]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/disk-io.c
btrfs: fix panic during relocation after ENOSPC before writeback happens
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
eb60ceac 42
de0022b9
JB
43#ifdef CONFIG_X86
44#include <asm/cpufeature.h>
45#endif
46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
e8c9f186 54static const struct extent_io_ops btree_extent_io_ops;
8b712842 55static void end_workqueue_fn(struct btrfs_work *work);
143bede5 56static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 57static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 58 struct btrfs_fs_info *fs_info);
143bede5 59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 60static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 61 struct extent_io_tree *dirty_pages,
62 int mark);
2ff7e61e 63static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 64 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
65static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 67
d352ac68 68/*
97eb6b69
DS
69 * btrfs_end_io_wq structs are used to do processing in task context when an IO
70 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
71 * by writes to insert metadata for new file extents after IO is complete.
72 */
97eb6b69 73struct btrfs_end_io_wq {
ce9adaa5
CM
74 struct bio *bio;
75 bio_end_io_t *end_io;
76 void *private;
77 struct btrfs_fs_info *info;
4e4cbee9 78 blk_status_t status;
bfebd8b5 79 enum btrfs_wq_endio_type metadata;
8b712842 80 struct btrfs_work work;
ce9adaa5 81};
0da5468f 82
97eb6b69
DS
83static struct kmem_cache *btrfs_end_io_wq_cache;
84
85int __init btrfs_end_io_wq_init(void)
86{
87 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88 sizeof(struct btrfs_end_io_wq),
89 0,
fba4b697 90 SLAB_MEM_SPREAD,
97eb6b69
DS
91 NULL);
92 if (!btrfs_end_io_wq_cache)
93 return -ENOMEM;
94 return 0;
95}
96
e67c718b 97void __cold btrfs_end_io_wq_exit(void)
97eb6b69 98{
5598e900 99 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
100}
101
d352ac68
CM
102/*
103 * async submit bios are used to offload expensive checksumming
104 * onto the worker threads. They checksum file and metadata bios
105 * just before they are sent down the IO stack.
106 */
44b8bd7e 107struct async_submit_bio {
c6100a4b 108 void *private_data;
44b8bd7e 109 struct bio *bio;
a758781d 110 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 111 int mirror_num;
eaf25d93
CM
112 /*
113 * bio_offset is optional, can be used if the pages in the bio
114 * can't tell us where in the file the bio should go
115 */
116 u64 bio_offset;
8b712842 117 struct btrfs_work work;
4e4cbee9 118 blk_status_t status;
44b8bd7e
CM
119};
120
85d4e461
CM
121/*
122 * Lockdep class keys for extent_buffer->lock's in this root. For a given
123 * eb, the lockdep key is determined by the btrfs_root it belongs to and
124 * the level the eb occupies in the tree.
125 *
126 * Different roots are used for different purposes and may nest inside each
127 * other and they require separate keysets. As lockdep keys should be
128 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
129 * by btrfs_root->root_key.objectid. This ensures that all special purpose
130 * roots have separate keysets.
4008c04a 131 *
85d4e461
CM
132 * Lock-nesting across peer nodes is always done with the immediate parent
133 * node locked thus preventing deadlock. As lockdep doesn't know this, use
134 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 135 *
85d4e461
CM
136 * The key is set by the readpage_end_io_hook after the buffer has passed
137 * csum validation but before the pages are unlocked. It is also set by
138 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 139 *
85d4e461
CM
140 * We also add a check to make sure the highest level of the tree is the
141 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
142 * needs update as well.
4008c04a
CM
143 */
144#ifdef CONFIG_DEBUG_LOCK_ALLOC
145# if BTRFS_MAX_LEVEL != 8
146# error
147# endif
85d4e461
CM
148
149static struct btrfs_lockdep_keyset {
150 u64 id; /* root objectid */
151 const char *name_stem; /* lock name stem */
152 char names[BTRFS_MAX_LEVEL + 1][20];
153 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
154} btrfs_lockdep_keysets[] = {
155 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
156 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
157 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
158 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
159 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
160 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 161 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
162 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
163 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
164 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 165 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 166 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 167 { .id = 0, .name_stem = "tree" },
4008c04a 168};
85d4e461
CM
169
170void __init btrfs_init_lockdep(void)
171{
172 int i, j;
173
174 /* initialize lockdep class names */
175 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
176 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
177
178 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
179 snprintf(ks->names[j], sizeof(ks->names[j]),
180 "btrfs-%s-%02d", ks->name_stem, j);
181 }
182}
183
184void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
185 int level)
186{
187 struct btrfs_lockdep_keyset *ks;
188
189 BUG_ON(level >= ARRAY_SIZE(ks->keys));
190
191 /* find the matching keyset, id 0 is the default entry */
192 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
193 if (ks->id == objectid)
194 break;
195
196 lockdep_set_class_and_name(&eb->lock,
197 &ks->keys[level], ks->names[level]);
198}
199
4008c04a
CM
200#endif
201
d352ac68
CM
202/*
203 * extents on the btree inode are pretty simple, there's one extent
204 * that covers the entire device
205 */
6af49dbd 206struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 207 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 208 int create)
7eccb903 209{
3ffbd68c 210 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 211 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
212 struct extent_map *em;
213 int ret;
214
890871be 215 read_lock(&em_tree->lock);
d1310b2e 216 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 217 if (em) {
0b246afa 218 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 219 read_unlock(&em_tree->lock);
5f39d397 220 goto out;
a061fc8d 221 }
890871be 222 read_unlock(&em_tree->lock);
7b13b7b1 223
172ddd60 224 em = alloc_extent_map();
5f39d397
CM
225 if (!em) {
226 em = ERR_PTR(-ENOMEM);
227 goto out;
228 }
229 em->start = 0;
0afbaf8c 230 em->len = (u64)-1;
c8b97818 231 em->block_len = (u64)-1;
5f39d397 232 em->block_start = 0;
0b246afa 233 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 234
890871be 235 write_lock(&em_tree->lock);
09a2a8f9 236 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
237 if (ret == -EEXIST) {
238 free_extent_map(em);
7b13b7b1 239 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 240 if (!em)
0433f20d 241 em = ERR_PTR(-EIO);
5f39d397 242 } else if (ret) {
7b13b7b1 243 free_extent_map(em);
0433f20d 244 em = ERR_PTR(ret);
5f39d397 245 }
890871be 246 write_unlock(&em_tree->lock);
7b13b7b1 247
5f39d397
CM
248out:
249 return em;
7eccb903
CM
250}
251
9ed57367 252u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 253{
9678c543 254 return crc32c(seed, data, len);
19c00ddc
CM
255}
256
0b5e3daf 257void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 258{
7e75bf3f 259 put_unaligned_le32(~crc, result);
19c00ddc
CM
260}
261
d352ac68 262/*
2996e1f8
JT
263 * Compute the csum of a btree block and store the result to provided buffer.
264 *
265 * Returns error if the extent buffer cannot be mapped.
d352ac68 266 */
2996e1f8 267static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 268{
19c00ddc
CM
269 unsigned long len;
270 unsigned long cur_len;
271 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
272 char *kaddr;
273 unsigned long map_start;
274 unsigned long map_len;
275 int err;
276 u32 crc = ~(u32)0;
277
278 len = buf->len - offset;
d397712b 279 while (len > 0) {
d2e174d5
JT
280 /*
281 * Note: we don't need to check for the err == 1 case here, as
282 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
283 * and 'min_len = 32' and the currently implemented mapping
284 * algorithm we cannot cross a page boundary.
285 */
19c00ddc 286 err = map_private_extent_buffer(buf, offset, 32,
a6591715 287 &kaddr, &map_start, &map_len);
c53839fc 288 if (WARN_ON(err))
8bd98f0e 289 return err;
19c00ddc 290 cur_len = min(len, map_len - (offset - map_start));
b0496686 291 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
292 crc, cur_len);
293 len -= cur_len;
294 offset += cur_len;
19c00ddc 295 }
71a63551 296 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 297
19c00ddc
CM
298 btrfs_csum_final(crc, result);
299
19c00ddc
CM
300 return 0;
301}
302
d352ac68
CM
303/*
304 * we can't consider a given block up to date unless the transid of the
305 * block matches the transid in the parent node's pointer. This is how we
306 * detect blocks that either didn't get written at all or got written
307 * in the wrong place.
308 */
1259ab75 309static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
310 struct extent_buffer *eb, u64 parent_transid,
311 int atomic)
1259ab75 312{
2ac55d41 313 struct extent_state *cached_state = NULL;
1259ab75 314 int ret;
2755a0de 315 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
316
317 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
318 return 0;
319
b9fab919
CM
320 if (atomic)
321 return -EAGAIN;
322
a26e8c9f
JB
323 if (need_lock) {
324 btrfs_tree_read_lock(eb);
300aa896 325 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
326 }
327
2ac55d41 328 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 329 &cached_state);
0b32f4bb 330 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
331 btrfs_header_generation(eb) == parent_transid) {
332 ret = 0;
333 goto out;
334 }
94647322
DS
335 btrfs_err_rl(eb->fs_info,
336 "parent transid verify failed on %llu wanted %llu found %llu",
337 eb->start,
29549aec 338 parent_transid, btrfs_header_generation(eb));
1259ab75 339 ret = 1;
a26e8c9f
JB
340
341 /*
342 * Things reading via commit roots that don't have normal protection,
343 * like send, can have a really old block in cache that may point at a
01327610 344 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
345 * if we find an eb that is under IO (dirty/writeback) because we could
346 * end up reading in the stale data and then writing it back out and
347 * making everybody very sad.
348 */
349 if (!extent_buffer_under_io(eb))
350 clear_extent_buffer_uptodate(eb);
33958dc6 351out:
2ac55d41 352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 353 &cached_state);
472b909f
JB
354 if (need_lock)
355 btrfs_tree_read_unlock_blocking(eb);
1259ab75 356 return ret;
1259ab75
CM
357}
358
1104a885
DS
359/*
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
362 */
ab8d0fc4
JM
363static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
364 char *raw_disk_sb)
1104a885
DS
365{
366 struct btrfs_super_block *disk_sb =
367 (struct btrfs_super_block *)raw_disk_sb;
368 u16 csum_type = btrfs_super_csum_type(disk_sb);
369 int ret = 0;
370
371 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
372 u32 crc = ~(u32)0;
776c4a7c 373 char result[sizeof(crc)];
1104a885
DS
374
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 378 * is filled with zeros and is included in the checksum.
1104a885
DS
379 */
380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 btrfs_csum_final(crc, result);
383
776c4a7c 384 if (memcmp(raw_disk_sb, result, sizeof(result)))
1104a885
DS
385 ret = 1;
386 }
387
388 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 389 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
390 csum_type);
391 ret = 1;
392 }
393
394 return ret;
395}
396
448de471
QW
397int btrfs_verify_level_key(struct btrfs_fs_info *fs_info,
398 struct extent_buffer *eb, int level,
399 struct btrfs_key *first_key, u64 parent_transid)
581c1760
QW
400{
401 int found_level;
402 struct btrfs_key found_key;
403 int ret;
404
405 found_level = btrfs_header_level(eb);
406 if (found_level != level) {
63489055
QW
407 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
408 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
409 btrfs_err(fs_info,
410"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
411 eb->start, level, found_level);
581c1760
QW
412 return -EIO;
413 }
414
415 if (!first_key)
416 return 0;
417
5d41be6f
QW
418 /*
419 * For live tree block (new tree blocks in current transaction),
420 * we need proper lock context to avoid race, which is impossible here.
421 * So we only checks tree blocks which is read from disk, whose
422 * generation <= fs_info->last_trans_committed.
423 */
424 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
425 return 0;
581c1760
QW
426 if (found_level)
427 btrfs_node_key_to_cpu(eb, &found_key, 0);
428 else
429 btrfs_item_key_to_cpu(eb, &found_key, 0);
430 ret = btrfs_comp_cpu_keys(first_key, &found_key);
431
581c1760 432 if (ret) {
63489055
QW
433 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
434 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 435 btrfs_err(fs_info,
ff76a864
LB
436"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
437 eb->start, parent_transid, first_key->objectid,
438 first_key->type, first_key->offset,
439 found_key.objectid, found_key.type,
440 found_key.offset);
581c1760 441 }
581c1760
QW
442 return ret;
443}
444
d352ac68
CM
445/*
446 * helper to read a given tree block, doing retries as required when
447 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
448 *
449 * @parent_transid: expected transid, skip check if 0
450 * @level: expected level, mandatory check
451 * @first_key: expected key of first slot, skip check if NULL
d352ac68 452 */
2ff7e61e 453static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 454 struct extent_buffer *eb,
581c1760
QW
455 u64 parent_transid, int level,
456 struct btrfs_key *first_key)
f188591e
CM
457{
458 struct extent_io_tree *io_tree;
ea466794 459 int failed = 0;
f188591e
CM
460 int ret;
461 int num_copies = 0;
462 int mirror_num = 0;
ea466794 463 int failed_mirror = 0;
f188591e 464
0b246afa 465 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 466 while (1) {
f8397d69 467 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
8436ea91 468 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
6af49dbd 469 mirror_num);
256dd1bb 470 if (!ret) {
581c1760 471 if (verify_parent_transid(io_tree, eb,
b9fab919 472 parent_transid, 0))
256dd1bb 473 ret = -EIO;
448de471
QW
474 else if (btrfs_verify_level_key(fs_info, eb, level,
475 first_key, parent_transid))
581c1760
QW
476 ret = -EUCLEAN;
477 else
478 break;
256dd1bb 479 }
d397712b 480
0b246afa 481 num_copies = btrfs_num_copies(fs_info,
f188591e 482 eb->start, eb->len);
4235298e 483 if (num_copies == 1)
ea466794 484 break;
4235298e 485
5cf1ab56
JB
486 if (!failed_mirror) {
487 failed = 1;
488 failed_mirror = eb->read_mirror;
489 }
490
f188591e 491 mirror_num++;
ea466794
JB
492 if (mirror_num == failed_mirror)
493 mirror_num++;
494
4235298e 495 if (mirror_num > num_copies)
ea466794 496 break;
f188591e 497 }
ea466794 498
c0901581 499 if (failed && !ret && failed_mirror)
2ff7e61e 500 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
501
502 return ret;
f188591e 503}
19c00ddc 504
d352ac68 505/*
d397712b
CM
506 * checksum a dirty tree block before IO. This has extra checks to make sure
507 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 508 */
d397712b 509
01d58472 510static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 511{
4eee4fa4 512 u64 start = page_offset(page);
19c00ddc 513 u64 found_start;
2996e1f8
JT
514 u8 result[BTRFS_CSUM_SIZE];
515 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 516 struct extent_buffer *eb;
f188591e 517
4f2de97a
JB
518 eb = (struct extent_buffer *)page->private;
519 if (page != eb->pages[0])
520 return 0;
0f805531 521
19c00ddc 522 found_start = btrfs_header_bytenr(eb);
0f805531
AL
523 /*
524 * Please do not consolidate these warnings into a single if.
