]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/disk-io.c
btrfs: sink unlock_extent parameter gfp_flags
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
5a0e3ad6 28#include <linux/slab.h>
784b4e29 29#include <linux/migrate.h>
7a36ddec 30#include <linux/ratelimit.h>
6463fe58 31#include <linux/uuid.h>
803b2f54 32#include <linux/semaphore.h>
7e75bf3f 33#include <asm/unaligned.h>
eb60ceac
CM
34#include "ctree.h"
35#include "disk-io.h"
0b947aff 36#include "hash.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
925baedd 41#include "locking.h"
e02119d5 42#include "tree-log.h"
fa9c0d79 43#include "free-space-cache.h"
70f6d82e 44#include "free-space-tree.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
ebb8765b 52#include "compression.h"
557ea5dd 53#include "tree-checker.h"
fd708b81 54#include "ref-verify.h"
eb60ceac 55
de0022b9
JB
56#ifdef CONFIG_X86
57#include <asm/cpufeature.h>
58#endif
59
319e4d06
QW
60#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
61 BTRFS_HEADER_FLAG_RELOC |\
62 BTRFS_SUPER_FLAG_ERROR |\
63 BTRFS_SUPER_FLAG_SEEDING |\
64 BTRFS_SUPER_FLAG_METADUMP)
65
e8c9f186 66static const struct extent_io_ops btree_extent_io_ops;
8b712842 67static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 68static void free_fs_root(struct btrfs_root *root);
3d3a126a 69static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
143bede5 70static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 71static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 72 struct btrfs_fs_info *fs_info);
143bede5 73static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 74static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 75 struct extent_io_tree *dirty_pages,
76 int mark);
2ff7e61e 77static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 78 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
79static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
80static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 81
d352ac68 82/*
97eb6b69
DS
83 * btrfs_end_io_wq structs are used to do processing in task context when an IO
84 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
85 * by writes to insert metadata for new file extents after IO is complete.
86 */
97eb6b69 87struct btrfs_end_io_wq {
ce9adaa5
CM
88 struct bio *bio;
89 bio_end_io_t *end_io;
90 void *private;
91 struct btrfs_fs_info *info;
4e4cbee9 92 blk_status_t status;
bfebd8b5 93 enum btrfs_wq_endio_type metadata;
8b712842 94 struct btrfs_work work;
ce9adaa5 95};
0da5468f 96
97eb6b69
DS
97static struct kmem_cache *btrfs_end_io_wq_cache;
98
99int __init btrfs_end_io_wq_init(void)
100{
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
fba4b697 104 SLAB_MEM_SPREAD,
97eb6b69
DS
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109}
110
111void btrfs_end_io_wq_exit(void)
112{
5598e900 113 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
114}
115
d352ac68
CM
116/*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
44b8bd7e 121struct async_submit_bio {
c6100a4b
JB
122 void *private_data;
123 struct btrfs_fs_info *fs_info;
44b8bd7e 124 struct bio *bio;
4a69a410
CM
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e 127 int mirror_num;
c8b97818 128 unsigned long bio_flags;
eaf25d93
CM
129 /*
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
132 */
133 u64 bio_offset;
8b712842 134 struct btrfs_work work;
4e4cbee9 135 blk_status_t status;
44b8bd7e
CM
136};
137
85d4e461
CM
138/*
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
142 *
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
4008c04a 148 *
85d4e461
CM
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 152 *
85d4e461
CM
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 156 *
85d4e461
CM
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
4008c04a
CM
160 */
161#ifdef CONFIG_DEBUG_LOCK_ALLOC
162# if BTRFS_MAX_LEVEL != 8
163# error
164# endif
85d4e461
CM
165
166static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171} btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 184 { .id = 0, .name_stem = "tree" },
4008c04a 185};
85d4e461
CM
186
187void __init btrfs_init_lockdep(void)
188{
189 int i, j;
190
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
198 }
199}
200
201void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
203{
204 struct btrfs_lockdep_keyset *ks;
205
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
212
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
215}
216
4008c04a
CM
217#endif
218
d352ac68
CM
219/*
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
222 */
6af49dbd 223struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 224 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 225 int create)
7eccb903 226{
fc4f21b1
NB
227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
228 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
229 struct extent_map *em;
230 int ret;
231
890871be 232 read_lock(&em_tree->lock);
d1310b2e 233 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 234 if (em) {
0b246afa 235 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 236 read_unlock(&em_tree->lock);
5f39d397 237 goto out;
a061fc8d 238 }
890871be 239 read_unlock(&em_tree->lock);
7b13b7b1 240
172ddd60 241 em = alloc_extent_map();
5f39d397
CM
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
245 }
246 em->start = 0;
0afbaf8c 247 em->len = (u64)-1;
c8b97818 248 em->block_len = (u64)-1;
5f39d397 249 em->block_start = 0;
0b246afa 250 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 251
890871be 252 write_lock(&em_tree->lock);
09a2a8f9 253 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
254 if (ret == -EEXIST) {
255 free_extent_map(em);
7b13b7b1 256 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 257 if (!em)
0433f20d 258 em = ERR_PTR(-EIO);
5f39d397 259 } else if (ret) {
7b13b7b1 260 free_extent_map(em);
0433f20d 261 em = ERR_PTR(ret);
5f39d397 262 }
890871be 263 write_unlock(&em_tree->lock);
7b13b7b1 264
5f39d397
CM
265out:
266 return em;
7eccb903
CM
267}
268
9ed57367 269u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 270{
0b947aff 271 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
272}
273
0b5e3daf 274void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 275{
7e75bf3f 276 put_unaligned_le32(~crc, result);
19c00ddc
CM
277}
278
d352ac68
CM
279/*
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
282 */
01d58472
DD
283static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
19c00ddc
CM
285 int verify)
286{
01d58472 287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
71a63551 288 char result[BTRFS_CSUM_SIZE];
19c00ddc
CM
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
297
298 len = buf->len - offset;
d397712b 299 while (len > 0) {
19c00ddc 300 err = map_private_extent_buffer(buf, offset, 32,
a6591715 301 &kaddr, &map_start, &map_len);
d397712b 302 if (err)
8bd98f0e 303 return err;
19c00ddc 304 cur_len = min(len, map_len - (offset - map_start));
b0496686 305 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
306 crc, cur_len);
307 len -= cur_len;
308 offset += cur_len;
19c00ddc 309 }
71a63551 310 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 311
19c00ddc
CM
312 btrfs_csum_final(crc, result);
313
314 if (verify) {
607d432d 315 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
316 u32 val;
317 u32 found = 0;
607d432d 318 memcpy(&found, result, csum_size);
e4204ded 319
607d432d 320 read_extent_buffer(buf, &val, 0, csum_size);
94647322 321 btrfs_warn_rl(fs_info,
5d163e0e 322 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 323 fs_info->sb->s_id, buf->start,
efe120a0 324 val, found, btrfs_header_level(buf));
8bd98f0e 325 return -EUCLEAN;
19c00ddc
CM
326 }
327 } else {
607d432d 328 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 329 }
71a63551 330
19c00ddc
CM
331 return 0;
332}
333
d352ac68
CM
334/*
335 * we can't consider a given block up to date unless the transid of the
336 * block matches the transid in the parent node's pointer. This is how we
337 * detect blocks that either didn't get written at all or got written
338 * in the wrong place.
339 */
1259ab75 340static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
341 struct extent_buffer *eb, u64 parent_transid,
342 int atomic)
1259ab75 343{
2ac55d41 344 struct extent_state *cached_state = NULL;
1259ab75 345 int ret;
2755a0de 346 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
347
348 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
349 return 0;
350
b9fab919
CM
351 if (atomic)
352 return -EAGAIN;
353
a26e8c9f
JB
354 if (need_lock) {
355 btrfs_tree_read_lock(eb);
356 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
357 }
358
2ac55d41 359 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 360 &cached_state);
0b32f4bb 361 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
362 btrfs_header_generation(eb) == parent_transid) {
363 ret = 0;
364 goto out;
365 }
94647322
DS
366 btrfs_err_rl(eb->fs_info,
367 "parent transid verify failed on %llu wanted %llu found %llu",
368 eb->start,
29549aec 369 parent_transid, btrfs_header_generation(eb));
1259ab75 370 ret = 1;
a26e8c9f
JB
371
372 /*
373 * Things reading via commit roots that don't have normal protection,
374 * like send, can have a really old block in cache that may point at a
01327610 375 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
376 * if we find an eb that is under IO (dirty/writeback) because we could
377 * end up reading in the stale data and then writing it back out and
378 * making everybody very sad.
379 */
380 if (!extent_buffer_under_io(eb))
381 clear_extent_buffer_uptodate(eb);
33958dc6 382out:
2ac55d41 383 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 384 &cached_state);
472b909f
JB
385 if (need_lock)
386 btrfs_tree_read_unlock_blocking(eb);
1259ab75 387 return ret;
1259ab75
CM
388}
389
1104a885
DS
390/*
391 * Return 0 if the superblock checksum type matches the checksum value of that
392 * algorithm. Pass the raw disk superblock data.
393 */
ab8d0fc4
JM
394static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
395 char *raw_disk_sb)
1104a885
DS
396{
397 struct btrfs_super_block *disk_sb =
398 (struct btrfs_super_block *)raw_disk_sb;
399 u16 csum_type = btrfs_super_csum_type(disk_sb);
400 int ret = 0;
401
402 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
403 u32 crc = ~(u32)0;
404 const int csum_size = sizeof(crc);
405 char result[csum_size];
406
407 /*
408 * The super_block structure does not span the whole
409 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 410 * is filled with zeros and is included in the checksum.
1104a885
DS
411 */
412 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
413 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
414 btrfs_csum_final(crc, result);
415
416 if (memcmp(raw_disk_sb, result, csum_size))
417 ret = 1;
418 }
419
420 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 421 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
422 csum_type);
423 ret = 1;
424 }
425
426 return ret;
427}
428
d352ac68
CM
429/*
430 * helper to read a given tree block, doing retries as required when
431 * the checksums don't match and we have alternate mirrors to try.
432 */
2ff7e61e 433static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 434 struct extent_buffer *eb,
8436ea91 435 u64 parent_transid)
f188591e
CM
436{
437 struct extent_io_tree *io_tree;
ea466794 438 int failed = 0;
f188591e
CM
439 int ret;
440 int num_copies = 0;
441 int mirror_num = 0;
ea466794 442 int failed_mirror = 0;
f188591e 443
a826d6dc 444 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
0b246afa 445 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 446 while (1) {
8436ea91 447 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
6af49dbd 448 mirror_num);
256dd1bb
SB
449 if (!ret) {
450 if (!verify_parent_transid(io_tree, eb,
b9fab919 451 parent_transid, 0))
256dd1bb
SB
452 break;
453 else
454 ret = -EIO;
455 }
d397712b 456
a826d6dc
JB
457 /*
458 * This buffer's crc is fine, but its contents are corrupted, so
459 * there is no reason to read the other copies, they won't be
460 * any less wrong.
461 */
462 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
463 break;
464
0b246afa 465 num_copies = btrfs_num_copies(fs_info,
f188591e 466 eb->start, eb->len);
4235298e 467 if (num_copies == 1)
ea466794 468 break;
4235298e 469
5cf1ab56
JB
470 if (!failed_mirror) {
471 failed = 1;
472 failed_mirror = eb->read_mirror;
473 }
474
f188591e 475 mirror_num++;
ea466794
JB
476 if (mirror_num == failed_mirror)
477 mirror_num++;
478
4235298e 479 if (mirror_num > num_copies)
ea466794 480 break;
f188591e 481 }
ea466794 482
c0901581 483 if (failed && !ret && failed_mirror)
2ff7e61e 484 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
485
486 return ret;
f188591e 487}
19c00ddc 488
d352ac68 489/*
d397712b
CM
490 * checksum a dirty tree block before IO. This has extra checks to make sure
491 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 492 */
d397712b 493
01d58472 494static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 495{
4eee4fa4 496 u64 start = page_offset(page);
19c00ddc 497 u64 found_start;
19c00ddc 498 struct extent_buffer *eb;
f188591e 499
4f2de97a
JB
500 eb = (struct extent_buffer *)page->private;
501 if (page != eb->pages[0])
502 return 0;
0f805531 503
19c00ddc 504 found_start = btrfs_header_bytenr(eb);
0f805531
AL
505 /*
506 * Please do not consolidate these warnings into a single if.
507 * It is useful to know what went wrong.
508 */
509 if (WARN_ON(found_start != start))
510 return -EUCLEAN;
511 if (WARN_ON(!PageUptodate(page)))
512 return -EUCLEAN;
513
514 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
515 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
516
8bd98f0e 517 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
518}
519
01d58472 520static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
521 struct extent_buffer *eb)
522{
01d58472 523 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 524 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
525 int ret = 1;
526
0a4e5586 527 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
528 while (fs_devices) {
529 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
530 ret = 0;
531 break;
532 }
533 fs_devices = fs_devices->seed;
534 }
535 return ret;
536}
537
facc8a22
MX
538static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
539 u64 phy_offset, struct page *page,
540 u64 start, u64 end, int mirror)
ce9adaa5 541{
ce9adaa5
CM
542 u64 found_start;
543 int found_level;
ce9adaa5
CM
544 struct extent_buffer *eb;
545 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 546 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 547 int ret = 0;
727011e0 548 int reads_done;
ce9adaa5 549
ce9adaa5
CM
550 if (!page->private)
551 goto out;
d397712b 552
4f2de97a 553 eb = (struct extent_buffer *)page->private;
d397712b 554
0b32f4bb
JB
555 /* the pending IO might have been the only thing that kept this buffer
556 * in memory. Make sure we have a ref for all this other checks
557 */
558 extent_buffer_get(eb);
559
560 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
561 if (!reads_done)
562 goto err;
f188591e 563
5cf1ab56 564 eb->read_mirror = mirror;
656f30db 565 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
566 ret = -EIO;
567 goto err;
568 }
569
ce9adaa5 570 found_start = btrfs_header_bytenr(eb);
727011e0 571 if (found_start != eb->start) {
02873e43
ZL
572 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
573 found_start, eb->start);
f188591e 574 ret = -EIO;
ce9adaa5
CM
575 goto err;
576 }
02873e43
ZL
577 if (check_tree_block_fsid(fs_info, eb)) {
578 btrfs_err_rl(fs_info, "bad fsid on block %llu",
579 eb->start);
1259ab75
CM
580 ret = -EIO;
581 goto err;
582 }
ce9adaa5 583 found_level = btrfs_header_level(eb);
1c24c3ce 584 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
585 btrfs_err(fs_info, "bad tree block level %d",
586 (int)btrfs_header_level(eb));
1c24c3ce
JB
587 ret = -EIO;
588 goto err;
589 }
ce9adaa5 590
85d4e461
CM
591 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
592 eb, found_level);
4008c04a 593
02873e43 594 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 595 if (ret)
a826d6dc 596 goto err;
a826d6dc
JB
597
598 /*
599 * If this is a leaf block and it is corrupt, set the corrupt bit so
600 * that we don't try and read the other copies of this block, just
601 * return -EIO.
