1813 /* check to see if we actually wrapped around */
1814 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1815 root_backup = info->super_copy->super_roots;
1816 cur = btrfs_backup_tree_root_gen(root_backup);
1817 if (cur == newest_gen)
1818 newest_index = 0;
1819 }
1820 return newest_index;
1821}
1822
1823
1824/*
1825 * find the oldest backup so we know where to store new entries
1826 * in the backup array. This will set the backup_root_index
1827 * field in the fs_info struct
1828 */
1829static void find_oldest_super_backup(struct btrfs_fs_info *info,
1830 u64 newest_gen)
1831{
1832 int newest_index = -1;
1833
1834 newest_index = find_newest_super_backup(info, newest_gen);
1835 /* if there was garbage in there, just move along */
1836 if (newest_index == -1) {
1837 info->backup_root_index = 0;
1838 } else {
1839 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1840 }
1841}
1842
1843/*
1844 * copy all the root pointers into the super backup array.
1845 * this will bump the backup pointer by one when it is
1846 * done
1847 */
1848static void backup_super_roots(struct btrfs_fs_info *info)
1849{
1850 int next_backup;
1851 struct btrfs_root_backup *root_backup;
1852 int last_backup;
1853
1854 next_backup = info->backup_root_index;
1855 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1856 BTRFS_NUM_BACKUP_ROOTS;
1857
1858 /*
1859 * just overwrite the last backup if we're at the same generation
1860 * this happens only at umount
1861 */
1862 root_backup = info->super_for_commit->super_roots + last_backup;
1863 if (btrfs_backup_tree_root_gen(root_backup) ==
1864 btrfs_header_generation(info->tree_root->node))
1865 next_backup = last_backup;
1866
1867 root_backup = info->super_for_commit->super_roots + next_backup;
1868
1869 /*
1870 * make sure all of our padding and empty slots get zero filled
1871 * regardless of which ones we use today
1872 */
1873 memset(root_backup, 0, sizeof(*root_backup));
1874
1875 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1876
1877 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1878 btrfs_set_backup_tree_root_gen(root_backup,
1879 btrfs_header_generation(info->tree_root->node));
1880
1881 btrfs_set_backup_tree_root_level(root_backup,
1882 btrfs_header_level(info->tree_root->node));
1883
1884 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1885 btrfs_set_backup_chunk_root_gen(root_backup,
1886 btrfs_header_generation(info->chunk_root->node));
1887 btrfs_set_backup_chunk_root_level(root_backup,
1888 btrfs_header_level(info->chunk_root->node));
1889
1890 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1891 btrfs_set_backup_extent_root_gen(root_backup,
1892 btrfs_header_generation(info->extent_root->node));
1893 btrfs_set_backup_extent_root_level(root_backup,
1894 btrfs_header_level(info->extent_root->node));
1895
7c7e82a7
CM
1896 /*
1897 * we might commit during log recovery, which happens before we set
1898 * the fs_root. Make sure it is valid before we fill it in.
1899 */
1900 if (info->fs_root && info->fs_root->node) {
1901 btrfs_set_backup_fs_root(root_backup,
1902 info->fs_root->node->start);
1903 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1904 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1905 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1906 btrfs_header_level(info->fs_root->node));
7c7e82a7 1907 }
af31f5e5
CM
1908
1909 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1910 btrfs_set_backup_dev_root_gen(root_backup,
1911 btrfs_header_generation(info->dev_root->node));
1912 btrfs_set_backup_dev_root_level(root_backup,
1913 btrfs_header_level(info->dev_root->node));
1914
1915 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1916 btrfs_set_backup_csum_root_gen(root_backup,
1917 btrfs_header_generation(info->csum_root->node));
1918 btrfs_set_backup_csum_root_level(root_backup,
1919 btrfs_header_level(info->csum_root->node));
1920
1921 btrfs_set_backup_total_bytes(root_backup,
1922 btrfs_super_total_bytes(info->super_copy));
1923 btrfs_set_backup_bytes_used(root_backup,
1924 btrfs_super_bytes_used(info->super_copy));
1925 btrfs_set_backup_num_devices(root_backup,
1926 btrfs_super_num_devices(info->super_copy));
1927
1928 /*
1929 * if we don't copy this out to the super_copy, it won't get remembered
1930 * for the next commit
1931 */
1932 memcpy(&info->super_copy->super_roots,
1933 &info->super_for_commit->super_roots,
1934 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1935}
1936
1937/*
1938 * this copies info out of the root backup array and back into
1939 * the in-memory super block. It is meant to help iterate through
1940 * the array, so you send it the number of backups you've already
1941 * tried and the last backup index you used.
1942 *
1943 * this returns -1 when it has tried all the backups
1944 */
1945static noinline int next_root_backup(struct btrfs_fs_info *info,
1946 struct btrfs_super_block *super,
1947 int *num_backups_tried, int *backup_index)
1948{
1949 struct btrfs_root_backup *root_backup;
1950 int newest = *backup_index;
1951
1952 if (*num_backups_tried == 0) {
1953 u64 gen = btrfs_super_generation(super);
1954
1955 newest = find_newest_super_backup(info, gen);
1956 if (newest == -1)
1957 return -1;
1958
1959 *backup_index = newest;
1960 *num_backups_tried = 1;
1961 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1962 /* we've tried all the backups, all done */
1963 return -1;
1964 } else {
1965 /* jump to the next oldest backup */
1966 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1967 BTRFS_NUM_BACKUP_ROOTS;
1968 *backup_index = newest;
1969 *num_backups_tried += 1;
1970 }
1971 root_backup = super->super_roots + newest;
1972
1973 btrfs_set_super_generation(super,
1974 btrfs_backup_tree_root_gen(root_backup));
1975 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1976 btrfs_set_super_root_level(super,
1977 btrfs_backup_tree_root_level(root_backup));
1978 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1979
1980 /*
1981 * fixme: the total bytes and num_devices need to match or we should
1982 * need a fsck
1983 */
1984 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1985 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1986 return 0;
1987}
1988
7abadb64
LB
1989/* helper to cleanup workers */
1990static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1991{
dc6e3209 1992 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1993 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1994 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1995 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1996 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 1997 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 1998 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1999 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2000 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2001 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2002 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2003 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2004 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2005 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a9b9477d
FM
2006 /*
2007 * Now that all other work queues are destroyed, we can safely destroy
2008 * the queues used for metadata I/O, since tasks from those other work
2009 * queues can do metadata I/O operations.
2010 */
2011 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2012 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2013}
2014
2e9f5954
R
2015static void free_root_extent_buffers(struct btrfs_root *root)
2016{
2017 if (root) {
2018 free_extent_buffer(root->node);
2019 free_extent_buffer(root->commit_root);
2020 root->node = NULL;
2021 root->commit_root = NULL;
2022 }
2023}
2024
af31f5e5 2025/* helper to cleanup tree roots */
4273eaff 2026static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2027{
2e9f5954 2028 free_root_extent_buffers(info->tree_root);
655b09fe 2029
2e9f5954
R
2030 free_root_extent_buffers(info->dev_root);
2031 free_root_extent_buffers(info->extent_root);
2032 free_root_extent_buffers(info->csum_root);
2033 free_root_extent_buffers(info->quota_root);
2034 free_root_extent_buffers(info->uuid_root);
4273eaff 2035 if (free_chunk_root)
2e9f5954 2036 free_root_extent_buffers(info->chunk_root);
70f6d82e 2037 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2038}
2039
faa2dbf0 2040void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2041{
2042 int ret;
2043 struct btrfs_root *gang[8];
2044 int i;
2045
2046 while (!list_empty(&fs_info->dead_roots)) {
2047 gang[0] = list_entry(fs_info->dead_roots.next,
2048 struct btrfs_root, root_list);
2049 list_del(&gang[0]->root_list);
2050
27cdeb70 2051 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2052 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2053 } else {
2054 free_extent_buffer(gang[0]->node);
2055 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2056 btrfs_put_fs_root(gang[0]);
171f6537
JB
2057 }
2058 }
2059
2060 while (1) {
2061 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2062 (void **)gang, 0,
2063 ARRAY_SIZE(gang));
2064 if (!ret)
2065 break;
2066 for (i = 0; i < ret; i++)
cb517eab 2067 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2068 }
1a4319cc
LB
2069
2070 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2071 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2072 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2073 }
171f6537 2074}
af31f5e5 2075
638aa7ed
ES
2076static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2077{
2078 mutex_init(&fs_info->scrub_lock);
2079 atomic_set(&fs_info->scrubs_running, 0);
2080 atomic_set(&fs_info->scrub_pause_req, 0);
2081 atomic_set(&fs_info->scrubs_paused, 0);
2082 atomic_set(&fs_info->scrub_cancel_req, 0);
2083 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2084 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2085}
2086
779a65a4
ES
2087static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2088{
2089 spin_lock_init(&fs_info->balance_lock);
2090 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2091 atomic_set(&fs_info->balance_pause_req, 0);
2092 atomic_set(&fs_info->balance_cancel_req, 0);
2093 fs_info->balance_ctl = NULL;
2094 init_waitqueue_head(&fs_info->balance_wait_q);
2095}
2096
6bccf3ab 2097static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2098{
2ff7e61e
JM
2099 struct inode *inode = fs_info->btree_inode;
2100
2101 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2102 set_nlink(inode, 1);
f37938e0
ES
2103 /*
2104 * we set the i_size on the btree inode to the max possible int.