525 * It is useful to know what went wrong.
526 */
527 if (WARN_ON(found_start != start))
528 return -EUCLEAN;
529 if (WARN_ON(!PageUptodate(page)))
530 return -EUCLEAN;
531
de37aa51 532 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
533 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
534
2996e1f8
JT
535 if (csum_tree_block(eb, result))
536 return -EINVAL;
537
538 write_extent_buffer(eb, result, 0, csum_size);
539 return 0;
19c00ddc
CM
540}
541
01d58472 542static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
543 struct extent_buffer *eb)
544{
01d58472 545 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 546 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
547 int ret = 1;
548
0a4e5586 549 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 550 while (fs_devices) {
7239ff4b
NB
551 u8 *metadata_uuid;
552
553 /*
554 * Checking the incompat flag is only valid for the current
555 * fs. For seed devices it's forbidden to have their uuid
556 * changed so reading ->fsid in this case is fine
557 */
558 if (fs_devices == fs_info->fs_devices &&
559 btrfs_fs_incompat(fs_info, METADATA_UUID))
560 metadata_uuid = fs_devices->metadata_uuid;
561 else
562 metadata_uuid = fs_devices->fsid;
563
564 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
565 ret = 0;
566 break;
567 }
568 fs_devices = fs_devices->seed;
569 }
570 return ret;
571}
572
facc8a22
MX
573static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
574 u64 phy_offset, struct page *page,
575 u64 start, u64 end, int mirror)
ce9adaa5 576{
ce9adaa5
CM
577 u64 found_start;
578 int found_level;
ce9adaa5
CM
579 struct extent_buffer *eb;
580 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 581 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 582 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 583 int ret = 0;
2996e1f8 584 u8 result[BTRFS_CSUM_SIZE];
727011e0 585 int reads_done;
ce9adaa5 586
ce9adaa5
CM
587 if (!page->private)
588 goto out;
d397712b 589
4f2de97a 590 eb = (struct extent_buffer *)page->private;
d397712b 591
0b32f4bb
JB
592 /* the pending IO might have been the only thing that kept this buffer
593 * in memory. Make sure we have a ref for all this other checks
594 */
595 extent_buffer_get(eb);
596
597 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
598 if (!reads_done)
599 goto err;
f188591e 600
5cf1ab56 601 eb->read_mirror = mirror;
656f30db 602 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
603 ret = -EIO;
604 goto err;
605 }
606
ce9adaa5 607 found_start = btrfs_header_bytenr(eb);
727011e0 608 if (found_start != eb->start) {
893bf4b1
SY
609 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
610 eb->start, found_start);
f188591e 611 ret = -EIO;
ce9adaa5
CM
612 goto err;
613 }
02873e43
ZL
614 if (check_tree_block_fsid(fs_info, eb)) {
615 btrfs_err_rl(fs_info, "bad fsid on block %llu",
616 eb->start);
1259ab75
CM
617 ret = -EIO;
618 goto err;
619 }
ce9adaa5 620 found_level = btrfs_header_level(eb);
1c24c3ce 621 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
622 btrfs_err(fs_info, "bad tree block level %d on %llu",
623 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
624 ret = -EIO;
625 goto err;
626 }
ce9adaa5 627
85d4e461
CM
628 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
629 eb, found_level);
4008c04a 630
2996e1f8 631 ret = csum_tree_block(eb, result);
8bd98f0e 632 if (ret)
a826d6dc 633 goto err;
a826d6dc 634
2996e1f8
JT
635 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
636 u32 val;
637 u32 found = 0;
638
639 memcpy(&found, result, csum_size);
640
641 read_extent_buffer(eb, &val, 0, csum_size);
642 btrfs_warn_rl(fs_info,
643 "%s checksum verify failed on %llu wanted %x found %x level %d",
644 fs_info->sb->s_id, eb->start,
645 val, found, btrfs_header_level(eb));
646 ret = -EUCLEAN;
647 goto err;
648 }
649
a826d6dc
JB
650 /*
651 * If this is a leaf block and it is corrupt, set the corrupt bit so
652 * that we don't try and read the other copies of this block, just
653 * return -EIO.
654 */
2f659546 655 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
a826d6dc
JB
656 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
657 ret = -EIO;
658 }
ce9adaa5 659
2f659546 660 if (found_level > 0 && btrfs_check_node(fs_info, eb))
053ab70f
LB
661 ret = -EIO;
662
0b32f4bb
JB
663 if (!ret)
664 set_extent_buffer_uptodate(eb);
ce9adaa5 665err:
79fb65a1
JB
666 if (reads_done &&
667 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 668 btree_readahead_hook(eb, ret);
4bb31e92 669
53b381b3
DW
670 if (ret) {
671 /*
672 * our io error hook is going to dec the io pages
673 * again, we have to make sure it has something
674 * to decrement
675 */
676 atomic_inc(&eb->io_pages);
0b32f4bb 677 clear_extent_buffer_uptodate(eb);
53b381b3 678 }
0b32f4bb 679 free_extent_buffer(eb);
ce9adaa5 680out:
f188591e 681 return ret;
ce9adaa5
CM
682}
683
4246a0b6 684static void end_workqueue_bio(struct bio *bio)
ce9adaa5 685{
97eb6b69 686 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 687 struct btrfs_fs_info *fs_info;
9e0af237
LB
688 struct btrfs_workqueue *wq;
689 btrfs_work_func_t func;
ce9adaa5 690
ce9adaa5 691 fs_info = end_io_wq->info;
4e4cbee9 692 end_io_wq->status = bio->bi_status;
d20f7043 693
37226b21 694 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
695 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
696 wq = fs_info->endio_meta_write_workers;
697 func = btrfs_endio_meta_write_helper;
698 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
699 wq = fs_info->endio_freespace_worker;
700 func = btrfs_freespace_write_helper;
701 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
702 wq = fs_info->endio_raid56_workers;
703 func = btrfs_endio_raid56_helper;
704 } else {
705 wq = fs_info->endio_write_workers;
706 func = btrfs_endio_write_helper;
707 }
d20f7043 708 } else {
8b110e39
MX
709 if (unlikely(end_io_wq->metadata ==
710 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
711 wq = fs_info->endio_repair_workers;
712 func = btrfs_endio_repair_helper;
713 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
714 wq = fs_info->endio_raid56_workers;
715 func = btrfs_endio_raid56_helper;
716 } else if (end_io_wq->metadata) {
717 wq = fs_info->endio_meta_workers;
718 func = btrfs_endio_meta_helper;
719 } else {
720 wq = fs_info->endio_workers;
721 func = btrfs_endio_helper;
722 }
d20f7043 723 }
9e0af237
LB
724
725 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
726 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
727}
728
4e4cbee9 729blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 730 enum btrfs_wq_endio_type metadata)
0b86a832 731{
97eb6b69 732 struct btrfs_end_io_wq *end_io_wq;
8b110e39 733
97eb6b69 734 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 735 if (!end_io_wq)
4e4cbee9 736 return BLK_STS_RESOURCE;
ce9adaa5
CM
737
738 end_io_wq->private = bio->bi_private;
739 end_io_wq->end_io = bio->bi_end_io;
22c59948 740 end_io_wq->info = info;
4e4cbee9 741 end_io_wq->status = 0;
ce9adaa5 742 end_io_wq->bio = bio;
22c59948 743 end_io_wq->metadata = metadata;
ce9adaa5
CM
744
745 bio->bi_private = end_io_wq;
746 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
747 return 0;
748}
749
4a69a410
CM
750static void run_one_async_start(struct btrfs_work *work)
751{
4a69a410 752 struct async_submit_bio *async;
4e4cbee9 753 blk_status_t ret;
4a69a410
CM
754
755 async = container_of(work, struct async_submit_bio, work);
c6100a4b 756 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
757 async->bio_offset);
758 if (ret)
4e4cbee9 759 async->status = ret;
4a69a410
CM
760}
761
06ea01b1
DS
762/*
763 * In order to insert checksums into the metadata in large chunks, we wait
764 * until bio submission time. All the pages in the bio are checksummed and
765 * sums are attached onto the ordered extent record.
766 *
767 * At IO completion time the csums attached on the ordered extent record are
768 * inserted into the tree.
769 */
4a69a410 770static void run_one_async_done(struct btrfs_work *work)
8b712842 771{
8b712842 772 struct async_submit_bio *async;
06ea01b1
DS
773 struct inode *inode;
774 blk_status_t ret;
8b712842
CM
775
776 async = container_of(work, struct async_submit_bio, work);
06ea01b1 777 inode = async->private_data;
4854ddd0 778
bb7ab3b9 779 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
780 if (async->status) {
781 async->bio->bi_status = async->status;
4246a0b6 782 bio_endio(async->bio);
79787eaa
JM
783 return;
784 }
785
06ea01b1
DS
786 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
787 async->mirror_num, 1);
788 if (ret) {
789 async->bio->bi_status = ret;
790 bio_endio(async->bio);
791 }
4a69a410
CM
792}
793
794static void run_one_async_free(struct btrfs_work *work)
795{
796 struct async_submit_bio *async;
797
798 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
799 kfree(async);
800}
801
8c27cb35
LT
802blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
803 int mirror_num, unsigned long bio_flags,
804 u64 bio_offset, void *private_data,
e288c080 805 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
806{
807 struct async_submit_bio *async;
808
809 async = kmalloc(sizeof(*async), GFP_NOFS);
810 if (!async)
4e4cbee9 811 return BLK_STS_RESOURCE;
44b8bd7e 812
c6100a4b 813 async->private_data = private_data;
44b8bd7e
CM
814 async->bio = bio;
815 async->mirror_num = mirror_num;
4a69a410 816 async->submit_bio_start = submit_bio_start;
4a69a410 817
9e0af237 818 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 819 run_one_async_done, run_one_async_free);
4a69a410 820
eaf25d93 821 async->bio_offset = bio_offset;
8c8bee1d 822
4e4cbee9 823 async->status = 0;
79787eaa 824
67f055c7 825 if (op_is_sync(bio->bi_opf))
5cdc7ad3 826 btrfs_set_work_high_priority(&async->work);
d313d7a3 827
5cdc7ad3 828 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
829 return 0;
830}
831
4e4cbee9 832static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 833{
2c30c71b 834 struct bio_vec *bvec;
ce3ed71a 835 struct btrfs_root *root;
2c30c71b 836 int i, ret = 0;
6dc4f100 837 struct bvec_iter_all iter_all;
ce3ed71a 838
c09abff8 839 ASSERT(!bio_flagged(bio, BIO_CLONED));
6dc4f100 840 bio_for_each_segment_all(bvec, bio, i, iter_all) {
ce3ed71a 841 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 842 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
843 if (ret)
844 break;
ce3ed71a 845 }
2c30c71b 846
4e4cbee9 847 return errno_to_blk_status(ret);
ce3ed71a
CM
848}
849
d0ee3934 850static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 851 u64 bio_offset)
22c59948 852{
8b712842
CM
853 /*
854 * when we're called for a write, we're already in the async
5443be45 855 * submission context. Just jump into btrfs_map_bio
8b712842 856 */
79787eaa 857 return btree_csum_one_bio(bio);
4a69a410 858}
22c59948 859
18fdc679 860static int check_async_write(struct btrfs_inode *bi)
de0022b9 861{
6300463b
LB
862 if (atomic_read(&bi->sync_writers))
863 return 0;
de0022b9 864#ifdef CONFIG_X86
bc696ca0 865 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
866 return 0;
867#endif
868 return 1;
869}
870
8c27cb35
LT
871static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
872 int mirror_num, unsigned long bio_flags,
873 u64 bio_offset)
44b8bd7e 874{
c6100a4b 875 struct inode *inode = private_data;
0b246afa 876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 877 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 878 blk_status_t ret;
cad321ad 879
37226b21 880 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
881 /*
882 * called for a read, do the setup so that checksum validation
883 * can happen in the async kernel threads
884 */
0b246afa
JM
885 ret = btrfs_bio_wq_end_io(fs_info, bio,
886 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 887 if (ret)
61891923 888 goto out_w_error;
2ff7e61e 889 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
890 } else if (!async) {
891 ret = btree_csum_one_bio(bio);
892 if (ret)
61891923 893 goto out_w_error;
2ff7e61e 894 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
895 } else {
896 /*
897 * kthread helpers are used to submit writes so that
898 * checksumming can happen in parallel across all CPUs
899 */
c6100a4b
JB
900 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
901 bio_offset, private_data,
e288c080 902 btree_submit_bio_start);
44b8bd7e 903 }
d313d7a3 904
4246a0b6
CH
905 if (ret)
906 goto out_w_error;
907 return 0;
908
61891923 909out_w_error:
4e4cbee9 910 bio->bi_status = ret;
4246a0b6 911 bio_endio(bio);
61891923 912 return ret;
44b8bd7e
CM
913}
914
3dd1462e 915#ifdef CONFIG_MIGRATION
784b4e29 916static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
917 struct page *newpage, struct page *page,
918 enum migrate_mode mode)
784b4e29
CM
919{
920 /*
921 * we can't safely write a btree page from here,
922 * we haven't done the locking hook
923 */
924 if (PageDirty(page))
925 return -EAGAIN;
926 /*
927 * Buffers may be managed in a filesystem specific way.
