]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - fs/btrfs/disk-io.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-focal-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
5a0e3ad6 28#include <linux/slab.h>
784b4e29 29#include <linux/migrate.h>
7a36ddec 30#include <linux/ratelimit.h>
6463fe58 31#include <linux/uuid.h>
803b2f54 32#include <linux/semaphore.h>
7e75bf3f 33#include <asm/unaligned.h>
eb60ceac
CM
34#include "ctree.h"
35#include "disk-io.h"
0b947aff 36#include "hash.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
925baedd 41#include "locking.h"
e02119d5 42#include "tree-log.h"
fa9c0d79 43#include "free-space-cache.h"
70f6d82e 44#include "free-space-tree.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
ebb8765b 52#include "compression.h"
eb60ceac 53
de0022b9
JB
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
319e4d06
QW
58#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
e8c9f186 64static const struct extent_io_ops btree_extent_io_ops;
8b712842 65static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 66static void free_fs_root(struct btrfs_root *root);
3d3a126a 67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
143bede5 68static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 69static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 70 struct btrfs_fs_info *fs_info);
143bede5 71static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 72static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 73 struct extent_io_tree *dirty_pages,
74 int mark);
2ff7e61e 75static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 76 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
77static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
78static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 79
d352ac68 80/*
97eb6b69
DS
81 * btrfs_end_io_wq structs are used to do processing in task context when an IO
82 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
83 * by writes to insert metadata for new file extents after IO is complete.
84 */
97eb6b69 85struct btrfs_end_io_wq {
ce9adaa5
CM
86 struct bio *bio;
87 bio_end_io_t *end_io;
88 void *private;
89 struct btrfs_fs_info *info;
4e4cbee9 90 blk_status_t status;
bfebd8b5 91 enum btrfs_wq_endio_type metadata;
8b712842 92 struct btrfs_work work;
ce9adaa5 93};
0da5468f 94
97eb6b69
DS
95static struct kmem_cache *btrfs_end_io_wq_cache;
96
97int __init btrfs_end_io_wq_init(void)
98{
99 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
100 sizeof(struct btrfs_end_io_wq),
101 0,
fba4b697 102 SLAB_MEM_SPREAD,
97eb6b69
DS
103 NULL);
104 if (!btrfs_end_io_wq_cache)
105 return -ENOMEM;
106 return 0;
107}
108
109void btrfs_end_io_wq_exit(void)
110{
5598e900 111 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
112}
113
d352ac68
CM
114/*
115 * async submit bios are used to offload expensive checksumming
116 * onto the worker threads. They checksum file and metadata bios
117 * just before they are sent down the IO stack.
118 */
44b8bd7e 119struct async_submit_bio {
c6100a4b
JB
120 void *private_data;
121 struct btrfs_fs_info *fs_info;
44b8bd7e 122 struct bio *bio;
4a69a410
CM
123 extent_submit_bio_hook_t *submit_bio_start;
124 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e 125 int mirror_num;
c8b97818 126 unsigned long bio_flags;
eaf25d93
CM
127 /*
128 * bio_offset is optional, can be used if the pages in the bio
129 * can't tell us where in the file the bio should go
130 */
131 u64 bio_offset;
8b712842 132 struct btrfs_work work;
4e4cbee9 133 blk_status_t status;
44b8bd7e
CM
134};
135
85d4e461
CM
136/*
137 * Lockdep class keys for extent_buffer->lock's in this root. For a given
138 * eb, the lockdep key is determined by the btrfs_root it belongs to and
139 * the level the eb occupies in the tree.
140 *
141 * Different roots are used for different purposes and may nest inside each
142 * other and they require separate keysets. As lockdep keys should be
143 * static, assign keysets according to the purpose of the root as indicated
144 * by btrfs_root->objectid. This ensures that all special purpose roots
145 * have separate keysets.
4008c04a 146 *
85d4e461
CM
147 * Lock-nesting across peer nodes is always done with the immediate parent
148 * node locked thus preventing deadlock. As lockdep doesn't know this, use
149 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 150 *
85d4e461
CM
151 * The key is set by the readpage_end_io_hook after the buffer has passed
152 * csum validation but before the pages are unlocked. It is also set by
153 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 154 *
85d4e461
CM
155 * We also add a check to make sure the highest level of the tree is the
156 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
157 * needs update as well.
4008c04a
CM
158 */
159#ifdef CONFIG_DEBUG_LOCK_ALLOC
160# if BTRFS_MAX_LEVEL != 8
161# error
162# endif
85d4e461
CM
163
164static struct btrfs_lockdep_keyset {
165 u64 id; /* root objectid */
166 const char *name_stem; /* lock name stem */
167 char names[BTRFS_MAX_LEVEL + 1][20];
168 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
169} btrfs_lockdep_keysets[] = {
170 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
171 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
172 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
173 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
174 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
175 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 176 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
177 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
178 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
179 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 180 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 181 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 182 { .id = 0, .name_stem = "tree" },
4008c04a 183};
85d4e461
CM
184
185void __init btrfs_init_lockdep(void)
186{
187 int i, j;
188
189 /* initialize lockdep class names */
190 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
191 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
192
193 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
194 snprintf(ks->names[j], sizeof(ks->names[j]),
195 "btrfs-%s-%02d", ks->name_stem, j);
196 }
197}
198
199void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
200 int level)
201{
202 struct btrfs_lockdep_keyset *ks;
203
204 BUG_ON(level >= ARRAY_SIZE(ks->keys));
205
206 /* find the matching keyset, id 0 is the default entry */
207 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
208 if (ks->id == objectid)
209 break;
210
211 lockdep_set_class_and_name(&eb->lock,
212 &ks->keys[level], ks->names[level]);
213}
214
4008c04a
CM
215#endif
216
d352ac68
CM
217/*
218 * extents on the btree inode are pretty simple, there's one extent
219 * that covers the entire device
220 */
fc4f21b1 221static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 222 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 223 int create)
7eccb903 224{
fc4f21b1
NB
225 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
226 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
227 struct extent_map *em;
228 int ret;
229
890871be 230 read_lock(&em_tree->lock);
d1310b2e 231 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 232 if (em) {
0b246afa 233 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 234 read_unlock(&em_tree->lock);
5f39d397 235 goto out;
a061fc8d 236 }
890871be 237 read_unlock(&em_tree->lock);
7b13b7b1 238
172ddd60 239 em = alloc_extent_map();
5f39d397
CM
240 if (!em) {
241 em = ERR_PTR(-ENOMEM);
242 goto out;
243 }
244 em->start = 0;
0afbaf8c 245 em->len = (u64)-1;
c8b97818 246 em->block_len = (u64)-1;
5f39d397 247 em->block_start = 0;
0b246afa 248 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 249
890871be 250 write_lock(&em_tree->lock);
09a2a8f9 251 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
252 if (ret == -EEXIST) {
253 free_extent_map(em);
7b13b7b1 254 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 255 if (!em)
0433f20d 256 em = ERR_PTR(-EIO);
5f39d397 257 } else if (ret) {
7b13b7b1 258 free_extent_map(em);
0433f20d 259 em = ERR_PTR(ret);
5f39d397 260 }
890871be 261 write_unlock(&em_tree->lock);
7b13b7b1 262
5f39d397
CM
263out:
264 return em;
7eccb903
CM
265}
266
9ed57367 267u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 268{
0b947aff 269 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
270}
271
0b5e3daf 272void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 273{
7e75bf3f 274 put_unaligned_le32(~crc, result);
19c00ddc
CM
275}
276
d352ac68
CM
277/*
278 * compute the csum for a btree block, and either verify it or write it
279 * into the csum field of the block.
280 */
01d58472
DD
281static int csum_tree_block(struct btrfs_fs_info *fs_info,
282 struct extent_buffer *buf,
19c00ddc
CM
283 int verify)
284{
01d58472 285 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 286 char *result = NULL;
19c00ddc
CM
287 unsigned long len;
288 unsigned long cur_len;
289 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
290 char *kaddr;
291 unsigned long map_start;
292 unsigned long map_len;
293 int err;
294 u32 crc = ~(u32)0;
607d432d 295 unsigned long inline_result;
19c00ddc
CM
296
297 len = buf->len - offset;
d397712b 298 while (len > 0) {
19c00ddc 299 err = map_private_extent_buffer(buf, offset, 32,
a6591715 300 &kaddr, &map_start, &map_len);
d397712b 301 if (err)
8bd98f0e 302 return err;
19c00ddc 303 cur_len = min(len, map_len - (offset - map_start));
b0496686 304 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
305 crc, cur_len);
306 len -= cur_len;
307 offset += cur_len;
19c00ddc 308 }
607d432d 309 if (csum_size > sizeof(inline_result)) {
31e818fe 310 result = kzalloc(csum_size, GFP_NOFS);
607d432d 311 if (!result)
8bd98f0e 312 return -ENOMEM;
607d432d
JB
313 } else {
314 result = (char *)&inline_result;
315 }
316
19c00ddc
CM
317 btrfs_csum_final(crc, result);
318
319 if (verify) {
607d432d 320 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
321 u32 val;
322 u32 found = 0;
607d432d 323 memcpy(&found, result, csum_size);
e4204ded 324
607d432d 325 read_extent_buffer(buf, &val, 0, csum_size);
94647322 326 btrfs_warn_rl(fs_info,
5d163e0e 327 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 328 fs_info->sb->s_id, buf->start,
efe120a0 329 val, found, btrfs_header_level(buf));
607d432d
JB
330 if (result != (char *)&inline_result)
331 kfree(result);
8bd98f0e 332 return -EUCLEAN;
19c00ddc
CM
333 }
334 } else {
607d432d 335 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 336 }
607d432d
JB
337 if (result != (char *)&inline_result)
338 kfree(result);
19c00ddc
CM
339 return 0;
340}
341
d352ac68
CM
342/*
343 * we can't consider a given block up to date unless the transid of the
344 * block matches the transid in the parent node's pointer. This is how we
345 * detect blocks that either didn't get written at all or got written
346 * in the wrong place.
347 */
1259ab75 348static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
349 struct extent_buffer *eb, u64 parent_transid,
350 int atomic)
1259ab75 351{
2ac55d41 352 struct extent_state *cached_state = NULL;
1259ab75 353 int ret;
2755a0de 354 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
355
356 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
357 return 0;
358
b9fab919
CM
359 if (atomic)
360 return -EAGAIN;
361
a26e8c9f
JB
362 if (need_lock) {
363 btrfs_tree_read_lock(eb);
364 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
365 }
366
2ac55d41 367 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 368 &cached_state);
0b32f4bb 369 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
370 btrfs_header_generation(eb) == parent_transid) {
371 ret = 0;
372 goto out;
373 }
94647322
DS
374 btrfs_err_rl(eb->fs_info,
375 "parent transid verify failed on %llu wanted %llu found %llu",
376 eb->start,
29549aec 377 parent_transid, btrfs_header_generation(eb));
1259ab75 378 ret = 1;
a26e8c9f
JB
379
380 /*
381 * Things reading via commit roots that don't have normal protection,
382 * like send, can have a really old block in cache that may point at a
01327610 383 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
384 * if we find an eb that is under IO (dirty/writeback) because we could
385 * end up reading in the stale data and then writing it back out and
386 * making everybody very sad.
387 */
388 if (!extent_buffer_under_io(eb))
389 clear_extent_buffer_uptodate(eb);
33958dc6 390out:
2ac55d41
JB
391 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
392 &cached_state, GFP_NOFS);
472b909f
JB
393 if (need_lock)
394 btrfs_tree_read_unlock_blocking(eb);
1259ab75 395 return ret;
1259ab75
CM
396}
397
1104a885
DS
398/*
399 * Return 0 if the superblock checksum type matches the checksum value of that
400 * algorithm. Pass the raw disk superblock data.
401 */
ab8d0fc4
JM
402static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
403 char *raw_disk_sb)
1104a885
DS
404{
405 struct btrfs_super_block *disk_sb =
406 (struct btrfs_super_block *)raw_disk_sb;
407 u16 csum_type = btrfs_super_csum_type(disk_sb);
408 int ret = 0;
409
410 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
411 u32 crc = ~(u32)0;
412 const int csum_size = sizeof(crc);
413 char result[csum_size];
414
415 /*
416 * The super_block structure does not span the whole
417 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 418 * is filled with zeros and is included in the checksum.
1104a885
DS
419 */
420 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
421 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
422 btrfs_csum_final(crc, result);
423
424 if (memcmp(raw_disk_sb, result, csum_size))
425 ret = 1;
426 }
427
428 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 429 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
430 csum_type);
431 ret = 1;
432 }
433
434 return ret;
435}
436
d352ac68
CM
437/*
438 * helper to read a given tree block, doing retries as required when
439 * the checksums don't match and we have alternate mirrors to try.
440 */
2ff7e61e 441static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 442 struct extent_buffer *eb,
8436ea91 443 u64 parent_transid)
f188591e
CM
444{
445 struct extent_io_tree *io_tree;
ea466794 446 int failed = 0;
f188591e
CM
447 int ret;
448 int num_copies = 0;
449 int mirror_num = 0;
ea466794 450 int failed_mirror = 0;
f188591e 451
a826d6dc 452 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
0b246afa 453 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 454 while (1) {
8436ea91 455 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
f188591e 456 btree_get_extent, mirror_num);
256dd1bb
SB
457 if (!ret) {
458 if (!verify_parent_transid(io_tree, eb,
b9fab919 459 parent_transid, 0))
256dd1bb
SB
460 break;
461 else
462 ret = -EIO;
463 }
d397712b 464
a826d6dc
JB
465 /*
466 * This buffer's crc is fine, but its contents are corrupted, so
467 * there is no reason to read the other copies, they won't be
468 * any less wrong.
469 */
470 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
471 break;
472
0b246afa 473 num_copies = btrfs_num_copies(fs_info,
f188591e 474 eb->start, eb->len);
4235298e 475 if (num_copies == 1)
ea466794 476 break;
4235298e 477
5cf1ab56
JB
478 if (!failed_mirror) {
479 failed = 1;
480 failed_mirror = eb->read_mirror;
481 }
482
f188591e 483 mirror_num++;
ea466794
JB
484 if (mirror_num == failed_mirror)
485 mirror_num++;
486
4235298e 487 if (mirror_num > num_copies)
ea466794 488 break;
f188591e 489 }
ea466794 490
c0901581 491 if (failed && !ret && failed_mirror)
2ff7e61e 492 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
493
494 return ret;
f188591e 495}
19c00ddc 496
d352ac68 497/*
d397712b
CM
498 * checksum a dirty tree block before IO. This has extra checks to make sure
499 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 500 */
d397712b 501
01d58472 502static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 503{
4eee4fa4 504 u64 start = page_offset(page);
19c00ddc 505 u64 found_start;
19c00ddc 506 struct extent_buffer *eb;
f188591e 507
4f2de97a
JB
508 eb = (struct extent_buffer *)page->private;
509 if (page != eb->pages[0])
510 return 0;
0f805531 511
19c00ddc 512 found_start = btrfs_header_bytenr(eb);
0f805531
AL
513 /*
514 * Please do not consolidate these warnings into a single if.
515 * It is useful to know what went wrong.
516 */
517 if (WARN_ON(found_start != start))
518 return -EUCLEAN;
519 if (WARN_ON(!PageUptodate(page)))
520 return -EUCLEAN;
521
522 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
523 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
524
8bd98f0e 525 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
526}
527
01d58472 528static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
529 struct extent_buffer *eb)
530{
01d58472 531 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 532 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
533 int ret = 1;
534
0a4e5586 535 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
536 while (fs_devices) {
537 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
538 ret = 0;
539 break;
540 }
541 fs_devices = fs_devices->seed;
542 }
543 return ret;
544}
545
0b246afa
JM
546#define CORRUPT(reason, eb, root, slot) \
547 btrfs_crit(root->fs_info, \
548 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
549 btrfs_header_level(eb) == 0 ? "leaf" : "node", \
6b722c17 550 reason, btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
551
552static noinline int check_leaf(struct btrfs_root *root,
553 struct extent_buffer *leaf)
554{
0b246afa 555 struct btrfs_fs_info *fs_info = root->fs_info;
a826d6dc
JB
556 struct btrfs_key key;
557 struct btrfs_key leaf_key;
558 u32 nritems = btrfs_header_nritems(leaf);
559 int slot;
560
f177d739
FM
561 /*
562 * Extent buffers from a relocation tree have a owner field that
563 * corresponds to the subvolume tree they are based on. So just from an
564 * extent buffer alone we can not find out what is the id of the
565 * corresponding subvolume tree, so we can not figure out if the extent
566 * buffer corresponds to the root of the relocation tree or not. So skip
567 * this check for relocation trees.
568 */
569 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
1ba98d08
LB
570 struct btrfs_root *check_root;
571
572 key.objectid = btrfs_header_owner(leaf);
573 key.type = BTRFS_ROOT_ITEM_KEY;
574 key.offset = (u64)-1;
575
0b246afa 576 check_root = btrfs_get_fs_root(fs_info, &key, false);
1ba98d08
LB
577 /*
578 * The only reason we also check NULL here is that during
579 * open_ctree() some roots has not yet been set up.
580 */
581 if (!IS_ERR_OR_NULL(check_root)) {
ef85b25e
LB
582 struct extent_buffer *eb;
583
584 eb = btrfs_root_node(check_root);
1ba98d08 585 /* if leaf is the root, then it's fine */
ef85b25e 586 if (leaf != eb) {
1ba98d08 587 CORRUPT("non-root leaf's nritems is 0",
ef85b25e
LB
588 leaf, check_root, 0);
589 free_extent_buffer(eb);
1ba98d08
LB
590 return -EIO;
591 }
ef85b25e 592 free_extent_buffer(eb);
1ba98d08 593 }
a826d6dc 594 return 0;
1ba98d08 595 }
a826d6dc 596
f177d739
FM
597 if (nritems == 0)
598 return 0;
599
a826d6dc
JB
600 /* Check the 0 item */
601 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
0b246afa 602 BTRFS_LEAF_DATA_SIZE(fs_info)) {
a826d6dc
JB
603 CORRUPT("invalid item offset size pair", leaf, root, 0);
604 return -EIO;
605 }
606
607 /*
608 * Check to make sure each items keys are in the correct order and their
609 * offsets make sense. We only have to loop through nritems-1 because
610 * we check the current slot against the next slot, which verifies the
611 * next slot's offset+size makes sense and that the current's slot
612 * offset is correct.
613 */
614 for (slot = 0; slot < nritems - 1; slot++) {
615 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
616 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
617
618 /* Make sure the keys are in the right order */
619 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
620 CORRUPT("bad key order", leaf, root, slot);
621 return -EIO;
622 }
623
624 /*
625 * Make sure the offset and ends are right, remember that the
626 * item data starts at the end of the leaf and grows towards the
627 * front.
