]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - fs/btrfs/disk-io.c
Btrfs: adjust len of writes if following a preallocated extent
[mirror_ubuntu-eoan-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
5a0e3ad6 28#include <linux/slab.h>
784b4e29 29#include <linux/migrate.h>
7a36ddec 30#include <linux/ratelimit.h>
6463fe58 31#include <linux/uuid.h>
803b2f54 32#include <linux/semaphore.h>
7e75bf3f 33#include <asm/unaligned.h>
eb60ceac
CM
34#include "ctree.h"
35#include "disk-io.h"
0b947aff 36#include "hash.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
925baedd 41#include "locking.h"
e02119d5 42#include "tree-log.h"
fa9c0d79 43#include "free-space-cache.h"
70f6d82e 44#include "free-space-tree.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
ebb8765b 52#include "compression.h"
eb60ceac 53
de0022b9
JB
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
319e4d06
QW
58#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
e8c9f186 64static const struct extent_io_ops btree_extent_io_ops;
8b712842 65static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 66static void free_fs_root(struct btrfs_root *root);
fcd1f065 67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 68 int read_only);
143bede5 69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
143bede5 72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 73static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
48a3b636
ES
78static int btrfs_cleanup_transaction(struct btrfs_root *root);
79static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 80
d352ac68 81/*
97eb6b69
DS
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
97eb6b69 86struct btrfs_end_io_wq {
ce9adaa5
CM
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
bfebd8b5 92 enum btrfs_wq_endio_type metadata;
ce9adaa5 93 struct list_head list;
8b712842 94 struct btrfs_work work;
ce9adaa5 95};
0da5468f 96
97eb6b69
DS
97static struct kmem_cache *btrfs_end_io_wq_cache;
98
99int __init btrfs_end_io_wq_init(void)
100{
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
fba4b697 104 SLAB_MEM_SPREAD,
97eb6b69
DS
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109}
110
111void btrfs_end_io_wq_exit(void)
112{
5598e900 113 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
114}
115
d352ac68
CM
116/*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
44b8bd7e
CM
121struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
4a69a410
CM
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e 127 int mirror_num;
c8b97818 128 unsigned long bio_flags;
eaf25d93
CM
129 /*
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
132 */
133 u64 bio_offset;
8b712842 134 struct btrfs_work work;
79787eaa 135 int error;
44b8bd7e
CM
136};
137
85d4e461
CM
138/*
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
142 *
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
4008c04a 148 *
85d4e461
CM
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 152 *
85d4e461
CM
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 156 *
85d4e461
CM
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
4008c04a
CM
160 */
161#ifdef CONFIG_DEBUG_LOCK_ALLOC
162# if BTRFS_MAX_LEVEL != 8
163# error
164# endif
85d4e461
CM
165
166static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171} btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 184 { .id = 0, .name_stem = "tree" },
4008c04a 185};
85d4e461
CM
186
187void __init btrfs_init_lockdep(void)
188{
189 int i, j;
190
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
198 }
199}
200
201void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
203{
204 struct btrfs_lockdep_keyset *ks;
205
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
212
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
215}
216
4008c04a
CM
217#endif
218
d352ac68
CM
219/*
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
222 */
b2950863 223static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 224 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 225 int create)
7eccb903 226{
5f39d397
CM
227 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228 struct extent_map *em;
229 int ret;
230
890871be 231 read_lock(&em_tree->lock);
d1310b2e 232 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
233 if (em) {
234 em->bdev =
235 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 236 read_unlock(&em_tree->lock);
5f39d397 237 goto out;
a061fc8d 238 }
890871be 239 read_unlock(&em_tree->lock);
7b13b7b1 240
172ddd60 241 em = alloc_extent_map();
5f39d397
CM
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
245 }
246 em->start = 0;
0afbaf8c 247 em->len = (u64)-1;
c8b97818 248 em->block_len = (u64)-1;
5f39d397 249 em->block_start = 0;
a061fc8d 250 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 251
890871be 252 write_lock(&em_tree->lock);
09a2a8f9 253 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
254 if (ret == -EEXIST) {
255 free_extent_map(em);
7b13b7b1 256 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 257 if (!em)
0433f20d 258 em = ERR_PTR(-EIO);
5f39d397 259 } else if (ret) {
7b13b7b1 260 free_extent_map(em);
0433f20d 261 em = ERR_PTR(ret);
5f39d397 262 }
890871be 263 write_unlock(&em_tree->lock);
7b13b7b1 264
5f39d397
CM
265out:
266 return em;
7eccb903
CM
267}
268
b0496686 269u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 270{
0b947aff 271 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
272}
273
274void btrfs_csum_final(u32 crc, char *result)
275{
7e75bf3f 276 put_unaligned_le32(~crc, result);
19c00ddc
CM
277}
278
d352ac68
CM
279/*
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
282 */
01d58472
DD
283static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
19c00ddc
CM
285 int verify)
286{
01d58472 287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 288 char *result = NULL;
19c00ddc
CM
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
607d432d 297 unsigned long inline_result;
19c00ddc
CM
298
299 len = buf->len - offset;
d397712b 300 while (len > 0) {
19c00ddc 301 err = map_private_extent_buffer(buf, offset, 32,
a6591715 302 &kaddr, &map_start, &map_len);
d397712b 303 if (err)
8bd98f0e 304 return err;
19c00ddc 305 cur_len = min(len, map_len - (offset - map_start));
b0496686 306 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
307 crc, cur_len);
308 len -= cur_len;
309 offset += cur_len;
19c00ddc 310 }
607d432d 311 if (csum_size > sizeof(inline_result)) {
31e818fe 312 result = kzalloc(csum_size, GFP_NOFS);
607d432d 313 if (!result)
8bd98f0e 314 return -ENOMEM;
607d432d
JB
315 } else {
316 result = (char *)&inline_result;
317 }
318
19c00ddc
CM
319 btrfs_csum_final(crc, result);
320
321 if (verify) {
607d432d 322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
323 u32 val;
324 u32 found = 0;
607d432d 325 memcpy(&found, result, csum_size);
e4204ded 326
607d432d 327 read_extent_buffer(buf, &val, 0, csum_size);
94647322 328 btrfs_warn_rl(fs_info,
5d163e0e 329 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 330 fs_info->sb->s_id, buf->start,
efe120a0 331 val, found, btrfs_header_level(buf));
607d432d
JB
332 if (result != (char *)&inline_result)
333 kfree(result);
8bd98f0e 334 return -EUCLEAN;
19c00ddc
CM
335 }
336 } else {
607d432d 337 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 338 }
607d432d
JB
339 if (result != (char *)&inline_result)
340 kfree(result);
19c00ddc
CM
341 return 0;
342}
343
d352ac68
CM
344/*
345 * we can't consider a given block up to date unless the transid of the
346 * block matches the transid in the parent node's pointer. This is how we
347 * detect blocks that either didn't get written at all or got written
348 * in the wrong place.
349 */
1259ab75 350static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
351 struct extent_buffer *eb, u64 parent_transid,
352 int atomic)
1259ab75 353{
2ac55d41 354 struct extent_state *cached_state = NULL;
1259ab75 355 int ret;
2755a0de 356 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
357
358 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359 return 0;
360
b9fab919
CM
361 if (atomic)
362 return -EAGAIN;
363
a26e8c9f
JB
364 if (need_lock) {
365 btrfs_tree_read_lock(eb);
366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367 }
368
2ac55d41 369 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 370 &cached_state);
0b32f4bb 371 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
372 btrfs_header_generation(eb) == parent_transid) {
373 ret = 0;
374 goto out;
375 }
94647322
DS
376 btrfs_err_rl(eb->fs_info,
377 "parent transid verify failed on %llu wanted %llu found %llu",
378 eb->start,
29549aec 379 parent_transid, btrfs_header_generation(eb));
1259ab75 380 ret = 1;
a26e8c9f
JB
381
382 /*
383 * Things reading via commit roots that don't have normal protection,
384 * like send, can have a really old block in cache that may point at a
01327610 385 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
386 * if we find an eb that is under IO (dirty/writeback) because we could
387 * end up reading in the stale data and then writing it back out and
388 * making everybody very sad.
389 */
390 if (!extent_buffer_under_io(eb))
391 clear_extent_buffer_uptodate(eb);
33958dc6 392out:
2ac55d41
JB
393 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394 &cached_state, GFP_NOFS);
472b909f
JB
395 if (need_lock)
396 btrfs_tree_read_unlock_blocking(eb);
1259ab75 397 return ret;
1259ab75
CM
398}
399
1104a885
DS
400/*
401 * Return 0 if the superblock checksum type matches the checksum value of that
402 * algorithm. Pass the raw disk superblock data.
403 */
ab8d0fc4
JM
404static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405 char *raw_disk_sb)
1104a885
DS
406{
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 int ret = 0;
411
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 u32 crc = ~(u32)0;
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
416
417 /*
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 420 * is filled with zeros and is included in the checksum.
1104a885
DS
421 */
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
425
426 if (memcmp(raw_disk_sb, result, csum_size))
427 ret = 1;
428 }
429
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 431 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
432 csum_type);
433 ret = 1;
434 }
435
436 return ret;
437}
438
d352ac68
CM
439/*
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
442 */
f188591e
CM
443static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444 struct extent_buffer *eb,
8436ea91 445 u64 parent_transid)
f188591e
CM
446{
447 struct extent_io_tree *io_tree;
ea466794 448 int failed = 0;
f188591e
CM
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
ea466794 452 int failed_mirror = 0;
f188591e 453
a826d6dc 454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
455 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456 while (1) {
8436ea91 457 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
f188591e 458 btree_get_extent, mirror_num);
256dd1bb
SB
459 if (!ret) {
460 if (!verify_parent_transid(io_tree, eb,
b9fab919 461 parent_transid, 0))
256dd1bb
SB
462 break;
463 else
464 ret = -EIO;
465 }
d397712b 466
a826d6dc
JB
467 /*
468 * This buffer's crc is fine, but its contents are corrupted, so
469 * there is no reason to read the other copies, they won't be
470 * any less wrong.
471 */
472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
473 break;
474
5d964051 475 num_copies = btrfs_num_copies(root->fs_info,
f188591e 476 eb->start, eb->len);
4235298e 477 if (num_copies == 1)
ea466794 478 break;
4235298e 479
5cf1ab56
JB
480 if (!failed_mirror) {
481 failed = 1;
482 failed_mirror = eb->read_mirror;
483 }
484
f188591e 485 mirror_num++;
ea466794
JB
486 if (mirror_num == failed_mirror)
487 mirror_num++;
488
4235298e 489 if (mirror_num > num_copies)
ea466794 490 break;
f188591e 491 }
ea466794 492
c0901581 493 if (failed && !ret && failed_mirror)
ea466794
JB
494 repair_eb_io_failure(root, eb, failed_mirror);
495
496 return ret;
f188591e 497}
19c00ddc 498
d352ac68 499/*
d397712b
CM
500 * checksum a dirty tree block before IO. This has extra checks to make sure
501 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 502 */
d397712b 503
01d58472 504static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 505{
4eee4fa4 506 u64 start = page_offset(page);
19c00ddc 507 u64 found_start;
19c00ddc 508 struct extent_buffer *eb;
f188591e 509
4f2de97a
JB
510 eb = (struct extent_buffer *)page->private;
511 if (page != eb->pages[0])
512 return 0;
0f805531 513
19c00ddc 514 found_start = btrfs_header_bytenr(eb);
0f805531
AL
515 /*
516 * Please do not consolidate these warnings into a single if.
517 * It is useful to know what went wrong.
518 */
519 if (WARN_ON(found_start != start))
520 return -EUCLEAN;
521 if (WARN_ON(!PageUptodate(page)))
522 return -EUCLEAN;
523
524 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
525 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
526
8bd98f0e 527 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
528}
529
01d58472 530static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
531 struct extent_buffer *eb)
532{
01d58472 533 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
534 u8 fsid[BTRFS_UUID_SIZE];
535 int ret = 1;
536
0a4e5586 537 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
538 while (fs_devices) {
539 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
540 ret = 0;
541 break;
542 }
543 fs_devices = fs_devices->seed;
544 }
545 return ret;
546}
547
a826d6dc 548#define CORRUPT(reason, eb, root, slot) \
6b722c17
LB
549 btrfs_crit(root->fs_info, "corrupt %s, %s: block=%llu," \
550 " root=%llu, slot=%d", \
551 btrfs_header_level(eb) == 0 ? "leaf" : "node",\
552 reason, btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
553
554static noinline int check_leaf(struct btrfs_root *root,
555 struct extent_buffer *leaf)
556{
557 struct btrfs_key key;
558 struct btrfs_key leaf_key;
559 u32 nritems = btrfs_header_nritems(leaf);
560 int slot;
561
1ba98d08
LB
562 if (nritems == 0) {
563 struct btrfs_root *check_root;
564
565 key.objectid = btrfs_header_owner(leaf);
566 key.type = BTRFS_ROOT_ITEM_KEY;
567 key.offset = (u64)-1;
568
569 check_root = btrfs_get_fs_root(root->fs_info, &key, false);
570 /*
571 * The only reason we also check NULL here is that during
572 * open_ctree() some roots has not yet been set up.
573 */
574 if (!IS_ERR_OR_NULL(check_root)) {
575 /* if leaf is the root, then it's fine */
576 if (leaf->start !=
577 btrfs_root_bytenr(&check_root->root_item)) {
578 CORRUPT("non-root leaf's nritems is 0",
579 leaf, root, 0);
580 return -EIO;
581 }
582 }
a826d6dc 583 return 0;
1ba98d08 584 }
a826d6dc
JB
585
586 /* Check the 0 item */
587 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
588 BTRFS_LEAF_DATA_SIZE(root)) {
589 CORRUPT("invalid item offset size pair", leaf, root, 0);
590 return -EIO;
591 }
592
593 /*
594 * Check to make sure each items keys are in the correct order and their
595 * offsets make sense. We only have to loop through nritems-1 because
596 * we check the current slot against the next slot, which verifies the
597 * next slot's offset+size makes sense and that the current's slot
598 * offset is correct.
599 */
600 for (slot = 0; slot < nritems - 1; slot++) {
601 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
602 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
603
604 /* Make sure the keys are in the right order */
605 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
606 CORRUPT("bad key order", leaf, root, slot);
607 return -EIO;
608 }
609
610 /*
611 * Make sure the offset and ends are right, remember that the
612 * item data starts at the end of the leaf and grows towards the
613 * front.
614 */
615 if (btrfs_item_offset_nr(leaf, slot) !=
616 btrfs_item_end_nr(leaf, slot + 1)) {
617 CORRUPT("slot offset bad", leaf, root, slot);
618 return -EIO;
619 }
620
621 /*
622 * Check to make sure that we don't point outside of the leaf,
01327610 623 * just in case all the items are consistent to each other, but
a826d6dc
JB
624 * all point outside of the leaf.
625 */
626 if (btrfs_item_end_nr(leaf, slot) >
627 BTRFS_LEAF_DATA_SIZE(root)) {
628 CORRUPT("slot end outside of leaf", leaf, root, slot);
629 return -EIO;
630 }
631 }
632
633 return 0;
634}
635
053ab70f
LB
636static int check_node(struct btrfs_root *root, struct extent_buffer *node)
637{
638 unsigned long nr = btrfs_header_nritems(node);
6b722c17
LB
639 struct btrfs_key key, next_key;
640 int slot;
641 u64 bytenr;
642 int ret = 0;
053ab70f
LB
643
644 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) {
645 btrfs_crit(root->fs_info,
646 "corrupt node: block %llu root %llu nritems %lu",
647 node->start, root->objectid, nr);
648 return -EIO;
649 }
6b722c17
LB
650
651 for (slot = 0; slot < nr - 1; slot++) {
652 bytenr = btrfs_node_blockptr(node, slot);
653 btrfs_node_key_to_cpu(node, &key, slot);
654 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
655
656 if (!bytenr) {
657 CORRUPT("invalid item slot", node, root, slot);
658 ret = -EIO;
659 goto out;
660 }
661
662 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
663 CORRUPT("bad key order", node, root, slot);
664 ret = -EIO;
665 goto out;
666 }
667 }
668out:
669 return ret;
053ab70f
LB
670}
671
facc8a22
MX
672static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
673 u64 phy_offset, struct page *page,
674 u64 start, u64 end, int mirror)
ce9adaa5 675{
ce9adaa5
CM
676 u64 found_start;
677 int found_level;
ce9adaa5
CM
678 struct extent_buffer *eb;
679 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 680 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 681 int ret = 0;
727011e0 682 int reads_done;
ce9adaa5 683
ce9adaa5
CM
684 if (!page->private)
685 goto out;
d397712b 686
4f2de97a 687 eb = (struct extent_buffer *)page->private;
d397712b 688
0b32f4bb
JB
689 /* the pending IO might have been the only thing that kept this buffer
690 * in memory. Make sure we have a ref for all this other checks
691 */
692 extent_buffer_get(eb);
693
694 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
695 if (!reads_done)
696 goto err;
f188591e 697
5cf1ab56 698 eb->read_mirror = mirror;
656f30db 699 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
700 ret = -EIO;
701 goto err;
702 }
703
ce9adaa5 704 found_start = btrfs_header_bytenr(eb);
727011e0 705 if (found_start != eb->start) {
02873e43
ZL
706 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
707 found_start, eb->start);
f188591e 708 ret = -EIO;
ce9adaa5
CM
709 goto err;
710 }
02873e43
ZL
711 if (check_tree_block_fsid(fs_info, eb)) {
712 btrfs_err_rl(fs_info, "bad fsid on block %llu",
713 eb->start);
1259ab75
CM
714 ret = -EIO;
715 goto err;
716 }
ce9adaa5 717 found_level = btrfs_header_level(eb);
1c24c3ce 718 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
719 btrfs_err(fs_info, "bad tree block level %d",
720 (int)btrfs_header_level(eb));
1c24c3ce
JB
721 ret = -EIO;
722 goto err;
723 }
ce9adaa5 724
85d4e461
CM
725 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
726 eb, found_level);
4008c04a 727
02873e43 728 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 729 if (ret)
a826d6dc 730 goto err;
a826d6dc
JB
731
732 /*
733 * If this is a leaf block and it is corrupt, set the corrupt bit so
734 * that we don't try and read the other copies of this block, just
735 * return -EIO.
