]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/disk-io.c
Merge branch 'work.memdup_user' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
5a0e3ad6 28#include <linux/slab.h>
784b4e29 29#include <linux/migrate.h>
7a36ddec 30#include <linux/ratelimit.h>
6463fe58 31#include <linux/uuid.h>
803b2f54 32#include <linux/semaphore.h>
7e75bf3f 33#include <asm/unaligned.h>
eb60ceac
CM
34#include "ctree.h"
35#include "disk-io.h"
0b947aff 36#include "hash.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
925baedd 41#include "locking.h"
e02119d5 42#include "tree-log.h"
fa9c0d79 43#include "free-space-cache.h"
70f6d82e 44#include "free-space-tree.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
ebb8765b 52#include "compression.h"
eb60ceac 53
de0022b9
JB
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
319e4d06
QW
58#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
e8c9f186 64static const struct extent_io_ops btree_extent_io_ops;
8b712842 65static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 66static void free_fs_root(struct btrfs_root *root);
3d3a126a 67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
143bede5 68static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 69static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 70 struct btrfs_fs_info *fs_info);
143bede5 71static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 72static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 73 struct extent_io_tree *dirty_pages,
74 int mark);
2ff7e61e 75static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 76 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
77static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
78static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 79
d352ac68 80/*
97eb6b69
DS
81 * btrfs_end_io_wq structs are used to do processing in task context when an IO
82 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
83 * by writes to insert metadata for new file extents after IO is complete.
84 */
97eb6b69 85struct btrfs_end_io_wq {
ce9adaa5
CM
86 struct bio *bio;
87 bio_end_io_t *end_io;
88 void *private;
89 struct btrfs_fs_info *info;
4e4cbee9 90 blk_status_t status;
bfebd8b5 91 enum btrfs_wq_endio_type metadata;
ce9adaa5 92 struct list_head list;
8b712842 93 struct btrfs_work work;
ce9adaa5 94};
0da5468f 95
97eb6b69
DS
96static struct kmem_cache *btrfs_end_io_wq_cache;
97
98int __init btrfs_end_io_wq_init(void)
99{
100 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
101 sizeof(struct btrfs_end_io_wq),
102 0,
fba4b697 103 SLAB_MEM_SPREAD,
97eb6b69
DS
104 NULL);
105 if (!btrfs_end_io_wq_cache)
106 return -ENOMEM;
107 return 0;
108}
109
110void btrfs_end_io_wq_exit(void)
111{
5598e900 112 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
113}
114
d352ac68
CM
115/*
116 * async submit bios are used to offload expensive checksumming
117 * onto the worker threads. They checksum file and metadata bios
118 * just before they are sent down the IO stack.
119 */
44b8bd7e
CM
120struct async_submit_bio {
121 struct inode *inode;
122 struct bio *bio;
123 struct list_head list;
4a69a410
CM
124 extent_submit_bio_hook_t *submit_bio_start;
125 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e 126 int mirror_num;
c8b97818 127 unsigned long bio_flags;
eaf25d93
CM
128 /*
129 * bio_offset is optional, can be used if the pages in the bio
130 * can't tell us where in the file the bio should go
131 */
132 u64 bio_offset;
8b712842 133 struct btrfs_work work;
4e4cbee9 134 blk_status_t status;
44b8bd7e
CM
135};
136
85d4e461
CM
137/*
138 * Lockdep class keys for extent_buffer->lock's in this root. For a given
139 * eb, the lockdep key is determined by the btrfs_root it belongs to and
140 * the level the eb occupies in the tree.
141 *
142 * Different roots are used for different purposes and may nest inside each
143 * other and they require separate keysets. As lockdep keys should be
144 * static, assign keysets according to the purpose of the root as indicated
145 * by btrfs_root->objectid. This ensures that all special purpose roots
146 * have separate keysets.
4008c04a 147 *
85d4e461
CM
148 * Lock-nesting across peer nodes is always done with the immediate parent
149 * node locked thus preventing deadlock. As lockdep doesn't know this, use
150 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 151 *
85d4e461
CM
152 * The key is set by the readpage_end_io_hook after the buffer has passed
153 * csum validation but before the pages are unlocked. It is also set by
154 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 155 *
85d4e461
CM
156 * We also add a check to make sure the highest level of the tree is the
157 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
158 * needs update as well.
4008c04a
CM
159 */
160#ifdef CONFIG_DEBUG_LOCK_ALLOC
161# if BTRFS_MAX_LEVEL != 8
162# error
163# endif
85d4e461
CM
164
165static struct btrfs_lockdep_keyset {
166 u64 id; /* root objectid */
167 const char *name_stem; /* lock name stem */
168 char names[BTRFS_MAX_LEVEL + 1][20];
169 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
170} btrfs_lockdep_keysets[] = {
171 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
172 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
173 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
174 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
175 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
176 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 177 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
178 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
179 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
180 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 181 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 182 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 183 { .id = 0, .name_stem = "tree" },
4008c04a 184};
85d4e461
CM
185
186void __init btrfs_init_lockdep(void)
187{
188 int i, j;
189
190 /* initialize lockdep class names */
191 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
192 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
193
194 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
195 snprintf(ks->names[j], sizeof(ks->names[j]),
196 "btrfs-%s-%02d", ks->name_stem, j);
197 }
198}
199
200void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
201 int level)
202{
203 struct btrfs_lockdep_keyset *ks;
204
205 BUG_ON(level >= ARRAY_SIZE(ks->keys));
206
207 /* find the matching keyset, id 0 is the default entry */
208 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
209 if (ks->id == objectid)
210 break;
211
212 lockdep_set_class_and_name(&eb->lock,
213 &ks->keys[level], ks->names[level]);
214}
215
4008c04a
CM
216#endif
217
d352ac68
CM
218/*
219 * extents on the btree inode are pretty simple, there's one extent
220 * that covers the entire device
221 */
fc4f21b1 222static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 223 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 224 int create)
7eccb903 225{
fc4f21b1
NB
226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
227 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
228 struct extent_map *em;
229 int ret;
230
890871be 231 read_lock(&em_tree->lock);
d1310b2e 232 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 233 if (em) {
0b246afa 234 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 235 read_unlock(&em_tree->lock);
5f39d397 236 goto out;
a061fc8d 237 }
890871be 238 read_unlock(&em_tree->lock);
7b13b7b1 239
172ddd60 240 em = alloc_extent_map();
5f39d397
CM
241 if (!em) {
242 em = ERR_PTR(-ENOMEM);
243 goto out;
244 }
245 em->start = 0;
0afbaf8c 246 em->len = (u64)-1;
c8b97818 247 em->block_len = (u64)-1;
5f39d397 248 em->block_start = 0;
0b246afa 249 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 250
890871be 251 write_lock(&em_tree->lock);
09a2a8f9 252 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
253 if (ret == -EEXIST) {
254 free_extent_map(em);
7b13b7b1 255 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 256 if (!em)
0433f20d 257 em = ERR_PTR(-EIO);
5f39d397 258 } else if (ret) {
7b13b7b1 259 free_extent_map(em);
0433f20d 260 em = ERR_PTR(ret);
5f39d397 261 }
890871be 262 write_unlock(&em_tree->lock);
7b13b7b1 263
5f39d397
CM
264out:
265 return em;
7eccb903
CM
266}
267
9ed57367 268u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 269{
0b947aff 270 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
271}
272
0b5e3daf 273void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 274{
7e75bf3f 275 put_unaligned_le32(~crc, result);
19c00ddc
CM
276}
277
d352ac68
CM
278/*
279 * compute the csum for a btree block, and either verify it or write it
280 * into the csum field of the block.
281 */
01d58472
DD
282static int csum_tree_block(struct btrfs_fs_info *fs_info,
283 struct extent_buffer *buf,
19c00ddc
CM
284 int verify)
285{
01d58472 286 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 287 char *result = NULL;
19c00ddc
CM
288 unsigned long len;
289 unsigned long cur_len;
290 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
291 char *kaddr;
292 unsigned long map_start;
293 unsigned long map_len;
294 int err;
295 u32 crc = ~(u32)0;
607d432d 296 unsigned long inline_result;
19c00ddc
CM
297
298 len = buf->len - offset;
d397712b 299 while (len > 0) {
19c00ddc 300 err = map_private_extent_buffer(buf, offset, 32,
a6591715 301 &kaddr, &map_start, &map_len);
d397712b 302 if (err)
8bd98f0e 303 return err;
19c00ddc 304 cur_len = min(len, map_len - (offset - map_start));
b0496686 305 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
306 crc, cur_len);
307 len -= cur_len;
308 offset += cur_len;
19c00ddc 309 }
607d432d 310 if (csum_size > sizeof(inline_result)) {
31e818fe 311 result = kzalloc(csum_size, GFP_NOFS);
607d432d 312 if (!result)
8bd98f0e 313 return -ENOMEM;
607d432d
JB
314 } else {
315 result = (char *)&inline_result;
316 }
317
19c00ddc
CM
318 btrfs_csum_final(crc, result);
319
320 if (verify) {
607d432d 321 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
322 u32 val;
323 u32 found = 0;
607d432d 324 memcpy(&found, result, csum_size);
e4204ded 325
607d432d 326 read_extent_buffer(buf, &val, 0, csum_size);
94647322 327 btrfs_warn_rl(fs_info,
5d163e0e 328 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 329 fs_info->sb->s_id, buf->start,
efe120a0 330 val, found, btrfs_header_level(buf));
607d432d
JB
331 if (result != (char *)&inline_result)
332 kfree(result);
8bd98f0e 333 return -EUCLEAN;
19c00ddc
CM
334 }
335 } else {
607d432d 336 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 337 }
607d432d
JB
338 if (result != (char *)&inline_result)
339 kfree(result);
19c00ddc
CM
340 return 0;
341}
342
d352ac68
CM
343/*
344 * we can't consider a given block up to date unless the transid of the
345 * block matches the transid in the parent node's pointer. This is how we
346 * detect blocks that either didn't get written at all or got written
347 * in the wrong place.
348 */
1259ab75 349static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
350 struct extent_buffer *eb, u64 parent_transid,
351 int atomic)
1259ab75 352{
2ac55d41 353 struct extent_state *cached_state = NULL;
1259ab75 354 int ret;
2755a0de 355 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
356
357 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
358 return 0;
359
b9fab919
CM
360 if (atomic)
361 return -EAGAIN;
362
a26e8c9f
JB
363 if (need_lock) {
364 btrfs_tree_read_lock(eb);
365 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
366 }
367
2ac55d41 368 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 369 &cached_state);
0b32f4bb 370 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
371 btrfs_header_generation(eb) == parent_transid) {
372 ret = 0;
373 goto out;
374 }
94647322
DS
375 btrfs_err_rl(eb->fs_info,
376 "parent transid verify failed on %llu wanted %llu found %llu",
377 eb->start,
29549aec 378 parent_transid, btrfs_header_generation(eb));
1259ab75 379 ret = 1;
a26e8c9f
JB
380
381 /*
382 * Things reading via commit roots that don't have normal protection,
383 * like send, can have a really old block in cache that may point at a
01327610 384 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
385 * if we find an eb that is under IO (dirty/writeback) because we could
386 * end up reading in the stale data and then writing it back out and
387 * making everybody very sad.
388 */
389 if (!extent_buffer_under_io(eb))
390 clear_extent_buffer_uptodate(eb);
33958dc6 391out:
2ac55d41
JB
392 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
393 &cached_state, GFP_NOFS);
472b909f
JB
394 if (need_lock)
395 btrfs_tree_read_unlock_blocking(eb);
1259ab75 396 return ret;
1259ab75
CM
397}
398
1104a885
DS
399/*
400 * Return 0 if the superblock checksum type matches the checksum value of that
401 * algorithm. Pass the raw disk superblock data.
402 */
ab8d0fc4
JM
403static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
404 char *raw_disk_sb)
1104a885
DS
405{
406 struct btrfs_super_block *disk_sb =
407 (struct btrfs_super_block *)raw_disk_sb;
408 u16 csum_type = btrfs_super_csum_type(disk_sb);
409 int ret = 0;
410
411 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
412 u32 crc = ~(u32)0;
413 const int csum_size = sizeof(crc);
414 char result[csum_size];
415
416 /*
417 * The super_block structure does not span the whole
418 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 419 * is filled with zeros and is included in the checksum.
1104a885
DS
420 */
421 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
422 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
423 btrfs_csum_final(crc, result);
424
425 if (memcmp(raw_disk_sb, result, csum_size))
426 ret = 1;
427 }
428
429 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 430 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
431 csum_type);
432 ret = 1;
433 }
434
435 return ret;
436}
437
d352ac68
CM
438/*
439 * helper to read a given tree block, doing retries as required when
440 * the checksums don't match and we have alternate mirrors to try.
441 */
2ff7e61e 442static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 443 struct extent_buffer *eb,
8436ea91 444 u64 parent_transid)
f188591e
CM
445{
446 struct extent_io_tree *io_tree;
ea466794 447 int failed = 0;
f188591e
CM
448 int ret;
449 int num_copies = 0;
450 int mirror_num = 0;
ea466794 451 int failed_mirror = 0;
f188591e 452
a826d6dc 453 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
0b246afa 454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 455 while (1) {
8436ea91 456 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
f188591e 457 btree_get_extent, mirror_num);
256dd1bb
SB
458 if (!ret) {
459 if (!verify_parent_transid(io_tree, eb,
b9fab919 460 parent_transid, 0))
256dd1bb
SB
461 break;
462 else
463 ret = -EIO;
464 }
d397712b 465
a826d6dc
JB
466 /*
467 * This buffer's crc is fine, but its contents are corrupted, so
468 * there is no reason to read the other copies, they won't be
469 * any less wrong.
470 */
471 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
472 break;
473
0b246afa 474 num_copies = btrfs_num_copies(fs_info,
f188591e 475 eb->start, eb->len);
4235298e 476 if (num_copies == 1)
ea466794 477 break;
4235298e 478
5cf1ab56
JB
479 if (!failed_mirror) {
480 failed = 1;
481 failed_mirror = eb->read_mirror;
482 }
483
f188591e 484 mirror_num++;
ea466794
JB
485 if (mirror_num == failed_mirror)
486 mirror_num++;
487
4235298e 488 if (mirror_num > num_copies)
ea466794 489 break;
f188591e 490 }
ea466794 491
c0901581 492 if (failed && !ret && failed_mirror)
2ff7e61e 493 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
494
495 return ret;
f188591e 496}
19c00ddc 497
d352ac68 498/*
d397712b
CM
499 * checksum a dirty tree block before IO. This has extra checks to make sure
500 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 501 */
d397712b 502
01d58472 503static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 504{
4eee4fa4 505 u64 start = page_offset(page);
19c00ddc 506 u64 found_start;
19c00ddc 507 struct extent_buffer *eb;
f188591e 508
4f2de97a
JB
509 eb = (struct extent_buffer *)page->private;
510 if (page != eb->pages[0])
511 return 0;
0f805531 512
19c00ddc 513 found_start = btrfs_header_bytenr(eb);
0f805531
AL
514 /*
515 * Please do not consolidate these warnings into a single if.
516 * It is useful to know what went wrong.
517 */
518 if (WARN_ON(found_start != start))
519 return -EUCLEAN;
520 if (WARN_ON(!PageUptodate(page)))
521 return -EUCLEAN;
522
523 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
524 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
525
8bd98f0e 526 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
527}
528
01d58472 529static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
530 struct extent_buffer *eb)
531{
01d58472 532 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
533 u8 fsid[BTRFS_UUID_SIZE];
534 int ret = 1;
535
0a4e5586 536 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
537 while (fs_devices) {
538 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
539 ret = 0;
540 break;
541 }
542 fs_devices = fs_devices->seed;
543 }
544 return ret;
545}
546
0b246afa
JM
547#define CORRUPT(reason, eb, root, slot) \
548 btrfs_crit(root->fs_info, \
549 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
550 btrfs_header_level(eb) == 0 ? "leaf" : "node", \
6b722c17 551 reason, btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
552
553static noinline int check_leaf(struct btrfs_root *root,
554 struct extent_buffer *leaf)
555{
0b246afa 556 struct btrfs_fs_info *fs_info = root->fs_info;
a826d6dc
JB
557 struct btrfs_key key;
558 struct btrfs_key leaf_key;
559 u32 nritems = btrfs_header_nritems(leaf);
560 int slot;
561
f177d739
FM
562 /*
563 * Extent buffers from a relocation tree have a owner field that
564 * corresponds to the subvolume tree they are based on. So just from an
565 * extent buffer alone we can not find out what is the id of the
566 * corresponding subvolume tree, so we can not figure out if the extent
567 * buffer corresponds to the root of the relocation tree or not. So skip
568 * this check for relocation trees.
569 */
570 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
1ba98d08
LB
571 struct btrfs_root *check_root;
572
573 key.objectid = btrfs_header_owner(leaf);
574 key.type = BTRFS_ROOT_ITEM_KEY;
575 key.offset = (u64)-1;
576
0b246afa 577 check_root = btrfs_get_fs_root(fs_info, &key, false);
1ba98d08
LB
578 /*
579 * The only reason we also check NULL here is that during
580 * open_ctree() some roots has not yet been set up.
581 */
582 if (!IS_ERR_OR_NULL(check_root)) {
ef85b25e
LB
583 struct extent_buffer *eb;
584
585 eb = btrfs_root_node(check_root);
1ba98d08 586 /* if leaf is the root, then it's fine */
ef85b25e 587 if (leaf != eb) {
1ba98d08 588 CORRUPT("non-root leaf's nritems is 0",
ef85b25e
LB
589 leaf, check_root, 0);
590 free_extent_buffer(eb);
1ba98d08
LB
591 return -EIO;
592 }
ef85b25e 593 free_extent_buffer(eb);
1ba98d08 594 }
a826d6dc 595 return 0;
1ba98d08 596 }
a826d6dc 597
f177d739
FM
598 if (nritems == 0)
599 return 0;
600
a826d6dc
JB
601 /* Check the 0 item */
602 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
0b246afa 603 BTRFS_LEAF_DATA_SIZE(fs_info)) {
a826d6dc
JB
604 CORRUPT("invalid item offset size pair", leaf, root, 0);
605 return -EIO;
606 }
607
608 /*
609 * Check to make sure each items keys are in the correct order and their
610 * offsets make sense. We only have to loop through nritems-1 because
611 * we check the current slot against the next slot, which verifies the
612 * next slot's offset+size makes sense and that the current's slot
613 * offset is correct.
614 */
615 for (slot = 0; slot < nritems - 1; slot++) {
616 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
617 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
618
619 /* Make sure the keys are in the right order */
620 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
621 CORRUPT("bad key order", leaf, root, slot);
622 return -EIO;
623 }
624
625 /*
626 * Make sure the offset and ends are right, remember that the
627 * item data starts at the end of the leaf and grows towards the
628 * front.