928 * We must have no buffers or drop them.
929 */
930 if (page_has_private(page) &&
931 !try_to_release_page(page, GFP_KERNEL))
932 return -EAGAIN;
a6bc32b8 933 return migrate_page(mapping, newpage, page, mode);
784b4e29 934}
3dd1462e 935#endif
784b4e29 936
0da5468f
CM
937
938static int btree_writepages(struct address_space *mapping,
939 struct writeback_control *wbc)
940{
e2d84521
MX
941 struct btrfs_fs_info *fs_info;
942 int ret;
943
d8d5f3e1 944 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
945
946 if (wbc->for_kupdate)
947 return 0;
948
e2d84521 949 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 950 /* this is a bit racy, but that's ok */
d814a491
EL
951 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
952 BTRFS_DIRTY_METADATA_THRESH,
953 fs_info->dirty_metadata_batch);
e2d84521 954 if (ret < 0)
793955bc 955 return 0;
793955bc 956 }
0b32f4bb 957 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
958}
959
b2950863 960static int btree_readpage(struct file *file, struct page *page)
5f39d397 961{
d1310b2e
CM
962 struct extent_io_tree *tree;
963 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 964 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 965}
22b0ebda 966
70dec807 967static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 968{
98509cfc 969 if (PageWriteback(page) || PageDirty(page))
d397712b 970 return 0;
0c4e538b 971
f7a52a40 972 return try_release_extent_buffer(page);
d98237b3
CM
973}
974
d47992f8
LC
975static void btree_invalidatepage(struct page *page, unsigned int offset,
976 unsigned int length)
d98237b3 977{
d1310b2e
CM
978 struct extent_io_tree *tree;
979 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
980 extent_invalidatepage(tree, page, offset);
981 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 982 if (PagePrivate(page)) {
efe120a0
FH
983 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
984 "page private not zero on page %llu",
985 (unsigned long long)page_offset(page));
9ad6b7bc
CM
986 ClearPagePrivate(page);
987 set_page_private(page, 0);
09cbfeaf 988 put_page(page);
9ad6b7bc 989 }
d98237b3
CM
990}
991
0b32f4bb
JB
992static int btree_set_page_dirty(struct page *page)
993{
bb146eb2 994#ifdef DEBUG
0b32f4bb
JB
995 struct extent_buffer *eb;
996
997 BUG_ON(!PagePrivate(page));
998 eb = (struct extent_buffer *)page->private;
999 BUG_ON(!eb);
1000 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1001 BUG_ON(!atomic_read(&eb->refs));
1002 btrfs_assert_tree_locked(eb);
bb146eb2 1003#endif
0b32f4bb
JB
1004 return __set_page_dirty_nobuffers(page);
1005}
1006
7f09410b 1007static const struct address_space_operations btree_aops = {
d98237b3 1008 .readpage = btree_readpage,
0da5468f 1009 .writepages = btree_writepages,
5f39d397
CM
1010 .releasepage = btree_releasepage,
1011 .invalidatepage = btree_invalidatepage,
5a92bc88 1012#ifdef CONFIG_MIGRATION
784b4e29 1013 .migratepage = btree_migratepage,
5a92bc88 1014#endif
0b32f4bb 1015 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1016};
1017
2ff7e61e 1018void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1019{
5f39d397 1020 struct extent_buffer *buf = NULL;
2ff7e61e 1021 struct inode *btree_inode = fs_info->btree_inode;
537f38f0 1022 int ret;
090d1875 1023
2ff7e61e 1024 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1025 if (IS_ERR(buf))
6197d86e 1026 return;
537f38f0
NB
1027
1028 ret = read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, buf,
1029 WAIT_NONE, 0);
1030 if (ret < 0)
1031 free_extent_buffer_stale(buf);
1032 else
1033 free_extent_buffer(buf);
090d1875
CM
1034}
1035
2ff7e61e 1036int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1037 int mirror_num, struct extent_buffer **eb)
1038{
1039 struct extent_buffer *buf = NULL;
2ff7e61e 1040 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1041 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1042 int ret;
1043
2ff7e61e 1044 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1045 if (IS_ERR(buf))
ab0fff03
AJ
1046 return 0;
1047
1048 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1049
8436ea91 1050 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
6af49dbd 1051 mirror_num);
ab0fff03 1052 if (ret) {
537f38f0 1053 free_extent_buffer_stale(buf);
ab0fff03
AJ
1054 return ret;
1055 }
1056
1057 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
537f38f0 1058 free_extent_buffer_stale(buf);
ab0fff03 1059 return -EIO;
0b32f4bb 1060 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1061 *eb = buf;
1062 } else {
1063 free_extent_buffer(buf);
1064 }
1065 return 0;
1066}
1067
2ff7e61e
JM
1068struct extent_buffer *btrfs_find_create_tree_block(
1069 struct btrfs_fs_info *fs_info,
1070 u64 bytenr)
0999df54 1071{
0b246afa
JM
1072 if (btrfs_is_testing(fs_info))
1073 return alloc_test_extent_buffer(fs_info, bytenr);
1074 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1075}
1076
1077
e02119d5
CM
1078int btrfs_write_tree_block(struct extent_buffer *buf)
1079{
727011e0 1080 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1081 buf->start + buf->len - 1);
e02119d5
CM
1082}
1083
3189ff77 1084void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
e02119d5 1085{
3189ff77
JL
1086 filemap_fdatawait_range(buf->pages[0]->mapping,
1087 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1088}
1089
581c1760
QW
1090/*
1091 * Read tree block at logical address @bytenr and do variant basic but critical
1092 * verification.
1093 *
1094 * @parent_transid: expected transid of this tree block, skip check if 0
1095 * @level: expected level, mandatory check
1096 * @first_key: expected key in slot 0, skip check if NULL
1097 */
2ff7e61e 1098struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1099 u64 parent_transid, int level,
1100 struct btrfs_key *first_key)
0999df54
CM
1101{
1102 struct extent_buffer *buf = NULL;
0999df54
CM
1103 int ret;
1104
2ff7e61e 1105 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1106 if (IS_ERR(buf))
1107 return buf;
0999df54 1108
581c1760
QW
1109 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1110 level, first_key);
0f0fe8f7 1111 if (ret) {
537f38f0 1112 free_extent_buffer_stale(buf);
64c043de 1113 return ERR_PTR(ret);
0f0fe8f7 1114 }
5f39d397 1115 return buf;
ce9adaa5 1116
eb60ceac
CM
1117}
1118
7c302b49 1119void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1120 struct extent_buffer *buf)
ed2ff2cb 1121{
55c69072 1122 if (btrfs_header_generation(buf) ==
e2d84521 1123 fs_info->running_transaction->transid) {
b9447ef8 1124 btrfs_assert_tree_locked(buf);
b4ce94de 1125
b9473439 1126 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1127 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1128 -buf->len,
1129 fs_info->dirty_metadata_batch);
ed7b63eb 1130 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1131 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1132 clear_extent_buffer_dirty(buf);
1133 }
925baedd 1134 }
5f39d397
CM
1135}
1136
8257b2dc
MX
1137static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1138{
1139 struct btrfs_subvolume_writers *writers;
1140 int ret;
1141
1142 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1143 if (!writers)
1144 return ERR_PTR(-ENOMEM);
1145
8a5a916d 1146 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1147 if (ret < 0) {
1148 kfree(writers);
1149 return ERR_PTR(ret);
1150 }
1151
1152 init_waitqueue_head(&writers->wait);
1153 return writers;
1154}
1155
1156static void
1157btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1158{
1159 percpu_counter_destroy(&writers->counter);
1160 kfree(writers);
1161}
1162
da17066c 1163static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1164 u64 objectid)
d97e63b6 1165{
7c0260ee 1166 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1167 root->node = NULL;
a28ec197 1168 root->commit_root = NULL;
27cdeb70 1169 root->state = 0;
d68fc57b 1170 root->orphan_cleanup_state = 0;
0b86a832 1171
0f7d52f4 1172 root->last_trans = 0;
13a8a7c8 1173 root->highest_objectid = 0;
eb73c1b7 1174 root->nr_delalloc_inodes = 0;
199c2a9c 1175 root->nr_ordered_extents = 0;
6bef4d31 1176 root->inode_tree = RB_ROOT;
16cdcec7 1177 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1178 root->block_rsv = NULL;
0b86a832
CM
1179
1180 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1181 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1182 INIT_LIST_HEAD(&root->delalloc_inodes);
1183 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1184 INIT_LIST_HEAD(&root->ordered_extents);
1185 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1186 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1187 INIT_LIST_HEAD(&root->logged_list[0]);
1188 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1189 spin_lock_init(&root->inode_lock);
eb73c1b7 1190 spin_lock_init(&root->delalloc_lock);
199c2a9c 1191 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1192 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1193 spin_lock_init(&root->log_extents_lock[0]);
1194 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1195 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1196 mutex_init(&root->objectid_mutex);
e02119d5 1197 mutex_init(&root->log_mutex);
31f3d255 1198 mutex_init(&root->ordered_extent_mutex);
573bfb72 1199 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1200 init_waitqueue_head(&root->log_writer_wait);
1201 init_waitqueue_head(&root->log_commit_wait[0]);
1202 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1203 INIT_LIST_HEAD(&root->log_ctxs[0]);
1204 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1205 atomic_set(&root->log_commit[0], 0);
1206 atomic_set(&root->log_commit[1], 0);
1207 atomic_set(&root->log_writers, 0);
2ecb7923 1208 atomic_set(&root->log_batch, 0);
0700cea7 1209 refcount_set(&root->refs, 1);
ea14b57f 1210 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1211 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1212 atomic_set(&root->nr_swapfiles, 0);
7237f183 1213 root->log_transid = 0;
d1433deb 1214 root->log_transid_committed = -1;
257c62e1 1215 root->last_log_commit = 0;
7c0260ee 1216 if (!dummy)
43eb5f29
QW
1217 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1218 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1219
3768f368
CM
1220 memset(&root->root_key, 0, sizeof(root->root_key));
1221 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1222 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1223 if (!dummy)
06ea65a3
JB
1224 root->defrag_trans_start = fs_info->generation;
1225 else
1226 root->defrag_trans_start = 0;
4d775673 1227 root->root_key.objectid = objectid;
0ee5dc67 1228 root->anon_dev = 0;
8ea05e3a 1229
5f3ab90a 1230 spin_lock_init(&root->root_item_lock);
370a11b8 1231 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1232}
1233
74e4d827
DS
1234static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1235 gfp_t flags)
6f07e42e 1236{
74e4d827 1237 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1238 if (root)
1239 root->fs_info = fs_info;
1240 return root;
1241}
1242
06ea65a3
JB
1243#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1244/* Should only be used by the testing infrastructure */
da17066c 1245struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1246{
1247 struct btrfs_root *root;
1248
7c0260ee
JM
1249 if (!fs_info)
1250 return ERR_PTR(-EINVAL);
1251
1252 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1253 if (!root)
1254 return ERR_PTR(-ENOMEM);
da17066c 1255
b9ef22de 1256 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1257 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1258 root->alloc_bytenr = 0;
06ea65a3
JB
1259
1260 return root;
1261}
1262#endif
1263
20897f5c
AJ
1264struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1265 struct btrfs_fs_info *fs_info,
1266 u64 objectid)
1267{
1268 struct extent_buffer *leaf;
1269 struct btrfs_root *tree_root = fs_info->tree_root;
1270 struct btrfs_root *root;
1271 struct btrfs_key key;
b89f6d1f 1272 unsigned int nofs_flag;
20897f5c 1273 int ret = 0;
33d85fda 1274 uuid_le uuid = NULL_UUID_LE;
20897f5c 1275
b89f6d1f
FM
1276 /*
1277 * We're holding a transaction handle, so use a NOFS memory allocation
1278 * context to avoid deadlock if reclaim happens.