2105 * the real end of the address space is determined by all of
2106 * the devices in the system
2107 */
2ff7e61e
JM
2108 inode->i_size = OFFSET_MAX;
2109 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2110
2ff7e61e 2111 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2112 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2113 IO_TREE_INODE_IO, inode);
7b439738 2114 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2115 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2116
2ff7e61e 2117 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2118
2ff7e61e
JM
2119 BTRFS_I(inode)->root = fs_info->tree_root;
2120 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2121 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2122 btrfs_insert_inode_hash(inode);
f37938e0
ES
2123}
2124
ad618368
ES
2125static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2126{
ad618368 2127 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2128 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2129 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2130}
2131
f9e92e40
ES
2132static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2133{
2134 spin_lock_init(&fs_info->qgroup_lock);
2135 mutex_init(&fs_info->qgroup_ioctl_lock);
2136 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2137 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2138 fs_info->qgroup_seq = 1;
f9e92e40 2139 fs_info->qgroup_ulist = NULL;
d2c609b8 2140 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2141 mutex_init(&fs_info->qgroup_rescan_lock);
2142}
2143
2a458198
ES
2144static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2145 struct btrfs_fs_devices *fs_devices)
2146{
f7b885be 2147 u32 max_active = fs_info->thread_pool_size;
6f011058 2148 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2149
2150 fs_info->workers =
cb001095
JM
2151 btrfs_alloc_workqueue(fs_info, "worker",
2152 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2153
2154 fs_info->delalloc_workers =
cb001095
JM
2155 btrfs_alloc_workqueue(fs_info, "delalloc",
2156 flags, max_active, 2);
2a458198
ES
2157
2158 fs_info->flush_workers =
cb001095
JM
2159 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2160 flags, max_active, 0);
2a458198
ES
2161
2162 fs_info->caching_workers =
cb001095 2163 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2164
2a458198 2165 fs_info->fixup_workers =
cb001095 2166 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2167
2168 /*
2169 * endios are largely parallel and should have a very
2170 * low idle thresh
2171 */
2172 fs_info->endio_workers =
cb001095 2173 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2174 fs_info->endio_meta_workers =
cb001095
JM
2175 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2176 max_active, 4);
2a458198 2177 fs_info->endio_meta_write_workers =
cb001095
JM
2178 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2179 max_active, 2);
2a458198 2180 fs_info->endio_raid56_workers =
cb001095
JM
2181 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2182 max_active, 4);
2a458198 2183 fs_info->endio_repair_workers =
cb001095 2184 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2185 fs_info->rmw_workers =
cb001095 2186 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2187 fs_info->endio_write_workers =
cb001095
JM
2188 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2189 max_active, 2);
2a458198 2190 fs_info->endio_freespace_worker =
cb001095
JM
2191 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2192 max_active, 0);
2a458198 2193 fs_info->delayed_workers =
cb001095
JM
2194 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2195 max_active, 0);
2a458198 2196 fs_info->readahead_workers =
cb001095
JM
2197 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2198 max_active, 2);
2a458198 2199 fs_info->qgroup_rescan_workers =
cb001095 2200 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198
ES
2201
2202 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2203 fs_info->flush_workers &&
2a458198
ES
2204 fs_info->endio_workers && fs_info->endio_meta_workers &&
2205 fs_info->endio_meta_write_workers &&
2206 fs_info->endio_repair_workers &&
2207 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2208 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2209 fs_info->caching_workers && fs_info->readahead_workers &&
2210 fs_info->fixup_workers && fs_info->delayed_workers &&
2a458198
ES
2211 fs_info->qgroup_rescan_workers)) {
2212 return -ENOMEM;
2213 }
2214
2215 return 0;
2216}
2217
6d97c6e3
JT
2218static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2219{
2220 struct crypto_shash *csum_shash;
2221 const char *csum_name = btrfs_super_csum_name(csum_type);
2222
2223 csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2224
2225 if (IS_ERR(csum_shash)) {
2226 btrfs_err(fs_info, "error allocating %s hash for checksum",
2227 csum_name);
2228 return PTR_ERR(csum_shash);
2229 }
2230
2231 fs_info->csum_shash = csum_shash;
2232
2233 return 0;
2234}
2235
2236static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2237{
2238 crypto_free_shash(fs_info->csum_shash);
2239}
2240
63443bf5
ES
2241static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2242 struct btrfs_fs_devices *fs_devices)
2243{
2244 int ret;
63443bf5
ES
2245 struct btrfs_root *log_tree_root;
2246 struct btrfs_super_block *disk_super = fs_info->super_copy;
2247 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2248 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2249
2250 if (fs_devices->rw_devices == 0) {
f14d104d 2251 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2252 return -EIO;
2253 }
2254
74e4d827 2255 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2256 if (!log_tree_root)
2257 return -ENOMEM;
2258
da17066c 2259 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2260
2ff7e61e 2261 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2262 fs_info->generation + 1,
2263 level, NULL);
64c043de 2264 if (IS_ERR(log_tree_root->node)) {
f14d104d 2265 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2266 ret = PTR_ERR(log_tree_root->node);
64c043de 2267 kfree(log_tree_root);
0eeff236 2268 return ret;
64c043de 2269 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2270 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2271 free_extent_buffer(log_tree_root->node);
2272 kfree(log_tree_root);
2273 return -EIO;
2274 }
2275 /* returns with log_tree_root freed on success */
2276 ret = btrfs_recover_log_trees(log_tree_root);
2277 if (ret) {
0b246afa
JM
2278 btrfs_handle_fs_error(fs_info, ret,
2279 "Failed to recover log tree");
63443bf5
ES
2280 free_extent_buffer(log_tree_root->node);
2281 kfree(log_tree_root);
2282 return ret;
2283 }
2284
bc98a42c 2285 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2286 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2287 if (ret)
2288 return ret;
2289 }
2290
2291 return 0;
2292}
2293
6bccf3ab 2294static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2295{
6bccf3ab 2296 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2297 struct btrfs_root *root;
4bbcaa64
ES
2298 struct btrfs_key location;
2299 int ret;
2300
6bccf3ab
JM
2301 BUG_ON(!fs_info->tree_root);
2302
4bbcaa64
ES
2303 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2304 location.type = BTRFS_ROOT_ITEM_KEY;
2305 location.offset = 0;
2306
a4f3d2c4 2307 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2308 if (IS_ERR(root)) {
2309 ret = PTR_ERR(root);
2310 goto out;
2311 }
a4f3d2c4
DS
2312 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2313 fs_info->extent_root = root;
4bbcaa64
ES
2314
2315 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2316 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2317 if (IS_ERR(root)) {
2318 ret = PTR_ERR(root);
2319 goto out;
2320 }
a4f3d2c4
DS
2321 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2322 fs_info->dev_root = root;
4bbcaa64
ES
2323 btrfs_init_devices_late(fs_info);
2324
2325 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2326 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2327 if (IS_ERR(root)) {
2328 ret = PTR_ERR(root);
2329 goto out;
2330 }
a4f3d2c4
DS
2331 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2332 fs_info->csum_root = root;
4bbcaa64
ES
2333
2334 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2335 root = btrfs_read_tree_root(tree_root, &location);
2336 if (!IS_ERR(root)) {
2337 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2338 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2339 fs_info->quota_root = root;
4bbcaa64
ES
2340 }
2341
2342 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2343 root = btrfs_read_tree_root(tree_root, &location);
2344 if (IS_ERR(root)) {
2345 ret = PTR_ERR(root);
4bbcaa64 2346 if (ret != -ENOENT)
f50f4353 2347 goto out;
4bbcaa64 2348 } else {
a4f3d2c4
DS
2349 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2350 fs_info->uuid_root = root;
4bbcaa64
ES
2351 }
2352
70f6d82e
OS
2353 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2354 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2355 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2356 if (IS_ERR(root)) {
2357 ret = PTR_ERR(root);
2358 goto out;
2359 }
70f6d82e
OS
2360 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361 fs_info->free_space_root = root;
2362 }
2363
4bbcaa64 2364 return 0;
f50f4353
LB
2365out:
2366 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2367 location.objectid, ret);
2368 return ret;
4bbcaa64
ES
2369}
2370
069ec957
QW
2371/*
2372 * Real super block validation
2373 * NOTE: super csum type and incompat features will not be checked here.
2374 *
2375 * @sb: super block to check
2376 * @mirror_num: the super block number to check its bytenr:
2377 * 0 the primary (1st) sb
2378 * 1, 2 2nd and 3rd backup copy
2379 * -1 skip bytenr check
2380 */
2381static int validate_super(struct btrfs_fs_info *fs_info,
2382 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2383{
21a852b0
QW
2384 u64 nodesize = btrfs_super_nodesize(sb);
2385 u64 sectorsize = btrfs_super_sectorsize(sb);
2386 int ret = 0;
2387
2388 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2389 btrfs_err(fs_info, "no valid FS found");
2390 ret = -EINVAL;
2391 }
2392 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2393 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2394 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2395 ret = -EINVAL;
2396 }
2397 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2398 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2399 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2400 ret = -EINVAL;
2401 }
2402 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2403 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2404 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2405 ret = -EINVAL;
2406 }
2407 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2408 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2409 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2410 ret = -EINVAL;
2411 }
2412
2413 /*
2414 * Check sectorsize and nodesize first, other check will need it.
2415 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2416 */
2417 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2418 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2419 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2420 ret = -EINVAL;
2421 }
2422 /* Only PAGE SIZE is supported yet */
2423 if (sectorsize != PAGE_SIZE) {
2424 btrfs_err(fs_info,
2425 "sectorsize %llu not supported yet, only support %lu",
2426 sectorsize, PAGE_SIZE);
2427 ret = -EINVAL;
2428 }
2429 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2430 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2431 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2432 ret = -EINVAL;
2433 }
2434 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2435 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2436 le32_to_cpu(sb->__unused_leafsize), nodesize);
2437 ret = -EINVAL;
2438 }
2439
2440 /* Root alignment check */
2441 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2442 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2443 btrfs_super_root(sb));
2444 ret = -EINVAL;
2445 }
2446 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2447 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2448 btrfs_super_chunk_root(sb));
2449 ret = -EINVAL;
2450 }
2451 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2452 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2453 btrfs_super_log_root(sb));
2454 ret = -EINVAL;
2455 }
2456
de37aa51 2457 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2458 BTRFS_FSID_SIZE) != 0) {
21a852b0 2459 btrfs_err(fs_info,
7239ff4b 2460 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2461 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2462 ret = -EINVAL;
2463 }
2464
2465 /*
2466 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2467 * done later
2468 */
2469 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2470 btrfs_err(fs_info, "bytes_used is too small %llu",
2471 btrfs_super_bytes_used(sb));
2472 ret = -EINVAL;
2473 }
2474 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2475 btrfs_err(fs_info, "invalid stripesize %u",
2476 btrfs_super_stripesize(sb));
2477 ret = -EINVAL;
2478 }
2479 if (btrfs_super_num_devices(sb) > (1UL << 31))
2480 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2481 btrfs_super_num_devices(sb));
2482 if (btrfs_super_num_devices(sb) == 0) {
2483 btrfs_err(fs_info, "number of devices is 0");
2484 ret = -EINVAL;
2485 }
2486
069ec957
QW
2487 if (mirror_num >= 0 &&
2488 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2489 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2490 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2491 ret = -EINVAL;
2492 }
2493
2494 /*
2495 * Obvious sys_chunk_array corruptions, it must hold at least one key
2496 * and one chunk
2497 */
2498 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2499 btrfs_err(fs_info, "system chunk array too big %u > %u",
2500 btrfs_super_sys_array_size(sb),
2501 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2502 ret = -EINVAL;
2503 }
2504 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2505 + sizeof(struct btrfs_chunk)) {
2506 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2507 btrfs_super_sys_array_size(sb),
2508 sizeof(struct btrfs_disk_key)
2509 + sizeof(struct btrfs_chunk));
2510 ret = -EINVAL;
2511 }
2512
2513 /*
2514 * The generation is a global counter, we'll trust it more than the others
2515 * but it's still possible that it's the one that's wrong.
2516 */
2517 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2518 btrfs_warn(fs_info,
2519 "suspicious: generation < chunk_root_generation: %llu < %llu",
2520 btrfs_super_generation(sb),
2521 btrfs_super_chunk_root_generation(sb));
2522 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2523 && btrfs_super_cache_generation(sb) != (u64)-1)
2524 btrfs_warn(fs_info,
2525 "suspicious: generation < cache_generation: %llu < %llu",
2526 btrfs_super_generation(sb),
2527 btrfs_super_cache_generation(sb));
2528
2529 return ret;
2530}
2531
069ec957
QW
2532/*
2533 * Validation of super block at mount time.