629 */
630 if (btrfs_item_offset_nr(leaf, slot) !=
631 btrfs_item_end_nr(leaf, slot + 1)) {
632 CORRUPT("slot offset bad", leaf, root, slot);
633 return -EIO;
634 }
635
636 /*
637 * Check to make sure that we don't point outside of the leaf,
01327610 638 * just in case all the items are consistent to each other, but
a826d6dc
JB
639 * all point outside of the leaf.
640 */
641 if (btrfs_item_end_nr(leaf, slot) >
0b246afa 642 BTRFS_LEAF_DATA_SIZE(fs_info)) {
a826d6dc
JB
643 CORRUPT("slot end outside of leaf", leaf, root, slot);
644 return -EIO;
645 }
646 }
647
648 return 0;
649}
650
053ab70f
LB
651static int check_node(struct btrfs_root *root, struct extent_buffer *node)
652{
653 unsigned long nr = btrfs_header_nritems(node);
6b722c17
LB
654 struct btrfs_key key, next_key;
655 int slot;
656 u64 bytenr;
657 int ret = 0;
053ab70f 658
da17066c 659 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
053ab70f
LB
660 btrfs_crit(root->fs_info,
661 "corrupt node: block %llu root %llu nritems %lu",
662 node->start, root->objectid, nr);
663 return -EIO;
664 }
6b722c17
LB
665
666 for (slot = 0; slot < nr - 1; slot++) {
667 bytenr = btrfs_node_blockptr(node, slot);
668 btrfs_node_key_to_cpu(node, &key, slot);
669 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
670
671 if (!bytenr) {
672 CORRUPT("invalid item slot", node, root, slot);
673 ret = -EIO;
674 goto out;
675 }
676
677 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
678 CORRUPT("bad key order", node, root, slot);
679 ret = -EIO;
680 goto out;
681 }
682 }
683out:
684 return ret;
053ab70f
LB
685}
686
facc8a22
MX
687static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
688 u64 phy_offset, struct page *page,
689 u64 start, u64 end, int mirror)
ce9adaa5 690{
ce9adaa5
CM
691 u64 found_start;
692 int found_level;
ce9adaa5
CM
693 struct extent_buffer *eb;
694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 695 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 696 int ret = 0;
727011e0 697 int reads_done;
ce9adaa5 698
ce9adaa5
CM
699 if (!page->private)
700 goto out;
d397712b 701
4f2de97a 702 eb = (struct extent_buffer *)page->private;
d397712b 703
0b32f4bb
JB
704 /* the pending IO might have been the only thing that kept this buffer
705 * in memory. Make sure we have a ref for all this other checks
706 */
707 extent_buffer_get(eb);
708
709 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
710 if (!reads_done)
711 goto err;
f188591e 712
5cf1ab56 713 eb->read_mirror = mirror;
656f30db 714 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
715 ret = -EIO;
716 goto err;
717 }
718
ce9adaa5 719 found_start = btrfs_header_bytenr(eb);
727011e0 720 if (found_start != eb->start) {
02873e43
ZL
721 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
722 found_start, eb->start);
f188591e 723 ret = -EIO;
ce9adaa5
CM
724 goto err;
725 }
02873e43
ZL
726 if (check_tree_block_fsid(fs_info, eb)) {
727 btrfs_err_rl(fs_info, "bad fsid on block %llu",
728 eb->start);
1259ab75
CM
729 ret = -EIO;
730 goto err;
731 }
ce9adaa5 732 found_level = btrfs_header_level(eb);
1c24c3ce 733 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
734 btrfs_err(fs_info, "bad tree block level %d",
735 (int)btrfs_header_level(eb));
1c24c3ce
JB
736 ret = -EIO;
737 goto err;
738 }
ce9adaa5 739
85d4e461
CM
740 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
741 eb, found_level);
4008c04a 742
02873e43 743 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 744 if (ret)
a826d6dc 745 goto err;
a826d6dc
JB
746
747 /*
748 * If this is a leaf block and it is corrupt, set the corrupt bit so
749 * that we don't try and read the other copies of this block, just
750 * return -EIO.
751 */
752 if (found_level == 0 && check_leaf(root, eb)) {
753 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
754 ret = -EIO;
755 }
ce9adaa5 756
053ab70f
LB
757 if (found_level > 0 && check_node(root, eb))
758 ret = -EIO;
759
0b32f4bb
JB
760 if (!ret)
761 set_extent_buffer_uptodate(eb);
ce9adaa5 762err:
79fb65a1
JB
763 if (reads_done &&
764 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 765 btree_readahead_hook(eb, ret);
4bb31e92 766
53b381b3
DW
767 if (ret) {
768 /*
769 * our io error hook is going to dec the io pages
770 * again, we have to make sure it has something
771 * to decrement
772 */
773 atomic_inc(&eb->io_pages);
0b32f4bb 774 clear_extent_buffer_uptodate(eb);
53b381b3 775 }
0b32f4bb 776 free_extent_buffer(eb);
ce9adaa5 777out:
f188591e 778 return ret;
ce9adaa5
CM
779}
780
ea466794 781static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 782{
4bb31e92 783 struct extent_buffer *eb;
4bb31e92 784
4f2de97a 785 eb = (struct extent_buffer *)page->private;
656f30db 786 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 787 eb->read_mirror = failed_mirror;
53b381b3 788 atomic_dec(&eb->io_pages);
ea466794 789 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 790 btree_readahead_hook(eb, -EIO);
4bb31e92
AJ
791 return -EIO; /* we fixed nothing */
792}
793
4246a0b6 794static void end_workqueue_bio(struct bio *bio)
ce9adaa5 795{
97eb6b69 796 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 797 struct btrfs_fs_info *fs_info;
9e0af237
LB
798 struct btrfs_workqueue *wq;
799 btrfs_work_func_t func;
ce9adaa5 800
ce9adaa5 801 fs_info = end_io_wq->info;
4e4cbee9 802 end_io_wq->status = bio->bi_status;
d20f7043 803
37226b21 804 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
805 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
806 wq = fs_info->endio_meta_write_workers;
807 func = btrfs_endio_meta_write_helper;
808 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
809 wq = fs_info->endio_freespace_worker;
810 func = btrfs_freespace_write_helper;
811 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
812 wq = fs_info->endio_raid56_workers;
813 func = btrfs_endio_raid56_helper;
814 } else {
815 wq = fs_info->endio_write_workers;
816 func = btrfs_endio_write_helper;
817 }
d20f7043 818 } else {
8b110e39
MX
819 if (unlikely(end_io_wq->metadata ==
820 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
821 wq = fs_info->endio_repair_workers;
822 func = btrfs_endio_repair_helper;
823 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
824 wq = fs_info->endio_raid56_workers;
825 func = btrfs_endio_raid56_helper;
826 } else if (end_io_wq->metadata) {
827 wq = fs_info->endio_meta_workers;
828 func = btrfs_endio_meta_helper;
829 } else {
830 wq = fs_info->endio_workers;
831 func = btrfs_endio_helper;
832 }
d20f7043 833 }
9e0af237
LB
834
835 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
836 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
837}
838
4e4cbee9 839blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 840 enum btrfs_wq_endio_type metadata)
0b86a832 841{
97eb6b69 842 struct btrfs_end_io_wq *end_io_wq;
8b110e39 843
97eb6b69 844 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 845 if (!end_io_wq)
4e4cbee9 846 return BLK_STS_RESOURCE;
ce9adaa5
CM
847
848 end_io_wq->private = bio->bi_private;
849 end_io_wq->end_io = bio->bi_end_io;
22c59948 850 end_io_wq->info = info;
4e4cbee9 851 end_io_wq->status = 0;
ce9adaa5 852 end_io_wq->bio = bio;
22c59948 853 end_io_wq->metadata = metadata;
ce9adaa5
CM
854
855 bio->bi_private = end_io_wq;
856 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
857 return 0;
858}
859
b64a2851 860unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 861{
4854ddd0 862 unsigned long limit = min_t(unsigned long,
5cdc7ad3 863 info->thread_pool_size,
4854ddd0
CM
864 info->fs_devices->open_devices);
865 return 256 * limit;
866}
0986fe9e 867
4a69a410
CM
868static void run_one_async_start(struct btrfs_work *work)
869{
4a69a410 870 struct async_submit_bio *async;
4e4cbee9 871 blk_status_t ret;
4a69a410
CM
872
873 async = container_of(work, struct async_submit_bio, work);
81a75f67 874 ret = async->submit_bio_start(async->inode, async->bio,
79787eaa
JM
875 async->mirror_num, async->bio_flags,
876 async->bio_offset);
877 if (ret)
4e4cbee9 878 async->status = ret;
4a69a410
CM
879}
880
881static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
882{
883 struct btrfs_fs_info *fs_info;
884 struct async_submit_bio *async;
4854ddd0 885 int limit;
8b712842
CM
886
887 async = container_of(work, struct async_submit_bio, work);
888 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 889
b64a2851 890 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
891 limit = limit * 2 / 3;
892
ee863954
DS
893 /*
894 * atomic_dec_return implies a barrier for waitqueue_active
895 */
66657b31 896 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 897 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
898 wake_up(&fs_info->async_submit_wait);
899
bb7ab3b9 900 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
901 if (async->status) {
902 async->bio->bi_status = async->status;
4246a0b6 903 bio_endio(async->bio);
79787eaa
JM
904 return;
905 }
906
81a75f67
MC
907 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
908 async->bio_flags, async->bio_offset);
4a69a410
CM
909}
910
911static void run_one_async_free(struct btrfs_work *work)
912{
913 struct async_submit_bio *async;
914
915 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
916 kfree(async);
917}
918
4e4cbee9
CH
919blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info,
920 struct inode *inode, struct bio *bio, int mirror_num,
921 unsigned long bio_flags, u64 bio_offset,
922 extent_submit_bio_hook_t *submit_bio_start,
923 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
924{
925 struct async_submit_bio *async;
926
927 async = kmalloc(sizeof(*async), GFP_NOFS);
928 if (!async)
4e4cbee9 929 return BLK_STS_RESOURCE;
44b8bd7e
CM
930
931 async->inode = inode;
44b8bd7e
CM
932 async->bio = bio;
933 async->mirror_num = mirror_num;
4a69a410
CM
934 async->submit_bio_start = submit_bio_start;
935 async->submit_bio_done = submit_bio_done;
936
9e0af237 937 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 938 run_one_async_done, run_one_async_free);
4a69a410 939
c8b97818 940 async->bio_flags = bio_flags;
eaf25d93 941 async->bio_offset = bio_offset;
8c8bee1d 942
4e4cbee9 943 async->status = 0;
79787eaa 944
cb03c743 945 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 946
67f055c7 947 if (op_is_sync(bio->bi_opf))
5cdc7ad3 948 btrfs_set_work_high_priority(&async->work);
d313d7a3 949
5cdc7ad3 950 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 951
d397712b 952 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
953 atomic_read(&fs_info->nr_async_submits)) {
954 wait_event(fs_info->async_submit_wait,
955 (atomic_read(&fs_info->nr_async_submits) == 0));
956 }
957
44b8bd7e
CM
958 return 0;
959}
960
4e4cbee9 961static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 962{
2c30c71b 963 struct bio_vec *bvec;
ce3ed71a 964 struct btrfs_root *root;
2c30c71b 965 int i, ret = 0;
ce3ed71a 966
2c30c71b 967 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 968 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 969 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
970 if (ret)
971 break;
ce3ed71a 972 }
2c30c71b 973
4e4cbee9 974 return errno_to_blk_status(ret);
ce3ed71a
CM
975}
976
4e4cbee9
CH
977static blk_status_t __btree_submit_bio_start(struct inode *inode,
978 struct bio *bio, int mirror_num, unsigned long bio_flags,
979 u64 bio_offset)
22c59948 980{
8b712842
CM
981 /*
982 * when we're called for a write, we're already in the async
5443be45 983 * submission context. Just jump into btrfs_map_bio
8b712842 984 */
79787eaa 985 return btree_csum_one_bio(bio);
4a69a410 986}
22c59948 987
4e4cbee9
CH
988static blk_status_t __btree_submit_bio_done(struct inode *inode,
989 struct bio *bio, int mirror_num, unsigned long bio_flags,
990 u64 bio_offset)
4a69a410 991{
4e4cbee9 992 blk_status_t ret;
61891923 993
8b712842 994 /*
4a69a410
CM
995 * when we're called for a write, we're already in the async
996 * submission context. Just jump into btrfs_map_bio
8b712842 997 */
2ff7e61e 998 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
4246a0b6 999 if (ret) {
4e4cbee9 1000 bio->bi_status = ret;
4246a0b6
CH
1001 bio_endio(bio);
1002 }
61891923 1003 return ret;
0b86a832
CM
1004}
1005
e27f6265 1006static int check_async_write(unsigned long bio_flags)
de0022b9
JB
1007{
1008 if (bio_flags & EXTENT_BIO_TREE_LOG)
1009 return 0;
1010#ifdef CONFIG_X86
bc696ca0 1011 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
1012 return 0;
1013#endif
1014 return 1;
1015}
1016
4e4cbee9 1017static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
eaf25d93
CM
1018 int mirror_num, unsigned long bio_flags,
1019 u64 bio_offset)
44b8bd7e 1020{
0b246afa 1021 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e27f6265 1022 int async = check_async_write(bio_flags);
4e4cbee9 1023 blk_status_t ret;
cad321ad 1024
37226b21 1025 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
1026 /*
1027 * called for a read, do the setup so that checksum validation
1028 * can happen in the async kernel threads
1029 */
0b246afa
JM
1030 ret = btrfs_bio_wq_end_io(fs_info, bio,
1031 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 1032 if (ret)
61891923 1033 goto out_w_error;
2ff7e61e 1034 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
1035 } else if (!async) {
1036 ret = btree_csum_one_bio(bio);
1037 if (ret)
61891923 1038 goto out_w_error;
2ff7e61e 1039 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
1040 } else {
1041 /*
1042 * kthread helpers are used to submit writes so that
1043 * checksumming can happen in parallel across all CPUs
1044 */
0b246afa 1045 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
61891923
SB
1046 bio_offset,
1047 __btree_submit_bio_start,
1048 __btree_submit_bio_done);
44b8bd7e 1049 }
d313d7a3 1050
4246a0b6
CH
1051 if (ret)
1052 goto out_w_error;
1053 return 0;
1054
61891923 1055out_w_error:
4e4cbee9 1056 bio->bi_status = ret;
4246a0b6 1057 bio_endio(bio);
61891923 1058 return ret;
44b8bd7e
CM
1059}
1060
3dd1462e 1061#ifdef CONFIG_MIGRATION
784b4e29 1062static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
1063 struct page *newpage, struct page *page,
1064 enum migrate_mode mode)
784b4e29
CM
1065{
1066 /*
1067 * we can't safely write a btree page from here,
1068 * we haven't done the locking hook
1069 */
1070 if (PageDirty(page))
1071 return -EAGAIN;
1072 /*
1073 * Buffers may be managed in a filesystem specific way.
1074 * We must have no buffers or drop them.