1279 */
1280 nofs_flag = memalloc_nofs_save();
74e4d827 1281 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1282 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1283 if (!root)
1284 return ERR_PTR(-ENOMEM);
1285
da17066c 1286 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1287 root->root_key.objectid = objectid;
1288 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1289 root->root_key.offset = 0;
1290
4d75f8a9 1291 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1292 if (IS_ERR(leaf)) {
1293 ret = PTR_ERR(leaf);
1dd05682 1294 leaf = NULL;
20897f5c
AJ
1295 goto fail;
1296 }
1297
20897f5c 1298 root->node = leaf;
20897f5c
AJ
1299 btrfs_mark_buffer_dirty(leaf);
1300
1301 root->commit_root = btrfs_root_node(root);
27cdeb70 1302 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1303
1304 root->root_item.flags = 0;
1305 root->root_item.byte_limit = 0;
1306 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1307 btrfs_set_root_generation(&root->root_item, trans->transid);
1308 btrfs_set_root_level(&root->root_item, 0);
1309 btrfs_set_root_refs(&root->root_item, 1);
1310 btrfs_set_root_used(&root->root_item, leaf->len);
1311 btrfs_set_root_last_snapshot(&root->root_item, 0);
1312 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1313 if (is_fstree(objectid))
1314 uuid_le_gen(&uuid);
6463fe58 1315 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1316 root->root_item.drop_level = 0;
1317
1318 key.objectid = objectid;
1319 key.type = BTRFS_ROOT_ITEM_KEY;
1320 key.offset = 0;
1321 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1322 if (ret)
1323 goto fail;
1324
1325 btrfs_tree_unlock(leaf);
1326
1dd05682
TI
1327 return root;
1328
20897f5c 1329fail:
1dd05682
TI
1330 if (leaf) {
1331 btrfs_tree_unlock(leaf);
59885b39 1332 free_extent_buffer(root->commit_root);
1dd05682
TI
1333 free_extent_buffer(leaf);
1334 }
1335 kfree(root);
20897f5c 1336
1dd05682 1337 return ERR_PTR(ret);
20897f5c
AJ
1338}
1339
7237f183
YZ
1340static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1341 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1342{
1343 struct btrfs_root *root;
7237f183 1344 struct extent_buffer *leaf;
e02119d5 1345
74e4d827 1346 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1347 if (!root)
7237f183 1348 return ERR_PTR(-ENOMEM);
e02119d5 1349
da17066c 1350 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1351
1352 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1353 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1354 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1355
7237f183 1356 /*
27cdeb70
MX
1357 * DON'T set REF_COWS for log trees
1358 *
7237f183
YZ
1359 * log trees do not get reference counted because they go away
1360 * before a real commit is actually done. They do store pointers
1361 * to file data extents, and those reference counts still get
1362 * updated (along with back refs to the log tree).
1363 */
e02119d5 1364
4d75f8a9
DS
1365 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1366 NULL, 0, 0, 0);
7237f183
YZ
1367 if (IS_ERR(leaf)) {
1368 kfree(root);
1369 return ERR_CAST(leaf);
1370 }
e02119d5 1371
7237f183 1372 root->node = leaf;
e02119d5 1373
e02119d5
CM
1374 btrfs_mark_buffer_dirty(root->node);
1375 btrfs_tree_unlock(root->node);
7237f183
YZ
1376 return root;
1377}
1378
1379int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1380 struct btrfs_fs_info *fs_info)
1381{
1382 struct btrfs_root *log_root;
1383
1384 log_root = alloc_log_tree(trans, fs_info);
1385 if (IS_ERR(log_root))
1386 return PTR_ERR(log_root);
1387 WARN_ON(fs_info->log_root_tree);
1388 fs_info->log_root_tree = log_root;
1389 return 0;
1390}
1391
1392int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1393 struct btrfs_root *root)
1394{
0b246afa 1395 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1396 struct btrfs_root *log_root;
1397 struct btrfs_inode_item *inode_item;
1398
0b246afa 1399 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1400 if (IS_ERR(log_root))
1401 return PTR_ERR(log_root);
1402
1403 log_root->last_trans = trans->transid;
1404 log_root->root_key.offset = root->root_key.objectid;
1405
1406 inode_item = &log_root->root_item.inode;
3cae210f
QW
1407 btrfs_set_stack_inode_generation(inode_item, 1);
1408 btrfs_set_stack_inode_size(inode_item, 3);
1409 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1410 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1411 fs_info->nodesize);
3cae210f 1412 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1413
5d4f98a2 1414 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1415
1416 WARN_ON(root->log_root);
1417 root->log_root = log_root;
1418 root->log_transid = 0;
d1433deb 1419 root->log_transid_committed = -1;
257c62e1 1420 root->last_log_commit = 0;
e02119d5
CM
1421 return 0;
1422}
1423
35a3621b
SB
1424static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1425 struct btrfs_key *key)
e02119d5
CM
1426{
1427 struct btrfs_root *root;
1428 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1429 struct btrfs_path *path;
84234f3a 1430 u64 generation;
cb517eab 1431 int ret;
581c1760 1432 int level;
0f7d52f4 1433
cb517eab
MX
1434 path = btrfs_alloc_path();
1435 if (!path)
0f7d52f4 1436 return ERR_PTR(-ENOMEM);
cb517eab 1437
74e4d827 1438 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1439 if (!root) {
1440 ret = -ENOMEM;
1441 goto alloc_fail;
0f7d52f4
CM
1442 }
1443
da17066c 1444 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1445
cb517eab
MX
1446 ret = btrfs_find_root(tree_root, key, path,
1447 &root->root_item, &root->root_key);
0f7d52f4 1448 if (ret) {
13a8a7c8
YZ
1449 if (ret > 0)
1450 ret = -ENOENT;
cb517eab 1451 goto find_fail;
0f7d52f4 1452 }
13a8a7c8 1453
84234f3a 1454 generation = btrfs_root_generation(&root->root_item);
581c1760 1455 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1456 root->node = read_tree_block(fs_info,
1457 btrfs_root_bytenr(&root->root_item),
581c1760 1458 generation, level, NULL);
64c043de
LB
1459 if (IS_ERR(root->node)) {
1460 ret = PTR_ERR(root->node);
cb517eab
MX
1461 goto find_fail;
1462 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1463 ret = -EIO;
64c043de
LB
1464 free_extent_buffer(root->node);
1465 goto find_fail;
416bc658 1466 }
5d4f98a2 1467 root->commit_root = btrfs_root_node(root);
13a8a7c8 1468out:
cb517eab
MX
1469 btrfs_free_path(path);
1470 return root;
1471
cb517eab
MX
1472find_fail:
1473 kfree(root);
1474alloc_fail:
1475 root = ERR_PTR(ret);
1476 goto out;
1477}
1478
1479struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1480 struct btrfs_key *location)
1481{
1482 struct btrfs_root *root;
1483
1484 root = btrfs_read_tree_root(tree_root, location);
1485 if (IS_ERR(root))
1486 return root;
1487
1488 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1489 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1490 btrfs_check_and_init_root_item(&root->root_item);
1491 }
13a8a7c8 1492
5eda7b5e
CM
1493 return root;
1494}
1495
cb517eab
MX
1496int btrfs_init_fs_root(struct btrfs_root *root)
1497{
1498 int ret;
8257b2dc 1499 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1500
1501 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1502 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1503 GFP_NOFS);
1504 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1505 ret = -ENOMEM;
1506 goto fail;
1507 }
1508
8257b2dc
MX
1509 writers = btrfs_alloc_subvolume_writers();
1510 if (IS_ERR(writers)) {
1511 ret = PTR_ERR(writers);
1512 goto fail;
1513 }
1514 root->subv_writers = writers;
1515
cb517eab 1516 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1517 spin_lock_init(&root->ino_cache_lock);
1518 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1519
1520 ret = get_anon_bdev(&root->anon_dev);
1521 if (ret)
876d2cf1 1522 goto fail;
f32e48e9
CR
1523
1524 mutex_lock(&root->objectid_mutex);
1525 ret = btrfs_find_highest_objectid(root,
1526 &root->highest_objectid);
1527 if (ret) {
1528 mutex_unlock(&root->objectid_mutex);
876d2cf1 1529 goto fail;
f32e48e9
CR
1530 }
1531
1532 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1533
1534 mutex_unlock(&root->objectid_mutex);
1535
cb517eab
MX
1536 return 0;
1537fail:
84db5ccf 1538 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1539 return ret;
1540}
1541
35bbb97f
JM
1542struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1543 u64 root_id)
cb517eab
MX
1544{
1545 struct btrfs_root *root;
1546
1547 spin_lock(&fs_info->fs_roots_radix_lock);
1548 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1549 (unsigned long)root_id);
1550 spin_unlock(&fs_info->fs_roots_radix_lock);
1551 return root;
1552}
1553
1554int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1555 struct btrfs_root *root)
1556{
1557 int ret;
1558
e1860a77 1559 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1560 if (ret)
1561 return ret;
1562
1563 spin_lock(&fs_info->fs_roots_radix_lock);
1564 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1565 (unsigned long)root->root_key.objectid,
1566 root);
1567 if (ret == 0)
27cdeb70 1568 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1569 spin_unlock(&fs_info->fs_roots_radix_lock);
1570 radix_tree_preload_end();
1571
1572 return ret;
1573}
1574
c00869f1
MX
1575struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1576 struct btrfs_key *location,
1577 bool check_ref)
5eda7b5e
CM
1578{
1579 struct btrfs_root *root;
381cf658 1580 struct btrfs_path *path;
1d4c08e0 1581 struct btrfs_key key;
5eda7b5e
CM
1582 int ret;
1583
edbd8d4e
CM
1584 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1585 return fs_info->tree_root;
1586 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1587 return fs_info->extent_root;
8f18cf13
CM
1588 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1589 return fs_info->chunk_root;
1590 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1591 return fs_info->dev_root;
0403e47e
YZ
1592 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1593 return fs_info->csum_root;
bcef60f2
AJ
1594 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1595 return fs_info->quota_root ? fs_info->quota_root :
1596 ERR_PTR(-ENOENT);
f7a81ea4
SB
1597 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1598 return fs_info->uuid_root ? fs_info->uuid_root :
1599 ERR_PTR(-ENOENT);
70f6d82e
OS
1600 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1601 return fs_info->free_space_root ? fs_info->free_space_root :
1602 ERR_PTR(-ENOENT);
4df27c4d 1603again:
cb517eab 1604 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1605 if (root) {
c00869f1 1606 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1607 return ERR_PTR(-ENOENT);
5eda7b5e 1608 return root;
48475471 1609 }
5eda7b5e 1610
cb517eab 1611 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1612 if (IS_ERR(root))
1613 return root;
3394e160 1614
c00869f1 1615 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1616 ret = -ENOENT;
581bb050 1617 goto fail;
35a30d7c 1618 }
581bb050 1619
cb517eab 1620 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1621 if (ret)
1622 goto fail;
3394e160 1623
381cf658
DS
1624 path = btrfs_alloc_path();
1625 if (!path) {
1626 ret = -ENOMEM;
1627 goto fail;
1628 }
1d4c08e0
DS
1629 key.objectid = BTRFS_ORPHAN_OBJECTID;
1630 key.type = BTRFS_ORPHAN_ITEM_KEY;
1631 key.offset = location->objectid;
1632
1633 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1634 btrfs_free_path(path);
d68fc57b
YZ
1635 if (ret < 0)
1636 goto fail;
1637 if (ret == 0)
27cdeb70 1638 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1639
cb517eab 1640 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1641 if (ret) {
4df27c4d 1642 if (ret == -EEXIST) {
84db5ccf 1643 btrfs_free_fs_root(root);
4df27c4d
YZ
1644 goto again;
1645 }
1646 goto fail;
0f7d52f4 1647 }
edbd8d4e 1648 return root;
4df27c4d 1649fail:
84db5ccf 1650 btrfs_free_fs_root(root);
4df27c4d 1651 return ERR_PTR(ret);
edbd8d4e
CM
1652}
1653
04160088
CM
1654static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1655{
1656 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1657 int ret = 0;
04160088
CM
1658 struct btrfs_device *device;
1659 struct backing_dev_info *bdi;
b7967db7 1660
1f78160c
XG
1661 rcu_read_lock();
1662 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1663 if (!device->bdev)
1664 continue;
efa7c9f9 1665 bdi = device->bdev->bd_bdi;
ff9ea323 1666 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1667 ret = 1;
1668 break;
1669 }
1670 }
1f78160c 1671 rcu_read_unlock();
04160088
CM
1672 return ret;
1673}
1674
8b712842
CM
1675/*
1676 * called by the kthread helper functions to finally call the bio end_io
1677 * functions. This is where read checksum verification actually happens
1678 */
1679static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1680{
ce9adaa5 1681 struct bio *bio;
97eb6b69 1682 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1683
97eb6b69 1684 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1685 bio = end_io_wq->bio;
ce9adaa5 1686
4e4cbee9 1687 bio->bi_status = end_io_wq->status;
8b712842
CM
1688 bio->bi_private = end_io_wq->private;
1689 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1690 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1691 bio_endio(bio);
44b8bd7e
CM
1692}
1693
a74a4b97
CM
1694static int cleaner_kthread(void *arg)
1695{
1696 struct btrfs_root *root = arg;
0b246afa 1697 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1698 int again;
a74a4b97 1699
d6fd0ae2 1700 while (1) {
d0278245 1701 again = 0;
a74a4b97 1702
fd340d0f
JB
1703 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1704
d0278245 1705 /* Make the cleaner go to sleep early. */
2ff7e61e 1706 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1707 goto sleep;
1708
90c711ab
ZB
1709 /*
1710 * Do not do anything if we might cause open_ctree() to block
1711 * before we have finished mounting the filesystem.
