]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/disk-io.c
btrfs: Always pass 0 bio_offset for btree_submit_bio_start
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
eb60ceac 42
de0022b9
JB
43#ifdef CONFIG_X86
44#include <asm/cpufeature.h>
45#endif
46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
e8c9f186 54static const struct extent_io_ops btree_extent_io_ops;
8b712842 55static void end_workqueue_fn(struct btrfs_work *work);
143bede5 56static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 57static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 58 struct btrfs_fs_info *fs_info);
143bede5 59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 60static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 61 struct extent_io_tree *dirty_pages,
62 int mark);
2ff7e61e 63static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 64 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
65static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 67
d352ac68 68/*
97eb6b69
DS
69 * btrfs_end_io_wq structs are used to do processing in task context when an IO
70 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
71 * by writes to insert metadata for new file extents after IO is complete.
72 */
97eb6b69 73struct btrfs_end_io_wq {
ce9adaa5
CM
74 struct bio *bio;
75 bio_end_io_t *end_io;
76 void *private;
77 struct btrfs_fs_info *info;
4e4cbee9 78 blk_status_t status;
bfebd8b5 79 enum btrfs_wq_endio_type metadata;
8b712842 80 struct btrfs_work work;
ce9adaa5 81};
0da5468f 82
97eb6b69
DS
83static struct kmem_cache *btrfs_end_io_wq_cache;
84
85int __init btrfs_end_io_wq_init(void)
86{
87 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88 sizeof(struct btrfs_end_io_wq),
89 0,
fba4b697 90 SLAB_MEM_SPREAD,
97eb6b69
DS
91 NULL);
92 if (!btrfs_end_io_wq_cache)
93 return -ENOMEM;
94 return 0;
95}
96
e67c718b 97void __cold btrfs_end_io_wq_exit(void)
97eb6b69 98{
5598e900 99 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
100}
101
d352ac68
CM
102/*
103 * async submit bios are used to offload expensive checksumming
104 * onto the worker threads. They checksum file and metadata bios
105 * just before they are sent down the IO stack.
106 */
44b8bd7e 107struct async_submit_bio {
c6100a4b 108 void *private_data;
44b8bd7e 109 struct bio *bio;
a758781d 110 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 111 int mirror_num;
eaf25d93
CM
112 /*
113 * bio_offset is optional, can be used if the pages in the bio
114 * can't tell us where in the file the bio should go
115 */
116 u64 bio_offset;
8b712842 117 struct btrfs_work work;
4e4cbee9 118 blk_status_t status;
44b8bd7e
CM
119};
120
85d4e461
CM
121/*
122 * Lockdep class keys for extent_buffer->lock's in this root. For a given
123 * eb, the lockdep key is determined by the btrfs_root it belongs to and
124 * the level the eb occupies in the tree.
125 *
126 * Different roots are used for different purposes and may nest inside each
127 * other and they require separate keysets. As lockdep keys should be
128 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
129 * by btrfs_root->root_key.objectid. This ensures that all special purpose
130 * roots have separate keysets.
4008c04a 131 *
85d4e461
CM
132 * Lock-nesting across peer nodes is always done with the immediate parent
133 * node locked thus preventing deadlock. As lockdep doesn't know this, use
134 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 135 *
85d4e461
CM
136 * The key is set by the readpage_end_io_hook after the buffer has passed
137 * csum validation but before the pages are unlocked. It is also set by
138 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 139 *
85d4e461
CM
140 * We also add a check to make sure the highest level of the tree is the
141 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
142 * needs update as well.
4008c04a
CM
143 */
144#ifdef CONFIG_DEBUG_LOCK_ALLOC
145# if BTRFS_MAX_LEVEL != 8
146# error
147# endif
85d4e461
CM
148
149static struct btrfs_lockdep_keyset {
150 u64 id; /* root objectid */
151 const char *name_stem; /* lock name stem */
152 char names[BTRFS_MAX_LEVEL + 1][20];
153 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
154} btrfs_lockdep_keysets[] = {
155 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
156 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
157 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
158 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
159 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
160 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 161 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
162 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
163 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
164 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 165 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 166 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 167 { .id = 0, .name_stem = "tree" },
4008c04a 168};
85d4e461
CM
169
170void __init btrfs_init_lockdep(void)
171{
172 int i, j;
173
174 /* initialize lockdep class names */
175 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
176 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
177
178 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
179 snprintf(ks->names[j], sizeof(ks->names[j]),
180 "btrfs-%s-%02d", ks->name_stem, j);
181 }
182}
183
184void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
185 int level)
186{
187 struct btrfs_lockdep_keyset *ks;
188
189 BUG_ON(level >= ARRAY_SIZE(ks->keys));
190
191 /* find the matching keyset, id 0 is the default entry */
192 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
193 if (ks->id == objectid)
194 break;
195
196 lockdep_set_class_and_name(&eb->lock,
197 &ks->keys[level], ks->names[level]);
198}
199
4008c04a
CM
200#endif
201
d352ac68
CM
202/*
203 * extents on the btree inode are pretty simple, there's one extent
204 * that covers the entire device
205 */
6af49dbd 206struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 207 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 208 int create)
7eccb903 209{
3ffbd68c 210 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 211 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
212 struct extent_map *em;
213 int ret;
214
890871be 215 read_lock(&em_tree->lock);
d1310b2e 216 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 217 if (em) {
0b246afa 218 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 219 read_unlock(&em_tree->lock);
5f39d397 220 goto out;
a061fc8d 221 }
890871be 222 read_unlock(&em_tree->lock);
7b13b7b1 223
172ddd60 224 em = alloc_extent_map();
5f39d397
CM
225 if (!em) {
226 em = ERR_PTR(-ENOMEM);
227 goto out;
228 }
229 em->start = 0;
0afbaf8c 230 em->len = (u64)-1;
c8b97818 231 em->block_len = (u64)-1;
5f39d397 232 em->block_start = 0;
0b246afa 233 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 234
890871be 235 write_lock(&em_tree->lock);
09a2a8f9 236 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
237 if (ret == -EEXIST) {
238 free_extent_map(em);
7b13b7b1 239 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 240 if (!em)
0433f20d 241 em = ERR_PTR(-EIO);
5f39d397 242 } else if (ret) {
7b13b7b1 243 free_extent_map(em);
0433f20d 244 em = ERR_PTR(ret);
5f39d397 245 }
890871be 246 write_unlock(&em_tree->lock);
7b13b7b1 247
5f39d397
CM
248out:
249 return em;
7eccb903
CM
250}
251
9ed57367 252u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 253{
9678c543 254 return crc32c(seed, data, len);
19c00ddc
CM
255}
256
0b5e3daf 257void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 258{
7e75bf3f 259 put_unaligned_le32(~crc, result);
19c00ddc
CM
260}
261
d352ac68 262/*
2996e1f8
JT
263 * Compute the csum of a btree block and store the result to provided buffer.
264 *
265 * Returns error if the extent buffer cannot be mapped.
d352ac68 266 */
2996e1f8 267static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 268{
19c00ddc
CM
269 unsigned long len;
270 unsigned long cur_len;
271 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
272 char *kaddr;
273 unsigned long map_start;
274 unsigned long map_len;
275 int err;
276 u32 crc = ~(u32)0;
277
278 len = buf->len - offset;
d397712b 279 while (len > 0) {
d2e174d5
JT
280 /*
281 * Note: we don't need to check for the err == 1 case here, as
282 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
283 * and 'min_len = 32' and the currently implemented mapping
284 * algorithm we cannot cross a page boundary.
285 */
19c00ddc 286 err = map_private_extent_buffer(buf, offset, 32,
a6591715 287 &kaddr, &map_start, &map_len);
c53839fc 288 if (WARN_ON(err))
8bd98f0e 289 return err;
19c00ddc 290 cur_len = min(len, map_len - (offset - map_start));
b0496686 291 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
292 crc, cur_len);
293 len -= cur_len;
294 offset += cur_len;
19c00ddc 295 }
71a63551 296 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 297
19c00ddc
CM
298 btrfs_csum_final(crc, result);
299
19c00ddc
CM
300 return 0;
301}
302
d352ac68
CM
303/*
304 * we can't consider a given block up to date unless the transid of the
305 * block matches the transid in the parent node's pointer. This is how we
306 * detect blocks that either didn't get written at all or got written
307 * in the wrong place.
308 */
1259ab75 309static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
310 struct extent_buffer *eb, u64 parent_transid,
311 int atomic)
1259ab75 312{
2ac55d41 313 struct extent_state *cached_state = NULL;
1259ab75 314 int ret;
2755a0de 315 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
316
317 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
318 return 0;
319
b9fab919
CM
320 if (atomic)
321 return -EAGAIN;
322
a26e8c9f
JB
323 if (need_lock) {
324 btrfs_tree_read_lock(eb);
300aa896 325 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
326 }
327
2ac55d41 328 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 329 &cached_state);
0b32f4bb 330 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
331 btrfs_header_generation(eb) == parent_transid) {
332 ret = 0;
333 goto out;
334 }
94647322
DS
335 btrfs_err_rl(eb->fs_info,
336 "parent transid verify failed on %llu wanted %llu found %llu",
337 eb->start,
29549aec 338 parent_transid, btrfs_header_generation(eb));
1259ab75 339 ret = 1;
a26e8c9f
JB
340
341 /*
342 * Things reading via commit roots that don't have normal protection,
343 * like send, can have a really old block in cache that may point at a
01327610 344 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
345 * if we find an eb that is under IO (dirty/writeback) because we could
346 * end up reading in the stale data and then writing it back out and
347 * making everybody very sad.
348 */
349 if (!extent_buffer_under_io(eb))
350 clear_extent_buffer_uptodate(eb);
33958dc6 351out:
2ac55d41 352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 353 &cached_state);
472b909f
JB
354 if (need_lock)
355 btrfs_tree_read_unlock_blocking(eb);
1259ab75 356 return ret;
1259ab75
CM
357}
358
1104a885
DS
359/*
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
362 */
ab8d0fc4
JM
363static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
364 char *raw_disk_sb)
1104a885
DS
365{
366 struct btrfs_super_block *disk_sb =
367 (struct btrfs_super_block *)raw_disk_sb;
368 u16 csum_type = btrfs_super_csum_type(disk_sb);
369 int ret = 0;
370
371 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
372 u32 crc = ~(u32)0;
776c4a7c 373 char result[sizeof(crc)];
1104a885
DS
374
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 378 * is filled with zeros and is included in the checksum.
1104a885
DS
379 */
380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 btrfs_csum_final(crc, result);
383
776c4a7c 384 if (memcmp(raw_disk_sb, result, sizeof(result)))
1104a885
DS
385 ret = 1;
386 }
387
388 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 389 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
390 csum_type);
391 ret = 1;
392 }
393
394 return ret;
395}
396
e064d5e9 397int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 398 struct btrfs_key *first_key, u64 parent_transid)
581c1760 399{
e064d5e9 400 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
401 int found_level;
402 struct btrfs_key found_key;
403 int ret;
404
405 found_level = btrfs_header_level(eb);
406 if (found_level != level) {
63489055
QW
407 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
408 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
409 btrfs_err(fs_info,
410"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
411 eb->start, level, found_level);
581c1760
QW
412 return -EIO;
413 }
414
415 if (!first_key)
416 return 0;
417
5d41be6f
QW
418 /*
419 * For live tree block (new tree blocks in current transaction),
420 * we need proper lock context to avoid race, which is impossible here.
421 * So we only checks tree blocks which is read from disk, whose
422 * generation <= fs_info->last_trans_committed.
423 */
424 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
425 return 0;
581c1760
QW
426 if (found_level)
427 btrfs_node_key_to_cpu(eb, &found_key, 0);
428 else
429 btrfs_item_key_to_cpu(eb, &found_key, 0);
430 ret = btrfs_comp_cpu_keys(first_key, &found_key);
431
581c1760 432 if (ret) {
63489055
QW
433 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
434 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 435 btrfs_err(fs_info,
ff76a864
LB
436"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
437 eb->start, parent_transid, first_key->objectid,
438 first_key->type, first_key->offset,
439 found_key.objectid, found_key.type,
440 found_key.offset);
581c1760 441 }
581c1760
QW
442 return ret;
443}
444
d352ac68
CM
445/*
446 * helper to read a given tree block, doing retries as required when
447 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
448 *
449 * @parent_transid: expected transid, skip check if 0
450 * @level: expected level, mandatory check
451 * @first_key: expected key of first slot, skip check if NULL
d352ac68 452 */
5ab12d1f 453static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
454 u64 parent_transid, int level,
455 struct btrfs_key *first_key)
f188591e 456{
5ab12d1f 457 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 458 struct extent_io_tree *io_tree;
ea466794 459 int failed = 0;
f188591e
CM
460 int ret;
461 int num_copies = 0;
462 int mirror_num = 0;
ea466794 463 int failed_mirror = 0;
f188591e 464
0b246afa 465 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 466 while (1) {
f8397d69 467 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 468 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 469 if (!ret) {
581c1760 470 if (verify_parent_transid(io_tree, eb,
b9fab919 471 parent_transid, 0))
256dd1bb 472 ret = -EIO;
e064d5e9 473 else if (btrfs_verify_level_key(eb, level,
448de471 474 first_key, parent_transid))
581c1760
QW
475 ret = -EUCLEAN;
476 else
477 break;
256dd1bb 478 }
d397712b 479
0b246afa 480 num_copies = btrfs_num_copies(fs_info,
f188591e 481 eb->start, eb->len);
4235298e 482 if (num_copies == 1)
ea466794 483 break;
4235298e 484
5cf1ab56
JB
485 if (!failed_mirror) {
486 failed = 1;
487 failed_mirror = eb->read_mirror;
488 }
489
f188591e 490 mirror_num++;
ea466794
JB
491 if (mirror_num == failed_mirror)
492 mirror_num++;
493
4235298e 494 if (mirror_num > num_copies)
ea466794 495 break;
f188591e 496 }
ea466794 497
c0901581 498 if (failed && !ret && failed_mirror)
20a1fbf9 499 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
500
501 return ret;
f188591e 502}
19c00ddc 503
d352ac68 504/*
d397712b
CM
505 * checksum a dirty tree block before IO. This has extra checks to make sure
506 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 507 */
d397712b 508
01d58472 509static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 510{
4eee4fa4 511 u64 start = page_offset(page);
19c00ddc 512 u64 found_start;
2996e1f8
JT
513 u8 result[BTRFS_CSUM_SIZE];
514 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 515 struct extent_buffer *eb;
8d47a0d8 516 int ret;
f188591e 517
4f2de97a
JB
518 eb = (struct extent_buffer *)page->private;
519 if (page != eb->pages[0])
520 return 0;
0f805531 521
19c00ddc 522 found_start = btrfs_header_bytenr(eb);
0f805531
AL
523 /*
524 * Please do not consolidate these warnings into a single if.
525 * It is useful to know what went wrong.
526 */
527 if (WARN_ON(found_start != start))
528 return -EUCLEAN;
529 if (WARN_ON(!PageUptodate(page)))
530 return -EUCLEAN;
531
de37aa51 532 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
533 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
534
2996e1f8
JT
535 if (csum_tree_block(eb, result))
536 return -EINVAL;
537
8d47a0d8
QW
538 if (btrfs_header_level(eb))
539 ret = btrfs_check_node(eb);
540 else
541 ret = btrfs_check_leaf_full(eb);
542
543 if (ret < 0) {
544 btrfs_err(fs_info,
545 "block=%llu write time tree block corruption detected",
546 eb->start);
547 return ret;
548 }
2996e1f8 549 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 550
2996e1f8 551 return 0;
19c00ddc
CM
552}
553
b0c9b3b0 554static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 555{
b0c9b3b0 556 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 557 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 558 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
559 int ret = 1;
560
0a4e5586 561 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 562 while (fs_devices) {
7239ff4b
NB
563 u8 *metadata_uuid;
564
565 /*
566 * Checking the incompat flag is only valid for the current
567 * fs. For seed devices it's forbidden to have their uuid
568 * changed so reading ->fsid in this case is fine
569 */
570 if (fs_devices == fs_info->fs_devices &&
571 btrfs_fs_incompat(fs_info, METADATA_UUID))
572 metadata_uuid = fs_devices->metadata_uuid;
573 else
574 metadata_uuid = fs_devices->fsid;
575
576 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
577 ret = 0;
578 break;
579 }
580 fs_devices = fs_devices->seed;
581 }
582 return ret;
583}
584
facc8a22
MX
585static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
586 u64 phy_offset, struct page *page,
587 u64 start, u64 end, int mirror)
ce9adaa5 588{
ce9adaa5
CM
589 u64 found_start;
590 int found_level;
ce9adaa5
CM
591 struct extent_buffer *eb;
592 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 593 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 594 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 595 int ret = 0;
2996e1f8 596 u8 result[BTRFS_CSUM_SIZE];
727011e0 597 int reads_done;
ce9adaa5 598
ce9adaa5
CM
599 if (!page->private)
600 goto out;
d397712b 601
4f2de97a 602 eb = (struct extent_buffer *)page->private;
d397712b 603
0b32f4bb
JB
604 /* the pending IO might have been the only thing that kept this buffer
605 * in memory. Make sure we have a ref for all this other checks
606 */
607 extent_buffer_get(eb);
608
609 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
610 if (!reads_done)
611 goto err;
f188591e 612
5cf1ab56 613 eb->read_mirror = mirror;
656f30db 614 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
615 ret = -EIO;
616 goto err;
617 }
618
ce9adaa5 619 found_start = btrfs_header_bytenr(eb);
727011e0 620 if (found_start != eb->start) {
893bf4b1
SY
621 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
622 eb->start, found_start);
f188591e 623 ret = -EIO;
ce9adaa5
CM
624 goto err;
625 }
b0c9b3b0 626 if (check_tree_block_fsid(eb)) {
02873e43
ZL
627 btrfs_err_rl(fs_info, "bad fsid on block %llu",
628 eb->start);
1259ab75
CM
629 ret = -EIO;
630 goto err;
631 }
ce9adaa5 632 found_level = btrfs_header_level(eb);
1c24c3ce 633 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
634 btrfs_err(fs_info, "bad tree block level %d on %llu",
635 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
636 ret = -EIO;
637 goto err;
638 }
ce9adaa5 639
85d4e461
CM
640 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
641 eb, found_level);
4008c04a 642
2996e1f8 643 ret = csum_tree_block(eb, result);
8bd98f0e 644 if (ret)
a826d6dc 645 goto err;
a826d6dc 646
2996e1f8
JT
647 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
648 u32 val;
649 u32 found = 0;
650
651 memcpy(&found, result, csum_size);
652
653 read_extent_buffer(eb, &val, 0, csum_size);
654 btrfs_warn_rl(fs_info,
655 "%s checksum verify failed on %llu wanted %x found %x level %d",
656 fs_info->sb->s_id, eb->start,
657 val, found, btrfs_header_level(eb));
658 ret = -EUCLEAN;
659 goto err;
660 }
661
a826d6dc
JB
662 /*
663 * If this is a leaf block and it is corrupt, set the corrupt bit so
664 * that we don't try and read the other copies of this block, just
665 * return -EIO.