602 */
69fc6cbb 603 if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
a826d6dc
JB
604 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
605 ret = -EIO;
606 }
ce9adaa5 607
557ea5dd 608 if (found_level > 0 && btrfs_check_node(root, eb))
053ab70f
LB
609 ret = -EIO;
610
0b32f4bb
JB
611 if (!ret)
612 set_extent_buffer_uptodate(eb);
ce9adaa5 613err:
79fb65a1
JB
614 if (reads_done &&
615 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 616 btree_readahead_hook(eb, ret);
4bb31e92 617
53b381b3
DW
618 if (ret) {
619 /*
620 * our io error hook is going to dec the io pages
621 * again, we have to make sure it has something
622 * to decrement
623 */
624 atomic_inc(&eb->io_pages);
0b32f4bb 625 clear_extent_buffer_uptodate(eb);
53b381b3 626 }
0b32f4bb 627 free_extent_buffer(eb);
ce9adaa5 628out:
f188591e 629 return ret;
ce9adaa5
CM
630}
631
ea466794 632static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 633{
4bb31e92 634 struct extent_buffer *eb;
4bb31e92 635
4f2de97a 636 eb = (struct extent_buffer *)page->private;
656f30db 637 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 638 eb->read_mirror = failed_mirror;
53b381b3 639 atomic_dec(&eb->io_pages);
ea466794 640 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 641 btree_readahead_hook(eb, -EIO);
4bb31e92
AJ
642 return -EIO; /* we fixed nothing */
643}
644
4246a0b6 645static void end_workqueue_bio(struct bio *bio)
ce9adaa5 646{
97eb6b69 647 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 648 struct btrfs_fs_info *fs_info;
9e0af237
LB
649 struct btrfs_workqueue *wq;
650 btrfs_work_func_t func;
ce9adaa5 651
ce9adaa5 652 fs_info = end_io_wq->info;
4e4cbee9 653 end_io_wq->status = bio->bi_status;
d20f7043 654
37226b21 655 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
656 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
657 wq = fs_info->endio_meta_write_workers;
658 func = btrfs_endio_meta_write_helper;
659 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
660 wq = fs_info->endio_freespace_worker;
661 func = btrfs_freespace_write_helper;
662 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
663 wq = fs_info->endio_raid56_workers;
664 func = btrfs_endio_raid56_helper;
665 } else {
666 wq = fs_info->endio_write_workers;
667 func = btrfs_endio_write_helper;
668 }
d20f7043 669 } else {
8b110e39
MX
670 if (unlikely(end_io_wq->metadata ==
671 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
672 wq = fs_info->endio_repair_workers;
673 func = btrfs_endio_repair_helper;
674 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
675 wq = fs_info->endio_raid56_workers;
676 func = btrfs_endio_raid56_helper;
677 } else if (end_io_wq->metadata) {
678 wq = fs_info->endio_meta_workers;
679 func = btrfs_endio_meta_helper;
680 } else {
681 wq = fs_info->endio_workers;
682 func = btrfs_endio_helper;
683 }
d20f7043 684 }
9e0af237
LB
685
686 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
687 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
688}
689
4e4cbee9 690blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 691 enum btrfs_wq_endio_type metadata)
0b86a832 692{
97eb6b69 693 struct btrfs_end_io_wq *end_io_wq;
8b110e39 694
97eb6b69 695 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 696 if (!end_io_wq)
4e4cbee9 697 return BLK_STS_RESOURCE;
ce9adaa5
CM
698
699 end_io_wq->private = bio->bi_private;
700 end_io_wq->end_io = bio->bi_end_io;
22c59948 701 end_io_wq->info = info;
4e4cbee9 702 end_io_wq->status = 0;
ce9adaa5 703 end_io_wq->bio = bio;
22c59948 704 end_io_wq->metadata = metadata;
ce9adaa5
CM
705
706 bio->bi_private = end_io_wq;
707 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
708 return 0;
709}
710
b64a2851 711unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 712{
4854ddd0 713 unsigned long limit = min_t(unsigned long,
5cdc7ad3 714 info->thread_pool_size,
4854ddd0
CM
715 info->fs_devices->open_devices);
716 return 256 * limit;
717}
0986fe9e 718
4a69a410
CM
719static void run_one_async_start(struct btrfs_work *work)
720{
4a69a410 721 struct async_submit_bio *async;
4e4cbee9 722 blk_status_t ret;
4a69a410
CM
723
724 async = container_of(work, struct async_submit_bio, work);
c6100a4b 725 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
726 async->mirror_num, async->bio_flags,
727 async->bio_offset);
728 if (ret)
4e4cbee9 729 async->status = ret;
4a69a410
CM
730}
731
732static void run_one_async_done(struct btrfs_work *work)
8b712842 733{
8b712842
CM
734 struct async_submit_bio *async;
735
736 async = container_of(work, struct async_submit_bio, work);
4854ddd0 737
bb7ab3b9 738 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
739 if (async->status) {
740 async->bio->bi_status = async->status;
4246a0b6 741 bio_endio(async->bio);
79787eaa
JM
742 return;
743 }
744
c6100a4b 745 async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
81a75f67 746 async->bio_flags, async->bio_offset);
4a69a410
CM
747}
748
749static void run_one_async_free(struct btrfs_work *work)
750{
751 struct async_submit_bio *async;
752
753 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
754 kfree(async);
755}
756
8c27cb35
LT
757blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
758 int mirror_num, unsigned long bio_flags,
759 u64 bio_offset, void *private_data,
760 extent_submit_bio_hook_t *submit_bio_start,
761 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
762{
763 struct async_submit_bio *async;
764
765 async = kmalloc(sizeof(*async), GFP_NOFS);
766 if (!async)
4e4cbee9 767 return BLK_STS_RESOURCE;
44b8bd7e 768
c6100a4b
JB
769 async->private_data = private_data;
770 async->fs_info = fs_info;
44b8bd7e
CM
771 async->bio = bio;
772 async->mirror_num = mirror_num;
4a69a410
CM
773 async->submit_bio_start = submit_bio_start;
774 async->submit_bio_done = submit_bio_done;
775
9e0af237 776 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 777 run_one_async_done, run_one_async_free);
4a69a410 778
c8b97818 779 async->bio_flags = bio_flags;
eaf25d93 780 async->bio_offset = bio_offset;
8c8bee1d 781
4e4cbee9 782 async->status = 0;
79787eaa 783
67f055c7 784 if (op_is_sync(bio->bi_opf))
5cdc7ad3 785 btrfs_set_work_high_priority(&async->work);
d313d7a3 786
5cdc7ad3 787 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
788 return 0;
789}
790
4e4cbee9 791static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 792{
2c30c71b 793 struct bio_vec *bvec;
ce3ed71a 794 struct btrfs_root *root;
2c30c71b 795 int i, ret = 0;
ce3ed71a 796
c09abff8 797 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 798 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 799 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 800 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
801 if (ret)
802 break;
ce3ed71a 803 }
2c30c71b 804
4e4cbee9 805 return errno_to_blk_status(ret);
ce3ed71a
CM
806}
807
8c27cb35
LT
808static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
809 int mirror_num, unsigned long bio_flags,
810 u64 bio_offset)
22c59948 811{
8b712842
CM
812 /*
813 * when we're called for a write, we're already in the async
5443be45 814 * submission context. Just jump into btrfs_map_bio
8b712842 815 */
79787eaa 816 return btree_csum_one_bio(bio);
4a69a410 817}
22c59948 818
8c27cb35
LT
819static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
820 int mirror_num, unsigned long bio_flags,
821 u64 bio_offset)
4a69a410 822{
c6100a4b 823 struct inode *inode = private_data;
4e4cbee9 824 blk_status_t ret;
61891923 825
8b712842 826 /*
4a69a410
CM
827 * when we're called for a write, we're already in the async
828 * submission context. Just jump into btrfs_map_bio
8b712842 829 */
2ff7e61e 830 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
4246a0b6 831 if (ret) {
4e4cbee9 832 bio->bi_status = ret;
4246a0b6
CH
833 bio_endio(bio);
834 }
61891923 835 return ret;
0b86a832
CM
836}
837
18fdc679 838static int check_async_write(struct btrfs_inode *bi)
de0022b9 839{
6300463b
LB
840 if (atomic_read(&bi->sync_writers))
841 return 0;
de0022b9 842#ifdef CONFIG_X86
bc696ca0 843 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
844 return 0;
845#endif
846 return 1;
847}
848
8c27cb35
LT
849static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
850 int mirror_num, unsigned long bio_flags,
851 u64 bio_offset)
44b8bd7e 852{
c6100a4b 853 struct inode *inode = private_data;
0b246afa 854 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 855 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 856 blk_status_t ret;
cad321ad 857
37226b21 858 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
859 /*
860 * called for a read, do the setup so that checksum validation
861 * can happen in the async kernel threads
862 */
0b246afa
JM
863 ret = btrfs_bio_wq_end_io(fs_info, bio,
864 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 865 if (ret)
61891923 866 goto out_w_error;
2ff7e61e 867 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
868 } else if (!async) {
869 ret = btree_csum_one_bio(bio);
870 if (ret)
61891923 871 goto out_w_error;
2ff7e61e 872 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
873 } else {
874 /*
875 * kthread helpers are used to submit writes so that
876 * checksumming can happen in parallel across all CPUs
877 */
c6100a4b
JB
878 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
879 bio_offset, private_data,
61891923
SB
880 __btree_submit_bio_start,
881 __btree_submit_bio_done);
44b8bd7e 882 }
d313d7a3 883
4246a0b6
CH
884 if (ret)
885 goto out_w_error;
886 return 0;
887
61891923 888out_w_error:
4e4cbee9 889 bio->bi_status = ret;
4246a0b6 890 bio_endio(bio);
61891923 891 return ret;
44b8bd7e
CM
892}
893
3dd1462e 894#ifdef CONFIG_MIGRATION
784b4e29 895static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
896 struct page *newpage, struct page *page,
897 enum migrate_mode mode)
784b4e29
CM
898{
899 /*
900 * we can't safely write a btree page from here,
901 * we haven't done the locking hook
902 */
903 if (PageDirty(page))
904 return -EAGAIN;
905 /*
906 * Buffers may be managed in a filesystem specific way.
907 * We must have no buffers or drop them.
908 */
909 if (page_has_private(page) &&
910 !try_to_release_page(page, GFP_KERNEL))
911 return -EAGAIN;
a6bc32b8 912 return migrate_page(mapping, newpage, page, mode);
784b4e29 913}
3dd1462e 914#endif
784b4e29 915
0da5468f
CM
916
917static int btree_writepages(struct address_space *mapping,
918 struct writeback_control *wbc)
919{
e2d84521
MX
920 struct btrfs_fs_info *fs_info;
921 int ret;
922
d8d5f3e1 923 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
924
925 if (wbc->for_kupdate)
926 return 0;
927
e2d84521 928 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 929 /* this is a bit racy, but that's ok */
e2d84521
MX
930 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
931 BTRFS_DIRTY_METADATA_THRESH);
932 if (ret < 0)
793955bc 933 return 0;
793955bc 934 }
0b32f4bb 935 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
936}
937
b2950863 938static int btree_readpage(struct file *file, struct page *page)
5f39d397 939{
d1310b2e
CM
940 struct extent_io_tree *tree;
941 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 942 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 943}
22b0ebda 944
70dec807 945static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 946{
98509cfc 947 if (PageWriteback(page) || PageDirty(page))
d397712b 948 return 0;
0c4e538b 949
f7a52a40 950 return try_release_extent_buffer(page);
d98237b3
CM
951}
952
d47992f8
LC
953static void btree_invalidatepage(struct page *page, unsigned int offset,
954 unsigned int length)
d98237b3 955{
d1310b2e
CM
956 struct extent_io_tree *tree;
957 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
958 extent_invalidatepage(tree, page, offset);
959 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 960 if (PagePrivate(page)) {
efe120a0
FH
961 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
962 "page private not zero on page %llu",
963 (unsigned long long)page_offset(page));
9ad6b7bc
CM
964 ClearPagePrivate(page);
965 set_page_private(page, 0);
09cbfeaf 966 put_page(page);
9ad6b7bc 967 }
d98237b3
CM
968}
969
0b32f4bb
JB
970static int btree_set_page_dirty(struct page *page)
971{
bb146eb2 972#ifdef DEBUG
0b32f4bb
JB
973 struct extent_buffer *eb;
974
975 BUG_ON(!PagePrivate(page));
976 eb = (struct extent_buffer *)page->private;
977 BUG_ON(!eb);
978 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
979 BUG_ON(!atomic_read(&eb->refs));
980 btrfs_assert_tree_locked(eb);
bb146eb2 981#endif
0b32f4bb
JB
982 return __set_page_dirty_nobuffers(page);
983}
984
7f09410b 985static const struct address_space_operations btree_aops = {
d98237b3 986 .readpage = btree_readpage,
0da5468f 987 .writepages = btree_writepages,
5f39d397
CM
988 .releasepage = btree_releasepage,
989 .invalidatepage = btree_invalidatepage,
5a92bc88 990#ifdef CONFIG_MIGRATION
784b4e29 991 .migratepage = btree_migratepage,
5a92bc88 992#endif
0b32f4bb 993 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
994};
995
2ff7e61e 996void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 997{
5f39d397 998 struct extent_buffer *buf = NULL;
2ff7e61e 999 struct inode *btree_inode = fs_info->btree_inode;
090d1875 1000
2ff7e61e 1001 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1002 if (IS_ERR(buf))
6197d86e 1003 return;
d1310b2e 1004 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
6af49dbd 1005 buf, WAIT_NONE, 0);
5f39d397 1006 free_extent_buffer(buf);
090d1875
CM
1007}
1008
2ff7e61e 1009int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1010 int mirror_num, struct extent_buffer **eb)
1011{
1012 struct extent_buffer *buf = NULL;
2ff7e61e 1013 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1014 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1015 int ret;
1016
2ff7e61e 1017 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1018 if (IS_ERR(buf))
ab0fff03
AJ
1019 return 0;
1020
1021 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1022
8436ea91 1023 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
6af49dbd 1024 mirror_num);
ab0fff03
AJ
1025 if (ret) {
1026 free_extent_buffer(buf);
1027 return ret;
1028 }
1029
1030 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1031 free_extent_buffer(buf);
1032 return -EIO;
0b32f4bb 1033 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1034 *eb = buf;
1035 } else {
1036 free_extent_buffer(buf);
1037 }
1038 return 0;
1039}
1040
2ff7e61e
JM
1041struct extent_buffer *btrfs_find_create_tree_block(
1042 struct btrfs_fs_info *fs_info,
1043 u64 bytenr)
0999df54 1044{
0b246afa
JM
1045 if (btrfs_is_testing(fs_info))
1046 return alloc_test_extent_buffer(fs_info, bytenr);
1047 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1048}
1049
1050
e02119d5
CM
1051int btrfs_write_tree_block(struct extent_buffer *buf)
1052{
727011e0 1053 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1054 buf->start + buf->len - 1);
e02119d5
CM
1055}
1056
3189ff77 1057void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
e02119d5 1058{
3189ff77
JL
1059 filemap_fdatawait_range(buf->pages[0]->mapping,
1060 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1061}
1062
2ff7e61e 1063struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
ce86cd59 1064 u64 parent_transid)
0999df54
CM
1065{
1066 struct extent_buffer *buf = NULL;
0999df54
CM
1067 int ret;
1068
2ff7e61e 1069 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1070 if (IS_ERR(buf))
1071 return buf;
0999df54 1072
2ff7e61e 1073 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
0f0fe8f7
FDBM
1074 if (ret) {
1075 free_extent_buffer(buf);
64c043de 1076 return ERR_PTR(ret);
0f0fe8f7 1077 }
5f39d397 1078 return buf;
ce9adaa5 1079
eb60ceac
CM
1080}
1081
7c302b49 1082void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1083 struct extent_buffer *buf)
ed2ff2cb 1084{
55c69072 1085 if (btrfs_header_generation(buf) ==
e2d84521 1086 fs_info->running_transaction->transid) {
b9447ef8 1087 btrfs_assert_tree_locked(buf);
b4ce94de 1088
b9473439 1089 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1090 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1091 -buf->len,
1092 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1093 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1094 btrfs_set_lock_blocking(buf);
1095 clear_extent_buffer_dirty(buf);
1096 }
925baedd 1097 }
5f39d397
CM
1098}
1099
8257b2dc
MX
1100static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1101{
1102 struct btrfs_subvolume_writers *writers;
1103 int ret;
1104
1105 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1106 if (!writers)
1107 return ERR_PTR(-ENOMEM);
1108
908c7f19 1109 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1110 if (ret < 0) {
1111 kfree(writers);
1112 return ERR_PTR(ret);
1113 }
1114
1115 init_waitqueue_head(&writers->wait);
1116 return writers;
1117}
1118
1119static void
1120btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1121{
1122 percpu_counter_destroy(&writers->counter);
1123 kfree(writers);
1124}
1125
da17066c 1126static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1127 u64 objectid)
d97e63b6 1128{
7c0260ee 1129 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1130 root->node = NULL;
a28ec197 1131 root->commit_root = NULL;
27cdeb70 1132 root->state = 0;
d68fc57b 1133 root->orphan_cleanup_state = 0;
0b86a832 1134
0f7d52f4
CM
1135 root->objectid = objectid;
1136 root->last_trans = 0;
13a8a7c8 1137 root->highest_objectid = 0;
eb73c1b7 1138 root->nr_delalloc_inodes = 0;
199c2a9c 1139 root->nr_ordered_extents = 0;
58176a96 1140 root->name = NULL;
6bef4d31 1141 root->inode_tree = RB_ROOT;
16cdcec7 1142 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1143 root->block_rsv = NULL;
d68fc57b 1144 root->orphan_block_rsv = NULL;
0b86a832
CM
1145
1146 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1147 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1148 INIT_LIST_HEAD(&root->delalloc_inodes);
1149 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1150 INIT_LIST_HEAD(&root->ordered_extents);
1151 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1152 INIT_LIST_HEAD(&root->logged_list[0]);
1153 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1154 spin_lock_init(&root->orphan_lock);
5d4f98a2 1155 spin_lock_init(&root->inode_lock);
eb73c1b7 1156 spin_lock_init(&root->delalloc_lock);
199c2a9c 1157 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1158 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1159 spin_lock_init(&root->log_extents_lock[0]);
1160 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1161 mutex_init(&root->objectid_mutex);
e02119d5 1162 mutex_init(&root->log_mutex);
31f3d255 1163 mutex_init(&root->ordered_extent_mutex);
573bfb72 1164 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1165 init_waitqueue_head(&root->log_writer_wait);
1166 init_waitqueue_head(&root->log_commit_wait[0]);
1167 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1168 INIT_LIST_HEAD(&root->log_ctxs[0]);
1169 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1170 atomic_set(&root->log_commit[0], 0);
1171 atomic_set(&root->log_commit[1], 0);
1172 atomic_set(&root->log_writers, 0);
2ecb7923 1173 atomic_set(&root->log_batch, 0);
8a35d95f 1174 atomic_set(&root->orphan_inodes, 0);
0700cea7 1175 refcount_set(&root->refs, 1);
ea14b57f 1176 atomic_set(&root->will_be_snapshotted, 0);
ce0dcee6 1177 atomic64_set(&root->qgroup_meta_rsv, 0);
7237f183 1178 root->log_transid = 0;
d1433deb 1179 root->log_transid_committed = -1;
257c62e1 1180 root->last_log_commit = 0;
7c0260ee 1181 if (!dummy)
c6100a4b 1182 extent_io_tree_init(&root->dirty_log_pages, NULL);
017e5369 1183
3768f368
CM
1184 memset(&root->root_key, 0, sizeof(root->root_key));
1185 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1186 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1187 if (!dummy)
06ea65a3
JB
1188 root->defrag_trans_start = fs_info->generation;
1189 else
1190 root->defrag_trans_start = 0;
4d775673 1191 root->root_key.objectid = objectid;
0ee5dc67 1192 root->anon_dev = 0;
8ea05e3a 1193
5f3ab90a 1194 spin_lock_init(&root->root_item_lock);
3768f368
CM
1195}
1196
74e4d827
DS
1197static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1198 gfp_t flags)
6f07e42e 1199{
74e4d827 1200 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1201 if (root)
1202 root->fs_info = fs_info;
1203 return root;
1204}
1205
06ea65a3
JB
1206#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1207/* Should only be used by the testing infrastructure */
da17066c 1208struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1209{
1210 struct btrfs_root *root;
1211
7c0260ee
JM
1212 if (!fs_info)
1213 return ERR_PTR(-EINVAL);
1214
1215 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1216 if (!root)
1217 return ERR_PTR(-ENOMEM);
da17066c 1218
b9ef22de 1219 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1220 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1221 root->alloc_bytenr = 0;
06ea65a3
JB
1222
1223 return root;
1224}
1225#endif
1226
20897f5c
AJ
1227struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1228 struct btrfs_fs_info *fs_info,
1229 u64 objectid)
1230{
1231 struct extent_buffer *leaf;
1232 struct btrfs_root *tree_root = fs_info->tree_root;
1233 struct btrfs_root *root;
1234 struct btrfs_key key;
1235 int ret = 0;
33d85fda 1236 uuid_le uuid = NULL_UUID_LE;
20897f5c 1237
74e4d827 1238 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1239 if (!root)
1240 return ERR_PTR(-ENOMEM);
1241
da17066c 1242 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1243 root->root_key.objectid = objectid;
1244 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1245 root->root_key.offset = 0;
1246
4d75f8a9 1247 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1248 if (IS_ERR(leaf)) {
1249 ret = PTR_ERR(leaf);
1dd05682 1250 leaf = NULL;
20897f5c
AJ
1251 goto fail;
1252 }
1253
b159fa28 1254 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
20897f5c
AJ
1255 btrfs_set_header_bytenr(leaf, leaf->start);
1256 btrfs_set_header_generation(leaf, trans->transid);
1257 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1258 btrfs_set_header_owner(leaf, objectid);
1259 root->node = leaf;
1260
d24ee97b
DS
1261 write_extent_buffer_fsid(leaf, fs_info->fsid);
1262 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
20897f5c
AJ
1263 btrfs_mark_buffer_dirty(leaf);
1264
1265 root->commit_root = btrfs_root_node(root);
27cdeb70 1266 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1267
1268 root->root_item.flags = 0;
1269 root->root_item.byte_limit = 0;
1270 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1271 btrfs_set_root_generation(&root->root_item, trans->transid);
1272 btrfs_set_root_level(&root->root_item, 0);
1273 btrfs_set_root_refs(&root->root_item, 1);
1274 btrfs_set_root_used(&root->root_item, leaf->len);
1275 btrfs_set_root_last_snapshot(&root->root_item, 0);
1276 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1277 if (is_fstree(objectid))
1278 uuid_le_gen(&uuid);
6463fe58 1279 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1280 root->root_item.drop_level = 0;
1281
1282 key.objectid = objectid;
1283 key.type = BTRFS_ROOT_ITEM_KEY;
1284 key.offset = 0;
1285 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1286 if (ret)
1287 goto fail;
1288
1289 btrfs_tree_unlock(leaf);
1290
1dd05682
TI
1291 return root;
1292
20897f5c 1293fail:
1dd05682
TI
1294 if (leaf) {
1295 btrfs_tree_unlock(leaf);
59885b39 1296 free_extent_buffer(root->commit_root);
1dd05682
TI
1297 free_extent_buffer(leaf);
1298 }
1299 kfree(root);
20897f5c 1300
1dd05682 1301 return ERR_PTR(ret);
20897f5c
AJ
1302}
1303
7237f183
YZ
1304static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1305 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1306{
1307 struct btrfs_root *root;
7237f183 1308 struct extent_buffer *leaf;
e02119d5 1309
74e4d827 1310 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1311 if (!root)
7237f183 1312 return ERR_PTR(-ENOMEM);
e02119d5 1313
da17066c 1314 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1315
1316 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1317 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1318 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1319
7237f183 1320 /*
27cdeb70
MX
1321 * DON'T set REF_COWS for log trees
1322 *
7237f183
YZ
1323 * log trees do not get reference counted because they go away
1324 * before a real commit is actually done. They do store pointers
1325 * to file data extents, and those reference counts still get
1326 * updated (along with back refs to the log tree).