1075 */
1076 if (page_has_private(page) &&
1077 !try_to_release_page(page, GFP_KERNEL))
1078 return -EAGAIN;
a6bc32b8 1079 return migrate_page(mapping, newpage, page, mode);
784b4e29 1080}
3dd1462e 1081#endif
784b4e29 1082
0da5468f
CM
1083
1084static int btree_writepages(struct address_space *mapping,
1085 struct writeback_control *wbc)
1086{
e2d84521
MX
1087 struct btrfs_fs_info *fs_info;
1088 int ret;
1089
d8d5f3e1 1090 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1091
1092 if (wbc->for_kupdate)
1093 return 0;
1094
e2d84521 1095 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1096 /* this is a bit racy, but that's ok */
e2d84521
MX
1097 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1098 BTRFS_DIRTY_METADATA_THRESH);
1099 if (ret < 0)
793955bc 1100 return 0;
793955bc 1101 }
0b32f4bb 1102 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1103}
1104
b2950863 1105static int btree_readpage(struct file *file, struct page *page)
5f39d397 1106{
d1310b2e
CM
1107 struct extent_io_tree *tree;
1108 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1109 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1110}
22b0ebda 1111
70dec807 1112static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1113{
98509cfc 1114 if (PageWriteback(page) || PageDirty(page))
d397712b 1115 return 0;
0c4e538b 1116
f7a52a40 1117 return try_release_extent_buffer(page);
d98237b3
CM
1118}
1119
d47992f8
LC
1120static void btree_invalidatepage(struct page *page, unsigned int offset,
1121 unsigned int length)
d98237b3 1122{
d1310b2e
CM
1123 struct extent_io_tree *tree;
1124 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1125 extent_invalidatepage(tree, page, offset);
1126 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1127 if (PagePrivate(page)) {
efe120a0
FH
1128 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1129 "page private not zero on page %llu",
1130 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1131 ClearPagePrivate(page);
1132 set_page_private(page, 0);
09cbfeaf 1133 put_page(page);
9ad6b7bc 1134 }
d98237b3
CM
1135}
1136
0b32f4bb
JB
1137static int btree_set_page_dirty(struct page *page)
1138{
bb146eb2 1139#ifdef DEBUG
0b32f4bb
JB
1140 struct extent_buffer *eb;
1141
1142 BUG_ON(!PagePrivate(page));
1143 eb = (struct extent_buffer *)page->private;
1144 BUG_ON(!eb);
1145 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1146 BUG_ON(!atomic_read(&eb->refs));
1147 btrfs_assert_tree_locked(eb);
bb146eb2 1148#endif
0b32f4bb
JB
1149 return __set_page_dirty_nobuffers(page);
1150}
1151
7f09410b 1152static const struct address_space_operations btree_aops = {
d98237b3 1153 .readpage = btree_readpage,
0da5468f 1154 .writepages = btree_writepages,
5f39d397
CM
1155 .releasepage = btree_releasepage,
1156 .invalidatepage = btree_invalidatepage,
5a92bc88 1157#ifdef CONFIG_MIGRATION
784b4e29 1158 .migratepage = btree_migratepage,
5a92bc88 1159#endif
0b32f4bb 1160 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1161};
1162
2ff7e61e 1163void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1164{
5f39d397 1165 struct extent_buffer *buf = NULL;
2ff7e61e 1166 struct inode *btree_inode = fs_info->btree_inode;
090d1875 1167
2ff7e61e 1168 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1169 if (IS_ERR(buf))
6197d86e 1170 return;
d1310b2e 1171 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
8436ea91 1172 buf, WAIT_NONE, btree_get_extent, 0);
5f39d397 1173 free_extent_buffer(buf);
090d1875
CM
1174}
1175
2ff7e61e 1176int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1177 int mirror_num, struct extent_buffer **eb)
1178{
1179 struct extent_buffer *buf = NULL;
2ff7e61e 1180 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1181 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1182 int ret;
1183
2ff7e61e 1184 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1185 if (IS_ERR(buf))
ab0fff03
AJ
1186 return 0;
1187
1188 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1189
8436ea91 1190 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
ab0fff03
AJ
1191 btree_get_extent, mirror_num);
1192 if (ret) {
1193 free_extent_buffer(buf);
1194 return ret;
1195 }
1196
1197 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1198 free_extent_buffer(buf);
1199 return -EIO;
0b32f4bb 1200 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1201 *eb = buf;
1202 } else {
1203 free_extent_buffer(buf);
1204 }
1205 return 0;
1206}
1207
2ff7e61e
JM
1208struct extent_buffer *btrfs_find_create_tree_block(
1209 struct btrfs_fs_info *fs_info,
1210 u64 bytenr)
0999df54 1211{
0b246afa
JM
1212 if (btrfs_is_testing(fs_info))
1213 return alloc_test_extent_buffer(fs_info, bytenr);
1214 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1215}
1216
1217
e02119d5
CM
1218int btrfs_write_tree_block(struct extent_buffer *buf)
1219{
727011e0 1220 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1221 buf->start + buf->len - 1);
e02119d5
CM
1222}
1223
1224int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1225{
727011e0 1226 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1227 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1228}
1229
2ff7e61e 1230struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
ce86cd59 1231 u64 parent_transid)
0999df54
CM
1232{
1233 struct extent_buffer *buf = NULL;
0999df54
CM
1234 int ret;
1235
2ff7e61e 1236 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1237 if (IS_ERR(buf))
1238 return buf;
0999df54 1239
2ff7e61e 1240 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
0f0fe8f7
FDBM
1241 if (ret) {
1242 free_extent_buffer(buf);
64c043de 1243 return ERR_PTR(ret);
0f0fe8f7 1244 }
5f39d397 1245 return buf;
ce9adaa5 1246
eb60ceac
CM
1247}
1248
7c302b49 1249void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1250 struct extent_buffer *buf)
ed2ff2cb 1251{
55c69072 1252 if (btrfs_header_generation(buf) ==
e2d84521 1253 fs_info->running_transaction->transid) {
b9447ef8 1254 btrfs_assert_tree_locked(buf);
b4ce94de 1255
b9473439 1256 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1257 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1258 -buf->len,
1259 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1260 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1261 btrfs_set_lock_blocking(buf);
1262 clear_extent_buffer_dirty(buf);
1263 }
925baedd 1264 }
5f39d397
CM
1265}
1266
8257b2dc
MX
1267static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1268{
1269 struct btrfs_subvolume_writers *writers;
1270 int ret;
1271
1272 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1273 if (!writers)
1274 return ERR_PTR(-ENOMEM);
1275
908c7f19 1276 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1277 if (ret < 0) {
1278 kfree(writers);
1279 return ERR_PTR(ret);
1280 }
1281
1282 init_waitqueue_head(&writers->wait);
1283 return writers;
1284}
1285
1286static void
1287btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1288{
1289 percpu_counter_destroy(&writers->counter);
1290 kfree(writers);
1291}
1292
da17066c 1293static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1294 u64 objectid)
d97e63b6 1295{
7c0260ee 1296 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1297 root->node = NULL;
a28ec197 1298 root->commit_root = NULL;
27cdeb70 1299 root->state = 0;
d68fc57b 1300 root->orphan_cleanup_state = 0;
0b86a832 1301
0f7d52f4
CM
1302 root->objectid = objectid;
1303 root->last_trans = 0;
13a8a7c8 1304 root->highest_objectid = 0;
eb73c1b7 1305 root->nr_delalloc_inodes = 0;
199c2a9c 1306 root->nr_ordered_extents = 0;
58176a96 1307 root->name = NULL;
6bef4d31 1308 root->inode_tree = RB_ROOT;
16cdcec7 1309 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1310 root->block_rsv = NULL;
d68fc57b 1311 root->orphan_block_rsv = NULL;
0b86a832
CM
1312
1313 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1314 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1315 INIT_LIST_HEAD(&root->delalloc_inodes);
1316 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1317 INIT_LIST_HEAD(&root->ordered_extents);
1318 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1319 INIT_LIST_HEAD(&root->logged_list[0]);
1320 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1321 spin_lock_init(&root->orphan_lock);
5d4f98a2 1322 spin_lock_init(&root->inode_lock);
eb73c1b7 1323 spin_lock_init(&root->delalloc_lock);
199c2a9c 1324 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1325 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1326 spin_lock_init(&root->log_extents_lock[0]);
1327 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1328 mutex_init(&root->objectid_mutex);
e02119d5 1329 mutex_init(&root->log_mutex);
31f3d255 1330 mutex_init(&root->ordered_extent_mutex);
573bfb72 1331 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1332 init_waitqueue_head(&root->log_writer_wait);
1333 init_waitqueue_head(&root->log_commit_wait[0]);
1334 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1335 INIT_LIST_HEAD(&root->log_ctxs[0]);
1336 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1337 atomic_set(&root->log_commit[0], 0);
1338 atomic_set(&root->log_commit[1], 0);
1339 atomic_set(&root->log_writers, 0);
2ecb7923 1340 atomic_set(&root->log_batch, 0);
8a35d95f 1341 atomic_set(&root->orphan_inodes, 0);
0700cea7 1342 refcount_set(&root->refs, 1);
8257b2dc 1343 atomic_set(&root->will_be_snapshoted, 0);
ce0dcee6 1344 atomic64_set(&root->qgroup_meta_rsv, 0);
7237f183 1345 root->log_transid = 0;
d1433deb 1346 root->log_transid_committed = -1;
257c62e1 1347 root->last_log_commit = 0;
7c0260ee 1348 if (!dummy)
06ea65a3
JB
1349 extent_io_tree_init(&root->dirty_log_pages,
1350 fs_info->btree_inode->i_mapping);
017e5369 1351
3768f368
CM
1352 memset(&root->root_key, 0, sizeof(root->root_key));
1353 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1354 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1355 if (!dummy)
06ea65a3
JB
1356 root->defrag_trans_start = fs_info->generation;
1357 else
1358 root->defrag_trans_start = 0;
4d775673 1359 root->root_key.objectid = objectid;
0ee5dc67 1360 root->anon_dev = 0;
8ea05e3a 1361
5f3ab90a 1362 spin_lock_init(&root->root_item_lock);
3768f368
CM
1363}
1364
74e4d827
DS
1365static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1366 gfp_t flags)
6f07e42e 1367{
74e4d827 1368 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1369 if (root)
1370 root->fs_info = fs_info;
1371 return root;
1372}
1373
06ea65a3
JB
1374#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1375/* Should only be used by the testing infrastructure */
da17066c 1376struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1377{
1378 struct btrfs_root *root;
1379
7c0260ee
JM
1380 if (!fs_info)
1381 return ERR_PTR(-EINVAL);
1382
1383 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1384 if (!root)
1385 return ERR_PTR(-ENOMEM);
da17066c 1386
b9ef22de 1387 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1388 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1389 root->alloc_bytenr = 0;
06ea65a3
JB
1390
1391 return root;
1392}
1393#endif
1394
20897f5c
AJ
1395struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1396 struct btrfs_fs_info *fs_info,
1397 u64 objectid)
1398{
1399 struct extent_buffer *leaf;
1400 struct btrfs_root *tree_root = fs_info->tree_root;
1401 struct btrfs_root *root;
1402 struct btrfs_key key;
1403 int ret = 0;
6463fe58 1404 uuid_le uuid;
20897f5c 1405
74e4d827 1406 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1407 if (!root)
1408 return ERR_PTR(-ENOMEM);
1409
da17066c 1410 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1411 root->root_key.objectid = objectid;
1412 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1413 root->root_key.offset = 0;
1414
4d75f8a9 1415 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1416 if (IS_ERR(leaf)) {
1417 ret = PTR_ERR(leaf);
1dd05682 1418 leaf = NULL;
20897f5c
AJ
1419 goto fail;
1420 }
1421
b159fa28 1422 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
20897f5c
AJ
1423 btrfs_set_header_bytenr(leaf, leaf->start);
1424 btrfs_set_header_generation(leaf, trans->transid);
1425 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1426 btrfs_set_header_owner(leaf, objectid);
1427 root->node = leaf;
1428
d24ee97b
DS
1429 write_extent_buffer_fsid(leaf, fs_info->fsid);
1430 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
20897f5c
AJ
1431 btrfs_mark_buffer_dirty(leaf);
1432
1433 root->commit_root = btrfs_root_node(root);
27cdeb70 1434 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1435
1436 root->root_item.flags = 0;
1437 root->root_item.byte_limit = 0;
1438 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1439 btrfs_set_root_generation(&root->root_item, trans->transid);
1440 btrfs_set_root_level(&root->root_item, 0);
1441 btrfs_set_root_refs(&root->root_item, 1);
1442 btrfs_set_root_used(&root->root_item, leaf->len);
1443 btrfs_set_root_last_snapshot(&root->root_item, 0);
1444 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1445 uuid_le_gen(&uuid);
1446 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1447 root->root_item.drop_level = 0;
1448
1449 key.objectid = objectid;
1450 key.type = BTRFS_ROOT_ITEM_KEY;
1451 key.offset = 0;
1452 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1453 if (ret)
1454 goto fail;
1455
1456 btrfs_tree_unlock(leaf);
1457
1dd05682
TI
1458 return root;
1459
20897f5c 1460fail:
1dd05682
TI
1461 if (leaf) {
1462 btrfs_tree_unlock(leaf);
59885b39 1463 free_extent_buffer(root->commit_root);
1dd05682
TI
1464 free_extent_buffer(leaf);
1465 }
1466 kfree(root);
20897f5c 1467
1dd05682 1468 return ERR_PTR(ret);
20897f5c
AJ
1469}
1470
7237f183
YZ
1471static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1472 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1473{
1474 struct btrfs_root *root;
7237f183 1475 struct extent_buffer *leaf;
e02119d5 1476
74e4d827 1477 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1478 if (!root)
7237f183 1479 return ERR_PTR(-ENOMEM);
e02119d5 1480
da17066c 1481 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1482
1483 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1484 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1485 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1486
7237f183 1487 /*
27cdeb70
MX
1488 * DON'T set REF_COWS for log trees
1489 *
7237f183
YZ
1490 * log trees do not get reference counted because they go away
1491 * before a real commit is actually done. They do store pointers
1492 * to file data extents, and those reference counts still get
1493 * updated (along with back refs to the log tree).
1494 */
e02119d5 1495
4d75f8a9
DS
1496 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1497 NULL, 0, 0, 0);
7237f183
YZ
1498 if (IS_ERR(leaf)) {
1499 kfree(root);
1500 return ERR_CAST(leaf);
1501 }
e02119d5 1502
b159fa28 1503 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
5d4f98a2
YZ
1504 btrfs_set_header_bytenr(leaf, leaf->start);
1505 btrfs_set_header_generation(leaf, trans->transid);
1506 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1507 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1508 root->node = leaf;
e02119d5 1509
0b246afa 1510 write_extent_buffer_fsid(root->node, fs_info->fsid);
e02119d5
CM
1511 btrfs_mark_buffer_dirty(root->node);
1512 btrfs_tree_unlock(root->node);
7237f183
YZ
1513 return root;
1514}
1515
1516int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1517 struct btrfs_fs_info *fs_info)
1518{
1519 struct btrfs_root *log_root;
1520
1521 log_root = alloc_log_tree(trans, fs_info);
1522 if (IS_ERR(log_root))
1523 return PTR_ERR(log_root);
1524 WARN_ON(fs_info->log_root_tree);
1525 fs_info->log_root_tree = log_root;
1526 return 0;
1527}
1528
1529int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1530 struct btrfs_root *root)
1531{
0b246afa 1532 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1533 struct btrfs_root *log_root;
1534 struct btrfs_inode_item *inode_item;
1535
0b246afa 1536 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1537 if (IS_ERR(log_root))
1538 return PTR_ERR(log_root);
1539
1540 log_root->last_trans = trans->transid;
1541 log_root->root_key.offset = root->root_key.objectid;
1542
1543 inode_item = &log_root->root_item.inode;
3cae210f
QW
1544 btrfs_set_stack_inode_generation(inode_item, 1);
1545 btrfs_set_stack_inode_size(inode_item, 3);
1546 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1547 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1548 fs_info->nodesize);
3cae210f 1549 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1550
5d4f98a2 1551 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1552
1553 WARN_ON(root->log_root);
1554 root->log_root = log_root;
1555 root->log_transid = 0;
d1433deb 1556 root->log_transid_committed = -1;
257c62e1 1557 root->last_log_commit = 0;
e02119d5
CM
1558 return 0;
1559}
1560
35a3621b
SB
1561static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1562 struct btrfs_key *key)
e02119d5
CM
1563{
1564 struct btrfs_root *root;
1565 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1566 struct btrfs_path *path;
84234f3a 1567 u64 generation;
cb517eab 1568 int ret;
0f7d52f4 1569
cb517eab
MX
1570 path = btrfs_alloc_path();
1571 if (!path)
0f7d52f4 1572 return ERR_PTR(-ENOMEM);
cb517eab 1573
74e4d827 1574 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1575 if (!root) {
1576 ret = -ENOMEM;
1577 goto alloc_fail;
0f7d52f4
CM
1578 }
1579
da17066c 1580 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1581
cb517eab
MX
1582 ret = btrfs_find_root(tree_root, key, path,
1583 &root->root_item, &root->root_key);
0f7d52f4 1584 if (ret) {
13a8a7c8
YZ
1585 if (ret > 0)
1586 ret = -ENOENT;
cb517eab 1587 goto find_fail;
0f7d52f4 1588 }
13a8a7c8 1589
84234f3a 1590 generation = btrfs_root_generation(&root->root_item);
2ff7e61e
JM
1591 root->node = read_tree_block(fs_info,
1592 btrfs_root_bytenr(&root->root_item),
ce86cd59 1593 generation);
64c043de
LB
1594 if (IS_ERR(root->node)) {
1595 ret = PTR_ERR(root->node);
cb517eab
MX
1596 goto find_fail;
1597 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1598 ret = -EIO;
64c043de
LB
1599 free_extent_buffer(root->node);
1600 goto find_fail;
416bc658 1601 }
5d4f98a2 1602 root->commit_root = btrfs_root_node(root);
13a8a7c8 1603out:
cb517eab
MX
1604 btrfs_free_path(path);
1605 return root;
1606
cb517eab
MX
1607find_fail:
1608 kfree(root);
1609alloc_fail:
1610 root = ERR_PTR(ret);
1611 goto out;
1612}
1613
1614struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1615 struct btrfs_key *location)
1616{
1617 struct btrfs_root *root;
1618
1619 root = btrfs_read_tree_root(tree_root, location);
1620 if (IS_ERR(root))
1621 return root;
1622
1623 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1624 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1625 btrfs_check_and_init_root_item(&root->root_item);
1626 }
13a8a7c8 1627
5eda7b5e
CM
1628 return root;
1629}
1630
cb517eab
MX
1631int btrfs_init_fs_root(struct btrfs_root *root)
1632{
1633 int ret;
8257b2dc 1634 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1635
1636 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1637 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1638 GFP_NOFS);
1639 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1640 ret = -ENOMEM;
1641 goto fail;
1642 }
1643
8257b2dc
MX
1644 writers = btrfs_alloc_subvolume_writers();
1645 if (IS_ERR(writers)) {
1646 ret = PTR_ERR(writers);
1647 goto fail;
1648 }
1649 root->subv_writers = writers;
1650
cb517eab 1651 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1652 spin_lock_init(&root->ino_cache_lock);
1653 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1654
1655 ret = get_anon_bdev(&root->anon_dev);
1656 if (ret)
876d2cf1 1657 goto fail;
f32e48e9
CR
1658
1659 mutex_lock(&root->objectid_mutex);
1660 ret = btrfs_find_highest_objectid(root,
1661 &root->highest_objectid);
1662 if (ret) {
1663 mutex_unlock(&root->objectid_mutex);
876d2cf1 1664 goto fail;
f32e48e9
CR
1665 }
1666
1667 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1668
1669 mutex_unlock(&root->objectid_mutex);
1670
cb517eab
MX
1671 return 0;
1672fail:
876d2cf1 1673 /* the caller is responsible to call free_fs_root */
cb517eab
MX
1674 return ret;
1675}
1676
35bbb97f
JM
1677struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1678 u64 root_id)
cb517eab
MX
1679{
1680 struct btrfs_root *root;
1681
1682 spin_lock(&fs_info->fs_roots_radix_lock);
1683 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1684 (unsigned long)root_id);
1685 spin_unlock(&fs_info->fs_roots_radix_lock);
1686 return root;
1687}
1688
1689int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1690 struct btrfs_root *root)
1691{
1692 int ret;
1693
e1860a77 1694 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1695 if (ret)
1696 return ret;
1697
1698 spin_lock(&fs_info->fs_roots_radix_lock);
1699 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1700 (unsigned long)root->root_key.objectid,
1701 root);
1702 if (ret == 0)
27cdeb70 1703 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1704 spin_unlock(&fs_info->fs_roots_radix_lock);
1705 radix_tree_preload_end();
1706
1707 return ret;
1708}
1709
c00869f1
MX
1710struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1711 struct btrfs_key *location,
1712 bool check_ref)
5eda7b5e
CM
1713{
1714 struct btrfs_root *root;
381cf658 1715 struct btrfs_path *path;
1d4c08e0 1716 struct btrfs_key key;
5eda7b5e
CM
1717 int ret;
1718
edbd8d4e
CM
1719 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1720 return fs_info->tree_root;
1721 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1722 return fs_info->extent_root;
8f18cf13
CM
1723 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1724 return fs_info->chunk_root;
1725 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1726 return fs_info->dev_root;
0403e47e
YZ
1727 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1728 return fs_info->csum_root;
bcef60f2
AJ
1729 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1730 return fs_info->quota_root ? fs_info->quota_root :
1731 ERR_PTR(-ENOENT);
f7a81ea4
SB
1732 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1733 return fs_info->uuid_root ? fs_info->uuid_root :
1734 ERR_PTR(-ENOENT);
70f6d82e
OS
1735 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1736 return fs_info->free_space_root ? fs_info->free_space_root :
1737 ERR_PTR(-ENOENT);
4df27c4d 1738again:
cb517eab 1739 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1740 if (root) {
c00869f1 1741 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1742 return ERR_PTR(-ENOENT);
5eda7b5e 1743 return root;
48475471 1744 }
5eda7b5e 1745
cb517eab 1746 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1747 if (IS_ERR(root))
1748 return root;
3394e160 1749
c00869f1 1750 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1751 ret = -ENOENT;
581bb050 1752 goto fail;
35a30d7c 1753 }
581bb050 1754
cb517eab 1755 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1756 if (ret)
1757 goto fail;
3394e160 1758
381cf658
DS
1759 path = btrfs_alloc_path();
1760 if (!path) {
1761 ret = -ENOMEM;
1762 goto fail;
1763 }
1d4c08e0
DS
1764 key.objectid = BTRFS_ORPHAN_OBJECTID;
1765 key.type = BTRFS_ORPHAN_ITEM_KEY;
1766 key.offset = location->objectid;
1767
1768 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1769 btrfs_free_path(path);
d68fc57b
YZ
1770 if (ret < 0)
1771 goto fail;
1772 if (ret == 0)
27cdeb70 1773 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1774
cb517eab 1775 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1776 if (ret) {
4df27c4d
YZ
1777 if (ret == -EEXIST) {
1778 free_fs_root(root);
1779 goto again;
1780 }
1781 goto fail;
0f7d52f4 1782 }
edbd8d4e 1783 return root;
4df27c4d
YZ
1784fail:
1785 free_fs_root(root);
1786 return ERR_PTR(ret);
edbd8d4e
CM
1787}
1788
04160088
CM
1789static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1790{
1791 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1792 int ret = 0;
04160088
CM
1793 struct btrfs_device *device;
1794 struct backing_dev_info *bdi;
b7967db7 1795
1f78160c
XG
1796 rcu_read_lock();
1797 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1798 if (!device->bdev)
1799 continue;
efa7c9f9 1800 bdi = device->bdev->bd_bdi;
ff9ea323 1801 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1802 ret = 1;
1803 break;
1804 }
1805 }
1f78160c 1806 rcu_read_unlock();
04160088
CM
1807 return ret;
1808}
1809
8b712842
CM
1810/*
1811 * called by the kthread helper functions to finally call the bio end_io
1812 * functions. This is where read checksum verification actually happens
1813 */
1814static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1815{
ce9adaa5 1816 struct bio *bio;
97eb6b69 1817 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1818
97eb6b69 1819 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1820 bio = end_io_wq->bio;
ce9adaa5 1821
4e4cbee9 1822 bio->bi_status = end_io_wq->status;
8b712842
CM
1823 bio->bi_private = end_io_wq->private;
1824 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1825 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1826 bio_endio(bio);
44b8bd7e
CM
1827}
1828
a74a4b97
CM
1829static int cleaner_kthread(void *arg)
1830{
1831 struct btrfs_root *root = arg;
0b246afa 1832 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1833 int again;
da288d28 1834 struct btrfs_trans_handle *trans;
a74a4b97
CM
1835
1836 do {
d0278245 1837 again = 0;
a74a4b97 1838
d0278245 1839 /* Make the cleaner go to sleep early. */
2ff7e61e 1840 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1841 goto sleep;
1842
90c711ab
ZB
1843 /*
1844 * Do not do anything if we might cause open_ctree() to block
1845 * before we have finished mounting the filesystem.