666 */
1c4360ee 667 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
668 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
669 ret = -EIO;
670 }
ce9adaa5 671
813fd1dc 672 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
673 ret = -EIO;
674
0b32f4bb
JB
675 if (!ret)
676 set_extent_buffer_uptodate(eb);
75391f0d
QW
677 else
678 btrfs_err(fs_info,
679 "block=%llu read time tree block corruption detected",
680 eb->start);
ce9adaa5 681err:
79fb65a1
JB
682 if (reads_done &&
683 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 684 btree_readahead_hook(eb, ret);
4bb31e92 685
53b381b3
DW
686 if (ret) {
687 /*
688 * our io error hook is going to dec the io pages
689 * again, we have to make sure it has something
690 * to decrement
691 */
692 atomic_inc(&eb->io_pages);
0b32f4bb 693 clear_extent_buffer_uptodate(eb);
53b381b3 694 }
0b32f4bb 695 free_extent_buffer(eb);
ce9adaa5 696out:
f188591e 697 return ret;
ce9adaa5
CM
698}
699
4246a0b6 700static void end_workqueue_bio(struct bio *bio)
ce9adaa5 701{
97eb6b69 702 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 703 struct btrfs_fs_info *fs_info;
9e0af237
LB
704 struct btrfs_workqueue *wq;
705 btrfs_work_func_t func;
ce9adaa5 706
ce9adaa5 707 fs_info = end_io_wq->info;
4e4cbee9 708 end_io_wq->status = bio->bi_status;
d20f7043 709
37226b21 710 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
711 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
712 wq = fs_info->endio_meta_write_workers;
713 func = btrfs_endio_meta_write_helper;
714 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
715 wq = fs_info->endio_freespace_worker;
716 func = btrfs_freespace_write_helper;
717 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
718 wq = fs_info->endio_raid56_workers;
719 func = btrfs_endio_raid56_helper;
720 } else {
721 wq = fs_info->endio_write_workers;
722 func = btrfs_endio_write_helper;
723 }
d20f7043 724 } else {
8b110e39
MX
725 if (unlikely(end_io_wq->metadata ==
726 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
727 wq = fs_info->endio_repair_workers;
728 func = btrfs_endio_repair_helper;
729 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
730 wq = fs_info->endio_raid56_workers;
731 func = btrfs_endio_raid56_helper;
732 } else if (end_io_wq->metadata) {
733 wq = fs_info->endio_meta_workers;
734 func = btrfs_endio_meta_helper;
735 } else {
736 wq = fs_info->endio_workers;
737 func = btrfs_endio_helper;
738 }
d20f7043 739 }
9e0af237
LB
740
741 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
742 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
743}
744
4e4cbee9 745blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 746 enum btrfs_wq_endio_type metadata)
0b86a832 747{
97eb6b69 748 struct btrfs_end_io_wq *end_io_wq;
8b110e39 749
97eb6b69 750 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 751 if (!end_io_wq)
4e4cbee9 752 return BLK_STS_RESOURCE;
ce9adaa5
CM
753
754 end_io_wq->private = bio->bi_private;
755 end_io_wq->end_io = bio->bi_end_io;
22c59948 756 end_io_wq->info = info;
4e4cbee9 757 end_io_wq->status = 0;
ce9adaa5 758 end_io_wq->bio = bio;
22c59948 759 end_io_wq->metadata = metadata;
ce9adaa5
CM
760
761 bio->bi_private = end_io_wq;
762 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
763 return 0;
764}
765
4a69a410
CM
766static void run_one_async_start(struct btrfs_work *work)
767{
4a69a410 768 struct async_submit_bio *async;
4e4cbee9 769 blk_status_t ret;
4a69a410
CM
770
771 async = container_of(work, struct async_submit_bio, work);
c6100a4b 772 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
773 async->bio_offset);
774 if (ret)
4e4cbee9 775 async->status = ret;
4a69a410
CM
776}
777
06ea01b1
DS
778/*
779 * In order to insert checksums into the metadata in large chunks, we wait
780 * until bio submission time. All the pages in the bio are checksummed and
781 * sums are attached onto the ordered extent record.
782 *
783 * At IO completion time the csums attached on the ordered extent record are
784 * inserted into the tree.
785 */
4a69a410 786static void run_one_async_done(struct btrfs_work *work)
8b712842 787{
8b712842 788 struct async_submit_bio *async;
06ea01b1
DS
789 struct inode *inode;
790 blk_status_t ret;
8b712842
CM
791
792 async = container_of(work, struct async_submit_bio, work);
06ea01b1 793 inode = async->private_data;
4854ddd0 794
bb7ab3b9 795 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
796 if (async->status) {
797 async->bio->bi_status = async->status;
4246a0b6 798 bio_endio(async->bio);
79787eaa
JM
799 return;
800 }
801
06ea01b1
DS
802 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
803 async->mirror_num, 1);
804 if (ret) {
805 async->bio->bi_status = ret;
806 bio_endio(async->bio);
807 }
4a69a410
CM
808}
809
810static void run_one_async_free(struct btrfs_work *work)
811{
812 struct async_submit_bio *async;
813
814 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
815 kfree(async);
816}
817
8c27cb35
LT
818blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
819 int mirror_num, unsigned long bio_flags,
820 u64 bio_offset, void *private_data,
e288c080 821 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
822{
823 struct async_submit_bio *async;
824
825 async = kmalloc(sizeof(*async), GFP_NOFS);
826 if (!async)
4e4cbee9 827 return BLK_STS_RESOURCE;
44b8bd7e 828
c6100a4b 829 async->private_data = private_data;
44b8bd7e
CM
830 async->bio = bio;
831 async->mirror_num = mirror_num;
4a69a410 832 async->submit_bio_start = submit_bio_start;
4a69a410 833
9e0af237 834 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 835 run_one_async_done, run_one_async_free);
4a69a410 836
eaf25d93 837 async->bio_offset = bio_offset;
8c8bee1d 838
4e4cbee9 839 async->status = 0;
79787eaa 840
67f055c7 841 if (op_is_sync(bio->bi_opf))
5cdc7ad3 842 btrfs_set_work_high_priority(&async->work);
d313d7a3 843
5cdc7ad3 844 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
845 return 0;
846}
847
4e4cbee9 848static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 849{
2c30c71b 850 struct bio_vec *bvec;
ce3ed71a 851 struct btrfs_root *root;
2c30c71b 852 int i, ret = 0;
6dc4f100 853 struct bvec_iter_all iter_all;
ce3ed71a 854
c09abff8 855 ASSERT(!bio_flagged(bio, BIO_CLONED));
6dc4f100 856 bio_for_each_segment_all(bvec, bio, i, iter_all) {
ce3ed71a 857 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 858 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
859 if (ret)
860 break;
ce3ed71a 861 }
2c30c71b 862
4e4cbee9 863 return errno_to_blk_status(ret);
ce3ed71a
CM
864}
865
d0ee3934 866static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 867 u64 bio_offset)
22c59948 868{
8b712842
CM
869 /*
870 * when we're called for a write, we're already in the async
5443be45 871 * submission context. Just jump into btrfs_map_bio
8b712842 872 */
79787eaa 873 return btree_csum_one_bio(bio);
4a69a410 874}
22c59948 875
18fdc679 876static int check_async_write(struct btrfs_inode *bi)
de0022b9 877{
6300463b
LB
878 if (atomic_read(&bi->sync_writers))
879 return 0;
de0022b9 880#ifdef CONFIG_X86
bc696ca0 881 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
882 return 0;
883#endif
884 return 1;
885}
886
a56b1c7b 887static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
8c27cb35
LT
888 int mirror_num, unsigned long bio_flags,
889 u64 bio_offset)
44b8bd7e 890{
0b246afa 891 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 892 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 893 blk_status_t ret;
cad321ad 894
37226b21 895 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
896 /*
897 * called for a read, do the setup so that checksum validation
898 * can happen in the async kernel threads
899 */
0b246afa
JM
900 ret = btrfs_bio_wq_end_io(fs_info, bio,
901 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 902 if (ret)
61891923 903 goto out_w_error;
2ff7e61e 904 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
905 } else if (!async) {
906 ret = btree_csum_one_bio(bio);
907 if (ret)
61891923 908 goto out_w_error;
2ff7e61e 909 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
910 } else {
911 /*
912 * kthread helpers are used to submit writes so that
913 * checksumming can happen in parallel across all CPUs
914 */
c6100a4b 915 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 916 0, inode, btree_submit_bio_start);
44b8bd7e 917 }
d313d7a3 918
4246a0b6
CH
919 if (ret)
920 goto out_w_error;
921 return 0;
922
61891923 923out_w_error:
4e4cbee9 924 bio->bi_status = ret;
4246a0b6 925 bio_endio(bio);
61891923 926 return ret;
44b8bd7e
CM
927}
928
3dd1462e 929#ifdef CONFIG_MIGRATION
784b4e29 930static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
931 struct page *newpage, struct page *page,
932 enum migrate_mode mode)
784b4e29
CM
933{
934 /*
935 * we can't safely write a btree page from here,
936 * we haven't done the locking hook
937 */
938 if (PageDirty(page))
939 return -EAGAIN;
940 /*
941 * Buffers may be managed in a filesystem specific way.
942 * We must have no buffers or drop them.
943 */
944 if (page_has_private(page) &&
945 !try_to_release_page(page, GFP_KERNEL))
946 return -EAGAIN;
a6bc32b8 947 return migrate_page(mapping, newpage, page, mode);
784b4e29 948}
3dd1462e 949#endif
784b4e29 950
0da5468f
CM
951
952static int btree_writepages(struct address_space *mapping,
953 struct writeback_control *wbc)
954{
e2d84521
MX
955 struct btrfs_fs_info *fs_info;
956 int ret;
957
d8d5f3e1 958 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
959
960 if (wbc->for_kupdate)
961 return 0;
962
e2d84521 963 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 964 /* this is a bit racy, but that's ok */
d814a491
EL
965 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
966 BTRFS_DIRTY_METADATA_THRESH,
967 fs_info->dirty_metadata_batch);
e2d84521 968 if (ret < 0)
793955bc 969 return 0;
793955bc 970 }
0b32f4bb 971 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
972}
973
b2950863 974static int btree_readpage(struct file *file, struct page *page)
5f39d397 975{
d1310b2e
CM
976 struct extent_io_tree *tree;
977 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 978 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 979}
22b0ebda 980
70dec807 981static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 982{
98509cfc 983 if (PageWriteback(page) || PageDirty(page))
d397712b 984 return 0;
0c4e538b 985
f7a52a40 986 return try_release_extent_buffer(page);
d98237b3
CM
987}
988
d47992f8
LC
989static void btree_invalidatepage(struct page *page, unsigned int offset,
990 unsigned int length)
d98237b3 991{
d1310b2e
CM
992 struct extent_io_tree *tree;
993 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
994 extent_invalidatepage(tree, page, offset);
995 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 996 if (PagePrivate(page)) {
efe120a0
FH
997 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
998 "page private not zero on page %llu",
999 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1000 ClearPagePrivate(page);
1001 set_page_private(page, 0);
09cbfeaf 1002 put_page(page);
9ad6b7bc 1003 }
d98237b3
CM
1004}
1005
0b32f4bb
JB
1006static int btree_set_page_dirty(struct page *page)
1007{
bb146eb2 1008#ifdef DEBUG
0b32f4bb
JB
1009 struct extent_buffer *eb;
1010
1011 BUG_ON(!PagePrivate(page));
1012 eb = (struct extent_buffer *)page->private;
1013 BUG_ON(!eb);
1014 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1015 BUG_ON(!atomic_read(&eb->refs));
1016 btrfs_assert_tree_locked(eb);
bb146eb2 1017#endif
0b32f4bb
JB
1018 return __set_page_dirty_nobuffers(page);
1019}
1020
7f09410b 1021static const struct address_space_operations btree_aops = {
d98237b3 1022 .readpage = btree_readpage,
0da5468f 1023 .writepages = btree_writepages,
5f39d397
CM
1024 .releasepage = btree_releasepage,
1025 .invalidatepage = btree_invalidatepage,
5a92bc88 1026#ifdef CONFIG_MIGRATION
784b4e29 1027 .migratepage = btree_migratepage,
5a92bc88 1028#endif
0b32f4bb 1029 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1030};
1031
2ff7e61e 1032void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1033{
5f39d397 1034 struct extent_buffer *buf = NULL;
537f38f0 1035 int ret;
090d1875 1036
2ff7e61e 1037 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1038 if (IS_ERR(buf))
6197d86e 1039 return;
537f38f0 1040
c2ccfbc6 1041 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1042 if (ret < 0)
1043 free_extent_buffer_stale(buf);
1044 else
1045 free_extent_buffer(buf);
090d1875
CM
1046}
1047
2ff7e61e 1048int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1049 int mirror_num, struct extent_buffer **eb)
1050{
1051 struct extent_buffer *buf = NULL;
ab0fff03
AJ
1052 int ret;
1053
2ff7e61e 1054 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1055 if (IS_ERR(buf))
ab0fff03
AJ
1056 return 0;
1057
1058 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1059
c2ccfbc6 1060 ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
ab0fff03 1061 if (ret) {
537f38f0 1062 free_extent_buffer_stale(buf);
ab0fff03
AJ
1063 return ret;
1064 }
1065
1066 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
537f38f0 1067 free_extent_buffer_stale(buf);
ab0fff03 1068 return -EIO;
0b32f4bb 1069 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1070 *eb = buf;
1071 } else {
1072 free_extent_buffer(buf);
1073 }
1074 return 0;
1075}
1076
2ff7e61e
JM
1077struct extent_buffer *btrfs_find_create_tree_block(
1078 struct btrfs_fs_info *fs_info,
1079 u64 bytenr)
0999df54 1080{
0b246afa
JM
1081 if (btrfs_is_testing(fs_info))
1082 return alloc_test_extent_buffer(fs_info, bytenr);
1083 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1084}
1085
581c1760
QW
1086/*
1087 * Read tree block at logical address @bytenr and do variant basic but critical
1088 * verification.
