]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/disk-io.c
btrfs: Change submit_bio_hook to taking an inode directly
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
eb60ceac 42
de0022b9
JB
43#ifdef CONFIG_X86
44#include <asm/cpufeature.h>
45#endif
46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
e8c9f186 54static const struct extent_io_ops btree_extent_io_ops;
8b712842 55static void end_workqueue_fn(struct btrfs_work *work);
143bede5 56static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 57static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 58 struct btrfs_fs_info *fs_info);
143bede5 59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 60static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 61 struct extent_io_tree *dirty_pages,
62 int mark);
2ff7e61e 63static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 64 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
65static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 67
d352ac68 68/*
97eb6b69
DS
69 * btrfs_end_io_wq structs are used to do processing in task context when an IO
70 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
71 * by writes to insert metadata for new file extents after IO is complete.
72 */
97eb6b69 73struct btrfs_end_io_wq {
ce9adaa5
CM
74 struct bio *bio;
75 bio_end_io_t *end_io;
76 void *private;
77 struct btrfs_fs_info *info;
4e4cbee9 78 blk_status_t status;
bfebd8b5 79 enum btrfs_wq_endio_type metadata;
8b712842 80 struct btrfs_work work;
ce9adaa5 81};
0da5468f 82
97eb6b69
DS
83static struct kmem_cache *btrfs_end_io_wq_cache;
84
85int __init btrfs_end_io_wq_init(void)
86{
87 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88 sizeof(struct btrfs_end_io_wq),
89 0,
fba4b697 90 SLAB_MEM_SPREAD,
97eb6b69
DS
91 NULL);
92 if (!btrfs_end_io_wq_cache)
93 return -ENOMEM;
94 return 0;
95}
96
e67c718b 97void __cold btrfs_end_io_wq_exit(void)
97eb6b69 98{
5598e900 99 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
100}
101
d352ac68
CM
102/*
103 * async submit bios are used to offload expensive checksumming
104 * onto the worker threads. They checksum file and metadata bios
105 * just before they are sent down the IO stack.
106 */
44b8bd7e 107struct async_submit_bio {
c6100a4b 108 void *private_data;
44b8bd7e 109 struct bio *bio;
a758781d 110 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 111 int mirror_num;
eaf25d93
CM
112 /*
113 * bio_offset is optional, can be used if the pages in the bio
114 * can't tell us where in the file the bio should go
115 */
116 u64 bio_offset;
8b712842 117 struct btrfs_work work;
4e4cbee9 118 blk_status_t status;
44b8bd7e
CM
119};
120
85d4e461
CM
121/*
122 * Lockdep class keys for extent_buffer->lock's in this root. For a given
123 * eb, the lockdep key is determined by the btrfs_root it belongs to and
124 * the level the eb occupies in the tree.
125 *
126 * Different roots are used for different purposes and may nest inside each
127 * other and they require separate keysets. As lockdep keys should be
128 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
129 * by btrfs_root->root_key.objectid. This ensures that all special purpose
130 * roots have separate keysets.
4008c04a 131 *
85d4e461
CM
132 * Lock-nesting across peer nodes is always done with the immediate parent
133 * node locked thus preventing deadlock. As lockdep doesn't know this, use
134 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 135 *
85d4e461
CM
136 * The key is set by the readpage_end_io_hook after the buffer has passed
137 * csum validation but before the pages are unlocked. It is also set by
138 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 139 *
85d4e461
CM
140 * We also add a check to make sure the highest level of the tree is the
141 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
142 * needs update as well.
4008c04a
CM
143 */
144#ifdef CONFIG_DEBUG_LOCK_ALLOC
145# if BTRFS_MAX_LEVEL != 8
146# error
147# endif
85d4e461
CM
148
149static struct btrfs_lockdep_keyset {
150 u64 id; /* root objectid */
151 const char *name_stem; /* lock name stem */
152 char names[BTRFS_MAX_LEVEL + 1][20];
153 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
154} btrfs_lockdep_keysets[] = {
155 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
156 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
157 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
158 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
159 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
160 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 161 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
162 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
163 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
164 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 165 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 166 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 167 { .id = 0, .name_stem = "tree" },
4008c04a 168};
85d4e461
CM
169
170void __init btrfs_init_lockdep(void)
171{
172 int i, j;
173
174 /* initialize lockdep class names */
175 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
176 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
177
178 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
179 snprintf(ks->names[j], sizeof(ks->names[j]),
180 "btrfs-%s-%02d", ks->name_stem, j);
181 }
182}
183
184void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
185 int level)
186{
187 struct btrfs_lockdep_keyset *ks;
188
189 BUG_ON(level >= ARRAY_SIZE(ks->keys));
190
191 /* find the matching keyset, id 0 is the default entry */
192 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
193 if (ks->id == objectid)
194 break;
195
196 lockdep_set_class_and_name(&eb->lock,
197 &ks->keys[level], ks->names[level]);
198}
199
4008c04a
CM
200#endif
201
d352ac68
CM
202/*
203 * extents on the btree inode are pretty simple, there's one extent
204 * that covers the entire device
205 */
6af49dbd 206struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 207 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 208 int create)
7eccb903 209{
3ffbd68c 210 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 211 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
212 struct extent_map *em;
213 int ret;
214
890871be 215 read_lock(&em_tree->lock);
d1310b2e 216 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 217 if (em) {
0b246afa 218 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 219 read_unlock(&em_tree->lock);
5f39d397 220 goto out;
a061fc8d 221 }
890871be 222 read_unlock(&em_tree->lock);
7b13b7b1 223
172ddd60 224 em = alloc_extent_map();
5f39d397
CM
225 if (!em) {
226 em = ERR_PTR(-ENOMEM);
227 goto out;
228 }
229 em->start = 0;
0afbaf8c 230 em->len = (u64)-1;
c8b97818 231 em->block_len = (u64)-1;
5f39d397 232 em->block_start = 0;
0b246afa 233 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 234
890871be 235 write_lock(&em_tree->lock);
09a2a8f9 236 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
237 if (ret == -EEXIST) {
238 free_extent_map(em);
7b13b7b1 239 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 240 if (!em)
0433f20d 241 em = ERR_PTR(-EIO);
5f39d397 242 } else if (ret) {
7b13b7b1 243 free_extent_map(em);
0433f20d 244 em = ERR_PTR(ret);
5f39d397 245 }
890871be 246 write_unlock(&em_tree->lock);
7b13b7b1 247
5f39d397
CM
248out:
249 return em;
7eccb903
CM
250}
251
9ed57367 252u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 253{
9678c543 254 return crc32c(seed, data, len);
19c00ddc
CM
255}
256
0b5e3daf 257void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 258{
7e75bf3f 259 put_unaligned_le32(~crc, result);
19c00ddc
CM
260}
261
d352ac68 262/*
2996e1f8
JT
263 * Compute the csum of a btree block and store the result to provided buffer.
264 *
265 * Returns error if the extent buffer cannot be mapped.
d352ac68 266 */
2996e1f8 267static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 268{
19c00ddc
CM
269 unsigned long len;
270 unsigned long cur_len;
271 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
272 char *kaddr;
273 unsigned long map_start;
274 unsigned long map_len;
275 int err;
276 u32 crc = ~(u32)0;
277
278 len = buf->len - offset;
d397712b 279 while (len > 0) {
d2e174d5
JT
280 /*
281 * Note: we don't need to check for the err == 1 case here, as
282 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
283 * and 'min_len = 32' and the currently implemented mapping
284 * algorithm we cannot cross a page boundary.
285 */
19c00ddc 286 err = map_private_extent_buffer(buf, offset, 32,
a6591715 287 &kaddr, &map_start, &map_len);
c53839fc 288 if (WARN_ON(err))
8bd98f0e 289 return err;
19c00ddc 290 cur_len = min(len, map_len - (offset - map_start));
b0496686 291 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
292 crc, cur_len);
293 len -= cur_len;
294 offset += cur_len;
19c00ddc 295 }
71a63551 296 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 297
19c00ddc
CM
298 btrfs_csum_final(crc, result);
299
19c00ddc
CM
300 return 0;
301}
302
d352ac68
CM
303/*
304 * we can't consider a given block up to date unless the transid of the
305 * block matches the transid in the parent node's pointer. This is how we
306 * detect blocks that either didn't get written at all or got written
307 * in the wrong place.
308 */
1259ab75 309static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
310 struct extent_buffer *eb, u64 parent_transid,
311 int atomic)
1259ab75 312{
2ac55d41 313 struct extent_state *cached_state = NULL;
1259ab75 314 int ret;
2755a0de 315 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
316
317 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
318 return 0;
319
b9fab919
CM
320 if (atomic)
321 return -EAGAIN;
322
a26e8c9f
JB
323 if (need_lock) {
324 btrfs_tree_read_lock(eb);
300aa896 325 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
326 }
327
2ac55d41 328 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 329 &cached_state);
0b32f4bb 330 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
331 btrfs_header_generation(eb) == parent_transid) {
332 ret = 0;
333 goto out;
334 }
94647322
DS
335 btrfs_err_rl(eb->fs_info,
336 "parent transid verify failed on %llu wanted %llu found %llu",
337 eb->start,
29549aec 338 parent_transid, btrfs_header_generation(eb));
1259ab75 339 ret = 1;
a26e8c9f
JB
340
341 /*
342 * Things reading via commit roots that don't have normal protection,
343 * like send, can have a really old block in cache that may point at a
01327610 344 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
345 * if we find an eb that is under IO (dirty/writeback) because we could
346 * end up reading in the stale data and then writing it back out and
347 * making everybody very sad.
348 */
349 if (!extent_buffer_under_io(eb))
350 clear_extent_buffer_uptodate(eb);
33958dc6 351out:
2ac55d41 352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 353 &cached_state);
472b909f
JB
354 if (need_lock)
355 btrfs_tree_read_unlock_blocking(eb);
1259ab75 356 return ret;
1259ab75
CM
357}
358
1104a885
DS
359/*
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
362 */
ab8d0fc4
JM
363static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
364 char *raw_disk_sb)
1104a885
DS
365{
366 struct btrfs_super_block *disk_sb =
367 (struct btrfs_super_block *)raw_disk_sb;
368 u16 csum_type = btrfs_super_csum_type(disk_sb);
369 int ret = 0;
370
371 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
372 u32 crc = ~(u32)0;
776c4a7c 373 char result[sizeof(crc)];
1104a885
DS
374
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 378 * is filled with zeros and is included in the checksum.
1104a885
DS
379 */
380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 btrfs_csum_final(crc, result);
383
776c4a7c 384 if (memcmp(raw_disk_sb, result, sizeof(result)))
1104a885
DS
385 ret = 1;
386 }
387
388 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 389 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
390 csum_type);
391 ret = 1;
392 }
393
394 return ret;
395}
396
e064d5e9 397int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 398 struct btrfs_key *first_key, u64 parent_transid)
581c1760 399{
e064d5e9 400 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
401 int found_level;
402 struct btrfs_key found_key;
403 int ret;
404
405 found_level = btrfs_header_level(eb);
406 if (found_level != level) {
63489055
QW
407 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
408 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
409 btrfs_err(fs_info,
410"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
411 eb->start, level, found_level);
581c1760
QW
412 return -EIO;
413 }
414
415 if (!first_key)
416 return 0;
417
5d41be6f
QW
418 /*
419 * For live tree block (new tree blocks in current transaction),
420 * we need proper lock context to avoid race, which is impossible here.
421 * So we only checks tree blocks which is read from disk, whose
422 * generation <= fs_info->last_trans_committed.
423 */
424 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
425 return 0;
581c1760
QW
426 if (found_level)
427 btrfs_node_key_to_cpu(eb, &found_key, 0);
428 else
429 btrfs_item_key_to_cpu(eb, &found_key, 0);
430 ret = btrfs_comp_cpu_keys(first_key, &found_key);
431
581c1760 432 if (ret) {
63489055
QW
433 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
434 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 435 btrfs_err(fs_info,
ff76a864
LB
436"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
437 eb->start, parent_transid, first_key->objectid,
438 first_key->type, first_key->offset,
439 found_key.objectid, found_key.type,
440 found_key.offset);
581c1760 441 }
581c1760
QW
442 return ret;
443}
444
d352ac68
CM
445/*
446 * helper to read a given tree block, doing retries as required when
447 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
448 *
449 * @parent_transid: expected transid, skip check if 0
450 * @level: expected level, mandatory check
451 * @first_key: expected key of first slot, skip check if NULL
d352ac68 452 */
5ab12d1f 453static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
454 u64 parent_transid, int level,
455 struct btrfs_key *first_key)
f188591e 456{
5ab12d1f 457 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 458 struct extent_io_tree *io_tree;
ea466794 459 int failed = 0;
f188591e
CM
460 int ret;
461 int num_copies = 0;
462 int mirror_num = 0;
ea466794 463 int failed_mirror = 0;
f188591e 464
0b246afa 465 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 466 while (1) {
f8397d69 467 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
8436ea91 468 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
6af49dbd 469 mirror_num);
256dd1bb 470 if (!ret) {
581c1760 471 if (verify_parent_transid(io_tree, eb,
b9fab919 472 parent_transid, 0))
256dd1bb 473 ret = -EIO;
e064d5e9 474 else if (btrfs_verify_level_key(eb, level,
448de471 475 first_key, parent_transid))
581c1760
QW
476 ret = -EUCLEAN;
477 else
478 break;
256dd1bb 479 }
d397712b 480
0b246afa 481 num_copies = btrfs_num_copies(fs_info,
f188591e 482 eb->start, eb->len);
4235298e 483 if (num_copies == 1)
ea466794 484 break;
4235298e 485
5cf1ab56
JB
486 if (!failed_mirror) {
487 failed = 1;
488 failed_mirror = eb->read_mirror;
489 }
490
f188591e 491 mirror_num++;
ea466794
JB
492 if (mirror_num == failed_mirror)
493 mirror_num++;
494
4235298e 495 if (mirror_num > num_copies)
ea466794 496 break;
f188591e 497 }
ea466794 498
c0901581 499 if (failed && !ret && failed_mirror)
20a1fbf9 500 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
501
502 return ret;
f188591e 503}
19c00ddc 504
d352ac68 505/*
d397712b
CM
506 * checksum a dirty tree block before IO. This has extra checks to make sure
507 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 508 */
d397712b 509
01d58472 510static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 511{
4eee4fa4 512 u64 start = page_offset(page);
19c00ddc 513 u64 found_start;
2996e1f8
JT
514 u8 result[BTRFS_CSUM_SIZE];
515 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 516 struct extent_buffer *eb;
8d47a0d8 517 int ret;
f188591e 518
4f2de97a
JB
519 eb = (struct extent_buffer *)page->private;
520 if (page != eb->pages[0])
521 return 0;
0f805531 522
19c00ddc 523 found_start = btrfs_header_bytenr(eb);
0f805531
AL
524 /*
525 * Please do not consolidate these warnings into a single if.
526 * It is useful to know what went wrong.
527 */
528 if (WARN_ON(found_start != start))
529 return -EUCLEAN;
530 if (WARN_ON(!PageUptodate(page)))
531 return -EUCLEAN;
532
de37aa51 533 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
534 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
535
2996e1f8
JT
536 if (csum_tree_block(eb, result))
537 return -EINVAL;
538
8d47a0d8
QW
539 if (btrfs_header_level(eb))
540 ret = btrfs_check_node(eb);
541 else
542 ret = btrfs_check_leaf_full(eb);
543
544 if (ret < 0) {
545 btrfs_err(fs_info,
546 "block=%llu write time tree block corruption detected",
547 eb->start);
548 return ret;
549 }
2996e1f8 550 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 551
2996e1f8 552 return 0;
19c00ddc
CM
553}
554
b0c9b3b0 555static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 556{
b0c9b3b0 557 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 558 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 559 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
560 int ret = 1;
561
0a4e5586 562 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 563 while (fs_devices) {
7239ff4b
NB
564 u8 *metadata_uuid;
565
566 /*
567 * Checking the incompat flag is only valid for the current
568 * fs. For seed devices it's forbidden to have their uuid
569 * changed so reading ->fsid in this case is fine
570 */
571 if (fs_devices == fs_info->fs_devices &&
572 btrfs_fs_incompat(fs_info, METADATA_UUID))
573 metadata_uuid = fs_devices->metadata_uuid;
574 else
575 metadata_uuid = fs_devices->fsid;
576
577 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
578 ret = 0;
579 break;
580 }
581 fs_devices = fs_devices->seed;
582 }
583 return ret;
584}
585
facc8a22
MX
586static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
587 u64 phy_offset, struct page *page,
588 u64 start, u64 end, int mirror)
ce9adaa5 589{
ce9adaa5
CM
590 u64 found_start;
591 int found_level;
ce9adaa5
CM
592 struct extent_buffer *eb;
593 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 594 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 595 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 596 int ret = 0;
2996e1f8 597 u8 result[BTRFS_CSUM_SIZE];
727011e0 598 int reads_done;
ce9adaa5 599
ce9adaa5
CM
600 if (!page->private)
601 goto out;
d397712b 602
4f2de97a 603 eb = (struct extent_buffer *)page->private;
d397712b 604
0b32f4bb
JB
605 /* the pending IO might have been the only thing that kept this buffer
606 * in memory. Make sure we have a ref for all this other checks
607 */
608 extent_buffer_get(eb);
609
610 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
611 if (!reads_done)
612 goto err;
f188591e 613
5cf1ab56 614 eb->read_mirror = mirror;
656f30db 615 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
616 ret = -EIO;
617 goto err;
618 }
619
ce9adaa5 620 found_start = btrfs_header_bytenr(eb);
727011e0 621 if (found_start != eb->start) {
893bf4b1
SY
622 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
623 eb->start, found_start);
f188591e 624 ret = -EIO;
ce9adaa5
CM
625 goto err;
626 }
b0c9b3b0 627 if (check_tree_block_fsid(eb)) {
02873e43
ZL
628 btrfs_err_rl(fs_info, "bad fsid on block %llu",
629 eb->start);
1259ab75
CM
630 ret = -EIO;
631 goto err;
632 }
ce9adaa5 633 found_level = btrfs_header_level(eb);
1c24c3ce 634 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
635 btrfs_err(fs_info, "bad tree block level %d on %llu",
636 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
637 ret = -EIO;
638 goto err;
639 }
ce9adaa5 640
85d4e461
CM
641 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
642 eb, found_level);
4008c04a 643
2996e1f8 644 ret = csum_tree_block(eb, result);
8bd98f0e 645 if (ret)
a826d6dc 646 goto err;
a826d6dc 647
2996e1f8
JT
648 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
649 u32 val;
650 u32 found = 0;
651
652 memcpy(&found, result, csum_size);
653
654 read_extent_buffer(eb, &val, 0, csum_size);
655 btrfs_warn_rl(fs_info,
656 "%s checksum verify failed on %llu wanted %x found %x level %d",
657 fs_info->sb->s_id, eb->start,
658 val, found, btrfs_header_level(eb));
659 ret = -EUCLEAN;
660 goto err;
661 }
662
a826d6dc
JB
663 /*
664 * If this is a leaf block and it is corrupt, set the corrupt bit so
665 * that we don't try and read the other copies of this block, just
666 * return -EIO.