1846 */
0b246afa 1847 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1848 goto sleep;
1849
0b246afa 1850 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1851 goto sleep;
1852
dc7f370c
MX
1853 /*
1854 * Avoid the problem that we change the status of the fs
1855 * during the above check and trylock.
1856 */
2ff7e61e 1857 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1858 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1859 goto sleep;
76dda93c 1860 }
a74a4b97 1861
0b246afa 1862 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
2ff7e61e 1863 btrfs_run_delayed_iputs(fs_info);
0b246afa 1864 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1865
d0278245 1866 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1867 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1868
1869 /*
05323cd1
MX
1870 * The defragger has dealt with the R/O remount and umount,
1871 * needn't do anything special here.
d0278245 1872 */
0b246afa 1873 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1874
1875 /*
1876 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1877 * with relocation (btrfs_relocate_chunk) and relocation
1878 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1879 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1880 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1881 * unused block groups.
1882 */
0b246afa 1883 btrfs_delete_unused_bgs(fs_info);
d0278245 1884sleep:
838fe188 1885 if (!again) {
a74a4b97 1886 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1887 if (!kthread_should_stop())
1888 schedule();
a74a4b97
CM
1889 __set_current_state(TASK_RUNNING);
1890 }
1891 } while (!kthread_should_stop());
da288d28
FM
1892
1893 /*
1894 * Transaction kthread is stopped before us and wakes us up.
1895 * However we might have started a new transaction and COWed some
1896 * tree blocks when deleting unused block groups for example. So
1897 * make sure we commit the transaction we started to have a clean
1898 * shutdown when evicting the btree inode - if it has dirty pages
1899 * when we do the final iput() on it, eviction will trigger a
1900 * writeback for it which will fail with null pointer dereferences
1901 * since work queues and other resources were already released and
1902 * destroyed by the time the iput/eviction/writeback is made.
1903 */
1904 trans = btrfs_attach_transaction(root);
1905 if (IS_ERR(trans)) {
1906 if (PTR_ERR(trans) != -ENOENT)
0b246afa 1907 btrfs_err(fs_info,
da288d28
FM
1908 "cleaner transaction attach returned %ld",
1909 PTR_ERR(trans));
1910 } else {
1911 int ret;
1912
3a45bb20 1913 ret = btrfs_commit_transaction(trans);
da288d28 1914 if (ret)
0b246afa 1915 btrfs_err(fs_info,
da288d28
FM
1916 "cleaner open transaction commit returned %d",
1917 ret);
1918 }
1919
a74a4b97
CM
1920 return 0;
1921}
1922
1923static int transaction_kthread(void *arg)
1924{
1925 struct btrfs_root *root = arg;
0b246afa 1926 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1927 struct btrfs_trans_handle *trans;
1928 struct btrfs_transaction *cur;
8929ecfa 1929 u64 transid;
a74a4b97
CM
1930 unsigned long now;
1931 unsigned long delay;
914b2007 1932 bool cannot_commit;
a74a4b97
CM
1933
1934 do {
914b2007 1935 cannot_commit = false;
0b246afa
JM
1936 delay = HZ * fs_info->commit_interval;
1937 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1938
0b246afa
JM
1939 spin_lock(&fs_info->trans_lock);
1940 cur = fs_info->running_transaction;
a74a4b97 1941 if (!cur) {
0b246afa 1942 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1943 goto sleep;
1944 }
31153d81 1945
a74a4b97 1946 now = get_seconds();
4a9d8bde 1947 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17 1948 (now < cur->start_time ||
0b246afa
JM
1949 now - cur->start_time < fs_info->commit_interval)) {
1950 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1951 delay = HZ * 5;
1952 goto sleep;
1953 }
8929ecfa 1954 transid = cur->transid;
0b246afa 1955 spin_unlock(&fs_info->trans_lock);
56bec294 1956
79787eaa 1957 /* If the file system is aborted, this will always fail. */
354aa0fb 1958 trans = btrfs_attach_transaction(root);
914b2007 1959 if (IS_ERR(trans)) {
354aa0fb
MX
1960 if (PTR_ERR(trans) != -ENOENT)
1961 cannot_commit = true;
79787eaa 1962 goto sleep;
914b2007 1963 }
8929ecfa 1964 if (transid == trans->transid) {
3a45bb20 1965 btrfs_commit_transaction(trans);
8929ecfa 1966 } else {
3a45bb20 1967 btrfs_end_transaction(trans);
8929ecfa 1968 }
a74a4b97 1969sleep:
0b246afa
JM
1970 wake_up_process(fs_info->cleaner_kthread);
1971 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1972
4e121c06 1973 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1974 &fs_info->fs_state)))
2ff7e61e 1975 btrfs_cleanup_transaction(fs_info);
ce63f891
JK
1976 set_current_state(TASK_INTERRUPTIBLE);
1977 if (!kthread_should_stop() &&
0b246afa 1978 (!btrfs_transaction_blocked(fs_info) ||
ce63f891
JK
1979 cannot_commit))
1980 schedule_timeout(delay);
1981 __set_current_state(TASK_RUNNING);
a74a4b97
CM
1982 } while (!kthread_should_stop());
1983 return 0;
1984}
1985
af31f5e5
CM
1986/*
1987 * this will find the highest generation in the array of
1988 * root backups. The index of the highest array is returned,
1989 * or -1 if we can't find anything.
1990 *
1991 * We check to make sure the array is valid by comparing the
1992 * generation of the latest root in the array with the generation
1993 * in the super block. If they don't match we pitch it.
1994 */
1995static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1996{
1997 u64 cur;
1998 int newest_index = -1;
1999 struct btrfs_root_backup *root_backup;
2000 int i;
2001
2002 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2003 root_backup = info->super_copy->super_roots + i;
2004 cur = btrfs_backup_tree_root_gen(root_backup);
2005 if (cur == newest_gen)
2006 newest_index = i;
2007 }
2008
2009 /* check to see if we actually wrapped around */
2010 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2011 root_backup = info->super_copy->super_roots;
2012 cur = btrfs_backup_tree_root_gen(root_backup);
2013 if (cur == newest_gen)
2014 newest_index = 0;
2015 }
2016 return newest_index;
2017}
2018
2019
2020/*
2021 * find the oldest backup so we know where to store new entries
2022 * in the backup array. This will set the backup_root_index
2023 * field in the fs_info struct
2024 */
2025static void find_oldest_super_backup(struct btrfs_fs_info *info,
2026 u64 newest_gen)
2027{
2028 int newest_index = -1;
2029
2030 newest_index = find_newest_super_backup(info, newest_gen);
2031 /* if there was garbage in there, just move along */
2032 if (newest_index == -1) {
2033 info->backup_root_index = 0;
2034 } else {
2035 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2036 }
2037}
2038
2039/*
2040 * copy all the root pointers into the super backup array.
2041 * this will bump the backup pointer by one when it is
2042 * done
2043 */
2044static void backup_super_roots(struct btrfs_fs_info *info)
2045{
2046 int next_backup;
2047 struct btrfs_root_backup *root_backup;
2048 int last_backup;
2049
2050 next_backup = info->backup_root_index;
2051 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2052 BTRFS_NUM_BACKUP_ROOTS;
2053
2054 /*
2055 * just overwrite the last backup if we're at the same generation
2056 * this happens only at umount
2057 */
2058 root_backup = info->super_for_commit->super_roots + last_backup;
2059 if (btrfs_backup_tree_root_gen(root_backup) ==
2060 btrfs_header_generation(info->tree_root->node))
2061 next_backup = last_backup;
2062
2063 root_backup = info->super_for_commit->super_roots + next_backup;
2064
2065 /*
2066 * make sure all of our padding and empty slots get zero filled
2067 * regardless of which ones we use today
2068 */
2069 memset(root_backup, 0, sizeof(*root_backup));
2070
2071 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2072
2073 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2074 btrfs_set_backup_tree_root_gen(root_backup,
2075 btrfs_header_generation(info->tree_root->node));
2076
2077 btrfs_set_backup_tree_root_level(root_backup,
2078 btrfs_header_level(info->tree_root->node));
2079
2080 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2081 btrfs_set_backup_chunk_root_gen(root_backup,
2082 btrfs_header_generation(info->chunk_root->node));
2083 btrfs_set_backup_chunk_root_level(root_backup,
2084 btrfs_header_level(info->chunk_root->node));
2085
2086 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2087 btrfs_set_backup_extent_root_gen(root_backup,
2088 btrfs_header_generation(info->extent_root->node));
2089 btrfs_set_backup_extent_root_level(root_backup,
2090 btrfs_header_level(info->extent_root->node));
2091
7c7e82a7
CM
2092 /*
2093 * we might commit during log recovery, which happens before we set
2094 * the fs_root. Make sure it is valid before we fill it in.
2095 */
2096 if (info->fs_root && info->fs_root->node) {
2097 btrfs_set_backup_fs_root(root_backup,
2098 info->fs_root->node->start);
2099 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2100 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2101 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2102 btrfs_header_level(info->fs_root->node));
7c7e82a7 2103 }
af31f5e5
CM
2104
2105 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2106 btrfs_set_backup_dev_root_gen(root_backup,
2107 btrfs_header_generation(info->dev_root->node));
2108 btrfs_set_backup_dev_root_level(root_backup,
2109 btrfs_header_level(info->dev_root->node));
2110
2111 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2112 btrfs_set_backup_csum_root_gen(root_backup,
2113 btrfs_header_generation(info->csum_root->node));
2114 btrfs_set_backup_csum_root_level(root_backup,
2115 btrfs_header_level(info->csum_root->node));
2116
2117 btrfs_set_backup_total_bytes(root_backup,
2118 btrfs_super_total_bytes(info->super_copy));
2119 btrfs_set_backup_bytes_used(root_backup,
2120 btrfs_super_bytes_used(info->super_copy));
2121 btrfs_set_backup_num_devices(root_backup,
2122 btrfs_super_num_devices(info->super_copy));
2123
2124 /*
2125 * if we don't copy this out to the super_copy, it won't get remembered
2126 * for the next commit
2127 */
2128 memcpy(&info->super_copy->super_roots,
2129 &info->super_for_commit->super_roots,
2130 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2131}
2132
2133/*
2134 * this copies info out of the root backup array and back into
2135 * the in-memory super block. It is meant to help iterate through
2136 * the array, so you send it the number of backups you've already
2137 * tried and the last backup index you used.
2138 *
2139 * this returns -1 when it has tried all the backups
2140 */
2141static noinline int next_root_backup(struct btrfs_fs_info *info,
2142 struct btrfs_super_block *super,
2143 int *num_backups_tried, int *backup_index)
2144{
2145 struct btrfs_root_backup *root_backup;
2146 int newest = *backup_index;
2147
2148 if (*num_backups_tried == 0) {
2149 u64 gen = btrfs_super_generation(super);
2150
2151 newest = find_newest_super_backup(info, gen);
2152 if (newest == -1)
2153 return -1;
2154
2155 *backup_index = newest;
2156 *num_backups_tried = 1;
2157 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2158 /* we've tried all the backups, all done */
2159 return -1;
2160 } else {
2161 /* jump to the next oldest backup */
2162 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2163 BTRFS_NUM_BACKUP_ROOTS;
2164 *backup_index = newest;
2165 *num_backups_tried += 1;
2166 }
2167 root_backup = super->super_roots + newest;
2168
2169 btrfs_set_super_generation(super,
2170 btrfs_backup_tree_root_gen(root_backup));
2171 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2172 btrfs_set_super_root_level(super,
2173 btrfs_backup_tree_root_level(root_backup));
2174 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2175
2176 /*
2177 * fixme: the total bytes and num_devices need to match or we should
2178 * need a fsck
2179 */
2180 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2181 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2182 return 0;
2183}
2184
7abadb64
LB
2185/* helper to cleanup workers */
2186static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2187{
dc6e3209 2188 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2189 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2190 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2191 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2192 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2193 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2194 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2195 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2196 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2197 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2198 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2199 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2200 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2201 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2202 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2203 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2204 /*
2205 * Now that all other work queues are destroyed, we can safely destroy
2206 * the queues used for metadata I/O, since tasks from those other work
2207 * queues can do metadata I/O operations.
2208 */
2209 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2210 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2211}
2212
2e9f5954
R
2213static void free_root_extent_buffers(struct btrfs_root *root)
2214{
2215 if (root) {
2216 free_extent_buffer(root->node);
2217 free_extent_buffer(root->commit_root);
2218 root->node = NULL;
2219 root->commit_root = NULL;
2220 }
2221}
2222
af31f5e5
CM
2223/* helper to cleanup tree roots */
2224static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2225{
2e9f5954 2226 free_root_extent_buffers(info->tree_root);
655b09fe 2227
2e9f5954
R
2228 free_root_extent_buffers(info->dev_root);
2229 free_root_extent_buffers(info->extent_root);
2230 free_root_extent_buffers(info->csum_root);
2231 free_root_extent_buffers(info->quota_root);
2232 free_root_extent_buffers(info->uuid_root);
2233 if (chunk_root)
2234 free_root_extent_buffers(info->chunk_root);
70f6d82e 2235 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2236}
2237
faa2dbf0 2238void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2239{
2240 int ret;
2241 struct btrfs_root *gang[8];
2242 int i;
2243
2244 while (!list_empty(&fs_info->dead_roots)) {
2245 gang[0] = list_entry(fs_info->dead_roots.next,
2246 struct btrfs_root, root_list);
2247 list_del(&gang[0]->root_list);
2248
27cdeb70 2249 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2250 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2251 } else {
2252 free_extent_buffer(gang[0]->node);
2253 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2254 btrfs_put_fs_root(gang[0]);
171f6537
JB
2255 }
2256 }
2257
2258 while (1) {
2259 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2260 (void **)gang, 0,
2261 ARRAY_SIZE(gang));
2262 if (!ret)
2263 break;
2264 for (i = 0; i < ret; i++)
cb517eab 2265 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2266 }
1a4319cc
LB
2267
2268 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2269 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2270 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2271 }
171f6537 2272}
af31f5e5 2273
638aa7ed
ES
2274static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2275{
2276 mutex_init(&fs_info->scrub_lock);
2277 atomic_set(&fs_info->scrubs_running, 0);
2278 atomic_set(&fs_info->scrub_pause_req, 0);
2279 atomic_set(&fs_info->scrubs_paused, 0);
2280 atomic_set(&fs_info->scrub_cancel_req, 0);
2281 init_waitqueue_head(&fs_info->scrub_pause_wait);
2282 fs_info->scrub_workers_refcnt = 0;
2283}
2284
779a65a4
ES
2285static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2286{
2287 spin_lock_init(&fs_info->balance_lock);
2288 mutex_init(&fs_info->balance_mutex);
2289 atomic_set(&fs_info->balance_running, 0);
2290 atomic_set(&fs_info->balance_pause_req, 0);
2291 atomic_set(&fs_info->balance_cancel_req, 0);
2292 fs_info->balance_ctl = NULL;
2293 init_waitqueue_head(&fs_info->balance_wait_q);
2294}
2295
6bccf3ab 2296static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2297{
2ff7e61e
JM
2298 struct inode *inode = fs_info->btree_inode;
2299
2300 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2301 set_nlink(inode, 1);
f37938e0
ES
2302 /*
2303 * we set the i_size on the btree inode to the max possible int.