1089 *
1090 * @parent_transid: expected transid of this tree block, skip check if 0
1091 * @level: expected level, mandatory check
1092 * @first_key: expected key in slot 0, skip check if NULL
1093 */
2ff7e61e 1094struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1095 u64 parent_transid, int level,
1096 struct btrfs_key *first_key)
0999df54
CM
1097{
1098 struct extent_buffer *buf = NULL;
0999df54
CM
1099 int ret;
1100
2ff7e61e 1101 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1102 if (IS_ERR(buf))
1103 return buf;
0999df54 1104
5ab12d1f 1105 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1106 level, first_key);
0f0fe8f7 1107 if (ret) {
537f38f0 1108 free_extent_buffer_stale(buf);
64c043de 1109 return ERR_PTR(ret);
0f0fe8f7 1110 }
5f39d397 1111 return buf;
ce9adaa5 1112
eb60ceac
CM
1113}
1114
6a884d7d 1115void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1116{
6a884d7d 1117 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1118 if (btrfs_header_generation(buf) ==
e2d84521 1119 fs_info->running_transaction->transid) {
b9447ef8 1120 btrfs_assert_tree_locked(buf);
b4ce94de 1121
b9473439 1122 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1123 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1124 -buf->len,
1125 fs_info->dirty_metadata_batch);
ed7b63eb 1126 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1127 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1128 clear_extent_buffer_dirty(buf);
1129 }
925baedd 1130 }
5f39d397
CM
1131}
1132
8257b2dc
MX
1133static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1134{
1135 struct btrfs_subvolume_writers *writers;
1136 int ret;
1137
1138 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1139 if (!writers)
1140 return ERR_PTR(-ENOMEM);
1141
8a5a916d 1142 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1143 if (ret < 0) {
1144 kfree(writers);
1145 return ERR_PTR(ret);
1146 }
1147
1148 init_waitqueue_head(&writers->wait);
1149 return writers;
1150}
1151
1152static void
1153btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1154{
1155 percpu_counter_destroy(&writers->counter);
1156 kfree(writers);
1157}
1158
da17066c 1159static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1160 u64 objectid)
d97e63b6 1161{
7c0260ee 1162 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1163 root->node = NULL;
a28ec197 1164 root->commit_root = NULL;
27cdeb70 1165 root->state = 0;
d68fc57b 1166 root->orphan_cleanup_state = 0;
0b86a832 1167
0f7d52f4 1168 root->last_trans = 0;
13a8a7c8 1169 root->highest_objectid = 0;
eb73c1b7 1170 root->nr_delalloc_inodes = 0;
199c2a9c 1171 root->nr_ordered_extents = 0;
6bef4d31 1172 root->inode_tree = RB_ROOT;
16cdcec7 1173 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1174 root->block_rsv = NULL;
0b86a832
CM
1175
1176 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1177 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1178 INIT_LIST_HEAD(&root->delalloc_inodes);
1179 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1180 INIT_LIST_HEAD(&root->ordered_extents);
1181 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1182 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1183 INIT_LIST_HEAD(&root->logged_list[0]);
1184 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1185 spin_lock_init(&root->inode_lock);
eb73c1b7 1186 spin_lock_init(&root->delalloc_lock);
199c2a9c 1187 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1188 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1189 spin_lock_init(&root->log_extents_lock[0]);
1190 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1191 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1192 mutex_init(&root->objectid_mutex);
e02119d5 1193 mutex_init(&root->log_mutex);
31f3d255 1194 mutex_init(&root->ordered_extent_mutex);
573bfb72 1195 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1196 init_waitqueue_head(&root->log_writer_wait);
1197 init_waitqueue_head(&root->log_commit_wait[0]);
1198 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1199 INIT_LIST_HEAD(&root->log_ctxs[0]);
1200 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1201 atomic_set(&root->log_commit[0], 0);
1202 atomic_set(&root->log_commit[1], 0);
1203 atomic_set(&root->log_writers, 0);
2ecb7923 1204 atomic_set(&root->log_batch, 0);
0700cea7 1205 refcount_set(&root->refs, 1);
ea14b57f 1206 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1207 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1208 atomic_set(&root->nr_swapfiles, 0);
7237f183 1209 root->log_transid = 0;
d1433deb 1210 root->log_transid_committed = -1;
257c62e1 1211 root->last_log_commit = 0;
7c0260ee 1212 if (!dummy)
43eb5f29
QW
1213 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1214 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1215
3768f368
CM
1216 memset(&root->root_key, 0, sizeof(root->root_key));
1217 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1218 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1219 if (!dummy)
06ea65a3
JB
1220 root->defrag_trans_start = fs_info->generation;
1221 else
1222 root->defrag_trans_start = 0;
4d775673 1223 root->root_key.objectid = objectid;
0ee5dc67 1224 root->anon_dev = 0;
8ea05e3a 1225
5f3ab90a 1226 spin_lock_init(&root->root_item_lock);
370a11b8 1227 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1228}
1229
74e4d827
DS
1230static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1231 gfp_t flags)
6f07e42e 1232{
74e4d827 1233 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1234 if (root)
1235 root->fs_info = fs_info;
1236 return root;
1237}
1238
06ea65a3
JB
1239#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1240/* Should only be used by the testing infrastructure */
da17066c 1241struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1242{
1243 struct btrfs_root *root;
1244
7c0260ee
JM
1245 if (!fs_info)
1246 return ERR_PTR(-EINVAL);
1247
1248 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1249 if (!root)
1250 return ERR_PTR(-ENOMEM);
da17066c 1251
b9ef22de 1252 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1253 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1254 root->alloc_bytenr = 0;
06ea65a3
JB
1255
1256 return root;
1257}
1258#endif
1259
20897f5c 1260struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1261 u64 objectid)
1262{
9b7a2440 1263 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1264 struct extent_buffer *leaf;
1265 struct btrfs_root *tree_root = fs_info->tree_root;
1266 struct btrfs_root *root;
1267 struct btrfs_key key;
b89f6d1f 1268 unsigned int nofs_flag;
20897f5c 1269 int ret = 0;
33d85fda 1270 uuid_le uuid = NULL_UUID_LE;
20897f5c 1271
b89f6d1f
FM
1272 /*
1273 * We're holding a transaction handle, so use a NOFS memory allocation
1274 * context to avoid deadlock if reclaim happens.
1275 */
1276 nofs_flag = memalloc_nofs_save();
74e4d827 1277 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1278 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1279 if (!root)
1280 return ERR_PTR(-ENOMEM);
1281
da17066c 1282 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1283 root->root_key.objectid = objectid;
1284 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1285 root->root_key.offset = 0;
1286
4d75f8a9 1287 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1288 if (IS_ERR(leaf)) {
1289 ret = PTR_ERR(leaf);
1dd05682 1290 leaf = NULL;
20897f5c
AJ
1291 goto fail;
1292 }
1293
20897f5c 1294 root->node = leaf;
20897f5c
AJ
1295 btrfs_mark_buffer_dirty(leaf);
1296
1297 root->commit_root = btrfs_root_node(root);
27cdeb70 1298 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1299
1300 root->root_item.flags = 0;
1301 root->root_item.byte_limit = 0;
1302 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1303 btrfs_set_root_generation(&root->root_item, trans->transid);
1304 btrfs_set_root_level(&root->root_item, 0);
1305 btrfs_set_root_refs(&root->root_item, 1);
1306 btrfs_set_root_used(&root->root_item, leaf->len);
1307 btrfs_set_root_last_snapshot(&root->root_item, 0);
1308 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1309 if (is_fstree(objectid))
1310 uuid_le_gen(&uuid);
6463fe58 1311 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1312 root->root_item.drop_level = 0;
1313
1314 key.objectid = objectid;
1315 key.type = BTRFS_ROOT_ITEM_KEY;
1316 key.offset = 0;
1317 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1318 if (ret)
1319 goto fail;
1320
1321 btrfs_tree_unlock(leaf);
1322
1dd05682
TI
1323 return root;
1324
20897f5c 1325fail:
1dd05682
TI
1326 if (leaf) {
1327 btrfs_tree_unlock(leaf);
59885b39 1328 free_extent_buffer(root->commit_root);
1dd05682
TI
1329 free_extent_buffer(leaf);
1330 }
1331 kfree(root);
20897f5c 1332
1dd05682 1333 return ERR_PTR(ret);
20897f5c
AJ
1334}
1335
7237f183
YZ
1336static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1337 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1338{
1339 struct btrfs_root *root;
7237f183 1340 struct extent_buffer *leaf;
e02119d5 1341
74e4d827 1342 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1343 if (!root)
7237f183 1344 return ERR_PTR(-ENOMEM);
e02119d5 1345
da17066c 1346 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1347
1348 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1349 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1350 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1351
7237f183 1352 /*
27cdeb70
MX
1353 * DON'T set REF_COWS for log trees
1354 *
7237f183
YZ
1355 * log trees do not get reference counted because they go away
1356 * before a real commit is actually done. They do store pointers
1357 * to file data extents, and those reference counts still get
1358 * updated (along with back refs to the log tree).
1359 */
e02119d5 1360
4d75f8a9
DS
1361 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1362 NULL, 0, 0, 0);
7237f183
YZ
1363 if (IS_ERR(leaf)) {
1364 kfree(root);
1365 return ERR_CAST(leaf);
1366 }
e02119d5 1367
7237f183 1368 root->node = leaf;
e02119d5 1369
e02119d5
CM
1370 btrfs_mark_buffer_dirty(root->node);
1371 btrfs_tree_unlock(root->node);
7237f183
YZ
1372 return root;
1373}
1374
1375int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1376 struct btrfs_fs_info *fs_info)
1377{
1378 struct btrfs_root *log_root;
1379
1380 log_root = alloc_log_tree(trans, fs_info);
1381 if (IS_ERR(log_root))
1382 return PTR_ERR(log_root);
1383 WARN_ON(fs_info->log_root_tree);
1384 fs_info->log_root_tree = log_root;
1385 return 0;
1386}
1387
1388int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1389 struct btrfs_root *root)
1390{
0b246afa 1391 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1392 struct btrfs_root *log_root;
1393 struct btrfs_inode_item *inode_item;
1394
0b246afa 1395 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1396 if (IS_ERR(log_root))
1397 return PTR_ERR(log_root);
1398
1399 log_root->last_trans = trans->transid;
1400 log_root->root_key.offset = root->root_key.objectid;
1401
1402 inode_item = &log_root->root_item.inode;
3cae210f
QW
1403 btrfs_set_stack_inode_generation(inode_item, 1);
1404 btrfs_set_stack_inode_size(inode_item, 3);
1405 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1406 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1407 fs_info->nodesize);
3cae210f 1408 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1409
5d4f98a2 1410 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1411
1412 WARN_ON(root->log_root);
1413 root->log_root = log_root;
1414 root->log_transid = 0;
d1433deb 1415 root->log_transid_committed = -1;
257c62e1 1416 root->last_log_commit = 0;
e02119d5
CM
1417 return 0;
1418}
1419
35a3621b
SB
1420static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1421 struct btrfs_key *key)
e02119d5
CM
1422{
1423 struct btrfs_root *root;
1424 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1425 struct btrfs_path *path;
84234f3a 1426 u64 generation;
cb517eab 1427 int ret;
581c1760 1428 int level;
0f7d52f4 1429
cb517eab
MX
1430 path = btrfs_alloc_path();
1431 if (!path)
0f7d52f4 1432 return ERR_PTR(-ENOMEM);
cb517eab 1433
74e4d827 1434 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1435 if (!root) {
1436 ret = -ENOMEM;
1437 goto alloc_fail;
0f7d52f4
CM
1438 }
1439
da17066c 1440 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1441
cb517eab
MX
1442 ret = btrfs_find_root(tree_root, key, path,
1443 &root->root_item, &root->root_key);
0f7d52f4 1444 if (ret) {
13a8a7c8
YZ
1445 if (ret > 0)
1446 ret = -ENOENT;
cb517eab 1447 goto find_fail;
0f7d52f4 1448 }
13a8a7c8 1449
84234f3a 1450 generation = btrfs_root_generation(&root->root_item);
581c1760 1451 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1452 root->node = read_tree_block(fs_info,
1453 btrfs_root_bytenr(&root->root_item),
581c1760 1454 generation, level, NULL);
64c043de
LB
1455 if (IS_ERR(root->node)) {
1456 ret = PTR_ERR(root->node);
cb517eab
MX
1457 goto find_fail;
1458 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1459 ret = -EIO;
64c043de
LB
1460 free_extent_buffer(root->node);
1461 goto find_fail;
416bc658 1462 }
5d4f98a2 1463 root->commit_root = btrfs_root_node(root);
13a8a7c8 1464out:
cb517eab
MX
1465 btrfs_free_path(path);
1466 return root;
1467
cb517eab
MX
1468find_fail:
1469 kfree(root);
1470alloc_fail:
1471 root = ERR_PTR(ret);
1472 goto out;
1473}
1474
1475struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1476 struct btrfs_key *location)
1477{
1478 struct btrfs_root *root;
1479
1480 root = btrfs_read_tree_root(tree_root, location);
1481 if (IS_ERR(root))
1482 return root;
1483
1484 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1485 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1486 btrfs_check_and_init_root_item(&root->root_item);
1487 }
13a8a7c8 1488
5eda7b5e
CM
1489 return root;
1490}
1491
cb517eab
MX
1492int btrfs_init_fs_root(struct btrfs_root *root)
1493{
1494 int ret;
8257b2dc 1495 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1496
1497 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1498 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1499 GFP_NOFS);
1500 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1501 ret = -ENOMEM;
1502 goto fail;
1503 }
1504
8257b2dc
MX
1505 writers = btrfs_alloc_subvolume_writers();
1506 if (IS_ERR(writers)) {
1507 ret = PTR_ERR(writers);
1508 goto fail;
1509 }
1510 root->subv_writers = writers;
1511
cb517eab 1512 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1513 spin_lock_init(&root->ino_cache_lock);
1514 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1515
1516 ret = get_anon_bdev(&root->anon_dev);
1517 if (ret)
876d2cf1 1518 goto fail;
f32e48e9
CR
1519
1520 mutex_lock(&root->objectid_mutex);
1521 ret = btrfs_find_highest_objectid(root,
1522 &root->highest_objectid);
1523 if (ret) {
1524 mutex_unlock(&root->objectid_mutex);
876d2cf1 1525 goto fail;
f32e48e9
CR
1526 }
1527
1528 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1529
1530 mutex_unlock(&root->objectid_mutex);
1531
cb517eab
MX
1532 return 0;
1533fail:
84db5ccf 1534 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1535 return ret;
1536}
1537
35bbb97f
JM
1538struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1539 u64 root_id)
cb517eab
MX
1540{
1541 struct btrfs_root *root;
1542
1543 spin_lock(&fs_info->fs_roots_radix_lock);
1544 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1545 (unsigned long)root_id);
1546 spin_unlock(&fs_info->fs_roots_radix_lock);
1547 return root;
1548}
1549
1550int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1551 struct btrfs_root *root)
1552{
1553 int ret;
1554
e1860a77 1555 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1556 if (ret)
1557 return ret;
1558
1559 spin_lock(&fs_info->fs_roots_radix_lock);
1560 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1561 (unsigned long)root->root_key.objectid,
1562 root);
1563 if (ret == 0)
27cdeb70 1564 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1565 spin_unlock(&fs_info->fs_roots_radix_lock);
1566 radix_tree_preload_end();
1567
1568 return ret;
1569}
1570
c00869f1
MX
1571struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1572 struct btrfs_key *location,
1573 bool check_ref)
5eda7b5e
CM
1574{
1575 struct btrfs_root *root;
381cf658 1576 struct btrfs_path *path;
1d4c08e0 1577 struct btrfs_key key;
5eda7b5e
CM
1578 int ret;
1579
edbd8d4e
CM
1580 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1581 return fs_info->tree_root;
1582 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1583 return fs_info->extent_root;
8f18cf13
CM
1584 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1585 return fs_info->chunk_root;
1586 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1587 return fs_info->dev_root;
0403e47e
YZ
1588 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1589 return fs_info->csum_root;
bcef60f2
AJ
1590 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1591 return fs_info->quota_root ? fs_info->quota_root :
1592 ERR_PTR(-ENOENT);
f7a81ea4
SB
1593 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1594 return fs_info->uuid_root ? fs_info->uuid_root :
1595 ERR_PTR(-ENOENT);
70f6d82e
OS
1596 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1597 return fs_info->free_space_root ? fs_info->free_space_root :
1598 ERR_PTR(-ENOENT);
4df27c4d 1599again:
cb517eab 1600 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1601 if (root) {
c00869f1 1602 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1603 return ERR_PTR(-ENOENT);
5eda7b5e 1604 return root;
48475471 1605 }
5eda7b5e 1606
cb517eab 1607 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1608 if (IS_ERR(root))
1609 return root;
3394e160 1610
c00869f1 1611 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1612 ret = -ENOENT;
581bb050 1613 goto fail;
35a30d7c 1614 }
581bb050 1615
cb517eab 1616 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1617 if (ret)
1618 goto fail;
3394e160 1619
381cf658
DS
1620 path = btrfs_alloc_path();
1621 if (!path) {
1622 ret = -ENOMEM;
1623 goto fail;
1624 }
1d4c08e0
DS
1625 key.objectid = BTRFS_ORPHAN_OBJECTID;
1626 key.type = BTRFS_ORPHAN_ITEM_KEY;
1627 key.offset = location->objectid;
1628
1629 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1630 btrfs_free_path(path);
d68fc57b
YZ
1631 if (ret < 0)
1632 goto fail;
1633 if (ret == 0)
27cdeb70 1634 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1635
cb517eab 1636 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1637 if (ret) {
4df27c4d 1638 if (ret == -EEXIST) {
84db5ccf 1639 btrfs_free_fs_root(root);
4df27c4d
YZ
1640 goto again;
1641 }
1642 goto fail;
0f7d52f4 1643 }
edbd8d4e 1644 return root;
4df27c4d 1645fail:
84db5ccf 1646 btrfs_free_fs_root(root);
4df27c4d 1647 return ERR_PTR(ret);
edbd8d4e
CM
1648}
1649
04160088
CM
1650static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1651{
1652 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1653 int ret = 0;
04160088
CM
1654 struct btrfs_device *device;
1655 struct backing_dev_info *bdi;
b7967db7 1656
1f78160c
XG
1657 rcu_read_lock();
1658 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1659 if (!device->bdev)
1660 continue;
efa7c9f9 1661 bdi = device->bdev->bd_bdi;
ff9ea323 1662 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1663 ret = 1;
1664 break;
1665 }
1666 }
1f78160c 1667 rcu_read_unlock();
04160088
CM
1668 return ret;
1669}
1670
8b712842
CM
1671/*
1672 * called by the kthread helper functions to finally call the bio end_io
1673 * functions. This is where read checksum verification actually happens
1674 */
1675static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1676{
ce9adaa5 1677 struct bio *bio;
97eb6b69 1678 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1679
97eb6b69 1680 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1681 bio = end_io_wq->bio;
ce9adaa5 1682
4e4cbee9 1683 bio->bi_status = end_io_wq->status;
8b712842
CM
1684 bio->bi_private = end_io_wq->private;
1685 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1686 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1687 bio_endio(bio);
44b8bd7e
CM
1688}
1689
a74a4b97
CM
1690static int cleaner_kthread(void *arg)
1691{
1692 struct btrfs_root *root = arg;
0b246afa 1693 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1694 int again;
a74a4b97 1695
d6fd0ae2 1696 while (1) {
d0278245 1697 again = 0;
a74a4b97 1698
fd340d0f
JB
1699 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1700
d0278245 1701 /* Make the cleaner go to sleep early. */
2ff7e61e 1702 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1703 goto sleep;
1704
90c711ab
ZB
1705 /*
1706 * Do not do anything if we might cause open_ctree() to block
1707 * before we have finished mounting the filesystem.
1708 */
0b246afa 1709 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1710 goto sleep;
1711
0b246afa 1712 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1713 goto sleep;
1714
dc7f370c
MX
1715 /*
1716 * Avoid the problem that we change the status of the fs
1717 * during the above check and trylock.
