]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/disk-io.c
btrfs: scrub: add scrub_lock lockdep check in scrub_workers_get
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
eb60ceac 42
de0022b9
JB
43#ifdef CONFIG_X86
44#include <asm/cpufeature.h>
45#endif
46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
e8c9f186 54static const struct extent_io_ops btree_extent_io_ops;
8b712842 55static void end_workqueue_fn(struct btrfs_work *work);
143bede5 56static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 57static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 58 struct btrfs_fs_info *fs_info);
143bede5 59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 60static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 61 struct extent_io_tree *dirty_pages,
62 int mark);
2ff7e61e 63static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 64 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
65static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 67
d352ac68 68/*
97eb6b69
DS
69 * btrfs_end_io_wq structs are used to do processing in task context when an IO
70 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
71 * by writes to insert metadata for new file extents after IO is complete.
72 */
97eb6b69 73struct btrfs_end_io_wq {
ce9adaa5
CM
74 struct bio *bio;
75 bio_end_io_t *end_io;
76 void *private;
77 struct btrfs_fs_info *info;
4e4cbee9 78 blk_status_t status;
bfebd8b5 79 enum btrfs_wq_endio_type metadata;
8b712842 80 struct btrfs_work work;
ce9adaa5 81};
0da5468f 82
97eb6b69
DS
83static struct kmem_cache *btrfs_end_io_wq_cache;
84
85int __init btrfs_end_io_wq_init(void)
86{
87 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88 sizeof(struct btrfs_end_io_wq),
89 0,
fba4b697 90 SLAB_MEM_SPREAD,
97eb6b69
DS
91 NULL);
92 if (!btrfs_end_io_wq_cache)
93 return -ENOMEM;
94 return 0;
95}
96
e67c718b 97void __cold btrfs_end_io_wq_exit(void)
97eb6b69 98{
5598e900 99 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
100}
101
d352ac68
CM
102/*
103 * async submit bios are used to offload expensive checksumming
104 * onto the worker threads. They checksum file and metadata bios
105 * just before they are sent down the IO stack.
106 */
44b8bd7e 107struct async_submit_bio {
c6100a4b 108 void *private_data;
44b8bd7e 109 struct bio *bio;
a758781d 110 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 111 int mirror_num;
eaf25d93
CM
112 /*
113 * bio_offset is optional, can be used if the pages in the bio
114 * can't tell us where in the file the bio should go
115 */
116 u64 bio_offset;
8b712842 117 struct btrfs_work work;
4e4cbee9 118 blk_status_t status;
44b8bd7e
CM
119};
120
85d4e461
CM
121/*
122 * Lockdep class keys for extent_buffer->lock's in this root. For a given
123 * eb, the lockdep key is determined by the btrfs_root it belongs to and
124 * the level the eb occupies in the tree.
125 *
126 * Different roots are used for different purposes and may nest inside each
127 * other and they require separate keysets. As lockdep keys should be
128 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
129 * by btrfs_root->root_key.objectid. This ensures that all special purpose
130 * roots have separate keysets.
4008c04a 131 *
85d4e461
CM
132 * Lock-nesting across peer nodes is always done with the immediate parent
133 * node locked thus preventing deadlock. As lockdep doesn't know this, use
134 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 135 *
85d4e461
CM
136 * The key is set by the readpage_end_io_hook after the buffer has passed
137 * csum validation but before the pages are unlocked. It is also set by
138 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 139 *
85d4e461
CM
140 * We also add a check to make sure the highest level of the tree is the
141 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
142 * needs update as well.
4008c04a
CM
143 */
144#ifdef CONFIG_DEBUG_LOCK_ALLOC
145# if BTRFS_MAX_LEVEL != 8
146# error
147# endif
85d4e461
CM
148
149static struct btrfs_lockdep_keyset {
150 u64 id; /* root objectid */
151 const char *name_stem; /* lock name stem */
152 char names[BTRFS_MAX_LEVEL + 1][20];
153 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
154} btrfs_lockdep_keysets[] = {
155 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
156 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
157 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
158 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
159 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
160 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 161 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
162 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
163 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
164 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 165 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 166 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 167 { .id = 0, .name_stem = "tree" },
4008c04a 168};
85d4e461
CM
169
170void __init btrfs_init_lockdep(void)
171{
172 int i, j;
173
174 /* initialize lockdep class names */
175 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
176 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
177
178 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
179 snprintf(ks->names[j], sizeof(ks->names[j]),
180 "btrfs-%s-%02d", ks->name_stem, j);
181 }
182}
183
184void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
185 int level)
186{
187 struct btrfs_lockdep_keyset *ks;
188
189 BUG_ON(level >= ARRAY_SIZE(ks->keys));
190
191 /* find the matching keyset, id 0 is the default entry */
192 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
193 if (ks->id == objectid)
194 break;
195
196 lockdep_set_class_and_name(&eb->lock,
197 &ks->keys[level], ks->names[level]);
198}
199
4008c04a
CM
200#endif
201
d352ac68
CM
202/*
203 * extents on the btree inode are pretty simple, there's one extent
204 * that covers the entire device
205 */
6af49dbd 206struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 207 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 208 int create)
7eccb903 209{
3ffbd68c 210 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 211 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
212 struct extent_map *em;
213 int ret;
214
890871be 215 read_lock(&em_tree->lock);
d1310b2e 216 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 217 if (em) {
0b246afa 218 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 219 read_unlock(&em_tree->lock);
5f39d397 220 goto out;
a061fc8d 221 }
890871be 222 read_unlock(&em_tree->lock);
7b13b7b1 223
172ddd60 224 em = alloc_extent_map();
5f39d397
CM
225 if (!em) {
226 em = ERR_PTR(-ENOMEM);
227 goto out;
228 }
229 em->start = 0;
0afbaf8c 230 em->len = (u64)-1;
c8b97818 231 em->block_len = (u64)-1;
5f39d397 232 em->block_start = 0;
0b246afa 233 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 234
890871be 235 write_lock(&em_tree->lock);
09a2a8f9 236 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
237 if (ret == -EEXIST) {
238 free_extent_map(em);
7b13b7b1 239 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 240 if (!em)
0433f20d 241 em = ERR_PTR(-EIO);
5f39d397 242 } else if (ret) {
7b13b7b1 243 free_extent_map(em);
0433f20d 244 em = ERR_PTR(ret);
5f39d397 245 }
890871be 246 write_unlock(&em_tree->lock);
7b13b7b1 247
5f39d397
CM
248out:
249 return em;
7eccb903
CM
250}
251
9ed57367 252u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 253{
9678c543 254 return crc32c(seed, data, len);
19c00ddc
CM
255}
256
0b5e3daf 257void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 258{
7e75bf3f 259 put_unaligned_le32(~crc, result);
19c00ddc
CM
260}
261
d352ac68
CM
262/*
263 * compute the csum for a btree block, and either verify it or write it
264 * into the csum field of the block.
265 */
01d58472
DD
266static int csum_tree_block(struct btrfs_fs_info *fs_info,
267 struct extent_buffer *buf,
19c00ddc
CM
268 int verify)
269{
01d58472 270 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
71a63551 271 char result[BTRFS_CSUM_SIZE];
19c00ddc
CM
272 unsigned long len;
273 unsigned long cur_len;
274 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
275 char *kaddr;
276 unsigned long map_start;
277 unsigned long map_len;
278 int err;
279 u32 crc = ~(u32)0;
280
281 len = buf->len - offset;
d397712b 282 while (len > 0) {
d2e174d5
JT
283 /*
284 * Note: we don't need to check for the err == 1 case here, as
285 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
286 * and 'min_len = 32' and the currently implemented mapping
287 * algorithm we cannot cross a page boundary.
288 */
19c00ddc 289 err = map_private_extent_buffer(buf, offset, 32,
a6591715 290 &kaddr, &map_start, &map_len);
d397712b 291 if (err)
8bd98f0e 292 return err;
19c00ddc 293 cur_len = min(len, map_len - (offset - map_start));
b0496686 294 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
295 crc, cur_len);
296 len -= cur_len;
297 offset += cur_len;
19c00ddc 298 }
71a63551 299 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 300
19c00ddc
CM
301 btrfs_csum_final(crc, result);
302
303 if (verify) {
607d432d 304 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
305 u32 val;
306 u32 found = 0;
607d432d 307 memcpy(&found, result, csum_size);
e4204ded 308
607d432d 309 read_extent_buffer(buf, &val, 0, csum_size);
94647322 310 btrfs_warn_rl(fs_info,
5d163e0e 311 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 312 fs_info->sb->s_id, buf->start,
efe120a0 313 val, found, btrfs_header_level(buf));
8bd98f0e 314 return -EUCLEAN;
19c00ddc
CM
315 }
316 } else {
607d432d 317 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 318 }
71a63551 319
19c00ddc
CM
320 return 0;
321}
322
d352ac68
CM
323/*
324 * we can't consider a given block up to date unless the transid of the
325 * block matches the transid in the parent node's pointer. This is how we
326 * detect blocks that either didn't get written at all or got written
327 * in the wrong place.
328 */
1259ab75 329static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
330 struct extent_buffer *eb, u64 parent_transid,
331 int atomic)
1259ab75 332{
2ac55d41 333 struct extent_state *cached_state = NULL;
1259ab75 334 int ret;
2755a0de 335 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
336
337 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
338 return 0;
339
b9fab919
CM
340 if (atomic)
341 return -EAGAIN;
342
a26e8c9f
JB
343 if (need_lock) {
344 btrfs_tree_read_lock(eb);
300aa896 345 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
346 }
347
2ac55d41 348 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 349 &cached_state);
0b32f4bb 350 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
351 btrfs_header_generation(eb) == parent_transid) {
352 ret = 0;
353 goto out;
354 }
94647322
DS
355 btrfs_err_rl(eb->fs_info,
356 "parent transid verify failed on %llu wanted %llu found %llu",
357 eb->start,
29549aec 358 parent_transid, btrfs_header_generation(eb));
1259ab75 359 ret = 1;
a26e8c9f
JB
360
361 /*
362 * Things reading via commit roots that don't have normal protection,
363 * like send, can have a really old block in cache that may point at a
01327610 364 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
365 * if we find an eb that is under IO (dirty/writeback) because we could
366 * end up reading in the stale data and then writing it back out and
367 * making everybody very sad.
368 */
369 if (!extent_buffer_under_io(eb))
370 clear_extent_buffer_uptodate(eb);
33958dc6 371out:
2ac55d41 372 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 373 &cached_state);
472b909f
JB
374 if (need_lock)
375 btrfs_tree_read_unlock_blocking(eb);
1259ab75 376 return ret;
1259ab75
CM
377}
378
1104a885
DS
379/*
380 * Return 0 if the superblock checksum type matches the checksum value of that
381 * algorithm. Pass the raw disk superblock data.
382 */
ab8d0fc4
JM
383static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
384 char *raw_disk_sb)
1104a885
DS
385{
386 struct btrfs_super_block *disk_sb =
387 (struct btrfs_super_block *)raw_disk_sb;
388 u16 csum_type = btrfs_super_csum_type(disk_sb);
389 int ret = 0;
390
391 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
392 u32 crc = ~(u32)0;
776c4a7c 393 char result[sizeof(crc)];
1104a885
DS
394
395 /*
396 * The super_block structure does not span the whole
397 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 398 * is filled with zeros and is included in the checksum.
1104a885
DS
399 */
400 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
401 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
402 btrfs_csum_final(crc, result);
403
776c4a7c 404 if (memcmp(raw_disk_sb, result, sizeof(result)))
1104a885
DS
405 ret = 1;
406 }
407
408 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 409 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
410 csum_type);
411 ret = 1;
412 }
413
414 return ret;
415}
416
581c1760
QW
417static int verify_level_key(struct btrfs_fs_info *fs_info,
418 struct extent_buffer *eb, int level,
ff76a864 419 struct btrfs_key *first_key, u64 parent_transid)
581c1760
QW
420{
421 int found_level;
422 struct btrfs_key found_key;
423 int ret;
424
425 found_level = btrfs_header_level(eb);
426 if (found_level != level) {
427#ifdef CONFIG_BTRFS_DEBUG
428 WARN_ON(1);
429 btrfs_err(fs_info,
430"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
431 eb->start, level, found_level);
432#endif
433 return -EIO;
434 }
435
436 if (!first_key)
437 return 0;
438
5d41be6f
QW
439 /*
440 * For live tree block (new tree blocks in current transaction),
441 * we need proper lock context to avoid race, which is impossible here.
442 * So we only checks tree blocks which is read from disk, whose
443 * generation <= fs_info->last_trans_committed.
444 */
445 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
446 return 0;
581c1760
QW
447 if (found_level)
448 btrfs_node_key_to_cpu(eb, &found_key, 0);
449 else
450 btrfs_item_key_to_cpu(eb, &found_key, 0);
451 ret = btrfs_comp_cpu_keys(first_key, &found_key);
452
453#ifdef CONFIG_BTRFS_DEBUG
454 if (ret) {
455 WARN_ON(1);
456 btrfs_err(fs_info,
ff76a864
LB
457"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
458 eb->start, parent_transid, first_key->objectid,
459 first_key->type, first_key->offset,
460 found_key.objectid, found_key.type,
461 found_key.offset);
581c1760
QW
462 }
463#endif
464 return ret;
465}
466
d352ac68
CM
467/*
468 * helper to read a given tree block, doing retries as required when
469 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
470 *
471 * @parent_transid: expected transid, skip check if 0
472 * @level: expected level, mandatory check
473 * @first_key: expected key of first slot, skip check if NULL
d352ac68 474 */
2ff7e61e 475static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 476 struct extent_buffer *eb,
581c1760
QW
477 u64 parent_transid, int level,
478 struct btrfs_key *first_key)
f188591e
CM
479{
480 struct extent_io_tree *io_tree;
ea466794 481 int failed = 0;
f188591e
CM
482 int ret;
483 int num_copies = 0;
484 int mirror_num = 0;
ea466794 485 int failed_mirror = 0;
f188591e 486
0b246afa 487 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 488 while (1) {
f8397d69 489 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
8436ea91 490 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
6af49dbd 491 mirror_num);
256dd1bb 492 if (!ret) {
581c1760 493 if (verify_parent_transid(io_tree, eb,
b9fab919 494 parent_transid, 0))
256dd1bb 495 ret = -EIO;
581c1760 496 else if (verify_level_key(fs_info, eb, level,
ff76a864 497 first_key, parent_transid))
581c1760
QW
498 ret = -EUCLEAN;
499 else
500 break;
256dd1bb 501 }
d397712b 502
0b246afa 503 num_copies = btrfs_num_copies(fs_info,
f188591e 504 eb->start, eb->len);
4235298e 505 if (num_copies == 1)
ea466794 506 break;
4235298e 507
5cf1ab56
JB
508 if (!failed_mirror) {
509 failed = 1;
510 failed_mirror = eb->read_mirror;
511 }
512
f188591e 513 mirror_num++;
ea466794
JB
514 if (mirror_num == failed_mirror)
515 mirror_num++;
516
4235298e 517 if (mirror_num > num_copies)
ea466794 518 break;
f188591e 519 }
ea466794 520
c0901581 521 if (failed && !ret && failed_mirror)
2ff7e61e 522 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
523
524 return ret;
f188591e 525}
19c00ddc 526
d352ac68 527/*
d397712b
CM
528 * checksum a dirty tree block before IO. This has extra checks to make sure
529 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 530 */
d397712b 531
01d58472 532static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 533{
4eee4fa4 534 u64 start = page_offset(page);
19c00ddc 535 u64 found_start;
19c00ddc 536 struct extent_buffer *eb;
f188591e 537
4f2de97a
JB
538 eb = (struct extent_buffer *)page->private;
539 if (page != eb->pages[0])
540 return 0;
0f805531 541
19c00ddc 542 found_start = btrfs_header_bytenr(eb);
0f805531
AL
543 /*
544 * Please do not consolidate these warnings into a single if.
545 * It is useful to know what went wrong.
546 */
547 if (WARN_ON(found_start != start))
548 return -EUCLEAN;
549 if (WARN_ON(!PageUptodate(page)))
550 return -EUCLEAN;
551
de37aa51 552 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
553 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
554
8bd98f0e 555 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
556}
557
01d58472 558static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
559 struct extent_buffer *eb)
560{
01d58472 561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 562 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
563 int ret = 1;
564
0a4e5586 565 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 566 while (fs_devices) {
7239ff4b
NB
567 u8 *metadata_uuid;
568
569 /*
570 * Checking the incompat flag is only valid for the current
571 * fs. For seed devices it's forbidden to have their uuid
572 * changed so reading ->fsid in this case is fine
573 */
574 if (fs_devices == fs_info->fs_devices &&
575 btrfs_fs_incompat(fs_info, METADATA_UUID))
576 metadata_uuid = fs_devices->metadata_uuid;
577 else
578 metadata_uuid = fs_devices->fsid;
579
580 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
581 ret = 0;
582 break;
583 }
584 fs_devices = fs_devices->seed;
585 }
586 return ret;
587}
588
facc8a22
MX
589static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
590 u64 phy_offset, struct page *page,
591 u64 start, u64 end, int mirror)
ce9adaa5 592{
ce9adaa5
CM
593 u64 found_start;
594 int found_level;
ce9adaa5
CM
595 struct extent_buffer *eb;
596 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 597 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 598 int ret = 0;
727011e0 599 int reads_done;
ce9adaa5 600
ce9adaa5
CM
601 if (!page->private)
602 goto out;
d397712b 603
4f2de97a 604 eb = (struct extent_buffer *)page->private;
d397712b 605
0b32f4bb
JB
606 /* the pending IO might have been the only thing that kept this buffer
607 * in memory. Make sure we have a ref for all this other checks
608 */
609 extent_buffer_get(eb);
610
611 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
612 if (!reads_done)
613 goto err;
f188591e 614
5cf1ab56 615 eb->read_mirror = mirror;
656f30db 616 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
617 ret = -EIO;
618 goto err;
619 }
620
ce9adaa5 621 found_start = btrfs_header_bytenr(eb);
727011e0 622 if (found_start != eb->start) {
893bf4b1
SY
623 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
624 eb->start, found_start);
f188591e 625 ret = -EIO;
ce9adaa5
CM
626 goto err;
627 }
02873e43
ZL
628 if (check_tree_block_fsid(fs_info, eb)) {
629 btrfs_err_rl(fs_info, "bad fsid on block %llu",
630 eb->start);
1259ab75
CM
631 ret = -EIO;
632 goto err;
633 }
ce9adaa5 634 found_level = btrfs_header_level(eb);
1c24c3ce 635 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
636 btrfs_err(fs_info, "bad tree block level %d on %llu",
637 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
638 ret = -EIO;
639 goto err;
640 }
ce9adaa5 641
85d4e461
CM
642 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
643 eb, found_level);
4008c04a 644
02873e43 645 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 646 if (ret)
a826d6dc 647 goto err;
a826d6dc
JB
648
649 /*
650 * If this is a leaf block and it is corrupt, set the corrupt bit so
651 * that we don't try and read the other copies of this block, just
652 * return -EIO.
