]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/disk-io.c
block: add a bi_error field to struct bio
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
e8c9f186 57static const struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
143bede5 62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
143bede5 65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
48a3b636
ES
71static int btrfs_cleanup_transaction(struct btrfs_root *root);
72static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 73
d352ac68 74/*
97eb6b69
DS
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
97eb6b69 79struct btrfs_end_io_wq {
ce9adaa5
CM
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
bfebd8b5 85 enum btrfs_wq_endio_type metadata;
ce9adaa5 86 struct list_head list;
8b712842 87 struct btrfs_work work;
ce9adaa5 88};
0da5468f 89
97eb6b69
DS
90static struct kmem_cache *btrfs_end_io_wq_cache;
91
92int __init btrfs_end_io_wq_init(void)
93{
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102}
103
104void btrfs_end_io_wq_exit(void)
105{
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108}
109
d352ac68
CM
110/*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
44b8bd7e
CM
115struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
4a69a410
CM
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
121 int rw;
122 int mirror_num;
c8b97818 123 unsigned long bio_flags;
eaf25d93
CM
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
8b712842 129 struct btrfs_work work;
79787eaa 130 int error;
44b8bd7e
CM
131};
132
85d4e461
CM
133/*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
4008c04a 143 *
85d4e461
CM
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 147 *
85d4e461
CM
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 151 *
85d4e461
CM
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
4008c04a
CM
155 */
156#ifdef CONFIG_DEBUG_LOCK_ALLOC
157# if BTRFS_MAX_LEVEL != 8
158# error
159# endif
85d4e461
CM
160
161static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166} btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 178 { .id = 0, .name_stem = "tree" },
4008c04a 179};
85d4e461
CM
180
181void __init btrfs_init_lockdep(void)
182{
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193}
194
195void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197{
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209}
210
4008c04a
CM
211#endif
212
d352ac68
CM
213/*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
b2950863 217static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 218 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 219 int create)
7eccb903 220{
5f39d397
CM
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
890871be 225 read_lock(&em_tree->lock);
d1310b2e 226 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 230 read_unlock(&em_tree->lock);
5f39d397 231 goto out;
a061fc8d 232 }
890871be 233 read_unlock(&em_tree->lock);
7b13b7b1 234
172ddd60 235 em = alloc_extent_map();
5f39d397
CM
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
0afbaf8c 241 em->len = (u64)-1;
c8b97818 242 em->block_len = (u64)-1;
5f39d397 243 em->block_start = 0;
a061fc8d 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 245
890871be 246 write_lock(&em_tree->lock);
09a2a8f9 247 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
248 if (ret == -EEXIST) {
249 free_extent_map(em);
7b13b7b1 250 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 251 if (!em)
0433f20d 252 em = ERR_PTR(-EIO);
5f39d397 253 } else if (ret) {
7b13b7b1 254 free_extent_map(em);
0433f20d 255 em = ERR_PTR(ret);
5f39d397 256 }
890871be 257 write_unlock(&em_tree->lock);
7b13b7b1 258
5f39d397
CM
259out:
260 return em;
7eccb903
CM
261}
262
b0496686 263u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 264{
0b947aff 265 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
266}
267
268void btrfs_csum_final(u32 crc, char *result)
269{
7e75bf3f 270 put_unaligned_le32(~crc, result);
19c00ddc
CM
271}
272
d352ac68
CM
273/*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
01d58472
DD
277static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 struct extent_buffer *buf,
19c00ddc
CM
279 int verify)
280{
01d58472 281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 282 char *result = NULL;
19c00ddc
CM
283 unsigned long len;
284 unsigned long cur_len;
285 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
286 char *kaddr;
287 unsigned long map_start;
288 unsigned long map_len;
289 int err;
290 u32 crc = ~(u32)0;
607d432d 291 unsigned long inline_result;
19c00ddc
CM
292
293 len = buf->len - offset;
d397712b 294 while (len > 0) {
19c00ddc 295 err = map_private_extent_buffer(buf, offset, 32,
a6591715 296 &kaddr, &map_start, &map_len);
d397712b 297 if (err)
19c00ddc 298 return 1;
19c00ddc 299 cur_len = min(len, map_len - (offset - map_start));
b0496686 300 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
301 crc, cur_len);
302 len -= cur_len;
303 offset += cur_len;
19c00ddc 304 }
607d432d 305 if (csum_size > sizeof(inline_result)) {
31e818fe 306 result = kzalloc(csum_size, GFP_NOFS);
607d432d
JB
307 if (!result)
308 return 1;
309 } else {
310 result = (char *)&inline_result;
311 }
312
19c00ddc
CM
313 btrfs_csum_final(crc, result);
314
315 if (verify) {
607d432d 316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
317 u32 val;
318 u32 found = 0;
607d432d 319 memcpy(&found, result, csum_size);
e4204ded 320
607d432d 321 read_extent_buffer(buf, &val, 0, csum_size);
f0954c66 322 printk_ratelimited(KERN_WARNING
efe120a0
FH
323 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
324 "level %d\n",
01d58472 325 fs_info->sb->s_id, buf->start,
efe120a0 326 val, found, btrfs_header_level(buf));
607d432d
JB
327 if (result != (char *)&inline_result)
328 kfree(result);
19c00ddc
CM
329 return 1;
330 }
331 } else {
607d432d 332 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 333 }
607d432d
JB
334 if (result != (char *)&inline_result)
335 kfree(result);
19c00ddc
CM
336 return 0;
337}
338
d352ac68
CM
339/*
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer. This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
344 */
1259ab75 345static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
346 struct extent_buffer *eb, u64 parent_transid,
347 int atomic)
1259ab75 348{
2ac55d41 349 struct extent_state *cached_state = NULL;
1259ab75 350 int ret;
2755a0de 351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
352
353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 return 0;
355
b9fab919
CM
356 if (atomic)
357 return -EAGAIN;
358
a26e8c9f
JB
359 if (need_lock) {
360 btrfs_tree_read_lock(eb);
361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 }
363
2ac55d41 364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 365 0, &cached_state);
0b32f4bb 366 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
367 btrfs_header_generation(eb) == parent_transid) {
368 ret = 0;
369 goto out;
370 }
68b663d1
DS
371 printk_ratelimited(KERN_ERR
372 "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
29549aec
WS
373 eb->fs_info->sb->s_id, eb->start,
374 parent_transid, btrfs_header_generation(eb));
1259ab75 375 ret = 1;
a26e8c9f
JB
376
377 /*
378 * Things reading via commit roots that don't have normal protection,
379 * like send, can have a really old block in cache that may point at a
380 * block that has been free'd and re-allocated. So don't clear uptodate
381 * if we find an eb that is under IO (dirty/writeback) because we could
382 * end up reading in the stale data and then writing it back out and
383 * making everybody very sad.
384 */
385 if (!extent_buffer_under_io(eb))
386 clear_extent_buffer_uptodate(eb);
33958dc6 387out:
2ac55d41
JB
388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 &cached_state, GFP_NOFS);
472b909f
JB
390 if (need_lock)
391 btrfs_tree_read_unlock_blocking(eb);
1259ab75 392 return ret;
1259ab75
CM
393}
394
1104a885
DS
395/*
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
398 */
399static int btrfs_check_super_csum(char *raw_disk_sb)
400{
401 struct btrfs_super_block *disk_sb =
402 (struct btrfs_super_block *)raw_disk_sb;
403 u16 csum_type = btrfs_super_csum_type(disk_sb);
404 int ret = 0;
405
406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 u32 crc = ~(u32)0;
408 const int csum_size = sizeof(crc);
409 char result[csum_size];
410
411 /*
412 * The super_block structure does not span the whole
413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 * is filled with zeros and is included in the checkum.
415 */
416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 btrfs_csum_final(crc, result);
419
420 if (memcmp(raw_disk_sb, result, csum_size))
421 ret = 1;
422 }
423
424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
426 csum_type);
427 ret = 1;
428 }
429
430 return ret;
431}
432
d352ac68
CM
433/*
434 * helper to read a given tree block, doing retries as required when
435 * the checksums don't match and we have alternate mirrors to try.
436 */
f188591e
CM
437static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 struct extent_buffer *eb,
ca7a79ad 439 u64 start, u64 parent_transid)
f188591e
CM
440{
441 struct extent_io_tree *io_tree;
ea466794 442 int failed = 0;
f188591e
CM
443 int ret;
444 int num_copies = 0;
445 int mirror_num = 0;
ea466794 446 int failed_mirror = 0;
f188591e 447
a826d6dc 448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 while (1) {
bb82ab88
AJ
451 ret = read_extent_buffer_pages(io_tree, eb, start,
452 WAIT_COMPLETE,
f188591e 453 btree_get_extent, mirror_num);
256dd1bb
SB
454 if (!ret) {
455 if (!verify_parent_transid(io_tree, eb,
b9fab919 456 parent_transid, 0))
256dd1bb
SB
457 break;
458 else
459 ret = -EIO;
460 }
d397712b 461
a826d6dc
JB
462 /*
463 * This buffer's crc is fine, but its contents are corrupted, so
464 * there is no reason to read the other copies, they won't be
465 * any less wrong.
466 */
467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
468 break;
469
5d964051 470 num_copies = btrfs_num_copies(root->fs_info,
f188591e 471 eb->start, eb->len);
4235298e 472 if (num_copies == 1)
ea466794 473 break;
4235298e 474
5cf1ab56
JB
475 if (!failed_mirror) {
476 failed = 1;
477 failed_mirror = eb->read_mirror;
478 }
479
f188591e 480 mirror_num++;
ea466794
JB
481 if (mirror_num == failed_mirror)
482 mirror_num++;
483
4235298e 484 if (mirror_num > num_copies)
ea466794 485 break;
f188591e 486 }
ea466794 487
c0901581 488 if (failed && !ret && failed_mirror)
ea466794
JB
489 repair_eb_io_failure(root, eb, failed_mirror);
490
491 return ret;
f188591e 492}
19c00ddc 493
d352ac68 494/*
d397712b
CM
495 * checksum a dirty tree block before IO. This has extra checks to make sure
496 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 497 */
d397712b 498
01d58472 499static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 500{
4eee4fa4 501 u64 start = page_offset(page);
19c00ddc 502 u64 found_start;
19c00ddc 503 struct extent_buffer *eb;
f188591e 504
4f2de97a
JB
505 eb = (struct extent_buffer *)page->private;
506 if (page != eb->pages[0])
507 return 0;
19c00ddc 508 found_start = btrfs_header_bytenr(eb);
fae7f21c 509 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 510 return 0;
01d58472 511 csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
512 return 0;
513}
514
01d58472 515static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
516 struct extent_buffer *eb)
517{
01d58472 518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
519 u8 fsid[BTRFS_UUID_SIZE];
520 int ret = 1;
521
0a4e5586 522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
523 while (fs_devices) {
524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 ret = 0;
526 break;
527 }
528 fs_devices = fs_devices->seed;
529 }
530 return ret;
531}
532
a826d6dc 533#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
535 "root=%llu, slot=%d", reason, \
c1c9ff7c 536 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
537
538static noinline int check_leaf(struct btrfs_root *root,
539 struct extent_buffer *leaf)
540{
541 struct btrfs_key key;
542 struct btrfs_key leaf_key;
543 u32 nritems = btrfs_header_nritems(leaf);
544 int slot;
545
546 if (nritems == 0)
547 return 0;
548
549 /* Check the 0 item */
550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 BTRFS_LEAF_DATA_SIZE(root)) {
552 CORRUPT("invalid item offset size pair", leaf, root, 0);
553 return -EIO;
554 }
555
556 /*
557 * Check to make sure each items keys are in the correct order and their
558 * offsets make sense. We only have to loop through nritems-1 because
559 * we check the current slot against the next slot, which verifies the
560 * next slot's offset+size makes sense and that the current's slot
561 * offset is correct.
562 */
563 for (slot = 0; slot < nritems - 1; slot++) {
564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567 /* Make sure the keys are in the right order */
568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 CORRUPT("bad key order", leaf, root, slot);
570 return -EIO;
571 }
572
573 /*
574 * Make sure the offset and ends are right, remember that the
575 * item data starts at the end of the leaf and grows towards the
576 * front.
577 */
578 if (btrfs_item_offset_nr(leaf, slot) !=
579 btrfs_item_end_nr(leaf, slot + 1)) {
580 CORRUPT("slot offset bad", leaf, root, slot);
581 return -EIO;
582 }
583
584 /*
585 * Check to make sure that we don't point outside of the leaf,
586 * just incase all the items are consistent to eachother, but
587 * all point outside of the leaf.
588 */
589 if (btrfs_item_end_nr(leaf, slot) >
590 BTRFS_LEAF_DATA_SIZE(root)) {
591 CORRUPT("slot end outside of leaf", leaf, root, slot);
592 return -EIO;
593 }
594 }
595
596 return 0;
597}
598
facc8a22
MX
599static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 u64 phy_offset, struct page *page,
601 u64 start, u64 end, int mirror)
ce9adaa5 602{
ce9adaa5
CM
603 u64 found_start;
604 int found_level;
ce9adaa5
CM
605 struct extent_buffer *eb;
606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 607 int ret = 0;
727011e0 608 int reads_done;
ce9adaa5 609
ce9adaa5
CM
610 if (!page->private)
611 goto out;
d397712b 612
4f2de97a 613 eb = (struct extent_buffer *)page->private;
d397712b 614
0b32f4bb
JB
615 /* the pending IO might have been the only thing that kept this buffer
616 * in memory. Make sure we have a ref for all this other checks
617 */
618 extent_buffer_get(eb);
619
620 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
621 if (!reads_done)
622 goto err;
f188591e 623
5cf1ab56 624 eb->read_mirror = mirror;
656f30db 625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
626 ret = -EIO;
627 goto err;
628 }
629
ce9adaa5 630 found_start = btrfs_header_bytenr(eb);
727011e0 631 if (found_start != eb->start) {
68b663d1 632 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
193f284d 633 "%llu %llu\n",
29549aec 634 eb->fs_info->sb->s_id, found_start, eb->start);
f188591e 635 ret = -EIO;
ce9adaa5
CM
636 goto err;
637 }
01d58472 638 if (check_tree_block_fsid(root->fs_info, eb)) {
68b663d1 639 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
29549aec 640 eb->fs_info->sb->s_id, eb->start);
1259ab75
CM
641 ret = -EIO;
642 goto err;
643 }
ce9adaa5 644 found_level = btrfs_header_level(eb);
1c24c3ce 645 if (found_level >= BTRFS_MAX_LEVEL) {
68b663d1 646 btrfs_err(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
647 (int)btrfs_header_level(eb));
648 ret = -EIO;
649 goto err;
650 }
ce9adaa5 651
85d4e461
CM
652 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
653 eb, found_level);
4008c04a 654
01d58472 655 ret = csum_tree_block(root->fs_info, eb, 1);
a826d6dc 656 if (ret) {
f188591e 657 ret = -EIO;
a826d6dc
JB
658 goto err;
659 }
660
661 /*
662 * If this is a leaf block and it is corrupt, set the corrupt bit so
663 * that we don't try and read the other copies of this block, just
664 * return -EIO.