1718 */
2ff7e61e 1719 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1720 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1721 goto sleep;
76dda93c 1722 }
a74a4b97 1723
2ff7e61e 1724 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1725
d0278245 1726 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1727 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1728
1729 /*
05323cd1
MX
1730 * The defragger has dealt with the R/O remount and umount,
1731 * needn't do anything special here.
d0278245 1732 */
0b246afa 1733 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1734
1735 /*
1736 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1737 * with relocation (btrfs_relocate_chunk) and relocation
1738 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1739 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1740 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1741 * unused block groups.
1742 */
0b246afa 1743 btrfs_delete_unused_bgs(fs_info);
d0278245 1744sleep:
fd340d0f 1745 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1746 if (kthread_should_park())
1747 kthread_parkme();
1748 if (kthread_should_stop())
1749 return 0;
838fe188 1750 if (!again) {
a74a4b97 1751 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1752 schedule();
a74a4b97
CM
1753 __set_current_state(TASK_RUNNING);
1754 }
da288d28 1755 }
a74a4b97
CM
1756}
1757
1758static int transaction_kthread(void *arg)
1759{
1760 struct btrfs_root *root = arg;
0b246afa 1761 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1762 struct btrfs_trans_handle *trans;
1763 struct btrfs_transaction *cur;
8929ecfa 1764 u64 transid;
a944442c 1765 time64_t now;
a74a4b97 1766 unsigned long delay;
914b2007 1767 bool cannot_commit;
a74a4b97
CM
1768
1769 do {
914b2007 1770 cannot_commit = false;
0b246afa
JM
1771 delay = HZ * fs_info->commit_interval;
1772 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1773
0b246afa
JM
1774 spin_lock(&fs_info->trans_lock);
1775 cur = fs_info->running_transaction;
a74a4b97 1776 if (!cur) {
0b246afa 1777 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1778 goto sleep;
1779 }
31153d81 1780
afd48513 1781 now = ktime_get_seconds();
4a9d8bde 1782 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1783 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1784 (now < cur->start_time ||
0b246afa
JM
1785 now - cur->start_time < fs_info->commit_interval)) {
1786 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1787 delay = HZ * 5;
1788 goto sleep;
1789 }
8929ecfa 1790 transid = cur->transid;
0b246afa 1791 spin_unlock(&fs_info->trans_lock);
56bec294 1792
79787eaa 1793 /* If the file system is aborted, this will always fail. */
354aa0fb 1794 trans = btrfs_attach_transaction(root);
914b2007 1795 if (IS_ERR(trans)) {
354aa0fb
MX
1796 if (PTR_ERR(trans) != -ENOENT)
1797 cannot_commit = true;
79787eaa 1798 goto sleep;
914b2007 1799 }
8929ecfa 1800 if (transid == trans->transid) {
3a45bb20 1801 btrfs_commit_transaction(trans);
8929ecfa 1802 } else {
3a45bb20 1803 btrfs_end_transaction(trans);
8929ecfa 1804 }
a74a4b97 1805sleep:
0b246afa
JM
1806 wake_up_process(fs_info->cleaner_kthread);
1807 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1808
4e121c06 1809 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1810 &fs_info->fs_state)))
2ff7e61e 1811 btrfs_cleanup_transaction(fs_info);
ce63f891 1812 if (!kthread_should_stop() &&
0b246afa 1813 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1814 cannot_commit))
bc5511d0 1815 schedule_timeout_interruptible(delay);
a74a4b97
CM
1816 } while (!kthread_should_stop());
1817 return 0;
1818}
1819
af31f5e5
CM
1820/*
1821 * this will find the highest generation in the array of
1822 * root backups. The index of the highest array is returned,
1823 * or -1 if we can't find anything.
1824 *
1825 * We check to make sure the array is valid by comparing the
1826 * generation of the latest root in the array with the generation
1827 * in the super block. If they don't match we pitch it.
1828 */
1829static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1830{
1831 u64 cur;
1832 int newest_index = -1;
1833 struct btrfs_root_backup *root_backup;
1834 int i;
1835
1836 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1837 root_backup = info->super_copy->super_roots + i;
1838 cur = btrfs_backup_tree_root_gen(root_backup);
1839 if (cur == newest_gen)
1840 newest_index = i;
1841 }
1842
1843 /* check to see if we actually wrapped around */
1844 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1845 root_backup = info->super_copy->super_roots;
1846 cur = btrfs_backup_tree_root_gen(root_backup);
1847 if (cur == newest_gen)
1848 newest_index = 0;
1849 }
1850 return newest_index;
1851}
1852
1853
1854/*
1855 * find the oldest backup so we know where to store new entries
1856 * in the backup array. This will set the backup_root_index
1857 * field in the fs_info struct
1858 */
1859static void find_oldest_super_backup(struct btrfs_fs_info *info,
1860 u64 newest_gen)
1861{
1862 int newest_index = -1;
1863
1864 newest_index = find_newest_super_backup(info, newest_gen);
1865 /* if there was garbage in there, just move along */
1866 if (newest_index == -1) {
1867 info->backup_root_index = 0;
1868 } else {
1869 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1870 }
1871}
1872
1873/*
1874 * copy all the root pointers into the super backup array.
1875 * this will bump the backup pointer by one when it is
1876 * done
1877 */
1878static void backup_super_roots(struct btrfs_fs_info *info)
1879{
1880 int next_backup;
1881 struct btrfs_root_backup *root_backup;
1882 int last_backup;
1883
1884 next_backup = info->backup_root_index;
1885 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1886 BTRFS_NUM_BACKUP_ROOTS;
1887
1888 /*
1889 * just overwrite the last backup if we're at the same generation
1890 * this happens only at umount
1891 */
1892 root_backup = info->super_for_commit->super_roots + last_backup;
1893 if (btrfs_backup_tree_root_gen(root_backup) ==
1894 btrfs_header_generation(info->tree_root->node))
1895 next_backup = last_backup;
1896
1897 root_backup = info->super_for_commit->super_roots + next_backup;
1898
1899 /*
1900 * make sure all of our padding and empty slots get zero filled
1901 * regardless of which ones we use today
1902 */
1903 memset(root_backup, 0, sizeof(*root_backup));
1904
1905 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1906
1907 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1908 btrfs_set_backup_tree_root_gen(root_backup,
1909 btrfs_header_generation(info->tree_root->node));
1910
1911 btrfs_set_backup_tree_root_level(root_backup,
1912 btrfs_header_level(info->tree_root->node));
1913
1914 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1915 btrfs_set_backup_chunk_root_gen(root_backup,
1916 btrfs_header_generation(info->chunk_root->node));
1917 btrfs_set_backup_chunk_root_level(root_backup,
1918 btrfs_header_level(info->chunk_root->node));
1919
1920 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1921 btrfs_set_backup_extent_root_gen(root_backup,
1922 btrfs_header_generation(info->extent_root->node));
1923 btrfs_set_backup_extent_root_level(root_backup,
1924 btrfs_header_level(info->extent_root->node));
1925
7c7e82a7
CM
1926 /*
1927 * we might commit during log recovery, which happens before we set
1928 * the fs_root. Make sure it is valid before we fill it in.
1929 */
1930 if (info->fs_root && info->fs_root->node) {
1931 btrfs_set_backup_fs_root(root_backup,
1932 info->fs_root->node->start);
1933 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1934 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1935 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1936 btrfs_header_level(info->fs_root->node));
7c7e82a7 1937 }
af31f5e5
CM
1938
1939 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1940 btrfs_set_backup_dev_root_gen(root_backup,
1941 btrfs_header_generation(info->dev_root->node));
1942 btrfs_set_backup_dev_root_level(root_backup,
1943 btrfs_header_level(info->dev_root->node));
1944
1945 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1946 btrfs_set_backup_csum_root_gen(root_backup,
1947 btrfs_header_generation(info->csum_root->node));
1948 btrfs_set_backup_csum_root_level(root_backup,
1949 btrfs_header_level(info->csum_root->node));
1950
1951 btrfs_set_backup_total_bytes(root_backup,
1952 btrfs_super_total_bytes(info->super_copy));
1953 btrfs_set_backup_bytes_used(root_backup,
1954 btrfs_super_bytes_used(info->super_copy));
1955 btrfs_set_backup_num_devices(root_backup,
1956 btrfs_super_num_devices(info->super_copy));
1957
1958 /*
1959 * if we don't copy this out to the super_copy, it won't get remembered
1960 * for the next commit
1961 */
1962 memcpy(&info->super_copy->super_roots,
1963 &info->super_for_commit->super_roots,
1964 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1965}
1966
1967/*
1968 * this copies info out of the root backup array and back into
1969 * the in-memory super block. It is meant to help iterate through
1970 * the array, so you send it the number of backups you've already
1971 * tried and the last backup index you used.
1972 *
1973 * this returns -1 when it has tried all the backups
1974 */
1975static noinline int next_root_backup(struct btrfs_fs_info *info,
1976 struct btrfs_super_block *super,
1977 int *num_backups_tried, int *backup_index)
1978{
1979 struct btrfs_root_backup *root_backup;
1980 int newest = *backup_index;
1981
1982 if (*num_backups_tried == 0) {
1983 u64 gen = btrfs_super_generation(super);
1984
1985 newest = find_newest_super_backup(info, gen);
1986 if (newest == -1)
1987 return -1;
1988
1989 *backup_index = newest;
1990 *num_backups_tried = 1;
1991 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1992 /* we've tried all the backups, all done */
1993 return -1;
1994 } else {
1995 /* jump to the next oldest backup */
1996 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1997 BTRFS_NUM_BACKUP_ROOTS;
1998 *backup_index = newest;
1999 *num_backups_tried += 1;
2000 }
2001 root_backup = super->super_roots + newest;
2002
2003 btrfs_set_super_generation(super,
2004 btrfs_backup_tree_root_gen(root_backup));
2005 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2006 btrfs_set_super_root_level(super,
2007 btrfs_backup_tree_root_level(root_backup));
2008 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2009
2010 /*
2011 * fixme: the total bytes and num_devices need to match or we should
2012 * need a fsck
2013 */
2014 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2015 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2016 return 0;
2017}
2018
7abadb64
LB
2019/* helper to cleanup workers */
2020static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2021{
dc6e3209 2022 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2023 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2024 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2025 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2026 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2027 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2028 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2029 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2030 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2031 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2032 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2033 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2034 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2035 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2036 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2037 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2038 /*
2039 * Now that all other work queues are destroyed, we can safely destroy
2040 * the queues used for metadata I/O, since tasks from those other work
2041 * queues can do metadata I/O operations.
2042 */
2043 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2044 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2045}
2046
2e9f5954
R
2047static void free_root_extent_buffers(struct btrfs_root *root)
2048{
2049 if (root) {
2050 free_extent_buffer(root->node);
2051 free_extent_buffer(root->commit_root);
2052 root->node = NULL;
2053 root->commit_root = NULL;
2054 }
2055}
2056
af31f5e5
CM
2057/* helper to cleanup tree roots */
2058static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2059{
2e9f5954 2060 free_root_extent_buffers(info->tree_root);
655b09fe 2061
2e9f5954
R
2062 free_root_extent_buffers(info->dev_root);
2063 free_root_extent_buffers(info->extent_root);
2064 free_root_extent_buffers(info->csum_root);
2065 free_root_extent_buffers(info->quota_root);
2066 free_root_extent_buffers(info->uuid_root);
2067 if (chunk_root)
2068 free_root_extent_buffers(info->chunk_root);
70f6d82e 2069 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2070}
2071
faa2dbf0 2072void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2073{
2074 int ret;
2075 struct btrfs_root *gang[8];
2076 int i;
2077
2078 while (!list_empty(&fs_info->dead_roots)) {
2079 gang[0] = list_entry(fs_info->dead_roots.next,
2080 struct btrfs_root, root_list);
2081 list_del(&gang[0]->root_list);
2082
27cdeb70 2083 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2084 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2085 } else {
2086 free_extent_buffer(gang[0]->node);
2087 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2088 btrfs_put_fs_root(gang[0]);
171f6537
JB
2089 }
2090 }
2091
2092 while (1) {
2093 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2094 (void **)gang, 0,
2095 ARRAY_SIZE(gang));
2096 if (!ret)
2097 break;
2098 for (i = 0; i < ret; i++)
cb517eab 2099 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2100 }
1a4319cc
LB
2101
2102 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2103 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2104 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2105 }
171f6537 2106}
af31f5e5 2107
638aa7ed
ES
2108static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2109{
2110 mutex_init(&fs_info->scrub_lock);
2111 atomic_set(&fs_info->scrubs_running, 0);
2112 atomic_set(&fs_info->scrub_pause_req, 0);
2113 atomic_set(&fs_info->scrubs_paused, 0);
2114 atomic_set(&fs_info->scrub_cancel_req, 0);
2115 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2116 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2117}
2118
779a65a4
ES
2119static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2120{
2121 spin_lock_init(&fs_info->balance_lock);
2122 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2123 atomic_set(&fs_info->balance_pause_req, 0);
2124 atomic_set(&fs_info->balance_cancel_req, 0);
2125 fs_info->balance_ctl = NULL;
2126 init_waitqueue_head(&fs_info->balance_wait_q);
2127}
2128
6bccf3ab 2129static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2130{
2ff7e61e
JM
2131 struct inode *inode = fs_info->btree_inode;
2132
2133 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2134 set_nlink(inode, 1);
f37938e0
ES
2135 /*
2136 * we set the i_size on the btree inode to the max possible int.
2137 * the real end of the address space is determined by all of
2138 * the devices in the system
2139 */
2ff7e61e
JM
2140 inode->i_size = OFFSET_MAX;
2141 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2142
2ff7e61e 2143 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2144 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2145 IO_TREE_INODE_IO, inode);
7b439738 2146 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2147 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2148
2ff7e61e 2149 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2150
2ff7e61e
JM
2151 BTRFS_I(inode)->root = fs_info->tree_root;
2152 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2153 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2154 btrfs_insert_inode_hash(inode);
f37938e0
ES
2155}
2156
ad618368
ES
2157static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2158{
ad618368 2159 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2160 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2161 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2162}
2163
f9e92e40
ES
2164static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2165{
2166 spin_lock_init(&fs_info->qgroup_lock);
2167 mutex_init(&fs_info->qgroup_ioctl_lock);
2168 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2169 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2170 fs_info->qgroup_seq = 1;
f9e92e40 2171 fs_info->qgroup_ulist = NULL;
d2c609b8 2172 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2173 mutex_init(&fs_info->qgroup_rescan_lock);
2174}
2175
2a458198
ES
2176static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2177 struct btrfs_fs_devices *fs_devices)
2178{
f7b885be 2179 u32 max_active = fs_info->thread_pool_size;
6f011058 2180 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2181
2182 fs_info->workers =
cb001095
JM
2183 btrfs_alloc_workqueue(fs_info, "worker",
2184 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2185
2186 fs_info->delalloc_workers =
cb001095
JM
2187 btrfs_alloc_workqueue(fs_info, "delalloc",
2188 flags, max_active, 2);
2a458198
ES
2189
2190 fs_info->flush_workers =
cb001095
JM
2191 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2192 flags, max_active, 0);
2a458198
ES
2193
2194 fs_info->caching_workers =
cb001095 2195 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2196
2197 /*
2198 * a higher idle thresh on the submit workers makes it much more
2199 * likely that bios will be send down in a sane order to the
2200 * devices
2201 */
2202 fs_info->submit_workers =
cb001095 2203 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2204 min_t(u64, fs_devices->num_devices,
2205 max_active), 64);
2206
2207 fs_info->fixup_workers =
cb001095 2208 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2209
2210 /*
2211 * endios are largely parallel and should have a very
2212 * low idle thresh
2213 */
2214 fs_info->endio_workers =
cb001095 2215 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2216 fs_info->endio_meta_workers =
cb001095
JM
2217 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2218 max_active, 4);
2a458198 2219 fs_info->endio_meta_write_workers =
cb001095
JM
2220 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2221 max_active, 2);
2a458198 2222 fs_info->endio_raid56_workers =
cb001095
JM
2223 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2224 max_active, 4);
2a458198 2225 fs_info->endio_repair_workers =
cb001095 2226 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2227 fs_info->rmw_workers =
cb001095 2228 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2229 fs_info->endio_write_workers =
cb001095
JM
2230 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2231 max_active, 2);
2a458198 2232 fs_info->endio_freespace_worker =
cb001095
JM
2233 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2234 max_active, 0);
2a458198 2235 fs_info->delayed_workers =
cb001095
JM
2236 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2237 max_active, 0);
2a458198 2238 fs_info->readahead_workers =
cb001095
JM
2239 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2240 max_active, 2);
2a458198 2241 fs_info->qgroup_rescan_workers =
cb001095 2242 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2243 fs_info->extent_workers =
cb001095 2244 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2245 min_t(u64, fs_devices->num_devices,
2246 max_active), 8);
2247
2248 if (!(fs_info->workers && fs_info->delalloc_workers &&
2249 fs_info->submit_workers && fs_info->flush_workers &&
2250 fs_info->endio_workers && fs_info->endio_meta_workers &&
2251 fs_info->endio_meta_write_workers &&
2252 fs_info->endio_repair_workers &&
2253 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2254 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2255 fs_info->caching_workers && fs_info->readahead_workers &&
2256 fs_info->fixup_workers && fs_info->delayed_workers &&
2257 fs_info->extent_workers &&
2258 fs_info->qgroup_rescan_workers)) {
2259 return -ENOMEM;
2260 }
2261
2262 return 0;
2263}
2264
63443bf5
ES
2265static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2266 struct btrfs_fs_devices *fs_devices)
2267{
2268 int ret;
63443bf5
ES
2269 struct btrfs_root *log_tree_root;
2270 struct btrfs_super_block *disk_super = fs_info->super_copy;
2271 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2272 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2273
2274 if (fs_devices->rw_devices == 0) {
f14d104d 2275 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2276 return -EIO;
2277 }
2278
74e4d827 2279 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2280 if (!log_tree_root)
2281 return -ENOMEM;
2282
da17066c 2283 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2284
2ff7e61e 2285 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2286 fs_info->generation + 1,
2287 level, NULL);
64c043de 2288 if (IS_ERR(log_tree_root->node)) {
f14d104d 2289 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2290 ret = PTR_ERR(log_tree_root->node);
64c043de 2291 kfree(log_tree_root);
0eeff236 2292 return ret;
64c043de 2293 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2294 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2295 free_extent_buffer(log_tree_root->node);
2296 kfree(log_tree_root);
2297 return -EIO;
2298 }
2299 /* returns with log_tree_root freed on success */
2300 ret = btrfs_recover_log_trees(log_tree_root);
2301 if (ret) {
0b246afa
JM
2302 btrfs_handle_fs_error(fs_info, ret,
2303 "Failed to recover log tree");
63443bf5
ES
2304 free_extent_buffer(log_tree_root->node);
2305 kfree(log_tree_root);
2306 return ret;
2307 }
2308
bc98a42c 2309 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2310 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2311 if (ret)
2312 return ret;
2313 }
2314
2315 return 0;
2316}
2317
6bccf3ab 2318static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2319{
6bccf3ab 2320 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2321 struct btrfs_root *root;
4bbcaa64
ES
2322 struct btrfs_key location;
2323 int ret;
2324
6bccf3ab
JM
2325 BUG_ON(!fs_info->tree_root);
2326
4bbcaa64
ES
2327 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2328 location.type = BTRFS_ROOT_ITEM_KEY;
2329 location.offset = 0;
2330
a4f3d2c4 2331 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2332 if (IS_ERR(root)) {
2333 ret = PTR_ERR(root);
2334 goto out;
2335 }
a4f3d2c4
DS
2336 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2337 fs_info->extent_root = root;
4bbcaa64
ES
2338
2339 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2340 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2341 if (IS_ERR(root)) {
2342 ret = PTR_ERR(root);
2343 goto out;
2344 }
a4f3d2c4
DS
2345 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2346 fs_info->dev_root = root;
4bbcaa64
ES
2347 btrfs_init_devices_late(fs_info);
2348
2349 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2350 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2351 if (IS_ERR(root)) {
2352 ret = PTR_ERR(root);
2353 goto out;
2354 }
a4f3d2c4
DS
2355 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2356 fs_info->csum_root = root;
4bbcaa64
ES
2357
2358 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2359 root = btrfs_read_tree_root(tree_root, &location);
2360 if (!IS_ERR(root)) {
2361 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2362 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2363 fs_info->quota_root = root;
4bbcaa64
ES
2364 }
2365
2366 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2367 root = btrfs_read_tree_root(tree_root, &location);
2368 if (IS_ERR(root)) {
2369 ret = PTR_ERR(root);
4bbcaa64 2370 if (ret != -ENOENT)
f50f4353 2371 goto out;
4bbcaa64 2372 } else {
a4f3d2c4
DS
2373 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2374 fs_info->uuid_root = root;
4bbcaa64
ES
2375 }
2376
70f6d82e
OS
2377 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2378 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2379 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2380 if (IS_ERR(root)) {
2381 ret = PTR_ERR(root);
2382 goto out;
2383 }
70f6d82e
OS
2384 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2385 fs_info->free_space_root = root;
2386 }
2387
4bbcaa64 2388 return 0;
f50f4353
LB
2389out:
2390 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2391 location.objectid, ret);
2392 return ret;
4bbcaa64
ES
2393}
2394
069ec957
QW
2395/*
2396 * Real super block validation
2397 * NOTE: super csum type and incompat features will not be checked here.