2304 * the real end of the address space is determined by all of
2305 * the devices in the system
2306 */
2ff7e61e
JM
2307 inode->i_size = OFFSET_MAX;
2308 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2309
2ff7e61e
JM
2310 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2311 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
2312 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2313 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2314
2ff7e61e 2315 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2316
2ff7e61e
JM
2317 BTRFS_I(inode)->root = fs_info->tree_root;
2318 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2319 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2320 btrfs_insert_inode_hash(inode);
f37938e0
ES
2321}
2322
ad618368
ES
2323static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2324{
2325 fs_info->dev_replace.lock_owner = 0;
2326 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2327 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2328 rwlock_init(&fs_info->dev_replace.lock);
2329 atomic_set(&fs_info->dev_replace.read_locks, 0);
2330 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2331 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2332 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2333}
2334
f9e92e40
ES
2335static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2336{
2337 spin_lock_init(&fs_info->qgroup_lock);
2338 mutex_init(&fs_info->qgroup_ioctl_lock);
2339 fs_info->qgroup_tree = RB_ROOT;
2340 fs_info->qgroup_op_tree = RB_ROOT;
2341 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2342 fs_info->qgroup_seq = 1;
f9e92e40 2343 fs_info->qgroup_ulist = NULL;
d2c609b8 2344 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2345 mutex_init(&fs_info->qgroup_rescan_lock);
2346}
2347
2a458198
ES
2348static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2349 struct btrfs_fs_devices *fs_devices)
2350{
2351 int max_active = fs_info->thread_pool_size;
6f011058 2352 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2353
2354 fs_info->workers =
cb001095
JM
2355 btrfs_alloc_workqueue(fs_info, "worker",
2356 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2357
2358 fs_info->delalloc_workers =
cb001095
JM
2359 btrfs_alloc_workqueue(fs_info, "delalloc",
2360 flags, max_active, 2);
2a458198
ES
2361
2362 fs_info->flush_workers =
cb001095
JM
2363 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2364 flags, max_active, 0);
2a458198
ES
2365
2366 fs_info->caching_workers =
cb001095 2367 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2368
2369 /*
2370 * a higher idle thresh on the submit workers makes it much more
2371 * likely that bios will be send down in a sane order to the
2372 * devices
2373 */
2374 fs_info->submit_workers =
cb001095 2375 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2376 min_t(u64, fs_devices->num_devices,
2377 max_active), 64);
2378
2379 fs_info->fixup_workers =
cb001095 2380 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2381
2382 /*
2383 * endios are largely parallel and should have a very
2384 * low idle thresh
2385 */
2386 fs_info->endio_workers =
cb001095 2387 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2388 fs_info->endio_meta_workers =
cb001095
JM
2389 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2390 max_active, 4);
2a458198 2391 fs_info->endio_meta_write_workers =
cb001095
JM
2392 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2393 max_active, 2);
2a458198 2394 fs_info->endio_raid56_workers =
cb001095
JM
2395 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2396 max_active, 4);
2a458198 2397 fs_info->endio_repair_workers =
cb001095 2398 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2399 fs_info->rmw_workers =
cb001095 2400 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2401 fs_info->endio_write_workers =
cb001095
JM
2402 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2403 max_active, 2);
2a458198 2404 fs_info->endio_freespace_worker =
cb001095
JM
2405 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2406 max_active, 0);
2a458198 2407 fs_info->delayed_workers =
cb001095
JM
2408 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2409 max_active, 0);
2a458198 2410 fs_info->readahead_workers =
cb001095
JM
2411 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2412 max_active, 2);
2a458198 2413 fs_info->qgroup_rescan_workers =
cb001095 2414 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2415 fs_info->extent_workers =
cb001095 2416 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2417 min_t(u64, fs_devices->num_devices,
2418 max_active), 8);
2419
2420 if (!(fs_info->workers && fs_info->delalloc_workers &&
2421 fs_info->submit_workers && fs_info->flush_workers &&
2422 fs_info->endio_workers && fs_info->endio_meta_workers &&
2423 fs_info->endio_meta_write_workers &&
2424 fs_info->endio_repair_workers &&
2425 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2426 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2427 fs_info->caching_workers && fs_info->readahead_workers &&
2428 fs_info->fixup_workers && fs_info->delayed_workers &&
2429 fs_info->extent_workers &&
2430 fs_info->qgroup_rescan_workers)) {
2431 return -ENOMEM;
2432 }
2433
2434 return 0;
2435}
2436
63443bf5
ES
2437static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2438 struct btrfs_fs_devices *fs_devices)
2439{
2440 int ret;
63443bf5
ES
2441 struct btrfs_root *log_tree_root;
2442 struct btrfs_super_block *disk_super = fs_info->super_copy;
2443 u64 bytenr = btrfs_super_log_root(disk_super);
2444
2445 if (fs_devices->rw_devices == 0) {
f14d104d 2446 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2447 return -EIO;
2448 }
2449
74e4d827 2450 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2451 if (!log_tree_root)
2452 return -ENOMEM;
2453
da17066c 2454 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2455
2ff7e61e
JM
2456 log_tree_root->node = read_tree_block(fs_info, bytenr,
2457 fs_info->generation + 1);
64c043de 2458 if (IS_ERR(log_tree_root->node)) {
f14d104d 2459 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2460 ret = PTR_ERR(log_tree_root->node);
64c043de 2461 kfree(log_tree_root);
0eeff236 2462 return ret;
64c043de 2463 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2464 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2465 free_extent_buffer(log_tree_root->node);
2466 kfree(log_tree_root);
2467 return -EIO;
2468 }
2469 /* returns with log_tree_root freed on success */
2470 ret = btrfs_recover_log_trees(log_tree_root);
2471 if (ret) {
0b246afa
JM
2472 btrfs_handle_fs_error(fs_info, ret,
2473 "Failed to recover log tree");
63443bf5
ES
2474 free_extent_buffer(log_tree_root->node);
2475 kfree(log_tree_root);
2476 return ret;
2477 }
2478
2479 if (fs_info->sb->s_flags & MS_RDONLY) {
6bccf3ab 2480 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2481 if (ret)
2482 return ret;
2483 }
2484
2485 return 0;
2486}
2487
6bccf3ab 2488static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2489{
6bccf3ab 2490 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2491 struct btrfs_root *root;
4bbcaa64
ES
2492 struct btrfs_key location;
2493 int ret;
2494
6bccf3ab
JM
2495 BUG_ON(!fs_info->tree_root);
2496
4bbcaa64
ES
2497 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2498 location.type = BTRFS_ROOT_ITEM_KEY;
2499 location.offset = 0;
2500
a4f3d2c4
DS
2501 root = btrfs_read_tree_root(tree_root, &location);
2502 if (IS_ERR(root))
2503 return PTR_ERR(root);
2504 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2505 fs_info->extent_root = root;
4bbcaa64
ES
2506
2507 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2508 root = btrfs_read_tree_root(tree_root, &location);
2509 if (IS_ERR(root))
2510 return PTR_ERR(root);
2511 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2512 fs_info->dev_root = root;
4bbcaa64
ES
2513 btrfs_init_devices_late(fs_info);
2514
2515 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2516 root = btrfs_read_tree_root(tree_root, &location);
2517 if (IS_ERR(root))
2518 return PTR_ERR(root);
2519 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2520 fs_info->csum_root = root;
4bbcaa64
ES
2521
2522 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2523 root = btrfs_read_tree_root(tree_root, &location);
2524 if (!IS_ERR(root)) {
2525 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2526 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2527 fs_info->quota_root = root;
4bbcaa64
ES
2528 }
2529
2530 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2531 root = btrfs_read_tree_root(tree_root, &location);
2532 if (IS_ERR(root)) {
2533 ret = PTR_ERR(root);
4bbcaa64
ES
2534 if (ret != -ENOENT)
2535 return ret;
2536 } else {
a4f3d2c4
DS
2537 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2538 fs_info->uuid_root = root;
4bbcaa64
ES
2539 }
2540
70f6d82e
OS
2541 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2542 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2543 root = btrfs_read_tree_root(tree_root, &location);
2544 if (IS_ERR(root))
2545 return PTR_ERR(root);
2546 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2547 fs_info->free_space_root = root;
2548 }
2549
4bbcaa64
ES
2550 return 0;
2551}
2552
ad2b2c80
AV
2553int open_ctree(struct super_block *sb,
2554 struct btrfs_fs_devices *fs_devices,
2555 char *options)
2e635a27 2556{
db94535d
CM
2557 u32 sectorsize;
2558 u32 nodesize;
87ee04eb 2559 u32 stripesize;
84234f3a 2560 u64 generation;
f2b636e8 2561 u64 features;
3de4586c 2562 struct btrfs_key location;
a061fc8d 2563 struct buffer_head *bh;
4d34b278 2564 struct btrfs_super_block *disk_super;
815745cf 2565 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2566 struct btrfs_root *tree_root;
4d34b278 2567 struct btrfs_root *chunk_root;
eb60ceac 2568 int ret;
e58ca020 2569 int err = -EINVAL;
af31f5e5
CM
2570 int num_backups_tried = 0;
2571 int backup_index = 0;
5cdc7ad3 2572 int max_active;
6675df31 2573 int clear_free_space_tree = 0;
4543df7e 2574
74e4d827
DS
2575 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2576 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2577 if (!tree_root || !chunk_root) {
39279cc3
CM
2578 err = -ENOMEM;
2579 goto fail;
2580 }
76dda93c
YZ
2581
2582 ret = init_srcu_struct(&fs_info->subvol_srcu);
2583 if (ret) {
2584 err = ret;
2585 goto fail;
2586 }
2587
908c7f19 2588 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2589 if (ret) {
2590 err = ret;
9e11ceee 2591 goto fail_srcu;
e2d84521 2592 }
09cbfeaf 2593 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2594 (1 + ilog2(nr_cpu_ids));
2595
908c7f19 2596 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2597 if (ret) {
2598 err = ret;
2599 goto fail_dirty_metadata_bytes;
2600 }
2601
908c7f19 2602 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2603 if (ret) {
2604 err = ret;
2605 goto fail_delalloc_bytes;
2606 }
2607
76dda93c
YZ
2608 fs_info->btree_inode = new_inode(sb);
2609 if (!fs_info->btree_inode) {
2610 err = -ENOMEM;
c404e0dc 2611 goto fail_bio_counter;
76dda93c
YZ
2612 }
2613
a6591715 2614 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2615
76dda93c 2616 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2617 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2618 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2619 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2620 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2621 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2622 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2623 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2624 spin_lock_init(&fs_info->trans_lock);
76dda93c 2625 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2626 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2627 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2628 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2629 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2630 spin_lock_init(&fs_info->super_lock);
fcebe456 2631 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2632 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2633 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2634 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2635 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2636 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2637 mutex_init(&fs_info->reloc_mutex);
573bfb72 2638 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2639 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2640 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2641
0b86a832 2642 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2643 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2644 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2645 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2646 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2647 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2648 BTRFS_BLOCK_RSV_GLOBAL);
2649 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2650 BTRFS_BLOCK_RSV_DELALLOC);
2651 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2652 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2653 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2654 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2655 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2656 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2657 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2658 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2659 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2660 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2661 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2662 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2663 atomic64_set(&fs_info->tree_mod_seq, 0);
9e7cc91a 2664 fs_info->fs_frozen = 0;
e20d96d6 2665 fs_info->sb = sb;
95ac567a 2666 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2667 fs_info->metadata_ratio = 0;
4cb5300b 2668 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2669 fs_info->free_chunk_space = 0;
f29021b2 2670 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2671 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2672 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2673 /* readahead state */
d0164adc 2674 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2675 spin_lock_init(&fs_info->reada_lock);
c8b97818 2676
b34b086c
CM
2677 fs_info->thread_pool_size = min_t(unsigned long,
2678 num_online_cpus() + 2, 8);
0afbaf8c 2679
199c2a9c
MX
2680 INIT_LIST_HEAD(&fs_info->ordered_roots);
2681 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7 2682 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2683 GFP_KERNEL);
16cdcec7
MX
2684 if (!fs_info->delayed_root) {
2685 err = -ENOMEM;
2686 goto fail_iput;
2687 }
2688 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2689
638aa7ed 2690 btrfs_init_scrub(fs_info);
21adbd5c
SB
2691#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2692 fs_info->check_integrity_print_mask = 0;
2693#endif
779a65a4 2694 btrfs_init_balance(fs_info);
21c7e756 2695 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2696
a061fc8d
CM
2697 sb->s_blocksize = 4096;
2698 sb->s_blocksize_bits = blksize_bits(4096);
2699
6bccf3ab 2700 btrfs_init_btree_inode(fs_info);
76dda93c 2701
0f9dd46c 2702 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2703 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2704 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2705
11833d66 2706 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2707 fs_info->btree_inode->i_mapping);
11833d66 2708 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2709 fs_info->btree_inode->i_mapping);
11833d66 2710 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2711 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2712
5a3f23d5 2713 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2714 mutex_init(&fs_info->tree_log_mutex);
925baedd 2715 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2716 mutex_init(&fs_info->transaction_kthread_mutex);
2717 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2718 mutex_init(&fs_info->volume_mutex);
1bbc621e 2719 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2720 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2721 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2722 init_rwsem(&fs_info->subvol_sem);
803b2f54 2723 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2724
ad618368 2725 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2726 btrfs_init_qgroup(fs_info);
416ac51d 2727
fa9c0d79
CM
2728 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2729 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2730
e6dcd2dc 2731 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2732 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2733 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2734 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2735
04216820
FM
2736 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2737
da17066c
JM
2738 /* Usable values until the real ones are cached from the superblock */
2739 fs_info->nodesize = 4096;
2740 fs_info->sectorsize = 4096;
2741 fs_info->stripesize = 4096;
2742
53b381b3
DW
2743 ret = btrfs_alloc_stripe_hash_table(fs_info);
2744 if (ret) {
83c8266a 2745 err = ret;
53b381b3
DW
2746 goto fail_alloc;
2747 }
2748
da17066c 2749 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2750
3c4bb26b 2751 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2752
2753 /*
2754 * Read super block and check the signature bytes only
2755 */
a512bbf8 2756 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2757 if (IS_ERR(bh)) {
2758 err = PTR_ERR(bh);
16cdcec7 2759 goto fail_alloc;
20b45077 2760 }
39279cc3 2761
1104a885
DS
2762 /*
2763 * We want to check superblock checksum, the type is stored inside.
2764 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2765 */
ab8d0fc4 2766 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2767 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2768 err = -EINVAL;
b2acdddf 2769 brelse(bh);
1104a885
DS
2770 goto fail_alloc;
2771 }
2772
2773 /*
2774 * super_copy is zeroed at allocation time and we never touch the
2775 * following bytes up to INFO_SIZE, the checksum is calculated from
2776 * the whole block of INFO_SIZE
2777 */
6c41761f
DS
2778 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2779 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2780 sizeof(*fs_info->super_for_commit));
a061fc8d 2781 brelse(bh);
5f39d397 2782
6c41761f 2783 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2784
3d3a126a 2785 ret = btrfs_check_super_valid(fs_info);
1104a885 2786 if (ret) {
05135f59 2787 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2788 err = -EINVAL;
2789 goto fail_alloc;
2790 }
2791
6c41761f 2792 disk_super = fs_info->super_copy;
0f7d52f4 2793 if (!btrfs_super_root(disk_super))
16cdcec7 2794 goto fail_alloc;
0f7d52f4 2795
acce952b 2796 /* check FS state, whether FS is broken. */
87533c47
MX
2797 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2798 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2799
af31f5e5
CM
2800 /*
2801 * run through our array of backup supers and setup
2802 * our ring pointer to the oldest one
2803 */
2804 generation = btrfs_super_generation(disk_super);
2805 find_oldest_super_backup(fs_info, generation);
2806
75e7cb7f
LB
2807 /*
2808 * In the long term, we'll store the compression type in the super
2809 * block, and it'll be used for per file compression control.
2810 */
2811 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2812
2ff7e61e 2813 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2814 if (ret) {
2815 err = ret;
16cdcec7 2816 goto fail_alloc;
2b82032c 2817 }
dfe25020 2818
f2b636e8
JB
2819 features = btrfs_super_incompat_flags(disk_super) &
2820 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2821 if (features) {
05135f59
DS
2822 btrfs_err(fs_info,
2823 "cannot mount because of unsupported optional features (%llx)",
2824 features);
f2b636e8 2825 err = -EINVAL;
16cdcec7 2826 goto fail_alloc;
f2b636e8
JB
2827 }
2828
5d4f98a2 2829 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2830 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2831 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2832 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2833
3173a18f 2834 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2835 btrfs_info(fs_info, "has skinny extents");
3173a18f 2836
727011e0
CM
2837 /*
2838 * flag our filesystem as having big metadata blocks if
2839 * they are bigger than the page size
2840 */
09cbfeaf 2841 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2842 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2843 btrfs_info(fs_info,
2844 "flagging fs with big metadata feature");
727011e0
CM
2845 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2846 }
2847
bc3f116f 2848 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2849 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2850 stripesize = sectorsize;
707e8a07 2851 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2852 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2853
da17066c
JM
2854 /* Cache block sizes */
2855 fs_info->nodesize = nodesize;
2856 fs_info->sectorsize = sectorsize;
2857 fs_info->stripesize = stripesize;
2858
bc3f116f
CM
2859 /*
2860 * mixed block groups end up with duplicate but slightly offset
2861 * extent buffers for the same range. It leads to corruptions
2862 */
2863 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2864 (sectorsize != nodesize)) {
05135f59
DS
2865 btrfs_err(fs_info,
2866"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2867 nodesize, sectorsize);
bc3f116f
CM
2868 goto fail_alloc;
2869 }
2870
ceda0864
MX
2871 /*
2872 * Needn't use the lock because there is no other task which will
2873 * update the flag.
