]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/disk-io.c
btrfs: Pass 0 for bio_offset to btrfs_wq_submit_bio
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
eb60ceac 42
de0022b9
JB
43#ifdef CONFIG_X86
44#include <asm/cpufeature.h>
45#endif
46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
e8c9f186 54static const struct extent_io_ops btree_extent_io_ops;
8b712842 55static void end_workqueue_fn(struct btrfs_work *work);
143bede5 56static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 57static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 58 struct btrfs_fs_info *fs_info);
143bede5 59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 60static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 61 struct extent_io_tree *dirty_pages,
62 int mark);
2ff7e61e 63static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 64 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
65static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 67
d352ac68 68/*
97eb6b69
DS
69 * btrfs_end_io_wq structs are used to do processing in task context when an IO
70 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
71 * by writes to insert metadata for new file extents after IO is complete.
72 */
97eb6b69 73struct btrfs_end_io_wq {
ce9adaa5
CM
74 struct bio *bio;
75 bio_end_io_t *end_io;
76 void *private;
77 struct btrfs_fs_info *info;
4e4cbee9 78 blk_status_t status;
bfebd8b5 79 enum btrfs_wq_endio_type metadata;
8b712842 80 struct btrfs_work work;
ce9adaa5 81};
0da5468f 82
97eb6b69
DS
83static struct kmem_cache *btrfs_end_io_wq_cache;
84
85int __init btrfs_end_io_wq_init(void)
86{
87 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88 sizeof(struct btrfs_end_io_wq),
89 0,
fba4b697 90 SLAB_MEM_SPREAD,
97eb6b69
DS
91 NULL);
92 if (!btrfs_end_io_wq_cache)
93 return -ENOMEM;
94 return 0;
95}
96
e67c718b 97void __cold btrfs_end_io_wq_exit(void)
97eb6b69 98{
5598e900 99 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
100}
101
d352ac68
CM
102/*
103 * async submit bios are used to offload expensive checksumming
104 * onto the worker threads. They checksum file and metadata bios
105 * just before they are sent down the IO stack.
106 */
44b8bd7e 107struct async_submit_bio {
c6100a4b 108 void *private_data;
44b8bd7e 109 struct bio *bio;
a758781d 110 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 111 int mirror_num;
eaf25d93
CM
112 /*
113 * bio_offset is optional, can be used if the pages in the bio
114 * can't tell us where in the file the bio should go
115 */
116 u64 bio_offset;
8b712842 117 struct btrfs_work work;
4e4cbee9 118 blk_status_t status;
44b8bd7e
CM
119};
120
85d4e461
CM
121/*
122 * Lockdep class keys for extent_buffer->lock's in this root. For a given
123 * eb, the lockdep key is determined by the btrfs_root it belongs to and
124 * the level the eb occupies in the tree.
125 *
126 * Different roots are used for different purposes and may nest inside each
127 * other and they require separate keysets. As lockdep keys should be
128 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
129 * by btrfs_root->root_key.objectid. This ensures that all special purpose
130 * roots have separate keysets.
4008c04a 131 *
85d4e461
CM
132 * Lock-nesting across peer nodes is always done with the immediate parent
133 * node locked thus preventing deadlock. As lockdep doesn't know this, use
134 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 135 *
85d4e461
CM
136 * The key is set by the readpage_end_io_hook after the buffer has passed
137 * csum validation but before the pages are unlocked. It is also set by
138 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 139 *
85d4e461
CM
140 * We also add a check to make sure the highest level of the tree is the
141 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
142 * needs update as well.
4008c04a
CM
143 */
144#ifdef CONFIG_DEBUG_LOCK_ALLOC
145# if BTRFS_MAX_LEVEL != 8
146# error
147# endif
85d4e461
CM
148
149static struct btrfs_lockdep_keyset {
150 u64 id; /* root objectid */
151 const char *name_stem; /* lock name stem */
152 char names[BTRFS_MAX_LEVEL + 1][20];
153 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
154} btrfs_lockdep_keysets[] = {
155 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
156 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
157 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
158 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
159 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
160 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 161 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
162 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
163 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
164 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 165 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 166 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 167 { .id = 0, .name_stem = "tree" },
4008c04a 168};
85d4e461
CM
169
170void __init btrfs_init_lockdep(void)
171{
172 int i, j;
173
174 /* initialize lockdep class names */
175 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
176 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
177
178 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
179 snprintf(ks->names[j], sizeof(ks->names[j]),
180 "btrfs-%s-%02d", ks->name_stem, j);
181 }
182}
183
184void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
185 int level)
186{
187 struct btrfs_lockdep_keyset *ks;
188
189 BUG_ON(level >= ARRAY_SIZE(ks->keys));
190
191 /* find the matching keyset, id 0 is the default entry */
192 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
193 if (ks->id == objectid)
194 break;
195
196 lockdep_set_class_and_name(&eb->lock,
197 &ks->keys[level], ks->names[level]);
198}
199
4008c04a
CM
200#endif
201
d352ac68
CM
202/*
203 * extents on the btree inode are pretty simple, there's one extent
204 * that covers the entire device
205 */
6af49dbd 206struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 207 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 208 int create)
7eccb903 209{
3ffbd68c 210 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 211 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
212 struct extent_map *em;
213 int ret;
214
890871be 215 read_lock(&em_tree->lock);
d1310b2e 216 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 217 if (em) {
0b246afa 218 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 219 read_unlock(&em_tree->lock);
5f39d397 220 goto out;
a061fc8d 221 }
890871be 222 read_unlock(&em_tree->lock);
7b13b7b1 223
172ddd60 224 em = alloc_extent_map();
5f39d397
CM
225 if (!em) {
226 em = ERR_PTR(-ENOMEM);
227 goto out;
228 }
229 em->start = 0;
0afbaf8c 230 em->len = (u64)-1;
c8b97818 231 em->block_len = (u64)-1;
5f39d397 232 em->block_start = 0;
0b246afa 233 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 234
890871be 235 write_lock(&em_tree->lock);
09a2a8f9 236 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
237 if (ret == -EEXIST) {
238 free_extent_map(em);
7b13b7b1 239 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 240 if (!em)
0433f20d 241 em = ERR_PTR(-EIO);
5f39d397 242 } else if (ret) {
7b13b7b1 243 free_extent_map(em);
0433f20d 244 em = ERR_PTR(ret);
5f39d397 245 }
890871be 246 write_unlock(&em_tree->lock);
7b13b7b1 247
5f39d397
CM
248out:
249 return em;
7eccb903
CM
250}
251
9ed57367 252u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 253{
9678c543 254 return crc32c(seed, data, len);
19c00ddc
CM
255}
256
0b5e3daf 257void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 258{
7e75bf3f 259 put_unaligned_le32(~crc, result);
19c00ddc
CM
260}
261
d352ac68 262/*
2996e1f8
JT
263 * Compute the csum of a btree block and store the result to provided buffer.
264 *
265 * Returns error if the extent buffer cannot be mapped.
d352ac68 266 */
2996e1f8 267static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 268{
19c00ddc
CM
269 unsigned long len;
270 unsigned long cur_len;
271 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
272 char *kaddr;
273 unsigned long map_start;
274 unsigned long map_len;
275 int err;
276 u32 crc = ~(u32)0;
277
278 len = buf->len - offset;
d397712b 279 while (len > 0) {
d2e174d5
JT
280 /*
281 * Note: we don't need to check for the err == 1 case here, as
282 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
283 * and 'min_len = 32' and the currently implemented mapping
284 * algorithm we cannot cross a page boundary.
285 */
19c00ddc 286 err = map_private_extent_buffer(buf, offset, 32,
a6591715 287 &kaddr, &map_start, &map_len);
c53839fc 288 if (WARN_ON(err))
8bd98f0e 289 return err;
19c00ddc 290 cur_len = min(len, map_len - (offset - map_start));
b0496686 291 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
292 crc, cur_len);
293 len -= cur_len;
294 offset += cur_len;
19c00ddc 295 }
71a63551 296 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 297
19c00ddc
CM
298 btrfs_csum_final(crc, result);
299
19c00ddc
CM
300 return 0;
301}
302
d352ac68
CM
303/*
304 * we can't consider a given block up to date unless the transid of the
305 * block matches the transid in the parent node's pointer. This is how we
306 * detect blocks that either didn't get written at all or got written
307 * in the wrong place.
308 */
1259ab75 309static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
310 struct extent_buffer *eb, u64 parent_transid,
311 int atomic)
1259ab75 312{
2ac55d41 313 struct extent_state *cached_state = NULL;
1259ab75 314 int ret;
2755a0de 315 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
316
317 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
318 return 0;
319
b9fab919
CM
320 if (atomic)
321 return -EAGAIN;
322
a26e8c9f
JB
323 if (need_lock) {
324 btrfs_tree_read_lock(eb);
300aa896 325 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
326 }
327
2ac55d41 328 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 329 &cached_state);
0b32f4bb 330 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
331 btrfs_header_generation(eb) == parent_transid) {
332 ret = 0;
333 goto out;
334 }
94647322
DS
335 btrfs_err_rl(eb->fs_info,
336 "parent transid verify failed on %llu wanted %llu found %llu",
337 eb->start,
29549aec 338 parent_transid, btrfs_header_generation(eb));
1259ab75 339 ret = 1;
a26e8c9f
JB
340
341 /*
342 * Things reading via commit roots that don't have normal protection,
343 * like send, can have a really old block in cache that may point at a
01327610 344 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
345 * if we find an eb that is under IO (dirty/writeback) because we could
346 * end up reading in the stale data and then writing it back out and
347 * making everybody very sad.
348 */
349 if (!extent_buffer_under_io(eb))
350 clear_extent_buffer_uptodate(eb);
33958dc6 351out:
2ac55d41 352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 353 &cached_state);
472b909f
JB
354 if (need_lock)
355 btrfs_tree_read_unlock_blocking(eb);
1259ab75 356 return ret;
1259ab75
CM
357}
358
1104a885
DS
359/*
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
362 */
ab8d0fc4
JM
363static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
364 char *raw_disk_sb)
1104a885
DS
365{
366 struct btrfs_super_block *disk_sb =
367 (struct btrfs_super_block *)raw_disk_sb;
368 u16 csum_type = btrfs_super_csum_type(disk_sb);
369 int ret = 0;
370
371 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
372 u32 crc = ~(u32)0;
776c4a7c 373 char result[sizeof(crc)];
1104a885
DS
374
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 378 * is filled with zeros and is included in the checksum.
1104a885
DS
379 */
380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 btrfs_csum_final(crc, result);
383
776c4a7c 384 if (memcmp(raw_disk_sb, result, sizeof(result)))
1104a885
DS
385 ret = 1;
386 }
387
388 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 389 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
390 csum_type);
391 ret = 1;
392 }
393
394 return ret;
395}
396
e064d5e9 397int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 398 struct btrfs_key *first_key, u64 parent_transid)
581c1760 399{
e064d5e9 400 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
401 int found_level;
402 struct btrfs_key found_key;
403 int ret;
404
405 found_level = btrfs_header_level(eb);
406 if (found_level != level) {
63489055
QW
407 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
408 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
409 btrfs_err(fs_info,
410"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
411 eb->start, level, found_level);
581c1760
QW
412 return -EIO;
413 }
414
415 if (!first_key)
416 return 0;
417
5d41be6f
QW
418 /*
419 * For live tree block (new tree blocks in current transaction),
420 * we need proper lock context to avoid race, which is impossible here.
421 * So we only checks tree blocks which is read from disk, whose
422 * generation <= fs_info->last_trans_committed.
423 */
424 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
425 return 0;
581c1760
QW
426 if (found_level)
427 btrfs_node_key_to_cpu(eb, &found_key, 0);
428 else
429 btrfs_item_key_to_cpu(eb, &found_key, 0);
430 ret = btrfs_comp_cpu_keys(first_key, &found_key);
431
581c1760 432 if (ret) {
63489055
QW
433 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
434 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 435 btrfs_err(fs_info,
ff76a864
LB
436"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
437 eb->start, parent_transid, first_key->objectid,
438 first_key->type, first_key->offset,
439 found_key.objectid, found_key.type,
440 found_key.offset);
581c1760 441 }
581c1760
QW
442 return ret;
443}
444
d352ac68
CM
445/*
446 * helper to read a given tree block, doing retries as required when
447 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
448 *
449 * @parent_transid: expected transid, skip check if 0
450 * @level: expected level, mandatory check
451 * @first_key: expected key of first slot, skip check if NULL
d352ac68 452 */
5ab12d1f 453static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
454 u64 parent_transid, int level,
455 struct btrfs_key *first_key)
f188591e 456{
5ab12d1f 457 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 458 struct extent_io_tree *io_tree;
ea466794 459 int failed = 0;
f188591e
CM
460 int ret;
461 int num_copies = 0;
462 int mirror_num = 0;
ea466794 463 int failed_mirror = 0;
f188591e 464
0b246afa 465 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 466 while (1) {
f8397d69 467 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 468 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 469 if (!ret) {
581c1760 470 if (verify_parent_transid(io_tree, eb,
b9fab919 471 parent_transid, 0))
256dd1bb 472 ret = -EIO;
e064d5e9 473 else if (btrfs_verify_level_key(eb, level,
448de471 474 first_key, parent_transid))
581c1760
QW
475 ret = -EUCLEAN;
476 else
477 break;
256dd1bb 478 }
d397712b 479
0b246afa 480 num_copies = btrfs_num_copies(fs_info,
f188591e 481 eb->start, eb->len);
4235298e 482 if (num_copies == 1)
ea466794 483 break;
4235298e 484
5cf1ab56
JB
485 if (!failed_mirror) {
486 failed = 1;
487 failed_mirror = eb->read_mirror;
488 }
489
f188591e 490 mirror_num++;
ea466794
JB
491 if (mirror_num == failed_mirror)
492 mirror_num++;
493
4235298e 494 if (mirror_num > num_copies)
ea466794 495 break;
f188591e 496 }
ea466794 497
c0901581 498 if (failed && !ret && failed_mirror)
20a1fbf9 499 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
500
501 return ret;
f188591e 502}
19c00ddc 503
d352ac68 504/*
d397712b
CM
505 * checksum a dirty tree block before IO. This has extra checks to make sure
506 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 507 */
d397712b 508
01d58472 509static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 510{
4eee4fa4 511 u64 start = page_offset(page);
19c00ddc 512 u64 found_start;
2996e1f8
JT
513 u8 result[BTRFS_CSUM_SIZE];
514 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 515 struct extent_buffer *eb;
8d47a0d8 516 int ret;
f188591e 517
4f2de97a
JB
518 eb = (struct extent_buffer *)page->private;
519 if (page != eb->pages[0])
520 return 0;
0f805531 521
19c00ddc 522 found_start = btrfs_header_bytenr(eb);
0f805531
AL
523 /*
524 * Please do not consolidate these warnings into a single if.
525 * It is useful to know what went wrong.
526 */
527 if (WARN_ON(found_start != start))
528 return -EUCLEAN;
529 if (WARN_ON(!PageUptodate(page)))
530 return -EUCLEAN;
531
de37aa51 532 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
533 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
534
2996e1f8
JT
535 if (csum_tree_block(eb, result))
536 return -EINVAL;
537
8d47a0d8
QW
538 if (btrfs_header_level(eb))
539 ret = btrfs_check_node(eb);
540 else
541 ret = btrfs_check_leaf_full(eb);
542
543 if (ret < 0) {
544 btrfs_err(fs_info,
545 "block=%llu write time tree block corruption detected",
546 eb->start);
547 return ret;
548 }
2996e1f8 549 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 550
2996e1f8 551 return 0;
19c00ddc
CM
552}
553
b0c9b3b0 554static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 555{
b0c9b3b0 556 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 557 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 558 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
559 int ret = 1;
560
0a4e5586 561 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 562 while (fs_devices) {
7239ff4b
NB
563 u8 *metadata_uuid;
564
565 /*
566 * Checking the incompat flag is only valid for the current
567 * fs. For seed devices it's forbidden to have their uuid
568 * changed so reading ->fsid in this case is fine
569 */
570 if (fs_devices == fs_info->fs_devices &&
571 btrfs_fs_incompat(fs_info, METADATA_UUID))
572 metadata_uuid = fs_devices->metadata_uuid;
573 else
574 metadata_uuid = fs_devices->fsid;
575
576 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
577 ret = 0;
578 break;
579 }
580 fs_devices = fs_devices->seed;
581 }
582 return ret;
583}
584
facc8a22
MX
585static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
586 u64 phy_offset, struct page *page,
587 u64 start, u64 end, int mirror)
ce9adaa5 588{
ce9adaa5
CM
589 u64 found_start;
590 int found_level;
ce9adaa5
CM
591 struct extent_buffer *eb;
592 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 593 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 594 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 595 int ret = 0;
2996e1f8 596 u8 result[BTRFS_CSUM_SIZE];
727011e0 597 int reads_done;
ce9adaa5 598
ce9adaa5
CM
599 if (!page->private)
600 goto out;
d397712b 601
4f2de97a 602 eb = (struct extent_buffer *)page->private;
d397712b 603
0b32f4bb
JB
604 /* the pending IO might have been the only thing that kept this buffer
605 * in memory. Make sure we have a ref for all this other checks
606 */
607 extent_buffer_get(eb);
608
609 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
610 if (!reads_done)
611 goto err;
f188591e 612
5cf1ab56 613 eb->read_mirror = mirror;
656f30db 614 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
615 ret = -EIO;
616 goto err;
617 }
618
ce9adaa5 619 found_start = btrfs_header_bytenr(eb);
727011e0 620 if (found_start != eb->start) {
893bf4b1
SY
621 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
622 eb->start, found_start);
f188591e 623 ret = -EIO;
ce9adaa5
CM
624 goto err;
625 }
b0c9b3b0 626 if (check_tree_block_fsid(eb)) {
02873e43
ZL
627 btrfs_err_rl(fs_info, "bad fsid on block %llu",
628 eb->start);
1259ab75
CM
629 ret = -EIO;
630 goto err;
631 }
ce9adaa5 632 found_level = btrfs_header_level(eb);
1c24c3ce 633 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
634 btrfs_err(fs_info, "bad tree block level %d on %llu",
635 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
636 ret = -EIO;
637 goto err;
638 }
ce9adaa5 639
85d4e461
CM
640 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
641 eb, found_level);
4008c04a 642
2996e1f8 643 ret = csum_tree_block(eb, result);
8bd98f0e 644 if (ret)
a826d6dc 645 goto err;
a826d6dc 646
2996e1f8
JT
647 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
648 u32 val;
649 u32 found = 0;
650
651 memcpy(&found, result, csum_size);
652
653 read_extent_buffer(eb, &val, 0, csum_size);
654 btrfs_warn_rl(fs_info,
655 "%s checksum verify failed on %llu wanted %x found %x level %d",
656 fs_info->sb->s_id, eb->start,
657 val, found, btrfs_header_level(eb));
658 ret = -EUCLEAN;
659 goto err;
660 }
661
a826d6dc
JB
662 /*
663 * If this is a leaf block and it is corrupt, set the corrupt bit so
664 * that we don't try and read the other copies of this block, just
665 * return -EIO.