1327 */
e02119d5 1328
4d75f8a9
DS
1329 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1330 NULL, 0, 0, 0);
7237f183
YZ
1331 if (IS_ERR(leaf)) {
1332 kfree(root);
1333 return ERR_CAST(leaf);
1334 }
e02119d5 1335
b159fa28 1336 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
5d4f98a2
YZ
1337 btrfs_set_header_bytenr(leaf, leaf->start);
1338 btrfs_set_header_generation(leaf, trans->transid);
1339 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1340 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1341 root->node = leaf;
e02119d5 1342
0b246afa 1343 write_extent_buffer_fsid(root->node, fs_info->fsid);
e02119d5
CM
1344 btrfs_mark_buffer_dirty(root->node);
1345 btrfs_tree_unlock(root->node);
7237f183
YZ
1346 return root;
1347}
1348
1349int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1350 struct btrfs_fs_info *fs_info)
1351{
1352 struct btrfs_root *log_root;
1353
1354 log_root = alloc_log_tree(trans, fs_info);
1355 if (IS_ERR(log_root))
1356 return PTR_ERR(log_root);
1357 WARN_ON(fs_info->log_root_tree);
1358 fs_info->log_root_tree = log_root;
1359 return 0;
1360}
1361
1362int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root)
1364{
0b246afa 1365 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1366 struct btrfs_root *log_root;
1367 struct btrfs_inode_item *inode_item;
1368
0b246afa 1369 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1370 if (IS_ERR(log_root))
1371 return PTR_ERR(log_root);
1372
1373 log_root->last_trans = trans->transid;
1374 log_root->root_key.offset = root->root_key.objectid;
1375
1376 inode_item = &log_root->root_item.inode;
3cae210f
QW
1377 btrfs_set_stack_inode_generation(inode_item, 1);
1378 btrfs_set_stack_inode_size(inode_item, 3);
1379 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1380 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1381 fs_info->nodesize);
3cae210f 1382 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1383
5d4f98a2 1384 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1385
1386 WARN_ON(root->log_root);
1387 root->log_root = log_root;
1388 root->log_transid = 0;
d1433deb 1389 root->log_transid_committed = -1;
257c62e1 1390 root->last_log_commit = 0;
e02119d5
CM
1391 return 0;
1392}
1393
35a3621b
SB
1394static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1395 struct btrfs_key *key)
e02119d5
CM
1396{
1397 struct btrfs_root *root;
1398 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1399 struct btrfs_path *path;
84234f3a 1400 u64 generation;
cb517eab 1401 int ret;
0f7d52f4 1402
cb517eab
MX
1403 path = btrfs_alloc_path();
1404 if (!path)
0f7d52f4 1405 return ERR_PTR(-ENOMEM);
cb517eab 1406
74e4d827 1407 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1408 if (!root) {
1409 ret = -ENOMEM;
1410 goto alloc_fail;
0f7d52f4
CM
1411 }
1412
da17066c 1413 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1414
cb517eab
MX
1415 ret = btrfs_find_root(tree_root, key, path,
1416 &root->root_item, &root->root_key);
0f7d52f4 1417 if (ret) {
13a8a7c8
YZ
1418 if (ret > 0)
1419 ret = -ENOENT;
cb517eab 1420 goto find_fail;
0f7d52f4 1421 }
13a8a7c8 1422
84234f3a 1423 generation = btrfs_root_generation(&root->root_item);
2ff7e61e
JM
1424 root->node = read_tree_block(fs_info,
1425 btrfs_root_bytenr(&root->root_item),
ce86cd59 1426 generation);
64c043de
LB
1427 if (IS_ERR(root->node)) {
1428 ret = PTR_ERR(root->node);
cb517eab
MX
1429 goto find_fail;
1430 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1431 ret = -EIO;
64c043de
LB
1432 free_extent_buffer(root->node);
1433 goto find_fail;
416bc658 1434 }
5d4f98a2 1435 root->commit_root = btrfs_root_node(root);
13a8a7c8 1436out:
cb517eab
MX
1437 btrfs_free_path(path);
1438 return root;
1439
cb517eab
MX
1440find_fail:
1441 kfree(root);
1442alloc_fail:
1443 root = ERR_PTR(ret);
1444 goto out;
1445}
1446
1447struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1448 struct btrfs_key *location)
1449{
1450 struct btrfs_root *root;
1451
1452 root = btrfs_read_tree_root(tree_root, location);
1453 if (IS_ERR(root))
1454 return root;
1455
1456 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1457 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1458 btrfs_check_and_init_root_item(&root->root_item);
1459 }
13a8a7c8 1460
5eda7b5e
CM
1461 return root;
1462}
1463
cb517eab
MX
1464int btrfs_init_fs_root(struct btrfs_root *root)
1465{
1466 int ret;
8257b2dc 1467 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1468
1469 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1470 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1471 GFP_NOFS);
1472 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1473 ret = -ENOMEM;
1474 goto fail;
1475 }
1476
8257b2dc
MX
1477 writers = btrfs_alloc_subvolume_writers();
1478 if (IS_ERR(writers)) {
1479 ret = PTR_ERR(writers);
1480 goto fail;
1481 }
1482 root->subv_writers = writers;
1483
cb517eab 1484 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1485 spin_lock_init(&root->ino_cache_lock);
1486 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1487
1488 ret = get_anon_bdev(&root->anon_dev);
1489 if (ret)
876d2cf1 1490 goto fail;
f32e48e9
CR
1491
1492 mutex_lock(&root->objectid_mutex);
1493 ret = btrfs_find_highest_objectid(root,
1494 &root->highest_objectid);
1495 if (ret) {
1496 mutex_unlock(&root->objectid_mutex);
876d2cf1 1497 goto fail;
f32e48e9
CR
1498 }
1499
1500 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1501
1502 mutex_unlock(&root->objectid_mutex);
1503
cb517eab
MX
1504 return 0;
1505fail:
876d2cf1 1506 /* the caller is responsible to call free_fs_root */
cb517eab
MX
1507 return ret;
1508}
1509
35bbb97f
JM
1510struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1511 u64 root_id)
cb517eab
MX
1512{
1513 struct btrfs_root *root;
1514
1515 spin_lock(&fs_info->fs_roots_radix_lock);
1516 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1517 (unsigned long)root_id);
1518 spin_unlock(&fs_info->fs_roots_radix_lock);
1519 return root;
1520}
1521
1522int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1523 struct btrfs_root *root)
1524{
1525 int ret;
1526
e1860a77 1527 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1528 if (ret)
1529 return ret;
1530
1531 spin_lock(&fs_info->fs_roots_radix_lock);
1532 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1533 (unsigned long)root->root_key.objectid,
1534 root);
1535 if (ret == 0)
27cdeb70 1536 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1537 spin_unlock(&fs_info->fs_roots_radix_lock);
1538 radix_tree_preload_end();
1539
1540 return ret;
1541}
1542
c00869f1
MX
1543struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1544 struct btrfs_key *location,
1545 bool check_ref)
5eda7b5e
CM
1546{
1547 struct btrfs_root *root;
381cf658 1548 struct btrfs_path *path;
1d4c08e0 1549 struct btrfs_key key;
5eda7b5e
CM
1550 int ret;
1551
edbd8d4e
CM
1552 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1553 return fs_info->tree_root;
1554 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1555 return fs_info->extent_root;
8f18cf13
CM
1556 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1557 return fs_info->chunk_root;
1558 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1559 return fs_info->dev_root;
0403e47e
YZ
1560 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1561 return fs_info->csum_root;
bcef60f2
AJ
1562 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1563 return fs_info->quota_root ? fs_info->quota_root :
1564 ERR_PTR(-ENOENT);
f7a81ea4
SB
1565 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1566 return fs_info->uuid_root ? fs_info->uuid_root :
1567 ERR_PTR(-ENOENT);
70f6d82e
OS
1568 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1569 return fs_info->free_space_root ? fs_info->free_space_root :
1570 ERR_PTR(-ENOENT);
4df27c4d 1571again:
cb517eab 1572 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1573 if (root) {
c00869f1 1574 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1575 return ERR_PTR(-ENOENT);
5eda7b5e 1576 return root;
48475471 1577 }
5eda7b5e 1578
cb517eab 1579 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1580 if (IS_ERR(root))
1581 return root;
3394e160 1582
c00869f1 1583 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1584 ret = -ENOENT;
581bb050 1585 goto fail;
35a30d7c 1586 }
581bb050 1587
cb517eab 1588 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1589 if (ret)
1590 goto fail;
3394e160 1591
381cf658
DS
1592 path = btrfs_alloc_path();
1593 if (!path) {
1594 ret = -ENOMEM;
1595 goto fail;
1596 }
1d4c08e0
DS
1597 key.objectid = BTRFS_ORPHAN_OBJECTID;
1598 key.type = BTRFS_ORPHAN_ITEM_KEY;
1599 key.offset = location->objectid;
1600
1601 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1602 btrfs_free_path(path);
d68fc57b
YZ
1603 if (ret < 0)
1604 goto fail;
1605 if (ret == 0)
27cdeb70 1606 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1607
cb517eab 1608 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1609 if (ret) {
4df27c4d
YZ
1610 if (ret == -EEXIST) {
1611 free_fs_root(root);
1612 goto again;
1613 }
1614 goto fail;
0f7d52f4 1615 }
edbd8d4e 1616 return root;
4df27c4d
YZ
1617fail:
1618 free_fs_root(root);
1619 return ERR_PTR(ret);
edbd8d4e
CM
1620}
1621
04160088
CM
1622static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1623{
1624 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1625 int ret = 0;
04160088
CM
1626 struct btrfs_device *device;
1627 struct backing_dev_info *bdi;
b7967db7 1628
1f78160c
XG
1629 rcu_read_lock();
1630 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1631 if (!device->bdev)
1632 continue;
efa7c9f9 1633 bdi = device->bdev->bd_bdi;
ff9ea323 1634 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1635 ret = 1;
1636 break;
1637 }
1638 }
1f78160c 1639 rcu_read_unlock();
04160088
CM
1640 return ret;
1641}
1642
8b712842
CM
1643/*
1644 * called by the kthread helper functions to finally call the bio end_io
1645 * functions. This is where read checksum verification actually happens
1646 */
1647static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1648{
ce9adaa5 1649 struct bio *bio;
97eb6b69 1650 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1651
97eb6b69 1652 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1653 bio = end_io_wq->bio;
ce9adaa5 1654
4e4cbee9 1655 bio->bi_status = end_io_wq->status;
8b712842
CM
1656 bio->bi_private = end_io_wq->private;
1657 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1658 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1659 bio_endio(bio);
44b8bd7e
CM
1660}
1661
a74a4b97
CM
1662static int cleaner_kthread(void *arg)
1663{
1664 struct btrfs_root *root = arg;
0b246afa 1665 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1666 int again;
da288d28 1667 struct btrfs_trans_handle *trans;
a74a4b97
CM
1668
1669 do {
d0278245 1670 again = 0;
a74a4b97 1671
d0278245 1672 /* Make the cleaner go to sleep early. */
2ff7e61e 1673 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1674 goto sleep;
1675
90c711ab
ZB
1676 /*
1677 * Do not do anything if we might cause open_ctree() to block
1678 * before we have finished mounting the filesystem.
1679 */
0b246afa 1680 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1681 goto sleep;
1682
0b246afa 1683 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1684 goto sleep;
1685
dc7f370c
MX
1686 /*
1687 * Avoid the problem that we change the status of the fs
1688 * during the above check and trylock.
1689 */
2ff7e61e 1690 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1691 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1692 goto sleep;
76dda93c 1693 }
a74a4b97 1694
0b246afa 1695 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
2ff7e61e 1696 btrfs_run_delayed_iputs(fs_info);
0b246afa 1697 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1698
d0278245 1699 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1700 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1701
1702 /*
05323cd1
MX
1703 * The defragger has dealt with the R/O remount and umount,
1704 * needn't do anything special here.
d0278245 1705 */
0b246afa 1706 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1707
1708 /*
1709 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1710 * with relocation (btrfs_relocate_chunk) and relocation
1711 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1712 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1713 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1714 * unused block groups.
1715 */
0b246afa 1716 btrfs_delete_unused_bgs(fs_info);
d0278245 1717sleep:
838fe188 1718 if (!again) {
a74a4b97 1719 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1720 if (!kthread_should_stop())
1721 schedule();
a74a4b97
CM
1722 __set_current_state(TASK_RUNNING);
1723 }
1724 } while (!kthread_should_stop());
da288d28
FM
1725
1726 /*
1727 * Transaction kthread is stopped before us and wakes us up.
1728 * However we might have started a new transaction and COWed some
1729 * tree blocks when deleting unused block groups for example. So
1730 * make sure we commit the transaction we started to have a clean
1731 * shutdown when evicting the btree inode - if it has dirty pages
1732 * when we do the final iput() on it, eviction will trigger a
1733 * writeback for it which will fail with null pointer dereferences
1734 * since work queues and other resources were already released and
1735 * destroyed by the time the iput/eviction/writeback is made.