667 */
1c4360ee 668 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
669 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
670 ret = -EIO;
671 }
ce9adaa5 672
813fd1dc 673 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
674 ret = -EIO;
675
0b32f4bb
JB
676 if (!ret)
677 set_extent_buffer_uptodate(eb);
75391f0d
QW
678 else
679 btrfs_err(fs_info,
680 "block=%llu read time tree block corruption detected",
681 eb->start);
ce9adaa5 682err:
79fb65a1
JB
683 if (reads_done &&
684 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 685 btree_readahead_hook(eb, ret);
4bb31e92 686
53b381b3
DW
687 if (ret) {
688 /*
689 * our io error hook is going to dec the io pages
690 * again, we have to make sure it has something
691 * to decrement
692 */
693 atomic_inc(&eb->io_pages);
0b32f4bb 694 clear_extent_buffer_uptodate(eb);
53b381b3 695 }
0b32f4bb 696 free_extent_buffer(eb);
ce9adaa5 697out:
f188591e 698 return ret;
ce9adaa5
CM
699}
700
4246a0b6 701static void end_workqueue_bio(struct bio *bio)
ce9adaa5 702{
97eb6b69 703 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 704 struct btrfs_fs_info *fs_info;
9e0af237
LB
705 struct btrfs_workqueue *wq;
706 btrfs_work_func_t func;
ce9adaa5 707
ce9adaa5 708 fs_info = end_io_wq->info;
4e4cbee9 709 end_io_wq->status = bio->bi_status;
d20f7043 710
37226b21 711 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
712 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
713 wq = fs_info->endio_meta_write_workers;
714 func = btrfs_endio_meta_write_helper;
715 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
716 wq = fs_info->endio_freespace_worker;
717 func = btrfs_freespace_write_helper;
718 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
719 wq = fs_info->endio_raid56_workers;
720 func = btrfs_endio_raid56_helper;
721 } else {
722 wq = fs_info->endio_write_workers;
723 func = btrfs_endio_write_helper;
724 }
d20f7043 725 } else {
8b110e39
MX
726 if (unlikely(end_io_wq->metadata ==
727 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
728 wq = fs_info->endio_repair_workers;
729 func = btrfs_endio_repair_helper;
730 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
731 wq = fs_info->endio_raid56_workers;
732 func = btrfs_endio_raid56_helper;
733 } else if (end_io_wq->metadata) {
734 wq = fs_info->endio_meta_workers;
735 func = btrfs_endio_meta_helper;
736 } else {
737 wq = fs_info->endio_workers;
738 func = btrfs_endio_helper;
739 }
d20f7043 740 }
9e0af237
LB
741
742 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
743 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
744}
745
4e4cbee9 746blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 747 enum btrfs_wq_endio_type metadata)
0b86a832 748{
97eb6b69 749 struct btrfs_end_io_wq *end_io_wq;
8b110e39 750
97eb6b69 751 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 752 if (!end_io_wq)
4e4cbee9 753 return BLK_STS_RESOURCE;
ce9adaa5
CM
754
755 end_io_wq->private = bio->bi_private;
756 end_io_wq->end_io = bio->bi_end_io;
22c59948 757 end_io_wq->info = info;
4e4cbee9 758 end_io_wq->status = 0;
ce9adaa5 759 end_io_wq->bio = bio;
22c59948 760 end_io_wq->metadata = metadata;
ce9adaa5
CM
761
762 bio->bi_private = end_io_wq;
763 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
764 return 0;
765}
766
4a69a410
CM
767static void run_one_async_start(struct btrfs_work *work)
768{
4a69a410 769 struct async_submit_bio *async;
4e4cbee9 770 blk_status_t ret;
4a69a410
CM
771
772 async = container_of(work, struct async_submit_bio, work);
c6100a4b 773 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
774 async->bio_offset);
775 if (ret)
4e4cbee9 776 async->status = ret;
4a69a410
CM
777}
778
06ea01b1
DS
779/*
780 * In order to insert checksums into the metadata in large chunks, we wait
781 * until bio submission time. All the pages in the bio are checksummed and
782 * sums are attached onto the ordered extent record.
783 *
784 * At IO completion time the csums attached on the ordered extent record are
785 * inserted into the tree.
786 */
4a69a410 787static void run_one_async_done(struct btrfs_work *work)
8b712842 788{
8b712842 789 struct async_submit_bio *async;
06ea01b1
DS
790 struct inode *inode;
791 blk_status_t ret;
8b712842
CM
792
793 async = container_of(work, struct async_submit_bio, work);
06ea01b1 794 inode = async->private_data;
4854ddd0 795
bb7ab3b9 796 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
797 if (async->status) {
798 async->bio->bi_status = async->status;
4246a0b6 799 bio_endio(async->bio);
79787eaa
JM
800 return;
801 }
802
06ea01b1
DS
803 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
804 async->mirror_num, 1);
805 if (ret) {
806 async->bio->bi_status = ret;
807 bio_endio(async->bio);
808 }
4a69a410
CM
809}
810
811static void run_one_async_free(struct btrfs_work *work)
812{
813 struct async_submit_bio *async;
814
815 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
816 kfree(async);
817}
818
8c27cb35
LT
819blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
820 int mirror_num, unsigned long bio_flags,
821 u64 bio_offset, void *private_data,
e288c080 822 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
823{
824 struct async_submit_bio *async;
825
826 async = kmalloc(sizeof(*async), GFP_NOFS);
827 if (!async)
4e4cbee9 828 return BLK_STS_RESOURCE;
44b8bd7e 829
c6100a4b 830 async->private_data = private_data;
44b8bd7e
CM
831 async->bio = bio;
832 async->mirror_num = mirror_num;
4a69a410 833 async->submit_bio_start = submit_bio_start;
4a69a410 834
9e0af237 835 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 836 run_one_async_done, run_one_async_free);
4a69a410 837
eaf25d93 838 async->bio_offset = bio_offset;
8c8bee1d 839
4e4cbee9 840 async->status = 0;
79787eaa 841
67f055c7 842 if (op_is_sync(bio->bi_opf))
5cdc7ad3 843 btrfs_set_work_high_priority(&async->work);
d313d7a3 844
5cdc7ad3 845 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
846 return 0;
847}
848
4e4cbee9 849static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 850{
2c30c71b 851 struct bio_vec *bvec;
ce3ed71a 852 struct btrfs_root *root;
2c30c71b 853 int i, ret = 0;
6dc4f100 854 struct bvec_iter_all iter_all;
ce3ed71a 855
c09abff8 856 ASSERT(!bio_flagged(bio, BIO_CLONED));
6dc4f100 857 bio_for_each_segment_all(bvec, bio, i, iter_all) {
ce3ed71a 858 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 859 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
860 if (ret)
861 break;
ce3ed71a 862 }
2c30c71b 863
4e4cbee9 864 return errno_to_blk_status(ret);
ce3ed71a
CM
865}
866
d0ee3934 867static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 868 u64 bio_offset)
22c59948 869{
8b712842
CM
870 /*
871 * when we're called for a write, we're already in the async
5443be45 872 * submission context. Just jump into btrfs_map_bio
8b712842 873 */
79787eaa 874 return btree_csum_one_bio(bio);
4a69a410 875}
22c59948 876
18fdc679 877static int check_async_write(struct btrfs_inode *bi)
de0022b9 878{
6300463b
LB
879 if (atomic_read(&bi->sync_writers))
880 return 0;
de0022b9 881#ifdef CONFIG_X86
bc696ca0 882 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
883 return 0;
884#endif
885 return 1;
886}
887
a56b1c7b 888static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
8c27cb35
LT
889 int mirror_num, unsigned long bio_flags,
890 u64 bio_offset)
44b8bd7e 891{
0b246afa 892 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 893 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 894 blk_status_t ret;
cad321ad 895
37226b21 896 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
897 /*
898 * called for a read, do the setup so that checksum validation
899 * can happen in the async kernel threads
900 */
0b246afa
JM
901 ret = btrfs_bio_wq_end_io(fs_info, bio,
902 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 903 if (ret)
61891923 904 goto out_w_error;
2ff7e61e 905 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
906 } else if (!async) {
907 ret = btree_csum_one_bio(bio);
908 if (ret)
61891923 909 goto out_w_error;
2ff7e61e 910 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
911 } else {
912 /*
913 * kthread helpers are used to submit writes so that
914 * checksumming can happen in parallel across all CPUs
915 */
c6100a4b 916 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
a56b1c7b 917 bio_offset, inode,
e288c080 918 btree_submit_bio_start);
44b8bd7e 919 }
d313d7a3 920
4246a0b6
CH
921 if (ret)
922 goto out_w_error;
923 return 0;
924
61891923 925out_w_error:
4e4cbee9 926 bio->bi_status = ret;
4246a0b6 927 bio_endio(bio);
61891923 928 return ret;
44b8bd7e
CM
929}
930
3dd1462e 931#ifdef CONFIG_MIGRATION
784b4e29 932static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
933 struct page *newpage, struct page *page,
934 enum migrate_mode mode)
784b4e29
CM
935{
936 /*
937 * we can't safely write a btree page from here,
938 * we haven't done the locking hook
939 */
940 if (PageDirty(page))
941 return -EAGAIN;
942 /*
943 * Buffers may be managed in a filesystem specific way.
944 * We must have no buffers or drop them.
945 */
946 if (page_has_private(page) &&
947 !try_to_release_page(page, GFP_KERNEL))
948 return -EAGAIN;
a6bc32b8 949 return migrate_page(mapping, newpage, page, mode);
784b4e29 950}
3dd1462e 951#endif
784b4e29 952
0da5468f
CM
953
954static int btree_writepages(struct address_space *mapping,
955 struct writeback_control *wbc)
956{
e2d84521
MX
957 struct btrfs_fs_info *fs_info;
958 int ret;
959
d8d5f3e1 960 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
961
962 if (wbc->for_kupdate)
963 return 0;
964
e2d84521 965 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 966 /* this is a bit racy, but that's ok */
d814a491
EL
967 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
968 BTRFS_DIRTY_METADATA_THRESH,
969 fs_info->dirty_metadata_batch);
e2d84521 970 if (ret < 0)
793955bc 971 return 0;
793955bc 972 }
0b32f4bb 973 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
974}
975
b2950863 976static int btree_readpage(struct file *file, struct page *page)
5f39d397 977{
d1310b2e
CM
978 struct extent_io_tree *tree;
979 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 980 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 981}
22b0ebda 982
70dec807 983static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 984{
98509cfc 985 if (PageWriteback(page) || PageDirty(page))
d397712b 986 return 0;
0c4e538b 987
f7a52a40 988 return try_release_extent_buffer(page);
d98237b3
CM
989}
990
d47992f8
LC
991static void btree_invalidatepage(struct page *page, unsigned int offset,
992 unsigned int length)
d98237b3 993{
d1310b2e
CM
994 struct extent_io_tree *tree;
995 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
996 extent_invalidatepage(tree, page, offset);
997 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 998 if (PagePrivate(page)) {
efe120a0
FH
999 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1000 "page private not zero on page %llu",
1001 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1002 ClearPagePrivate(page);
1003 set_page_private(page, 0);
09cbfeaf 1004 put_page(page);
9ad6b7bc 1005 }
d98237b3
CM
1006}
1007
0b32f4bb
JB
1008static int btree_set_page_dirty(struct page *page)
1009{
bb146eb2 1010#ifdef DEBUG
0b32f4bb
JB
1011 struct extent_buffer *eb;
1012
1013 BUG_ON(!PagePrivate(page));
1014 eb = (struct extent_buffer *)page->private;
1015 BUG_ON(!eb);
1016 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1017 BUG_ON(!atomic_read(&eb->refs));
1018 btrfs_assert_tree_locked(eb);
bb146eb2 1019#endif
0b32f4bb
JB
1020 return __set_page_dirty_nobuffers(page);
1021}
1022
7f09410b 1023static const struct address_space_operations btree_aops = {
d98237b3 1024 .readpage = btree_readpage,
0da5468f 1025 .writepages = btree_writepages,
5f39d397
CM
1026 .releasepage = btree_releasepage,
1027 .invalidatepage = btree_invalidatepage,
5a92bc88 1028#ifdef CONFIG_MIGRATION
784b4e29 1029 .migratepage = btree_migratepage,
5a92bc88 1030#endif
0b32f4bb 1031 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1032};
1033
2ff7e61e 1034void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1035{
5f39d397 1036 struct extent_buffer *buf = NULL;
2ff7e61e 1037 struct inode *btree_inode = fs_info->btree_inode;
537f38f0 1038 int ret;
090d1875 1039
2ff7e61e 1040 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1041 if (IS_ERR(buf))
6197d86e 1042 return;
537f38f0
NB
1043
1044 ret = read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, buf,
1045 WAIT_NONE, 0);
1046 if (ret < 0)
1047 free_extent_buffer_stale(buf);
1048 else
1049 free_extent_buffer(buf);
090d1875
CM
1050}
1051
2ff7e61e 1052int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1053 int mirror_num, struct extent_buffer **eb)
1054{
1055 struct extent_buffer *buf = NULL;
2ff7e61e 1056 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1057 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1058 int ret;
1059
2ff7e61e 1060 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1061 if (IS_ERR(buf))
ab0fff03
AJ
1062 return 0;
1063
1064 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1065
8436ea91 1066 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
6af49dbd 1067 mirror_num);
ab0fff03 1068 if (ret) {
537f38f0 1069 free_extent_buffer_stale(buf);
ab0fff03
AJ
1070 return ret;
1071 }
1072
1073 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
537f38f0 1074 free_extent_buffer_stale(buf);
ab0fff03 1075 return -EIO;
0b32f4bb 1076 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1077 *eb = buf;
1078 } else {
1079 free_extent_buffer(buf);
1080 }
1081 return 0;
1082}
1083
2ff7e61e
JM
1084struct extent_buffer *btrfs_find_create_tree_block(
1085 struct btrfs_fs_info *fs_info,
1086 u64 bytenr)
0999df54 1087{
0b246afa
JM
1088 if (btrfs_is_testing(fs_info))
1089 return alloc_test_extent_buffer(fs_info, bytenr);
1090 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1091}
1092
581c1760
QW
1093/*
1094 * Read tree block at logical address @bytenr and do variant basic but critical
1095 * verification.