666 */
1c4360ee 667 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
668 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
669 ret = -EIO;
670 }
ce9adaa5 671
813fd1dc 672 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
673 ret = -EIO;
674
0b32f4bb
JB
675 if (!ret)
676 set_extent_buffer_uptodate(eb);
75391f0d
QW
677 else
678 btrfs_err(fs_info,
679 "block=%llu read time tree block corruption detected",
680 eb->start);
ce9adaa5 681err:
79fb65a1
JB
682 if (reads_done &&
683 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 684 btree_readahead_hook(eb, ret);
4bb31e92 685
53b381b3
DW
686 if (ret) {
687 /*
688 * our io error hook is going to dec the io pages
689 * again, we have to make sure it has something
690 * to decrement
691 */
692 atomic_inc(&eb->io_pages);
0b32f4bb 693 clear_extent_buffer_uptodate(eb);
53b381b3 694 }
0b32f4bb 695 free_extent_buffer(eb);
ce9adaa5 696out:
f188591e 697 return ret;
ce9adaa5
CM
698}
699
4246a0b6 700static void end_workqueue_bio(struct bio *bio)
ce9adaa5 701{
97eb6b69 702 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 703 struct btrfs_fs_info *fs_info;
9e0af237
LB
704 struct btrfs_workqueue *wq;
705 btrfs_work_func_t func;
ce9adaa5 706
ce9adaa5 707 fs_info = end_io_wq->info;
4e4cbee9 708 end_io_wq->status = bio->bi_status;
d20f7043 709
37226b21 710 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
711 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
712 wq = fs_info->endio_meta_write_workers;
713 func = btrfs_endio_meta_write_helper;
714 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
715 wq = fs_info->endio_freespace_worker;
716 func = btrfs_freespace_write_helper;
717 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
718 wq = fs_info->endio_raid56_workers;
719 func = btrfs_endio_raid56_helper;
720 } else {
721 wq = fs_info->endio_write_workers;
722 func = btrfs_endio_write_helper;
723 }
d20f7043 724 } else {
8b110e39
MX
725 if (unlikely(end_io_wq->metadata ==
726 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
727 wq = fs_info->endio_repair_workers;
728 func = btrfs_endio_repair_helper;
729 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
730 wq = fs_info->endio_raid56_workers;
731 func = btrfs_endio_raid56_helper;
732 } else if (end_io_wq->metadata) {
733 wq = fs_info->endio_meta_workers;
734 func = btrfs_endio_meta_helper;
735 } else {
736 wq = fs_info->endio_workers;
737 func = btrfs_endio_helper;
738 }
d20f7043 739 }
9e0af237
LB
740
741 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
742 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
743}
744
4e4cbee9 745blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 746 enum btrfs_wq_endio_type metadata)
0b86a832 747{
97eb6b69 748 struct btrfs_end_io_wq *end_io_wq;
8b110e39 749
97eb6b69 750 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 751 if (!end_io_wq)
4e4cbee9 752 return BLK_STS_RESOURCE;
ce9adaa5
CM
753
754 end_io_wq->private = bio->bi_private;
755 end_io_wq->end_io = bio->bi_end_io;
22c59948 756 end_io_wq->info = info;
4e4cbee9 757 end_io_wq->status = 0;
ce9adaa5 758 end_io_wq->bio = bio;
22c59948 759 end_io_wq->metadata = metadata;
ce9adaa5
CM
760
761 bio->bi_private = end_io_wq;
762 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
763 return 0;
764}
765
4a69a410
CM
766static void run_one_async_start(struct btrfs_work *work)
767{
4a69a410 768 struct async_submit_bio *async;
4e4cbee9 769 blk_status_t ret;
4a69a410
CM
770
771 async = container_of(work, struct async_submit_bio, work);
c6100a4b 772 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
773 async->bio_offset);
774 if (ret)
4e4cbee9 775 async->status = ret;
4a69a410
CM
776}
777
06ea01b1
DS
778/*
779 * In order to insert checksums into the metadata in large chunks, we wait
780 * until bio submission time. All the pages in the bio are checksummed and
781 * sums are attached onto the ordered extent record.
782 *
783 * At IO completion time the csums attached on the ordered extent record are
784 * inserted into the tree.
785 */
4a69a410 786static void run_one_async_done(struct btrfs_work *work)
8b712842 787{
8b712842 788 struct async_submit_bio *async;
06ea01b1
DS
789 struct inode *inode;
790 blk_status_t ret;
8b712842
CM
791
792 async = container_of(work, struct async_submit_bio, work);
06ea01b1 793 inode = async->private_data;
4854ddd0 794
bb7ab3b9 795 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
796 if (async->status) {
797 async->bio->bi_status = async->status;
4246a0b6 798 bio_endio(async->bio);
79787eaa
JM
799 return;
800 }
801
06ea01b1
DS
802 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
803 async->mirror_num, 1);
804 if (ret) {
805 async->bio->bi_status = ret;
806 bio_endio(async->bio);
807 }
4a69a410
CM
808}
809
810static void run_one_async_free(struct btrfs_work *work)
811{
812 struct async_submit_bio *async;
813
814 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
815 kfree(async);
816}
817
8c27cb35
LT
818blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
819 int mirror_num, unsigned long bio_flags,
820 u64 bio_offset, void *private_data,
e288c080 821 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
822{
823 struct async_submit_bio *async;
824
825 async = kmalloc(sizeof(*async), GFP_NOFS);
826 if (!async)
4e4cbee9 827 return BLK_STS_RESOURCE;
44b8bd7e 828
c6100a4b 829 async->private_data = private_data;
44b8bd7e
CM
830 async->bio = bio;
831 async->mirror_num = mirror_num;
4a69a410 832 async->submit_bio_start = submit_bio_start;
4a69a410 833
9e0af237 834 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 835 run_one_async_done, run_one_async_free);
4a69a410 836
eaf25d93 837 async->bio_offset = bio_offset;
8c8bee1d 838
4e4cbee9 839 async->status = 0;
79787eaa 840
67f055c7 841 if (op_is_sync(bio->bi_opf))
5cdc7ad3 842 btrfs_set_work_high_priority(&async->work);
d313d7a3 843
5cdc7ad3 844 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
845 return 0;
846}
847
4e4cbee9 848static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 849{
2c30c71b 850 struct bio_vec *bvec;
ce3ed71a 851 struct btrfs_root *root;
2c30c71b 852 int i, ret = 0;
6dc4f100 853 struct bvec_iter_all iter_all;
ce3ed71a 854
c09abff8 855 ASSERT(!bio_flagged(bio, BIO_CLONED));
6dc4f100 856 bio_for_each_segment_all(bvec, bio, i, iter_all) {
ce3ed71a 857 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 858 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
859 if (ret)
860 break;
ce3ed71a 861 }
2c30c71b 862
4e4cbee9 863 return errno_to_blk_status(ret);
ce3ed71a
CM
864}
865
d0ee3934 866static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 867 u64 bio_offset)
22c59948 868{
8b712842
CM
869 /*
870 * when we're called for a write, we're already in the async
5443be45 871 * submission context. Just jump into btrfs_map_bio
8b712842 872 */
79787eaa 873 return btree_csum_one_bio(bio);
4a69a410 874}
22c59948 875
18fdc679 876static int check_async_write(struct btrfs_inode *bi)
de0022b9 877{
6300463b
LB
878 if (atomic_read(&bi->sync_writers))
879 return 0;
de0022b9 880#ifdef CONFIG_X86
bc696ca0 881 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
882 return 0;
883#endif
884 return 1;
885}
886
a56b1c7b 887static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
8c27cb35
LT
888 int mirror_num, unsigned long bio_flags,
889 u64 bio_offset)
44b8bd7e 890{
0b246afa 891 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 892 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 893 blk_status_t ret;
cad321ad 894
37226b21 895 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
896 /*
897 * called for a read, do the setup so that checksum validation
898 * can happen in the async kernel threads
899 */
0b246afa
JM
900 ret = btrfs_bio_wq_end_io(fs_info, bio,
901 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 902 if (ret)
61891923 903 goto out_w_error;
2ff7e61e 904 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
905 } else if (!async) {
906 ret = btree_csum_one_bio(bio);
907 if (ret)
61891923 908 goto out_w_error;
2ff7e61e 909 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
910 } else {
911 /*
912 * kthread helpers are used to submit writes so that
913 * checksumming can happen in parallel across all CPUs
914 */
c6100a4b 915 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
a56b1c7b 916 bio_offset, inode,
e288c080 917 btree_submit_bio_start);
44b8bd7e 918 }
d313d7a3 919
4246a0b6
CH
920 if (ret)
921 goto out_w_error;
922 return 0;
923
61891923 924out_w_error:
4e4cbee9 925 bio->bi_status = ret;
4246a0b6 926 bio_endio(bio);
61891923 927 return ret;
44b8bd7e
CM
928}
929
3dd1462e 930#ifdef CONFIG_MIGRATION
784b4e29 931static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
932 struct page *newpage, struct page *page,
933 enum migrate_mode mode)
784b4e29
CM
934{
935 /*
936 * we can't safely write a btree page from here,
937 * we haven't done the locking hook
938 */
939 if (PageDirty(page))
940 return -EAGAIN;
941 /*
942 * Buffers may be managed in a filesystem specific way.
943 * We must have no buffers or drop them.
944 */
945 if (page_has_private(page) &&
946 !try_to_release_page(page, GFP_KERNEL))
947 return -EAGAIN;
a6bc32b8 948 return migrate_page(mapping, newpage, page, mode);
784b4e29 949}
3dd1462e 950#endif
784b4e29 951
0da5468f
CM
952
953static int btree_writepages(struct address_space *mapping,
954 struct writeback_control *wbc)
955{
e2d84521
MX
956 struct btrfs_fs_info *fs_info;
957 int ret;
958
d8d5f3e1 959 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
960
961 if (wbc->for_kupdate)
962 return 0;
963
e2d84521 964 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 965 /* this is a bit racy, but that's ok */
d814a491
EL
966 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
967 BTRFS_DIRTY_METADATA_THRESH,
968 fs_info->dirty_metadata_batch);
e2d84521 969 if (ret < 0)
793955bc 970 return 0;
793955bc 971 }
0b32f4bb 972 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
973}
974
b2950863 975static int btree_readpage(struct file *file, struct page *page)
5f39d397 976{
d1310b2e
CM
977 struct extent_io_tree *tree;
978 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 979 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 980}
22b0ebda 981
70dec807 982static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 983{
98509cfc 984 if (PageWriteback(page) || PageDirty(page))
d397712b 985 return 0;
0c4e538b 986
f7a52a40 987 return try_release_extent_buffer(page);
d98237b3
CM
988}
989
d47992f8
LC
990static void btree_invalidatepage(struct page *page, unsigned int offset,
991 unsigned int length)
d98237b3 992{
d1310b2e
CM
993 struct extent_io_tree *tree;
994 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
995 extent_invalidatepage(tree, page, offset);
996 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 997 if (PagePrivate(page)) {
efe120a0
FH
998 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
999 "page private not zero on page %llu",
1000 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1001 ClearPagePrivate(page);
1002 set_page_private(page, 0);
09cbfeaf 1003 put_page(page);
9ad6b7bc 1004 }
d98237b3
CM
1005}
1006
0b32f4bb
JB
1007static int btree_set_page_dirty(struct page *page)
1008{
bb146eb2 1009#ifdef DEBUG
0b32f4bb
JB
1010 struct extent_buffer *eb;
1011
1012 BUG_ON(!PagePrivate(page));
1013 eb = (struct extent_buffer *)page->private;
1014 BUG_ON(!eb);
1015 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1016 BUG_ON(!atomic_read(&eb->refs));
1017 btrfs_assert_tree_locked(eb);
bb146eb2 1018#endif
0b32f4bb
JB
1019 return __set_page_dirty_nobuffers(page);
1020}
1021
7f09410b 1022static const struct address_space_operations btree_aops = {
d98237b3 1023 .readpage = btree_readpage,
0da5468f 1024 .writepages = btree_writepages,
5f39d397
CM
1025 .releasepage = btree_releasepage,
1026 .invalidatepage = btree_invalidatepage,
5a92bc88 1027#ifdef CONFIG_MIGRATION
784b4e29 1028 .migratepage = btree_migratepage,
5a92bc88 1029#endif
0b32f4bb 1030 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1031};
1032
2ff7e61e 1033void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1034{
5f39d397 1035 struct extent_buffer *buf = NULL;
537f38f0 1036 int ret;
090d1875 1037
2ff7e61e 1038 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1039 if (IS_ERR(buf))
6197d86e 1040 return;
537f38f0 1041
c2ccfbc6 1042 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1043 if (ret < 0)
1044 free_extent_buffer_stale(buf);
1045 else
1046 free_extent_buffer(buf);
090d1875
CM
1047}
1048
2ff7e61e 1049int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1050 int mirror_num, struct extent_buffer **eb)
1051{
1052 struct extent_buffer *buf = NULL;
ab0fff03
AJ
1053 int ret;
1054
2ff7e61e 1055 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1056 if (IS_ERR(buf))
ab0fff03
AJ
1057 return 0;
1058
1059 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1060
c2ccfbc6 1061 ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
ab0fff03 1062 if (ret) {
537f38f0 1063 free_extent_buffer_stale(buf);
ab0fff03
AJ
1064 return ret;
1065 }
1066
1067 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
537f38f0 1068 free_extent_buffer_stale(buf);
ab0fff03 1069 return -EIO;
0b32f4bb 1070 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1071 *eb = buf;
1072 } else {
1073 free_extent_buffer(buf);
1074 }
1075 return 0;
1076}
1077
2ff7e61e
JM
1078struct extent_buffer *btrfs_find_create_tree_block(
1079 struct btrfs_fs_info *fs_info,
1080 u64 bytenr)
0999df54 1081{
0b246afa
JM
1082 if (btrfs_is_testing(fs_info))
1083 return alloc_test_extent_buffer(fs_info, bytenr);
1084 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1085}
1086
581c1760
QW
1087/*
1088 * Read tree block at logical address @bytenr and do variant basic but critical
1089 * verification.