1712 */
0b246afa 1713 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1714 goto sleep;
1715
0b246afa 1716 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1717 goto sleep;
1718
dc7f370c
MX
1719 /*
1720 * Avoid the problem that we change the status of the fs
1721 * during the above check and trylock.
1722 */
2ff7e61e 1723 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1724 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1725 goto sleep;
76dda93c 1726 }
a74a4b97 1727
2ff7e61e 1728 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1729
d0278245 1730 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1731 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1732
1733 /*
05323cd1
MX
1734 * The defragger has dealt with the R/O remount and umount,
1735 * needn't do anything special here.
d0278245 1736 */
0b246afa 1737 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1738
1739 /*
1740 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1741 * with relocation (btrfs_relocate_chunk) and relocation
1742 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1743 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1744 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1745 * unused block groups.
1746 */
0b246afa 1747 btrfs_delete_unused_bgs(fs_info);
d0278245 1748sleep:
fd340d0f 1749 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1750 if (kthread_should_park())
1751 kthread_parkme();
1752 if (kthread_should_stop())
1753 return 0;
838fe188 1754 if (!again) {
a74a4b97 1755 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1756 schedule();
a74a4b97
CM
1757 __set_current_state(TASK_RUNNING);
1758 }
da288d28 1759 }
a74a4b97
CM
1760}
1761
1762static int transaction_kthread(void *arg)
1763{
1764 struct btrfs_root *root = arg;
0b246afa 1765 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1766 struct btrfs_trans_handle *trans;
1767 struct btrfs_transaction *cur;
8929ecfa 1768 u64 transid;
a944442c 1769 time64_t now;
a74a4b97 1770 unsigned long delay;
914b2007 1771 bool cannot_commit;
a74a4b97
CM
1772
1773 do {
914b2007 1774 cannot_commit = false;
0b246afa
JM
1775 delay = HZ * fs_info->commit_interval;
1776 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1777
0b246afa
JM
1778 spin_lock(&fs_info->trans_lock);
1779 cur = fs_info->running_transaction;
a74a4b97 1780 if (!cur) {
0b246afa 1781 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1782 goto sleep;
1783 }
31153d81 1784
afd48513 1785 now = ktime_get_seconds();
4a9d8bde 1786 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1787 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1788 (now < cur->start_time ||
0b246afa
JM
1789 now - cur->start_time < fs_info->commit_interval)) {
1790 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1791 delay = HZ * 5;
1792 goto sleep;
1793 }
8929ecfa 1794 transid = cur->transid;
0b246afa 1795 spin_unlock(&fs_info->trans_lock);
56bec294 1796
79787eaa 1797 /* If the file system is aborted, this will always fail. */
354aa0fb 1798 trans = btrfs_attach_transaction(root);
914b2007 1799 if (IS_ERR(trans)) {
354aa0fb
MX
1800 if (PTR_ERR(trans) != -ENOENT)
1801 cannot_commit = true;
79787eaa 1802 goto sleep;
914b2007 1803 }
8929ecfa 1804 if (transid == trans->transid) {
3a45bb20 1805 btrfs_commit_transaction(trans);
8929ecfa 1806 } else {
3a45bb20 1807 btrfs_end_transaction(trans);
8929ecfa 1808 }
a74a4b97 1809sleep:
0b246afa
JM
1810 wake_up_process(fs_info->cleaner_kthread);
1811 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1812
4e121c06 1813 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1814 &fs_info->fs_state)))
2ff7e61e 1815 btrfs_cleanup_transaction(fs_info);
ce63f891 1816 if (!kthread_should_stop() &&
0b246afa 1817 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1818 cannot_commit))
bc5511d0 1819 schedule_timeout_interruptible(delay);
a74a4b97
CM
1820 } while (!kthread_should_stop());
1821 return 0;
1822}
1823
af31f5e5
CM
1824/*
1825 * this will find the highest generation in the array of
1826 * root backups. The index of the highest array is returned,
1827 * or -1 if we can't find anything.
1828 *
1829 * We check to make sure the array is valid by comparing the
1830 * generation of the latest root in the array with the generation
1831 * in the super block. If they don't match we pitch it.
1832 */
1833static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1834{
1835 u64 cur;
1836 int newest_index = -1;
1837 struct btrfs_root_backup *root_backup;
1838 int i;
1839
1840 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1841 root_backup = info->super_copy->super_roots + i;
1842 cur = btrfs_backup_tree_root_gen(root_backup);
1843 if (cur == newest_gen)
1844 newest_index = i;
1845 }
1846
1847 /* check to see if we actually wrapped around */
1848 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1849 root_backup = info->super_copy->super_roots;
1850 cur = btrfs_backup_tree_root_gen(root_backup);
1851 if (cur == newest_gen)
1852 newest_index = 0;
1853 }
1854 return newest_index;
1855}
1856
1857
1858/*
1859 * find the oldest backup so we know where to store new entries
1860 * in the backup array. This will set the backup_root_index
1861 * field in the fs_info struct
1862 */
1863static void find_oldest_super_backup(struct btrfs_fs_info *info,
1864 u64 newest_gen)
1865{
1866 int newest_index = -1;
1867
1868 newest_index = find_newest_super_backup(info, newest_gen);
1869 /* if there was garbage in there, just move along */
1870 if (newest_index == -1) {
1871 info->backup_root_index = 0;
1872 } else {
1873 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1874 }
1875}
1876
1877/*
1878 * copy all the root pointers into the super backup array.
1879 * this will bump the backup pointer by one when it is
1880 * done
1881 */
1882static void backup_super_roots(struct btrfs_fs_info *info)
1883{
1884 int next_backup;
1885 struct btrfs_root_backup *root_backup;
1886 int last_backup;
1887
1888 next_backup = info->backup_root_index;
1889 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1890 BTRFS_NUM_BACKUP_ROOTS;
1891
1892 /*
1893 * just overwrite the last backup if we're at the same generation
1894 * this happens only at umount
1895 */
1896 root_backup = info->super_for_commit->super_roots + last_backup;
1897 if (btrfs_backup_tree_root_gen(root_backup) ==
1898 btrfs_header_generation(info->tree_root->node))
1899 next_backup = last_backup;
1900
1901 root_backup = info->super_for_commit->super_roots + next_backup;
1902
1903 /*
1904 * make sure all of our padding and empty slots get zero filled
1905 * regardless of which ones we use today
1906 */
1907 memset(root_backup, 0, sizeof(*root_backup));
1908
1909 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1910
1911 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1912 btrfs_set_backup_tree_root_gen(root_backup,
1913 btrfs_header_generation(info->tree_root->node));
1914
1915 btrfs_set_backup_tree_root_level(root_backup,
1916 btrfs_header_level(info->tree_root->node));
1917
1918 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1919 btrfs_set_backup_chunk_root_gen(root_backup,
1920 btrfs_header_generation(info->chunk_root->node));
1921 btrfs_set_backup_chunk_root_level(root_backup,
1922 btrfs_header_level(info->chunk_root->node));
1923
1924 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1925 btrfs_set_backup_extent_root_gen(root_backup,
1926 btrfs_header_generation(info->extent_root->node));
1927 btrfs_set_backup_extent_root_level(root_backup,
1928 btrfs_header_level(info->extent_root->node));
1929
7c7e82a7
CM
1930 /*
1931 * we might commit during log recovery, which happens before we set
1932 * the fs_root. Make sure it is valid before we fill it in.
1933 */
1934 if (info->fs_root && info->fs_root->node) {
1935 btrfs_set_backup_fs_root(root_backup,
1936 info->fs_root->node->start);
1937 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1938 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1939 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1940 btrfs_header_level(info->fs_root->node));
7c7e82a7 1941 }
af31f5e5
CM
1942
1943 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1944 btrfs_set_backup_dev_root_gen(root_backup,
1945 btrfs_header_generation(info->dev_root->node));
1946 btrfs_set_backup_dev_root_level(root_backup,
1947 btrfs_header_level(info->dev_root->node));
1948
1949 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1950 btrfs_set_backup_csum_root_gen(root_backup,
1951 btrfs_header_generation(info->csum_root->node));
1952 btrfs_set_backup_csum_root_level(root_backup,
1953 btrfs_header_level(info->csum_root->node));
1954
1955 btrfs_set_backup_total_bytes(root_backup,
1956 btrfs_super_total_bytes(info->super_copy));
1957 btrfs_set_backup_bytes_used(root_backup,
1958 btrfs_super_bytes_used(info->super_copy));
1959 btrfs_set_backup_num_devices(root_backup,
1960 btrfs_super_num_devices(info->super_copy));
1961
1962 /*
1963 * if we don't copy this out to the super_copy, it won't get remembered
1964 * for the next commit
1965 */
1966 memcpy(&info->super_copy->super_roots,
1967 &info->super_for_commit->super_roots,
1968 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1969}
1970
1971/*
1972 * this copies info out of the root backup array and back into
1973 * the in-memory super block. It is meant to help iterate through
1974 * the array, so you send it the number of backups you've already
1975 * tried and the last backup index you used.
1976 *
1977 * this returns -1 when it has tried all the backups
1978 */
1979static noinline int next_root_backup(struct btrfs_fs_info *info,
1980 struct btrfs_super_block *super,
1981 int *num_backups_tried, int *backup_index)
1982{
1983 struct btrfs_root_backup *root_backup;
1984 int newest = *backup_index;
1985
1986 if (*num_backups_tried == 0) {
1987 u64 gen = btrfs_super_generation(super);
1988
1989 newest = find_newest_super_backup(info, gen);
1990 if (newest == -1)
1991 return -1;
1992
1993 *backup_index = newest;
1994 *num_backups_tried = 1;
1995 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1996 /* we've tried all the backups, all done */
1997 return -1;
1998 } else {
1999 /* jump to the next oldest backup */
2000 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2001 BTRFS_NUM_BACKUP_ROOTS;
2002 *backup_index = newest;
2003 *num_backups_tried += 1;
2004 }
2005 root_backup = super->super_roots + newest;
2006
2007 btrfs_set_super_generation(super,
2008 btrfs_backup_tree_root_gen(root_backup));
2009 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2010 btrfs_set_super_root_level(super,
2011 btrfs_backup_tree_root_level(root_backup));
2012 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2013
2014 /*
2015 * fixme: the total bytes and num_devices need to match or we should
2016 * need a fsck
2017 */
2018 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2019 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2020 return 0;
2021}
2022
7abadb64
LB
2023/* helper to cleanup workers */
2024static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2025{
dc6e3209 2026 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2027 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2028 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2029 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2030 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2031 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2032 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2033 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2034 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2035 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2036 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2037 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2038 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2039 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2040 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2041 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2042 /*
2043 * Now that all other work queues are destroyed, we can safely destroy
2044 * the queues used for metadata I/O, since tasks from those other work
2045 * queues can do metadata I/O operations.
2046 */
2047 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2048 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2049}
2050
2e9f5954
R
2051static void free_root_extent_buffers(struct btrfs_root *root)
2052{
2053 if (root) {
2054 free_extent_buffer(root->node);
2055 free_extent_buffer(root->commit_root);
2056 root->node = NULL;
2057 root->commit_root = NULL;
2058 }
2059}
2060
af31f5e5
CM
2061/* helper to cleanup tree roots */
2062static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2063{
2e9f5954 2064 free_root_extent_buffers(info->tree_root);
655b09fe 2065
2e9f5954
R
2066 free_root_extent_buffers(info->dev_root);
2067 free_root_extent_buffers(info->extent_root);
2068 free_root_extent_buffers(info->csum_root);
2069 free_root_extent_buffers(info->quota_root);
2070 free_root_extent_buffers(info->uuid_root);
2071 if (chunk_root)
2072 free_root_extent_buffers(info->chunk_root);
70f6d82e 2073 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2074}
2075
faa2dbf0 2076void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2077{
2078 int ret;
2079 struct btrfs_root *gang[8];
2080 int i;
2081
2082 while (!list_empty(&fs_info->dead_roots)) {
2083 gang[0] = list_entry(fs_info->dead_roots.next,
2084 struct btrfs_root, root_list);
2085 list_del(&gang[0]->root_list);
2086
27cdeb70 2087 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2088 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2089 } else {
2090 free_extent_buffer(gang[0]->node);
2091 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2092 btrfs_put_fs_root(gang[0]);
171f6537
JB
2093 }
2094 }
2095
2096 while (1) {
2097 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2098 (void **)gang, 0,
2099 ARRAY_SIZE(gang));
2100 if (!ret)
2101 break;
2102 for (i = 0; i < ret; i++)
cb517eab 2103 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2104 }
1a4319cc
LB
2105
2106 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2107 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2108 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2109 }
171f6537 2110}
af31f5e5 2111
638aa7ed
ES
2112static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2113{
2114 mutex_init(&fs_info->scrub_lock);
2115 atomic_set(&fs_info->scrubs_running, 0);
2116 atomic_set(&fs_info->scrub_pause_req, 0);
2117 atomic_set(&fs_info->scrubs_paused, 0);
2118 atomic_set(&fs_info->scrub_cancel_req, 0);
2119 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2120 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2121}
2122
779a65a4
ES
2123static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2124{
2125 spin_lock_init(&fs_info->balance_lock);
2126 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2127 atomic_set(&fs_info->balance_pause_req, 0);
2128 atomic_set(&fs_info->balance_cancel_req, 0);
2129 fs_info->balance_ctl = NULL;
2130 init_waitqueue_head(&fs_info->balance_wait_q);
2131}
2132
6bccf3ab 2133static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2134{
2ff7e61e
JM
2135 struct inode *inode = fs_info->btree_inode;
2136
2137 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2138 set_nlink(inode, 1);
f37938e0
ES
2139 /*
2140 * we set the i_size on the btree inode to the max possible int.