1096 *
1097 * @parent_transid: expected transid of this tree block, skip check if 0
1098 * @level: expected level, mandatory check
1099 * @first_key: expected key in slot 0, skip check if NULL
1100 */
2ff7e61e 1101struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1102 u64 parent_transid, int level,
1103 struct btrfs_key *first_key)
0999df54
CM
1104{
1105 struct extent_buffer *buf = NULL;
0999df54
CM
1106 int ret;
1107
2ff7e61e 1108 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1109 if (IS_ERR(buf))
1110 return buf;
0999df54 1111
5ab12d1f 1112 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1113 level, first_key);
0f0fe8f7 1114 if (ret) {
537f38f0 1115 free_extent_buffer_stale(buf);
64c043de 1116 return ERR_PTR(ret);
0f0fe8f7 1117 }
5f39d397 1118 return buf;
ce9adaa5 1119
eb60ceac
CM
1120}
1121
6a884d7d 1122void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1123{
6a884d7d 1124 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1125 if (btrfs_header_generation(buf) ==
e2d84521 1126 fs_info->running_transaction->transid) {
b9447ef8 1127 btrfs_assert_tree_locked(buf);
b4ce94de 1128
b9473439 1129 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1130 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1131 -buf->len,
1132 fs_info->dirty_metadata_batch);
ed7b63eb 1133 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1134 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1135 clear_extent_buffer_dirty(buf);
1136 }
925baedd 1137 }
5f39d397
CM
1138}
1139
8257b2dc
MX
1140static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1141{
1142 struct btrfs_subvolume_writers *writers;
1143 int ret;
1144
1145 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1146 if (!writers)
1147 return ERR_PTR(-ENOMEM);
1148
8a5a916d 1149 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1150 if (ret < 0) {
1151 kfree(writers);
1152 return ERR_PTR(ret);
1153 }
1154
1155 init_waitqueue_head(&writers->wait);
1156 return writers;
1157}
1158
1159static void
1160btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1161{
1162 percpu_counter_destroy(&writers->counter);
1163 kfree(writers);
1164}
1165
da17066c 1166static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1167 u64 objectid)
d97e63b6 1168{
7c0260ee 1169 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1170 root->node = NULL;
a28ec197 1171 root->commit_root = NULL;
27cdeb70 1172 root->state = 0;
d68fc57b 1173 root->orphan_cleanup_state = 0;
0b86a832 1174
0f7d52f4 1175 root->last_trans = 0;
13a8a7c8 1176 root->highest_objectid = 0;
eb73c1b7 1177 root->nr_delalloc_inodes = 0;
199c2a9c 1178 root->nr_ordered_extents = 0;
6bef4d31 1179 root->inode_tree = RB_ROOT;
16cdcec7 1180 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1181 root->block_rsv = NULL;
0b86a832
CM
1182
1183 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1184 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1185 INIT_LIST_HEAD(&root->delalloc_inodes);
1186 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1187 INIT_LIST_HEAD(&root->ordered_extents);
1188 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1189 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1190 INIT_LIST_HEAD(&root->logged_list[0]);
1191 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1192 spin_lock_init(&root->inode_lock);
eb73c1b7 1193 spin_lock_init(&root->delalloc_lock);
199c2a9c 1194 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1195 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1196 spin_lock_init(&root->log_extents_lock[0]);
1197 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1198 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1199 mutex_init(&root->objectid_mutex);
e02119d5 1200 mutex_init(&root->log_mutex);
31f3d255 1201 mutex_init(&root->ordered_extent_mutex);
573bfb72 1202 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1203 init_waitqueue_head(&root->log_writer_wait);
1204 init_waitqueue_head(&root->log_commit_wait[0]);
1205 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1206 INIT_LIST_HEAD(&root->log_ctxs[0]);
1207 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1208 atomic_set(&root->log_commit[0], 0);
1209 atomic_set(&root->log_commit[1], 0);
1210 atomic_set(&root->log_writers, 0);
2ecb7923 1211 atomic_set(&root->log_batch, 0);
0700cea7 1212 refcount_set(&root->refs, 1);
ea14b57f 1213 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1214 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1215 atomic_set(&root->nr_swapfiles, 0);
7237f183 1216 root->log_transid = 0;
d1433deb 1217 root->log_transid_committed = -1;
257c62e1 1218 root->last_log_commit = 0;
7c0260ee 1219 if (!dummy)
43eb5f29
QW
1220 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1221 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1222
3768f368
CM
1223 memset(&root->root_key, 0, sizeof(root->root_key));
1224 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1225 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1226 if (!dummy)
06ea65a3
JB
1227 root->defrag_trans_start = fs_info->generation;
1228 else
1229 root->defrag_trans_start = 0;
4d775673 1230 root->root_key.objectid = objectid;
0ee5dc67 1231 root->anon_dev = 0;
8ea05e3a 1232
5f3ab90a 1233 spin_lock_init(&root->root_item_lock);
370a11b8 1234 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1235}
1236
74e4d827
DS
1237static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1238 gfp_t flags)
6f07e42e 1239{
74e4d827 1240 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1241 if (root)
1242 root->fs_info = fs_info;
1243 return root;
1244}
1245
06ea65a3
JB
1246#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1247/* Should only be used by the testing infrastructure */
da17066c 1248struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1249{
1250 struct btrfs_root *root;
1251
7c0260ee
JM
1252 if (!fs_info)
1253 return ERR_PTR(-EINVAL);
1254
1255 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1256 if (!root)
1257 return ERR_PTR(-ENOMEM);
da17066c 1258
b9ef22de 1259 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1260 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1261 root->alloc_bytenr = 0;
06ea65a3
JB
1262
1263 return root;
1264}
1265#endif
1266
20897f5c 1267struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1268 u64 objectid)
1269{
9b7a2440 1270 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1271 struct extent_buffer *leaf;
1272 struct btrfs_root *tree_root = fs_info->tree_root;
1273 struct btrfs_root *root;
1274 struct btrfs_key key;
b89f6d1f 1275 unsigned int nofs_flag;
20897f5c 1276 int ret = 0;
33d85fda 1277 uuid_le uuid = NULL_UUID_LE;
20897f5c 1278
b89f6d1f
FM
1279 /*
1280 * We're holding a transaction handle, so use a NOFS memory allocation
1281 * context to avoid deadlock if reclaim happens.
1282 */
1283 nofs_flag = memalloc_nofs_save();
74e4d827 1284 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1285 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1286 if (!root)
1287 return ERR_PTR(-ENOMEM);
1288
da17066c 1289 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1290 root->root_key.objectid = objectid;
1291 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1292 root->root_key.offset = 0;
1293
4d75f8a9 1294 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1295 if (IS_ERR(leaf)) {
1296 ret = PTR_ERR(leaf);
1dd05682 1297 leaf = NULL;
20897f5c
AJ
1298 goto fail;
1299 }
1300
20897f5c 1301 root->node = leaf;
20897f5c
AJ
1302 btrfs_mark_buffer_dirty(leaf);
1303
1304 root->commit_root = btrfs_root_node(root);
27cdeb70 1305 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1306
1307 root->root_item.flags = 0;
1308 root->root_item.byte_limit = 0;
1309 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1310 btrfs_set_root_generation(&root->root_item, trans->transid);
1311 btrfs_set_root_level(&root->root_item, 0);
1312 btrfs_set_root_refs(&root->root_item, 1);
1313 btrfs_set_root_used(&root->root_item, leaf->len);
1314 btrfs_set_root_last_snapshot(&root->root_item, 0);
1315 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1316 if (is_fstree(objectid))
1317 uuid_le_gen(&uuid);
6463fe58 1318 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1319 root->root_item.drop_level = 0;
1320
1321 key.objectid = objectid;
1322 key.type = BTRFS_ROOT_ITEM_KEY;
1323 key.offset = 0;
1324 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1325 if (ret)
1326 goto fail;
1327
1328 btrfs_tree_unlock(leaf);
1329
1dd05682
TI
1330 return root;
1331
20897f5c 1332fail:
1dd05682
TI
1333 if (leaf) {
1334 btrfs_tree_unlock(leaf);
59885b39 1335 free_extent_buffer(root->commit_root);
1dd05682
TI
1336 free_extent_buffer(leaf);
1337 }
1338 kfree(root);
20897f5c 1339
1dd05682 1340 return ERR_PTR(ret);
20897f5c
AJ
1341}
1342
7237f183
YZ
1343static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1344 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1345{
1346 struct btrfs_root *root;
7237f183 1347 struct extent_buffer *leaf;
e02119d5 1348
74e4d827 1349 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1350 if (!root)
7237f183 1351 return ERR_PTR(-ENOMEM);
e02119d5 1352
da17066c 1353 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1354
1355 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1356 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1357 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1358
7237f183 1359 /*
27cdeb70
MX
1360 * DON'T set REF_COWS for log trees
1361 *
7237f183
YZ
1362 * log trees do not get reference counted because they go away
1363 * before a real commit is actually done. They do store pointers
1364 * to file data extents, and those reference counts still get
1365 * updated (along with back refs to the log tree).
1366 */
e02119d5 1367
4d75f8a9
DS
1368 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1369 NULL, 0, 0, 0);
7237f183
YZ
1370 if (IS_ERR(leaf)) {
1371 kfree(root);
1372 return ERR_CAST(leaf);
1373 }
e02119d5 1374
7237f183 1375 root->node = leaf;
e02119d5 1376
e02119d5
CM
1377 btrfs_mark_buffer_dirty(root->node);
1378 btrfs_tree_unlock(root->node);
7237f183
YZ
1379 return root;
1380}
1381
1382int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1383 struct btrfs_fs_info *fs_info)
1384{
1385 struct btrfs_root *log_root;
1386
1387 log_root = alloc_log_tree(trans, fs_info);
1388 if (IS_ERR(log_root))
1389 return PTR_ERR(log_root);
1390 WARN_ON(fs_info->log_root_tree);
1391 fs_info->log_root_tree = log_root;
1392 return 0;
1393}
1394
1395int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root)
1397{
0b246afa 1398 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1399 struct btrfs_root *log_root;
1400 struct btrfs_inode_item *inode_item;
1401
0b246afa 1402 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1403 if (IS_ERR(log_root))
1404 return PTR_ERR(log_root);
1405
1406 log_root->last_trans = trans->transid;
1407 log_root->root_key.offset = root->root_key.objectid;
1408
1409 inode_item = &log_root->root_item.inode;
3cae210f
QW
1410 btrfs_set_stack_inode_generation(inode_item, 1);
1411 btrfs_set_stack_inode_size(inode_item, 3);
1412 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1413 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1414 fs_info->nodesize);
3cae210f 1415 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1416
5d4f98a2 1417 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1418
1419 WARN_ON(root->log_root);
1420 root->log_root = log_root;
1421 root->log_transid = 0;
d1433deb 1422 root->log_transid_committed = -1;
257c62e1 1423 root->last_log_commit = 0;
e02119d5
CM
1424 return 0;
1425}
1426
35a3621b
SB
1427static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1428 struct btrfs_key *key)
e02119d5
CM
1429{
1430 struct btrfs_root *root;
1431 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1432 struct btrfs_path *path;
84234f3a 1433 u64 generation;
cb517eab 1434 int ret;
581c1760 1435 int level;
0f7d52f4 1436
cb517eab
MX
1437 path = btrfs_alloc_path();
1438 if (!path)
0f7d52f4 1439 return ERR_PTR(-ENOMEM);
cb517eab 1440
74e4d827 1441 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1442 if (!root) {
1443 ret = -ENOMEM;
1444 goto alloc_fail;
0f7d52f4
CM
1445 }
1446
da17066c 1447 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1448
cb517eab
MX
1449 ret = btrfs_find_root(tree_root, key, path,
1450 &root->root_item, &root->root_key);
0f7d52f4 1451 if (ret) {
13a8a7c8
YZ
1452 if (ret > 0)
1453 ret = -ENOENT;
cb517eab 1454 goto find_fail;
0f7d52f4 1455 }
13a8a7c8 1456
84234f3a 1457 generation = btrfs_root_generation(&root->root_item);
581c1760 1458 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1459 root->node = read_tree_block(fs_info,
1460 btrfs_root_bytenr(&root->root_item),
581c1760 1461 generation, level, NULL);
64c043de
LB
1462 if (IS_ERR(root->node)) {
1463 ret = PTR_ERR(root->node);
cb517eab
MX
1464 goto find_fail;
1465 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1466 ret = -EIO;
64c043de
LB
1467 free_extent_buffer(root->node);
1468 goto find_fail;
416bc658 1469 }
5d4f98a2 1470 root->commit_root = btrfs_root_node(root);
13a8a7c8 1471out:
cb517eab
MX
1472 btrfs_free_path(path);
1473 return root;
1474
cb517eab
MX
1475find_fail:
1476 kfree(root);
1477alloc_fail:
1478 root = ERR_PTR(ret);
1479 goto out;
1480}
1481
1482struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1483 struct btrfs_key *location)
1484{
1485 struct btrfs_root *root;
1486
1487 root = btrfs_read_tree_root(tree_root, location);
1488 if (IS_ERR(root))
1489 return root;
1490
1491 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1492 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1493 btrfs_check_and_init_root_item(&root->root_item);
1494 }
13a8a7c8 1495
5eda7b5e
CM
1496 return root;
1497}
1498
cb517eab
MX
1499int btrfs_init_fs_root(struct btrfs_root *root)
1500{
1501 int ret;
8257b2dc 1502 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1503
1504 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1505 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1506 GFP_NOFS);
1507 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1508 ret = -ENOMEM;
1509 goto fail;
1510 }
1511
8257b2dc
MX
1512 writers = btrfs_alloc_subvolume_writers();
1513 if (IS_ERR(writers)) {
1514 ret = PTR_ERR(writers);
1515 goto fail;
1516 }
1517 root->subv_writers = writers;
1518
cb517eab 1519 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1520 spin_lock_init(&root->ino_cache_lock);
1521 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1522
1523 ret = get_anon_bdev(&root->anon_dev);
1524 if (ret)
876d2cf1 1525 goto fail;
f32e48e9
CR
1526
1527 mutex_lock(&root->objectid_mutex);
1528 ret = btrfs_find_highest_objectid(root,
1529 &root->highest_objectid);
1530 if (ret) {
1531 mutex_unlock(&root->objectid_mutex);
876d2cf1 1532 goto fail;
f32e48e9
CR
1533 }
1534
1535 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1536
1537 mutex_unlock(&root->objectid_mutex);
1538
cb517eab
MX
1539 return 0;
1540fail:
84db5ccf 1541 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1542 return ret;
1543}
1544
35bbb97f
JM
1545struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1546 u64 root_id)
cb517eab
MX
1547{
1548 struct btrfs_root *root;
1549
1550 spin_lock(&fs_info->fs_roots_radix_lock);
1551 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1552 (unsigned long)root_id);
1553 spin_unlock(&fs_info->fs_roots_radix_lock);
1554 return root;
1555}
1556
1557int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1558 struct btrfs_root *root)
1559{
1560 int ret;
1561
e1860a77 1562 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1563 if (ret)
1564 return ret;
1565
1566 spin_lock(&fs_info->fs_roots_radix_lock);
1567 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1568 (unsigned long)root->root_key.objectid,
1569 root);
1570 if (ret == 0)
27cdeb70 1571 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1572 spin_unlock(&fs_info->fs_roots_radix_lock);
1573 radix_tree_preload_end();
1574
1575 return ret;
1576}
1577
c00869f1
MX
1578struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1579 struct btrfs_key *location,
1580 bool check_ref)
5eda7b5e
CM
1581{
1582 struct btrfs_root *root;
381cf658 1583 struct btrfs_path *path;
1d4c08e0 1584 struct btrfs_key key;
5eda7b5e
CM
1585 int ret;
1586
edbd8d4e
CM
1587 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1588 return fs_info->tree_root;
1589 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1590 return fs_info->extent_root;
8f18cf13
CM
1591 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1592 return fs_info->chunk_root;
1593 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1594 return fs_info->dev_root;
0403e47e
YZ
1595 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1596 return fs_info->csum_root;
bcef60f2
AJ
1597 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1598 return fs_info->quota_root ? fs_info->quota_root :
1599 ERR_PTR(-ENOENT);
f7a81ea4
SB
1600 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1601 return fs_info->uuid_root ? fs_info->uuid_root :
1602 ERR_PTR(-ENOENT);
70f6d82e
OS
1603 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1604 return fs_info->free_space_root ? fs_info->free_space_root :
1605 ERR_PTR(-ENOENT);
4df27c4d 1606again:
cb517eab 1607 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1608 if (root) {
c00869f1 1609 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1610 return ERR_PTR(-ENOENT);
5eda7b5e 1611 return root;
48475471 1612 }
5eda7b5e 1613
cb517eab 1614 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1615 if (IS_ERR(root))
1616 return root;
3394e160 1617
c00869f1 1618 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1619 ret = -ENOENT;
581bb050 1620 goto fail;
35a30d7c 1621 }
581bb050 1622
cb517eab 1623 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1624 if (ret)
1625 goto fail;
3394e160 1626
381cf658
DS
1627 path = btrfs_alloc_path();
1628 if (!path) {
1629 ret = -ENOMEM;
1630 goto fail;
1631 }
1d4c08e0
DS
1632 key.objectid = BTRFS_ORPHAN_OBJECTID;
1633 key.type = BTRFS_ORPHAN_ITEM_KEY;
1634 key.offset = location->objectid;
1635
1636 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1637 btrfs_free_path(path);
d68fc57b
YZ
1638 if (ret < 0)
1639 goto fail;
1640 if (ret == 0)
27cdeb70 1641 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1642
cb517eab 1643 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1644 if (ret) {
4df27c4d 1645 if (ret == -EEXIST) {
84db5ccf 1646 btrfs_free_fs_root(root);
4df27c4d
YZ
1647 goto again;
1648 }
1649 goto fail;
0f7d52f4 1650 }
edbd8d4e 1651 return root;
4df27c4d 1652fail:
84db5ccf 1653 btrfs_free_fs_root(root);
4df27c4d 1654 return ERR_PTR(ret);
edbd8d4e
CM
1655}
1656
04160088
CM
1657static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1658{
1659 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1660 int ret = 0;
04160088
CM
1661 struct btrfs_device *device;
1662 struct backing_dev_info *bdi;
b7967db7 1663
1f78160c
XG
1664 rcu_read_lock();
1665 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1666 if (!device->bdev)
1667 continue;
efa7c9f9 1668 bdi = device->bdev->bd_bdi;
ff9ea323 1669 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1670 ret = 1;
1671 break;
1672 }
1673 }
1f78160c 1674 rcu_read_unlock();
04160088
CM
1675 return ret;
1676}
1677
8b712842
CM
1678/*
1679 * called by the kthread helper functions to finally call the bio end_io
1680 * functions. This is where read checksum verification actually happens
1681 */
1682static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1683{
ce9adaa5 1684 struct bio *bio;
97eb6b69 1685 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1686
97eb6b69 1687 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1688 bio = end_io_wq->bio;
ce9adaa5 1689
4e4cbee9 1690 bio->bi_status = end_io_wq->status;
8b712842
CM
1691 bio->bi_private = end_io_wq->private;
1692 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1693 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1694 bio_endio(bio);
44b8bd7e
CM
1695}
1696
a74a4b97
CM
1697static int cleaner_kthread(void *arg)
1698{
1699 struct btrfs_root *root = arg;
0b246afa 1700 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1701 int again;
a74a4b97 1702
d6fd0ae2 1703 while (1) {
d0278245 1704 again = 0;
a74a4b97 1705
fd340d0f
JB
1706 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1707
d0278245 1708 /* Make the cleaner go to sleep early. */
2ff7e61e 1709 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1710 goto sleep;
1711
90c711ab
ZB
1712 /*
1713 * Do not do anything if we might cause open_ctree() to block
1714 * before we have finished mounting the filesystem.
1715 */
0b246afa 1716 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1717 goto sleep;
1718
0b246afa 1719 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1720 goto sleep;
1721
dc7f370c
MX
1722 /*
1723 * Avoid the problem that we change the status of the fs
1724 * during the above check and trylock.