1090 *
1091 * @parent_transid: expected transid of this tree block, skip check if 0
1092 * @level: expected level, mandatory check
1093 * @first_key: expected key in slot 0, skip check if NULL
1094 */
2ff7e61e 1095struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1096 u64 parent_transid, int level,
1097 struct btrfs_key *first_key)
0999df54
CM
1098{
1099 struct extent_buffer *buf = NULL;
0999df54
CM
1100 int ret;
1101
2ff7e61e 1102 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1103 if (IS_ERR(buf))
1104 return buf;
0999df54 1105
5ab12d1f 1106 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1107 level, first_key);
0f0fe8f7 1108 if (ret) {
537f38f0 1109 free_extent_buffer_stale(buf);
64c043de 1110 return ERR_PTR(ret);
0f0fe8f7 1111 }
5f39d397 1112 return buf;
ce9adaa5 1113
eb60ceac
CM
1114}
1115
6a884d7d 1116void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1117{
6a884d7d 1118 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1119 if (btrfs_header_generation(buf) ==
e2d84521 1120 fs_info->running_transaction->transid) {
b9447ef8 1121 btrfs_assert_tree_locked(buf);
b4ce94de 1122
b9473439 1123 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1124 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1125 -buf->len,
1126 fs_info->dirty_metadata_batch);
ed7b63eb 1127 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1128 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1129 clear_extent_buffer_dirty(buf);
1130 }
925baedd 1131 }
5f39d397
CM
1132}
1133
8257b2dc
MX
1134static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1135{
1136 struct btrfs_subvolume_writers *writers;
1137 int ret;
1138
1139 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1140 if (!writers)
1141 return ERR_PTR(-ENOMEM);
1142
8a5a916d 1143 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1144 if (ret < 0) {
1145 kfree(writers);
1146 return ERR_PTR(ret);
1147 }
1148
1149 init_waitqueue_head(&writers->wait);
1150 return writers;
1151}
1152
1153static void
1154btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1155{
1156 percpu_counter_destroy(&writers->counter);
1157 kfree(writers);
1158}
1159
da17066c 1160static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1161 u64 objectid)
d97e63b6 1162{
7c0260ee 1163 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1164 root->node = NULL;
a28ec197 1165 root->commit_root = NULL;
27cdeb70 1166 root->state = 0;
d68fc57b 1167 root->orphan_cleanup_state = 0;
0b86a832 1168
0f7d52f4 1169 root->last_trans = 0;
13a8a7c8 1170 root->highest_objectid = 0;
eb73c1b7 1171 root->nr_delalloc_inodes = 0;
199c2a9c 1172 root->nr_ordered_extents = 0;
6bef4d31 1173 root->inode_tree = RB_ROOT;
16cdcec7 1174 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1175 root->block_rsv = NULL;
0b86a832
CM
1176
1177 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1178 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1179 INIT_LIST_HEAD(&root->delalloc_inodes);
1180 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1181 INIT_LIST_HEAD(&root->ordered_extents);
1182 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1183 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1184 INIT_LIST_HEAD(&root->logged_list[0]);
1185 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1186 spin_lock_init(&root->inode_lock);
eb73c1b7 1187 spin_lock_init(&root->delalloc_lock);
199c2a9c 1188 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1189 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1190 spin_lock_init(&root->log_extents_lock[0]);
1191 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1192 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1193 mutex_init(&root->objectid_mutex);
e02119d5 1194 mutex_init(&root->log_mutex);
31f3d255 1195 mutex_init(&root->ordered_extent_mutex);
573bfb72 1196 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1197 init_waitqueue_head(&root->log_writer_wait);
1198 init_waitqueue_head(&root->log_commit_wait[0]);
1199 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1200 INIT_LIST_HEAD(&root->log_ctxs[0]);
1201 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1202 atomic_set(&root->log_commit[0], 0);
1203 atomic_set(&root->log_commit[1], 0);
1204 atomic_set(&root->log_writers, 0);
2ecb7923 1205 atomic_set(&root->log_batch, 0);
0700cea7 1206 refcount_set(&root->refs, 1);
ea14b57f 1207 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1208 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1209 atomic_set(&root->nr_swapfiles, 0);
7237f183 1210 root->log_transid = 0;
d1433deb 1211 root->log_transid_committed = -1;
257c62e1 1212 root->last_log_commit = 0;
7c0260ee 1213 if (!dummy)
43eb5f29
QW
1214 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1215 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1216
3768f368
CM
1217 memset(&root->root_key, 0, sizeof(root->root_key));
1218 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1219 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1220 if (!dummy)
06ea65a3
JB
1221 root->defrag_trans_start = fs_info->generation;
1222 else
1223 root->defrag_trans_start = 0;
4d775673 1224 root->root_key.objectid = objectid;
0ee5dc67 1225 root->anon_dev = 0;
8ea05e3a 1226
5f3ab90a 1227 spin_lock_init(&root->root_item_lock);
370a11b8 1228 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1229}
1230
74e4d827
DS
1231static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1232 gfp_t flags)
6f07e42e 1233{
74e4d827 1234 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1235 if (root)
1236 root->fs_info = fs_info;
1237 return root;
1238}
1239
06ea65a3
JB
1240#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1241/* Should only be used by the testing infrastructure */
da17066c 1242struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1243{
1244 struct btrfs_root *root;
1245
7c0260ee
JM
1246 if (!fs_info)
1247 return ERR_PTR(-EINVAL);
1248
1249 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1250 if (!root)
1251 return ERR_PTR(-ENOMEM);
da17066c 1252
b9ef22de 1253 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1254 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1255 root->alloc_bytenr = 0;
06ea65a3
JB
1256
1257 return root;
1258}
1259#endif
1260
20897f5c 1261struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1262 u64 objectid)
1263{
9b7a2440 1264 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1265 struct extent_buffer *leaf;
1266 struct btrfs_root *tree_root = fs_info->tree_root;
1267 struct btrfs_root *root;
1268 struct btrfs_key key;
b89f6d1f 1269 unsigned int nofs_flag;
20897f5c 1270 int ret = 0;
33d85fda 1271 uuid_le uuid = NULL_UUID_LE;
20897f5c 1272
b89f6d1f
FM
1273 /*
1274 * We're holding a transaction handle, so use a NOFS memory allocation
1275 * context to avoid deadlock if reclaim happens.
1276 */
1277 nofs_flag = memalloc_nofs_save();
74e4d827 1278 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1279 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1280 if (!root)
1281 return ERR_PTR(-ENOMEM);
1282
da17066c 1283 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1284 root->root_key.objectid = objectid;
1285 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1286 root->root_key.offset = 0;
1287
4d75f8a9 1288 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1289 if (IS_ERR(leaf)) {
1290 ret = PTR_ERR(leaf);
1dd05682 1291 leaf = NULL;
20897f5c
AJ
1292 goto fail;
1293 }
1294
20897f5c 1295 root->node = leaf;
20897f5c
AJ
1296 btrfs_mark_buffer_dirty(leaf);
1297
1298 root->commit_root = btrfs_root_node(root);
27cdeb70 1299 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1300
1301 root->root_item.flags = 0;
1302 root->root_item.byte_limit = 0;
1303 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1304 btrfs_set_root_generation(&root->root_item, trans->transid);
1305 btrfs_set_root_level(&root->root_item, 0);
1306 btrfs_set_root_refs(&root->root_item, 1);
1307 btrfs_set_root_used(&root->root_item, leaf->len);
1308 btrfs_set_root_last_snapshot(&root->root_item, 0);
1309 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1310 if (is_fstree(objectid))
1311 uuid_le_gen(&uuid);
6463fe58 1312 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1313 root->root_item.drop_level = 0;
1314
1315 key.objectid = objectid;
1316 key.type = BTRFS_ROOT_ITEM_KEY;
1317 key.offset = 0;
1318 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1319 if (ret)
1320 goto fail;
1321
1322 btrfs_tree_unlock(leaf);
1323
1dd05682
TI
1324 return root;
1325
20897f5c 1326fail:
1dd05682
TI
1327 if (leaf) {
1328 btrfs_tree_unlock(leaf);
59885b39 1329 free_extent_buffer(root->commit_root);
1dd05682
TI
1330 free_extent_buffer(leaf);
1331 }
1332 kfree(root);
20897f5c 1333
1dd05682 1334 return ERR_PTR(ret);
20897f5c
AJ
1335}
1336
7237f183
YZ
1337static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1338 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1339{
1340 struct btrfs_root *root;
7237f183 1341 struct extent_buffer *leaf;
e02119d5 1342
74e4d827 1343 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1344 if (!root)
7237f183 1345 return ERR_PTR(-ENOMEM);
e02119d5 1346
da17066c 1347 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1348
1349 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1350 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1351 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1352
7237f183 1353 /*
27cdeb70
MX
1354 * DON'T set REF_COWS for log trees
1355 *
7237f183
YZ
1356 * log trees do not get reference counted because they go away
1357 * before a real commit is actually done. They do store pointers
1358 * to file data extents, and those reference counts still get
1359 * updated (along with back refs to the log tree).
1360 */
e02119d5 1361
4d75f8a9
DS
1362 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1363 NULL, 0, 0, 0);
7237f183
YZ
1364 if (IS_ERR(leaf)) {
1365 kfree(root);
1366 return ERR_CAST(leaf);
1367 }
e02119d5 1368
7237f183 1369 root->node = leaf;
e02119d5 1370
e02119d5
CM
1371 btrfs_mark_buffer_dirty(root->node);
1372 btrfs_tree_unlock(root->node);
7237f183
YZ
1373 return root;
1374}
1375
1376int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1377 struct btrfs_fs_info *fs_info)
1378{
1379 struct btrfs_root *log_root;
1380
1381 log_root = alloc_log_tree(trans, fs_info);
1382 if (IS_ERR(log_root))
1383 return PTR_ERR(log_root);
1384 WARN_ON(fs_info->log_root_tree);
1385 fs_info->log_root_tree = log_root;
1386 return 0;
1387}
1388
1389int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1390 struct btrfs_root *root)
1391{
0b246afa 1392 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1393 struct btrfs_root *log_root;
1394 struct btrfs_inode_item *inode_item;
1395
0b246afa 1396 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1397 if (IS_ERR(log_root))
1398 return PTR_ERR(log_root);
1399
1400 log_root->last_trans = trans->transid;
1401 log_root->root_key.offset = root->root_key.objectid;
1402
1403 inode_item = &log_root->root_item.inode;
3cae210f
QW
1404 btrfs_set_stack_inode_generation(inode_item, 1);
1405 btrfs_set_stack_inode_size(inode_item, 3);
1406 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1407 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1408 fs_info->nodesize);
3cae210f 1409 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1410
5d4f98a2 1411 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1412
1413 WARN_ON(root->log_root);
1414 root->log_root = log_root;
1415 root->log_transid = 0;
d1433deb 1416 root->log_transid_committed = -1;
257c62e1 1417 root->last_log_commit = 0;
e02119d5
CM
1418 return 0;
1419}
1420
35a3621b
SB
1421static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1422 struct btrfs_key *key)
e02119d5
CM
1423{
1424 struct btrfs_root *root;
1425 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1426 struct btrfs_path *path;
84234f3a 1427 u64 generation;
cb517eab 1428 int ret;
581c1760 1429 int level;
0f7d52f4 1430
cb517eab
MX
1431 path = btrfs_alloc_path();
1432 if (!path)
0f7d52f4 1433 return ERR_PTR(-ENOMEM);
cb517eab 1434
74e4d827 1435 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1436 if (!root) {
1437 ret = -ENOMEM;
1438 goto alloc_fail;
0f7d52f4
CM
1439 }
1440
da17066c 1441 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1442
cb517eab
MX
1443 ret = btrfs_find_root(tree_root, key, path,
1444 &root->root_item, &root->root_key);
0f7d52f4 1445 if (ret) {
13a8a7c8
YZ
1446 if (ret > 0)
1447 ret = -ENOENT;
cb517eab 1448 goto find_fail;
0f7d52f4 1449 }
13a8a7c8 1450
84234f3a 1451 generation = btrfs_root_generation(&root->root_item);
581c1760 1452 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1453 root->node = read_tree_block(fs_info,
1454 btrfs_root_bytenr(&root->root_item),
581c1760 1455 generation, level, NULL);
64c043de
LB
1456 if (IS_ERR(root->node)) {
1457 ret = PTR_ERR(root->node);
cb517eab
MX
1458 goto find_fail;
1459 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1460 ret = -EIO;
64c043de
LB
1461 free_extent_buffer(root->node);
1462 goto find_fail;
416bc658 1463 }
5d4f98a2 1464 root->commit_root = btrfs_root_node(root);
13a8a7c8 1465out:
cb517eab
MX
1466 btrfs_free_path(path);
1467 return root;
1468
cb517eab
MX
1469find_fail:
1470 kfree(root);
1471alloc_fail:
1472 root = ERR_PTR(ret);
1473 goto out;
1474}
1475
1476struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1477 struct btrfs_key *location)
1478{
1479 struct btrfs_root *root;
1480
1481 root = btrfs_read_tree_root(tree_root, location);
1482 if (IS_ERR(root))
1483 return root;
1484
1485 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1486 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1487 btrfs_check_and_init_root_item(&root->root_item);
1488 }
13a8a7c8 1489
5eda7b5e
CM
1490 return root;
1491}
1492
cb517eab
MX
1493int btrfs_init_fs_root(struct btrfs_root *root)
1494{
1495 int ret;
8257b2dc 1496 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1497
1498 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1499 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1500 GFP_NOFS);
1501 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1502 ret = -ENOMEM;
1503 goto fail;
1504 }
1505
8257b2dc
MX
1506 writers = btrfs_alloc_subvolume_writers();
1507 if (IS_ERR(writers)) {
1508 ret = PTR_ERR(writers);
1509 goto fail;
1510 }
1511 root->subv_writers = writers;
1512
cb517eab 1513 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1514 spin_lock_init(&root->ino_cache_lock);
1515 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1516
1517 ret = get_anon_bdev(&root->anon_dev);
1518 if (ret)
876d2cf1 1519 goto fail;
f32e48e9
CR
1520
1521 mutex_lock(&root->objectid_mutex);
1522 ret = btrfs_find_highest_objectid(root,
1523 &root->highest_objectid);
1524 if (ret) {
1525 mutex_unlock(&root->objectid_mutex);
876d2cf1 1526 goto fail;
f32e48e9
CR
1527 }
1528
1529 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1530
1531 mutex_unlock(&root->objectid_mutex);
1532
cb517eab
MX
1533 return 0;
1534fail:
84db5ccf 1535 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1536 return ret;
1537}
1538
35bbb97f
JM
1539struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1540 u64 root_id)
cb517eab
MX
1541{
1542 struct btrfs_root *root;
1543
1544 spin_lock(&fs_info->fs_roots_radix_lock);
1545 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1546 (unsigned long)root_id);
1547 spin_unlock(&fs_info->fs_roots_radix_lock);
1548 return root;
1549}
1550
1551int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1552 struct btrfs_root *root)
1553{
1554 int ret;
1555
e1860a77 1556 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1557 if (ret)
1558 return ret;
1559
1560 spin_lock(&fs_info->fs_roots_radix_lock);
1561 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1562 (unsigned long)root->root_key.objectid,
1563 root);
1564 if (ret == 0)
27cdeb70 1565 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1566 spin_unlock(&fs_info->fs_roots_radix_lock);
1567 radix_tree_preload_end();
1568
1569 return ret;
1570}
1571
c00869f1
MX
1572struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1573 struct btrfs_key *location,
1574 bool check_ref)
5eda7b5e
CM
1575{
1576 struct btrfs_root *root;
381cf658 1577 struct btrfs_path *path;
1d4c08e0 1578 struct btrfs_key key;
5eda7b5e
CM
1579 int ret;
1580
edbd8d4e
CM
1581 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1582 return fs_info->tree_root;
1583 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1584 return fs_info->extent_root;
8f18cf13
CM
1585 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1586 return fs_info->chunk_root;
1587 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1588 return fs_info->dev_root;
0403e47e
YZ
1589 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1590 return fs_info->csum_root;
bcef60f2
AJ
1591 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1592 return fs_info->quota_root ? fs_info->quota_root :
1593 ERR_PTR(-ENOENT);
f7a81ea4
SB
1594 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1595 return fs_info->uuid_root ? fs_info->uuid_root :
1596 ERR_PTR(-ENOENT);
70f6d82e
OS
1597 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1598 return fs_info->free_space_root ? fs_info->free_space_root :
1599 ERR_PTR(-ENOENT);
4df27c4d 1600again:
cb517eab 1601 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1602 if (root) {
c00869f1 1603 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1604 return ERR_PTR(-ENOENT);
5eda7b5e 1605 return root;
48475471 1606 }
5eda7b5e 1607
cb517eab 1608 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1609 if (IS_ERR(root))
1610 return root;
3394e160 1611
c00869f1 1612 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1613 ret = -ENOENT;
581bb050 1614 goto fail;
35a30d7c 1615 }
581bb050 1616
cb517eab 1617 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1618 if (ret)
1619 goto fail;
3394e160 1620
381cf658
DS
1621 path = btrfs_alloc_path();
1622 if (!path) {
1623 ret = -ENOMEM;
1624 goto fail;
1625 }
1d4c08e0
DS
1626 key.objectid = BTRFS_ORPHAN_OBJECTID;
1627 key.type = BTRFS_ORPHAN_ITEM_KEY;
1628 key.offset = location->objectid;
1629
1630 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1631 btrfs_free_path(path);
d68fc57b
YZ
1632 if (ret < 0)
1633 goto fail;
1634 if (ret == 0)
27cdeb70 1635 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1636
cb517eab 1637 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1638 if (ret) {
4df27c4d 1639 if (ret == -EEXIST) {
84db5ccf 1640 btrfs_free_fs_root(root);
4df27c4d
YZ
1641 goto again;
1642 }
1643 goto fail;
0f7d52f4 1644 }
edbd8d4e 1645 return root;
4df27c4d 1646fail:
84db5ccf 1647 btrfs_free_fs_root(root);
4df27c4d 1648 return ERR_PTR(ret);
edbd8d4e
CM
1649}
1650
04160088
CM
1651static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1652{
1653 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1654 int ret = 0;
04160088
CM
1655 struct btrfs_device *device;
1656 struct backing_dev_info *bdi;
b7967db7 1657
1f78160c
XG
1658 rcu_read_lock();
1659 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1660 if (!device->bdev)
1661 continue;
efa7c9f9 1662 bdi = device->bdev->bd_bdi;
ff9ea323 1663 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1664 ret = 1;
1665 break;
1666 }
1667 }
1f78160c 1668 rcu_read_unlock();
04160088
CM
1669 return ret;
1670}
1671
8b712842
CM
1672/*
1673 * called by the kthread helper functions to finally call the bio end_io
1674 * functions. This is where read checksum verification actually happens
1675 */
1676static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1677{
ce9adaa5 1678 struct bio *bio;
97eb6b69 1679 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1680
97eb6b69 1681 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1682 bio = end_io_wq->bio;
ce9adaa5 1683
4e4cbee9 1684 bio->bi_status = end_io_wq->status;
8b712842
CM
1685 bio->bi_private = end_io_wq->private;
1686 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1687 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1688 bio_endio(bio);
44b8bd7e
CM
1689}
1690
a74a4b97
CM
1691static int cleaner_kthread(void *arg)
1692{
1693 struct btrfs_root *root = arg;
0b246afa 1694 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1695 int again;
a74a4b97 1696
d6fd0ae2 1697 while (1) {
d0278245 1698 again = 0;
a74a4b97 1699
fd340d0f
JB
1700 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1701
d0278245 1702 /* Make the cleaner go to sleep early. */
2ff7e61e 1703 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1704 goto sleep;
1705
90c711ab
ZB
1706 /*
1707 * Do not do anything if we might cause open_ctree() to block
1708 * before we have finished mounting the filesystem.
1709 */
0b246afa 1710 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1711 goto sleep;
1712
0b246afa 1713 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1714 goto sleep;
1715
dc7f370c
MX
1716 /*
1717 * Avoid the problem that we change the status of the fs
1718 * during the above check and trylock.