2534 * Some checks already done early at mount time, like csum type and incompat
2535 * flags will be skipped.
2536 */
2537static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2538{
2539 return validate_super(fs_info, fs_info->super_copy, 0);
2540}
2541
75cb857d
QW
2542/*
2543 * Validation of super block at write time.
2544 * Some checks like bytenr check will be skipped as their values will be
2545 * overwritten soon.
2546 * Extra checks like csum type and incompat flags will be done here.
2547 */
2548static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2549 struct btrfs_super_block *sb)
2550{
2551 int ret;
2552
2553 ret = validate_super(fs_info, sb, -1);
2554 if (ret < 0)
2555 goto out;
e7e16f48 2556 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2557 ret = -EUCLEAN;
2558 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2559 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2560 goto out;
2561 }
2562 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2563 ret = -EUCLEAN;
2564 btrfs_err(fs_info,
2565 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2566 btrfs_super_incompat_flags(sb),
2567 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2568 goto out;
2569 }
2570out:
2571 if (ret < 0)
2572 btrfs_err(fs_info,
2573 "super block corruption detected before writing it to disk");
2574 return ret;
2575}
2576
b105e927 2577int __cold open_ctree(struct super_block *sb,
ad2b2c80
AV
2578 struct btrfs_fs_devices *fs_devices,
2579 char *options)
2e635a27 2580{
db94535d
CM
2581 u32 sectorsize;
2582 u32 nodesize;
87ee04eb 2583 u32 stripesize;
84234f3a 2584 u64 generation;
f2b636e8 2585 u64 features;
51bce6c9 2586 u16 csum_type;
3de4586c 2587 struct btrfs_key location;
a061fc8d 2588 struct buffer_head *bh;
4d34b278 2589 struct btrfs_super_block *disk_super;
815745cf 2590 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2591 struct btrfs_root *tree_root;
4d34b278 2592 struct btrfs_root *chunk_root;
eb60ceac 2593 int ret;
e58ca020 2594 int err = -EINVAL;
af31f5e5
CM
2595 int num_backups_tried = 0;
2596 int backup_index = 0;
6675df31 2597 int clear_free_space_tree = 0;
581c1760 2598 int level;
4543df7e 2599
74e4d827
DS
2600 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2601 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2602 if (!tree_root || !chunk_root) {
39279cc3
CM
2603 err = -ENOMEM;
2604 goto fail;
2605 }
76dda93c
YZ
2606
2607 ret = init_srcu_struct(&fs_info->subvol_srcu);
2608 if (ret) {
2609 err = ret;
2610 goto fail;
2611 }
2612
4297ff84 2613 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
e2d84521
MX
2614 if (ret) {
2615 err = ret;
9e11ceee 2616 goto fail_srcu;
e2d84521 2617 }
4297ff84
JB
2618
2619 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2620 if (ret) {
2621 err = ret;
2622 goto fail_dio_bytes;
2623 }
09cbfeaf 2624 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2625 (1 + ilog2(nr_cpu_ids));
2626
908c7f19 2627 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2628 if (ret) {
2629 err = ret;
2630 goto fail_dirty_metadata_bytes;
2631 }
2632
7f8d236a
DS
2633 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2634 GFP_KERNEL);
c404e0dc
MX
2635 if (ret) {
2636 err = ret;
2637 goto fail_delalloc_bytes;
2638 }
2639
76dda93c 2640 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2641 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2642 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2643 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2644 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2645 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2646 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2647 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2648 spin_lock_init(&fs_info->trans_lock);
76dda93c 2649 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2650 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2651 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2652 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2653 spin_lock_init(&fs_info->super_lock);
f28491e0 2654 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2655 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2656 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2657 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2658 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2659 mutex_init(&fs_info->reloc_mutex);
573bfb72 2660 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2661 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2662
0b86a832 2663 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2664 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2665 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2666 INIT_LIST_HEAD(&fs_info->unused_bgs);
c8bf1b67 2667 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2668 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2669 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2670 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2671 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2672 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2673 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2674 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2675 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2676 BTRFS_BLOCK_RSV_DELREFS);
2677
771ed689 2678 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2679 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2680 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2681 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2682 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2683 fs_info->sb = sb;
95ac567a 2684 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2685 fs_info->metadata_ratio = 0;
4cb5300b 2686 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2687 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2688 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2689 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2690 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2691 /* readahead state */
d0164adc 2692 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2693 spin_lock_init(&fs_info->reada_lock);
fd708b81 2694 btrfs_init_ref_verify(fs_info);
c8b97818 2695
b34b086c
CM
2696 fs_info->thread_pool_size = min_t(unsigned long,
2697 num_online_cpus() + 2, 8);
0afbaf8c 2698
199c2a9c
MX
2699 INIT_LIST_HEAD(&fs_info->ordered_roots);
2700 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2701
2702 fs_info->btree_inode = new_inode(sb);
2703 if (!fs_info->btree_inode) {
2704 err = -ENOMEM;
2705 goto fail_bio_counter;
2706 }
2707 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2708
16cdcec7 2709 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2710 GFP_KERNEL);
16cdcec7
MX
2711 if (!fs_info->delayed_root) {
2712 err = -ENOMEM;
2713 goto fail_iput;
2714 }
2715 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2716
638aa7ed 2717 btrfs_init_scrub(fs_info);
21adbd5c
SB
2718#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2719 fs_info->check_integrity_print_mask = 0;
2720#endif
779a65a4 2721 btrfs_init_balance(fs_info);
21c7e756 2722 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2723
9f6d2510
DS
2724 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2725 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2726
6bccf3ab 2727 btrfs_init_btree_inode(fs_info);
76dda93c 2728
0f9dd46c 2729 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2730 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2731 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2732
43eb5f29
QW
2733 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2734 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2735 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2736 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2737 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2738 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2739
5a3f23d5 2740 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2741 mutex_init(&fs_info->tree_log_mutex);
925baedd 2742 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2743 mutex_init(&fs_info->transaction_kthread_mutex);
2744 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2745 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2746 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2747 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2748 init_rwsem(&fs_info->subvol_sem);
803b2f54 2749 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2750
ad618368 2751 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2752 btrfs_init_qgroup(fs_info);
416ac51d 2753
fa9c0d79
CM
2754 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2755 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2756
e6dcd2dc 2757 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2758 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2759 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2760 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2761 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2762
da17066c
JM
2763 /* Usable values until the real ones are cached from the superblock */
2764 fs_info->nodesize = 4096;
2765 fs_info->sectorsize = 4096;
2766 fs_info->stripesize = 4096;
2767
eede2bf3
OS
2768 spin_lock_init(&fs_info->swapfile_pins_lock);
2769 fs_info->swapfile_pins = RB_ROOT;
2770
9e967495
FM
2771 fs_info->send_in_progress = 0;
2772
53b381b3
DW
2773 ret = btrfs_alloc_stripe_hash_table(fs_info);
2774 if (ret) {
83c8266a 2775 err = ret;
53b381b3
DW
2776 goto fail_alloc;
2777 }
2778
da17066c 2779 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2780
3c4bb26b 2781 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2782
2783 /*
2784 * Read super block and check the signature bytes only
2785 */
a512bbf8 2786 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2787 if (IS_ERR(bh)) {
2788 err = PTR_ERR(bh);
16cdcec7 2789 goto fail_alloc;
20b45077 2790 }
39279cc3 2791
8dc3f22c
JT
2792 /*
2793 * Verify the type first, if that or the the checksum value are
2794 * corrupted, we'll find out
2795 */
51bce6c9
JT
2796 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2797 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2798 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2799 csum_type);
8dc3f22c
JT
2800 err = -EINVAL;
2801 brelse(bh);
2802 goto fail_alloc;
2803 }
2804
6d97c6e3
JT
2805 ret = btrfs_init_csum_hash(fs_info, csum_type);
2806 if (ret) {
2807 err = ret;
2808 goto fail_alloc;
2809 }
2810
1104a885
DS
2811 /*
2812 * We want to check superblock checksum, the type is stored inside.
2813 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2814 */
ab8d0fc4 2815 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2816 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2817 err = -EINVAL;
b2acdddf 2818 brelse(bh);
6d97c6e3 2819 goto fail_csum;
1104a885
DS
2820 }
2821
2822 /*
2823 * super_copy is zeroed at allocation time and we never touch the
2824 * following bytes up to INFO_SIZE, the checksum is calculated from
2825 * the whole block of INFO_SIZE
2826 */
6c41761f 2827 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2828 brelse(bh);
5f39d397 2829
fbc6feae
NB
2830 disk_super = fs_info->super_copy;
2831
de37aa51
NB
2832 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2833 BTRFS_FSID_SIZE));
2834
7239ff4b 2835 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2836 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2837 fs_info->super_copy->metadata_uuid,
2838 BTRFS_FSID_SIZE));
7239ff4b 2839 }
0b86a832 2840
fbc6feae
NB
2841 features = btrfs_super_flags(disk_super);
2842 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2843 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2844 btrfs_set_super_flags(disk_super, features);
2845 btrfs_info(fs_info,
2846 "found metadata UUID change in progress flag, clearing");
2847 }
2848
2849 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2850 sizeof(*fs_info->super_for_commit));
de37aa51 2851
069ec957 2852 ret = btrfs_validate_mount_super(fs_info);
1104a885 2853 if (ret) {
05135f59 2854 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2855 err = -EINVAL;
6d97c6e3 2856 goto fail_csum;
1104a885
DS
2857 }
2858
0f7d52f4 2859 if (!btrfs_super_root(disk_super))
6d97c6e3 2860 goto fail_csum;
0f7d52f4 2861
acce952b 2862 /* check FS state, whether FS is broken. */
87533c47
MX
2863 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2864 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2865
af31f5e5
CM
2866 /*
2867 * run through our array of backup supers and setup
2868 * our ring pointer to the oldest one
2869 */
2870 generation = btrfs_super_generation(disk_super);
2871 find_oldest_super_backup(fs_info, generation);
2872
75e7cb7f
LB
2873 /*
2874 * In the long term, we'll store the compression type in the super
2875 * block, and it'll be used for per file compression control.