1725 */
2ff7e61e 1726 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1727 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1728 goto sleep;
76dda93c 1729 }
a74a4b97 1730
2ff7e61e 1731 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1732
d0278245 1733 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1734 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1735
1736 /*
05323cd1
MX
1737 * The defragger has dealt with the R/O remount and umount,
1738 * needn't do anything special here.
d0278245 1739 */
0b246afa 1740 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1741
1742 /*
1743 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1744 * with relocation (btrfs_relocate_chunk) and relocation
1745 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1746 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1747 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1748 * unused block groups.
1749 */
0b246afa 1750 btrfs_delete_unused_bgs(fs_info);
d0278245 1751sleep:
fd340d0f 1752 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1753 if (kthread_should_park())
1754 kthread_parkme();
1755 if (kthread_should_stop())
1756 return 0;
838fe188 1757 if (!again) {
a74a4b97 1758 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1759 schedule();
a74a4b97
CM
1760 __set_current_state(TASK_RUNNING);
1761 }
da288d28 1762 }
a74a4b97
CM
1763}
1764
1765static int transaction_kthread(void *arg)
1766{
1767 struct btrfs_root *root = arg;
0b246afa 1768 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1769 struct btrfs_trans_handle *trans;
1770 struct btrfs_transaction *cur;
8929ecfa 1771 u64 transid;
a944442c 1772 time64_t now;
a74a4b97 1773 unsigned long delay;
914b2007 1774 bool cannot_commit;
a74a4b97
CM
1775
1776 do {
914b2007 1777 cannot_commit = false;
0b246afa
JM
1778 delay = HZ * fs_info->commit_interval;
1779 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1780
0b246afa
JM
1781 spin_lock(&fs_info->trans_lock);
1782 cur = fs_info->running_transaction;
a74a4b97 1783 if (!cur) {
0b246afa 1784 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1785 goto sleep;
1786 }
31153d81 1787
afd48513 1788 now = ktime_get_seconds();
4a9d8bde 1789 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1790 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1791 (now < cur->start_time ||
0b246afa
JM
1792 now - cur->start_time < fs_info->commit_interval)) {
1793 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1794 delay = HZ * 5;
1795 goto sleep;
1796 }
8929ecfa 1797 transid = cur->transid;
0b246afa 1798 spin_unlock(&fs_info->trans_lock);
56bec294 1799
79787eaa 1800 /* If the file system is aborted, this will always fail. */
354aa0fb 1801 trans = btrfs_attach_transaction(root);
914b2007 1802 if (IS_ERR(trans)) {
354aa0fb
MX
1803 if (PTR_ERR(trans) != -ENOENT)
1804 cannot_commit = true;
79787eaa 1805 goto sleep;
914b2007 1806 }
8929ecfa 1807 if (transid == trans->transid) {
3a45bb20 1808 btrfs_commit_transaction(trans);
8929ecfa 1809 } else {
3a45bb20 1810 btrfs_end_transaction(trans);
8929ecfa 1811 }
a74a4b97 1812sleep:
0b246afa
JM
1813 wake_up_process(fs_info->cleaner_kthread);
1814 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1815
4e121c06 1816 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1817 &fs_info->fs_state)))
2ff7e61e 1818 btrfs_cleanup_transaction(fs_info);
ce63f891 1819 if (!kthread_should_stop() &&
0b246afa 1820 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1821 cannot_commit))
bc5511d0 1822 schedule_timeout_interruptible(delay);
a74a4b97
CM
1823 } while (!kthread_should_stop());
1824 return 0;
1825}
1826
af31f5e5
CM
1827/*
1828 * this will find the highest generation in the array of
1829 * root backups. The index of the highest array is returned,
1830 * or -1 if we can't find anything.
1831 *
1832 * We check to make sure the array is valid by comparing the
1833 * generation of the latest root in the array with the generation
1834 * in the super block. If they don't match we pitch it.
1835 */
1836static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1837{
1838 u64 cur;
1839 int newest_index = -1;
1840 struct btrfs_root_backup *root_backup;
1841 int i;
1842
1843 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1844 root_backup = info->super_copy->super_roots + i;
1845 cur = btrfs_backup_tree_root_gen(root_backup);
1846 if (cur == newest_gen)
1847 newest_index = i;
1848 }
1849
1850 /* check to see if we actually wrapped around */
1851 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1852 root_backup = info->super_copy->super_roots;
1853 cur = btrfs_backup_tree_root_gen(root_backup);
1854 if (cur == newest_gen)
1855 newest_index = 0;
1856 }
1857 return newest_index;
1858}
1859
1860
1861/*
1862 * find the oldest backup so we know where to store new entries
1863 * in the backup array. This will set the backup_root_index
1864 * field in the fs_info struct
1865 */
1866static void find_oldest_super_backup(struct btrfs_fs_info *info,
1867 u64 newest_gen)
1868{
1869 int newest_index = -1;
1870
1871 newest_index = find_newest_super_backup(info, newest_gen);
1872 /* if there was garbage in there, just move along */
1873 if (newest_index == -1) {
1874 info->backup_root_index = 0;
1875 } else {
1876 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1877 }
1878}
1879
1880/*
1881 * copy all the root pointers into the super backup array.
1882 * this will bump the backup pointer by one when it is
1883 * done
1884 */
1885static void backup_super_roots(struct btrfs_fs_info *info)
1886{
1887 int next_backup;
1888 struct btrfs_root_backup *root_backup;
1889 int last_backup;
1890
1891 next_backup = info->backup_root_index;
1892 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1893 BTRFS_NUM_BACKUP_ROOTS;
1894
1895 /*
1896 * just overwrite the last backup if we're at the same generation
1897 * this happens only at umount
1898 */
1899 root_backup = info->super_for_commit->super_roots + last_backup;
1900 if (btrfs_backup_tree_root_gen(root_backup) ==
1901 btrfs_header_generation(info->tree_root->node))
1902 next_backup = last_backup;
1903
1904 root_backup = info->super_for_commit->super_roots + next_backup;
1905
1906 /*
1907 * make sure all of our padding and empty slots get zero filled
1908 * regardless of which ones we use today
1909 */
1910 memset(root_backup, 0, sizeof(*root_backup));
1911
1912 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1913
1914 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1915 btrfs_set_backup_tree_root_gen(root_backup,
1916 btrfs_header_generation(info->tree_root->node));
1917
1918 btrfs_set_backup_tree_root_level(root_backup,
1919 btrfs_header_level(info->tree_root->node));
1920
1921 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1922 btrfs_set_backup_chunk_root_gen(root_backup,
1923 btrfs_header_generation(info->chunk_root->node));
1924 btrfs_set_backup_chunk_root_level(root_backup,
1925 btrfs_header_level(info->chunk_root->node));
1926
1927 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1928 btrfs_set_backup_extent_root_gen(root_backup,
1929 btrfs_header_generation(info->extent_root->node));
1930 btrfs_set_backup_extent_root_level(root_backup,
1931 btrfs_header_level(info->extent_root->node));
1932
7c7e82a7
CM
1933 /*
1934 * we might commit during log recovery, which happens before we set
1935 * the fs_root. Make sure it is valid before we fill it in.
1936 */
1937 if (info->fs_root && info->fs_root->node) {
1938 btrfs_set_backup_fs_root(root_backup,
1939 info->fs_root->node->start);
1940 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1941 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1942 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1943 btrfs_header_level(info->fs_root->node));
7c7e82a7 1944 }
af31f5e5
CM
1945
1946 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1947 btrfs_set_backup_dev_root_gen(root_backup,
1948 btrfs_header_generation(info->dev_root->node));
1949 btrfs_set_backup_dev_root_level(root_backup,
1950 btrfs_header_level(info->dev_root->node));
1951
1952 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1953 btrfs_set_backup_csum_root_gen(root_backup,
1954 btrfs_header_generation(info->csum_root->node));
1955 btrfs_set_backup_csum_root_level(root_backup,
1956 btrfs_header_level(info->csum_root->node));
1957
1958 btrfs_set_backup_total_bytes(root_backup,
1959 btrfs_super_total_bytes(info->super_copy));
1960 btrfs_set_backup_bytes_used(root_backup,
1961 btrfs_super_bytes_used(info->super_copy));
1962 btrfs_set_backup_num_devices(root_backup,
1963 btrfs_super_num_devices(info->super_copy));
1964
1965 /*
1966 * if we don't copy this out to the super_copy, it won't get remembered
1967 * for the next commit
1968 */
1969 memcpy(&info->super_copy->super_roots,
1970 &info->super_for_commit->super_roots,
1971 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1972}
1973
1974/*
1975 * this copies info out of the root backup array and back into
1976 * the in-memory super block. It is meant to help iterate through
1977 * the array, so you send it the number of backups you've already
1978 * tried and the last backup index you used.
1979 *
1980 * this returns -1 when it has tried all the backups
1981 */
1982static noinline int next_root_backup(struct btrfs_fs_info *info,
1983 struct btrfs_super_block *super,
1984 int *num_backups_tried, int *backup_index)
1985{
1986 struct btrfs_root_backup *root_backup;
1987 int newest = *backup_index;
1988
1989 if (*num_backups_tried == 0) {
1990 u64 gen = btrfs_super_generation(super);
1991
1992 newest = find_newest_super_backup(info, gen);
1993 if (newest == -1)
1994 return -1;
1995
1996 *backup_index = newest;
1997 *num_backups_tried = 1;
1998 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1999 /* we've tried all the backups, all done */
2000 return -1;
2001 } else {
2002 /* jump to the next oldest backup */
2003 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2004 BTRFS_NUM_BACKUP_ROOTS;
2005 *backup_index = newest;
2006 *num_backups_tried += 1;
2007 }
2008 root_backup = super->super_roots + newest;
2009
2010 btrfs_set_super_generation(super,
2011 btrfs_backup_tree_root_gen(root_backup));
2012 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2013 btrfs_set_super_root_level(super,
2014 btrfs_backup_tree_root_level(root_backup));
2015 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2016
2017 /*
2018 * fixme: the total bytes and num_devices need to match or we should
2019 * need a fsck
2020 */
2021 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2022 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2023 return 0;
2024}
2025
7abadb64
LB
2026/* helper to cleanup workers */
2027static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2028{
dc6e3209 2029 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2030 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2031 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2032 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2033 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2034 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2035 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2036 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2037 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2038 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2039 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2040 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2041 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2042 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2043 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2044 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2045 /*
2046 * Now that all other work queues are destroyed, we can safely destroy
2047 * the queues used for metadata I/O, since tasks from those other work
2048 * queues can do metadata I/O operations.
2049 */
2050 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2051 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2052}
2053
2e9f5954
R
2054static void free_root_extent_buffers(struct btrfs_root *root)
2055{
2056 if (root) {
2057 free_extent_buffer(root->node);
2058 free_extent_buffer(root->commit_root);
2059 root->node = NULL;
2060 root->commit_root = NULL;
2061 }
2062}
2063
af31f5e5
CM
2064/* helper to cleanup tree roots */
2065static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2066{
2e9f5954 2067 free_root_extent_buffers(info->tree_root);
655b09fe 2068
2e9f5954
R
2069 free_root_extent_buffers(info->dev_root);
2070 free_root_extent_buffers(info->extent_root);
2071 free_root_extent_buffers(info->csum_root);
2072 free_root_extent_buffers(info->quota_root);
2073 free_root_extent_buffers(info->uuid_root);
2074 if (chunk_root)
2075 free_root_extent_buffers(info->chunk_root);
70f6d82e 2076 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2077}
2078
faa2dbf0 2079void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2080{
2081 int ret;
2082 struct btrfs_root *gang[8];
2083 int i;
2084
2085 while (!list_empty(&fs_info->dead_roots)) {
2086 gang[0] = list_entry(fs_info->dead_roots.next,
2087 struct btrfs_root, root_list);
2088 list_del(&gang[0]->root_list);
2089
27cdeb70 2090 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2091 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2092 } else {
2093 free_extent_buffer(gang[0]->node);
2094 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2095 btrfs_put_fs_root(gang[0]);
171f6537
JB
2096 }
2097 }
2098
2099 while (1) {
2100 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2101 (void **)gang, 0,
2102 ARRAY_SIZE(gang));
2103 if (!ret)
2104 break;
2105 for (i = 0; i < ret; i++)
cb517eab 2106 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2107 }
1a4319cc
LB
2108
2109 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2110 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2111 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2112 }
171f6537 2113}
af31f5e5 2114
638aa7ed
ES
2115static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2116{
2117 mutex_init(&fs_info->scrub_lock);
2118 atomic_set(&fs_info->scrubs_running, 0);
2119 atomic_set(&fs_info->scrub_pause_req, 0);
2120 atomic_set(&fs_info->scrubs_paused, 0);
2121 atomic_set(&fs_info->scrub_cancel_req, 0);
2122 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2123 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2124}
2125
779a65a4
ES
2126static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2127{
2128 spin_lock_init(&fs_info->balance_lock);
2129 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2130 atomic_set(&fs_info->balance_pause_req, 0);
2131 atomic_set(&fs_info->balance_cancel_req, 0);
2132 fs_info->balance_ctl = NULL;
2133 init_waitqueue_head(&fs_info->balance_wait_q);
2134}
2135
6bccf3ab 2136static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2137{
2ff7e61e
JM
2138 struct inode *inode = fs_info->btree_inode;
2139
2140 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2141 set_nlink(inode, 1);
f37938e0
ES
2142 /*
2143 * we set the i_size on the btree inode to the max possible int.
2144 * the real end of the address space is determined by all of
2145 * the devices in the system
2146 */
2ff7e61e
JM
2147 inode->i_size = OFFSET_MAX;
2148 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2149
2ff7e61e 2150 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2151 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2152 IO_TREE_INODE_IO, inode);
7b439738 2153 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2154 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2155
2ff7e61e 2156 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2157
2ff7e61e
JM
2158 BTRFS_I(inode)->root = fs_info->tree_root;
2159 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2160 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2161 btrfs_insert_inode_hash(inode);
f37938e0
ES
2162}
2163
ad618368
ES
2164static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2165{
ad618368 2166 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2167 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2168 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2169}
2170
f9e92e40
ES
2171static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2172{
2173 spin_lock_init(&fs_info->qgroup_lock);
2174 mutex_init(&fs_info->qgroup_ioctl_lock);
2175 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2176 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2177 fs_info->qgroup_seq = 1;
f9e92e40 2178 fs_info->qgroup_ulist = NULL;
d2c609b8 2179 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2180 mutex_init(&fs_info->qgroup_rescan_lock);
2181}
2182
2a458198
ES
2183static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2184 struct btrfs_fs_devices *fs_devices)
2185{
f7b885be 2186 u32 max_active = fs_info->thread_pool_size;
6f011058 2187 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2188
2189 fs_info->workers =
cb001095
JM
2190 btrfs_alloc_workqueue(fs_info, "worker",
2191 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2192
2193 fs_info->delalloc_workers =
cb001095
JM
2194 btrfs_alloc_workqueue(fs_info, "delalloc",
2195 flags, max_active, 2);
2a458198
ES
2196
2197 fs_info->flush_workers =
cb001095
JM
2198 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2199 flags, max_active, 0);
2a458198
ES
2200
2201 fs_info->caching_workers =
cb001095 2202 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2203
2204 /*
2205 * a higher idle thresh on the submit workers makes it much more
2206 * likely that bios will be send down in a sane order to the
2207 * devices
2208 */
2209 fs_info->submit_workers =
cb001095 2210 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2211 min_t(u64, fs_devices->num_devices,
2212 max_active), 64);
2213
2214 fs_info->fixup_workers =
cb001095 2215 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2216
2217 /*
2218 * endios are largely parallel and should have a very
2219 * low idle thresh
2220 */
2221 fs_info->endio_workers =
cb001095 2222 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2223 fs_info->endio_meta_workers =
cb001095
JM
2224 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2225 max_active, 4);
2a458198 2226 fs_info->endio_meta_write_workers =
cb001095
JM
2227 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2228 max_active, 2);
2a458198 2229 fs_info->endio_raid56_workers =
cb001095
JM
2230 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2231 max_active, 4);
2a458198 2232 fs_info->endio_repair_workers =
cb001095 2233 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2234 fs_info->rmw_workers =
cb001095 2235 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2236 fs_info->endio_write_workers =
cb001095
JM
2237 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2238 max_active, 2);
2a458198 2239 fs_info->endio_freespace_worker =
cb001095
JM
2240 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2241 max_active, 0);
2a458198 2242 fs_info->delayed_workers =
cb001095
JM
2243 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2244 max_active, 0);
2a458198 2245 fs_info->readahead_workers =
cb001095
JM
2246 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2247 max_active, 2);
2a458198 2248 fs_info->qgroup_rescan_workers =
cb001095 2249 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2250 fs_info->extent_workers =
cb001095 2251 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2252 min_t(u64, fs_devices->num_devices,
2253 max_active), 8);
2254
2255 if (!(fs_info->workers && fs_info->delalloc_workers &&
2256 fs_info->submit_workers && fs_info->flush_workers &&
2257 fs_info->endio_workers && fs_info->endio_meta_workers &&
2258 fs_info->endio_meta_write_workers &&
2259 fs_info->endio_repair_workers &&
2260 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2261 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2262 fs_info->caching_workers && fs_info->readahead_workers &&
2263 fs_info->fixup_workers && fs_info->delayed_workers &&
2264 fs_info->extent_workers &&
2265 fs_info->qgroup_rescan_workers)) {
2266 return -ENOMEM;
2267 }
2268
2269 return 0;
2270}
2271
63443bf5
ES
2272static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2273 struct btrfs_fs_devices *fs_devices)
2274{
2275 int ret;
63443bf5
ES
2276 struct btrfs_root *log_tree_root;
2277 struct btrfs_super_block *disk_super = fs_info->super_copy;
2278 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2279 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2280
2281 if (fs_devices->rw_devices == 0) {
f14d104d 2282 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2283 return -EIO;
2284 }
2285
74e4d827 2286 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2287 if (!log_tree_root)
2288 return -ENOMEM;
2289
da17066c 2290 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2291
2ff7e61e 2292 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2293 fs_info->generation + 1,
2294 level, NULL);
64c043de 2295 if (IS_ERR(log_tree_root->node)) {
f14d104d 2296 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2297 ret = PTR_ERR(log_tree_root->node);
64c043de 2298 kfree(log_tree_root);
0eeff236 2299 return ret;
64c043de 2300 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2301 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2302 free_extent_buffer(log_tree_root->node);
2303 kfree(log_tree_root);
2304 return -EIO;
2305 }
2306 /* returns with log_tree_root freed on success */
2307 ret = btrfs_recover_log_trees(log_tree_root);
2308 if (ret) {
0b246afa
JM
2309 btrfs_handle_fs_error(fs_info, ret,
2310 "Failed to recover log tree");
63443bf5
ES
2311 free_extent_buffer(log_tree_root->node);
2312 kfree(log_tree_root);
2313 return ret;
2314 }
2315
bc98a42c 2316 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2317 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2318 if (ret)
2319 return ret;
2320 }
2321
2322 return 0;
2323}
2324
6bccf3ab 2325static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2326{
6bccf3ab 2327 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2328 struct btrfs_root *root;
4bbcaa64
ES
2329 struct btrfs_key location;
2330 int ret;
2331
6bccf3ab
JM
2332 BUG_ON(!fs_info->tree_root);
2333
4bbcaa64
ES
2334 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2335 location.type = BTRFS_ROOT_ITEM_KEY;
2336 location.offset = 0;
2337
a4f3d2c4 2338 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2339 if (IS_ERR(root)) {
2340 ret = PTR_ERR(root);
2341 goto out;
2342 }
a4f3d2c4
DS
2343 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2344 fs_info->extent_root = root;
4bbcaa64
ES
2345
2346 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2347 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2348 if (IS_ERR(root)) {
2349 ret = PTR_ERR(root);
2350 goto out;
2351 }
a4f3d2c4
DS
2352 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2353 fs_info->dev_root = root;
4bbcaa64
ES
2354 btrfs_init_devices_late(fs_info);
2355
2356 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2357 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2358 if (IS_ERR(root)) {
2359 ret = PTR_ERR(root);
2360 goto out;
2361 }
a4f3d2c4
DS
2362 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363 fs_info->csum_root = root;
4bbcaa64
ES
2364
2365 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2366 root = btrfs_read_tree_root(tree_root, &location);
2367 if (!IS_ERR(root)) {
2368 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2369 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2370 fs_info->quota_root = root;
4bbcaa64
ES
2371 }
2372
2373 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2374 root = btrfs_read_tree_root(tree_root, &location);
2375 if (IS_ERR(root)) {
2376 ret = PTR_ERR(root);
4bbcaa64 2377 if (ret != -ENOENT)
f50f4353 2378 goto out;
4bbcaa64 2379 } else {
a4f3d2c4
DS
2380 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2381 fs_info->uuid_root = root;
4bbcaa64
ES
2382 }
2383
70f6d82e
OS
2384 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2385 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2386 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2387 if (IS_ERR(root)) {
2388 ret = PTR_ERR(root);
2389 goto out;
2390 }
70f6d82e
OS
2391 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2392 fs_info->free_space_root = root;
2393 }
2394
4bbcaa64 2395 return 0;
f50f4353
LB
2396out:
2397 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2398 location.objectid, ret);
2399 return ret;
4bbcaa64
ES
2400}
2401
069ec957
QW
2402/*
2403 * Real super block validation
2404 * NOTE: super csum type and incompat features will not be checked here.