1719 */
2ff7e61e 1720 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1721 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1722 goto sleep;
76dda93c 1723 }
a74a4b97 1724
2ff7e61e 1725 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1726
d0278245 1727 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1728 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1729
1730 /*
05323cd1
MX
1731 * The defragger has dealt with the R/O remount and umount,
1732 * needn't do anything special here.
d0278245 1733 */
0b246afa 1734 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1735
1736 /*
1737 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1738 * with relocation (btrfs_relocate_chunk) and relocation
1739 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1740 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1741 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1742 * unused block groups.
1743 */
0b246afa 1744 btrfs_delete_unused_bgs(fs_info);
d0278245 1745sleep:
fd340d0f 1746 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1747 if (kthread_should_park())
1748 kthread_parkme();
1749 if (kthread_should_stop())
1750 return 0;
838fe188 1751 if (!again) {
a74a4b97 1752 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1753 schedule();
a74a4b97
CM
1754 __set_current_state(TASK_RUNNING);
1755 }
da288d28 1756 }
a74a4b97
CM
1757}
1758
1759static int transaction_kthread(void *arg)
1760{
1761 struct btrfs_root *root = arg;
0b246afa 1762 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1763 struct btrfs_trans_handle *trans;
1764 struct btrfs_transaction *cur;
8929ecfa 1765 u64 transid;
a944442c 1766 time64_t now;
a74a4b97 1767 unsigned long delay;
914b2007 1768 bool cannot_commit;
a74a4b97
CM
1769
1770 do {
914b2007 1771 cannot_commit = false;
0b246afa
JM
1772 delay = HZ * fs_info->commit_interval;
1773 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1774
0b246afa
JM
1775 spin_lock(&fs_info->trans_lock);
1776 cur = fs_info->running_transaction;
a74a4b97 1777 if (!cur) {
0b246afa 1778 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1779 goto sleep;
1780 }
31153d81 1781
afd48513 1782 now = ktime_get_seconds();
4a9d8bde 1783 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1784 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1785 (now < cur->start_time ||
0b246afa
JM
1786 now - cur->start_time < fs_info->commit_interval)) {
1787 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1788 delay = HZ * 5;
1789 goto sleep;
1790 }
8929ecfa 1791 transid = cur->transid;
0b246afa 1792 spin_unlock(&fs_info->trans_lock);
56bec294 1793
79787eaa 1794 /* If the file system is aborted, this will always fail. */
354aa0fb 1795 trans = btrfs_attach_transaction(root);
914b2007 1796 if (IS_ERR(trans)) {
354aa0fb
MX
1797 if (PTR_ERR(trans) != -ENOENT)
1798 cannot_commit = true;
79787eaa 1799 goto sleep;
914b2007 1800 }
8929ecfa 1801 if (transid == trans->transid) {
3a45bb20 1802 btrfs_commit_transaction(trans);
8929ecfa 1803 } else {
3a45bb20 1804 btrfs_end_transaction(trans);
8929ecfa 1805 }
a74a4b97 1806sleep:
0b246afa
JM
1807 wake_up_process(fs_info->cleaner_kthread);
1808 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1809
4e121c06 1810 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1811 &fs_info->fs_state)))
2ff7e61e 1812 btrfs_cleanup_transaction(fs_info);
ce63f891 1813 if (!kthread_should_stop() &&
0b246afa 1814 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1815 cannot_commit))
bc5511d0 1816 schedule_timeout_interruptible(delay);
a74a4b97
CM
1817 } while (!kthread_should_stop());
1818 return 0;
1819}
1820
af31f5e5
CM
1821/*
1822 * this will find the highest generation in the array of
1823 * root backups. The index of the highest array is returned,
1824 * or -1 if we can't find anything.
1825 *
1826 * We check to make sure the array is valid by comparing the
1827 * generation of the latest root in the array with the generation
1828 * in the super block. If they don't match we pitch it.
1829 */
1830static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1831{
1832 u64 cur;
1833 int newest_index = -1;
1834 struct btrfs_root_backup *root_backup;
1835 int i;
1836
1837 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1838 root_backup = info->super_copy->super_roots + i;
1839 cur = btrfs_backup_tree_root_gen(root_backup);
1840 if (cur == newest_gen)
1841 newest_index = i;
1842 }
1843
1844 /* check to see if we actually wrapped around */
1845 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1846 root_backup = info->super_copy->super_roots;
1847 cur = btrfs_backup_tree_root_gen(root_backup);
1848 if (cur == newest_gen)
1849 newest_index = 0;
1850 }
1851 return newest_index;
1852}
1853
1854
1855/*
1856 * find the oldest backup so we know where to store new entries
1857 * in the backup array. This will set the backup_root_index
1858 * field in the fs_info struct
1859 */
1860static void find_oldest_super_backup(struct btrfs_fs_info *info,
1861 u64 newest_gen)
1862{
1863 int newest_index = -1;
1864
1865 newest_index = find_newest_super_backup(info, newest_gen);
1866 /* if there was garbage in there, just move along */
1867 if (newest_index == -1) {
1868 info->backup_root_index = 0;
1869 } else {
1870 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1871 }
1872}
1873
1874/*
1875 * copy all the root pointers into the super backup array.
1876 * this will bump the backup pointer by one when it is
1877 * done
1878 */
1879static void backup_super_roots(struct btrfs_fs_info *info)
1880{
1881 int next_backup;
1882 struct btrfs_root_backup *root_backup;
1883 int last_backup;
1884
1885 next_backup = info->backup_root_index;
1886 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1887 BTRFS_NUM_BACKUP_ROOTS;
1888
1889 /*
1890 * just overwrite the last backup if we're at the same generation
1891 * this happens only at umount
1892 */
1893 root_backup = info->super_for_commit->super_roots + last_backup;
1894 if (btrfs_backup_tree_root_gen(root_backup) ==
1895 btrfs_header_generation(info->tree_root->node))
1896 next_backup = last_backup;
1897
1898 root_backup = info->super_for_commit->super_roots + next_backup;
1899
1900 /*
1901 * make sure all of our padding and empty slots get zero filled
1902 * regardless of which ones we use today
1903 */
1904 memset(root_backup, 0, sizeof(*root_backup));
1905
1906 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1907
1908 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1909 btrfs_set_backup_tree_root_gen(root_backup,
1910 btrfs_header_generation(info->tree_root->node));
1911
1912 btrfs_set_backup_tree_root_level(root_backup,
1913 btrfs_header_level(info->tree_root->node));
1914
1915 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1916 btrfs_set_backup_chunk_root_gen(root_backup,
1917 btrfs_header_generation(info->chunk_root->node));
1918 btrfs_set_backup_chunk_root_level(root_backup,
1919 btrfs_header_level(info->chunk_root->node));
1920
1921 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1922 btrfs_set_backup_extent_root_gen(root_backup,
1923 btrfs_header_generation(info->extent_root->node));
1924 btrfs_set_backup_extent_root_level(root_backup,
1925 btrfs_header_level(info->extent_root->node));
1926
7c7e82a7
CM
1927 /*
1928 * we might commit during log recovery, which happens before we set
1929 * the fs_root. Make sure it is valid before we fill it in.
1930 */
1931 if (info->fs_root && info->fs_root->node) {
1932 btrfs_set_backup_fs_root(root_backup,
1933 info->fs_root->node->start);
1934 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1935 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1936 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1937 btrfs_header_level(info->fs_root->node));
7c7e82a7 1938 }
af31f5e5
CM
1939
1940 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1941 btrfs_set_backup_dev_root_gen(root_backup,
1942 btrfs_header_generation(info->dev_root->node));
1943 btrfs_set_backup_dev_root_level(root_backup,
1944 btrfs_header_level(info->dev_root->node));
1945
1946 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1947 btrfs_set_backup_csum_root_gen(root_backup,
1948 btrfs_header_generation(info->csum_root->node));
1949 btrfs_set_backup_csum_root_level(root_backup,
1950 btrfs_header_level(info->csum_root->node));
1951
1952 btrfs_set_backup_total_bytes(root_backup,
1953 btrfs_super_total_bytes(info->super_copy));
1954 btrfs_set_backup_bytes_used(root_backup,
1955 btrfs_super_bytes_used(info->super_copy));
1956 btrfs_set_backup_num_devices(root_backup,
1957 btrfs_super_num_devices(info->super_copy));
1958
1959 /*
1960 * if we don't copy this out to the super_copy, it won't get remembered
1961 * for the next commit
1962 */
1963 memcpy(&info->super_copy->super_roots,
1964 &info->super_for_commit->super_roots,
1965 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1966}
1967
1968/*
1969 * this copies info out of the root backup array and back into
1970 * the in-memory super block. It is meant to help iterate through
1971 * the array, so you send it the number of backups you've already
1972 * tried and the last backup index you used.
1973 *
1974 * this returns -1 when it has tried all the backups
1975 */
1976static noinline int next_root_backup(struct btrfs_fs_info *info,
1977 struct btrfs_super_block *super,
1978 int *num_backups_tried, int *backup_index)
1979{
1980 struct btrfs_root_backup *root_backup;
1981 int newest = *backup_index;
1982
1983 if (*num_backups_tried == 0) {
1984 u64 gen = btrfs_super_generation(super);
1985
1986 newest = find_newest_super_backup(info, gen);
1987 if (newest == -1)
1988 return -1;
1989
1990 *backup_index = newest;
1991 *num_backups_tried = 1;
1992 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1993 /* we've tried all the backups, all done */
1994 return -1;
1995 } else {
1996 /* jump to the next oldest backup */
1997 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1998 BTRFS_NUM_BACKUP_ROOTS;
1999 *backup_index = newest;
2000 *num_backups_tried += 1;
2001 }
2002 root_backup = super->super_roots + newest;
2003
2004 btrfs_set_super_generation(super,
2005 btrfs_backup_tree_root_gen(root_backup));
2006 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2007 btrfs_set_super_root_level(super,
2008 btrfs_backup_tree_root_level(root_backup));
2009 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2010
2011 /*
2012 * fixme: the total bytes and num_devices need to match or we should
2013 * need a fsck
2014 */
2015 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2016 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2017 return 0;
2018}
2019
7abadb64
LB
2020/* helper to cleanup workers */
2021static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2022{
dc6e3209 2023 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2024 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2025 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2026 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2027 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2028 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2029 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2030 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2031 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2032 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2033 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2034 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2035 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2036 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2037 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2038 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2039 /*
2040 * Now that all other work queues are destroyed, we can safely destroy
2041 * the queues used for metadata I/O, since tasks from those other work
2042 * queues can do metadata I/O operations.
2043 */
2044 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2045 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2046}
2047
2e9f5954
R
2048static void free_root_extent_buffers(struct btrfs_root *root)
2049{
2050 if (root) {
2051 free_extent_buffer(root->node);
2052 free_extent_buffer(root->commit_root);
2053 root->node = NULL;
2054 root->commit_root = NULL;
2055 }
2056}
2057
af31f5e5
CM
2058/* helper to cleanup tree roots */
2059static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2060{
2e9f5954 2061 free_root_extent_buffers(info->tree_root);
655b09fe 2062
2e9f5954
R
2063 free_root_extent_buffers(info->dev_root);
2064 free_root_extent_buffers(info->extent_root);
2065 free_root_extent_buffers(info->csum_root);
2066 free_root_extent_buffers(info->quota_root);
2067 free_root_extent_buffers(info->uuid_root);
2068 if (chunk_root)
2069 free_root_extent_buffers(info->chunk_root);
70f6d82e 2070 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2071}
2072
faa2dbf0 2073void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2074{
2075 int ret;
2076 struct btrfs_root *gang[8];
2077 int i;
2078
2079 while (!list_empty(&fs_info->dead_roots)) {
2080 gang[0] = list_entry(fs_info->dead_roots.next,
2081 struct btrfs_root, root_list);
2082 list_del(&gang[0]->root_list);
2083
27cdeb70 2084 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2085 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2086 } else {
2087 free_extent_buffer(gang[0]->node);
2088 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2089 btrfs_put_fs_root(gang[0]);
171f6537
JB
2090 }
2091 }
2092
2093 while (1) {
2094 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2095 (void **)gang, 0,
2096 ARRAY_SIZE(gang));
2097 if (!ret)
2098 break;
2099 for (i = 0; i < ret; i++)
cb517eab 2100 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2101 }
1a4319cc
LB
2102
2103 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2104 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2105 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2106 }
171f6537 2107}
af31f5e5 2108
638aa7ed
ES
2109static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2110{
2111 mutex_init(&fs_info->scrub_lock);
2112 atomic_set(&fs_info->scrubs_running, 0);
2113 atomic_set(&fs_info->scrub_pause_req, 0);
2114 atomic_set(&fs_info->scrubs_paused, 0);
2115 atomic_set(&fs_info->scrub_cancel_req, 0);
2116 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2117 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2118}
2119
779a65a4
ES
2120static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2121{
2122 spin_lock_init(&fs_info->balance_lock);
2123 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2124 atomic_set(&fs_info->balance_pause_req, 0);
2125 atomic_set(&fs_info->balance_cancel_req, 0);
2126 fs_info->balance_ctl = NULL;
2127 init_waitqueue_head(&fs_info->balance_wait_q);
2128}
2129
6bccf3ab 2130static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2131{
2ff7e61e
JM
2132 struct inode *inode = fs_info->btree_inode;
2133
2134 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2135 set_nlink(inode, 1);
f37938e0
ES
2136 /*
2137 * we set the i_size on the btree inode to the max possible int.
2138 * the real end of the address space is determined by all of
2139 * the devices in the system
2140 */
2ff7e61e
JM
2141 inode->i_size = OFFSET_MAX;
2142 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2143
2ff7e61e 2144 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2145 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2146 IO_TREE_INODE_IO, inode);
7b439738 2147 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2148 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2149
2ff7e61e 2150 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2151
2ff7e61e
JM
2152 BTRFS_I(inode)->root = fs_info->tree_root;
2153 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2154 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2155 btrfs_insert_inode_hash(inode);
f37938e0
ES
2156}
2157
ad618368
ES
2158static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2159{
ad618368 2160 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2161 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2162 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2163}
2164
f9e92e40
ES
2165static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2166{
2167 spin_lock_init(&fs_info->qgroup_lock);
2168 mutex_init(&fs_info->qgroup_ioctl_lock);
2169 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2170 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2171 fs_info->qgroup_seq = 1;
f9e92e40 2172 fs_info->qgroup_ulist = NULL;
d2c609b8 2173 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2174 mutex_init(&fs_info->qgroup_rescan_lock);
2175}
2176
2a458198
ES
2177static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2178 struct btrfs_fs_devices *fs_devices)
2179{
f7b885be 2180 u32 max_active = fs_info->thread_pool_size;
6f011058 2181 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2182
2183 fs_info->workers =
cb001095
JM
2184 btrfs_alloc_workqueue(fs_info, "worker",
2185 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2186
2187 fs_info->delalloc_workers =
cb001095
JM
2188 btrfs_alloc_workqueue(fs_info, "delalloc",
2189 flags, max_active, 2);
2a458198
ES
2190
2191 fs_info->flush_workers =
cb001095
JM
2192 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2193 flags, max_active, 0);
2a458198
ES
2194
2195 fs_info->caching_workers =
cb001095 2196 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2197
2198 /*
2199 * a higher idle thresh on the submit workers makes it much more
2200 * likely that bios will be send down in a sane order to the
2201 * devices
2202 */
2203 fs_info->submit_workers =
cb001095 2204 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2205 min_t(u64, fs_devices->num_devices,
2206 max_active), 64);
2207
2208 fs_info->fixup_workers =
cb001095 2209 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2210
2211 /*
2212 * endios are largely parallel and should have a very
2213 * low idle thresh
2214 */
2215 fs_info->endio_workers =
cb001095 2216 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2217 fs_info->endio_meta_workers =
cb001095
JM
2218 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2219 max_active, 4);
2a458198 2220 fs_info->endio_meta_write_workers =
cb001095
JM
2221 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2222 max_active, 2);
2a458198 2223 fs_info->endio_raid56_workers =
cb001095
JM
2224 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2225 max_active, 4);
2a458198 2226 fs_info->endio_repair_workers =
cb001095 2227 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2228 fs_info->rmw_workers =
cb001095 2229 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2230 fs_info->endio_write_workers =
cb001095
JM
2231 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2232 max_active, 2);
2a458198 2233 fs_info->endio_freespace_worker =
cb001095
JM
2234 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2235 max_active, 0);
2a458198 2236 fs_info->delayed_workers =
cb001095
JM
2237 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2238 max_active, 0);
2a458198 2239 fs_info->readahead_workers =
cb001095
JM
2240 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2241 max_active, 2);
2a458198 2242 fs_info->qgroup_rescan_workers =
cb001095 2243 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2244 fs_info->extent_workers =
cb001095 2245 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2246 min_t(u64, fs_devices->num_devices,
2247 max_active), 8);
2248
2249 if (!(fs_info->workers && fs_info->delalloc_workers &&
2250 fs_info->submit_workers && fs_info->flush_workers &&
2251 fs_info->endio_workers && fs_info->endio_meta_workers &&
2252 fs_info->endio_meta_write_workers &&
2253 fs_info->endio_repair_workers &&
2254 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2255 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2256 fs_info->caching_workers && fs_info->readahead_workers &&
2257 fs_info->fixup_workers && fs_info->delayed_workers &&
2258 fs_info->extent_workers &&
2259 fs_info->qgroup_rescan_workers)) {
2260 return -ENOMEM;
2261 }
2262
2263 return 0;
2264}
2265
63443bf5
ES
2266static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2267 struct btrfs_fs_devices *fs_devices)
2268{
2269 int ret;
63443bf5
ES
2270 struct btrfs_root *log_tree_root;
2271 struct btrfs_super_block *disk_super = fs_info->super_copy;
2272 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2273 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2274
2275 if (fs_devices->rw_devices == 0) {
f14d104d 2276 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2277 return -EIO;
2278 }
2279
74e4d827 2280 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2281 if (!log_tree_root)
2282 return -ENOMEM;
2283
da17066c 2284 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2285
2ff7e61e 2286 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2287 fs_info->generation + 1,
2288 level, NULL);
64c043de 2289 if (IS_ERR(log_tree_root->node)) {
f14d104d 2290 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2291 ret = PTR_ERR(log_tree_root->node);
64c043de 2292 kfree(log_tree_root);
0eeff236 2293 return ret;
64c043de 2294 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2295 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2296 free_extent_buffer(log_tree_root->node);
2297 kfree(log_tree_root);
2298 return -EIO;
2299 }
2300 /* returns with log_tree_root freed on success */
2301 ret = btrfs_recover_log_trees(log_tree_root);
2302 if (ret) {
0b246afa
JM
2303 btrfs_handle_fs_error(fs_info, ret,
2304 "Failed to recover log tree");
63443bf5
ES
2305 free_extent_buffer(log_tree_root->node);
2306 kfree(log_tree_root);
2307 return ret;
2308 }
2309
bc98a42c 2310 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2311 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2312 if (ret)
2313 return ret;
2314 }
2315
2316 return 0;
2317}
2318
6bccf3ab 2319static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2320{
6bccf3ab 2321 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2322 struct btrfs_root *root;
4bbcaa64
ES
2323 struct btrfs_key location;
2324 int ret;
2325
6bccf3ab
JM
2326 BUG_ON(!fs_info->tree_root);
2327
4bbcaa64
ES
2328 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2329 location.type = BTRFS_ROOT_ITEM_KEY;
2330 location.offset = 0;
2331
a4f3d2c4 2332 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2333 if (IS_ERR(root)) {
2334 ret = PTR_ERR(root);
2335 goto out;
2336 }
a4f3d2c4
DS
2337 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2338 fs_info->extent_root = root;
4bbcaa64
ES
2339
2340 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2341 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2342 if (IS_ERR(root)) {
2343 ret = PTR_ERR(root);
2344 goto out;
2345 }
a4f3d2c4
DS
2346 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347 fs_info->dev_root = root;
4bbcaa64
ES
2348 btrfs_init_devices_late(fs_info);
2349
2350 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2351 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2352 if (IS_ERR(root)) {
2353 ret = PTR_ERR(root);
2354 goto out;
2355 }
a4f3d2c4
DS
2356 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2357 fs_info->csum_root = root;
4bbcaa64
ES
2358
2359 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2360 root = btrfs_read_tree_root(tree_root, &location);
2361 if (!IS_ERR(root)) {
2362 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2363 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2364 fs_info->quota_root = root;
4bbcaa64
ES
2365 }
2366
2367 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2368 root = btrfs_read_tree_root(tree_root, &location);
2369 if (IS_ERR(root)) {
2370 ret = PTR_ERR(root);
4bbcaa64 2371 if (ret != -ENOENT)
f50f4353 2372 goto out;
4bbcaa64 2373 } else {
a4f3d2c4
DS
2374 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2375 fs_info->uuid_root = root;
4bbcaa64
ES
2376 }
2377
70f6d82e
OS
2378 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2379 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2380 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2381 if (IS_ERR(root)) {
2382 ret = PTR_ERR(root);
2383 goto out;
2384 }
70f6d82e
OS
2385 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2386 fs_info->free_space_root = root;
2387 }
2388
4bbcaa64 2389 return 0;
f50f4353
LB
2390out:
2391 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2392 location.objectid, ret);
2393 return ret;
4bbcaa64
ES
2394}
2395
069ec957
QW
2396/*
2397 * Real super block validation
2398 * NOTE: super csum type and incompat features will not be checked here.