665 */
666 if (found_level == 0 && check_leaf(root, eb)) {
667 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
668 ret = -EIO;
669 }
ce9adaa5 670
0b32f4bb
JB
671 if (!ret)
672 set_extent_buffer_uptodate(eb);
ce9adaa5 673err:
79fb65a1
JB
674 if (reads_done &&
675 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 676 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 677
53b381b3
DW
678 if (ret) {
679 /*
680 * our io error hook is going to dec the io pages
681 * again, we have to make sure it has something
682 * to decrement
683 */
684 atomic_inc(&eb->io_pages);
0b32f4bb 685 clear_extent_buffer_uptodate(eb);
53b381b3 686 }
0b32f4bb 687 free_extent_buffer(eb);
ce9adaa5 688out:
f188591e 689 return ret;
ce9adaa5
CM
690}
691
ea466794 692static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 693{
4bb31e92
AJ
694 struct extent_buffer *eb;
695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696
4f2de97a 697 eb = (struct extent_buffer *)page->private;
656f30db 698 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 699 eb->read_mirror = failed_mirror;
53b381b3 700 atomic_dec(&eb->io_pages);
ea466794 701 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 702 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
703 return -EIO; /* we fixed nothing */
704}
705
4246a0b6 706static void end_workqueue_bio(struct bio *bio)
ce9adaa5 707{
97eb6b69 708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 709 struct btrfs_fs_info *fs_info;
9e0af237
LB
710 struct btrfs_workqueue *wq;
711 btrfs_work_func_t func;
ce9adaa5 712
ce9adaa5 713 fs_info = end_io_wq->info;
4246a0b6 714 end_io_wq->error = bio->bi_error;
d20f7043 715
7b6d91da 716 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
718 wq = fs_info->endio_meta_write_workers;
719 func = btrfs_endio_meta_write_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
721 wq = fs_info->endio_freespace_worker;
722 func = btrfs_freespace_write_helper;
723 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
724 wq = fs_info->endio_raid56_workers;
725 func = btrfs_endio_raid56_helper;
726 } else {
727 wq = fs_info->endio_write_workers;
728 func = btrfs_endio_write_helper;
729 }
d20f7043 730 } else {
8b110e39
MX
731 if (unlikely(end_io_wq->metadata ==
732 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
733 wq = fs_info->endio_repair_workers;
734 func = btrfs_endio_repair_helper;
735 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
736 wq = fs_info->endio_raid56_workers;
737 func = btrfs_endio_raid56_helper;
738 } else if (end_io_wq->metadata) {
739 wq = fs_info->endio_meta_workers;
740 func = btrfs_endio_meta_helper;
741 } else {
742 wq = fs_info->endio_workers;
743 func = btrfs_endio_helper;
744 }
d20f7043 745 }
9e0af237
LB
746
747 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
748 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
749}
750
22c59948 751int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 752 enum btrfs_wq_endio_type metadata)
0b86a832 753{
97eb6b69 754 struct btrfs_end_io_wq *end_io_wq;
8b110e39 755
97eb6b69 756 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
757 if (!end_io_wq)
758 return -ENOMEM;
759
760 end_io_wq->private = bio->bi_private;
761 end_io_wq->end_io = bio->bi_end_io;
22c59948 762 end_io_wq->info = info;
ce9adaa5
CM
763 end_io_wq->error = 0;
764 end_io_wq->bio = bio;
22c59948 765 end_io_wq->metadata = metadata;
ce9adaa5
CM
766
767 bio->bi_private = end_io_wq;
768 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
769 return 0;
770}
771
b64a2851 772unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 773{
4854ddd0 774 unsigned long limit = min_t(unsigned long,
5cdc7ad3 775 info->thread_pool_size,
4854ddd0
CM
776 info->fs_devices->open_devices);
777 return 256 * limit;
778}
0986fe9e 779
4a69a410
CM
780static void run_one_async_start(struct btrfs_work *work)
781{
4a69a410 782 struct async_submit_bio *async;
79787eaa 783 int ret;
4a69a410
CM
784
785 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
786 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
787 async->mirror_num, async->bio_flags,
788 async->bio_offset);
789 if (ret)
790 async->error = ret;
4a69a410
CM
791}
792
793static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
794{
795 struct btrfs_fs_info *fs_info;
796 struct async_submit_bio *async;
4854ddd0 797 int limit;
8b712842
CM
798
799 async = container_of(work, struct async_submit_bio, work);
800 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 801
b64a2851 802 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
803 limit = limit * 2 / 3;
804
66657b31 805 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 806 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
807 wake_up(&fs_info->async_submit_wait);
808
79787eaa
JM
809 /* If an error occured we just want to clean up the bio and move on */
810 if (async->error) {
4246a0b6
CH
811 async->bio->bi_error = async->error;
812 bio_endio(async->bio);
79787eaa
JM
813 return;
814 }
815
4a69a410 816 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
817 async->mirror_num, async->bio_flags,
818 async->bio_offset);
4a69a410
CM
819}
820
821static void run_one_async_free(struct btrfs_work *work)
822{
823 struct async_submit_bio *async;
824
825 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
826 kfree(async);
827}
828
44b8bd7e
CM
829int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
830 int rw, struct bio *bio, int mirror_num,
c8b97818 831 unsigned long bio_flags,
eaf25d93 832 u64 bio_offset,
4a69a410
CM
833 extent_submit_bio_hook_t *submit_bio_start,
834 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
835{
836 struct async_submit_bio *async;
837
838 async = kmalloc(sizeof(*async), GFP_NOFS);
839 if (!async)
840 return -ENOMEM;
841
842 async->inode = inode;
843 async->rw = rw;
844 async->bio = bio;
845 async->mirror_num = mirror_num;
4a69a410
CM
846 async->submit_bio_start = submit_bio_start;
847 async->submit_bio_done = submit_bio_done;
848
9e0af237 849 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 850 run_one_async_done, run_one_async_free);
4a69a410 851
c8b97818 852 async->bio_flags = bio_flags;
eaf25d93 853 async->bio_offset = bio_offset;
8c8bee1d 854
79787eaa
JM
855 async->error = 0;
856
cb03c743 857 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 858
7b6d91da 859 if (rw & REQ_SYNC)
5cdc7ad3 860 btrfs_set_work_high_priority(&async->work);
d313d7a3 861
5cdc7ad3 862 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 863
d397712b 864 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
865 atomic_read(&fs_info->nr_async_submits)) {
866 wait_event(fs_info->async_submit_wait,
867 (atomic_read(&fs_info->nr_async_submits) == 0));
868 }
869
44b8bd7e
CM
870 return 0;
871}
872
ce3ed71a
CM
873static int btree_csum_one_bio(struct bio *bio)
874{
2c30c71b 875 struct bio_vec *bvec;
ce3ed71a 876 struct btrfs_root *root;
2c30c71b 877 int i, ret = 0;
ce3ed71a 878
2c30c71b 879 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 880 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 881 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
882 if (ret)
883 break;
ce3ed71a 884 }
2c30c71b 885
79787eaa 886 return ret;
ce3ed71a
CM
887}
888
4a69a410
CM
889static int __btree_submit_bio_start(struct inode *inode, int rw,
890 struct bio *bio, int mirror_num,
eaf25d93
CM
891 unsigned long bio_flags,
892 u64 bio_offset)
22c59948 893{
8b712842
CM
894 /*
895 * when we're called for a write, we're already in the async
5443be45 896 * submission context. Just jump into btrfs_map_bio
8b712842 897 */
79787eaa 898 return btree_csum_one_bio(bio);
4a69a410 899}
22c59948 900
4a69a410 901static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
902 int mirror_num, unsigned long bio_flags,
903 u64 bio_offset)
4a69a410 904{
61891923
SB
905 int ret;
906
8b712842 907 /*
4a69a410
CM
908 * when we're called for a write, we're already in the async
909 * submission context. Just jump into btrfs_map_bio
8b712842 910 */
61891923 911 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
4246a0b6
CH
912 if (ret) {
913 bio->bi_error = ret;
914 bio_endio(bio);
915 }
61891923 916 return ret;
0b86a832
CM
917}
918
de0022b9
JB
919static int check_async_write(struct inode *inode, unsigned long bio_flags)
920{
921 if (bio_flags & EXTENT_BIO_TREE_LOG)
922 return 0;
923#ifdef CONFIG_X86
924 if (cpu_has_xmm4_2)
925 return 0;
926#endif
927 return 1;
928}
929
44b8bd7e 930static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
931 int mirror_num, unsigned long bio_flags,
932 u64 bio_offset)
44b8bd7e 933{
de0022b9 934 int async = check_async_write(inode, bio_flags);
cad321ad
CM
935 int ret;
936
7b6d91da 937 if (!(rw & REQ_WRITE)) {
4a69a410
CM
938 /*
939 * called for a read, do the setup so that checksum validation
940 * can happen in the async kernel threads
941 */
f3f266ab 942 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 943 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 944 if (ret)
61891923
SB
945 goto out_w_error;
946 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
947 mirror_num, 0);
de0022b9
JB
948 } else if (!async) {
949 ret = btree_csum_one_bio(bio);
950 if (ret)
61891923
SB
951 goto out_w_error;
952 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
953 mirror_num, 0);
954 } else {
955 /*
956 * kthread helpers are used to submit writes so that
957 * checksumming can happen in parallel across all CPUs
958 */
959 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
960 inode, rw, bio, mirror_num, 0,
961 bio_offset,
962 __btree_submit_bio_start,
963 __btree_submit_bio_done);
44b8bd7e 964 }
d313d7a3 965
4246a0b6
CH
966 if (ret)
967 goto out_w_error;
968 return 0;
969
61891923 970out_w_error:
4246a0b6
CH
971 bio->bi_error = ret;
972 bio_endio(bio);
61891923 973 return ret;
44b8bd7e
CM
974}
975
3dd1462e 976#ifdef CONFIG_MIGRATION
784b4e29 977static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
978 struct page *newpage, struct page *page,
979 enum migrate_mode mode)
784b4e29
CM
980{
981 /*
982 * we can't safely write a btree page from here,
983 * we haven't done the locking hook
984 */
985 if (PageDirty(page))
986 return -EAGAIN;
987 /*
988 * Buffers may be managed in a filesystem specific way.
989 * We must have no buffers or drop them.
990 */
991 if (page_has_private(page) &&
992 !try_to_release_page(page, GFP_KERNEL))
993 return -EAGAIN;
a6bc32b8 994 return migrate_page(mapping, newpage, page, mode);
784b4e29 995}
3dd1462e 996#endif
784b4e29 997
0da5468f
CM
998
999static int btree_writepages(struct address_space *mapping,
1000 struct writeback_control *wbc)
1001{
e2d84521
MX
1002 struct btrfs_fs_info *fs_info;
1003 int ret;
1004
d8d5f3e1 1005 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1006
1007 if (wbc->for_kupdate)
1008 return 0;
1009
e2d84521 1010 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1011 /* this is a bit racy, but that's ok */
e2d84521
MX
1012 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1013 BTRFS_DIRTY_METADATA_THRESH);
1014 if (ret < 0)
793955bc 1015 return 0;
793955bc 1016 }
0b32f4bb 1017 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1018}
1019
b2950863 1020static int btree_readpage(struct file *file, struct page *page)
5f39d397 1021{
d1310b2e
CM
1022 struct extent_io_tree *tree;
1023 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1024 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1025}
22b0ebda 1026
70dec807 1027static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1028{
98509cfc 1029 if (PageWriteback(page) || PageDirty(page))
d397712b 1030 return 0;
0c4e538b 1031
f7a52a40 1032 return try_release_extent_buffer(page);
d98237b3
CM
1033}
1034
d47992f8
LC
1035static void btree_invalidatepage(struct page *page, unsigned int offset,
1036 unsigned int length)
d98237b3 1037{
d1310b2e
CM
1038 struct extent_io_tree *tree;
1039 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1040 extent_invalidatepage(tree, page, offset);
1041 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1042 if (PagePrivate(page)) {
efe120a0
FH
1043 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1044 "page private not zero on page %llu",
1045 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1046 ClearPagePrivate(page);
1047 set_page_private(page, 0);
1048 page_cache_release(page);
1049 }
d98237b3
CM
1050}
1051
0b32f4bb
JB
1052static int btree_set_page_dirty(struct page *page)
1053{
bb146eb2 1054#ifdef DEBUG
0b32f4bb
JB
1055 struct extent_buffer *eb;
1056
1057 BUG_ON(!PagePrivate(page));
1058 eb = (struct extent_buffer *)page->private;
1059 BUG_ON(!eb);
1060 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1061 BUG_ON(!atomic_read(&eb->refs));
1062 btrfs_assert_tree_locked(eb);
bb146eb2 1063#endif
0b32f4bb
JB
1064 return __set_page_dirty_nobuffers(page);
1065}
1066
7f09410b 1067static const struct address_space_operations btree_aops = {
d98237b3 1068 .readpage = btree_readpage,
0da5468f 1069 .writepages = btree_writepages,
5f39d397
CM
1070 .releasepage = btree_releasepage,
1071 .invalidatepage = btree_invalidatepage,
5a92bc88 1072#ifdef CONFIG_MIGRATION
784b4e29 1073 .migratepage = btree_migratepage,
5a92bc88 1074#endif
0b32f4bb 1075 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1076};
1077
d3e46fea 1078void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
090d1875 1079{
5f39d397
CM
1080 struct extent_buffer *buf = NULL;
1081 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1082
a83fffb7 1083 buf = btrfs_find_create_tree_block(root, bytenr);
5f39d397 1084 if (!buf)
6197d86e 1085 return;
d1310b2e 1086 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1087 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1088 free_extent_buffer(buf);
090d1875
CM
1089}
1090
c0dcaa4d 1091int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
ab0fff03
AJ
1092 int mirror_num, struct extent_buffer **eb)
1093{
1094 struct extent_buffer *buf = NULL;
1095 struct inode *btree_inode = root->fs_info->btree_inode;
1096 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1097 int ret;
1098
a83fffb7 1099 buf = btrfs_find_create_tree_block(root, bytenr);
ab0fff03
AJ
1100 if (!buf)
1101 return 0;
1102
1103 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1104
1105 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1106 btree_get_extent, mirror_num);
1107 if (ret) {
1108 free_extent_buffer(buf);
1109 return ret;
1110 }
1111
1112 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1113 free_extent_buffer(buf);
1114 return -EIO;
0b32f4bb 1115 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1116 *eb = buf;
1117 } else {
1118 free_extent_buffer(buf);
1119 }
1120 return 0;
1121}
1122
01d58472 1123struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
0308af44 1124 u64 bytenr)
0999df54 1125{
01d58472 1126 return find_extent_buffer(fs_info, bytenr);
0999df54
CM
1127}
1128
1129struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
a83fffb7 1130 u64 bytenr)
0999df54 1131{
fccb84c9 1132 if (btrfs_test_is_dummy_root(root))
ce3e6984
DS
1133 return alloc_test_extent_buffer(root->fs_info, bytenr);
1134 return alloc_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1135}
1136
1137
e02119d5
CM
1138int btrfs_write_tree_block(struct extent_buffer *buf)
1139{
727011e0 1140 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1141 buf->start + buf->len - 1);
e02119d5
CM
1142}
1143
1144int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1145{
727011e0 1146 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1147 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1148}
1149
0999df54 1150struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1151 u64 parent_transid)
0999df54
CM
1152{
1153 struct extent_buffer *buf = NULL;
0999df54
CM
1154 int ret;
1155
a83fffb7 1156 buf = btrfs_find_create_tree_block(root, bytenr);
0999df54 1157 if (!buf)
64c043de 1158 return ERR_PTR(-ENOMEM);
0999df54 1159
ca7a79ad 1160 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1161 if (ret) {
1162 free_extent_buffer(buf);
64c043de 1163 return ERR_PTR(ret);
0f0fe8f7 1164 }
5f39d397 1165 return buf;
ce9adaa5 1166
eb60ceac
CM
1167}
1168
01d58472
DD
1169void clean_tree_block(struct btrfs_trans_handle *trans,
1170 struct btrfs_fs_info *fs_info,
d5c13f92 1171 struct extent_buffer *buf)
ed2ff2cb 1172{
55c69072 1173 if (btrfs_header_generation(buf) ==
e2d84521 1174 fs_info->running_transaction->transid) {
b9447ef8 1175 btrfs_assert_tree_locked(buf);
b4ce94de 1176
b9473439 1177 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1178 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1179 -buf->len,
1180 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1181 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1182 btrfs_set_lock_blocking(buf);
1183 clear_extent_buffer_dirty(buf);
1184 }
925baedd 1185 }
5f39d397
CM
1186}
1187
8257b2dc
MX
1188static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1189{
1190 struct btrfs_subvolume_writers *writers;
1191 int ret;
1192
1193 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1194 if (!writers)
1195 return ERR_PTR(-ENOMEM);
1196
908c7f19 1197 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1198 if (ret < 0) {
1199 kfree(writers);
1200 return ERR_PTR(ret);
1201 }
1202
1203 init_waitqueue_head(&writers->wait);
1204 return writers;
1205}
1206
1207static void
1208btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1209{
1210 percpu_counter_destroy(&writers->counter);
1211 kfree(writers);
1212}
1213
707e8a07
DS
1214static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1215 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1216 u64 objectid)
d97e63b6 1217{
cfaa7295 1218 root->node = NULL;
a28ec197 1219 root->commit_root = NULL;
db94535d
CM
1220 root->sectorsize = sectorsize;
1221 root->nodesize = nodesize;
87ee04eb 1222 root->stripesize = stripesize;
27cdeb70 1223 root->state = 0;
d68fc57b 1224 root->orphan_cleanup_state = 0;
0b86a832 1225
0f7d52f4
CM
1226 root->objectid = objectid;
1227 root->last_trans = 0;
13a8a7c8 1228 root->highest_objectid = 0;
eb73c1b7 1229 root->nr_delalloc_inodes = 0;
199c2a9c 1230 root->nr_ordered_extents = 0;