736 */
737 if (found_level == 0 && check_leaf(root, eb)) {
738 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
739 ret = -EIO;
740 }
ce9adaa5 741
053ab70f
LB
742 if (found_level > 0 && check_node(root, eb))
743 ret = -EIO;
744
0b32f4bb
JB
745 if (!ret)
746 set_extent_buffer_uptodate(eb);
ce9adaa5 747err:
79fb65a1
JB
748 if (reads_done &&
749 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
fc2e901f 750 btree_readahead_hook(fs_info, eb, ret);
4bb31e92 751
53b381b3
DW
752 if (ret) {
753 /*
754 * our io error hook is going to dec the io pages
755 * again, we have to make sure it has something
756 * to decrement
757 */
758 atomic_inc(&eb->io_pages);
0b32f4bb 759 clear_extent_buffer_uptodate(eb);
53b381b3 760 }
0b32f4bb 761 free_extent_buffer(eb);
ce9adaa5 762out:
f188591e 763 return ret;
ce9adaa5
CM
764}
765
ea466794 766static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 767{
4bb31e92 768 struct extent_buffer *eb;
4bb31e92 769
4f2de97a 770 eb = (struct extent_buffer *)page->private;
656f30db 771 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 772 eb->read_mirror = failed_mirror;
53b381b3 773 atomic_dec(&eb->io_pages);
ea466794 774 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
fc2e901f 775 btree_readahead_hook(eb->fs_info, eb, -EIO);
4bb31e92
AJ
776 return -EIO; /* we fixed nothing */
777}
778
4246a0b6 779static void end_workqueue_bio(struct bio *bio)
ce9adaa5 780{
97eb6b69 781 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 782 struct btrfs_fs_info *fs_info;
9e0af237
LB
783 struct btrfs_workqueue *wq;
784 btrfs_work_func_t func;
ce9adaa5 785
ce9adaa5 786 fs_info = end_io_wq->info;
4246a0b6 787 end_io_wq->error = bio->bi_error;
d20f7043 788
37226b21 789 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
790 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
791 wq = fs_info->endio_meta_write_workers;
792 func = btrfs_endio_meta_write_helper;
793 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
794 wq = fs_info->endio_freespace_worker;
795 func = btrfs_freespace_write_helper;
796 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
797 wq = fs_info->endio_raid56_workers;
798 func = btrfs_endio_raid56_helper;
799 } else {
800 wq = fs_info->endio_write_workers;
801 func = btrfs_endio_write_helper;
802 }
d20f7043 803 } else {
8b110e39
MX
804 if (unlikely(end_io_wq->metadata ==
805 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
806 wq = fs_info->endio_repair_workers;
807 func = btrfs_endio_repair_helper;
808 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
809 wq = fs_info->endio_raid56_workers;
810 func = btrfs_endio_raid56_helper;
811 } else if (end_io_wq->metadata) {
812 wq = fs_info->endio_meta_workers;
813 func = btrfs_endio_meta_helper;
814 } else {
815 wq = fs_info->endio_workers;
816 func = btrfs_endio_helper;
817 }
d20f7043 818 }
9e0af237
LB
819
820 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
821 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
822}
823
22c59948 824int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 825 enum btrfs_wq_endio_type metadata)
0b86a832 826{
97eb6b69 827 struct btrfs_end_io_wq *end_io_wq;
8b110e39 828
97eb6b69 829 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
830 if (!end_io_wq)
831 return -ENOMEM;
832
833 end_io_wq->private = bio->bi_private;
834 end_io_wq->end_io = bio->bi_end_io;
22c59948 835 end_io_wq->info = info;
ce9adaa5
CM
836 end_io_wq->error = 0;
837 end_io_wq->bio = bio;
22c59948 838 end_io_wq->metadata = metadata;
ce9adaa5
CM
839
840 bio->bi_private = end_io_wq;
841 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
842 return 0;
843}
844
b64a2851 845unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 846{
4854ddd0 847 unsigned long limit = min_t(unsigned long,
5cdc7ad3 848 info->thread_pool_size,
4854ddd0
CM
849 info->fs_devices->open_devices);
850 return 256 * limit;
851}
0986fe9e 852
4a69a410
CM
853static void run_one_async_start(struct btrfs_work *work)
854{
4a69a410 855 struct async_submit_bio *async;
79787eaa 856 int ret;
4a69a410
CM
857
858 async = container_of(work, struct async_submit_bio, work);
81a75f67 859 ret = async->submit_bio_start(async->inode, async->bio,
79787eaa
JM
860 async->mirror_num, async->bio_flags,
861 async->bio_offset);
862 if (ret)
863 async->error = ret;
4a69a410
CM
864}
865
866static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
867{
868 struct btrfs_fs_info *fs_info;
869 struct async_submit_bio *async;
4854ddd0 870 int limit;
8b712842
CM
871
872 async = container_of(work, struct async_submit_bio, work);
873 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 874
b64a2851 875 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
876 limit = limit * 2 / 3;
877
ee863954
DS
878 /*
879 * atomic_dec_return implies a barrier for waitqueue_active
880 */
66657b31 881 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 882 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
883 wake_up(&fs_info->async_submit_wait);
884
bb7ab3b9 885 /* If an error occurred we just want to clean up the bio and move on */
79787eaa 886 if (async->error) {
4246a0b6
CH
887 async->bio->bi_error = async->error;
888 bio_endio(async->bio);
79787eaa
JM
889 return;
890 }
891
81a75f67
MC
892 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
893 async->bio_flags, async->bio_offset);
4a69a410
CM
894}
895
896static void run_one_async_free(struct btrfs_work *work)
897{
898 struct async_submit_bio *async;
899
900 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
901 kfree(async);
902}
903
44b8bd7e 904int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
81a75f67 905 struct bio *bio, int mirror_num,
c8b97818 906 unsigned long bio_flags,
eaf25d93 907 u64 bio_offset,
4a69a410
CM
908 extent_submit_bio_hook_t *submit_bio_start,
909 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
910{
911 struct async_submit_bio *async;
912
913 async = kmalloc(sizeof(*async), GFP_NOFS);
914 if (!async)
915 return -ENOMEM;
916
917 async->inode = inode;
44b8bd7e
CM
918 async->bio = bio;
919 async->mirror_num = mirror_num;
4a69a410
CM
920 async->submit_bio_start = submit_bio_start;
921 async->submit_bio_done = submit_bio_done;
922
9e0af237 923 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 924 run_one_async_done, run_one_async_free);
4a69a410 925
c8b97818 926 async->bio_flags = bio_flags;
eaf25d93 927 async->bio_offset = bio_offset;
8c8bee1d 928
79787eaa
JM
929 async->error = 0;
930
cb03c743 931 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 932
1eff9d32 933 if (bio->bi_opf & REQ_SYNC)
5cdc7ad3 934 btrfs_set_work_high_priority(&async->work);
d313d7a3 935
5cdc7ad3 936 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 937
d397712b 938 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
939 atomic_read(&fs_info->nr_async_submits)) {
940 wait_event(fs_info->async_submit_wait,
941 (atomic_read(&fs_info->nr_async_submits) == 0));
942 }
943
44b8bd7e
CM
944 return 0;
945}
946
ce3ed71a
CM
947static int btree_csum_one_bio(struct bio *bio)
948{
2c30c71b 949 struct bio_vec *bvec;
ce3ed71a 950 struct btrfs_root *root;
2c30c71b 951 int i, ret = 0;
ce3ed71a 952
2c30c71b 953 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 954 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 955 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
956 if (ret)
957 break;
ce3ed71a 958 }
2c30c71b 959
79787eaa 960 return ret;
ce3ed71a
CM
961}
962
81a75f67
MC
963static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
964 int mirror_num, unsigned long bio_flags,
eaf25d93 965 u64 bio_offset)
22c59948 966{
8b712842
CM
967 /*
968 * when we're called for a write, we're already in the async
5443be45 969 * submission context. Just jump into btrfs_map_bio
8b712842 970 */
79787eaa 971 return btree_csum_one_bio(bio);
4a69a410 972}
22c59948 973
81a75f67 974static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
eaf25d93
CM
975 int mirror_num, unsigned long bio_flags,
976 u64 bio_offset)
4a69a410 977{
61891923
SB
978 int ret;
979
8b712842 980 /*
4a69a410
CM
981 * when we're called for a write, we're already in the async
982 * submission context. Just jump into btrfs_map_bio
8b712842 983 */
81a75f67 984 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
4246a0b6
CH
985 if (ret) {
986 bio->bi_error = ret;
987 bio_endio(bio);
988 }
61891923 989 return ret;
0b86a832
CM
990}
991
de0022b9
JB
992static int check_async_write(struct inode *inode, unsigned long bio_flags)
993{
994 if (bio_flags & EXTENT_BIO_TREE_LOG)
995 return 0;
996#ifdef CONFIG_X86
bc696ca0 997 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
998 return 0;
999#endif
1000 return 1;
1001}
1002
81a75f67 1003static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
eaf25d93
CM
1004 int mirror_num, unsigned long bio_flags,
1005 u64 bio_offset)
44b8bd7e 1006{
de0022b9 1007 int async = check_async_write(inode, bio_flags);
cad321ad
CM
1008 int ret;
1009
37226b21 1010 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
1011 /*
1012 * called for a read, do the setup so that checksum validation
1013 * can happen in the async kernel threads
1014 */
f3f266ab 1015 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 1016 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 1017 if (ret)
61891923 1018 goto out_w_error;
81a75f67 1019 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
de0022b9
JB
1020 } else if (!async) {
1021 ret = btree_csum_one_bio(bio);
1022 if (ret)
61891923 1023 goto out_w_error;
81a75f67 1024 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
61891923
SB
1025 } else {
1026 /*
1027 * kthread helpers are used to submit writes so that
1028 * checksumming can happen in parallel across all CPUs
1029 */
1030 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
81a75f67 1031 inode, bio, mirror_num, 0,
61891923
SB
1032 bio_offset,
1033 __btree_submit_bio_start,
1034 __btree_submit_bio_done);
44b8bd7e 1035 }
d313d7a3 1036
4246a0b6
CH
1037 if (ret)
1038 goto out_w_error;
1039 return 0;
1040
61891923 1041out_w_error:
4246a0b6
CH
1042 bio->bi_error = ret;
1043 bio_endio(bio);
61891923 1044 return ret;
44b8bd7e
CM
1045}
1046
3dd1462e 1047#ifdef CONFIG_MIGRATION
784b4e29 1048static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
1049 struct page *newpage, struct page *page,
1050 enum migrate_mode mode)
784b4e29
CM
1051{
1052 /*
1053 * we can't safely write a btree page from here,
1054 * we haven't done the locking hook
1055 */
1056 if (PageDirty(page))
1057 return -EAGAIN;
1058 /*
1059 * Buffers may be managed in a filesystem specific way.
1060 * We must have no buffers or drop them.
1061 */
1062 if (page_has_private(page) &&
1063 !try_to_release_page(page, GFP_KERNEL))
1064 return -EAGAIN;
a6bc32b8 1065 return migrate_page(mapping, newpage, page, mode);
784b4e29 1066}
3dd1462e 1067#endif
784b4e29 1068
0da5468f
CM
1069
1070static int btree_writepages(struct address_space *mapping,
1071 struct writeback_control *wbc)
1072{
e2d84521
MX
1073 struct btrfs_fs_info *fs_info;
1074 int ret;
1075
d8d5f3e1 1076 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1077
1078 if (wbc->for_kupdate)
1079 return 0;
1080
e2d84521 1081 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1082 /* this is a bit racy, but that's ok */
e2d84521
MX
1083 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1084 BTRFS_DIRTY_METADATA_THRESH);
1085 if (ret < 0)
793955bc 1086 return 0;
793955bc 1087 }
0b32f4bb 1088 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1089}
1090
b2950863 1091static int btree_readpage(struct file *file, struct page *page)
5f39d397 1092{
d1310b2e
CM
1093 struct extent_io_tree *tree;
1094 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1095 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1096}
22b0ebda 1097
70dec807 1098static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1099{
98509cfc 1100 if (PageWriteback(page) || PageDirty(page))
d397712b 1101 return 0;
0c4e538b 1102
f7a52a40 1103 return try_release_extent_buffer(page);
d98237b3
CM
1104}
1105
d47992f8
LC
1106static void btree_invalidatepage(struct page *page, unsigned int offset,
1107 unsigned int length)
d98237b3 1108{
d1310b2e
CM
1109 struct extent_io_tree *tree;
1110 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1111 extent_invalidatepage(tree, page, offset);
1112 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1113 if (PagePrivate(page)) {
efe120a0
FH
1114 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1115 "page private not zero on page %llu",
1116 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1117 ClearPagePrivate(page);
1118 set_page_private(page, 0);
09cbfeaf 1119 put_page(page);
9ad6b7bc 1120 }
d98237b3
CM
1121}
1122
0b32f4bb
JB
1123static int btree_set_page_dirty(struct page *page)
1124{
bb146eb2 1125#ifdef DEBUG
0b32f4bb
JB
1126 struct extent_buffer *eb;
1127
1128 BUG_ON(!PagePrivate(page));
1129 eb = (struct extent_buffer *)page->private;
1130 BUG_ON(!eb);
1131 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1132 BUG_ON(!atomic_read(&eb->refs));
1133 btrfs_assert_tree_locked(eb);
bb146eb2 1134#endif
0b32f4bb
JB
1135 return __set_page_dirty_nobuffers(page);
1136}
1137
7f09410b 1138static const struct address_space_operations btree_aops = {
d98237b3 1139 .readpage = btree_readpage,
0da5468f 1140 .writepages = btree_writepages,
5f39d397
CM
1141 .releasepage = btree_releasepage,
1142 .invalidatepage = btree_invalidatepage,
5a92bc88 1143#ifdef CONFIG_MIGRATION
784b4e29 1144 .migratepage = btree_migratepage,
5a92bc88 1145#endif
0b32f4bb 1146 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1147};
1148
d3e46fea 1149void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
090d1875 1150{
5f39d397
CM
1151 struct extent_buffer *buf = NULL;
1152 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1153
a83fffb7 1154 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2 1155 if (IS_ERR(buf))
6197d86e 1156 return;
d1310b2e 1157 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
8436ea91 1158 buf, WAIT_NONE, btree_get_extent, 0);
5f39d397 1159 free_extent_buffer(buf);
090d1875
CM
1160}
1161
c0dcaa4d 1162int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
ab0fff03
AJ
1163 int mirror_num, struct extent_buffer **eb)
1164{
1165 struct extent_buffer *buf = NULL;
1166 struct inode *btree_inode = root->fs_info->btree_inode;
1167 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1168 int ret;
1169
a83fffb7 1170 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2 1171 if (IS_ERR(buf))
ab0fff03
AJ
1172 return 0;
1173
1174 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1175
8436ea91 1176 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
ab0fff03
AJ
1177 btree_get_extent, mirror_num);
1178 if (ret) {
1179 free_extent_buffer(buf);
1180 return ret;
1181 }
1182
1183 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1184 free_extent_buffer(buf);
1185 return -EIO;
0b32f4bb 1186 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1187 *eb = buf;
1188 } else {
1189 free_extent_buffer(buf);
1190 }
1191 return 0;
1192}
1193
0999df54 1194struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
a83fffb7 1195 u64 bytenr)
0999df54 1196{
f5ee5c9a 1197 if (btrfs_is_testing(root->fs_info))
b9ef22de
FX
1198 return alloc_test_extent_buffer(root->fs_info, bytenr,
1199 root->nodesize);
ce3e6984 1200 return alloc_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1201}
1202
1203
e02119d5
CM
1204int btrfs_write_tree_block(struct extent_buffer *buf)
1205{
727011e0 1206 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1207 buf->start + buf->len - 1);
e02119d5
CM
1208}
1209
1210int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1211{
727011e0 1212 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1213 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1214}
1215
0999df54 1216struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1217 u64 parent_transid)
0999df54
CM
1218{
1219 struct extent_buffer *buf = NULL;
0999df54
CM
1220 int ret;
1221
a83fffb7 1222 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
1223 if (IS_ERR(buf))
1224 return buf;
0999df54 1225
8436ea91 1226 ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
0f0fe8f7
FDBM
1227 if (ret) {
1228 free_extent_buffer(buf);
64c043de 1229 return ERR_PTR(ret);
0f0fe8f7 1230 }
5f39d397 1231 return buf;
ce9adaa5 1232
eb60ceac
CM
1233}
1234
01d58472
DD
1235void clean_tree_block(struct btrfs_trans_handle *trans,
1236 struct btrfs_fs_info *fs_info,
d5c13f92 1237 struct extent_buffer *buf)
ed2ff2cb 1238{
55c69072 1239 if (btrfs_header_generation(buf) ==
e2d84521 1240 fs_info->running_transaction->transid) {
b9447ef8 1241 btrfs_assert_tree_locked(buf);
b4ce94de 1242
b9473439 1243 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1244 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1245 -buf->len,
1246 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1247 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1248 btrfs_set_lock_blocking(buf);
1249 clear_extent_buffer_dirty(buf);
1250 }
925baedd 1251 }
5f39d397
CM
1252}
1253
8257b2dc
MX
1254static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1255{
1256 struct btrfs_subvolume_writers *writers;
1257 int ret;
1258
1259 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1260 if (!writers)
1261 return ERR_PTR(-ENOMEM);
1262
908c7f19 1263 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1264 if (ret < 0) {
1265 kfree(writers);
1266 return ERR_PTR(ret);
1267 }
1268
1269 init_waitqueue_head(&writers->wait);
1270 return writers;
1271}
1272
1273static void
1274btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1275{
1276 percpu_counter_destroy(&writers->counter);
1277 kfree(writers);
1278}
1279
707e8a07
DS
1280static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1281 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1282 u64 objectid)
d97e63b6 1283{
7c0260ee 1284 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1285 root->node = NULL;
a28ec197 1286 root->commit_root = NULL;
db94535d
CM
1287 root->sectorsize = sectorsize;
1288 root->nodesize = nodesize;
87ee04eb 1289 root->stripesize = stripesize;
27cdeb70 1290 root->state = 0;
d68fc57b 1291 root->orphan_cleanup_state = 0;
0b86a832 1292
0f7d52f4
CM
1293 root->objectid = objectid;
1294 root->last_trans = 0;
13a8a7c8 1295 root->highest_objectid = 0;
eb73c1b7 1296 root->nr_delalloc_inodes = 0;
199c2a9c 1297 root->nr_ordered_extents = 0;
58176a96 1298 root->name = NULL;
6bef4d31 1299 root->inode_tree = RB_ROOT;
16cdcec7 1300 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1301 root->block_rsv = NULL;
d68fc57b 1302 root->orphan_block_rsv = NULL;
0b86a832
CM
1303