2405 *
2406 * @sb: super block to check
2407 * @mirror_num: the super block number to check its bytenr:
2408 * 0 the primary (1st) sb
2409 * 1, 2 2nd and 3rd backup copy
2410 * -1 skip bytenr check
2411 */
2412static int validate_super(struct btrfs_fs_info *fs_info,
2413 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2414{
21a852b0
QW
2415 u64 nodesize = btrfs_super_nodesize(sb);
2416 u64 sectorsize = btrfs_super_sectorsize(sb);
2417 int ret = 0;
2418
2419 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2420 btrfs_err(fs_info, "no valid FS found");
2421 ret = -EINVAL;
2422 }
2423 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2424 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2425 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2426 ret = -EINVAL;
2427 }
2428 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2429 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2430 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2431 ret = -EINVAL;
2432 }
2433 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2434 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2435 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2436 ret = -EINVAL;
2437 }
2438 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2439 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2440 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2441 ret = -EINVAL;
2442 }
2443
2444 /*
2445 * Check sectorsize and nodesize first, other check will need it.
2446 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2447 */
2448 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2449 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2450 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2451 ret = -EINVAL;
2452 }
2453 /* Only PAGE SIZE is supported yet */
2454 if (sectorsize != PAGE_SIZE) {
2455 btrfs_err(fs_info,
2456 "sectorsize %llu not supported yet, only support %lu",
2457 sectorsize, PAGE_SIZE);
2458 ret = -EINVAL;
2459 }
2460 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2461 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2462 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2463 ret = -EINVAL;
2464 }
2465 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2466 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2467 le32_to_cpu(sb->__unused_leafsize), nodesize);
2468 ret = -EINVAL;
2469 }
2470
2471 /* Root alignment check */
2472 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2473 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2474 btrfs_super_root(sb));
2475 ret = -EINVAL;
2476 }
2477 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2478 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2479 btrfs_super_chunk_root(sb));
2480 ret = -EINVAL;
2481 }
2482 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2483 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2484 btrfs_super_log_root(sb));
2485 ret = -EINVAL;
2486 }
2487
de37aa51 2488 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2489 BTRFS_FSID_SIZE) != 0) {
21a852b0 2490 btrfs_err(fs_info,
7239ff4b 2491 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2492 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2493 ret = -EINVAL;
2494 }
2495
2496 /*
2497 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2498 * done later
2499 */
2500 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2501 btrfs_err(fs_info, "bytes_used is too small %llu",
2502 btrfs_super_bytes_used(sb));
2503 ret = -EINVAL;
2504 }
2505 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2506 btrfs_err(fs_info, "invalid stripesize %u",
2507 btrfs_super_stripesize(sb));
2508 ret = -EINVAL;
2509 }
2510 if (btrfs_super_num_devices(sb) > (1UL << 31))
2511 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2512 btrfs_super_num_devices(sb));
2513 if (btrfs_super_num_devices(sb) == 0) {
2514 btrfs_err(fs_info, "number of devices is 0");
2515 ret = -EINVAL;
2516 }
2517
069ec957
QW
2518 if (mirror_num >= 0 &&
2519 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2520 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2521 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2522 ret = -EINVAL;
2523 }
2524
2525 /*
2526 * Obvious sys_chunk_array corruptions, it must hold at least one key
2527 * and one chunk
2528 */
2529 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2530 btrfs_err(fs_info, "system chunk array too big %u > %u",
2531 btrfs_super_sys_array_size(sb),
2532 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2533 ret = -EINVAL;
2534 }
2535 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2536 + sizeof(struct btrfs_chunk)) {
2537 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2538 btrfs_super_sys_array_size(sb),
2539 sizeof(struct btrfs_disk_key)
2540 + sizeof(struct btrfs_chunk));
2541 ret = -EINVAL;
2542 }
2543
2544 /*
2545 * The generation is a global counter, we'll trust it more than the others
2546 * but it's still possible that it's the one that's wrong.
2547 */
2548 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2549 btrfs_warn(fs_info,
2550 "suspicious: generation < chunk_root_generation: %llu < %llu",
2551 btrfs_super_generation(sb),
2552 btrfs_super_chunk_root_generation(sb));
2553 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2554 && btrfs_super_cache_generation(sb) != (u64)-1)
2555 btrfs_warn(fs_info,
2556 "suspicious: generation < cache_generation: %llu < %llu",
2557 btrfs_super_generation(sb),
2558 btrfs_super_cache_generation(sb));
2559
2560 return ret;
2561}
2562
069ec957
QW
2563/*
2564 * Validation of super block at mount time.
2565 * Some checks already done early at mount time, like csum type and incompat
2566 * flags will be skipped.
2567 */
2568static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2569{
2570 return validate_super(fs_info, fs_info->super_copy, 0);
2571}
2572
75cb857d
QW
2573/*
2574 * Validation of super block at write time.
2575 * Some checks like bytenr check will be skipped as their values will be
2576 * overwritten soon.
2577 * Extra checks like csum type and incompat flags will be done here.
2578 */
2579static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2580 struct btrfs_super_block *sb)
2581{
2582 int ret;
2583
2584 ret = validate_super(fs_info, sb, -1);
2585 if (ret < 0)
2586 goto out;
2587 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2588 ret = -EUCLEAN;
2589 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2590 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2591 goto out;
2592 }
2593 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2594 ret = -EUCLEAN;
2595 btrfs_err(fs_info,
2596 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2597 btrfs_super_incompat_flags(sb),
2598 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2599 goto out;
2600 }
2601out:
2602 if (ret < 0)
2603 btrfs_err(fs_info,
2604 "super block corruption detected before writing it to disk");
2605 return ret;
2606}
2607
ad2b2c80
AV
2608int open_ctree(struct super_block *sb,
2609 struct btrfs_fs_devices *fs_devices,
2610 char *options)
2e635a27 2611{
db94535d
CM
2612 u32 sectorsize;
2613 u32 nodesize;
87ee04eb 2614 u32 stripesize;
84234f3a 2615 u64 generation;
f2b636e8 2616 u64 features;
3de4586c 2617 struct btrfs_key location;
a061fc8d 2618 struct buffer_head *bh;
4d34b278 2619 struct btrfs_super_block *disk_super;
815745cf 2620 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2621 struct btrfs_root *tree_root;
4d34b278 2622 struct btrfs_root *chunk_root;
eb60ceac 2623 int ret;
e58ca020 2624 int err = -EINVAL;
af31f5e5
CM
2625 int num_backups_tried = 0;
2626 int backup_index = 0;
6675df31 2627 int clear_free_space_tree = 0;
581c1760 2628 int level;
4543df7e 2629
74e4d827
DS
2630 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2631 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2632 if (!tree_root || !chunk_root) {
39279cc3
CM
2633 err = -ENOMEM;
2634 goto fail;
2635 }
76dda93c
YZ
2636
2637 ret = init_srcu_struct(&fs_info->subvol_srcu);
2638 if (ret) {
2639 err = ret;
2640 goto fail;
2641 }
2642
908c7f19 2643 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2644 if (ret) {
2645 err = ret;
9e11ceee 2646 goto fail_srcu;
e2d84521 2647 }
09cbfeaf 2648 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2649 (1 + ilog2(nr_cpu_ids));
2650
908c7f19 2651 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2652 if (ret) {
2653 err = ret;
2654 goto fail_dirty_metadata_bytes;
2655 }
2656
7f8d236a
DS
2657 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2658 GFP_KERNEL);
c404e0dc
MX
2659 if (ret) {
2660 err = ret;
2661 goto fail_delalloc_bytes;
2662 }
2663
76dda93c 2664 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2665 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2666 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2667 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2668 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2669 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2670 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2671 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2672 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2673 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2674 spin_lock_init(&fs_info->trans_lock);
76dda93c 2675 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2676 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2677 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2678 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2679 spin_lock_init(&fs_info->super_lock);
f28491e0 2680 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2681 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2682 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2683 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2684 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2685 mutex_init(&fs_info->reloc_mutex);
573bfb72 2686 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2687 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2688
0b86a832 2689 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2690 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2691 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2692 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2693 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2694 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2695 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2696 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2697 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2698 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2699 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2700 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2701 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2702 BTRFS_BLOCK_RSV_DELREFS);
2703
771ed689 2704 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2705 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2706 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2707 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2708 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2709 fs_info->sb = sb;
95ac567a 2710 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2711 fs_info->metadata_ratio = 0;
4cb5300b 2712 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2713 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2714 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2715 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2716 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2717 /* readahead state */
d0164adc 2718 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2719 spin_lock_init(&fs_info->reada_lock);
fd708b81 2720 btrfs_init_ref_verify(fs_info);
c8b97818 2721
b34b086c
CM
2722 fs_info->thread_pool_size = min_t(unsigned long,
2723 num_online_cpus() + 2, 8);
0afbaf8c 2724
199c2a9c
MX
2725 INIT_LIST_HEAD(&fs_info->ordered_roots);
2726 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2727
2728 fs_info->btree_inode = new_inode(sb);
2729 if (!fs_info->btree_inode) {
2730 err = -ENOMEM;
2731 goto fail_bio_counter;
2732 }
2733 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2734
16cdcec7 2735 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2736 GFP_KERNEL);
16cdcec7
MX
2737 if (!fs_info->delayed_root) {
2738 err = -ENOMEM;
2739 goto fail_iput;
2740 }
2741 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2742
638aa7ed 2743 btrfs_init_scrub(fs_info);
21adbd5c
SB
2744#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2745 fs_info->check_integrity_print_mask = 0;
2746#endif
779a65a4 2747 btrfs_init_balance(fs_info);
21c7e756 2748 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2749
9f6d2510
DS
2750 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2751 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2752
6bccf3ab 2753 btrfs_init_btree_inode(fs_info);
76dda93c 2754
0f9dd46c 2755 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2756 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2757 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2758
43eb5f29
QW
2759 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2760 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2761 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2762 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2763 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2764 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2765
5a3f23d5 2766 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2767 mutex_init(&fs_info->tree_log_mutex);
925baedd 2768 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2769 mutex_init(&fs_info->transaction_kthread_mutex);
2770 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2771 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2772 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2773 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2774 init_rwsem(&fs_info->subvol_sem);
803b2f54 2775 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2776
ad618368 2777 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2778 btrfs_init_qgroup(fs_info);
416ac51d 2779
fa9c0d79
CM
2780 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2781 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2782
e6dcd2dc 2783 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2784 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2785 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2786 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2787 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2788
da17066c
JM
2789 /* Usable values until the real ones are cached from the superblock */
2790 fs_info->nodesize = 4096;
2791 fs_info->sectorsize = 4096;
2792 fs_info->stripesize = 4096;
2793
eede2bf3
OS
2794 spin_lock_init(&fs_info->swapfile_pins_lock);
2795 fs_info->swapfile_pins = RB_ROOT;
2796
53b381b3
DW
2797 ret = btrfs_alloc_stripe_hash_table(fs_info);
2798 if (ret) {
83c8266a 2799 err = ret;
53b381b3
DW
2800 goto fail_alloc;
2801 }
2802
da17066c 2803 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2804
3c4bb26b 2805 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2806
2807 /*
2808 * Read super block and check the signature bytes only
2809 */
a512bbf8 2810 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2811 if (IS_ERR(bh)) {
2812 err = PTR_ERR(bh);
16cdcec7 2813 goto fail_alloc;
20b45077 2814 }
39279cc3 2815
1104a885
DS
2816 /*
2817 * We want to check superblock checksum, the type is stored inside.
2818 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2819 */
ab8d0fc4 2820 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2821 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2822 err = -EINVAL;
b2acdddf 2823 brelse(bh);
1104a885
DS
2824 goto fail_alloc;
2825 }
2826
2827 /*
2828 * super_copy is zeroed at allocation time and we never touch the
2829 * following bytes up to INFO_SIZE, the checksum is calculated from
2830 * the whole block of INFO_SIZE
2831 */
6c41761f 2832 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2833 brelse(bh);
5f39d397 2834
fbc6feae
NB
2835 disk_super = fs_info->super_copy;
2836
de37aa51
NB
2837 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2838 BTRFS_FSID_SIZE));
2839
7239ff4b 2840 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2841 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2842 fs_info->super_copy->metadata_uuid,
2843 BTRFS_FSID_SIZE));
7239ff4b 2844 }
0b86a832 2845
fbc6feae
NB
2846 features = btrfs_super_flags(disk_super);
2847 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2848 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2849 btrfs_set_super_flags(disk_super, features);
2850 btrfs_info(fs_info,
2851 "found metadata UUID change in progress flag, clearing");
2852 }
2853
2854 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2855 sizeof(*fs_info->super_for_commit));
de37aa51 2856
069ec957 2857 ret = btrfs_validate_mount_super(fs_info);
1104a885 2858 if (ret) {
05135f59 2859 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2860 err = -EINVAL;
2861 goto fail_alloc;
2862 }
2863
0f7d52f4 2864 if (!btrfs_super_root(disk_super))
16cdcec7 2865 goto fail_alloc;
0f7d52f4 2866
acce952b 2867 /* check FS state, whether FS is broken. */
87533c47
MX
2868 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2869 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2870
af31f5e5
CM
2871 /*
2872 * run through our array of backup supers and setup
2873 * our ring pointer to the oldest one
2874 */
2875 generation = btrfs_super_generation(disk_super);
2876 find_oldest_super_backup(fs_info, generation);
2877
75e7cb7f
LB
2878 /*
2879 * In the long term, we'll store the compression type in the super
2880 * block, and it'll be used for per file compression control.