1736 */
1737 trans = btrfs_attach_transaction(root);
1738 if (IS_ERR(trans)) {
1739 if (PTR_ERR(trans) != -ENOENT)
0b246afa 1740 btrfs_err(fs_info,
da288d28
FM
1741 "cleaner transaction attach returned %ld",
1742 PTR_ERR(trans));
1743 } else {
1744 int ret;
1745
3a45bb20 1746 ret = btrfs_commit_transaction(trans);
da288d28 1747 if (ret)
0b246afa 1748 btrfs_err(fs_info,
da288d28
FM
1749 "cleaner open transaction commit returned %d",
1750 ret);
1751 }
1752
a74a4b97
CM
1753 return 0;
1754}
1755
1756static int transaction_kthread(void *arg)
1757{
1758 struct btrfs_root *root = arg;
0b246afa 1759 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1760 struct btrfs_trans_handle *trans;
1761 struct btrfs_transaction *cur;
8929ecfa 1762 u64 transid;
a74a4b97
CM
1763 unsigned long now;
1764 unsigned long delay;
914b2007 1765 bool cannot_commit;
a74a4b97
CM
1766
1767 do {
914b2007 1768 cannot_commit = false;
0b246afa
JM
1769 delay = HZ * fs_info->commit_interval;
1770 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1771
0b246afa
JM
1772 spin_lock(&fs_info->trans_lock);
1773 cur = fs_info->running_transaction;
a74a4b97 1774 if (!cur) {
0b246afa 1775 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1776 goto sleep;
1777 }
31153d81 1778
a74a4b97 1779 now = get_seconds();
4a9d8bde 1780 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17 1781 (now < cur->start_time ||
0b246afa
JM
1782 now - cur->start_time < fs_info->commit_interval)) {
1783 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1784 delay = HZ * 5;
1785 goto sleep;
1786 }
8929ecfa 1787 transid = cur->transid;
0b246afa 1788 spin_unlock(&fs_info->trans_lock);
56bec294 1789
79787eaa 1790 /* If the file system is aborted, this will always fail. */
354aa0fb 1791 trans = btrfs_attach_transaction(root);
914b2007 1792 if (IS_ERR(trans)) {
354aa0fb
MX
1793 if (PTR_ERR(trans) != -ENOENT)
1794 cannot_commit = true;
79787eaa 1795 goto sleep;
914b2007 1796 }
8929ecfa 1797 if (transid == trans->transid) {
3a45bb20 1798 btrfs_commit_transaction(trans);
8929ecfa 1799 } else {
3a45bb20 1800 btrfs_end_transaction(trans);
8929ecfa 1801 }
a74a4b97 1802sleep:
0b246afa
JM
1803 wake_up_process(fs_info->cleaner_kthread);
1804 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1805
4e121c06 1806 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1807 &fs_info->fs_state)))
2ff7e61e 1808 btrfs_cleanup_transaction(fs_info);
ce63f891
JK
1809 set_current_state(TASK_INTERRUPTIBLE);
1810 if (!kthread_should_stop() &&
0b246afa 1811 (!btrfs_transaction_blocked(fs_info) ||
ce63f891
JK
1812 cannot_commit))
1813 schedule_timeout(delay);
1814 __set_current_state(TASK_RUNNING);
a74a4b97
CM
1815 } while (!kthread_should_stop());
1816 return 0;
1817}
1818
af31f5e5
CM
1819/*
1820 * this will find the highest generation in the array of
1821 * root backups. The index of the highest array is returned,
1822 * or -1 if we can't find anything.
1823 *
1824 * We check to make sure the array is valid by comparing the
1825 * generation of the latest root in the array with the generation
1826 * in the super block. If they don't match we pitch it.
1827 */
1828static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1829{
1830 u64 cur;
1831 int newest_index = -1;
1832 struct btrfs_root_backup *root_backup;
1833 int i;
1834
1835 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1836 root_backup = info->super_copy->super_roots + i;
1837 cur = btrfs_backup_tree_root_gen(root_backup);
1838 if (cur == newest_gen)
1839 newest_index = i;
1840 }
1841
1842 /* check to see if we actually wrapped around */
1843 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1844 root_backup = info->super_copy->super_roots;
1845 cur = btrfs_backup_tree_root_gen(root_backup);
1846 if (cur == newest_gen)
1847 newest_index = 0;
1848 }
1849 return newest_index;
1850}
1851
1852
1853/*
1854 * find the oldest backup so we know where to store new entries
1855 * in the backup array. This will set the backup_root_index
1856 * field in the fs_info struct
1857 */
1858static void find_oldest_super_backup(struct btrfs_fs_info *info,
1859 u64 newest_gen)
1860{
1861 int newest_index = -1;
1862
1863 newest_index = find_newest_super_backup(info, newest_gen);
1864 /* if there was garbage in there, just move along */
1865 if (newest_index == -1) {
1866 info->backup_root_index = 0;
1867 } else {
1868 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1869 }
1870}
1871
1872/*
1873 * copy all the root pointers into the super backup array.
1874 * this will bump the backup pointer by one when it is
1875 * done
1876 */
1877static void backup_super_roots(struct btrfs_fs_info *info)
1878{
1879 int next_backup;
1880 struct btrfs_root_backup *root_backup;
1881 int last_backup;
1882
1883 next_backup = info->backup_root_index;
1884 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1885 BTRFS_NUM_BACKUP_ROOTS;
1886
1887 /*
1888 * just overwrite the last backup if we're at the same generation
1889 * this happens only at umount
1890 */
1891 root_backup = info->super_for_commit->super_roots + last_backup;
1892 if (btrfs_backup_tree_root_gen(root_backup) ==
1893 btrfs_header_generation(info->tree_root->node))
1894 next_backup = last_backup;
1895
1896 root_backup = info->super_for_commit->super_roots + next_backup;
1897
1898 /*
1899 * make sure all of our padding and empty slots get zero filled
1900 * regardless of which ones we use today
1901 */
1902 memset(root_backup, 0, sizeof(*root_backup));
1903
1904 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1905
1906 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1907 btrfs_set_backup_tree_root_gen(root_backup,
1908 btrfs_header_generation(info->tree_root->node));
1909
1910 btrfs_set_backup_tree_root_level(root_backup,
1911 btrfs_header_level(info->tree_root->node));
1912
1913 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1914 btrfs_set_backup_chunk_root_gen(root_backup,
1915 btrfs_header_generation(info->chunk_root->node));
1916 btrfs_set_backup_chunk_root_level(root_backup,
1917 btrfs_header_level(info->chunk_root->node));
1918
1919 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1920 btrfs_set_backup_extent_root_gen(root_backup,
1921 btrfs_header_generation(info->extent_root->node));
1922 btrfs_set_backup_extent_root_level(root_backup,
1923 btrfs_header_level(info->extent_root->node));
1924
7c7e82a7
CM
1925 /*
1926 * we might commit during log recovery, which happens before we set
1927 * the fs_root. Make sure it is valid before we fill it in.
1928 */
1929 if (info->fs_root && info->fs_root->node) {
1930 btrfs_set_backup_fs_root(root_backup,
1931 info->fs_root->node->start);
1932 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1933 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1934 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1935 btrfs_header_level(info->fs_root->node));
7c7e82a7 1936 }
af31f5e5
CM
1937
1938 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1939 btrfs_set_backup_dev_root_gen(root_backup,
1940 btrfs_header_generation(info->dev_root->node));
1941 btrfs_set_backup_dev_root_level(root_backup,
1942 btrfs_header_level(info->dev_root->node));
1943
1944 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1945 btrfs_set_backup_csum_root_gen(root_backup,
1946 btrfs_header_generation(info->csum_root->node));
1947 btrfs_set_backup_csum_root_level(root_backup,
1948 btrfs_header_level(info->csum_root->node));
1949
1950 btrfs_set_backup_total_bytes(root_backup,
1951 btrfs_super_total_bytes(info->super_copy));
1952 btrfs_set_backup_bytes_used(root_backup,
1953 btrfs_super_bytes_used(info->super_copy));
1954 btrfs_set_backup_num_devices(root_backup,
1955 btrfs_super_num_devices(info->super_copy));
1956
1957 /*
1958 * if we don't copy this out to the super_copy, it won't get remembered
1959 * for the next commit
1960 */
1961 memcpy(&info->super_copy->super_roots,
1962 &info->super_for_commit->super_roots,
1963 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1964}
1965
1966/*
1967 * this copies info out of the root backup array and back into
1968 * the in-memory super block. It is meant to help iterate through
1969 * the array, so you send it the number of backups you've already
1970 * tried and the last backup index you used.
1971 *
1972 * this returns -1 when it has tried all the backups
1973 */
1974static noinline int next_root_backup(struct btrfs_fs_info *info,
1975 struct btrfs_super_block *super,
1976 int *num_backups_tried, int *backup_index)
1977{
1978 struct btrfs_root_backup *root_backup;
1979 int newest = *backup_index;
1980
1981 if (*num_backups_tried == 0) {
1982 u64 gen = btrfs_super_generation(super);
1983
1984 newest = find_newest_super_backup(info, gen);
1985 if (newest == -1)
1986 return -1;
1987
1988 *backup_index = newest;
1989 *num_backups_tried = 1;
1990 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1991 /* we've tried all the backups, all done */
1992 return -1;
1993 } else {
1994 /* jump to the next oldest backup */
1995 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1996 BTRFS_NUM_BACKUP_ROOTS;
1997 *backup_index = newest;
1998 *num_backups_tried += 1;
1999 }
2000 root_backup = super->super_roots + newest;
2001
2002 btrfs_set_super_generation(super,
2003 btrfs_backup_tree_root_gen(root_backup));
2004 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2005 btrfs_set_super_root_level(super,
2006 btrfs_backup_tree_root_level(root_backup));
2007 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2008
2009 /*
2010 * fixme: the total bytes and num_devices need to match or we should
2011 * need a fsck
2012 */
2013 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2014 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2015 return 0;
2016}
2017
7abadb64
LB
2018/* helper to cleanup workers */
2019static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2020{
dc6e3209 2021 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2022 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2023 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2024 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2025 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2026 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2027 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2028 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2029 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2030 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2031 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2032 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2033 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2034 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2035 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2036 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2037 /*
2038 * Now that all other work queues are destroyed, we can safely destroy
2039 * the queues used for metadata I/O, since tasks from those other work
2040 * queues can do metadata I/O operations.
2041 */
2042 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2043 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2044}
2045
2e9f5954
R
2046static void free_root_extent_buffers(struct btrfs_root *root)
2047{
2048 if (root) {
2049 free_extent_buffer(root->node);
2050 free_extent_buffer(root->commit_root);
2051 root->node = NULL;
2052 root->commit_root = NULL;
2053 }
2054}
2055
af31f5e5
CM
2056/* helper to cleanup tree roots */
2057static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2058{
2e9f5954 2059 free_root_extent_buffers(info->tree_root);
655b09fe 2060
2e9f5954
R
2061 free_root_extent_buffers(info->dev_root);
2062 free_root_extent_buffers(info->extent_root);
2063 free_root_extent_buffers(info->csum_root);
2064 free_root_extent_buffers(info->quota_root);
2065 free_root_extent_buffers(info->uuid_root);
2066 if (chunk_root)
2067 free_root_extent_buffers(info->chunk_root);
70f6d82e 2068 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2069}
2070
faa2dbf0 2071void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2072{
2073 int ret;
2074 struct btrfs_root *gang[8];
2075 int i;
2076
2077 while (!list_empty(&fs_info->dead_roots)) {
2078 gang[0] = list_entry(fs_info->dead_roots.next,
2079 struct btrfs_root, root_list);
2080 list_del(&gang[0]->root_list);
2081
27cdeb70 2082 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2083 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2084 } else {
2085 free_extent_buffer(gang[0]->node);
2086 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2087 btrfs_put_fs_root(gang[0]);
171f6537
JB
2088 }
2089 }
2090
2091 while (1) {
2092 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2093 (void **)gang, 0,
2094 ARRAY_SIZE(gang));
2095 if (!ret)
2096 break;
2097 for (i = 0; i < ret; i++)
cb517eab 2098 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2099 }
1a4319cc
LB
2100
2101 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2102 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2103 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2104 }
171f6537 2105}
af31f5e5 2106
638aa7ed
ES
2107static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2108{
2109 mutex_init(&fs_info->scrub_lock);
2110 atomic_set(&fs_info->scrubs_running, 0);
2111 atomic_set(&fs_info->scrub_pause_req, 0);
2112 atomic_set(&fs_info->scrubs_paused, 0);
2113 atomic_set(&fs_info->scrub_cancel_req, 0);
2114 init_waitqueue_head(&fs_info->scrub_pause_wait);
2115 fs_info->scrub_workers_refcnt = 0;
2116}
2117
779a65a4
ES
2118static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2119{
2120 spin_lock_init(&fs_info->balance_lock);
2121 mutex_init(&fs_info->balance_mutex);
2122 atomic_set(&fs_info->balance_running, 0);
2123 atomic_set(&fs_info->balance_pause_req, 0);
2124 atomic_set(&fs_info->balance_cancel_req, 0);
2125 fs_info->balance_ctl = NULL;
2126 init_waitqueue_head(&fs_info->balance_wait_q);
2127}
2128
6bccf3ab 2129static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2130{
2ff7e61e
JM
2131 struct inode *inode = fs_info->btree_inode;
2132
2133 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2134 set_nlink(inode, 1);
f37938e0
ES
2135 /*
2136 * we set the i_size on the btree inode to the max possible int.