1304 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1305 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1306 INIT_LIST_HEAD(&root->delalloc_inodes);
1307 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1308 INIT_LIST_HEAD(&root->ordered_extents);
1309 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1310 INIT_LIST_HEAD(&root->logged_list[0]);
1311 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1312 spin_lock_init(&root->orphan_lock);
5d4f98a2 1313 spin_lock_init(&root->inode_lock);
eb73c1b7 1314 spin_lock_init(&root->delalloc_lock);
199c2a9c 1315 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1316 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1317 spin_lock_init(&root->log_extents_lock[0]);
1318 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1319 mutex_init(&root->objectid_mutex);
e02119d5 1320 mutex_init(&root->log_mutex);
31f3d255 1321 mutex_init(&root->ordered_extent_mutex);
573bfb72 1322 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1323 init_waitqueue_head(&root->log_writer_wait);
1324 init_waitqueue_head(&root->log_commit_wait[0]);
1325 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1326 INIT_LIST_HEAD(&root->log_ctxs[0]);
1327 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1328 atomic_set(&root->log_commit[0], 0);
1329 atomic_set(&root->log_commit[1], 0);
1330 atomic_set(&root->log_writers, 0);
2ecb7923 1331 atomic_set(&root->log_batch, 0);
8a35d95f 1332 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1333 atomic_set(&root->refs, 1);
8257b2dc 1334 atomic_set(&root->will_be_snapshoted, 0);
55eeaf05 1335 atomic_set(&root->qgroup_meta_rsv, 0);
7237f183 1336 root->log_transid = 0;
d1433deb 1337 root->log_transid_committed = -1;
257c62e1 1338 root->last_log_commit = 0;
7c0260ee 1339 if (!dummy)
06ea65a3
JB
1340 extent_io_tree_init(&root->dirty_log_pages,
1341 fs_info->btree_inode->i_mapping);
017e5369 1342
3768f368
CM
1343 memset(&root->root_key, 0, sizeof(root->root_key));
1344 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1345 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1346 if (!dummy)
06ea65a3
JB
1347 root->defrag_trans_start = fs_info->generation;
1348 else
1349 root->defrag_trans_start = 0;
4d775673 1350 root->root_key.objectid = objectid;
0ee5dc67 1351 root->anon_dev = 0;
8ea05e3a 1352
5f3ab90a 1353 spin_lock_init(&root->root_item_lock);
3768f368
CM
1354}
1355
74e4d827
DS
1356static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1357 gfp_t flags)
6f07e42e 1358{
74e4d827 1359 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1360 if (root)
1361 root->fs_info = fs_info;
1362 return root;
1363}
1364
06ea65a3
JB
1365#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1366/* Should only be used by the testing infrastructure */
7c0260ee
JM
1367struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1368 u32 sectorsize, u32 nodesize)
06ea65a3
JB
1369{
1370 struct btrfs_root *root;
1371
7c0260ee
JM
1372 if (!fs_info)
1373 return ERR_PTR(-EINVAL);
1374
1375 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1376 if (!root)
1377 return ERR_PTR(-ENOMEM);
b9ef22de 1378 /* We don't use the stripesize in selftest, set it as sectorsize */
7c0260ee 1379 __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
ef9f2db3 1380 BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1381 root->alloc_bytenr = 0;
06ea65a3
JB
1382
1383 return root;
1384}
1385#endif
1386
20897f5c
AJ
1387struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1388 struct btrfs_fs_info *fs_info,
1389 u64 objectid)
1390{
1391 struct extent_buffer *leaf;
1392 struct btrfs_root *tree_root = fs_info->tree_root;
1393 struct btrfs_root *root;
1394 struct btrfs_key key;
1395 int ret = 0;
6463fe58 1396 uuid_le uuid;
20897f5c 1397
74e4d827 1398 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1399 if (!root)
1400 return ERR_PTR(-ENOMEM);
1401
707e8a07
DS
1402 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1403 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1404 root->root_key.objectid = objectid;
1405 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1406 root->root_key.offset = 0;
1407
4d75f8a9 1408 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1409 if (IS_ERR(leaf)) {
1410 ret = PTR_ERR(leaf);
1dd05682 1411 leaf = NULL;
20897f5c
AJ
1412 goto fail;
1413 }
1414
b159fa28 1415 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
20897f5c
AJ
1416 btrfs_set_header_bytenr(leaf, leaf->start);
1417 btrfs_set_header_generation(leaf, trans->transid);
1418 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1419 btrfs_set_header_owner(leaf, objectid);
1420 root->node = leaf;
1421
d24ee97b
DS
1422 write_extent_buffer_fsid(leaf, fs_info->fsid);
1423 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
20897f5c
AJ
1424 btrfs_mark_buffer_dirty(leaf);
1425
1426 root->commit_root = btrfs_root_node(root);
27cdeb70 1427 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1428
1429 root->root_item.flags = 0;
1430 root->root_item.byte_limit = 0;
1431 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1432 btrfs_set_root_generation(&root->root_item, trans->transid);
1433 btrfs_set_root_level(&root->root_item, 0);
1434 btrfs_set_root_refs(&root->root_item, 1);
1435 btrfs_set_root_used(&root->root_item, leaf->len);
1436 btrfs_set_root_last_snapshot(&root->root_item, 0);
1437 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1438 uuid_le_gen(&uuid);
1439 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1440 root->root_item.drop_level = 0;
1441
1442 key.objectid = objectid;
1443 key.type = BTRFS_ROOT_ITEM_KEY;
1444 key.offset = 0;
1445 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1446 if (ret)
1447 goto fail;
1448
1449 btrfs_tree_unlock(leaf);
1450
1dd05682
TI
1451 return root;
1452
20897f5c 1453fail:
1dd05682
TI
1454 if (leaf) {
1455 btrfs_tree_unlock(leaf);
59885b39 1456 free_extent_buffer(root->commit_root);
1dd05682
TI
1457 free_extent_buffer(leaf);
1458 }
1459 kfree(root);
20897f5c 1460
1dd05682 1461 return ERR_PTR(ret);
20897f5c
AJ
1462}
1463
7237f183
YZ
1464static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1465 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1466{
1467 struct btrfs_root *root;
1468 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1469 struct extent_buffer *leaf;
e02119d5 1470
74e4d827 1471 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1472 if (!root)
7237f183 1473 return ERR_PTR(-ENOMEM);
e02119d5 1474
707e8a07
DS
1475 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1476 tree_root->stripesize, root, fs_info,
1477 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1478
1479 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1480 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1481 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1482
7237f183 1483 /*
27cdeb70
MX
1484 * DON'T set REF_COWS for log trees
1485 *
7237f183
YZ
1486 * log trees do not get reference counted because they go away
1487 * before a real commit is actually done. They do store pointers
1488 * to file data extents, and those reference counts still get
1489 * updated (along with back refs to the log tree).
1490 */
e02119d5 1491
4d75f8a9
DS
1492 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1493 NULL, 0, 0, 0);
7237f183
YZ
1494 if (IS_ERR(leaf)) {
1495 kfree(root);
1496 return ERR_CAST(leaf);
1497 }
e02119d5 1498
b159fa28 1499 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
5d4f98a2
YZ
1500 btrfs_set_header_bytenr(leaf, leaf->start);
1501 btrfs_set_header_generation(leaf, trans->transid);
1502 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1503 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1504 root->node = leaf;
e02119d5 1505
d24ee97b 1506 write_extent_buffer_fsid(root->node, root->fs_info->fsid);
e02119d5
CM
1507 btrfs_mark_buffer_dirty(root->node);
1508 btrfs_tree_unlock(root->node);
7237f183
YZ
1509 return root;
1510}
1511
1512int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1513 struct btrfs_fs_info *fs_info)
1514{
1515 struct btrfs_root *log_root;
1516
1517 log_root = alloc_log_tree(trans, fs_info);
1518 if (IS_ERR(log_root))
1519 return PTR_ERR(log_root);
1520 WARN_ON(fs_info->log_root_tree);
1521 fs_info->log_root_tree = log_root;
1522 return 0;
1523}
1524
1525int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1526 struct btrfs_root *root)
1527{
1528 struct btrfs_root *log_root;
1529 struct btrfs_inode_item *inode_item;
1530
1531 log_root = alloc_log_tree(trans, root->fs_info);
1532 if (IS_ERR(log_root))
1533 return PTR_ERR(log_root);
1534
1535 log_root->last_trans = trans->transid;
1536 log_root->root_key.offset = root->root_key.objectid;
1537
1538 inode_item = &log_root->root_item.inode;
3cae210f
QW
1539 btrfs_set_stack_inode_generation(inode_item, 1);
1540 btrfs_set_stack_inode_size(inode_item, 3);
1541 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1542 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1543 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1544
5d4f98a2 1545 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1546
1547 WARN_ON(root->log_root);
1548 root->log_root = log_root;
1549 root->log_transid = 0;
d1433deb 1550 root->log_transid_committed = -1;
257c62e1 1551 root->last_log_commit = 0;
e02119d5
CM
1552 return 0;
1553}
1554
35a3621b
SB
1555static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1556 struct btrfs_key *key)
e02119d5
CM
1557{
1558 struct btrfs_root *root;
1559 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1560 struct btrfs_path *path;
84234f3a 1561 u64 generation;
cb517eab 1562 int ret;
0f7d52f4 1563
cb517eab
MX
1564 path = btrfs_alloc_path();
1565 if (!path)
0f7d52f4 1566 return ERR_PTR(-ENOMEM);
cb517eab 1567
74e4d827 1568 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1569 if (!root) {
1570 ret = -ENOMEM;
1571 goto alloc_fail;
0f7d52f4
CM
1572 }
1573
707e8a07
DS
1574 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1575 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1576
cb517eab
MX
1577 ret = btrfs_find_root(tree_root, key, path,
1578 &root->root_item, &root->root_key);
0f7d52f4 1579 if (ret) {
13a8a7c8
YZ
1580 if (ret > 0)
1581 ret = -ENOENT;
cb517eab 1582 goto find_fail;
0f7d52f4 1583 }
13a8a7c8 1584
84234f3a 1585 generation = btrfs_root_generation(&root->root_item);
db94535d 1586 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1587 generation);
64c043de
LB
1588 if (IS_ERR(root->node)) {
1589 ret = PTR_ERR(root->node);
cb517eab
MX
1590 goto find_fail;
1591 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1592 ret = -EIO;
64c043de
LB
1593 free_extent_buffer(root->node);
1594 goto find_fail;
416bc658 1595 }
5d4f98a2 1596 root->commit_root = btrfs_root_node(root);
13a8a7c8 1597out:
cb517eab
MX
1598 btrfs_free_path(path);
1599 return root;
1600
cb517eab
MX
1601find_fail:
1602 kfree(root);
1603alloc_fail:
1604 root = ERR_PTR(ret);
1605 goto out;
1606}
1607
1608struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1609 struct btrfs_key *location)
1610{
1611 struct btrfs_root *root;
1612
1613 root = btrfs_read_tree_root(tree_root, location);
1614 if (IS_ERR(root))
1615 return root;
1616
1617 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1618 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1619 btrfs_check_and_init_root_item(&root->root_item);
1620 }
13a8a7c8 1621
5eda7b5e
CM
1622 return root;
1623}
1624
cb517eab
MX
1625int btrfs_init_fs_root(struct btrfs_root *root)
1626{
1627 int ret;
8257b2dc 1628 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1629
1630 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1631 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1632 GFP_NOFS);
1633 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1634 ret = -ENOMEM;
1635 goto fail;
1636 }
1637
8257b2dc
MX
1638 writers = btrfs_alloc_subvolume_writers();
1639 if (IS_ERR(writers)) {
1640 ret = PTR_ERR(writers);
1641 goto fail;
1642 }
1643 root->subv_writers = writers;
1644
cb517eab 1645 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1646 spin_lock_init(&root->ino_cache_lock);
1647 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1648
1649 ret = get_anon_bdev(&root->anon_dev);
1650 if (ret)
876d2cf1 1651 goto fail;
f32e48e9
CR
1652
1653 mutex_lock(&root->objectid_mutex);
1654 ret = btrfs_find_highest_objectid(root,
1655 &root->highest_objectid);
1656 if (ret) {
1657 mutex_unlock(&root->objectid_mutex);
876d2cf1 1658 goto fail;
f32e48e9
CR
1659 }
1660
1661 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1662
1663 mutex_unlock(&root->objectid_mutex);
1664
cb517eab
MX
1665 return 0;
1666fail:
876d2cf1 1667 /* the caller is responsible to call free_fs_root */
cb517eab
MX
1668 return ret;
1669}
1670
35bbb97f
JM
1671struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1672 u64 root_id)
cb517eab
MX
1673{
1674 struct btrfs_root *root;
1675
1676 spin_lock(&fs_info->fs_roots_radix_lock);
1677 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1678 (unsigned long)root_id);
1679 spin_unlock(&fs_info->fs_roots_radix_lock);
1680 return root;
1681}
1682
1683int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1684 struct btrfs_root *root)
1685{
1686 int ret;
1687
e1860a77 1688 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1689 if (ret)
1690 return ret;
1691
1692 spin_lock(&fs_info->fs_roots_radix_lock);
1693 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1694 (unsigned long)root->root_key.objectid,
1695 root);
1696 if (ret == 0)
27cdeb70 1697 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1698 spin_unlock(&fs_info->fs_roots_radix_lock);
1699 radix_tree_preload_end();
1700
1701 return ret;
1702}
1703
c00869f1
MX
1704struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1705 struct btrfs_key *location,
1706 bool check_ref)
5eda7b5e
CM
1707{
1708 struct btrfs_root *root;
381cf658 1709 struct btrfs_path *path;
1d4c08e0 1710 struct btrfs_key key;
5eda7b5e
CM
1711 int ret;
1712
edbd8d4e
CM
1713 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1714 return fs_info->tree_root;
1715 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1716 return fs_info->extent_root;
8f18cf13
CM
1717 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1718 return fs_info->chunk_root;
1719 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1720 return fs_info->dev_root;
0403e47e
YZ
1721 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1722 return fs_info->csum_root;
bcef60f2
AJ
1723 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1724 return fs_info->quota_root ? fs_info->quota_root :
1725 ERR_PTR(-ENOENT);
f7a81ea4
SB
1726 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1727 return fs_info->uuid_root ? fs_info->uuid_root :
1728 ERR_PTR(-ENOENT);
70f6d82e
OS
1729 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1730 return fs_info->free_space_root ? fs_info->free_space_root :
1731 ERR_PTR(-ENOENT);
4df27c4d 1732again:
cb517eab 1733 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1734 if (root) {
c00869f1 1735 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1736 return ERR_PTR(-ENOENT);
5eda7b5e 1737 return root;
48475471 1738 }
5eda7b5e 1739
cb517eab 1740 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1741 if (IS_ERR(root))
1742 return root;
3394e160 1743
c00869f1 1744 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1745 ret = -ENOENT;
581bb050 1746 goto fail;
35a30d7c 1747 }
581bb050 1748
cb517eab 1749 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1750 if (ret)
1751 goto fail;
3394e160 1752
381cf658
DS
1753 path = btrfs_alloc_path();
1754 if (!path) {
1755 ret = -ENOMEM;
1756 goto fail;
1757 }
1d4c08e0
DS
1758 key.objectid = BTRFS_ORPHAN_OBJECTID;
1759 key.type = BTRFS_ORPHAN_ITEM_KEY;
1760 key.offset = location->objectid;
1761
1762 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1763 btrfs_free_path(path);
d68fc57b
YZ
1764 if (ret < 0)
1765 goto fail;
1766 if (ret == 0)
27cdeb70 1767 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1768
cb517eab 1769 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1770 if (ret) {
4df27c4d
YZ
1771 if (ret == -EEXIST) {
1772 free_fs_root(root);
1773 goto again;
1774 }
1775 goto fail;
0f7d52f4 1776 }
edbd8d4e 1777 return root;
4df27c4d
YZ
1778fail:
1779 free_fs_root(root);
1780 return ERR_PTR(ret);
edbd8d4e
CM
1781}
1782
04160088
CM
1783static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1784{
1785 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1786 int ret = 0;
04160088
CM
1787 struct btrfs_device *device;
1788 struct backing_dev_info *bdi;
b7967db7 1789
1f78160c
XG
1790 rcu_read_lock();
1791 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1792 if (!device->bdev)
1793 continue;
04160088 1794 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1795 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1796 ret = 1;
1797 break;
1798 }
1799 }
1f78160c 1800 rcu_read_unlock();
04160088
CM
1801 return ret;
1802}
1803
04160088
CM
1804static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1805{
ad081f14
JA
1806 int err;
1807
b4caecd4 1808 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1809 if (err)
1810 return err;
1811
09cbfeaf 1812 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
04160088
CM
1813 bdi->congested_fn = btrfs_congested_fn;
1814 bdi->congested_data = info;
da2f0f74 1815 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
04160088
CM
1816 return 0;
1817}
1818
8b712842
CM
1819/*
1820 * called by the kthread helper functions to finally call the bio end_io
1821 * functions. This is where read checksum verification actually happens
1822 */
1823static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1824{
ce9adaa5 1825 struct bio *bio;
97eb6b69 1826 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1827
97eb6b69 1828 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1829 bio = end_io_wq->bio;
ce9adaa5 1830
4246a0b6 1831 bio->bi_error = end_io_wq->error;
8b712842
CM
1832 bio->bi_private = end_io_wq->private;
1833 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1834 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1835 bio_endio(bio);
44b8bd7e
CM
1836}
1837
a74a4b97
CM
1838static int cleaner_kthread(void *arg)
1839{
1840 struct btrfs_root *root = arg;
d0278245 1841 int again;
da288d28 1842 struct btrfs_trans_handle *trans;
a74a4b97
CM
1843
1844 do {
d0278245 1845 again = 0;
a74a4b97 1846
d0278245 1847 /* Make the cleaner go to sleep early. */
babbf170 1848 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1849 goto sleep;
1850
90c711ab
ZB
1851 /*
1852 * Do not do anything if we might cause open_ctree() to block
1853 * before we have finished mounting the filesystem.