2881 */
2882 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2883
2ff7e61e 2884 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2885 if (ret) {
2886 err = ret;
16cdcec7 2887 goto fail_alloc;
2b82032c 2888 }
dfe25020 2889
f2b636e8
JB
2890 features = btrfs_super_incompat_flags(disk_super) &
2891 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2892 if (features) {
05135f59
DS
2893 btrfs_err(fs_info,
2894 "cannot mount because of unsupported optional features (%llx)",
2895 features);
f2b636e8 2896 err = -EINVAL;
16cdcec7 2897 goto fail_alloc;
f2b636e8
JB
2898 }
2899
5d4f98a2 2900 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2901 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2902 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2903 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2904 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2905 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2906
3173a18f 2907 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2908 btrfs_info(fs_info, "has skinny extents");
3173a18f 2909
727011e0
CM
2910 /*
2911 * flag our filesystem as having big metadata blocks if
2912 * they are bigger than the page size
2913 */
09cbfeaf 2914 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2915 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2916 btrfs_info(fs_info,
2917 "flagging fs with big metadata feature");
727011e0
CM
2918 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2919 }
2920
bc3f116f 2921 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2922 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2923 stripesize = sectorsize;
707e8a07 2924 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2925 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2926
da17066c
JM
2927 /* Cache block sizes */
2928 fs_info->nodesize = nodesize;
2929 fs_info->sectorsize = sectorsize;
2930 fs_info->stripesize = stripesize;
2931
bc3f116f
CM
2932 /*
2933 * mixed block groups end up with duplicate but slightly offset
2934 * extent buffers for the same range. It leads to corruptions
2935 */
2936 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2937 (sectorsize != nodesize)) {
05135f59
DS
2938 btrfs_err(fs_info,
2939"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2940 nodesize, sectorsize);
bc3f116f
CM
2941 goto fail_alloc;
2942 }
2943
ceda0864
MX
2944 /*
2945 * Needn't use the lock because there is no other task which will
2946 * update the flag.
2947 */
a6fa6fae 2948 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2949
f2b636e8
JB
2950 features = btrfs_super_compat_ro_flags(disk_super) &
2951 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2952 if (!sb_rdonly(sb) && features) {
05135f59
DS
2953 btrfs_err(fs_info,
2954 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2955 features);
f2b636e8 2956 err = -EINVAL;
16cdcec7 2957 goto fail_alloc;
f2b636e8 2958 }
61d92c32 2959
2a458198
ES
2960 ret = btrfs_init_workqueues(fs_info, fs_devices);
2961 if (ret) {
2962 err = ret;
0dc3b84a
JB
2963 goto fail_sb_buffer;
2964 }
4543df7e 2965
9e11ceee
JK
2966 sb->s_bdi->congested_fn = btrfs_congested_fn;
2967 sb->s_bdi->congested_data = fs_info;
2968 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 2969 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
2970 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2971 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2972
a061fc8d
CM
2973 sb->s_blocksize = sectorsize;
2974 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 2975 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 2976
925baedd 2977 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2978 ret = btrfs_read_sys_array(fs_info);
925baedd 2979 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2980 if (ret) {
05135f59 2981 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2982 goto fail_sb_buffer;
84eed90f 2983 }
0b86a832 2984
84234f3a 2985 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2986 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2987
da17066c 2988 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2989
2ff7e61e 2990 chunk_root->node = read_tree_block(fs_info,
0b86a832 2991 btrfs_super_chunk_root(disk_super),
581c1760 2992 generation, level, NULL);
64c043de
LB
2993 if (IS_ERR(chunk_root->node) ||
2994 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2995 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2996 if (!IS_ERR(chunk_root->node))
2997 free_extent_buffer(chunk_root->node);
95ab1f64 2998 chunk_root->node = NULL;
af31f5e5 2999 goto fail_tree_roots;
83121942 3000 }
5d4f98a2
YZ
3001 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3002 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3003
e17cade2 3004 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 3005 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 3006
5b4aacef 3007 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3008 if (ret) {
05135f59 3009 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3010 goto fail_tree_roots;
2b82032c 3011 }
0b86a832 3012
8dabb742 3013 /*
9b99b115
AJ
3014 * Keep the devid that is marked to be the target device for the
3015 * device replace procedure
8dabb742 3016 */
9b99b115 3017 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3018
a6b0d5c8 3019 if (!fs_devices->latest_bdev) {
05135f59 3020 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3021 goto fail_tree_roots;
3022 }
3023
af31f5e5 3024retry_root_backup:
84234f3a 3025 generation = btrfs_super_generation(disk_super);
581c1760 3026 level = btrfs_super_root_level(disk_super);
0b86a832 3027
2ff7e61e 3028 tree_root->node = read_tree_block(fs_info,
db94535d 3029 btrfs_super_root(disk_super),
581c1760 3030 generation, level, NULL);
64c043de
LB
3031 if (IS_ERR(tree_root->node) ||
3032 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3033 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3034 if (!IS_ERR(tree_root->node))
3035 free_extent_buffer(tree_root->node);
95ab1f64 3036 tree_root->node = NULL;
af31f5e5 3037 goto recovery_tree_root;
83121942 3038 }
af31f5e5 3039
5d4f98a2
YZ
3040 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3041 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3042 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3043
f32e48e9
CR
3044 mutex_lock(&tree_root->objectid_mutex);
3045 ret = btrfs_find_highest_objectid(tree_root,
3046 &tree_root->highest_objectid);
3047 if (ret) {
3048 mutex_unlock(&tree_root->objectid_mutex);
3049 goto recovery_tree_root;
3050 }
3051
3052 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3053
3054 mutex_unlock(&tree_root->objectid_mutex);
3055
6bccf3ab 3056 ret = btrfs_read_roots(fs_info);
4bbcaa64 3057 if (ret)
af31f5e5 3058 goto recovery_tree_root;
f7a81ea4 3059
8929ecfa
YZ
3060 fs_info->generation = generation;
3061 fs_info->last_trans_committed = generation;
8929ecfa 3062
cf90d884
QW
3063 ret = btrfs_verify_dev_extents(fs_info);
3064 if (ret) {
3065 btrfs_err(fs_info,
3066 "failed to verify dev extents against chunks: %d",
3067 ret);
3068 goto fail_block_groups;
3069 }
68310a5e
ID
3070 ret = btrfs_recover_balance(fs_info);
3071 if (ret) {
05135f59 3072 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3073 goto fail_block_groups;
3074 }
3075
733f4fbb
SB
3076 ret = btrfs_init_dev_stats(fs_info);
3077 if (ret) {
05135f59 3078 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3079 goto fail_block_groups;
3080 }
3081
8dabb742
SB
3082 ret = btrfs_init_dev_replace(fs_info);
3083 if (ret) {
05135f59 3084 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3085 goto fail_block_groups;
3086 }
3087
9b99b115 3088 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3089
b7c35e81
AJ
3090 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3091 if (ret) {
05135f59
DS
3092 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3093 ret);
b7c35e81
AJ
3094 goto fail_block_groups;
3095 }
3096
3097 ret = btrfs_sysfs_add_device(fs_devices);
3098 if (ret) {
05135f59
DS
3099 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3100 ret);
b7c35e81
AJ
3101 goto fail_fsdev_sysfs;
3102 }
3103
96f3136e 3104 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3105 if (ret) {
05135f59 3106 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3107 goto fail_fsdev_sysfs;
c59021f8 3108 }
3109
c59021f8 3110 ret = btrfs_init_space_info(fs_info);
3111 if (ret) {
05135f59 3112 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3113 goto fail_sysfs;
c59021f8 3114 }
3115
5b4aacef 3116 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3117 if (ret) {
05135f59 3118 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3119 goto fail_sysfs;
1b1d1f66 3120 }
4330e183 3121
6528b99d 3122 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3123 btrfs_warn(fs_info,
52042d8e 3124 "writable mount is not allowed due to too many missing devices");
2365dd3c 3125 goto fail_sysfs;
292fd7fc 3126 }
9078a3e1 3127
a74a4b97
CM
3128 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3129 "btrfs-cleaner");
57506d50 3130 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3131 goto fail_sysfs;
a74a4b97
CM
3132
3133 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3134 tree_root,
3135 "btrfs-transaction");
57506d50 3136 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3137 goto fail_cleaner;
a74a4b97 3138
583b7231 3139 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3140 !fs_info->fs_devices->rotating) {
583b7231 3141 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3142 }
3143
572d9ab7 3144 /*
01327610 3145 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3146 * not have to wait for transaction commit
3147 */
3148 btrfs_apply_pending_changes(fs_info);
3818aea2 3149
21adbd5c 3150#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3151 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3152 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3153 btrfs_test_opt(fs_info,
21adbd5c
SB
3154 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3155 1 : 0,
3156 fs_info->check_integrity_print_mask);
3157 if (ret)
05135f59
DS
3158 btrfs_warn(fs_info,
3159 "failed to initialize integrity check module: %d",
3160 ret);
21adbd5c
SB
3161 }
3162#endif
bcef60f2
AJ
3163 ret = btrfs_read_qgroup_config(fs_info);
3164 if (ret)
3165 goto fail_trans_kthread;
21adbd5c 3166
fd708b81
JB
3167 if (btrfs_build_ref_tree(fs_info))
3168 btrfs_err(fs_info, "couldn't build ref tree");
3169
96da0919
QW
3170 /* do not make disk changes in broken FS or nologreplay is given */
3171 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3172 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3173 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3174 if (ret) {
63443bf5 3175 err = ret;
28c16cbb 3176 goto fail_qgroup;
79787eaa 3177 }
e02119d5 3178 }
1a40e23b 3179
6bccf3ab 3180 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3181 if (ret)
28c16cbb 3182 goto fail_qgroup;
76dda93c 3183
bc98a42c 3184 if (!sb_rdonly(sb)) {
d68fc57b 3185 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3186 if (ret)
28c16cbb 3187 goto fail_qgroup;
90c711ab
ZB
3188
3189 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3190 ret = btrfs_recover_relocation(tree_root);
90c711ab 3191 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3192 if (ret < 0) {
05135f59
DS
3193 btrfs_warn(fs_info, "failed to recover relocation: %d",
3194 ret);
d7ce5843 3195 err = -EINVAL;
bcef60f2 3196 goto fail_qgroup;
d7ce5843 3197 }
7c2ca468 3198 }
1a40e23b 3199
3de4586c
CM
3200 location.objectid = BTRFS_FS_TREE_OBJECTID;
3201 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3202 location.offset = 0;
3de4586c 3203
3de4586c 3204 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3205 if (IS_ERR(fs_info->fs_root)) {
3206 err = PTR_ERR(fs_info->fs_root);
f50f4353 3207 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3208 goto fail_qgroup;
3140c9a3 3209 }
c289811c 3210
bc98a42c 3211 if (sb_rdonly(sb))
2b6ba629 3212 return 0;
59641015 3213
f8d468a1
OS
3214 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3215 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3216 clear_free_space_tree = 1;
3217 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3218 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3219 btrfs_warn(fs_info, "free space tree is invalid");
3220 clear_free_space_tree = 1;
3221 }
3222
3223 if (clear_free_space_tree) {
f8d468a1
OS
3224 btrfs_info(fs_info, "clearing free space tree");
3225 ret = btrfs_clear_free_space_tree(fs_info);
3226 if (ret) {
3227 btrfs_warn(fs_info,
3228 "failed to clear free space tree: %d", ret);
6bccf3ab 3229 close_ctree(fs_info);
f8d468a1
OS
3230 return ret;
3231 }
3232 }
3233
0b246afa 3234 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3235 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3236 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3237 ret = btrfs_create_free_space_tree(fs_info);
3238 if (ret) {
05135f59
DS
3239 btrfs_warn(fs_info,
3240 "failed to create free space tree: %d", ret);
6bccf3ab 3241 close_ctree(fs_info);
511711af
CM
3242 return ret;
3243 }
3244 }
3245
2b6ba629
ID
3246 down_read(&fs_info->cleanup_work_sem);
3247 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3248 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3249 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3250 close_ctree(fs_info);
2b6ba629
ID
3251 return ret;
3252 }
3253 up_read(&fs_info->cleanup_work_sem);
59641015 3254
2b6ba629
ID
3255 ret = btrfs_resume_balance_async(fs_info);
3256 if (ret) {
05135f59 3257 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3258 close_ctree(fs_info);
2b6ba629 3259 return ret;
e3acc2a6
JB
3260 }
3261
8dabb742
SB
3262 ret = btrfs_resume_dev_replace_async(fs_info);
3263 if (ret) {
05135f59 3264 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3265 close_ctree(fs_info);
8dabb742
SB
3266 return ret;
3267 }
3268
b382a324
JS
3269 btrfs_qgroup_rescan_resume(fs_info);
3270
4bbcaa64 3271 if (!fs_info->uuid_root) {
05135f59 3272 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3273 ret = btrfs_create_uuid_tree(fs_info);
3274 if (ret) {
05135f59
DS
3275 btrfs_warn(fs_info,
3276 "failed to create the UUID tree: %d", ret);
6bccf3ab 3277 close_ctree(fs_info);
f7a81ea4
SB
3278 return ret;
3279 }
0b246afa 3280 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3281 fs_info->generation !=
3282 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3283 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3284 ret = btrfs_check_uuid_tree(fs_info);
3285 if (ret) {
05135f59
DS
3286 btrfs_warn(fs_info,
3287 "failed to check the UUID tree: %d", ret);
6bccf3ab 3288 close_ctree(fs_info);
70f80175
SB
3289 return ret;
3290 }
3291 } else {
afcdd129 3292 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3293 }
afcdd129 3294 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3295
8dcddfa0
QW
3296 /*
3297 * backuproot only affect mount behavior, and if open_ctree succeeded,
3298 * no need to keep the flag
3299 */
3300 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3301
ad2b2c80 3302 return 0;
39279cc3 3303
bcef60f2
AJ
3304fail_qgroup:
3305 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3306fail_trans_kthread:
3307 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3308 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3309 btrfs_free_fs_roots(fs_info);
3f157a2f 3310fail_cleaner:
a74a4b97 3311 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3312
3313 /*
3314 * make sure we're done with the btree inode before we stop our
3315 * kthreads
3316 */
3317 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3318
2365dd3c 3319fail_sysfs:
6618a59b 3320 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3321
b7c35e81
AJ
3322fail_fsdev_sysfs:
3323 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3324
1b1d1f66 3325fail_block_groups:
54067ae9 3326 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3327
3328fail_tree_roots:
3329 free_root_pointers(fs_info, 1);
2b8195bb 3330 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3331
39279cc3 3332fail_sb_buffer:
7abadb64 3333 btrfs_stop_all_workers(fs_info);
5cdd7db6 3334 btrfs_free_block_groups(fs_info);
16cdcec7 3335fail_alloc:
4543df7e 3336fail_iput:
586e46e2
ID
3337 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3338
4543df7e 3339 iput(fs_info->btree_inode);
c404e0dc 3340fail_bio_counter:
7f8d236a 3341 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3342fail_delalloc_bytes:
3343 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3344fail_dirty_metadata_bytes:
3345 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3346fail_srcu:
3347 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3348fail:
53b381b3 3349 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3350 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3351 return err;
af31f5e5
CM
3352
3353recovery_tree_root:
0b246afa 3354 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3355 goto fail_tree_roots;
3356
3357 free_root_pointers(fs_info, 0);
3358
3359 /* don't use the log in recovery mode, it won't be valid */
3360 btrfs_set_super_log_root(disk_super, 0);
3361
3362 /* we can't trust the free space cache either */
3363 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3364
3365 ret = next_root_backup(fs_info, fs_info->super_copy,
3366 &num_backups_tried, &backup_index);
3367 if (ret == -1)
3368 goto fail_block_groups;
3369 goto retry_root_backup;
eb60ceac 3370}
663faf9f 3371ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3372
f2984462
CM
3373static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3374{
f2984462
CM
3375 if (uptodate) {
3376 set_buffer_uptodate(bh);
3377 } else {
442a4f63
SB
3378 struct btrfs_device *device = (struct btrfs_device *)
3379 bh->b_private;
3380
fb456252 3381 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3382 "lost page write due to IO error on %s",
606686ee 3383 rcu_str_deref(device->name));
01327610 3384 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3385 * our own ways of dealing with the IO errors
3386 */
f2984462 3387 clear_buffer_uptodate(bh);
442a4f63 3388 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3389 }
3390 unlock_buffer(bh);
3391 put_bh(bh);
3392}
3393
29c36d72
AJ
3394int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3395 struct buffer_head **bh_ret)
3396{
3397 struct buffer_head *bh;
3398 struct btrfs_super_block *super;
3399 u64 bytenr;
3400
3401 bytenr = btrfs_sb_offset(copy_num);
3402 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3403 return -EINVAL;
3404
9f6d2510 3405 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3406 /*
3407 * If we fail to read from the underlying devices, as of now
3408 * the best option we have is to mark it EIO.
3409 */
3410 if (!bh)
3411 return -EIO;
3412
3413 super = (struct btrfs_super_block *)bh->b_data;
3414 if (btrfs_super_bytenr(super) != bytenr ||
3415 btrfs_super_magic(super) != BTRFS_MAGIC) {
3416 brelse(bh);
3417 return -EINVAL;
3418 }
3419
3420 *bh_ret = bh;
3421 return 0;
3422}
3423
3424
a512bbf8
YZ
3425struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3426{
3427 struct buffer_head *bh;
3428 struct buffer_head *latest = NULL;
3429 struct btrfs_super_block *super;
3430 int i;
3431 u64 transid = 0;
92fc03fb 3432 int ret = -EINVAL;
a512bbf8
YZ
3433
3434 /* we would like to check all the supers, but that would make
3435 * a btrfs mount succeed after a mkfs from a different FS.
3436 * So, we need to add a special mount option to scan for
3437 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3438 */
3439 for (i = 0; i < 1; i++) {
29c36d72
AJ
3440 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3441 if (ret)
a512bbf8
YZ
3442 continue;
3443
3444 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3445
3446 if (!latest || btrfs_super_generation(super) > transid) {
3447 brelse(latest);
3448 latest = bh;
3449 transid = btrfs_super_generation(super);
3450 } else {
3451 brelse(bh);
3452 }
3453 }
92fc03fb
AJ
3454
3455 if (!latest)
3456 return ERR_PTR(ret);
3457
a512bbf8
YZ
3458 return latest;
3459}
3460
4eedeb75 3461/*
abbb3b8e
DS
3462 * Write superblock @sb to the @device. Do not wait for completion, all the
3463 * buffer heads we write are pinned.