2874 */
a6fa6fae 2875 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2876
f2b636e8
JB
2877 features = btrfs_super_compat_ro_flags(disk_super) &
2878 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2879 if (!(sb->s_flags & MS_RDONLY) && features) {
05135f59
DS
2880 btrfs_err(fs_info,
2881 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2882 features);
f2b636e8 2883 err = -EINVAL;
16cdcec7 2884 goto fail_alloc;
f2b636e8 2885 }
61d92c32 2886
5cdc7ad3 2887 max_active = fs_info->thread_pool_size;
61d92c32 2888
2a458198
ES
2889 ret = btrfs_init_workqueues(fs_info, fs_devices);
2890 if (ret) {
2891 err = ret;
0dc3b84a
JB
2892 goto fail_sb_buffer;
2893 }
4543df7e 2894
9e11ceee
JK
2895 sb->s_bdi->congested_fn = btrfs_congested_fn;
2896 sb->s_bdi->congested_data = fs_info;
2897 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2898 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
2899 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2900 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2901
a061fc8d
CM
2902 sb->s_blocksize = sectorsize;
2903 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2904
925baedd 2905 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2906 ret = btrfs_read_sys_array(fs_info);
925baedd 2907 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2908 if (ret) {
05135f59 2909 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2910 goto fail_sb_buffer;
84eed90f 2911 }
0b86a832 2912
84234f3a 2913 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2914
da17066c 2915 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2916
2ff7e61e 2917 chunk_root->node = read_tree_block(fs_info,
0b86a832 2918 btrfs_super_chunk_root(disk_super),
ce86cd59 2919 generation);
64c043de
LB
2920 if (IS_ERR(chunk_root->node) ||
2921 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2922 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2923 if (!IS_ERR(chunk_root->node))
2924 free_extent_buffer(chunk_root->node);
95ab1f64 2925 chunk_root->node = NULL;
af31f5e5 2926 goto fail_tree_roots;
83121942 2927 }
5d4f98a2
YZ
2928 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2929 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2930
e17cade2 2931 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2932 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2933
5b4aacef 2934 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2935 if (ret) {
05135f59 2936 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2937 goto fail_tree_roots;
2b82032c 2938 }
0b86a832 2939
8dabb742
SB
2940 /*
2941 * keep the device that is marked to be the target device for the
2942 * dev_replace procedure
2943 */
9eaed21e 2944 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2945
a6b0d5c8 2946 if (!fs_devices->latest_bdev) {
05135f59 2947 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2948 goto fail_tree_roots;
2949 }
2950
af31f5e5 2951retry_root_backup:
84234f3a 2952 generation = btrfs_super_generation(disk_super);
0b86a832 2953
2ff7e61e 2954 tree_root->node = read_tree_block(fs_info,
db94535d 2955 btrfs_super_root(disk_super),
ce86cd59 2956 generation);
64c043de
LB
2957 if (IS_ERR(tree_root->node) ||
2958 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2959 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2960 if (!IS_ERR(tree_root->node))
2961 free_extent_buffer(tree_root->node);
95ab1f64 2962 tree_root->node = NULL;
af31f5e5 2963 goto recovery_tree_root;
83121942 2964 }
af31f5e5 2965
5d4f98a2
YZ
2966 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2967 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2968 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2969
f32e48e9
CR
2970 mutex_lock(&tree_root->objectid_mutex);
2971 ret = btrfs_find_highest_objectid(tree_root,
2972 &tree_root->highest_objectid);
2973 if (ret) {
2974 mutex_unlock(&tree_root->objectid_mutex);
2975 goto recovery_tree_root;
2976 }
2977
2978 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2979
2980 mutex_unlock(&tree_root->objectid_mutex);
2981
6bccf3ab 2982 ret = btrfs_read_roots(fs_info);
4bbcaa64 2983 if (ret)
af31f5e5 2984 goto recovery_tree_root;
f7a81ea4 2985
8929ecfa
YZ
2986 fs_info->generation = generation;
2987 fs_info->last_trans_committed = generation;
8929ecfa 2988
68310a5e
ID
2989 ret = btrfs_recover_balance(fs_info);
2990 if (ret) {
05135f59 2991 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
2992 goto fail_block_groups;
2993 }
2994
733f4fbb
SB
2995 ret = btrfs_init_dev_stats(fs_info);
2996 if (ret) {
05135f59 2997 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
2998 goto fail_block_groups;
2999 }
3000
8dabb742
SB
3001 ret = btrfs_init_dev_replace(fs_info);
3002 if (ret) {
05135f59 3003 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3004 goto fail_block_groups;
3005 }
3006
9eaed21e 3007 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 3008
b7c35e81
AJ
3009 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3010 if (ret) {
05135f59
DS
3011 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3012 ret);
b7c35e81
AJ
3013 goto fail_block_groups;
3014 }
3015
3016 ret = btrfs_sysfs_add_device(fs_devices);
3017 if (ret) {
05135f59
DS
3018 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3019 ret);
b7c35e81
AJ
3020 goto fail_fsdev_sysfs;
3021 }
3022
96f3136e 3023 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3024 if (ret) {
05135f59 3025 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3026 goto fail_fsdev_sysfs;
c59021f8 3027 }
3028
c59021f8 3029 ret = btrfs_init_space_info(fs_info);
3030 if (ret) {
05135f59 3031 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3032 goto fail_sysfs;
c59021f8 3033 }
3034
5b4aacef 3035 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3036 if (ret) {
05135f59 3037 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3038 goto fail_sysfs;
1b1d1f66 3039 }
5af3e8cc
SB
3040 fs_info->num_tolerated_disk_barrier_failures =
3041 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
3042 if (fs_info->fs_devices->missing_devices >
3043 fs_info->num_tolerated_disk_barrier_failures &&
3044 !(sb->s_flags & MS_RDONLY)) {
05135f59
DS
3045 btrfs_warn(fs_info,
3046"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
78fa1770
ZL
3047 fs_info->fs_devices->missing_devices,
3048 fs_info->num_tolerated_disk_barrier_failures);
2365dd3c 3049 goto fail_sysfs;
292fd7fc 3050 }
9078a3e1 3051
a74a4b97
CM
3052 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3053 "btrfs-cleaner");
57506d50 3054 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3055 goto fail_sysfs;
a74a4b97
CM
3056
3057 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3058 tree_root,
3059 "btrfs-transaction");
57506d50 3060 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3061 goto fail_cleaner;
a74a4b97 3062
0b246afa
JM
3063 if (!btrfs_test_opt(fs_info, SSD) &&
3064 !btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3065 !fs_info->fs_devices->rotating) {
05135f59 3066 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
c289811c
CM
3067 btrfs_set_opt(fs_info->mount_opt, SSD);
3068 }
3069
572d9ab7 3070 /*
01327610 3071 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3072 * not have to wait for transaction commit
3073 */
3074 btrfs_apply_pending_changes(fs_info);
3818aea2 3075
21adbd5c 3076#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3077 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3078 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3079 btrfs_test_opt(fs_info,
21adbd5c
SB
3080 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3081 1 : 0,
3082 fs_info->check_integrity_print_mask);
3083 if (ret)
05135f59
DS
3084 btrfs_warn(fs_info,
3085 "failed to initialize integrity check module: %d",
3086 ret);
21adbd5c
SB
3087 }
3088#endif
bcef60f2
AJ
3089 ret = btrfs_read_qgroup_config(fs_info);
3090 if (ret)
3091 goto fail_trans_kthread;
21adbd5c 3092
96da0919
QW
3093 /* do not make disk changes in broken FS or nologreplay is given */
3094 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3095 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3096 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3097 if (ret) {
63443bf5 3098 err = ret;
28c16cbb 3099 goto fail_qgroup;
79787eaa 3100 }
e02119d5 3101 }
1a40e23b 3102
6bccf3ab 3103 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3104 if (ret)
28c16cbb 3105 goto fail_qgroup;
76dda93c 3106
7c2ca468 3107 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3108 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3109 if (ret)
28c16cbb 3110 goto fail_qgroup;
90c711ab
ZB
3111
3112 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3113 ret = btrfs_recover_relocation(tree_root);
90c711ab 3114 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3115 if (ret < 0) {
05135f59
DS
3116 btrfs_warn(fs_info, "failed to recover relocation: %d",
3117 ret);
d7ce5843 3118 err = -EINVAL;
bcef60f2 3119 goto fail_qgroup;
d7ce5843 3120 }
7c2ca468 3121 }
1a40e23b 3122
3de4586c
CM
3123 location.objectid = BTRFS_FS_TREE_OBJECTID;
3124 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3125 location.offset = 0;
3de4586c 3126
3de4586c 3127 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3128 if (IS_ERR(fs_info->fs_root)) {
3129 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3130 goto fail_qgroup;
3140c9a3 3131 }
c289811c 3132
2b6ba629
ID
3133 if (sb->s_flags & MS_RDONLY)
3134 return 0;
59641015 3135
f8d468a1
OS
3136 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3137 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3138 clear_free_space_tree = 1;
3139 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3140 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3141 btrfs_warn(fs_info, "free space tree is invalid");
3142 clear_free_space_tree = 1;
3143 }
3144
3145 if (clear_free_space_tree) {
f8d468a1
OS
3146 btrfs_info(fs_info, "clearing free space tree");
3147 ret = btrfs_clear_free_space_tree(fs_info);
3148 if (ret) {
3149 btrfs_warn(fs_info,
3150 "failed to clear free space tree: %d", ret);
6bccf3ab 3151 close_ctree(fs_info);
f8d468a1
OS
3152 return ret;
3153 }
3154 }
3155
0b246afa 3156 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3157 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3158 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3159 ret = btrfs_create_free_space_tree(fs_info);
3160 if (ret) {
05135f59
DS
3161 btrfs_warn(fs_info,
3162 "failed to create free space tree: %d", ret);
6bccf3ab 3163 close_ctree(fs_info);
511711af
CM
3164 return ret;
3165 }
3166 }
3167
2b6ba629
ID
3168 down_read(&fs_info->cleanup_work_sem);
3169 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3170 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3171 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3172 close_ctree(fs_info);
2b6ba629
ID
3173 return ret;
3174 }
3175 up_read(&fs_info->cleanup_work_sem);
59641015 3176
2b6ba629
ID
3177 ret = btrfs_resume_balance_async(fs_info);
3178 if (ret) {
05135f59 3179 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3180 close_ctree(fs_info);
2b6ba629 3181 return ret;
e3acc2a6
JB
3182 }
3183
8dabb742
SB
3184 ret = btrfs_resume_dev_replace_async(fs_info);
3185 if (ret) {
05135f59 3186 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3187 close_ctree(fs_info);
8dabb742
SB
3188 return ret;
3189 }
3190
b382a324
JS
3191 btrfs_qgroup_rescan_resume(fs_info);
3192
4bbcaa64 3193 if (!fs_info->uuid_root) {
05135f59 3194 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3195 ret = btrfs_create_uuid_tree(fs_info);
3196 if (ret) {
05135f59
DS
3197 btrfs_warn(fs_info,
3198 "failed to create the UUID tree: %d", ret);
6bccf3ab 3199 close_ctree(fs_info);
f7a81ea4
SB
3200 return ret;
3201 }
0b246afa 3202 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3203 fs_info->generation !=
3204 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3205 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3206 ret = btrfs_check_uuid_tree(fs_info);
3207 if (ret) {
05135f59
DS
3208 btrfs_warn(fs_info,
3209 "failed to check the UUID tree: %d", ret);
6bccf3ab 3210 close_ctree(fs_info);
70f80175
SB
3211 return ret;
3212 }
3213 } else {
afcdd129 3214 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3215 }
afcdd129 3216 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3217
8dcddfa0
QW
3218 /*
3219 * backuproot only affect mount behavior, and if open_ctree succeeded,
3220 * no need to keep the flag
3221 */
3222 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3223
ad2b2c80 3224 return 0;
39279cc3 3225
bcef60f2
AJ
3226fail_qgroup:
3227 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3228fail_trans_kthread:
3229 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3230 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3231 btrfs_free_fs_roots(fs_info);
3f157a2f 3232fail_cleaner:
a74a4b97 3233 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3234
3235 /*
3236 * make sure we're done with the btree inode before we stop our
3237 * kthreads
3238 */
3239 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3240
2365dd3c 3241fail_sysfs:
6618a59b 3242 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3243
b7c35e81
AJ
3244fail_fsdev_sysfs:
3245 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3246
1b1d1f66 3247fail_block_groups:
54067ae9 3248 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3249
3250fail_tree_roots:
3251 free_root_pointers(fs_info, 1);
2b8195bb 3252 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3253
39279cc3 3254fail_sb_buffer:
7abadb64 3255 btrfs_stop_all_workers(fs_info);
5cdd7db6 3256 btrfs_free_block_groups(fs_info);
16cdcec7 3257fail_alloc:
4543df7e 3258fail_iput:
586e46e2
ID
3259 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3260
4543df7e 3261 iput(fs_info->btree_inode);
c404e0dc
MX
3262fail_bio_counter:
3263 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3264fail_delalloc_bytes:
3265 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3266fail_dirty_metadata_bytes:
3267 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3268fail_srcu:
3269 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3270fail:
53b381b3 3271 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3272 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3273 return err;
af31f5e5
CM
3274
3275recovery_tree_root:
0b246afa 3276 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3277 goto fail_tree_roots;
3278
3279 free_root_pointers(fs_info, 0);
3280
3281 /* don't use the log in recovery mode, it won't be valid */
3282 btrfs_set_super_log_root(disk_super, 0);
3283
3284 /* we can't trust the free space cache either */
3285 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3286
3287 ret = next_root_backup(fs_info, fs_info->super_copy,
3288 &num_backups_tried, &backup_index);
3289 if (ret == -1)
3290 goto fail_block_groups;
3291 goto retry_root_backup;
eb60ceac
CM
3292}
3293
f2984462
CM
3294static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3295{
f2984462
CM
3296 if (uptodate) {
3297 set_buffer_uptodate(bh);
3298 } else {
442a4f63
SB
3299 struct btrfs_device *device = (struct btrfs_device *)
3300 bh->b_private;
3301
fb456252 3302 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3303 "lost page write due to IO error on %s",
606686ee 3304 rcu_str_deref(device->name));
01327610 3305 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3306 * our own ways of dealing with the IO errors
3307 */
f2984462 3308 clear_buffer_uptodate(bh);
442a4f63 3309 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3310 }
3311 unlock_buffer(bh);
3312 put_bh(bh);
3313}
3314
29c36d72
AJ
3315int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3316 struct buffer_head **bh_ret)
3317{
3318 struct buffer_head *bh;
3319 struct btrfs_super_block *super;
3320 u64 bytenr;
3321
3322 bytenr = btrfs_sb_offset(copy_num);
3323 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3324 return -EINVAL;
3325
3326 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3327 /*
3328 * If we fail to read from the underlying devices, as of now
3329 * the best option we have is to mark it EIO.
3330 */
3331 if (!bh)
3332 return -EIO;
3333
3334 super = (struct btrfs_super_block *)bh->b_data;
3335 if (btrfs_super_bytenr(super) != bytenr ||
3336 btrfs_super_magic(super) != BTRFS_MAGIC) {
3337 brelse(bh);
3338 return -EINVAL;
3339 }
3340
3341 *bh_ret = bh;
3342 return 0;
3343}
3344
3345
a512bbf8
YZ
3346struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3347{
3348 struct buffer_head *bh;
3349 struct buffer_head *latest = NULL;
3350 struct btrfs_super_block *super;
3351 int i;
3352 u64 transid = 0;
92fc03fb 3353 int ret = -EINVAL;
a512bbf8
YZ
3354
3355 /* we would like to check all the supers, but that would make
3356 * a btrfs mount succeed after a mkfs from a different FS.
3357 * So, we need to add a special mount option to scan for
3358 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3359 */
3360 for (i = 0; i < 1; i++) {
29c36d72
AJ
3361 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3362 if (ret)
a512bbf8
YZ
3363 continue;
3364
3365 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3366
3367 if (!latest || btrfs_super_generation(super) > transid) {
3368 brelse(latest);
3369 latest = bh;
3370 transid = btrfs_super_generation(super);
3371 } else {
3372 brelse(bh);
3373 }
3374 }
92fc03fb
AJ
3375
3376 if (!latest)
3377 return ERR_PTR(ret);
3378
a512bbf8
YZ
3379 return latest;
3380}
3381
4eedeb75
HH
3382/*
3383 * this should be called twice, once with wait == 0 and
3384 * once with wait == 1. When wait == 0 is done, all the buffer heads
3385 * we write are pinned.
3386 *
3387 * They are released when wait == 1 is done.
3388 * max_mirrors must be the same for both runs, and it indicates how
3389 * many supers on this one device should be written.
3390 *
3391 * max_mirrors == 0 means to write them all.
3392 */
a512bbf8
YZ
3393static int write_dev_supers(struct btrfs_device *device,
3394 struct btrfs_super_block *sb,
b75f5062 3395 int wait, int max_mirrors)
a512bbf8
YZ
3396{
3397 struct buffer_head *bh;
3398 int i;
3399 int ret;
3400 int errors = 0;
3401 u32 crc;
3402 u64 bytenr;
a512bbf8
YZ
3403
3404 if (max_mirrors == 0)
3405 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3406
a512bbf8
YZ
3407 for (i = 0; i < max_mirrors; i++) {
3408 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3409 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3410 device->commit_total_bytes)
a512bbf8
YZ
3411 break;
3412
3413 if (wait) {
3414 bh = __find_get_block(device->bdev, bytenr / 4096,
3415 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3416 if (!bh) {
3417 errors++;
3418 continue;
3419 }
a512bbf8 3420 wait_on_buffer(bh);
4eedeb75
HH
3421 if (!buffer_uptodate(bh))
3422 errors++;
3423
3424 /* drop our reference */
3425 brelse(bh);
3426
3427 /* drop the reference from the wait == 0 run */
3428 brelse(bh);
3429 continue;
a512bbf8
YZ
3430 } else {
3431 btrfs_set_super_bytenr(sb, bytenr);
3432
3433 crc = ~(u32)0;
9ed57367 3434 crc = btrfs_csum_data((const char *)sb +
a512bbf8
YZ
3435 BTRFS_CSUM_SIZE, crc,
3436 BTRFS_SUPER_INFO_SIZE -
3437 BTRFS_CSUM_SIZE);
3438 btrfs_csum_final(crc, sb->csum);
3439
4eedeb75
HH
3440 /*
3441 * one reference for us, and we leave it for the
3442 * caller
3443 */
a512bbf8
YZ
3444 bh = __getblk(device->bdev, bytenr / 4096,
3445 BTRFS_SUPER_INFO_SIZE);
634554dc 3446 if (!bh) {
fb456252 3447 btrfs_err(device->fs_info,
f14d104d
DS
3448 "couldn't get super buffer head for bytenr %llu",
3449 bytenr);
634554dc
JB
3450 errors++;
3451 continue;
3452 }
3453
a512bbf8
YZ
3454 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3455
4eedeb75 3456 /* one reference for submit_bh */
a512bbf8 3457 get_bh(bh);
4eedeb75
HH
3458
3459 set_buffer_uptodate(bh);
a512bbf8
YZ
3460 lock_buffer(bh);
3461 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3462 bh->b_private = device;
a512bbf8
YZ
3463 }
3464
387125fc
CM
3465 /*
3466 * we fua the first super. The others we allow
3467 * to go down lazy.
3468 */
8d910125
JK
3469 if (i == 0) {
3470 ret = btrfsic_submit_bh(REQ_OP_WRITE,
3471 REQ_SYNC | REQ_FUA, bh);
3472 } else {
70fd7614 3473 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
8d910125 3474 }
4eedeb75 3475 if (ret)
a512bbf8 3476 errors++;
a512bbf8
YZ
3477 }
3478 return errors < i ? 0 : -1;
3479}
3480
387125fc
CM
3481/*
3482 * endio for the write_dev_flush, this will wake anyone waiting
3483 * for the barrier when it is done
3484 */
4246a0b6 3485static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3486{
387125fc
CM
3487 if (bio->bi_private)
3488 complete(bio->bi_private);
3489 bio_put(bio);
3490}
3491
3492/*
3493 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3494 * sent down. With wait == 1, it waits for the previous flush.