1854 */
afcdd129 1855 if (!test_bit(BTRFS_FS_OPEN, &root->fs_info->flags))
90c711ab
ZB
1856 goto sleep;
1857
d0278245
MX
1858 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1859 goto sleep;
1860
dc7f370c
MX
1861 /*
1862 * Avoid the problem that we change the status of the fs
1863 * during the above check and trylock.
1864 */
babbf170 1865 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1866 mutex_unlock(&root->fs_info->cleaner_mutex);
1867 goto sleep;
76dda93c 1868 }
a74a4b97 1869
c2d6cb16 1870 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
d0278245 1871 btrfs_run_delayed_iputs(root);
c2d6cb16
FM
1872 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1873
d0278245
MX
1874 again = btrfs_clean_one_deleted_snapshot(root);
1875 mutex_unlock(&root->fs_info->cleaner_mutex);
1876
1877 /*
05323cd1
MX
1878 * The defragger has dealt with the R/O remount and umount,
1879 * needn't do anything special here.
d0278245
MX
1880 */
1881 btrfs_run_defrag_inodes(root->fs_info);
67c5e7d4
FM
1882
1883 /*
1884 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1885 * with relocation (btrfs_relocate_chunk) and relocation
1886 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1887 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1888 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1889 * unused block groups.
1890 */
1891 btrfs_delete_unused_bgs(root->fs_info);
d0278245 1892sleep:
838fe188 1893 if (!again) {
a74a4b97 1894 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1895 if (!kthread_should_stop())
1896 schedule();
a74a4b97
CM
1897 __set_current_state(TASK_RUNNING);
1898 }
1899 } while (!kthread_should_stop());
da288d28
FM
1900
1901 /*
1902 * Transaction kthread is stopped before us and wakes us up.
1903 * However we might have started a new transaction and COWed some
1904 * tree blocks when deleting unused block groups for example. So
1905 * make sure we commit the transaction we started to have a clean
1906 * shutdown when evicting the btree inode - if it has dirty pages
1907 * when we do the final iput() on it, eviction will trigger a
1908 * writeback for it which will fail with null pointer dereferences
1909 * since work queues and other resources were already released and
1910 * destroyed by the time the iput/eviction/writeback is made.
1911 */
1912 trans = btrfs_attach_transaction(root);
1913 if (IS_ERR(trans)) {
1914 if (PTR_ERR(trans) != -ENOENT)
1915 btrfs_err(root->fs_info,
1916 "cleaner transaction attach returned %ld",
1917 PTR_ERR(trans));
1918 } else {
1919 int ret;
1920
1921 ret = btrfs_commit_transaction(trans, root);
1922 if (ret)
1923 btrfs_err(root->fs_info,
1924 "cleaner open transaction commit returned %d",
1925 ret);
1926 }
1927
a74a4b97
CM
1928 return 0;
1929}
1930
1931static int transaction_kthread(void *arg)
1932{
1933 struct btrfs_root *root = arg;
1934 struct btrfs_trans_handle *trans;
1935 struct btrfs_transaction *cur;
8929ecfa 1936 u64 transid;
a74a4b97
CM
1937 unsigned long now;
1938 unsigned long delay;
914b2007 1939 bool cannot_commit;
a74a4b97
CM
1940
1941 do {
914b2007 1942 cannot_commit = false;
8b87dc17 1943 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1944 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1945
a4abeea4 1946 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1947 cur = root->fs_info->running_transaction;
1948 if (!cur) {
a4abeea4 1949 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1950 goto sleep;
1951 }
31153d81 1952
a74a4b97 1953 now = get_seconds();
4a9d8bde 1954 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1955 (now < cur->start_time ||
1956 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1957 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1958 delay = HZ * 5;
1959 goto sleep;
1960 }
8929ecfa 1961 transid = cur->transid;
a4abeea4 1962 spin_unlock(&root->fs_info->trans_lock);
56bec294 1963
79787eaa 1964 /* If the file system is aborted, this will always fail. */
354aa0fb 1965 trans = btrfs_attach_transaction(root);
914b2007 1966 if (IS_ERR(trans)) {
354aa0fb
MX
1967 if (PTR_ERR(trans) != -ENOENT)
1968 cannot_commit = true;
79787eaa 1969 goto sleep;
914b2007 1970 }
8929ecfa 1971 if (transid == trans->transid) {
79787eaa 1972 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1973 } else {
1974 btrfs_end_transaction(trans, root);
1975 }
a74a4b97
CM
1976sleep:
1977 wake_up_process(root->fs_info->cleaner_kthread);
1978 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1979
4e121c06
JB
1980 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1981 &root->fs_info->fs_state)))
1982 btrfs_cleanup_transaction(root);
ce63f891
JK
1983 set_current_state(TASK_INTERRUPTIBLE);
1984 if (!kthread_should_stop() &&
1985 (!btrfs_transaction_blocked(root->fs_info) ||
1986 cannot_commit))
1987 schedule_timeout(delay);
1988 __set_current_state(TASK_RUNNING);
a74a4b97
CM
1989 } while (!kthread_should_stop());
1990 return 0;
1991}
1992
af31f5e5
CM
1993/*
1994 * this will find the highest generation in the array of
1995 * root backups. The index of the highest array is returned,
1996 * or -1 if we can't find anything.
1997 *
1998 * We check to make sure the array is valid by comparing the
1999 * generation of the latest root in the array with the generation
2000 * in the super block. If they don't match we pitch it.
2001 */
2002static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2003{
2004 u64 cur;
2005 int newest_index = -1;
2006 struct btrfs_root_backup *root_backup;
2007 int i;
2008
2009 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2010 root_backup = info->super_copy->super_roots + i;
2011 cur = btrfs_backup_tree_root_gen(root_backup);
2012 if (cur == newest_gen)
2013 newest_index = i;
2014 }
2015
2016 /* check to see if we actually wrapped around */
2017 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2018 root_backup = info->super_copy->super_roots;
2019 cur = btrfs_backup_tree_root_gen(root_backup);
2020 if (cur == newest_gen)
2021 newest_index = 0;
2022 }
2023 return newest_index;
2024}
2025
2026
2027/*
2028 * find the oldest backup so we know where to store new entries
2029 * in the backup array. This will set the backup_root_index
2030 * field in the fs_info struct
2031 */
2032static void find_oldest_super_backup(struct btrfs_fs_info *info,
2033 u64 newest_gen)
2034{
2035 int newest_index = -1;
2036
2037 newest_index = find_newest_super_backup(info, newest_gen);
2038 /* if there was garbage in there, just move along */
2039 if (newest_index == -1) {
2040 info->backup_root_index = 0;
2041 } else {
2042 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2043 }
2044}
2045
2046/*
2047 * copy all the root pointers into the super backup array.
2048 * this will bump the backup pointer by one when it is
2049 * done
2050 */
2051static void backup_super_roots(struct btrfs_fs_info *info)
2052{
2053 int next_backup;
2054 struct btrfs_root_backup *root_backup;
2055 int last_backup;
2056
2057 next_backup = info->backup_root_index;
2058 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2059 BTRFS_NUM_BACKUP_ROOTS;
2060
2061 /*
2062 * just overwrite the last backup if we're at the same generation
2063 * this happens only at umount
2064 */
2065 root_backup = info->super_for_commit->super_roots + last_backup;
2066 if (btrfs_backup_tree_root_gen(root_backup) ==
2067 btrfs_header_generation(info->tree_root->node))
2068 next_backup = last_backup;
2069
2070 root_backup = info->super_for_commit->super_roots + next_backup;
2071
2072 /*
2073 * make sure all of our padding and empty slots get zero filled
2074 * regardless of which ones we use today
2075 */
2076 memset(root_backup, 0, sizeof(*root_backup));
2077
2078 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2079
2080 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2081 btrfs_set_backup_tree_root_gen(root_backup,
2082 btrfs_header_generation(info->tree_root->node));
2083
2084 btrfs_set_backup_tree_root_level(root_backup,
2085 btrfs_header_level(info->tree_root->node));
2086
2087 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2088 btrfs_set_backup_chunk_root_gen(root_backup,
2089 btrfs_header_generation(info->chunk_root->node));
2090 btrfs_set_backup_chunk_root_level(root_backup,
2091 btrfs_header_level(info->chunk_root->node));
2092
2093 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2094 btrfs_set_backup_extent_root_gen(root_backup,
2095 btrfs_header_generation(info->extent_root->node));
2096 btrfs_set_backup_extent_root_level(root_backup,
2097 btrfs_header_level(info->extent_root->node));
2098
7c7e82a7
CM
2099 /*
2100 * we might commit during log recovery, which happens before we set
2101 * the fs_root. Make sure it is valid before we fill it in.
2102 */
2103 if (info->fs_root && info->fs_root->node) {
2104 btrfs_set_backup_fs_root(root_backup,
2105 info->fs_root->node->start);
2106 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2107 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2108 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2109 btrfs_header_level(info->fs_root->node));
7c7e82a7 2110 }
af31f5e5
CM
2111
2112 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2113 btrfs_set_backup_dev_root_gen(root_backup,
2114 btrfs_header_generation(info->dev_root->node));
2115 btrfs_set_backup_dev_root_level(root_backup,
2116 btrfs_header_level(info->dev_root->node));
2117
2118 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2119 btrfs_set_backup_csum_root_gen(root_backup,
2120 btrfs_header_generation(info->csum_root->node));
2121 btrfs_set_backup_csum_root_level(root_backup,
2122 btrfs_header_level(info->csum_root->node));
2123
2124 btrfs_set_backup_total_bytes(root_backup,
2125 btrfs_super_total_bytes(info->super_copy));
2126 btrfs_set_backup_bytes_used(root_backup,
2127 btrfs_super_bytes_used(info->super_copy));
2128 btrfs_set_backup_num_devices(root_backup,
2129 btrfs_super_num_devices(info->super_copy));
2130
2131 /*
2132 * if we don't copy this out to the super_copy, it won't get remembered
2133 * for the next commit
2134 */
2135 memcpy(&info->super_copy->super_roots,
2136 &info->super_for_commit->super_roots,
2137 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2138}
2139
2140/*
2141 * this copies info out of the root backup array and back into
2142 * the in-memory super block. It is meant to help iterate through
2143 * the array, so you send it the number of backups you've already
2144 * tried and the last backup index you used.
2145 *
2146 * this returns -1 when it has tried all the backups
2147 */
2148static noinline int next_root_backup(struct btrfs_fs_info *info,
2149 struct btrfs_super_block *super,
2150 int *num_backups_tried, int *backup_index)
2151{
2152 struct btrfs_root_backup *root_backup;
2153 int newest = *backup_index;
2154
2155 if (*num_backups_tried == 0) {
2156 u64 gen = btrfs_super_generation(super);
2157
2158 newest = find_newest_super_backup(info, gen);
2159 if (newest == -1)
2160 return -1;
2161
2162 *backup_index = newest;
2163 *num_backups_tried = 1;
2164 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2165 /* we've tried all the backups, all done */
2166 return -1;
2167 } else {
2168 /* jump to the next oldest backup */
2169 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2170 BTRFS_NUM_BACKUP_ROOTS;
2171 *backup_index = newest;
2172 *num_backups_tried += 1;
2173 }
2174 root_backup = super->super_roots + newest;
2175
2176 btrfs_set_super_generation(super,
2177 btrfs_backup_tree_root_gen(root_backup));
2178 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2179 btrfs_set_super_root_level(super,
2180 btrfs_backup_tree_root_level(root_backup));
2181 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2182
2183 /*
2184 * fixme: the total bytes and num_devices need to match or we should
2185 * need a fsck
2186 */
2187 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2188 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2189 return 0;
2190}
2191
7abadb64
LB
2192/* helper to cleanup workers */
2193static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2194{
dc6e3209 2195 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2196 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2197 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2198 btrfs_destroy_workqueue(fs_info->endio_workers);
2199 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2200 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2201 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2202 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2203 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2204 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2205 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2206 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2207 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2208 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2209 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2210 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2211 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2212 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2213}
2214
2e9f5954
R
2215static void free_root_extent_buffers(struct btrfs_root *root)
2216{
2217 if (root) {
2218 free_extent_buffer(root->node);
2219 free_extent_buffer(root->commit_root);
2220 root->node = NULL;
2221 root->commit_root = NULL;
2222 }
2223}
2224
af31f5e5
CM
2225/* helper to cleanup tree roots */
2226static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2227{
2e9f5954 2228 free_root_extent_buffers(info->tree_root);
655b09fe 2229
2e9f5954
R
2230 free_root_extent_buffers(info->dev_root);
2231 free_root_extent_buffers(info->extent_root);
2232 free_root_extent_buffers(info->csum_root);
2233 free_root_extent_buffers(info->quota_root);
2234 free_root_extent_buffers(info->uuid_root);
2235 if (chunk_root)
2236 free_root_extent_buffers(info->chunk_root);
70f6d82e 2237 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2238}
2239
faa2dbf0 2240void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2241{
2242 int ret;
2243 struct btrfs_root *gang[8];
2244 int i;
2245
2246 while (!list_empty(&fs_info->dead_roots)) {
2247 gang[0] = list_entry(fs_info->dead_roots.next,
2248 struct btrfs_root, root_list);
2249 list_del(&gang[0]->root_list);
2250
27cdeb70 2251 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2252 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2253 } else {
2254 free_extent_buffer(gang[0]->node);
2255 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2256 btrfs_put_fs_root(gang[0]);
171f6537
JB
2257 }
2258 }
2259
2260 while (1) {
2261 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2262 (void **)gang, 0,
2263 ARRAY_SIZE(gang));
2264 if (!ret)
2265 break;
2266 for (i = 0; i < ret; i++)
cb517eab 2267 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2268 }
1a4319cc
LB
2269
2270 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2271 btrfs_free_log_root_tree(NULL, fs_info);
2272 btrfs_destroy_pinned_extent(fs_info->tree_root,
2273 fs_info->pinned_extents);
2274 }
171f6537 2275}
af31f5e5 2276
638aa7ed
ES
2277static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2278{
2279 mutex_init(&fs_info->scrub_lock);
2280 atomic_set(&fs_info->scrubs_running, 0);
2281 atomic_set(&fs_info->scrub_pause_req, 0);
2282 atomic_set(&fs_info->scrubs_paused, 0);
2283 atomic_set(&fs_info->scrub_cancel_req, 0);
2284 init_waitqueue_head(&fs_info->scrub_pause_wait);
2285 fs_info->scrub_workers_refcnt = 0;
2286}
2287
779a65a4
ES
2288static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2289{
2290 spin_lock_init(&fs_info->balance_lock);
2291 mutex_init(&fs_info->balance_mutex);
2292 atomic_set(&fs_info->balance_running, 0);
2293 atomic_set(&fs_info->balance_pause_req, 0);
2294 atomic_set(&fs_info->balance_cancel_req, 0);
2295 fs_info->balance_ctl = NULL;
2296 init_waitqueue_head(&fs_info->balance_wait_q);
2297}
2298
f37938e0
ES
2299static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2300 struct btrfs_root *tree_root)
2301{
2302 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2303 set_nlink(fs_info->btree_inode, 1);
2304 /*
2305 * we set the i_size on the btree inode to the max possible int.