2399 *
2400 * @sb: super block to check
2401 * @mirror_num: the super block number to check its bytenr:
2402 * 0 the primary (1st) sb
2403 * 1, 2 2nd and 3rd backup copy
2404 * -1 skip bytenr check
2405 */
2406static int validate_super(struct btrfs_fs_info *fs_info,
2407 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2408{
21a852b0
QW
2409 u64 nodesize = btrfs_super_nodesize(sb);
2410 u64 sectorsize = btrfs_super_sectorsize(sb);
2411 int ret = 0;
2412
2413 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2414 btrfs_err(fs_info, "no valid FS found");
2415 ret = -EINVAL;
2416 }
2417 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2418 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2419 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2420 ret = -EINVAL;
2421 }
2422 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2423 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2424 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2425 ret = -EINVAL;
2426 }
2427 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2428 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2429 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2430 ret = -EINVAL;
2431 }
2432 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2433 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2434 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2435 ret = -EINVAL;
2436 }
2437
2438 /*
2439 * Check sectorsize and nodesize first, other check will need it.
2440 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2441 */
2442 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2443 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2444 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2445 ret = -EINVAL;
2446 }
2447 /* Only PAGE SIZE is supported yet */
2448 if (sectorsize != PAGE_SIZE) {
2449 btrfs_err(fs_info,
2450 "sectorsize %llu not supported yet, only support %lu",
2451 sectorsize, PAGE_SIZE);
2452 ret = -EINVAL;
2453 }
2454 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2455 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2456 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2457 ret = -EINVAL;
2458 }
2459 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2460 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2461 le32_to_cpu(sb->__unused_leafsize), nodesize);
2462 ret = -EINVAL;
2463 }
2464
2465 /* Root alignment check */
2466 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2467 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2468 btrfs_super_root(sb));
2469 ret = -EINVAL;
2470 }
2471 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2472 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2473 btrfs_super_chunk_root(sb));
2474 ret = -EINVAL;
2475 }
2476 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2477 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2478 btrfs_super_log_root(sb));
2479 ret = -EINVAL;
2480 }
2481
de37aa51 2482 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2483 BTRFS_FSID_SIZE) != 0) {
21a852b0 2484 btrfs_err(fs_info,
7239ff4b 2485 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2486 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2487 ret = -EINVAL;
2488 }
2489
2490 /*
2491 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2492 * done later
2493 */
2494 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2495 btrfs_err(fs_info, "bytes_used is too small %llu",
2496 btrfs_super_bytes_used(sb));
2497 ret = -EINVAL;
2498 }
2499 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2500 btrfs_err(fs_info, "invalid stripesize %u",
2501 btrfs_super_stripesize(sb));
2502 ret = -EINVAL;
2503 }
2504 if (btrfs_super_num_devices(sb) > (1UL << 31))
2505 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2506 btrfs_super_num_devices(sb));
2507 if (btrfs_super_num_devices(sb) == 0) {
2508 btrfs_err(fs_info, "number of devices is 0");
2509 ret = -EINVAL;
2510 }
2511
069ec957
QW
2512 if (mirror_num >= 0 &&
2513 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2514 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2515 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2516 ret = -EINVAL;
2517 }
2518
2519 /*
2520 * Obvious sys_chunk_array corruptions, it must hold at least one key
2521 * and one chunk
2522 */
2523 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2524 btrfs_err(fs_info, "system chunk array too big %u > %u",
2525 btrfs_super_sys_array_size(sb),
2526 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2527 ret = -EINVAL;
2528 }
2529 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2530 + sizeof(struct btrfs_chunk)) {
2531 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2532 btrfs_super_sys_array_size(sb),
2533 sizeof(struct btrfs_disk_key)
2534 + sizeof(struct btrfs_chunk));
2535 ret = -EINVAL;
2536 }
2537
2538 /*
2539 * The generation is a global counter, we'll trust it more than the others
2540 * but it's still possible that it's the one that's wrong.
2541 */
2542 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2543 btrfs_warn(fs_info,
2544 "suspicious: generation < chunk_root_generation: %llu < %llu",
2545 btrfs_super_generation(sb),
2546 btrfs_super_chunk_root_generation(sb));
2547 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2548 && btrfs_super_cache_generation(sb) != (u64)-1)
2549 btrfs_warn(fs_info,
2550 "suspicious: generation < cache_generation: %llu < %llu",
2551 btrfs_super_generation(sb),
2552 btrfs_super_cache_generation(sb));
2553
2554 return ret;
2555}
2556
069ec957
QW
2557/*
2558 * Validation of super block at mount time.
2559 * Some checks already done early at mount time, like csum type and incompat
2560 * flags will be skipped.
2561 */
2562static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2563{
2564 return validate_super(fs_info, fs_info->super_copy, 0);
2565}
2566
75cb857d
QW
2567/*
2568 * Validation of super block at write time.
2569 * Some checks like bytenr check will be skipped as their values will be
2570 * overwritten soon.
2571 * Extra checks like csum type and incompat flags will be done here.
2572 */
2573static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2574 struct btrfs_super_block *sb)
2575{
2576 int ret;
2577
2578 ret = validate_super(fs_info, sb, -1);
2579 if (ret < 0)
2580 goto out;
2581 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2582 ret = -EUCLEAN;
2583 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2584 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2585 goto out;
2586 }
2587 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2588 ret = -EUCLEAN;
2589 btrfs_err(fs_info,
2590 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2591 btrfs_super_incompat_flags(sb),
2592 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2593 goto out;
2594 }
2595out:
2596 if (ret < 0)
2597 btrfs_err(fs_info,
2598 "super block corruption detected before writing it to disk");
2599 return ret;
2600}
2601
ad2b2c80
AV
2602int open_ctree(struct super_block *sb,
2603 struct btrfs_fs_devices *fs_devices,
2604 char *options)
2e635a27 2605{
db94535d
CM
2606 u32 sectorsize;
2607 u32 nodesize;
87ee04eb 2608 u32 stripesize;
84234f3a 2609 u64 generation;
f2b636e8 2610 u64 features;
3de4586c 2611 struct btrfs_key location;
a061fc8d 2612 struct buffer_head *bh;
4d34b278 2613 struct btrfs_super_block *disk_super;
815745cf 2614 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2615 struct btrfs_root *tree_root;
4d34b278 2616 struct btrfs_root *chunk_root;
eb60ceac 2617 int ret;
e58ca020 2618 int err = -EINVAL;
af31f5e5
CM
2619 int num_backups_tried = 0;
2620 int backup_index = 0;
6675df31 2621 int clear_free_space_tree = 0;
581c1760 2622 int level;
4543df7e 2623
74e4d827
DS
2624 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2625 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2626 if (!tree_root || !chunk_root) {
39279cc3
CM
2627 err = -ENOMEM;
2628 goto fail;
2629 }
76dda93c
YZ
2630
2631 ret = init_srcu_struct(&fs_info->subvol_srcu);
2632 if (ret) {
2633 err = ret;
2634 goto fail;
2635 }
2636
908c7f19 2637 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2638 if (ret) {
2639 err = ret;
9e11ceee 2640 goto fail_srcu;
e2d84521 2641 }
09cbfeaf 2642 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2643 (1 + ilog2(nr_cpu_ids));
2644
908c7f19 2645 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2646 if (ret) {
2647 err = ret;
2648 goto fail_dirty_metadata_bytes;
2649 }
2650
7f8d236a
DS
2651 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2652 GFP_KERNEL);
c404e0dc
MX
2653 if (ret) {
2654 err = ret;
2655 goto fail_delalloc_bytes;
2656 }
2657
76dda93c 2658 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2659 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2660 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2661 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2662 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2663 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2664 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2665 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2666 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2667 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2668 spin_lock_init(&fs_info->trans_lock);
76dda93c 2669 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2670 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2671 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2672 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2673 spin_lock_init(&fs_info->super_lock);
f28491e0 2674 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2675 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2676 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2677 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2678 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2679 mutex_init(&fs_info->reloc_mutex);
573bfb72 2680 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2681 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2682
0b86a832 2683 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2684 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2685 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2686 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2687 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2688 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2689 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2690 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2691 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2692 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2693 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2694 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2695 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2696 BTRFS_BLOCK_RSV_DELREFS);
2697
771ed689 2698 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2699 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2700 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2701 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2702 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2703 fs_info->sb = sb;
95ac567a 2704 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2705 fs_info->metadata_ratio = 0;
4cb5300b 2706 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2707 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2708 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2709 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2710 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2711 /* readahead state */
d0164adc 2712 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2713 spin_lock_init(&fs_info->reada_lock);
fd708b81 2714 btrfs_init_ref_verify(fs_info);
c8b97818 2715
b34b086c
CM
2716 fs_info->thread_pool_size = min_t(unsigned long,
2717 num_online_cpus() + 2, 8);
0afbaf8c 2718
199c2a9c
MX
2719 INIT_LIST_HEAD(&fs_info->ordered_roots);
2720 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2721
2722 fs_info->btree_inode = new_inode(sb);
2723 if (!fs_info->btree_inode) {
2724 err = -ENOMEM;
2725 goto fail_bio_counter;
2726 }
2727 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2728
16cdcec7 2729 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2730 GFP_KERNEL);
16cdcec7
MX
2731 if (!fs_info->delayed_root) {
2732 err = -ENOMEM;
2733 goto fail_iput;
2734 }
2735 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2736
638aa7ed 2737 btrfs_init_scrub(fs_info);
21adbd5c
SB
2738#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2739 fs_info->check_integrity_print_mask = 0;
2740#endif
779a65a4 2741 btrfs_init_balance(fs_info);
21c7e756 2742 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2743
9f6d2510
DS
2744 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2745 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2746
6bccf3ab 2747 btrfs_init_btree_inode(fs_info);
76dda93c 2748
0f9dd46c 2749 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2750 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2751 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2752
43eb5f29
QW
2753 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2754 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2755 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2756 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2757 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2758 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2759
5a3f23d5 2760 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2761 mutex_init(&fs_info->tree_log_mutex);
925baedd 2762 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2763 mutex_init(&fs_info->transaction_kthread_mutex);
2764 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2765 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2766 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2767 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2768 init_rwsem(&fs_info->subvol_sem);
803b2f54 2769 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2770
ad618368 2771 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2772 btrfs_init_qgroup(fs_info);
416ac51d 2773
fa9c0d79
CM
2774 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2775 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2776
e6dcd2dc 2777 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2778 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2779 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2780 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2781 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2782
da17066c
JM
2783 /* Usable values until the real ones are cached from the superblock */
2784 fs_info->nodesize = 4096;
2785 fs_info->sectorsize = 4096;
2786 fs_info->stripesize = 4096;
2787
eede2bf3
OS
2788 spin_lock_init(&fs_info->swapfile_pins_lock);
2789 fs_info->swapfile_pins = RB_ROOT;
2790
53b381b3
DW
2791 ret = btrfs_alloc_stripe_hash_table(fs_info);
2792 if (ret) {
83c8266a 2793 err = ret;
53b381b3
DW
2794 goto fail_alloc;
2795 }
2796
da17066c 2797 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2798
3c4bb26b 2799 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2800
2801 /*
2802 * Read super block and check the signature bytes only
2803 */
a512bbf8 2804 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2805 if (IS_ERR(bh)) {
2806 err = PTR_ERR(bh);
16cdcec7 2807 goto fail_alloc;
20b45077 2808 }
39279cc3 2809
1104a885
DS
2810 /*
2811 * We want to check superblock checksum, the type is stored inside.
2812 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2813 */
ab8d0fc4 2814 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2815 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2816 err = -EINVAL;
b2acdddf 2817 brelse(bh);
1104a885
DS
2818 goto fail_alloc;
2819 }
2820
2821 /*
2822 * super_copy is zeroed at allocation time and we never touch the
2823 * following bytes up to INFO_SIZE, the checksum is calculated from
2824 * the whole block of INFO_SIZE
2825 */
6c41761f 2826 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2827 brelse(bh);
5f39d397 2828
fbc6feae
NB
2829 disk_super = fs_info->super_copy;
2830
de37aa51
NB
2831 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2832 BTRFS_FSID_SIZE));
2833
7239ff4b 2834 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2835 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2836 fs_info->super_copy->metadata_uuid,
2837 BTRFS_FSID_SIZE));
7239ff4b 2838 }
0b86a832 2839
fbc6feae
NB
2840 features = btrfs_super_flags(disk_super);
2841 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2842 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2843 btrfs_set_super_flags(disk_super, features);
2844 btrfs_info(fs_info,
2845 "found metadata UUID change in progress flag, clearing");
2846 }
2847
2848 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2849 sizeof(*fs_info->super_for_commit));
de37aa51 2850
069ec957 2851 ret = btrfs_validate_mount_super(fs_info);
1104a885 2852 if (ret) {
05135f59 2853 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2854 err = -EINVAL;
2855 goto fail_alloc;
2856 }
2857
0f7d52f4 2858 if (!btrfs_super_root(disk_super))
16cdcec7 2859 goto fail_alloc;
0f7d52f4 2860
acce952b 2861 /* check FS state, whether FS is broken. */
87533c47
MX
2862 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2863 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2864
af31f5e5
CM
2865 /*
2866 * run through our array of backup supers and setup
2867 * our ring pointer to the oldest one
2868 */
2869 generation = btrfs_super_generation(disk_super);
2870 find_oldest_super_backup(fs_info, generation);
2871
75e7cb7f
LB
2872 /*
2873 * In the long term, we'll store the compression type in the super
2874 * block, and it'll be used for per file compression control.