653 */
2f659546 654 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
a826d6dc
JB
655 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
656 ret = -EIO;
657 }
ce9adaa5 658
2f659546 659 if (found_level > 0 && btrfs_check_node(fs_info, eb))
053ab70f
LB
660 ret = -EIO;
661
0b32f4bb
JB
662 if (!ret)
663 set_extent_buffer_uptodate(eb);
ce9adaa5 664err:
79fb65a1
JB
665 if (reads_done &&
666 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 667 btree_readahead_hook(eb, ret);
4bb31e92 668
53b381b3
DW
669 if (ret) {
670 /*
671 * our io error hook is going to dec the io pages
672 * again, we have to make sure it has something
673 * to decrement
674 */
675 atomic_inc(&eb->io_pages);
0b32f4bb 676 clear_extent_buffer_uptodate(eb);
53b381b3 677 }
0b32f4bb 678 free_extent_buffer(eb);
ce9adaa5 679out:
f188591e 680 return ret;
ce9adaa5
CM
681}
682
4246a0b6 683static void end_workqueue_bio(struct bio *bio)
ce9adaa5 684{
97eb6b69 685 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 686 struct btrfs_fs_info *fs_info;
9e0af237
LB
687 struct btrfs_workqueue *wq;
688 btrfs_work_func_t func;
ce9adaa5 689
ce9adaa5 690 fs_info = end_io_wq->info;
4e4cbee9 691 end_io_wq->status = bio->bi_status;
d20f7043 692
37226b21 693 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
694 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
695 wq = fs_info->endio_meta_write_workers;
696 func = btrfs_endio_meta_write_helper;
697 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
698 wq = fs_info->endio_freespace_worker;
699 func = btrfs_freespace_write_helper;
700 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
701 wq = fs_info->endio_raid56_workers;
702 func = btrfs_endio_raid56_helper;
703 } else {
704 wq = fs_info->endio_write_workers;
705 func = btrfs_endio_write_helper;
706 }
d20f7043 707 } else {
8b110e39
MX
708 if (unlikely(end_io_wq->metadata ==
709 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
710 wq = fs_info->endio_repair_workers;
711 func = btrfs_endio_repair_helper;
712 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
713 wq = fs_info->endio_raid56_workers;
714 func = btrfs_endio_raid56_helper;
715 } else if (end_io_wq->metadata) {
716 wq = fs_info->endio_meta_workers;
717 func = btrfs_endio_meta_helper;
718 } else {
719 wq = fs_info->endio_workers;
720 func = btrfs_endio_helper;
721 }
d20f7043 722 }
9e0af237
LB
723
724 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
725 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
726}
727
4e4cbee9 728blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 729 enum btrfs_wq_endio_type metadata)
0b86a832 730{
97eb6b69 731 struct btrfs_end_io_wq *end_io_wq;
8b110e39 732
97eb6b69 733 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 734 if (!end_io_wq)
4e4cbee9 735 return BLK_STS_RESOURCE;
ce9adaa5
CM
736
737 end_io_wq->private = bio->bi_private;
738 end_io_wq->end_io = bio->bi_end_io;
22c59948 739 end_io_wq->info = info;
4e4cbee9 740 end_io_wq->status = 0;
ce9adaa5 741 end_io_wq->bio = bio;
22c59948 742 end_io_wq->metadata = metadata;
ce9adaa5
CM
743
744 bio->bi_private = end_io_wq;
745 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
746 return 0;
747}
748
4a69a410
CM
749static void run_one_async_start(struct btrfs_work *work)
750{
4a69a410 751 struct async_submit_bio *async;
4e4cbee9 752 blk_status_t ret;
4a69a410
CM
753
754 async = container_of(work, struct async_submit_bio, work);
c6100a4b 755 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
756 async->bio_offset);
757 if (ret)
4e4cbee9 758 async->status = ret;
4a69a410
CM
759}
760
06ea01b1
DS
761/*
762 * In order to insert checksums into the metadata in large chunks, we wait
763 * until bio submission time. All the pages in the bio are checksummed and
764 * sums are attached onto the ordered extent record.
765 *
766 * At IO completion time the csums attached on the ordered extent record are
767 * inserted into the tree.
768 */
4a69a410 769static void run_one_async_done(struct btrfs_work *work)
8b712842 770{
8b712842 771 struct async_submit_bio *async;
06ea01b1
DS
772 struct inode *inode;
773 blk_status_t ret;
8b712842
CM
774
775 async = container_of(work, struct async_submit_bio, work);
06ea01b1 776 inode = async->private_data;
4854ddd0 777
bb7ab3b9 778 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
779 if (async->status) {
780 async->bio->bi_status = async->status;
4246a0b6 781 bio_endio(async->bio);
79787eaa
JM
782 return;
783 }
784
06ea01b1
DS
785 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
786 async->mirror_num, 1);
787 if (ret) {
788 async->bio->bi_status = ret;
789 bio_endio(async->bio);
790 }
4a69a410
CM
791}
792
793static void run_one_async_free(struct btrfs_work *work)
794{
795 struct async_submit_bio *async;
796
797 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
798 kfree(async);
799}
800
8c27cb35
LT
801blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
802 int mirror_num, unsigned long bio_flags,
803 u64 bio_offset, void *private_data,
e288c080 804 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
805{
806 struct async_submit_bio *async;
807
808 async = kmalloc(sizeof(*async), GFP_NOFS);
809 if (!async)
4e4cbee9 810 return BLK_STS_RESOURCE;
44b8bd7e 811
c6100a4b 812 async->private_data = private_data;
44b8bd7e
CM
813 async->bio = bio;
814 async->mirror_num = mirror_num;
4a69a410 815 async->submit_bio_start = submit_bio_start;
4a69a410 816
9e0af237 817 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 818 run_one_async_done, run_one_async_free);
4a69a410 819
eaf25d93 820 async->bio_offset = bio_offset;
8c8bee1d 821
4e4cbee9 822 async->status = 0;
79787eaa 823
67f055c7 824 if (op_is_sync(bio->bi_opf))
5cdc7ad3 825 btrfs_set_work_high_priority(&async->work);
d313d7a3 826
5cdc7ad3 827 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
828 return 0;
829}
830
4e4cbee9 831static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 832{
2c30c71b 833 struct bio_vec *bvec;
ce3ed71a 834 struct btrfs_root *root;
2c30c71b 835 int i, ret = 0;
ce3ed71a 836
c09abff8 837 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 838 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 839 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 840 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
841 if (ret)
842 break;
ce3ed71a 843 }
2c30c71b 844
4e4cbee9 845 return errno_to_blk_status(ret);
ce3ed71a
CM
846}
847
d0ee3934 848static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 849 u64 bio_offset)
22c59948 850{
8b712842
CM
851 /*
852 * when we're called for a write, we're already in the async
5443be45 853 * submission context. Just jump into btrfs_map_bio
8b712842 854 */
79787eaa 855 return btree_csum_one_bio(bio);
4a69a410 856}
22c59948 857
18fdc679 858static int check_async_write(struct btrfs_inode *bi)
de0022b9 859{
6300463b
LB
860 if (atomic_read(&bi->sync_writers))
861 return 0;
de0022b9 862#ifdef CONFIG_X86
bc696ca0 863 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
864 return 0;
865#endif
866 return 1;
867}
868
8c27cb35
LT
869static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
870 int mirror_num, unsigned long bio_flags,
871 u64 bio_offset)
44b8bd7e 872{
c6100a4b 873 struct inode *inode = private_data;
0b246afa 874 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 875 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 876 blk_status_t ret;
cad321ad 877
37226b21 878 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
879 /*
880 * called for a read, do the setup so that checksum validation
881 * can happen in the async kernel threads
882 */
0b246afa
JM
883 ret = btrfs_bio_wq_end_io(fs_info, bio,
884 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 885 if (ret)
61891923 886 goto out_w_error;
2ff7e61e 887 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
888 } else if (!async) {
889 ret = btree_csum_one_bio(bio);
890 if (ret)
61891923 891 goto out_w_error;
2ff7e61e 892 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
893 } else {
894 /*
895 * kthread helpers are used to submit writes so that
896 * checksumming can happen in parallel across all CPUs
897 */
c6100a4b
JB
898 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
899 bio_offset, private_data,
e288c080 900 btree_submit_bio_start);
44b8bd7e 901 }
d313d7a3 902
4246a0b6
CH
903 if (ret)
904 goto out_w_error;
905 return 0;
906
61891923 907out_w_error:
4e4cbee9 908 bio->bi_status = ret;
4246a0b6 909 bio_endio(bio);
61891923 910 return ret;
44b8bd7e
CM
911}
912
3dd1462e 913#ifdef CONFIG_MIGRATION
784b4e29 914static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
915 struct page *newpage, struct page *page,
916 enum migrate_mode mode)
784b4e29
CM
917{
918 /*
919 * we can't safely write a btree page from here,
920 * we haven't done the locking hook
921 */
922 if (PageDirty(page))
923 return -EAGAIN;
924 /*
925 * Buffers may be managed in a filesystem specific way.
926 * We must have no buffers or drop them.
927 */
928 if (page_has_private(page) &&
929 !try_to_release_page(page, GFP_KERNEL))
930 return -EAGAIN;
a6bc32b8 931 return migrate_page(mapping, newpage, page, mode);
784b4e29 932}
3dd1462e 933#endif
784b4e29 934
0da5468f
CM
935
936static int btree_writepages(struct address_space *mapping,
937 struct writeback_control *wbc)
938{
e2d84521
MX
939 struct btrfs_fs_info *fs_info;
940 int ret;
941
d8d5f3e1 942 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
943
944 if (wbc->for_kupdate)
945 return 0;
946
e2d84521 947 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 948 /* this is a bit racy, but that's ok */
d814a491
EL
949 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
950 BTRFS_DIRTY_METADATA_THRESH,
951 fs_info->dirty_metadata_batch);
e2d84521 952 if (ret < 0)
793955bc 953 return 0;
793955bc 954 }
0b32f4bb 955 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
956}
957
b2950863 958static int btree_readpage(struct file *file, struct page *page)
5f39d397 959{
d1310b2e
CM
960 struct extent_io_tree *tree;
961 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 962 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 963}
22b0ebda 964
70dec807 965static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 966{
98509cfc 967 if (PageWriteback(page) || PageDirty(page))
d397712b 968 return 0;
0c4e538b 969
f7a52a40 970 return try_release_extent_buffer(page);
d98237b3
CM
971}
972
d47992f8
LC
973static void btree_invalidatepage(struct page *page, unsigned int offset,
974 unsigned int length)
d98237b3 975{
d1310b2e
CM
976 struct extent_io_tree *tree;
977 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
978 extent_invalidatepage(tree, page, offset);
979 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 980 if (PagePrivate(page)) {
efe120a0
FH
981 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
982 "page private not zero on page %llu",
983 (unsigned long long)page_offset(page));
9ad6b7bc
CM
984 ClearPagePrivate(page);
985 set_page_private(page, 0);
09cbfeaf 986 put_page(page);
9ad6b7bc 987 }
d98237b3
CM
988}
989
0b32f4bb
JB
990static int btree_set_page_dirty(struct page *page)
991{
bb146eb2 992#ifdef DEBUG
0b32f4bb
JB
993 struct extent_buffer *eb;
994
995 BUG_ON(!PagePrivate(page));
996 eb = (struct extent_buffer *)page->private;
997 BUG_ON(!eb);
998 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
999 BUG_ON(!atomic_read(&eb->refs));
1000 btrfs_assert_tree_locked(eb);
bb146eb2 1001#endif
0b32f4bb
JB
1002 return __set_page_dirty_nobuffers(page);
1003}
1004
7f09410b 1005static const struct address_space_operations btree_aops = {
d98237b3 1006 .readpage = btree_readpage,
0da5468f 1007 .writepages = btree_writepages,
5f39d397
CM
1008 .releasepage = btree_releasepage,
1009 .invalidatepage = btree_invalidatepage,
5a92bc88 1010#ifdef CONFIG_MIGRATION
784b4e29 1011 .migratepage = btree_migratepage,
5a92bc88 1012#endif
0b32f4bb 1013 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1014};
1015
2ff7e61e 1016void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1017{
5f39d397 1018 struct extent_buffer *buf = NULL;
2ff7e61e 1019 struct inode *btree_inode = fs_info->btree_inode;
090d1875 1020
2ff7e61e 1021 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1022 if (IS_ERR(buf))
6197d86e 1023 return;
d1310b2e 1024 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
6af49dbd 1025 buf, WAIT_NONE, 0);
5f39d397 1026 free_extent_buffer(buf);
090d1875
CM
1027}
1028
2ff7e61e 1029int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1030 int mirror_num, struct extent_buffer **eb)
1031{
1032 struct extent_buffer *buf = NULL;
2ff7e61e 1033 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1034 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1035 int ret;
1036
2ff7e61e 1037 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1038 if (IS_ERR(buf))
ab0fff03
AJ
1039 return 0;
1040
1041 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1042
8436ea91 1043 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
6af49dbd 1044 mirror_num);
ab0fff03
AJ
1045 if (ret) {
1046 free_extent_buffer(buf);
1047 return ret;
1048 }
1049
1050 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1051 free_extent_buffer(buf);
1052 return -EIO;
0b32f4bb 1053 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1054 *eb = buf;
1055 } else {
1056 free_extent_buffer(buf);
1057 }
1058 return 0;
1059}
1060
2ff7e61e
JM
1061struct extent_buffer *btrfs_find_create_tree_block(
1062 struct btrfs_fs_info *fs_info,
1063 u64 bytenr)
0999df54 1064{
0b246afa
JM
1065 if (btrfs_is_testing(fs_info))
1066 return alloc_test_extent_buffer(fs_info, bytenr);
1067 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1068}
1069
1070
e02119d5
CM
1071int btrfs_write_tree_block(struct extent_buffer *buf)
1072{
727011e0 1073 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1074 buf->start + buf->len - 1);
e02119d5
CM
1075}
1076
3189ff77 1077void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
e02119d5 1078{
3189ff77
JL
1079 filemap_fdatawait_range(buf->pages[0]->mapping,
1080 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1081}
1082
581c1760
QW
1083/*
1084 * Read tree block at logical address @bytenr and do variant basic but critical
1085 * verification.