58176a96 1231 root->name = NULL;
6bef4d31 1232 root->inode_tree = RB_ROOT;
16cdcec7 1233 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1234 root->block_rsv = NULL;
d68fc57b 1235 root->orphan_block_rsv = NULL;
0b86a832
CM
1236
1237 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1238 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1239 INIT_LIST_HEAD(&root->delalloc_inodes);
1240 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1241 INIT_LIST_HEAD(&root->ordered_extents);
1242 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1243 INIT_LIST_HEAD(&root->logged_list[0]);
1244 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1245 spin_lock_init(&root->orphan_lock);
5d4f98a2 1246 spin_lock_init(&root->inode_lock);
eb73c1b7 1247 spin_lock_init(&root->delalloc_lock);
199c2a9c 1248 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1249 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1250 spin_lock_init(&root->log_extents_lock[0]);
1251 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1252 mutex_init(&root->objectid_mutex);
e02119d5 1253 mutex_init(&root->log_mutex);
31f3d255 1254 mutex_init(&root->ordered_extent_mutex);
573bfb72 1255 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1256 init_waitqueue_head(&root->log_writer_wait);
1257 init_waitqueue_head(&root->log_commit_wait[0]);
1258 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1259 INIT_LIST_HEAD(&root->log_ctxs[0]);
1260 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1261 atomic_set(&root->log_commit[0], 0);
1262 atomic_set(&root->log_commit[1], 0);
1263 atomic_set(&root->log_writers, 0);
2ecb7923 1264 atomic_set(&root->log_batch, 0);
8a35d95f 1265 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1266 atomic_set(&root->refs, 1);
8257b2dc 1267 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1268 root->log_transid = 0;
d1433deb 1269 root->log_transid_committed = -1;
257c62e1 1270 root->last_log_commit = 0;
06ea65a3
JB
1271 if (fs_info)
1272 extent_io_tree_init(&root->dirty_log_pages,
1273 fs_info->btree_inode->i_mapping);
017e5369 1274
3768f368
CM
1275 memset(&root->root_key, 0, sizeof(root->root_key));
1276 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1277 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
06ea65a3
JB
1278 if (fs_info)
1279 root->defrag_trans_start = fs_info->generation;
1280 else
1281 root->defrag_trans_start = 0;
4d775673 1282 root->root_key.objectid = objectid;
0ee5dc67 1283 root->anon_dev = 0;
8ea05e3a 1284
5f3ab90a 1285 spin_lock_init(&root->root_item_lock);
3768f368
CM
1286}
1287
f84a8bd6 1288static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1289{
1290 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1291 if (root)
1292 root->fs_info = fs_info;
1293 return root;
1294}
1295
06ea65a3
JB
1296#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1297/* Should only be used by the testing infrastructure */
1298struct btrfs_root *btrfs_alloc_dummy_root(void)
1299{
1300 struct btrfs_root *root;
1301
1302 root = btrfs_alloc_root(NULL);
1303 if (!root)
1304 return ERR_PTR(-ENOMEM);
707e8a07 1305 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1306 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1307 root->alloc_bytenr = 0;
06ea65a3
JB
1308
1309 return root;
1310}
1311#endif
1312
20897f5c
AJ
1313struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1314 struct btrfs_fs_info *fs_info,
1315 u64 objectid)
1316{
1317 struct extent_buffer *leaf;
1318 struct btrfs_root *tree_root = fs_info->tree_root;
1319 struct btrfs_root *root;
1320 struct btrfs_key key;
1321 int ret = 0;
6463fe58 1322 uuid_le uuid;
20897f5c
AJ
1323
1324 root = btrfs_alloc_root(fs_info);
1325 if (!root)
1326 return ERR_PTR(-ENOMEM);
1327
707e8a07
DS
1328 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1329 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1330 root->root_key.objectid = objectid;
1331 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1332 root->root_key.offset = 0;
1333
4d75f8a9 1334 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1335 if (IS_ERR(leaf)) {
1336 ret = PTR_ERR(leaf);
1dd05682 1337 leaf = NULL;
20897f5c
AJ
1338 goto fail;
1339 }
1340
20897f5c
AJ
1341 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1342 btrfs_set_header_bytenr(leaf, leaf->start);
1343 btrfs_set_header_generation(leaf, trans->transid);
1344 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1345 btrfs_set_header_owner(leaf, objectid);
1346 root->node = leaf;
1347
0a4e5586 1348 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1349 BTRFS_FSID_SIZE);
1350 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1351 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1352 BTRFS_UUID_SIZE);
1353 btrfs_mark_buffer_dirty(leaf);
1354
1355 root->commit_root = btrfs_root_node(root);
27cdeb70 1356 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1357
1358 root->root_item.flags = 0;
1359 root->root_item.byte_limit = 0;
1360 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1361 btrfs_set_root_generation(&root->root_item, trans->transid);
1362 btrfs_set_root_level(&root->root_item, 0);
1363 btrfs_set_root_refs(&root->root_item, 1);
1364 btrfs_set_root_used(&root->root_item, leaf->len);
1365 btrfs_set_root_last_snapshot(&root->root_item, 0);
1366 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1367 uuid_le_gen(&uuid);
1368 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1369 root->root_item.drop_level = 0;
1370
1371 key.objectid = objectid;
1372 key.type = BTRFS_ROOT_ITEM_KEY;
1373 key.offset = 0;
1374 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1375 if (ret)
1376 goto fail;
1377
1378 btrfs_tree_unlock(leaf);
1379
1dd05682
TI
1380 return root;
1381
20897f5c 1382fail:
1dd05682
TI
1383 if (leaf) {
1384 btrfs_tree_unlock(leaf);
59885b39 1385 free_extent_buffer(root->commit_root);
1dd05682
TI
1386 free_extent_buffer(leaf);
1387 }
1388 kfree(root);
20897f5c 1389
1dd05682 1390 return ERR_PTR(ret);
20897f5c
AJ
1391}
1392
7237f183
YZ
1393static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1394 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1395{
1396 struct btrfs_root *root;
1397 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1398 struct extent_buffer *leaf;
e02119d5 1399
6f07e42e 1400 root = btrfs_alloc_root(fs_info);
e02119d5 1401 if (!root)
7237f183 1402 return ERR_PTR(-ENOMEM);
e02119d5 1403
707e8a07
DS
1404 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1405 tree_root->stripesize, root, fs_info,
1406 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1407
1408 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1409 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1410 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1411
7237f183 1412 /*
27cdeb70
MX
1413 * DON'T set REF_COWS for log trees
1414 *
7237f183
YZ
1415 * log trees do not get reference counted because they go away
1416 * before a real commit is actually done. They do store pointers
1417 * to file data extents, and those reference counts still get
1418 * updated (along with back refs to the log tree).
1419 */
e02119d5 1420
4d75f8a9
DS
1421 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1422 NULL, 0, 0, 0);
7237f183
YZ
1423 if (IS_ERR(leaf)) {
1424 kfree(root);
1425 return ERR_CAST(leaf);
1426 }
e02119d5 1427
5d4f98a2
YZ
1428 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1429 btrfs_set_header_bytenr(leaf, leaf->start);
1430 btrfs_set_header_generation(leaf, trans->transid);
1431 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1432 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1433 root->node = leaf;
e02119d5
CM
1434
1435 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1436 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1437 btrfs_mark_buffer_dirty(root->node);
1438 btrfs_tree_unlock(root->node);
7237f183
YZ
1439 return root;
1440}
1441
1442int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1443 struct btrfs_fs_info *fs_info)
1444{
1445 struct btrfs_root *log_root;
1446
1447 log_root = alloc_log_tree(trans, fs_info);
1448 if (IS_ERR(log_root))
1449 return PTR_ERR(log_root);
1450 WARN_ON(fs_info->log_root_tree);
1451 fs_info->log_root_tree = log_root;
1452 return 0;
1453}
1454
1455int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1456 struct btrfs_root *root)
1457{
1458 struct btrfs_root *log_root;
1459 struct btrfs_inode_item *inode_item;
1460
1461 log_root = alloc_log_tree(trans, root->fs_info);
1462 if (IS_ERR(log_root))
1463 return PTR_ERR(log_root);
1464
1465 log_root->last_trans = trans->transid;
1466 log_root->root_key.offset = root->root_key.objectid;
1467
1468 inode_item = &log_root->root_item.inode;
3cae210f
QW
1469 btrfs_set_stack_inode_generation(inode_item, 1);
1470 btrfs_set_stack_inode_size(inode_item, 3);
1471 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1472 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1473 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1474
5d4f98a2 1475 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1476
1477 WARN_ON(root->log_root);
1478 root->log_root = log_root;
1479 root->log_transid = 0;
d1433deb 1480 root->log_transid_committed = -1;
257c62e1 1481 root->last_log_commit = 0;
e02119d5
CM
1482 return 0;
1483}
1484
35a3621b
SB
1485static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1486 struct btrfs_key *key)
e02119d5
CM
1487{
1488 struct btrfs_root *root;
1489 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1490 struct btrfs_path *path;
84234f3a 1491 u64 generation;
cb517eab 1492 int ret;
0f7d52f4 1493
cb517eab
MX
1494 path = btrfs_alloc_path();
1495 if (!path)
0f7d52f4 1496 return ERR_PTR(-ENOMEM);
cb517eab
MX
1497
1498 root = btrfs_alloc_root(fs_info);
1499 if (!root) {
1500 ret = -ENOMEM;
1501 goto alloc_fail;
0f7d52f4
CM
1502 }
1503
707e8a07
DS
1504 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1505 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1506
cb517eab
MX
1507 ret = btrfs_find_root(tree_root, key, path,
1508 &root->root_item, &root->root_key);
0f7d52f4 1509 if (ret) {
13a8a7c8
YZ
1510 if (ret > 0)
1511 ret = -ENOENT;
cb517eab 1512 goto find_fail;
0f7d52f4 1513 }
13a8a7c8 1514
84234f3a 1515 generation = btrfs_root_generation(&root->root_item);
db94535d 1516 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1517 generation);
64c043de
LB
1518 if (IS_ERR(root->node)) {
1519 ret = PTR_ERR(root->node);
cb517eab
MX
1520 goto find_fail;
1521 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1522 ret = -EIO;
64c043de
LB
1523 free_extent_buffer(root->node);
1524 goto find_fail;
416bc658 1525 }
5d4f98a2 1526 root->commit_root = btrfs_root_node(root);
13a8a7c8 1527out:
cb517eab
MX
1528 btrfs_free_path(path);
1529 return root;
1530
cb517eab
MX
1531find_fail:
1532 kfree(root);
1533alloc_fail:
1534 root = ERR_PTR(ret);
1535 goto out;
1536}
1537
1538struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1539 struct btrfs_key *location)
1540{
1541 struct btrfs_root *root;
1542
1543 root = btrfs_read_tree_root(tree_root, location);
1544 if (IS_ERR(root))
1545 return root;
1546
1547 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1548 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1549 btrfs_check_and_init_root_item(&root->root_item);
1550 }
13a8a7c8 1551
5eda7b5e
CM
1552 return root;
1553}
1554
cb517eab
MX
1555int btrfs_init_fs_root(struct btrfs_root *root)
1556{
1557 int ret;
8257b2dc 1558 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1559
1560 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1561 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1562 GFP_NOFS);
1563 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1564 ret = -ENOMEM;
1565 goto fail;
1566 }
1567
8257b2dc
MX
1568 writers = btrfs_alloc_subvolume_writers();
1569 if (IS_ERR(writers)) {
1570 ret = PTR_ERR(writers);
1571 goto fail;
1572 }
1573 root->subv_writers = writers;
1574
cb517eab 1575 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1576 spin_lock_init(&root->ino_cache_lock);
1577 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1578
1579 ret = get_anon_bdev(&root->anon_dev);
1580 if (ret)
8257b2dc 1581 goto free_writers;
cb517eab 1582 return 0;
8257b2dc
MX
1583
1584free_writers:
1585 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1586fail:
1587 kfree(root->free_ino_ctl);
1588 kfree(root->free_ino_pinned);
1589 return ret;
1590}
1591
171170c1
ST
1592static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1593 u64 root_id)
cb517eab
MX
1594{
1595 struct btrfs_root *root;
1596
1597 spin_lock(&fs_info->fs_roots_radix_lock);
1598 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1599 (unsigned long)root_id);
1600 spin_unlock(&fs_info->fs_roots_radix_lock);
1601 return root;
1602}
1603
1604int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1605 struct btrfs_root *root)
1606{
1607 int ret;
1608
1609 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1610 if (ret)
1611 return ret;
1612
1613 spin_lock(&fs_info->fs_roots_radix_lock);
1614 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1615 (unsigned long)root->root_key.objectid,
1616 root);
1617 if (ret == 0)
27cdeb70 1618 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1619 spin_unlock(&fs_info->fs_roots_radix_lock);
1620 radix_tree_preload_end();
1621
1622 return ret;
1623}
1624
c00869f1
MX
1625struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1626 struct btrfs_key *location,
1627 bool check_ref)
5eda7b5e
CM
1628{
1629 struct btrfs_root *root;
381cf658 1630 struct btrfs_path *path;
1d4c08e0 1631 struct btrfs_key key;
5eda7b5e
CM
1632 int ret;
1633
edbd8d4e
CM
1634 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1635 return fs_info->tree_root;
1636 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1637 return fs_info->extent_root;
8f18cf13
CM
1638 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1639 return fs_info->chunk_root;
1640 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1641 return fs_info->dev_root;
0403e47e
YZ
1642 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1643 return fs_info->csum_root;
bcef60f2
AJ
1644 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1645 return fs_info->quota_root ? fs_info->quota_root :
1646 ERR_PTR(-ENOENT);
f7a81ea4
SB
1647 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1648 return fs_info->uuid_root ? fs_info->uuid_root :
1649 ERR_PTR(-ENOENT);
4df27c4d 1650again:
cb517eab 1651 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1652 if (root) {
c00869f1 1653 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1654 return ERR_PTR(-ENOENT);
5eda7b5e 1655 return root;
48475471 1656 }
5eda7b5e 1657
cb517eab 1658 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1659 if (IS_ERR(root))
1660 return root;
3394e160 1661
c00869f1 1662 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1663 ret = -ENOENT;
581bb050 1664 goto fail;
35a30d7c 1665 }
581bb050 1666
cb517eab 1667 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1668 if (ret)
1669 goto fail;
3394e160 1670
381cf658
DS
1671 path = btrfs_alloc_path();
1672 if (!path) {
1673 ret = -ENOMEM;
1674 goto fail;
1675 }
1d4c08e0
DS
1676 key.objectid = BTRFS_ORPHAN_OBJECTID;
1677 key.type = BTRFS_ORPHAN_ITEM_KEY;
1678 key.offset = location->objectid;
1679
1680 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1681 btrfs_free_path(path);
d68fc57b
YZ
1682 if (ret < 0)
1683 goto fail;
1684 if (ret == 0)
27cdeb70 1685 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1686
cb517eab 1687 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1688 if (ret) {
4df27c4d
YZ
1689 if (ret == -EEXIST) {
1690 free_fs_root(root);
1691 goto again;
1692 }
1693 goto fail;
0f7d52f4 1694 }
edbd8d4e 1695 return root;
4df27c4d
YZ
1696fail:
1697 free_fs_root(root);
1698 return ERR_PTR(ret);
edbd8d4e
CM
1699}
1700
04160088
CM
1701static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1702{
1703 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1704 int ret = 0;
04160088
CM
1705 struct btrfs_device *device;
1706 struct backing_dev_info *bdi;
b7967db7 1707
1f78160c
XG
1708 rcu_read_lock();
1709 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1710 if (!device->bdev)
1711 continue;
04160088 1712 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1713 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1714 ret = 1;
1715 break;
1716 }
1717 }
1f78160c 1718 rcu_read_unlock();
04160088
CM
1719 return ret;
1720}
1721
04160088
CM
1722static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1723{
ad081f14
JA
1724 int err;
1725
b4caecd4 1726 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1727 if (err)
1728 return err;
1729
df0ce26c 1730 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
04160088
CM
1731 bdi->congested_fn = btrfs_congested_fn;
1732 bdi->congested_data = info;
1733 return 0;
1734}
1735
8b712842
CM
1736/*
1737 * called by the kthread helper functions to finally call the bio end_io
1738 * functions. This is where read checksum verification actually happens
1739 */
1740static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1741{
ce9adaa5 1742 struct bio *bio;
97eb6b69 1743 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1744
97eb6b69 1745 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1746 bio = end_io_wq->bio;
ce9adaa5 1747
4246a0b6 1748 bio->bi_error = end_io_wq->error;
8b712842
CM
1749 bio->bi_private = end_io_wq->private;
1750 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1751 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1752 bio_endio(bio);
44b8bd7e
CM
1753}
1754
a74a4b97
CM
1755static int cleaner_kthread(void *arg)
1756{
1757 struct btrfs_root *root = arg;
d0278245 1758 int again;
da288d28 1759 struct btrfs_trans_handle *trans;
a74a4b97
CM
1760
1761 do {
d0278245 1762 again = 0;
a74a4b97 1763
d0278245 1764 /* Make the cleaner go to sleep early. */
babbf170 1765 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1766 goto sleep;
1767
1768 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1769 goto sleep;
1770
dc7f370c
MX
1771 /*
1772 * Avoid the problem that we change the status of the fs
1773 * during the above check and trylock.