628 */
629 if (btrfs_item_offset_nr(leaf, slot) !=
630 btrfs_item_end_nr(leaf, slot + 1)) {
631 CORRUPT("slot offset bad", leaf, root, slot);
632 return -EIO;
633 }
634
635 /*
636 * Check to make sure that we don't point outside of the leaf,
01327610 637 * just in case all the items are consistent to each other, but
a826d6dc
JB
638 * all point outside of the leaf.
639 */
640 if (btrfs_item_end_nr(leaf, slot) >
0b246afa 641 BTRFS_LEAF_DATA_SIZE(fs_info)) {
a826d6dc
JB
642 CORRUPT("slot end outside of leaf", leaf, root, slot);
643 return -EIO;
644 }
645 }
646
647 return 0;
648}
649
053ab70f
LB
650static int check_node(struct btrfs_root *root, struct extent_buffer *node)
651{
652 unsigned long nr = btrfs_header_nritems(node);
6b722c17
LB
653 struct btrfs_key key, next_key;
654 int slot;
655 u64 bytenr;
656 int ret = 0;
053ab70f 657
da17066c 658 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
053ab70f
LB
659 btrfs_crit(root->fs_info,
660 "corrupt node: block %llu root %llu nritems %lu",
661 node->start, root->objectid, nr);
662 return -EIO;
663 }
6b722c17
LB
664
665 for (slot = 0; slot < nr - 1; slot++) {
666 bytenr = btrfs_node_blockptr(node, slot);
667 btrfs_node_key_to_cpu(node, &key, slot);
668 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
669
670 if (!bytenr) {
671 CORRUPT("invalid item slot", node, root, slot);
672 ret = -EIO;
673 goto out;
674 }
675
676 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
677 CORRUPT("bad key order", node, root, slot);
678 ret = -EIO;
679 goto out;
680 }
681 }
682out:
683 return ret;
053ab70f
LB
684}
685
facc8a22
MX
686static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
687 u64 phy_offset, struct page *page,
688 u64 start, u64 end, int mirror)
ce9adaa5 689{
ce9adaa5
CM
690 u64 found_start;
691 int found_level;
ce9adaa5
CM
692 struct extent_buffer *eb;
693 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 694 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 695 int ret = 0;
727011e0 696 int reads_done;
ce9adaa5 697
ce9adaa5
CM
698 if (!page->private)
699 goto out;
d397712b 700
4f2de97a 701 eb = (struct extent_buffer *)page->private;
d397712b 702
0b32f4bb
JB
703 /* the pending IO might have been the only thing that kept this buffer
704 * in memory. Make sure we have a ref for all this other checks
705 */
706 extent_buffer_get(eb);
707
708 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
709 if (!reads_done)
710 goto err;
f188591e 711
5cf1ab56 712 eb->read_mirror = mirror;
656f30db 713 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
714 ret = -EIO;
715 goto err;
716 }
717
ce9adaa5 718 found_start = btrfs_header_bytenr(eb);
727011e0 719 if (found_start != eb->start) {
02873e43
ZL
720 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
721 found_start, eb->start);
f188591e 722 ret = -EIO;
ce9adaa5
CM
723 goto err;
724 }
02873e43
ZL
725 if (check_tree_block_fsid(fs_info, eb)) {
726 btrfs_err_rl(fs_info, "bad fsid on block %llu",
727 eb->start);
1259ab75
CM
728 ret = -EIO;
729 goto err;
730 }
ce9adaa5 731 found_level = btrfs_header_level(eb);
1c24c3ce 732 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
733 btrfs_err(fs_info, "bad tree block level %d",
734 (int)btrfs_header_level(eb));
1c24c3ce
JB
735 ret = -EIO;
736 goto err;
737 }
ce9adaa5 738
85d4e461
CM
739 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
740 eb, found_level);
4008c04a 741
02873e43 742 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 743 if (ret)
a826d6dc 744 goto err;
a826d6dc
JB
745
746 /*
747 * If this is a leaf block and it is corrupt, set the corrupt bit so
748 * that we don't try and read the other copies of this block, just
749 * return -EIO.
750 */
751 if (found_level == 0 && check_leaf(root, eb)) {
752 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
753 ret = -EIO;
754 }
ce9adaa5 755
053ab70f
LB
756 if (found_level > 0 && check_node(root, eb))
757 ret = -EIO;
758
0b32f4bb
JB
759 if (!ret)
760 set_extent_buffer_uptodate(eb);
ce9adaa5 761err:
79fb65a1
JB
762 if (reads_done &&
763 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 764 btree_readahead_hook(eb, ret);
4bb31e92 765
53b381b3
DW
766 if (ret) {
767 /*
768 * our io error hook is going to dec the io pages
769 * again, we have to make sure it has something
770 * to decrement
771 */
772 atomic_inc(&eb->io_pages);
0b32f4bb 773 clear_extent_buffer_uptodate(eb);
53b381b3 774 }
0b32f4bb 775 free_extent_buffer(eb);
ce9adaa5 776out:
f188591e 777 return ret;
ce9adaa5
CM
778}
779
ea466794 780static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 781{
4bb31e92 782 struct extent_buffer *eb;
4bb31e92 783
4f2de97a 784 eb = (struct extent_buffer *)page->private;
656f30db 785 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 786 eb->read_mirror = failed_mirror;
53b381b3 787 atomic_dec(&eb->io_pages);
ea466794 788 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 789 btree_readahead_hook(eb, -EIO);
4bb31e92
AJ
790 return -EIO; /* we fixed nothing */
791}
792
4246a0b6 793static void end_workqueue_bio(struct bio *bio)
ce9adaa5 794{
97eb6b69 795 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 796 struct btrfs_fs_info *fs_info;
9e0af237
LB
797 struct btrfs_workqueue *wq;
798 btrfs_work_func_t func;
ce9adaa5 799
ce9adaa5 800 fs_info = end_io_wq->info;
4e4cbee9 801 end_io_wq->status = bio->bi_status;
d20f7043 802
37226b21 803 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
804 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
805 wq = fs_info->endio_meta_write_workers;
806 func = btrfs_endio_meta_write_helper;
807 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
808 wq = fs_info->endio_freespace_worker;
809 func = btrfs_freespace_write_helper;
810 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
811 wq = fs_info->endio_raid56_workers;
812 func = btrfs_endio_raid56_helper;
813 } else {
814 wq = fs_info->endio_write_workers;
815 func = btrfs_endio_write_helper;
816 }
d20f7043 817 } else {
8b110e39
MX
818 if (unlikely(end_io_wq->metadata ==
819 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
820 wq = fs_info->endio_repair_workers;
821 func = btrfs_endio_repair_helper;
822 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
823 wq = fs_info->endio_raid56_workers;
824 func = btrfs_endio_raid56_helper;
825 } else if (end_io_wq->metadata) {
826 wq = fs_info->endio_meta_workers;
827 func = btrfs_endio_meta_helper;
828 } else {
829 wq = fs_info->endio_workers;
830 func = btrfs_endio_helper;
831 }
d20f7043 832 }
9e0af237
LB
833
834 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
835 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
836}
837
4e4cbee9 838blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 839 enum btrfs_wq_endio_type metadata)
0b86a832 840{
97eb6b69 841 struct btrfs_end_io_wq *end_io_wq;
8b110e39 842
97eb6b69 843 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 844 if (!end_io_wq)
4e4cbee9 845 return BLK_STS_RESOURCE;
ce9adaa5
CM
846
847 end_io_wq->private = bio->bi_private;
848 end_io_wq->end_io = bio->bi_end_io;
22c59948 849 end_io_wq->info = info;
4e4cbee9 850 end_io_wq->status = 0;
ce9adaa5 851 end_io_wq->bio = bio;
22c59948 852 end_io_wq->metadata = metadata;
ce9adaa5
CM
853
854 bio->bi_private = end_io_wq;
855 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
856 return 0;
857}
858
b64a2851 859unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 860{
4854ddd0 861 unsigned long limit = min_t(unsigned long,
5cdc7ad3 862 info->thread_pool_size,
4854ddd0
CM
863 info->fs_devices->open_devices);
864 return 256 * limit;
865}
0986fe9e 866
4a69a410
CM
867static void run_one_async_start(struct btrfs_work *work)
868{
4a69a410 869 struct async_submit_bio *async;
4e4cbee9 870 blk_status_t ret;
4a69a410
CM
871
872 async = container_of(work, struct async_submit_bio, work);
c6100a4b 873 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
874 async->mirror_num, async->bio_flags,
875 async->bio_offset);
876 if (ret)
4e4cbee9 877 async->status = ret;
4a69a410
CM
878}
879
880static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
881{
882 struct btrfs_fs_info *fs_info;
883 struct async_submit_bio *async;
4854ddd0 884 int limit;
8b712842
CM
885
886 async = container_of(work, struct async_submit_bio, work);
c6100a4b 887 fs_info = async->fs_info;
4854ddd0 888
b64a2851 889 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
890 limit = limit * 2 / 3;
891
ee863954
DS
892 /*
893 * atomic_dec_return implies a barrier for waitqueue_active
894 */
66657b31 895 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 896 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
897 wake_up(&fs_info->async_submit_wait);
898
bb7ab3b9 899 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
900 if (async->status) {
901 async->bio->bi_status = async->status;
4246a0b6 902 bio_endio(async->bio);
79787eaa
JM
903 return;
904 }
905
c6100a4b 906 async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
81a75f67 907 async->bio_flags, async->bio_offset);
4a69a410
CM
908}
909
910static void run_one_async_free(struct btrfs_work *work)
911{
912 struct async_submit_bio *async;
913
914 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
915 kfree(async);
916}
917
8c27cb35
LT
918blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
919 int mirror_num, unsigned long bio_flags,
920 u64 bio_offset, void *private_data,
921 extent_submit_bio_hook_t *submit_bio_start,
922 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
923{
924 struct async_submit_bio *async;
925
926 async = kmalloc(sizeof(*async), GFP_NOFS);
927 if (!async)
4e4cbee9 928 return BLK_STS_RESOURCE;
44b8bd7e 929
c6100a4b
JB
930 async->private_data = private_data;
931 async->fs_info = fs_info;
44b8bd7e
CM
932 async->bio = bio;
933 async->mirror_num = mirror_num;
4a69a410
CM
934 async->submit_bio_start = submit_bio_start;
935 async->submit_bio_done = submit_bio_done;
936
9e0af237 937 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 938 run_one_async_done, run_one_async_free);
4a69a410 939
c8b97818 940 async->bio_flags = bio_flags;
eaf25d93 941 async->bio_offset = bio_offset;
8c8bee1d 942
4e4cbee9 943 async->status = 0;
79787eaa 944
cb03c743 945 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 946
67f055c7 947 if (op_is_sync(bio->bi_opf))
5cdc7ad3 948 btrfs_set_work_high_priority(&async->work);
d313d7a3 949
5cdc7ad3 950 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 951
d397712b 952 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
953 atomic_read(&fs_info->nr_async_submits)) {
954 wait_event(fs_info->async_submit_wait,
955 (atomic_read(&fs_info->nr_async_submits) == 0));
956 }
957
44b8bd7e
CM
958 return 0;
959}
960
4e4cbee9 961static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 962{
2c30c71b 963 struct bio_vec *bvec;
ce3ed71a 964 struct btrfs_root *root;
2c30c71b 965 int i, ret = 0;
ce3ed71a 966
c09abff8 967 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 968 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 969 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 970 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
971 if (ret)
972 break;
ce3ed71a 973 }
2c30c71b 974
4e4cbee9 975 return errno_to_blk_status(ret);
ce3ed71a
CM
976}
977
8c27cb35
LT
978static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
979 int mirror_num, unsigned long bio_flags,
980 u64 bio_offset)
22c59948 981{
8b712842
CM
982 /*
983 * when we're called for a write, we're already in the async
5443be45 984 * submission context. Just jump into btrfs_map_bio
8b712842 985 */
79787eaa 986 return btree_csum_one_bio(bio);
4a69a410 987}
22c59948 988
8c27cb35
LT
989static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
990 int mirror_num, unsigned long bio_flags,
991 u64 bio_offset)
4a69a410 992{
c6100a4b 993 struct inode *inode = private_data;
4e4cbee9 994 blk_status_t ret;
61891923 995
8b712842 996 /*
4a69a410
CM
997 * when we're called for a write, we're already in the async
998 * submission context. Just jump into btrfs_map_bio
8b712842 999 */
2ff7e61e 1000 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
4246a0b6 1001 if (ret) {
4e4cbee9 1002 bio->bi_status = ret;
4246a0b6
CH
1003 bio_endio(bio);
1004 }
61891923 1005 return ret;
0b86a832
CM
1006}
1007
e27f6265 1008static int check_async_write(unsigned long bio_flags)
de0022b9
JB
1009{
1010 if (bio_flags & EXTENT_BIO_TREE_LOG)
1011 return 0;
1012#ifdef CONFIG_X86
bc696ca0 1013 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
1014 return 0;
1015#endif
1016 return 1;
1017}
1018
8c27cb35
LT
1019static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
1020 int mirror_num, unsigned long bio_flags,
1021 u64 bio_offset)
44b8bd7e 1022{
c6100a4b 1023 struct inode *inode = private_data;
0b246afa 1024 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e27f6265 1025 int async = check_async_write(bio_flags);
4e4cbee9 1026 blk_status_t ret;
cad321ad 1027
37226b21 1028 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
1029 /*
1030 * called for a read, do the setup so that checksum validation
1031 * can happen in the async kernel threads
1032 */
0b246afa
JM
1033 ret = btrfs_bio_wq_end_io(fs_info, bio,
1034 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 1035 if (ret)
61891923 1036 goto out_w_error;
2ff7e61e 1037 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
1038 } else if (!async) {
1039 ret = btree_csum_one_bio(bio);
1040 if (ret)
61891923 1041 goto out_w_error;
2ff7e61e 1042 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
1043 } else {
1044 /*
1045 * kthread helpers are used to submit writes so that
1046 * checksumming can happen in parallel across all CPUs
1047 */
c6100a4b
JB
1048 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
1049 bio_offset, private_data,
61891923
SB
1050 __btree_submit_bio_start,
1051 __btree_submit_bio_done);
44b8bd7e 1052 }
d313d7a3 1053
4246a0b6
CH
1054 if (ret)
1055 goto out_w_error;
1056 return 0;
1057
61891923 1058out_w_error:
4e4cbee9 1059 bio->bi_status = ret;
4246a0b6 1060 bio_endio(bio);
61891923 1061 return ret;
44b8bd7e
CM
1062}
1063
3dd1462e 1064#ifdef CONFIG_MIGRATION
784b4e29 1065static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
1066 struct page *newpage, struct page *page,
1067 enum migrate_mode mode)
784b4e29
CM
1068{
1069 /*
1070 * we can't safely write a btree page from here,
1071 * we haven't done the locking hook
1072 */
1073 if (PageDirty(page))
1074 return -EAGAIN;
1075 /*
1076 * Buffers may be managed in a filesystem specific way.
1077 * We must have no buffers or drop them.