3495 *
3496 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3497 * capable
3498 */
4e4cbee9 3499static blk_status_t write_dev_flush(struct btrfs_device *device, int wait)
387125fc 3500{
c2a9c7ab 3501 struct request_queue *q = bdev_get_queue(device->bdev);
387125fc 3502 struct bio *bio;
4e4cbee9 3503 blk_status_t ret = 0;
387125fc 3504
c2a9c7ab 3505 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
387125fc
CM
3506 return 0;
3507
3508 if (wait) {
3509 bio = device->flush_bio;
3510 if (!bio)
3511 return 0;
3512
3513 wait_for_completion(&device->flush_wait);
3514
4e4cbee9
CH
3515 if (bio->bi_status) {
3516 ret = bio->bi_status;
5af3e8cc
SB
3517 btrfs_dev_stat_inc_and_print(device,
3518 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3519 }
3520
3521 /* drop the reference from the wait == 0 run */
3522 bio_put(bio);
3523 device->flush_bio = NULL;
3524
3525 return ret;
3526 }
3527
3528 /*
3529 * one reference for us, and we leave it for the
3530 * caller
3531 */
9c017abc 3532 device->flush_bio = NULL;
9be3395b 3533 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc 3534 if (!bio)
4e4cbee9 3535 return BLK_STS_RESOURCE;
387125fc
CM
3536
3537 bio->bi_end_io = btrfs_end_empty_barrier;
3538 bio->bi_bdev = device->bdev;
8d910125 3539 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3540 init_completion(&device->flush_wait);
3541 bio->bi_private = &device->flush_wait;
3542 device->flush_bio = bio;
3543
3544 bio_get(bio);
4e49ea4a 3545 btrfsic_submit_bio(bio);
387125fc
CM
3546
3547 return 0;
3548}
3549
3550/*
3551 * send an empty flush down to each device in parallel,
3552 * then wait for them
3553 */
3554static int barrier_all_devices(struct btrfs_fs_info *info)
3555{
3556 struct list_head *head;
3557 struct btrfs_device *dev;
5af3e8cc
SB
3558 int errors_send = 0;
3559 int errors_wait = 0;
4e4cbee9 3560 blk_status_t ret;
387125fc
CM
3561
3562 /* send down all the barriers */
3563 head = &info->fs_devices->devices;
3564 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3565 if (dev->missing)
3566 continue;
387125fc 3567 if (!dev->bdev) {
5af3e8cc 3568 errors_send++;
387125fc
CM
3569 continue;
3570 }
3571 if (!dev->in_fs_metadata || !dev->writeable)
3572 continue;
3573
3574 ret = write_dev_flush(dev, 0);
3575 if (ret)
5af3e8cc 3576 errors_send++;
387125fc
CM
3577 }
3578
3579 /* wait for all the barriers */
3580 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3581 if (dev->missing)
3582 continue;
387125fc 3583 if (!dev->bdev) {
5af3e8cc 3584 errors_wait++;
387125fc
CM
3585 continue;
3586 }
3587 if (!dev->in_fs_metadata || !dev->writeable)
3588 continue;
3589
3590 ret = write_dev_flush(dev, 1);
3591 if (ret)
5af3e8cc 3592 errors_wait++;
387125fc 3593 }
5af3e8cc
SB
3594 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3595 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3596 return -EIO;
3597 return 0;
3598}
3599
943c6e99
ZL
3600int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3601{
8789f4fe
ZL
3602 int raid_type;
3603 int min_tolerated = INT_MAX;
943c6e99 3604
8789f4fe
ZL
3605 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3606 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3607 min_tolerated = min(min_tolerated,
3608 btrfs_raid_array[BTRFS_RAID_SINGLE].
3609 tolerated_failures);
943c6e99 3610
8789f4fe
ZL
3611 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3612 if (raid_type == BTRFS_RAID_SINGLE)
3613 continue;
3614 if (!(flags & btrfs_raid_group[raid_type]))
3615 continue;
3616 min_tolerated = min(min_tolerated,
3617 btrfs_raid_array[raid_type].
3618 tolerated_failures);
3619 }
943c6e99 3620
8789f4fe 3621 if (min_tolerated == INT_MAX) {
ab8d0fc4 3622 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3623 min_tolerated = 0;
3624 }
3625
3626 return min_tolerated;
943c6e99
ZL
3627}
3628
5af3e8cc
SB
3629int btrfs_calc_num_tolerated_disk_barrier_failures(
3630 struct btrfs_fs_info *fs_info)
3631{
3632 struct btrfs_ioctl_space_info space;
3633 struct btrfs_space_info *sinfo;
3634 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3635 BTRFS_BLOCK_GROUP_SYSTEM,
3636 BTRFS_BLOCK_GROUP_METADATA,
3637 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
5af3e8cc
SB
3638 int i;
3639 int c;
3640 int num_tolerated_disk_barrier_failures =
3641 (int)fs_info->fs_devices->num_devices;
3642
2c458045 3643 for (i = 0; i < ARRAY_SIZE(types); i++) {
5af3e8cc
SB
3644 struct btrfs_space_info *tmp;
3645
3646 sinfo = NULL;
3647 rcu_read_lock();
3648 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3649 if (tmp->flags == types[i]) {
3650 sinfo = tmp;
3651 break;
3652 }
3653 }
3654 rcu_read_unlock();
3655
3656 if (!sinfo)
3657 continue;
3658
3659 down_read(&sinfo->groups_sem);
3660 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2c458045
ZL
3661 u64 flags;
3662
3663 if (list_empty(&sinfo->block_groups[c]))
3664 continue;
3665
3666 btrfs_get_block_group_info(&sinfo->block_groups[c],
3667 &space);
3668 if (space.total_bytes == 0 || space.used_bytes == 0)
3669 continue;
3670 flags = space.flags;
943c6e99
ZL
3671
3672 num_tolerated_disk_barrier_failures = min(
3673 num_tolerated_disk_barrier_failures,
3674 btrfs_get_num_tolerated_disk_barrier_failures(
3675 flags));
5af3e8cc
SB
3676 }
3677 up_read(&sinfo->groups_sem);
3678 }
3679
3680 return num_tolerated_disk_barrier_failures;
3681}
3682
eece6a9c 3683int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3684{
e5e9a520 3685 struct list_head *head;
f2984462 3686 struct btrfs_device *dev;
a061fc8d 3687 struct btrfs_super_block *sb;
f2984462 3688 struct btrfs_dev_item *dev_item;
f2984462
CM
3689 int ret;
3690 int do_barriers;
a236aed1
CM
3691 int max_errors;
3692 int total_errors = 0;
a061fc8d 3693 u64 flags;
f2984462 3694
0b246afa
JM
3695 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3696 backup_super_roots(fs_info);
f2984462 3697
0b246afa 3698 sb = fs_info->super_for_commit;
a061fc8d 3699 dev_item = &sb->dev_item;
e5e9a520 3700
0b246afa
JM
3701 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3702 head = &fs_info->fs_devices->devices;
3703 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3704
5af3e8cc 3705 if (do_barriers) {
0b246afa 3706 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3707 if (ret) {
3708 mutex_unlock(
0b246afa
JM
3709 &fs_info->fs_devices->device_list_mutex);
3710 btrfs_handle_fs_error(fs_info, ret,
3711 "errors while submitting device barriers.");
5af3e8cc
SB
3712 return ret;
3713 }
3714 }
387125fc 3715
1f78160c 3716 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3717 if (!dev->bdev) {
3718 total_errors++;
3719 continue;
3720 }
2b82032c 3721 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3722 continue;
3723
2b82032c 3724 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3725 btrfs_set_stack_device_type(dev_item, dev->type);
3726 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3727 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3728 dev->commit_total_bytes);
ce7213c7
MX
3729 btrfs_set_stack_device_bytes_used(dev_item,
3730 dev->commit_bytes_used);
a061fc8d
CM
3731 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3732 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3733 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3734 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3735 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3736
a061fc8d
CM
3737 flags = btrfs_super_flags(sb);
3738 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3739
b75f5062 3740 ret = write_dev_supers(dev, sb, 0, max_mirrors);
a236aed1
CM
3741 if (ret)
3742 total_errors++;
f2984462 3743 }
a236aed1 3744 if (total_errors > max_errors) {
0b246afa
JM
3745 btrfs_err(fs_info, "%d errors while writing supers",
3746 total_errors);
3747 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3748
9d565ba4 3749 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3750 btrfs_handle_fs_error(fs_info, -EIO,
3751 "%d errors while writing supers",
3752 total_errors);
9d565ba4 3753 return -EIO;
a236aed1 3754 }
f2984462 3755
a512bbf8 3756 total_errors = 0;
1f78160c 3757 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3758 if (!dev->bdev)
3759 continue;
2b82032c 3760 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3761 continue;
3762
b75f5062 3763 ret = write_dev_supers(dev, sb, 1, max_mirrors);
a512bbf8
YZ
3764 if (ret)
3765 total_errors++;
f2984462 3766 }
0b246afa 3767 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3768 if (total_errors > max_errors) {
0b246afa
JM
3769 btrfs_handle_fs_error(fs_info, -EIO,
3770 "%d errors while writing supers",
3771 total_errors);
79787eaa 3772 return -EIO;
a236aed1 3773 }
f2984462
CM
3774 return 0;
3775}
3776
cb517eab
MX
3777/* Drop a fs root from the radix tree and free it. */
3778void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3779 struct btrfs_root *root)
2619ba1f 3780{
4df27c4d 3781 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3782 radix_tree_delete(&fs_info->fs_roots_radix,
3783 (unsigned long)root->root_key.objectid);
4df27c4d 3784 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3785
3786 if (btrfs_root_refs(&root->root_item) == 0)
3787 synchronize_srcu(&fs_info->subvol_srcu);
3788
1c1ea4f7 3789 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3790 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3791 if (root->reloc_root) {
3792 free_extent_buffer(root->reloc_root->node);
3793 free_extent_buffer(root->reloc_root->commit_root);
3794 btrfs_put_fs_root(root->reloc_root);
3795 root->reloc_root = NULL;
3796 }
3797 }
3321719e 3798
faa2dbf0
JB
3799 if (root->free_ino_pinned)
3800 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3801 if (root->free_ino_ctl)
3802 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3803 free_fs_root(root);
4df27c4d
YZ
3804}
3805
3806static void free_fs_root(struct btrfs_root *root)
3807{
57cdc8db 3808 iput(root->ino_cache_inode);
4df27c4d 3809 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2ff7e61e 3810 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
1cb048f5 3811 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3812 if (root->anon_dev)
3813 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3814 if (root->subv_writers)
3815 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3816 free_extent_buffer(root->node);
3817 free_extent_buffer(root->commit_root);
581bb050
LZ
3818 kfree(root->free_ino_ctl);
3819 kfree(root->free_ino_pinned);
d397712b 3820 kfree(root->name);
b0feb9d9 3821 btrfs_put_fs_root(root);
2619ba1f
CM
3822}
3823
cb517eab
MX
3824void btrfs_free_fs_root(struct btrfs_root *root)
3825{
3826 free_fs_root(root);
2619ba1f
CM
3827}
3828
c146afad 3829int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3830{
c146afad
YZ
3831 u64 root_objectid = 0;
3832 struct btrfs_root *gang[8];
65d33fd7
QW
3833 int i = 0;
3834 int err = 0;
3835 unsigned int ret = 0;
3836 int index;
e089f05c 3837
c146afad 3838 while (1) {
65d33fd7 3839 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3840 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3841 (void **)gang, root_objectid,
3842 ARRAY_SIZE(gang));
65d33fd7
QW
3843 if (!ret) {
3844 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3845 break;
65d33fd7 3846 }
5d4f98a2 3847 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3848
c146afad 3849 for (i = 0; i < ret; i++) {
65d33fd7
QW
3850 /* Avoid to grab roots in dead_roots */
3851 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3852 gang[i] = NULL;
3853 continue;
3854 }
3855 /* grab all the search result for later use */
3856 gang[i] = btrfs_grab_fs_root(gang[i]);
3857 }
3858 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3859
65d33fd7
QW
3860 for (i = 0; i < ret; i++) {
3861 if (!gang[i])
3862 continue;
c146afad 3863 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3864 err = btrfs_orphan_cleanup(gang[i]);
3865 if (err)
65d33fd7
QW
3866 break;
3867 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3868 }
3869 root_objectid++;
3870 }
65d33fd7
QW
3871
3872 /* release the uncleaned roots due to error */
3873 for (; i < ret; i++) {
3874 if (gang[i])
3875 btrfs_put_fs_root(gang[i]);
3876 }
3877 return err;
c146afad 3878}
a2135011 3879
6bccf3ab 3880int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3881{
6bccf3ab 3882 struct btrfs_root *root = fs_info->tree_root;
c146afad 3883 struct btrfs_trans_handle *trans;
a74a4b97 3884
0b246afa 3885 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3886 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3887 mutex_unlock(&fs_info->cleaner_mutex);
3888 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3889
3890 /* wait until ongoing cleanup work done */
0b246afa
JM
3891 down_write(&fs_info->cleanup_work_sem);
3892 up_write(&fs_info->cleanup_work_sem);
c71bf099 3893
7a7eaa40 3894 trans = btrfs_join_transaction(root);
3612b495
TI
3895 if (IS_ERR(trans))
3896 return PTR_ERR(trans);
3a45bb20 3897 return btrfs_commit_transaction(trans);
c146afad
YZ
3898}
3899
6bccf3ab 3900void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3901{
6bccf3ab 3902 struct btrfs_root *root = fs_info->tree_root;
c146afad
YZ
3903 int ret;
3904
afcdd129 3905 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
c146afad 3906
7343dd61 3907 /* wait for the qgroup rescan worker to stop */
d06f23d6 3908 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3909
803b2f54
SB
3910 /* wait for the uuid_scan task to finish */
3911 down(&fs_info->uuid_tree_rescan_sem);
3912 /* avoid complains from lockdep et al., set sem back to initial state */
3913 up(&fs_info->uuid_tree_rescan_sem);
3914
837d5b6e 3915 /* pause restriper - we want to resume on mount */
aa1b8cd4 3916 btrfs_pause_balance(fs_info);
837d5b6e 3917
8dabb742
SB
3918 btrfs_dev_replace_suspend_for_unmount(fs_info);
3919
aa1b8cd4 3920 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3921
3922 /* wait for any defraggers to finish */
3923 wait_event(fs_info->transaction_wait,
3924 (atomic_read(&fs_info->defrag_running) == 0));
3925
3926 /* clear out the rbtree of defraggable inodes */
26176e7c 3927 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3928
21c7e756
MX
3929 cancel_work_sync(&fs_info->async_reclaim_work);
3930
c146afad 3931 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
e44163e1
JM
3932 /*
3933 * If the cleaner thread is stopped and there are
3934 * block groups queued for removal, the deletion will be
3935 * skipped when we quit the cleaner thread.
3936 */
0b246afa 3937 btrfs_delete_unused_bgs(fs_info);
e44163e1 3938
6bccf3ab 3939 ret = btrfs_commit_super(fs_info);
acce952b 3940 if (ret)
04892340 3941 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3942 }
3943
87533c47 3944 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
2ff7e61e 3945 btrfs_error_commit_super(fs_info);
0f7d52f4 3946
e3029d9f
AV
3947 kthread_stop(fs_info->transaction_kthread);
3948 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3949
afcdd129 3950 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 3951
04892340 3952 btrfs_free_qgroup_config(fs_info);
bcef60f2 3953
963d678b 3954 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3955 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3956 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3957 }
bcc63abb 3958
6618a59b 3959 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3960 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3961
faa2dbf0 3962 btrfs_free_fs_roots(fs_info);
d10c5f31 3963
1a4319cc
LB
3964 btrfs_put_block_group_cache(fs_info);
3965
de348ee0
WS
3966 /*
3967 * we must make sure there is not any read request to
3968 * submit after we stopping all workers.
3969 */
3970 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3971 btrfs_stop_all_workers(fs_info);
3972
5cdd7db6
FM
3973 btrfs_free_block_groups(fs_info);
3974
afcdd129 3975 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 3976 free_root_pointers(fs_info, 1);
9ad6b7bc 3977
13e6c37b 3978 iput(fs_info->btree_inode);
d6bfde87 3979
21adbd5c 3980#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3981 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 3982 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
3983#endif
3984
dfe25020 3985 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3986 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3987
e2d84521 3988 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3989 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3990 percpu_counter_destroy(&fs_info->bio_counter);
76dda93c 3991 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3992
53b381b3
DW
3993 btrfs_free_stripe_hash_table(fs_info);
3994
cdfb080e 3995 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3996 root->orphan_block_rsv = NULL;
04216820 3997
34441361 3998 mutex_lock(&fs_info->chunk_mutex);
04216820
FM
3999 while (!list_empty(&fs_info->pinned_chunks)) {
4000 struct extent_map *em;
4001
4002 em = list_first_entry(&fs_info->pinned_chunks,
4003 struct extent_map, list);
4004 list_del_init(&em->list);
4005 free_extent_map(em);
4006 }
34441361 4007 mutex_unlock(&fs_info->chunk_mutex);
eb60ceac
CM
4008}
4009
b9fab919
CM
4010int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4011 int atomic)
5f39d397 4012{
1259ab75 4013 int ret;
727011e0 4014 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4015
0b32f4bb 4016 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4017 if (!ret)
4018 return ret;
4019
4020 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4021 parent_transid, atomic);
4022 if (ret == -EAGAIN)
4023 return ret;
1259ab75 4024 return !ret;
5f39d397
CM
4025}
4026
5f39d397
CM
4027void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4028{
0b246afa 4029 struct btrfs_fs_info *fs_info;
06ea65a3 4030 struct btrfs_root *root;
5f39d397 4031 u64 transid = btrfs_header_generation(buf);
b9473439 4032 int was_dirty;
b4ce94de 4033
06ea65a3
JB
4034#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4035 /*
4036 * This is a fast path so only do this check if we have sanity tests
4037 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4038 * outside of the sanity tests.
4039 */
4040 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4041 return;
4042#endif
4043 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4044 fs_info = root->fs_info;
b9447ef8 4045 btrfs_assert_tree_locked(buf);
0b246afa 4046 if (transid != fs_info->generation)
5d163e0e 4047 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4048 buf->start, transid, fs_info->generation);
0b32f4bb 4049 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4050 if (!was_dirty)
0b246afa 4051 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
e2d84521 4052 buf->len,
0b246afa 4053 fs_info->dirty_metadata_batch);
1f21ef0a
FM
4054#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4055 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
2ff7e61e 4056 btrfs_print_leaf(fs_info, buf);
1f21ef0a
FM
4057 ASSERT(0);
4058 }
4059#endif
eb60ceac
CM
4060}
4061
2ff7e61e 4062static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4063 int flush_delayed)
16cdcec7
MX
4064{
4065 /*
4066 * looks as though older kernels can get into trouble with
4067 * this code, they end up stuck in balance_dirty_pages forever
4068 */
e2d84521 4069 int ret;
16cdcec7
MX
4070
4071 if (current->flags & PF_MEMALLOC)
4072 return;
4073
b53d3f5d 4074 if (flush_delayed)
2ff7e61e 4075 btrfs_balance_delayed_items(fs_info);
16cdcec7 4076
0b246afa 4077 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
e2d84521
MX
4078 BTRFS_DIRTY_METADATA_THRESH);
4079 if (ret > 0) {
0b246afa 4080 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4081 }
16cdcec7
MX
4082}
4083
2ff7e61e 4084void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4085{
2ff7e61e 4086 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4087}
585ad2c3 4088
2ff7e61e 4089void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4090{
2ff7e61e 4091 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4092}
6b80053d 4093
ca7a79ad 4094int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 4095{
727011e0 4096 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
4097 struct btrfs_fs_info *fs_info = root->fs_info;
4098
4099 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
6b80053d 4100}
0da5468f 4101
3d3a126a 4102static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
acce952b 4103{
c926093e 4104 struct btrfs_super_block *sb = fs_info->super_copy;
319e4d06
QW
4105 u64 nodesize = btrfs_super_nodesize(sb);
4106 u64 sectorsize = btrfs_super_sectorsize(sb);
c926093e
DS
4107 int ret = 0;
4108
319e4d06 4109 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
ab8d0fc4 4110 btrfs_err(fs_info, "no valid FS found");
319e4d06
QW
4111 ret = -EINVAL;
4112 }
4113 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
ab8d0fc4 4114 btrfs_warn(fs_info, "unrecognized super flag: %llu",
319e4d06 4115 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
21e7626b 4116 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4117 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
21e7626b 4118 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4119 ret = -EINVAL;
4120 }
21e7626b 4121 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4122 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
21e7626b 4123 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4124 ret = -EINVAL;
4125 }
21e7626b 4126 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4127 btrfs_err(fs_info, "log_root level too big: %d >= %d",
21e7626b 4128 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4129 ret = -EINVAL;
4130 }
4131
1104a885 4132 /*
319e4d06
QW
4133 * Check sectorsize and nodesize first, other check will need it.