2137 * the real end of the address space is determined by all of
2138 * the devices in the system
2139 */
2ff7e61e
JM
2140 inode->i_size = OFFSET_MAX;
2141 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2142
2ff7e61e 2143 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
c6100a4b 2144 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2ff7e61e
JM
2145 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2146 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2147
2ff7e61e 2148 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2149
2ff7e61e
JM
2150 BTRFS_I(inode)->root = fs_info->tree_root;
2151 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2152 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2153 btrfs_insert_inode_hash(inode);
f37938e0
ES
2154}
2155
ad618368
ES
2156static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2157{
2158 fs_info->dev_replace.lock_owner = 0;
2159 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2160 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2161 rwlock_init(&fs_info->dev_replace.lock);
2162 atomic_set(&fs_info->dev_replace.read_locks, 0);
2163 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2164 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2165 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2166}
2167
f9e92e40
ES
2168static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2169{
2170 spin_lock_init(&fs_info->qgroup_lock);
2171 mutex_init(&fs_info->qgroup_ioctl_lock);
2172 fs_info->qgroup_tree = RB_ROOT;
2173 fs_info->qgroup_op_tree = RB_ROOT;
2174 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2175 fs_info->qgroup_seq = 1;
f9e92e40 2176 fs_info->qgroup_ulist = NULL;
d2c609b8 2177 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2178 mutex_init(&fs_info->qgroup_rescan_lock);
2179}
2180
2a458198
ES
2181static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2182 struct btrfs_fs_devices *fs_devices)
2183{
2184 int max_active = fs_info->thread_pool_size;
6f011058 2185 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2186
2187 fs_info->workers =
cb001095
JM
2188 btrfs_alloc_workqueue(fs_info, "worker",
2189 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2190
2191 fs_info->delalloc_workers =
cb001095
JM
2192 btrfs_alloc_workqueue(fs_info, "delalloc",
2193 flags, max_active, 2);
2a458198
ES
2194
2195 fs_info->flush_workers =
cb001095
JM
2196 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2197 flags, max_active, 0);
2a458198
ES
2198
2199 fs_info->caching_workers =
cb001095 2200 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2201
2202 /*
2203 * a higher idle thresh on the submit workers makes it much more
2204 * likely that bios will be send down in a sane order to the
2205 * devices
2206 */
2207 fs_info->submit_workers =
cb001095 2208 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2209 min_t(u64, fs_devices->num_devices,
2210 max_active), 64);
2211
2212 fs_info->fixup_workers =
cb001095 2213 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2214
2215 /*
2216 * endios are largely parallel and should have a very
2217 * low idle thresh
2218 */
2219 fs_info->endio_workers =
cb001095 2220 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2221 fs_info->endio_meta_workers =
cb001095
JM
2222 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2223 max_active, 4);
2a458198 2224 fs_info->endio_meta_write_workers =
cb001095
JM
2225 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2226 max_active, 2);
2a458198 2227 fs_info->endio_raid56_workers =
cb001095
JM
2228 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2229 max_active, 4);
2a458198 2230 fs_info->endio_repair_workers =
cb001095 2231 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2232 fs_info->rmw_workers =
cb001095 2233 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2234 fs_info->endio_write_workers =
cb001095
JM
2235 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2236 max_active, 2);
2a458198 2237 fs_info->endio_freespace_worker =
cb001095
JM
2238 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2239 max_active, 0);
2a458198 2240 fs_info->delayed_workers =
cb001095
JM
2241 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2242 max_active, 0);
2a458198 2243 fs_info->readahead_workers =
cb001095
JM
2244 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2245 max_active, 2);
2a458198 2246 fs_info->qgroup_rescan_workers =
cb001095 2247 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2248 fs_info->extent_workers =
cb001095 2249 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2250 min_t(u64, fs_devices->num_devices,
2251 max_active), 8);
2252
2253 if (!(fs_info->workers && fs_info->delalloc_workers &&
2254 fs_info->submit_workers && fs_info->flush_workers &&
2255 fs_info->endio_workers && fs_info->endio_meta_workers &&
2256 fs_info->endio_meta_write_workers &&
2257 fs_info->endio_repair_workers &&
2258 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2259 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2260 fs_info->caching_workers && fs_info->readahead_workers &&
2261 fs_info->fixup_workers && fs_info->delayed_workers &&
2262 fs_info->extent_workers &&
2263 fs_info->qgroup_rescan_workers)) {
2264 return -ENOMEM;
2265 }
2266
2267 return 0;
2268}
2269
63443bf5
ES
2270static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2271 struct btrfs_fs_devices *fs_devices)
2272{
2273 int ret;
63443bf5
ES
2274 struct btrfs_root *log_tree_root;
2275 struct btrfs_super_block *disk_super = fs_info->super_copy;
2276 u64 bytenr = btrfs_super_log_root(disk_super);
2277
2278 if (fs_devices->rw_devices == 0) {
f14d104d 2279 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2280 return -EIO;
2281 }
2282
74e4d827 2283 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2284 if (!log_tree_root)
2285 return -ENOMEM;
2286
da17066c 2287 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2288
2ff7e61e
JM
2289 log_tree_root->node = read_tree_block(fs_info, bytenr,
2290 fs_info->generation + 1);
64c043de 2291 if (IS_ERR(log_tree_root->node)) {
f14d104d 2292 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2293 ret = PTR_ERR(log_tree_root->node);
64c043de 2294 kfree(log_tree_root);
0eeff236 2295 return ret;
64c043de 2296 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2297 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2298 free_extent_buffer(log_tree_root->node);
2299 kfree(log_tree_root);
2300 return -EIO;
2301 }
2302 /* returns with log_tree_root freed on success */
2303 ret = btrfs_recover_log_trees(log_tree_root);
2304 if (ret) {
0b246afa
JM
2305 btrfs_handle_fs_error(fs_info, ret,
2306 "Failed to recover log tree");
63443bf5
ES
2307 free_extent_buffer(log_tree_root->node);
2308 kfree(log_tree_root);
2309 return ret;
2310 }
2311
bc98a42c 2312 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2313 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2314 if (ret)
2315 return ret;
2316 }
2317
2318 return 0;
2319}
2320
6bccf3ab 2321static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2322{
6bccf3ab 2323 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2324 struct btrfs_root *root;
4bbcaa64
ES
2325 struct btrfs_key location;
2326 int ret;
2327
6bccf3ab
JM
2328 BUG_ON(!fs_info->tree_root);
2329
4bbcaa64
ES
2330 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2331 location.type = BTRFS_ROOT_ITEM_KEY;
2332 location.offset = 0;
2333
a4f3d2c4
DS
2334 root = btrfs_read_tree_root(tree_root, &location);
2335 if (IS_ERR(root))
2336 return PTR_ERR(root);
2337 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2338 fs_info->extent_root = root;
4bbcaa64
ES
2339
2340 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2341 root = btrfs_read_tree_root(tree_root, &location);
2342 if (IS_ERR(root))
2343 return PTR_ERR(root);
2344 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2345 fs_info->dev_root = root;
4bbcaa64
ES
2346 btrfs_init_devices_late(fs_info);
2347
2348 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2349 root = btrfs_read_tree_root(tree_root, &location);
2350 if (IS_ERR(root))
2351 return PTR_ERR(root);
2352 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2353 fs_info->csum_root = root;
4bbcaa64
ES
2354
2355 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2356 root = btrfs_read_tree_root(tree_root, &location);
2357 if (!IS_ERR(root)) {
2358 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2359 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2360 fs_info->quota_root = root;
4bbcaa64
ES
2361 }
2362
2363 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2364 root = btrfs_read_tree_root(tree_root, &location);
2365 if (IS_ERR(root)) {
2366 ret = PTR_ERR(root);
4bbcaa64
ES
2367 if (ret != -ENOENT)
2368 return ret;
2369 } else {
a4f3d2c4
DS
2370 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2371 fs_info->uuid_root = root;
4bbcaa64
ES
2372 }
2373
70f6d82e
OS
2374 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2375 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2376 root = btrfs_read_tree_root(tree_root, &location);
2377 if (IS_ERR(root))
2378 return PTR_ERR(root);
2379 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2380 fs_info->free_space_root = root;
2381 }
2382
4bbcaa64
ES
2383 return 0;
2384}
2385
ad2b2c80
AV
2386int open_ctree(struct super_block *sb,
2387 struct btrfs_fs_devices *fs_devices,
2388 char *options)
2e635a27 2389{
db94535d
CM
2390 u32 sectorsize;
2391 u32 nodesize;
87ee04eb 2392 u32 stripesize;
84234f3a 2393 u64 generation;
f2b636e8 2394 u64 features;
3de4586c 2395 struct btrfs_key location;
a061fc8d 2396 struct buffer_head *bh;
4d34b278 2397 struct btrfs_super_block *disk_super;
815745cf 2398 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2399 struct btrfs_root *tree_root;
4d34b278 2400 struct btrfs_root *chunk_root;
eb60ceac 2401 int ret;
e58ca020 2402 int err = -EINVAL;
af31f5e5
CM
2403 int num_backups_tried = 0;
2404 int backup_index = 0;
5cdc7ad3 2405 int max_active;
6675df31 2406 int clear_free_space_tree = 0;
4543df7e 2407
74e4d827
DS
2408 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2409 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2410 if (!tree_root || !chunk_root) {
39279cc3
CM
2411 err = -ENOMEM;
2412 goto fail;
2413 }
76dda93c
YZ
2414
2415 ret = init_srcu_struct(&fs_info->subvol_srcu);
2416 if (ret) {
2417 err = ret;
2418 goto fail;
2419 }
2420
908c7f19 2421 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2422 if (ret) {
2423 err = ret;
9e11ceee 2424 goto fail_srcu;
e2d84521 2425 }
09cbfeaf 2426 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2427 (1 + ilog2(nr_cpu_ids));
2428
908c7f19 2429 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2430 if (ret) {
2431 err = ret;
2432 goto fail_dirty_metadata_bytes;
2433 }
2434
908c7f19 2435 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2436 if (ret) {
2437 err = ret;
2438 goto fail_delalloc_bytes;
2439 }
2440
76dda93c 2441 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2442 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2443 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2444 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2445 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2446 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2447 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2448 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2449 spin_lock_init(&fs_info->trans_lock);
76dda93c 2450 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2451 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2452 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2453 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2454 spin_lock_init(&fs_info->super_lock);
fcebe456 2455 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2456 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2457 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2458 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2459 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2460 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2461 mutex_init(&fs_info->reloc_mutex);
573bfb72 2462 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2463 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2464 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2465
0b86a832 2466 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2467 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2468 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2469 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2470 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2471 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2472 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2473 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2474 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2475 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2476 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2477 BTRFS_BLOCK_RSV_DELOPS);
771ed689 2478 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2479 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2480 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2481 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2482 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2483 fs_info->sb = sb;
95ac567a 2484 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2485 fs_info->metadata_ratio = 0;
4cb5300b 2486 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2487 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2488 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2489 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2490 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2491 /* readahead state */
d0164adc 2492 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2493 spin_lock_init(&fs_info->reada_lock);
fd708b81 2494 btrfs_init_ref_verify(fs_info);
c8b97818 2495
b34b086c
CM
2496 fs_info->thread_pool_size = min_t(unsigned long,
2497 num_online_cpus() + 2, 8);
0afbaf8c 2498
199c2a9c
MX
2499 INIT_LIST_HEAD(&fs_info->ordered_roots);
2500 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2501
2502 fs_info->btree_inode = new_inode(sb);
2503 if (!fs_info->btree_inode) {
2504 err = -ENOMEM;
2505 goto fail_bio_counter;
2506 }
2507 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2508
16cdcec7 2509 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2510 GFP_KERNEL);
16cdcec7
MX
2511 if (!fs_info->delayed_root) {
2512 err = -ENOMEM;
2513 goto fail_iput;
2514 }
2515 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2516
638aa7ed 2517 btrfs_init_scrub(fs_info);
21adbd5c
SB
2518#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2519 fs_info->check_integrity_print_mask = 0;
2520#endif
779a65a4 2521 btrfs_init_balance(fs_info);
21c7e756 2522 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2523
9f6d2510
DS
2524 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2525 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2526
6bccf3ab 2527 btrfs_init_btree_inode(fs_info);
76dda93c 2528
0f9dd46c 2529 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2530 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2531 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2532
c6100a4b
JB
2533 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2534 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
11833d66 2535 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2536 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2537
5a3f23d5 2538 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2539 mutex_init(&fs_info->tree_log_mutex);
925baedd 2540 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2541 mutex_init(&fs_info->transaction_kthread_mutex);
2542 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2543 mutex_init(&fs_info->volume_mutex);
1bbc621e 2544 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2545 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2546 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2547 init_rwsem(&fs_info->subvol_sem);
803b2f54 2548 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2549
ad618368 2550 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2551 btrfs_init_qgroup(fs_info);
416ac51d 2552
fa9c0d79
CM
2553 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2554 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2555
e6dcd2dc 2556 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2557 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2558 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2559 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2560
04216820
FM
2561 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2562
da17066c
JM
2563 /* Usable values until the real ones are cached from the superblock */
2564 fs_info->nodesize = 4096;
2565 fs_info->sectorsize = 4096;
2566 fs_info->stripesize = 4096;
2567
53b381b3
DW
2568 ret = btrfs_alloc_stripe_hash_table(fs_info);
2569 if (ret) {
83c8266a 2570 err = ret;
53b381b3
DW
2571 goto fail_alloc;
2572 }
2573
da17066c 2574 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2575
3c4bb26b 2576 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2577
2578 /*
2579 * Read super block and check the signature bytes only
2580 */
a512bbf8 2581 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2582 if (IS_ERR(bh)) {
2583 err = PTR_ERR(bh);
16cdcec7 2584 goto fail_alloc;
20b45077 2585 }
39279cc3 2586
1104a885
DS
2587 /*
2588 * We want to check superblock checksum, the type is stored inside.
2589 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2590 */
ab8d0fc4 2591 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2592 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2593 err = -EINVAL;
b2acdddf 2594 brelse(bh);
1104a885
DS
2595 goto fail_alloc;
2596 }
2597
2598 /*
2599 * super_copy is zeroed at allocation time and we never touch the
2600 * following bytes up to INFO_SIZE, the checksum is calculated from
2601 * the whole block of INFO_SIZE
2602 */
6c41761f
DS
2603 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2604 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2605 sizeof(*fs_info->super_for_commit));
a061fc8d 2606 brelse(bh);
5f39d397 2607
6c41761f 2608 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2609
3d3a126a 2610 ret = btrfs_check_super_valid(fs_info);
1104a885 2611 if (ret) {
05135f59 2612 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2613 err = -EINVAL;
2614 goto fail_alloc;
2615 }
2616
6c41761f 2617 disk_super = fs_info->super_copy;
0f7d52f4 2618 if (!btrfs_super_root(disk_super))
16cdcec7 2619 goto fail_alloc;
0f7d52f4 2620
acce952b 2621 /* check FS state, whether FS is broken. */
87533c47
MX
2622 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2623 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2624
af31f5e5
CM
2625 /*
2626 * run through our array of backup supers and setup
2627 * our ring pointer to the oldest one
2628 */
2629 generation = btrfs_super_generation(disk_super);
2630 find_oldest_super_backup(fs_info, generation);
2631
75e7cb7f
LB
2632 /*
2633 * In the long term, we'll store the compression type in the super
2634 * block, and it'll be used for per file compression control.
2635 */
2636 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2637
2ff7e61e 2638 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2639 if (ret) {
2640 err = ret;
16cdcec7 2641 goto fail_alloc;
2b82032c 2642 }
dfe25020 2643
f2b636e8
JB
2644 features = btrfs_super_incompat_flags(disk_super) &
2645 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2646 if (features) {
05135f59
DS
2647 btrfs_err(fs_info,
2648 "cannot mount because of unsupported optional features (%llx)",
2649 features);
f2b636e8 2650 err = -EINVAL;
16cdcec7 2651 goto fail_alloc;
f2b636e8
JB
2652 }
2653
5d4f98a2 2654 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2655 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2656 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2657 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2658 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2659 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2660
3173a18f 2661 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2662 btrfs_info(fs_info, "has skinny extents");
3173a18f 2663
727011e0
CM
2664 /*
2665 * flag our filesystem as having big metadata blocks if
2666 * they are bigger than the page size
2667 */
09cbfeaf 2668 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2669 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2670 btrfs_info(fs_info,
2671 "flagging fs with big metadata feature");
727011e0
CM
2672 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2673 }
2674
bc3f116f 2675 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2676 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2677 stripesize = sectorsize;
707e8a07 2678 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2679 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2680
da17066c
JM
2681 /* Cache block sizes */
2682 fs_info->nodesize = nodesize;
2683 fs_info->sectorsize = sectorsize;
2684 fs_info->stripesize = stripesize;
2685
bc3f116f
CM
2686 /*
2687 * mixed block groups end up with duplicate but slightly offset
2688 * extent buffers for the same range. It leads to corruptions
2689 */
2690 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2691 (sectorsize != nodesize)) {
05135f59
DS
2692 btrfs_err(fs_info,
2693"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2694 nodesize, sectorsize);
bc3f116f
CM
2695 goto fail_alloc;
2696 }
2697
ceda0864
MX
2698 /*
2699 * Needn't use the lock because there is no other task which will
2700 * update the flag.