1078 */
1079 if (page_has_private(page) &&
1080 !try_to_release_page(page, GFP_KERNEL))
1081 return -EAGAIN;
a6bc32b8 1082 return migrate_page(mapping, newpage, page, mode);
784b4e29 1083}
3dd1462e 1084#endif
784b4e29 1085
0da5468f
CM
1086
1087static int btree_writepages(struct address_space *mapping,
1088 struct writeback_control *wbc)
1089{
e2d84521
MX
1090 struct btrfs_fs_info *fs_info;
1091 int ret;
1092
d8d5f3e1 1093 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1094
1095 if (wbc->for_kupdate)
1096 return 0;
1097
e2d84521 1098 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1099 /* this is a bit racy, but that's ok */
e2d84521
MX
1100 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1101 BTRFS_DIRTY_METADATA_THRESH);
1102 if (ret < 0)
793955bc 1103 return 0;
793955bc 1104 }
0b32f4bb 1105 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1106}
1107
b2950863 1108static int btree_readpage(struct file *file, struct page *page)
5f39d397 1109{
d1310b2e
CM
1110 struct extent_io_tree *tree;
1111 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1112 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1113}
22b0ebda 1114
70dec807 1115static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1116{
98509cfc 1117 if (PageWriteback(page) || PageDirty(page))
d397712b 1118 return 0;
0c4e538b 1119
f7a52a40 1120 return try_release_extent_buffer(page);
d98237b3
CM
1121}
1122
d47992f8
LC
1123static void btree_invalidatepage(struct page *page, unsigned int offset,
1124 unsigned int length)
d98237b3 1125{
d1310b2e
CM
1126 struct extent_io_tree *tree;
1127 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1128 extent_invalidatepage(tree, page, offset);
1129 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1130 if (PagePrivate(page)) {
efe120a0
FH
1131 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1132 "page private not zero on page %llu",
1133 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1134 ClearPagePrivate(page);
1135 set_page_private(page, 0);
09cbfeaf 1136 put_page(page);
9ad6b7bc 1137 }
d98237b3
CM
1138}
1139
0b32f4bb
JB
1140static int btree_set_page_dirty(struct page *page)
1141{
bb146eb2 1142#ifdef DEBUG
0b32f4bb
JB
1143 struct extent_buffer *eb;
1144
1145 BUG_ON(!PagePrivate(page));
1146 eb = (struct extent_buffer *)page->private;
1147 BUG_ON(!eb);
1148 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1149 BUG_ON(!atomic_read(&eb->refs));
1150 btrfs_assert_tree_locked(eb);
bb146eb2 1151#endif
0b32f4bb
JB
1152 return __set_page_dirty_nobuffers(page);
1153}
1154
7f09410b 1155static const struct address_space_operations btree_aops = {
d98237b3 1156 .readpage = btree_readpage,
0da5468f 1157 .writepages = btree_writepages,
5f39d397
CM
1158 .releasepage = btree_releasepage,
1159 .invalidatepage = btree_invalidatepage,
5a92bc88 1160#ifdef CONFIG_MIGRATION
784b4e29 1161 .migratepage = btree_migratepage,
5a92bc88 1162#endif
0b32f4bb 1163 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1164};
1165
2ff7e61e 1166void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1167{
5f39d397 1168 struct extent_buffer *buf = NULL;
2ff7e61e 1169 struct inode *btree_inode = fs_info->btree_inode;
090d1875 1170
2ff7e61e 1171 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1172 if (IS_ERR(buf))
6197d86e 1173 return;
d1310b2e 1174 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
8436ea91 1175 buf, WAIT_NONE, btree_get_extent, 0);
5f39d397 1176 free_extent_buffer(buf);
090d1875
CM
1177}
1178
2ff7e61e 1179int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1180 int mirror_num, struct extent_buffer **eb)
1181{
1182 struct extent_buffer *buf = NULL;
2ff7e61e 1183 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1184 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1185 int ret;
1186
2ff7e61e 1187 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1188 if (IS_ERR(buf))
ab0fff03
AJ
1189 return 0;
1190
1191 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1192
8436ea91 1193 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
ab0fff03
AJ
1194 btree_get_extent, mirror_num);
1195 if (ret) {
1196 free_extent_buffer(buf);
1197 return ret;
1198 }
1199
1200 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1201 free_extent_buffer(buf);
1202 return -EIO;
0b32f4bb 1203 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1204 *eb = buf;
1205 } else {
1206 free_extent_buffer(buf);
1207 }
1208 return 0;
1209}
1210
2ff7e61e
JM
1211struct extent_buffer *btrfs_find_create_tree_block(
1212 struct btrfs_fs_info *fs_info,
1213 u64 bytenr)
0999df54 1214{
0b246afa
JM
1215 if (btrfs_is_testing(fs_info))
1216 return alloc_test_extent_buffer(fs_info, bytenr);
1217 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1218}
1219
1220
e02119d5
CM
1221int btrfs_write_tree_block(struct extent_buffer *buf)
1222{
727011e0 1223 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1224 buf->start + buf->len - 1);
e02119d5
CM
1225}
1226
3189ff77 1227void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
e02119d5 1228{
3189ff77
JL
1229 filemap_fdatawait_range(buf->pages[0]->mapping,
1230 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1231}
1232
2ff7e61e 1233struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
ce86cd59 1234 u64 parent_transid)
0999df54
CM
1235{
1236 struct extent_buffer *buf = NULL;
0999df54
CM
1237 int ret;
1238
2ff7e61e 1239 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1240 if (IS_ERR(buf))
1241 return buf;
0999df54 1242
2ff7e61e 1243 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
0f0fe8f7
FDBM
1244 if (ret) {
1245 free_extent_buffer(buf);
64c043de 1246 return ERR_PTR(ret);
0f0fe8f7 1247 }
5f39d397 1248 return buf;
ce9adaa5 1249
eb60ceac
CM
1250}
1251
7c302b49 1252void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1253 struct extent_buffer *buf)
ed2ff2cb 1254{
55c69072 1255 if (btrfs_header_generation(buf) ==
e2d84521 1256 fs_info->running_transaction->transid) {
b9447ef8 1257 btrfs_assert_tree_locked(buf);
b4ce94de 1258
b9473439 1259 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1260 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1261 -buf->len,
1262 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1263 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1264 btrfs_set_lock_blocking(buf);
1265 clear_extent_buffer_dirty(buf);
1266 }
925baedd 1267 }
5f39d397
CM
1268}
1269
8257b2dc
MX
1270static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1271{
1272 struct btrfs_subvolume_writers *writers;
1273 int ret;
1274
1275 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1276 if (!writers)
1277 return ERR_PTR(-ENOMEM);
1278
908c7f19 1279 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1280 if (ret < 0) {
1281 kfree(writers);
1282 return ERR_PTR(ret);
1283 }
1284
1285 init_waitqueue_head(&writers->wait);
1286 return writers;
1287}
1288
1289static void
1290btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1291{
1292 percpu_counter_destroy(&writers->counter);
1293 kfree(writers);
1294}
1295
da17066c 1296static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1297 u64 objectid)
d97e63b6 1298{
7c0260ee 1299 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1300 root->node = NULL;
a28ec197 1301 root->commit_root = NULL;
27cdeb70 1302 root->state = 0;
d68fc57b 1303 root->orphan_cleanup_state = 0;
0b86a832 1304
0f7d52f4
CM
1305 root->objectid = objectid;
1306 root->last_trans = 0;
13a8a7c8 1307 root->highest_objectid = 0;
eb73c1b7 1308 root->nr_delalloc_inodes = 0;
199c2a9c 1309 root->nr_ordered_extents = 0;
58176a96 1310 root->name = NULL;
6bef4d31 1311 root->inode_tree = RB_ROOT;
16cdcec7 1312 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1313 root->block_rsv = NULL;
d68fc57b 1314 root->orphan_block_rsv = NULL;
0b86a832
CM
1315
1316 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1317 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1318 INIT_LIST_HEAD(&root->delalloc_inodes);
1319 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1320 INIT_LIST_HEAD(&root->ordered_extents);
1321 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1322 INIT_LIST_HEAD(&root->logged_list[0]);
1323 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1324 spin_lock_init(&root->orphan_lock);
5d4f98a2 1325 spin_lock_init(&root->inode_lock);
eb73c1b7 1326 spin_lock_init(&root->delalloc_lock);
199c2a9c 1327 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1328 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1329 spin_lock_init(&root->log_extents_lock[0]);
1330 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1331 mutex_init(&root->objectid_mutex);
e02119d5 1332 mutex_init(&root->log_mutex);
31f3d255 1333 mutex_init(&root->ordered_extent_mutex);
573bfb72 1334 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1335 init_waitqueue_head(&root->log_writer_wait);
1336 init_waitqueue_head(&root->log_commit_wait[0]);
1337 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1338 INIT_LIST_HEAD(&root->log_ctxs[0]);
1339 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1340 atomic_set(&root->log_commit[0], 0);
1341 atomic_set(&root->log_commit[1], 0);
1342 atomic_set(&root->log_writers, 0);
2ecb7923 1343 atomic_set(&root->log_batch, 0);
8a35d95f 1344 atomic_set(&root->orphan_inodes, 0);
0700cea7 1345 refcount_set(&root->refs, 1);
ea14b57f 1346 atomic_set(&root->will_be_snapshotted, 0);
ce0dcee6 1347 atomic64_set(&root->qgroup_meta_rsv, 0);
7237f183 1348 root->log_transid = 0;
d1433deb 1349 root->log_transid_committed = -1;
257c62e1 1350 root->last_log_commit = 0;
7c0260ee 1351 if (!dummy)
c6100a4b 1352 extent_io_tree_init(&root->dirty_log_pages, NULL);
017e5369 1353
3768f368
CM
1354 memset(&root->root_key, 0, sizeof(root->root_key));
1355 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1356 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1357 if (!dummy)
06ea65a3
JB
1358 root->defrag_trans_start = fs_info->generation;
1359 else
1360 root->defrag_trans_start = 0;
4d775673 1361 root->root_key.objectid = objectid;
0ee5dc67 1362 root->anon_dev = 0;
8ea05e3a 1363
5f3ab90a 1364 spin_lock_init(&root->root_item_lock);
3768f368
CM
1365}
1366
74e4d827
DS
1367static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1368 gfp_t flags)
6f07e42e 1369{
74e4d827 1370 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1371 if (root)
1372 root->fs_info = fs_info;
1373 return root;
1374}
1375
06ea65a3
JB
1376#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1377/* Should only be used by the testing infrastructure */
da17066c 1378struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1379{
1380 struct btrfs_root *root;
1381
7c0260ee
JM
1382 if (!fs_info)
1383 return ERR_PTR(-EINVAL);
1384
1385 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1386 if (!root)
1387 return ERR_PTR(-ENOMEM);
da17066c 1388
b9ef22de 1389 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1390 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1391 root->alloc_bytenr = 0;
06ea65a3
JB
1392
1393 return root;
1394}
1395#endif
1396
20897f5c
AJ
1397struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1398 struct btrfs_fs_info *fs_info,
1399 u64 objectid)
1400{
1401 struct extent_buffer *leaf;
1402 struct btrfs_root *tree_root = fs_info->tree_root;
1403 struct btrfs_root *root;
1404 struct btrfs_key key;
1405 int ret = 0;
6463fe58 1406 uuid_le uuid;
20897f5c 1407
74e4d827 1408 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1409 if (!root)
1410 return ERR_PTR(-ENOMEM);
1411
da17066c 1412 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1413 root->root_key.objectid = objectid;
1414 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1415 root->root_key.offset = 0;
1416
4d75f8a9 1417 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1418 if (IS_ERR(leaf)) {
1419 ret = PTR_ERR(leaf);
1dd05682 1420 leaf = NULL;
20897f5c
AJ
1421 goto fail;
1422 }
1423
b159fa28 1424 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
20897f5c
AJ
1425 btrfs_set_header_bytenr(leaf, leaf->start);
1426 btrfs_set_header_generation(leaf, trans->transid);
1427 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1428 btrfs_set_header_owner(leaf, objectid);
1429 root->node = leaf;
1430
d24ee97b
DS
1431 write_extent_buffer_fsid(leaf, fs_info->fsid);
1432 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
20897f5c
AJ
1433 btrfs_mark_buffer_dirty(leaf);
1434
1435 root->commit_root = btrfs_root_node(root);
27cdeb70 1436 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1437
1438 root->root_item.flags = 0;
1439 root->root_item.byte_limit = 0;
1440 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1441 btrfs_set_root_generation(&root->root_item, trans->transid);
1442 btrfs_set_root_level(&root->root_item, 0);
1443 btrfs_set_root_refs(&root->root_item, 1);
1444 btrfs_set_root_used(&root->root_item, leaf->len);
1445 btrfs_set_root_last_snapshot(&root->root_item, 0);
1446 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1447 uuid_le_gen(&uuid);
1448 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1449 root->root_item.drop_level = 0;
1450
1451 key.objectid = objectid;
1452 key.type = BTRFS_ROOT_ITEM_KEY;
1453 key.offset = 0;
1454 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1455 if (ret)
1456 goto fail;
1457
1458 btrfs_tree_unlock(leaf);
1459
1dd05682
TI
1460 return root;
1461
20897f5c 1462fail:
1dd05682
TI
1463 if (leaf) {
1464 btrfs_tree_unlock(leaf);
59885b39 1465 free_extent_buffer(root->commit_root);
1dd05682
TI
1466 free_extent_buffer(leaf);
1467 }
1468 kfree(root);
20897f5c 1469
1dd05682 1470 return ERR_PTR(ret);
20897f5c
AJ
1471}
1472
7237f183
YZ
1473static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1474 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1475{
1476 struct btrfs_root *root;
7237f183 1477 struct extent_buffer *leaf;
e02119d5 1478
74e4d827 1479 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1480 if (!root)
7237f183 1481 return ERR_PTR(-ENOMEM);
e02119d5 1482
da17066c 1483 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1484
1485 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1486 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1487 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1488
7237f183 1489 /*
27cdeb70
MX
1490 * DON'T set REF_COWS for log trees
1491 *
7237f183
YZ
1492 * log trees do not get reference counted because they go away
1493 * before a real commit is actually done. They do store pointers
1494 * to file data extents, and those reference counts still get
1495 * updated (along with back refs to the log tree).
1496 */
e02119d5 1497
4d75f8a9
DS
1498 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1499 NULL, 0, 0, 0);
7237f183
YZ
1500 if (IS_ERR(leaf)) {
1501 kfree(root);
1502 return ERR_CAST(leaf);
1503 }
e02119d5 1504
b159fa28 1505 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
5d4f98a2
YZ
1506 btrfs_set_header_bytenr(leaf, leaf->start);
1507 btrfs_set_header_generation(leaf, trans->transid);
1508 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1509 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1510 root->node = leaf;
e02119d5 1511
0b246afa 1512 write_extent_buffer_fsid(root->node, fs_info->fsid);
e02119d5
CM
1513 btrfs_mark_buffer_dirty(root->node);
1514 btrfs_tree_unlock(root->node);
7237f183
YZ
1515 return root;
1516}
1517
1518int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1519 struct btrfs_fs_info *fs_info)
1520{
1521 struct btrfs_root *log_root;
1522
1523 log_root = alloc_log_tree(trans, fs_info);
1524 if (IS_ERR(log_root))
1525 return PTR_ERR(log_root);
1526 WARN_ON(fs_info->log_root_tree);
1527 fs_info->log_root_tree = log_root;
1528 return 0;
1529}
1530
1531int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1532 struct btrfs_root *root)
1533{
0b246afa 1534 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1535 struct btrfs_root *log_root;
1536 struct btrfs_inode_item *inode_item;
1537
0b246afa 1538 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1539 if (IS_ERR(log_root))
1540 return PTR_ERR(log_root);
1541
1542 log_root->last_trans = trans->transid;
1543 log_root->root_key.offset = root->root_key.objectid;
1544
1545 inode_item = &log_root->root_item.inode;
3cae210f
QW
1546 btrfs_set_stack_inode_generation(inode_item, 1);
1547 btrfs_set_stack_inode_size(inode_item, 3);
1548 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1549 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1550 fs_info->nodesize);
3cae210f 1551 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1552
5d4f98a2 1553 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1554
1555 WARN_ON(root->log_root);
1556 root->log_root = log_root;
1557 root->log_transid = 0;
d1433deb 1558 root->log_transid_committed = -1;
257c62e1 1559 root->last_log_commit = 0;
e02119d5
CM
1560 return 0;
1561}
1562
35a3621b
SB
1563static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1564 struct btrfs_key *key)
e02119d5
CM
1565{
1566 struct btrfs_root *root;
1567 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1568 struct btrfs_path *path;
84234f3a 1569 u64 generation;
cb517eab 1570 int ret;
0f7d52f4 1571
cb517eab
MX
1572 path = btrfs_alloc_path();
1573 if (!path)
0f7d52f4 1574 return ERR_PTR(-ENOMEM);
cb517eab 1575
74e4d827 1576 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1577 if (!root) {
1578 ret = -ENOMEM;
1579 goto alloc_fail;
0f7d52f4
CM
1580 }
1581
da17066c 1582 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1583
cb517eab
MX
1584 ret = btrfs_find_root(tree_root, key, path,
1585 &root->root_item, &root->root_key);
0f7d52f4 1586 if (ret) {
13a8a7c8
YZ
1587 if (ret > 0)
1588 ret = -ENOENT;
cb517eab 1589 goto find_fail;
0f7d52f4 1590 }
13a8a7c8 1591
84234f3a 1592 generation = btrfs_root_generation(&root->root_item);
2ff7e61e
JM
1593 root->node = read_tree_block(fs_info,
1594 btrfs_root_bytenr(&root->root_item),
ce86cd59 1595 generation);
64c043de
LB
1596 if (IS_ERR(root->node)) {
1597 ret = PTR_ERR(root->node);
cb517eab
MX
1598 goto find_fail;
1599 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1600 ret = -EIO;
64c043de
LB
1601 free_extent_buffer(root->node);
1602 goto find_fail;
416bc658 1603 }
5d4f98a2 1604 root->commit_root = btrfs_root_node(root);
13a8a7c8 1605out:
cb517eab
MX
1606 btrfs_free_path(path);
1607 return root;
1608
cb517eab
MX
1609find_fail:
1610 kfree(root);
1611alloc_fail:
1612 root = ERR_PTR(ret);
1613 goto out;
1614}
1615
1616struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1617 struct btrfs_key *location)
1618{
1619 struct btrfs_root *root;
1620
1621 root = btrfs_read_tree_root(tree_root, location);
1622 if (IS_ERR(root))
1623 return root;
1624
1625 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1626 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1627 btrfs_check_and_init_root_item(&root->root_item);
1628 }
13a8a7c8 1629
5eda7b5e
CM
1630 return root;
1631}
1632
cb517eab
MX
1633int btrfs_init_fs_root(struct btrfs_root *root)
1634{
1635 int ret;
8257b2dc 1636 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1637
1638 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1639 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1640 GFP_NOFS);
1641 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1642 ret = -ENOMEM;
1643 goto fail;
1644 }
1645
8257b2dc
MX
1646 writers = btrfs_alloc_subvolume_writers();
1647 if (IS_ERR(writers)) {
1648 ret = PTR_ERR(writers);
1649 goto fail;
1650 }
1651 root->subv_writers = writers;
1652
cb517eab 1653 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1654 spin_lock_init(&root->ino_cache_lock);
1655 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1656
1657 ret = get_anon_bdev(&root->anon_dev);
1658 if (ret)
876d2cf1 1659 goto fail;
f32e48e9
CR
1660
1661 mutex_lock(&root->objectid_mutex);
1662 ret = btrfs_find_highest_objectid(root,
1663 &root->highest_objectid);
1664 if (ret) {
1665 mutex_unlock(&root->objectid_mutex);
876d2cf1 1666 goto fail;
f32e48e9
CR
1667 }
1668
1669 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1670
1671 mutex_unlock(&root->objectid_mutex);
1672
cb517eab
MX
1673 return 0;
1674fail:
876d2cf1 1675 /* the caller is responsible to call free_fs_root */
cb517eab
MX
1676 return ret;
1677}
1678
35bbb97f
JM
1679struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1680 u64 root_id)
cb517eab
MX
1681{
1682 struct btrfs_root *root;
1683
1684 spin_lock(&fs_info->fs_roots_radix_lock);
1685 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1686 (unsigned long)root_id);
1687 spin_unlock(&fs_info->fs_roots_radix_lock);
1688 return root;
1689}
1690
1691int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1692 struct btrfs_root *root)
1693{
1694 int ret;
1695
e1860a77 1696 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1697 if (ret)
1698 return ret;
1699
1700 spin_lock(&fs_info->fs_roots_radix_lock);
1701 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1702 (unsigned long)root->root_key.objectid,
1703 root);
1704 if (ret == 0)
27cdeb70 1705 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1706 spin_unlock(&fs_info->fs_roots_radix_lock);
1707 radix_tree_preload_end();
1708
1709 return ret;
1710}
1711
c00869f1
MX
1712struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1713 struct btrfs_key *location,
1714 bool check_ref)
5eda7b5e
CM
1715{
1716 struct btrfs_root *root;
381cf658 1717 struct btrfs_path *path;
1d4c08e0 1718 struct btrfs_key key;
5eda7b5e
CM
1719 int ret;
1720
edbd8d4e
CM
1721 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1722 return fs_info->tree_root;
1723 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1724 return fs_info->extent_root;
8f18cf13
CM
1725 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1726 return fs_info->chunk_root;
1727 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1728 return fs_info->dev_root;
0403e47e
YZ
1729 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1730 return fs_info->csum_root;
bcef60f2
AJ
1731 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1732 return fs_info->quota_root ? fs_info->quota_root :
1733 ERR_PTR(-ENOENT);
f7a81ea4
SB
1734 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1735 return fs_info->uuid_root ? fs_info->uuid_root :
1736 ERR_PTR(-ENOENT);
70f6d82e
OS
1737 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1738 return fs_info->free_space_root ? fs_info->free_space_root :
1739 ERR_PTR(-ENOENT);
4df27c4d 1740again:
cb517eab 1741 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1742 if (root) {
c00869f1 1743 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1744 return ERR_PTR(-ENOENT);
5eda7b5e 1745 return root;
48475471 1746 }
5eda7b5e 1747
cb517eab 1748 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1749 if (IS_ERR(root))
1750 return root;
3394e160 1751
c00869f1 1752 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1753 ret = -ENOENT;
581bb050 1754 goto fail;
35a30d7c 1755 }
581bb050 1756
cb517eab 1757 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1758 if (ret)
1759 goto fail;
3394e160 1760
381cf658
DS
1761 path = btrfs_alloc_path();
1762 if (!path) {
1763 ret = -ENOMEM;
1764 goto fail;
1765 }
1d4c08e0
DS
1766 key.objectid = BTRFS_ORPHAN_OBJECTID;
1767 key.type = BTRFS_ORPHAN_ITEM_KEY;
1768 key.offset = location->objectid;
1769
1770 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1771 btrfs_free_path(path);
d68fc57b
YZ
1772 if (ret < 0)
1773 goto fail;
1774 if (ret == 0)
27cdeb70 1775 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1776
cb517eab 1777 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1778 if (ret) {
4df27c4d
YZ
1779 if (ret == -EEXIST) {
1780 free_fs_root(root);
1781 goto again;
1782 }
1783 goto fail;
0f7d52f4 1784 }
edbd8d4e 1785 return root;
4df27c4d
YZ
1786fail:
1787 free_fs_root(root);
1788 return ERR_PTR(ret);
edbd8d4e
CM
1789}
1790
04160088
CM
1791static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1792{
1793 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1794 int ret = 0;
04160088
CM
1795 struct btrfs_device *device;
1796 struct backing_dev_info *bdi;
b7967db7 1797
1f78160c
XG
1798 rcu_read_lock();
1799 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1800 if (!device->bdev)
1801 continue;
efa7c9f9 1802 bdi = device->bdev->bd_bdi;
ff9ea323 1803 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1804 ret = 1;
1805 break;
1806 }
1807 }
1f78160c 1808 rcu_read_unlock();
04160088
CM
1809 return ret;
1810}
1811
8b712842
CM
1812/*
1813 * called by the kthread helper functions to finally call the bio end_io
1814 * functions. This is where read checksum verification actually happens
1815 */
1816static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1817{
ce9adaa5 1818 struct bio *bio;
97eb6b69 1819 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1820
97eb6b69 1821 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1822 bio = end_io_wq->bio;
ce9adaa5 1823
4e4cbee9 1824 bio->bi_status = end_io_wq->status;
8b712842
CM
1825 bio->bi_private = end_io_wq->private;
1826 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1827 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1828 bio_endio(bio);
44b8bd7e
CM
1829}
1830
a74a4b97
CM
1831static int cleaner_kthread(void *arg)
1832{
1833 struct btrfs_root *root = arg;
0b246afa 1834 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1835 int again;
da288d28 1836 struct btrfs_trans_handle *trans;
a74a4b97
CM
1837
1838 do {
d0278245 1839 again = 0;
a74a4b97 1840
d0278245 1841 /* Make the cleaner go to sleep early. */
2ff7e61e 1842 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1843 goto sleep;
1844
90c711ab
ZB
1845 /*
1846 * Do not do anything if we might cause open_ctree() to block
1847 * before we have finished mounting the filesystem.