2876 */
2877 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2878
2ff7e61e 2879 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2880 if (ret) {
2881 err = ret;
6d97c6e3 2882 goto fail_csum;
2b82032c 2883 }
dfe25020 2884
f2b636e8
JB
2885 features = btrfs_super_incompat_flags(disk_super) &
2886 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2887 if (features) {
05135f59
DS
2888 btrfs_err(fs_info,
2889 "cannot mount because of unsupported optional features (%llx)",
2890 features);
f2b636e8 2891 err = -EINVAL;
6d97c6e3 2892 goto fail_csum;
f2b636e8
JB
2893 }
2894
5d4f98a2 2895 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2896 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2897 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2898 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2899 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2900 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2901
3173a18f 2902 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2903 btrfs_info(fs_info, "has skinny extents");
3173a18f 2904
727011e0
CM
2905 /*
2906 * flag our filesystem as having big metadata blocks if
2907 * they are bigger than the page size
2908 */
09cbfeaf 2909 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2910 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2911 btrfs_info(fs_info,
2912 "flagging fs with big metadata feature");
727011e0
CM
2913 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2914 }
2915
bc3f116f 2916 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2917 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2918 stripesize = sectorsize;
707e8a07 2919 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2920 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2921
da17066c
JM
2922 /* Cache block sizes */
2923 fs_info->nodesize = nodesize;
2924 fs_info->sectorsize = sectorsize;
2925 fs_info->stripesize = stripesize;
2926
bc3f116f
CM
2927 /*
2928 * mixed block groups end up with duplicate but slightly offset
2929 * extent buffers for the same range. It leads to corruptions
2930 */
2931 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2932 (sectorsize != nodesize)) {
05135f59
DS
2933 btrfs_err(fs_info,
2934"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2935 nodesize, sectorsize);
6d97c6e3 2936 goto fail_csum;
bc3f116f
CM
2937 }
2938
ceda0864
MX
2939 /*
2940 * Needn't use the lock because there is no other task which will
2941 * update the flag.
2942 */
a6fa6fae 2943 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2944
f2b636e8
JB
2945 features = btrfs_super_compat_ro_flags(disk_super) &
2946 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2947 if (!sb_rdonly(sb) && features) {
05135f59
DS
2948 btrfs_err(fs_info,
2949 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2950 features);
f2b636e8 2951 err = -EINVAL;
6d97c6e3 2952 goto fail_csum;
f2b636e8 2953 }
61d92c32 2954
2a458198
ES
2955 ret = btrfs_init_workqueues(fs_info, fs_devices);
2956 if (ret) {
2957 err = ret;
0dc3b84a
JB
2958 goto fail_sb_buffer;
2959 }
4543df7e 2960
9e11ceee
JK
2961 sb->s_bdi->congested_fn = btrfs_congested_fn;
2962 sb->s_bdi->congested_data = fs_info;
2963 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 2964 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
2965 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2966 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2967
a061fc8d
CM
2968 sb->s_blocksize = sectorsize;
2969 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 2970 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 2971
925baedd 2972 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2973 ret = btrfs_read_sys_array(fs_info);
925baedd 2974 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2975 if (ret) {
05135f59 2976 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2977 goto fail_sb_buffer;
84eed90f 2978 }
0b86a832 2979
84234f3a 2980 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2981 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2982
da17066c 2983 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2984
2ff7e61e 2985 chunk_root->node = read_tree_block(fs_info,
0b86a832 2986 btrfs_super_chunk_root(disk_super),
581c1760 2987 generation, level, NULL);
64c043de
LB
2988 if (IS_ERR(chunk_root->node) ||
2989 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2990 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2991 if (!IS_ERR(chunk_root->node))
2992 free_extent_buffer(chunk_root->node);
95ab1f64 2993 chunk_root->node = NULL;
af31f5e5 2994 goto fail_tree_roots;
83121942 2995 }
5d4f98a2
YZ
2996 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2997 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2998
e17cade2 2999 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 3000 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 3001
5b4aacef 3002 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3003 if (ret) {
05135f59 3004 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3005 goto fail_tree_roots;
2b82032c 3006 }
0b86a832 3007
8dabb742 3008 /*
9b99b115
AJ
3009 * Keep the devid that is marked to be the target device for the
3010 * device replace procedure
8dabb742 3011 */
9b99b115 3012 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3013
a6b0d5c8 3014 if (!fs_devices->latest_bdev) {
05135f59 3015 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3016 goto fail_tree_roots;
3017 }
3018
af31f5e5 3019retry_root_backup:
84234f3a 3020 generation = btrfs_super_generation(disk_super);
581c1760 3021 level = btrfs_super_root_level(disk_super);
0b86a832 3022
2ff7e61e 3023 tree_root->node = read_tree_block(fs_info,
db94535d 3024 btrfs_super_root(disk_super),
581c1760 3025 generation, level, NULL);
64c043de
LB
3026 if (IS_ERR(tree_root->node) ||
3027 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3028 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3029 if (!IS_ERR(tree_root->node))
3030 free_extent_buffer(tree_root->node);
95ab1f64 3031 tree_root->node = NULL;
af31f5e5 3032 goto recovery_tree_root;
83121942 3033 }
af31f5e5 3034
5d4f98a2
YZ
3035 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3036 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3037 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3038
f32e48e9
CR
3039 mutex_lock(&tree_root->objectid_mutex);
3040 ret = btrfs_find_highest_objectid(tree_root,
3041 &tree_root->highest_objectid);
3042 if (ret) {
3043 mutex_unlock(&tree_root->objectid_mutex);
3044 goto recovery_tree_root;
3045 }
3046
3047 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3048
3049 mutex_unlock(&tree_root->objectid_mutex);
3050
6bccf3ab 3051 ret = btrfs_read_roots(fs_info);
4bbcaa64 3052 if (ret)
af31f5e5 3053 goto recovery_tree_root;
f7a81ea4 3054
8929ecfa
YZ
3055 fs_info->generation = generation;
3056 fs_info->last_trans_committed = generation;
8929ecfa 3057
cf90d884
QW
3058 ret = btrfs_verify_dev_extents(fs_info);
3059 if (ret) {
3060 btrfs_err(fs_info,
3061 "failed to verify dev extents against chunks: %d",
3062 ret);
3063 goto fail_block_groups;
3064 }
68310a5e
ID
3065 ret = btrfs_recover_balance(fs_info);
3066 if (ret) {
05135f59 3067 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3068 goto fail_block_groups;
3069 }
3070
733f4fbb
SB
3071 ret = btrfs_init_dev_stats(fs_info);
3072 if (ret) {
05135f59 3073 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3074 goto fail_block_groups;
3075 }
3076
8dabb742
SB
3077 ret = btrfs_init_dev_replace(fs_info);
3078 if (ret) {
05135f59 3079 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3080 goto fail_block_groups;
3081 }
3082
9b99b115 3083 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3084
b7c35e81
AJ
3085 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3086 if (ret) {
05135f59
DS
3087 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3088 ret);
b7c35e81
AJ
3089 goto fail_block_groups;
3090 }
3091
3092 ret = btrfs_sysfs_add_device(fs_devices);
3093 if (ret) {
05135f59
DS
3094 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3095 ret);
b7c35e81
AJ
3096 goto fail_fsdev_sysfs;
3097 }
3098
96f3136e 3099 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3100 if (ret) {
05135f59 3101 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3102 goto fail_fsdev_sysfs;
c59021f8 3103 }
3104
c59021f8 3105 ret = btrfs_init_space_info(fs_info);
3106 if (ret) {
05135f59 3107 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3108 goto fail_sysfs;
c59021f8 3109 }
3110
5b4aacef 3111 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3112 if (ret) {
05135f59 3113 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3114 goto fail_sysfs;
1b1d1f66 3115 }
4330e183 3116
6528b99d 3117 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3118 btrfs_warn(fs_info,
52042d8e 3119 "writable mount is not allowed due to too many missing devices");
2365dd3c 3120 goto fail_sysfs;
292fd7fc 3121 }
9078a3e1 3122
a74a4b97
CM
3123 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3124 "btrfs-cleaner");
57506d50 3125 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3126 goto fail_sysfs;
a74a4b97
CM
3127
3128 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3129 tree_root,
3130 "btrfs-transaction");
57506d50 3131 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3132 goto fail_cleaner;
a74a4b97 3133
583b7231 3134 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3135 !fs_info->fs_devices->rotating) {
583b7231 3136 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3137 }
3138
572d9ab7 3139 /*
01327610 3140 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3141 * not have to wait for transaction commit
3142 */
3143 btrfs_apply_pending_changes(fs_info);
3818aea2 3144
21adbd5c 3145#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3146 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3147 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3148 btrfs_test_opt(fs_info,
21adbd5c
SB
3149 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3150 1 : 0,
3151 fs_info->check_integrity_print_mask);
3152 if (ret)
05135f59
DS
3153 btrfs_warn(fs_info,
3154 "failed to initialize integrity check module: %d",
3155 ret);
21adbd5c
SB
3156 }
3157#endif
bcef60f2
AJ
3158 ret = btrfs_read_qgroup_config(fs_info);
3159 if (ret)
3160 goto fail_trans_kthread;
21adbd5c 3161
fd708b81
JB
3162 if (btrfs_build_ref_tree(fs_info))
3163 btrfs_err(fs_info, "couldn't build ref tree");
3164
96da0919
QW
3165 /* do not make disk changes in broken FS or nologreplay is given */
3166 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3167 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3168 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3169 if (ret) {
63443bf5 3170 err = ret;
28c16cbb 3171 goto fail_qgroup;
79787eaa 3172 }
e02119d5 3173 }
1a40e23b 3174
6bccf3ab 3175 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3176 if (ret)
28c16cbb 3177 goto fail_qgroup;
76dda93c 3178
bc98a42c 3179 if (!sb_rdonly(sb)) {
d68fc57b 3180 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3181 if (ret)
28c16cbb 3182 goto fail_qgroup;
90c711ab
ZB
3183
3184 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3185 ret = btrfs_recover_relocation(tree_root);
90c711ab 3186 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3187 if (ret < 0) {
05135f59
DS
3188 btrfs_warn(fs_info, "failed to recover relocation: %d",
3189 ret);
d7ce5843 3190 err = -EINVAL;
bcef60f2 3191 goto fail_qgroup;
d7ce5843 3192 }
7c2ca468 3193 }
1a40e23b 3194
3de4586c
CM
3195 location.objectid = BTRFS_FS_TREE_OBJECTID;