1086 *
1087 * @parent_transid: expected transid of this tree block, skip check if 0
1088 * @level: expected level, mandatory check
1089 * @first_key: expected key in slot 0, skip check if NULL
1090 */
2ff7e61e 1091struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1092 u64 parent_transid, int level,
1093 struct btrfs_key *first_key)
0999df54
CM
1094{
1095 struct extent_buffer *buf = NULL;
0999df54
CM
1096 int ret;
1097
2ff7e61e 1098 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1099 if (IS_ERR(buf))
1100 return buf;
0999df54 1101
581c1760
QW
1102 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1103 level, first_key);
0f0fe8f7
FDBM
1104 if (ret) {
1105 free_extent_buffer(buf);
64c043de 1106 return ERR_PTR(ret);
0f0fe8f7 1107 }
5f39d397 1108 return buf;
ce9adaa5 1109
eb60ceac
CM
1110}
1111
7c302b49 1112void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1113 struct extent_buffer *buf)
ed2ff2cb 1114{
55c69072 1115 if (btrfs_header_generation(buf) ==
e2d84521 1116 fs_info->running_transaction->transid) {
b9447ef8 1117 btrfs_assert_tree_locked(buf);
b4ce94de 1118
b9473439 1119 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1120 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1121 -buf->len,
1122 fs_info->dirty_metadata_batch);
ed7b63eb 1123 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1124 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1125 clear_extent_buffer_dirty(buf);
1126 }
925baedd 1127 }
5f39d397
CM
1128}
1129
8257b2dc
MX
1130static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1131{
1132 struct btrfs_subvolume_writers *writers;
1133 int ret;
1134
1135 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1136 if (!writers)
1137 return ERR_PTR(-ENOMEM);
1138
8a5a916d 1139 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1140 if (ret < 0) {
1141 kfree(writers);
1142 return ERR_PTR(ret);
1143 }
1144
1145 init_waitqueue_head(&writers->wait);
1146 return writers;
1147}
1148
1149static void
1150btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1151{
1152 percpu_counter_destroy(&writers->counter);
1153 kfree(writers);
1154}
1155
da17066c 1156static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1157 u64 objectid)
d97e63b6 1158{
7c0260ee 1159 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1160 root->node = NULL;
a28ec197 1161 root->commit_root = NULL;
27cdeb70 1162 root->state = 0;
d68fc57b 1163 root->orphan_cleanup_state = 0;
0b86a832 1164
0f7d52f4 1165 root->last_trans = 0;
13a8a7c8 1166 root->highest_objectid = 0;
eb73c1b7 1167 root->nr_delalloc_inodes = 0;
199c2a9c 1168 root->nr_ordered_extents = 0;
6bef4d31 1169 root->inode_tree = RB_ROOT;
16cdcec7 1170 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1171 root->block_rsv = NULL;
0b86a832
CM
1172
1173 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1174 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1175 INIT_LIST_HEAD(&root->delalloc_inodes);
1176 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1177 INIT_LIST_HEAD(&root->ordered_extents);
1178 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1179 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1180 INIT_LIST_HEAD(&root->logged_list[0]);
1181 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1182 spin_lock_init(&root->inode_lock);
eb73c1b7 1183 spin_lock_init(&root->delalloc_lock);
199c2a9c 1184 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1185 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1186 spin_lock_init(&root->log_extents_lock[0]);
1187 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1188 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1189 mutex_init(&root->objectid_mutex);
e02119d5 1190 mutex_init(&root->log_mutex);
31f3d255 1191 mutex_init(&root->ordered_extent_mutex);
573bfb72 1192 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1193 init_waitqueue_head(&root->log_writer_wait);
1194 init_waitqueue_head(&root->log_commit_wait[0]);
1195 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1196 INIT_LIST_HEAD(&root->log_ctxs[0]);
1197 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1198 atomic_set(&root->log_commit[0], 0);
1199 atomic_set(&root->log_commit[1], 0);
1200 atomic_set(&root->log_writers, 0);
2ecb7923 1201 atomic_set(&root->log_batch, 0);
0700cea7 1202 refcount_set(&root->refs, 1);
ea14b57f 1203 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1204 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1205 atomic_set(&root->nr_swapfiles, 0);
7237f183 1206 root->log_transid = 0;
d1433deb 1207 root->log_transid_committed = -1;
257c62e1 1208 root->last_log_commit = 0;
7c0260ee 1209 if (!dummy)
c6100a4b 1210 extent_io_tree_init(&root->dirty_log_pages, NULL);
017e5369 1211
3768f368
CM
1212 memset(&root->root_key, 0, sizeof(root->root_key));
1213 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1214 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1215 if (!dummy)
06ea65a3
JB
1216 root->defrag_trans_start = fs_info->generation;
1217 else
1218 root->defrag_trans_start = 0;
4d775673 1219 root->root_key.objectid = objectid;
0ee5dc67 1220 root->anon_dev = 0;
8ea05e3a 1221
5f3ab90a 1222 spin_lock_init(&root->root_item_lock);
370a11b8 1223 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1224}
1225
74e4d827
DS
1226static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1227 gfp_t flags)
6f07e42e 1228{
74e4d827 1229 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1230 if (root)
1231 root->fs_info = fs_info;
1232 return root;
1233}
1234
06ea65a3
JB
1235#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1236/* Should only be used by the testing infrastructure */
da17066c 1237struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1238{
1239 struct btrfs_root *root;
1240
7c0260ee
JM
1241 if (!fs_info)
1242 return ERR_PTR(-EINVAL);
1243
1244 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1245 if (!root)
1246 return ERR_PTR(-ENOMEM);
da17066c 1247
b9ef22de 1248 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1249 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1250 root->alloc_bytenr = 0;
06ea65a3
JB
1251
1252 return root;
1253}
1254#endif
1255
20897f5c
AJ
1256struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1257 struct btrfs_fs_info *fs_info,
1258 u64 objectid)
1259{
1260 struct extent_buffer *leaf;
1261 struct btrfs_root *tree_root = fs_info->tree_root;
1262 struct btrfs_root *root;
1263 struct btrfs_key key;
b89f6d1f 1264 unsigned int nofs_flag;
20897f5c 1265 int ret = 0;
33d85fda 1266 uuid_le uuid = NULL_UUID_LE;
20897f5c 1267
b89f6d1f
FM
1268 /*
1269 * We're holding a transaction handle, so use a NOFS memory allocation
1270 * context to avoid deadlock if reclaim happens.
1271 */
1272 nofs_flag = memalloc_nofs_save();
74e4d827 1273 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1274 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1275 if (!root)
1276 return ERR_PTR(-ENOMEM);
1277
da17066c 1278 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1279 root->root_key.objectid = objectid;
1280 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1281 root->root_key.offset = 0;
1282
4d75f8a9 1283 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1284 if (IS_ERR(leaf)) {
1285 ret = PTR_ERR(leaf);
1dd05682 1286 leaf = NULL;
20897f5c
AJ
1287 goto fail;
1288 }
1289
20897f5c 1290 root->node = leaf;
20897f5c
AJ
1291 btrfs_mark_buffer_dirty(leaf);
1292
1293 root->commit_root = btrfs_root_node(root);
27cdeb70 1294 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1295
1296 root->root_item.flags = 0;
1297 root->root_item.byte_limit = 0;
1298 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1299 btrfs_set_root_generation(&root->root_item, trans->transid);
1300 btrfs_set_root_level(&root->root_item, 0);
1301 btrfs_set_root_refs(&root->root_item, 1);
1302 btrfs_set_root_used(&root->root_item, leaf->len);
1303 btrfs_set_root_last_snapshot(&root->root_item, 0);
1304 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1305 if (is_fstree(objectid))
1306 uuid_le_gen(&uuid);
6463fe58 1307 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1308 root->root_item.drop_level = 0;
1309
1310 key.objectid = objectid;
1311 key.type = BTRFS_ROOT_ITEM_KEY;
1312 key.offset = 0;
1313 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1314 if (ret)
1315 goto fail;
1316
1317 btrfs_tree_unlock(leaf);
1318
1dd05682
TI
1319 return root;
1320
20897f5c 1321fail:
1dd05682
TI
1322 if (leaf) {
1323 btrfs_tree_unlock(leaf);
59885b39 1324 free_extent_buffer(root->commit_root);
1dd05682
TI
1325 free_extent_buffer(leaf);
1326 }
1327 kfree(root);
20897f5c 1328
1dd05682 1329 return ERR_PTR(ret);
20897f5c
AJ
1330}
1331
7237f183
YZ
1332static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1333 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1334{
1335 struct btrfs_root *root;
7237f183 1336 struct extent_buffer *leaf;
e02119d5 1337
74e4d827 1338 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1339 if (!root)
7237f183 1340 return ERR_PTR(-ENOMEM);
e02119d5 1341
da17066c 1342 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1343
1344 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1345 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1346 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1347
7237f183 1348 /*
27cdeb70
MX
1349 * DON'T set REF_COWS for log trees
1350 *
7237f183
YZ
1351 * log trees do not get reference counted because they go away
1352 * before a real commit is actually done. They do store pointers
1353 * to file data extents, and those reference counts still get
1354 * updated (along with back refs to the log tree).
1355 */
e02119d5 1356
4d75f8a9
DS
1357 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1358 NULL, 0, 0, 0);
7237f183
YZ
1359 if (IS_ERR(leaf)) {
1360 kfree(root);
1361 return ERR_CAST(leaf);
1362 }
e02119d5 1363
7237f183 1364 root->node = leaf;
e02119d5 1365
e02119d5
CM
1366 btrfs_mark_buffer_dirty(root->node);
1367 btrfs_tree_unlock(root->node);
7237f183
YZ
1368 return root;
1369}
1370
1371int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1372 struct btrfs_fs_info *fs_info)
1373{
1374 struct btrfs_root *log_root;
1375
1376 log_root = alloc_log_tree(trans, fs_info);
1377 if (IS_ERR(log_root))
1378 return PTR_ERR(log_root);
1379 WARN_ON(fs_info->log_root_tree);
1380 fs_info->log_root_tree = log_root;
1381 return 0;
1382}
1383
1384int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1385 struct btrfs_root *root)
1386{
0b246afa 1387 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1388 struct btrfs_root *log_root;
1389 struct btrfs_inode_item *inode_item;
1390
0b246afa 1391 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1392 if (IS_ERR(log_root))
1393 return PTR_ERR(log_root);
1394
1395 log_root->last_trans = trans->transid;
1396 log_root->root_key.offset = root->root_key.objectid;
1397
1398 inode_item = &log_root->root_item.inode;
3cae210f
QW
1399 btrfs_set_stack_inode_generation(inode_item, 1);
1400 btrfs_set_stack_inode_size(inode_item, 3);
1401 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1402 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1403 fs_info->nodesize);
3cae210f 1404 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1405
5d4f98a2 1406 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1407
1408 WARN_ON(root->log_root);
1409 root->log_root = log_root;
1410 root->log_transid = 0;
d1433deb 1411 root->log_transid_committed = -1;
257c62e1 1412 root->last_log_commit = 0;
e02119d5
CM
1413 return 0;
1414}
1415
35a3621b
SB
1416static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1417 struct btrfs_key *key)
e02119d5
CM
1418{
1419 struct btrfs_root *root;
1420 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1421 struct btrfs_path *path;
84234f3a 1422 u64 generation;
cb517eab 1423 int ret;
581c1760 1424 int level;
0f7d52f4 1425
cb517eab
MX
1426 path = btrfs_alloc_path();
1427 if (!path)
0f7d52f4 1428 return ERR_PTR(-ENOMEM);
cb517eab 1429
74e4d827 1430 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1431 if (!root) {
1432 ret = -ENOMEM;
1433 goto alloc_fail;
0f7d52f4
CM
1434 }
1435
da17066c 1436 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1437
cb517eab
MX
1438 ret = btrfs_find_root(tree_root, key, path,
1439 &root->root_item, &root->root_key);
0f7d52f4 1440 if (ret) {
13a8a7c8
YZ
1441 if (ret > 0)
1442 ret = -ENOENT;
cb517eab 1443 goto find_fail;
0f7d52f4 1444 }
13a8a7c8 1445
84234f3a 1446 generation = btrfs_root_generation(&root->root_item);
581c1760 1447 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1448 root->node = read_tree_block(fs_info,
1449 btrfs_root_bytenr(&root->root_item),
581c1760 1450 generation, level, NULL);
64c043de
LB
1451 if (IS_ERR(root->node)) {
1452 ret = PTR_ERR(root->node);
cb517eab
MX
1453 goto find_fail;
1454 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1455 ret = -EIO;
64c043de
LB
1456 free_extent_buffer(root->node);
1457 goto find_fail;
416bc658 1458 }
5d4f98a2 1459 root->commit_root = btrfs_root_node(root);
13a8a7c8 1460out:
cb517eab
MX
1461 btrfs_free_path(path);
1462 return root;
1463
cb517eab
MX
1464find_fail:
1465 kfree(root);
1466alloc_fail:
1467 root = ERR_PTR(ret);
1468 goto out;
1469}
1470
1471struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1472 struct btrfs_key *location)
1473{
1474 struct btrfs_root *root;
1475
1476 root = btrfs_read_tree_root(tree_root, location);
1477 if (IS_ERR(root))
1478 return root;
1479
1480 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1481 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1482 btrfs_check_and_init_root_item(&root->root_item);
1483 }
13a8a7c8 1484
5eda7b5e
CM
1485 return root;
1486}
1487
cb517eab
MX
1488int btrfs_init_fs_root(struct btrfs_root *root)
1489{
1490 int ret;
8257b2dc 1491 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1492
1493 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1494 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1495 GFP_NOFS);
1496 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1497 ret = -ENOMEM;
1498 goto fail;
1499 }
1500
8257b2dc
MX
1501 writers = btrfs_alloc_subvolume_writers();
1502 if (IS_ERR(writers)) {
1503 ret = PTR_ERR(writers);
1504 goto fail;
1505 }
1506 root->subv_writers = writers;
1507
cb517eab 1508 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1509 spin_lock_init(&root->ino_cache_lock);
1510 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1511
1512 ret = get_anon_bdev(&root->anon_dev);
1513 if (ret)
876d2cf1 1514 goto fail;
f32e48e9
CR
1515
1516 mutex_lock(&root->objectid_mutex);
1517 ret = btrfs_find_highest_objectid(root,
1518 &root->highest_objectid);
1519 if (ret) {
1520 mutex_unlock(&root->objectid_mutex);
876d2cf1 1521 goto fail;
f32e48e9
CR
1522 }
1523
1524 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1525
1526 mutex_unlock(&root->objectid_mutex);
1527
cb517eab
MX
1528 return 0;
1529fail:
84db5ccf 1530 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1531 return ret;
1532}
1533
35bbb97f
JM
1534struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1535 u64 root_id)
cb517eab
MX
1536{
1537 struct btrfs_root *root;
1538
1539 spin_lock(&fs_info->fs_roots_radix_lock);
1540 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1541 (unsigned long)root_id);
1542 spin_unlock(&fs_info->fs_roots_radix_lock);
1543 return root;
1544}
1545
1546int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1547 struct btrfs_root *root)
1548{
1549 int ret;
1550
e1860a77 1551 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1552 if (ret)
1553 return ret;
1554
1555 spin_lock(&fs_info->fs_roots_radix_lock);
1556 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1557 (unsigned long)root->root_key.objectid,
1558 root);
1559 if (ret == 0)
27cdeb70 1560 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1561 spin_unlock(&fs_info->fs_roots_radix_lock);
1562 radix_tree_preload_end();
1563
1564 return ret;
1565}
1566
c00869f1
MX
1567struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1568 struct btrfs_key *location,
1569 bool check_ref)
5eda7b5e
CM
1570{
1571 struct btrfs_root *root;
381cf658 1572 struct btrfs_path *path;
1d4c08e0 1573 struct btrfs_key key;
5eda7b5e
CM
1574 int ret;
1575
edbd8d4e
CM
1576 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1577 return fs_info->tree_root;
1578 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1579 return fs_info->extent_root;
8f18cf13
CM
1580 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1581 return fs_info->chunk_root;
1582 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1583 return fs_info->dev_root;
0403e47e
YZ
1584 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1585 return fs_info->csum_root;
bcef60f2
AJ
1586 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1587 return fs_info->quota_root ? fs_info->quota_root :
1588 ERR_PTR(-ENOENT);
f7a81ea4
SB
1589 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1590 return fs_info->uuid_root ? fs_info->uuid_root :
1591 ERR_PTR(-ENOENT);
70f6d82e
OS
1592 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1593 return fs_info->free_space_root ? fs_info->free_space_root :
1594 ERR_PTR(-ENOENT);
4df27c4d 1595again:
cb517eab 1596 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1597 if (root) {
c00869f1 1598 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1599 return ERR_PTR(-ENOENT);
5eda7b5e 1600 return root;
48475471 1601 }
5eda7b5e 1602
cb517eab 1603 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1604 if (IS_ERR(root))
1605 return root;
3394e160 1606
c00869f1 1607 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1608 ret = -ENOENT;
581bb050 1609 goto fail;
35a30d7c 1610 }
581bb050 1611
cb517eab 1612 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1613 if (ret)
1614 goto fail;
3394e160 1615
381cf658
DS
1616 path = btrfs_alloc_path();
1617 if (!path) {
1618 ret = -ENOMEM;
1619 goto fail;
1620 }
1d4c08e0
DS
1621 key.objectid = BTRFS_ORPHAN_OBJECTID;
1622 key.type = BTRFS_ORPHAN_ITEM_KEY;
1623 key.offset = location->objectid;
1624
1625 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1626 btrfs_free_path(path);
d68fc57b
YZ
1627 if (ret < 0)
1628 goto fail;
1629 if (ret == 0)
27cdeb70 1630 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1631
cb517eab 1632 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1633 if (ret) {
4df27c4d 1634 if (ret == -EEXIST) {
84db5ccf 1635 btrfs_free_fs_root(root);
4df27c4d
YZ
1636 goto again;
1637 }
1638 goto fail;
0f7d52f4 1639 }
edbd8d4e 1640 return root;
4df27c4d 1641fail:
84db5ccf 1642 btrfs_free_fs_root(root);
4df27c4d 1643 return ERR_PTR(ret);
edbd8d4e
CM
1644}
1645
04160088
CM
1646static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1647{
1648 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1649 int ret = 0;
04160088
CM
1650 struct btrfs_device *device;
1651 struct backing_dev_info *bdi;
b7967db7 1652
1f78160c
XG
1653 rcu_read_lock();
1654 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1655 if (!device->bdev)
1656 continue;
efa7c9f9 1657 bdi = device->bdev->bd_bdi;
ff9ea323 1658 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1659 ret = 1;
1660 break;
1661 }
1662 }
1f78160c 1663 rcu_read_unlock();
04160088
CM
1664 return ret;
1665}
1666
8b712842
CM
1667/*
1668 * called by the kthread helper functions to finally call the bio end_io
1669 * functions. This is where read checksum verification actually happens
1670 */
1671static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1672{
ce9adaa5 1673 struct bio *bio;
97eb6b69 1674 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1675
97eb6b69 1676 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1677 bio = end_io_wq->bio;
ce9adaa5 1678
4e4cbee9 1679 bio->bi_status = end_io_wq->status;
8b712842
CM
1680 bio->bi_private = end_io_wq->private;
1681 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1682 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1683 bio_endio(bio);
44b8bd7e
CM
1684}
1685
a74a4b97
CM
1686static int cleaner_kthread(void *arg)
1687{
1688 struct btrfs_root *root = arg;
0b246afa 1689 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1690 int again;
a74a4b97 1691
d6fd0ae2 1692 while (1) {
d0278245 1693 again = 0;
a74a4b97 1694
fd340d0f
JB
1695 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1696
d0278245 1697 /* Make the cleaner go to sleep early. */
2ff7e61e 1698 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1699 goto sleep;
1700
90c711ab
ZB
1701 /*
1702 * Do not do anything if we might cause open_ctree() to block
1703 * before we have finished mounting the filesystem.
1704 */
0b246afa 1705 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1706 goto sleep;
1707
0b246afa 1708 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1709 goto sleep;
1710
dc7f370c
MX
1711 /*
1712 * Avoid the problem that we change the status of the fs
1713 * during the above check and trylock.