1848 */
0b246afa 1849 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1850 goto sleep;
1851
0b246afa 1852 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1853 goto sleep;
1854
dc7f370c
MX
1855 /*
1856 * Avoid the problem that we change the status of the fs
1857 * during the above check and trylock.
1858 */
2ff7e61e 1859 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1860 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1861 goto sleep;
76dda93c 1862 }
a74a4b97 1863
0b246afa 1864 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
2ff7e61e 1865 btrfs_run_delayed_iputs(fs_info);
0b246afa 1866 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1867
d0278245 1868 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1869 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1870
1871 /*
05323cd1
MX
1872 * The defragger has dealt with the R/O remount and umount,
1873 * needn't do anything special here.
d0278245 1874 */
0b246afa 1875 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1876
1877 /*
1878 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1879 * with relocation (btrfs_relocate_chunk) and relocation
1880 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1881 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1882 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1883 * unused block groups.
1884 */
0b246afa 1885 btrfs_delete_unused_bgs(fs_info);
d0278245 1886sleep:
838fe188 1887 if (!again) {
a74a4b97 1888 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1889 if (!kthread_should_stop())
1890 schedule();
a74a4b97
CM
1891 __set_current_state(TASK_RUNNING);
1892 }
1893 } while (!kthread_should_stop());
da288d28
FM
1894
1895 /*
1896 * Transaction kthread is stopped before us and wakes us up.
1897 * However we might have started a new transaction and COWed some
1898 * tree blocks when deleting unused block groups for example. So
1899 * make sure we commit the transaction we started to have a clean
1900 * shutdown when evicting the btree inode - if it has dirty pages
1901 * when we do the final iput() on it, eviction will trigger a
1902 * writeback for it which will fail with null pointer dereferences
1903 * since work queues and other resources were already released and
1904 * destroyed by the time the iput/eviction/writeback is made.
1905 */
1906 trans = btrfs_attach_transaction(root);
1907 if (IS_ERR(trans)) {
1908 if (PTR_ERR(trans) != -ENOENT)
0b246afa 1909 btrfs_err(fs_info,
da288d28
FM
1910 "cleaner transaction attach returned %ld",
1911 PTR_ERR(trans));
1912 } else {
1913 int ret;
1914
3a45bb20 1915 ret = btrfs_commit_transaction(trans);
da288d28 1916 if (ret)
0b246afa 1917 btrfs_err(fs_info,
da288d28
FM
1918 "cleaner open transaction commit returned %d",
1919 ret);
1920 }
1921
a74a4b97
CM
1922 return 0;
1923}
1924
1925static int transaction_kthread(void *arg)
1926{
1927 struct btrfs_root *root = arg;
0b246afa 1928 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1929 struct btrfs_trans_handle *trans;
1930 struct btrfs_transaction *cur;
8929ecfa 1931 u64 transid;
a74a4b97
CM
1932 unsigned long now;
1933 unsigned long delay;
914b2007 1934 bool cannot_commit;
a74a4b97
CM
1935
1936 do {
914b2007 1937 cannot_commit = false;
0b246afa
JM
1938 delay = HZ * fs_info->commit_interval;
1939 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1940
0b246afa
JM
1941 spin_lock(&fs_info->trans_lock);
1942 cur = fs_info->running_transaction;
a74a4b97 1943 if (!cur) {
0b246afa 1944 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1945 goto sleep;
1946 }
31153d81 1947
a74a4b97 1948 now = get_seconds();
4a9d8bde 1949 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17 1950 (now < cur->start_time ||
0b246afa
JM
1951 now - cur->start_time < fs_info->commit_interval)) {
1952 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1953 delay = HZ * 5;
1954 goto sleep;
1955 }
8929ecfa 1956 transid = cur->transid;
0b246afa 1957 spin_unlock(&fs_info->trans_lock);
56bec294 1958
79787eaa 1959 /* If the file system is aborted, this will always fail. */
354aa0fb 1960 trans = btrfs_attach_transaction(root);
914b2007 1961 if (IS_ERR(trans)) {
354aa0fb
MX
1962 if (PTR_ERR(trans) != -ENOENT)
1963 cannot_commit = true;
79787eaa 1964 goto sleep;
914b2007 1965 }
8929ecfa 1966 if (transid == trans->transid) {
3a45bb20 1967 btrfs_commit_transaction(trans);
8929ecfa 1968 } else {
3a45bb20 1969 btrfs_end_transaction(trans);
8929ecfa 1970 }
a74a4b97 1971sleep:
0b246afa
JM
1972 wake_up_process(fs_info->cleaner_kthread);
1973 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1974
4e121c06 1975 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1976 &fs_info->fs_state)))
2ff7e61e 1977 btrfs_cleanup_transaction(fs_info);
ce63f891
JK
1978 set_current_state(TASK_INTERRUPTIBLE);
1979 if (!kthread_should_stop() &&
0b246afa 1980 (!btrfs_transaction_blocked(fs_info) ||
ce63f891
JK
1981 cannot_commit))
1982 schedule_timeout(delay);
1983 __set_current_state(TASK_RUNNING);
a74a4b97
CM
1984 } while (!kthread_should_stop());
1985 return 0;
1986}
1987
af31f5e5
CM
1988/*
1989 * this will find the highest generation in the array of
1990 * root backups. The index of the highest array is returned,
1991 * or -1 if we can't find anything.
1992 *
1993 * We check to make sure the array is valid by comparing the
1994 * generation of the latest root in the array with the generation
1995 * in the super block. If they don't match we pitch it.
1996 */
1997static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1998{
1999 u64 cur;
2000 int newest_index = -1;
2001 struct btrfs_root_backup *root_backup;
2002 int i;
2003
2004 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2005 root_backup = info->super_copy->super_roots + i;
2006 cur = btrfs_backup_tree_root_gen(root_backup);
2007 if (cur == newest_gen)
2008 newest_index = i;
2009 }
2010
2011 /* check to see if we actually wrapped around */
2012 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2013 root_backup = info->super_copy->super_roots;
2014 cur = btrfs_backup_tree_root_gen(root_backup);
2015 if (cur == newest_gen)
2016 newest_index = 0;
2017 }
2018 return newest_index;
2019}
2020
2021
2022/*
2023 * find the oldest backup so we know where to store new entries
2024 * in the backup array. This will set the backup_root_index
2025 * field in the fs_info struct
2026 */
2027static void find_oldest_super_backup(struct btrfs_fs_info *info,
2028 u64 newest_gen)
2029{
2030 int newest_index = -1;
2031
2032 newest_index = find_newest_super_backup(info, newest_gen);
2033 /* if there was garbage in there, just move along */
2034 if (newest_index == -1) {
2035 info->backup_root_index = 0;
2036 } else {
2037 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2038 }
2039}
2040
2041/*
2042 * copy all the root pointers into the super backup array.
2043 * this will bump the backup pointer by one when it is
2044 * done
2045 */
2046static void backup_super_roots(struct btrfs_fs_info *info)
2047{
2048 int next_backup;
2049 struct btrfs_root_backup *root_backup;
2050 int last_backup;
2051
2052 next_backup = info->backup_root_index;
2053 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2054 BTRFS_NUM_BACKUP_ROOTS;
2055
2056 /*
2057 * just overwrite the last backup if we're at the same generation
2058 * this happens only at umount
2059 */
2060 root_backup = info->super_for_commit->super_roots + last_backup;
2061 if (btrfs_backup_tree_root_gen(root_backup) ==
2062 btrfs_header_generation(info->tree_root->node))
2063 next_backup = last_backup;
2064
2065 root_backup = info->super_for_commit->super_roots + next_backup;
2066
2067 /*
2068 * make sure all of our padding and empty slots get zero filled
2069 * regardless of which ones we use today
2070 */
2071 memset(root_backup, 0, sizeof(*root_backup));
2072
2073 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2074
2075 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2076 btrfs_set_backup_tree_root_gen(root_backup,
2077 btrfs_header_generation(info->tree_root->node));
2078
2079 btrfs_set_backup_tree_root_level(root_backup,
2080 btrfs_header_level(info->tree_root->node));
2081
2082 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2083 btrfs_set_backup_chunk_root_gen(root_backup,
2084 btrfs_header_generation(info->chunk_root->node));
2085 btrfs_set_backup_chunk_root_level(root_backup,
2086 btrfs_header_level(info->chunk_root->node));
2087
2088 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2089 btrfs_set_backup_extent_root_gen(root_backup,
2090 btrfs_header_generation(info->extent_root->node));
2091 btrfs_set_backup_extent_root_level(root_backup,
2092 btrfs_header_level(info->extent_root->node));
2093
7c7e82a7
CM
2094 /*
2095 * we might commit during log recovery, which happens before we set
2096 * the fs_root. Make sure it is valid before we fill it in.
2097 */
2098 if (info->fs_root && info->fs_root->node) {
2099 btrfs_set_backup_fs_root(root_backup,
2100 info->fs_root->node->start);
2101 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2102 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2103 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2104 btrfs_header_level(info->fs_root->node));
7c7e82a7 2105 }
af31f5e5
CM
2106
2107 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2108 btrfs_set_backup_dev_root_gen(root_backup,
2109 btrfs_header_generation(info->dev_root->node));
2110 btrfs_set_backup_dev_root_level(root_backup,
2111 btrfs_header_level(info->dev_root->node));
2112
2113 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2114 btrfs_set_backup_csum_root_gen(root_backup,
2115 btrfs_header_generation(info->csum_root->node));
2116 btrfs_set_backup_csum_root_level(root_backup,
2117 btrfs_header_level(info->csum_root->node));
2118
2119 btrfs_set_backup_total_bytes(root_backup,
2120 btrfs_super_total_bytes(info->super_copy));
2121 btrfs_set_backup_bytes_used(root_backup,
2122 btrfs_super_bytes_used(info->super_copy));
2123 btrfs_set_backup_num_devices(root_backup,
2124 btrfs_super_num_devices(info->super_copy));
2125
2126 /*
2127 * if we don't copy this out to the super_copy, it won't get remembered
2128 * for the next commit
2129 */
2130 memcpy(&info->super_copy->super_roots,
2131 &info->super_for_commit->super_roots,
2132 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2133}
2134
2135/*
2136 * this copies info out of the root backup array and back into
2137 * the in-memory super block. It is meant to help iterate through
2138 * the array, so you send it the number of backups you've already
2139 * tried and the last backup index you used.
2140 *
2141 * this returns -1 when it has tried all the backups
2142 */
2143static noinline int next_root_backup(struct btrfs_fs_info *info,
2144 struct btrfs_super_block *super,
2145 int *num_backups_tried, int *backup_index)
2146{
2147 struct btrfs_root_backup *root_backup;
2148 int newest = *backup_index;
2149
2150 if (*num_backups_tried == 0) {
2151 u64 gen = btrfs_super_generation(super);
2152
2153 newest = find_newest_super_backup(info, gen);
2154 if (newest == -1)
2155 return -1;
2156
2157 *backup_index = newest;
2158 *num_backups_tried = 1;
2159 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2160 /* we've tried all the backups, all done */
2161 return -1;
2162 } else {
2163 /* jump to the next oldest backup */
2164 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2165 BTRFS_NUM_BACKUP_ROOTS;
2166 *backup_index = newest;
2167 *num_backups_tried += 1;
2168 }
2169 root_backup = super->super_roots + newest;
2170
2171 btrfs_set_super_generation(super,
2172 btrfs_backup_tree_root_gen(root_backup));
2173 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2174 btrfs_set_super_root_level(super,
2175 btrfs_backup_tree_root_level(root_backup));
2176 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2177
2178 /*
2179 * fixme: the total bytes and num_devices need to match or we should
2180 * need a fsck
2181 */
2182 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2183 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2184 return 0;
2185}
2186
7abadb64
LB
2187/* helper to cleanup workers */
2188static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2189{
dc6e3209 2190 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2191 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2192 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2193 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2194 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2195 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2196 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2197 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2198 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2199 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2200 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2201 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2202 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2203 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2204 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2205 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2206 /*
2207 * Now that all other work queues are destroyed, we can safely destroy
2208 * the queues used for metadata I/O, since tasks from those other work
2209 * queues can do metadata I/O operations.
2210 */
2211 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2212 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2213}
2214
2e9f5954
R
2215static void free_root_extent_buffers(struct btrfs_root *root)
2216{
2217 if (root) {
2218 free_extent_buffer(root->node);
2219 free_extent_buffer(root->commit_root);
2220 root->node = NULL;
2221 root->commit_root = NULL;
2222 }
2223}
2224
af31f5e5
CM
2225/* helper to cleanup tree roots */
2226static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2227{
2e9f5954 2228 free_root_extent_buffers(info->tree_root);
655b09fe 2229
2e9f5954
R
2230 free_root_extent_buffers(info->dev_root);
2231 free_root_extent_buffers(info->extent_root);
2232 free_root_extent_buffers(info->csum_root);
2233 free_root_extent_buffers(info->quota_root);
2234 free_root_extent_buffers(info->uuid_root);
2235 if (chunk_root)
2236 free_root_extent_buffers(info->chunk_root);
70f6d82e 2237 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2238}
2239
faa2dbf0 2240void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2241{
2242 int ret;
2243 struct btrfs_root *gang[8];
2244 int i;
2245
2246 while (!list_empty(&fs_info->dead_roots)) {
2247 gang[0] = list_entry(fs_info->dead_roots.next,
2248 struct btrfs_root, root_list);
2249 list_del(&gang[0]->root_list);
2250
27cdeb70 2251 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2252 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2253 } else {
2254 free_extent_buffer(gang[0]->node);
2255 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2256 btrfs_put_fs_root(gang[0]);
171f6537
JB
2257 }
2258 }
2259
2260 while (1) {
2261 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2262 (void **)gang, 0,
2263 ARRAY_SIZE(gang));
2264 if (!ret)
2265 break;
2266 for (i = 0; i < ret; i++)
cb517eab 2267 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2268 }
1a4319cc
LB
2269
2270 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2271 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2272 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2273 }
171f6537 2274}
af31f5e5 2275
638aa7ed
ES
2276static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2277{
2278 mutex_init(&fs_info->scrub_lock);
2279 atomic_set(&fs_info->scrubs_running, 0);
2280 atomic_set(&fs_info->scrub_pause_req, 0);
2281 atomic_set(&fs_info->scrubs_paused, 0);
2282 atomic_set(&fs_info->scrub_cancel_req, 0);
2283 init_waitqueue_head(&fs_info->scrub_pause_wait);
2284 fs_info->scrub_workers_refcnt = 0;
2285}
2286
779a65a4
ES
2287static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2288{
2289 spin_lock_init(&fs_info->balance_lock);
2290 mutex_init(&fs_info->balance_mutex);
2291 atomic_set(&fs_info->balance_running, 0);
2292 atomic_set(&fs_info->balance_pause_req, 0);
2293 atomic_set(&fs_info->balance_cancel_req, 0);
2294 fs_info->balance_ctl = NULL;
2295 init_waitqueue_head(&fs_info->balance_wait_q);
2296}
2297
6bccf3ab 2298static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2299{
2ff7e61e
JM
2300 struct inode *inode = fs_info->btree_inode;
2301
2302 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2303 set_nlink(inode, 1);
f37938e0
ES
2304 /*
2305 * we set the i_size on the btree inode to the max possible int.