2141 * the real end of the address space is determined by all of
2142 * the devices in the system
2143 */
2ff7e61e
JM
2144 inode->i_size = OFFSET_MAX;
2145 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2146
2ff7e61e 2147 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2148 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2149 IO_TREE_INODE_IO, inode);
7b439738 2150 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2151 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2152
2ff7e61e 2153 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2154
2ff7e61e
JM
2155 BTRFS_I(inode)->root = fs_info->tree_root;
2156 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2157 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2158 btrfs_insert_inode_hash(inode);
f37938e0
ES
2159}
2160
ad618368
ES
2161static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2162{
ad618368 2163 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2164 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2165 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2166}
2167
f9e92e40
ES
2168static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2169{
2170 spin_lock_init(&fs_info->qgroup_lock);
2171 mutex_init(&fs_info->qgroup_ioctl_lock);
2172 fs_info->qgroup_tree = RB_ROOT;
2173 fs_info->qgroup_op_tree = RB_ROOT;
2174 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2175 fs_info->qgroup_seq = 1;
f9e92e40 2176 fs_info->qgroup_ulist = NULL;
d2c609b8 2177 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2178 mutex_init(&fs_info->qgroup_rescan_lock);
2179}
2180
2a458198
ES
2181static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2182 struct btrfs_fs_devices *fs_devices)
2183{
f7b885be 2184 u32 max_active = fs_info->thread_pool_size;
6f011058 2185 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2186
2187 fs_info->workers =
cb001095
JM
2188 btrfs_alloc_workqueue(fs_info, "worker",
2189 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2190
2191 fs_info->delalloc_workers =
cb001095
JM
2192 btrfs_alloc_workqueue(fs_info, "delalloc",
2193 flags, max_active, 2);
2a458198
ES
2194
2195 fs_info->flush_workers =
cb001095
JM
2196 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2197 flags, max_active, 0);
2a458198
ES
2198
2199 fs_info->caching_workers =
cb001095 2200 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2201
2202 /*
2203 * a higher idle thresh on the submit workers makes it much more
2204 * likely that bios will be send down in a sane order to the
2205 * devices
2206 */
2207 fs_info->submit_workers =
cb001095 2208 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2209 min_t(u64, fs_devices->num_devices,
2210 max_active), 64);
2211
2212 fs_info->fixup_workers =
cb001095 2213 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2214
2215 /*
2216 * endios are largely parallel and should have a very
2217 * low idle thresh
2218 */
2219 fs_info->endio_workers =
cb001095 2220 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2221 fs_info->endio_meta_workers =
cb001095
JM
2222 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2223 max_active, 4);
2a458198 2224 fs_info->endio_meta_write_workers =
cb001095
JM
2225 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2226 max_active, 2);
2a458198 2227 fs_info->endio_raid56_workers =
cb001095
JM
2228 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2229 max_active, 4);
2a458198 2230 fs_info->endio_repair_workers =
cb001095 2231 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2232 fs_info->rmw_workers =
cb001095 2233 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2234 fs_info->endio_write_workers =
cb001095
JM
2235 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2236 max_active, 2);
2a458198 2237 fs_info->endio_freespace_worker =
cb001095
JM
2238 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2239 max_active, 0);
2a458198 2240 fs_info->delayed_workers =
cb001095
JM
2241 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2242 max_active, 0);
2a458198 2243 fs_info->readahead_workers =
cb001095
JM
2244 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2245 max_active, 2);
2a458198 2246 fs_info->qgroup_rescan_workers =
cb001095 2247 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2248 fs_info->extent_workers =
cb001095 2249 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2250 min_t(u64, fs_devices->num_devices,
2251 max_active), 8);
2252
2253 if (!(fs_info->workers && fs_info->delalloc_workers &&
2254 fs_info->submit_workers && fs_info->flush_workers &&
2255 fs_info->endio_workers && fs_info->endio_meta_workers &&
2256 fs_info->endio_meta_write_workers &&
2257 fs_info->endio_repair_workers &&
2258 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2259 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2260 fs_info->caching_workers && fs_info->readahead_workers &&
2261 fs_info->fixup_workers && fs_info->delayed_workers &&
2262 fs_info->extent_workers &&
2263 fs_info->qgroup_rescan_workers)) {
2264 return -ENOMEM;
2265 }
2266
2267 return 0;
2268}
2269
63443bf5
ES
2270static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2271 struct btrfs_fs_devices *fs_devices)
2272{
2273 int ret;
63443bf5
ES
2274 struct btrfs_root *log_tree_root;
2275 struct btrfs_super_block *disk_super = fs_info->super_copy;
2276 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2277 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2278
2279 if (fs_devices->rw_devices == 0) {
f14d104d 2280 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2281 return -EIO;
2282 }
2283
74e4d827 2284 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2285 if (!log_tree_root)
2286 return -ENOMEM;
2287
da17066c 2288 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2289
2ff7e61e 2290 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2291 fs_info->generation + 1,
2292 level, NULL);
64c043de 2293 if (IS_ERR(log_tree_root->node)) {
f14d104d 2294 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2295 ret = PTR_ERR(log_tree_root->node);
64c043de 2296 kfree(log_tree_root);
0eeff236 2297 return ret;
64c043de 2298 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2299 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2300 free_extent_buffer(log_tree_root->node);
2301 kfree(log_tree_root);
2302 return -EIO;
2303 }
2304 /* returns with log_tree_root freed on success */
2305 ret = btrfs_recover_log_trees(log_tree_root);
2306 if (ret) {
0b246afa
JM
2307 btrfs_handle_fs_error(fs_info, ret,
2308 "Failed to recover log tree");
63443bf5
ES
2309 free_extent_buffer(log_tree_root->node);
2310 kfree(log_tree_root);
2311 return ret;
2312 }
2313
bc98a42c 2314 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2315 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2316 if (ret)
2317 return ret;
2318 }
2319
2320 return 0;
2321}
2322
6bccf3ab 2323static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2324{
6bccf3ab 2325 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2326 struct btrfs_root *root;
4bbcaa64
ES
2327 struct btrfs_key location;
2328 int ret;
2329
6bccf3ab
JM
2330 BUG_ON(!fs_info->tree_root);
2331
4bbcaa64
ES
2332 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2333 location.type = BTRFS_ROOT_ITEM_KEY;
2334 location.offset = 0;
2335
a4f3d2c4 2336 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2337 if (IS_ERR(root)) {
2338 ret = PTR_ERR(root);
2339 goto out;
2340 }
a4f3d2c4
DS
2341 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2342 fs_info->extent_root = root;
4bbcaa64
ES
2343
2344 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2345 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2346 if (IS_ERR(root)) {
2347 ret = PTR_ERR(root);
2348 goto out;
2349 }
a4f3d2c4
DS
2350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2351 fs_info->dev_root = root;
4bbcaa64
ES
2352 btrfs_init_devices_late(fs_info);
2353
2354 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2355 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2356 if (IS_ERR(root)) {
2357 ret = PTR_ERR(root);
2358 goto out;
2359 }
a4f3d2c4
DS
2360 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361 fs_info->csum_root = root;
4bbcaa64
ES
2362
2363 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2364 root = btrfs_read_tree_root(tree_root, &location);
2365 if (!IS_ERR(root)) {
2366 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2367 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2368 fs_info->quota_root = root;
4bbcaa64
ES
2369 }
2370
2371 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2372 root = btrfs_read_tree_root(tree_root, &location);
2373 if (IS_ERR(root)) {
2374 ret = PTR_ERR(root);
4bbcaa64 2375 if (ret != -ENOENT)
f50f4353 2376 goto out;
4bbcaa64 2377 } else {
a4f3d2c4
DS
2378 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2379 fs_info->uuid_root = root;
4bbcaa64
ES
2380 }
2381
70f6d82e
OS
2382 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2383 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2384 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2385 if (IS_ERR(root)) {
2386 ret = PTR_ERR(root);
2387 goto out;
2388 }
70f6d82e
OS
2389 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2390 fs_info->free_space_root = root;
2391 }
2392
4bbcaa64 2393 return 0;
f50f4353
LB
2394out:
2395 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2396 location.objectid, ret);
2397 return ret;
4bbcaa64
ES
2398}
2399
069ec957
QW
2400/*
2401 * Real super block validation
2402 * NOTE: super csum type and incompat features will not be checked here.
2403 *
2404 * @sb: super block to check
2405 * @mirror_num: the super block number to check its bytenr:
2406 * 0 the primary (1st) sb
2407 * 1, 2 2nd and 3rd backup copy
2408 * -1 skip bytenr check
2409 */
2410static int validate_super(struct btrfs_fs_info *fs_info,
2411 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2412{
21a852b0
QW
2413 u64 nodesize = btrfs_super_nodesize(sb);
2414 u64 sectorsize = btrfs_super_sectorsize(sb);
2415 int ret = 0;
2416
2417 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2418 btrfs_err(fs_info, "no valid FS found");
2419 ret = -EINVAL;
2420 }
2421 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2422 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2423 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2424 ret = -EINVAL;
2425 }
2426 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2427 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2428 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2429 ret = -EINVAL;
2430 }
2431 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2432 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2433 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2434 ret = -EINVAL;
2435 }
2436 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2437 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2438 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2439 ret = -EINVAL;
2440 }
2441
2442 /*
2443 * Check sectorsize and nodesize first, other check will need it.
2444 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2445 */
2446 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2447 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2448 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2449 ret = -EINVAL;
2450 }
2451 /* Only PAGE SIZE is supported yet */
2452 if (sectorsize != PAGE_SIZE) {
2453 btrfs_err(fs_info,
2454 "sectorsize %llu not supported yet, only support %lu",
2455 sectorsize, PAGE_SIZE);
2456 ret = -EINVAL;
2457 }
2458 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2459 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2460 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2461 ret = -EINVAL;
2462 }
2463 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2464 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2465 le32_to_cpu(sb->__unused_leafsize), nodesize);
2466 ret = -EINVAL;
2467 }
2468
2469 /* Root alignment check */
2470 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2471 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2472 btrfs_super_root(sb));
2473 ret = -EINVAL;
2474 }
2475 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2476 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2477 btrfs_super_chunk_root(sb));
2478 ret = -EINVAL;
2479 }
2480 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2481 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2482 btrfs_super_log_root(sb));
2483 ret = -EINVAL;
2484 }
2485
de37aa51 2486 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2487 BTRFS_FSID_SIZE) != 0) {
21a852b0 2488 btrfs_err(fs_info,
7239ff4b 2489 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2490 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2491 ret = -EINVAL;
2492 }
2493
2494 /*
2495 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2496 * done later
2497 */
2498 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2499 btrfs_err(fs_info, "bytes_used is too small %llu",
2500 btrfs_super_bytes_used(sb));
2501 ret = -EINVAL;
2502 }
2503 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2504 btrfs_err(fs_info, "invalid stripesize %u",
2505 btrfs_super_stripesize(sb));
2506 ret = -EINVAL;
2507 }
2508 if (btrfs_super_num_devices(sb) > (1UL << 31))
2509 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2510 btrfs_super_num_devices(sb));
2511 if (btrfs_super_num_devices(sb) == 0) {
2512 btrfs_err(fs_info, "number of devices is 0");
2513 ret = -EINVAL;
2514 }
2515
069ec957
QW
2516 if (mirror_num >= 0 &&
2517 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2518 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2519 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2520 ret = -EINVAL;
2521 }
2522
2523 /*
2524 * Obvious sys_chunk_array corruptions, it must hold at least one key
2525 * and one chunk
2526 */
2527 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2528 btrfs_err(fs_info, "system chunk array too big %u > %u",
2529 btrfs_super_sys_array_size(sb),
2530 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2531 ret = -EINVAL;
2532 }
2533 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2534 + sizeof(struct btrfs_chunk)) {
2535 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2536 btrfs_super_sys_array_size(sb),
2537 sizeof(struct btrfs_disk_key)
2538 + sizeof(struct btrfs_chunk));
2539 ret = -EINVAL;
2540 }
2541
2542 /*
2543 * The generation is a global counter, we'll trust it more than the others
2544 * but it's still possible that it's the one that's wrong.
2545 */
2546 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2547 btrfs_warn(fs_info,
2548 "suspicious: generation < chunk_root_generation: %llu < %llu",
2549 btrfs_super_generation(sb),
2550 btrfs_super_chunk_root_generation(sb));
2551 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2552 && btrfs_super_cache_generation(sb) != (u64)-1)
2553 btrfs_warn(fs_info,
2554 "suspicious: generation < cache_generation: %llu < %llu",
2555 btrfs_super_generation(sb),
2556 btrfs_super_cache_generation(sb));
2557
2558 return ret;
2559}
2560
069ec957
QW
2561/*
2562 * Validation of super block at mount time.