1714 */
2ff7e61e 1715 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1716 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1717 goto sleep;
76dda93c 1718 }
a74a4b97 1719
2ff7e61e 1720 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1721
d0278245 1722 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1723 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1724
1725 /*
05323cd1
MX
1726 * The defragger has dealt with the R/O remount and umount,
1727 * needn't do anything special here.
d0278245 1728 */
0b246afa 1729 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1730
1731 /*
1732 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1733 * with relocation (btrfs_relocate_chunk) and relocation
1734 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1735 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1736 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1737 * unused block groups.
1738 */
0b246afa 1739 btrfs_delete_unused_bgs(fs_info);
d0278245 1740sleep:
fd340d0f 1741 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1742 if (kthread_should_park())
1743 kthread_parkme();
1744 if (kthread_should_stop())
1745 return 0;
838fe188 1746 if (!again) {
a74a4b97 1747 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1748 schedule();
a74a4b97
CM
1749 __set_current_state(TASK_RUNNING);
1750 }
da288d28 1751 }
a74a4b97
CM
1752}
1753
1754static int transaction_kthread(void *arg)
1755{
1756 struct btrfs_root *root = arg;
0b246afa 1757 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1758 struct btrfs_trans_handle *trans;
1759 struct btrfs_transaction *cur;
8929ecfa 1760 u64 transid;
a944442c 1761 time64_t now;
a74a4b97 1762 unsigned long delay;
914b2007 1763 bool cannot_commit;
a74a4b97
CM
1764
1765 do {
914b2007 1766 cannot_commit = false;
0b246afa
JM
1767 delay = HZ * fs_info->commit_interval;
1768 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1769
0b246afa
JM
1770 spin_lock(&fs_info->trans_lock);
1771 cur = fs_info->running_transaction;
a74a4b97 1772 if (!cur) {
0b246afa 1773 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1774 goto sleep;
1775 }
31153d81 1776
afd48513 1777 now = ktime_get_seconds();
4a9d8bde 1778 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1779 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1780 (now < cur->start_time ||
0b246afa
JM
1781 now - cur->start_time < fs_info->commit_interval)) {
1782 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1783 delay = HZ * 5;
1784 goto sleep;
1785 }
8929ecfa 1786 transid = cur->transid;
0b246afa 1787 spin_unlock(&fs_info->trans_lock);
56bec294 1788
79787eaa 1789 /* If the file system is aborted, this will always fail. */
354aa0fb 1790 trans = btrfs_attach_transaction(root);
914b2007 1791 if (IS_ERR(trans)) {
354aa0fb
MX
1792 if (PTR_ERR(trans) != -ENOENT)
1793 cannot_commit = true;
79787eaa 1794 goto sleep;
914b2007 1795 }
8929ecfa 1796 if (transid == trans->transid) {
3a45bb20 1797 btrfs_commit_transaction(trans);
8929ecfa 1798 } else {
3a45bb20 1799 btrfs_end_transaction(trans);
8929ecfa 1800 }
a74a4b97 1801sleep:
0b246afa
JM
1802 wake_up_process(fs_info->cleaner_kthread);
1803 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1804
4e121c06 1805 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1806 &fs_info->fs_state)))
2ff7e61e 1807 btrfs_cleanup_transaction(fs_info);
ce63f891 1808 if (!kthread_should_stop() &&
0b246afa 1809 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1810 cannot_commit))
bc5511d0 1811 schedule_timeout_interruptible(delay);
a74a4b97
CM
1812 } while (!kthread_should_stop());
1813 return 0;
1814}
1815
af31f5e5
CM
1816/*
1817 * this will find the highest generation in the array of
1818 * root backups. The index of the highest array is returned,
1819 * or -1 if we can't find anything.
1820 *
1821 * We check to make sure the array is valid by comparing the
1822 * generation of the latest root in the array with the generation
1823 * in the super block. If they don't match we pitch it.
1824 */
1825static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1826{
1827 u64 cur;
1828 int newest_index = -1;
1829 struct btrfs_root_backup *root_backup;
1830 int i;
1831
1832 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1833 root_backup = info->super_copy->super_roots + i;
1834 cur = btrfs_backup_tree_root_gen(root_backup);
1835 if (cur == newest_gen)
1836 newest_index = i;
1837 }
1838
1839 /* check to see if we actually wrapped around */
1840 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1841 root_backup = info->super_copy->super_roots;
1842 cur = btrfs_backup_tree_root_gen(root_backup);
1843 if (cur == newest_gen)
1844 newest_index = 0;
1845 }
1846 return newest_index;
1847}
1848
1849
1850/*
1851 * find the oldest backup so we know where to store new entries
1852 * in the backup array. This will set the backup_root_index
1853 * field in the fs_info struct
1854 */
1855static void find_oldest_super_backup(struct btrfs_fs_info *info,
1856 u64 newest_gen)
1857{
1858 int newest_index = -1;
1859
1860 newest_index = find_newest_super_backup(info, newest_gen);
1861 /* if there was garbage in there, just move along */
1862 if (newest_index == -1) {
1863 info->backup_root_index = 0;
1864 } else {
1865 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1866 }
1867}
1868
1869/*
1870 * copy all the root pointers into the super backup array.
1871 * this will bump the backup pointer by one when it is
1872 * done
1873 */
1874static void backup_super_roots(struct btrfs_fs_info *info)
1875{
1876 int next_backup;
1877 struct btrfs_root_backup *root_backup;
1878 int last_backup;
1879
1880 next_backup = info->backup_root_index;
1881 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1882 BTRFS_NUM_BACKUP_ROOTS;
1883
1884 /*
1885 * just overwrite the last backup if we're at the same generation
1886 * this happens only at umount
1887 */
1888 root_backup = info->super_for_commit->super_roots + last_backup;
1889 if (btrfs_backup_tree_root_gen(root_backup) ==
1890 btrfs_header_generation(info->tree_root->node))
1891 next_backup = last_backup;
1892
1893 root_backup = info->super_for_commit->super_roots + next_backup;
1894
1895 /*
1896 * make sure all of our padding and empty slots get zero filled
1897 * regardless of which ones we use today
1898 */
1899 memset(root_backup, 0, sizeof(*root_backup));
1900
1901 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1902
1903 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1904 btrfs_set_backup_tree_root_gen(root_backup,
1905 btrfs_header_generation(info->tree_root->node));
1906
1907 btrfs_set_backup_tree_root_level(root_backup,
1908 btrfs_header_level(info->tree_root->node));
1909
1910 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1911 btrfs_set_backup_chunk_root_gen(root_backup,
1912 btrfs_header_generation(info->chunk_root->node));
1913 btrfs_set_backup_chunk_root_level(root_backup,
1914 btrfs_header_level(info->chunk_root->node));
1915
1916 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1917 btrfs_set_backup_extent_root_gen(root_backup,
1918 btrfs_header_generation(info->extent_root->node));
1919 btrfs_set_backup_extent_root_level(root_backup,
1920 btrfs_header_level(info->extent_root->node));
1921
7c7e82a7
CM
1922 /*
1923 * we might commit during log recovery, which happens before we set
1924 * the fs_root. Make sure it is valid before we fill it in.
1925 */
1926 if (info->fs_root && info->fs_root->node) {
1927 btrfs_set_backup_fs_root(root_backup,
1928 info->fs_root->node->start);
1929 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1930 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1931 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1932 btrfs_header_level(info->fs_root->node));
7c7e82a7 1933 }
af31f5e5
CM
1934
1935 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1936 btrfs_set_backup_dev_root_gen(root_backup,
1937 btrfs_header_generation(info->dev_root->node));
1938 btrfs_set_backup_dev_root_level(root_backup,
1939 btrfs_header_level(info->dev_root->node));
1940
1941 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1942 btrfs_set_backup_csum_root_gen(root_backup,
1943 btrfs_header_generation(info->csum_root->node));
1944 btrfs_set_backup_csum_root_level(root_backup,
1945 btrfs_header_level(info->csum_root->node));
1946
1947 btrfs_set_backup_total_bytes(root_backup,
1948 btrfs_super_total_bytes(info->super_copy));
1949 btrfs_set_backup_bytes_used(root_backup,
1950 btrfs_super_bytes_used(info->super_copy));
1951 btrfs_set_backup_num_devices(root_backup,
1952 btrfs_super_num_devices(info->super_copy));
1953
1954 /*
1955 * if we don't copy this out to the super_copy, it won't get remembered
1956 * for the next commit
1957 */
1958 memcpy(&info->super_copy->super_roots,
1959 &info->super_for_commit->super_roots,
1960 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1961}
1962
1963/*
1964 * this copies info out of the root backup array and back into
1965 * the in-memory super block. It is meant to help iterate through
1966 * the array, so you send it the number of backups you've already
1967 * tried and the last backup index you used.
1968 *
1969 * this returns -1 when it has tried all the backups
1970 */
1971static noinline int next_root_backup(struct btrfs_fs_info *info,
1972 struct btrfs_super_block *super,
1973 int *num_backups_tried, int *backup_index)
1974{
1975 struct btrfs_root_backup *root_backup;
1976 int newest = *backup_index;
1977
1978 if (*num_backups_tried == 0) {
1979 u64 gen = btrfs_super_generation(super);
1980
1981 newest = find_newest_super_backup(info, gen);
1982 if (newest == -1)
1983 return -1;
1984
1985 *backup_index = newest;
1986 *num_backups_tried = 1;
1987 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1988 /* we've tried all the backups, all done */
1989 return -1;
1990 } else {
1991 /* jump to the next oldest backup */
1992 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1993 BTRFS_NUM_BACKUP_ROOTS;
1994 *backup_index = newest;
1995 *num_backups_tried += 1;
1996 }
1997 root_backup = super->super_roots + newest;
1998
1999 btrfs_set_super_generation(super,
2000 btrfs_backup_tree_root_gen(root_backup));
2001 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2002 btrfs_set_super_root_level(super,
2003 btrfs_backup_tree_root_level(root_backup));
2004 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2005
2006 /*
2007 * fixme: the total bytes and num_devices need to match or we should
2008 * need a fsck
2009 */
2010 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2011 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2012 return 0;
2013}
2014
7abadb64
LB
2015/* helper to cleanup workers */
2016static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2017{
dc6e3209 2018 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2019 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2020 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2021 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2022 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2023 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2024 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2025 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2026 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2027 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2028 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2029 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2030 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2031 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2032 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2033 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2034 /*
2035 * Now that all other work queues are destroyed, we can safely destroy
2036 * the queues used for metadata I/O, since tasks from those other work
2037 * queues can do metadata I/O operations.
2038 */
2039 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2040 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2041}
2042
2e9f5954
R
2043static void free_root_extent_buffers(struct btrfs_root *root)
2044{
2045 if (root) {
2046 free_extent_buffer(root->node);
2047 free_extent_buffer(root->commit_root);
2048 root->node = NULL;
2049 root->commit_root = NULL;
2050 }
2051}
2052
af31f5e5
CM
2053/* helper to cleanup tree roots */
2054static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2055{
2e9f5954 2056 free_root_extent_buffers(info->tree_root);
655b09fe 2057
2e9f5954
R
2058 free_root_extent_buffers(info->dev_root);
2059 free_root_extent_buffers(info->extent_root);
2060 free_root_extent_buffers(info->csum_root);
2061 free_root_extent_buffers(info->quota_root);
2062 free_root_extent_buffers(info->uuid_root);
2063 if (chunk_root)
2064 free_root_extent_buffers(info->chunk_root);
70f6d82e 2065 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2066}
2067
faa2dbf0 2068void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2069{
2070 int ret;
2071 struct btrfs_root *gang[8];
2072 int i;
2073
2074 while (!list_empty(&fs_info->dead_roots)) {
2075 gang[0] = list_entry(fs_info->dead_roots.next,
2076 struct btrfs_root, root_list);
2077 list_del(&gang[0]->root_list);
2078
27cdeb70 2079 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2080 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2081 } else {
2082 free_extent_buffer(gang[0]->node);
2083 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2084 btrfs_put_fs_root(gang[0]);
171f6537
JB
2085 }
2086 }
2087
2088 while (1) {
2089 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2090 (void **)gang, 0,
2091 ARRAY_SIZE(gang));
2092 if (!ret)
2093 break;
2094 for (i = 0; i < ret; i++)
cb517eab 2095 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2096 }
1a4319cc
LB
2097
2098 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2099 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2100 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2101 }
171f6537 2102}
af31f5e5 2103
638aa7ed
ES
2104static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2105{
2106 mutex_init(&fs_info->scrub_lock);
2107 atomic_set(&fs_info->scrubs_running, 0);
2108 atomic_set(&fs_info->scrub_pause_req, 0);
2109 atomic_set(&fs_info->scrubs_paused, 0);
2110 atomic_set(&fs_info->scrub_cancel_req, 0);
2111 init_waitqueue_head(&fs_info->scrub_pause_wait);
2112 fs_info->scrub_workers_refcnt = 0;
2113}
2114
779a65a4
ES
2115static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2116{
2117 spin_lock_init(&fs_info->balance_lock);
2118 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2119 atomic_set(&fs_info->balance_pause_req, 0);
2120 atomic_set(&fs_info->balance_cancel_req, 0);
2121 fs_info->balance_ctl = NULL;
2122 init_waitqueue_head(&fs_info->balance_wait_q);
2123}
2124
6bccf3ab 2125static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2126{
2ff7e61e
JM
2127 struct inode *inode = fs_info->btree_inode;
2128
2129 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2130 set_nlink(inode, 1);
f37938e0
ES
2131 /*
2132 * we set the i_size on the btree inode to the max possible int.
2133 * the real end of the address space is determined by all of
2134 * the devices in the system
2135 */
2ff7e61e
JM
2136 inode->i_size = OFFSET_MAX;
2137 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2138
2ff7e61e 2139 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
c6100a4b 2140 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2ff7e61e
JM
2141 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2142 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2143
2ff7e61e 2144 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2145
2ff7e61e
JM
2146 BTRFS_I(inode)->root = fs_info->tree_root;
2147 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2148 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2149 btrfs_insert_inode_hash(inode);
f37938e0
ES
2150}
2151
ad618368
ES
2152static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2153{
ad618368 2154 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2155 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2156 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2157}
2158
f9e92e40
ES
2159static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2160{
2161 spin_lock_init(&fs_info->qgroup_lock);
2162 mutex_init(&fs_info->qgroup_ioctl_lock);
2163 fs_info->qgroup_tree = RB_ROOT;
2164 fs_info->qgroup_op_tree = RB_ROOT;
2165 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2166 fs_info->qgroup_seq = 1;
f9e92e40 2167 fs_info->qgroup_ulist = NULL;
d2c609b8 2168 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2169 mutex_init(&fs_info->qgroup_rescan_lock);
2170}
2171
2a458198
ES
2172static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2173 struct btrfs_fs_devices *fs_devices)
2174{
f7b885be 2175 u32 max_active = fs_info->thread_pool_size;
6f011058 2176 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2177
2178 fs_info->workers =
cb001095
JM
2179 btrfs_alloc_workqueue(fs_info, "worker",
2180 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2181
2182 fs_info->delalloc_workers =
cb001095
JM
2183 btrfs_alloc_workqueue(fs_info, "delalloc",
2184 flags, max_active, 2);
2a458198
ES
2185
2186 fs_info->flush_workers =
cb001095
JM
2187 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2188 flags, max_active, 0);
2a458198
ES
2189
2190 fs_info->caching_workers =
cb001095 2191 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2192
2193 /*
2194 * a higher idle thresh on the submit workers makes it much more
2195 * likely that bios will be send down in a sane order to the
2196 * devices
2197 */
2198 fs_info->submit_workers =
cb001095 2199 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2200 min_t(u64, fs_devices->num_devices,
2201 max_active), 64);
2202
2203 fs_info->fixup_workers =
cb001095 2204 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2205
2206 /*
2207 * endios are largely parallel and should have a very
2208 * low idle thresh
2209 */
2210 fs_info->endio_workers =
cb001095 2211 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2212 fs_info->endio_meta_workers =
cb001095
JM
2213 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2214 max_active, 4);
2a458198 2215 fs_info->endio_meta_write_workers =
cb001095
JM
2216 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2217 max_active, 2);
2a458198 2218 fs_info->endio_raid56_workers =
cb001095
JM
2219 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2220 max_active, 4);
2a458198 2221 fs_info->endio_repair_workers =
cb001095 2222 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2223 fs_info->rmw_workers =
cb001095 2224 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2225 fs_info->endio_write_workers =
cb001095
JM
2226 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2227 max_active, 2);
2a458198 2228 fs_info->endio_freespace_worker =
cb001095
JM
2229 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2230 max_active, 0);
2a458198 2231 fs_info->delayed_workers =
cb001095
JM
2232 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2233 max_active, 0);
2a458198 2234 fs_info->readahead_workers =
cb001095
JM
2235 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2236 max_active, 2);
2a458198 2237 fs_info->qgroup_rescan_workers =
cb001095 2238 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2239 fs_info->extent_workers =
cb001095 2240 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2241 min_t(u64, fs_devices->num_devices,
2242 max_active), 8);
2243
2244 if (!(fs_info->workers && fs_info->delalloc_workers &&
2245 fs_info->submit_workers && fs_info->flush_workers &&
2246 fs_info->endio_workers && fs_info->endio_meta_workers &&
2247 fs_info->endio_meta_write_workers &&
2248 fs_info->endio_repair_workers &&
2249 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2250 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2251 fs_info->caching_workers && fs_info->readahead_workers &&
2252 fs_info->fixup_workers && fs_info->delayed_workers &&
2253 fs_info->extent_workers &&
2254 fs_info->qgroup_rescan_workers)) {
2255 return -ENOMEM;
2256 }
2257
2258 return 0;
2259}
2260
63443bf5
ES
2261static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2262 struct btrfs_fs_devices *fs_devices)
2263{
2264 int ret;
63443bf5
ES
2265 struct btrfs_root *log_tree_root;
2266 struct btrfs_super_block *disk_super = fs_info->super_copy;
2267 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2268 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2269
2270 if (fs_devices->rw_devices == 0) {
f14d104d 2271 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2272 return -EIO;
2273 }
2274
74e4d827 2275 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2276 if (!log_tree_root)
2277 return -ENOMEM;
2278
da17066c 2279 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2280
2ff7e61e 2281 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2282 fs_info->generation + 1,
2283 level, NULL);
64c043de 2284 if (IS_ERR(log_tree_root->node)) {
f14d104d 2285 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2286 ret = PTR_ERR(log_tree_root->node);
64c043de 2287 kfree(log_tree_root);
0eeff236 2288 return ret;
64c043de 2289 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2290 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2291 free_extent_buffer(log_tree_root->node);
2292 kfree(log_tree_root);
2293 return -EIO;
2294 }
2295 /* returns with log_tree_root freed on success */
2296 ret = btrfs_recover_log_trees(log_tree_root);
2297 if (ret) {
0b246afa
JM
2298 btrfs_handle_fs_error(fs_info, ret,
2299 "Failed to recover log tree");
63443bf5
ES
2300 free_extent_buffer(log_tree_root->node);
2301 kfree(log_tree_root);
2302 return ret;
2303 }
2304
bc98a42c 2305 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2306 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2307 if (ret)
2308 return ret;
2309 }
2310
2311 return 0;
2312}
2313
6bccf3ab 2314static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2315{
6bccf3ab 2316 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2317 struct btrfs_root *root;
4bbcaa64
ES
2318 struct btrfs_key location;
2319 int ret;
2320
6bccf3ab
JM
2321 BUG_ON(!fs_info->tree_root);
2322
4bbcaa64
ES
2323 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2324 location.type = BTRFS_ROOT_ITEM_KEY;
2325 location.offset = 0;
2326
a4f3d2c4 2327 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2328 if (IS_ERR(root)) {
2329 ret = PTR_ERR(root);
2330 goto out;
2331 }
a4f3d2c4
DS
2332 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2333 fs_info->extent_root = root;
4bbcaa64
ES
2334
2335 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2336 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2337 if (IS_ERR(root)) {
2338 ret = PTR_ERR(root);
2339 goto out;
2340 }
a4f3d2c4
DS
2341 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2342 fs_info->dev_root = root;
4bbcaa64
ES
2343 btrfs_init_devices_late(fs_info);
2344
2345 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2346 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2347 if (IS_ERR(root)) {
2348 ret = PTR_ERR(root);
2349 goto out;
2350 }
a4f3d2c4
DS
2351 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2352 fs_info->csum_root = root;
4bbcaa64
ES
2353
2354 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2355 root = btrfs_read_tree_root(tree_root, &location);
2356 if (!IS_ERR(root)) {
2357 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2358 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2359 fs_info->quota_root = root;
4bbcaa64
ES
2360 }
2361
2362 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2363 root = btrfs_read_tree_root(tree_root, &location);
2364 if (IS_ERR(root)) {
2365 ret = PTR_ERR(root);
4bbcaa64 2366 if (ret != -ENOENT)
f50f4353 2367 goto out;
4bbcaa64 2368 } else {
a4f3d2c4
DS
2369 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2370 fs_info->uuid_root = root;
4bbcaa64
ES
2371 }
2372
70f6d82e
OS
2373 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2374 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2375 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2376 if (IS_ERR(root)) {
2377 ret = PTR_ERR(root);
2378 goto out;
2379 }
70f6d82e
OS
2380 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2381 fs_info->free_space_root = root;
2382 }
2383
4bbcaa64 2384 return 0;
f50f4353
LB
2385out:
2386 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2387 location.objectid, ret);
2388 return ret;
4bbcaa64
ES
2389}
2390
069ec957
QW
2391/*
2392 * Real super block validation
2393 * NOTE: super csum type and incompat features will not be checked here.