2306 * the real end of the address space is determined by all of
2307 * the devices in the system
2308 */
2ff7e61e
JM
2309 inode->i_size = OFFSET_MAX;
2310 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2311
2ff7e61e 2312 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
c6100a4b 2313 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2ff7e61e
JM
2314 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2315 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2316
2ff7e61e 2317 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2318
2ff7e61e
JM
2319 BTRFS_I(inode)->root = fs_info->tree_root;
2320 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2321 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2322 btrfs_insert_inode_hash(inode);
f37938e0
ES
2323}
2324
ad618368
ES
2325static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2326{
2327 fs_info->dev_replace.lock_owner = 0;
2328 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2329 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2330 rwlock_init(&fs_info->dev_replace.lock);
2331 atomic_set(&fs_info->dev_replace.read_locks, 0);
2332 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2333 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2334 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2335}
2336
f9e92e40
ES
2337static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2338{
2339 spin_lock_init(&fs_info->qgroup_lock);
2340 mutex_init(&fs_info->qgroup_ioctl_lock);
2341 fs_info->qgroup_tree = RB_ROOT;
2342 fs_info->qgroup_op_tree = RB_ROOT;
2343 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2344 fs_info->qgroup_seq = 1;
f9e92e40 2345 fs_info->qgroup_ulist = NULL;
d2c609b8 2346 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2347 mutex_init(&fs_info->qgroup_rescan_lock);
2348}
2349
2a458198
ES
2350static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2351 struct btrfs_fs_devices *fs_devices)
2352{
2353 int max_active = fs_info->thread_pool_size;
6f011058 2354 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2355
2356 fs_info->workers =
cb001095
JM
2357 btrfs_alloc_workqueue(fs_info, "worker",
2358 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2359
2360 fs_info->delalloc_workers =
cb001095
JM
2361 btrfs_alloc_workqueue(fs_info, "delalloc",
2362 flags, max_active, 2);
2a458198
ES
2363
2364 fs_info->flush_workers =
cb001095
JM
2365 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2366 flags, max_active, 0);
2a458198
ES
2367
2368 fs_info->caching_workers =
cb001095 2369 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2370
2371 /*
2372 * a higher idle thresh on the submit workers makes it much more
2373 * likely that bios will be send down in a sane order to the
2374 * devices
2375 */
2376 fs_info->submit_workers =
cb001095 2377 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2378 min_t(u64, fs_devices->num_devices,
2379 max_active), 64);
2380
2381 fs_info->fixup_workers =
cb001095 2382 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2383
2384 /*
2385 * endios are largely parallel and should have a very
2386 * low idle thresh
2387 */
2388 fs_info->endio_workers =
cb001095 2389 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2390 fs_info->endio_meta_workers =
cb001095
JM
2391 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2392 max_active, 4);
2a458198 2393 fs_info->endio_meta_write_workers =
cb001095
JM
2394 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2395 max_active, 2);
2a458198 2396 fs_info->endio_raid56_workers =
cb001095
JM
2397 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2398 max_active, 4);
2a458198 2399 fs_info->endio_repair_workers =
cb001095 2400 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2401 fs_info->rmw_workers =
cb001095 2402 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2403 fs_info->endio_write_workers =
cb001095
JM
2404 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2405 max_active, 2);
2a458198 2406 fs_info->endio_freespace_worker =
cb001095
JM
2407 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2408 max_active, 0);
2a458198 2409 fs_info->delayed_workers =
cb001095
JM
2410 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2411 max_active, 0);
2a458198 2412 fs_info->readahead_workers =
cb001095
JM
2413 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2414 max_active, 2);
2a458198 2415 fs_info->qgroup_rescan_workers =
cb001095 2416 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2417 fs_info->extent_workers =
cb001095 2418 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2419 min_t(u64, fs_devices->num_devices,
2420 max_active), 8);
2421
2422 if (!(fs_info->workers && fs_info->delalloc_workers &&
2423 fs_info->submit_workers && fs_info->flush_workers &&
2424 fs_info->endio_workers && fs_info->endio_meta_workers &&
2425 fs_info->endio_meta_write_workers &&
2426 fs_info->endio_repair_workers &&
2427 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2428 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2429 fs_info->caching_workers && fs_info->readahead_workers &&
2430 fs_info->fixup_workers && fs_info->delayed_workers &&
2431 fs_info->extent_workers &&
2432 fs_info->qgroup_rescan_workers)) {
2433 return -ENOMEM;
2434 }
2435
2436 return 0;
2437}
2438
63443bf5
ES
2439static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2440 struct btrfs_fs_devices *fs_devices)
2441{
2442 int ret;
63443bf5
ES
2443 struct btrfs_root *log_tree_root;
2444 struct btrfs_super_block *disk_super = fs_info->super_copy;
2445 u64 bytenr = btrfs_super_log_root(disk_super);
2446
2447 if (fs_devices->rw_devices == 0) {
f14d104d 2448 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2449 return -EIO;
2450 }
2451
74e4d827 2452 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2453 if (!log_tree_root)
2454 return -ENOMEM;
2455
da17066c 2456 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2457
2ff7e61e
JM
2458 log_tree_root->node = read_tree_block(fs_info, bytenr,
2459 fs_info->generation + 1);
64c043de 2460 if (IS_ERR(log_tree_root->node)) {
f14d104d 2461 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2462 ret = PTR_ERR(log_tree_root->node);
64c043de 2463 kfree(log_tree_root);
0eeff236 2464 return ret;
64c043de 2465 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2466 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2467 free_extent_buffer(log_tree_root->node);
2468 kfree(log_tree_root);
2469 return -EIO;
2470 }
2471 /* returns with log_tree_root freed on success */
2472 ret = btrfs_recover_log_trees(log_tree_root);
2473 if (ret) {
0b246afa
JM
2474 btrfs_handle_fs_error(fs_info, ret,
2475 "Failed to recover log tree");
63443bf5
ES
2476 free_extent_buffer(log_tree_root->node);
2477 kfree(log_tree_root);
2478 return ret;
2479 }
2480
bc98a42c 2481 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2482 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2483 if (ret)
2484 return ret;
2485 }
2486
2487 return 0;
2488}
2489
6bccf3ab 2490static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2491{
6bccf3ab 2492 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2493 struct btrfs_root *root;
4bbcaa64
ES
2494 struct btrfs_key location;
2495 int ret;
2496
6bccf3ab
JM
2497 BUG_ON(!fs_info->tree_root);
2498
4bbcaa64
ES
2499 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2500 location.type = BTRFS_ROOT_ITEM_KEY;
2501 location.offset = 0;
2502
a4f3d2c4
DS
2503 root = btrfs_read_tree_root(tree_root, &location);
2504 if (IS_ERR(root))
2505 return PTR_ERR(root);
2506 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2507 fs_info->extent_root = root;
4bbcaa64
ES
2508
2509 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2510 root = btrfs_read_tree_root(tree_root, &location);
2511 if (IS_ERR(root))
2512 return PTR_ERR(root);
2513 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2514 fs_info->dev_root = root;
4bbcaa64
ES
2515 btrfs_init_devices_late(fs_info);
2516
2517 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2518 root = btrfs_read_tree_root(tree_root, &location);
2519 if (IS_ERR(root))
2520 return PTR_ERR(root);
2521 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2522 fs_info->csum_root = root;
4bbcaa64
ES
2523
2524 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2525 root = btrfs_read_tree_root(tree_root, &location);
2526 if (!IS_ERR(root)) {
2527 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2528 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2529 fs_info->quota_root = root;
4bbcaa64
ES
2530 }
2531
2532 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2533 root = btrfs_read_tree_root(tree_root, &location);
2534 if (IS_ERR(root)) {
2535 ret = PTR_ERR(root);
4bbcaa64
ES
2536 if (ret != -ENOENT)
2537 return ret;
2538 } else {
a4f3d2c4
DS
2539 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2540 fs_info->uuid_root = root;
4bbcaa64
ES
2541 }
2542
70f6d82e
OS
2543 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2544 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2545 root = btrfs_read_tree_root(tree_root, &location);
2546 if (IS_ERR(root))
2547 return PTR_ERR(root);
2548 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2549 fs_info->free_space_root = root;
2550 }
2551
4bbcaa64
ES
2552 return 0;
2553}
2554
ad2b2c80
AV
2555int open_ctree(struct super_block *sb,
2556 struct btrfs_fs_devices *fs_devices,
2557 char *options)
2e635a27 2558{
db94535d
CM
2559 u32 sectorsize;
2560 u32 nodesize;
87ee04eb 2561 u32 stripesize;
84234f3a 2562 u64 generation;
f2b636e8 2563 u64 features;
3de4586c 2564 struct btrfs_key location;
a061fc8d 2565 struct buffer_head *bh;
4d34b278 2566 struct btrfs_super_block *disk_super;
815745cf 2567 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2568 struct btrfs_root *tree_root;
4d34b278 2569 struct btrfs_root *chunk_root;
eb60ceac 2570 int ret;
e58ca020 2571 int err = -EINVAL;
af31f5e5
CM
2572 int num_backups_tried = 0;
2573 int backup_index = 0;
5cdc7ad3 2574 int max_active;
6675df31 2575 int clear_free_space_tree = 0;
4543df7e 2576
74e4d827
DS
2577 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2578 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2579 if (!tree_root || !chunk_root) {
39279cc3
CM
2580 err = -ENOMEM;
2581 goto fail;
2582 }
76dda93c
YZ
2583
2584 ret = init_srcu_struct(&fs_info->subvol_srcu);
2585 if (ret) {
2586 err = ret;
2587 goto fail;
2588 }
2589
908c7f19 2590 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2591 if (ret) {
2592 err = ret;
9e11ceee 2593 goto fail_srcu;
e2d84521 2594 }
09cbfeaf 2595 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2596 (1 + ilog2(nr_cpu_ids));
2597
908c7f19 2598 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2599 if (ret) {
2600 err = ret;
2601 goto fail_dirty_metadata_bytes;
2602 }
2603
908c7f19 2604 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2605 if (ret) {
2606 err = ret;
2607 goto fail_delalloc_bytes;
2608 }
2609
76dda93c
YZ
2610 fs_info->btree_inode = new_inode(sb);
2611 if (!fs_info->btree_inode) {
2612 err = -ENOMEM;
c404e0dc 2613 goto fail_bio_counter;
76dda93c
YZ
2614 }
2615
a6591715 2616 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2617
76dda93c 2618 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2619 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2620 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2621 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2622 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2623 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2624 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2625 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2626 spin_lock_init(&fs_info->trans_lock);
76dda93c 2627 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2628 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2629 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2630 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2631 spin_lock_init(&fs_info->super_lock);
fcebe456 2632 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2633 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2634 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2635 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2636 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2637 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2638 mutex_init(&fs_info->reloc_mutex);
573bfb72 2639 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2640 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2641 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2642
0b86a832 2643 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2644 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2645 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2646 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2647 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2648 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2649 BTRFS_BLOCK_RSV_GLOBAL);
2650 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2651 BTRFS_BLOCK_RSV_DELALLOC);
2652 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2653 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2654 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2655 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2656 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2657 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2658 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2659 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2660 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2661 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2662 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2663 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2664 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2665 fs_info->sb = sb;
95ac567a 2666 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2667 fs_info->metadata_ratio = 0;
4cb5300b 2668 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2669 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2670 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2671 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2672 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2673 /* readahead state */
d0164adc 2674 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2675 spin_lock_init(&fs_info->reada_lock);
c8b97818 2676
b34b086c
CM
2677 fs_info->thread_pool_size = min_t(unsigned long,
2678 num_online_cpus() + 2, 8);
0afbaf8c 2679
199c2a9c
MX
2680 INIT_LIST_HEAD(&fs_info->ordered_roots);
2681 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7 2682 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2683 GFP_KERNEL);
16cdcec7
MX
2684 if (!fs_info->delayed_root) {
2685 err = -ENOMEM;
2686 goto fail_iput;
2687 }
2688 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2689
638aa7ed 2690 btrfs_init_scrub(fs_info);
21adbd5c
SB
2691#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2692 fs_info->check_integrity_print_mask = 0;
2693#endif
779a65a4 2694 btrfs_init_balance(fs_info);
21c7e756 2695 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2696
9f6d2510
DS
2697 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2698 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2699
6bccf3ab 2700 btrfs_init_btree_inode(fs_info);
76dda93c 2701
0f9dd46c 2702 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2703 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2704 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2705
c6100a4b
JB
2706 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2707 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
11833d66 2708 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2709 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2710
5a3f23d5 2711 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2712 mutex_init(&fs_info->tree_log_mutex);
925baedd 2713 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2714 mutex_init(&fs_info->transaction_kthread_mutex);
2715 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2716 mutex_init(&fs_info->volume_mutex);
1bbc621e 2717 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2718 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2719 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2720 init_rwsem(&fs_info->subvol_sem);
803b2f54 2721 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2722
ad618368 2723 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2724 btrfs_init_qgroup(fs_info);
416ac51d 2725
fa9c0d79
CM
2726 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2727 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2728
e6dcd2dc 2729 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2730 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2731 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2732 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2733
04216820
FM
2734 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2735
da17066c
JM
2736 /* Usable values until the real ones are cached from the superblock */
2737 fs_info->nodesize = 4096;
2738 fs_info->sectorsize = 4096;
2739 fs_info->stripesize = 4096;
2740
53b381b3
DW
2741 ret = btrfs_alloc_stripe_hash_table(fs_info);
2742 if (ret) {
83c8266a 2743 err = ret;
53b381b3
DW
2744 goto fail_alloc;
2745 }
2746
da17066c 2747 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2748
3c4bb26b 2749 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2750
2751 /*
2752 * Read super block and check the signature bytes only
2753 */
a512bbf8 2754 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2755 if (IS_ERR(bh)) {
2756 err = PTR_ERR(bh);
16cdcec7 2757 goto fail_alloc;
20b45077 2758 }
39279cc3 2759
1104a885
DS
2760 /*
2761 * We want to check superblock checksum, the type is stored inside.
2762 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2763 */
ab8d0fc4 2764 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2765 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2766 err = -EINVAL;
b2acdddf 2767 brelse(bh);
1104a885
DS
2768 goto fail_alloc;
2769 }
2770
2771 /*
2772 * super_copy is zeroed at allocation time and we never touch the
2773 * following bytes up to INFO_SIZE, the checksum is calculated from
2774 * the whole block of INFO_SIZE
2775 */
6c41761f
DS
2776 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2777 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2778 sizeof(*fs_info->super_for_commit));
a061fc8d 2779 brelse(bh);
5f39d397 2780
6c41761f 2781 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2782
3d3a126a 2783 ret = btrfs_check_super_valid(fs_info);
1104a885 2784 if (ret) {
05135f59 2785 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2786 err = -EINVAL;
2787 goto fail_alloc;
2788 }
2789
6c41761f 2790 disk_super = fs_info->super_copy;
0f7d52f4 2791 if (!btrfs_super_root(disk_super))
16cdcec7 2792 goto fail_alloc;
0f7d52f4 2793
acce952b 2794 /* check FS state, whether FS is broken. */
87533c47
MX
2795 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2796 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2797
af31f5e5
CM
2798 /*
2799 * run through our array of backup supers and setup
2800 * our ring pointer to the oldest one
2801 */
2802 generation = btrfs_super_generation(disk_super);
2803 find_oldest_super_backup(fs_info, generation);
2804
75e7cb7f
LB
2805 /*
2806 * In the long term, we'll store the compression type in the super
2807 * block, and it'll be used for per file compression control.
2808 */
2809 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2810
2ff7e61e 2811 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2812 if (ret) {
2813 err = ret;
16cdcec7 2814 goto fail_alloc;
2b82032c 2815 }
dfe25020 2816
f2b636e8
JB
2817 features = btrfs_super_incompat_flags(disk_super) &
2818 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2819 if (features) {
05135f59
DS
2820 btrfs_err(fs_info,
2821 "cannot mount because of unsupported optional features (%llx)",
2822 features);
f2b636e8 2823 err = -EINVAL;
16cdcec7 2824 goto fail_alloc;
f2b636e8
JB
2825 }
2826
5d4f98a2 2827 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2828 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2829 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2830 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2831 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2832 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2833
3173a18f 2834 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2835 btrfs_info(fs_info, "has skinny extents");
3173a18f 2836
727011e0
CM
2837 /*
2838 * flag our filesystem as having big metadata blocks if
2839 * they are bigger than the page size
2840 */
09cbfeaf 2841 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2842 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2843 btrfs_info(fs_info,
2844 "flagging fs with big metadata feature");
727011e0
CM
2845 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2846 }
2847
bc3f116f 2848 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2849 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2850 stripesize = sectorsize;
707e8a07 2851 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2852 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2853
da17066c
JM
2854 /* Cache block sizes */
2855 fs_info->nodesize = nodesize;
2856 fs_info->sectorsize = sectorsize;
2857 fs_info->stripesize = stripesize;
2858
bc3f116f
CM
2859 /*
2860 * mixed block groups end up with duplicate but slightly offset
2861 * extent buffers for the same range. It leads to corruptions
2862 */
2863 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2864 (sectorsize != nodesize)) {
05135f59
DS
2865 btrfs_err(fs_info,
2866"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2867 nodesize, sectorsize);
bc3f116f
CM
2868 goto fail_alloc;
2869 }
2870
ceda0864
MX
2871 /*
2872 * Needn't use the lock because there is no other task which will
2873 * update the flag.