3196 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3197 location.offset = 0;
3de4586c 3198
3de4586c 3199 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3200 if (IS_ERR(fs_info->fs_root)) {
3201 err = PTR_ERR(fs_info->fs_root);
f50f4353 3202 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3203 goto fail_qgroup;
3140c9a3 3204 }
c289811c 3205
bc98a42c 3206 if (sb_rdonly(sb))
2b6ba629 3207 return 0;
59641015 3208
f8d468a1
OS
3209 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3210 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3211 clear_free_space_tree = 1;
3212 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3213 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3214 btrfs_warn(fs_info, "free space tree is invalid");
3215 clear_free_space_tree = 1;
3216 }
3217
3218 if (clear_free_space_tree) {
f8d468a1
OS
3219 btrfs_info(fs_info, "clearing free space tree");
3220 ret = btrfs_clear_free_space_tree(fs_info);
3221 if (ret) {
3222 btrfs_warn(fs_info,
3223 "failed to clear free space tree: %d", ret);
6bccf3ab 3224 close_ctree(fs_info);
f8d468a1
OS
3225 return ret;
3226 }
3227 }
3228
0b246afa 3229 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3230 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3231 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3232 ret = btrfs_create_free_space_tree(fs_info);
3233 if (ret) {
05135f59
DS
3234 btrfs_warn(fs_info,
3235 "failed to create free space tree: %d", ret);
6bccf3ab 3236 close_ctree(fs_info);
511711af
CM
3237 return ret;
3238 }
3239 }
3240
2b6ba629
ID
3241 down_read(&fs_info->cleanup_work_sem);
3242 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3243 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3244 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3245 close_ctree(fs_info);
2b6ba629
ID
3246 return ret;
3247 }
3248 up_read(&fs_info->cleanup_work_sem);
59641015 3249
2b6ba629
ID
3250 ret = btrfs_resume_balance_async(fs_info);
3251 if (ret) {
05135f59 3252 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3253 close_ctree(fs_info);
2b6ba629 3254 return ret;
e3acc2a6
JB
3255 }
3256
8dabb742
SB
3257 ret = btrfs_resume_dev_replace_async(fs_info);
3258 if (ret) {
05135f59 3259 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3260 close_ctree(fs_info);
8dabb742
SB
3261 return ret;
3262 }
3263
b382a324
JS
3264 btrfs_qgroup_rescan_resume(fs_info);
3265
4bbcaa64 3266 if (!fs_info->uuid_root) {
05135f59 3267 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3268 ret = btrfs_create_uuid_tree(fs_info);
3269 if (ret) {
05135f59
DS
3270 btrfs_warn(fs_info,
3271 "failed to create the UUID tree: %d", ret);
6bccf3ab 3272 close_ctree(fs_info);
f7a81ea4
SB
3273 return ret;
3274 }
0b246afa 3275 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3276 fs_info->generation !=
3277 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3278 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3279 ret = btrfs_check_uuid_tree(fs_info);
3280 if (ret) {
05135f59
DS
3281 btrfs_warn(fs_info,
3282 "failed to check the UUID tree: %d", ret);
6bccf3ab 3283 close_ctree(fs_info);
70f80175
SB
3284 return ret;
3285 }
3286 } else {
afcdd129 3287 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3288 }
afcdd129 3289 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3290
8dcddfa0
QW
3291 /*
3292 * backuproot only affect mount behavior, and if open_ctree succeeded,
3293 * no need to keep the flag
3294 */
3295 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3296
ad2b2c80 3297 return 0;
39279cc3 3298
bcef60f2
AJ
3299fail_qgroup:
3300 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3301fail_trans_kthread:
3302 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3303 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3304 btrfs_free_fs_roots(fs_info);
3f157a2f 3305fail_cleaner:
a74a4b97 3306 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3307
3308 /*
3309 * make sure we're done with the btree inode before we stop our
3310 * kthreads
3311 */
3312 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3313
2365dd3c 3314fail_sysfs:
6618a59b 3315 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3316
b7c35e81
AJ
3317fail_fsdev_sysfs:
3318 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3319
1b1d1f66 3320fail_block_groups:
54067ae9 3321 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3322
3323fail_tree_roots:
4273eaff 3324 free_root_pointers(fs_info, true);
2b8195bb 3325 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3326
39279cc3 3327fail_sb_buffer:
7abadb64 3328 btrfs_stop_all_workers(fs_info);
5cdd7db6 3329 btrfs_free_block_groups(fs_info);
6d97c6e3
JT
3330fail_csum:
3331 btrfs_free_csum_hash(fs_info);
16cdcec7 3332fail_alloc:
4543df7e 3333fail_iput:
586e46e2
ID
3334 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3335
4543df7e 3336 iput(fs_info->btree_inode);
c404e0dc 3337fail_bio_counter:
7f8d236a 3338 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3339fail_delalloc_bytes:
3340 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3341fail_dirty_metadata_bytes:
3342 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4297ff84
JB
3343fail_dio_bytes:
3344 percpu_counter_destroy(&fs_info->dio_bytes);
76dda93c
YZ
3345fail_srcu:
3346 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3347fail:
53b381b3 3348 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3349 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3350 return err;
af31f5e5
CM
3351
3352recovery_tree_root:
0b246afa 3353 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3354 goto fail_tree_roots;
3355
4273eaff 3356 free_root_pointers(fs_info, false);
af31f5e5
CM
3357
3358 /* don't use the log in recovery mode, it won't be valid */
3359 btrfs_set_super_log_root(disk_super, 0);
3360
3361 /* we can't trust the free space cache either */
3362 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3363
3364 ret = next_root_backup(fs_info, fs_info->super_copy,
3365 &num_backups_tried, &backup_index);
3366 if (ret == -1)
3367 goto fail_block_groups;
3368 goto retry_root_backup;
eb60ceac 3369}
663faf9f 3370ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3371
f2984462
CM
3372static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3373{
f2984462
CM
3374 if (uptodate) {
3375 set_buffer_uptodate(bh);
3376 } else {
442a4f63
SB
3377 struct btrfs_device *device = (struct btrfs_device *)
3378 bh->b_private;
3379
fb456252 3380 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3381 "lost page write due to IO error on %s",
606686ee 3382 rcu_str_deref(device->name));
01327610 3383 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3384 * our own ways of dealing with the IO errors
3385 */
f2984462 3386 clear_buffer_uptodate(bh);
442a4f63 3387 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3388 }
3389 unlock_buffer(bh);
3390 put_bh(bh);
3391}
3392
29c36d72
AJ
3393int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3394 struct buffer_head **bh_ret)
3395{
3396 struct buffer_head *bh;
3397 struct btrfs_super_block *super;
3398 u64 bytenr;
3399
3400 bytenr = btrfs_sb_offset(copy_num);
3401 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3402 return -EINVAL;
3403
9f6d2510 3404 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3405 /*
3406 * If we fail to read from the underlying devices, as of now
3407 * the best option we have is to mark it EIO.
3408 */
3409 if (!bh)
3410 return -EIO;
3411
3412 super = (struct btrfs_super_block *)bh->b_data;
3413 if (btrfs_super_bytenr(super) != bytenr ||
3414 btrfs_super_magic(super) != BTRFS_MAGIC) {
3415 brelse(bh);
3416 return -EINVAL;
3417 }
3418
3419 *bh_ret = bh;
3420 return 0;
3421}
3422
3423
a512bbf8
YZ
3424struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3425{
3426 struct buffer_head *bh;
3427 struct buffer_head *latest = NULL;
3428 struct btrfs_super_block *super;
3429 int i;
3430 u64 transid = 0;
92fc03fb 3431 int ret = -EINVAL;
a512bbf8
YZ
3432
3433 /* we would like to check all the supers, but that would make
3434 * a btrfs mount succeed after a mkfs from a different FS.
3435 * So, we need to add a special mount option to scan for
3436 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3437 */
3438 for (i = 0; i < 1; i++) {
29c36d72
AJ
3439 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3440 if (ret)
a512bbf8
YZ
3441 continue;
3442
3443 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3444
3445 if (!latest || btrfs_super_generation(super) > transid) {
3446 brelse(latest);
3447 latest = bh;
3448 transid = btrfs_super_generation(super);
3449 } else {
3450 brelse(bh);
3451 }
3452 }
92fc03fb
AJ
3453
3454 if (!latest)
3455 return ERR_PTR(ret);
3456
a512bbf8
YZ
3457 return latest;
3458}
3459
4eedeb75 3460/*
abbb3b8e
DS
3461 * Write superblock @sb to the @device. Do not wait for completion, all the
3462 * buffer heads we write are pinned.
4eedeb75 3463 *
abbb3b8e
DS
3464 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3465 * the expected device size at commit time. Note that max_mirrors must be
3466 * same for write and wait phases.
4eedeb75 3467 *
abbb3b8e 3468 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3469 */
a512bbf8 3470static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3471 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3472{
d5178578
JT
3473 struct btrfs_fs_info *fs_info = device->fs_info;
3474 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8
YZ
3475 struct buffer_head *bh;
3476 int i;
3477 int ret;
3478 int errors = 0;
a512bbf8 3479 u64 bytenr;
1b9e619c 3480 int op_flags;
a512bbf8
YZ
3481
3482 if (max_mirrors == 0)
3483 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3484
d5178578
JT
3485 shash->tfm = fs_info->csum_shash;
3486
a512bbf8
YZ
3487 for (i = 0; i < max_mirrors; i++) {
3488 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3489 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3490 device->commit_total_bytes)
a512bbf8
YZ
3491 break;
3492
abbb3b8e 3493 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3494
d5178578
JT
3495 crypto_shash_init(shash);
3496 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3497 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3498 crypto_shash_final(shash, sb->csum);
4eedeb75 3499
abbb3b8e 3500 /* One reference for us, and we leave it for the caller */
9f6d2510 3501 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3502 BTRFS_SUPER_INFO_SIZE);
3503 if (!bh) {
3504 btrfs_err(device->fs_info,
3505 "couldn't get super buffer head for bytenr %llu",
3506 bytenr);
3507 errors++;
4eedeb75 3508 continue;
abbb3b8e 3509 }
634554dc 3510
abbb3b8e 3511 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3512
abbb3b8e
DS
3513 /* one reference for submit_bh */
3514 get_bh(bh);
4eedeb75 3515
abbb3b8e
DS
3516 set_buffer_uptodate(bh);
3517 lock_buffer(bh);
3518 bh->b_end_io = btrfs_end_buffer_write_sync;
3519 bh->b_private = device;
a512bbf8 3520
387125fc
CM
3521 /*
3522 * we fua the first super. The others we allow
3523 * to go down lazy.
3524 */
1b9e619c
OS
3525 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3526 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3527 op_flags |= REQ_FUA;
3528 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3529 if (ret)
a512bbf8 3530 errors++;
a512bbf8
YZ
3531 }
3532 return errors < i ? 0 : -1;
3533}
3534
abbb3b8e
DS
3535/*
3536 * Wait for write completion of superblocks done by write_dev_supers,
3537 * @max_mirrors same for write and wait phases.
3538 *
3539 * Return number of errors when buffer head is not found or not marked up to
3540 * date.