4eedeb75 3464 *
abbb3b8e
DS
3465 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3466 * the expected device size at commit time. Note that max_mirrors must be
3467 * same for write and wait phases.
4eedeb75 3468 *
abbb3b8e 3469 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3470 */
a512bbf8 3471static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3472 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3473{
3474 struct buffer_head *bh;
3475 int i;
3476 int ret;
3477 int errors = 0;
3478 u32 crc;
3479 u64 bytenr;
1b9e619c 3480 int op_flags;
a512bbf8
YZ
3481
3482 if (max_mirrors == 0)
3483 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3484
a512bbf8
YZ
3485 for (i = 0; i < max_mirrors; i++) {
3486 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3487 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3488 device->commit_total_bytes)
a512bbf8
YZ
3489 break;
3490
abbb3b8e 3491 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3492
abbb3b8e
DS
3493 crc = ~(u32)0;
3494 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3495 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3496 btrfs_csum_final(crc, sb->csum);
4eedeb75 3497
abbb3b8e 3498 /* One reference for us, and we leave it for the caller */
9f6d2510 3499 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3500 BTRFS_SUPER_INFO_SIZE);
3501 if (!bh) {
3502 btrfs_err(device->fs_info,
3503 "couldn't get super buffer head for bytenr %llu",
3504 bytenr);
3505 errors++;
4eedeb75 3506 continue;
abbb3b8e 3507 }
634554dc 3508
abbb3b8e 3509 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3510
abbb3b8e
DS
3511 /* one reference for submit_bh */
3512 get_bh(bh);
4eedeb75 3513
abbb3b8e
DS
3514 set_buffer_uptodate(bh);
3515 lock_buffer(bh);
3516 bh->b_end_io = btrfs_end_buffer_write_sync;
3517 bh->b_private = device;
a512bbf8 3518
387125fc
CM
3519 /*
3520 * we fua the first super. The others we allow
3521 * to go down lazy.
3522 */
1b9e619c
OS
3523 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3524 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3525 op_flags |= REQ_FUA;
3526 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3527 if (ret)
a512bbf8 3528 errors++;
a512bbf8
YZ
3529 }
3530 return errors < i ? 0 : -1;
3531}
3532
abbb3b8e
DS
3533/*
3534 * Wait for write completion of superblocks done by write_dev_supers,
3535 * @max_mirrors same for write and wait phases.
3536 *
3537 * Return number of errors when buffer head is not found or not marked up to
3538 * date.
3539 */
3540static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3541{
3542 struct buffer_head *bh;
3543 int i;
3544 int errors = 0;
b6a535fa 3545 bool primary_failed = false;
abbb3b8e
DS
3546 u64 bytenr;
3547
3548 if (max_mirrors == 0)
3549 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3550
3551 for (i = 0; i < max_mirrors; i++) {
3552 bytenr = btrfs_sb_offset(i);
3553 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3554 device->commit_total_bytes)
3555 break;
3556
9f6d2510
DS
3557 bh = __find_get_block(device->bdev,
3558 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3559 BTRFS_SUPER_INFO_SIZE);
3560 if (!bh) {
3561 errors++;
b6a535fa
HM
3562 if (i == 0)
3563 primary_failed = true;
abbb3b8e
DS
3564 continue;
3565 }
3566 wait_on_buffer(bh);
b6a535fa 3567 if (!buffer_uptodate(bh)) {
abbb3b8e 3568 errors++;
b6a535fa
HM
3569 if (i == 0)
3570 primary_failed = true;
3571 }
abbb3b8e
DS
3572
3573 /* drop our reference */
3574 brelse(bh);
3575
3576 /* drop the reference from the writing run */
3577 brelse(bh);
3578 }
3579
b6a535fa
HM
3580 /* log error, force error return */
3581 if (primary_failed) {
3582 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3583 device->devid);
3584 return -1;
3585 }
3586
abbb3b8e
DS
3587 return errors < i ? 0 : -1;
3588}
3589
387125fc
CM
3590/*
3591 * endio for the write_dev_flush, this will wake anyone waiting
3592 * for the barrier when it is done
3593 */
4246a0b6 3594static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3595{
e0ae9994 3596 complete(bio->bi_private);
387125fc
CM
3597}
3598
3599/*
4fc6441a
AJ
3600 * Submit a flush request to the device if it supports it. Error handling is
3601 * done in the waiting counterpart.
387125fc 3602 */
4fc6441a 3603static void write_dev_flush(struct btrfs_device *device)
387125fc 3604{
c2a9c7ab 3605 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3606 struct bio *bio = device->flush_bio;
387125fc 3607
c2a9c7ab 3608 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3609 return;
387125fc 3610
e0ae9994 3611 bio_reset(bio);
387125fc 3612 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3613 bio_set_dev(bio, device->bdev);
8d910125 3614 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3615 init_completion(&device->flush_wait);
3616 bio->bi_private = &device->flush_wait;
387125fc 3617
43a01111 3618 btrfsic_submit_bio(bio);
1c3063b6 3619 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3620}
387125fc 3621
4fc6441a
AJ
3622/*
3623 * If the flush bio has been submitted by write_dev_flush, wait for it.
3624 */
8c27cb35 3625static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3626{
4fc6441a 3627 struct bio *bio = device->flush_bio;
387125fc 3628
1c3063b6 3629 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3630 return BLK_STS_OK;
387125fc 3631
1c3063b6 3632 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3633 wait_for_completion_io(&device->flush_wait);
387125fc 3634
8c27cb35 3635 return bio->bi_status;
387125fc 3636}
387125fc 3637
d10b82fe 3638static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3639{
6528b99d 3640 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3641 return -EIO;
387125fc
CM
3642 return 0;
3643}
3644
3645/*
3646 * send an empty flush down to each device in parallel,
3647 * then wait for them
3648 */
3649static int barrier_all_devices(struct btrfs_fs_info *info)
3650{
3651 struct list_head *head;
3652 struct btrfs_device *dev;
5af3e8cc 3653 int errors_wait = 0;
4e4cbee9 3654 blk_status_t ret;
387125fc 3655
1538e6c5 3656 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3657 /* send down all the barriers */
3658 head = &info->fs_devices->devices;
1538e6c5 3659 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3660 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3661 continue;
cea7c8bf 3662 if (!dev->bdev)
387125fc 3663 continue;
e12c9621 3664 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3665 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3666 continue;
3667
4fc6441a 3668 write_dev_flush(dev);
58efbc9f 3669 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3670 }
3671
3672 /* wait for all the barriers */
1538e6c5 3673 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3674 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3675 continue;
387125fc 3676 if (!dev->bdev) {
5af3e8cc 3677 errors_wait++;
387125fc
CM
3678 continue;
3679 }
e12c9621 3680 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3681 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3682 continue;
3683
4fc6441a 3684 ret = wait_dev_flush(dev);
401b41e5
AJ
3685 if (ret) {
3686 dev->last_flush_error = ret;
66b4993e
DS
3687 btrfs_dev_stat_inc_and_print(dev,
3688 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3689 errors_wait++;
401b41e5
AJ
3690 }
3691 }
3692
cea7c8bf 3693 if (errors_wait) {
401b41e5
AJ
3694 /*
3695 * At some point we need the status of all disks
3696 * to arrive at the volume status. So error checking
3697 * is being pushed to a separate loop.
3698 */
d10b82fe 3699 return check_barrier_error(info);
387125fc 3700 }
387125fc
CM
3701 return 0;
3702}
3703
943c6e99
ZL
3704int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3705{
8789f4fe
ZL
3706 int raid_type;
3707 int min_tolerated = INT_MAX;
943c6e99 3708
8789f4fe
ZL
3709 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3710 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3711 min_tolerated = min(min_tolerated,
3712 btrfs_raid_array[BTRFS_RAID_SINGLE].
3713 tolerated_failures);
943c6e99 3714
8789f4fe
ZL
3715 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3716 if (raid_type == BTRFS_RAID_SINGLE)
3717 continue;
41a6e891 3718 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe
ZL
3719 continue;
3720 min_tolerated = min(min_tolerated,
3721 btrfs_raid_array[raid_type].
3722 tolerated_failures);
3723 }
943c6e99 3724
8789f4fe 3725 if (min_tolerated == INT_MAX) {
ab8d0fc4 3726 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3727 min_tolerated = 0;
3728 }
3729
3730 return min_tolerated;
943c6e99
ZL
3731}
3732
eece6a9c 3733int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3734{
e5e9a520 3735 struct list_head *head;
f2984462 3736 struct btrfs_device *dev;
a061fc8d 3737 struct btrfs_super_block *sb;
f2984462 3738 struct btrfs_dev_item *dev_item;
f2984462
CM
3739 int ret;
3740 int do_barriers;
a236aed1
CM
3741 int max_errors;
3742 int total_errors = 0;
a061fc8d 3743 u64 flags;
f2984462 3744
0b246afa 3745 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3746
3747 /*
3748 * max_mirrors == 0 indicates we're from commit_transaction,
3749 * not from fsync where the tree roots in fs_info have not
3750 * been consistent on disk.
3751 */
3752 if (max_mirrors == 0)
3753 backup_super_roots(fs_info);
f2984462 3754
0b246afa 3755 sb = fs_info->super_for_commit;
a061fc8d 3756 dev_item = &sb->dev_item;
e5e9a520 3757
0b246afa
JM
3758 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3759 head = &fs_info->fs_devices->devices;
3760 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3761
5af3e8cc 3762 if (do_barriers) {
0b246afa 3763 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3764 if (ret) {
3765 mutex_unlock(
0b246afa
JM
3766 &fs_info->fs_devices->device_list_mutex);
3767 btrfs_handle_fs_error(fs_info, ret,
3768 "errors while submitting device barriers.");
5af3e8cc
SB
3769 return ret;
3770 }
3771 }
387125fc 3772
1538e6c5 3773 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3774 if (!dev->bdev) {
3775 total_errors++;
3776 continue;
3777 }
e12c9621 3778 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3779 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3780 continue;
3781
2b82032c 3782 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3783 btrfs_set_stack_device_type(dev_item, dev->type);
3784 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3785 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3786 dev->commit_total_bytes);
ce7213c7
MX
3787 btrfs_set_stack_device_bytes_used(dev_item,
3788 dev->commit_bytes_used);
a061fc8d
CM
3789 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3790 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3791 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3792 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3793 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3794 BTRFS_FSID_SIZE);
a512bbf8 3795
a061fc8d
CM
3796 flags = btrfs_super_flags(sb);
3797 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3798
75cb857d
QW
3799 ret = btrfs_validate_write_super(fs_info, sb);
3800 if (ret < 0) {
3801 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3802 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3803 "unexpected superblock corruption detected");
3804 return -EUCLEAN;
3805 }
3806
abbb3b8e 3807 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3808 if (ret)
3809 total_errors++;
f2984462 3810 }
a236aed1 3811 if (total_errors > max_errors) {
0b246afa
JM
3812 btrfs_err(fs_info, "%d errors while writing supers",
3813 total_errors);
3814 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3815
9d565ba4 3816 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3817 btrfs_handle_fs_error(fs_info, -EIO,
3818 "%d errors while writing supers",
3819 total_errors);
9d565ba4 3820 return -EIO;
a236aed1 3821 }
f2984462 3822
a512bbf8 3823 total_errors = 0;
1538e6c5 3824 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3825 if (!dev->bdev)
3826 continue;
e12c9621 3827 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3828 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3829 continue;
3830
abbb3b8e 3831 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3832 if (ret)
3833 total_errors++;
f2984462 3834 }
0b246afa 3835 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3836 if (total_errors > max_errors) {
0b246afa
JM
3837 btrfs_handle_fs_error(fs_info, -EIO,
3838 "%d errors while writing supers",
3839 total_errors);
79787eaa 3840 return -EIO;
a236aed1 3841 }
f2984462
CM
3842 return 0;
3843}
3844
cb517eab
MX
3845/* Drop a fs root from the radix tree and free it. */
3846void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3847 struct btrfs_root *root)
2619ba1f 3848{
4df27c4d 3849 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3850 radix_tree_delete(&fs_info->fs_roots_radix,
3851 (unsigned long)root->root_key.objectid);
4df27c4d 3852 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3853
3854 if (btrfs_root_refs(&root->root_item) == 0)
3855 synchronize_srcu(&fs_info->subvol_srcu);
3856
1c1ea4f7 3857 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3858 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3859 if (root->reloc_root) {
3860 free_extent_buffer(root->reloc_root->node);
3861 free_extent_buffer(root->reloc_root->commit_root);
3862 btrfs_put_fs_root(root->reloc_root);
3863 root->reloc_root = NULL;
3864 }
3865 }
3321719e 3866
faa2dbf0
JB
3867 if (root->free_ino_pinned)
3868 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3869 if (root->free_ino_ctl)
3870 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3871 btrfs_free_fs_root(root);
4df27c4d
YZ
3872}
3873
84db5ccf 3874void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3875{
57cdc8db 3876 iput(root->ino_cache_inode);
4df27c4d 3877 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3878 if (root->anon_dev)
3879 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3880 if (root->subv_writers)
3881 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3882 free_extent_buffer(root->node);
3883 free_extent_buffer(root->commit_root);
581bb050
LZ
3884 kfree(root->free_ino_ctl);
3885 kfree(root->free_ino_pinned);
b0feb9d9 3886 btrfs_put_fs_root(root);
2619ba1f
CM
3887}
3888
c146afad 3889int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3890{
c146afad
YZ
3891 u64 root_objectid = 0;
3892 struct btrfs_root *gang[8];
65d33fd7
QW
3893 int i = 0;
3894 int err = 0;
3895 unsigned int ret = 0;
3896 int index;
e089f05c 3897
c146afad 3898 while (1) {
65d33fd7 3899 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3900 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3901 (void **)gang, root_objectid,
3902 ARRAY_SIZE(gang));
65d33fd7
QW
3903 if (!ret) {
3904 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3905 break;
65d33fd7 3906 }
5d4f98a2 3907 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3908
c146afad 3909 for (i = 0; i < ret; i++) {
65d33fd7
QW
3910 /* Avoid to grab roots in dead_roots */
3911 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3912 gang[i] = NULL;
3913 continue;
3914 }
3915 /* grab all the search result for later use */
3916 gang[i] = btrfs_grab_fs_root(gang[i]);
3917 }
3918 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3919
65d33fd7
QW
3920 for (i = 0; i < ret; i++) {
3921 if (!gang[i])
3922 continue;
c146afad 3923 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3924 err = btrfs_orphan_cleanup(gang[i]);
3925 if (err)
65d33fd7
QW
3926 break;
3927 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3928 }
3929 root_objectid++;
3930 }
65d33fd7
QW
3931
3932 /* release the uncleaned roots due to error */
3933 for (; i < ret; i++) {
3934 if (gang[i])
3935 btrfs_put_fs_root(gang[i]);
3936 }
3937 return err;
c146afad 3938}
a2135011 3939
6bccf3ab 3940int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3941{
6bccf3ab 3942 struct btrfs_root *root = fs_info->tree_root;
c146afad 3943 struct btrfs_trans_handle *trans;
a74a4b97 3944
0b246afa 3945 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3946 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3947 mutex_unlock(&fs_info->cleaner_mutex);
3948 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3949
3950 /* wait until ongoing cleanup work done */
0b246afa
JM
3951 down_write(&fs_info->cleanup_work_sem);
3952 up_write(&fs_info->cleanup_work_sem);
c71bf099 3953
7a7eaa40 3954 trans = btrfs_join_transaction(root);
3612b495
TI
3955 if (IS_ERR(trans))
3956 return PTR_ERR(trans);
3a45bb20 3957 return btrfs_commit_transaction(trans);
c146afad
YZ
3958}
3959
6bccf3ab 3960void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3961{
c146afad
YZ
3962 int ret;
3963
afcdd129 3964 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3965 /*
3966 * We don't want the cleaner to start new transactions, add more delayed
3967 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3968 * because that frees the task_struct, and the transaction kthread might
3969 * still try to wake up the cleaner.
3970 */
3971 kthread_park(fs_info->cleaner_kthread);
c146afad 3972
7343dd61 3973 /* wait for the qgroup rescan worker to stop */
d06f23d6 3974 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3975
803b2f54
SB
3976 /* wait for the uuid_scan task to finish */
3977 down(&fs_info->uuid_tree_rescan_sem);
3978 /* avoid complains from lockdep et al., set sem back to initial state */
3979 up(&fs_info->uuid_tree_rescan_sem);
3980
837d5b6e 3981 /* pause restriper - we want to resume on mount */
aa1b8cd4 3982 btrfs_pause_balance(fs_info);
837d5b6e 3983
8dabb742
SB
3984 btrfs_dev_replace_suspend_for_unmount(fs_info);
3985
aa1b8cd4 3986 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3987
3988 /* wait for any defraggers to finish */
3989 wait_event(fs_info->transaction_wait,
3990 (atomic_read(&fs_info->defrag_running) == 0));
3991
3992 /* clear out the rbtree of defraggable inodes */
26176e7c 3993 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3994
21c7e756
MX
3995 cancel_work_sync(&fs_info->async_reclaim_work);
3996
bc98a42c 3997 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3998 /*
d6fd0ae2
OS
3999 * The cleaner kthread is stopped, so do one final pass over
4000 * unused block groups.
e44163e1 4001 */
0b246afa 4002 btrfs_delete_unused_bgs(fs_info);
e44163e1 4003
6bccf3ab 4004 ret = btrfs_commit_super(fs_info);
acce952b 4005 if (ret)
04892340 4006 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4007 }
4008
af722733
LB
4009 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4010 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4011 btrfs_error_commit_super(fs_info);
0f7d52f4 4012
e3029d9f
AV
4013 kthread_stop(fs_info->transaction_kthread);
4014 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4015
e187831e 4016 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4017 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4018
04892340 4019 btrfs_free_qgroup_config(fs_info);
fe816d0f 4020 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4021
963d678b 4022 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4023 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4024 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4025 }
bcc63abb 4026
6618a59b 4027 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4028 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4029
faa2dbf0 4030 btrfs_free_fs_roots(fs_info);
d10c5f31 4031
1a4319cc
LB
4032 btrfs_put_block_group_cache(fs_info);
4033
de348ee0
WS
4034 /*
4035 * we must make sure there is not any read request to
4036 * submit after we stopping all workers.