2701 */
a6fa6fae 2702 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2703
f2b636e8
JB
2704 features = btrfs_super_compat_ro_flags(disk_super) &
2705 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2706 if (!sb_rdonly(sb) && features) {
05135f59
DS
2707 btrfs_err(fs_info,
2708 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2709 features);
f2b636e8 2710 err = -EINVAL;
16cdcec7 2711 goto fail_alloc;
f2b636e8 2712 }
61d92c32 2713
5cdc7ad3 2714 max_active = fs_info->thread_pool_size;
61d92c32 2715
2a458198
ES
2716 ret = btrfs_init_workqueues(fs_info, fs_devices);
2717 if (ret) {
2718 err = ret;
0dc3b84a
JB
2719 goto fail_sb_buffer;
2720 }
4543df7e 2721
9e11ceee
JK
2722 sb->s_bdi->congested_fn = btrfs_congested_fn;
2723 sb->s_bdi->congested_data = fs_info;
2724 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
d4417e22 2725 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
9e11ceee
JK
2726 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2727 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2728
a061fc8d
CM
2729 sb->s_blocksize = sectorsize;
2730 sb->s_blocksize_bits = blksize_bits(sectorsize);
ee87cf5e 2731 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
db94535d 2732
925baedd 2733 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2734 ret = btrfs_read_sys_array(fs_info);
925baedd 2735 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2736 if (ret) {
05135f59 2737 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2738 goto fail_sb_buffer;
84eed90f 2739 }
0b86a832 2740
84234f3a 2741 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2742
da17066c 2743 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2744
2ff7e61e 2745 chunk_root->node = read_tree_block(fs_info,
0b86a832 2746 btrfs_super_chunk_root(disk_super),
ce86cd59 2747 generation);
64c043de
LB
2748 if (IS_ERR(chunk_root->node) ||
2749 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2750 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2751 if (!IS_ERR(chunk_root->node))
2752 free_extent_buffer(chunk_root->node);
95ab1f64 2753 chunk_root->node = NULL;
af31f5e5 2754 goto fail_tree_roots;
83121942 2755 }
5d4f98a2
YZ
2756 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2757 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2758
e17cade2 2759 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2760 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2761
5b4aacef 2762 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2763 if (ret) {
05135f59 2764 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2765 goto fail_tree_roots;
2b82032c 2766 }
0b86a832 2767
8dabb742
SB
2768 /*
2769 * keep the device that is marked to be the target device for the
2770 * dev_replace procedure
2771 */
9eaed21e 2772 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2773
a6b0d5c8 2774 if (!fs_devices->latest_bdev) {
05135f59 2775 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2776 goto fail_tree_roots;
2777 }
2778
af31f5e5 2779retry_root_backup:
84234f3a 2780 generation = btrfs_super_generation(disk_super);
0b86a832 2781
2ff7e61e 2782 tree_root->node = read_tree_block(fs_info,
db94535d 2783 btrfs_super_root(disk_super),
ce86cd59 2784 generation);
64c043de
LB
2785 if (IS_ERR(tree_root->node) ||
2786 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2787 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2788 if (!IS_ERR(tree_root->node))
2789 free_extent_buffer(tree_root->node);
95ab1f64 2790 tree_root->node = NULL;
af31f5e5 2791 goto recovery_tree_root;
83121942 2792 }
af31f5e5 2793
5d4f98a2
YZ
2794 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2795 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2796 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2797
f32e48e9
CR
2798 mutex_lock(&tree_root->objectid_mutex);
2799 ret = btrfs_find_highest_objectid(tree_root,
2800 &tree_root->highest_objectid);
2801 if (ret) {
2802 mutex_unlock(&tree_root->objectid_mutex);
2803 goto recovery_tree_root;
2804 }
2805
2806 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2807
2808 mutex_unlock(&tree_root->objectid_mutex);
2809
6bccf3ab 2810 ret = btrfs_read_roots(fs_info);
4bbcaa64 2811 if (ret)
af31f5e5 2812 goto recovery_tree_root;
f7a81ea4 2813
8929ecfa
YZ
2814 fs_info->generation = generation;
2815 fs_info->last_trans_committed = generation;
8929ecfa 2816
68310a5e
ID
2817 ret = btrfs_recover_balance(fs_info);
2818 if (ret) {
05135f59 2819 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
2820 goto fail_block_groups;
2821 }
2822
733f4fbb
SB
2823 ret = btrfs_init_dev_stats(fs_info);
2824 if (ret) {
05135f59 2825 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
2826 goto fail_block_groups;
2827 }
2828
8dabb742
SB
2829 ret = btrfs_init_dev_replace(fs_info);
2830 if (ret) {
05135f59 2831 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
2832 goto fail_block_groups;
2833 }
2834
9eaed21e 2835 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 2836
b7c35e81
AJ
2837 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2838 if (ret) {
05135f59
DS
2839 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2840 ret);
b7c35e81
AJ
2841 goto fail_block_groups;
2842 }
2843
2844 ret = btrfs_sysfs_add_device(fs_devices);
2845 if (ret) {
05135f59
DS
2846 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2847 ret);
b7c35e81
AJ
2848 goto fail_fsdev_sysfs;
2849 }
2850
96f3136e 2851 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 2852 if (ret) {
05135f59 2853 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 2854 goto fail_fsdev_sysfs;
c59021f8 2855 }
2856
c59021f8 2857 ret = btrfs_init_space_info(fs_info);
2858 if (ret) {
05135f59 2859 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 2860 goto fail_sysfs;
c59021f8 2861 }
2862
5b4aacef 2863 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 2864 if (ret) {
05135f59 2865 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 2866 goto fail_sysfs;
1b1d1f66 2867 }
4330e183 2868
0f0d1272 2869 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) {
05135f59 2870 btrfs_warn(fs_info,
4330e183 2871 "writeable mount is not allowed due to too many missing devices");
2365dd3c 2872 goto fail_sysfs;
292fd7fc 2873 }
9078a3e1 2874
a74a4b97
CM
2875 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2876 "btrfs-cleaner");
57506d50 2877 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2878 goto fail_sysfs;
a74a4b97
CM
2879
2880 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2881 tree_root,
2882 "btrfs-transaction");
57506d50 2883 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2884 goto fail_cleaner;
a74a4b97 2885
583b7231 2886 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 2887 !fs_info->fs_devices->rotating) {
583b7231 2888 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
2889 }
2890
572d9ab7 2891 /*
01327610 2892 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
2893 * not have to wait for transaction commit
2894 */
2895 btrfs_apply_pending_changes(fs_info);
3818aea2 2896
21adbd5c 2897#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 2898 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 2899 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 2900 btrfs_test_opt(fs_info,
21adbd5c
SB
2901 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2902 1 : 0,
2903 fs_info->check_integrity_print_mask);
2904 if (ret)
05135f59
DS
2905 btrfs_warn(fs_info,
2906 "failed to initialize integrity check module: %d",
2907 ret);
21adbd5c
SB
2908 }
2909#endif
bcef60f2
AJ
2910 ret = btrfs_read_qgroup_config(fs_info);
2911 if (ret)
2912 goto fail_trans_kthread;
21adbd5c 2913
fd708b81
JB
2914 if (btrfs_build_ref_tree(fs_info))
2915 btrfs_err(fs_info, "couldn't build ref tree");
2916
96da0919
QW
2917 /* do not make disk changes in broken FS or nologreplay is given */
2918 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 2919 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 2920 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 2921 if (ret) {
63443bf5 2922 err = ret;
28c16cbb 2923 goto fail_qgroup;
79787eaa 2924 }
e02119d5 2925 }
1a40e23b 2926
6bccf3ab 2927 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 2928 if (ret)
28c16cbb 2929 goto fail_qgroup;
76dda93c 2930
bc98a42c 2931 if (!sb_rdonly(sb)) {
d68fc57b 2932 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 2933 if (ret)
28c16cbb 2934 goto fail_qgroup;
90c711ab
ZB
2935
2936 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 2937 ret = btrfs_recover_relocation(tree_root);
90c711ab 2938 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 2939 if (ret < 0) {
05135f59
DS
2940 btrfs_warn(fs_info, "failed to recover relocation: %d",
2941 ret);
d7ce5843 2942 err = -EINVAL;
bcef60f2 2943 goto fail_qgroup;
d7ce5843 2944 }
7c2ca468 2945 }
1a40e23b 2946
3de4586c
CM
2947 location.objectid = BTRFS_FS_TREE_OBJECTID;
2948 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2949 location.offset = 0;
3de4586c 2950
3de4586c 2951 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2952 if (IS_ERR(fs_info->fs_root)) {
2953 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2954 goto fail_qgroup;
3140c9a3 2955 }
c289811c 2956
bc98a42c 2957 if (sb_rdonly(sb))
2b6ba629 2958 return 0;
59641015 2959
f8d468a1
OS
2960 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2961 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
2962 clear_free_space_tree = 1;
2963 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2964 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2965 btrfs_warn(fs_info, "free space tree is invalid");
2966 clear_free_space_tree = 1;
2967 }
2968
2969 if (clear_free_space_tree) {
f8d468a1
OS
2970 btrfs_info(fs_info, "clearing free space tree");
2971 ret = btrfs_clear_free_space_tree(fs_info);
2972 if (ret) {
2973 btrfs_warn(fs_info,
2974 "failed to clear free space tree: %d", ret);
6bccf3ab 2975 close_ctree(fs_info);
f8d468a1
OS
2976 return ret;
2977 }
2978 }
2979
0b246afa 2980 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 2981 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 2982 btrfs_info(fs_info, "creating free space tree");
511711af
CM
2983 ret = btrfs_create_free_space_tree(fs_info);
2984 if (ret) {
05135f59
DS
2985 btrfs_warn(fs_info,
2986 "failed to create free space tree: %d", ret);
6bccf3ab 2987 close_ctree(fs_info);
511711af
CM
2988 return ret;
2989 }
2990 }
2991
2b6ba629
ID
2992 down_read(&fs_info->cleanup_work_sem);
2993 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2994 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2995 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 2996 close_ctree(fs_info);
2b6ba629
ID
2997 return ret;
2998 }
2999 up_read(&fs_info->cleanup_work_sem);
59641015 3000
2b6ba629
ID
3001 ret = btrfs_resume_balance_async(fs_info);
3002 if (ret) {
05135f59 3003 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3004 close_ctree(fs_info);
2b6ba629 3005 return ret;
e3acc2a6
JB
3006 }
3007
8dabb742
SB
3008 ret = btrfs_resume_dev_replace_async(fs_info);
3009 if (ret) {
05135f59 3010 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3011 close_ctree(fs_info);
8dabb742
SB
3012 return ret;
3013 }
3014
b382a324
JS
3015 btrfs_qgroup_rescan_resume(fs_info);
3016
4bbcaa64 3017 if (!fs_info->uuid_root) {
05135f59 3018 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3019 ret = btrfs_create_uuid_tree(fs_info);
3020 if (ret) {
05135f59
DS
3021 btrfs_warn(fs_info,
3022 "failed to create the UUID tree: %d", ret);
6bccf3ab 3023 close_ctree(fs_info);
f7a81ea4
SB
3024 return ret;
3025 }
0b246afa 3026 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3027 fs_info->generation !=
3028 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3029 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3030 ret = btrfs_check_uuid_tree(fs_info);
3031 if (ret) {
05135f59
DS
3032 btrfs_warn(fs_info,
3033 "failed to check the UUID tree: %d", ret);
6bccf3ab 3034 close_ctree(fs_info);
70f80175
SB
3035 return ret;
3036 }
3037 } else {
afcdd129 3038 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3039 }
afcdd129 3040 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3041
8dcddfa0
QW
3042 /*
3043 * backuproot only affect mount behavior, and if open_ctree succeeded,
3044 * no need to keep the flag
3045 */
3046 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3047
ad2b2c80 3048 return 0;
39279cc3 3049
bcef60f2
AJ
3050fail_qgroup:
3051 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3052fail_trans_kthread:
3053 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3054 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3055 btrfs_free_fs_roots(fs_info);
3f157a2f 3056fail_cleaner:
a74a4b97 3057 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3058
3059 /*
3060 * make sure we're done with the btree inode before we stop our
3061 * kthreads
3062 */
3063 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3064
2365dd3c 3065fail_sysfs:
6618a59b 3066 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3067
b7c35e81
AJ
3068fail_fsdev_sysfs:
3069 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3070
1b1d1f66 3071fail_block_groups:
54067ae9 3072 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3073
3074fail_tree_roots:
3075 free_root_pointers(fs_info, 1);
2b8195bb 3076 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3077
39279cc3 3078fail_sb_buffer:
7abadb64 3079 btrfs_stop_all_workers(fs_info);
5cdd7db6 3080 btrfs_free_block_groups(fs_info);
16cdcec7 3081fail_alloc:
4543df7e 3082fail_iput:
586e46e2
ID
3083 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3084
4543df7e 3085 iput(fs_info->btree_inode);
c404e0dc
MX
3086fail_bio_counter:
3087 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3088fail_delalloc_bytes:
3089 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3090fail_dirty_metadata_bytes:
3091 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3092fail_srcu:
3093 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3094fail:
53b381b3 3095 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3096 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3097 return err;
af31f5e5
CM
3098
3099recovery_tree_root:
0b246afa 3100 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3101 goto fail_tree_roots;
3102
3103 free_root_pointers(fs_info, 0);
3104
3105 /* don't use the log in recovery mode, it won't be valid */
3106 btrfs_set_super_log_root(disk_super, 0);
3107
3108 /* we can't trust the free space cache either */
3109 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3110
3111 ret = next_root_backup(fs_info, fs_info->super_copy,
3112 &num_backups_tried, &backup_index);
3113 if (ret == -1)
3114 goto fail_block_groups;
3115 goto retry_root_backup;
eb60ceac
CM
3116}
3117
f2984462
CM
3118static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3119{
f2984462
CM
3120 if (uptodate) {
3121 set_buffer_uptodate(bh);
3122 } else {
442a4f63
SB
3123 struct btrfs_device *device = (struct btrfs_device *)
3124 bh->b_private;
3125
fb456252 3126 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3127 "lost page write due to IO error on %s",
606686ee 3128 rcu_str_deref(device->name));
01327610 3129 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3130 * our own ways of dealing with the IO errors
3131 */
f2984462 3132 clear_buffer_uptodate(bh);
442a4f63 3133 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3134 }
3135 unlock_buffer(bh);
3136 put_bh(bh);
3137}
3138
29c36d72
AJ
3139int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3140 struct buffer_head **bh_ret)
3141{
3142 struct buffer_head *bh;
3143 struct btrfs_super_block *super;
3144 u64 bytenr;
3145
3146 bytenr = btrfs_sb_offset(copy_num);
3147 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3148 return -EINVAL;
3149
9f6d2510 3150 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3151 /*
3152 * If we fail to read from the underlying devices, as of now
3153 * the best option we have is to mark it EIO.
3154 */
3155 if (!bh)
3156 return -EIO;
3157
3158 super = (struct btrfs_super_block *)bh->b_data;
3159 if (btrfs_super_bytenr(super) != bytenr ||
3160 btrfs_super_magic(super) != BTRFS_MAGIC) {
3161 brelse(bh);
3162 return -EINVAL;
3163 }
3164
3165 *bh_ret = bh;
3166 return 0;
3167}
3168
3169
a512bbf8
YZ
3170struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3171{
3172 struct buffer_head *bh;
3173 struct buffer_head *latest = NULL;
3174 struct btrfs_super_block *super;
3175 int i;
3176 u64 transid = 0;
92fc03fb 3177 int ret = -EINVAL;
a512bbf8
YZ
3178
3179 /* we would like to check all the supers, but that would make
3180 * a btrfs mount succeed after a mkfs from a different FS.
3181 * So, we need to add a special mount option to scan for
3182 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3183 */
3184 for (i = 0; i < 1; i++) {
29c36d72
AJ
3185 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3186 if (ret)
a512bbf8
YZ
3187 continue;
3188
3189 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3190
3191 if (!latest || btrfs_super_generation(super) > transid) {
3192 brelse(latest);
3193 latest = bh;
3194 transid = btrfs_super_generation(super);
3195 } else {
3196 brelse(bh);
3197 }
3198 }
92fc03fb
AJ
3199
3200 if (!latest)
3201 return ERR_PTR(ret);
3202
a512bbf8
YZ
3203 return latest;
3204}
3205
4eedeb75 3206/*
abbb3b8e
DS
3207 * Write superblock @sb to the @device. Do not wait for completion, all the
3208 * buffer heads we write are pinned.
4eedeb75 3209 *
abbb3b8e
DS
3210 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3211 * the expected device size at commit time. Note that max_mirrors must be
3212 * same for write and wait phases.
4eedeb75 3213 *
abbb3b8e 3214 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3215 */
a512bbf8 3216static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3217 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3218{
3219 struct buffer_head *bh;
3220 int i;
3221 int ret;
3222 int errors = 0;
3223 u32 crc;
3224 u64 bytenr;
1b9e619c 3225 int op_flags;
a512bbf8
YZ
3226
3227 if (max_mirrors == 0)
3228 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3229
a512bbf8
YZ
3230 for (i = 0; i < max_mirrors; i++) {
3231 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3232 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3233 device->commit_total_bytes)
a512bbf8
YZ
3234 break;
3235
abbb3b8e 3236 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3237
abbb3b8e
DS
3238 crc = ~(u32)0;
3239 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3240 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3241 btrfs_csum_final(crc, sb->csum);
4eedeb75 3242
abbb3b8e 3243 /* One reference for us, and we leave it for the caller */
9f6d2510 3244 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3245 BTRFS_SUPER_INFO_SIZE);
3246 if (!bh) {
3247 btrfs_err(device->fs_info,
3248 "couldn't get super buffer head for bytenr %llu",
3249 bytenr);
3250 errors++;
4eedeb75 3251 continue;
abbb3b8e 3252 }
634554dc 3253
abbb3b8e 3254 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3255
abbb3b8e
DS
3256 /* one reference for submit_bh */
3257 get_bh(bh);
4eedeb75 3258
abbb3b8e
DS
3259 set_buffer_uptodate(bh);
3260 lock_buffer(bh);
3261 bh->b_end_io = btrfs_end_buffer_write_sync;
3262 bh->b_private = device;
a512bbf8 3263
387125fc
CM
3264 /*
3265 * we fua the first super. The others we allow
3266 * to go down lazy.
3267 */
1b9e619c
OS
3268 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3269 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3270 op_flags |= REQ_FUA;
3271 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3272 if (ret)
a512bbf8 3273 errors++;
a512bbf8
YZ
3274 }
3275 return errors < i ? 0 : -1;
3276}
3277
abbb3b8e
DS
3278/*
3279 * Wait for write completion of superblocks done by write_dev_supers,
3280 * @max_mirrors same for write and wait phases.
3281 *
3282 * Return number of errors when buffer head is not found or not marked up to
3283 * date.
3284 */
3285static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3286{
3287 struct buffer_head *bh;
3288 int i;
3289 int errors = 0;
3290 u64 bytenr;
3291
3292 if (max_mirrors == 0)
3293 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3294
3295 for (i = 0; i < max_mirrors; i++) {
3296 bytenr = btrfs_sb_offset(i);
3297 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3298 device->commit_total_bytes)
3299 break;
3300
9f6d2510
DS
3301 bh = __find_get_block(device->bdev,
3302 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3303 BTRFS_SUPER_INFO_SIZE);
3304 if (!bh) {
3305 errors++;
3306 continue;
3307 }
3308 wait_on_buffer(bh);
3309 if (!buffer_uptodate(bh))
3310 errors++;
3311
3312 /* drop our reference */
3313 brelse(bh);
3314
3315 /* drop the reference from the writing run */
3316 brelse(bh);
3317 }
3318
3319 return errors < i ? 0 : -1;
3320}
3321
387125fc
CM
3322/*
3323 * endio for the write_dev_flush, this will wake anyone waiting
3324 * for the barrier when it is done
3325 */
4246a0b6 3326static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3327{
e0ae9994 3328 complete(bio->bi_private);
387125fc
CM
3329}
3330
3331/*
4fc6441a
AJ
3332 * Submit a flush request to the device if it supports it. Error handling is
3333 * done in the waiting counterpart.
387125fc 3334 */
4fc6441a 3335static void write_dev_flush(struct btrfs_device *device)
387125fc 3336{
c2a9c7ab 3337 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3338 struct bio *bio = device->flush_bio;
387125fc 3339
c2a9c7ab 3340 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3341 return;
387125fc 3342
e0ae9994 3343 bio_reset(bio);
387125fc 3344 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3345 bio_set_dev(bio, device->bdev);
8d910125 3346 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3347 init_completion(&device->flush_wait);
3348 bio->bi_private = &device->flush_wait;
387125fc 3349
43a01111 3350 btrfsic_submit_bio(bio);
1c3063b6 3351 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3352}
387125fc 3353
4fc6441a
AJ
3354/*
3355 * If the flush bio has been submitted by write_dev_flush, wait for it.
3356 */
8c27cb35 3357static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3358{
4fc6441a 3359 struct bio *bio = device->flush_bio;
387125fc 3360
1c3063b6 3361 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3362 return BLK_STS_OK;
387125fc 3363
1c3063b6 3364 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3365 wait_for_completion_io(&device->flush_wait);
387125fc 3366
8c27cb35 3367 return bio->bi_status;
387125fc 3368}
387125fc 3369
d10b82fe 3370static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3371{
d10b82fe 3372 if (!btrfs_check_rw_degradable(fs_info))
401b41e5 3373 return -EIO;
387125fc
CM
3374 return 0;
3375}
3376
3377/*
3378 * send an empty flush down to each device in parallel,
3379 * then wait for them
3380 */
3381static int barrier_all_devices(struct btrfs_fs_info *info)
3382{
3383 struct list_head *head;
3384 struct btrfs_device *dev;
5af3e8cc 3385 int errors_wait = 0;
4e4cbee9 3386 blk_status_t ret;
387125fc 3387
1538e6c5 3388 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3389 /* send down all the barriers */
3390 head = &info->fs_devices->devices;
1538e6c5 3391 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3392 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3393 continue;
cea7c8bf 3394 if (!dev->bdev)
387125fc 3395 continue;
e12c9621 3396 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3397 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3398 continue;
3399
4fc6441a 3400 write_dev_flush(dev);
58efbc9f 3401 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3402 }
3403
3404 /* wait for all the barriers */
1538e6c5 3405 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3406 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3407 continue;
387125fc 3408 if (!dev->bdev) {
5af3e8cc 3409 errors_wait++;
387125fc
CM
3410 continue;
3411 }
e12c9621 3412 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3413 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3414 continue;
3415
4fc6441a 3416 ret = wait_dev_flush(dev);
401b41e5
AJ
3417 if (ret) {
3418 dev->last_flush_error = ret;
66b4993e
DS
3419 btrfs_dev_stat_inc_and_print(dev,
3420 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3421 errors_wait++;
401b41e5
AJ
3422 }
3423 }
3424
cea7c8bf 3425 if (errors_wait) {
401b41e5
AJ
3426 /*
3427 * At some point we need the status of all disks
3428 * to arrive at the volume status. So error checking
3429 * is being pushed to a separate loop.