2563 * Some checks already done early at mount time, like csum type and incompat
2564 * flags will be skipped.
2565 */
2566static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2567{
2568 return validate_super(fs_info, fs_info->super_copy, 0);
2569}
2570
75cb857d
QW
2571/*
2572 * Validation of super block at write time.
2573 * Some checks like bytenr check will be skipped as their values will be
2574 * overwritten soon.
2575 * Extra checks like csum type and incompat flags will be done here.
2576 */
2577static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2578 struct btrfs_super_block *sb)
2579{
2580 int ret;
2581
2582 ret = validate_super(fs_info, sb, -1);
2583 if (ret < 0)
2584 goto out;
2585 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2586 ret = -EUCLEAN;
2587 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2588 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2589 goto out;
2590 }
2591 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2592 ret = -EUCLEAN;
2593 btrfs_err(fs_info,
2594 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2595 btrfs_super_incompat_flags(sb),
2596 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2597 goto out;
2598 }
2599out:
2600 if (ret < 0)
2601 btrfs_err(fs_info,
2602 "super block corruption detected before writing it to disk");
2603 return ret;
2604}
2605
ad2b2c80
AV
2606int open_ctree(struct super_block *sb,
2607 struct btrfs_fs_devices *fs_devices,
2608 char *options)
2e635a27 2609{
db94535d
CM
2610 u32 sectorsize;
2611 u32 nodesize;
87ee04eb 2612 u32 stripesize;
84234f3a 2613 u64 generation;
f2b636e8 2614 u64 features;
3de4586c 2615 struct btrfs_key location;
a061fc8d 2616 struct buffer_head *bh;
4d34b278 2617 struct btrfs_super_block *disk_super;
815745cf 2618 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2619 struct btrfs_root *tree_root;
4d34b278 2620 struct btrfs_root *chunk_root;
eb60ceac 2621 int ret;
e58ca020 2622 int err = -EINVAL;
af31f5e5
CM
2623 int num_backups_tried = 0;
2624 int backup_index = 0;
6675df31 2625 int clear_free_space_tree = 0;
581c1760 2626 int level;
4543df7e 2627
74e4d827
DS
2628 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2629 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2630 if (!tree_root || !chunk_root) {
39279cc3
CM
2631 err = -ENOMEM;
2632 goto fail;
2633 }
76dda93c
YZ
2634
2635 ret = init_srcu_struct(&fs_info->subvol_srcu);
2636 if (ret) {
2637 err = ret;
2638 goto fail;
2639 }
2640
908c7f19 2641 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2642 if (ret) {
2643 err = ret;
9e11ceee 2644 goto fail_srcu;
e2d84521 2645 }
09cbfeaf 2646 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2647 (1 + ilog2(nr_cpu_ids));
2648
908c7f19 2649 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2650 if (ret) {
2651 err = ret;
2652 goto fail_dirty_metadata_bytes;
2653 }
2654
7f8d236a
DS
2655 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2656 GFP_KERNEL);
c404e0dc
MX
2657 if (ret) {
2658 err = ret;
2659 goto fail_delalloc_bytes;
2660 }
2661
76dda93c 2662 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2663 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2664 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2665 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2666 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2667 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2668 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2669 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2670 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2671 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2672 spin_lock_init(&fs_info->trans_lock);
76dda93c 2673 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2674 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2675 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2676 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2677 spin_lock_init(&fs_info->super_lock);
fcebe456 2678 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2679 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2680 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2681 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2682 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2683 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2684 mutex_init(&fs_info->reloc_mutex);
573bfb72 2685 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2686 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2687
0b86a832 2688 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2689 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2690 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2691 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2692 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2693 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2694 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2695 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2696 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2697 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2698 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2699 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2700 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2701 BTRFS_BLOCK_RSV_DELREFS);
2702
771ed689 2703 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2704 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2705 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2706 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2707 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2708 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2709 fs_info->sb = sb;
95ac567a 2710 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2711 fs_info->metadata_ratio = 0;
4cb5300b 2712 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2713 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2714 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2715 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2716 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2717 /* readahead state */
d0164adc 2718 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2719 spin_lock_init(&fs_info->reada_lock);
fd708b81 2720 btrfs_init_ref_verify(fs_info);
c8b97818 2721
b34b086c
CM
2722 fs_info->thread_pool_size = min_t(unsigned long,
2723 num_online_cpus() + 2, 8);
0afbaf8c 2724
199c2a9c
MX
2725 INIT_LIST_HEAD(&fs_info->ordered_roots);
2726 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2727
2728 fs_info->btree_inode = new_inode(sb);
2729 if (!fs_info->btree_inode) {
2730 err = -ENOMEM;
2731 goto fail_bio_counter;
2732 }
2733 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2734
16cdcec7 2735 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2736 GFP_KERNEL);
16cdcec7
MX
2737 if (!fs_info->delayed_root) {
2738 err = -ENOMEM;
2739 goto fail_iput;
2740 }
2741 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2742
638aa7ed 2743 btrfs_init_scrub(fs_info);
21adbd5c
SB
2744#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2745 fs_info->check_integrity_print_mask = 0;
2746#endif
779a65a4 2747 btrfs_init_balance(fs_info);
21c7e756 2748 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2749
9f6d2510
DS
2750 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2751 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2752
6bccf3ab 2753 btrfs_init_btree_inode(fs_info);
76dda93c 2754
0f9dd46c 2755 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2756 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2757 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2758
43eb5f29
QW
2759 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2760 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2761 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2762 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2763 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2764 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2765
5a3f23d5 2766 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2767 mutex_init(&fs_info->tree_log_mutex);
925baedd 2768 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2769 mutex_init(&fs_info->transaction_kthread_mutex);
2770 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2771 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2772 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2773 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2774 init_rwsem(&fs_info->subvol_sem);
803b2f54 2775 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2776
ad618368 2777 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2778 btrfs_init_qgroup(fs_info);
416ac51d 2779
fa9c0d79
CM
2780 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2781 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2782
e6dcd2dc 2783 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2784 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2785 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2786 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2787 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2788
04216820
FM
2789 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2790
da17066c
JM
2791 /* Usable values until the real ones are cached from the superblock */
2792 fs_info->nodesize = 4096;
2793 fs_info->sectorsize = 4096;
2794 fs_info->stripesize = 4096;
2795
eede2bf3
OS
2796 spin_lock_init(&fs_info->swapfile_pins_lock);
2797 fs_info->swapfile_pins = RB_ROOT;
2798
53b381b3
DW
2799 ret = btrfs_alloc_stripe_hash_table(fs_info);
2800 if (ret) {
83c8266a 2801 err = ret;
53b381b3
DW
2802 goto fail_alloc;
2803 }
2804
da17066c 2805 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2806
3c4bb26b 2807 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2808
2809 /*
2810 * Read super block and check the signature bytes only
2811 */
a512bbf8 2812 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2813 if (IS_ERR(bh)) {
2814 err = PTR_ERR(bh);
16cdcec7 2815 goto fail_alloc;
20b45077 2816 }
39279cc3 2817
1104a885
DS
2818 /*
2819 * We want to check superblock checksum, the type is stored inside.
2820 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2821 */
ab8d0fc4 2822 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2823 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2824 err = -EINVAL;
b2acdddf 2825 brelse(bh);
1104a885
DS
2826 goto fail_alloc;
2827 }
2828
2829 /*
2830 * super_copy is zeroed at allocation time and we never touch the
2831 * following bytes up to INFO_SIZE, the checksum is calculated from
2832 * the whole block of INFO_SIZE
2833 */
6c41761f 2834 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2835 brelse(bh);
5f39d397 2836
fbc6feae
NB
2837 disk_super = fs_info->super_copy;
2838
de37aa51
NB
2839 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2840 BTRFS_FSID_SIZE));
2841
7239ff4b 2842 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2843 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2844 fs_info->super_copy->metadata_uuid,
2845 BTRFS_FSID_SIZE));
7239ff4b 2846 }
0b86a832 2847
fbc6feae
NB
2848 features = btrfs_super_flags(disk_super);
2849 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2850 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2851 btrfs_set_super_flags(disk_super, features);
2852 btrfs_info(fs_info,
2853 "found metadata UUID change in progress flag, clearing");
2854 }
2855
2856 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2857 sizeof(*fs_info->super_for_commit));
de37aa51 2858
069ec957 2859 ret = btrfs_validate_mount_super(fs_info);
1104a885 2860 if (ret) {
05135f59 2861 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2862 err = -EINVAL;
2863 goto fail_alloc;
2864 }
2865
0f7d52f4 2866 if (!btrfs_super_root(disk_super))
16cdcec7 2867 goto fail_alloc;
0f7d52f4 2868
acce952b 2869 /* check FS state, whether FS is broken. */
87533c47
MX
2870 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2871 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2872
af31f5e5
CM
2873 /*
2874 * run through our array of backup supers and setup
2875 * our ring pointer to the oldest one
2876 */
2877 generation = btrfs_super_generation(disk_super);
2878 find_oldest_super_backup(fs_info, generation);
2879
75e7cb7f
LB
2880 /*
2881 * In the long term, we'll store the compression type in the super
2882 * block, and it'll be used for per file compression control.
2883 */
2884 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2885
2ff7e61e 2886 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2887 if (ret) {
2888 err = ret;
16cdcec7 2889 goto fail_alloc;
2b82032c 2890 }
dfe25020 2891
f2b636e8
JB
2892 features = btrfs_super_incompat_flags(disk_super) &
2893 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2894 if (features) {
05135f59
DS
2895 btrfs_err(fs_info,
2896 "cannot mount because of unsupported optional features (%llx)",
2897 features);
f2b636e8 2898 err = -EINVAL;
16cdcec7 2899 goto fail_alloc;
f2b636e8
JB
2900 }
2901
5d4f98a2 2902 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2903 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2904 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2905 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2906 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2907 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2908
3173a18f 2909 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2910 btrfs_info(fs_info, "has skinny extents");
3173a18f 2911
727011e0
CM
2912 /*
2913 * flag our filesystem as having big metadata blocks if
2914 * they are bigger than the page size
2915 */
09cbfeaf 2916 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2917 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2918 btrfs_info(fs_info,
2919 "flagging fs with big metadata feature");
727011e0
CM
2920 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2921 }
2922
bc3f116f 2923 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2924 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2925 stripesize = sectorsize;
707e8a07 2926 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2927 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2928
da17066c
JM
2929 /* Cache block sizes */
2930 fs_info->nodesize = nodesize;
2931 fs_info->sectorsize = sectorsize;
2932 fs_info->stripesize = stripesize;
2933
bc3f116f
CM
2934 /*
2935 * mixed block groups end up with duplicate but slightly offset
2936 * extent buffers for the same range. It leads to corruptions
2937 */
2938 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2939 (sectorsize != nodesize)) {
05135f59
DS
2940 btrfs_err(fs_info,
2941"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2942 nodesize, sectorsize);
bc3f116f
CM
2943 goto fail_alloc;
2944 }
2945
ceda0864
MX
2946 /*
2947 * Needn't use the lock because there is no other task which will
2948 * update the flag.