2394 *
2395 * @sb: super block to check
2396 * @mirror_num: the super block number to check its bytenr:
2397 * 0 the primary (1st) sb
2398 * 1, 2 2nd and 3rd backup copy
2399 * -1 skip bytenr check
2400 */
2401static int validate_super(struct btrfs_fs_info *fs_info,
2402 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2403{
21a852b0
QW
2404 u64 nodesize = btrfs_super_nodesize(sb);
2405 u64 sectorsize = btrfs_super_sectorsize(sb);
2406 int ret = 0;
2407
2408 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2409 btrfs_err(fs_info, "no valid FS found");
2410 ret = -EINVAL;
2411 }
2412 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2413 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2414 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2415 ret = -EINVAL;
2416 }
2417 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2418 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2419 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2420 ret = -EINVAL;
2421 }
2422 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2423 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2424 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2425 ret = -EINVAL;
2426 }
2427 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2428 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2429 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2430 ret = -EINVAL;
2431 }
2432
2433 /*
2434 * Check sectorsize and nodesize first, other check will need it.
2435 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2436 */
2437 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2438 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2439 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2440 ret = -EINVAL;
2441 }
2442 /* Only PAGE SIZE is supported yet */
2443 if (sectorsize != PAGE_SIZE) {
2444 btrfs_err(fs_info,
2445 "sectorsize %llu not supported yet, only support %lu",
2446 sectorsize, PAGE_SIZE);
2447 ret = -EINVAL;
2448 }
2449 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2450 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2451 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2452 ret = -EINVAL;
2453 }
2454 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2455 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2456 le32_to_cpu(sb->__unused_leafsize), nodesize);
2457 ret = -EINVAL;
2458 }
2459
2460 /* Root alignment check */
2461 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2462 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2463 btrfs_super_root(sb));
2464 ret = -EINVAL;
2465 }
2466 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2467 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2468 btrfs_super_chunk_root(sb));
2469 ret = -EINVAL;
2470 }
2471 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2472 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2473 btrfs_super_log_root(sb));
2474 ret = -EINVAL;
2475 }
2476
de37aa51 2477 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2478 BTRFS_FSID_SIZE) != 0) {
21a852b0 2479 btrfs_err(fs_info,
7239ff4b 2480 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2481 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2482 ret = -EINVAL;
2483 }
2484
2485 /*
2486 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2487 * done later
2488 */
2489 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2490 btrfs_err(fs_info, "bytes_used is too small %llu",
2491 btrfs_super_bytes_used(sb));
2492 ret = -EINVAL;
2493 }
2494 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2495 btrfs_err(fs_info, "invalid stripesize %u",
2496 btrfs_super_stripesize(sb));
2497 ret = -EINVAL;
2498 }
2499 if (btrfs_super_num_devices(sb) > (1UL << 31))
2500 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2501 btrfs_super_num_devices(sb));
2502 if (btrfs_super_num_devices(sb) == 0) {
2503 btrfs_err(fs_info, "number of devices is 0");
2504 ret = -EINVAL;
2505 }
2506
069ec957
QW
2507 if (mirror_num >= 0 &&
2508 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2509 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2510 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2511 ret = -EINVAL;
2512 }
2513
2514 /*
2515 * Obvious sys_chunk_array corruptions, it must hold at least one key
2516 * and one chunk
2517 */
2518 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2519 btrfs_err(fs_info, "system chunk array too big %u > %u",
2520 btrfs_super_sys_array_size(sb),
2521 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2522 ret = -EINVAL;
2523 }
2524 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2525 + sizeof(struct btrfs_chunk)) {
2526 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2527 btrfs_super_sys_array_size(sb),
2528 sizeof(struct btrfs_disk_key)
2529 + sizeof(struct btrfs_chunk));
2530 ret = -EINVAL;
2531 }
2532
2533 /*
2534 * The generation is a global counter, we'll trust it more than the others
2535 * but it's still possible that it's the one that's wrong.
2536 */
2537 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2538 btrfs_warn(fs_info,
2539 "suspicious: generation < chunk_root_generation: %llu < %llu",
2540 btrfs_super_generation(sb),
2541 btrfs_super_chunk_root_generation(sb));
2542 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2543 && btrfs_super_cache_generation(sb) != (u64)-1)
2544 btrfs_warn(fs_info,
2545 "suspicious: generation < cache_generation: %llu < %llu",
2546 btrfs_super_generation(sb),
2547 btrfs_super_cache_generation(sb));
2548
2549 return ret;
2550}
2551
069ec957
QW
2552/*
2553 * Validation of super block at mount time.
2554 * Some checks already done early at mount time, like csum type and incompat
2555 * flags will be skipped.
2556 */
2557static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2558{
2559 return validate_super(fs_info, fs_info->super_copy, 0);
2560}
2561
75cb857d
QW
2562/*
2563 * Validation of super block at write time.
2564 * Some checks like bytenr check will be skipped as their values will be
2565 * overwritten soon.
2566 * Extra checks like csum type and incompat flags will be done here.
2567 */
2568static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2569 struct btrfs_super_block *sb)
2570{
2571 int ret;
2572
2573 ret = validate_super(fs_info, sb, -1);
2574 if (ret < 0)
2575 goto out;
2576 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2577 ret = -EUCLEAN;
2578 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2579 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2580 goto out;
2581 }
2582 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2583 ret = -EUCLEAN;
2584 btrfs_err(fs_info,
2585 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2586 btrfs_super_incompat_flags(sb),
2587 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2588 goto out;
2589 }
2590out:
2591 if (ret < 0)
2592 btrfs_err(fs_info,
2593 "super block corruption detected before writing it to disk");
2594 return ret;
2595}
2596
ad2b2c80
AV
2597int open_ctree(struct super_block *sb,
2598 struct btrfs_fs_devices *fs_devices,
2599 char *options)
2e635a27 2600{
db94535d
CM
2601 u32 sectorsize;
2602 u32 nodesize;
87ee04eb 2603 u32 stripesize;
84234f3a 2604 u64 generation;
f2b636e8 2605 u64 features;
3de4586c 2606 struct btrfs_key location;
a061fc8d 2607 struct buffer_head *bh;
4d34b278 2608 struct btrfs_super_block *disk_super;
815745cf 2609 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2610 struct btrfs_root *tree_root;
4d34b278 2611 struct btrfs_root *chunk_root;
eb60ceac 2612 int ret;
e58ca020 2613 int err = -EINVAL;
af31f5e5
CM
2614 int num_backups_tried = 0;
2615 int backup_index = 0;
6675df31 2616 int clear_free_space_tree = 0;
581c1760 2617 int level;
4543df7e 2618
74e4d827
DS
2619 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2620 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2621 if (!tree_root || !chunk_root) {
39279cc3
CM
2622 err = -ENOMEM;
2623 goto fail;
2624 }
76dda93c
YZ
2625
2626 ret = init_srcu_struct(&fs_info->subvol_srcu);
2627 if (ret) {
2628 err = ret;
2629 goto fail;
2630 }
2631
908c7f19 2632 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2633 if (ret) {
2634 err = ret;
9e11ceee 2635 goto fail_srcu;
e2d84521 2636 }
09cbfeaf 2637 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2638 (1 + ilog2(nr_cpu_ids));
2639
908c7f19 2640 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2641 if (ret) {
2642 err = ret;
2643 goto fail_dirty_metadata_bytes;
2644 }
2645
7f8d236a
DS
2646 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2647 GFP_KERNEL);
c404e0dc
MX
2648 if (ret) {
2649 err = ret;
2650 goto fail_delalloc_bytes;
2651 }
2652
76dda93c 2653 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2654 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2655 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2656 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2657 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2658 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2659 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2660 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2661 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2662 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2663 spin_lock_init(&fs_info->trans_lock);
76dda93c 2664 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2665 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2666 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2667 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2668 spin_lock_init(&fs_info->super_lock);
fcebe456 2669 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2670 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2671 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2672 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2673 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2674 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2675 mutex_init(&fs_info->reloc_mutex);
573bfb72 2676 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2677 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2678
0b86a832 2679 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2680 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2681 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2682 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2683 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2684 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2685 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2686 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2687 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2688 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2689 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2690 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2691 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2692 BTRFS_BLOCK_RSV_DELREFS);
2693
771ed689 2694 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2695 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2696 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2697 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2698 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2699 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2700 fs_info->sb = sb;
95ac567a 2701 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2702 fs_info->metadata_ratio = 0;
4cb5300b 2703 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2704 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2705 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2706 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2707 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2708 /* readahead state */
d0164adc 2709 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2710 spin_lock_init(&fs_info->reada_lock);
fd708b81 2711 btrfs_init_ref_verify(fs_info);
c8b97818 2712
b34b086c
CM
2713 fs_info->thread_pool_size = min_t(unsigned long,
2714 num_online_cpus() + 2, 8);
0afbaf8c 2715
199c2a9c
MX
2716 INIT_LIST_HEAD(&fs_info->ordered_roots);
2717 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2718
2719 fs_info->btree_inode = new_inode(sb);
2720 if (!fs_info->btree_inode) {
2721 err = -ENOMEM;
2722 goto fail_bio_counter;
2723 }
2724 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2725
16cdcec7 2726 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2727 GFP_KERNEL);
16cdcec7
MX
2728 if (!fs_info->delayed_root) {
2729 err = -ENOMEM;
2730 goto fail_iput;
2731 }
2732 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2733
638aa7ed 2734 btrfs_init_scrub(fs_info);
21adbd5c
SB
2735#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2736 fs_info->check_integrity_print_mask = 0;
2737#endif
779a65a4 2738 btrfs_init_balance(fs_info);
21c7e756 2739 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2740
9f6d2510
DS
2741 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2742 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2743
6bccf3ab 2744 btrfs_init_btree_inode(fs_info);
76dda93c 2745
0f9dd46c 2746 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2747 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2748 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2749
c6100a4b
JB
2750 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2751 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
11833d66 2752 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2753 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2754
5a3f23d5 2755 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2756 mutex_init(&fs_info->tree_log_mutex);
925baedd 2757 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2758 mutex_init(&fs_info->transaction_kthread_mutex);
2759 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2760 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2761 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2762 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2763 init_rwsem(&fs_info->subvol_sem);
803b2f54 2764 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2765
ad618368 2766 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2767 btrfs_init_qgroup(fs_info);
416ac51d 2768
fa9c0d79
CM
2769 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2770 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2771
e6dcd2dc 2772 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2773 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2774 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2775 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2776 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2777
04216820
FM
2778 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2779
da17066c
JM
2780 /* Usable values until the real ones are cached from the superblock */
2781 fs_info->nodesize = 4096;
2782 fs_info->sectorsize = 4096;
2783 fs_info->stripesize = 4096;
2784
eede2bf3
OS
2785 spin_lock_init(&fs_info->swapfile_pins_lock);
2786 fs_info->swapfile_pins = RB_ROOT;
2787
53b381b3
DW
2788 ret = btrfs_alloc_stripe_hash_table(fs_info);
2789 if (ret) {
83c8266a 2790 err = ret;
53b381b3
DW
2791 goto fail_alloc;
2792 }
2793
da17066c 2794 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2795
3c4bb26b 2796 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2797
2798 /*
2799 * Read super block and check the signature bytes only
2800 */
a512bbf8 2801 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2802 if (IS_ERR(bh)) {
2803 err = PTR_ERR(bh);
16cdcec7 2804 goto fail_alloc;
20b45077 2805 }
39279cc3 2806
1104a885
DS
2807 /*
2808 * We want to check superblock checksum, the type is stored inside.
2809 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2810 */
ab8d0fc4 2811 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2812 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2813 err = -EINVAL;
b2acdddf 2814 brelse(bh);
1104a885
DS
2815 goto fail_alloc;
2816 }
2817
2818 /*
2819 * super_copy is zeroed at allocation time and we never touch the
2820 * following bytes up to INFO_SIZE, the checksum is calculated from
2821 * the whole block of INFO_SIZE
2822 */
6c41761f 2823 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2824 brelse(bh);
5f39d397 2825
fbc6feae
NB
2826 disk_super = fs_info->super_copy;
2827
de37aa51
NB
2828 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2829 BTRFS_FSID_SIZE));
2830
7239ff4b 2831 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2832 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2833 fs_info->super_copy->metadata_uuid,
2834 BTRFS_FSID_SIZE));
7239ff4b 2835 }
0b86a832 2836
fbc6feae
NB
2837 features = btrfs_super_flags(disk_super);
2838 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2839 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2840 btrfs_set_super_flags(disk_super, features);
2841 btrfs_info(fs_info,
2842 "found metadata UUID change in progress flag, clearing");
2843 }
2844
2845 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2846 sizeof(*fs_info->super_for_commit));
de37aa51 2847
069ec957 2848 ret = btrfs_validate_mount_super(fs_info);
1104a885 2849 if (ret) {
05135f59 2850 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2851 err = -EINVAL;
2852 goto fail_alloc;
2853 }
2854
0f7d52f4 2855 if (!btrfs_super_root(disk_super))
16cdcec7 2856 goto fail_alloc;
0f7d52f4 2857
acce952b 2858 /* check FS state, whether FS is broken. */
87533c47
MX
2859 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2860 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2861
af31f5e5
CM
2862 /*
2863 * run through our array of backup supers and setup
2864 * our ring pointer to the oldest one
2865 */
2866 generation = btrfs_super_generation(disk_super);
2867 find_oldest_super_backup(fs_info, generation);
2868
75e7cb7f
LB
2869 /*
2870 * In the long term, we'll store the compression type in the super
2871 * block, and it'll be used for per file compression control.