3430 */
d10b82fe 3431 return check_barrier_error(info);
387125fc 3432 }
387125fc
CM
3433 return 0;
3434}
3435
943c6e99
ZL
3436int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3437{
8789f4fe
ZL
3438 int raid_type;
3439 int min_tolerated = INT_MAX;
943c6e99 3440
8789f4fe
ZL
3441 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3442 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3443 min_tolerated = min(min_tolerated,
3444 btrfs_raid_array[BTRFS_RAID_SINGLE].
3445 tolerated_failures);
943c6e99 3446
8789f4fe
ZL
3447 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3448 if (raid_type == BTRFS_RAID_SINGLE)
3449 continue;
3450 if (!(flags & btrfs_raid_group[raid_type]))
3451 continue;
3452 min_tolerated = min(min_tolerated,
3453 btrfs_raid_array[raid_type].
3454 tolerated_failures);
3455 }
943c6e99 3456
8789f4fe 3457 if (min_tolerated == INT_MAX) {
ab8d0fc4 3458 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3459 min_tolerated = 0;
3460 }
3461
3462 return min_tolerated;
943c6e99
ZL
3463}
3464
eece6a9c 3465int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3466{
e5e9a520 3467 struct list_head *head;
f2984462 3468 struct btrfs_device *dev;
a061fc8d 3469 struct btrfs_super_block *sb;
f2984462 3470 struct btrfs_dev_item *dev_item;
f2984462
CM
3471 int ret;
3472 int do_barriers;
a236aed1
CM
3473 int max_errors;
3474 int total_errors = 0;
a061fc8d 3475 u64 flags;
f2984462 3476
0b246afa 3477 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3478
3479 /*
3480 * max_mirrors == 0 indicates we're from commit_transaction,
3481 * not from fsync where the tree roots in fs_info have not
3482 * been consistent on disk.
3483 */
3484 if (max_mirrors == 0)
3485 backup_super_roots(fs_info);
f2984462 3486
0b246afa 3487 sb = fs_info->super_for_commit;
a061fc8d 3488 dev_item = &sb->dev_item;
e5e9a520 3489
0b246afa
JM
3490 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3491 head = &fs_info->fs_devices->devices;
3492 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3493
5af3e8cc 3494 if (do_barriers) {
0b246afa 3495 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3496 if (ret) {
3497 mutex_unlock(
0b246afa
JM
3498 &fs_info->fs_devices->device_list_mutex);
3499 btrfs_handle_fs_error(fs_info, ret,
3500 "errors while submitting device barriers.");
5af3e8cc
SB
3501 return ret;
3502 }
3503 }
387125fc 3504
1538e6c5 3505 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3506 if (!dev->bdev) {
3507 total_errors++;
3508 continue;
3509 }
e12c9621 3510 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3511 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3512 continue;
3513
2b82032c 3514 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3515 btrfs_set_stack_device_type(dev_item, dev->type);
3516 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3517 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3518 dev->commit_total_bytes);
ce7213c7
MX
3519 btrfs_set_stack_device_bytes_used(dev_item,
3520 dev->commit_bytes_used);
a061fc8d
CM
3521 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3522 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3523 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3524 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
44880fdc 3525 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
a512bbf8 3526
a061fc8d
CM
3527 flags = btrfs_super_flags(sb);
3528 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3529
abbb3b8e 3530 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3531 if (ret)
3532 total_errors++;
f2984462 3533 }
a236aed1 3534 if (total_errors > max_errors) {
0b246afa
JM
3535 btrfs_err(fs_info, "%d errors while writing supers",
3536 total_errors);
3537 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3538
9d565ba4 3539 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3540 btrfs_handle_fs_error(fs_info, -EIO,
3541 "%d errors while writing supers",
3542 total_errors);
9d565ba4 3543 return -EIO;
a236aed1 3544 }
f2984462 3545
a512bbf8 3546 total_errors = 0;
1538e6c5 3547 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3548 if (!dev->bdev)
3549 continue;
e12c9621 3550 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3551 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3552 continue;
3553
abbb3b8e 3554 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3555 if (ret)
3556 total_errors++;
f2984462 3557 }
0b246afa 3558 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3559 if (total_errors > max_errors) {
0b246afa
JM
3560 btrfs_handle_fs_error(fs_info, -EIO,
3561 "%d errors while writing supers",
3562 total_errors);
79787eaa 3563 return -EIO;
a236aed1 3564 }
f2984462
CM
3565 return 0;
3566}
3567
cb517eab
MX
3568/* Drop a fs root from the radix tree and free it. */
3569void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3570 struct btrfs_root *root)
2619ba1f 3571{
4df27c4d 3572 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3573 radix_tree_delete(&fs_info->fs_roots_radix,
3574 (unsigned long)root->root_key.objectid);
4df27c4d 3575 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3576
3577 if (btrfs_root_refs(&root->root_item) == 0)
3578 synchronize_srcu(&fs_info->subvol_srcu);
3579
1c1ea4f7 3580 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3581 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3582 if (root->reloc_root) {
3583 free_extent_buffer(root->reloc_root->node);
3584 free_extent_buffer(root->reloc_root->commit_root);
3585 btrfs_put_fs_root(root->reloc_root);
3586 root->reloc_root = NULL;
3587 }
3588 }
3321719e 3589
faa2dbf0
JB
3590 if (root->free_ino_pinned)
3591 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3592 if (root->free_ino_ctl)
3593 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3594 free_fs_root(root);
4df27c4d
YZ
3595}
3596
3597static void free_fs_root(struct btrfs_root *root)
3598{
57cdc8db 3599 iput(root->ino_cache_inode);
4df27c4d 3600 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2ff7e61e 3601 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
1cb048f5 3602 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3603 if (root->anon_dev)
3604 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3605 if (root->subv_writers)
3606 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3607 free_extent_buffer(root->node);
3608 free_extent_buffer(root->commit_root);
581bb050
LZ
3609 kfree(root->free_ino_ctl);
3610 kfree(root->free_ino_pinned);
d397712b 3611 kfree(root->name);
b0feb9d9 3612 btrfs_put_fs_root(root);
2619ba1f
CM
3613}
3614
cb517eab
MX
3615void btrfs_free_fs_root(struct btrfs_root *root)
3616{
3617 free_fs_root(root);
2619ba1f
CM
3618}
3619
c146afad 3620int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3621{
c146afad
YZ
3622 u64 root_objectid = 0;
3623 struct btrfs_root *gang[8];
65d33fd7
QW
3624 int i = 0;
3625 int err = 0;
3626 unsigned int ret = 0;
3627 int index;
e089f05c 3628
c146afad 3629 while (1) {
65d33fd7 3630 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3631 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3632 (void **)gang, root_objectid,
3633 ARRAY_SIZE(gang));
65d33fd7
QW
3634 if (!ret) {
3635 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3636 break;
65d33fd7 3637 }
5d4f98a2 3638 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3639
c146afad 3640 for (i = 0; i < ret; i++) {
65d33fd7
QW
3641 /* Avoid to grab roots in dead_roots */
3642 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3643 gang[i] = NULL;
3644 continue;
3645 }
3646 /* grab all the search result for later use */
3647 gang[i] = btrfs_grab_fs_root(gang[i]);
3648 }
3649 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3650
65d33fd7
QW
3651 for (i = 0; i < ret; i++) {
3652 if (!gang[i])
3653 continue;
c146afad 3654 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3655 err = btrfs_orphan_cleanup(gang[i]);
3656 if (err)
65d33fd7
QW
3657 break;
3658 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3659 }
3660 root_objectid++;
3661 }
65d33fd7
QW
3662
3663 /* release the uncleaned roots due to error */
3664 for (; i < ret; i++) {
3665 if (gang[i])
3666 btrfs_put_fs_root(gang[i]);
3667 }
3668 return err;
c146afad 3669}
a2135011 3670
6bccf3ab 3671int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3672{
6bccf3ab 3673 struct btrfs_root *root = fs_info->tree_root;
c146afad 3674 struct btrfs_trans_handle *trans;
a74a4b97 3675
0b246afa 3676 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3677 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3678 mutex_unlock(&fs_info->cleaner_mutex);
3679 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3680
3681 /* wait until ongoing cleanup work done */
0b246afa
JM
3682 down_write(&fs_info->cleanup_work_sem);
3683 up_write(&fs_info->cleanup_work_sem);
c71bf099 3684
7a7eaa40 3685 trans = btrfs_join_transaction(root);
3612b495
TI
3686 if (IS_ERR(trans))
3687 return PTR_ERR(trans);
3a45bb20 3688 return btrfs_commit_transaction(trans);
c146afad
YZ
3689}
3690
6bccf3ab 3691void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3692{
6bccf3ab 3693 struct btrfs_root *root = fs_info->tree_root;
c146afad
YZ
3694 int ret;
3695
afcdd129 3696 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
c146afad 3697
7343dd61 3698 /* wait for the qgroup rescan worker to stop */
d06f23d6 3699 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3700
803b2f54
SB
3701 /* wait for the uuid_scan task to finish */
3702 down(&fs_info->uuid_tree_rescan_sem);
3703 /* avoid complains from lockdep et al., set sem back to initial state */
3704 up(&fs_info->uuid_tree_rescan_sem);
3705
837d5b6e 3706 /* pause restriper - we want to resume on mount */
aa1b8cd4 3707 btrfs_pause_balance(fs_info);
837d5b6e 3708
8dabb742
SB
3709 btrfs_dev_replace_suspend_for_unmount(fs_info);
3710
aa1b8cd4 3711 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3712
3713 /* wait for any defraggers to finish */
3714 wait_event(fs_info->transaction_wait,
3715 (atomic_read(&fs_info->defrag_running) == 0));
3716
3717 /* clear out the rbtree of defraggable inodes */
26176e7c 3718 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3719
21c7e756
MX
3720 cancel_work_sync(&fs_info->async_reclaim_work);
3721
bc98a42c 3722 if (!sb_rdonly(fs_info->sb)) {
e44163e1
JM
3723 /*
3724 * If the cleaner thread is stopped and there are
3725 * block groups queued for removal, the deletion will be
3726 * skipped when we quit the cleaner thread.
3727 */
0b246afa 3728 btrfs_delete_unused_bgs(fs_info);
e44163e1 3729
6bccf3ab 3730 ret = btrfs_commit_super(fs_info);
acce952b 3731 if (ret)
04892340 3732 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3733 }
3734
87533c47 3735 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
2ff7e61e 3736 btrfs_error_commit_super(fs_info);
0f7d52f4 3737
e3029d9f
AV
3738 kthread_stop(fs_info->transaction_kthread);
3739 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3740
afcdd129 3741 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 3742
04892340 3743 btrfs_free_qgroup_config(fs_info);
bcef60f2 3744
963d678b 3745 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3746 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3747 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3748 }
bcc63abb 3749
6618a59b 3750 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3751 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3752
faa2dbf0 3753 btrfs_free_fs_roots(fs_info);
d10c5f31 3754
1a4319cc
LB
3755 btrfs_put_block_group_cache(fs_info);
3756
de348ee0
WS
3757 /*
3758 * we must make sure there is not any read request to
3759 * submit after we stopping all workers.
3760 */
3761 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3762 btrfs_stop_all_workers(fs_info);
3763
5cdd7db6
FM
3764 btrfs_free_block_groups(fs_info);
3765
afcdd129 3766 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 3767 free_root_pointers(fs_info, 1);
9ad6b7bc 3768
13e6c37b 3769 iput(fs_info->btree_inode);
d6bfde87 3770
21adbd5c 3771#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3772 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 3773 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
3774#endif
3775
dfe25020 3776 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3777 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3778
e2d84521 3779 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3780 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3781 percpu_counter_destroy(&fs_info->bio_counter);
76dda93c 3782 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3783
53b381b3 3784 btrfs_free_stripe_hash_table(fs_info);
fd708b81 3785 btrfs_free_ref_cache(fs_info);
53b381b3 3786
cdfb080e 3787 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3788 root->orphan_block_rsv = NULL;
04216820 3789
04216820
FM
3790 while (!list_empty(&fs_info->pinned_chunks)) {
3791 struct extent_map *em;
3792
3793 em = list_first_entry(&fs_info->pinned_chunks,
3794 struct extent_map, list);
3795 list_del_init(&em->list);
3796 free_extent_map(em);
3797 }
eb60ceac
CM
3798}
3799
b9fab919
CM
3800int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3801 int atomic)
5f39d397 3802{
1259ab75 3803 int ret;
727011e0 3804 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3805
0b32f4bb 3806 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3807 if (!ret)
3808 return ret;
3809
3810 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3811 parent_transid, atomic);
3812 if (ret == -EAGAIN)
3813 return ret;
1259ab75 3814 return !ret;
5f39d397
CM
3815}
3816
5f39d397
CM
3817void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3818{
0b246afa 3819 struct btrfs_fs_info *fs_info;
06ea65a3 3820 struct btrfs_root *root;
5f39d397 3821 u64 transid = btrfs_header_generation(buf);
b9473439 3822 int was_dirty;
b4ce94de 3823
06ea65a3
JB
3824#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3825 /*
3826 * This is a fast path so only do this check if we have sanity tests
3827 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3828 * outside of the sanity tests.
3829 */
3830 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3831 return;
3832#endif
3833 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 3834 fs_info = root->fs_info;
b9447ef8 3835 btrfs_assert_tree_locked(buf);
0b246afa 3836 if (transid != fs_info->generation)
5d163e0e 3837 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 3838 buf->start, transid, fs_info->generation);
0b32f4bb 3839 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 3840 if (!was_dirty)
104b4e51
NB
3841 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3842 buf->len,
3843 fs_info->dirty_metadata_batch);
1f21ef0a 3844#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
3845 /*
3846 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3847 * but item data not updated.
3848 * So here we should only check item pointers, not item data.
3849 */
3850 if (btrfs_header_level(buf) == 0 &&
3851 btrfs_check_leaf_relaxed(root, buf)) {
a4f78750 3852 btrfs_print_leaf(buf);
1f21ef0a
FM
3853 ASSERT(0);
3854 }
3855#endif
eb60ceac
CM
3856}
3857
2ff7e61e 3858static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 3859 int flush_delayed)
16cdcec7
MX
3860{
3861 /*
3862 * looks as though older kernels can get into trouble with
3863 * this code, they end up stuck in balance_dirty_pages forever
3864 */
e2d84521 3865 int ret;
16cdcec7
MX
3866
3867 if (current->flags & PF_MEMALLOC)
3868 return;
3869
b53d3f5d 3870 if (flush_delayed)
2ff7e61e 3871 btrfs_balance_delayed_items(fs_info);
16cdcec7 3872
0b246afa 3873 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
e2d84521
MX
3874 BTRFS_DIRTY_METADATA_THRESH);
3875 if (ret > 0) {
0b246afa 3876 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 3877 }
16cdcec7
MX
3878}
3879
2ff7e61e 3880void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 3881{
2ff7e61e 3882 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 3883}
585ad2c3 3884
2ff7e61e 3885void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 3886{
2ff7e61e 3887 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 3888}
6b80053d 3889
ca7a79ad 3890int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3891{
727011e0 3892 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
3893 struct btrfs_fs_info *fs_info = root->fs_info;
3894
3895 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
6b80053d 3896}
0da5468f 3897
3d3a126a 3898static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
acce952b 3899{
c926093e 3900 struct btrfs_super_block *sb = fs_info->super_copy;
319e4d06
QW
3901 u64 nodesize = btrfs_super_nodesize(sb);
3902 u64 sectorsize = btrfs_super_sectorsize(sb);
c926093e
DS
3903 int ret = 0;
3904
319e4d06 3905 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
ab8d0fc4 3906 btrfs_err(fs_info, "no valid FS found");
319e4d06
QW
3907 ret = -EINVAL;
3908 }
3909 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
ab8d0fc4 3910 btrfs_warn(fs_info, "unrecognized super flag: %llu",
319e4d06 3911 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
21e7626b 3912 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 3913 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
21e7626b 3914 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3915 ret = -EINVAL;
3916 }
21e7626b 3917 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 3918 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
21e7626b 3919 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3920 ret = -EINVAL;
3921 }
21e7626b 3922 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 3923 btrfs_err(fs_info, "log_root level too big: %d >= %d",
21e7626b 3924 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3925 ret = -EINVAL;
3926 }
3927
1104a885 3928 /*
319e4d06
QW
3929 * Check sectorsize and nodesize first, other check will need it.