3541 */
3542static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3543{
3544 struct buffer_head *bh;
3545 int i;
3546 int errors = 0;
b6a535fa 3547 bool primary_failed = false;
abbb3b8e
DS
3548 u64 bytenr;
3549
3550 if (max_mirrors == 0)
3551 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3552
3553 for (i = 0; i < max_mirrors; i++) {
3554 bytenr = btrfs_sb_offset(i);
3555 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3556 device->commit_total_bytes)
3557 break;
3558
9f6d2510
DS
3559 bh = __find_get_block(device->bdev,
3560 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3561 BTRFS_SUPER_INFO_SIZE);
3562 if (!bh) {
3563 errors++;
b6a535fa
HM
3564 if (i == 0)
3565 primary_failed = true;
abbb3b8e
DS
3566 continue;
3567 }
3568 wait_on_buffer(bh);
b6a535fa 3569 if (!buffer_uptodate(bh)) {
abbb3b8e 3570 errors++;
b6a535fa
HM
3571 if (i == 0)
3572 primary_failed = true;
3573 }
abbb3b8e
DS
3574
3575 /* drop our reference */
3576 brelse(bh);
3577
3578 /* drop the reference from the writing run */
3579 brelse(bh);
3580 }
3581
b6a535fa
HM
3582 /* log error, force error return */
3583 if (primary_failed) {
3584 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3585 device->devid);
3586 return -1;
3587 }
3588
abbb3b8e
DS
3589 return errors < i ? 0 : -1;
3590}
3591
387125fc
CM
3592/*
3593 * endio for the write_dev_flush, this will wake anyone waiting
3594 * for the barrier when it is done
3595 */
4246a0b6 3596static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3597{
e0ae9994 3598 complete(bio->bi_private);
387125fc
CM
3599}
3600
3601/*
4fc6441a
AJ
3602 * Submit a flush request to the device if it supports it. Error handling is
3603 * done in the waiting counterpart.
387125fc 3604 */
4fc6441a 3605static void write_dev_flush(struct btrfs_device *device)
387125fc 3606{
c2a9c7ab 3607 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3608 struct bio *bio = device->flush_bio;
387125fc 3609
c2a9c7ab 3610 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3611 return;
387125fc 3612
e0ae9994 3613 bio_reset(bio);
387125fc 3614 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3615 bio_set_dev(bio, device->bdev);
8d910125 3616 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3617 init_completion(&device->flush_wait);
3618 bio->bi_private = &device->flush_wait;
387125fc 3619
43a01111 3620 btrfsic_submit_bio(bio);
1c3063b6 3621 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3622}
387125fc 3623
4fc6441a
AJ
3624/*
3625 * If the flush bio has been submitted by write_dev_flush, wait for it.
3626 */
8c27cb35 3627static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3628{
4fc6441a 3629 struct bio *bio = device->flush_bio;
387125fc 3630
1c3063b6 3631 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3632 return BLK_STS_OK;
387125fc 3633
1c3063b6 3634 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3635 wait_for_completion_io(&device->flush_wait);
387125fc 3636
8c27cb35 3637 return bio->bi_status;
387125fc 3638}
387125fc 3639
d10b82fe 3640static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3641{
6528b99d 3642 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3643 return -EIO;
387125fc
CM
3644 return 0;
3645}
3646
3647/*
3648 * send an empty flush down to each device in parallel,
3649 * then wait for them
3650 */
3651static int barrier_all_devices(struct btrfs_fs_info *info)
3652{
3653 struct list_head *head;
3654 struct btrfs_device *dev;
5af3e8cc 3655 int errors_wait = 0;
4e4cbee9 3656 blk_status_t ret;
387125fc 3657
1538e6c5 3658 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3659 /* send down all the barriers */
3660 head = &info->fs_devices->devices;
1538e6c5 3661 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3662 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3663 continue;
cea7c8bf 3664 if (!dev->bdev)
387125fc 3665 continue;
e12c9621 3666 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3667 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3668 continue;
3669
4fc6441a 3670 write_dev_flush(dev);
58efbc9f 3671 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3672 }
3673
3674 /* wait for all the barriers */
1538e6c5 3675 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3676 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3677 continue;
387125fc 3678 if (!dev->bdev) {
5af3e8cc 3679 errors_wait++;
387125fc
CM
3680 continue;
3681 }
e12c9621 3682 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3683 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3684 continue;
3685
4fc6441a 3686 ret = wait_dev_flush(dev);
401b41e5
AJ
3687 if (ret) {
3688 dev->last_flush_error = ret;
66b4993e
DS
3689 btrfs_dev_stat_inc_and_print(dev,
3690 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3691 errors_wait++;
401b41e5
AJ
3692 }
3693 }
3694
cea7c8bf 3695 if (errors_wait) {
401b41e5
AJ
3696 /*
3697 * At some point we need the status of all disks
3698 * to arrive at the volume status. So error checking
3699 * is being pushed to a separate loop.
3700 */
d10b82fe 3701 return check_barrier_error(info);
387125fc 3702 }
387125fc
CM
3703 return 0;
3704}
3705
943c6e99
ZL
3706int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3707{
8789f4fe
ZL
3708 int raid_type;
3709 int min_tolerated = INT_MAX;
943c6e99 3710
8789f4fe
ZL
3711 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3712 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3713 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3714 btrfs_raid_array[BTRFS_RAID_SINGLE].
3715 tolerated_failures);
943c6e99 3716
8789f4fe
ZL
3717 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3718 if (raid_type == BTRFS_RAID_SINGLE)
3719 continue;
41a6e891 3720 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3721 continue;
8c3e3582 3722 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3723 btrfs_raid_array[raid_type].
3724 tolerated_failures);
3725 }
943c6e99 3726
8789f4fe 3727 if (min_tolerated == INT_MAX) {
ab8d0fc4 3728 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3729 min_tolerated = 0;
3730 }
3731
3732 return min_tolerated;
943c6e99
ZL
3733}
3734
eece6a9c 3735int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3736{
e5e9a520 3737 struct list_head *head;
f2984462 3738 struct btrfs_device *dev;
a061fc8d 3739 struct btrfs_super_block *sb;
f2984462 3740 struct btrfs_dev_item *dev_item;
f2984462
CM
3741 int ret;
3742 int do_barriers;
a236aed1
CM
3743 int max_errors;
3744 int total_errors = 0;
a061fc8d 3745 u64 flags;
f2984462 3746
0b246afa 3747 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3748
3749 /*
3750 * max_mirrors == 0 indicates we're from commit_transaction,
3751 * not from fsync where the tree roots in fs_info have not
3752 * been consistent on disk.
3753 */
3754 if (max_mirrors == 0)
3755 backup_super_roots(fs_info);
f2984462 3756
0b246afa 3757 sb = fs_info->super_for_commit;
a061fc8d 3758 dev_item = &sb->dev_item;
e5e9a520 3759
0b246afa
JM
3760 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3761 head = &fs_info->fs_devices->devices;
3762 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3763
5af3e8cc 3764 if (do_barriers) {
0b246afa 3765 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3766 if (ret) {
3767 mutex_unlock(
0b246afa
JM
3768 &fs_info->fs_devices->device_list_mutex);
3769 btrfs_handle_fs_error(fs_info, ret,
3770 "errors while submitting device barriers.");
5af3e8cc
SB
3771 return ret;
3772 }
3773 }
387125fc 3774
1538e6c5 3775 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3776 if (!dev->bdev) {
3777 total_errors++;
3778 continue;
3779 }
e12c9621 3780 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3781 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3782 continue;
3783
2b82032c 3784 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3785 btrfs_set_stack_device_type(dev_item, dev->type);
3786 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3787 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3788 dev->commit_total_bytes);
ce7213c7
MX
3789 btrfs_set_stack_device_bytes_used(dev_item,
3790 dev->commit_bytes_used);
a061fc8d
CM
3791 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3792 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3793 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3794 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3795 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3796 BTRFS_FSID_SIZE);
a512bbf8 3797
a061fc8d
CM
3798 flags = btrfs_super_flags(sb);
3799 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3800
75cb857d
QW
3801 ret = btrfs_validate_write_super(fs_info, sb);
3802 if (ret < 0) {
3803 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3804 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3805 "unexpected superblock corruption detected");
3806 return -EUCLEAN;
3807 }
3808
abbb3b8e 3809 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3810 if (ret)
3811 total_errors++;
f2984462 3812 }
a236aed1 3813 if (total_errors > max_errors) {
0b246afa
JM
3814 btrfs_err(fs_info, "%d errors while writing supers",
3815 total_errors);
3816 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3817
9d565ba4 3818 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3819 btrfs_handle_fs_error(fs_info, -EIO,
3820 "%d errors while writing supers",
3821 total_errors);
9d565ba4 3822 return -EIO;
a236aed1 3823 }
f2984462 3824
a512bbf8 3825 total_errors = 0;
1538e6c5 3826 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3827 if (!dev->bdev)
3828 continue;
e12c9621 3829 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3830 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3831 continue;
3832
abbb3b8e 3833 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3834 if (ret)
3835 total_errors++;
f2984462 3836 }
0b246afa 3837 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3838 if (total_errors > max_errors) {
0b246afa
JM
3839 btrfs_handle_fs_error(fs_info, -EIO,
3840 "%d errors while writing supers",
3841 total_errors);
79787eaa 3842 return -EIO;
a236aed1 3843 }
f2984462
CM
3844 return 0;
3845}
3846
cb517eab
MX
3847/* Drop a fs root from the radix tree and free it. */
3848void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3849 struct btrfs_root *root)
2619ba1f 3850{
4df27c4d 3851 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3852 radix_tree_delete(&fs_info->fs_roots_radix,
3853 (unsigned long)root->root_key.objectid);
4df27c4d 3854 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3855
3856 if (btrfs_root_refs(&root->root_item) == 0)
3857 synchronize_srcu(&fs_info->subvol_srcu);
3858
1c1ea4f7 3859 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3860 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3861 if (root->reloc_root) {
3862 free_extent_buffer(root->reloc_root->node);
3863 free_extent_buffer(root->reloc_root->commit_root);
3864 btrfs_put_fs_root(root->reloc_root);
3865 root->reloc_root = NULL;
3866 }
3867 }
3321719e 3868
faa2dbf0
JB
3869 if (root->free_ino_pinned)
3870 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3871 if (root->free_ino_ctl)
3872 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3873 btrfs_free_fs_root(root);
4df27c4d
YZ
3874}
3875
84db5ccf 3876void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3877{
57cdc8db 3878 iput(root->ino_cache_inode);
4df27c4d 3879 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3880 if (root->anon_dev)
3881 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3882 if (root->subv_writers)
3883 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3884 free_extent_buffer(root->node);
3885 free_extent_buffer(root->commit_root);
581bb050
LZ
3886 kfree(root->free_ino_ctl);
3887 kfree(root->free_ino_pinned);
b0feb9d9 3888 btrfs_put_fs_root(root);
2619ba1f
CM
3889}
3890
c146afad 3891int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3892{
c146afad
YZ
3893 u64 root_objectid = 0;
3894 struct btrfs_root *gang[8];
65d33fd7
QW
3895 int i = 0;
3896 int err = 0;
3897 unsigned int ret = 0;
3898 int index;
e089f05c 3899
c146afad 3900 while (1) {
65d33fd7 3901 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3902 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3903 (void **)gang, root_objectid,
3904 ARRAY_SIZE(gang));
65d33fd7
QW
3905 if (!ret) {
3906 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3907 break;
65d33fd7 3908 }
5d4f98a2 3909 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3910
c146afad 3911 for (i = 0; i < ret; i++) {
65d33fd7
QW
3912 /* Avoid to grab roots in dead_roots */
3913 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3914 gang[i] = NULL;
3915 continue;
3916 }
3917 /* grab all the search result for later use */
3918 gang[i] = btrfs_grab_fs_root(gang[i]);
3919 }
3920 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3921
65d33fd7
QW
3922 for (i = 0; i < ret; i++) {
3923 if (!gang[i])
3924 continue;
c146afad 3925 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3926 err = btrfs_orphan_cleanup(gang[i]);
3927 if (err)
65d33fd7
QW
3928 break;
3929 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3930 }
3931 root_objectid++;
3932 }
65d33fd7
QW
3933
3934 /* release the uncleaned roots due to error */
3935 for (; i < ret; i++) {
3936 if (gang[i])
3937 btrfs_put_fs_root(gang[i]);
3938 }
3939 return err;
c146afad 3940}
a2135011 3941
6bccf3ab 3942int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3943{
6bccf3ab 3944 struct btrfs_root *root = fs_info->tree_root;
c146afad 3945 struct btrfs_trans_handle *trans;
a74a4b97 3946
0b246afa 3947 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3948 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3949 mutex_unlock(&fs_info->cleaner_mutex);
3950 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3951
3952 /* wait until ongoing cleanup work done */
0b246afa
JM
3953 down_write(&fs_info->cleanup_work_sem);
3954 up_write(&fs_info->cleanup_work_sem);
c71bf099 3955
7a7eaa40 3956 trans = btrfs_join_transaction(root);
3612b495
TI
3957 if (IS_ERR(trans))
3958 return PTR_ERR(trans);
3a45bb20 3959 return btrfs_commit_transaction(trans);
c146afad
YZ
3960}
3961
b105e927 3962void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3963{
c146afad
YZ
3964 int ret;
3965
afcdd129 3966 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3967 /*
3968 * We don't want the cleaner to start new transactions, add more delayed
3969 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3970 * because that frees the task_struct, and the transaction kthread might
3971 * still try to wake up the cleaner.