1774 */
babbf170 1775 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1776 mutex_unlock(&root->fs_info->cleaner_mutex);
1777 goto sleep;
76dda93c 1778 }
a74a4b97 1779
d0278245
MX
1780 btrfs_run_delayed_iputs(root);
1781 again = btrfs_clean_one_deleted_snapshot(root);
1782 mutex_unlock(&root->fs_info->cleaner_mutex);
1783
1784 /*
05323cd1
MX
1785 * The defragger has dealt with the R/O remount and umount,
1786 * needn't do anything special here.
d0278245
MX
1787 */
1788 btrfs_run_defrag_inodes(root->fs_info);
67c5e7d4
FM
1789
1790 /*
1791 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1792 * with relocation (btrfs_relocate_chunk) and relocation
1793 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1794 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1795 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1796 * unused block groups.
1797 */
1798 btrfs_delete_unused_bgs(root->fs_info);
d0278245 1799sleep:
9d1a2a3a 1800 if (!try_to_freeze() && !again) {
a74a4b97 1801 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1802 if (!kthread_should_stop())
1803 schedule();
a74a4b97
CM
1804 __set_current_state(TASK_RUNNING);
1805 }
1806 } while (!kthread_should_stop());
da288d28
FM
1807
1808 /*
1809 * Transaction kthread is stopped before us and wakes us up.
1810 * However we might have started a new transaction and COWed some
1811 * tree blocks when deleting unused block groups for example. So
1812 * make sure we commit the transaction we started to have a clean
1813 * shutdown when evicting the btree inode - if it has dirty pages
1814 * when we do the final iput() on it, eviction will trigger a
1815 * writeback for it which will fail with null pointer dereferences
1816 * since work queues and other resources were already released and
1817 * destroyed by the time the iput/eviction/writeback is made.
1818 */
1819 trans = btrfs_attach_transaction(root);
1820 if (IS_ERR(trans)) {
1821 if (PTR_ERR(trans) != -ENOENT)
1822 btrfs_err(root->fs_info,
1823 "cleaner transaction attach returned %ld",
1824 PTR_ERR(trans));
1825 } else {
1826 int ret;
1827
1828 ret = btrfs_commit_transaction(trans, root);
1829 if (ret)
1830 btrfs_err(root->fs_info,
1831 "cleaner open transaction commit returned %d",
1832 ret);
1833 }
1834
a74a4b97
CM
1835 return 0;
1836}
1837
1838static int transaction_kthread(void *arg)
1839{
1840 struct btrfs_root *root = arg;
1841 struct btrfs_trans_handle *trans;
1842 struct btrfs_transaction *cur;
8929ecfa 1843 u64 transid;
a74a4b97
CM
1844 unsigned long now;
1845 unsigned long delay;
914b2007 1846 bool cannot_commit;
a74a4b97
CM
1847
1848 do {
914b2007 1849 cannot_commit = false;
8b87dc17 1850 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1851 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1852
a4abeea4 1853 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1854 cur = root->fs_info->running_transaction;
1855 if (!cur) {
a4abeea4 1856 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1857 goto sleep;
1858 }
31153d81 1859
a74a4b97 1860 now = get_seconds();
4a9d8bde 1861 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1862 (now < cur->start_time ||
1863 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1864 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1865 delay = HZ * 5;
1866 goto sleep;
1867 }
8929ecfa 1868 transid = cur->transid;
a4abeea4 1869 spin_unlock(&root->fs_info->trans_lock);
56bec294 1870
79787eaa 1871 /* If the file system is aborted, this will always fail. */
354aa0fb 1872 trans = btrfs_attach_transaction(root);
914b2007 1873 if (IS_ERR(trans)) {
354aa0fb
MX
1874 if (PTR_ERR(trans) != -ENOENT)
1875 cannot_commit = true;
79787eaa 1876 goto sleep;
914b2007 1877 }
8929ecfa 1878 if (transid == trans->transid) {
79787eaa 1879 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1880 } else {
1881 btrfs_end_transaction(trans, root);
1882 }
a74a4b97
CM
1883sleep:
1884 wake_up_process(root->fs_info->cleaner_kthread);
1885 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1886
4e121c06
JB
1887 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1888 &root->fs_info->fs_state)))
1889 btrfs_cleanup_transaction(root);
a0acae0e 1890 if (!try_to_freeze()) {
a74a4b97 1891 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1892 if (!kthread_should_stop() &&
914b2007
JK
1893 (!btrfs_transaction_blocked(root->fs_info) ||
1894 cannot_commit))
8929ecfa 1895 schedule_timeout(delay);
a74a4b97
CM
1896 __set_current_state(TASK_RUNNING);
1897 }
1898 } while (!kthread_should_stop());
1899 return 0;
1900}
1901
af31f5e5
CM
1902/*
1903 * this will find the highest generation in the array of
1904 * root backups. The index of the highest array is returned,
1905 * or -1 if we can't find anything.
1906 *
1907 * We check to make sure the array is valid by comparing the
1908 * generation of the latest root in the array with the generation
1909 * in the super block. If they don't match we pitch it.
1910 */
1911static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1912{
1913 u64 cur;
1914 int newest_index = -1;
1915 struct btrfs_root_backup *root_backup;
1916 int i;
1917
1918 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1919 root_backup = info->super_copy->super_roots + i;
1920 cur = btrfs_backup_tree_root_gen(root_backup);
1921 if (cur == newest_gen)
1922 newest_index = i;
1923 }
1924
1925 /* check to see if we actually wrapped around */
1926 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1927 root_backup = info->super_copy->super_roots;
1928 cur = btrfs_backup_tree_root_gen(root_backup);
1929 if (cur == newest_gen)
1930 newest_index = 0;
1931 }
1932 return newest_index;
1933}
1934
1935
1936/*
1937 * find the oldest backup so we know where to store new entries
1938 * in the backup array. This will set the backup_root_index
1939 * field in the fs_info struct
1940 */
1941static void find_oldest_super_backup(struct btrfs_fs_info *info,
1942 u64 newest_gen)
1943{
1944 int newest_index = -1;
1945
1946 newest_index = find_newest_super_backup(info, newest_gen);
1947 /* if there was garbage in there, just move along */
1948 if (newest_index == -1) {
1949 info->backup_root_index = 0;
1950 } else {
1951 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1952 }
1953}
1954
1955/*
1956 * copy all the root pointers into the super backup array.
1957 * this will bump the backup pointer by one when it is
1958 * done
1959 */
1960static void backup_super_roots(struct btrfs_fs_info *info)
1961{
1962 int next_backup;
1963 struct btrfs_root_backup *root_backup;
1964 int last_backup;
1965
1966 next_backup = info->backup_root_index;
1967 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1968 BTRFS_NUM_BACKUP_ROOTS;
1969
1970 /*
1971 * just overwrite the last backup if we're at the same generation
1972 * this happens only at umount
1973 */
1974 root_backup = info->super_for_commit->super_roots + last_backup;
1975 if (btrfs_backup_tree_root_gen(root_backup) ==
1976 btrfs_header_generation(info->tree_root->node))
1977 next_backup = last_backup;
1978
1979 root_backup = info->super_for_commit->super_roots + next_backup;
1980
1981 /*
1982 * make sure all of our padding and empty slots get zero filled
1983 * regardless of which ones we use today
1984 */
1985 memset(root_backup, 0, sizeof(*root_backup));
1986
1987 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1988
1989 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1990 btrfs_set_backup_tree_root_gen(root_backup,
1991 btrfs_header_generation(info->tree_root->node));
1992
1993 btrfs_set_backup_tree_root_level(root_backup,
1994 btrfs_header_level(info->tree_root->node));
1995
1996 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1997 btrfs_set_backup_chunk_root_gen(root_backup,
1998 btrfs_header_generation(info->chunk_root->node));
1999 btrfs_set_backup_chunk_root_level(root_backup,
2000 btrfs_header_level(info->chunk_root->node));
2001
2002 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2003 btrfs_set_backup_extent_root_gen(root_backup,
2004 btrfs_header_generation(info->extent_root->node));
2005 btrfs_set_backup_extent_root_level(root_backup,
2006 btrfs_header_level(info->extent_root->node));
2007
7c7e82a7
CM
2008 /*
2009 * we might commit during log recovery, which happens before we set
2010 * the fs_root. Make sure it is valid before we fill it in.
2011 */
2012 if (info->fs_root && info->fs_root->node) {
2013 btrfs_set_backup_fs_root(root_backup,
2014 info->fs_root->node->start);
2015 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2016 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2017 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2018 btrfs_header_level(info->fs_root->node));
7c7e82a7 2019 }
af31f5e5
CM
2020
2021 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2022 btrfs_set_backup_dev_root_gen(root_backup,
2023 btrfs_header_generation(info->dev_root->node));
2024 btrfs_set_backup_dev_root_level(root_backup,
2025 btrfs_header_level(info->dev_root->node));
2026
2027 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2028 btrfs_set_backup_csum_root_gen(root_backup,
2029 btrfs_header_generation(info->csum_root->node));
2030 btrfs_set_backup_csum_root_level(root_backup,
2031 btrfs_header_level(info->csum_root->node));
2032
2033 btrfs_set_backup_total_bytes(root_backup,
2034 btrfs_super_total_bytes(info->super_copy));
2035 btrfs_set_backup_bytes_used(root_backup,
2036 btrfs_super_bytes_used(info->super_copy));
2037 btrfs_set_backup_num_devices(root_backup,
2038 btrfs_super_num_devices(info->super_copy));
2039
2040 /*
2041 * if we don't copy this out to the super_copy, it won't get remembered
2042 * for the next commit
2043 */
2044 memcpy(&info->super_copy->super_roots,
2045 &info->super_for_commit->super_roots,
2046 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2047}
2048
2049/*
2050 * this copies info out of the root backup array and back into
2051 * the in-memory super block. It is meant to help iterate through
2052 * the array, so you send it the number of backups you've already
2053 * tried and the last backup index you used.
2054 *
2055 * this returns -1 when it has tried all the backups
2056 */
2057static noinline int next_root_backup(struct btrfs_fs_info *info,
2058 struct btrfs_super_block *super,
2059 int *num_backups_tried, int *backup_index)
2060{
2061 struct btrfs_root_backup *root_backup;
2062 int newest = *backup_index;
2063
2064 if (*num_backups_tried == 0) {
2065 u64 gen = btrfs_super_generation(super);
2066
2067 newest = find_newest_super_backup(info, gen);
2068 if (newest == -1)
2069 return -1;
2070
2071 *backup_index = newest;
2072 *num_backups_tried = 1;
2073 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2074 /* we've tried all the backups, all done */
2075 return -1;
2076 } else {
2077 /* jump to the next oldest backup */
2078 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2079 BTRFS_NUM_BACKUP_ROOTS;
2080 *backup_index = newest;
2081 *num_backups_tried += 1;
2082 }
2083 root_backup = super->super_roots + newest;
2084
2085 btrfs_set_super_generation(super,
2086 btrfs_backup_tree_root_gen(root_backup));
2087 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2088 btrfs_set_super_root_level(super,
2089 btrfs_backup_tree_root_level(root_backup));
2090 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2091
2092 /*
2093 * fixme: the total bytes and num_devices need to match or we should
2094 * need a fsck
2095 */
2096 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2097 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2098 return 0;
2099}
2100
7abadb64
LB
2101/* helper to cleanup workers */
2102static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2103{
dc6e3209 2104 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2105 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2106 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2107 btrfs_destroy_workqueue(fs_info->endio_workers);
2108 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2109 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2110 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2111 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2112 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2113 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2114 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2115 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2116 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2117 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2118 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2119 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2120 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2121 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2122}
2123
2e9f5954
R
2124static void free_root_extent_buffers(struct btrfs_root *root)
2125{
2126 if (root) {
2127 free_extent_buffer(root->node);
2128 free_extent_buffer(root->commit_root);
2129 root->node = NULL;
2130 root->commit_root = NULL;
2131 }
2132}
2133
af31f5e5
CM
2134/* helper to cleanup tree roots */
2135static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2136{
2e9f5954 2137 free_root_extent_buffers(info->tree_root);
655b09fe 2138
2e9f5954
R
2139 free_root_extent_buffers(info->dev_root);
2140 free_root_extent_buffers(info->extent_root);
2141 free_root_extent_buffers(info->csum_root);
2142 free_root_extent_buffers(info->quota_root);
2143 free_root_extent_buffers(info->uuid_root);
2144 if (chunk_root)
2145 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2146}
2147
faa2dbf0 2148void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2149{
2150 int ret;
2151 struct btrfs_root *gang[8];
2152 int i;
2153
2154 while (!list_empty(&fs_info->dead_roots)) {
2155 gang[0] = list_entry(fs_info->dead_roots.next,
2156 struct btrfs_root, root_list);
2157 list_del(&gang[0]->root_list);
2158
27cdeb70 2159 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2160 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2161 } else {
2162 free_extent_buffer(gang[0]->node);
2163 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2164 btrfs_put_fs_root(gang[0]);
171f6537
JB
2165 }
2166 }
2167
2168 while (1) {
2169 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2170 (void **)gang, 0,
2171 ARRAY_SIZE(gang));
2172 if (!ret)
2173 break;
2174 for (i = 0; i < ret; i++)
cb517eab 2175 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2176 }
1a4319cc
LB
2177
2178 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2179 btrfs_free_log_root_tree(NULL, fs_info);
2180 btrfs_destroy_pinned_extent(fs_info->tree_root,
2181 fs_info->pinned_extents);
2182 }
171f6537 2183}
af31f5e5 2184
638aa7ed
ES
2185static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2186{
2187 mutex_init(&fs_info->scrub_lock);
2188 atomic_set(&fs_info->scrubs_running, 0);
2189 atomic_set(&fs_info->scrub_pause_req, 0);
2190 atomic_set(&fs_info->scrubs_paused, 0);
2191 atomic_set(&fs_info->scrub_cancel_req, 0);
2192 init_waitqueue_head(&fs_info->scrub_pause_wait);
2193 fs_info->scrub_workers_refcnt = 0;
2194}
2195
779a65a4
ES
2196static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2197{
2198 spin_lock_init(&fs_info->balance_lock);
2199 mutex_init(&fs_info->balance_mutex);
2200 atomic_set(&fs_info->balance_running, 0);
2201 atomic_set(&fs_info->balance_pause_req, 0);
2202 atomic_set(&fs_info->balance_cancel_req, 0);
2203 fs_info->balance_ctl = NULL;
2204 init_waitqueue_head(&fs_info->balance_wait_q);
2205}
2206
f37938e0
ES
2207static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2208 struct btrfs_root *tree_root)
2209{
2210 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2211 set_nlink(fs_info->btree_inode, 1);
2212 /*
2213 * we set the i_size on the btree inode to the max possible int.