3930 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
1104a885 3931 */
319e4d06
QW
3932 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
3933 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 3934 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
319e4d06
QW
3935 ret = -EINVAL;
3936 }
3937 /* Only PAGE SIZE is supported yet */
09cbfeaf 3938 if (sectorsize != PAGE_SIZE) {
ab8d0fc4
JM
3939 btrfs_err(fs_info,
3940 "sectorsize %llu not supported yet, only support %lu",
3941 sectorsize, PAGE_SIZE);
319e4d06
QW
3942 ret = -EINVAL;
3943 }
3944 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
3945 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 3946 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
319e4d06
QW
3947 ret = -EINVAL;
3948 }
3949 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
ab8d0fc4
JM
3950 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
3951 le32_to_cpu(sb->__unused_leafsize), nodesize);
319e4d06
QW
3952 ret = -EINVAL;
3953 }
3954
3955 /* Root alignment check */
3956 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
ab8d0fc4
JM
3957 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
3958 btrfs_super_root(sb));
319e4d06
QW
3959 ret = -EINVAL;
3960 }
3961 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
ab8d0fc4
JM
3962 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
3963 btrfs_super_chunk_root(sb));
75d6ad38
DS
3964 ret = -EINVAL;
3965 }
319e4d06 3966 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
ab8d0fc4
JM
3967 btrfs_warn(fs_info, "log_root block unaligned: %llu",
3968 btrfs_super_log_root(sb));
75d6ad38
DS
3969 ret = -EINVAL;
3970 }
3971
44880fdc 3972 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
ab8d0fc4
JM
3973 btrfs_err(fs_info,
3974 "dev_item UUID does not match fsid: %pU != %pU",
3975 fs_info->fsid, sb->dev_item.fsid);
c926093e
DS
3976 ret = -EINVAL;
3977 }
3978
3979 /*
3980 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3981 * done later
3982 */
99e3ecfc
LB
3983 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
3984 btrfs_err(fs_info, "bytes_used is too small %llu",
ab8d0fc4 3985 btrfs_super_bytes_used(sb));
99e3ecfc
LB
3986 ret = -EINVAL;
3987 }
b7f67055 3988 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
99e3ecfc 3989 btrfs_err(fs_info, "invalid stripesize %u",
ab8d0fc4 3990 btrfs_super_stripesize(sb));
99e3ecfc
LB
3991 ret = -EINVAL;
3992 }
21e7626b 3993 if (btrfs_super_num_devices(sb) > (1UL << 31))
ab8d0fc4
JM
3994 btrfs_warn(fs_info, "suspicious number of devices: %llu",
3995 btrfs_super_num_devices(sb));
75d6ad38 3996 if (btrfs_super_num_devices(sb) == 0) {
ab8d0fc4 3997 btrfs_err(fs_info, "number of devices is 0");
75d6ad38
DS
3998 ret = -EINVAL;
3999 }
c926093e 4000
21e7626b 4001 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
ab8d0fc4
JM
4002 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4003 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4004 ret = -EINVAL;
4005 }
4006
ce7fca5f
DS
4007 /*
4008 * Obvious sys_chunk_array corruptions, it must hold at least one key
4009 * and one chunk
4010 */
4011 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
ab8d0fc4
JM
4012 btrfs_err(fs_info, "system chunk array too big %u > %u",
4013 btrfs_super_sys_array_size(sb),
4014 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
ce7fca5f
DS
4015 ret = -EINVAL;
4016 }
4017 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4018 + sizeof(struct btrfs_chunk)) {
ab8d0fc4
JM
4019 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4020 btrfs_super_sys_array_size(sb),
4021 sizeof(struct btrfs_disk_key)
4022 + sizeof(struct btrfs_chunk));
ce7fca5f
DS
4023 ret = -EINVAL;
4024 }
4025
c926093e
DS
4026 /*
4027 * The generation is a global counter, we'll trust it more than the others
4028 * but it's still possible that it's the one that's wrong.
4029 */
21e7626b 4030 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
ab8d0fc4
JM
4031 btrfs_warn(fs_info,
4032 "suspicious: generation < chunk_root_generation: %llu < %llu",
4033 btrfs_super_generation(sb),
4034 btrfs_super_chunk_root_generation(sb));
21e7626b
DS
4035 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4036 && btrfs_super_cache_generation(sb) != (u64)-1)
ab8d0fc4
JM
4037 btrfs_warn(fs_info,
4038 "suspicious: generation < cache_generation: %llu < %llu",
4039 btrfs_super_generation(sb),
4040 btrfs_super_cache_generation(sb));
c926093e
DS
4041
4042 return ret;
acce952b 4043}
4044
2ff7e61e 4045static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4046{
0b246afa 4047 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4048 btrfs_run_delayed_iputs(fs_info);
0b246afa 4049 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4050
0b246afa
JM
4051 down_write(&fs_info->cleanup_work_sem);
4052 up_write(&fs_info->cleanup_work_sem);
acce952b 4053
4054 /* cleanup FS via transaction */
2ff7e61e 4055 btrfs_cleanup_transaction(fs_info);
acce952b 4056}
4057
143bede5 4058static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4059{
acce952b 4060 struct btrfs_ordered_extent *ordered;
acce952b 4061
199c2a9c 4062 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4063 /*
4064 * This will just short circuit the ordered completion stuff which will
4065 * make sure the ordered extent gets properly cleaned up.
4066 */
199c2a9c 4067 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4068 root_extent_list)
4069 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4070 spin_unlock(&root->ordered_extent_lock);
4071}
4072
4073static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4074{
4075 struct btrfs_root *root;
4076 struct list_head splice;
4077
4078 INIT_LIST_HEAD(&splice);
4079
4080 spin_lock(&fs_info->ordered_root_lock);
4081 list_splice_init(&fs_info->ordered_roots, &splice);
4082 while (!list_empty(&splice)) {
4083 root = list_first_entry(&splice, struct btrfs_root,
4084 ordered_root);
1de2cfde
JB
4085 list_move_tail(&root->ordered_root,
4086 &fs_info->ordered_roots);
199c2a9c 4087
2a85d9ca 4088 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4089 btrfs_destroy_ordered_extents(root);
4090
2a85d9ca
LB
4091 cond_resched();
4092 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4093 }
4094 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4095}
4096
35a3621b 4097static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4098 struct btrfs_fs_info *fs_info)
acce952b 4099{
4100 struct rb_node *node;
4101 struct btrfs_delayed_ref_root *delayed_refs;
4102 struct btrfs_delayed_ref_node *ref;
4103 int ret = 0;
4104
4105 delayed_refs = &trans->delayed_refs;
4106
4107 spin_lock(&delayed_refs->lock);
d7df2c79 4108 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4109 spin_unlock(&delayed_refs->lock);
0b246afa 4110 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4111 return ret;
4112 }
4113
d7df2c79
JB
4114 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4115 struct btrfs_delayed_ref_head *head;
0e0adbcf 4116 struct rb_node *n;
e78417d1 4117 bool pin_bytes = false;
acce952b 4118
d7df2c79
JB
4119 head = rb_entry(node, struct btrfs_delayed_ref_head,
4120 href_node);
4121 if (!mutex_trylock(&head->mutex)) {
d278850e 4122 refcount_inc(&head->refs);
d7df2c79 4123 spin_unlock(&delayed_refs->lock);
eb12db69 4124
d7df2c79 4125 mutex_lock(&head->mutex);
e78417d1 4126 mutex_unlock(&head->mutex);
d278850e 4127 btrfs_put_delayed_ref_head(head);
d7df2c79
JB
4128 spin_lock(&delayed_refs->lock);
4129 continue;
4130 }
4131 spin_lock(&head->lock);
0e0adbcf
JB
4132 while ((n = rb_first(&head->ref_tree)) != NULL) {
4133 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4134 ref_node);
d7df2c79 4135 ref->in_tree = 0;
0e0adbcf
JB
4136 rb_erase(&ref->ref_node, &head->ref_tree);
4137 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4138 if (!list_empty(&ref->add_list))
4139 list_del(&ref->add_list);
d7df2c79
JB
4140 atomic_dec(&delayed_refs->num_entries);
4141 btrfs_put_delayed_ref(ref);
e78417d1 4142 }
d7df2c79
JB
4143 if (head->must_insert_reserved)
4144 pin_bytes = true;
4145 btrfs_free_delayed_extent_op(head->extent_op);
4146 delayed_refs->num_heads--;
4147 if (head->processing == 0)
4148 delayed_refs->num_heads_ready--;
4149 atomic_dec(&delayed_refs->num_entries);
d7df2c79 4150 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 4151 RB_CLEAR_NODE(&head->href_node);
d7df2c79
JB
4152 spin_unlock(&head->lock);
4153 spin_unlock(&delayed_refs->lock);
4154 mutex_unlock(&head->mutex);
acce952b 4155
d7df2c79 4156 if (pin_bytes)
d278850e
JB
4157 btrfs_pin_extent(fs_info, head->bytenr,
4158 head->num_bytes, 1);
4159 btrfs_put_delayed_ref_head(head);
acce952b 4160 cond_resched();
4161 spin_lock(&delayed_refs->lock);
4162 }
4163
4164 spin_unlock(&delayed_refs->lock);
4165
4166 return ret;
4167}
4168
143bede5 4169static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4170{
4171 struct btrfs_inode *btrfs_inode;
4172 struct list_head splice;
4173
4174 INIT_LIST_HEAD(&splice);
4175
eb73c1b7
MX
4176 spin_lock(&root->delalloc_lock);
4177 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4178
4179 while (!list_empty(&splice)) {
eb73c1b7
MX
4180 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4181 delalloc_inodes);
acce952b 4182
4183 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4184 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4185 &btrfs_inode->runtime_flags);
eb73c1b7 4186 spin_unlock(&root->delalloc_lock);
acce952b 4187
4188 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4189
eb73c1b7 4190 spin_lock(&root->delalloc_lock);
acce952b 4191 }
4192
eb73c1b7
MX
4193 spin_unlock(&root->delalloc_lock);
4194}
4195
4196static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4197{
4198 struct btrfs_root *root;
4199 struct list_head splice;
4200
4201 INIT_LIST_HEAD(&splice);
4202
4203 spin_lock(&fs_info->delalloc_root_lock);
4204 list_splice_init(&fs_info->delalloc_roots, &splice);
4205 while (!list_empty(&splice)) {
4206 root = list_first_entry(&splice, struct btrfs_root,
4207 delalloc_root);
4208 list_del_init(&root->delalloc_root);
4209 root = btrfs_grab_fs_root(root);
4210 BUG_ON(!root);
4211 spin_unlock(&fs_info->delalloc_root_lock);
4212
4213 btrfs_destroy_delalloc_inodes(root);
4214 btrfs_put_fs_root(root);
4215
4216 spin_lock(&fs_info->delalloc_root_lock);
4217 }
4218 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4219}
4220
2ff7e61e 4221static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4222 struct extent_io_tree *dirty_pages,
4223 int mark)
4224{
4225 int ret;
acce952b 4226 struct extent_buffer *eb;
4227 u64 start = 0;
4228 u64 end;
acce952b 4229
4230 while (1) {
4231 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4232 mark, NULL);
acce952b 4233 if (ret)
4234 break;
4235
91166212 4236 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4237 while (start <= end) {
0b246afa
JM
4238 eb = find_extent_buffer(fs_info, start);
4239 start += fs_info->nodesize;
fd8b2b61 4240 if (!eb)
acce952b 4241 continue;
fd8b2b61 4242 wait_on_extent_buffer_writeback(eb);
acce952b 4243
fd8b2b61
JB
4244 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4245 &eb->bflags))
4246 clear_extent_buffer_dirty(eb);
4247 free_extent_buffer_stale(eb);
acce952b 4248 }
4249 }
4250
4251 return ret;
4252}
4253
2ff7e61e 4254static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4255 struct extent_io_tree *pinned_extents)
4256{
4257 struct extent_io_tree *unpin;
4258 u64 start;
4259 u64 end;
4260 int ret;
ed0eaa14 4261 bool loop = true;
acce952b 4262
4263 unpin = pinned_extents;
ed0eaa14 4264again:
acce952b 4265 while (1) {
4266 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4267 EXTENT_DIRTY, NULL);
acce952b 4268 if (ret)
4269 break;
4270
af6f8f60 4271 clear_extent_dirty(unpin, start, end);
2ff7e61e 4272 btrfs_error_unpin_extent_range(fs_info, start, end);
acce952b 4273 cond_resched();
4274 }
4275
ed0eaa14 4276 if (loop) {
0b246afa
JM
4277 if (unpin == &fs_info->freed_extents[0])
4278 unpin = &fs_info->freed_extents[1];
ed0eaa14 4279 else
0b246afa 4280 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4281 loop = false;
4282 goto again;
4283 }
4284
acce952b 4285 return 0;
4286}
4287
c79a1751
LB
4288static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4289{
4290 struct inode *inode;
4291
4292 inode = cache->io_ctl.inode;
4293 if (inode) {
4294 invalidate_inode_pages2(inode->i_mapping);
4295 BTRFS_I(inode)->generation = 0;
4296 cache->io_ctl.inode = NULL;
4297 iput(inode);
4298 }
4299 btrfs_put_block_group(cache);
4300}
4301
4302void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4303 struct btrfs_fs_info *fs_info)
c79a1751
LB
4304{
4305 struct btrfs_block_group_cache *cache;
4306
4307 spin_lock(&cur_trans->dirty_bgs_lock);
4308 while (!list_empty(&cur_trans->dirty_bgs)) {
4309 cache = list_first_entry(&cur_trans->dirty_bgs,
4310 struct btrfs_block_group_cache,
4311 dirty_list);
4312 if (!cache) {
0b246afa 4313 btrfs_err(fs_info, "orphan block group dirty_bgs list");
c79a1751
LB
4314 spin_unlock(&cur_trans->dirty_bgs_lock);
4315 return;
4316 }
4317
4318 if (!list_empty(&cache->io_list)) {
4319 spin_unlock(&cur_trans->dirty_bgs_lock);
4320 list_del_init(&cache->io_list);
4321 btrfs_cleanup_bg_io(cache);
4322 spin_lock(&cur_trans->dirty_bgs_lock);
4323 }
4324
4325 list_del_init(&cache->dirty_list);
4326 spin_lock(&cache->lock);
4327 cache->disk_cache_state = BTRFS_DC_ERROR;
4328 spin_unlock(&cache->lock);
4329
4330 spin_unlock(&cur_trans->dirty_bgs_lock);
4331 btrfs_put_block_group(cache);
4332 spin_lock(&cur_trans->dirty_bgs_lock);
4333 }
4334 spin_unlock(&cur_trans->dirty_bgs_lock);
4335
4336 while (!list_empty(&cur_trans->io_bgs)) {
4337 cache = list_first_entry(&cur_trans->io_bgs,
4338 struct btrfs_block_group_cache,
4339 io_list);
4340 if (!cache) {
0b246afa 4341 btrfs_err(fs_info, "orphan block group on io_bgs list");
c79a1751
LB
4342 return;
4343 }
4344
4345 list_del_init(&cache->io_list);
4346 spin_lock(&cache->lock);
4347 cache->disk_cache_state = BTRFS_DC_ERROR;
4348 spin_unlock(&cache->lock);
4349 btrfs_cleanup_bg_io(cache);
4350 }
4351}
4352
49b25e05 4353void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4354 struct btrfs_fs_info *fs_info)
49b25e05 4355{
2ff7e61e 4356 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4357 ASSERT(list_empty(&cur_trans->dirty_bgs));
4358 ASSERT(list_empty(&cur_trans->io_bgs));
4359
2ff7e61e 4360 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4361
4a9d8bde 4362 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4363 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4364
4a9d8bde 4365 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4366 wake_up(&fs_info->transaction_wait);
49b25e05 4367
ccdf9b30
JM
4368 btrfs_destroy_delayed_inodes(fs_info);
4369 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4370
2ff7e61e 4371 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4372 EXTENT_DIRTY);
2ff7e61e 4373 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4374 fs_info->pinned_extents);
49b25e05 4375
4a9d8bde
MX
4376 cur_trans->state =TRANS_STATE_COMPLETED;
4377 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4378}
4379
2ff7e61e 4380static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4381{
4382 struct btrfs_transaction *t;
acce952b 4383
0b246afa 4384 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4385
0b246afa
JM
4386 spin_lock(&fs_info->trans_lock);
4387 while (!list_empty(&fs_info->trans_list)) {
4388 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4389 struct btrfs_transaction, list);
4390 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4391 refcount_inc(&t->use_count);
0b246afa 4392 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4393 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4394 btrfs_put_transaction(t);
0b246afa 4395 spin_lock(&fs_info->trans_lock);
724e2315
JB
4396 continue;
4397 }
0b246afa 4398 if (t == fs_info->running_transaction) {
724e2315 4399 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4400 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4401 /*
4402 * We wait for 0 num_writers since we don't hold a trans
4403 * handle open currently for this transaction.
4404 */
4405 wait_event(t->writer_wait,
4406 atomic_read(&t->num_writers) == 0);
4407 } else {
0b246afa 4408 spin_unlock(&fs_info->trans_lock);
724e2315 4409 }
2ff7e61e 4410 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4411
0b246afa
JM
4412 spin_lock(&fs_info->trans_lock);
4413 if (t == fs_info->running_transaction)
4414 fs_info->running_transaction = NULL;
acce952b 4415 list_del_init(&t->list);
0b246afa 4416 spin_unlock(&fs_info->trans_lock);
acce952b 4417
724e2315 4418 btrfs_put_transaction(t);
2ff7e61e 4419 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4420 spin_lock(&fs_info->trans_lock);
724e2315 4421 }
0b246afa
JM
4422 spin_unlock(&fs_info->trans_lock);
4423 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4424 btrfs_destroy_delayed_inodes(fs_info);
4425 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4426 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4427 btrfs_destroy_all_delalloc_inodes(fs_info);
4428 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4429
4430 return 0;
4431}
4432
c6100a4b
JB
4433static struct btrfs_fs_info *btree_fs_info(void *private_data)
4434{
4435 struct inode *inode = private_data;
4436 return btrfs_sb(inode->i_sb);
4437}
4438
e8c9f186 4439static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4440 /* mandatory callbacks */
0b86a832 4441 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4442 .readpage_end_io_hook = btree_readpage_end_io_hook,
239b14b3
CM
4443 /* note we're sharing with inode.c for the merge bio hook */
4444 .merge_bio_hook = btrfs_merge_bio_hook,
20a7db8a 4445 .readpage_io_failed_hook = btree_io_failed_hook,
c6100a4b
JB
4446 .set_range_writeback = btrfs_set_range_writeback,
4447 .tree_fs_info = btree_fs_info,
4d53dddb
DS
4448
4449 /* optional callbacks */
0da5468f 4450};