2306 * the real end of the address space is determined by all of
2307 * the devices in the system
2308 */
2309 fs_info->btree_inode->i_size = OFFSET_MAX;
2310 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
f37938e0
ES
2311
2312 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2313 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2314 fs_info->btree_inode->i_mapping);
2315 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2316 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2317
2318 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2319
2320 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2321 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2322 sizeof(struct btrfs_key));
2323 set_bit(BTRFS_INODE_DUMMY,
2324 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2325 btrfs_insert_inode_hash(fs_info->btree_inode);
2326}
2327
ad618368
ES
2328static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2329{
2330 fs_info->dev_replace.lock_owner = 0;
2331 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2332 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2333 rwlock_init(&fs_info->dev_replace.lock);
2334 atomic_set(&fs_info->dev_replace.read_locks, 0);
2335 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2336 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2337 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2338}
2339
f9e92e40
ES
2340static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2341{
2342 spin_lock_init(&fs_info->qgroup_lock);
2343 mutex_init(&fs_info->qgroup_ioctl_lock);
2344 fs_info->qgroup_tree = RB_ROOT;
2345 fs_info->qgroup_op_tree = RB_ROOT;
2346 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2347 fs_info->qgroup_seq = 1;
f9e92e40 2348 fs_info->qgroup_ulist = NULL;
d2c609b8 2349 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2350 mutex_init(&fs_info->qgroup_rescan_lock);
2351}
2352
2a458198
ES
2353static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2354 struct btrfs_fs_devices *fs_devices)
2355{
2356 int max_active = fs_info->thread_pool_size;
6f011058 2357 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2358
2359 fs_info->workers =
cb001095
JM
2360 btrfs_alloc_workqueue(fs_info, "worker",
2361 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2362
2363 fs_info->delalloc_workers =
cb001095
JM
2364 btrfs_alloc_workqueue(fs_info, "delalloc",
2365 flags, max_active, 2);
2a458198
ES
2366
2367 fs_info->flush_workers =
cb001095
JM
2368 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2369 flags, max_active, 0);
2a458198
ES
2370
2371 fs_info->caching_workers =
cb001095 2372 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2373
2374 /*
2375 * a higher idle thresh on the submit workers makes it much more
2376 * likely that bios will be send down in a sane order to the
2377 * devices
2378 */
2379 fs_info->submit_workers =
cb001095 2380 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2381 min_t(u64, fs_devices->num_devices,
2382 max_active), 64);
2383
2384 fs_info->fixup_workers =
cb001095 2385 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2386
2387 /*
2388 * endios are largely parallel and should have a very
2389 * low idle thresh
2390 */
2391 fs_info->endio_workers =
cb001095 2392 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2393 fs_info->endio_meta_workers =
cb001095
JM
2394 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2395 max_active, 4);
2a458198 2396 fs_info->endio_meta_write_workers =
cb001095
JM
2397 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2398 max_active, 2);
2a458198 2399 fs_info->endio_raid56_workers =
cb001095
JM
2400 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2401 max_active, 4);
2a458198 2402 fs_info->endio_repair_workers =
cb001095 2403 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2404 fs_info->rmw_workers =
cb001095 2405 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2406 fs_info->endio_write_workers =
cb001095
JM
2407 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2408 max_active, 2);
2a458198 2409 fs_info->endio_freespace_worker =
cb001095
JM
2410 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2411 max_active, 0);
2a458198 2412 fs_info->delayed_workers =
cb001095
JM
2413 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2414 max_active, 0);
2a458198 2415 fs_info->readahead_workers =
cb001095
JM
2416 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2417 max_active, 2);
2a458198 2418 fs_info->qgroup_rescan_workers =
cb001095 2419 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2420 fs_info->extent_workers =
cb001095 2421 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2422 min_t(u64, fs_devices->num_devices,
2423 max_active), 8);
2424
2425 if (!(fs_info->workers && fs_info->delalloc_workers &&
2426 fs_info->submit_workers && fs_info->flush_workers &&
2427 fs_info->endio_workers && fs_info->endio_meta_workers &&
2428 fs_info->endio_meta_write_workers &&
2429 fs_info->endio_repair_workers &&
2430 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2431 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2432 fs_info->caching_workers && fs_info->readahead_workers &&
2433 fs_info->fixup_workers && fs_info->delayed_workers &&
2434 fs_info->extent_workers &&
2435 fs_info->qgroup_rescan_workers)) {
2436 return -ENOMEM;
2437 }
2438
2439 return 0;
2440}
2441
63443bf5
ES
2442static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2443 struct btrfs_fs_devices *fs_devices)
2444{
2445 int ret;
2446 struct btrfs_root *tree_root = fs_info->tree_root;
2447 struct btrfs_root *log_tree_root;
2448 struct btrfs_super_block *disk_super = fs_info->super_copy;
2449 u64 bytenr = btrfs_super_log_root(disk_super);
2450
2451 if (fs_devices->rw_devices == 0) {
f14d104d 2452 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2453 return -EIO;
2454 }
2455
74e4d827 2456 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2457 if (!log_tree_root)
2458 return -ENOMEM;
2459
2460 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2461 tree_root->stripesize, log_tree_root, fs_info,
2462 BTRFS_TREE_LOG_OBJECTID);
2463
2464 log_tree_root->node = read_tree_block(tree_root, bytenr,
2465 fs_info->generation + 1);
64c043de 2466 if (IS_ERR(log_tree_root->node)) {
f14d104d 2467 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2468 ret = PTR_ERR(log_tree_root->node);
64c043de 2469 kfree(log_tree_root);
0eeff236 2470 return ret;
64c043de 2471 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2472 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2473 free_extent_buffer(log_tree_root->node);
2474 kfree(log_tree_root);
2475 return -EIO;
2476 }
2477 /* returns with log_tree_root freed on success */
2478 ret = btrfs_recover_log_trees(log_tree_root);
2479 if (ret) {
34d97007 2480 btrfs_handle_fs_error(tree_root->fs_info, ret,
63443bf5
ES
2481 "Failed to recover log tree");
2482 free_extent_buffer(log_tree_root->node);
2483 kfree(log_tree_root);
2484 return ret;
2485 }
2486
2487 if (fs_info->sb->s_flags & MS_RDONLY) {
2488 ret = btrfs_commit_super(tree_root);
2489 if (ret)
2490 return ret;
2491 }
2492
2493 return 0;
2494}
2495
4bbcaa64
ES
2496static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2497 struct btrfs_root *tree_root)
2498{
a4f3d2c4 2499 struct btrfs_root *root;
4bbcaa64
ES
2500 struct btrfs_key location;
2501 int ret;
2502
2503 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2504 location.type = BTRFS_ROOT_ITEM_KEY;
2505 location.offset = 0;
2506
a4f3d2c4
DS
2507 root = btrfs_read_tree_root(tree_root, &location);
2508 if (IS_ERR(root))
2509 return PTR_ERR(root);
2510 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2511 fs_info->extent_root = root;
4bbcaa64
ES
2512
2513 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2514 root = btrfs_read_tree_root(tree_root, &location);
2515 if (IS_ERR(root))
2516 return PTR_ERR(root);
2517 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2518 fs_info->dev_root = root;
4bbcaa64
ES
2519 btrfs_init_devices_late(fs_info);
2520
2521 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2522 root = btrfs_read_tree_root(tree_root, &location);
2523 if (IS_ERR(root))
2524 return PTR_ERR(root);
2525 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2526 fs_info->csum_root = root;
4bbcaa64
ES
2527
2528 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2529 root = btrfs_read_tree_root(tree_root, &location);
2530 if (!IS_ERR(root)) {
2531 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2532 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2533 fs_info->quota_root = root;
4bbcaa64
ES
2534 }
2535
2536 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2537 root = btrfs_read_tree_root(tree_root, &location);
2538 if (IS_ERR(root)) {
2539 ret = PTR_ERR(root);
4bbcaa64
ES
2540 if (ret != -ENOENT)
2541 return ret;
2542 } else {
a4f3d2c4
DS
2543 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2544 fs_info->uuid_root = root;
4bbcaa64
ES
2545 }
2546
70f6d82e
OS
2547 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2548 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2549 root = btrfs_read_tree_root(tree_root, &location);
2550 if (IS_ERR(root))
2551 return PTR_ERR(root);
2552 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2553 fs_info->free_space_root = root;
2554 }
2555
4bbcaa64
ES
2556 return 0;
2557}
2558
ad2b2c80
AV
2559int open_ctree(struct super_block *sb,
2560 struct btrfs_fs_devices *fs_devices,
2561 char *options)
2e635a27 2562{
db94535d
CM
2563 u32 sectorsize;
2564 u32 nodesize;
87ee04eb 2565 u32 stripesize;
84234f3a 2566 u64 generation;
f2b636e8 2567 u64 features;
3de4586c 2568 struct btrfs_key location;
a061fc8d 2569 struct buffer_head *bh;
4d34b278 2570 struct btrfs_super_block *disk_super;
815745cf 2571 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2572 struct btrfs_root *tree_root;
4d34b278 2573 struct btrfs_root *chunk_root;
eb60ceac 2574 int ret;
e58ca020 2575 int err = -EINVAL;
af31f5e5
CM
2576 int num_backups_tried = 0;
2577 int backup_index = 0;
5cdc7ad3 2578 int max_active;
6675df31 2579 int clear_free_space_tree = 0;
4543df7e 2580
74e4d827
DS
2581 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2582 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2583 if (!tree_root || !chunk_root) {
39279cc3
CM
2584 err = -ENOMEM;
2585 goto fail;
2586 }
76dda93c
YZ
2587
2588 ret = init_srcu_struct(&fs_info->subvol_srcu);
2589 if (ret) {
2590 err = ret;
2591 goto fail;
2592 }
2593
2594 ret = setup_bdi(fs_info, &fs_info->bdi);
2595 if (ret) {
2596 err = ret;
2597 goto fail_srcu;
2598 }
2599
908c7f19 2600 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2601 if (ret) {
2602 err = ret;
2603 goto fail_bdi;
2604 }
09cbfeaf 2605 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2606 (1 + ilog2(nr_cpu_ids));
2607
908c7f19 2608 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2609 if (ret) {
2610 err = ret;
2611 goto fail_dirty_metadata_bytes;
2612 }
2613
908c7f19 2614 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2615 if (ret) {
2616 err = ret;
2617 goto fail_delalloc_bytes;
2618 }
2619
76dda93c
YZ
2620 fs_info->btree_inode = new_inode(sb);
2621 if (!fs_info->btree_inode) {
2622 err = -ENOMEM;
c404e0dc 2623 goto fail_bio_counter;
76dda93c
YZ
2624 }
2625
a6591715 2626 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2627
76dda93c 2628 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2629 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2630 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2631 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2632 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2633 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2634 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2635 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2636 spin_lock_init(&fs_info->trans_lock);
76dda93c 2637 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2638 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2639 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2640 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2641 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2642 spin_lock_init(&fs_info->super_lock);
fcebe456 2643 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2644 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2645 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2646 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2647 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2648 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2649 mutex_init(&fs_info->reloc_mutex);
573bfb72 2650 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2651 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2652 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2653
0b86a832 2654 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2655 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2656 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2657 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2658 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2659 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2660 BTRFS_BLOCK_RSV_GLOBAL);
2661 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2662 BTRFS_BLOCK_RSV_DELALLOC);
2663 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2664 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2665 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2666 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2667 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2668 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2669 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2670 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2671 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2672 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2673 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2674 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2675 atomic64_set(&fs_info->tree_mod_seq, 0);
9e7cc91a 2676 fs_info->fs_frozen = 0;
e20d96d6 2677 fs_info->sb = sb;
95ac567a 2678 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2679 fs_info->metadata_ratio = 0;
4cb5300b 2680 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2681 fs_info->free_chunk_space = 0;
f29021b2 2682 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2683 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2684 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2685 /* readahead state */
d0164adc 2686 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2687 spin_lock_init(&fs_info->reada_lock);
c8b97818 2688
b34b086c
CM
2689 fs_info->thread_pool_size = min_t(unsigned long,
2690 num_online_cpus() + 2, 8);
0afbaf8c 2691
199c2a9c
MX
2692 INIT_LIST_HEAD(&fs_info->ordered_roots);
2693 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7 2694 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2695 GFP_KERNEL);
16cdcec7
MX
2696 if (!fs_info->delayed_root) {
2697 err = -ENOMEM;
2698 goto fail_iput;
2699 }
2700 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2701
638aa7ed 2702 btrfs_init_scrub(fs_info);
21adbd5c
SB
2703#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2704 fs_info->check_integrity_print_mask = 0;
2705#endif
779a65a4 2706 btrfs_init_balance(fs_info);
21c7e756 2707 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2708
a061fc8d
CM
2709 sb->s_blocksize = 4096;
2710 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2711 sb->s_bdi = &fs_info->bdi;
a061fc8d 2712
f37938e0 2713 btrfs_init_btree_inode(fs_info, tree_root);
76dda93c 2714
0f9dd46c 2715 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2716 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2717 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2718
11833d66 2719 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2720 fs_info->btree_inode->i_mapping);
11833d66 2721 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2722 fs_info->btree_inode->i_mapping);
11833d66 2723 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2724 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2725
5a3f23d5 2726 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2727 mutex_init(&fs_info->tree_log_mutex);
925baedd 2728 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2729 mutex_init(&fs_info->transaction_kthread_mutex);
2730 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2731 mutex_init(&fs_info->volume_mutex);
1bbc621e 2732 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2733 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2734 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2735 init_rwsem(&fs_info->subvol_sem);
803b2f54 2736 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2737
ad618368 2738 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2739 btrfs_init_qgroup(fs_info);
416ac51d 2740
fa9c0d79
CM
2741 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2742 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2743
e6dcd2dc 2744 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2745 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2746 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2747 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2748
04216820
FM
2749 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2750
53b381b3
DW
2751 ret = btrfs_alloc_stripe_hash_table(fs_info);
2752 if (ret) {
83c8266a 2753 err = ret;
53b381b3
DW
2754 goto fail_alloc;
2755 }
2756
707e8a07 2757 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2758 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2759
3c4bb26b 2760 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2761
2762 /*
2763 * Read super block and check the signature bytes only
2764 */
a512bbf8 2765 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2766 if (IS_ERR(bh)) {
2767 err = PTR_ERR(bh);
16cdcec7 2768 goto fail_alloc;
20b45077 2769 }
39279cc3 2770
1104a885
DS
2771 /*
2772 * We want to check superblock checksum, the type is stored inside.
2773 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2774 */
ab8d0fc4 2775 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2776 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2777 err = -EINVAL;
b2acdddf 2778 brelse(bh);
1104a885
DS
2779 goto fail_alloc;
2780 }
2781
2782 /*
2783 * super_copy is zeroed at allocation time and we never touch the
2784 * following bytes up to INFO_SIZE, the checksum is calculated from
2785 * the whole block of INFO_SIZE
2786 */
6c41761f
DS
2787 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2788 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2789 sizeof(*fs_info->super_for_commit));
a061fc8d 2790 brelse(bh);
5f39d397 2791
6c41761f 2792 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2793
1104a885
DS
2794 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2795 if (ret) {
05135f59 2796 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2797 err = -EINVAL;
2798 goto fail_alloc;
2799 }
2800
6c41761f 2801 disk_super = fs_info->super_copy;
0f7d52f4 2802 if (!btrfs_super_root(disk_super))
16cdcec7 2803 goto fail_alloc;
0f7d52f4 2804
acce952b 2805 /* check FS state, whether FS is broken. */
87533c47
MX
2806 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2807 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2808
af31f5e5
CM
2809 /*
2810 * run through our array of backup supers and setup
2811 * our ring pointer to the oldest one
2812 */
2813 generation = btrfs_super_generation(disk_super);
2814 find_oldest_super_backup(fs_info, generation);
2815
75e7cb7f
LB
2816 /*
2817 * In the long term, we'll store the compression type in the super
2818 * block, and it'll be used for per file compression control.
2819 */
2820 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2821
96da0919 2822 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2b82032c
YZ
2823 if (ret) {
2824 err = ret;
16cdcec7 2825 goto fail_alloc;
2b82032c 2826 }
dfe25020 2827
f2b636e8
JB
2828 features = btrfs_super_incompat_flags(disk_super) &
2829 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2830 if (features) {
05135f59
DS
2831 btrfs_err(fs_info,
2832 "cannot mount because of unsupported optional features (%llx)",
2833 features);
f2b636e8 2834 err = -EINVAL;
16cdcec7 2835 goto fail_alloc;
f2b636e8
JB
2836 }
2837
5d4f98a2 2838 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2839 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2840 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2841 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2842
3173a18f 2843 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2844 btrfs_info(fs_info, "has skinny extents");
3173a18f 2845
727011e0
CM
2846 /*
2847 * flag our filesystem as having big metadata blocks if
2848 * they are bigger than the page size
2849 */
09cbfeaf 2850 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2851 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2852 btrfs_info(fs_info,
2853 "flagging fs with big metadata feature");
727011e0
CM
2854 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2855 }
2856
bc3f116f 2857 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2858 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2859 stripesize = sectorsize;
707e8a07 2860 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2861 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2862
2863 /*
2864 * mixed block groups end up with duplicate but slightly offset
2865 * extent buffers for the same range. It leads to corruptions
2866 */
2867 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2868 (sectorsize != nodesize)) {
05135f59
DS
2869 btrfs_err(fs_info,
2870"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2871 nodesize, sectorsize);
bc3f116f
CM
2872 goto fail_alloc;
2873 }
2874
ceda0864
MX
2875 /*
2876 * Needn't use the lock because there is no other task which will
2877 * update the flag.