2872 */
2873 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2874
2ff7e61e 2875 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2876 if (ret) {
2877 err = ret;
16cdcec7 2878 goto fail_alloc;
2b82032c 2879 }
dfe25020 2880
f2b636e8
JB
2881 features = btrfs_super_incompat_flags(disk_super) &
2882 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2883 if (features) {
05135f59
DS
2884 btrfs_err(fs_info,
2885 "cannot mount because of unsupported optional features (%llx)",
2886 features);
f2b636e8 2887 err = -EINVAL;
16cdcec7 2888 goto fail_alloc;
f2b636e8
JB
2889 }
2890
5d4f98a2 2891 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2892 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2893 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2894 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2895 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2896 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2897
3173a18f 2898 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2899 btrfs_info(fs_info, "has skinny extents");
3173a18f 2900
727011e0
CM
2901 /*
2902 * flag our filesystem as having big metadata blocks if
2903 * they are bigger than the page size
2904 */
09cbfeaf 2905 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2906 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2907 btrfs_info(fs_info,
2908 "flagging fs with big metadata feature");
727011e0
CM
2909 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2910 }
2911
bc3f116f 2912 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2913 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2914 stripesize = sectorsize;
707e8a07 2915 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2916 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2917
da17066c
JM
2918 /* Cache block sizes */
2919 fs_info->nodesize = nodesize;
2920 fs_info->sectorsize = sectorsize;
2921 fs_info->stripesize = stripesize;
2922
bc3f116f
CM
2923 /*
2924 * mixed block groups end up with duplicate but slightly offset
2925 * extent buffers for the same range. It leads to corruptions
2926 */
2927 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2928 (sectorsize != nodesize)) {
05135f59
DS
2929 btrfs_err(fs_info,
2930"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2931 nodesize, sectorsize);
bc3f116f
CM
2932 goto fail_alloc;
2933 }
2934
ceda0864
MX
2935 /*
2936 * Needn't use the lock because there is no other task which will
2937 * update the flag.
2938 */
a6fa6fae 2939 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2940
f2b636e8
JB
2941 features = btrfs_super_compat_ro_flags(disk_super) &
2942 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2943 if (!sb_rdonly(sb) && features) {
05135f59
DS
2944 btrfs_err(fs_info,
2945 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2946 features);
f2b636e8 2947 err = -EINVAL;
16cdcec7 2948 goto fail_alloc;
f2b636e8 2949 }
61d92c32 2950
2a458198
ES
2951 ret = btrfs_init_workqueues(fs_info, fs_devices);
2952 if (ret) {
2953 err = ret;
0dc3b84a
JB
2954 goto fail_sb_buffer;
2955 }
4543df7e 2956
9e11ceee
JK
2957 sb->s_bdi->congested_fn = btrfs_congested_fn;
2958 sb->s_bdi->congested_data = fs_info;
2959 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
d4417e22 2960 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
9e11ceee
JK
2961 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2962 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2963
a061fc8d
CM
2964 sb->s_blocksize = sectorsize;
2965 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 2966 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 2967
925baedd 2968 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2969 ret = btrfs_read_sys_array(fs_info);
925baedd 2970 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2971 if (ret) {
05135f59 2972 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2973 goto fail_sb_buffer;
84eed90f 2974 }
0b86a832 2975
84234f3a 2976 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2977 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2978
da17066c 2979 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2980
2ff7e61e 2981 chunk_root->node = read_tree_block(fs_info,
0b86a832 2982 btrfs_super_chunk_root(disk_super),
581c1760 2983 generation, level, NULL);
64c043de
LB
2984 if (IS_ERR(chunk_root->node) ||
2985 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2986 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2987 if (!IS_ERR(chunk_root->node))
2988 free_extent_buffer(chunk_root->node);
95ab1f64 2989 chunk_root->node = NULL;
af31f5e5 2990 goto fail_tree_roots;
83121942 2991 }
5d4f98a2
YZ
2992 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2993 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2994
e17cade2 2995 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2996 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2997
5b4aacef 2998 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2999 if (ret) {
05135f59 3000 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3001 goto fail_tree_roots;
2b82032c 3002 }
0b86a832 3003
8dabb742 3004 /*
9b99b115
AJ
3005 * Keep the devid that is marked to be the target device for the
3006 * device replace procedure
8dabb742 3007 */
9b99b115 3008 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3009
a6b0d5c8 3010 if (!fs_devices->latest_bdev) {
05135f59 3011 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3012 goto fail_tree_roots;
3013 }
3014
af31f5e5 3015retry_root_backup:
84234f3a 3016 generation = btrfs_super_generation(disk_super);
581c1760 3017 level = btrfs_super_root_level(disk_super);
0b86a832 3018
2ff7e61e 3019 tree_root->node = read_tree_block(fs_info,
db94535d 3020 btrfs_super_root(disk_super),
581c1760 3021 generation, level, NULL);
64c043de
LB
3022 if (IS_ERR(tree_root->node) ||
3023 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3024 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3025 if (!IS_ERR(tree_root->node))
3026 free_extent_buffer(tree_root->node);
95ab1f64 3027 tree_root->node = NULL;
af31f5e5 3028 goto recovery_tree_root;
83121942 3029 }
af31f5e5 3030
5d4f98a2
YZ
3031 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3032 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3033 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3034
f32e48e9
CR
3035 mutex_lock(&tree_root->objectid_mutex);
3036 ret = btrfs_find_highest_objectid(tree_root,
3037 &tree_root->highest_objectid);
3038 if (ret) {
3039 mutex_unlock(&tree_root->objectid_mutex);
3040 goto recovery_tree_root;
3041 }
3042
3043 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3044
3045 mutex_unlock(&tree_root->objectid_mutex);
3046
6bccf3ab 3047 ret = btrfs_read_roots(fs_info);
4bbcaa64 3048 if (ret)
af31f5e5 3049 goto recovery_tree_root;
f7a81ea4 3050
8929ecfa
YZ
3051 fs_info->generation = generation;
3052 fs_info->last_trans_committed = generation;
8929ecfa 3053
cf90d884
QW
3054 ret = btrfs_verify_dev_extents(fs_info);
3055 if (ret) {
3056 btrfs_err(fs_info,
3057 "failed to verify dev extents against chunks: %d",
3058 ret);
3059 goto fail_block_groups;
3060 }
68310a5e
ID
3061 ret = btrfs_recover_balance(fs_info);
3062 if (ret) {
05135f59 3063 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3064 goto fail_block_groups;
3065 }
3066
733f4fbb
SB
3067 ret = btrfs_init_dev_stats(fs_info);
3068 if (ret) {
05135f59 3069 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3070 goto fail_block_groups;
3071 }
3072
8dabb742
SB
3073 ret = btrfs_init_dev_replace(fs_info);
3074 if (ret) {
05135f59 3075 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3076 goto fail_block_groups;
3077 }
3078
9b99b115 3079 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3080
b7c35e81
AJ
3081 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3082 if (ret) {
05135f59
DS
3083 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3084 ret);
b7c35e81
AJ
3085 goto fail_block_groups;
3086 }
3087
3088 ret = btrfs_sysfs_add_device(fs_devices);
3089 if (ret) {
05135f59
DS
3090 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3091 ret);
b7c35e81
AJ
3092 goto fail_fsdev_sysfs;
3093 }
3094
96f3136e 3095 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3096 if (ret) {
05135f59 3097 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3098 goto fail_fsdev_sysfs;
c59021f8 3099 }
3100
c59021f8 3101 ret = btrfs_init_space_info(fs_info);
3102 if (ret) {
05135f59 3103 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3104 goto fail_sysfs;
c59021f8 3105 }
3106
5b4aacef 3107 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3108 if (ret) {
05135f59 3109 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3110 goto fail_sysfs;
1b1d1f66 3111 }
4330e183 3112
6528b99d 3113 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3114 btrfs_warn(fs_info,
52042d8e 3115 "writable mount is not allowed due to too many missing devices");
2365dd3c 3116 goto fail_sysfs;
292fd7fc 3117 }
9078a3e1 3118
a74a4b97
CM
3119 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3120 "btrfs-cleaner");
57506d50 3121 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3122 goto fail_sysfs;
a74a4b97
CM
3123
3124 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3125 tree_root,
3126 "btrfs-transaction");
57506d50 3127 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3128 goto fail_cleaner;
a74a4b97 3129
583b7231 3130 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3131 !fs_info->fs_devices->rotating) {
583b7231 3132 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3133 }
3134
572d9ab7 3135 /*
01327610 3136 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3137 * not have to wait for transaction commit
3138 */
3139 btrfs_apply_pending_changes(fs_info);
3818aea2 3140
21adbd5c 3141#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3142 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3143 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3144 btrfs_test_opt(fs_info,
21adbd5c
SB
3145 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3146 1 : 0,
3147 fs_info->check_integrity_print_mask);
3148 if (ret)
05135f59
DS
3149 btrfs_warn(fs_info,
3150 "failed to initialize integrity check module: %d",
3151 ret);
21adbd5c
SB
3152 }
3153#endif
bcef60f2
AJ
3154 ret = btrfs_read_qgroup_config(fs_info);
3155 if (ret)
3156 goto fail_trans_kthread;
21adbd5c 3157
fd708b81
JB
3158 if (btrfs_build_ref_tree(fs_info))
3159 btrfs_err(fs_info, "couldn't build ref tree");
3160
96da0919
QW
3161 /* do not make disk changes in broken FS or nologreplay is given */
3162 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3163 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3164 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3165 if (ret) {
63443bf5 3166 err = ret;
28c16cbb 3167 goto fail_qgroup;
79787eaa 3168 }
e02119d5 3169 }
1a40e23b 3170
6bccf3ab 3171 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3172 if (ret)
28c16cbb 3173 goto fail_qgroup;
76dda93c 3174
bc98a42c 3175 if (!sb_rdonly(sb)) {
d68fc57b 3176 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3177 if (ret)
28c16cbb 3178 goto fail_qgroup;
90c711ab
ZB
3179
3180 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3181 ret = btrfs_recover_relocation(tree_root);
90c711ab 3182 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3183 if (ret < 0) {
05135f59
DS
3184 btrfs_warn(fs_info, "failed to recover relocation: %d",
3185 ret);
d7ce5843 3186 err = -EINVAL;
bcef60f2 3187 goto fail_qgroup;
d7ce5843 3188 }
7c2ca468 3189 }
1a40e23b 3190
3de4586c
CM
3191 location.objectid = BTRFS_FS_TREE_OBJECTID;
3192 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3193 location.offset = 0;
3de4586c 3194
3de4586c 3195 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3196 if (IS_ERR(fs_info->fs_root)) {
3197 err = PTR_ERR(fs_info->fs_root);
f50f4353 3198 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3199 goto fail_qgroup;
3140c9a3 3200 }
c289811c 3201
bc98a42c 3202 if (sb_rdonly(sb))
2b6ba629 3203 return 0;
59641015 3204
f8d468a1
OS
3205 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3206 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3207 clear_free_space_tree = 1;
3208 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3209 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3210 btrfs_warn(fs_info, "free space tree is invalid");
3211 clear_free_space_tree = 1;
3212 }
3213
3214 if (clear_free_space_tree) {
f8d468a1
OS
3215 btrfs_info(fs_info, "clearing free space tree");
3216 ret = btrfs_clear_free_space_tree(fs_info);
3217 if (ret) {
3218 btrfs_warn(fs_info,
3219 "failed to clear free space tree: %d", ret);
6bccf3ab 3220 close_ctree(fs_info);
f8d468a1
OS
3221 return ret;
3222 }
3223 }
3224
0b246afa 3225 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3226 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3227 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3228 ret = btrfs_create_free_space_tree(fs_info);
3229 if (ret) {
05135f59
DS
3230 btrfs_warn(fs_info,
3231 "failed to create free space tree: %d", ret);
6bccf3ab 3232 close_ctree(fs_info);
511711af
CM
3233 return ret;
3234 }
3235 }
3236
2b6ba629
ID
3237 down_read(&fs_info->cleanup_work_sem);
3238 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3239 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3240 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3241 close_ctree(fs_info);
2b6ba629
ID
3242 return ret;
3243 }
3244 up_read(&fs_info->cleanup_work_sem);
59641015 3245
2b6ba629
ID
3246 ret = btrfs_resume_balance_async(fs_info);
3247 if (ret) {
05135f59 3248 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3249 close_ctree(fs_info);
2b6ba629 3250 return ret;
e3acc2a6
JB
3251 }
3252
8dabb742
SB
3253 ret = btrfs_resume_dev_replace_async(fs_info);
3254 if (ret) {
05135f59 3255 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3256 close_ctree(fs_info);
8dabb742
SB
3257 return ret;
3258 }
3259
b382a324
JS
3260 btrfs_qgroup_rescan_resume(fs_info);
3261
4bbcaa64 3262 if (!fs_info->uuid_root) {
05135f59 3263 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3264 ret = btrfs_create_uuid_tree(fs_info);
3265 if (ret) {
05135f59
DS
3266 btrfs_warn(fs_info,
3267 "failed to create the UUID tree: %d", ret);
6bccf3ab 3268 close_ctree(fs_info);
f7a81ea4
SB
3269 return ret;
3270 }
0b246afa 3271 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3272 fs_info->generation !=
3273 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3274 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3275 ret = btrfs_check_uuid_tree(fs_info);
3276 if (ret) {
05135f59
DS
3277 btrfs_warn(fs_info,
3278 "failed to check the UUID tree: %d", ret);
6bccf3ab 3279 close_ctree(fs_info);
70f80175
SB
3280 return ret;
3281 }
3282 } else {
afcdd129 3283 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3284 }
afcdd129 3285 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3286
8dcddfa0
QW
3287 /*
3288 * backuproot only affect mount behavior, and if open_ctree succeeded,
3289 * no need to keep the flag
3290 */
3291 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3292
ad2b2c80 3293 return 0;
39279cc3 3294
bcef60f2
AJ
3295fail_qgroup:
3296 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3297fail_trans_kthread:
3298 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3299 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3300 btrfs_free_fs_roots(fs_info);
3f157a2f 3301fail_cleaner:
a74a4b97 3302 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3303
3304 /*
3305 * make sure we're done with the btree inode before we stop our
3306 * kthreads
3307 */
3308 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3309
2365dd3c 3310fail_sysfs:
6618a59b 3311 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3312
b7c35e81
AJ
3313fail_fsdev_sysfs:
3314 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3315
1b1d1f66 3316fail_block_groups:
54067ae9 3317 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3318
3319fail_tree_roots:
3320 free_root_pointers(fs_info, 1);
2b8195bb 3321 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3322
39279cc3 3323fail_sb_buffer:
7abadb64 3324 btrfs_stop_all_workers(fs_info);
5cdd7db6 3325 btrfs_free_block_groups(fs_info);
16cdcec7 3326fail_alloc:
4543df7e 3327fail_iput:
586e46e2
ID
3328 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3329
4543df7e 3330 iput(fs_info->btree_inode);
c404e0dc 3331fail_bio_counter:
7f8d236a 3332 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3333fail_delalloc_bytes:
3334 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3335fail_dirty_metadata_bytes:
3336 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3337fail_srcu:
3338 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3339fail:
53b381b3 3340 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3341 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3342 return err;
af31f5e5
CM
3343
3344recovery_tree_root:
0b246afa 3345 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3346 goto fail_tree_roots;
3347
3348 free_root_pointers(fs_info, 0);
3349
3350 /* don't use the log in recovery mode, it won't be valid */
3351 btrfs_set_super_log_root(disk_super, 0);
3352
3353 /* we can't trust the free space cache either */
3354 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3355
3356 ret = next_root_backup(fs_info, fs_info->super_copy,
3357 &num_backups_tried, &backup_index);
3358 if (ret == -1)
3359 goto fail_block_groups;
3360 goto retry_root_backup;
eb60ceac 3361}
663faf9f 3362ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3363
f2984462
CM
3364static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3365{
f2984462
CM
3366 if (uptodate) {
3367 set_buffer_uptodate(bh);
3368 } else {
442a4f63
SB
3369 struct btrfs_device *device = (struct btrfs_device *)
3370 bh->b_private;
3371
fb456252 3372 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3373 "lost page write due to IO error on %s",
606686ee 3374 rcu_str_deref(device->name));
01327610 3375 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3376 * our own ways of dealing with the IO errors
3377 */
f2984462 3378 clear_buffer_uptodate(bh);
442a4f63 3379 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3380 }
3381 unlock_buffer(bh);
3382 put_bh(bh);
3383}
3384
29c36d72
AJ
3385int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3386 struct buffer_head **bh_ret)
3387{
3388 struct buffer_head *bh;
3389 struct btrfs_super_block *super;
3390 u64 bytenr;
3391
3392 bytenr = btrfs_sb_offset(copy_num);
3393 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3394 return -EINVAL;
3395
9f6d2510 3396 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3397 /*
3398 * If we fail to read from the underlying devices, as of now
3399 * the best option we have is to mark it EIO.
3400 */
3401 if (!bh)
3402 return -EIO;
3403
3404 super = (struct btrfs_super_block *)bh->b_data;
3405 if (btrfs_super_bytenr(super) != bytenr ||
3406 btrfs_super_magic(super) != BTRFS_MAGIC) {
3407 brelse(bh);
3408 return -EINVAL;
3409 }
3410
3411 *bh_ret = bh;
3412 return 0;
3413}
3414
3415
a512bbf8
YZ
3416struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3417{
3418 struct buffer_head *bh;
3419 struct buffer_head *latest = NULL;
3420 struct btrfs_super_block *super;
3421 int i;
3422 u64 transid = 0;
92fc03fb 3423 int ret = -EINVAL;
a512bbf8
YZ
3424
3425 /* we would like to check all the supers, but that would make
3426 * a btrfs mount succeed after a mkfs from a different FS.
3427 * So, we need to add a special mount option to scan for
3428 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3429 */
3430 for (i = 0; i < 1; i++) {
29c36d72
AJ
3431 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3432 if (ret)
a512bbf8
YZ
3433 continue;
3434
3435 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3436
3437 if (!latest || btrfs_super_generation(super) > transid) {
3438 brelse(latest);
3439 latest = bh;
3440 transid = btrfs_super_generation(super);
3441 } else {
3442 brelse(bh);
3443 }
3444 }
92fc03fb
AJ
3445
3446 if (!latest)
3447 return ERR_PTR(ret);
3448
a512bbf8
YZ
3449 return latest;
3450}
3451
4eedeb75 3452/*
abbb3b8e
DS
3453 * Write superblock @sb to the @device. Do not wait for completion, all the
3454 * buffer heads we write are pinned.