4037 */
4038 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4039 btrfs_stop_all_workers(fs_info);
4040
5cdd7db6
FM
4041 btrfs_free_block_groups(fs_info);
4042
afcdd129 4043 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 4044 free_root_pointers(fs_info, 1);
9ad6b7bc 4045
13e6c37b 4046 iput(fs_info->btree_inode);
d6bfde87 4047
21adbd5c 4048#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4049 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4050 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4051#endif
4052
0b86a832 4053 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4054 btrfs_close_devices(fs_info->fs_devices);
b248a415 4055
e2d84521 4056 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4057 percpu_counter_destroy(&fs_info->delalloc_bytes);
7f8d236a 4058 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4059 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4060
53b381b3 4061 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4062 btrfs_free_ref_cache(fs_info);
eb60ceac
CM
4063}
4064
b9fab919
CM
4065int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4066 int atomic)
5f39d397 4067{
1259ab75 4068 int ret;
727011e0 4069 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4070
0b32f4bb 4071 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4072 if (!ret)
4073 return ret;
4074
4075 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4076 parent_transid, atomic);
4077 if (ret == -EAGAIN)
4078 return ret;
1259ab75 4079 return !ret;
5f39d397
CM
4080}
4081
5f39d397
CM
4082void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4083{
0b246afa 4084 struct btrfs_fs_info *fs_info;
06ea65a3 4085 struct btrfs_root *root;
5f39d397 4086 u64 transid = btrfs_header_generation(buf);
b9473439 4087 int was_dirty;
b4ce94de 4088
06ea65a3
JB
4089#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4090 /*
4091 * This is a fast path so only do this check if we have sanity tests
52042d8e 4092 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4093 * outside of the sanity tests.
4094 */
b0132a3b 4095 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4096 return;
4097#endif
4098 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4099 fs_info = root->fs_info;
b9447ef8 4100 btrfs_assert_tree_locked(buf);
0b246afa 4101 if (transid != fs_info->generation)
5d163e0e 4102 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4103 buf->start, transid, fs_info->generation);
0b32f4bb 4104 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4105 if (!was_dirty)
104b4e51
NB
4106 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4107 buf->len,
4108 fs_info->dirty_metadata_batch);
1f21ef0a 4109#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4110 /*
4111 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4112 * but item data not updated.
4113 * So here we should only check item pointers, not item data.
4114 */
4115 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4116 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4117 btrfs_print_leaf(buf);
1f21ef0a
FM
4118 ASSERT(0);
4119 }
4120#endif
eb60ceac
CM
4121}
4122
2ff7e61e 4123static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4124 int flush_delayed)
16cdcec7
MX
4125{
4126 /*
4127 * looks as though older kernels can get into trouble with
4128 * this code, they end up stuck in balance_dirty_pages forever
4129 */
e2d84521 4130 int ret;
16cdcec7
MX
4131
4132 if (current->flags & PF_MEMALLOC)
4133 return;
4134
b53d3f5d 4135 if (flush_delayed)
2ff7e61e 4136 btrfs_balance_delayed_items(fs_info);
16cdcec7 4137
d814a491
EL
4138 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4139 BTRFS_DIRTY_METADATA_THRESH,
4140 fs_info->dirty_metadata_batch);
e2d84521 4141 if (ret > 0) {
0b246afa 4142 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4143 }
16cdcec7
MX
4144}
4145
2ff7e61e 4146void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4147{
2ff7e61e 4148 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4149}
585ad2c3 4150
2ff7e61e 4151void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4152{
2ff7e61e 4153 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4154}
6b80053d 4155
581c1760
QW
4156int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4157 struct btrfs_key *first_key)
6b80053d 4158{
5ab12d1f 4159 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4160 level, first_key);
6b80053d 4161}
0da5468f 4162
2ff7e61e 4163static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4164{
fe816d0f
NB
4165 /* cleanup FS via transaction */
4166 btrfs_cleanup_transaction(fs_info);
4167
0b246afa 4168 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4169 btrfs_run_delayed_iputs(fs_info);
0b246afa 4170 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4171
0b246afa
JM
4172 down_write(&fs_info->cleanup_work_sem);
4173 up_write(&fs_info->cleanup_work_sem);
acce952b 4174}
4175
143bede5 4176static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4177{
acce952b 4178 struct btrfs_ordered_extent *ordered;
acce952b 4179
199c2a9c 4180 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4181 /*
4182 * This will just short circuit the ordered completion stuff which will
4183 * make sure the ordered extent gets properly cleaned up.
4184 */
199c2a9c 4185 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4186 root_extent_list)
4187 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4188 spin_unlock(&root->ordered_extent_lock);
4189}
4190
4191static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4192{
4193 struct btrfs_root *root;
4194 struct list_head splice;
4195
4196 INIT_LIST_HEAD(&splice);
4197
4198 spin_lock(&fs_info->ordered_root_lock);
4199 list_splice_init(&fs_info->ordered_roots, &splice);
4200 while (!list_empty(&splice)) {
4201 root = list_first_entry(&splice, struct btrfs_root,
4202 ordered_root);
1de2cfde
JB
4203 list_move_tail(&root->ordered_root,
4204 &fs_info->ordered_roots);
199c2a9c 4205
2a85d9ca 4206 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4207 btrfs_destroy_ordered_extents(root);
4208
2a85d9ca
LB
4209 cond_resched();
4210 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4211 }
4212 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4213
4214 /*
4215 * We need this here because if we've been flipped read-only we won't
4216 * get sync() from the umount, so we need to make sure any ordered
4217 * extents that haven't had their dirty pages IO start writeout yet
4218 * actually get run and error out properly.
4219 */
4220 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4221}
4222
35a3621b 4223static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4224 struct btrfs_fs_info *fs_info)
acce952b 4225{
4226 struct rb_node *node;
4227 struct btrfs_delayed_ref_root *delayed_refs;
4228 struct btrfs_delayed_ref_node *ref;
4229 int ret = 0;
4230
4231 delayed_refs = &trans->delayed_refs;
4232
4233 spin_lock(&delayed_refs->lock);
d7df2c79 4234 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4235 spin_unlock(&delayed_refs->lock);
0b246afa 4236 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4237 return ret;
4238 }
4239
5c9d028b 4240 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4241 struct btrfs_delayed_ref_head *head;
0e0adbcf 4242 struct rb_node *n;
e78417d1 4243 bool pin_bytes = false;
acce952b 4244
d7df2c79
JB
4245 head = rb_entry(node, struct btrfs_delayed_ref_head,
4246 href_node);
3069bd26 4247 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4248 continue;
3069bd26 4249
d7df2c79 4250 spin_lock(&head->lock);
e3d03965 4251 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4252 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4253 ref_node);
d7df2c79 4254 ref->in_tree = 0;
e3d03965 4255 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4256 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4257 if (!list_empty(&ref->add_list))
4258 list_del(&ref->add_list);
d7df2c79
JB
4259 atomic_dec(&delayed_refs->num_entries);
4260 btrfs_put_delayed_ref(ref);
e78417d1 4261 }
d7df2c79
JB
4262 if (head->must_insert_reserved)
4263 pin_bytes = true;
4264 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4265 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4266 spin_unlock(&head->lock);
4267 spin_unlock(&delayed_refs->lock);
4268 mutex_unlock(&head->mutex);
acce952b 4269
d7df2c79 4270 if (pin_bytes)
d278850e
JB
4271 btrfs_pin_extent(fs_info, head->bytenr,
4272 head->num_bytes, 1);
31890da0 4273 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4274 btrfs_put_delayed_ref_head(head);
acce952b 4275 cond_resched();
4276 spin_lock(&delayed_refs->lock);
4277 }
4278
4279 spin_unlock(&delayed_refs->lock);
4280
4281 return ret;
4282}
4283
143bede5 4284static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4285{
4286 struct btrfs_inode *btrfs_inode;
4287 struct list_head splice;
4288
4289 INIT_LIST_HEAD(&splice);
4290
eb73c1b7
MX
4291 spin_lock(&root->delalloc_lock);
4292 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4293
4294 while (!list_empty(&splice)) {
fe816d0f 4295 struct inode *inode = NULL;
eb73c1b7
MX
4296 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4297 delalloc_inodes);
fe816d0f 4298 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4299 spin_unlock(&root->delalloc_lock);
acce952b 4300
fe816d0f
NB
4301 /*
4302 * Make sure we get a live inode and that it'll not disappear
4303 * meanwhile.
4304 */
4305 inode = igrab(&btrfs_inode->vfs_inode);
4306 if (inode) {
4307 invalidate_inode_pages2(inode->i_mapping);
4308 iput(inode);
4309 }
eb73c1b7 4310 spin_lock(&root->delalloc_lock);
acce952b 4311 }
eb73c1b7
MX
4312 spin_unlock(&root->delalloc_lock);
4313}
4314
4315static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4316{
4317 struct btrfs_root *root;
4318 struct list_head splice;
4319
4320 INIT_LIST_HEAD(&splice);
4321
4322 spin_lock(&fs_info->delalloc_root_lock);
4323 list_splice_init(&fs_info->delalloc_roots, &splice);
4324 while (!list_empty(&splice)) {
4325 root = list_first_entry(&splice, struct btrfs_root,
4326 delalloc_root);
eb73c1b7
MX
4327 root = btrfs_grab_fs_root(root);
4328 BUG_ON(!root);
4329 spin_unlock(&fs_info->delalloc_root_lock);
4330
4331 btrfs_destroy_delalloc_inodes(root);
4332 btrfs_put_fs_root(root);
4333
4334 spin_lock(&fs_info->delalloc_root_lock);
4335 }
4336 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4337}
4338
2ff7e61e 4339static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4340 struct extent_io_tree *dirty_pages,
4341 int mark)
4342{
4343 int ret;
acce952b 4344 struct extent_buffer *eb;
4345 u64 start = 0;
4346 u64 end;
acce952b 4347
4348 while (1) {
4349 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4350 mark, NULL);
acce952b 4351 if (ret)
4352 break;
4353
91166212 4354 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4355 while (start <= end) {
0b246afa
JM
4356 eb = find_extent_buffer(fs_info, start);
4357 start += fs_info->nodesize;
fd8b2b61 4358 if (!eb)
acce952b 4359 continue;
fd8b2b61 4360 wait_on_extent_buffer_writeback(eb);
acce952b 4361
fd8b2b61
JB
4362 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4363 &eb->bflags))
4364 clear_extent_buffer_dirty(eb);
4365 free_extent_buffer_stale(eb);
acce952b 4366 }
4367 }
4368
4369 return ret;
4370}
4371
2ff7e61e 4372static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4373 struct extent_io_tree *pinned_extents)
4374{
4375 struct extent_io_tree *unpin;
4376 u64 start;
4377 u64 end;
4378 int ret;
ed0eaa14 4379 bool loop = true;
acce952b 4380
4381 unpin = pinned_extents;
ed0eaa14 4382again:
acce952b 4383 while (1) {
0e6ec385
FM
4384 struct extent_state *cached_state = NULL;
4385
fcd5e742
LF
4386 /*
4387 * The btrfs_finish_extent_commit() may get the same range as
4388 * ours between find_first_extent_bit and clear_extent_dirty.
4389 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4390 * the same extent range.
4391 */
4392 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4393 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4394 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4395 if (ret) {
4396 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4397 break;
fcd5e742 4398 }
acce952b 4399
0e6ec385
FM
4400 clear_extent_dirty(unpin, start, end, &cached_state);
4401 free_extent_state(cached_state);
2ff7e61e 4402 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4403 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4404 cond_resched();
4405 }
4406
ed0eaa14 4407 if (loop) {
0b246afa
JM
4408 if (unpin == &fs_info->freed_extents[0])
4409 unpin = &fs_info->freed_extents[1];
ed0eaa14 4410 else
0b246afa 4411 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4412 loop = false;
4413 goto again;
4414 }
4415
acce952b 4416 return 0;
4417}
4418
c79a1751
LB
4419static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4420{
4421 struct inode *inode;
4422
4423 inode = cache->io_ctl.inode;
4424 if (inode) {
4425 invalidate_inode_pages2(inode->i_mapping);
4426 BTRFS_I(inode)->generation = 0;
4427 cache->io_ctl.inode = NULL;
4428 iput(inode);
4429 }
4430 btrfs_put_block_group(cache);
4431}
4432
4433void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4434 struct btrfs_fs_info *fs_info)
c79a1751
LB
4435{
4436 struct btrfs_block_group_cache *cache;
4437
4438 spin_lock(&cur_trans->dirty_bgs_lock);
4439 while (!list_empty(&cur_trans->dirty_bgs)) {
4440 cache = list_first_entry(&cur_trans->dirty_bgs,
4441 struct btrfs_block_group_cache,
4442 dirty_list);
c79a1751
LB
4443
4444 if (!list_empty(&cache->io_list)) {
4445 spin_unlock(&cur_trans->dirty_bgs_lock);
4446 list_del_init(&cache->io_list);
4447 btrfs_cleanup_bg_io(cache);
4448 spin_lock(&cur_trans->dirty_bgs_lock);
4449 }
4450
4451 list_del_init(&cache->dirty_list);
4452 spin_lock(&cache->lock);
4453 cache->disk_cache_state = BTRFS_DC_ERROR;
4454 spin_unlock(&cache->lock);
4455
4456 spin_unlock(&cur_trans->dirty_bgs_lock);
4457 btrfs_put_block_group(cache);
ba2c4d4e 4458 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4459 spin_lock(&cur_trans->dirty_bgs_lock);
4460 }
4461 spin_unlock(&cur_trans->dirty_bgs_lock);
4462
45ae2c18
NB
4463 /*
4464 * Refer to the definition of io_bgs member for details why it's safe
4465 * to use it without any locking
4466 */
c79a1751
LB
4467 while (!list_empty(&cur_trans->io_bgs)) {
4468 cache = list_first_entry(&cur_trans->io_bgs,
4469 struct btrfs_block_group_cache,
4470 io_list);
c79a1751
LB
4471
4472 list_del_init(&cache->io_list);
4473 spin_lock(&cache->lock);
4474 cache->disk_cache_state = BTRFS_DC_ERROR;
4475 spin_unlock(&cache->lock);
4476 btrfs_cleanup_bg_io(cache);
4477 }
4478}
4479
49b25e05 4480void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4481 struct btrfs_fs_info *fs_info)
49b25e05 4482{
bbbf7243
NB
4483 struct btrfs_device *dev, *tmp;
4484
2ff7e61e 4485 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4486 ASSERT(list_empty(&cur_trans->dirty_bgs));
4487 ASSERT(list_empty(&cur_trans->io_bgs));
4488
bbbf7243
NB
4489 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4490 post_commit_list) {
4491 list_del_init(&dev->post_commit_list);
4492 }
4493
2ff7e61e 4494 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4495
4a9d8bde 4496 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4497 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4498
4a9d8bde 4499 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4500 wake_up(&fs_info->transaction_wait);
49b25e05 4501
ccdf9b30
JM
4502 btrfs_destroy_delayed_inodes(fs_info);
4503 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4504
2ff7e61e 4505 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4506 EXTENT_DIRTY);
2ff7e61e 4507 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4508 fs_info->pinned_extents);
49b25e05 4509
4a9d8bde
MX
4510 cur_trans->state =TRANS_STATE_COMPLETED;
4511 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4512}
4513
2ff7e61e 4514static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4515{
4516 struct btrfs_transaction *t;
acce952b 4517
0b246afa 4518 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4519
0b246afa
JM
4520 spin_lock(&fs_info->trans_lock);
4521 while (!list_empty(&fs_info->trans_list)) {
4522 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4523 struct btrfs_transaction, list);
4524 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4525 refcount_inc(&t->use_count);
0b246afa 4526 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4527 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4528 btrfs_put_transaction(t);
0b246afa 4529 spin_lock(&fs_info->trans_lock);
724e2315
JB
4530 continue;
4531 }
0b246afa 4532 if (t == fs_info->running_transaction) {
724e2315 4533 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4534 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4535 /*
4536 * We wait for 0 num_writers since we don't hold a trans
4537 * handle open currently for this transaction.
4538 */
4539 wait_event(t->writer_wait,
4540 atomic_read(&t->num_writers) == 0);
4541 } else {
0b246afa 4542 spin_unlock(&fs_info->trans_lock);
724e2315 4543 }
2ff7e61e 4544 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4545
0b246afa
JM
4546 spin_lock(&fs_info->trans_lock);
4547 if (t == fs_info->running_transaction)
4548 fs_info->running_transaction = NULL;
acce952b 4549 list_del_init(&t->list);
0b246afa 4550 spin_unlock(&fs_info->trans_lock);
acce952b 4551
724e2315 4552 btrfs_put_transaction(t);
2ff7e61e 4553 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4554 spin_lock(&fs_info->trans_lock);
724e2315 4555 }
0b246afa
JM
4556 spin_unlock(&fs_info->trans_lock);
4557 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4558 btrfs_destroy_delayed_inodes(fs_info);
4559 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4560 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4561 btrfs_destroy_all_delalloc_inodes(fs_info);
4562 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4563
4564 return 0;
4565}
4566
e8c9f186 4567static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4568 /* mandatory callbacks */
0b86a832 4569 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4570 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4571};