2398 *
2399 * @sb: super block to check
2400 * @mirror_num: the super block number to check its bytenr:
2401 * 0 the primary (1st) sb
2402 * 1, 2 2nd and 3rd backup copy
2403 * -1 skip bytenr check
2404 */
2405static int validate_super(struct btrfs_fs_info *fs_info,
2406 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2407{
21a852b0
QW
2408 u64 nodesize = btrfs_super_nodesize(sb);
2409 u64 sectorsize = btrfs_super_sectorsize(sb);
2410 int ret = 0;
2411
2412 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2413 btrfs_err(fs_info, "no valid FS found");
2414 ret = -EINVAL;
2415 }
2416 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2417 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2418 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2419 ret = -EINVAL;
2420 }
2421 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2422 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2423 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2424 ret = -EINVAL;
2425 }
2426 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2427 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2428 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2429 ret = -EINVAL;
2430 }
2431 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2432 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2433 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2434 ret = -EINVAL;
2435 }
2436
2437 /*
2438 * Check sectorsize and nodesize first, other check will need it.
2439 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2440 */
2441 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2442 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2443 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2444 ret = -EINVAL;
2445 }
2446 /* Only PAGE SIZE is supported yet */
2447 if (sectorsize != PAGE_SIZE) {
2448 btrfs_err(fs_info,
2449 "sectorsize %llu not supported yet, only support %lu",
2450 sectorsize, PAGE_SIZE);
2451 ret = -EINVAL;
2452 }
2453 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2454 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2455 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2456 ret = -EINVAL;
2457 }
2458 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2459 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2460 le32_to_cpu(sb->__unused_leafsize), nodesize);
2461 ret = -EINVAL;
2462 }
2463
2464 /* Root alignment check */
2465 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2466 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2467 btrfs_super_root(sb));
2468 ret = -EINVAL;
2469 }
2470 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2471 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2472 btrfs_super_chunk_root(sb));
2473 ret = -EINVAL;
2474 }
2475 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2476 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2477 btrfs_super_log_root(sb));
2478 ret = -EINVAL;
2479 }
2480
de37aa51 2481 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2482 BTRFS_FSID_SIZE) != 0) {
21a852b0 2483 btrfs_err(fs_info,
7239ff4b 2484 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2485 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2486 ret = -EINVAL;
2487 }
2488
2489 /*
2490 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2491 * done later
2492 */
2493 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2494 btrfs_err(fs_info, "bytes_used is too small %llu",
2495 btrfs_super_bytes_used(sb));
2496 ret = -EINVAL;
2497 }
2498 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2499 btrfs_err(fs_info, "invalid stripesize %u",
2500 btrfs_super_stripesize(sb));
2501 ret = -EINVAL;
2502 }
2503 if (btrfs_super_num_devices(sb) > (1UL << 31))
2504 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2505 btrfs_super_num_devices(sb));
2506 if (btrfs_super_num_devices(sb) == 0) {
2507 btrfs_err(fs_info, "number of devices is 0");
2508 ret = -EINVAL;
2509 }
2510
069ec957
QW
2511 if (mirror_num >= 0 &&
2512 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2513 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2514 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2515 ret = -EINVAL;
2516 }
2517
2518 /*
2519 * Obvious sys_chunk_array corruptions, it must hold at least one key
2520 * and one chunk
2521 */
2522 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2523 btrfs_err(fs_info, "system chunk array too big %u > %u",
2524 btrfs_super_sys_array_size(sb),
2525 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2526 ret = -EINVAL;
2527 }
2528 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2529 + sizeof(struct btrfs_chunk)) {
2530 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2531 btrfs_super_sys_array_size(sb),
2532 sizeof(struct btrfs_disk_key)
2533 + sizeof(struct btrfs_chunk));
2534 ret = -EINVAL;
2535 }
2536
2537 /*
2538 * The generation is a global counter, we'll trust it more than the others
2539 * but it's still possible that it's the one that's wrong.
2540 */
2541 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2542 btrfs_warn(fs_info,
2543 "suspicious: generation < chunk_root_generation: %llu < %llu",
2544 btrfs_super_generation(sb),
2545 btrfs_super_chunk_root_generation(sb));
2546 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2547 && btrfs_super_cache_generation(sb) != (u64)-1)
2548 btrfs_warn(fs_info,
2549 "suspicious: generation < cache_generation: %llu < %llu",
2550 btrfs_super_generation(sb),
2551 btrfs_super_cache_generation(sb));
2552
2553 return ret;
2554}
2555
069ec957
QW
2556/*
2557 * Validation of super block at mount time.
2558 * Some checks already done early at mount time, like csum type and incompat
2559 * flags will be skipped.
2560 */
2561static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2562{
2563 return validate_super(fs_info, fs_info->super_copy, 0);
2564}
2565
75cb857d
QW
2566/*
2567 * Validation of super block at write time.
2568 * Some checks like bytenr check will be skipped as their values will be
2569 * overwritten soon.
2570 * Extra checks like csum type and incompat flags will be done here.
2571 */
2572static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2573 struct btrfs_super_block *sb)
2574{
2575 int ret;
2576
2577 ret = validate_super(fs_info, sb, -1);
2578 if (ret < 0)
2579 goto out;
2580 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2581 ret = -EUCLEAN;
2582 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2583 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2584 goto out;
2585 }
2586 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2587 ret = -EUCLEAN;
2588 btrfs_err(fs_info,
2589 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2590 btrfs_super_incompat_flags(sb),
2591 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2592 goto out;
2593 }
2594out:
2595 if (ret < 0)
2596 btrfs_err(fs_info,
2597 "super block corruption detected before writing it to disk");
2598 return ret;
2599}
2600
ad2b2c80
AV
2601int open_ctree(struct super_block *sb,
2602 struct btrfs_fs_devices *fs_devices,
2603 char *options)
2e635a27 2604{
db94535d
CM
2605 u32 sectorsize;
2606 u32 nodesize;
87ee04eb 2607 u32 stripesize;
84234f3a 2608 u64 generation;
f2b636e8 2609 u64 features;
3de4586c 2610 struct btrfs_key location;
a061fc8d 2611 struct buffer_head *bh;
4d34b278 2612 struct btrfs_super_block *disk_super;
815745cf 2613 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2614 struct btrfs_root *tree_root;
4d34b278 2615 struct btrfs_root *chunk_root;
eb60ceac 2616 int ret;
e58ca020 2617 int err = -EINVAL;
af31f5e5
CM
2618 int num_backups_tried = 0;
2619 int backup_index = 0;
6675df31 2620 int clear_free_space_tree = 0;
581c1760 2621 int level;
4543df7e 2622
74e4d827
DS
2623 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2624 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2625 if (!tree_root || !chunk_root) {
39279cc3
CM
2626 err = -ENOMEM;
2627 goto fail;
2628 }
76dda93c
YZ
2629
2630 ret = init_srcu_struct(&fs_info->subvol_srcu);
2631 if (ret) {
2632 err = ret;
2633 goto fail;
2634 }
2635
908c7f19 2636 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2637 if (ret) {
2638 err = ret;
9e11ceee 2639 goto fail_srcu;
e2d84521 2640 }
09cbfeaf 2641 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2642 (1 + ilog2(nr_cpu_ids));
2643
908c7f19 2644 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2645 if (ret) {
2646 err = ret;
2647 goto fail_dirty_metadata_bytes;
2648 }
2649
7f8d236a
DS
2650 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2651 GFP_KERNEL);
c404e0dc
MX
2652 if (ret) {
2653 err = ret;
2654 goto fail_delalloc_bytes;
2655 }
2656
76dda93c 2657 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2658 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2659 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2660 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2661 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2662 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2663 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2664 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2665 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2666 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2667 spin_lock_init(&fs_info->trans_lock);
76dda93c 2668 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2669 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2670 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2671 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2672 spin_lock_init(&fs_info->super_lock);
f28491e0 2673 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2674 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2675 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2676 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2677 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2678 mutex_init(&fs_info->reloc_mutex);
573bfb72 2679 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2680 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2681
0b86a832 2682 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2683 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2684 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2685 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2686 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2687 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2688 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2689 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2690 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2691 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2692 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2693 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2694 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2695 BTRFS_BLOCK_RSV_DELREFS);
2696
771ed689 2697 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2698 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2699 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2700 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2701 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2702 fs_info->sb = sb;
95ac567a 2703 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2704 fs_info->metadata_ratio = 0;
4cb5300b 2705 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2706 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2707 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2708 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2709 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2710 /* readahead state */
d0164adc 2711 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2712 spin_lock_init(&fs_info->reada_lock);
fd708b81 2713 btrfs_init_ref_verify(fs_info);
c8b97818 2714
b34b086c
CM
2715 fs_info->thread_pool_size = min_t(unsigned long,
2716 num_online_cpus() + 2, 8);
0afbaf8c 2717
199c2a9c
MX
2718 INIT_LIST_HEAD(&fs_info->ordered_roots);
2719 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2720
2721 fs_info->btree_inode = new_inode(sb);
2722 if (!fs_info->btree_inode) {
2723 err = -ENOMEM;
2724 goto fail_bio_counter;
2725 }
2726 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2727
16cdcec7 2728 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2729 GFP_KERNEL);
16cdcec7
MX
2730 if (!fs_info->delayed_root) {
2731 err = -ENOMEM;
2732 goto fail_iput;
2733 }
2734 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2735
638aa7ed 2736 btrfs_init_scrub(fs_info);
21adbd5c
SB
2737#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2738 fs_info->check_integrity_print_mask = 0;
2739#endif
779a65a4 2740 btrfs_init_balance(fs_info);
21c7e756 2741 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2742
9f6d2510
DS
2743 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2744 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2745
6bccf3ab 2746 btrfs_init_btree_inode(fs_info);
76dda93c 2747
0f9dd46c 2748 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2749 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2750 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2751
43eb5f29
QW
2752 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2753 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2754 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2755 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2756 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2757 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2758
5a3f23d5 2759 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2760 mutex_init(&fs_info->tree_log_mutex);
925baedd 2761 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2762 mutex_init(&fs_info->transaction_kthread_mutex);
2763 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2764 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2765 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2766 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2767 init_rwsem(&fs_info->subvol_sem);
803b2f54 2768 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2769
ad618368 2770 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2771 btrfs_init_qgroup(fs_info);
416ac51d 2772
fa9c0d79
CM
2773 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2774 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2775
e6dcd2dc 2776 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2777 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2778 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2779 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2780 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2781
da17066c
JM
2782 /* Usable values until the real ones are cached from the superblock */
2783 fs_info->nodesize = 4096;
2784 fs_info->sectorsize = 4096;
2785 fs_info->stripesize = 4096;
2786
eede2bf3
OS
2787 spin_lock_init(&fs_info->swapfile_pins_lock);
2788 fs_info->swapfile_pins = RB_ROOT;
2789
53b381b3
DW
2790 ret = btrfs_alloc_stripe_hash_table(fs_info);
2791 if (ret) {
83c8266a 2792 err = ret;
53b381b3
DW
2793 goto fail_alloc;
2794 }
2795
da17066c 2796 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2797
3c4bb26b 2798 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2799
2800 /*
2801 * Read super block and check the signature bytes only
2802 */
a512bbf8 2803 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2804 if (IS_ERR(bh)) {
2805 err = PTR_ERR(bh);
16cdcec7 2806 goto fail_alloc;
20b45077 2807 }
39279cc3 2808
1104a885
DS
2809 /*
2810 * We want to check superblock checksum, the type is stored inside.
2811 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2812 */
ab8d0fc4 2813 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2814 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2815 err = -EINVAL;
b2acdddf 2816 brelse(bh);
1104a885
DS
2817 goto fail_alloc;
2818 }
2819
2820 /*
2821 * super_copy is zeroed at allocation time and we never touch the
2822 * following bytes up to INFO_SIZE, the checksum is calculated from
2823 * the whole block of INFO_SIZE
2824 */
6c41761f 2825 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2826 brelse(bh);
5f39d397 2827
fbc6feae
NB
2828 disk_super = fs_info->super_copy;
2829
de37aa51
NB
2830 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2831 BTRFS_FSID_SIZE));
2832
7239ff4b 2833 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2834 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2835 fs_info->super_copy->metadata_uuid,
2836 BTRFS_FSID_SIZE));
7239ff4b 2837 }
0b86a832 2838
fbc6feae
NB
2839 features = btrfs_super_flags(disk_super);
2840 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2841 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2842 btrfs_set_super_flags(disk_super, features);
2843 btrfs_info(fs_info,
2844 "found metadata UUID change in progress flag, clearing");
2845 }
2846
2847 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2848 sizeof(*fs_info->super_for_commit));
de37aa51 2849
069ec957 2850 ret = btrfs_validate_mount_super(fs_info);
1104a885 2851 if (ret) {
05135f59 2852 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2853 err = -EINVAL;
2854 goto fail_alloc;
2855 }
2856
0f7d52f4 2857 if (!btrfs_super_root(disk_super))
16cdcec7 2858 goto fail_alloc;
0f7d52f4 2859
acce952b 2860 /* check FS state, whether FS is broken. */
87533c47
MX
2861 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2862 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2863
af31f5e5
CM
2864 /*
2865 * run through our array of backup supers and setup
2866 * our ring pointer to the oldest one
2867 */
2868 generation = btrfs_super_generation(disk_super);
2869 find_oldest_super_backup(fs_info, generation);
2870
75e7cb7f
LB
2871 /*
2872 * In the long term, we'll store the compression type in the super
2873 * block, and it'll be used for per file compression control.