4134 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
1104a885 4135 */
319e4d06
QW
4136 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4137 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 4138 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
319e4d06
QW
4139 ret = -EINVAL;
4140 }
4141 /* Only PAGE SIZE is supported yet */
09cbfeaf 4142 if (sectorsize != PAGE_SIZE) {
ab8d0fc4
JM
4143 btrfs_err(fs_info,
4144 "sectorsize %llu not supported yet, only support %lu",
4145 sectorsize, PAGE_SIZE);
319e4d06
QW
4146 ret = -EINVAL;
4147 }
4148 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4149 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 4150 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
319e4d06
QW
4151 ret = -EINVAL;
4152 }
4153 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
ab8d0fc4
JM
4154 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4155 le32_to_cpu(sb->__unused_leafsize), nodesize);
319e4d06
QW
4156 ret = -EINVAL;
4157 }
4158
4159 /* Root alignment check */
4160 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
ab8d0fc4
JM
4161 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4162 btrfs_super_root(sb));
319e4d06
QW
4163 ret = -EINVAL;
4164 }
4165 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
ab8d0fc4
JM
4166 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4167 btrfs_super_chunk_root(sb));
75d6ad38
DS
4168 ret = -EINVAL;
4169 }
319e4d06 4170 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
ab8d0fc4
JM
4171 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4172 btrfs_super_log_root(sb));
75d6ad38
DS
4173 ret = -EINVAL;
4174 }
4175
c926093e 4176 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
ab8d0fc4
JM
4177 btrfs_err(fs_info,
4178 "dev_item UUID does not match fsid: %pU != %pU",
4179 fs_info->fsid, sb->dev_item.fsid);
c926093e
DS
4180 ret = -EINVAL;
4181 }
4182
4183 /*
4184 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4185 * done later
4186 */
99e3ecfc
LB
4187 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4188 btrfs_err(fs_info, "bytes_used is too small %llu",
ab8d0fc4 4189 btrfs_super_bytes_used(sb));
99e3ecfc
LB
4190 ret = -EINVAL;
4191 }
b7f67055 4192 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
99e3ecfc 4193 btrfs_err(fs_info, "invalid stripesize %u",
ab8d0fc4 4194 btrfs_super_stripesize(sb));
99e3ecfc
LB
4195 ret = -EINVAL;
4196 }
21e7626b 4197 if (btrfs_super_num_devices(sb) > (1UL << 31))
ab8d0fc4
JM
4198 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4199 btrfs_super_num_devices(sb));
75d6ad38 4200 if (btrfs_super_num_devices(sb) == 0) {
ab8d0fc4 4201 btrfs_err(fs_info, "number of devices is 0");
75d6ad38
DS
4202 ret = -EINVAL;
4203 }
c926093e 4204
21e7626b 4205 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
ab8d0fc4
JM
4206 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4207 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4208 ret = -EINVAL;
4209 }
4210
ce7fca5f
DS
4211 /*
4212 * Obvious sys_chunk_array corruptions, it must hold at least one key
4213 * and one chunk
4214 */
4215 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
ab8d0fc4
JM
4216 btrfs_err(fs_info, "system chunk array too big %u > %u",
4217 btrfs_super_sys_array_size(sb),
4218 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
ce7fca5f
DS
4219 ret = -EINVAL;
4220 }
4221 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4222 + sizeof(struct btrfs_chunk)) {
ab8d0fc4
JM
4223 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4224 btrfs_super_sys_array_size(sb),
4225 sizeof(struct btrfs_disk_key)
4226 + sizeof(struct btrfs_chunk));
ce7fca5f
DS
4227 ret = -EINVAL;
4228 }
4229
c926093e
DS
4230 /*
4231 * The generation is a global counter, we'll trust it more than the others
4232 * but it's still possible that it's the one that's wrong.
4233 */
21e7626b 4234 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
ab8d0fc4
JM
4235 btrfs_warn(fs_info,
4236 "suspicious: generation < chunk_root_generation: %llu < %llu",
4237 btrfs_super_generation(sb),
4238 btrfs_super_chunk_root_generation(sb));
21e7626b
DS
4239 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4240 && btrfs_super_cache_generation(sb) != (u64)-1)
ab8d0fc4
JM
4241 btrfs_warn(fs_info,
4242 "suspicious: generation < cache_generation: %llu < %llu",
4243 btrfs_super_generation(sb),
4244 btrfs_super_cache_generation(sb));
c926093e
DS
4245
4246 return ret;
acce952b 4247}
4248
2ff7e61e 4249static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4250{
0b246afa 4251 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4252 btrfs_run_delayed_iputs(fs_info);
0b246afa 4253 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4254
0b246afa
JM
4255 down_write(&fs_info->cleanup_work_sem);
4256 up_write(&fs_info->cleanup_work_sem);
acce952b 4257
4258 /* cleanup FS via transaction */
2ff7e61e 4259 btrfs_cleanup_transaction(fs_info);
acce952b 4260}
4261
143bede5 4262static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4263{
acce952b 4264 struct btrfs_ordered_extent *ordered;
acce952b 4265
199c2a9c 4266 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4267 /*
4268 * This will just short circuit the ordered completion stuff which will
4269 * make sure the ordered extent gets properly cleaned up.
4270 */
199c2a9c 4271 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4272 root_extent_list)
4273 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4274 spin_unlock(&root->ordered_extent_lock);
4275}
4276
4277static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4278{
4279 struct btrfs_root *root;
4280 struct list_head splice;
4281
4282 INIT_LIST_HEAD(&splice);
4283
4284 spin_lock(&fs_info->ordered_root_lock);
4285 list_splice_init(&fs_info->ordered_roots, &splice);
4286 while (!list_empty(&splice)) {
4287 root = list_first_entry(&splice, struct btrfs_root,
4288 ordered_root);
1de2cfde
JB
4289 list_move_tail(&root->ordered_root,
4290 &fs_info->ordered_roots);
199c2a9c 4291
2a85d9ca 4292 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4293 btrfs_destroy_ordered_extents(root);
4294
2a85d9ca
LB
4295 cond_resched();
4296 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4297 }
4298 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4299}
4300
35a3621b 4301static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4302 struct btrfs_fs_info *fs_info)
acce952b 4303{
4304 struct rb_node *node;
4305 struct btrfs_delayed_ref_root *delayed_refs;
4306 struct btrfs_delayed_ref_node *ref;
4307 int ret = 0;
4308
4309 delayed_refs = &trans->delayed_refs;
4310
4311 spin_lock(&delayed_refs->lock);
d7df2c79 4312 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4313 spin_unlock(&delayed_refs->lock);
0b246afa 4314 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4315 return ret;
4316 }
4317
d7df2c79
JB
4318 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4319 struct btrfs_delayed_ref_head *head;
c6fc2454 4320 struct btrfs_delayed_ref_node *tmp;
e78417d1 4321 bool pin_bytes = false;
acce952b 4322
d7df2c79
JB
4323 head = rb_entry(node, struct btrfs_delayed_ref_head,
4324 href_node);
4325 if (!mutex_trylock(&head->mutex)) {
6df8cdf5 4326 refcount_inc(&head->node.refs);
d7df2c79 4327 spin_unlock(&delayed_refs->lock);
eb12db69 4328
d7df2c79 4329 mutex_lock(&head->mutex);
e78417d1 4330 mutex_unlock(&head->mutex);
d7df2c79
JB
4331 btrfs_put_delayed_ref(&head->node);
4332 spin_lock(&delayed_refs->lock);
4333 continue;
4334 }
4335 spin_lock(&head->lock);
c6fc2454
QW
4336 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4337 list) {
d7df2c79 4338 ref->in_tree = 0;
c6fc2454 4339 list_del(&ref->list);
1d57ee94
WX
4340 if (!list_empty(&ref->add_list))
4341 list_del(&ref->add_list);
d7df2c79
JB
4342 atomic_dec(&delayed_refs->num_entries);
4343 btrfs_put_delayed_ref(ref);
e78417d1 4344 }
d7df2c79
JB
4345 if (head->must_insert_reserved)
4346 pin_bytes = true;
4347 btrfs_free_delayed_extent_op(head->extent_op);
4348 delayed_refs->num_heads--;
4349 if (head->processing == 0)
4350 delayed_refs->num_heads_ready--;
4351 atomic_dec(&delayed_refs->num_entries);
4352 head->node.in_tree = 0;
4353 rb_erase(&head->href_node, &delayed_refs->href_root);
4354 spin_unlock(&head->lock);
4355 spin_unlock(&delayed_refs->lock);
4356 mutex_unlock(&head->mutex);
acce952b 4357
d7df2c79 4358 if (pin_bytes)
2ff7e61e 4359 btrfs_pin_extent(fs_info, head->node.bytenr,
d7df2c79
JB
4360 head->node.num_bytes, 1);
4361 btrfs_put_delayed_ref(&head->node);
acce952b 4362 cond_resched();
4363 spin_lock(&delayed_refs->lock);
4364 }
4365
4366 spin_unlock(&delayed_refs->lock);
4367
4368 return ret;
4369}
4370
143bede5 4371static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4372{
4373 struct btrfs_inode *btrfs_inode;
4374 struct list_head splice;
4375
4376 INIT_LIST_HEAD(&splice);
4377
eb73c1b7
MX
4378 spin_lock(&root->delalloc_lock);
4379 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4380
4381 while (!list_empty(&splice)) {
eb73c1b7
MX
4382 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4383 delalloc_inodes);
acce952b 4384
4385 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4386 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4387 &btrfs_inode->runtime_flags);
eb73c1b7 4388 spin_unlock(&root->delalloc_lock);
acce952b 4389
4390 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4391
eb73c1b7 4392 spin_lock(&root->delalloc_lock);
acce952b 4393 }
4394
eb73c1b7
MX
4395 spin_unlock(&root->delalloc_lock);
4396}
4397
4398static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4399{
4400 struct btrfs_root *root;
4401 struct list_head splice;
4402
4403 INIT_LIST_HEAD(&splice);
4404
4405 spin_lock(&fs_info->delalloc_root_lock);
4406 list_splice_init(&fs_info->delalloc_roots, &splice);
4407 while (!list_empty(&splice)) {
4408 root = list_first_entry(&splice, struct btrfs_root,
4409 delalloc_root);
4410 list_del_init(&root->delalloc_root);
4411 root = btrfs_grab_fs_root(root);
4412 BUG_ON(!root);
4413 spin_unlock(&fs_info->delalloc_root_lock);
4414
4415 btrfs_destroy_delalloc_inodes(root);
4416 btrfs_put_fs_root(root);
4417
4418 spin_lock(&fs_info->delalloc_root_lock);
4419 }
4420 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4421}
4422
2ff7e61e 4423static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4424 struct extent_io_tree *dirty_pages,
4425 int mark)
4426{
4427 int ret;
acce952b 4428 struct extent_buffer *eb;
4429 u64 start = 0;
4430 u64 end;
acce952b 4431
4432 while (1) {
4433 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4434 mark, NULL);
acce952b 4435 if (ret)
4436 break;
4437
91166212 4438 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4439 while (start <= end) {
0b246afa
JM
4440 eb = find_extent_buffer(fs_info, start);
4441 start += fs_info->nodesize;
fd8b2b61 4442 if (!eb)
acce952b 4443 continue;
fd8b2b61 4444 wait_on_extent_buffer_writeback(eb);
acce952b 4445
fd8b2b61
JB
4446 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4447 &eb->bflags))
4448 clear_extent_buffer_dirty(eb);
4449 free_extent_buffer_stale(eb);
acce952b 4450 }
4451 }
4452
4453 return ret;
4454}
4455
2ff7e61e 4456static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4457 struct extent_io_tree *pinned_extents)
4458{
4459 struct extent_io_tree *unpin;
4460 u64 start;
4461 u64 end;
4462 int ret;
ed0eaa14 4463 bool loop = true;
acce952b 4464
4465 unpin = pinned_extents;
ed0eaa14 4466again:
acce952b 4467 while (1) {
4468 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4469 EXTENT_DIRTY, NULL);
acce952b 4470 if (ret)
4471 break;
4472
af6f8f60 4473 clear_extent_dirty(unpin, start, end);
2ff7e61e 4474 btrfs_error_unpin_extent_range(fs_info, start, end);
acce952b 4475 cond_resched();
4476 }
4477
ed0eaa14 4478 if (loop) {
0b246afa
JM
4479 if (unpin == &fs_info->freed_extents[0])
4480 unpin = &fs_info->freed_extents[1];
ed0eaa14 4481 else
0b246afa 4482 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4483 loop = false;
4484 goto again;
4485 }
4486
acce952b 4487 return 0;
4488}
4489
c79a1751
LB
4490static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4491{
4492 struct inode *inode;
4493
4494 inode = cache->io_ctl.inode;
4495 if (inode) {
4496 invalidate_inode_pages2(inode->i_mapping);
4497 BTRFS_I(inode)->generation = 0;
4498 cache->io_ctl.inode = NULL;
4499 iput(inode);
4500 }
4501 btrfs_put_block_group(cache);
4502}
4503
4504void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4505 struct btrfs_fs_info *fs_info)
c79a1751
LB
4506{
4507 struct btrfs_block_group_cache *cache;
4508
4509 spin_lock(&cur_trans->dirty_bgs_lock);
4510 while (!list_empty(&cur_trans->dirty_bgs)) {
4511 cache = list_first_entry(&cur_trans->dirty_bgs,
4512 struct btrfs_block_group_cache,
4513 dirty_list);
4514 if (!cache) {
0b246afa 4515 btrfs_err(fs_info, "orphan block group dirty_bgs list");
c79a1751
LB
4516 spin_unlock(&cur_trans->dirty_bgs_lock);
4517 return;
4518 }
4519
4520 if (!list_empty(&cache->io_list)) {
4521 spin_unlock(&cur_trans->dirty_bgs_lock);
4522 list_del_init(&cache->io_list);
4523 btrfs_cleanup_bg_io(cache);
4524 spin_lock(&cur_trans->dirty_bgs_lock);
4525 }
4526
4527 list_del_init(&cache->dirty_list);
4528 spin_lock(&cache->lock);
4529 cache->disk_cache_state = BTRFS_DC_ERROR;
4530 spin_unlock(&cache->lock);
4531
4532 spin_unlock(&cur_trans->dirty_bgs_lock);
4533 btrfs_put_block_group(cache);
4534 spin_lock(&cur_trans->dirty_bgs_lock);
4535 }
4536 spin_unlock(&cur_trans->dirty_bgs_lock);
4537
4538 while (!list_empty(&cur_trans->io_bgs)) {
4539 cache = list_first_entry(&cur_trans->io_bgs,
4540 struct btrfs_block_group_cache,
4541 io_list);
4542 if (!cache) {
0b246afa 4543 btrfs_err(fs_info, "orphan block group on io_bgs list");
c79a1751
LB
4544 return;
4545 }
4546
4547 list_del_init(&cache->io_list);
4548 spin_lock(&cache->lock);
4549 cache->disk_cache_state = BTRFS_DC_ERROR;
4550 spin_unlock(&cache->lock);
4551 btrfs_cleanup_bg_io(cache);
4552 }
4553}
4554
49b25e05 4555void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4556 struct btrfs_fs_info *fs_info)
49b25e05 4557{
2ff7e61e 4558 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4559 ASSERT(list_empty(&cur_trans->dirty_bgs));
4560 ASSERT(list_empty(&cur_trans->io_bgs));
4561
2ff7e61e 4562 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4563
4a9d8bde 4564 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4565 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4566
4a9d8bde 4567 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4568 wake_up(&fs_info->transaction_wait);
49b25e05 4569
ccdf9b30
JM
4570 btrfs_destroy_delayed_inodes(fs_info);
4571 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4572
2ff7e61e 4573 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4574 EXTENT_DIRTY);
2ff7e61e 4575 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4576 fs_info->pinned_extents);
49b25e05 4577
4a9d8bde
MX
4578 cur_trans->state =TRANS_STATE_COMPLETED;
4579 wake_up(&cur_trans->commit_wait);
4580
49b25e05
JM
4581 /*
4582 memset(cur_trans, 0, sizeof(*cur_trans));
4583 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4584 */
4585}
4586
2ff7e61e 4587static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4588{
4589 struct btrfs_transaction *t;
acce952b 4590
0b246afa 4591 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4592
0b246afa
JM
4593 spin_lock(&fs_info->trans_lock);
4594 while (!list_empty(&fs_info->trans_list)) {
4595 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4596 struct btrfs_transaction, list);
4597 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4598 refcount_inc(&t->use_count);
0b246afa 4599 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4600 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4601 btrfs_put_transaction(t);
0b246afa 4602 spin_lock(&fs_info->trans_lock);
724e2315
JB
4603 continue;
4604 }
0b246afa 4605 if (t == fs_info->running_transaction) {
724e2315 4606 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4607 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4608 /*
4609 * We wait for 0 num_writers since we don't hold a trans
4610 * handle open currently for this transaction.
4611 */
4612 wait_event(t->writer_wait,
4613 atomic_read(&t->num_writers) == 0);
4614 } else {
0b246afa 4615 spin_unlock(&fs_info->trans_lock);
724e2315 4616 }
2ff7e61e 4617 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4618
0b246afa
JM
4619 spin_lock(&fs_info->trans_lock);
4620 if (t == fs_info->running_transaction)
4621 fs_info->running_transaction = NULL;
acce952b 4622 list_del_init(&t->list);
0b246afa 4623 spin_unlock(&fs_info->trans_lock);
acce952b 4624
724e2315 4625 btrfs_put_transaction(t);
2ff7e61e 4626 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4627 spin_lock(&fs_info->trans_lock);
724e2315 4628 }
0b246afa
JM
4629 spin_unlock(&fs_info->trans_lock);
4630 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4631 btrfs_destroy_delayed_inodes(fs_info);
4632 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4633 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4634 btrfs_destroy_all_delalloc_inodes(fs_info);
4635 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4636
4637 return 0;
4638}
4639
e8c9f186 4640static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4641 /* mandatory callbacks */
0b86a832 4642 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4643 .readpage_end_io_hook = btree_readpage_end_io_hook,
239b14b3
CM
4644 /* note we're sharing with inode.c for the merge bio hook */
4645 .merge_bio_hook = btrfs_merge_bio_hook,
20a7db8a 4646 .readpage_io_failed_hook = btree_io_failed_hook,
4d53dddb
DS
4647
4648 /* optional callbacks */
0da5468f 4649};