2878 */
a6fa6fae 2879 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2880
f2b636e8
JB
2881 features = btrfs_super_compat_ro_flags(disk_super) &
2882 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2883 if (!(sb->s_flags & MS_RDONLY) && features) {
05135f59
DS
2884 btrfs_err(fs_info,
2885 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2886 features);
f2b636e8 2887 err = -EINVAL;
16cdcec7 2888 goto fail_alloc;
f2b636e8 2889 }
61d92c32 2890
5cdc7ad3 2891 max_active = fs_info->thread_pool_size;
61d92c32 2892
2a458198
ES
2893 ret = btrfs_init_workqueues(fs_info, fs_devices);
2894 if (ret) {
2895 err = ret;
0dc3b84a
JB
2896 goto fail_sb_buffer;
2897 }
4543df7e 2898
4575c9cc 2899 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818 2900 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
09cbfeaf 2901 SZ_4M / PAGE_SIZE);
4575c9cc 2902
db94535d 2903 tree_root->nodesize = nodesize;
db94535d 2904 tree_root->sectorsize = sectorsize;
87ee04eb 2905 tree_root->stripesize = stripesize;
a061fc8d
CM
2906
2907 sb->s_blocksize = sectorsize;
2908 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2909
925baedd 2910 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2911 ret = btrfs_read_sys_array(tree_root);
925baedd 2912 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2913 if (ret) {
05135f59 2914 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2915 goto fail_sb_buffer;
84eed90f 2916 }
0b86a832 2917
84234f3a 2918 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2919
707e8a07
DS
2920 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2921 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2922
2923 chunk_root->node = read_tree_block(chunk_root,
2924 btrfs_super_chunk_root(disk_super),
ce86cd59 2925 generation);
64c043de
LB
2926 if (IS_ERR(chunk_root->node) ||
2927 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2928 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2929 if (!IS_ERR(chunk_root->node))
2930 free_extent_buffer(chunk_root->node);
95ab1f64 2931 chunk_root->node = NULL;
af31f5e5 2932 goto fail_tree_roots;
83121942 2933 }
5d4f98a2
YZ
2934 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2935 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2936
e17cade2 2937 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2938 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2939
0b86a832 2940 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2941 if (ret) {
05135f59 2942 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2943 goto fail_tree_roots;
2b82032c 2944 }
0b86a832 2945
8dabb742
SB
2946 /*
2947 * keep the device that is marked to be the target device for the
2948 * dev_replace procedure
2949 */
9eaed21e 2950 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2951
a6b0d5c8 2952 if (!fs_devices->latest_bdev) {
05135f59 2953 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2954 goto fail_tree_roots;
2955 }
2956
af31f5e5 2957retry_root_backup:
84234f3a 2958 generation = btrfs_super_generation(disk_super);
0b86a832 2959
e20d96d6 2960 tree_root->node = read_tree_block(tree_root,
db94535d 2961 btrfs_super_root(disk_super),
ce86cd59 2962 generation);
64c043de
LB
2963 if (IS_ERR(tree_root->node) ||
2964 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2965 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2966 if (!IS_ERR(tree_root->node))
2967 free_extent_buffer(tree_root->node);
95ab1f64 2968 tree_root->node = NULL;
af31f5e5 2969 goto recovery_tree_root;
83121942 2970 }
af31f5e5 2971
5d4f98a2
YZ
2972 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2973 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2974 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2975
f32e48e9
CR
2976 mutex_lock(&tree_root->objectid_mutex);
2977 ret = btrfs_find_highest_objectid(tree_root,
2978 &tree_root->highest_objectid);
2979 if (ret) {
2980 mutex_unlock(&tree_root->objectid_mutex);
2981 goto recovery_tree_root;
2982 }
2983
2984 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2985
2986 mutex_unlock(&tree_root->objectid_mutex);
2987
4bbcaa64
ES
2988 ret = btrfs_read_roots(fs_info, tree_root);
2989 if (ret)
af31f5e5 2990 goto recovery_tree_root;
f7a81ea4 2991
8929ecfa
YZ
2992 fs_info->generation = generation;
2993 fs_info->last_trans_committed = generation;
8929ecfa 2994
68310a5e
ID
2995 ret = btrfs_recover_balance(fs_info);
2996 if (ret) {
05135f59 2997 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
2998 goto fail_block_groups;
2999 }
3000
733f4fbb
SB
3001 ret = btrfs_init_dev_stats(fs_info);
3002 if (ret) {
05135f59 3003 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3004 goto fail_block_groups;
3005 }
3006
8dabb742
SB
3007 ret = btrfs_init_dev_replace(fs_info);
3008 if (ret) {
05135f59 3009 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3010 goto fail_block_groups;
3011 }
3012
9eaed21e 3013 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 3014
b7c35e81
AJ
3015 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3016 if (ret) {
05135f59
DS
3017 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3018 ret);
b7c35e81
AJ
3019 goto fail_block_groups;
3020 }
3021
3022 ret = btrfs_sysfs_add_device(fs_devices);
3023 if (ret) {
05135f59
DS
3024 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3025 ret);
b7c35e81
AJ
3026 goto fail_fsdev_sysfs;
3027 }
3028
96f3136e 3029 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3030 if (ret) {
05135f59 3031 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3032 goto fail_fsdev_sysfs;
c59021f8 3033 }
3034
c59021f8 3035 ret = btrfs_init_space_info(fs_info);
3036 if (ret) {
05135f59 3037 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3038 goto fail_sysfs;
c59021f8 3039 }
3040
4bbcaa64 3041 ret = btrfs_read_block_groups(fs_info->extent_root);
1b1d1f66 3042 if (ret) {
05135f59 3043 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3044 goto fail_sysfs;
1b1d1f66 3045 }
5af3e8cc
SB
3046 fs_info->num_tolerated_disk_barrier_failures =
3047 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
3048 if (fs_info->fs_devices->missing_devices >
3049 fs_info->num_tolerated_disk_barrier_failures &&
3050 !(sb->s_flags & MS_RDONLY)) {
05135f59
DS
3051 btrfs_warn(fs_info,
3052"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
78fa1770
ZL
3053 fs_info->fs_devices->missing_devices,
3054 fs_info->num_tolerated_disk_barrier_failures);
2365dd3c 3055 goto fail_sysfs;
292fd7fc 3056 }
9078a3e1 3057
a74a4b97
CM
3058 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3059 "btrfs-cleaner");
57506d50 3060 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3061 goto fail_sysfs;
a74a4b97
CM
3062
3063 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3064 tree_root,
3065 "btrfs-transaction");
57506d50 3066 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3067 goto fail_cleaner;
a74a4b97 3068
3cdde224
JM
3069 if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3070 !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
c289811c 3071 !fs_info->fs_devices->rotating) {
05135f59 3072 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
c289811c
CM
3073 btrfs_set_opt(fs_info->mount_opt, SSD);
3074 }
3075
572d9ab7 3076 /*
01327610 3077 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3078 * not have to wait for transaction commit
3079 */
3080 btrfs_apply_pending_changes(fs_info);
3818aea2 3081
21adbd5c 3082#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3cdde224 3083 if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
21adbd5c 3084 ret = btrfsic_mount(tree_root, fs_devices,
3cdde224 3085 btrfs_test_opt(tree_root->fs_info,
21adbd5c
SB
3086 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3087 1 : 0,
3088 fs_info->check_integrity_print_mask);
3089 if (ret)
05135f59
DS
3090 btrfs_warn(fs_info,
3091 "failed to initialize integrity check module: %d",
3092 ret);
21adbd5c
SB
3093 }
3094#endif
bcef60f2
AJ
3095 ret = btrfs_read_qgroup_config(fs_info);
3096 if (ret)
3097 goto fail_trans_kthread;
21adbd5c 3098
96da0919
QW
3099 /* do not make disk changes in broken FS or nologreplay is given */
3100 if (btrfs_super_log_root(disk_super) != 0 &&
3cdde224 3101 !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
63443bf5 3102 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3103 if (ret) {
63443bf5 3104 err = ret;
28c16cbb 3105 goto fail_qgroup;
79787eaa 3106 }
e02119d5 3107 }
1a40e23b 3108
76dda93c 3109 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 3110 if (ret)
28c16cbb 3111 goto fail_qgroup;
76dda93c 3112
7c2ca468 3113 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3114 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3115 if (ret)
28c16cbb 3116 goto fail_qgroup;
90c711ab
ZB
3117
3118 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3119 ret = btrfs_recover_relocation(tree_root);
90c711ab 3120 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3121 if (ret < 0) {
05135f59
DS
3122 btrfs_warn(fs_info, "failed to recover relocation: %d",
3123 ret);
d7ce5843 3124 err = -EINVAL;
bcef60f2 3125 goto fail_qgroup;
d7ce5843 3126 }
7c2ca468 3127 }
1a40e23b 3128
3de4586c
CM
3129 location.objectid = BTRFS_FS_TREE_OBJECTID;
3130 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3131 location.offset = 0;
3de4586c 3132
3de4586c 3133 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3134 if (IS_ERR(fs_info->fs_root)) {
3135 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3136 goto fail_qgroup;
3140c9a3 3137 }
c289811c 3138
2b6ba629
ID
3139 if (sb->s_flags & MS_RDONLY)
3140 return 0;
59641015 3141
f8d468a1
OS
3142 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3143 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3144 clear_free_space_tree = 1;
3145 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3146 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3147 btrfs_warn(fs_info, "free space tree is invalid");
3148 clear_free_space_tree = 1;
3149 }
3150
3151 if (clear_free_space_tree) {
f8d468a1
OS
3152 btrfs_info(fs_info, "clearing free space tree");
3153 ret = btrfs_clear_free_space_tree(fs_info);
3154 if (ret) {
3155 btrfs_warn(fs_info,
3156 "failed to clear free space tree: %d", ret);
3157 close_ctree(tree_root);
3158 return ret;
3159 }
3160 }
3161
3cdde224 3162 if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
511711af 3163 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3164 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3165 ret = btrfs_create_free_space_tree(fs_info);
3166 if (ret) {
05135f59
DS
3167 btrfs_warn(fs_info,
3168 "failed to create free space tree: %d", ret);
511711af
CM
3169 close_ctree(tree_root);
3170 return ret;
3171 }
3172 }
3173
2b6ba629
ID
3174 down_read(&fs_info->cleanup_work_sem);
3175 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3176 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3177 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
3178 close_ctree(tree_root);
3179 return ret;
3180 }
3181 up_read(&fs_info->cleanup_work_sem);
59641015 3182
2b6ba629
ID
3183 ret = btrfs_resume_balance_async(fs_info);
3184 if (ret) {
05135f59 3185 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
2b6ba629
ID
3186 close_ctree(tree_root);
3187 return ret;
e3acc2a6
JB
3188 }
3189
8dabb742
SB
3190 ret = btrfs_resume_dev_replace_async(fs_info);
3191 if (ret) {
05135f59 3192 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
8dabb742
SB
3193 close_ctree(tree_root);
3194 return ret;
3195 }
3196
b382a324
JS
3197 btrfs_qgroup_rescan_resume(fs_info);
3198
4bbcaa64 3199 if (!fs_info->uuid_root) {
05135f59 3200 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3201 ret = btrfs_create_uuid_tree(fs_info);
3202 if (ret) {
05135f59
DS
3203 btrfs_warn(fs_info,
3204 "failed to create the UUID tree: %d", ret);
f7a81ea4
SB
3205 close_ctree(tree_root);
3206 return ret;
3207 }
3cdde224 3208 } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3209 fs_info->generation !=
3210 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3211 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3212 ret = btrfs_check_uuid_tree(fs_info);
3213 if (ret) {
05135f59
DS
3214 btrfs_warn(fs_info,
3215 "failed to check the UUID tree: %d", ret);
70f80175
SB
3216 close_ctree(tree_root);
3217 return ret;
3218 }
3219 } else {
afcdd129 3220 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3221 }
afcdd129 3222 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3223
8dcddfa0
QW
3224 /*
3225 * backuproot only affect mount behavior, and if open_ctree succeeded,
3226 * no need to keep the flag
3227 */
3228 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3229
ad2b2c80 3230 return 0;
39279cc3 3231
bcef60f2
AJ
3232fail_qgroup:
3233 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3234fail_trans_kthread:
3235 kthread_stop(fs_info->transaction_kthread);
54067ae9 3236 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3237 btrfs_free_fs_roots(fs_info);
3f157a2f 3238fail_cleaner:
a74a4b97 3239 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3240
3241 /*
3242 * make sure we're done with the btree inode before we stop our
3243 * kthreads
3244 */
3245 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3246
2365dd3c 3247fail_sysfs:
6618a59b 3248 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3249
b7c35e81
AJ
3250fail_fsdev_sysfs:
3251 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3252
1b1d1f66 3253fail_block_groups:
54067ae9 3254 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3255 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3256
3257fail_tree_roots:
3258 free_root_pointers(fs_info, 1);
2b8195bb 3259 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3260
39279cc3 3261fail_sb_buffer:
7abadb64 3262 btrfs_stop_all_workers(fs_info);
16cdcec7 3263fail_alloc:
4543df7e 3264fail_iput:
586e46e2
ID
3265 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3266
4543df7e 3267 iput(fs_info->btree_inode);
c404e0dc
MX
3268fail_bio_counter:
3269 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3270fail_delalloc_bytes:
3271 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3272fail_dirty_metadata_bytes:
3273 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3274fail_bdi:
7e662854 3275 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3276fail_srcu:
3277 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3278fail:
53b381b3 3279 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3280 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3281 return err;
af31f5e5
CM
3282
3283recovery_tree_root:
3cdde224 3284 if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
af31f5e5
CM
3285 goto fail_tree_roots;
3286
3287 free_root_pointers(fs_info, 0);
3288
3289 /* don't use the log in recovery mode, it won't be valid */
3290 btrfs_set_super_log_root(disk_super, 0);
3291
3292 /* we can't trust the free space cache either */
3293 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3294
3295 ret = next_root_backup(fs_info, fs_info->super_copy,
3296 &num_backups_tried, &backup_index);
3297 if (ret == -1)
3298 goto fail_block_groups;
3299 goto retry_root_backup;
eb60ceac
CM
3300}
3301
f2984462
CM
3302static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3303{
f2984462
CM
3304 if (uptodate) {
3305 set_buffer_uptodate(bh);
3306 } else {
442a4f63
SB
3307 struct btrfs_device *device = (struct btrfs_device *)
3308 bh->b_private;
3309
b14af3b4
DS
3310 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3311 "lost page write due to IO error on %s",
606686ee 3312 rcu_str_deref(device->name));
01327610 3313 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3314 * our own ways of dealing with the IO errors
3315 */
f2984462 3316 clear_buffer_uptodate(bh);
442a4f63 3317 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3318 }
3319 unlock_buffer(bh);
3320 put_bh(bh);
3321}
3322
29c36d72
AJ
3323int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3324 struct buffer_head **bh_ret)
3325{
3326 struct buffer_head *bh;
3327 struct btrfs_super_block *super;
3328 u64 bytenr;
3329
3330 bytenr = btrfs_sb_offset(copy_num);
3331 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3332 return -EINVAL;
3333
3334 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3335 /*
3336 * If we fail to read from the underlying devices, as of now
3337 * the best option we have is to mark it EIO.
3338 */
3339 if (!bh)
3340 return -EIO;
3341
3342 super = (struct btrfs_super_block *)bh->b_data;
3343 if (btrfs_super_bytenr(super) != bytenr ||
3344 btrfs_super_magic(super) != BTRFS_MAGIC) {
3345 brelse(bh);
3346 return -EINVAL;
3347 }
3348
3349 *bh_ret = bh;
3350 return 0;
3351}
3352
3353
a512bbf8
YZ
3354struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3355{
3356 struct buffer_head *bh;
3357 struct buffer_head *latest = NULL;
3358 struct btrfs_super_block *super;
3359 int i;
3360 u64 transid = 0;
92fc03fb 3361 int ret = -EINVAL;
a512bbf8
YZ
3362
3363 /* we would like to check all the supers, but that would make
3364 * a btrfs mount succeed after a mkfs from a different FS.
3365 * So, we need to add a special mount option to scan for
3366 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3367 */
3368 for (i = 0; i < 1; i++) {
29c36d72
AJ
3369 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3370 if (ret)
a512bbf8
YZ
3371 continue;
3372
3373 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3374
3375 if (!latest || btrfs_super_generation(super) > transid) {
3376 brelse(latest);
3377 latest = bh;
3378 transid = btrfs_super_generation(super);
3379 } else {
3380 brelse(bh);
3381 }
3382 }
92fc03fb
AJ
3383
3384 if (!latest)
3385 return ERR_PTR(ret);
3386
a512bbf8
YZ
3387 return latest;
3388}
3389
4eedeb75
HH
3390/*
3391 * this should be called twice, once with wait == 0 and
3392 * once with wait == 1. When wait == 0 is done, all the buffer heads
3393 * we write are pinned.
3394 *
3395 * They are released when wait == 1 is done.
3396 * max_mirrors must be the same for both runs, and it indicates how
3397 * many supers on this one device should be written.
3398 *
3399 * max_mirrors == 0 means to write them all.
3400 */
a512bbf8
YZ
3401static int write_dev_supers(struct btrfs_device *device,
3402 struct btrfs_super_block *sb,
3403 int do_barriers, int wait, int max_mirrors)
3404{
3405 struct buffer_head *bh;
3406 int i;
3407 int ret;
3408 int errors = 0;
3409 u32 crc;
3410 u64 bytenr;
a512bbf8
YZ
3411
3412 if (max_mirrors == 0)
3413 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3414
a512bbf8
YZ
3415 for (i = 0; i < max_mirrors; i++) {
3416 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3417 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3418 device->commit_total_bytes)
a512bbf8
YZ
3419 break;
3420
3421 if (wait) {
3422 bh = __find_get_block(device->bdev, bytenr / 4096,
3423 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3424 if (!bh) {
3425 errors++;
3426 continue;
3427 }
a512bbf8 3428 wait_on_buffer(bh);
4eedeb75
HH
3429 if (!buffer_uptodate(bh))
3430 errors++;
3431
3432 /* drop our reference */
3433 brelse(bh);
3434
3435 /* drop the reference from the wait == 0 run */
3436 brelse(bh);
3437 continue;
a512bbf8
YZ
3438 } else {
3439 btrfs_set_super_bytenr(sb, bytenr);
3440
3441 crc = ~(u32)0;
b0496686 3442 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3443 BTRFS_CSUM_SIZE, crc,
3444 BTRFS_SUPER_INFO_SIZE -
3445 BTRFS_CSUM_SIZE);
3446 btrfs_csum_final(crc, sb->csum);
3447
4eedeb75
HH
3448 /*
3449 * one reference for us, and we leave it for the
3450 * caller
3451 */
a512bbf8
YZ
3452 bh = __getblk(device->bdev, bytenr / 4096,
3453 BTRFS_SUPER_INFO_SIZE);
634554dc 3454 if (!bh) {
f14d104d
DS
3455 btrfs_err(device->dev_root->fs_info,
3456 "couldn't get super buffer head for bytenr %llu",
3457 bytenr);
634554dc
JB
3458 errors++;
3459 continue;
3460 }
3461
a512bbf8
YZ
3462 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3463
4eedeb75 3464 /* one reference for submit_bh */
a512bbf8 3465 get_bh(bh);
4eedeb75
HH
3466
3467 set_buffer_uptodate(bh);
a512bbf8
YZ
3468 lock_buffer(bh);
3469 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3470 bh->b_private = device;
a512bbf8
YZ
3471 }
3472
387125fc
CM
3473 /*
3474 * we fua the first super. The others we allow
3475 * to go down lazy.
3476 */
e8117c26 3477 if (i == 0)
2a222ca9 3478 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
e8117c26 3479 else
2a222ca9 3480 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
4eedeb75 3481 if (ret)
a512bbf8 3482 errors++;
a512bbf8
YZ
3483 }
3484 return errors < i ? 0 : -1;
3485}
3486
387125fc
CM
3487/*
3488 * endio for the write_dev_flush, this will wake anyone waiting
3489 * for the barrier when it is done
3490 */
4246a0b6 3491static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3492{
387125fc
CM
3493 if (bio->bi_private)
3494 complete(bio->bi_private);
3495 bio_put(bio);
3496}
3497
3498/*
3499 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3500 * sent down. With wait == 1, it waits for the previous flush.
3501 *
3502 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3503 * capable
3504 */
3505static int write_dev_flush(struct btrfs_device *device, int wait)
3506{
3507 struct bio *bio;
3508 int ret = 0;
3509
3510 if (device->nobarriers)
3511 return 0;
3512
3513 if (wait) {
3514 bio = device->flush_bio;
3515 if (!bio)
3516 return 0;
3517
3518 wait_for_completion(&device->flush_wait);
3519
4246a0b6
CH
3520 if (bio->bi_error) {
3521 ret = bio->bi_error;
5af3e8cc
SB
3522 btrfs_dev_stat_inc_and_print(device,
3523 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3524 }
3525
3526 /* drop the reference from the wait == 0 run */
3527 bio_put(bio);
3528 device->flush_bio = NULL;
3529
3530 return ret;
3531 }
3532
3533 /*
3534 * one reference for us, and we leave it for the
3535 * caller
3536 */
9c017abc 3537 device->flush_bio = NULL;
9be3395b 3538 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3539 if (!bio)
3540 return -ENOMEM;
3541
3542 bio->bi_end_io = btrfs_end_empty_barrier;
3543 bio->bi_bdev = device->bdev;
37226b21 3544 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
387125fc
CM
3545 init_completion(&device->flush_wait);
3546 bio->bi_private = &device->flush_wait;
3547 device->flush_bio = bio;
3548
3549 bio_get(bio);
4e49ea4a 3550 btrfsic_submit_bio(bio);
387125fc
CM
3551
3552 return 0;
3553}
3554
3555/*
3556 * send an empty flush down to each device in parallel,
3557 * then wait for them
3558 */
3559static int barrier_all_devices(struct btrfs_fs_info *info)
3560{
3561 struct list_head *head;
3562 struct btrfs_device *dev;
5af3e8cc
SB
3563 int errors_send = 0;
3564 int errors_wait = 0;
387125fc
CM
3565 int ret;
3566
3567 /* send down all the barriers */
3568 head = &info->fs_devices->devices;
3569 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3570 if (dev->missing)
3571 continue;
387125fc 3572 if (!dev->bdev) {
5af3e8cc 3573 errors_send++;
387125fc
CM
3574 continue;
3575 }
3576 if (!dev->in_fs_metadata || !dev->writeable)
3577 continue;
3578
3579 ret = write_dev_flush(dev, 0);
3580 if (ret)
5af3e8cc 3581 errors_send++;
387125fc
CM
3582 }
3583
3584 /* wait for all the barriers */
3585 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3586 if (dev->missing)
3587 continue;
387125fc 3588 if (!dev->bdev) {
5af3e8cc 3589 errors_wait++;
387125fc
CM
3590 continue;
3591 }
3592 if (!dev->in_fs_metadata || !dev->writeable)
3593 continue;
3594
3595 ret = write_dev_flush(dev, 1);
3596 if (ret)
5af3e8cc 3597 errors_wait++;
387125fc 3598 }
5af3e8cc
SB
3599 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3600 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3601 return -EIO;
3602 return 0;
3603}
3604
943c6e99
ZL
3605int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3606{
8789f4fe
ZL
3607 int raid_type;
3608 int min_tolerated = INT_MAX;
943c6e99 3609
8789f4fe
ZL
3610 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3611 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3612 min_tolerated = min(min_tolerated,
3613 btrfs_raid_array[BTRFS_RAID_SINGLE].