3972 */
3973 kthread_park(fs_info->cleaner_kthread);
c146afad 3974
7343dd61 3975 /* wait for the qgroup rescan worker to stop */
d06f23d6 3976 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3977
803b2f54
SB
3978 /* wait for the uuid_scan task to finish */
3979 down(&fs_info->uuid_tree_rescan_sem);
3980 /* avoid complains from lockdep et al., set sem back to initial state */
3981 up(&fs_info->uuid_tree_rescan_sem);
3982
837d5b6e 3983 /* pause restriper - we want to resume on mount */
aa1b8cd4 3984 btrfs_pause_balance(fs_info);
837d5b6e 3985
8dabb742
SB
3986 btrfs_dev_replace_suspend_for_unmount(fs_info);
3987
aa1b8cd4 3988 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3989
3990 /* wait for any defraggers to finish */
3991 wait_event(fs_info->transaction_wait,
3992 (atomic_read(&fs_info->defrag_running) == 0));
3993
3994 /* clear out the rbtree of defraggable inodes */
26176e7c 3995 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3996
21c7e756
MX
3997 cancel_work_sync(&fs_info->async_reclaim_work);
3998
bc98a42c 3999 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4000 /*
d6fd0ae2
OS
4001 * The cleaner kthread is stopped, so do one final pass over
4002 * unused block groups.
e44163e1 4003 */
0b246afa 4004 btrfs_delete_unused_bgs(fs_info);
e44163e1 4005
6bccf3ab 4006 ret = btrfs_commit_super(fs_info);
acce952b 4007 if (ret)
04892340 4008 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4009 }
4010
af722733
LB
4011 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4012 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4013 btrfs_error_commit_super(fs_info);
0f7d52f4 4014
e3029d9f
AV
4015 kthread_stop(fs_info->transaction_kthread);
4016 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4017
e187831e 4018 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4019 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4020
04892340 4021 btrfs_free_qgroup_config(fs_info);
fe816d0f 4022 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4023
963d678b 4024 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4025 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4026 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4027 }
bcc63abb 4028
4297ff84
JB
4029 if (percpu_counter_sum(&fs_info->dio_bytes))
4030 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4031 percpu_counter_sum(&fs_info->dio_bytes));
4032
6618a59b 4033 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4034 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4035
faa2dbf0 4036 btrfs_free_fs_roots(fs_info);
d10c5f31 4037
1a4319cc
LB
4038 btrfs_put_block_group_cache(fs_info);
4039
de348ee0
WS
4040 /*
4041 * we must make sure there is not any read request to
4042 * submit after we stopping all workers.
4043 */
4044 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4045 btrfs_stop_all_workers(fs_info);
4046
5cdd7db6
FM
4047 btrfs_free_block_groups(fs_info);
4048
afcdd129 4049 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4050 free_root_pointers(fs_info, true);
9ad6b7bc 4051
13e6c37b 4052 iput(fs_info->btree_inode);
d6bfde87 4053
21adbd5c 4054#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4055 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4056 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4057#endif
4058
0b86a832 4059 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4060 btrfs_close_devices(fs_info->fs_devices);
b248a415 4061
e2d84521 4062 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4063 percpu_counter_destroy(&fs_info->delalloc_bytes);
4297ff84 4064 percpu_counter_destroy(&fs_info->dio_bytes);
7f8d236a 4065 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4066 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4067
bfcea1c6 4068 btrfs_free_csum_hash(fs_info);
53b381b3 4069 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4070 btrfs_free_ref_cache(fs_info);
eb60ceac
CM
4071}
4072
b9fab919
CM
4073int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4074 int atomic)
5f39d397 4075{
1259ab75 4076 int ret;
727011e0 4077 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4078
0b32f4bb 4079 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4080 if (!ret)
4081 return ret;
4082
4083 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4084 parent_transid, atomic);
4085 if (ret == -EAGAIN)
4086 return ret;
1259ab75 4087 return !ret;
5f39d397
CM
4088}
4089
5f39d397
CM
4090void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4091{
0b246afa 4092 struct btrfs_fs_info *fs_info;
06ea65a3 4093 struct btrfs_root *root;
5f39d397 4094 u64 transid = btrfs_header_generation(buf);
b9473439 4095 int was_dirty;
b4ce94de 4096
06ea65a3
JB
4097#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4098 /*
4099 * This is a fast path so only do this check if we have sanity tests
52042d8e 4100 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4101 * outside of the sanity tests.
4102 */
b0132a3b 4103 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4104 return;
4105#endif
4106 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4107 fs_info = root->fs_info;
b9447ef8 4108 btrfs_assert_tree_locked(buf);
0b246afa 4109 if (transid != fs_info->generation)
5d163e0e 4110 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4111 buf->start, transid, fs_info->generation);
0b32f4bb 4112 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4113 if (!was_dirty)
104b4e51
NB
4114 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4115 buf->len,
4116 fs_info->dirty_metadata_batch);
1f21ef0a 4117#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4118 /*
4119 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4120 * but item data not updated.
4121 * So here we should only check item pointers, not item data.
4122 */
4123 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4124 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4125 btrfs_print_leaf(buf);
1f21ef0a
FM
4126 ASSERT(0);
4127 }
4128#endif
eb60ceac
CM
4129}
4130
2ff7e61e 4131static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4132 int flush_delayed)
16cdcec7
MX
4133{
4134 /*
4135 * looks as though older kernels can get into trouble with
4136 * this code, they end up stuck in balance_dirty_pages forever
4137 */
e2d84521 4138 int ret;
16cdcec7
MX
4139
4140 if (current->flags & PF_MEMALLOC)
4141 return;
4142
b53d3f5d 4143 if (flush_delayed)
2ff7e61e 4144 btrfs_balance_delayed_items(fs_info);
16cdcec7 4145
d814a491
EL
4146 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4147 BTRFS_DIRTY_METADATA_THRESH,
4148 fs_info->dirty_metadata_batch);
e2d84521 4149 if (ret > 0) {
0b246afa 4150 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4151 }
16cdcec7
MX
4152}
4153
2ff7e61e 4154void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4155{
2ff7e61e 4156 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4157}
585ad2c3 4158
2ff7e61e 4159void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4160{
2ff7e61e 4161 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4162}
6b80053d 4163
581c1760
QW
4164int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4165 struct btrfs_key *first_key)
6b80053d 4166{
5ab12d1f 4167 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4168 level, first_key);
6b80053d 4169}
0da5468f 4170
2ff7e61e 4171static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4172{
fe816d0f
NB
4173 /* cleanup FS via transaction */
4174 btrfs_cleanup_transaction(fs_info);
4175
0b246afa 4176 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4177 btrfs_run_delayed_iputs(fs_info);
0b246afa 4178 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4179
0b246afa
JM
4180 down_write(&fs_info->cleanup_work_sem);
4181 up_write(&fs_info->cleanup_work_sem);
acce952b 4182}
4183
143bede5 4184static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4185{
acce952b 4186 struct btrfs_ordered_extent *ordered;
acce952b 4187
199c2a9c 4188 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4189 /*
4190 * This will just short circuit the ordered completion stuff which will
4191 * make sure the ordered extent gets properly cleaned up.
4192 */
199c2a9c 4193 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4194 root_extent_list)
4195 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4196 spin_unlock(&root->ordered_extent_lock);
4197}
4198
4199static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4200{
4201 struct btrfs_root *root;
4202 struct list_head splice;
4203
4204 INIT_LIST_HEAD(&splice);
4205
4206 spin_lock(&fs_info->ordered_root_lock);
4207 list_splice_init(&fs_info->ordered_roots, &splice);
4208 while (!list_empty(&splice)) {
4209 root = list_first_entry(&splice, struct btrfs_root,
4210 ordered_root);
1de2cfde
JB
4211 list_move_tail(&root->ordered_root,
4212 &fs_info->ordered_roots);
199c2a9c 4213
2a85d9ca 4214 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4215 btrfs_destroy_ordered_extents(root);
4216
2a85d9ca
LB
4217 cond_resched();
4218 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4219 }
4220 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4221
4222 /*
4223 * We need this here because if we've been flipped read-only we won't
4224 * get sync() from the umount, so we need to make sure any ordered
4225 * extents that haven't had their dirty pages IO start writeout yet
4226 * actually get run and error out properly.