2214 * the real end of the address space is determined by all of
2215 * the devices in the system
2216 */
2217 fs_info->btree_inode->i_size = OFFSET_MAX;
2218 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
f37938e0
ES
2219
2220 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2221 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2222 fs_info->btree_inode->i_mapping);
2223 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2224 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2225
2226 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2227
2228 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2229 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2230 sizeof(struct btrfs_key));
2231 set_bit(BTRFS_INODE_DUMMY,
2232 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2233 btrfs_insert_inode_hash(fs_info->btree_inode);
2234}
2235
ad618368
ES
2236static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2237{
2238 fs_info->dev_replace.lock_owner = 0;
2239 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2240 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2241 mutex_init(&fs_info->dev_replace.lock_management_lock);
2242 mutex_init(&fs_info->dev_replace.lock);
2243 init_waitqueue_head(&fs_info->replace_wait);
2244}
2245
f9e92e40
ES
2246static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2247{
2248 spin_lock_init(&fs_info->qgroup_lock);
2249 mutex_init(&fs_info->qgroup_ioctl_lock);
2250 fs_info->qgroup_tree = RB_ROOT;
2251 fs_info->qgroup_op_tree = RB_ROOT;
2252 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2253 fs_info->qgroup_seq = 1;
2254 fs_info->quota_enabled = 0;
2255 fs_info->pending_quota_state = 0;
2256 fs_info->qgroup_ulist = NULL;
2257 mutex_init(&fs_info->qgroup_rescan_lock);
2258}
2259
2a458198
ES
2260static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2261 struct btrfs_fs_devices *fs_devices)
2262{
2263 int max_active = fs_info->thread_pool_size;
6f011058 2264 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2265
2266 fs_info->workers =
2267 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2268 max_active, 16);
2269
2270 fs_info->delalloc_workers =
2271 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2272
2273 fs_info->flush_workers =
2274 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2275
2276 fs_info->caching_workers =
2277 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2278
2279 /*
2280 * a higher idle thresh on the submit workers makes it much more
2281 * likely that bios will be send down in a sane order to the
2282 * devices
2283 */
2284 fs_info->submit_workers =
2285 btrfs_alloc_workqueue("submit", flags,
2286 min_t(u64, fs_devices->num_devices,
2287 max_active), 64);
2288
2289 fs_info->fixup_workers =
2290 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2291
2292 /*
2293 * endios are largely parallel and should have a very
2294 * low idle thresh
2295 */
2296 fs_info->endio_workers =
2297 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2298 fs_info->endio_meta_workers =
2299 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2300 fs_info->endio_meta_write_workers =
2301 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2302 fs_info->endio_raid56_workers =
2303 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2304 fs_info->endio_repair_workers =
2305 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2306 fs_info->rmw_workers =
2307 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2308 fs_info->endio_write_workers =
2309 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2310 fs_info->endio_freespace_worker =
2311 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2312 fs_info->delayed_workers =
2313 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2314 fs_info->readahead_workers =
2315 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2316 fs_info->qgroup_rescan_workers =
2317 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2318 fs_info->extent_workers =
2319 btrfs_alloc_workqueue("extent-refs", flags,
2320 min_t(u64, fs_devices->num_devices,
2321 max_active), 8);
2322
2323 if (!(fs_info->workers && fs_info->delalloc_workers &&
2324 fs_info->submit_workers && fs_info->flush_workers &&
2325 fs_info->endio_workers && fs_info->endio_meta_workers &&
2326 fs_info->endio_meta_write_workers &&
2327 fs_info->endio_repair_workers &&
2328 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2329 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2330 fs_info->caching_workers && fs_info->readahead_workers &&
2331 fs_info->fixup_workers && fs_info->delayed_workers &&
2332 fs_info->extent_workers &&
2333 fs_info->qgroup_rescan_workers)) {
2334 return -ENOMEM;
2335 }
2336
2337 return 0;
2338}
2339
63443bf5
ES
2340static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2341 struct btrfs_fs_devices *fs_devices)
2342{
2343 int ret;
2344 struct btrfs_root *tree_root = fs_info->tree_root;
2345 struct btrfs_root *log_tree_root;
2346 struct btrfs_super_block *disk_super = fs_info->super_copy;
2347 u64 bytenr = btrfs_super_log_root(disk_super);
2348
2349 if (fs_devices->rw_devices == 0) {
2350 printk(KERN_WARNING "BTRFS: log replay required "
2351 "on RO media\n");
2352 return -EIO;
2353 }
2354
2355 log_tree_root = btrfs_alloc_root(fs_info);
2356 if (!log_tree_root)
2357 return -ENOMEM;
2358
2359 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2360 tree_root->stripesize, log_tree_root, fs_info,
2361 BTRFS_TREE_LOG_OBJECTID);
2362
2363 log_tree_root->node = read_tree_block(tree_root, bytenr,
2364 fs_info->generation + 1);
64c043de
LB
2365 if (IS_ERR(log_tree_root->node)) {
2366 printk(KERN_ERR "BTRFS: failed to read log tree\n");
0eeff236 2367 ret = PTR_ERR(log_tree_root->node);
64c043de 2368 kfree(log_tree_root);
0eeff236 2369 return ret;
64c043de 2370 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
63443bf5
ES
2371 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2372 free_extent_buffer(log_tree_root->node);
2373 kfree(log_tree_root);
2374 return -EIO;
2375 }
2376 /* returns with log_tree_root freed on success */
2377 ret = btrfs_recover_log_trees(log_tree_root);
2378 if (ret) {
2379 btrfs_error(tree_root->fs_info, ret,
2380 "Failed to recover log tree");
2381 free_extent_buffer(log_tree_root->node);
2382 kfree(log_tree_root);
2383 return ret;
2384 }
2385
2386 if (fs_info->sb->s_flags & MS_RDONLY) {
2387 ret = btrfs_commit_super(tree_root);
2388 if (ret)
2389 return ret;
2390 }
2391
2392 return 0;
2393}
2394
4bbcaa64
ES
2395static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2396 struct btrfs_root *tree_root)
2397{
a4f3d2c4 2398 struct btrfs_root *root;
4bbcaa64
ES
2399 struct btrfs_key location;
2400 int ret;
2401
2402 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2403 location.type = BTRFS_ROOT_ITEM_KEY;
2404 location.offset = 0;
2405
a4f3d2c4
DS
2406 root = btrfs_read_tree_root(tree_root, &location);
2407 if (IS_ERR(root))
2408 return PTR_ERR(root);
2409 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2410 fs_info->extent_root = root;
4bbcaa64
ES
2411
2412 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2413 root = btrfs_read_tree_root(tree_root, &location);
2414 if (IS_ERR(root))
2415 return PTR_ERR(root);
2416 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2417 fs_info->dev_root = root;
4bbcaa64
ES
2418 btrfs_init_devices_late(fs_info);
2419
2420 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2421 root = btrfs_read_tree_root(tree_root, &location);
2422 if (IS_ERR(root))
2423 return PTR_ERR(root);
2424 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2425 fs_info->csum_root = root;
4bbcaa64
ES
2426
2427 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2428 root = btrfs_read_tree_root(tree_root, &location);
2429 if (!IS_ERR(root)) {
2430 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
4bbcaa64
ES
2431 fs_info->quota_enabled = 1;
2432 fs_info->pending_quota_state = 1;
a4f3d2c4 2433 fs_info->quota_root = root;
4bbcaa64
ES
2434 }
2435
2436 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2437 root = btrfs_read_tree_root(tree_root, &location);
2438 if (IS_ERR(root)) {
2439 ret = PTR_ERR(root);
4bbcaa64
ES
2440 if (ret != -ENOENT)
2441 return ret;
2442 } else {
a4f3d2c4
DS
2443 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2444 fs_info->uuid_root = root;
4bbcaa64
ES
2445 }
2446
2447 return 0;
2448}
2449
ad2b2c80
AV
2450int open_ctree(struct super_block *sb,
2451 struct btrfs_fs_devices *fs_devices,
2452 char *options)
2e635a27 2453{
db94535d
CM
2454 u32 sectorsize;
2455 u32 nodesize;
87ee04eb 2456 u32 stripesize;
84234f3a 2457 u64 generation;
f2b636e8 2458 u64 features;
3de4586c 2459 struct btrfs_key location;
a061fc8d 2460 struct buffer_head *bh;
4d34b278 2461 struct btrfs_super_block *disk_super;
815745cf 2462 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2463 struct btrfs_root *tree_root;
4d34b278 2464 struct btrfs_root *chunk_root;
eb60ceac 2465 int ret;
e58ca020 2466 int err = -EINVAL;
af31f5e5
CM
2467 int num_backups_tried = 0;
2468 int backup_index = 0;
5cdc7ad3 2469 int max_active;
4543df7e 2470
f84a8bd6 2471 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2472 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2473 if (!tree_root || !chunk_root) {
39279cc3
CM
2474 err = -ENOMEM;
2475 goto fail;
2476 }
76dda93c
YZ
2477
2478 ret = init_srcu_struct(&fs_info->subvol_srcu);
2479 if (ret) {
2480 err = ret;
2481 goto fail;
2482 }
2483
2484 ret = setup_bdi(fs_info, &fs_info->bdi);
2485 if (ret) {
2486 err = ret;
2487 goto fail_srcu;
2488 }
2489
908c7f19 2490 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2491 if (ret) {
2492 err = ret;
2493 goto fail_bdi;
2494 }
2495 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2496 (1 + ilog2(nr_cpu_ids));
2497
908c7f19 2498 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2499 if (ret) {
2500 err = ret;
2501 goto fail_dirty_metadata_bytes;
2502 }
2503
908c7f19 2504 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2505 if (ret) {
2506 err = ret;
2507 goto fail_delalloc_bytes;
2508 }
2509
76dda93c
YZ
2510 fs_info->btree_inode = new_inode(sb);
2511 if (!fs_info->btree_inode) {
2512 err = -ENOMEM;
c404e0dc 2513 goto fail_bio_counter;
76dda93c
YZ
2514 }
2515
a6591715 2516 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2517
76dda93c 2518 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2519 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2520 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2521 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2522 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2523 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2524 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2525 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2526 spin_lock_init(&fs_info->trans_lock);
76dda93c 2527 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2528 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2529 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2530 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2531 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2532 spin_lock_init(&fs_info->super_lock);
fcebe456 2533 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2534 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2535 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2536 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2537 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2538 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2539 mutex_init(&fs_info->reloc_mutex);
573bfb72 2540 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2541 seqlock_init(&fs_info->profiles_lock);
d7c15171 2542 init_rwsem(&fs_info->delayed_iput_sem);
19c00ddc 2543
0b86a832 2544 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2545 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2546 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2547 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2548 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2549 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2550 BTRFS_BLOCK_RSV_GLOBAL);
2551 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2552 BTRFS_BLOCK_RSV_DELALLOC);
2553 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2554 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2555 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2556 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2557 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2558 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2559 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2560 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2561 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2562 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2563 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2564 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2565 fs_info->sb = sb;
95ac567a 2566 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2567 fs_info->metadata_ratio = 0;
4cb5300b 2568 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2569 fs_info->free_chunk_space = 0;
f29021b2 2570 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2571 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2572 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66
AJ
2573 /* readahead state */
2574 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2575 spin_lock_init(&fs_info->reada_lock);
c8b97818 2576
b34b086c
CM
2577 fs_info->thread_pool_size = min_t(unsigned long,
2578 num_online_cpus() + 2, 8);
0afbaf8c 2579
199c2a9c
MX
2580 INIT_LIST_HEAD(&fs_info->ordered_roots);
2581 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2582 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2583 GFP_NOFS);
2584 if (!fs_info->delayed_root) {
2585 err = -ENOMEM;
2586 goto fail_iput;
2587 }
2588 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2589
638aa7ed 2590 btrfs_init_scrub(fs_info);
21adbd5c
SB
2591#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2592 fs_info->check_integrity_print_mask = 0;
2593#endif
779a65a4 2594 btrfs_init_balance(fs_info);
21c7e756 2595 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2596
a061fc8d
CM
2597 sb->s_blocksize = 4096;
2598 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2599 sb->s_bdi = &fs_info->bdi;
a061fc8d 2600
f37938e0 2601 btrfs_init_btree_inode(fs_info, tree_root);
76dda93c 2602
0f9dd46c 2603 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2604 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2605 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2606
11833d66 2607 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2608 fs_info->btree_inode->i_mapping);
11833d66 2609 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2610 fs_info->btree_inode->i_mapping);
11833d66 2611 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2612 fs_info->do_barriers = 1;
e18e4809 2613
39279cc3 2614
5a3f23d5 2615 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2616 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2617 mutex_init(&fs_info->tree_log_mutex);
925baedd 2618 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2619 mutex_init(&fs_info->transaction_kthread_mutex);
2620 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2621 mutex_init(&fs_info->volume_mutex);
1bbc621e 2622 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2623 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2624 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2625 init_rwsem(&fs_info->subvol_sem);
803b2f54 2626 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2627
ad618368 2628 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2629 btrfs_init_qgroup(fs_info);
416ac51d 2630
fa9c0d79
CM
2631 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2632 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2633
e6dcd2dc 2634 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2635 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2636 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2637 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2638
04216820
FM
2639 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2640
53b381b3
DW
2641 ret = btrfs_alloc_stripe_hash_table(fs_info);
2642 if (ret) {
83c8266a 2643 err = ret;
53b381b3
DW
2644 goto fail_alloc;
2645 }
2646
707e8a07 2647 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2648 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2649
3c4bb26b 2650 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2651
2652 /*
2653 * Read super block and check the signature bytes only
2654 */
a512bbf8 2655 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2656 if (!bh) {
2657 err = -EINVAL;
16cdcec7 2658 goto fail_alloc;
20b45077 2659 }
39279cc3 2660
1104a885
DS
2661 /*
2662 * We want to check superblock checksum, the type is stored inside.
2663 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2664 */
2665 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2666 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2667 err = -EINVAL;
2668 goto fail_alloc;
2669 }
2670
2671 /*
2672 * super_copy is zeroed at allocation time and we never touch the
2673 * following bytes up to INFO_SIZE, the checksum is calculated from
2674 * the whole block of INFO_SIZE
2675 */
6c41761f
DS
2676 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2677 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2678 sizeof(*fs_info->super_for_commit));
a061fc8d 2679 brelse(bh);
5f39d397 2680
6c41761f 2681 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2682
1104a885
DS
2683 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2684 if (ret) {
efe120a0 2685 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2686 err = -EINVAL;
2687 goto fail_alloc;
2688 }
2689
6c41761f 2690 disk_super = fs_info->super_copy;
0f7d52f4 2691 if (!btrfs_super_root(disk_super))
16cdcec7 2692 goto fail_alloc;
0f7d52f4 2693
acce952b 2694 /* check FS state, whether FS is broken. */
87533c47
MX
2695 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2696 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2697
af31f5e5
CM
2698 /*
2699 * run through our array of backup supers and setup
2700 * our ring pointer to the oldest one
2701 */
2702 generation = btrfs_super_generation(disk_super);
2703 find_oldest_super_backup(fs_info, generation);
2704
75e7cb7f
LB
2705 /*
2706 * In the long term, we'll store the compression type in the super
2707 * block, and it'll be used for per file compression control.
2708 */
2709 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2710
2b82032c
YZ
2711 ret = btrfs_parse_options(tree_root, options);
2712 if (ret) {
2713 err = ret;
16cdcec7 2714 goto fail_alloc;
2b82032c 2715 }
dfe25020 2716
f2b636e8
JB
2717 features = btrfs_super_incompat_flags(disk_super) &
2718 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2719 if (features) {
2720 printk(KERN_ERR "BTRFS: couldn't mount because of "
2721 "unsupported optional features (%Lx).\n",
c1c9ff7c 2722 features);
f2b636e8 2723 err = -EINVAL;
16cdcec7 2724 goto fail_alloc;
f2b636e8
JB
2725 }
2726
707e8a07
DS
2727 /*
2728 * Leafsize and nodesize were always equal, this is only a sanity check.
2729 */
2730 if (le32_to_cpu(disk_super->__unused_leafsize) !=
727011e0
CM
2731 btrfs_super_nodesize(disk_super)) {
2732 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2733 "blocksizes don't match. node %d leaf %d\n",
2734 btrfs_super_nodesize(disk_super),
707e8a07 2735 le32_to_cpu(disk_super->__unused_leafsize));
727011e0
CM
2736 err = -EINVAL;
2737 goto fail_alloc;
2738 }
707e8a07 2739 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
727011e0
CM
2740 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2741 "blocksize (%d) was too large\n",
707e8a07 2742 btrfs_super_nodesize(disk_super));
727011e0
CM
2743 err = -EINVAL;
2744 goto fail_alloc;
2745 }
2746
5d4f98a2 2747 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2748 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2749 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2750 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2751
3173a18f 2752 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
5efa0490 2753 printk(KERN_INFO "BTRFS: has skinny extents\n");
3173a18f 2754
727011e0
CM
2755 /*
2756 * flag our filesystem as having big metadata blocks if
2757 * they are bigger than the page size
2758 */
707e8a07 2759 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2760 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2761 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2762 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2763 }
2764
bc3f116f 2765 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2766 sectorsize = btrfs_super_sectorsize(disk_super);
2767 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2768 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2769 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2770
2771 /*
2772 * mixed block groups end up with duplicate but slightly offset
2773 * extent buffers for the same range. It leads to corruptions
2774 */
2775 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2776 (sectorsize != nodesize)) {
aa8ee312 2777 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2778 "are not allowed for mixed block groups on %s\n",
2779 sb->s_id);
2780 goto fail_alloc;
2781 }
2782
ceda0864
MX
2783 /*
2784 * Needn't use the lock because there is no other task which will
2785 * update the flag.