3614 tolerated_failures);
943c6e99 3615
8789f4fe
ZL
3616 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3617 if (raid_type == BTRFS_RAID_SINGLE)
3618 continue;
3619 if (!(flags & btrfs_raid_group[raid_type]))
3620 continue;
3621 min_tolerated = min(min_tolerated,
3622 btrfs_raid_array[raid_type].
3623 tolerated_failures);
3624 }
943c6e99 3625
8789f4fe 3626 if (min_tolerated == INT_MAX) {
ab8d0fc4 3627 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3628 min_tolerated = 0;
3629 }
3630
3631 return min_tolerated;
943c6e99
ZL
3632}
3633
5af3e8cc
SB
3634int btrfs_calc_num_tolerated_disk_barrier_failures(
3635 struct btrfs_fs_info *fs_info)
3636{
3637 struct btrfs_ioctl_space_info space;
3638 struct btrfs_space_info *sinfo;
3639 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3640 BTRFS_BLOCK_GROUP_SYSTEM,
3641 BTRFS_BLOCK_GROUP_METADATA,
3642 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
5af3e8cc
SB
3643 int i;
3644 int c;
3645 int num_tolerated_disk_barrier_failures =
3646 (int)fs_info->fs_devices->num_devices;
3647
2c458045 3648 for (i = 0; i < ARRAY_SIZE(types); i++) {
5af3e8cc
SB
3649 struct btrfs_space_info *tmp;
3650
3651 sinfo = NULL;
3652 rcu_read_lock();
3653 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3654 if (tmp->flags == types[i]) {
3655 sinfo = tmp;
3656 break;
3657 }
3658 }
3659 rcu_read_unlock();
3660
3661 if (!sinfo)
3662 continue;
3663
3664 down_read(&sinfo->groups_sem);
3665 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2c458045
ZL
3666 u64 flags;
3667
3668 if (list_empty(&sinfo->block_groups[c]))
3669 continue;
3670
3671 btrfs_get_block_group_info(&sinfo->block_groups[c],
3672 &space);
3673 if (space.total_bytes == 0 || space.used_bytes == 0)
3674 continue;
3675 flags = space.flags;
943c6e99
ZL
3676
3677 num_tolerated_disk_barrier_failures = min(
3678 num_tolerated_disk_barrier_failures,
3679 btrfs_get_num_tolerated_disk_barrier_failures(
3680 flags));
5af3e8cc
SB
3681 }
3682 up_read(&sinfo->groups_sem);
3683 }
3684
3685 return num_tolerated_disk_barrier_failures;
3686}
3687
48a3b636 3688static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3689{
e5e9a520 3690 struct list_head *head;
f2984462 3691 struct btrfs_device *dev;
a061fc8d 3692 struct btrfs_super_block *sb;
f2984462 3693 struct btrfs_dev_item *dev_item;
f2984462
CM
3694 int ret;
3695 int do_barriers;
a236aed1
CM
3696 int max_errors;
3697 int total_errors = 0;
a061fc8d 3698 u64 flags;
f2984462 3699
3cdde224 3700 do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
af31f5e5 3701 backup_super_roots(root->fs_info);
f2984462 3702
6c41761f 3703 sb = root->fs_info->super_for_commit;
a061fc8d 3704 dev_item = &sb->dev_item;
e5e9a520 3705
174ba509 3706 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3707 head = &root->fs_info->fs_devices->devices;
d7306801 3708 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3709
5af3e8cc
SB
3710 if (do_barriers) {
3711 ret = barrier_all_devices(root->fs_info);
3712 if (ret) {
3713 mutex_unlock(
3714 &root->fs_info->fs_devices->device_list_mutex);
34d97007 3715 btrfs_handle_fs_error(root->fs_info, ret,
5af3e8cc
SB
3716 "errors while submitting device barriers.");
3717 return ret;
3718 }
3719 }
387125fc 3720
1f78160c 3721 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3722 if (!dev->bdev) {
3723 total_errors++;
3724 continue;
3725 }
2b82032c 3726 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3727 continue;
3728
2b82032c 3729 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3730 btrfs_set_stack_device_type(dev_item, dev->type);
3731 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3732 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3733 dev->commit_total_bytes);
ce7213c7
MX
3734 btrfs_set_stack_device_bytes_used(dev_item,
3735 dev->commit_bytes_used);
a061fc8d
CM
3736 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3737 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3738 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3739 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3740 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3741
a061fc8d
CM
3742 flags = btrfs_super_flags(sb);
3743 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3744
a512bbf8 3745 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3746 if (ret)
3747 total_errors++;
f2984462 3748 }
a236aed1 3749 if (total_errors > max_errors) {
efe120a0 3750 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3751 total_errors);
a724b436 3752 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3753
9d565ba4 3754 /* FUA is masked off if unsupported and can't be the reason */
34d97007 3755 btrfs_handle_fs_error(root->fs_info, -EIO,
9d565ba4
SB
3756 "%d errors while writing supers", total_errors);
3757 return -EIO;
a236aed1 3758 }
f2984462 3759
a512bbf8 3760 total_errors = 0;
1f78160c 3761 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3762 if (!dev->bdev)
3763 continue;
2b82032c 3764 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3765 continue;
3766
a512bbf8
YZ
3767 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3768 if (ret)
3769 total_errors++;
f2984462 3770 }
174ba509 3771 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3772 if (total_errors > max_errors) {
34d97007 3773 btrfs_handle_fs_error(root->fs_info, -EIO,
79787eaa
JM
3774 "%d errors while writing supers", total_errors);
3775 return -EIO;
a236aed1 3776 }
f2984462
CM
3777 return 0;
3778}
3779
a512bbf8
YZ
3780int write_ctree_super(struct btrfs_trans_handle *trans,
3781 struct btrfs_root *root, int max_mirrors)
eb60ceac 3782{
f570e757 3783 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3784}
3785
cb517eab
MX
3786/* Drop a fs root from the radix tree and free it. */
3787void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3788 struct btrfs_root *root)
2619ba1f 3789{
4df27c4d 3790 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3791 radix_tree_delete(&fs_info->fs_roots_radix,
3792 (unsigned long)root->root_key.objectid);
4df27c4d 3793 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3794
3795 if (btrfs_root_refs(&root->root_item) == 0)
3796 synchronize_srcu(&fs_info->subvol_srcu);
3797
1c1ea4f7 3798 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3799 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3800 if (root->reloc_root) {
3801 free_extent_buffer(root->reloc_root->node);
3802 free_extent_buffer(root->reloc_root->commit_root);
3803 btrfs_put_fs_root(root->reloc_root);
3804 root->reloc_root = NULL;
3805 }
3806 }
3321719e 3807
faa2dbf0
JB
3808 if (root->free_ino_pinned)
3809 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3810 if (root->free_ino_ctl)
3811 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3812 free_fs_root(root);
4df27c4d
YZ
3813}
3814
3815static void free_fs_root(struct btrfs_root *root)
3816{
57cdc8db 3817 iput(root->ino_cache_inode);
4df27c4d 3818 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3819 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3820 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3821 if (root->anon_dev)
3822 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3823 if (root->subv_writers)
3824 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3825 free_extent_buffer(root->node);
3826 free_extent_buffer(root->commit_root);
581bb050
LZ
3827 kfree(root->free_ino_ctl);
3828 kfree(root->free_ino_pinned);
d397712b 3829 kfree(root->name);
b0feb9d9 3830 btrfs_put_fs_root(root);
2619ba1f
CM
3831}
3832
cb517eab
MX
3833void btrfs_free_fs_root(struct btrfs_root *root)
3834{
3835 free_fs_root(root);
2619ba1f
CM
3836}
3837
c146afad 3838int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3839{
c146afad
YZ
3840 u64 root_objectid = 0;
3841 struct btrfs_root *gang[8];
65d33fd7
QW
3842 int i = 0;
3843 int err = 0;
3844 unsigned int ret = 0;
3845 int index;
e089f05c 3846
c146afad 3847 while (1) {
65d33fd7 3848 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3849 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3850 (void **)gang, root_objectid,
3851 ARRAY_SIZE(gang));
65d33fd7
QW
3852 if (!ret) {
3853 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3854 break;
65d33fd7 3855 }
5d4f98a2 3856 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3857
c146afad 3858 for (i = 0; i < ret; i++) {
65d33fd7
QW
3859 /* Avoid to grab roots in dead_roots */
3860 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3861 gang[i] = NULL;
3862 continue;
3863 }
3864 /* grab all the search result for later use */
3865 gang[i] = btrfs_grab_fs_root(gang[i]);
3866 }
3867 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3868
65d33fd7
QW
3869 for (i = 0; i < ret; i++) {
3870 if (!gang[i])
3871 continue;
c146afad 3872 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3873 err = btrfs_orphan_cleanup(gang[i]);
3874 if (err)
65d33fd7
QW
3875 break;
3876 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3877 }
3878 root_objectid++;
3879 }
65d33fd7
QW
3880
3881 /* release the uncleaned roots due to error */
3882 for (; i < ret; i++) {
3883 if (gang[i])
3884 btrfs_put_fs_root(gang[i]);
3885 }
3886 return err;
c146afad 3887}
a2135011 3888
c146afad
YZ
3889int btrfs_commit_super(struct btrfs_root *root)
3890{
3891 struct btrfs_trans_handle *trans;
a74a4b97 3892
c146afad 3893 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3894 btrfs_run_delayed_iputs(root);
c146afad 3895 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3896 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3897
3898 /* wait until ongoing cleanup work done */
3899 down_write(&root->fs_info->cleanup_work_sem);
3900 up_write(&root->fs_info->cleanup_work_sem);
3901
7a7eaa40 3902 trans = btrfs_join_transaction(root);
3612b495
TI
3903 if (IS_ERR(trans))
3904 return PTR_ERR(trans);
d52c1bcc 3905 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3906}
3907
3abdbd78 3908void close_ctree(struct btrfs_root *root)
c146afad
YZ
3909{
3910 struct btrfs_fs_info *fs_info = root->fs_info;
3911 int ret;
3912
afcdd129 3913 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
c146afad 3914
7343dd61 3915 /* wait for the qgroup rescan worker to stop */
d06f23d6 3916 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3917
803b2f54
SB
3918 /* wait for the uuid_scan task to finish */
3919 down(&fs_info->uuid_tree_rescan_sem);
3920 /* avoid complains from lockdep et al., set sem back to initial state */
3921 up(&fs_info->uuid_tree_rescan_sem);
3922
837d5b6e 3923 /* pause restriper - we want to resume on mount */
aa1b8cd4 3924 btrfs_pause_balance(fs_info);
837d5b6e 3925
8dabb742
SB
3926 btrfs_dev_replace_suspend_for_unmount(fs_info);
3927
aa1b8cd4 3928 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3929
3930 /* wait for any defraggers to finish */
3931 wait_event(fs_info->transaction_wait,
3932 (atomic_read(&fs_info->defrag_running) == 0));
3933
3934 /* clear out the rbtree of defraggable inodes */
26176e7c 3935 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3936
21c7e756
MX
3937 cancel_work_sync(&fs_info->async_reclaim_work);
3938
c146afad 3939 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
e44163e1
JM
3940 /*
3941 * If the cleaner thread is stopped and there are
3942 * block groups queued for removal, the deletion will be
3943 * skipped when we quit the cleaner thread.
3944 */
e44163e1 3945 btrfs_delete_unused_bgs(root->fs_info);
e44163e1 3946
acce952b 3947 ret = btrfs_commit_super(root);
3948 if (ret)
04892340 3949 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3950 }
3951
87533c47 3952 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3953 btrfs_error_commit_super(root);
0f7d52f4 3954
e3029d9f
AV
3955 kthread_stop(fs_info->transaction_kthread);
3956 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3957
afcdd129 3958 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 3959
04892340 3960 btrfs_free_qgroup_config(fs_info);
bcef60f2 3961
963d678b 3962 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3963 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3964 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3965 }
bcc63abb 3966
6618a59b 3967 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3968 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3969
faa2dbf0 3970 btrfs_free_fs_roots(fs_info);
d10c5f31 3971
1a4319cc
LB
3972 btrfs_put_block_group_cache(fs_info);
3973
2b1360da
JB
3974 btrfs_free_block_groups(fs_info);
3975
de348ee0
WS
3976 /*
3977 * we must make sure there is not any read request to
3978 * submit after we stopping all workers.
3979 */
3980 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3981 btrfs_stop_all_workers(fs_info);
3982
afcdd129 3983 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 3984 free_root_pointers(fs_info, 1);
9ad6b7bc 3985
13e6c37b 3986 iput(fs_info->btree_inode);
d6bfde87 3987
21adbd5c 3988#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3cdde224 3989 if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
21adbd5c
SB
3990 btrfsic_unmount(root, fs_info->fs_devices);
3991#endif
3992
dfe25020 3993 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3994 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3995
e2d84521 3996 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3997 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3998 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3999 bdi_destroy(&fs_info->bdi);
76dda93c 4000 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4001
53b381b3
DW
4002 btrfs_free_stripe_hash_table(fs_info);
4003
cdfb080e 4004 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 4005 root->orphan_block_rsv = NULL;
04216820
FM
4006
4007 lock_chunks(root);
4008 while (!list_empty(&fs_info->pinned_chunks)) {
4009 struct extent_map *em;
4010
4011 em = list_first_entry(&fs_info->pinned_chunks,
4012 struct extent_map, list);
4013 list_del_init(&em->list);
4014 free_extent_map(em);
4015 }
4016 unlock_chunks(root);
eb60ceac
CM
4017}
4018
b9fab919
CM
4019int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4020 int atomic)
5f39d397 4021{
1259ab75 4022 int ret;
727011e0 4023 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4024
0b32f4bb 4025 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4026 if (!ret)
4027 return ret;
4028
4029 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4030 parent_transid, atomic);
4031 if (ret == -EAGAIN)
4032 return ret;
1259ab75 4033 return !ret;
5f39d397
CM
4034}
4035
5f39d397
CM
4036void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4037{
06ea65a3 4038 struct btrfs_root *root;
5f39d397 4039 u64 transid = btrfs_header_generation(buf);
b9473439 4040 int was_dirty;
b4ce94de 4041
06ea65a3
JB
4042#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4043 /*
4044 * This is a fast path so only do this check if we have sanity tests
4045 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4046 * outside of the sanity tests.
4047 */
4048 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4049 return;
4050#endif
4051 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 4052 btrfs_assert_tree_locked(buf);
31b1a2bd 4053 if (transid != root->fs_info->generation)
5d163e0e 4054 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
c1c9ff7c 4055 buf->start, transid, root->fs_info->generation);
0b32f4bb 4056 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
4057 if (!was_dirty)
4058 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4059 buf->len,
4060 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
4061#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4062 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4063 btrfs_print_leaf(root, buf);
4064 ASSERT(0);
4065 }
4066#endif
eb60ceac
CM
4067}
4068
b53d3f5d
LB
4069static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4070 int flush_delayed)
16cdcec7
MX
4071{
4072 /*
4073 * looks as though older kernels can get into trouble with
4074 * this code, they end up stuck in balance_dirty_pages forever
4075 */
e2d84521 4076 int ret;
16cdcec7
MX
4077
4078 if (current->flags & PF_MEMALLOC)
4079 return;
4080
b53d3f5d
LB
4081 if (flush_delayed)
4082 btrfs_balance_delayed_items(root);
16cdcec7 4083
e2d84521
MX
4084 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4085 BTRFS_DIRTY_METADATA_THRESH);
4086 if (ret > 0) {
d0e1d66b
NJ
4087 balance_dirty_pages_ratelimited(
4088 root->fs_info->btree_inode->i_mapping);
16cdcec7 4089 }
16cdcec7
MX
4090}
4091
b53d3f5d 4092void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 4093{
b53d3f5d
LB
4094 __btrfs_btree_balance_dirty(root, 1);
4095}
585ad2c3 4096
b53d3f5d
LB
4097void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4098{
4099 __btrfs_btree_balance_dirty(root, 0);
35b7e476 4100}
6b80053d 4101
ca7a79ad 4102int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 4103{
727011e0 4104 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
8436ea91 4105 return btree_read_extent_buffer_pages(root, buf, parent_transid);
6b80053d 4106}
0da5468f 4107
fcd1f065 4108static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 4109 int read_only)
4110{
c926093e 4111 struct btrfs_super_block *sb = fs_info->super_copy;
319e4d06
QW
4112 u64 nodesize = btrfs_super_nodesize(sb);
4113 u64 sectorsize = btrfs_super_sectorsize(sb);
c926093e
DS
4114 int ret = 0;
4115
319e4d06 4116 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
ab8d0fc4 4117 btrfs_err(fs_info, "no valid FS found");
319e4d06
QW
4118 ret = -EINVAL;
4119 }
4120 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
ab8d0fc4 4121 btrfs_warn(fs_info, "unrecognized super flag: %llu",
319e4d06 4122 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
21e7626b 4123 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4124 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
21e7626b 4125 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4126 ret = -EINVAL;
4127 }
21e7626b 4128 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4129 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
21e7626b 4130 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4131 ret = -EINVAL;
4132 }
21e7626b 4133 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4134 btrfs_err(fs_info, "log_root level too big: %d >= %d",
21e7626b 4135 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4136 ret = -EINVAL;
4137 }
4138
1104a885 4139 /*
319e4d06
QW
4140 * Check sectorsize and nodesize first, other check will need it.