2874 */
2875 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2876
2ff7e61e 2877 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2878 if (ret) {
2879 err = ret;
16cdcec7 2880 goto fail_alloc;
2b82032c 2881 }
dfe25020 2882
f2b636e8
JB
2883 features = btrfs_super_incompat_flags(disk_super) &
2884 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2885 if (features) {
05135f59
DS
2886 btrfs_err(fs_info,
2887 "cannot mount because of unsupported optional features (%llx)",
2888 features);
f2b636e8 2889 err = -EINVAL;
16cdcec7 2890 goto fail_alloc;
f2b636e8
JB
2891 }
2892
5d4f98a2 2893 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2894 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2895 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2896 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2897 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2898 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2899
3173a18f 2900 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2901 btrfs_info(fs_info, "has skinny extents");
3173a18f 2902
727011e0
CM
2903 /*
2904 * flag our filesystem as having big metadata blocks if
2905 * they are bigger than the page size
2906 */
09cbfeaf 2907 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2908 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2909 btrfs_info(fs_info,
2910 "flagging fs with big metadata feature");
727011e0
CM
2911 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2912 }
2913
bc3f116f 2914 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2915 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2916 stripesize = sectorsize;
707e8a07 2917 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2918 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2919
da17066c
JM
2920 /* Cache block sizes */
2921 fs_info->nodesize = nodesize;
2922 fs_info->sectorsize = sectorsize;
2923 fs_info->stripesize = stripesize;
2924
bc3f116f
CM
2925 /*
2926 * mixed block groups end up with duplicate but slightly offset
2927 * extent buffers for the same range. It leads to corruptions
2928 */
2929 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2930 (sectorsize != nodesize)) {
05135f59
DS
2931 btrfs_err(fs_info,
2932"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2933 nodesize, sectorsize);
bc3f116f
CM
2934 goto fail_alloc;
2935 }
2936
ceda0864
MX
2937 /*
2938 * Needn't use the lock because there is no other task which will
2939 * update the flag.
2940 */
a6fa6fae 2941 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2942
f2b636e8
JB
2943 features = btrfs_super_compat_ro_flags(disk_super) &
2944 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2945 if (!sb_rdonly(sb) && features) {
05135f59
DS
2946 btrfs_err(fs_info,
2947 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2948 features);
f2b636e8 2949 err = -EINVAL;
16cdcec7 2950 goto fail_alloc;
f2b636e8 2951 }
61d92c32 2952
2a458198
ES
2953 ret = btrfs_init_workqueues(fs_info, fs_devices);
2954 if (ret) {
2955 err = ret;
0dc3b84a
JB
2956 goto fail_sb_buffer;
2957 }
4543df7e 2958
9e11ceee
JK
2959 sb->s_bdi->congested_fn = btrfs_congested_fn;
2960 sb->s_bdi->congested_data = fs_info;
2961 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 2962 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
2963 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2964 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2965
a061fc8d
CM
2966 sb->s_blocksize = sectorsize;
2967 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 2968 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 2969
925baedd 2970 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2971 ret = btrfs_read_sys_array(fs_info);
925baedd 2972 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2973 if (ret) {
05135f59 2974 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2975 goto fail_sb_buffer;
84eed90f 2976 }
0b86a832 2977
84234f3a 2978 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2979 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2980
da17066c 2981 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2982
2ff7e61e 2983 chunk_root->node = read_tree_block(fs_info,
0b86a832 2984 btrfs_super_chunk_root(disk_super),
581c1760 2985 generation, level, NULL);
64c043de
LB
2986 if (IS_ERR(chunk_root->node) ||
2987 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2988 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2989 if (!IS_ERR(chunk_root->node))
2990 free_extent_buffer(chunk_root->node);
95ab1f64 2991 chunk_root->node = NULL;
af31f5e5 2992 goto fail_tree_roots;
83121942 2993 }
5d4f98a2
YZ
2994 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2995 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2996
e17cade2 2997 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2998 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2999
5b4aacef 3000 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3001 if (ret) {
05135f59 3002 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3003 goto fail_tree_roots;
2b82032c 3004 }
0b86a832 3005
8dabb742 3006 /*
9b99b115
AJ
3007 * Keep the devid that is marked to be the target device for the
3008 * device replace procedure
8dabb742 3009 */
9b99b115 3010 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3011
a6b0d5c8 3012 if (!fs_devices->latest_bdev) {
05135f59 3013 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3014 goto fail_tree_roots;
3015 }
3016
af31f5e5 3017retry_root_backup:
84234f3a 3018 generation = btrfs_super_generation(disk_super);
581c1760 3019 level = btrfs_super_root_level(disk_super);
0b86a832 3020
2ff7e61e 3021 tree_root->node = read_tree_block(fs_info,
db94535d 3022 btrfs_super_root(disk_super),
581c1760 3023 generation, level, NULL);
64c043de
LB
3024 if (IS_ERR(tree_root->node) ||
3025 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3026 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3027 if (!IS_ERR(tree_root->node))
3028 free_extent_buffer(tree_root->node);
95ab1f64 3029 tree_root->node = NULL;
af31f5e5 3030 goto recovery_tree_root;
83121942 3031 }
af31f5e5 3032
5d4f98a2
YZ
3033 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3034 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3035 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3036
f32e48e9
CR
3037 mutex_lock(&tree_root->objectid_mutex);
3038 ret = btrfs_find_highest_objectid(tree_root,
3039 &tree_root->highest_objectid);
3040 if (ret) {
3041 mutex_unlock(&tree_root->objectid_mutex);
3042 goto recovery_tree_root;
3043 }
3044
3045 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3046
3047 mutex_unlock(&tree_root->objectid_mutex);
3048
6bccf3ab 3049 ret = btrfs_read_roots(fs_info);
4bbcaa64 3050 if (ret)
af31f5e5 3051 goto recovery_tree_root;
f7a81ea4 3052
8929ecfa
YZ
3053 fs_info->generation = generation;
3054 fs_info->last_trans_committed = generation;
8929ecfa 3055
cf90d884
QW
3056 ret = btrfs_verify_dev_extents(fs_info);
3057 if (ret) {
3058 btrfs_err(fs_info,
3059 "failed to verify dev extents against chunks: %d",
3060 ret);
3061 goto fail_block_groups;
3062 }
68310a5e
ID
3063 ret = btrfs_recover_balance(fs_info);
3064 if (ret) {
05135f59 3065 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3066 goto fail_block_groups;
3067 }
3068
733f4fbb
SB
3069 ret = btrfs_init_dev_stats(fs_info);
3070 if (ret) {
05135f59 3071 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3072 goto fail_block_groups;
3073 }
3074
8dabb742
SB
3075 ret = btrfs_init_dev_replace(fs_info);
3076 if (ret) {
05135f59 3077 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3078 goto fail_block_groups;
3079 }
3080
9b99b115 3081 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3082
b7c35e81
AJ
3083 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3084 if (ret) {
05135f59
DS
3085 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3086 ret);
b7c35e81
AJ
3087 goto fail_block_groups;
3088 }
3089
3090 ret = btrfs_sysfs_add_device(fs_devices);
3091 if (ret) {
05135f59
DS
3092 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3093 ret);
b7c35e81
AJ
3094 goto fail_fsdev_sysfs;
3095 }
3096
96f3136e 3097 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3098 if (ret) {
05135f59 3099 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3100 goto fail_fsdev_sysfs;
c59021f8 3101 }
3102
c59021f8 3103 ret = btrfs_init_space_info(fs_info);
3104 if (ret) {
05135f59 3105 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3106 goto fail_sysfs;
c59021f8 3107 }
3108
5b4aacef 3109 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3110 if (ret) {
05135f59 3111 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3112 goto fail_sysfs;
1b1d1f66 3113 }
4330e183 3114
6528b99d 3115 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3116 btrfs_warn(fs_info,
52042d8e 3117 "writable mount is not allowed due to too many missing devices");
2365dd3c 3118 goto fail_sysfs;
292fd7fc 3119 }
9078a3e1 3120
a74a4b97
CM
3121 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3122 "btrfs-cleaner");
57506d50 3123 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3124 goto fail_sysfs;
a74a4b97
CM
3125
3126 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3127 tree_root,
3128 "btrfs-transaction");
57506d50 3129 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3130 goto fail_cleaner;
a74a4b97 3131
583b7231 3132 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3133 !fs_info->fs_devices->rotating) {
583b7231 3134 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3135 }
3136
572d9ab7 3137 /*
01327610 3138 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3139 * not have to wait for transaction commit
3140 */
3141 btrfs_apply_pending_changes(fs_info);
3818aea2 3142
21adbd5c 3143#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3144 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3145 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3146 btrfs_test_opt(fs_info,
21adbd5c
SB
3147 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3148 1 : 0,
3149 fs_info->check_integrity_print_mask);
3150 if (ret)
05135f59
DS
3151 btrfs_warn(fs_info,
3152 "failed to initialize integrity check module: %d",
3153 ret);
21adbd5c
SB
3154 }
3155#endif
bcef60f2
AJ
3156 ret = btrfs_read_qgroup_config(fs_info);
3157 if (ret)
3158 goto fail_trans_kthread;
21adbd5c 3159
fd708b81
JB
3160 if (btrfs_build_ref_tree(fs_info))
3161 btrfs_err(fs_info, "couldn't build ref tree");
3162
96da0919
QW
3163 /* do not make disk changes in broken FS or nologreplay is given */
3164 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3165 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3166 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3167 if (ret) {
63443bf5 3168 err = ret;
28c16cbb 3169 goto fail_qgroup;
79787eaa 3170 }
e02119d5 3171 }
1a40e23b 3172
6bccf3ab 3173 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3174 if (ret)
28c16cbb 3175 goto fail_qgroup;
76dda93c 3176
bc98a42c 3177 if (!sb_rdonly(sb)) {
d68fc57b 3178 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3179 if (ret)
28c16cbb 3180 goto fail_qgroup;
90c711ab
ZB
3181
3182 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3183 ret = btrfs_recover_relocation(tree_root);
90c711ab 3184 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3185 if (ret < 0) {
05135f59
DS
3186 btrfs_warn(fs_info, "failed to recover relocation: %d",
3187 ret);
d7ce5843 3188 err = -EINVAL;
bcef60f2 3189 goto fail_qgroup;
d7ce5843 3190 }
7c2ca468 3191 }
1a40e23b 3192
3de4586c
CM
3193 location.objectid = BTRFS_FS_TREE_OBJECTID;
3194 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3195 location.offset = 0;
3de4586c 3196
3de4586c 3197 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3198 if (IS_ERR(fs_info->fs_root)) {
3199 err = PTR_ERR(fs_info->fs_root);
f50f4353 3200 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3201 goto fail_qgroup;
3140c9a3 3202 }
c289811c 3203
bc98a42c 3204 if (sb_rdonly(sb))
2b6ba629 3205 return 0;
59641015 3206
f8d468a1
OS
3207 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3208 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3209 clear_free_space_tree = 1;
3210 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3211 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3212 btrfs_warn(fs_info, "free space tree is invalid");
3213 clear_free_space_tree = 1;
3214 }
3215
3216 if (clear_free_space_tree) {
f8d468a1
OS
3217 btrfs_info(fs_info, "clearing free space tree");
3218 ret = btrfs_clear_free_space_tree(fs_info);
3219 if (ret) {
3220 btrfs_warn(fs_info,
3221 "failed to clear free space tree: %d", ret);
6bccf3ab 3222 close_ctree(fs_info);
f8d468a1
OS
3223 return ret;
3224 }
3225 }
3226
0b246afa 3227 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3228 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3229 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3230 ret = btrfs_create_free_space_tree(fs_info);
3231 if (ret) {
05135f59
DS
3232 btrfs_warn(fs_info,
3233 "failed to create free space tree: %d", ret);
6bccf3ab 3234 close_ctree(fs_info);
511711af
CM
3235 return ret;
3236 }
3237 }
3238
2b6ba629
ID
3239 down_read(&fs_info->cleanup_work_sem);
3240 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3241 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3242 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3243 close_ctree(fs_info);
2b6ba629
ID
3244 return ret;
3245 }
3246 up_read(&fs_info->cleanup_work_sem);
59641015 3247
2b6ba629
ID
3248 ret = btrfs_resume_balance_async(fs_info);
3249 if (ret) {
05135f59 3250 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3251 close_ctree(fs_info);
2b6ba629 3252 return ret;
e3acc2a6
JB
3253 }
3254
8dabb742
SB
3255 ret = btrfs_resume_dev_replace_async(fs_info);
3256 if (ret) {
05135f59 3257 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3258 close_ctree(fs_info);
8dabb742
SB
3259 return ret;
3260 }
3261
b382a324
JS
3262 btrfs_qgroup_rescan_resume(fs_info);
3263
4bbcaa64 3264 if (!fs_info->uuid_root) {
05135f59 3265 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3266 ret = btrfs_create_uuid_tree(fs_info);
3267 if (ret) {
05135f59
DS
3268 btrfs_warn(fs_info,
3269 "failed to create the UUID tree: %d", ret);
6bccf3ab 3270 close_ctree(fs_info);
f7a81ea4
SB
3271 return ret;
3272 }
0b246afa 3273 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3274 fs_info->generation !=
3275 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3276 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3277 ret = btrfs_check_uuid_tree(fs_info);
3278 if (ret) {
05135f59
DS
3279 btrfs_warn(fs_info,
3280 "failed to check the UUID tree: %d", ret);
6bccf3ab 3281 close_ctree(fs_info);
70f80175
SB
3282 return ret;
3283 }
3284 } else {
afcdd129 3285 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3286 }
afcdd129 3287 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3288
8dcddfa0
QW
3289 /*
3290 * backuproot only affect mount behavior, and if open_ctree succeeded,
3291 * no need to keep the flag
3292 */
3293 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3294
ad2b2c80 3295 return 0;
39279cc3 3296
bcef60f2
AJ
3297fail_qgroup:
3298 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3299fail_trans_kthread:
3300 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3301 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3302 btrfs_free_fs_roots(fs_info);
3f157a2f 3303fail_cleaner:
a74a4b97 3304 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3305
3306 /*
3307 * make sure we're done with the btree inode before we stop our
3308 * kthreads
3309 */
3310 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3311
2365dd3c 3312fail_sysfs:
6618a59b 3313 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3314
b7c35e81
AJ
3315fail_fsdev_sysfs:
3316 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3317
1b1d1f66 3318fail_block_groups:
54067ae9 3319 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3320
3321fail_tree_roots:
3322 free_root_pointers(fs_info, 1);
2b8195bb 3323 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3324
39279cc3 3325fail_sb_buffer:
7abadb64 3326 btrfs_stop_all_workers(fs_info);
5cdd7db6 3327 btrfs_free_block_groups(fs_info);
16cdcec7 3328fail_alloc:
4543df7e 3329fail_iput:
586e46e2
ID
3330 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3331
4543df7e 3332 iput(fs_info->btree_inode);
c404e0dc 3333fail_bio_counter:
7f8d236a 3334 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3335fail_delalloc_bytes:
3336 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3337fail_dirty_metadata_bytes:
3338 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3339fail_srcu:
3340 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3341fail:
53b381b3 3342 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3343 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3344 return err;
af31f5e5
CM
3345
3346recovery_tree_root:
0b246afa 3347 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3348 goto fail_tree_roots;
3349
3350 free_root_pointers(fs_info, 0);
3351
3352 /* don't use the log in recovery mode, it won't be valid */
3353 btrfs_set_super_log_root(disk_super, 0);
3354
3355 /* we can't trust the free space cache either */
3356 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3357
3358 ret = next_root_backup(fs_info, fs_info->super_copy,
3359 &num_backups_tried, &backup_index);
3360 if (ret == -1)
3361 goto fail_block_groups;
3362 goto retry_root_backup;
eb60ceac 3363}
663faf9f 3364ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3365
f2984462
CM
3366static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3367{
f2984462
CM
3368 if (uptodate) {
3369 set_buffer_uptodate(bh);
3370 } else {
442a4f63
SB
3371 struct btrfs_device *device = (struct btrfs_device *)
3372 bh->b_private;
3373
fb456252 3374 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3375 "lost page write due to IO error on %s",
606686ee 3376 rcu_str_deref(device->name));
01327610 3377 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3378 * our own ways of dealing with the IO errors
3379 */
f2984462 3380 clear_buffer_uptodate(bh);
442a4f63 3381 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3382 }
3383 unlock_buffer(bh);
3384 put_bh(bh);
3385}
3386
29c36d72
AJ
3387int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3388 struct buffer_head **bh_ret)
3389{
3390 struct buffer_head *bh;
3391 struct btrfs_super_block *super;
3392 u64 bytenr;
3393
3394 bytenr = btrfs_sb_offset(copy_num);
3395 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3396 return -EINVAL;
3397
9f6d2510 3398 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3399 /*
3400 * If we fail to read from the underlying devices, as of now
3401 * the best option we have is to mark it EIO.
3402 */
3403 if (!bh)
3404 return -EIO;
3405
3406 super = (struct btrfs_super_block *)bh->b_data;
3407 if (btrfs_super_bytenr(super) != bytenr ||
3408 btrfs_super_magic(super) != BTRFS_MAGIC) {
3409 brelse(bh);
3410 return -EINVAL;
3411 }
3412
3413 *bh_ret = bh;
3414 return 0;
3415}
3416
3417
a512bbf8
YZ
3418struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3419{
3420 struct buffer_head *bh;
3421 struct buffer_head *latest = NULL;
3422 struct btrfs_super_block *super;
3423 int i;
3424 u64 transid = 0;
92fc03fb 3425 int ret = -EINVAL;
a512bbf8
YZ
3426
3427 /* we would like to check all the supers, but that would make
3428 * a btrfs mount succeed after a mkfs from a different FS.
3429 * So, we need to add a special mount option to scan for
3430 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3431 */
3432 for (i = 0; i < 1; i++) {
29c36d72
AJ
3433 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3434 if (ret)
a512bbf8
YZ
3435 continue;
3436
3437 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3438
3439 if (!latest || btrfs_super_generation(super) > transid) {
3440 brelse(latest);
3441 latest = bh;
3442 transid = btrfs_super_generation(super);
3443 } else {
3444 brelse(bh);
3445 }
3446 }
92fc03fb
AJ
3447
3448 if (!latest)
3449 return ERR_PTR(ret);
3450
a512bbf8
YZ
3451 return latest;
3452}
3453
4eedeb75 3454/*
abbb3b8e
DS
3455 * Write superblock @sb to the @device. Do not wait for completion, all the
3456 * buffer heads we write are pinned.