2875 */
2876 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2877
2ff7e61e 2878 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2879 if (ret) {
2880 err = ret;
16cdcec7 2881 goto fail_alloc;
2b82032c 2882 }
dfe25020 2883
f2b636e8
JB
2884 features = btrfs_super_incompat_flags(disk_super) &
2885 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2886 if (features) {
05135f59
DS
2887 btrfs_err(fs_info,
2888 "cannot mount because of unsupported optional features (%llx)",
2889 features);
f2b636e8 2890 err = -EINVAL;
16cdcec7 2891 goto fail_alloc;
f2b636e8
JB
2892 }
2893
5d4f98a2 2894 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2895 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2896 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2897 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2898 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2899 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2900
3173a18f 2901 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2902 btrfs_info(fs_info, "has skinny extents");
3173a18f 2903
727011e0
CM
2904 /*
2905 * flag our filesystem as having big metadata blocks if
2906 * they are bigger than the page size
2907 */
09cbfeaf 2908 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2909 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2910 btrfs_info(fs_info,
2911 "flagging fs with big metadata feature");
727011e0
CM
2912 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2913 }
2914
bc3f116f 2915 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2916 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2917 stripesize = sectorsize;
707e8a07 2918 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2919 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2920
da17066c
JM
2921 /* Cache block sizes */
2922 fs_info->nodesize = nodesize;
2923 fs_info->sectorsize = sectorsize;
2924 fs_info->stripesize = stripesize;
2925
bc3f116f
CM
2926 /*
2927 * mixed block groups end up with duplicate but slightly offset
2928 * extent buffers for the same range. It leads to corruptions
2929 */
2930 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2931 (sectorsize != nodesize)) {
05135f59
DS
2932 btrfs_err(fs_info,
2933"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2934 nodesize, sectorsize);
bc3f116f
CM
2935 goto fail_alloc;
2936 }
2937
ceda0864
MX
2938 /*
2939 * Needn't use the lock because there is no other task which will
2940 * update the flag.
2941 */
a6fa6fae 2942 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2943
f2b636e8
JB
2944 features = btrfs_super_compat_ro_flags(disk_super) &
2945 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2946 if (!sb_rdonly(sb) && features) {
05135f59
DS
2947 btrfs_err(fs_info,
2948 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2949 features);
f2b636e8 2950 err = -EINVAL;
16cdcec7 2951 goto fail_alloc;
f2b636e8 2952 }
61d92c32 2953
2a458198
ES
2954 ret = btrfs_init_workqueues(fs_info, fs_devices);
2955 if (ret) {
2956 err = ret;
0dc3b84a
JB
2957 goto fail_sb_buffer;
2958 }
4543df7e 2959
9e11ceee
JK
2960 sb->s_bdi->congested_fn = btrfs_congested_fn;
2961 sb->s_bdi->congested_data = fs_info;
2962 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 2963 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
2964 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2965 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2966
a061fc8d
CM
2967 sb->s_blocksize = sectorsize;
2968 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 2969 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 2970
925baedd 2971 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2972 ret = btrfs_read_sys_array(fs_info);
925baedd 2973 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2974 if (ret) {
05135f59 2975 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2976 goto fail_sb_buffer;
84eed90f 2977 }
0b86a832 2978
84234f3a 2979 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2980 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2981
da17066c 2982 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2983
2ff7e61e 2984 chunk_root->node = read_tree_block(fs_info,
0b86a832 2985 btrfs_super_chunk_root(disk_super),
581c1760 2986 generation, level, NULL);
64c043de
LB
2987 if (IS_ERR(chunk_root->node) ||
2988 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2989 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2990 if (!IS_ERR(chunk_root->node))
2991 free_extent_buffer(chunk_root->node);
95ab1f64 2992 chunk_root->node = NULL;
af31f5e5 2993 goto fail_tree_roots;
83121942 2994 }
5d4f98a2
YZ
2995 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2996 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2997
e17cade2 2998 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2999 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 3000
5b4aacef 3001 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3002 if (ret) {
05135f59 3003 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3004 goto fail_tree_roots;
2b82032c 3005 }
0b86a832 3006
8dabb742 3007 /*
9b99b115
AJ
3008 * Keep the devid that is marked to be the target device for the
3009 * device replace procedure
8dabb742 3010 */
9b99b115 3011 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3012
a6b0d5c8 3013 if (!fs_devices->latest_bdev) {
05135f59 3014 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3015 goto fail_tree_roots;
3016 }
3017
af31f5e5 3018retry_root_backup:
84234f3a 3019 generation = btrfs_super_generation(disk_super);
581c1760 3020 level = btrfs_super_root_level(disk_super);
0b86a832 3021
2ff7e61e 3022 tree_root->node = read_tree_block(fs_info,
db94535d 3023 btrfs_super_root(disk_super),
581c1760 3024 generation, level, NULL);
64c043de
LB
3025 if (IS_ERR(tree_root->node) ||
3026 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3027 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3028 if (!IS_ERR(tree_root->node))
3029 free_extent_buffer(tree_root->node);
95ab1f64 3030 tree_root->node = NULL;
af31f5e5 3031 goto recovery_tree_root;
83121942 3032 }
af31f5e5 3033
5d4f98a2
YZ
3034 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3035 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3036 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3037
f32e48e9
CR
3038 mutex_lock(&tree_root->objectid_mutex);
3039 ret = btrfs_find_highest_objectid(tree_root,
3040 &tree_root->highest_objectid);
3041 if (ret) {
3042 mutex_unlock(&tree_root->objectid_mutex);
3043 goto recovery_tree_root;
3044 }
3045
3046 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3047
3048 mutex_unlock(&tree_root->objectid_mutex);
3049
6bccf3ab 3050 ret = btrfs_read_roots(fs_info);
4bbcaa64 3051 if (ret)
af31f5e5 3052 goto recovery_tree_root;
f7a81ea4 3053
8929ecfa
YZ
3054 fs_info->generation = generation;
3055 fs_info->last_trans_committed = generation;
8929ecfa 3056
cf90d884
QW
3057 ret = btrfs_verify_dev_extents(fs_info);
3058 if (ret) {
3059 btrfs_err(fs_info,
3060 "failed to verify dev extents against chunks: %d",
3061 ret);
3062 goto fail_block_groups;
3063 }
68310a5e
ID
3064 ret = btrfs_recover_balance(fs_info);
3065 if (ret) {
05135f59 3066 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3067 goto fail_block_groups;
3068 }
3069
733f4fbb
SB
3070 ret = btrfs_init_dev_stats(fs_info);
3071 if (ret) {
05135f59 3072 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3073 goto fail_block_groups;
3074 }
3075
8dabb742
SB
3076 ret = btrfs_init_dev_replace(fs_info);
3077 if (ret) {
05135f59 3078 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3079 goto fail_block_groups;
3080 }
3081
9b99b115 3082 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3083
b7c35e81
AJ
3084 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3085 if (ret) {
05135f59
DS
3086 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3087 ret);
b7c35e81
AJ
3088 goto fail_block_groups;
3089 }
3090
3091 ret = btrfs_sysfs_add_device(fs_devices);
3092 if (ret) {
05135f59
DS
3093 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3094 ret);
b7c35e81
AJ
3095 goto fail_fsdev_sysfs;
3096 }
3097
96f3136e 3098 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3099 if (ret) {
05135f59 3100 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3101 goto fail_fsdev_sysfs;
c59021f8 3102 }
3103
c59021f8 3104 ret = btrfs_init_space_info(fs_info);
3105 if (ret) {
05135f59 3106 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3107 goto fail_sysfs;
c59021f8 3108 }
3109
5b4aacef 3110 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3111 if (ret) {
05135f59 3112 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3113 goto fail_sysfs;
1b1d1f66 3114 }
4330e183 3115
6528b99d 3116 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3117 btrfs_warn(fs_info,
52042d8e 3118 "writable mount is not allowed due to too many missing devices");
2365dd3c 3119 goto fail_sysfs;
292fd7fc 3120 }
9078a3e1 3121
a74a4b97
CM
3122 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3123 "btrfs-cleaner");
57506d50 3124 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3125 goto fail_sysfs;
a74a4b97
CM
3126
3127 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3128 tree_root,
3129 "btrfs-transaction");
57506d50 3130 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3131 goto fail_cleaner;
a74a4b97 3132
583b7231 3133 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3134 !fs_info->fs_devices->rotating) {
583b7231 3135 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3136 }
3137
572d9ab7 3138 /*
01327610 3139 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3140 * not have to wait for transaction commit
3141 */
3142 btrfs_apply_pending_changes(fs_info);
3818aea2 3143
21adbd5c 3144#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3145 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3146 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3147 btrfs_test_opt(fs_info,
21adbd5c
SB
3148 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3149 1 : 0,
3150 fs_info->check_integrity_print_mask);
3151 if (ret)
05135f59
DS
3152 btrfs_warn(fs_info,
3153 "failed to initialize integrity check module: %d",
3154 ret);
21adbd5c
SB
3155 }
3156#endif
bcef60f2
AJ
3157 ret = btrfs_read_qgroup_config(fs_info);
3158 if (ret)
3159 goto fail_trans_kthread;
21adbd5c 3160
fd708b81
JB
3161 if (btrfs_build_ref_tree(fs_info))
3162 btrfs_err(fs_info, "couldn't build ref tree");
3163
96da0919
QW
3164 /* do not make disk changes in broken FS or nologreplay is given */
3165 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3166 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3167 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3168 if (ret) {
63443bf5 3169 err = ret;
28c16cbb 3170 goto fail_qgroup;
79787eaa 3171 }
e02119d5 3172 }
1a40e23b 3173
6bccf3ab 3174 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3175 if (ret)
28c16cbb 3176 goto fail_qgroup;
76dda93c 3177
bc98a42c 3178 if (!sb_rdonly(sb)) {
d68fc57b 3179 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3180 if (ret)
28c16cbb 3181 goto fail_qgroup;
90c711ab
ZB
3182
3183 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3184 ret = btrfs_recover_relocation(tree_root);
90c711ab 3185 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3186 if (ret < 0) {
05135f59
DS
3187 btrfs_warn(fs_info, "failed to recover relocation: %d",
3188 ret);
d7ce5843 3189 err = -EINVAL;
bcef60f2 3190 goto fail_qgroup;
d7ce5843 3191 }
7c2ca468 3192 }
1a40e23b 3193
3de4586c
CM
3194 location.objectid = BTRFS_FS_TREE_OBJECTID;
3195 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3196 location.offset = 0;
3de4586c 3197
3de4586c 3198 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3199 if (IS_ERR(fs_info->fs_root)) {
3200 err = PTR_ERR(fs_info->fs_root);
f50f4353 3201 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3202 goto fail_qgroup;
3140c9a3 3203 }
c289811c 3204
bc98a42c 3205 if (sb_rdonly(sb))
2b6ba629 3206 return 0;
59641015 3207
f8d468a1
OS
3208 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3209 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3210 clear_free_space_tree = 1;
3211 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3212 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3213 btrfs_warn(fs_info, "free space tree is invalid");
3214 clear_free_space_tree = 1;
3215 }
3216
3217 if (clear_free_space_tree) {
f8d468a1
OS
3218 btrfs_info(fs_info, "clearing free space tree");
3219 ret = btrfs_clear_free_space_tree(fs_info);
3220 if (ret) {
3221 btrfs_warn(fs_info,
3222 "failed to clear free space tree: %d", ret);
6bccf3ab 3223 close_ctree(fs_info);
f8d468a1
OS
3224 return ret;
3225 }
3226 }
3227
0b246afa 3228 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3229 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3230 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3231 ret = btrfs_create_free_space_tree(fs_info);
3232 if (ret) {
05135f59
DS
3233 btrfs_warn(fs_info,
3234 "failed to create free space tree: %d", ret);
6bccf3ab 3235 close_ctree(fs_info);
511711af
CM
3236 return ret;
3237 }
3238 }
3239
2b6ba629
ID
3240 down_read(&fs_info->cleanup_work_sem);
3241 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3242 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3243 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3244 close_ctree(fs_info);
2b6ba629
ID
3245 return ret;
3246 }
3247 up_read(&fs_info->cleanup_work_sem);
59641015 3248
2b6ba629
ID
3249 ret = btrfs_resume_balance_async(fs_info);
3250 if (ret) {
05135f59 3251 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3252 close_ctree(fs_info);
2b6ba629 3253 return ret;
e3acc2a6
JB
3254 }
3255
8dabb742
SB
3256 ret = btrfs_resume_dev_replace_async(fs_info);
3257 if (ret) {
05135f59 3258 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3259 close_ctree(fs_info);
8dabb742
SB
3260 return ret;
3261 }
3262
b382a324
JS
3263 btrfs_qgroup_rescan_resume(fs_info);
3264
4bbcaa64 3265 if (!fs_info->uuid_root) {
05135f59 3266 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3267 ret = btrfs_create_uuid_tree(fs_info);
3268 if (ret) {
05135f59
DS
3269 btrfs_warn(fs_info,
3270 "failed to create the UUID tree: %d", ret);
6bccf3ab 3271 close_ctree(fs_info);
f7a81ea4
SB
3272 return ret;
3273 }
0b246afa 3274 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3275 fs_info->generation !=
3276 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3277 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3278 ret = btrfs_check_uuid_tree(fs_info);
3279 if (ret) {
05135f59
DS
3280 btrfs_warn(fs_info,
3281 "failed to check the UUID tree: %d", ret);
6bccf3ab 3282 close_ctree(fs_info);
70f80175
SB
3283 return ret;
3284 }
3285 } else {
afcdd129 3286 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3287 }
afcdd129 3288 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3289
8dcddfa0
QW
3290 /*
3291 * backuproot only affect mount behavior, and if open_ctree succeeded,
3292 * no need to keep the flag
3293 */
3294 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3295
ad2b2c80 3296 return 0;
39279cc3 3297
bcef60f2
AJ
3298fail_qgroup:
3299 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3300fail_trans_kthread:
3301 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3302 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3303 btrfs_free_fs_roots(fs_info);
3f157a2f 3304fail_cleaner:
a74a4b97 3305 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3306
3307 /*
3308 * make sure we're done with the btree inode before we stop our
3309 * kthreads
3310 */
3311 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3312
2365dd3c 3313fail_sysfs:
6618a59b 3314 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3315
b7c35e81
AJ
3316fail_fsdev_sysfs:
3317 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3318
1b1d1f66 3319fail_block_groups:
54067ae9 3320 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3321
3322fail_tree_roots:
3323 free_root_pointers(fs_info, 1);
2b8195bb 3324 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3325
39279cc3 3326fail_sb_buffer:
7abadb64 3327 btrfs_stop_all_workers(fs_info);
5cdd7db6 3328 btrfs_free_block_groups(fs_info);
16cdcec7 3329fail_alloc:
4543df7e 3330fail_iput:
586e46e2
ID
3331 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3332
4543df7e 3333 iput(fs_info->btree_inode);
c404e0dc 3334fail_bio_counter:
7f8d236a 3335 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3336fail_delalloc_bytes:
3337 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3338fail_dirty_metadata_bytes:
3339 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3340fail_srcu:
3341 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3342fail:
53b381b3 3343 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3344 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3345 return err;
af31f5e5
CM
3346
3347recovery_tree_root:
0b246afa 3348 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3349 goto fail_tree_roots;
3350
3351 free_root_pointers(fs_info, 0);
3352
3353 /* don't use the log in recovery mode, it won't be valid */
3354 btrfs_set_super_log_root(disk_super, 0);
3355
3356 /* we can't trust the free space cache either */
3357 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3358
3359 ret = next_root_backup(fs_info, fs_info->super_copy,
3360 &num_backups_tried, &backup_index);
3361 if (ret == -1)
3362 goto fail_block_groups;
3363 goto retry_root_backup;
eb60ceac 3364}
663faf9f 3365ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3366
f2984462
CM
3367static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3368{
f2984462
CM
3369 if (uptodate) {
3370 set_buffer_uptodate(bh);
3371 } else {
442a4f63
SB
3372 struct btrfs_device *device = (struct btrfs_device *)
3373 bh->b_private;
3374
fb456252 3375 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3376 "lost page write due to IO error on %s",
606686ee 3377 rcu_str_deref(device->name));
01327610 3378 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3379 * our own ways of dealing with the IO errors
3380 */
f2984462 3381 clear_buffer_uptodate(bh);
442a4f63 3382 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3383 }
3384 unlock_buffer(bh);
3385 put_bh(bh);
3386}
3387
29c36d72
AJ
3388int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3389 struct buffer_head **bh_ret)
3390{
3391 struct buffer_head *bh;
3392 struct btrfs_super_block *super;
3393 u64 bytenr;
3394
3395 bytenr = btrfs_sb_offset(copy_num);
3396 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3397 return -EINVAL;
3398
9f6d2510 3399 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3400 /*
3401 * If we fail to read from the underlying devices, as of now
3402 * the best option we have is to mark it EIO.
3403 */
3404 if (!bh)
3405 return -EIO;
3406
3407 super = (struct btrfs_super_block *)bh->b_data;
3408 if (btrfs_super_bytenr(super) != bytenr ||
3409 btrfs_super_magic(super) != BTRFS_MAGIC) {
3410 brelse(bh);
3411 return -EINVAL;
3412 }
3413
3414 *bh_ret = bh;
3415 return 0;
3416}
3417
3418
a512bbf8
YZ
3419struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3420{
3421 struct buffer_head *bh;
3422 struct buffer_head *latest = NULL;
3423 struct btrfs_super_block *super;
3424 int i;
3425 u64 transid = 0;
92fc03fb 3426 int ret = -EINVAL;
a512bbf8
YZ
3427
3428 /* we would like to check all the supers, but that would make
3429 * a btrfs mount succeed after a mkfs from a different FS.
3430 * So, we need to add a special mount option to scan for
3431 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3432 */
3433 for (i = 0; i < 1; i++) {
29c36d72
AJ
3434 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3435 if (ret)
a512bbf8
YZ
3436 continue;
3437
3438 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3439
3440 if (!latest || btrfs_super_generation(super) > transid) {
3441 brelse(latest);
3442 latest = bh;
3443 transid = btrfs_super_generation(super);
3444 } else {
3445 brelse(bh);
3446 }
3447 }
92fc03fb
AJ
3448
3449 if (!latest)
3450 return ERR_PTR(ret);
3451
a512bbf8
YZ
3452 return latest;
3453}
3454
4eedeb75 3455/*
abbb3b8e
DS
3456 * Write superblock @sb to the @device. Do not wait for completion, all the
3457 * buffer heads we write are pinned.