4eedeb75 3455 *
abbb3b8e
DS
3456 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3457 * the expected device size at commit time. Note that max_mirrors must be
3458 * same for write and wait phases.
4eedeb75 3459 *
abbb3b8e 3460 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3461 */
a512bbf8 3462static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3463 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3464{
3465 struct buffer_head *bh;
3466 int i;
3467 int ret;
3468 int errors = 0;
3469 u32 crc;
3470 u64 bytenr;
1b9e619c 3471 int op_flags;
a512bbf8
YZ
3472
3473 if (max_mirrors == 0)
3474 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3475
a512bbf8
YZ
3476 for (i = 0; i < max_mirrors; i++) {
3477 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3478 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3479 device->commit_total_bytes)
a512bbf8
YZ
3480 break;
3481
abbb3b8e 3482 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3483
abbb3b8e
DS
3484 crc = ~(u32)0;
3485 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3486 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3487 btrfs_csum_final(crc, sb->csum);
4eedeb75 3488
abbb3b8e 3489 /* One reference for us, and we leave it for the caller */
9f6d2510 3490 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3491 BTRFS_SUPER_INFO_SIZE);
3492 if (!bh) {
3493 btrfs_err(device->fs_info,
3494 "couldn't get super buffer head for bytenr %llu",
3495 bytenr);
3496 errors++;
4eedeb75 3497 continue;
abbb3b8e 3498 }
634554dc 3499
abbb3b8e 3500 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3501
abbb3b8e
DS
3502 /* one reference for submit_bh */
3503 get_bh(bh);
4eedeb75 3504
abbb3b8e
DS
3505 set_buffer_uptodate(bh);
3506 lock_buffer(bh);
3507 bh->b_end_io = btrfs_end_buffer_write_sync;
3508 bh->b_private = device;
a512bbf8 3509
387125fc
CM
3510 /*
3511 * we fua the first super. The others we allow
3512 * to go down lazy.
3513 */
1b9e619c
OS
3514 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3515 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3516 op_flags |= REQ_FUA;
3517 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3518 if (ret)
a512bbf8 3519 errors++;
a512bbf8
YZ
3520 }
3521 return errors < i ? 0 : -1;
3522}
3523
abbb3b8e
DS
3524/*
3525 * Wait for write completion of superblocks done by write_dev_supers,
3526 * @max_mirrors same for write and wait phases.
3527 *
3528 * Return number of errors when buffer head is not found or not marked up to
3529 * date.
3530 */
3531static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3532{
3533 struct buffer_head *bh;
3534 int i;
3535 int errors = 0;
b6a535fa 3536 bool primary_failed = false;
abbb3b8e
DS
3537 u64 bytenr;
3538
3539 if (max_mirrors == 0)
3540 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3541
3542 for (i = 0; i < max_mirrors; i++) {
3543 bytenr = btrfs_sb_offset(i);
3544 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3545 device->commit_total_bytes)
3546 break;
3547
9f6d2510
DS
3548 bh = __find_get_block(device->bdev,
3549 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3550 BTRFS_SUPER_INFO_SIZE);
3551 if (!bh) {
3552 errors++;
b6a535fa
HM
3553 if (i == 0)
3554 primary_failed = true;
abbb3b8e
DS
3555 continue;
3556 }
3557 wait_on_buffer(bh);
b6a535fa 3558 if (!buffer_uptodate(bh)) {
abbb3b8e 3559 errors++;
b6a535fa
HM
3560 if (i == 0)
3561 primary_failed = true;
3562 }
abbb3b8e
DS
3563
3564 /* drop our reference */
3565 brelse(bh);
3566
3567 /* drop the reference from the writing run */
3568 brelse(bh);
3569 }
3570
b6a535fa
HM
3571 /* log error, force error return */
3572 if (primary_failed) {
3573 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3574 device->devid);
3575 return -1;
3576 }
3577
abbb3b8e
DS
3578 return errors < i ? 0 : -1;
3579}
3580
387125fc
CM
3581/*
3582 * endio for the write_dev_flush, this will wake anyone waiting
3583 * for the barrier when it is done
3584 */
4246a0b6 3585static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3586{
e0ae9994 3587 complete(bio->bi_private);
387125fc
CM
3588}
3589
3590/*
4fc6441a
AJ
3591 * Submit a flush request to the device if it supports it. Error handling is
3592 * done in the waiting counterpart.
387125fc 3593 */
4fc6441a 3594static void write_dev_flush(struct btrfs_device *device)
387125fc 3595{
c2a9c7ab 3596 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3597 struct bio *bio = device->flush_bio;
387125fc 3598
c2a9c7ab 3599 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3600 return;
387125fc 3601
e0ae9994 3602 bio_reset(bio);
387125fc 3603 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3604 bio_set_dev(bio, device->bdev);
8d910125 3605 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3606 init_completion(&device->flush_wait);
3607 bio->bi_private = &device->flush_wait;
387125fc 3608
43a01111 3609 btrfsic_submit_bio(bio);
1c3063b6 3610 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3611}
387125fc 3612
4fc6441a
AJ
3613/*
3614 * If the flush bio has been submitted by write_dev_flush, wait for it.
3615 */
8c27cb35 3616static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3617{
4fc6441a 3618 struct bio *bio = device->flush_bio;
387125fc 3619
1c3063b6 3620 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3621 return BLK_STS_OK;
387125fc 3622
1c3063b6 3623 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3624 wait_for_completion_io(&device->flush_wait);
387125fc 3625
8c27cb35 3626 return bio->bi_status;
387125fc 3627}
387125fc 3628
d10b82fe 3629static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3630{
6528b99d 3631 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3632 return -EIO;
387125fc
CM
3633 return 0;
3634}
3635
3636/*
3637 * send an empty flush down to each device in parallel,
3638 * then wait for them
3639 */
3640static int barrier_all_devices(struct btrfs_fs_info *info)
3641{
3642 struct list_head *head;
3643 struct btrfs_device *dev;
5af3e8cc 3644 int errors_wait = 0;
4e4cbee9 3645 blk_status_t ret;
387125fc 3646
1538e6c5 3647 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3648 /* send down all the barriers */
3649 head = &info->fs_devices->devices;
1538e6c5 3650 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3651 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3652 continue;
cea7c8bf 3653 if (!dev->bdev)
387125fc 3654 continue;
e12c9621 3655 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3656 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3657 continue;
3658
4fc6441a 3659 write_dev_flush(dev);
58efbc9f 3660 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3661 }
3662
3663 /* wait for all the barriers */
1538e6c5 3664 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3665 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3666 continue;
387125fc 3667 if (!dev->bdev) {
5af3e8cc 3668 errors_wait++;
387125fc
CM
3669 continue;
3670 }
e12c9621 3671 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3672 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3673 continue;
3674
4fc6441a 3675 ret = wait_dev_flush(dev);
401b41e5
AJ
3676 if (ret) {
3677 dev->last_flush_error = ret;
66b4993e
DS
3678 btrfs_dev_stat_inc_and_print(dev,
3679 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3680 errors_wait++;
401b41e5
AJ
3681 }
3682 }
3683
cea7c8bf 3684 if (errors_wait) {
401b41e5
AJ
3685 /*
3686 * At some point we need the status of all disks
3687 * to arrive at the volume status. So error checking
3688 * is being pushed to a separate loop.
3689 */
d10b82fe 3690 return check_barrier_error(info);
387125fc 3691 }
387125fc
CM
3692 return 0;
3693}
3694
943c6e99
ZL
3695int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3696{
8789f4fe
ZL
3697 int raid_type;
3698 int min_tolerated = INT_MAX;
943c6e99 3699
8789f4fe
ZL
3700 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3701 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3702 min_tolerated = min(min_tolerated,
3703 btrfs_raid_array[BTRFS_RAID_SINGLE].
3704 tolerated_failures);
943c6e99 3705
8789f4fe
ZL
3706 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3707 if (raid_type == BTRFS_RAID_SINGLE)
3708 continue;
41a6e891 3709 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe
ZL
3710 continue;
3711 min_tolerated = min(min_tolerated,
3712 btrfs_raid_array[raid_type].
3713 tolerated_failures);
3714 }
943c6e99 3715
8789f4fe 3716 if (min_tolerated == INT_MAX) {
ab8d0fc4 3717 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3718 min_tolerated = 0;
3719 }
3720
3721 return min_tolerated;
943c6e99
ZL
3722}
3723
eece6a9c 3724int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3725{
e5e9a520 3726 struct list_head *head;
f2984462 3727 struct btrfs_device *dev;
a061fc8d 3728 struct btrfs_super_block *sb;
f2984462 3729 struct btrfs_dev_item *dev_item;
f2984462
CM
3730 int ret;
3731 int do_barriers;
a236aed1
CM
3732 int max_errors;
3733 int total_errors = 0;
a061fc8d 3734 u64 flags;
f2984462 3735
0b246afa 3736 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3737
3738 /*
3739 * max_mirrors == 0 indicates we're from commit_transaction,
3740 * not from fsync where the tree roots in fs_info have not
3741 * been consistent on disk.
3742 */
3743 if (max_mirrors == 0)
3744 backup_super_roots(fs_info);
f2984462 3745
0b246afa 3746 sb = fs_info->super_for_commit;
a061fc8d 3747 dev_item = &sb->dev_item;
e5e9a520 3748
0b246afa
JM
3749 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3750 head = &fs_info->fs_devices->devices;
3751 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3752
5af3e8cc 3753 if (do_barriers) {
0b246afa 3754 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3755 if (ret) {
3756 mutex_unlock(
0b246afa
JM
3757 &fs_info->fs_devices->device_list_mutex);
3758 btrfs_handle_fs_error(fs_info, ret,
3759 "errors while submitting device barriers.");
5af3e8cc
SB
3760 return ret;
3761 }
3762 }
387125fc 3763
1538e6c5 3764 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3765 if (!dev->bdev) {
3766 total_errors++;
3767 continue;
3768 }
e12c9621 3769 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3770 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3771 continue;
3772
2b82032c 3773 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3774 btrfs_set_stack_device_type(dev_item, dev->type);
3775 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3776 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3777 dev->commit_total_bytes);
ce7213c7
MX
3778 btrfs_set_stack_device_bytes_used(dev_item,
3779 dev->commit_bytes_used);
a061fc8d
CM
3780 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3781 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3782 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3783 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3784 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3785 BTRFS_FSID_SIZE);
a512bbf8 3786
a061fc8d
CM
3787 flags = btrfs_super_flags(sb);
3788 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3789
75cb857d
QW
3790 ret = btrfs_validate_write_super(fs_info, sb);
3791 if (ret < 0) {
3792 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3793 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3794 "unexpected superblock corruption detected");
3795 return -EUCLEAN;
3796 }
3797
abbb3b8e 3798 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3799 if (ret)
3800 total_errors++;
f2984462 3801 }
a236aed1 3802 if (total_errors > max_errors) {
0b246afa
JM
3803 btrfs_err(fs_info, "%d errors while writing supers",
3804 total_errors);
3805 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3806
9d565ba4 3807 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3808 btrfs_handle_fs_error(fs_info, -EIO,
3809 "%d errors while writing supers",
3810 total_errors);
9d565ba4 3811 return -EIO;
a236aed1 3812 }
f2984462 3813
a512bbf8 3814 total_errors = 0;
1538e6c5 3815 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3816 if (!dev->bdev)
3817 continue;
e12c9621 3818 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3819 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3820 continue;
3821
abbb3b8e 3822 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3823 if (ret)
3824 total_errors++;
f2984462 3825 }
0b246afa 3826 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3827 if (total_errors > max_errors) {
0b246afa
JM
3828 btrfs_handle_fs_error(fs_info, -EIO,
3829 "%d errors while writing supers",
3830 total_errors);
79787eaa 3831 return -EIO;
a236aed1 3832 }
f2984462
CM
3833 return 0;
3834}
3835
cb517eab
MX
3836/* Drop a fs root from the radix tree and free it. */
3837void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3838 struct btrfs_root *root)
2619ba1f 3839{
4df27c4d 3840 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3841 radix_tree_delete(&fs_info->fs_roots_radix,
3842 (unsigned long)root->root_key.objectid);
4df27c4d 3843 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3844
3845 if (btrfs_root_refs(&root->root_item) == 0)
3846 synchronize_srcu(&fs_info->subvol_srcu);
3847
1c1ea4f7 3848 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3849 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3850 if (root->reloc_root) {
3851 free_extent_buffer(root->reloc_root->node);
3852 free_extent_buffer(root->reloc_root->commit_root);
3853 btrfs_put_fs_root(root->reloc_root);
3854 root->reloc_root = NULL;
3855 }
3856 }
3321719e 3857
faa2dbf0
JB
3858 if (root->free_ino_pinned)
3859 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3860 if (root->free_ino_ctl)
3861 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3862 btrfs_free_fs_root(root);
4df27c4d
YZ
3863}
3864
84db5ccf 3865void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3866{
57cdc8db 3867 iput(root->ino_cache_inode);
4df27c4d 3868 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3869 if (root->anon_dev)
3870 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3871 if (root->subv_writers)
3872 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3873 free_extent_buffer(root->node);
3874 free_extent_buffer(root->commit_root);
581bb050
LZ
3875 kfree(root->free_ino_ctl);
3876 kfree(root->free_ino_pinned);
b0feb9d9 3877 btrfs_put_fs_root(root);
2619ba1f
CM
3878}
3879
c146afad 3880int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3881{
c146afad
YZ
3882 u64 root_objectid = 0;
3883 struct btrfs_root *gang[8];
65d33fd7
QW
3884 int i = 0;
3885 int err = 0;
3886 unsigned int ret = 0;
3887 int index;
e089f05c 3888
c146afad 3889 while (1) {
65d33fd7 3890 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3891 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3892 (void **)gang, root_objectid,
3893 ARRAY_SIZE(gang));
65d33fd7
QW
3894 if (!ret) {
3895 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3896 break;
65d33fd7 3897 }
5d4f98a2 3898 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3899
c146afad 3900 for (i = 0; i < ret; i++) {
65d33fd7
QW
3901 /* Avoid to grab roots in dead_roots */
3902 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3903 gang[i] = NULL;
3904 continue;
3905 }
3906 /* grab all the search result for later use */
3907 gang[i] = btrfs_grab_fs_root(gang[i]);
3908 }
3909 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3910
65d33fd7
QW
3911 for (i = 0; i < ret; i++) {
3912 if (!gang[i])
3913 continue;
c146afad 3914 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3915 err = btrfs_orphan_cleanup(gang[i]);
3916 if (err)
65d33fd7
QW
3917 break;
3918 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3919 }
3920 root_objectid++;
3921 }
65d33fd7
QW
3922
3923 /* release the uncleaned roots due to error */
3924 for (; i < ret; i++) {
3925 if (gang[i])
3926 btrfs_put_fs_root(gang[i]);
3927 }
3928 return err;
c146afad 3929}
a2135011 3930
6bccf3ab 3931int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3932{
6bccf3ab 3933 struct btrfs_root *root = fs_info->tree_root;
c146afad 3934 struct btrfs_trans_handle *trans;
a74a4b97 3935
0b246afa 3936 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3937 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3938 mutex_unlock(&fs_info->cleaner_mutex);
3939 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3940
3941 /* wait until ongoing cleanup work done */
0b246afa
JM
3942 down_write(&fs_info->cleanup_work_sem);
3943 up_write(&fs_info->cleanup_work_sem);
c71bf099 3944
7a7eaa40 3945 trans = btrfs_join_transaction(root);
3612b495
TI
3946 if (IS_ERR(trans))
3947 return PTR_ERR(trans);
3a45bb20 3948 return btrfs_commit_transaction(trans);
c146afad
YZ
3949}
3950
6bccf3ab 3951void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3952{
c146afad
YZ
3953 int ret;
3954
afcdd129 3955 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3956 /*
3957 * We don't want the cleaner to start new transactions, add more delayed
3958 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3959 * because that frees the task_struct, and the transaction kthread might
3960 * still try to wake up the cleaner.
3961 */
3962 kthread_park(fs_info->cleaner_kthread);
c146afad 3963
7343dd61 3964 /* wait for the qgroup rescan worker to stop */
d06f23d6 3965 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3966
803b2f54
SB
3967 /* wait for the uuid_scan task to finish */
3968 down(&fs_info->uuid_tree_rescan_sem);
3969 /* avoid complains from lockdep et al., set sem back to initial state */
3970 up(&fs_info->uuid_tree_rescan_sem);
3971
837d5b6e 3972 /* pause restriper - we want to resume on mount */
aa1b8cd4 3973 btrfs_pause_balance(fs_info);
837d5b6e 3974
8dabb742
SB
3975 btrfs_dev_replace_suspend_for_unmount(fs_info);
3976
aa1b8cd4 3977 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3978
3979 /* wait for any defraggers to finish */
3980 wait_event(fs_info->transaction_wait,
3981 (atomic_read(&fs_info->defrag_running) == 0));
3982
3983 /* clear out the rbtree of defraggable inodes */
26176e7c 3984 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3985
21c7e756
MX
3986 cancel_work_sync(&fs_info->async_reclaim_work);
3987
bc98a42c 3988 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3989 /*
d6fd0ae2
OS
3990 * The cleaner kthread is stopped, so do one final pass over
3991 * unused block groups.
e44163e1 3992 */
0b246afa 3993 btrfs_delete_unused_bgs(fs_info);
e44163e1 3994
6bccf3ab 3995 ret = btrfs_commit_super(fs_info);
acce952b 3996 if (ret)
04892340 3997 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3998 }
3999
af722733
LB
4000 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4001 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4002 btrfs_error_commit_super(fs_info);
0f7d52f4 4003
e3029d9f
AV
4004 kthread_stop(fs_info->transaction_kthread);
4005 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4006
e187831e 4007 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4008 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4009
04892340 4010 btrfs_free_qgroup_config(fs_info);
fe816d0f 4011 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4012
963d678b 4013 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4014 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4015 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4016 }
bcc63abb 4017
6618a59b 4018 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4019 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4020
faa2dbf0 4021 btrfs_free_fs_roots(fs_info);
d10c5f31 4022
1a4319cc
LB
4023 btrfs_put_block_group_cache(fs_info);
4024
de348ee0
WS
4025 /*
4026 * we must make sure there is not any read request to
4027 * submit after we stopping all workers.