4eedeb75 3457 *
abbb3b8e
DS
3458 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3459 * the expected device size at commit time. Note that max_mirrors must be
3460 * same for write and wait phases.
4eedeb75 3461 *
abbb3b8e 3462 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3463 */
a512bbf8 3464static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3465 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3466{
3467 struct buffer_head *bh;
3468 int i;
3469 int ret;
3470 int errors = 0;
3471 u32 crc;
3472 u64 bytenr;
1b9e619c 3473 int op_flags;
a512bbf8
YZ
3474
3475 if (max_mirrors == 0)
3476 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3477
a512bbf8
YZ
3478 for (i = 0; i < max_mirrors; i++) {
3479 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3480 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3481 device->commit_total_bytes)
a512bbf8
YZ
3482 break;
3483
abbb3b8e 3484 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3485
abbb3b8e
DS
3486 crc = ~(u32)0;
3487 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3488 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3489 btrfs_csum_final(crc, sb->csum);
4eedeb75 3490
abbb3b8e 3491 /* One reference for us, and we leave it for the caller */
9f6d2510 3492 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3493 BTRFS_SUPER_INFO_SIZE);
3494 if (!bh) {
3495 btrfs_err(device->fs_info,
3496 "couldn't get super buffer head for bytenr %llu",
3497 bytenr);
3498 errors++;
4eedeb75 3499 continue;
abbb3b8e 3500 }
634554dc 3501
abbb3b8e 3502 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3503
abbb3b8e
DS
3504 /* one reference for submit_bh */
3505 get_bh(bh);
4eedeb75 3506
abbb3b8e
DS
3507 set_buffer_uptodate(bh);
3508 lock_buffer(bh);
3509 bh->b_end_io = btrfs_end_buffer_write_sync;
3510 bh->b_private = device;
a512bbf8 3511
387125fc
CM
3512 /*
3513 * we fua the first super. The others we allow
3514 * to go down lazy.
3515 */
1b9e619c
OS
3516 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3517 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3518 op_flags |= REQ_FUA;
3519 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3520 if (ret)
a512bbf8 3521 errors++;
a512bbf8
YZ
3522 }
3523 return errors < i ? 0 : -1;
3524}
3525
abbb3b8e
DS
3526/*
3527 * Wait for write completion of superblocks done by write_dev_supers,
3528 * @max_mirrors same for write and wait phases.
3529 *
3530 * Return number of errors when buffer head is not found or not marked up to
3531 * date.
3532 */
3533static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3534{
3535 struct buffer_head *bh;
3536 int i;
3537 int errors = 0;
b6a535fa 3538 bool primary_failed = false;
abbb3b8e
DS
3539 u64 bytenr;
3540
3541 if (max_mirrors == 0)
3542 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3543
3544 for (i = 0; i < max_mirrors; i++) {
3545 bytenr = btrfs_sb_offset(i);
3546 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3547 device->commit_total_bytes)
3548 break;
3549
9f6d2510
DS
3550 bh = __find_get_block(device->bdev,
3551 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3552 BTRFS_SUPER_INFO_SIZE);
3553 if (!bh) {
3554 errors++;
b6a535fa
HM
3555 if (i == 0)
3556 primary_failed = true;
abbb3b8e
DS
3557 continue;
3558 }
3559 wait_on_buffer(bh);
b6a535fa 3560 if (!buffer_uptodate(bh)) {
abbb3b8e 3561 errors++;
b6a535fa
HM
3562 if (i == 0)
3563 primary_failed = true;
3564 }
abbb3b8e
DS
3565
3566 /* drop our reference */
3567 brelse(bh);
3568
3569 /* drop the reference from the writing run */
3570 brelse(bh);
3571 }
3572
b6a535fa
HM
3573 /* log error, force error return */
3574 if (primary_failed) {
3575 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3576 device->devid);
3577 return -1;
3578 }
3579
abbb3b8e
DS
3580 return errors < i ? 0 : -1;
3581}
3582
387125fc
CM
3583/*
3584 * endio for the write_dev_flush, this will wake anyone waiting
3585 * for the barrier when it is done
3586 */
4246a0b6 3587static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3588{
e0ae9994 3589 complete(bio->bi_private);
387125fc
CM
3590}
3591
3592/*
4fc6441a
AJ
3593 * Submit a flush request to the device if it supports it. Error handling is
3594 * done in the waiting counterpart.
387125fc 3595 */
4fc6441a 3596static void write_dev_flush(struct btrfs_device *device)
387125fc 3597{
c2a9c7ab 3598 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3599 struct bio *bio = device->flush_bio;
387125fc 3600
c2a9c7ab 3601 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3602 return;
387125fc 3603
e0ae9994 3604 bio_reset(bio);
387125fc 3605 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3606 bio_set_dev(bio, device->bdev);
8d910125 3607 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3608 init_completion(&device->flush_wait);
3609 bio->bi_private = &device->flush_wait;
387125fc 3610
43a01111 3611 btrfsic_submit_bio(bio);
1c3063b6 3612 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3613}
387125fc 3614
4fc6441a
AJ
3615/*
3616 * If the flush bio has been submitted by write_dev_flush, wait for it.
3617 */
8c27cb35 3618static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3619{
4fc6441a 3620 struct bio *bio = device->flush_bio;
387125fc 3621
1c3063b6 3622 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3623 return BLK_STS_OK;
387125fc 3624
1c3063b6 3625 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3626 wait_for_completion_io(&device->flush_wait);
387125fc 3627
8c27cb35 3628 return bio->bi_status;
387125fc 3629}
387125fc 3630
d10b82fe 3631static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3632{
6528b99d 3633 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3634 return -EIO;
387125fc
CM
3635 return 0;
3636}
3637
3638/*
3639 * send an empty flush down to each device in parallel,
3640 * then wait for them
3641 */
3642static int barrier_all_devices(struct btrfs_fs_info *info)
3643{
3644 struct list_head *head;
3645 struct btrfs_device *dev;
5af3e8cc 3646 int errors_wait = 0;
4e4cbee9 3647 blk_status_t ret;
387125fc 3648
1538e6c5 3649 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3650 /* send down all the barriers */
3651 head = &info->fs_devices->devices;
1538e6c5 3652 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3653 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3654 continue;
cea7c8bf 3655 if (!dev->bdev)
387125fc 3656 continue;
e12c9621 3657 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3658 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3659 continue;
3660
4fc6441a 3661 write_dev_flush(dev);
58efbc9f 3662 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3663 }
3664
3665 /* wait for all the barriers */
1538e6c5 3666 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3667 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3668 continue;
387125fc 3669 if (!dev->bdev) {
5af3e8cc 3670 errors_wait++;
387125fc
CM
3671 continue;
3672 }
e12c9621 3673 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3674 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3675 continue;
3676
4fc6441a 3677 ret = wait_dev_flush(dev);
401b41e5
AJ
3678 if (ret) {
3679 dev->last_flush_error = ret;
66b4993e
DS
3680 btrfs_dev_stat_inc_and_print(dev,
3681 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3682 errors_wait++;
401b41e5
AJ
3683 }
3684 }
3685
cea7c8bf 3686 if (errors_wait) {
401b41e5
AJ
3687 /*
3688 * At some point we need the status of all disks
3689 * to arrive at the volume status. So error checking
3690 * is being pushed to a separate loop.
3691 */
d10b82fe 3692 return check_barrier_error(info);
387125fc 3693 }
387125fc
CM
3694 return 0;
3695}
3696
943c6e99
ZL
3697int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3698{
8789f4fe
ZL
3699 int raid_type;
3700 int min_tolerated = INT_MAX;
943c6e99 3701
8789f4fe
ZL
3702 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3703 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3704 min_tolerated = min(min_tolerated,
3705 btrfs_raid_array[BTRFS_RAID_SINGLE].
3706 tolerated_failures);
943c6e99 3707
8789f4fe
ZL
3708 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3709 if (raid_type == BTRFS_RAID_SINGLE)
3710 continue;
41a6e891 3711 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe
ZL
3712 continue;
3713 min_tolerated = min(min_tolerated,
3714 btrfs_raid_array[raid_type].
3715 tolerated_failures);
3716 }
943c6e99 3717
8789f4fe 3718 if (min_tolerated == INT_MAX) {
ab8d0fc4 3719 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3720 min_tolerated = 0;
3721 }
3722
3723 return min_tolerated;
943c6e99
ZL
3724}
3725
eece6a9c 3726int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3727{
e5e9a520 3728 struct list_head *head;
f2984462 3729 struct btrfs_device *dev;
a061fc8d 3730 struct btrfs_super_block *sb;
f2984462 3731 struct btrfs_dev_item *dev_item;
f2984462
CM
3732 int ret;
3733 int do_barriers;
a236aed1
CM
3734 int max_errors;
3735 int total_errors = 0;
a061fc8d 3736 u64 flags;
f2984462 3737
0b246afa 3738 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3739
3740 /*
3741 * max_mirrors == 0 indicates we're from commit_transaction,
3742 * not from fsync where the tree roots in fs_info have not
3743 * been consistent on disk.
3744 */
3745 if (max_mirrors == 0)
3746 backup_super_roots(fs_info);
f2984462 3747
0b246afa 3748 sb = fs_info->super_for_commit;
a061fc8d 3749 dev_item = &sb->dev_item;
e5e9a520 3750
0b246afa
JM
3751 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3752 head = &fs_info->fs_devices->devices;
3753 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3754
5af3e8cc 3755 if (do_barriers) {
0b246afa 3756 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3757 if (ret) {
3758 mutex_unlock(
0b246afa
JM
3759 &fs_info->fs_devices->device_list_mutex);
3760 btrfs_handle_fs_error(fs_info, ret,
3761 "errors while submitting device barriers.");
5af3e8cc
SB
3762 return ret;
3763 }
3764 }
387125fc 3765
1538e6c5 3766 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3767 if (!dev->bdev) {
3768 total_errors++;
3769 continue;
3770 }
e12c9621 3771 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3772 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3773 continue;
3774
2b82032c 3775 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3776 btrfs_set_stack_device_type(dev_item, dev->type);
3777 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3778 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3779 dev->commit_total_bytes);
ce7213c7
MX
3780 btrfs_set_stack_device_bytes_used(dev_item,
3781 dev->commit_bytes_used);
a061fc8d
CM
3782 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3783 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3784 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3785 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3786 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3787 BTRFS_FSID_SIZE);
a512bbf8 3788
a061fc8d
CM
3789 flags = btrfs_super_flags(sb);
3790 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3791
75cb857d
QW
3792 ret = btrfs_validate_write_super(fs_info, sb);
3793 if (ret < 0) {
3794 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3795 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3796 "unexpected superblock corruption detected");
3797 return -EUCLEAN;
3798 }
3799
abbb3b8e 3800 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3801 if (ret)
3802 total_errors++;
f2984462 3803 }
a236aed1 3804 if (total_errors > max_errors) {
0b246afa
JM
3805 btrfs_err(fs_info, "%d errors while writing supers",
3806 total_errors);
3807 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3808
9d565ba4 3809 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3810 btrfs_handle_fs_error(fs_info, -EIO,
3811 "%d errors while writing supers",
3812 total_errors);
9d565ba4 3813 return -EIO;
a236aed1 3814 }
f2984462 3815
a512bbf8 3816 total_errors = 0;
1538e6c5 3817 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3818 if (!dev->bdev)
3819 continue;
e12c9621 3820 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3821 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3822 continue;
3823
abbb3b8e 3824 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3825 if (ret)
3826 total_errors++;
f2984462 3827 }
0b246afa 3828 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3829 if (total_errors > max_errors) {
0b246afa
JM
3830 btrfs_handle_fs_error(fs_info, -EIO,
3831 "%d errors while writing supers",
3832 total_errors);
79787eaa 3833 return -EIO;
a236aed1 3834 }
f2984462
CM
3835 return 0;
3836}
3837
cb517eab
MX
3838/* Drop a fs root from the radix tree and free it. */
3839void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3840 struct btrfs_root *root)
2619ba1f 3841{
4df27c4d 3842 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3843 radix_tree_delete(&fs_info->fs_roots_radix,
3844 (unsigned long)root->root_key.objectid);
4df27c4d 3845 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3846
3847 if (btrfs_root_refs(&root->root_item) == 0)
3848 synchronize_srcu(&fs_info->subvol_srcu);
3849
1c1ea4f7 3850 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3851 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3852 if (root->reloc_root) {
3853 free_extent_buffer(root->reloc_root->node);
3854 free_extent_buffer(root->reloc_root->commit_root);
3855 btrfs_put_fs_root(root->reloc_root);
3856 root->reloc_root = NULL;
3857 }
3858 }
3321719e 3859
faa2dbf0
JB
3860 if (root->free_ino_pinned)
3861 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3862 if (root->free_ino_ctl)
3863 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3864 btrfs_free_fs_root(root);
4df27c4d
YZ
3865}
3866
84db5ccf 3867void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3868{
57cdc8db 3869 iput(root->ino_cache_inode);
4df27c4d 3870 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3871 if (root->anon_dev)
3872 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3873 if (root->subv_writers)
3874 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3875 free_extent_buffer(root->node);
3876 free_extent_buffer(root->commit_root);
581bb050
LZ
3877 kfree(root->free_ino_ctl);
3878 kfree(root->free_ino_pinned);
b0feb9d9 3879 btrfs_put_fs_root(root);
2619ba1f
CM
3880}
3881
c146afad 3882int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3883{
c146afad
YZ
3884 u64 root_objectid = 0;
3885 struct btrfs_root *gang[8];
65d33fd7
QW
3886 int i = 0;
3887 int err = 0;
3888 unsigned int ret = 0;
3889 int index;
e089f05c 3890
c146afad 3891 while (1) {
65d33fd7 3892 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3893 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3894 (void **)gang, root_objectid,
3895 ARRAY_SIZE(gang));
65d33fd7
QW
3896 if (!ret) {
3897 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3898 break;
65d33fd7 3899 }
5d4f98a2 3900 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3901
c146afad 3902 for (i = 0; i < ret; i++) {
65d33fd7
QW
3903 /* Avoid to grab roots in dead_roots */
3904 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3905 gang[i] = NULL;
3906 continue;
3907 }
3908 /* grab all the search result for later use */
3909 gang[i] = btrfs_grab_fs_root(gang[i]);
3910 }
3911 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3912
65d33fd7
QW
3913 for (i = 0; i < ret; i++) {
3914 if (!gang[i])
3915 continue;
c146afad 3916 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3917 err = btrfs_orphan_cleanup(gang[i]);
3918 if (err)
65d33fd7
QW
3919 break;
3920 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3921 }
3922 root_objectid++;
3923 }
65d33fd7
QW
3924
3925 /* release the uncleaned roots due to error */
3926 for (; i < ret; i++) {
3927 if (gang[i])
3928 btrfs_put_fs_root(gang[i]);
3929 }
3930 return err;
c146afad 3931}
a2135011 3932
6bccf3ab 3933int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3934{
6bccf3ab 3935 struct btrfs_root *root = fs_info->tree_root;
c146afad 3936 struct btrfs_trans_handle *trans;
a74a4b97 3937
0b246afa 3938 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3939 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3940 mutex_unlock(&fs_info->cleaner_mutex);
3941 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3942
3943 /* wait until ongoing cleanup work done */
0b246afa
JM
3944 down_write(&fs_info->cleanup_work_sem);
3945 up_write(&fs_info->cleanup_work_sem);
c71bf099 3946
7a7eaa40 3947 trans = btrfs_join_transaction(root);
3612b495
TI
3948 if (IS_ERR(trans))
3949 return PTR_ERR(trans);
3a45bb20 3950 return btrfs_commit_transaction(trans);
c146afad
YZ
3951}
3952
6bccf3ab 3953void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3954{
c146afad
YZ
3955 int ret;
3956
afcdd129 3957 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3958 /*
3959 * We don't want the cleaner to start new transactions, add more delayed
3960 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3961 * because that frees the task_struct, and the transaction kthread might
3962 * still try to wake up the cleaner.
3963 */
3964 kthread_park(fs_info->cleaner_kthread);
c146afad 3965
7343dd61 3966 /* wait for the qgroup rescan worker to stop */
d06f23d6 3967 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3968
803b2f54
SB
3969 /* wait for the uuid_scan task to finish */
3970 down(&fs_info->uuid_tree_rescan_sem);
3971 /* avoid complains from lockdep et al., set sem back to initial state */
3972 up(&fs_info->uuid_tree_rescan_sem);
3973
837d5b6e 3974 /* pause restriper - we want to resume on mount */
aa1b8cd4 3975 btrfs_pause_balance(fs_info);
837d5b6e 3976
8dabb742
SB
3977 btrfs_dev_replace_suspend_for_unmount(fs_info);
3978
aa1b8cd4 3979 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3980
3981 /* wait for any defraggers to finish */
3982 wait_event(fs_info->transaction_wait,
3983 (atomic_read(&fs_info->defrag_running) == 0));
3984
3985 /* clear out the rbtree of defraggable inodes */
26176e7c 3986 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3987
21c7e756
MX
3988 cancel_work_sync(&fs_info->async_reclaim_work);
3989
bc98a42c 3990 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3991 /*
d6fd0ae2
OS
3992 * The cleaner kthread is stopped, so do one final pass over
3993 * unused block groups.
e44163e1 3994 */
0b246afa 3995 btrfs_delete_unused_bgs(fs_info);
e44163e1 3996
6bccf3ab 3997 ret = btrfs_commit_super(fs_info);
acce952b 3998 if (ret)
04892340 3999 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4000 }
4001
af722733
LB
4002 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4003 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4004 btrfs_error_commit_super(fs_info);
0f7d52f4 4005
e3029d9f
AV
4006 kthread_stop(fs_info->transaction_kthread);
4007 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4008
e187831e 4009 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4010 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4011
04892340 4012 btrfs_free_qgroup_config(fs_info);
fe816d0f 4013 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4014
963d678b 4015 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4016 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4017 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4018 }
bcc63abb 4019
6618a59b 4020 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4021 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4022
faa2dbf0 4023 btrfs_free_fs_roots(fs_info);
d10c5f31 4024
1a4319cc
LB
4025 btrfs_put_block_group_cache(fs_info);
4026
de348ee0
WS
4027 /*
4028 * we must make sure there is not any read request to
4029 * submit after we stopping all workers.