2786 */
a6fa6fae 2787 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2788
f2b636e8
JB
2789 features = btrfs_super_compat_ro_flags(disk_super) &
2790 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2791 if (!(sb->s_flags & MS_RDONLY) && features) {
2792 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2793 "unsupported option features (%Lx).\n",
c1c9ff7c 2794 features);
f2b636e8 2795 err = -EINVAL;
16cdcec7 2796 goto fail_alloc;
f2b636e8 2797 }
61d92c32 2798
5cdc7ad3 2799 max_active = fs_info->thread_pool_size;
61d92c32 2800
2a458198
ES
2801 ret = btrfs_init_workqueues(fs_info, fs_devices);
2802 if (ret) {
2803 err = ret;
0dc3b84a
JB
2804 goto fail_sb_buffer;
2805 }
4543df7e 2806
4575c9cc 2807 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2808 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2809 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2810
db94535d 2811 tree_root->nodesize = nodesize;
db94535d 2812 tree_root->sectorsize = sectorsize;
87ee04eb 2813 tree_root->stripesize = stripesize;
a061fc8d
CM
2814
2815 sb->s_blocksize = sectorsize;
2816 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2817
3cae210f 2818 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
aa8ee312 2819 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2820 goto fail_sb_buffer;
2821 }
19c00ddc 2822
8d082fb7 2823 if (sectorsize != PAGE_SIZE) {
aa8ee312 2824 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
8d082fb7 2825 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2826 goto fail_sb_buffer;
2827 }
2828
925baedd 2829 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2830 ret = btrfs_read_sys_array(tree_root);
925baedd 2831 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2832 if (ret) {
aa8ee312 2833 printk(KERN_ERR "BTRFS: failed to read the system "
d397712b 2834 "array on %s\n", sb->s_id);
5d4f98a2 2835 goto fail_sb_buffer;
84eed90f 2836 }
0b86a832 2837
84234f3a 2838 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2839
707e8a07
DS
2840 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2841 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2842
2843 chunk_root->node = read_tree_block(chunk_root,
2844 btrfs_super_chunk_root(disk_super),
ce86cd59 2845 generation);
64c043de
LB
2846 if (IS_ERR(chunk_root->node) ||
2847 !extent_buffer_uptodate(chunk_root->node)) {
aa8ee312 2848 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
83121942 2849 sb->s_id);
af31f5e5 2850 goto fail_tree_roots;
83121942 2851 }
5d4f98a2
YZ
2852 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2853 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2854
e17cade2 2855 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2856 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2857
0b86a832 2858 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2859 if (ret) {
aa8ee312 2860 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
d397712b 2861 sb->s_id);
af31f5e5 2862 goto fail_tree_roots;
2b82032c 2863 }
0b86a832 2864
8dabb742
SB
2865 /*
2866 * keep the device that is marked to be the target device for the
2867 * dev_replace procedure
2868 */
9eaed21e 2869 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2870
a6b0d5c8 2871 if (!fs_devices->latest_bdev) {
aa8ee312 2872 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2873 sb->s_id);
2874 goto fail_tree_roots;
2875 }
2876
af31f5e5 2877retry_root_backup:
84234f3a 2878 generation = btrfs_super_generation(disk_super);
0b86a832 2879
e20d96d6 2880 tree_root->node = read_tree_block(tree_root,
db94535d 2881 btrfs_super_root(disk_super),
ce86cd59 2882 generation);
64c043de
LB
2883 if (IS_ERR(tree_root->node) ||
2884 !extent_buffer_uptodate(tree_root->node)) {
efe120a0 2885 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2886 sb->s_id);
af31f5e5
CM
2887
2888 goto recovery_tree_root;
83121942 2889 }
af31f5e5 2890
5d4f98a2
YZ
2891 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2892 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2893 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2894
4bbcaa64
ES
2895 ret = btrfs_read_roots(fs_info, tree_root);
2896 if (ret)
af31f5e5 2897 goto recovery_tree_root;
f7a81ea4 2898
8929ecfa
YZ
2899 fs_info->generation = generation;
2900 fs_info->last_trans_committed = generation;
8929ecfa 2901
68310a5e
ID
2902 ret = btrfs_recover_balance(fs_info);
2903 if (ret) {
aa8ee312 2904 printk(KERN_ERR "BTRFS: failed to recover balance\n");
68310a5e
ID
2905 goto fail_block_groups;
2906 }
2907
733f4fbb
SB
2908 ret = btrfs_init_dev_stats(fs_info);
2909 if (ret) {
efe120a0 2910 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2911 ret);
2912 goto fail_block_groups;
2913 }
2914
8dabb742
SB
2915 ret = btrfs_init_dev_replace(fs_info);
2916 if (ret) {
efe120a0 2917 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2918 goto fail_block_groups;
2919 }
2920
9eaed21e 2921 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 2922
b7c35e81
AJ
2923 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2924 if (ret) {
2925 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2926 goto fail_block_groups;
2927 }
2928
2929 ret = btrfs_sysfs_add_device(fs_devices);
2930 if (ret) {
2931 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2932 goto fail_fsdev_sysfs;
2933 }
2934
5ac1d209 2935 ret = btrfs_sysfs_add_one(fs_info);
c59021f8 2936 if (ret) {
efe120a0 2937 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
b7c35e81 2938 goto fail_fsdev_sysfs;
c59021f8 2939 }
2940
c59021f8 2941 ret = btrfs_init_space_info(fs_info);
2942 if (ret) {
efe120a0 2943 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2944 goto fail_sysfs;
c59021f8 2945 }
2946
4bbcaa64 2947 ret = btrfs_read_block_groups(fs_info->extent_root);
1b1d1f66 2948 if (ret) {
efe120a0 2949 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2950 goto fail_sysfs;
1b1d1f66 2951 }
5af3e8cc
SB
2952 fs_info->num_tolerated_disk_barrier_failures =
2953 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2954 if (fs_info->fs_devices->missing_devices >
2955 fs_info->num_tolerated_disk_barrier_failures &&
2956 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2957 printk(KERN_WARNING "BTRFS: "
2958 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2959 goto fail_sysfs;
292fd7fc 2960 }
9078a3e1 2961
a74a4b97
CM
2962 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2963 "btrfs-cleaner");
57506d50 2964 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2965 goto fail_sysfs;
a74a4b97
CM
2966
2967 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2968 tree_root,
2969 "btrfs-transaction");
57506d50 2970 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2971 goto fail_cleaner;
a74a4b97 2972
c289811c
CM
2973 if (!btrfs_test_opt(tree_root, SSD) &&
2974 !btrfs_test_opt(tree_root, NOSSD) &&
2975 !fs_info->fs_devices->rotating) {
efe120a0 2976 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2977 "mode\n");
2978 btrfs_set_opt(fs_info->mount_opt, SSD);
2979 }
2980
572d9ab7
DS
2981 /*
2982 * Mount does not set all options immediatelly, we can do it now and do
2983 * not have to wait for transaction commit
2984 */
2985 btrfs_apply_pending_changes(fs_info);
3818aea2 2986
21adbd5c
SB
2987#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2988 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2989 ret = btrfsic_mount(tree_root, fs_devices,
2990 btrfs_test_opt(tree_root,
2991 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2992 1 : 0,
2993 fs_info->check_integrity_print_mask);
2994 if (ret)
efe120a0 2995 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2996 " integrity check module %s\n", sb->s_id);
2997 }
2998#endif
bcef60f2
AJ
2999 ret = btrfs_read_qgroup_config(fs_info);
3000 if (ret)
3001 goto fail_trans_kthread;
21adbd5c 3002
acce952b 3003 /* do not make disk changes in broken FS */
68ce9682 3004 if (btrfs_super_log_root(disk_super) != 0) {
63443bf5 3005 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3006 if (ret) {
63443bf5 3007 err = ret;
28c16cbb 3008 goto fail_qgroup;
79787eaa 3009 }
e02119d5 3010 }
1a40e23b 3011
76dda93c 3012 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 3013 if (ret)
28c16cbb 3014 goto fail_qgroup;
76dda93c 3015
7c2ca468 3016 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3017 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3018 if (ret)
28c16cbb 3019 goto fail_qgroup;
d68fc57b 3020
5f316481 3021 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3022 ret = btrfs_recover_relocation(tree_root);
5f316481 3023 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
3024 if (ret < 0) {
3025 printk(KERN_WARNING
efe120a0 3026 "BTRFS: failed to recover relocation\n");
d7ce5843 3027 err = -EINVAL;
bcef60f2 3028 goto fail_qgroup;
d7ce5843 3029 }
7c2ca468 3030 }
1a40e23b 3031
3de4586c
CM
3032 location.objectid = BTRFS_FS_TREE_OBJECTID;
3033 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3034 location.offset = 0;
3de4586c 3035
3de4586c 3036 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3037 if (IS_ERR(fs_info->fs_root)) {
3038 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3039 goto fail_qgroup;
3140c9a3 3040 }
c289811c 3041
2b6ba629
ID
3042 if (sb->s_flags & MS_RDONLY)
3043 return 0;
59641015 3044
2b6ba629
ID
3045 down_read(&fs_info->cleanup_work_sem);
3046 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3047 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3048 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
3049 close_ctree(tree_root);
3050 return ret;
3051 }
3052 up_read(&fs_info->cleanup_work_sem);
59641015 3053
2b6ba629
ID
3054 ret = btrfs_resume_balance_async(fs_info);
3055 if (ret) {
efe120a0 3056 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
3057 close_ctree(tree_root);
3058 return ret;
e3acc2a6
JB
3059 }
3060
8dabb742
SB
3061 ret = btrfs_resume_dev_replace_async(fs_info);
3062 if (ret) {
efe120a0 3063 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
3064 close_ctree(tree_root);
3065 return ret;
3066 }
3067
b382a324
JS
3068 btrfs_qgroup_rescan_resume(fs_info);
3069
4bbcaa64 3070 if (!fs_info->uuid_root) {
efe120a0 3071 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
3072 ret = btrfs_create_uuid_tree(fs_info);
3073 if (ret) {
efe120a0 3074 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
3075 ret);
3076 close_ctree(tree_root);
3077 return ret;
3078 }
4bbcaa64
ES
3079 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3080 fs_info->generation !=
3081 btrfs_super_uuid_tree_generation(disk_super)) {
efe120a0 3082 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
3083 ret = btrfs_check_uuid_tree(fs_info);
3084 if (ret) {
efe120a0 3085 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
3086 ret);
3087 close_ctree(tree_root);
3088 return ret;
3089 }
3090 } else {
3091 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
3092 }
3093
47ab2a6c
JB
3094 fs_info->open = 1;
3095
ad2b2c80 3096 return 0;
39279cc3 3097
bcef60f2
AJ
3098fail_qgroup:
3099 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3100fail_trans_kthread:
3101 kthread_stop(fs_info->transaction_kthread);
54067ae9 3102 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3103 btrfs_free_fs_roots(fs_info);
3f157a2f 3104fail_cleaner:
a74a4b97 3105 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3106
3107 /*
3108 * make sure we're done with the btree inode before we stop our
3109 * kthreads
3110 */
3111 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3112
2365dd3c
AJ
3113fail_sysfs:
3114 btrfs_sysfs_remove_one(fs_info);
3115
b7c35e81
AJ
3116fail_fsdev_sysfs:
3117 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3118
1b1d1f66 3119fail_block_groups:
54067ae9 3120 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3121 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3122
3123fail_tree_roots:
3124 free_root_pointers(fs_info, 1);
2b8195bb 3125 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3126
39279cc3 3127fail_sb_buffer:
7abadb64 3128 btrfs_stop_all_workers(fs_info);
16cdcec7 3129fail_alloc:
4543df7e 3130fail_iput:
586e46e2
ID
3131 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3132
4543df7e 3133 iput(fs_info->btree_inode);
c404e0dc
MX
3134fail_bio_counter:
3135 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3136fail_delalloc_bytes:
3137 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3138fail_dirty_metadata_bytes:
3139 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3140fail_bdi:
7e662854 3141 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3142fail_srcu:
3143 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3144fail:
53b381b3 3145 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3146 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3147 return err;
af31f5e5
CM
3148
3149recovery_tree_root:
af31f5e5
CM
3150 if (!btrfs_test_opt(tree_root, RECOVERY))
3151 goto fail_tree_roots;
3152
3153 free_root_pointers(fs_info, 0);
3154
3155 /* don't use the log in recovery mode, it won't be valid */
3156 btrfs_set_super_log_root(disk_super, 0);
3157
3158 /* we can't trust the free space cache either */
3159 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3160
3161 ret = next_root_backup(fs_info, fs_info->super_copy,
3162 &num_backups_tried, &backup_index);
3163 if (ret == -1)
3164 goto fail_block_groups;
3165 goto retry_root_backup;
eb60ceac
CM
3166}
3167
f2984462
CM
3168static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3169{
f2984462
CM
3170 if (uptodate) {
3171 set_buffer_uptodate(bh);
3172 } else {
442a4f63
SB
3173 struct btrfs_device *device = (struct btrfs_device *)
3174 bh->b_private;
3175
efe120a0 3176 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3177 "I/O error on %s\n",
3178 rcu_str_deref(device->name));
1259ab75
CM
3179 /* note, we dont' set_buffer_write_io_error because we have
3180 * our own ways of dealing with the IO errors
3181 */
f2984462 3182 clear_buffer_uptodate(bh);
442a4f63 3183 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3184 }
3185 unlock_buffer(bh);
3186 put_bh(bh);
3187}
3188
a512bbf8
YZ
3189struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3190{
3191 struct buffer_head *bh;
3192 struct buffer_head *latest = NULL;
3193 struct btrfs_super_block *super;
3194 int i;
3195 u64 transid = 0;
3196 u64 bytenr;
3197
3198 /* we would like to check all the supers, but that would make
3199 * a btrfs mount succeed after a mkfs from a different FS.
3200 * So, we need to add a special mount option to scan for
3201 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3202 */
3203 for (i = 0; i < 1; i++) {
3204 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3205 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3206 i_size_read(bdev->bd_inode))
a512bbf8 3207 break;
8068a47e
AJ
3208 bh = __bread(bdev, bytenr / 4096,
3209 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3210 if (!bh)
3211 continue;
3212
3213 super = (struct btrfs_super_block *)bh->b_data;
3214 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3215 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3216 brelse(bh);
3217 continue;
3218 }
3219
3220 if (!latest || btrfs_super_generation(super) > transid) {
3221 brelse(latest);
3222 latest = bh;
3223 transid = btrfs_super_generation(super);
3224 } else {
3225 brelse(bh);
3226 }
3227 }
3228 return latest;
3229}
3230
4eedeb75
HH
3231/*
3232 * this should be called twice, once with wait == 0 and
3233 * once with wait == 1. When wait == 0 is done, all the buffer heads
3234 * we write are pinned.
3235 *
3236 * They are released when wait == 1 is done.
3237 * max_mirrors must be the same for both runs, and it indicates how
3238 * many supers on this one device should be written.
3239 *
3240 * max_mirrors == 0 means to write them all.
3241 */
a512bbf8
YZ
3242static int write_dev_supers(struct btrfs_device *device,
3243 struct btrfs_super_block *sb,
3244 int do_barriers, int wait, int max_mirrors)
3245{
3246 struct buffer_head *bh;
3247 int i;
3248 int ret;
3249 int errors = 0;
3250 u32 crc;
3251 u64 bytenr;
a512bbf8
YZ
3252
3253 if (max_mirrors == 0)
3254 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3255
a512bbf8
YZ
3256 for (i = 0; i < max_mirrors; i++) {
3257 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3258 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3259 device->commit_total_bytes)
a512bbf8
YZ
3260 break;
3261
3262 if (wait) {
3263 bh = __find_get_block(device->bdev, bytenr / 4096,
3264 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3265 if (!bh) {
3266 errors++;
3267 continue;
3268 }
a512bbf8 3269 wait_on_buffer(bh);
4eedeb75
HH
3270 if (!buffer_uptodate(bh))
3271 errors++;
3272
3273 /* drop our reference */
3274 brelse(bh);
3275
3276 /* drop the reference from the wait == 0 run */
3277 brelse(bh);
3278 continue;
a512bbf8
YZ
3279 } else {
3280 btrfs_set_super_bytenr(sb, bytenr);
3281
3282 crc = ~(u32)0;
b0496686 3283 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3284 BTRFS_CSUM_SIZE, crc,
3285 BTRFS_SUPER_INFO_SIZE -
3286 BTRFS_CSUM_SIZE);
3287 btrfs_csum_final(crc, sb->csum);
3288
4eedeb75
HH
3289 /*
3290 * one reference for us, and we leave it for the
3291 * caller
3292 */
a512bbf8
YZ
3293 bh = __getblk(device->bdev, bytenr / 4096,
3294 BTRFS_SUPER_INFO_SIZE);
634554dc 3295 if (!bh) {
efe120a0 3296 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3297 "buffer head for bytenr %Lu\n", bytenr);
3298 errors++;
3299 continue;
3300 }
3301
a512bbf8
YZ
3302 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3303
4eedeb75 3304 /* one reference for submit_bh */
a512bbf8 3305 get_bh(bh);
4eedeb75
HH
3306
3307 set_buffer_uptodate(bh);
a512bbf8
YZ
3308 lock_buffer(bh);
3309 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3310 bh->b_private = device;
a512bbf8
YZ
3311 }
3312
387125fc
CM
3313 /*
3314 * we fua the first super. The others we allow
3315 * to go down lazy.
3316 */
e8117c26
WS
3317 if (i == 0)
3318 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3319 else
3320 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3321 if (ret)
a512bbf8 3322 errors++;
a512bbf8
YZ
3323 }
3324 return errors < i ? 0 : -1;
3325}
3326
387125fc
CM
3327/*
3328 * endio for the write_dev_flush, this will wake anyone waiting
3329 * for the barrier when it is done
3330 */
4246a0b6 3331static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3332{
387125fc
CM
3333 if (bio->bi_private)
3334 complete(bio->bi_private);
3335 bio_put(bio);
3336}
3337
3338/*
3339 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3340 * sent down. With wait == 1, it waits for the previous flush.