2874 */
a6fa6fae 2875 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2876
f2b636e8
JB
2877 features = btrfs_super_compat_ro_flags(disk_super) &
2878 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2879 if (!sb_rdonly(sb) && features) {
05135f59
DS
2880 btrfs_err(fs_info,
2881 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2882 features);
f2b636e8 2883 err = -EINVAL;
16cdcec7 2884 goto fail_alloc;
f2b636e8 2885 }
61d92c32 2886
5cdc7ad3 2887 max_active = fs_info->thread_pool_size;
61d92c32 2888
2a458198
ES
2889 ret = btrfs_init_workqueues(fs_info, fs_devices);
2890 if (ret) {
2891 err = ret;
0dc3b84a
JB
2892 goto fail_sb_buffer;
2893 }
4543df7e 2894
9e11ceee
JK
2895 sb->s_bdi->congested_fn = btrfs_congested_fn;
2896 sb->s_bdi->congested_data = fs_info;
2897 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2898 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
2899 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2900 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2901
a061fc8d
CM
2902 sb->s_blocksize = sectorsize;
2903 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2904
925baedd 2905 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2906 ret = btrfs_read_sys_array(fs_info);
925baedd 2907 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2908 if (ret) {
05135f59 2909 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2910 goto fail_sb_buffer;
84eed90f 2911 }
0b86a832 2912
84234f3a 2913 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2914
da17066c 2915 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2916
2ff7e61e 2917 chunk_root->node = read_tree_block(fs_info,
0b86a832 2918 btrfs_super_chunk_root(disk_super),
ce86cd59 2919 generation);
64c043de
LB
2920 if (IS_ERR(chunk_root->node) ||
2921 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2922 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2923 if (!IS_ERR(chunk_root->node))
2924 free_extent_buffer(chunk_root->node);
95ab1f64 2925 chunk_root->node = NULL;
af31f5e5 2926 goto fail_tree_roots;
83121942 2927 }
5d4f98a2
YZ
2928 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2929 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2930
e17cade2 2931 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2932 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2933
5b4aacef 2934 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2935 if (ret) {
05135f59 2936 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2937 goto fail_tree_roots;
2b82032c 2938 }
0b86a832 2939
8dabb742
SB
2940 /*
2941 * keep the device that is marked to be the target device for the
2942 * dev_replace procedure
2943 */
9eaed21e 2944 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2945
a6b0d5c8 2946 if (!fs_devices->latest_bdev) {
05135f59 2947 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2948 goto fail_tree_roots;
2949 }
2950
af31f5e5 2951retry_root_backup:
84234f3a 2952 generation = btrfs_super_generation(disk_super);
0b86a832 2953
2ff7e61e 2954 tree_root->node = read_tree_block(fs_info,
db94535d 2955 btrfs_super_root(disk_super),
ce86cd59 2956 generation);
64c043de
LB
2957 if (IS_ERR(tree_root->node) ||
2958 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2959 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2960 if (!IS_ERR(tree_root->node))
2961 free_extent_buffer(tree_root->node);
95ab1f64 2962 tree_root->node = NULL;
af31f5e5 2963 goto recovery_tree_root;
83121942 2964 }
af31f5e5 2965
5d4f98a2
YZ
2966 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2967 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2968 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2969
f32e48e9
CR
2970 mutex_lock(&tree_root->objectid_mutex);
2971 ret = btrfs_find_highest_objectid(tree_root,
2972 &tree_root->highest_objectid);
2973 if (ret) {
2974 mutex_unlock(&tree_root->objectid_mutex);
2975 goto recovery_tree_root;
2976 }
2977
2978 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2979
2980 mutex_unlock(&tree_root->objectid_mutex);
2981
6bccf3ab 2982 ret = btrfs_read_roots(fs_info);
4bbcaa64 2983 if (ret)
af31f5e5 2984 goto recovery_tree_root;
f7a81ea4 2985
8929ecfa
YZ
2986 fs_info->generation = generation;
2987 fs_info->last_trans_committed = generation;
8929ecfa 2988
68310a5e
ID
2989 ret = btrfs_recover_balance(fs_info);
2990 if (ret) {
05135f59 2991 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
2992 goto fail_block_groups;
2993 }
2994
733f4fbb
SB
2995 ret = btrfs_init_dev_stats(fs_info);
2996 if (ret) {
05135f59 2997 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
2998 goto fail_block_groups;
2999 }
3000
8dabb742
SB
3001 ret = btrfs_init_dev_replace(fs_info);
3002 if (ret) {
05135f59 3003 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3004 goto fail_block_groups;
3005 }
3006
9eaed21e 3007 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 3008
b7c35e81
AJ
3009 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3010 if (ret) {
05135f59
DS
3011 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3012 ret);
b7c35e81
AJ
3013 goto fail_block_groups;
3014 }
3015
3016 ret = btrfs_sysfs_add_device(fs_devices);
3017 if (ret) {
05135f59
DS
3018 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3019 ret);
b7c35e81
AJ
3020 goto fail_fsdev_sysfs;
3021 }
3022
96f3136e 3023 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3024 if (ret) {
05135f59 3025 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3026 goto fail_fsdev_sysfs;
c59021f8 3027 }
3028
c59021f8 3029 ret = btrfs_init_space_info(fs_info);
3030 if (ret) {
05135f59 3031 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3032 goto fail_sysfs;
c59021f8 3033 }
3034
5b4aacef 3035 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3036 if (ret) {
05135f59 3037 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3038 goto fail_sysfs;
1b1d1f66 3039 }
4330e183 3040
0f0d1272 3041 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) {
05135f59 3042 btrfs_warn(fs_info,
4330e183 3043 "writeable mount is not allowed due to too many missing devices");
2365dd3c 3044 goto fail_sysfs;
292fd7fc 3045 }
9078a3e1 3046
a74a4b97
CM
3047 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3048 "btrfs-cleaner");
57506d50 3049 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3050 goto fail_sysfs;
a74a4b97
CM
3051
3052 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3053 tree_root,
3054 "btrfs-transaction");
57506d50 3055 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3056 goto fail_cleaner;
a74a4b97 3057
583b7231 3058 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3059 !fs_info->fs_devices->rotating) {
583b7231 3060 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3061 }
3062
572d9ab7 3063 /*
01327610 3064 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3065 * not have to wait for transaction commit
3066 */
3067 btrfs_apply_pending_changes(fs_info);
3818aea2 3068
21adbd5c 3069#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3070 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3071 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3072 btrfs_test_opt(fs_info,
21adbd5c
SB
3073 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3074 1 : 0,
3075 fs_info->check_integrity_print_mask);
3076 if (ret)
05135f59
DS
3077 btrfs_warn(fs_info,
3078 "failed to initialize integrity check module: %d",
3079 ret);
21adbd5c
SB
3080 }
3081#endif
bcef60f2
AJ
3082 ret = btrfs_read_qgroup_config(fs_info);
3083 if (ret)
3084 goto fail_trans_kthread;
21adbd5c 3085
96da0919
QW
3086 /* do not make disk changes in broken FS or nologreplay is given */
3087 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3088 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3089 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3090 if (ret) {
63443bf5 3091 err = ret;
28c16cbb 3092 goto fail_qgroup;
79787eaa 3093 }
e02119d5 3094 }
1a40e23b 3095
6bccf3ab 3096 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3097 if (ret)
28c16cbb 3098 goto fail_qgroup;
76dda93c 3099
bc98a42c 3100 if (!sb_rdonly(sb)) {
d68fc57b 3101 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3102 if (ret)
28c16cbb 3103 goto fail_qgroup;
90c711ab
ZB
3104
3105 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3106 ret = btrfs_recover_relocation(tree_root);
90c711ab 3107 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3108 if (ret < 0) {
05135f59
DS
3109 btrfs_warn(fs_info, "failed to recover relocation: %d",
3110 ret);
d7ce5843 3111 err = -EINVAL;
bcef60f2 3112 goto fail_qgroup;
d7ce5843 3113 }
7c2ca468 3114 }
1a40e23b 3115
3de4586c
CM
3116 location.objectid = BTRFS_FS_TREE_OBJECTID;
3117 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3118 location.offset = 0;
3de4586c 3119
3de4586c 3120 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3121 if (IS_ERR(fs_info->fs_root)) {
3122 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3123 goto fail_qgroup;
3140c9a3 3124 }
c289811c 3125
bc98a42c 3126 if (sb_rdonly(sb))
2b6ba629 3127 return 0;
59641015 3128
f8d468a1
OS
3129 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3130 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3131 clear_free_space_tree = 1;
3132 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3133 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3134 btrfs_warn(fs_info, "free space tree is invalid");
3135 clear_free_space_tree = 1;
3136 }
3137
3138 if (clear_free_space_tree) {
f8d468a1
OS
3139 btrfs_info(fs_info, "clearing free space tree");
3140 ret = btrfs_clear_free_space_tree(fs_info);
3141 if (ret) {
3142 btrfs_warn(fs_info,
3143 "failed to clear free space tree: %d", ret);
6bccf3ab 3144 close_ctree(fs_info);
f8d468a1
OS
3145 return ret;
3146 }
3147 }
3148
0b246afa 3149 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3150 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3151 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3152 ret = btrfs_create_free_space_tree(fs_info);
3153 if (ret) {
05135f59
DS
3154 btrfs_warn(fs_info,
3155 "failed to create free space tree: %d", ret);
6bccf3ab 3156 close_ctree(fs_info);
511711af
CM
3157 return ret;
3158 }
3159 }
3160
2b6ba629
ID
3161 down_read(&fs_info->cleanup_work_sem);
3162 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3163 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3164 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3165 close_ctree(fs_info);
2b6ba629
ID
3166 return ret;
3167 }
3168 up_read(&fs_info->cleanup_work_sem);
59641015 3169
2b6ba629
ID
3170 ret = btrfs_resume_balance_async(fs_info);
3171 if (ret) {
05135f59 3172 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3173 close_ctree(fs_info);
2b6ba629 3174 return ret;
e3acc2a6
JB
3175 }
3176
8dabb742
SB
3177 ret = btrfs_resume_dev_replace_async(fs_info);
3178 if (ret) {
05135f59 3179 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3180 close_ctree(fs_info);
8dabb742
SB
3181 return ret;
3182 }
3183
b382a324
JS
3184 btrfs_qgroup_rescan_resume(fs_info);
3185
4bbcaa64 3186 if (!fs_info->uuid_root) {
05135f59 3187 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3188 ret = btrfs_create_uuid_tree(fs_info);
3189 if (ret) {
05135f59
DS
3190 btrfs_warn(fs_info,
3191 "failed to create the UUID tree: %d", ret);
6bccf3ab 3192 close_ctree(fs_info);
f7a81ea4
SB
3193 return ret;
3194 }
0b246afa 3195 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3196 fs_info->generation !=
3197 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3198 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3199 ret = btrfs_check_uuid_tree(fs_info);
3200 if (ret) {
05135f59
DS
3201 btrfs_warn(fs_info,
3202 "failed to check the UUID tree: %d", ret);
6bccf3ab 3203 close_ctree(fs_info);
70f80175
SB
3204 return ret;
3205 }
3206 } else {
afcdd129 3207 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3208 }
afcdd129 3209 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3210
8dcddfa0
QW
3211 /*
3212 * backuproot only affect mount behavior, and if open_ctree succeeded,
3213 * no need to keep the flag
3214 */
3215 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3216
ad2b2c80 3217 return 0;
39279cc3 3218
bcef60f2
AJ
3219fail_qgroup:
3220 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3221fail_trans_kthread:
3222 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3223 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3224 btrfs_free_fs_roots(fs_info);
3f157a2f 3225fail_cleaner:
a74a4b97 3226 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3227
3228 /*
3229 * make sure we're done with the btree inode before we stop our
3230 * kthreads
3231 */
3232 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3233
2365dd3c 3234fail_sysfs:
6618a59b 3235 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3236
b7c35e81
AJ
3237fail_fsdev_sysfs:
3238 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3239
1b1d1f66 3240fail_block_groups:
54067ae9 3241 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3242
3243fail_tree_roots:
3244 free_root_pointers(fs_info, 1);
2b8195bb 3245 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3246
39279cc3 3247fail_sb_buffer:
7abadb64 3248 btrfs_stop_all_workers(fs_info);
5cdd7db6 3249 btrfs_free_block_groups(fs_info);
16cdcec7 3250fail_alloc:
4543df7e 3251fail_iput:
586e46e2
ID
3252 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3253
4543df7e 3254 iput(fs_info->btree_inode);
c404e0dc
MX
3255fail_bio_counter:
3256 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3257fail_delalloc_bytes:
3258 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3259fail_dirty_metadata_bytes:
3260 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3261fail_srcu:
3262 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3263fail:
53b381b3 3264 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3265 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3266 return err;
af31f5e5
CM
3267
3268recovery_tree_root:
0b246afa 3269 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3270 goto fail_tree_roots;
3271
3272 free_root_pointers(fs_info, 0);
3273
3274 /* don't use the log in recovery mode, it won't be valid */
3275 btrfs_set_super_log_root(disk_super, 0);
3276
3277 /* we can't trust the free space cache either */
3278 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3279
3280 ret = next_root_backup(fs_info, fs_info->super_copy,
3281 &num_backups_tried, &backup_index);
3282 if (ret == -1)
3283 goto fail_block_groups;
3284 goto retry_root_backup;
eb60ceac
CM
3285}
3286
f2984462
CM
3287static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3288{
f2984462
CM
3289 if (uptodate) {
3290 set_buffer_uptodate(bh);
3291 } else {
442a4f63
SB
3292 struct btrfs_device *device = (struct btrfs_device *)
3293 bh->b_private;
3294
fb456252 3295 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3296 "lost page write due to IO error on %s",
606686ee 3297 rcu_str_deref(device->name));
01327610 3298 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3299 * our own ways of dealing with the IO errors
3300 */
f2984462 3301 clear_buffer_uptodate(bh);
442a4f63 3302 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3303 }
3304 unlock_buffer(bh);
3305 put_bh(bh);
3306}
3307
29c36d72
AJ
3308int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3309 struct buffer_head **bh_ret)
3310{
3311 struct buffer_head *bh;
3312 struct btrfs_super_block *super;
3313 u64 bytenr;
3314
3315 bytenr = btrfs_sb_offset(copy_num);
3316 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3317 return -EINVAL;
3318
9f6d2510 3319 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3320 /*
3321 * If we fail to read from the underlying devices, as of now
3322 * the best option we have is to mark it EIO.
3323 */
3324 if (!bh)
3325 return -EIO;
3326
3327 super = (struct btrfs_super_block *)bh->b_data;
3328 if (btrfs_super_bytenr(super) != bytenr ||
3329 btrfs_super_magic(super) != BTRFS_MAGIC) {
3330 brelse(bh);
3331 return -EINVAL;
3332 }
3333
3334 *bh_ret = bh;
3335 return 0;
3336}
3337
3338
a512bbf8
YZ
3339struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3340{
3341 struct buffer_head *bh;
3342 struct buffer_head *latest = NULL;
3343 struct btrfs_super_block *super;
3344 int i;
3345 u64 transid = 0;
92fc03fb 3346 int ret = -EINVAL;
a512bbf8
YZ
3347
3348 /* we would like to check all the supers, but that would make
3349 * a btrfs mount succeed after a mkfs from a different FS.
3350 * So, we need to add a special mount option to scan for
3351 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3352 */
3353 for (i = 0; i < 1; i++) {
29c36d72
AJ
3354 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3355 if (ret)
a512bbf8
YZ
3356 continue;
3357
3358 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3359
3360 if (!latest || btrfs_super_generation(super) > transid) {
3361 brelse(latest);
3362 latest = bh;
3363 transid = btrfs_super_generation(super);
3364 } else {
3365 brelse(bh);
3366 }
3367 }
92fc03fb
AJ
3368
3369 if (!latest)
3370 return ERR_PTR(ret);
3371
a512bbf8
YZ
3372 return latest;
3373}
3374
4eedeb75 3375/*
abbb3b8e
DS
3376 * Write superblock @sb to the @device. Do not wait for completion, all the
3377 * buffer heads we write are pinned.
4eedeb75 3378 *
abbb3b8e
DS
3379 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3380 * the expected device size at commit time. Note that max_mirrors must be
3381 * same for write and wait phases.
4eedeb75 3382 *
abbb3b8e 3383 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3384 */
a512bbf8 3385static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3386 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3387{
3388 struct buffer_head *bh;
3389 int i;
3390 int ret;
3391 int errors = 0;
3392 u32 crc;
3393 u64 bytenr;
a512bbf8
YZ
3394
3395 if (max_mirrors == 0)
3396 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3397
a512bbf8
YZ
3398 for (i = 0; i < max_mirrors; i++) {
3399 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3400 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3401 device->commit_total_bytes)
a512bbf8
YZ
3402 break;
3403
abbb3b8e 3404 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3405
abbb3b8e
DS
3406 crc = ~(u32)0;
3407 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3408 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3409 btrfs_csum_final(crc, sb->csum);
4eedeb75 3410
abbb3b8e 3411 /* One reference for us, and we leave it for the caller */
9f6d2510 3412 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3413 BTRFS_SUPER_INFO_SIZE);
3414 if (!bh) {
3415 btrfs_err(device->fs_info,
3416 "couldn't get super buffer head for bytenr %llu",
3417 bytenr);
3418 errors++;
4eedeb75 3419 continue;
abbb3b8e 3420 }
634554dc 3421
abbb3b8e 3422 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3423
abbb3b8e
DS
3424 /* one reference for submit_bh */
3425 get_bh(bh);
4eedeb75 3426
abbb3b8e
DS
3427 set_buffer_uptodate(bh);
3428 lock_buffer(bh);
3429 bh->b_end_io = btrfs_end_buffer_write_sync;
3430 bh->b_private = device;
a512bbf8 3431
387125fc
CM
3432 /*
3433 * we fua the first super. The others we allow
3434 * to go down lazy.
3435 */
8d910125
JK
3436 if (i == 0) {
3437 ret = btrfsic_submit_bh(REQ_OP_WRITE,
db95c876 3438 REQ_SYNC | REQ_FUA | REQ_META | REQ_PRIO, bh);
8d910125 3439 } else {
db95c876
DS
3440 ret = btrfsic_submit_bh(REQ_OP_WRITE,
3441 REQ_SYNC | REQ_META | REQ_PRIO, bh);
8d910125 3442 }
4eedeb75 3443 if (ret)
a512bbf8 3444 errors++;
a512bbf8
YZ
3445 }
3446 return errors < i ? 0 : -1;
3447}
3448
abbb3b8e
DS
3449/*
3450 * Wait for write completion of superblocks done by write_dev_supers,
3451 * @max_mirrors same for write and wait phases.
3452 *
3453 * Return number of errors when buffer head is not found or not marked up to
3454 * date.
3455 */
3456static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3457{
3458 struct buffer_head *bh;
3459 int i;
3460 int errors = 0;
3461 u64 bytenr;
3462
3463 if (max_mirrors == 0)
3464 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3465
3466 for (i = 0; i < max_mirrors; i++) {
3467 bytenr = btrfs_sb_offset(i);
3468 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3469 device->commit_total_bytes)
3470 break;
3471
9f6d2510
DS
3472 bh = __find_get_block(device->bdev,
3473 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3474 BTRFS_SUPER_INFO_SIZE);
3475 if (!bh) {
3476 errors++;
3477 continue;
3478 }
3479 wait_on_buffer(bh);
3480 if (!buffer_uptodate(bh))
3481 errors++;
3482
3483 /* drop our reference */
3484 brelse(bh);
3485
3486 /* drop the reference from the writing run */
3487 brelse(bh);
3488 }
3489
3490 return errors < i ? 0 : -1;
3491}
3492
387125fc
CM
3493/*
3494 * endio for the write_dev_flush, this will wake anyone waiting
3495 * for the barrier when it is done
3496 */
4246a0b6 3497static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3498{
e0ae9994 3499 complete(bio->bi_private);
387125fc
CM
3500}
3501
3502/*
4fc6441a
AJ
3503 * Submit a flush request to the device if it supports it. Error handling is
3504 * done in the waiting counterpart.