4eedeb75 3458 *
abbb3b8e
DS
3459 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3460 * the expected device size at commit time. Note that max_mirrors must be
3461 * same for write and wait phases.
4eedeb75 3462 *
abbb3b8e 3463 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3464 */
a512bbf8 3465static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3466 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3467{
3468 struct buffer_head *bh;
3469 int i;
3470 int ret;
3471 int errors = 0;
3472 u32 crc;
3473 u64 bytenr;
1b9e619c 3474 int op_flags;
a512bbf8
YZ
3475
3476 if (max_mirrors == 0)
3477 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3478
a512bbf8
YZ
3479 for (i = 0; i < max_mirrors; i++) {
3480 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3481 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3482 device->commit_total_bytes)
a512bbf8
YZ
3483 break;
3484
abbb3b8e 3485 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3486
abbb3b8e
DS
3487 crc = ~(u32)0;
3488 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3489 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3490 btrfs_csum_final(crc, sb->csum);
4eedeb75 3491
abbb3b8e 3492 /* One reference for us, and we leave it for the caller */
9f6d2510 3493 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3494 BTRFS_SUPER_INFO_SIZE);
3495 if (!bh) {
3496 btrfs_err(device->fs_info,
3497 "couldn't get super buffer head for bytenr %llu",
3498 bytenr);
3499 errors++;
4eedeb75 3500 continue;
abbb3b8e 3501 }
634554dc 3502
abbb3b8e 3503 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3504
abbb3b8e
DS
3505 /* one reference for submit_bh */
3506 get_bh(bh);
4eedeb75 3507
abbb3b8e
DS
3508 set_buffer_uptodate(bh);
3509 lock_buffer(bh);
3510 bh->b_end_io = btrfs_end_buffer_write_sync;
3511 bh->b_private = device;
a512bbf8 3512
387125fc
CM
3513 /*
3514 * we fua the first super. The others we allow
3515 * to go down lazy.
3516 */
1b9e619c
OS
3517 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3518 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3519 op_flags |= REQ_FUA;
3520 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3521 if (ret)
a512bbf8 3522 errors++;
a512bbf8
YZ
3523 }
3524 return errors < i ? 0 : -1;
3525}
3526
abbb3b8e
DS
3527/*
3528 * Wait for write completion of superblocks done by write_dev_supers,
3529 * @max_mirrors same for write and wait phases.
3530 *
3531 * Return number of errors when buffer head is not found or not marked up to
3532 * date.
3533 */
3534static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3535{
3536 struct buffer_head *bh;
3537 int i;
3538 int errors = 0;
b6a535fa 3539 bool primary_failed = false;
abbb3b8e
DS
3540 u64 bytenr;
3541
3542 if (max_mirrors == 0)
3543 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3544
3545 for (i = 0; i < max_mirrors; i++) {
3546 bytenr = btrfs_sb_offset(i);
3547 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3548 device->commit_total_bytes)
3549 break;
3550
9f6d2510
DS
3551 bh = __find_get_block(device->bdev,
3552 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3553 BTRFS_SUPER_INFO_SIZE);
3554 if (!bh) {
3555 errors++;
b6a535fa
HM
3556 if (i == 0)
3557 primary_failed = true;
abbb3b8e
DS
3558 continue;
3559 }
3560 wait_on_buffer(bh);
b6a535fa 3561 if (!buffer_uptodate(bh)) {
abbb3b8e 3562 errors++;
b6a535fa
HM
3563 if (i == 0)
3564 primary_failed = true;
3565 }
abbb3b8e
DS
3566
3567 /* drop our reference */
3568 brelse(bh);
3569
3570 /* drop the reference from the writing run */
3571 brelse(bh);
3572 }
3573
b6a535fa
HM
3574 /* log error, force error return */
3575 if (primary_failed) {
3576 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3577 device->devid);
3578 return -1;
3579 }
3580
abbb3b8e
DS
3581 return errors < i ? 0 : -1;
3582}
3583
387125fc
CM
3584/*
3585 * endio for the write_dev_flush, this will wake anyone waiting
3586 * for the barrier when it is done
3587 */
4246a0b6 3588static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3589{
e0ae9994 3590 complete(bio->bi_private);
387125fc
CM
3591}
3592
3593/*
4fc6441a
AJ
3594 * Submit a flush request to the device if it supports it. Error handling is
3595 * done in the waiting counterpart.
387125fc 3596 */
4fc6441a 3597static void write_dev_flush(struct btrfs_device *device)
387125fc 3598{
c2a9c7ab 3599 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3600 struct bio *bio = device->flush_bio;
387125fc 3601
c2a9c7ab 3602 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3603 return;
387125fc 3604
e0ae9994 3605 bio_reset(bio);
387125fc 3606 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3607 bio_set_dev(bio, device->bdev);
8d910125 3608 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3609 init_completion(&device->flush_wait);
3610 bio->bi_private = &device->flush_wait;
387125fc 3611
43a01111 3612 btrfsic_submit_bio(bio);
1c3063b6 3613 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3614}
387125fc 3615
4fc6441a
AJ
3616/*
3617 * If the flush bio has been submitted by write_dev_flush, wait for it.
3618 */
8c27cb35 3619static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3620{
4fc6441a 3621 struct bio *bio = device->flush_bio;
387125fc 3622
1c3063b6 3623 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3624 return BLK_STS_OK;
387125fc 3625
1c3063b6 3626 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3627 wait_for_completion_io(&device->flush_wait);
387125fc 3628
8c27cb35 3629 return bio->bi_status;
387125fc 3630}
387125fc 3631
d10b82fe 3632static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3633{
6528b99d 3634 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3635 return -EIO;
387125fc
CM
3636 return 0;
3637}
3638
3639/*
3640 * send an empty flush down to each device in parallel,
3641 * then wait for them
3642 */
3643static int barrier_all_devices(struct btrfs_fs_info *info)
3644{
3645 struct list_head *head;
3646 struct btrfs_device *dev;
5af3e8cc 3647 int errors_wait = 0;
4e4cbee9 3648 blk_status_t ret;
387125fc 3649
1538e6c5 3650 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3651 /* send down all the barriers */
3652 head = &info->fs_devices->devices;
1538e6c5 3653 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3654 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3655 continue;
cea7c8bf 3656 if (!dev->bdev)
387125fc 3657 continue;
e12c9621 3658 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3659 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3660 continue;
3661
4fc6441a 3662 write_dev_flush(dev);
58efbc9f 3663 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3664 }
3665
3666 /* wait for all the barriers */
1538e6c5 3667 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3668 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3669 continue;
387125fc 3670 if (!dev->bdev) {
5af3e8cc 3671 errors_wait++;
387125fc
CM
3672 continue;
3673 }
e12c9621 3674 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3675 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3676 continue;
3677
4fc6441a 3678 ret = wait_dev_flush(dev);
401b41e5
AJ
3679 if (ret) {
3680 dev->last_flush_error = ret;
66b4993e
DS
3681 btrfs_dev_stat_inc_and_print(dev,
3682 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3683 errors_wait++;
401b41e5
AJ
3684 }
3685 }
3686
cea7c8bf 3687 if (errors_wait) {
401b41e5
AJ
3688 /*
3689 * At some point we need the status of all disks
3690 * to arrive at the volume status. So error checking
3691 * is being pushed to a separate loop.
3692 */
d10b82fe 3693 return check_barrier_error(info);
387125fc 3694 }
387125fc
CM
3695 return 0;
3696}
3697
943c6e99
ZL
3698int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3699{
8789f4fe
ZL
3700 int raid_type;
3701 int min_tolerated = INT_MAX;
943c6e99 3702
8789f4fe
ZL
3703 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3704 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3705 min_tolerated = min(min_tolerated,
3706 btrfs_raid_array[BTRFS_RAID_SINGLE].
3707 tolerated_failures);
943c6e99 3708
8789f4fe
ZL
3709 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3710 if (raid_type == BTRFS_RAID_SINGLE)
3711 continue;
41a6e891 3712 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe
ZL
3713 continue;
3714 min_tolerated = min(min_tolerated,
3715 btrfs_raid_array[raid_type].
3716 tolerated_failures);
3717 }
943c6e99 3718
8789f4fe 3719 if (min_tolerated == INT_MAX) {
ab8d0fc4 3720 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3721 min_tolerated = 0;
3722 }
3723
3724 return min_tolerated;
943c6e99
ZL
3725}
3726
eece6a9c 3727int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3728{
e5e9a520 3729 struct list_head *head;
f2984462 3730 struct btrfs_device *dev;
a061fc8d 3731 struct btrfs_super_block *sb;
f2984462 3732 struct btrfs_dev_item *dev_item;
f2984462
CM
3733 int ret;
3734 int do_barriers;
a236aed1
CM
3735 int max_errors;
3736 int total_errors = 0;
a061fc8d 3737 u64 flags;
f2984462 3738
0b246afa 3739 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3740
3741 /*
3742 * max_mirrors == 0 indicates we're from commit_transaction,
3743 * not from fsync where the tree roots in fs_info have not
3744 * been consistent on disk.
3745 */
3746 if (max_mirrors == 0)
3747 backup_super_roots(fs_info);
f2984462 3748
0b246afa 3749 sb = fs_info->super_for_commit;
a061fc8d 3750 dev_item = &sb->dev_item;
e5e9a520 3751
0b246afa
JM
3752 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3753 head = &fs_info->fs_devices->devices;
3754 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3755
5af3e8cc 3756 if (do_barriers) {
0b246afa 3757 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3758 if (ret) {
3759 mutex_unlock(
0b246afa
JM
3760 &fs_info->fs_devices->device_list_mutex);
3761 btrfs_handle_fs_error(fs_info, ret,
3762 "errors while submitting device barriers.");
5af3e8cc
SB
3763 return ret;
3764 }
3765 }
387125fc 3766
1538e6c5 3767 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3768 if (!dev->bdev) {
3769 total_errors++;
3770 continue;
3771 }
e12c9621 3772 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3773 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3774 continue;
3775
2b82032c 3776 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3777 btrfs_set_stack_device_type(dev_item, dev->type);
3778 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3779 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3780 dev->commit_total_bytes);
ce7213c7
MX
3781 btrfs_set_stack_device_bytes_used(dev_item,
3782 dev->commit_bytes_used);
a061fc8d
CM
3783 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3784 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3785 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3786 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3787 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3788 BTRFS_FSID_SIZE);
a512bbf8 3789
a061fc8d
CM
3790 flags = btrfs_super_flags(sb);
3791 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3792
75cb857d
QW
3793 ret = btrfs_validate_write_super(fs_info, sb);
3794 if (ret < 0) {
3795 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3796 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3797 "unexpected superblock corruption detected");
3798 return -EUCLEAN;
3799 }
3800
abbb3b8e 3801 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3802 if (ret)
3803 total_errors++;
f2984462 3804 }
a236aed1 3805 if (total_errors > max_errors) {
0b246afa
JM
3806 btrfs_err(fs_info, "%d errors while writing supers",
3807 total_errors);
3808 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3809
9d565ba4 3810 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3811 btrfs_handle_fs_error(fs_info, -EIO,
3812 "%d errors while writing supers",
3813 total_errors);
9d565ba4 3814 return -EIO;
a236aed1 3815 }
f2984462 3816
a512bbf8 3817 total_errors = 0;
1538e6c5 3818 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3819 if (!dev->bdev)
3820 continue;
e12c9621 3821 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3822 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3823 continue;
3824
abbb3b8e 3825 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3826 if (ret)
3827 total_errors++;
f2984462 3828 }
0b246afa 3829 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3830 if (total_errors > max_errors) {
0b246afa
JM
3831 btrfs_handle_fs_error(fs_info, -EIO,
3832 "%d errors while writing supers",
3833 total_errors);
79787eaa 3834 return -EIO;
a236aed1 3835 }
f2984462
CM
3836 return 0;
3837}
3838
cb517eab
MX
3839/* Drop a fs root from the radix tree and free it. */
3840void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3841 struct btrfs_root *root)
2619ba1f 3842{
4df27c4d 3843 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3844 radix_tree_delete(&fs_info->fs_roots_radix,
3845 (unsigned long)root->root_key.objectid);
4df27c4d 3846 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3847
3848 if (btrfs_root_refs(&root->root_item) == 0)
3849 synchronize_srcu(&fs_info->subvol_srcu);
3850
1c1ea4f7 3851 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3852 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3853 if (root->reloc_root) {
3854 free_extent_buffer(root->reloc_root->node);
3855 free_extent_buffer(root->reloc_root->commit_root);
3856 btrfs_put_fs_root(root->reloc_root);
3857 root->reloc_root = NULL;
3858 }
3859 }
3321719e 3860
faa2dbf0
JB
3861 if (root->free_ino_pinned)
3862 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3863 if (root->free_ino_ctl)
3864 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3865 btrfs_free_fs_root(root);
4df27c4d
YZ
3866}
3867
84db5ccf 3868void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3869{
57cdc8db 3870 iput(root->ino_cache_inode);
4df27c4d 3871 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3872 if (root->anon_dev)
3873 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3874 if (root->subv_writers)
3875 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3876 free_extent_buffer(root->node);
3877 free_extent_buffer(root->commit_root);
581bb050
LZ
3878 kfree(root->free_ino_ctl);
3879 kfree(root->free_ino_pinned);
b0feb9d9 3880 btrfs_put_fs_root(root);
2619ba1f
CM
3881}
3882
c146afad 3883int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3884{
c146afad
YZ
3885 u64 root_objectid = 0;
3886 struct btrfs_root *gang[8];
65d33fd7
QW
3887 int i = 0;
3888 int err = 0;
3889 unsigned int ret = 0;
3890 int index;
e089f05c 3891
c146afad 3892 while (1) {
65d33fd7 3893 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3894 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3895 (void **)gang, root_objectid,
3896 ARRAY_SIZE(gang));
65d33fd7
QW
3897 if (!ret) {
3898 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3899 break;
65d33fd7 3900 }
5d4f98a2 3901 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3902
c146afad 3903 for (i = 0; i < ret; i++) {
65d33fd7
QW
3904 /* Avoid to grab roots in dead_roots */
3905 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3906 gang[i] = NULL;
3907 continue;
3908 }
3909 /* grab all the search result for later use */
3910 gang[i] = btrfs_grab_fs_root(gang[i]);
3911 }
3912 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3913
65d33fd7
QW
3914 for (i = 0; i < ret; i++) {
3915 if (!gang[i])
3916 continue;
c146afad 3917 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3918 err = btrfs_orphan_cleanup(gang[i]);
3919 if (err)
65d33fd7
QW
3920 break;
3921 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3922 }
3923 root_objectid++;
3924 }
65d33fd7
QW
3925
3926 /* release the uncleaned roots due to error */
3927 for (; i < ret; i++) {
3928 if (gang[i])
3929 btrfs_put_fs_root(gang[i]);
3930 }
3931 return err;
c146afad 3932}
a2135011 3933
6bccf3ab 3934int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3935{
6bccf3ab 3936 struct btrfs_root *root = fs_info->tree_root;
c146afad 3937 struct btrfs_trans_handle *trans;
a74a4b97 3938
0b246afa 3939 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3940 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3941 mutex_unlock(&fs_info->cleaner_mutex);
3942 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3943
3944 /* wait until ongoing cleanup work done */
0b246afa
JM
3945 down_write(&fs_info->cleanup_work_sem);
3946 up_write(&fs_info->cleanup_work_sem);
c71bf099 3947
7a7eaa40 3948 trans = btrfs_join_transaction(root);
3612b495
TI
3949 if (IS_ERR(trans))
3950 return PTR_ERR(trans);
3a45bb20 3951 return btrfs_commit_transaction(trans);
c146afad
YZ
3952}
3953
6bccf3ab 3954void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3955{
c146afad
YZ
3956 int ret;
3957
afcdd129 3958 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3959 /*
3960 * We don't want the cleaner to start new transactions, add more delayed
3961 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3962 * because that frees the task_struct, and the transaction kthread might
3963 * still try to wake up the cleaner.
3964 */
3965 kthread_park(fs_info->cleaner_kthread);
c146afad 3966
7343dd61 3967 /* wait for the qgroup rescan worker to stop */
d06f23d6 3968 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3969
803b2f54
SB
3970 /* wait for the uuid_scan task to finish */
3971 down(&fs_info->uuid_tree_rescan_sem);
3972 /* avoid complains from lockdep et al., set sem back to initial state */
3973 up(&fs_info->uuid_tree_rescan_sem);
3974
837d5b6e 3975 /* pause restriper - we want to resume on mount */
aa1b8cd4 3976 btrfs_pause_balance(fs_info);
837d5b6e 3977
8dabb742
SB
3978 btrfs_dev_replace_suspend_for_unmount(fs_info);
3979
aa1b8cd4 3980 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3981
3982 /* wait for any defraggers to finish */
3983 wait_event(fs_info->transaction_wait,
3984 (atomic_read(&fs_info->defrag_running) == 0));
3985
3986 /* clear out the rbtree of defraggable inodes */
26176e7c 3987 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3988
21c7e756
MX
3989 cancel_work_sync(&fs_info->async_reclaim_work);
3990
bc98a42c 3991 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3992 /*
d6fd0ae2
OS
3993 * The cleaner kthread is stopped, so do one final pass over
3994 * unused block groups.
e44163e1 3995 */
0b246afa 3996 btrfs_delete_unused_bgs(fs_info);
e44163e1 3997
6bccf3ab 3998 ret = btrfs_commit_super(fs_info);
acce952b 3999 if (ret)
04892340 4000 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4001 }
4002
af722733
LB
4003 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4004 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4005 btrfs_error_commit_super(fs_info);
0f7d52f4 4006
e3029d9f
AV
4007 kthread_stop(fs_info->transaction_kthread);
4008 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4009
e187831e 4010 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4011 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4012
04892340 4013 btrfs_free_qgroup_config(fs_info);
fe816d0f 4014 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4015
963d678b 4016 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4017 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4018 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4019 }
bcc63abb 4020
6618a59b 4021 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4022 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4023
faa2dbf0 4024 btrfs_free_fs_roots(fs_info);
d10c5f31 4025
1a4319cc
LB
4026 btrfs_put_block_group_cache(fs_info);
4027
de348ee0
WS
4028 /*
4029 * we must make sure there is not any read request to
4030 * submit after we stopping all workers.