4227 */
4228 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4229}
4230
35a3621b 4231static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4232 struct btrfs_fs_info *fs_info)
acce952b 4233{
4234 struct rb_node *node;
4235 struct btrfs_delayed_ref_root *delayed_refs;
4236 struct btrfs_delayed_ref_node *ref;
4237 int ret = 0;
4238
4239 delayed_refs = &trans->delayed_refs;
4240
4241 spin_lock(&delayed_refs->lock);
d7df2c79 4242 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4243 spin_unlock(&delayed_refs->lock);
0b246afa 4244 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4245 return ret;
4246 }
4247
5c9d028b 4248 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4249 struct btrfs_delayed_ref_head *head;
0e0adbcf 4250 struct rb_node *n;
e78417d1 4251 bool pin_bytes = false;
acce952b 4252
d7df2c79
JB
4253 head = rb_entry(node, struct btrfs_delayed_ref_head,
4254 href_node);
3069bd26 4255 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4256 continue;
3069bd26 4257
d7df2c79 4258 spin_lock(&head->lock);
e3d03965 4259 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4260 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4261 ref_node);
d7df2c79 4262 ref->in_tree = 0;
e3d03965 4263 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4264 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4265 if (!list_empty(&ref->add_list))
4266 list_del(&ref->add_list);
d7df2c79
JB
4267 atomic_dec(&delayed_refs->num_entries);
4268 btrfs_put_delayed_ref(ref);
e78417d1 4269 }
d7df2c79
JB
4270 if (head->must_insert_reserved)
4271 pin_bytes = true;
4272 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4273 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4274 spin_unlock(&head->lock);
4275 spin_unlock(&delayed_refs->lock);
4276 mutex_unlock(&head->mutex);
acce952b 4277
d7df2c79 4278 if (pin_bytes)
d278850e
JB
4279 btrfs_pin_extent(fs_info, head->bytenr,
4280 head->num_bytes, 1);
31890da0 4281 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4282 btrfs_put_delayed_ref_head(head);
acce952b 4283 cond_resched();
4284 spin_lock(&delayed_refs->lock);
4285 }
4286
4287 spin_unlock(&delayed_refs->lock);
4288
4289 return ret;
4290}
4291
143bede5 4292static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4293{
4294 struct btrfs_inode *btrfs_inode;
4295 struct list_head splice;
4296
4297 INIT_LIST_HEAD(&splice);
4298
eb73c1b7
MX
4299 spin_lock(&root->delalloc_lock);
4300 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4301
4302 while (!list_empty(&splice)) {
fe816d0f 4303 struct inode *inode = NULL;
eb73c1b7
MX
4304 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4305 delalloc_inodes);
fe816d0f 4306 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4307 spin_unlock(&root->delalloc_lock);
acce952b 4308
fe816d0f
NB
4309 /*
4310 * Make sure we get a live inode and that it'll not disappear
4311 * meanwhile.
4312 */
4313 inode = igrab(&btrfs_inode->vfs_inode);
4314 if (inode) {
4315 invalidate_inode_pages2(inode->i_mapping);
4316 iput(inode);
4317 }
eb73c1b7 4318 spin_lock(&root->delalloc_lock);
acce952b 4319 }
eb73c1b7
MX
4320 spin_unlock(&root->delalloc_lock);
4321}
4322
4323static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4324{
4325 struct btrfs_root *root;
4326 struct list_head splice;
4327
4328 INIT_LIST_HEAD(&splice);
4329
4330 spin_lock(&fs_info->delalloc_root_lock);
4331 list_splice_init(&fs_info->delalloc_roots, &splice);
4332 while (!list_empty(&splice)) {
4333 root = list_first_entry(&splice, struct btrfs_root,
4334 delalloc_root);
eb73c1b7
MX
4335 root = btrfs_grab_fs_root(root);
4336 BUG_ON(!root);
4337 spin_unlock(&fs_info->delalloc_root_lock);
4338
4339 btrfs_destroy_delalloc_inodes(root);
4340 btrfs_put_fs_root(root);
4341
4342 spin_lock(&fs_info->delalloc_root_lock);
4343 }
4344 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4345}
4346
2ff7e61e 4347static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4348 struct extent_io_tree *dirty_pages,
4349 int mark)
4350{
4351 int ret;
acce952b 4352 struct extent_buffer *eb;
4353 u64 start = 0;
4354 u64 end;
acce952b 4355
4356 while (1) {
4357 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4358 mark, NULL);
acce952b 4359 if (ret)
4360 break;
4361
91166212 4362 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4363 while (start <= end) {
0b246afa
JM
4364 eb = find_extent_buffer(fs_info, start);
4365 start += fs_info->nodesize;
fd8b2b61 4366 if (!eb)
acce952b 4367 continue;
fd8b2b61 4368 wait_on_extent_buffer_writeback(eb);
acce952b 4369
fd8b2b61
JB
4370 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4371 &eb->bflags))
4372 clear_extent_buffer_dirty(eb);
4373 free_extent_buffer_stale(eb);
acce952b 4374 }
4375 }
4376
4377 return ret;
4378}
4379
2ff7e61e 4380static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4381 struct extent_io_tree *pinned_extents)
4382{
4383 struct extent_io_tree *unpin;
4384 u64 start;
4385 u64 end;
4386 int ret;
ed0eaa14 4387 bool loop = true;
acce952b 4388
4389 unpin = pinned_extents;
ed0eaa14 4390again:
acce952b 4391 while (1) {
0e6ec385
FM
4392 struct extent_state *cached_state = NULL;
4393
fcd5e742
LF
4394 /*
4395 * The btrfs_finish_extent_commit() may get the same range as
4396 * ours between find_first_extent_bit and clear_extent_dirty.
4397 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4398 * the same extent range.
4399 */
4400 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4401 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4402 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4403 if (ret) {
4404 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4405 break;
fcd5e742 4406 }
acce952b 4407
0e6ec385
FM
4408 clear_extent_dirty(unpin, start, end, &cached_state);
4409 free_extent_state(cached_state);
2ff7e61e 4410 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4411 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4412 cond_resched();
4413 }
4414
ed0eaa14 4415 if (loop) {
0b246afa
JM
4416 if (unpin == &fs_info->freed_extents[0])
4417 unpin = &fs_info->freed_extents[1];
ed0eaa14 4418 else
0b246afa 4419 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4420 loop = false;
4421 goto again;
4422 }
4423
acce952b 4424 return 0;
4425}
4426
c79a1751
LB
4427static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4428{
4429 struct inode *inode;
4430
4431 inode = cache->io_ctl.inode;
4432 if (inode) {
4433 invalidate_inode_pages2(inode->i_mapping);
4434 BTRFS_I(inode)->generation = 0;
4435 cache->io_ctl.inode = NULL;
4436 iput(inode);
4437 }
4438 btrfs_put_block_group(cache);
4439}
4440
4441void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4442 struct btrfs_fs_info *fs_info)
c79a1751
LB
4443{
4444 struct btrfs_block_group_cache *cache;
4445
4446 spin_lock(&cur_trans->dirty_bgs_lock);
4447 while (!list_empty(&cur_trans->dirty_bgs)) {
4448 cache = list_first_entry(&cur_trans->dirty_bgs,
4449 struct btrfs_block_group_cache,
4450 dirty_list);
c79a1751
LB
4451
4452 if (!list_empty(&cache->io_list)) {
4453 spin_unlock(&cur_trans->dirty_bgs_lock);
4454 list_del_init(&cache->io_list);
4455 btrfs_cleanup_bg_io(cache);
4456 spin_lock(&cur_trans->dirty_bgs_lock);
4457 }
4458
4459 list_del_init(&cache->dirty_list);
4460 spin_lock(&cache->lock);
4461 cache->disk_cache_state = BTRFS_DC_ERROR;
4462 spin_unlock(&cache->lock);
4463
4464 spin_unlock(&cur_trans->dirty_bgs_lock);
4465 btrfs_put_block_group(cache);
ba2c4d4e 4466 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4467 spin_lock(&cur_trans->dirty_bgs_lock);
4468 }
4469 spin_unlock(&cur_trans->dirty_bgs_lock);
4470
45ae2c18
NB
4471 /*
4472 * Refer to the definition of io_bgs member for details why it's safe
4473 * to use it without any locking
4474 */
c79a1751
LB
4475 while (!list_empty(&cur_trans->io_bgs)) {
4476 cache = list_first_entry(&cur_trans->io_bgs,
4477 struct btrfs_block_group_cache,
4478 io_list);
c79a1751
LB
4479
4480 list_del_init(&cache->io_list);
4481 spin_lock(&cache->lock);
4482 cache->disk_cache_state = BTRFS_DC_ERROR;
4483 spin_unlock(&cache->lock);
4484 btrfs_cleanup_bg_io(cache);
4485 }
4486}
4487
49b25e05 4488void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4489 struct btrfs_fs_info *fs_info)
49b25e05 4490{
bbbf7243
NB
4491 struct btrfs_device *dev, *tmp;
4492
2ff7e61e 4493 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4494 ASSERT(list_empty(&cur_trans->dirty_bgs));
4495 ASSERT(list_empty(&cur_trans->io_bgs));
4496
bbbf7243
NB
4497 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4498 post_commit_list) {
4499 list_del_init(&dev->post_commit_list);
4500 }
4501
2ff7e61e 4502 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4503
4a9d8bde 4504 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4505 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4506
4a9d8bde 4507 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4508 wake_up(&fs_info->transaction_wait);
49b25e05 4509
ccdf9b30
JM
4510 btrfs_destroy_delayed_inodes(fs_info);
4511 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4512
2ff7e61e 4513 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4514 EXTENT_DIRTY);
2ff7e61e 4515 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4516 fs_info->pinned_extents);
49b25e05 4517
4a9d8bde
MX
4518 cur_trans->state =TRANS_STATE_COMPLETED;
4519 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4520}
4521
2ff7e61e 4522static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4523{
4524 struct btrfs_transaction *t;
acce952b 4525
0b246afa 4526 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4527
0b246afa
JM
4528 spin_lock(&fs_info->trans_lock);
4529 while (!list_empty(&fs_info->trans_list)) {
4530 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4531 struct btrfs_transaction, list);
4532 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4533 refcount_inc(&t->use_count);
0b246afa 4534 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4535 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4536 btrfs_put_transaction(t);
0b246afa 4537 spin_lock(&fs_info->trans_lock);
724e2315
JB
4538 continue;
4539 }
0b246afa 4540 if (t == fs_info->running_transaction) {
724e2315 4541 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4542 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4543 /*
4544 * We wait for 0 num_writers since we don't hold a trans
4545 * handle open currently for this transaction.
4546 */
4547 wait_event(t->writer_wait,
4548 atomic_read(&t->num_writers) == 0);
4549 } else {
0b246afa 4550 spin_unlock(&fs_info->trans_lock);
724e2315 4551 }
2ff7e61e 4552 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4553
0b246afa
JM
4554 spin_lock(&fs_info->trans_lock);
4555 if (t == fs_info->running_transaction)
4556 fs_info->running_transaction = NULL;
acce952b 4557 list_del_init(&t->list);
0b246afa 4558 spin_unlock(&fs_info->trans_lock);
acce952b 4559
724e2315 4560 btrfs_put_transaction(t);
2ff7e61e 4561 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4562 spin_lock(&fs_info->trans_lock);
724e2315 4563 }
0b246afa
JM
4564 spin_unlock(&fs_info->trans_lock);
4565 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4566 btrfs_destroy_delayed_inodes(fs_info);
4567 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4568 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4569 btrfs_destroy_all_delalloc_inodes(fs_info);
4570 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4571
4572 return 0;
4573}
4574
e8c9f186 4575static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4576 /* mandatory callbacks */
0b86a832 4577 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4578 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4579};