387125fc 3505 */
4fc6441a 3506static void write_dev_flush(struct btrfs_device *device)
387125fc 3507{
c2a9c7ab 3508 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3509 struct bio *bio = device->flush_bio;
387125fc 3510
c2a9c7ab 3511 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3512 return;
387125fc 3513
e0ae9994 3514 bio_reset(bio);
387125fc 3515 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3516 bio_set_dev(bio, device->bdev);
8d910125 3517 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3518 init_completion(&device->flush_wait);
3519 bio->bi_private = &device->flush_wait;
387125fc 3520
43a01111 3521 btrfsic_submit_bio(bio);
e0ae9994 3522 device->flush_bio_sent = 1;
4fc6441a 3523}
387125fc 3524
4fc6441a
AJ
3525/*
3526 * If the flush bio has been submitted by write_dev_flush, wait for it.
3527 */
8c27cb35 3528static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3529{
4fc6441a 3530 struct bio *bio = device->flush_bio;
387125fc 3531
e0ae9994 3532 if (!device->flush_bio_sent)
58efbc9f 3533 return BLK_STS_OK;
387125fc 3534
e0ae9994 3535 device->flush_bio_sent = 0;
2980d574 3536 wait_for_completion_io(&device->flush_wait);
387125fc 3537
8c27cb35 3538 return bio->bi_status;
387125fc 3539}
387125fc 3540
d10b82fe 3541static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3542{
d10b82fe 3543 if (!btrfs_check_rw_degradable(fs_info))
401b41e5 3544 return -EIO;
387125fc
CM
3545 return 0;
3546}
3547
3548/*
3549 * send an empty flush down to each device in parallel,
3550 * then wait for them
3551 */
3552static int barrier_all_devices(struct btrfs_fs_info *info)
3553{
3554 struct list_head *head;
3555 struct btrfs_device *dev;
5af3e8cc 3556 int errors_wait = 0;
4e4cbee9 3557 blk_status_t ret;
387125fc
CM
3558
3559 /* send down all the barriers */
3560 head = &info->fs_devices->devices;
3561 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3562 if (dev->missing)
3563 continue;
cea7c8bf 3564 if (!dev->bdev)
387125fc 3565 continue;
387125fc
CM
3566 if (!dev->in_fs_metadata || !dev->writeable)
3567 continue;
3568
4fc6441a 3569 write_dev_flush(dev);
58efbc9f 3570 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3571 }
3572
3573 /* wait for all the barriers */
3574 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3575 if (dev->missing)
3576 continue;
387125fc 3577 if (!dev->bdev) {
5af3e8cc 3578 errors_wait++;
387125fc
CM
3579 continue;
3580 }
3581 if (!dev->in_fs_metadata || !dev->writeable)
3582 continue;
3583
4fc6441a 3584 ret = wait_dev_flush(dev);
401b41e5
AJ
3585 if (ret) {
3586 dev->last_flush_error = ret;
66b4993e
DS
3587 btrfs_dev_stat_inc_and_print(dev,
3588 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3589 errors_wait++;
401b41e5
AJ
3590 }
3591 }
3592
cea7c8bf 3593 if (errors_wait) {
401b41e5
AJ
3594 /*
3595 * At some point we need the status of all disks
3596 * to arrive at the volume status. So error checking
3597 * is being pushed to a separate loop.
3598 */
d10b82fe 3599 return check_barrier_error(info);
387125fc 3600 }
387125fc
CM
3601 return 0;
3602}
3603
943c6e99
ZL
3604int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3605{
8789f4fe
ZL
3606 int raid_type;
3607 int min_tolerated = INT_MAX;
943c6e99 3608
8789f4fe
ZL
3609 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3610 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3611 min_tolerated = min(min_tolerated,
3612 btrfs_raid_array[BTRFS_RAID_SINGLE].
3613 tolerated_failures);
943c6e99 3614
8789f4fe
ZL
3615 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3616 if (raid_type == BTRFS_RAID_SINGLE)
3617 continue;
3618 if (!(flags & btrfs_raid_group[raid_type]))
3619 continue;
3620 min_tolerated = min(min_tolerated,
3621 btrfs_raid_array[raid_type].
3622 tolerated_failures);
3623 }
943c6e99 3624
8789f4fe 3625 if (min_tolerated == INT_MAX) {
ab8d0fc4 3626 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3627 min_tolerated = 0;
3628 }
3629
3630 return min_tolerated;
943c6e99
ZL
3631}
3632
eece6a9c 3633int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3634{
e5e9a520 3635 struct list_head *head;
f2984462 3636 struct btrfs_device *dev;
a061fc8d 3637 struct btrfs_super_block *sb;
f2984462 3638 struct btrfs_dev_item *dev_item;
f2984462
CM
3639 int ret;
3640 int do_barriers;
a236aed1
CM
3641 int max_errors;
3642 int total_errors = 0;
a061fc8d 3643 u64 flags;
f2984462 3644
0b246afa
JM
3645 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3646 backup_super_roots(fs_info);
f2984462 3647
0b246afa 3648 sb = fs_info->super_for_commit;
a061fc8d 3649 dev_item = &sb->dev_item;
e5e9a520 3650
0b246afa
JM
3651 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3652 head = &fs_info->fs_devices->devices;
3653 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3654
5af3e8cc 3655 if (do_barriers) {
0b246afa 3656 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3657 if (ret) {
3658 mutex_unlock(
0b246afa
JM
3659 &fs_info->fs_devices->device_list_mutex);
3660 btrfs_handle_fs_error(fs_info, ret,
3661 "errors while submitting device barriers.");
5af3e8cc
SB
3662 return ret;
3663 }
3664 }
387125fc 3665
1f78160c 3666 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3667 if (!dev->bdev) {
3668 total_errors++;
3669 continue;
3670 }
2b82032c 3671 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3672 continue;
3673
2b82032c 3674 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3675 btrfs_set_stack_device_type(dev_item, dev->type);
3676 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3677 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3678 dev->commit_total_bytes);
ce7213c7
MX
3679 btrfs_set_stack_device_bytes_used(dev_item,
3680 dev->commit_bytes_used);
a061fc8d
CM
3681 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3682 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3683 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3684 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
44880fdc 3685 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
a512bbf8 3686
a061fc8d
CM
3687 flags = btrfs_super_flags(sb);
3688 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3689
abbb3b8e 3690 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3691 if (ret)
3692 total_errors++;
f2984462 3693 }
a236aed1 3694 if (total_errors > max_errors) {
0b246afa
JM
3695 btrfs_err(fs_info, "%d errors while writing supers",
3696 total_errors);
3697 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3698
9d565ba4 3699 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3700 btrfs_handle_fs_error(fs_info, -EIO,
3701 "%d errors while writing supers",
3702 total_errors);
9d565ba4 3703 return -EIO;
a236aed1 3704 }
f2984462 3705
a512bbf8 3706 total_errors = 0;
1f78160c 3707 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3708 if (!dev->bdev)
3709 continue;
2b82032c 3710 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3711 continue;
3712
abbb3b8e 3713 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3714 if (ret)
3715 total_errors++;
f2984462 3716 }
0b246afa 3717 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3718 if (total_errors > max_errors) {
0b246afa
JM
3719 btrfs_handle_fs_error(fs_info, -EIO,
3720 "%d errors while writing supers",
3721 total_errors);
79787eaa 3722 return -EIO;
a236aed1 3723 }
f2984462
CM
3724 return 0;
3725}
3726
cb517eab
MX
3727/* Drop a fs root from the radix tree and free it. */
3728void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3729 struct btrfs_root *root)
2619ba1f 3730{
4df27c4d 3731 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3732 radix_tree_delete(&fs_info->fs_roots_radix,
3733 (unsigned long)root->root_key.objectid);
4df27c4d 3734 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3735
3736 if (btrfs_root_refs(&root->root_item) == 0)
3737 synchronize_srcu(&fs_info->subvol_srcu);
3738
1c1ea4f7 3739 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3740 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3741 if (root->reloc_root) {
3742 free_extent_buffer(root->reloc_root->node);
3743 free_extent_buffer(root->reloc_root->commit_root);
3744 btrfs_put_fs_root(root->reloc_root);
3745 root->reloc_root = NULL;
3746 }
3747 }
3321719e 3748
faa2dbf0
JB
3749 if (root->free_ino_pinned)
3750 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3751 if (root->free_ino_ctl)
3752 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3753 free_fs_root(root);
4df27c4d
YZ
3754}
3755
3756static void free_fs_root(struct btrfs_root *root)
3757{
57cdc8db 3758 iput(root->ino_cache_inode);
4df27c4d 3759 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2ff7e61e 3760 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
1cb048f5 3761 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3762 if (root->anon_dev)
3763 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3764 if (root->subv_writers)
3765 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3766 free_extent_buffer(root->node);
3767 free_extent_buffer(root->commit_root);
581bb050
LZ
3768 kfree(root->free_ino_ctl);
3769 kfree(root->free_ino_pinned);
d397712b 3770 kfree(root->name);
b0feb9d9 3771 btrfs_put_fs_root(root);
2619ba1f
CM
3772}
3773
cb517eab
MX
3774void btrfs_free_fs_root(struct btrfs_root *root)
3775{
3776 free_fs_root(root);
2619ba1f
CM
3777}
3778
c146afad 3779int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3780{
c146afad
YZ
3781 u64 root_objectid = 0;
3782 struct btrfs_root *gang[8];
65d33fd7
QW
3783 int i = 0;
3784 int err = 0;
3785 unsigned int ret = 0;
3786 int index;
e089f05c 3787
c146afad 3788 while (1) {
65d33fd7 3789 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3790 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3791 (void **)gang, root_objectid,
3792 ARRAY_SIZE(gang));
65d33fd7
QW
3793 if (!ret) {
3794 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3795 break;
65d33fd7 3796 }
5d4f98a2 3797 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3798
c146afad 3799 for (i = 0; i < ret; i++) {
65d33fd7
QW
3800 /* Avoid to grab roots in dead_roots */
3801 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3802 gang[i] = NULL;
3803 continue;
3804 }
3805 /* grab all the search result for later use */
3806 gang[i] = btrfs_grab_fs_root(gang[i]);
3807 }
3808 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3809
65d33fd7
QW
3810 for (i = 0; i < ret; i++) {
3811 if (!gang[i])
3812 continue;
c146afad 3813 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3814 err = btrfs_orphan_cleanup(gang[i]);
3815 if (err)
65d33fd7
QW
3816 break;
3817 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3818 }
3819 root_objectid++;
3820 }
65d33fd7
QW
3821
3822 /* release the uncleaned roots due to error */
3823 for (; i < ret; i++) {
3824 if (gang[i])
3825 btrfs_put_fs_root(gang[i]);
3826 }
3827 return err;
c146afad 3828}
a2135011 3829
6bccf3ab 3830int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3831{
6bccf3ab 3832 struct btrfs_root *root = fs_info->tree_root;
c146afad 3833 struct btrfs_trans_handle *trans;
a74a4b97 3834
0b246afa 3835 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3836 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3837 mutex_unlock(&fs_info->cleaner_mutex);
3838 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3839
3840 /* wait until ongoing cleanup work done */
0b246afa
JM
3841 down_write(&fs_info->cleanup_work_sem);
3842 up_write(&fs_info->cleanup_work_sem);
c71bf099 3843
7a7eaa40 3844 trans = btrfs_join_transaction(root);
3612b495
TI
3845 if (IS_ERR(trans))
3846 return PTR_ERR(trans);
3a45bb20 3847 return btrfs_commit_transaction(trans);
c146afad
YZ
3848}
3849
6bccf3ab 3850void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3851{
6bccf3ab 3852 struct btrfs_root *root = fs_info->tree_root;
c146afad
YZ
3853 int ret;
3854
afcdd129 3855 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
c146afad 3856
7343dd61 3857 /* wait for the qgroup rescan worker to stop */
d06f23d6 3858 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3859
803b2f54
SB
3860 /* wait for the uuid_scan task to finish */
3861 down(&fs_info->uuid_tree_rescan_sem);
3862 /* avoid complains from lockdep et al., set sem back to initial state */
3863 up(&fs_info->uuid_tree_rescan_sem);
3864
837d5b6e 3865 /* pause restriper - we want to resume on mount */
aa1b8cd4 3866 btrfs_pause_balance(fs_info);
837d5b6e 3867
8dabb742
SB
3868 btrfs_dev_replace_suspend_for_unmount(fs_info);
3869
aa1b8cd4 3870 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3871
3872 /* wait for any defraggers to finish */
3873 wait_event(fs_info->transaction_wait,
3874 (atomic_read(&fs_info->defrag_running) == 0));
3875
3876 /* clear out the rbtree of defraggable inodes */
26176e7c 3877 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3878
21c7e756
MX
3879 cancel_work_sync(&fs_info->async_reclaim_work);
3880
bc98a42c 3881 if (!sb_rdonly(fs_info->sb)) {
e44163e1
JM
3882 /*
3883 * If the cleaner thread is stopped and there are
3884 * block groups queued for removal, the deletion will be
3885 * skipped when we quit the cleaner thread.
3886 */
0b246afa 3887 btrfs_delete_unused_bgs(fs_info);
e44163e1 3888
6bccf3ab 3889 ret = btrfs_commit_super(fs_info);
acce952b 3890 if (ret)
04892340 3891 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3892 }
3893
87533c47 3894 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
2ff7e61e 3895 btrfs_error_commit_super(fs_info);
0f7d52f4 3896
e3029d9f
AV
3897 kthread_stop(fs_info->transaction_kthread);
3898 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3899
afcdd129 3900 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 3901
04892340 3902 btrfs_free_qgroup_config(fs_info);
bcef60f2 3903
963d678b 3904 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3905 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3906 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3907 }
bcc63abb 3908
6618a59b 3909 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3910 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3911
faa2dbf0 3912 btrfs_free_fs_roots(fs_info);
d10c5f31 3913
1a4319cc
LB
3914 btrfs_put_block_group_cache(fs_info);
3915
de348ee0
WS
3916 /*
3917 * we must make sure there is not any read request to
3918 * submit after we stopping all workers.
3919 */
3920 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3921 btrfs_stop_all_workers(fs_info);
3922
5cdd7db6
FM
3923 btrfs_free_block_groups(fs_info);
3924
afcdd129 3925 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 3926 free_root_pointers(fs_info, 1);
9ad6b7bc 3927
13e6c37b 3928 iput(fs_info->btree_inode);
d6bfde87 3929
21adbd5c 3930#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3931 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 3932 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
3933#endif
3934
dfe25020 3935 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3936 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3937
e2d84521 3938 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3939 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3940 percpu_counter_destroy(&fs_info->bio_counter);
76dda93c 3941 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3942
53b381b3
DW
3943 btrfs_free_stripe_hash_table(fs_info);
3944
cdfb080e 3945 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3946 root->orphan_block_rsv = NULL;
04216820 3947
04216820
FM
3948 while (!list_empty(&fs_info->pinned_chunks)) {
3949 struct extent_map *em;
3950
3951 em = list_first_entry(&fs_info->pinned_chunks,
3952 struct extent_map, list);
3953 list_del_init(&em->list);
3954 free_extent_map(em);
3955 }
eb60ceac
CM
3956}
3957
b9fab919
CM
3958int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3959 int atomic)
5f39d397 3960{
1259ab75 3961 int ret;
727011e0 3962 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3963
0b32f4bb 3964 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3965 if (!ret)
3966 return ret;
3967
3968 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3969 parent_transid, atomic);
3970 if (ret == -EAGAIN)
3971 return ret;
1259ab75 3972 return !ret;
5f39d397
CM
3973}
3974
5f39d397
CM
3975void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3976{
0b246afa 3977 struct btrfs_fs_info *fs_info;
06ea65a3 3978 struct btrfs_root *root;
5f39d397 3979 u64 transid = btrfs_header_generation(buf);
b9473439 3980 int was_dirty;
b4ce94de 3981
06ea65a3
JB
3982#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3983 /*
3984 * This is a fast path so only do this check if we have sanity tests
3985 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3986 * outside of the sanity tests.
3987 */
3988 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3989 return;
3990#endif
3991 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 3992 fs_info = root->fs_info;
b9447ef8 3993 btrfs_assert_tree_locked(buf);
0b246afa 3994 if (transid != fs_info->generation)
5d163e0e 3995 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 3996 buf->start, transid, fs_info->generation);
0b32f4bb 3997 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 3998 if (!was_dirty)
104b4e51
NB
3999 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4000 buf->len,
4001 fs_info->dirty_metadata_batch);
1f21ef0a
FM
4002#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4003 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
a4f78750 4004 btrfs_print_leaf(buf);
1f21ef0a
FM
4005 ASSERT(0);
4006 }
4007#endif
eb60ceac
CM
4008}
4009
2ff7e61e 4010static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4011 int flush_delayed)
16cdcec7
MX
4012{
4013 /*
4014 * looks as though older kernels can get into trouble with
4015 * this code, they end up stuck in balance_dirty_pages forever
4016 */
e2d84521 4017 int ret;
16cdcec7
MX
4018
4019 if (current->flags & PF_MEMALLOC)
4020 return;
4021
b53d3f5d 4022 if (flush_delayed)
2ff7e61e 4023 btrfs_balance_delayed_items(fs_info);
16cdcec7 4024
0b246afa 4025 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
e2d84521
MX
4026 BTRFS_DIRTY_METADATA_THRESH);
4027 if (ret > 0) {
0b246afa 4028 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4029 }
16cdcec7
MX
4030}
4031
2ff7e61e 4032void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4033{
2ff7e61e 4034 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4035}
585ad2c3 4036
2ff7e61e 4037void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4038{
2ff7e61e 4039 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4040}
6b80053d 4041
ca7a79ad 4042int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 4043{
727011e0 4044 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
4045 struct btrfs_fs_info *fs_info = root->fs_info;
4046
4047 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
6b80053d 4048}
0da5468f 4049
3d3a126a 4050static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
acce952b 4051{
c926093e 4052 struct btrfs_super_block *sb = fs_info->super_copy;
319e4d06
QW
4053 u64 nodesize = btrfs_super_nodesize(sb);
4054 u64 sectorsize = btrfs_super_sectorsize(sb);
c926093e
DS
4055 int ret = 0;
4056
319e4d06 4057 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
ab8d0fc4 4058 btrfs_err(fs_info, "no valid FS found");
319e4d06
QW
4059 ret = -EINVAL;
4060 }
4061 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
ab8d0fc4 4062 btrfs_warn(fs_info, "unrecognized super flag: %llu",
319e4d06 4063 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
21e7626b 4064 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4065 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
21e7626b 4066 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4067 ret = -EINVAL;
4068 }
21e7626b 4069 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4070 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
21e7626b 4071 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4072 ret = -EINVAL;
4073 }
21e7626b 4074 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4075 btrfs_err(fs_info, "log_root level too big: %d >= %d",
21e7626b 4076 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4077 ret = -EINVAL;
4078 }
4079
1104a885 4080 /*
319e4d06
QW
4081 * Check sectorsize and nodesize first, other check will need it.