3341 *
3342 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3343 * capable
3344 */
3345static int write_dev_flush(struct btrfs_device *device, int wait)
3346{
3347 struct bio *bio;
3348 int ret = 0;
3349
3350 if (device->nobarriers)
3351 return 0;
3352
3353 if (wait) {
3354 bio = device->flush_bio;
3355 if (!bio)
3356 return 0;
3357
3358 wait_for_completion(&device->flush_wait);
3359
4246a0b6
CH
3360 if (bio->bi_error) {
3361 ret = bio->bi_error;
5af3e8cc
SB
3362 btrfs_dev_stat_inc_and_print(device,
3363 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3364 }
3365
3366 /* drop the reference from the wait == 0 run */
3367 bio_put(bio);
3368 device->flush_bio = NULL;
3369
3370 return ret;
3371 }
3372
3373 /*
3374 * one reference for us, and we leave it for the
3375 * caller
3376 */
9c017abc 3377 device->flush_bio = NULL;
9be3395b 3378 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3379 if (!bio)
3380 return -ENOMEM;
3381
3382 bio->bi_end_io = btrfs_end_empty_barrier;
3383 bio->bi_bdev = device->bdev;
3384 init_completion(&device->flush_wait);
3385 bio->bi_private = &device->flush_wait;
3386 device->flush_bio = bio;
3387
3388 bio_get(bio);
21adbd5c 3389 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3390
3391 return 0;
3392}
3393
3394/*
3395 * send an empty flush down to each device in parallel,
3396 * then wait for them
3397 */
3398static int barrier_all_devices(struct btrfs_fs_info *info)
3399{
3400 struct list_head *head;
3401 struct btrfs_device *dev;
5af3e8cc
SB
3402 int errors_send = 0;
3403 int errors_wait = 0;
387125fc
CM
3404 int ret;
3405
3406 /* send down all the barriers */
3407 head = &info->fs_devices->devices;
3408 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3409 if (dev->missing)
3410 continue;
387125fc 3411 if (!dev->bdev) {
5af3e8cc 3412 errors_send++;
387125fc
CM
3413 continue;
3414 }
3415 if (!dev->in_fs_metadata || !dev->writeable)
3416 continue;
3417
3418 ret = write_dev_flush(dev, 0);
3419 if (ret)
5af3e8cc 3420 errors_send++;
387125fc
CM
3421 }
3422
3423 /* wait for all the barriers */
3424 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3425 if (dev->missing)
3426 continue;
387125fc 3427 if (!dev->bdev) {
5af3e8cc 3428 errors_wait++;
387125fc
CM
3429 continue;
3430 }
3431 if (!dev->in_fs_metadata || !dev->writeable)
3432 continue;
3433
3434 ret = write_dev_flush(dev, 1);
3435 if (ret)
5af3e8cc 3436 errors_wait++;
387125fc 3437 }
5af3e8cc
SB
3438 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3439 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3440 return -EIO;
3441 return 0;
3442}
3443
5af3e8cc
SB
3444int btrfs_calc_num_tolerated_disk_barrier_failures(
3445 struct btrfs_fs_info *fs_info)
3446{
3447 struct btrfs_ioctl_space_info space;
3448 struct btrfs_space_info *sinfo;
3449 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3450 BTRFS_BLOCK_GROUP_SYSTEM,
3451 BTRFS_BLOCK_GROUP_METADATA,
3452 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3453 int num_types = 4;
3454 int i;
3455 int c;
3456 int num_tolerated_disk_barrier_failures =
3457 (int)fs_info->fs_devices->num_devices;
3458
3459 for (i = 0; i < num_types; i++) {
3460 struct btrfs_space_info *tmp;
3461
3462 sinfo = NULL;
3463 rcu_read_lock();
3464 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3465 if (tmp->flags == types[i]) {
3466 sinfo = tmp;
3467 break;
3468 }
3469 }
3470 rcu_read_unlock();
3471
3472 if (!sinfo)
3473 continue;
3474
3475 down_read(&sinfo->groups_sem);
3476 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3477 if (!list_empty(&sinfo->block_groups[c])) {
3478 u64 flags;
3479
3480 btrfs_get_block_group_info(
3481 &sinfo->block_groups[c], &space);
3482 if (space.total_bytes == 0 ||
3483 space.used_bytes == 0)
3484 continue;
3485 flags = space.flags;
3486 /*
3487 * return
3488 * 0: if dup, single or RAID0 is configured for
3489 * any of metadata, system or data, else
3490 * 1: if RAID5 is configured, or if RAID1 or
3491 * RAID10 is configured and only two mirrors
3492 * are used, else
3493 * 2: if RAID6 is configured, else
3494 * num_mirrors - 1: if RAID1 or RAID10 is
3495 * configured and more than
3496 * 2 mirrors are used.
3497 */
3498 if (num_tolerated_disk_barrier_failures > 0 &&
3499 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3500 BTRFS_BLOCK_GROUP_RAID0)) ||
3501 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3502 == 0)))
3503 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3504 else if (num_tolerated_disk_barrier_failures > 1) {
3505 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3506 BTRFS_BLOCK_GROUP_RAID5 |
3507 BTRFS_BLOCK_GROUP_RAID10)) {
3508 num_tolerated_disk_barrier_failures = 1;
3509 } else if (flags &
15b0a89d 3510 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3511 num_tolerated_disk_barrier_failures = 2;
3512 }
3513 }
5af3e8cc
SB
3514 }
3515 }
3516 up_read(&sinfo->groups_sem);
3517 }
3518
3519 return num_tolerated_disk_barrier_failures;
3520}
3521
48a3b636 3522static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3523{
e5e9a520 3524 struct list_head *head;
f2984462 3525 struct btrfs_device *dev;
a061fc8d 3526 struct btrfs_super_block *sb;
f2984462 3527 struct btrfs_dev_item *dev_item;
f2984462
CM
3528 int ret;
3529 int do_barriers;
a236aed1
CM
3530 int max_errors;
3531 int total_errors = 0;
a061fc8d 3532 u64 flags;
f2984462
CM
3533
3534 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3535 backup_super_roots(root->fs_info);
f2984462 3536
6c41761f 3537 sb = root->fs_info->super_for_commit;
a061fc8d 3538 dev_item = &sb->dev_item;
e5e9a520 3539
174ba509 3540 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3541 head = &root->fs_info->fs_devices->devices;
d7306801 3542 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3543
5af3e8cc
SB
3544 if (do_barriers) {
3545 ret = barrier_all_devices(root->fs_info);
3546 if (ret) {
3547 mutex_unlock(
3548 &root->fs_info->fs_devices->device_list_mutex);
3549 btrfs_error(root->fs_info, ret,
3550 "errors while submitting device barriers.");
3551 return ret;
3552 }
3553 }
387125fc 3554
1f78160c 3555 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3556 if (!dev->bdev) {
3557 total_errors++;
3558 continue;
3559 }
2b82032c 3560 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3561 continue;
3562
2b82032c 3563 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3564 btrfs_set_stack_device_type(dev_item, dev->type);
3565 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3566 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3567 dev->commit_total_bytes);
ce7213c7
MX
3568 btrfs_set_stack_device_bytes_used(dev_item,
3569 dev->commit_bytes_used);
a061fc8d
CM
3570 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3571 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3572 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3573 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3574 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3575
a061fc8d
CM
3576 flags = btrfs_super_flags(sb);
3577 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3578
a512bbf8 3579 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3580 if (ret)
3581 total_errors++;
f2984462 3582 }
a236aed1 3583 if (total_errors > max_errors) {
efe120a0 3584 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3585 total_errors);
a724b436 3586 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3587
9d565ba4
SB
3588 /* FUA is masked off if unsupported and can't be the reason */
3589 btrfs_error(root->fs_info, -EIO,
3590 "%d errors while writing supers", total_errors);
3591 return -EIO;
a236aed1 3592 }
f2984462 3593
a512bbf8 3594 total_errors = 0;
1f78160c 3595 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3596 if (!dev->bdev)
3597 continue;
2b82032c 3598 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3599 continue;
3600
a512bbf8
YZ
3601 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3602 if (ret)
3603 total_errors++;
f2984462 3604 }
174ba509 3605 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3606 if (total_errors > max_errors) {
79787eaa
JM
3607 btrfs_error(root->fs_info, -EIO,
3608 "%d errors while writing supers", total_errors);
3609 return -EIO;
a236aed1 3610 }
f2984462
CM
3611 return 0;
3612}
3613
a512bbf8
YZ
3614int write_ctree_super(struct btrfs_trans_handle *trans,
3615 struct btrfs_root *root, int max_mirrors)
eb60ceac 3616{
f570e757 3617 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3618}
3619
cb517eab
MX
3620/* Drop a fs root from the radix tree and free it. */
3621void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3622 struct btrfs_root *root)
2619ba1f 3623{
4df27c4d 3624 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3625 radix_tree_delete(&fs_info->fs_roots_radix,
3626 (unsigned long)root->root_key.objectid);
4df27c4d 3627 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3628
3629 if (btrfs_root_refs(&root->root_item) == 0)
3630 synchronize_srcu(&fs_info->subvol_srcu);
3631
1a4319cc 3632 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3633 btrfs_free_log(NULL, root);
3321719e 3634
faa2dbf0
JB
3635 if (root->free_ino_pinned)
3636 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3637 if (root->free_ino_ctl)
3638 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3639 free_fs_root(root);
4df27c4d
YZ
3640}
3641
3642static void free_fs_root(struct btrfs_root *root)
3643{
57cdc8db 3644 iput(root->ino_cache_inode);
4df27c4d 3645 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3646 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3647 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3648 if (root->anon_dev)
3649 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3650 if (root->subv_writers)
3651 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3652 free_extent_buffer(root->node);
3653 free_extent_buffer(root->commit_root);
581bb050
LZ
3654 kfree(root->free_ino_ctl);
3655 kfree(root->free_ino_pinned);
d397712b 3656 kfree(root->name);
b0feb9d9 3657 btrfs_put_fs_root(root);
2619ba1f
CM
3658}
3659
cb517eab
MX
3660void btrfs_free_fs_root(struct btrfs_root *root)
3661{
3662 free_fs_root(root);
2619ba1f
CM
3663}
3664
c146afad 3665int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3666{
c146afad
YZ
3667 u64 root_objectid = 0;
3668 struct btrfs_root *gang[8];
65d33fd7
QW
3669 int i = 0;
3670 int err = 0;
3671 unsigned int ret = 0;
3672 int index;
e089f05c 3673
c146afad 3674 while (1) {
65d33fd7 3675 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3676 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3677 (void **)gang, root_objectid,
3678 ARRAY_SIZE(gang));
65d33fd7
QW
3679 if (!ret) {
3680 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3681 break;
65d33fd7 3682 }
5d4f98a2 3683 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3684
c146afad 3685 for (i = 0; i < ret; i++) {
65d33fd7
QW
3686 /* Avoid to grab roots in dead_roots */
3687 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3688 gang[i] = NULL;
3689 continue;
3690 }
3691 /* grab all the search result for later use */
3692 gang[i] = btrfs_grab_fs_root(gang[i]);
3693 }
3694 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3695
65d33fd7
QW
3696 for (i = 0; i < ret; i++) {
3697 if (!gang[i])
3698 continue;
c146afad 3699 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3700 err = btrfs_orphan_cleanup(gang[i]);
3701 if (err)
65d33fd7
QW
3702 break;
3703 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3704 }
3705 root_objectid++;
3706 }
65d33fd7
QW
3707
3708 /* release the uncleaned roots due to error */
3709 for (; i < ret; i++) {
3710 if (gang[i])
3711 btrfs_put_fs_root(gang[i]);
3712 }
3713 return err;
c146afad 3714}
a2135011 3715
c146afad
YZ
3716int btrfs_commit_super(struct btrfs_root *root)
3717{
3718 struct btrfs_trans_handle *trans;
a74a4b97 3719
c146afad 3720 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3721 btrfs_run_delayed_iputs(root);
c146afad 3722 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3723 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3724
3725 /* wait until ongoing cleanup work done */
3726 down_write(&root->fs_info->cleanup_work_sem);
3727 up_write(&root->fs_info->cleanup_work_sem);
3728
7a7eaa40 3729 trans = btrfs_join_transaction(root);
3612b495
TI
3730 if (IS_ERR(trans))
3731 return PTR_ERR(trans);
d52c1bcc 3732 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3733}
3734
3abdbd78 3735void close_ctree(struct btrfs_root *root)
c146afad
YZ
3736{
3737 struct btrfs_fs_info *fs_info = root->fs_info;
3738 int ret;
3739
3740 fs_info->closing = 1;
3741 smp_mb();
3742
803b2f54
SB
3743 /* wait for the uuid_scan task to finish */
3744 down(&fs_info->uuid_tree_rescan_sem);
3745 /* avoid complains from lockdep et al., set sem back to initial state */
3746 up(&fs_info->uuid_tree_rescan_sem);
3747
837d5b6e 3748 /* pause restriper - we want to resume on mount */
aa1b8cd4 3749 btrfs_pause_balance(fs_info);
837d5b6e 3750
8dabb742
SB
3751 btrfs_dev_replace_suspend_for_unmount(fs_info);
3752
aa1b8cd4 3753 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3754
3755 /* wait for any defraggers to finish */
3756 wait_event(fs_info->transaction_wait,
3757 (atomic_read(&fs_info->defrag_running) == 0));
3758
3759 /* clear out the rbtree of defraggable inodes */
26176e7c 3760 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3761
21c7e756
MX
3762 cancel_work_sync(&fs_info->async_reclaim_work);
3763
c146afad 3764 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3765 ret = btrfs_commit_super(root);
3766 if (ret)
04892340 3767 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3768 }
3769
87533c47 3770 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3771 btrfs_error_commit_super(root);
0f7d52f4 3772
e3029d9f
AV
3773 kthread_stop(fs_info->transaction_kthread);
3774 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3775
f25784b3
YZ
3776 fs_info->closing = 2;
3777 smp_mb();
3778
04892340 3779 btrfs_free_qgroup_config(fs_info);
bcef60f2 3780
963d678b 3781 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3782 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3783 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3784 }
bcc63abb 3785
5ac1d209 3786 btrfs_sysfs_remove_one(fs_info);
b7c35e81 3787 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3788
faa2dbf0 3789 btrfs_free_fs_roots(fs_info);
d10c5f31 3790
1a4319cc
LB
3791 btrfs_put_block_group_cache(fs_info);
3792
2b1360da
JB
3793 btrfs_free_block_groups(fs_info);
3794
de348ee0
WS
3795 /*
3796 * we must make sure there is not any read request to
3797 * submit after we stopping all workers.
3798 */
3799 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3800 btrfs_stop_all_workers(fs_info);
3801
47ab2a6c 3802 fs_info->open = 0;
13e6c37b 3803 free_root_pointers(fs_info, 1);
9ad6b7bc 3804
13e6c37b 3805 iput(fs_info->btree_inode);
d6bfde87 3806
21adbd5c
SB
3807#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3808 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3809 btrfsic_unmount(root, fs_info->fs_devices);
3810#endif
3811
dfe25020 3812 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3813 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3814
e2d84521 3815 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3816 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3817 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3818 bdi_destroy(&fs_info->bdi);
76dda93c 3819 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3820
53b381b3
DW
3821 btrfs_free_stripe_hash_table(fs_info);
3822
cdfb080e 3823 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3824 root->orphan_block_rsv = NULL;
04216820
FM
3825
3826 lock_chunks(root);
3827 while (!list_empty(&fs_info->pinned_chunks)) {
3828 struct extent_map *em;
3829
3830 em = list_first_entry(&fs_info->pinned_chunks,
3831 struct extent_map, list);
3832 list_del_init(&em->list);
3833 free_extent_map(em);
3834 }
3835 unlock_chunks(root);
eb60ceac
CM
3836}
3837
b9fab919
CM
3838int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3839 int atomic)
5f39d397 3840{
1259ab75 3841 int ret;
727011e0 3842 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3843
0b32f4bb 3844 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3845 if (!ret)
3846 return ret;
3847
3848 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3849 parent_transid, atomic);
3850 if (ret == -EAGAIN)
3851 return ret;
1259ab75 3852 return !ret;
5f39d397
CM
3853}
3854
3855int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3856{
0b32f4bb 3857 return set_extent_buffer_uptodate(buf);
5f39d397 3858}
6702ed49 3859
5f39d397
CM
3860void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3861{
06ea65a3 3862 struct btrfs_root *root;
5f39d397 3863 u64 transid = btrfs_header_generation(buf);
b9473439 3864 int was_dirty;
b4ce94de 3865
06ea65a3
JB
3866#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3867 /*
3868 * This is a fast path so only do this check if we have sanity tests
3869 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3870 * outside of the sanity tests.