4028 */
4029 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4030 btrfs_stop_all_workers(fs_info);
4031
5cdd7db6
FM
4032 btrfs_free_block_groups(fs_info);
4033
afcdd129 4034 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 4035 free_root_pointers(fs_info, 1);
9ad6b7bc 4036
13e6c37b 4037 iput(fs_info->btree_inode);
d6bfde87 4038
21adbd5c 4039#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4040 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4041 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4042#endif
4043
dfe25020 4044 btrfs_close_devices(fs_info->fs_devices);
0b86a832 4045 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 4046
e2d84521 4047 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4048 percpu_counter_destroy(&fs_info->delalloc_bytes);
7f8d236a 4049 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4050 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4051
53b381b3 4052 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4053 btrfs_free_ref_cache(fs_info);
53b381b3 4054
04216820
FM
4055 while (!list_empty(&fs_info->pinned_chunks)) {
4056 struct extent_map *em;
4057
4058 em = list_first_entry(&fs_info->pinned_chunks,
4059 struct extent_map, list);
4060 list_del_init(&em->list);
4061 free_extent_map(em);
4062 }
eb60ceac
CM
4063}
4064
b9fab919
CM
4065int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4066 int atomic)
5f39d397 4067{
1259ab75 4068 int ret;
727011e0 4069 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4070
0b32f4bb 4071 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4072 if (!ret)
4073 return ret;
4074
4075 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4076 parent_transid, atomic);
4077 if (ret == -EAGAIN)
4078 return ret;
1259ab75 4079 return !ret;
5f39d397
CM
4080}
4081
5f39d397
CM
4082void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4083{
0b246afa 4084 struct btrfs_fs_info *fs_info;
06ea65a3 4085 struct btrfs_root *root;
5f39d397 4086 u64 transid = btrfs_header_generation(buf);
b9473439 4087 int was_dirty;
b4ce94de 4088
06ea65a3
JB
4089#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4090 /*
4091 * This is a fast path so only do this check if we have sanity tests
52042d8e 4092 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4093 * outside of the sanity tests.
4094 */
b0132a3b 4095 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4096 return;
4097#endif
4098 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4099 fs_info = root->fs_info;
b9447ef8 4100 btrfs_assert_tree_locked(buf);
0b246afa 4101 if (transid != fs_info->generation)
5d163e0e 4102 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4103 buf->start, transid, fs_info->generation);
0b32f4bb 4104 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4105 if (!was_dirty)
104b4e51
NB
4106 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4107 buf->len,
4108 fs_info->dirty_metadata_batch);
1f21ef0a 4109#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4110 /*
4111 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4112 * but item data not updated.
4113 * So here we should only check item pointers, not item data.
4114 */
4115 if (btrfs_header_level(buf) == 0 &&
2f659546 4116 btrfs_check_leaf_relaxed(fs_info, buf)) {
a4f78750 4117 btrfs_print_leaf(buf);
1f21ef0a
FM
4118 ASSERT(0);
4119 }
4120#endif
eb60ceac
CM
4121}
4122
2ff7e61e 4123static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4124 int flush_delayed)
16cdcec7
MX
4125{
4126 /*
4127 * looks as though older kernels can get into trouble with
4128 * this code, they end up stuck in balance_dirty_pages forever
4129 */
e2d84521 4130 int ret;
16cdcec7
MX
4131
4132 if (current->flags & PF_MEMALLOC)
4133 return;
4134
b53d3f5d 4135 if (flush_delayed)
2ff7e61e 4136 btrfs_balance_delayed_items(fs_info);
16cdcec7 4137
d814a491
EL
4138 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4139 BTRFS_DIRTY_METADATA_THRESH,
4140 fs_info->dirty_metadata_batch);
e2d84521 4141 if (ret > 0) {
0b246afa 4142 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4143 }
16cdcec7
MX
4144}
4145
2ff7e61e 4146void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4147{
2ff7e61e 4148 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4149}
585ad2c3 4150
2ff7e61e 4151void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4152{
2ff7e61e 4153 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4154}
6b80053d 4155
581c1760
QW
4156int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4157 struct btrfs_key *first_key)
6b80053d 4158{
727011e0 4159 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
4160 struct btrfs_fs_info *fs_info = root->fs_info;
4161
581c1760
QW
4162 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4163 level, first_key);
6b80053d 4164}
0da5468f 4165
2ff7e61e 4166static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4167{
fe816d0f
NB
4168 /* cleanup FS via transaction */
4169 btrfs_cleanup_transaction(fs_info);
4170
0b246afa 4171 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4172 btrfs_run_delayed_iputs(fs_info);
0b246afa 4173 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4174
0b246afa
JM
4175 down_write(&fs_info->cleanup_work_sem);
4176 up_write(&fs_info->cleanup_work_sem);
acce952b 4177}
4178
143bede5 4179static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4180{
acce952b 4181 struct btrfs_ordered_extent *ordered;
acce952b 4182
199c2a9c 4183 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4184 /*
4185 * This will just short circuit the ordered completion stuff which will
4186 * make sure the ordered extent gets properly cleaned up.
4187 */
199c2a9c 4188 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4189 root_extent_list)
4190 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4191 spin_unlock(&root->ordered_extent_lock);
4192}
4193
4194static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4195{
4196 struct btrfs_root *root;
4197 struct list_head splice;
4198
4199 INIT_LIST_HEAD(&splice);
4200
4201 spin_lock(&fs_info->ordered_root_lock);
4202 list_splice_init(&fs_info->ordered_roots, &splice);
4203 while (!list_empty(&splice)) {
4204 root = list_first_entry(&splice, struct btrfs_root,
4205 ordered_root);
1de2cfde
JB
4206 list_move_tail(&root->ordered_root,
4207 &fs_info->ordered_roots);
199c2a9c 4208
2a85d9ca 4209 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4210 btrfs_destroy_ordered_extents(root);
4211
2a85d9ca
LB
4212 cond_resched();
4213 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4214 }
4215 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4216
4217 /*
4218 * We need this here because if we've been flipped read-only we won't
4219 * get sync() from the umount, so we need to make sure any ordered
4220 * extents that haven't had their dirty pages IO start writeout yet
4221 * actually get run and error out properly.
4222 */
4223 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4224}
4225
35a3621b 4226static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4227 struct btrfs_fs_info *fs_info)
acce952b 4228{
4229 struct rb_node *node;
4230 struct btrfs_delayed_ref_root *delayed_refs;
4231 struct btrfs_delayed_ref_node *ref;
4232 int ret = 0;
4233
4234 delayed_refs = &trans->delayed_refs;
4235
4236 spin_lock(&delayed_refs->lock);
d7df2c79 4237 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4238 spin_unlock(&delayed_refs->lock);
0b246afa 4239 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4240 return ret;
4241 }
4242
5c9d028b 4243 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4244 struct btrfs_delayed_ref_head *head;
0e0adbcf 4245 struct rb_node *n;
e78417d1 4246 bool pin_bytes = false;
acce952b 4247
d7df2c79
JB
4248 head = rb_entry(node, struct btrfs_delayed_ref_head,
4249 href_node);
3069bd26 4250 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4251 continue;
3069bd26 4252
d7df2c79 4253 spin_lock(&head->lock);
e3d03965 4254 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4255 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4256 ref_node);
d7df2c79 4257 ref->in_tree = 0;
e3d03965 4258 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4259 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4260 if (!list_empty(&ref->add_list))
4261 list_del(&ref->add_list);
d7df2c79
JB
4262 atomic_dec(&delayed_refs->num_entries);
4263 btrfs_put_delayed_ref(ref);
e78417d1 4264 }
d7df2c79
JB
4265 if (head->must_insert_reserved)
4266 pin_bytes = true;
4267 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4268 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4269 spin_unlock(&head->lock);
4270 spin_unlock(&delayed_refs->lock);
4271 mutex_unlock(&head->mutex);
acce952b 4272
d7df2c79 4273 if (pin_bytes)
d278850e
JB
4274 btrfs_pin_extent(fs_info, head->bytenr,
4275 head->num_bytes, 1);
31890da0 4276 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4277 btrfs_put_delayed_ref_head(head);
acce952b 4278 cond_resched();
4279 spin_lock(&delayed_refs->lock);
4280 }
4281
4282 spin_unlock(&delayed_refs->lock);
4283
4284 return ret;
4285}
4286
143bede5 4287static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4288{
4289 struct btrfs_inode *btrfs_inode;
4290 struct list_head splice;
4291
4292 INIT_LIST_HEAD(&splice);
4293
eb73c1b7
MX
4294 spin_lock(&root->delalloc_lock);
4295 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4296
4297 while (!list_empty(&splice)) {
fe816d0f 4298 struct inode *inode = NULL;
eb73c1b7
MX
4299 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4300 delalloc_inodes);
fe816d0f 4301 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4302 spin_unlock(&root->delalloc_lock);
acce952b 4303
fe816d0f
NB
4304 /*
4305 * Make sure we get a live inode and that it'll not disappear
4306 * meanwhile.
4307 */
4308 inode = igrab(&btrfs_inode->vfs_inode);
4309 if (inode) {
4310 invalidate_inode_pages2(inode->i_mapping);
4311 iput(inode);
4312 }
eb73c1b7 4313 spin_lock(&root->delalloc_lock);
acce952b 4314 }
eb73c1b7
MX
4315 spin_unlock(&root->delalloc_lock);
4316}
4317
4318static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4319{
4320 struct btrfs_root *root;
4321 struct list_head splice;
4322
4323 INIT_LIST_HEAD(&splice);
4324
4325 spin_lock(&fs_info->delalloc_root_lock);
4326 list_splice_init(&fs_info->delalloc_roots, &splice);
4327 while (!list_empty(&splice)) {
4328 root = list_first_entry(&splice, struct btrfs_root,
4329 delalloc_root);
eb73c1b7
MX
4330 root = btrfs_grab_fs_root(root);
4331 BUG_ON(!root);
4332 spin_unlock(&fs_info->delalloc_root_lock);
4333
4334 btrfs_destroy_delalloc_inodes(root);
4335 btrfs_put_fs_root(root);
4336
4337 spin_lock(&fs_info->delalloc_root_lock);
4338 }
4339 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4340}
4341
2ff7e61e 4342static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4343 struct extent_io_tree *dirty_pages,
4344 int mark)
4345{
4346 int ret;
acce952b 4347 struct extent_buffer *eb;
4348 u64 start = 0;
4349 u64 end;
acce952b 4350
4351 while (1) {
4352 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4353 mark, NULL);
acce952b 4354 if (ret)
4355 break;
4356
91166212 4357 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4358 while (start <= end) {
0b246afa
JM
4359 eb = find_extent_buffer(fs_info, start);
4360 start += fs_info->nodesize;
fd8b2b61 4361 if (!eb)
acce952b 4362 continue;
fd8b2b61 4363 wait_on_extent_buffer_writeback(eb);
acce952b 4364
fd8b2b61
JB
4365 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4366 &eb->bflags))
4367 clear_extent_buffer_dirty(eb);
4368 free_extent_buffer_stale(eb);
acce952b 4369 }
4370 }
4371
4372 return ret;
4373}
4374
2ff7e61e 4375static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4376 struct extent_io_tree *pinned_extents)
4377{
4378 struct extent_io_tree *unpin;
4379 u64 start;
4380 u64 end;
4381 int ret;
ed0eaa14 4382 bool loop = true;
acce952b 4383
4384 unpin = pinned_extents;
ed0eaa14 4385again:
acce952b 4386 while (1) {
0e6ec385
FM
4387 struct extent_state *cached_state = NULL;
4388
fcd5e742
LF
4389 /*
4390 * The btrfs_finish_extent_commit() may get the same range as
4391 * ours between find_first_extent_bit and clear_extent_dirty.
4392 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4393 * the same extent range.
4394 */
4395 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4396 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4397 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4398 if (ret) {
4399 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4400 break;
fcd5e742 4401 }
acce952b 4402
0e6ec385
FM
4403 clear_extent_dirty(unpin, start, end, &cached_state);
4404 free_extent_state(cached_state);
2ff7e61e 4405 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4406 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4407 cond_resched();
4408 }
4409
ed0eaa14 4410 if (loop) {
0b246afa
JM
4411 if (unpin == &fs_info->freed_extents[0])
4412 unpin = &fs_info->freed_extents[1];
ed0eaa14 4413 else
0b246afa 4414 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4415 loop = false;
4416 goto again;
4417 }
4418
acce952b 4419 return 0;
4420}
4421
c79a1751
LB
4422static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4423{
4424 struct inode *inode;
4425
4426 inode = cache->io_ctl.inode;
4427 if (inode) {
4428 invalidate_inode_pages2(inode->i_mapping);
4429 BTRFS_I(inode)->generation = 0;
4430 cache->io_ctl.inode = NULL;
4431 iput(inode);
4432 }
4433 btrfs_put_block_group(cache);
4434}
4435
4436void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4437 struct btrfs_fs_info *fs_info)
c79a1751
LB
4438{
4439 struct btrfs_block_group_cache *cache;
4440
4441 spin_lock(&cur_trans->dirty_bgs_lock);
4442 while (!list_empty(&cur_trans->dirty_bgs)) {
4443 cache = list_first_entry(&cur_trans->dirty_bgs,
4444 struct btrfs_block_group_cache,
4445 dirty_list);
c79a1751
LB
4446
4447 if (!list_empty(&cache->io_list)) {
4448 spin_unlock(&cur_trans->dirty_bgs_lock);
4449 list_del_init(&cache->io_list);
4450 btrfs_cleanup_bg_io(cache);
4451 spin_lock(&cur_trans->dirty_bgs_lock);
4452 }
4453
4454 list_del_init(&cache->dirty_list);
4455 spin_lock(&cache->lock);
4456 cache->disk_cache_state = BTRFS_DC_ERROR;
4457 spin_unlock(&cache->lock);
4458
4459 spin_unlock(&cur_trans->dirty_bgs_lock);
4460 btrfs_put_block_group(cache);
ba2c4d4e 4461 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4462 spin_lock(&cur_trans->dirty_bgs_lock);
4463 }
4464 spin_unlock(&cur_trans->dirty_bgs_lock);
4465
45ae2c18
NB
4466 /*
4467 * Refer to the definition of io_bgs member for details why it's safe
4468 * to use it without any locking
4469 */
c79a1751
LB
4470 while (!list_empty(&cur_trans->io_bgs)) {
4471 cache = list_first_entry(&cur_trans->io_bgs,
4472 struct btrfs_block_group_cache,
4473 io_list);
c79a1751
LB
4474
4475 list_del_init(&cache->io_list);
4476 spin_lock(&cache->lock);
4477 cache->disk_cache_state = BTRFS_DC_ERROR;
4478 spin_unlock(&cache->lock);
4479 btrfs_cleanup_bg_io(cache);
4480 }
4481}
4482
49b25e05 4483void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4484 struct btrfs_fs_info *fs_info)
49b25e05 4485{
2ff7e61e 4486 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4487 ASSERT(list_empty(&cur_trans->dirty_bgs));
4488 ASSERT(list_empty(&cur_trans->io_bgs));
4489
2ff7e61e 4490 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4491
4a9d8bde 4492 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4493 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4494
4a9d8bde 4495 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4496 wake_up(&fs_info->transaction_wait);
49b25e05 4497
ccdf9b30
JM
4498 btrfs_destroy_delayed_inodes(fs_info);
4499 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4500
2ff7e61e 4501 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4502 EXTENT_DIRTY);
2ff7e61e 4503 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4504 fs_info->pinned_extents);
49b25e05 4505
4a9d8bde
MX
4506 cur_trans->state =TRANS_STATE_COMPLETED;
4507 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4508}
4509
2ff7e61e 4510static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4511{
4512 struct btrfs_transaction *t;
acce952b 4513
0b246afa 4514 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4515
0b246afa
JM
4516 spin_lock(&fs_info->trans_lock);
4517 while (!list_empty(&fs_info->trans_list)) {
4518 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4519 struct btrfs_transaction, list);
4520 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4521 refcount_inc(&t->use_count);
0b246afa 4522 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4523 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4524 btrfs_put_transaction(t);
0b246afa 4525 spin_lock(&fs_info->trans_lock);
724e2315
JB
4526 continue;
4527 }
0b246afa 4528 if (t == fs_info->running_transaction) {
724e2315 4529 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4530 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4531 /*
4532 * We wait for 0 num_writers since we don't hold a trans
4533 * handle open currently for this transaction.
4534 */
4535 wait_event(t->writer_wait,
4536 atomic_read(&t->num_writers) == 0);
4537 } else {
0b246afa 4538 spin_unlock(&fs_info->trans_lock);
724e2315 4539 }
2ff7e61e 4540 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4541
0b246afa
JM
4542 spin_lock(&fs_info->trans_lock);
4543 if (t == fs_info->running_transaction)
4544 fs_info->running_transaction = NULL;
acce952b 4545 list_del_init(&t->list);
0b246afa 4546 spin_unlock(&fs_info->trans_lock);
acce952b 4547
724e2315 4548 btrfs_put_transaction(t);
2ff7e61e 4549 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4550 spin_lock(&fs_info->trans_lock);
724e2315 4551 }
0b246afa
JM
4552 spin_unlock(&fs_info->trans_lock);
4553 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4554 btrfs_destroy_delayed_inodes(fs_info);
4555 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4556 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4557 btrfs_destroy_all_delalloc_inodes(fs_info);
4558 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4559
4560 return 0;
4561}
4562
e8c9f186 4563static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4564 /* mandatory callbacks */
0b86a832 4565 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4566 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4567};