4141 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
1104a885 4142 */
319e4d06
QW
4143 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4144 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 4145 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
319e4d06
QW
4146 ret = -EINVAL;
4147 }
4148 /* Only PAGE SIZE is supported yet */
09cbfeaf 4149 if (sectorsize != PAGE_SIZE) {
ab8d0fc4
JM
4150 btrfs_err(fs_info,
4151 "sectorsize %llu not supported yet, only support %lu",
4152 sectorsize, PAGE_SIZE);
319e4d06
QW
4153 ret = -EINVAL;
4154 }
4155 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4156 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 4157 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
319e4d06
QW
4158 ret = -EINVAL;
4159 }
4160 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
ab8d0fc4
JM
4161 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4162 le32_to_cpu(sb->__unused_leafsize), nodesize);
319e4d06
QW
4163 ret = -EINVAL;
4164 }
4165
4166 /* Root alignment check */
4167 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
ab8d0fc4
JM
4168 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4169 btrfs_super_root(sb));
319e4d06
QW
4170 ret = -EINVAL;
4171 }
4172 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
ab8d0fc4
JM
4173 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4174 btrfs_super_chunk_root(sb));
75d6ad38
DS
4175 ret = -EINVAL;
4176 }
319e4d06 4177 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
ab8d0fc4
JM
4178 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4179 btrfs_super_log_root(sb));
75d6ad38
DS
4180 ret = -EINVAL;
4181 }
4182
c926093e 4183 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
ab8d0fc4
JM
4184 btrfs_err(fs_info,
4185 "dev_item UUID does not match fsid: %pU != %pU",
4186 fs_info->fsid, sb->dev_item.fsid);
c926093e
DS
4187 ret = -EINVAL;
4188 }
4189
4190 /*
4191 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4192 * done later
4193 */
99e3ecfc
LB
4194 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4195 btrfs_err(fs_info, "bytes_used is too small %llu",
ab8d0fc4 4196 btrfs_super_bytes_used(sb));
99e3ecfc
LB
4197 ret = -EINVAL;
4198 }
b7f67055 4199 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
99e3ecfc 4200 btrfs_err(fs_info, "invalid stripesize %u",
ab8d0fc4 4201 btrfs_super_stripesize(sb));
99e3ecfc
LB
4202 ret = -EINVAL;
4203 }
21e7626b 4204 if (btrfs_super_num_devices(sb) > (1UL << 31))
ab8d0fc4
JM
4205 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4206 btrfs_super_num_devices(sb));
75d6ad38 4207 if (btrfs_super_num_devices(sb) == 0) {
ab8d0fc4 4208 btrfs_err(fs_info, "number of devices is 0");
75d6ad38
DS
4209 ret = -EINVAL;
4210 }
c926093e 4211
21e7626b 4212 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
ab8d0fc4
JM
4213 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4214 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4215 ret = -EINVAL;
4216 }
4217
ce7fca5f
DS
4218 /*
4219 * Obvious sys_chunk_array corruptions, it must hold at least one key
4220 * and one chunk
4221 */
4222 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
ab8d0fc4
JM
4223 btrfs_err(fs_info, "system chunk array too big %u > %u",
4224 btrfs_super_sys_array_size(sb),
4225 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
ce7fca5f
DS
4226 ret = -EINVAL;
4227 }
4228 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4229 + sizeof(struct btrfs_chunk)) {
ab8d0fc4
JM
4230 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4231 btrfs_super_sys_array_size(sb),
4232 sizeof(struct btrfs_disk_key)
4233 + sizeof(struct btrfs_chunk));
ce7fca5f
DS
4234 ret = -EINVAL;
4235 }
4236
c926093e
DS
4237 /*
4238 * The generation is a global counter, we'll trust it more than the others
4239 * but it's still possible that it's the one that's wrong.
4240 */
21e7626b 4241 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
ab8d0fc4
JM
4242 btrfs_warn(fs_info,
4243 "suspicious: generation < chunk_root_generation: %llu < %llu",
4244 btrfs_super_generation(sb),
4245 btrfs_super_chunk_root_generation(sb));
21e7626b
DS
4246 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4247 && btrfs_super_cache_generation(sb) != (u64)-1)
ab8d0fc4
JM
4248 btrfs_warn(fs_info,
4249 "suspicious: generation < cache_generation: %llu < %llu",
4250 btrfs_super_generation(sb),
4251 btrfs_super_cache_generation(sb));
c926093e
DS
4252
4253 return ret;
acce952b 4254}
4255
48a3b636 4256static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 4257{
acce952b 4258 mutex_lock(&root->fs_info->cleaner_mutex);
4259 btrfs_run_delayed_iputs(root);
4260 mutex_unlock(&root->fs_info->cleaner_mutex);
4261
4262 down_write(&root->fs_info->cleanup_work_sem);
4263 up_write(&root->fs_info->cleanup_work_sem);
4264
4265 /* cleanup FS via transaction */
4266 btrfs_cleanup_transaction(root);
acce952b 4267}
4268
143bede5 4269static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4270{
acce952b 4271 struct btrfs_ordered_extent *ordered;
acce952b 4272
199c2a9c 4273 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4274 /*
4275 * This will just short circuit the ordered completion stuff which will
4276 * make sure the ordered extent gets properly cleaned up.
4277 */
199c2a9c 4278 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4279 root_extent_list)
4280 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4281 spin_unlock(&root->ordered_extent_lock);
4282}
4283
4284static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4285{
4286 struct btrfs_root *root;
4287 struct list_head splice;
4288
4289 INIT_LIST_HEAD(&splice);
4290
4291 spin_lock(&fs_info->ordered_root_lock);
4292 list_splice_init(&fs_info->ordered_roots, &splice);
4293 while (!list_empty(&splice)) {
4294 root = list_first_entry(&splice, struct btrfs_root,
4295 ordered_root);
1de2cfde
JB
4296 list_move_tail(&root->ordered_root,
4297 &fs_info->ordered_roots);
199c2a9c 4298
2a85d9ca 4299 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4300 btrfs_destroy_ordered_extents(root);
4301
2a85d9ca
LB
4302 cond_resched();
4303 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4304 }
4305 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4306}
4307
35a3621b
SB
4308static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4309 struct btrfs_root *root)
acce952b 4310{
4311 struct rb_node *node;
4312 struct btrfs_delayed_ref_root *delayed_refs;
4313 struct btrfs_delayed_ref_node *ref;
4314 int ret = 0;
4315
4316 delayed_refs = &trans->delayed_refs;
4317
4318 spin_lock(&delayed_refs->lock);
d7df2c79 4319 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4320 spin_unlock(&delayed_refs->lock);
efe120a0 4321 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 4322 return ret;
4323 }
4324
d7df2c79
JB
4325 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4326 struct btrfs_delayed_ref_head *head;
c6fc2454 4327 struct btrfs_delayed_ref_node *tmp;
e78417d1 4328 bool pin_bytes = false;
acce952b 4329
d7df2c79
JB
4330 head = rb_entry(node, struct btrfs_delayed_ref_head,
4331 href_node);
4332 if (!mutex_trylock(&head->mutex)) {
4333 atomic_inc(&head->node.refs);
4334 spin_unlock(&delayed_refs->lock);
eb12db69 4335
d7df2c79 4336 mutex_lock(&head->mutex);
e78417d1 4337 mutex_unlock(&head->mutex);
d7df2c79
JB
4338 btrfs_put_delayed_ref(&head->node);
4339 spin_lock(&delayed_refs->lock);
4340 continue;
4341 }
4342 spin_lock(&head->lock);
c6fc2454
QW
4343 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4344 list) {
d7df2c79 4345 ref->in_tree = 0;
c6fc2454 4346 list_del(&ref->list);
d7df2c79
JB
4347 atomic_dec(&delayed_refs->num_entries);
4348 btrfs_put_delayed_ref(ref);
e78417d1 4349 }
d7df2c79
JB
4350 if (head->must_insert_reserved)
4351 pin_bytes = true;
4352 btrfs_free_delayed_extent_op(head->extent_op);
4353 delayed_refs->num_heads--;
4354 if (head->processing == 0)
4355 delayed_refs->num_heads_ready--;
4356 atomic_dec(&delayed_refs->num_entries);
4357 head->node.in_tree = 0;
4358 rb_erase(&head->href_node, &delayed_refs->href_root);
4359 spin_unlock(&head->lock);
4360 spin_unlock(&delayed_refs->lock);
4361 mutex_unlock(&head->mutex);
acce952b 4362
d7df2c79
JB
4363 if (pin_bytes)
4364 btrfs_pin_extent(root, head->node.bytenr,
4365 head->node.num_bytes, 1);
4366 btrfs_put_delayed_ref(&head->node);
acce952b 4367 cond_resched();
4368 spin_lock(&delayed_refs->lock);
4369 }
4370
4371 spin_unlock(&delayed_refs->lock);
4372
4373 return ret;
4374}
4375
143bede5 4376static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4377{
4378 struct btrfs_inode *btrfs_inode;
4379 struct list_head splice;
4380
4381 INIT_LIST_HEAD(&splice);
4382
eb73c1b7
MX
4383 spin_lock(&root->delalloc_lock);
4384 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4385
4386 while (!list_empty(&splice)) {
eb73c1b7
MX
4387 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4388 delalloc_inodes);
acce952b 4389
4390 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4391 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4392 &btrfs_inode->runtime_flags);
eb73c1b7 4393 spin_unlock(&root->delalloc_lock);
acce952b 4394
4395 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4396
eb73c1b7 4397 spin_lock(&root->delalloc_lock);
acce952b 4398 }
4399
eb73c1b7
MX
4400 spin_unlock(&root->delalloc_lock);
4401}
4402
4403static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4404{
4405 struct btrfs_root *root;
4406 struct list_head splice;
4407
4408 INIT_LIST_HEAD(&splice);
4409
4410 spin_lock(&fs_info->delalloc_root_lock);
4411 list_splice_init(&fs_info->delalloc_roots, &splice);
4412 while (!list_empty(&splice)) {
4413 root = list_first_entry(&splice, struct btrfs_root,
4414 delalloc_root);
4415 list_del_init(&root->delalloc_root);
4416 root = btrfs_grab_fs_root(root);
4417 BUG_ON(!root);
4418 spin_unlock(&fs_info->delalloc_root_lock);
4419
4420 btrfs_destroy_delalloc_inodes(root);
4421 btrfs_put_fs_root(root);
4422
4423 spin_lock(&fs_info->delalloc_root_lock);
4424 }
4425 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4426}
4427
4428static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4429 struct extent_io_tree *dirty_pages,
4430 int mark)
4431{
4432 int ret;
acce952b 4433 struct extent_buffer *eb;
4434 u64 start = 0;
4435 u64 end;
acce952b 4436
4437 while (1) {
4438 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4439 mark, NULL);
acce952b 4440 if (ret)
4441 break;
4442
91166212 4443 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4444 while (start <= end) {
62d1f9fe 4445 eb = find_extent_buffer(root->fs_info, start);
707e8a07 4446 start += root->nodesize;
fd8b2b61 4447 if (!eb)
acce952b 4448 continue;
fd8b2b61 4449 wait_on_extent_buffer_writeback(eb);
acce952b 4450
fd8b2b61
JB
4451 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4452 &eb->bflags))
4453 clear_extent_buffer_dirty(eb);
4454 free_extent_buffer_stale(eb);
acce952b 4455 }
4456 }
4457
4458 return ret;
4459}
4460
4461static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4462 struct extent_io_tree *pinned_extents)
4463{
4464 struct extent_io_tree *unpin;
4465 u64 start;
4466 u64 end;
4467 int ret;
ed0eaa14 4468 bool loop = true;
acce952b 4469
4470 unpin = pinned_extents;
ed0eaa14 4471again:
acce952b 4472 while (1) {
4473 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4474 EXTENT_DIRTY, NULL);
acce952b 4475 if (ret)
4476 break;
4477
af6f8f60 4478 clear_extent_dirty(unpin, start, end);
acce952b 4479 btrfs_error_unpin_extent_range(root, start, end);
4480 cond_resched();
4481 }
4482
ed0eaa14
LB
4483 if (loop) {
4484 if (unpin == &root->fs_info->freed_extents[0])
4485 unpin = &root->fs_info->freed_extents[1];
4486 else
4487 unpin = &root->fs_info->freed_extents[0];
4488 loop = false;
4489 goto again;
4490 }
4491
acce952b 4492 return 0;
4493}
4494
c79a1751
LB
4495static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4496{
4497 struct inode *inode;
4498
4499 inode = cache->io_ctl.inode;
4500 if (inode) {
4501 invalidate_inode_pages2(inode->i_mapping);
4502 BTRFS_I(inode)->generation = 0;
4503 cache->io_ctl.inode = NULL;
4504 iput(inode);
4505 }
4506 btrfs_put_block_group(cache);
4507}
4508
4509void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4510 struct btrfs_root *root)
4511{
4512 struct btrfs_block_group_cache *cache;
4513
4514 spin_lock(&cur_trans->dirty_bgs_lock);
4515 while (!list_empty(&cur_trans->dirty_bgs)) {
4516 cache = list_first_entry(&cur_trans->dirty_bgs,
4517 struct btrfs_block_group_cache,
4518 dirty_list);
4519 if (!cache) {
4520 btrfs_err(root->fs_info,
4521 "orphan block group dirty_bgs list");
4522 spin_unlock(&cur_trans->dirty_bgs_lock);
4523 return;
4524 }
4525
4526 if (!list_empty(&cache->io_list)) {
4527 spin_unlock(&cur_trans->dirty_bgs_lock);
4528 list_del_init(&cache->io_list);
4529 btrfs_cleanup_bg_io(cache);
4530 spin_lock(&cur_trans->dirty_bgs_lock);
4531 }
4532
4533 list_del_init(&cache->dirty_list);
4534 spin_lock(&cache->lock);
4535 cache->disk_cache_state = BTRFS_DC_ERROR;
4536 spin_unlock(&cache->lock);
4537
4538 spin_unlock(&cur_trans->dirty_bgs_lock);
4539 btrfs_put_block_group(cache);
4540 spin_lock(&cur_trans->dirty_bgs_lock);
4541 }
4542 spin_unlock(&cur_trans->dirty_bgs_lock);
4543
4544 while (!list_empty(&cur_trans->io_bgs)) {
4545 cache = list_first_entry(&cur_trans->io_bgs,
4546 struct btrfs_block_group_cache,
4547 io_list);
4548 if (!cache) {
4549 btrfs_err(root->fs_info,
4550 "orphan block group on io_bgs list");
4551 return;
4552 }
4553
4554 list_del_init(&cache->io_list);
4555 spin_lock(&cache->lock);
4556 cache->disk_cache_state = BTRFS_DC_ERROR;
4557 spin_unlock(&cache->lock);
4558 btrfs_cleanup_bg_io(cache);
4559 }
4560}
4561
49b25e05
JM
4562void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4563 struct btrfs_root *root)
4564{
c79a1751
LB
4565 btrfs_cleanup_dirty_bgs(cur_trans, root);
4566 ASSERT(list_empty(&cur_trans->dirty_bgs));
4567 ASSERT(list_empty(&cur_trans->io_bgs));
4568
49b25e05 4569 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4570
4a9d8bde 4571 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4572 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4573
4a9d8bde 4574 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4575 wake_up(&root->fs_info->transaction_wait);
49b25e05 4576
67cde344
MX
4577 btrfs_destroy_delayed_inodes(root);
4578 btrfs_assert_delayed_root_empty(root);
49b25e05 4579
49b25e05
JM
4580 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4581 EXTENT_DIRTY);
6e841e32
LB
4582 btrfs_destroy_pinned_extent(root,
4583 root->fs_info->pinned_extents);
49b25e05 4584
4a9d8bde
MX
4585 cur_trans->state =TRANS_STATE_COMPLETED;
4586 wake_up(&cur_trans->commit_wait);
4587
49b25e05
JM
4588 /*
4589 memset(cur_trans, 0, sizeof(*cur_trans));
4590 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4591 */
4592}
4593
48a3b636 4594static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4595{
4596 struct btrfs_transaction *t;
acce952b 4597
acce952b 4598 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4599
a4abeea4 4600 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4601 while (!list_empty(&root->fs_info->trans_list)) {
4602 t = list_first_entry(&root->fs_info->trans_list,
4603 struct btrfs_transaction, list);
4604 if (t->state >= TRANS_STATE_COMMIT_START) {
4605 atomic_inc(&t->use_count);
4606 spin_unlock(&root->fs_info->trans_lock);
4607 btrfs_wait_for_commit(root, t->transid);
4608 btrfs_put_transaction(t);
4609 spin_lock(&root->fs_info->trans_lock);
4610 continue;
4611 }
4612 if (t == root->fs_info->running_transaction) {
4613 t->state = TRANS_STATE_COMMIT_DOING;
4614 spin_unlock(&root->fs_info->trans_lock);
4615 /*
4616 * We wait for 0 num_writers since we don't hold a trans
4617 * handle open currently for this transaction.
4618 */
4619 wait_event(t->writer_wait,
4620 atomic_read(&t->num_writers) == 0);
4621 } else {
4622 spin_unlock(&root->fs_info->trans_lock);
4623 }
4624 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4625
724e2315
JB
4626 spin_lock(&root->fs_info->trans_lock);
4627 if (t == root->fs_info->running_transaction)
4628 root->fs_info->running_transaction = NULL;
acce952b 4629 list_del_init(&t->list);
724e2315 4630 spin_unlock(&root->fs_info->trans_lock);
acce952b 4631
724e2315
JB
4632 btrfs_put_transaction(t);
4633 trace_btrfs_transaction_commit(root);
4634 spin_lock(&root->fs_info->trans_lock);
4635 }
4636 spin_unlock(&root->fs_info->trans_lock);
4637 btrfs_destroy_all_ordered_extents(root->fs_info);
4638 btrfs_destroy_delayed_inodes(root);
4639 btrfs_assert_delayed_root_empty(root);
4640 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4641 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4642 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4643
4644 return 0;
4645}
4646
e8c9f186 4647static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4648 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4649 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4650 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4651 /* note we're sharing with inode.c for the merge bio hook */
4652 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4653};