3871 */
3872 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3873 return;
3874#endif
3875 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3876 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3877 if (transid != root->fs_info->generation)
3878 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3879 "found %llu running %llu\n",
c1c9ff7c 3880 buf->start, transid, root->fs_info->generation);
0b32f4bb 3881 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3882 if (!was_dirty)
3883 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3884 buf->len,
3885 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3886#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3887 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3888 btrfs_print_leaf(root, buf);
3889 ASSERT(0);
3890 }
3891#endif
eb60ceac
CM
3892}
3893
b53d3f5d
LB
3894static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3895 int flush_delayed)
16cdcec7
MX
3896{
3897 /*
3898 * looks as though older kernels can get into trouble with
3899 * this code, they end up stuck in balance_dirty_pages forever
3900 */
e2d84521 3901 int ret;
16cdcec7
MX
3902
3903 if (current->flags & PF_MEMALLOC)
3904 return;
3905
b53d3f5d
LB
3906 if (flush_delayed)
3907 btrfs_balance_delayed_items(root);
16cdcec7 3908
e2d84521
MX
3909 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3910 BTRFS_DIRTY_METADATA_THRESH);
3911 if (ret > 0) {
d0e1d66b
NJ
3912 balance_dirty_pages_ratelimited(
3913 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3914 }
3915 return;
3916}
3917
b53d3f5d 3918void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3919{
b53d3f5d
LB
3920 __btrfs_btree_balance_dirty(root, 1);
3921}
585ad2c3 3922
b53d3f5d
LB
3923void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3924{
3925 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3926}
6b80053d 3927
ca7a79ad 3928int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3929{
727011e0 3930 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3931 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3932}
0da5468f 3933
fcd1f065 3934static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3935 int read_only)
3936{
c926093e
DS
3937 struct btrfs_super_block *sb = fs_info->super_copy;
3938 int ret = 0;
3939
21e7626b
DS
3940 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3941 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3942 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3943 ret = -EINVAL;
3944 }
21e7626b
DS
3945 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3946 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3947 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3948 ret = -EINVAL;
3949 }
21e7626b
DS
3950 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3951 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3952 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3953 ret = -EINVAL;
3954 }
3955
1104a885 3956 /*
c926093e
DS
3957 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3958 * items yet, they'll be verified later. Issue just a warning.
1104a885 3959 */
21e7626b 3960 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
c926093e 3961 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
cd743fac 3962 btrfs_super_root(sb));
21e7626b 3963 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
cd743fac
DS
3964 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3965 btrfs_super_chunk_root(sb));
21e7626b 3966 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
cd743fac 3967 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
21e7626b 3968 btrfs_super_log_root(sb));
c926093e 3969
75d6ad38
DS
3970 /*
3971 * Check the lower bound, the alignment and other constraints are
3972 * checked later.
3973 */
3974 if (btrfs_super_nodesize(sb) < 4096) {
3975 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3976 btrfs_super_nodesize(sb));
3977 ret = -EINVAL;
3978 }
3979 if (btrfs_super_sectorsize(sb) < 4096) {
3980 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3981 btrfs_super_sectorsize(sb));
3982 ret = -EINVAL;
3983 }
3984
c926093e
DS
3985 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3986 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3987 fs_info->fsid, sb->dev_item.fsid);
3988 ret = -EINVAL;
3989 }
3990
3991 /*
3992 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3993 * done later
3994 */
21e7626b 3995 if (btrfs_super_num_devices(sb) > (1UL << 31))
c926093e 3996 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
21e7626b 3997 btrfs_super_num_devices(sb));
75d6ad38
DS
3998 if (btrfs_super_num_devices(sb) == 0) {
3999 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4000 ret = -EINVAL;
4001 }
c926093e 4002
21e7626b 4003 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
c926093e 4004 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
21e7626b 4005 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4006 ret = -EINVAL;
4007 }
4008
ce7fca5f
DS
4009 /*
4010 * Obvious sys_chunk_array corruptions, it must hold at least one key
4011 * and one chunk
4012 */
4013 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4014 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4015 btrfs_super_sys_array_size(sb),
4016 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4017 ret = -EINVAL;
4018 }
4019 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4020 + sizeof(struct btrfs_chunk)) {
d2207129 4021 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
ce7fca5f
DS
4022 btrfs_super_sys_array_size(sb),
4023 sizeof(struct btrfs_disk_key)
4024 + sizeof(struct btrfs_chunk));
4025 ret = -EINVAL;
4026 }
4027
c926093e
DS
4028 /*
4029 * The generation is a global counter, we'll trust it more than the others
4030 * but it's still possible that it's the one that's wrong.
4031 */
21e7626b 4032 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
c926093e
DS
4033 printk(KERN_WARNING
4034 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
21e7626b
DS
4035 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4036 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4037 && btrfs_super_cache_generation(sb) != (u64)-1)
c926093e
DS
4038 printk(KERN_WARNING
4039 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
21e7626b 4040 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
c926093e
DS
4041
4042 return ret;
acce952b 4043}
4044
48a3b636 4045static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 4046{
acce952b 4047 mutex_lock(&root->fs_info->cleaner_mutex);
4048 btrfs_run_delayed_iputs(root);
4049 mutex_unlock(&root->fs_info->cleaner_mutex);
4050
4051 down_write(&root->fs_info->cleanup_work_sem);
4052 up_write(&root->fs_info->cleanup_work_sem);
4053
4054 /* cleanup FS via transaction */
4055 btrfs_cleanup_transaction(root);
acce952b 4056}
4057
143bede5 4058static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4059{
acce952b 4060 struct btrfs_ordered_extent *ordered;
acce952b 4061
199c2a9c 4062 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4063 /*
4064 * This will just short circuit the ordered completion stuff which will
4065 * make sure the ordered extent gets properly cleaned up.
4066 */
199c2a9c 4067 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4068 root_extent_list)
4069 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4070 spin_unlock(&root->ordered_extent_lock);
4071}
4072
4073static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4074{
4075 struct btrfs_root *root;
4076 struct list_head splice;
4077
4078 INIT_LIST_HEAD(&splice);
4079
4080 spin_lock(&fs_info->ordered_root_lock);
4081 list_splice_init(&fs_info->ordered_roots, &splice);
4082 while (!list_empty(&splice)) {
4083 root = list_first_entry(&splice, struct btrfs_root,
4084 ordered_root);
1de2cfde
JB
4085 list_move_tail(&root->ordered_root,
4086 &fs_info->ordered_roots);
199c2a9c 4087
2a85d9ca 4088 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4089 btrfs_destroy_ordered_extents(root);
4090
2a85d9ca
LB
4091 cond_resched();
4092 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4093 }
4094 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4095}
4096
35a3621b
SB
4097static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4098 struct btrfs_root *root)
acce952b 4099{
4100 struct rb_node *node;
4101 struct btrfs_delayed_ref_root *delayed_refs;
4102 struct btrfs_delayed_ref_node *ref;
4103 int ret = 0;
4104
4105 delayed_refs = &trans->delayed_refs;
4106
4107 spin_lock(&delayed_refs->lock);
d7df2c79 4108 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4109 spin_unlock(&delayed_refs->lock);
efe120a0 4110 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 4111 return ret;
4112 }
4113
d7df2c79
JB
4114 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4115 struct btrfs_delayed_ref_head *head;
c6fc2454 4116 struct btrfs_delayed_ref_node *tmp;
e78417d1 4117 bool pin_bytes = false;
acce952b 4118
d7df2c79
JB
4119 head = rb_entry(node, struct btrfs_delayed_ref_head,
4120 href_node);
4121 if (!mutex_trylock(&head->mutex)) {
4122 atomic_inc(&head->node.refs);
4123 spin_unlock(&delayed_refs->lock);
eb12db69 4124
d7df2c79 4125 mutex_lock(&head->mutex);
e78417d1 4126 mutex_unlock(&head->mutex);
d7df2c79
JB
4127 btrfs_put_delayed_ref(&head->node);
4128 spin_lock(&delayed_refs->lock);
4129 continue;
4130 }
4131 spin_lock(&head->lock);
c6fc2454
QW
4132 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4133 list) {
d7df2c79 4134 ref->in_tree = 0;
c6fc2454 4135 list_del(&ref->list);
d7df2c79
JB
4136 atomic_dec(&delayed_refs->num_entries);
4137 btrfs_put_delayed_ref(ref);
e78417d1 4138 }
d7df2c79
JB
4139 if (head->must_insert_reserved)
4140 pin_bytes = true;
4141 btrfs_free_delayed_extent_op(head->extent_op);
4142 delayed_refs->num_heads--;
4143 if (head->processing == 0)
4144 delayed_refs->num_heads_ready--;
4145 atomic_dec(&delayed_refs->num_entries);
4146 head->node.in_tree = 0;
4147 rb_erase(&head->href_node, &delayed_refs->href_root);
4148 spin_unlock(&head->lock);
4149 spin_unlock(&delayed_refs->lock);
4150 mutex_unlock(&head->mutex);
acce952b 4151
d7df2c79
JB
4152 if (pin_bytes)
4153 btrfs_pin_extent(root, head->node.bytenr,
4154 head->node.num_bytes, 1);
4155 btrfs_put_delayed_ref(&head->node);
acce952b 4156 cond_resched();
4157 spin_lock(&delayed_refs->lock);
4158 }
4159
4160 spin_unlock(&delayed_refs->lock);
4161
4162 return ret;
4163}
4164
143bede5 4165static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4166{
4167 struct btrfs_inode *btrfs_inode;
4168 struct list_head splice;
4169
4170 INIT_LIST_HEAD(&splice);
4171
eb73c1b7
MX
4172 spin_lock(&root->delalloc_lock);
4173 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4174
4175 while (!list_empty(&splice)) {
eb73c1b7
MX
4176 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4177 delalloc_inodes);
acce952b 4178
4179 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4180 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4181 &btrfs_inode->runtime_flags);
eb73c1b7 4182 spin_unlock(&root->delalloc_lock);
acce952b 4183
4184 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4185
eb73c1b7 4186 spin_lock(&root->delalloc_lock);
acce952b 4187 }
4188
eb73c1b7
MX
4189 spin_unlock(&root->delalloc_lock);
4190}
4191
4192static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4193{
4194 struct btrfs_root *root;
4195 struct list_head splice;
4196
4197 INIT_LIST_HEAD(&splice);
4198
4199 spin_lock(&fs_info->delalloc_root_lock);
4200 list_splice_init(&fs_info->delalloc_roots, &splice);
4201 while (!list_empty(&splice)) {
4202 root = list_first_entry(&splice, struct btrfs_root,
4203 delalloc_root);
4204 list_del_init(&root->delalloc_root);
4205 root = btrfs_grab_fs_root(root);
4206 BUG_ON(!root);
4207 spin_unlock(&fs_info->delalloc_root_lock);
4208
4209 btrfs_destroy_delalloc_inodes(root);
4210 btrfs_put_fs_root(root);
4211
4212 spin_lock(&fs_info->delalloc_root_lock);
4213 }
4214 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4215}
4216
4217static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4218 struct extent_io_tree *dirty_pages,
4219 int mark)
4220{
4221 int ret;
acce952b 4222 struct extent_buffer *eb;
4223 u64 start = 0;
4224 u64 end;
acce952b 4225
4226 while (1) {
4227 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4228 mark, NULL);
acce952b 4229 if (ret)
4230 break;
4231
4232 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4233 while (start <= end) {
01d58472 4234 eb = btrfs_find_tree_block(root->fs_info, start);
707e8a07 4235 start += root->nodesize;
fd8b2b61 4236 if (!eb)
acce952b 4237 continue;
fd8b2b61 4238 wait_on_extent_buffer_writeback(eb);
acce952b 4239
fd8b2b61
JB
4240 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4241 &eb->bflags))
4242 clear_extent_buffer_dirty(eb);
4243 free_extent_buffer_stale(eb);
acce952b 4244 }
4245 }
4246
4247 return ret;
4248}
4249
4250static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4251 struct extent_io_tree *pinned_extents)
4252{
4253 struct extent_io_tree *unpin;
4254 u64 start;
4255 u64 end;
4256 int ret;
ed0eaa14 4257 bool loop = true;
acce952b 4258
4259 unpin = pinned_extents;
ed0eaa14 4260again:
acce952b 4261 while (1) {
4262 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4263 EXTENT_DIRTY, NULL);
acce952b 4264 if (ret)
4265 break;
4266
acce952b 4267 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4268 btrfs_error_unpin_extent_range(root, start, end);
4269 cond_resched();
4270 }
4271
ed0eaa14
LB
4272 if (loop) {
4273 if (unpin == &root->fs_info->freed_extents[0])
4274 unpin = &root->fs_info->freed_extents[1];
4275 else
4276 unpin = &root->fs_info->freed_extents[0];
4277 loop = false;
4278 goto again;
4279 }
4280
acce952b 4281 return 0;
4282}
4283
50d9aa99
JB
4284static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4285 struct btrfs_fs_info *fs_info)
4286{
4287 struct btrfs_ordered_extent *ordered;
4288
4289 spin_lock(&fs_info->trans_lock);
4290 while (!list_empty(&cur_trans->pending_ordered)) {
4291 ordered = list_first_entry(&cur_trans->pending_ordered,
4292 struct btrfs_ordered_extent,
4293 trans_list);
4294 list_del_init(&ordered->trans_list);
4295 spin_unlock(&fs_info->trans_lock);
4296
4297 btrfs_put_ordered_extent(ordered);
4298 spin_lock(&fs_info->trans_lock);
4299 }
4300 spin_unlock(&fs_info->trans_lock);
4301}
4302
49b25e05
JM
4303void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4304 struct btrfs_root *root)
4305{
4306 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4307
4a9d8bde 4308 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4309 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4310
4a9d8bde 4311 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4312 wake_up(&root->fs_info->transaction_wait);
49b25e05 4313
50d9aa99 4314 btrfs_free_pending_ordered(cur_trans, root->fs_info);
67cde344
MX
4315 btrfs_destroy_delayed_inodes(root);
4316 btrfs_assert_delayed_root_empty(root);
49b25e05 4317
49b25e05
JM
4318 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4319 EXTENT_DIRTY);
6e841e32
LB
4320 btrfs_destroy_pinned_extent(root,
4321 root->fs_info->pinned_extents);
49b25e05 4322
4a9d8bde
MX
4323 cur_trans->state =TRANS_STATE_COMPLETED;
4324 wake_up(&cur_trans->commit_wait);
4325
49b25e05
JM
4326 /*
4327 memset(cur_trans, 0, sizeof(*cur_trans));
4328 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4329 */
4330}
4331
48a3b636 4332static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4333{
4334 struct btrfs_transaction *t;
acce952b 4335
acce952b 4336 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4337
a4abeea4 4338 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4339 while (!list_empty(&root->fs_info->trans_list)) {
4340 t = list_first_entry(&root->fs_info->trans_list,
4341 struct btrfs_transaction, list);
4342 if (t->state >= TRANS_STATE_COMMIT_START) {
4343 atomic_inc(&t->use_count);
4344 spin_unlock(&root->fs_info->trans_lock);
4345 btrfs_wait_for_commit(root, t->transid);
4346 btrfs_put_transaction(t);
4347 spin_lock(&root->fs_info->trans_lock);
4348 continue;
4349 }
4350 if (t == root->fs_info->running_transaction) {
4351 t->state = TRANS_STATE_COMMIT_DOING;
4352 spin_unlock(&root->fs_info->trans_lock);
4353 /*
4354 * We wait for 0 num_writers since we don't hold a trans
4355 * handle open currently for this transaction.
4356 */
4357 wait_event(t->writer_wait,
4358 atomic_read(&t->num_writers) == 0);
4359 } else {
4360 spin_unlock(&root->fs_info->trans_lock);
4361 }
4362 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4363
724e2315
JB
4364 spin_lock(&root->fs_info->trans_lock);
4365 if (t == root->fs_info->running_transaction)
4366 root->fs_info->running_transaction = NULL;
acce952b 4367 list_del_init(&t->list);
724e2315 4368 spin_unlock(&root->fs_info->trans_lock);
acce952b 4369
724e2315
JB
4370 btrfs_put_transaction(t);
4371 trace_btrfs_transaction_commit(root);
4372 spin_lock(&root->fs_info->trans_lock);
4373 }
4374 spin_unlock(&root->fs_info->trans_lock);
4375 btrfs_destroy_all_ordered_extents(root->fs_info);
4376 btrfs_destroy_delayed_inodes(root);
4377 btrfs_assert_delayed_root_empty(root);
4378 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4379 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4380 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4381
4382 return 0;
4383}
4384
e8c9f186 4385static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4386 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4387 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4388 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4389 /* note we're sharing with inode.c for the merge bio hook */
4390 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4391};