4031 */
4032 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4033 btrfs_stop_all_workers(fs_info);
4034
5cdd7db6
FM
4035 btrfs_free_block_groups(fs_info);
4036
afcdd129 4037 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 4038 free_root_pointers(fs_info, 1);
9ad6b7bc 4039
13e6c37b 4040 iput(fs_info->btree_inode);
d6bfde87 4041
21adbd5c 4042#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4043 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4044 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4045#endif
4046
0b86a832 4047 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4048 btrfs_close_devices(fs_info->fs_devices);
b248a415 4049
e2d84521 4050 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4051 percpu_counter_destroy(&fs_info->delalloc_bytes);
7f8d236a 4052 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4053 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4054
53b381b3 4055 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4056 btrfs_free_ref_cache(fs_info);
eb60ceac
CM
4057}
4058
b9fab919
CM
4059int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4060 int atomic)
5f39d397 4061{
1259ab75 4062 int ret;
727011e0 4063 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4064
0b32f4bb 4065 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4066 if (!ret)
4067 return ret;
4068
4069 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4070 parent_transid, atomic);
4071 if (ret == -EAGAIN)
4072 return ret;
1259ab75 4073 return !ret;
5f39d397
CM
4074}
4075
5f39d397
CM
4076void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4077{
0b246afa 4078 struct btrfs_fs_info *fs_info;
06ea65a3 4079 struct btrfs_root *root;
5f39d397 4080 u64 transid = btrfs_header_generation(buf);
b9473439 4081 int was_dirty;
b4ce94de 4082
06ea65a3
JB
4083#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4084 /*
4085 * This is a fast path so only do this check if we have sanity tests
52042d8e 4086 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4087 * outside of the sanity tests.
4088 */
b0132a3b 4089 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4090 return;
4091#endif
4092 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4093 fs_info = root->fs_info;
b9447ef8 4094 btrfs_assert_tree_locked(buf);
0b246afa 4095 if (transid != fs_info->generation)
5d163e0e 4096 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4097 buf->start, transid, fs_info->generation);
0b32f4bb 4098 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4099 if (!was_dirty)
104b4e51
NB
4100 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4101 buf->len,
4102 fs_info->dirty_metadata_batch);
1f21ef0a 4103#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4104 /*
4105 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4106 * but item data not updated.
4107 * So here we should only check item pointers, not item data.
4108 */
4109 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4110 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4111 btrfs_print_leaf(buf);
1f21ef0a
FM
4112 ASSERT(0);
4113 }
4114#endif
eb60ceac
CM
4115}
4116
2ff7e61e 4117static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4118 int flush_delayed)
16cdcec7
MX
4119{
4120 /*
4121 * looks as though older kernels can get into trouble with
4122 * this code, they end up stuck in balance_dirty_pages forever
4123 */
e2d84521 4124 int ret;
16cdcec7
MX
4125
4126 if (current->flags & PF_MEMALLOC)
4127 return;
4128
b53d3f5d 4129 if (flush_delayed)
2ff7e61e 4130 btrfs_balance_delayed_items(fs_info);
16cdcec7 4131
d814a491
EL
4132 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4133 BTRFS_DIRTY_METADATA_THRESH,
4134 fs_info->dirty_metadata_batch);
e2d84521 4135 if (ret > 0) {
0b246afa 4136 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4137 }
16cdcec7
MX
4138}
4139
2ff7e61e 4140void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4141{
2ff7e61e 4142 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4143}
585ad2c3 4144
2ff7e61e 4145void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4146{
2ff7e61e 4147 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4148}
6b80053d 4149
581c1760
QW
4150int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4151 struct btrfs_key *first_key)
6b80053d 4152{
5ab12d1f 4153 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4154 level, first_key);
6b80053d 4155}
0da5468f 4156
2ff7e61e 4157static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4158{
fe816d0f
NB
4159 /* cleanup FS via transaction */
4160 btrfs_cleanup_transaction(fs_info);
4161
0b246afa 4162 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4163 btrfs_run_delayed_iputs(fs_info);
0b246afa 4164 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4165
0b246afa
JM
4166 down_write(&fs_info->cleanup_work_sem);
4167 up_write(&fs_info->cleanup_work_sem);
acce952b 4168}
4169
143bede5 4170static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4171{
acce952b 4172 struct btrfs_ordered_extent *ordered;
acce952b 4173
199c2a9c 4174 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4175 /*
4176 * This will just short circuit the ordered completion stuff which will
4177 * make sure the ordered extent gets properly cleaned up.
4178 */
199c2a9c 4179 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4180 root_extent_list)
4181 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4182 spin_unlock(&root->ordered_extent_lock);
4183}
4184
4185static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4186{
4187 struct btrfs_root *root;
4188 struct list_head splice;
4189
4190 INIT_LIST_HEAD(&splice);
4191
4192 spin_lock(&fs_info->ordered_root_lock);
4193 list_splice_init(&fs_info->ordered_roots, &splice);
4194 while (!list_empty(&splice)) {
4195 root = list_first_entry(&splice, struct btrfs_root,
4196 ordered_root);
1de2cfde
JB
4197 list_move_tail(&root->ordered_root,
4198 &fs_info->ordered_roots);
199c2a9c 4199
2a85d9ca 4200 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4201 btrfs_destroy_ordered_extents(root);
4202
2a85d9ca
LB
4203 cond_resched();
4204 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4205 }
4206 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4207
4208 /*
4209 * We need this here because if we've been flipped read-only we won't
4210 * get sync() from the umount, so we need to make sure any ordered
4211 * extents that haven't had their dirty pages IO start writeout yet
4212 * actually get run and error out properly.
4213 */
4214 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4215}
4216
35a3621b 4217static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4218 struct btrfs_fs_info *fs_info)
acce952b 4219{
4220 struct rb_node *node;
4221 struct btrfs_delayed_ref_root *delayed_refs;
4222 struct btrfs_delayed_ref_node *ref;
4223 int ret = 0;
4224
4225 delayed_refs = &trans->delayed_refs;
4226
4227 spin_lock(&delayed_refs->lock);
d7df2c79 4228 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4229 spin_unlock(&delayed_refs->lock);
0b246afa 4230 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4231 return ret;
4232 }
4233
5c9d028b 4234 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4235 struct btrfs_delayed_ref_head *head;
0e0adbcf 4236 struct rb_node *n;
e78417d1 4237 bool pin_bytes = false;
acce952b 4238
d7df2c79
JB
4239 head = rb_entry(node, struct btrfs_delayed_ref_head,
4240 href_node);
3069bd26 4241 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4242 continue;
3069bd26 4243
d7df2c79 4244 spin_lock(&head->lock);
e3d03965 4245 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4246 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4247 ref_node);
d7df2c79 4248 ref->in_tree = 0;
e3d03965 4249 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4250 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4251 if (!list_empty(&ref->add_list))
4252 list_del(&ref->add_list);
d7df2c79
JB
4253 atomic_dec(&delayed_refs->num_entries);
4254 btrfs_put_delayed_ref(ref);
e78417d1 4255 }
d7df2c79
JB
4256 if (head->must_insert_reserved)
4257 pin_bytes = true;
4258 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4259 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4260 spin_unlock(&head->lock);
4261 spin_unlock(&delayed_refs->lock);
4262 mutex_unlock(&head->mutex);
acce952b 4263
d7df2c79 4264 if (pin_bytes)
d278850e
JB
4265 btrfs_pin_extent(fs_info, head->bytenr,
4266 head->num_bytes, 1);
31890da0 4267 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4268 btrfs_put_delayed_ref_head(head);
acce952b 4269 cond_resched();
4270 spin_lock(&delayed_refs->lock);
4271 }
4272
4273 spin_unlock(&delayed_refs->lock);
4274
4275 return ret;
4276}
4277
143bede5 4278static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4279{
4280 struct btrfs_inode *btrfs_inode;
4281 struct list_head splice;
4282
4283 INIT_LIST_HEAD(&splice);
4284
eb73c1b7
MX
4285 spin_lock(&root->delalloc_lock);
4286 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4287
4288 while (!list_empty(&splice)) {
fe816d0f 4289 struct inode *inode = NULL;
eb73c1b7
MX
4290 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4291 delalloc_inodes);
fe816d0f 4292 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4293 spin_unlock(&root->delalloc_lock);
acce952b 4294
fe816d0f
NB
4295 /*
4296 * Make sure we get a live inode and that it'll not disappear
4297 * meanwhile.
4298 */
4299 inode = igrab(&btrfs_inode->vfs_inode);
4300 if (inode) {
4301 invalidate_inode_pages2(inode->i_mapping);
4302 iput(inode);
4303 }
eb73c1b7 4304 spin_lock(&root->delalloc_lock);
acce952b 4305 }
eb73c1b7
MX
4306 spin_unlock(&root->delalloc_lock);
4307}
4308
4309static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4310{
4311 struct btrfs_root *root;
4312 struct list_head splice;
4313
4314 INIT_LIST_HEAD(&splice);
4315
4316 spin_lock(&fs_info->delalloc_root_lock);
4317 list_splice_init(&fs_info->delalloc_roots, &splice);
4318 while (!list_empty(&splice)) {
4319 root = list_first_entry(&splice, struct btrfs_root,
4320 delalloc_root);
eb73c1b7
MX
4321 root = btrfs_grab_fs_root(root);
4322 BUG_ON(!root);
4323 spin_unlock(&fs_info->delalloc_root_lock);
4324
4325 btrfs_destroy_delalloc_inodes(root);
4326 btrfs_put_fs_root(root);
4327
4328 spin_lock(&fs_info->delalloc_root_lock);
4329 }
4330 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4331}
4332
2ff7e61e 4333static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4334 struct extent_io_tree *dirty_pages,
4335 int mark)
4336{
4337 int ret;
acce952b 4338 struct extent_buffer *eb;
4339 u64 start = 0;
4340 u64 end;
acce952b 4341
4342 while (1) {
4343 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4344 mark, NULL);
acce952b 4345 if (ret)
4346 break;
4347
91166212 4348 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4349 while (start <= end) {
0b246afa
JM
4350 eb = find_extent_buffer(fs_info, start);
4351 start += fs_info->nodesize;
fd8b2b61 4352 if (!eb)
acce952b 4353 continue;
fd8b2b61 4354 wait_on_extent_buffer_writeback(eb);
acce952b 4355
fd8b2b61
JB
4356 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4357 &eb->bflags))
4358 clear_extent_buffer_dirty(eb);
4359 free_extent_buffer_stale(eb);
acce952b 4360 }
4361 }
4362
4363 return ret;
4364}
4365
2ff7e61e 4366static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4367 struct extent_io_tree *pinned_extents)
4368{
4369 struct extent_io_tree *unpin;
4370 u64 start;
4371 u64 end;
4372 int ret;
ed0eaa14 4373 bool loop = true;
acce952b 4374
4375 unpin = pinned_extents;
ed0eaa14 4376again:
acce952b 4377 while (1) {
0e6ec385
FM
4378 struct extent_state *cached_state = NULL;
4379
fcd5e742
LF
4380 /*
4381 * The btrfs_finish_extent_commit() may get the same range as
4382 * ours between find_first_extent_bit and clear_extent_dirty.
4383 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4384 * the same extent range.
4385 */
4386 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4387 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4388 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4389 if (ret) {
4390 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4391 break;
fcd5e742 4392 }
acce952b 4393
0e6ec385
FM
4394 clear_extent_dirty(unpin, start, end, &cached_state);
4395 free_extent_state(cached_state);
2ff7e61e 4396 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4397 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4398 cond_resched();
4399 }
4400
ed0eaa14 4401 if (loop) {
0b246afa
JM
4402 if (unpin == &fs_info->freed_extents[0])
4403 unpin = &fs_info->freed_extents[1];
ed0eaa14 4404 else
0b246afa 4405 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4406 loop = false;
4407 goto again;
4408 }
4409
acce952b 4410 return 0;
4411}
4412
c79a1751
LB
4413static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4414{
4415 struct inode *inode;
4416
4417 inode = cache->io_ctl.inode;
4418 if (inode) {
4419 invalidate_inode_pages2(inode->i_mapping);
4420 BTRFS_I(inode)->generation = 0;
4421 cache->io_ctl.inode = NULL;
4422 iput(inode);
4423 }
4424 btrfs_put_block_group(cache);
4425}
4426
4427void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4428 struct btrfs_fs_info *fs_info)
c79a1751
LB
4429{
4430 struct btrfs_block_group_cache *cache;
4431
4432 spin_lock(&cur_trans->dirty_bgs_lock);
4433 while (!list_empty(&cur_trans->dirty_bgs)) {
4434 cache = list_first_entry(&cur_trans->dirty_bgs,
4435 struct btrfs_block_group_cache,
4436 dirty_list);
c79a1751
LB
4437
4438 if (!list_empty(&cache->io_list)) {
4439 spin_unlock(&cur_trans->dirty_bgs_lock);
4440 list_del_init(&cache->io_list);
4441 btrfs_cleanup_bg_io(cache);
4442 spin_lock(&cur_trans->dirty_bgs_lock);
4443 }
4444
4445 list_del_init(&cache->dirty_list);
4446 spin_lock(&cache->lock);
4447 cache->disk_cache_state = BTRFS_DC_ERROR;
4448 spin_unlock(&cache->lock);
4449
4450 spin_unlock(&cur_trans->dirty_bgs_lock);
4451 btrfs_put_block_group(cache);
ba2c4d4e 4452 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4453 spin_lock(&cur_trans->dirty_bgs_lock);
4454 }
4455 spin_unlock(&cur_trans->dirty_bgs_lock);
4456
45ae2c18
NB
4457 /*
4458 * Refer to the definition of io_bgs member for details why it's safe
4459 * to use it without any locking
4460 */
c79a1751
LB
4461 while (!list_empty(&cur_trans->io_bgs)) {
4462 cache = list_first_entry(&cur_trans->io_bgs,
4463 struct btrfs_block_group_cache,
4464 io_list);
c79a1751
LB
4465
4466 list_del_init(&cache->io_list);
4467 spin_lock(&cache->lock);
4468 cache->disk_cache_state = BTRFS_DC_ERROR;
4469 spin_unlock(&cache->lock);
4470 btrfs_cleanup_bg_io(cache);
4471 }
4472}
4473
49b25e05 4474void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4475 struct btrfs_fs_info *fs_info)
49b25e05 4476{
bbbf7243
NB
4477 struct btrfs_device *dev, *tmp;
4478
2ff7e61e 4479 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4480 ASSERT(list_empty(&cur_trans->dirty_bgs));
4481 ASSERT(list_empty(&cur_trans->io_bgs));
4482
bbbf7243
NB
4483 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4484 post_commit_list) {
4485 list_del_init(&dev->post_commit_list);
4486 }
4487
2ff7e61e 4488 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4489
4a9d8bde 4490 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4491 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4492
4a9d8bde 4493 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4494 wake_up(&fs_info->transaction_wait);
49b25e05 4495
ccdf9b30
JM
4496 btrfs_destroy_delayed_inodes(fs_info);
4497 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4498
2ff7e61e 4499 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4500 EXTENT_DIRTY);
2ff7e61e 4501 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4502 fs_info->pinned_extents);
49b25e05 4503
4a9d8bde
MX
4504 cur_trans->state =TRANS_STATE_COMPLETED;
4505 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4506}
4507
2ff7e61e 4508static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4509{
4510 struct btrfs_transaction *t;
acce952b 4511
0b246afa 4512 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4513
0b246afa
JM
4514 spin_lock(&fs_info->trans_lock);
4515 while (!list_empty(&fs_info->trans_list)) {
4516 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4517 struct btrfs_transaction, list);
4518 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4519 refcount_inc(&t->use_count);
0b246afa 4520 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4521 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4522 btrfs_put_transaction(t);
0b246afa 4523 spin_lock(&fs_info->trans_lock);
724e2315
JB
4524 continue;
4525 }
0b246afa 4526 if (t == fs_info->running_transaction) {
724e2315 4527 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4528 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4529 /*
4530 * We wait for 0 num_writers since we don't hold a trans
4531 * handle open currently for this transaction.
4532 */
4533 wait_event(t->writer_wait,
4534 atomic_read(&t->num_writers) == 0);
4535 } else {
0b246afa 4536 spin_unlock(&fs_info->trans_lock);
724e2315 4537 }
2ff7e61e 4538 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4539
0b246afa
JM
4540 spin_lock(&fs_info->trans_lock);
4541 if (t == fs_info->running_transaction)
4542 fs_info->running_transaction = NULL;
acce952b 4543 list_del_init(&t->list);
0b246afa 4544 spin_unlock(&fs_info->trans_lock);
acce952b 4545
724e2315 4546 btrfs_put_transaction(t);
2ff7e61e 4547 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4548 spin_lock(&fs_info->trans_lock);
724e2315 4549 }
0b246afa
JM
4550 spin_unlock(&fs_info->trans_lock);
4551 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4552 btrfs_destroy_delayed_inodes(fs_info);
4553 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4554 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4555 btrfs_destroy_all_delalloc_inodes(fs_info);
4556 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4557
4558 return 0;
4559}
4560
e8c9f186 4561static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4562 /* mandatory callbacks */
0b86a832 4563 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4564 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4565};