4082 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
1104a885 4083 */
319e4d06
QW
4084 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4085 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 4086 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
319e4d06
QW
4087 ret = -EINVAL;
4088 }
4089 /* Only PAGE SIZE is supported yet */
09cbfeaf 4090 if (sectorsize != PAGE_SIZE) {
ab8d0fc4
JM
4091 btrfs_err(fs_info,
4092 "sectorsize %llu not supported yet, only support %lu",
4093 sectorsize, PAGE_SIZE);
319e4d06
QW
4094 ret = -EINVAL;
4095 }
4096 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4097 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 4098 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
319e4d06
QW
4099 ret = -EINVAL;
4100 }
4101 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
ab8d0fc4
JM
4102 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4103 le32_to_cpu(sb->__unused_leafsize), nodesize);
319e4d06
QW
4104 ret = -EINVAL;
4105 }
4106
4107 /* Root alignment check */
4108 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
ab8d0fc4
JM
4109 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4110 btrfs_super_root(sb));
319e4d06
QW
4111 ret = -EINVAL;
4112 }
4113 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
ab8d0fc4
JM
4114 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4115 btrfs_super_chunk_root(sb));
75d6ad38
DS
4116 ret = -EINVAL;
4117 }
319e4d06 4118 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
ab8d0fc4
JM
4119 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4120 btrfs_super_log_root(sb));
75d6ad38
DS
4121 ret = -EINVAL;
4122 }
4123
44880fdc 4124 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
ab8d0fc4
JM
4125 btrfs_err(fs_info,
4126 "dev_item UUID does not match fsid: %pU != %pU",
4127 fs_info->fsid, sb->dev_item.fsid);
c926093e
DS
4128 ret = -EINVAL;
4129 }
4130
4131 /*
4132 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4133 * done later
4134 */
99e3ecfc
LB
4135 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4136 btrfs_err(fs_info, "bytes_used is too small %llu",
ab8d0fc4 4137 btrfs_super_bytes_used(sb));
99e3ecfc
LB
4138 ret = -EINVAL;
4139 }
b7f67055 4140 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
99e3ecfc 4141 btrfs_err(fs_info, "invalid stripesize %u",
ab8d0fc4 4142 btrfs_super_stripesize(sb));
99e3ecfc
LB
4143 ret = -EINVAL;
4144 }
21e7626b 4145 if (btrfs_super_num_devices(sb) > (1UL << 31))
ab8d0fc4
JM
4146 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4147 btrfs_super_num_devices(sb));
75d6ad38 4148 if (btrfs_super_num_devices(sb) == 0) {
ab8d0fc4 4149 btrfs_err(fs_info, "number of devices is 0");
75d6ad38
DS
4150 ret = -EINVAL;
4151 }
c926093e 4152
21e7626b 4153 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
ab8d0fc4
JM
4154 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4155 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4156 ret = -EINVAL;
4157 }
4158
ce7fca5f
DS
4159 /*
4160 * Obvious sys_chunk_array corruptions, it must hold at least one key
4161 * and one chunk
4162 */
4163 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
ab8d0fc4
JM
4164 btrfs_err(fs_info, "system chunk array too big %u > %u",
4165 btrfs_super_sys_array_size(sb),
4166 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
ce7fca5f
DS
4167 ret = -EINVAL;
4168 }
4169 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4170 + sizeof(struct btrfs_chunk)) {
ab8d0fc4
JM
4171 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4172 btrfs_super_sys_array_size(sb),
4173 sizeof(struct btrfs_disk_key)
4174 + sizeof(struct btrfs_chunk));
ce7fca5f
DS
4175 ret = -EINVAL;
4176 }
4177
c926093e
DS
4178 /*
4179 * The generation is a global counter, we'll trust it more than the others
4180 * but it's still possible that it's the one that's wrong.
4181 */
21e7626b 4182 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
ab8d0fc4
JM
4183 btrfs_warn(fs_info,
4184 "suspicious: generation < chunk_root_generation: %llu < %llu",
4185 btrfs_super_generation(sb),
4186 btrfs_super_chunk_root_generation(sb));
21e7626b
DS
4187 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4188 && btrfs_super_cache_generation(sb) != (u64)-1)
ab8d0fc4
JM
4189 btrfs_warn(fs_info,
4190 "suspicious: generation < cache_generation: %llu < %llu",
4191 btrfs_super_generation(sb),
4192 btrfs_super_cache_generation(sb));
c926093e
DS
4193
4194 return ret;
acce952b 4195}
4196
2ff7e61e 4197static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4198{
0b246afa 4199 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4200 btrfs_run_delayed_iputs(fs_info);
0b246afa 4201 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4202
0b246afa
JM
4203 down_write(&fs_info->cleanup_work_sem);
4204 up_write(&fs_info->cleanup_work_sem);
acce952b 4205
4206 /* cleanup FS via transaction */
2ff7e61e 4207 btrfs_cleanup_transaction(fs_info);
acce952b 4208}
4209
143bede5 4210static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4211{
acce952b 4212 struct btrfs_ordered_extent *ordered;
acce952b 4213
199c2a9c 4214 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4215 /*
4216 * This will just short circuit the ordered completion stuff which will
4217 * make sure the ordered extent gets properly cleaned up.
4218 */
199c2a9c 4219 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4220 root_extent_list)
4221 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4222 spin_unlock(&root->ordered_extent_lock);
4223}
4224
4225static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4226{
4227 struct btrfs_root *root;
4228 struct list_head splice;
4229
4230 INIT_LIST_HEAD(&splice);
4231
4232 spin_lock(&fs_info->ordered_root_lock);
4233 list_splice_init(&fs_info->ordered_roots, &splice);
4234 while (!list_empty(&splice)) {
4235 root = list_first_entry(&splice, struct btrfs_root,
4236 ordered_root);
1de2cfde
JB
4237 list_move_tail(&root->ordered_root,
4238 &fs_info->ordered_roots);
199c2a9c 4239
2a85d9ca 4240 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4241 btrfs_destroy_ordered_extents(root);
4242
2a85d9ca
LB
4243 cond_resched();
4244 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4245 }
4246 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4247}
4248
35a3621b 4249static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4250 struct btrfs_fs_info *fs_info)
acce952b 4251{
4252 struct rb_node *node;
4253 struct btrfs_delayed_ref_root *delayed_refs;
4254 struct btrfs_delayed_ref_node *ref;
4255 int ret = 0;
4256
4257 delayed_refs = &trans->delayed_refs;
4258
4259 spin_lock(&delayed_refs->lock);
d7df2c79 4260 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4261 spin_unlock(&delayed_refs->lock);
0b246afa 4262 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4263 return ret;
4264 }
4265
d7df2c79
JB
4266 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4267 struct btrfs_delayed_ref_head *head;
c6fc2454 4268 struct btrfs_delayed_ref_node *tmp;
e78417d1 4269 bool pin_bytes = false;
acce952b 4270
d7df2c79
JB
4271 head = rb_entry(node, struct btrfs_delayed_ref_head,
4272 href_node);
4273 if (!mutex_trylock(&head->mutex)) {
6df8cdf5 4274 refcount_inc(&head->node.refs);
d7df2c79 4275 spin_unlock(&delayed_refs->lock);
eb12db69 4276
d7df2c79 4277 mutex_lock(&head->mutex);
e78417d1 4278 mutex_unlock(&head->mutex);
d7df2c79
JB
4279 btrfs_put_delayed_ref(&head->node);
4280 spin_lock(&delayed_refs->lock);
4281 continue;
4282 }
4283 spin_lock(&head->lock);
c6fc2454
QW
4284 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4285 list) {
d7df2c79 4286 ref->in_tree = 0;
c6fc2454 4287 list_del(&ref->list);
1d57ee94
WX
4288 if (!list_empty(&ref->add_list))
4289 list_del(&ref->add_list);
d7df2c79
JB
4290 atomic_dec(&delayed_refs->num_entries);
4291 btrfs_put_delayed_ref(ref);
e78417d1 4292 }
d7df2c79
JB
4293 if (head->must_insert_reserved)
4294 pin_bytes = true;
4295 btrfs_free_delayed_extent_op(head->extent_op);
4296 delayed_refs->num_heads--;
4297 if (head->processing == 0)
4298 delayed_refs->num_heads_ready--;
4299 atomic_dec(&delayed_refs->num_entries);
4300 head->node.in_tree = 0;
4301 rb_erase(&head->href_node, &delayed_refs->href_root);
4302 spin_unlock(&head->lock);
4303 spin_unlock(&delayed_refs->lock);
4304 mutex_unlock(&head->mutex);
acce952b 4305
d7df2c79 4306 if (pin_bytes)
2ff7e61e 4307 btrfs_pin_extent(fs_info, head->node.bytenr,
d7df2c79
JB
4308 head->node.num_bytes, 1);
4309 btrfs_put_delayed_ref(&head->node);
acce952b 4310 cond_resched();
4311 spin_lock(&delayed_refs->lock);
4312 }
4313
4314 spin_unlock(&delayed_refs->lock);
4315
4316 return ret;
4317}
4318
143bede5 4319static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4320{
4321 struct btrfs_inode *btrfs_inode;
4322 struct list_head splice;
4323
4324 INIT_LIST_HEAD(&splice);
4325
eb73c1b7
MX
4326 spin_lock(&root->delalloc_lock);
4327 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4328
4329 while (!list_empty(&splice)) {
eb73c1b7
MX
4330 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4331 delalloc_inodes);
acce952b 4332
4333 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4334 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4335 &btrfs_inode->runtime_flags);
eb73c1b7 4336 spin_unlock(&root->delalloc_lock);
acce952b 4337
4338 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4339
eb73c1b7 4340 spin_lock(&root->delalloc_lock);
acce952b 4341 }
4342
eb73c1b7
MX
4343 spin_unlock(&root->delalloc_lock);
4344}
4345
4346static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4347{
4348 struct btrfs_root *root;
4349 struct list_head splice;
4350
4351 INIT_LIST_HEAD(&splice);
4352
4353 spin_lock(&fs_info->delalloc_root_lock);
4354 list_splice_init(&fs_info->delalloc_roots, &splice);
4355 while (!list_empty(&splice)) {
4356 root = list_first_entry(&splice, struct btrfs_root,
4357 delalloc_root);
4358 list_del_init(&root->delalloc_root);
4359 root = btrfs_grab_fs_root(root);
4360 BUG_ON(!root);
4361 spin_unlock(&fs_info->delalloc_root_lock);
4362
4363 btrfs_destroy_delalloc_inodes(root);
4364 btrfs_put_fs_root(root);
4365
4366 spin_lock(&fs_info->delalloc_root_lock);
4367 }
4368 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4369}
4370
2ff7e61e 4371static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4372 struct extent_io_tree *dirty_pages,
4373 int mark)
4374{
4375 int ret;
acce952b 4376 struct extent_buffer *eb;
4377 u64 start = 0;
4378 u64 end;
acce952b 4379
4380 while (1) {
4381 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4382 mark, NULL);
acce952b 4383 if (ret)
4384 break;
4385
91166212 4386 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4387 while (start <= end) {
0b246afa
JM
4388 eb = find_extent_buffer(fs_info, start);
4389 start += fs_info->nodesize;
fd8b2b61 4390 if (!eb)
acce952b 4391 continue;
fd8b2b61 4392 wait_on_extent_buffer_writeback(eb);
acce952b 4393
fd8b2b61
JB
4394 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4395 &eb->bflags))
4396 clear_extent_buffer_dirty(eb);
4397 free_extent_buffer_stale(eb);
acce952b 4398 }
4399 }
4400
4401 return ret;
4402}
4403
2ff7e61e 4404static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4405 struct extent_io_tree *pinned_extents)
4406{
4407 struct extent_io_tree *unpin;
4408 u64 start;
4409 u64 end;
4410 int ret;
ed0eaa14 4411 bool loop = true;
acce952b 4412
4413 unpin = pinned_extents;
ed0eaa14 4414again:
acce952b 4415 while (1) {
4416 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4417 EXTENT_DIRTY, NULL);
acce952b 4418 if (ret)
4419 break;
4420
af6f8f60 4421 clear_extent_dirty(unpin, start, end);
2ff7e61e 4422 btrfs_error_unpin_extent_range(fs_info, start, end);
acce952b 4423 cond_resched();
4424 }
4425
ed0eaa14 4426 if (loop) {
0b246afa
JM
4427 if (unpin == &fs_info->freed_extents[0])
4428 unpin = &fs_info->freed_extents[1];
ed0eaa14 4429 else
0b246afa 4430 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4431 loop = false;
4432 goto again;
4433 }
4434
acce952b 4435 return 0;
4436}
4437
c79a1751
LB
4438static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4439{
4440 struct inode *inode;
4441
4442 inode = cache->io_ctl.inode;
4443 if (inode) {
4444 invalidate_inode_pages2(inode->i_mapping);
4445 BTRFS_I(inode)->generation = 0;
4446 cache->io_ctl.inode = NULL;
4447 iput(inode);
4448 }
4449 btrfs_put_block_group(cache);
4450}
4451
4452void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4453 struct btrfs_fs_info *fs_info)
c79a1751
LB
4454{
4455 struct btrfs_block_group_cache *cache;
4456
4457 spin_lock(&cur_trans->dirty_bgs_lock);
4458 while (!list_empty(&cur_trans->dirty_bgs)) {
4459 cache = list_first_entry(&cur_trans->dirty_bgs,
4460 struct btrfs_block_group_cache,
4461 dirty_list);
4462 if (!cache) {
0b246afa 4463 btrfs_err(fs_info, "orphan block group dirty_bgs list");
c79a1751
LB
4464 spin_unlock(&cur_trans->dirty_bgs_lock);
4465 return;
4466 }
4467
4468 if (!list_empty(&cache->io_list)) {
4469 spin_unlock(&cur_trans->dirty_bgs_lock);
4470 list_del_init(&cache->io_list);
4471 btrfs_cleanup_bg_io(cache);
4472 spin_lock(&cur_trans->dirty_bgs_lock);
4473 }
4474
4475 list_del_init(&cache->dirty_list);
4476 spin_lock(&cache->lock);
4477 cache->disk_cache_state = BTRFS_DC_ERROR;
4478 spin_unlock(&cache->lock);
4479
4480 spin_unlock(&cur_trans->dirty_bgs_lock);
4481 btrfs_put_block_group(cache);
4482 spin_lock(&cur_trans->dirty_bgs_lock);
4483 }
4484 spin_unlock(&cur_trans->dirty_bgs_lock);
4485
4486 while (!list_empty(&cur_trans->io_bgs)) {
4487 cache = list_first_entry(&cur_trans->io_bgs,
4488 struct btrfs_block_group_cache,
4489 io_list);
4490 if (!cache) {
0b246afa 4491 btrfs_err(fs_info, "orphan block group on io_bgs list");
c79a1751
LB
4492 return;
4493 }
4494
4495 list_del_init(&cache->io_list);
4496 spin_lock(&cache->lock);
4497 cache->disk_cache_state = BTRFS_DC_ERROR;
4498 spin_unlock(&cache->lock);
4499 btrfs_cleanup_bg_io(cache);
4500 }
4501}
4502
49b25e05 4503void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4504 struct btrfs_fs_info *fs_info)
49b25e05 4505{
2ff7e61e 4506 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4507 ASSERT(list_empty(&cur_trans->dirty_bgs));
4508 ASSERT(list_empty(&cur_trans->io_bgs));
4509
2ff7e61e 4510 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4511
4a9d8bde 4512 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4513 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4514
4a9d8bde 4515 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4516 wake_up(&fs_info->transaction_wait);
49b25e05 4517
ccdf9b30
JM
4518 btrfs_destroy_delayed_inodes(fs_info);
4519 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4520
2ff7e61e 4521 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4522 EXTENT_DIRTY);
2ff7e61e 4523 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4524 fs_info->pinned_extents);
49b25e05 4525
4a9d8bde
MX
4526 cur_trans->state =TRANS_STATE_COMPLETED;
4527 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4528}
4529
2ff7e61e 4530static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4531{
4532 struct btrfs_transaction *t;
acce952b 4533
0b246afa 4534 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4535
0b246afa
JM
4536 spin_lock(&fs_info->trans_lock);
4537 while (!list_empty(&fs_info->trans_list)) {
4538 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4539 struct btrfs_transaction, list);
4540 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4541 refcount_inc(&t->use_count);
0b246afa 4542 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4543 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4544 btrfs_put_transaction(t);
0b246afa 4545 spin_lock(&fs_info->trans_lock);
724e2315
JB
4546 continue;
4547 }
0b246afa 4548 if (t == fs_info->running_transaction) {
724e2315 4549 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4550 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4551 /*
4552 * We wait for 0 num_writers since we don't hold a trans
4553 * handle open currently for this transaction.
4554 */
4555 wait_event(t->writer_wait,
4556 atomic_read(&t->num_writers) == 0);
4557 } else {
0b246afa 4558 spin_unlock(&fs_info->trans_lock);
724e2315 4559 }
2ff7e61e 4560 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4561
0b246afa
JM
4562 spin_lock(&fs_info->trans_lock);
4563 if (t == fs_info->running_transaction)
4564 fs_info->running_transaction = NULL;
acce952b 4565 list_del_init(&t->list);
0b246afa 4566 spin_unlock(&fs_info->trans_lock);
acce952b 4567
724e2315 4568 btrfs_put_transaction(t);
2ff7e61e 4569 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4570 spin_lock(&fs_info->trans_lock);
724e2315 4571 }
0b246afa
JM
4572 spin_unlock(&fs_info->trans_lock);
4573 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4574 btrfs_destroy_delayed_inodes(fs_info);
4575 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4576 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4577 btrfs_destroy_all_delalloc_inodes(fs_info);
4578 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4579
4580 return 0;
4581}
4582
c6100a4b
JB
4583static struct btrfs_fs_info *btree_fs_info(void *private_data)
4584{
4585 struct inode *inode = private_data;
4586 return btrfs_sb(inode->i_sb);
4587}
4588
e8c9f186 4589static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4590 /* mandatory callbacks */
0b86a832 4591 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4592 .readpage_end_io_hook = btree_readpage_end_io_hook,
239b14b3
CM
4593 /* note we're sharing with inode.c for the merge bio hook */
4594 .merge_bio_hook = btrfs_merge_bio_hook,
20a7db8a 4595 .readpage_io_failed_hook = btree_io_failed_hook,
c6100a4b
JB
4596 .set_range_writeback = btrfs_set_range_writeback,
4597 .tree_fs_info = btree_fs_info,
4d53dddb
DS
4598
4599 /* optional callbacks */
0da5468f 4600};