4030 */
4031 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4032 btrfs_stop_all_workers(fs_info);
4033
5cdd7db6
FM
4034 btrfs_free_block_groups(fs_info);
4035
afcdd129 4036 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 4037 free_root_pointers(fs_info, 1);
9ad6b7bc 4038
13e6c37b 4039 iput(fs_info->btree_inode);
d6bfde87 4040
21adbd5c 4041#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4042 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4043 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4044#endif
4045
0b86a832 4046 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4047 btrfs_close_devices(fs_info->fs_devices);
b248a415 4048
e2d84521 4049 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4050 percpu_counter_destroy(&fs_info->delalloc_bytes);
7f8d236a 4051 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4052 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4053
53b381b3 4054 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4055 btrfs_free_ref_cache(fs_info);
eb60ceac
CM
4056}
4057
b9fab919
CM
4058int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4059 int atomic)
5f39d397 4060{
1259ab75 4061 int ret;
727011e0 4062 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4063
0b32f4bb 4064 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4065 if (!ret)
4066 return ret;
4067
4068 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4069 parent_transid, atomic);
4070 if (ret == -EAGAIN)
4071 return ret;
1259ab75 4072 return !ret;
5f39d397
CM
4073}
4074
5f39d397
CM
4075void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4076{
0b246afa 4077 struct btrfs_fs_info *fs_info;
06ea65a3 4078 struct btrfs_root *root;
5f39d397 4079 u64 transid = btrfs_header_generation(buf);
b9473439 4080 int was_dirty;
b4ce94de 4081
06ea65a3
JB
4082#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4083 /*
4084 * This is a fast path so only do this check if we have sanity tests
52042d8e 4085 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4086 * outside of the sanity tests.
4087 */
b0132a3b 4088 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4089 return;
4090#endif
4091 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4092 fs_info = root->fs_info;
b9447ef8 4093 btrfs_assert_tree_locked(buf);
0b246afa 4094 if (transid != fs_info->generation)
5d163e0e 4095 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4096 buf->start, transid, fs_info->generation);
0b32f4bb 4097 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4098 if (!was_dirty)
104b4e51
NB
4099 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4100 buf->len,
4101 fs_info->dirty_metadata_batch);
1f21ef0a 4102#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4103 /*
4104 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4105 * but item data not updated.
4106 * So here we should only check item pointers, not item data.
4107 */
4108 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4109 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4110 btrfs_print_leaf(buf);
1f21ef0a
FM
4111 ASSERT(0);
4112 }
4113#endif
eb60ceac
CM
4114}
4115
2ff7e61e 4116static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4117 int flush_delayed)
16cdcec7
MX
4118{
4119 /*
4120 * looks as though older kernels can get into trouble with
4121 * this code, they end up stuck in balance_dirty_pages forever
4122 */
e2d84521 4123 int ret;
16cdcec7
MX
4124
4125 if (current->flags & PF_MEMALLOC)
4126 return;
4127
b53d3f5d 4128 if (flush_delayed)
2ff7e61e 4129 btrfs_balance_delayed_items(fs_info);
16cdcec7 4130
d814a491
EL
4131 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4132 BTRFS_DIRTY_METADATA_THRESH,
4133 fs_info->dirty_metadata_batch);
e2d84521 4134 if (ret > 0) {
0b246afa 4135 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4136 }
16cdcec7
MX
4137}
4138
2ff7e61e 4139void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4140{
2ff7e61e 4141 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4142}
585ad2c3 4143
2ff7e61e 4144void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4145{
2ff7e61e 4146 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4147}
6b80053d 4148
581c1760
QW
4149int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4150 struct btrfs_key *first_key)
6b80053d 4151{
5ab12d1f 4152 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4153 level, first_key);
6b80053d 4154}
0da5468f 4155
2ff7e61e 4156static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4157{
fe816d0f
NB
4158 /* cleanup FS via transaction */
4159 btrfs_cleanup_transaction(fs_info);
4160
0b246afa 4161 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4162 btrfs_run_delayed_iputs(fs_info);
0b246afa 4163 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4164
0b246afa
JM
4165 down_write(&fs_info->cleanup_work_sem);
4166 up_write(&fs_info->cleanup_work_sem);
acce952b 4167}
4168
143bede5 4169static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4170{
acce952b 4171 struct btrfs_ordered_extent *ordered;
acce952b 4172
199c2a9c 4173 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4174 /*
4175 * This will just short circuit the ordered completion stuff which will
4176 * make sure the ordered extent gets properly cleaned up.
4177 */
199c2a9c 4178 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4179 root_extent_list)
4180 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4181 spin_unlock(&root->ordered_extent_lock);
4182}
4183
4184static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4185{
4186 struct btrfs_root *root;
4187 struct list_head splice;
4188
4189 INIT_LIST_HEAD(&splice);
4190
4191 spin_lock(&fs_info->ordered_root_lock);
4192 list_splice_init(&fs_info->ordered_roots, &splice);
4193 while (!list_empty(&splice)) {
4194 root = list_first_entry(&splice, struct btrfs_root,
4195 ordered_root);
1de2cfde
JB
4196 list_move_tail(&root->ordered_root,
4197 &fs_info->ordered_roots);
199c2a9c 4198
2a85d9ca 4199 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4200 btrfs_destroy_ordered_extents(root);
4201
2a85d9ca
LB
4202 cond_resched();
4203 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4204 }
4205 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4206
4207 /*
4208 * We need this here because if we've been flipped read-only we won't
4209 * get sync() from the umount, so we need to make sure any ordered
4210 * extents that haven't had their dirty pages IO start writeout yet
4211 * actually get run and error out properly.
4212 */
4213 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4214}
4215
35a3621b 4216static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4217 struct btrfs_fs_info *fs_info)
acce952b 4218{
4219 struct rb_node *node;
4220 struct btrfs_delayed_ref_root *delayed_refs;
4221 struct btrfs_delayed_ref_node *ref;
4222 int ret = 0;
4223
4224 delayed_refs = &trans->delayed_refs;
4225
4226 spin_lock(&delayed_refs->lock);
d7df2c79 4227 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4228 spin_unlock(&delayed_refs->lock);
0b246afa 4229 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4230 return ret;
4231 }
4232
5c9d028b 4233 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4234 struct btrfs_delayed_ref_head *head;
0e0adbcf 4235 struct rb_node *n;
e78417d1 4236 bool pin_bytes = false;
acce952b 4237
d7df2c79
JB
4238 head = rb_entry(node, struct btrfs_delayed_ref_head,
4239 href_node);
3069bd26 4240 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4241 continue;
3069bd26 4242
d7df2c79 4243 spin_lock(&head->lock);
e3d03965 4244 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4245 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4246 ref_node);
d7df2c79 4247 ref->in_tree = 0;
e3d03965 4248 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4249 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4250 if (!list_empty(&ref->add_list))
4251 list_del(&ref->add_list);
d7df2c79
JB
4252 atomic_dec(&delayed_refs->num_entries);
4253 btrfs_put_delayed_ref(ref);
e78417d1 4254 }
d7df2c79
JB
4255 if (head->must_insert_reserved)
4256 pin_bytes = true;
4257 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4258 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4259 spin_unlock(&head->lock);
4260 spin_unlock(&delayed_refs->lock);
4261 mutex_unlock(&head->mutex);
acce952b 4262
d7df2c79 4263 if (pin_bytes)
d278850e
JB
4264 btrfs_pin_extent(fs_info, head->bytenr,
4265 head->num_bytes, 1);
31890da0 4266 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4267 btrfs_put_delayed_ref_head(head);
acce952b 4268 cond_resched();
4269 spin_lock(&delayed_refs->lock);
4270 }
4271
4272 spin_unlock(&delayed_refs->lock);
4273
4274 return ret;
4275}
4276
143bede5 4277static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4278{
4279 struct btrfs_inode *btrfs_inode;
4280 struct list_head splice;
4281
4282 INIT_LIST_HEAD(&splice);
4283
eb73c1b7
MX
4284 spin_lock(&root->delalloc_lock);
4285 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4286
4287 while (!list_empty(&splice)) {
fe816d0f 4288 struct inode *inode = NULL;
eb73c1b7
MX
4289 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4290 delalloc_inodes);
fe816d0f 4291 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4292 spin_unlock(&root->delalloc_lock);
acce952b 4293
fe816d0f
NB
4294 /*
4295 * Make sure we get a live inode and that it'll not disappear
4296 * meanwhile.
4297 */
4298 inode = igrab(&btrfs_inode->vfs_inode);
4299 if (inode) {
4300 invalidate_inode_pages2(inode->i_mapping);
4301 iput(inode);
4302 }
eb73c1b7 4303 spin_lock(&root->delalloc_lock);
acce952b 4304 }
eb73c1b7
MX
4305 spin_unlock(&root->delalloc_lock);
4306}
4307
4308static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4309{
4310 struct btrfs_root *root;
4311 struct list_head splice;
4312
4313 INIT_LIST_HEAD(&splice);
4314
4315 spin_lock(&fs_info->delalloc_root_lock);
4316 list_splice_init(&fs_info->delalloc_roots, &splice);
4317 while (!list_empty(&splice)) {
4318 root = list_first_entry(&splice, struct btrfs_root,
4319 delalloc_root);
eb73c1b7
MX
4320 root = btrfs_grab_fs_root(root);
4321 BUG_ON(!root);
4322 spin_unlock(&fs_info->delalloc_root_lock);
4323
4324 btrfs_destroy_delalloc_inodes(root);
4325 btrfs_put_fs_root(root);
4326
4327 spin_lock(&fs_info->delalloc_root_lock);
4328 }
4329 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4330}
4331
2ff7e61e 4332static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4333 struct extent_io_tree *dirty_pages,
4334 int mark)
4335{
4336 int ret;
acce952b 4337 struct extent_buffer *eb;
4338 u64 start = 0;
4339 u64 end;
acce952b 4340
4341 while (1) {
4342 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4343 mark, NULL);
acce952b 4344 if (ret)
4345 break;
4346
91166212 4347 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4348 while (start <= end) {
0b246afa
JM
4349 eb = find_extent_buffer(fs_info, start);
4350 start += fs_info->nodesize;
fd8b2b61 4351 if (!eb)
acce952b 4352 continue;
fd8b2b61 4353 wait_on_extent_buffer_writeback(eb);
acce952b 4354
fd8b2b61
JB
4355 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4356 &eb->bflags))
4357 clear_extent_buffer_dirty(eb);
4358 free_extent_buffer_stale(eb);
acce952b 4359 }
4360 }
4361
4362 return ret;
4363}
4364
2ff7e61e 4365static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4366 struct extent_io_tree *pinned_extents)
4367{
4368 struct extent_io_tree *unpin;
4369 u64 start;
4370 u64 end;
4371 int ret;
ed0eaa14 4372 bool loop = true;
acce952b 4373
4374 unpin = pinned_extents;
ed0eaa14 4375again:
acce952b 4376 while (1) {
0e6ec385
FM
4377 struct extent_state *cached_state = NULL;
4378
fcd5e742
LF
4379 /*
4380 * The btrfs_finish_extent_commit() may get the same range as
4381 * ours between find_first_extent_bit and clear_extent_dirty.
4382 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4383 * the same extent range.
4384 */
4385 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4386 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4387 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4388 if (ret) {
4389 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4390 break;
fcd5e742 4391 }
acce952b 4392
0e6ec385
FM
4393 clear_extent_dirty(unpin, start, end, &cached_state);
4394 free_extent_state(cached_state);
2ff7e61e 4395 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4396 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4397 cond_resched();
4398 }
4399
ed0eaa14 4400 if (loop) {
0b246afa
JM
4401 if (unpin == &fs_info->freed_extents[0])
4402 unpin = &fs_info->freed_extents[1];
ed0eaa14 4403 else
0b246afa 4404 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4405 loop = false;
4406 goto again;
4407 }
4408
acce952b 4409 return 0;
4410}
4411
c79a1751
LB
4412static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4413{
4414 struct inode *inode;
4415
4416 inode = cache->io_ctl.inode;
4417 if (inode) {
4418 invalidate_inode_pages2(inode->i_mapping);
4419 BTRFS_I(inode)->generation = 0;
4420 cache->io_ctl.inode = NULL;
4421 iput(inode);
4422 }
4423 btrfs_put_block_group(cache);
4424}
4425
4426void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4427 struct btrfs_fs_info *fs_info)
c79a1751
LB
4428{
4429 struct btrfs_block_group_cache *cache;
4430
4431 spin_lock(&cur_trans->dirty_bgs_lock);
4432 while (!list_empty(&cur_trans->dirty_bgs)) {
4433 cache = list_first_entry(&cur_trans->dirty_bgs,
4434 struct btrfs_block_group_cache,
4435 dirty_list);
c79a1751
LB
4436
4437 if (!list_empty(&cache->io_list)) {
4438 spin_unlock(&cur_trans->dirty_bgs_lock);
4439 list_del_init(&cache->io_list);
4440 btrfs_cleanup_bg_io(cache);
4441 spin_lock(&cur_trans->dirty_bgs_lock);
4442 }
4443
4444 list_del_init(&cache->dirty_list);
4445 spin_lock(&cache->lock);
4446 cache->disk_cache_state = BTRFS_DC_ERROR;
4447 spin_unlock(&cache->lock);
4448
4449 spin_unlock(&cur_trans->dirty_bgs_lock);
4450 btrfs_put_block_group(cache);
ba2c4d4e 4451 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4452 spin_lock(&cur_trans->dirty_bgs_lock);
4453 }
4454 spin_unlock(&cur_trans->dirty_bgs_lock);
4455
45ae2c18
NB
4456 /*
4457 * Refer to the definition of io_bgs member for details why it's safe
4458 * to use it without any locking
4459 */
c79a1751
LB
4460 while (!list_empty(&cur_trans->io_bgs)) {
4461 cache = list_first_entry(&cur_trans->io_bgs,
4462 struct btrfs_block_group_cache,
4463 io_list);
c79a1751
LB
4464
4465 list_del_init(&cache->io_list);
4466 spin_lock(&cache->lock);
4467 cache->disk_cache_state = BTRFS_DC_ERROR;
4468 spin_unlock(&cache->lock);
4469 btrfs_cleanup_bg_io(cache);
4470 }
4471}
4472
49b25e05 4473void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4474 struct btrfs_fs_info *fs_info)
49b25e05 4475{
bbbf7243
NB
4476 struct btrfs_device *dev, *tmp;
4477
2ff7e61e 4478 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4479 ASSERT(list_empty(&cur_trans->dirty_bgs));
4480 ASSERT(list_empty(&cur_trans->io_bgs));
4481
bbbf7243
NB
4482 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4483 post_commit_list) {
4484 list_del_init(&dev->post_commit_list);
4485 }
4486
2ff7e61e 4487 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4488
4a9d8bde 4489 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4490 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4491
4a9d8bde 4492 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4493 wake_up(&fs_info->transaction_wait);
49b25e05 4494
ccdf9b30
JM
4495 btrfs_destroy_delayed_inodes(fs_info);
4496 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4497
2ff7e61e 4498 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4499 EXTENT_DIRTY);
2ff7e61e 4500 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4501 fs_info->pinned_extents);
49b25e05 4502
4a9d8bde
MX
4503 cur_trans->state =TRANS_STATE_COMPLETED;
4504 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4505}
4506
2ff7e61e 4507static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4508{
4509 struct btrfs_transaction *t;
acce952b 4510
0b246afa 4511 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4512
0b246afa
JM
4513 spin_lock(&fs_info->trans_lock);
4514 while (!list_empty(&fs_info->trans_list)) {
4515 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4516 struct btrfs_transaction, list);
4517 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4518 refcount_inc(&t->use_count);
0b246afa 4519 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4520 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4521 btrfs_put_transaction(t);
0b246afa 4522 spin_lock(&fs_info->trans_lock);
724e2315
JB
4523 continue;
4524 }
0b246afa 4525 if (t == fs_info->running_transaction) {
724e2315 4526 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4527 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4528 /*
4529 * We wait for 0 num_writers since we don't hold a trans
4530 * handle open currently for this transaction.
4531 */
4532 wait_event(t->writer_wait,
4533 atomic_read(&t->num_writers) == 0);
4534 } else {
0b246afa 4535 spin_unlock(&fs_info->trans_lock);
724e2315 4536 }
2ff7e61e 4537 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4538
0b246afa
JM
4539 spin_lock(&fs_info->trans_lock);
4540 if (t == fs_info->running_transaction)
4541 fs_info->running_transaction = NULL;
acce952b 4542 list_del_init(&t->list);
0b246afa 4543 spin_unlock(&fs_info->trans_lock);
acce952b 4544
724e2315 4545 btrfs_put_transaction(t);
2ff7e61e 4546 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4547 spin_lock(&fs_info->trans_lock);
724e2315 4548 }
0b246afa
JM
4549 spin_unlock(&fs_info->trans_lock);
4550 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4551 btrfs_destroy_delayed_inodes(fs_info);
4552 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4553 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4554 btrfs_destroy_all_delalloc_inodes(fs_info);
4555 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4556
4557 return 0;
4558}
4559
e8c9f186 4560static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4561 /* mandatory callbacks */
0b86a832 4562 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4563 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4564};