2949 */
a6fa6fae 2950 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2951
f2b636e8
JB
2952 features = btrfs_super_compat_ro_flags(disk_super) &
2953 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2954 if (!sb_rdonly(sb) && features) {
05135f59
DS
2955 btrfs_err(fs_info,
2956 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2957 features);
f2b636e8 2958 err = -EINVAL;
16cdcec7 2959 goto fail_alloc;
f2b636e8 2960 }
61d92c32 2961
2a458198
ES
2962 ret = btrfs_init_workqueues(fs_info, fs_devices);
2963 if (ret) {
2964 err = ret;
0dc3b84a
JB
2965 goto fail_sb_buffer;
2966 }
4543df7e 2967
9e11ceee
JK
2968 sb->s_bdi->congested_fn = btrfs_congested_fn;
2969 sb->s_bdi->congested_data = fs_info;
2970 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 2971 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
2972 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2973 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2974
a061fc8d
CM
2975 sb->s_blocksize = sectorsize;
2976 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 2977 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 2978
925baedd 2979 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2980 ret = btrfs_read_sys_array(fs_info);
925baedd 2981 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2982 if (ret) {
05135f59 2983 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2984 goto fail_sb_buffer;
84eed90f 2985 }
0b86a832 2986
84234f3a 2987 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2988 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2989
da17066c 2990 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2991
2ff7e61e 2992 chunk_root->node = read_tree_block(fs_info,
0b86a832 2993 btrfs_super_chunk_root(disk_super),
581c1760 2994 generation, level, NULL);
64c043de
LB
2995 if (IS_ERR(chunk_root->node) ||
2996 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2997 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2998 if (!IS_ERR(chunk_root->node))
2999 free_extent_buffer(chunk_root->node);
95ab1f64 3000 chunk_root->node = NULL;
af31f5e5 3001 goto fail_tree_roots;
83121942 3002 }
5d4f98a2
YZ
3003 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3004 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3005
e17cade2 3006 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 3007 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 3008
5b4aacef 3009 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3010 if (ret) {
05135f59 3011 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3012 goto fail_tree_roots;
2b82032c 3013 }
0b86a832 3014
8dabb742 3015 /*
9b99b115
AJ
3016 * Keep the devid that is marked to be the target device for the
3017 * device replace procedure
8dabb742 3018 */
9b99b115 3019 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3020
a6b0d5c8 3021 if (!fs_devices->latest_bdev) {
05135f59 3022 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3023 goto fail_tree_roots;
3024 }
3025
af31f5e5 3026retry_root_backup:
84234f3a 3027 generation = btrfs_super_generation(disk_super);
581c1760 3028 level = btrfs_super_root_level(disk_super);
0b86a832 3029
2ff7e61e 3030 tree_root->node = read_tree_block(fs_info,
db94535d 3031 btrfs_super_root(disk_super),
581c1760 3032 generation, level, NULL);
64c043de
LB
3033 if (IS_ERR(tree_root->node) ||
3034 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3035 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3036 if (!IS_ERR(tree_root->node))
3037 free_extent_buffer(tree_root->node);
95ab1f64 3038 tree_root->node = NULL;
af31f5e5 3039 goto recovery_tree_root;
83121942 3040 }
af31f5e5 3041
5d4f98a2
YZ
3042 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3043 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3044 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3045
f32e48e9
CR
3046 mutex_lock(&tree_root->objectid_mutex);
3047 ret = btrfs_find_highest_objectid(tree_root,
3048 &tree_root->highest_objectid);
3049 if (ret) {
3050 mutex_unlock(&tree_root->objectid_mutex);
3051 goto recovery_tree_root;
3052 }
3053
3054 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3055
3056 mutex_unlock(&tree_root->objectid_mutex);
3057
6bccf3ab 3058 ret = btrfs_read_roots(fs_info);
4bbcaa64 3059 if (ret)
af31f5e5 3060 goto recovery_tree_root;
f7a81ea4 3061
8929ecfa
YZ
3062 fs_info->generation = generation;
3063 fs_info->last_trans_committed = generation;
8929ecfa 3064
cf90d884
QW
3065 ret = btrfs_verify_dev_extents(fs_info);
3066 if (ret) {
3067 btrfs_err(fs_info,
3068 "failed to verify dev extents against chunks: %d",
3069 ret);
3070 goto fail_block_groups;
3071 }
68310a5e
ID
3072 ret = btrfs_recover_balance(fs_info);
3073 if (ret) {
05135f59 3074 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3075 goto fail_block_groups;
3076 }
3077
733f4fbb
SB
3078 ret = btrfs_init_dev_stats(fs_info);
3079 if (ret) {
05135f59 3080 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3081 goto fail_block_groups;
3082 }
3083
8dabb742
SB
3084 ret = btrfs_init_dev_replace(fs_info);
3085 if (ret) {
05135f59 3086 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3087 goto fail_block_groups;
3088 }
3089
9b99b115 3090 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3091
b7c35e81
AJ
3092 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3093 if (ret) {
05135f59
DS
3094 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3095 ret);
b7c35e81
AJ
3096 goto fail_block_groups;
3097 }
3098
3099 ret = btrfs_sysfs_add_device(fs_devices);
3100 if (ret) {
05135f59
DS
3101 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3102 ret);
b7c35e81
AJ
3103 goto fail_fsdev_sysfs;
3104 }
3105
96f3136e 3106 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3107 if (ret) {
05135f59 3108 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3109 goto fail_fsdev_sysfs;
c59021f8 3110 }
3111
c59021f8 3112 ret = btrfs_init_space_info(fs_info);
3113 if (ret) {
05135f59 3114 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3115 goto fail_sysfs;
c59021f8 3116 }
3117
5b4aacef 3118 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3119 if (ret) {
05135f59 3120 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3121 goto fail_sysfs;
1b1d1f66 3122 }
4330e183 3123
6528b99d 3124 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3125 btrfs_warn(fs_info,
52042d8e 3126 "writable mount is not allowed due to too many missing devices");
2365dd3c 3127 goto fail_sysfs;
292fd7fc 3128 }
9078a3e1 3129
a74a4b97
CM
3130 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3131 "btrfs-cleaner");
57506d50 3132 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3133 goto fail_sysfs;
a74a4b97
CM
3134
3135 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3136 tree_root,
3137 "btrfs-transaction");
57506d50 3138 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3139 goto fail_cleaner;
a74a4b97 3140
583b7231 3141 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3142 !fs_info->fs_devices->rotating) {
583b7231 3143 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3144 }
3145
572d9ab7 3146 /*
01327610 3147 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3148 * not have to wait for transaction commit
3149 */
3150 btrfs_apply_pending_changes(fs_info);
3818aea2 3151
21adbd5c 3152#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3153 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3154 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3155 btrfs_test_opt(fs_info,
21adbd5c
SB
3156 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3157 1 : 0,
3158 fs_info->check_integrity_print_mask);
3159 if (ret)
05135f59
DS
3160 btrfs_warn(fs_info,
3161 "failed to initialize integrity check module: %d",
3162 ret);
21adbd5c
SB
3163 }
3164#endif
bcef60f2
AJ
3165 ret = btrfs_read_qgroup_config(fs_info);
3166 if (ret)
3167 goto fail_trans_kthread;
21adbd5c 3168
fd708b81
JB
3169 if (btrfs_build_ref_tree(fs_info))
3170 btrfs_err(fs_info, "couldn't build ref tree");
3171
96da0919
QW
3172 /* do not make disk changes in broken FS or nologreplay is given */
3173 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3174 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3175 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3176 if (ret) {
63443bf5 3177 err = ret;
28c16cbb 3178 goto fail_qgroup;
79787eaa 3179 }
e02119d5 3180 }
1a40e23b 3181
6bccf3ab 3182 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3183 if (ret)
28c16cbb 3184 goto fail_qgroup;
76dda93c 3185
bc98a42c 3186 if (!sb_rdonly(sb)) {
d68fc57b 3187 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3188 if (ret)
28c16cbb 3189 goto fail_qgroup;
90c711ab
ZB
3190
3191 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3192 ret = btrfs_recover_relocation(tree_root);
90c711ab 3193 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3194 if (ret < 0) {
05135f59
DS
3195 btrfs_warn(fs_info, "failed to recover relocation: %d",
3196 ret);
d7ce5843 3197 err = -EINVAL;
bcef60f2 3198 goto fail_qgroup;
d7ce5843 3199 }
7c2ca468 3200 }
1a40e23b 3201
3de4586c
CM
3202 location.objectid = BTRFS_FS_TREE_OBJECTID;
3203 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3204 location.offset = 0;
3de4586c 3205
3de4586c 3206 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3207 if (IS_ERR(fs_info->fs_root)) {
3208 err = PTR_ERR(fs_info->fs_root);
f50f4353 3209 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3210 goto fail_qgroup;
3140c9a3 3211 }
c289811c 3212
bc98a42c 3213 if (sb_rdonly(sb))
2b6ba629 3214 return 0;
59641015 3215
f8d468a1
OS
3216 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3217 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3218 clear_free_space_tree = 1;
3219 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3220 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3221 btrfs_warn(fs_info, "free space tree is invalid");
3222 clear_free_space_tree = 1;
3223 }
3224
3225 if (clear_free_space_tree) {
f8d468a1
OS
3226 btrfs_info(fs_info, "clearing free space tree");
3227 ret = btrfs_clear_free_space_tree(fs_info);
3228 if (ret) {
3229 btrfs_warn(fs_info,
3230 "failed to clear free space tree: %d", ret);
6bccf3ab 3231 close_ctree(fs_info);
f8d468a1
OS
3232 return ret;
3233 }
3234 }
3235
0b246afa 3236 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3237 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3238 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3239 ret = btrfs_create_free_space_tree(fs_info);
3240 if (ret) {
05135f59
DS
3241 btrfs_warn(fs_info,
3242 "failed to create free space tree: %d", ret);
6bccf3ab 3243 close_ctree(fs_info);
511711af
CM
3244 return ret;
3245 }
3246 }
3247
2b6ba629
ID
3248 down_read(&fs_info->cleanup_work_sem);
3249 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3250 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3251 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3252 close_ctree(fs_info);
2b6ba629
ID
3253 return ret;
3254 }
3255 up_read(&fs_info->cleanup_work_sem);
59641015 3256
2b6ba629
ID
3257 ret = btrfs_resume_balance_async(fs_info);
3258 if (ret) {
05135f59 3259 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3260 close_ctree(fs_info);
2b6ba629 3261 return ret;
e3acc2a6
JB
3262 }
3263
8dabb742
SB
3264 ret = btrfs_resume_dev_replace_async(fs_info);
3265 if (ret) {
05135f59 3266 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3267 close_ctree(fs_info);
8dabb742
SB
3268 return ret;
3269 }
3270
b382a324
JS
3271 btrfs_qgroup_rescan_resume(fs_info);
3272
4bbcaa64 3273 if (!fs_info->uuid_root) {
05135f59 3274 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3275 ret = btrfs_create_uuid_tree(fs_info);
3276 if (ret) {
05135f59
DS
3277 btrfs_warn(fs_info,
3278 "failed to create the UUID tree: %d", ret);
6bccf3ab 3279 close_ctree(fs_info);
f7a81ea4
SB
3280 return ret;
3281 }
0b246afa 3282 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3283 fs_info->generation !=
3284 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3285 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3286 ret = btrfs_check_uuid_tree(fs_info);
3287 if (ret) {
05135f59
DS
3288 btrfs_warn(fs_info,
3289 "failed to check the UUID tree: %d", ret);
6bccf3ab 3290 close_ctree(fs_info);
70f80175
SB
3291 return ret;
3292 }
3293 } else {
afcdd129 3294 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3295 }
afcdd129 3296 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3297
8dcddfa0
QW
3298 /*
3299 * backuproot only affect mount behavior, and if open_ctree succeeded,
3300 * no need to keep the flag
3301 */
3302 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3303
ad2b2c80 3304 return 0;
39279cc3 3305
bcef60f2
AJ
3306fail_qgroup:
3307 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3308fail_trans_kthread:
3309 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3310 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3311 btrfs_free_fs_roots(fs_info);
3f157a2f 3312fail_cleaner:
a74a4b97 3313 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3314
3315 /*
3316 * make sure we're done with the btree inode before we stop our
3317 * kthreads
3318 */
3319 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3320
2365dd3c 3321fail_sysfs:
6618a59b 3322 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3323
b7c35e81
AJ
3324fail_fsdev_sysfs:
3325 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3326
1b1d1f66 3327fail_block_groups:
54067ae9 3328 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3329
3330fail_tree_roots:
3331 free_root_pointers(fs_info, 1);
2b8195bb 3332 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3333
39279cc3 3334fail_sb_buffer:
7abadb64 3335 btrfs_stop_all_workers(fs_info);
5cdd7db6 3336 btrfs_free_block_groups(fs_info);
16cdcec7 3337fail_alloc:
4543df7e 3338fail_iput:
586e46e2
ID
3339 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3340
4543df7e 3341 iput(fs_info->btree_inode);
c404e0dc 3342fail_bio_counter:
7f8d236a 3343 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3344fail_delalloc_bytes:
3345 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3346fail_dirty_metadata_bytes:
3347 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3348fail_srcu:
3349 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3350fail:
53b381b3 3351 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3352 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3353 return err;
af31f5e5
CM
3354
3355recovery_tree_root:
0b246afa 3356 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3357 goto fail_tree_roots;
3358
3359 free_root_pointers(fs_info, 0);
3360
3361 /* don't use the log in recovery mode, it won't be valid */
3362 btrfs_set_super_log_root(disk_super, 0);
3363
3364 /* we can't trust the free space cache either */
3365 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3366
3367 ret = next_root_backup(fs_info, fs_info->super_copy,
3368 &num_backups_tried, &backup_index);
3369 if (ret == -1)
3370 goto fail_block_groups;
3371 goto retry_root_backup;
eb60ceac 3372}
663faf9f 3373ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3374
f2984462
CM
3375static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3376{
f2984462
CM
3377 if (uptodate) {
3378 set_buffer_uptodate(bh);
3379 } else {
442a4f63
SB
3380 struct btrfs_device *device = (struct btrfs_device *)
3381 bh->b_private;
3382
fb456252 3383 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3384 "lost page write due to IO error on %s",
606686ee 3385 rcu_str_deref(device->name));
01327610 3386 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3387 * our own ways of dealing with the IO errors
3388 */
f2984462 3389 clear_buffer_uptodate(bh);
442a4f63 3390 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3391 }
3392 unlock_buffer(bh);
3393 put_bh(bh);
3394}
3395
29c36d72
AJ
3396int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3397 struct buffer_head **bh_ret)
3398{
3399 struct buffer_head *bh;
3400 struct btrfs_super_block *super;
3401 u64 bytenr;
3402
3403 bytenr = btrfs_sb_offset(copy_num);
3404 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3405 return -EINVAL;
3406
9f6d2510 3407 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3408 /*
3409 * If we fail to read from the underlying devices, as of now
3410 * the best option we have is to mark it EIO.
3411 */
3412 if (!bh)
3413 return -EIO;
3414
3415 super = (struct btrfs_super_block *)bh->b_data;
3416 if (btrfs_super_bytenr(super) != bytenr ||
3417 btrfs_super_magic(super) != BTRFS_MAGIC) {
3418 brelse(bh);
3419 return -EINVAL;
3420 }
3421
3422 *bh_ret = bh;
3423 return 0;
3424}
3425
3426
a512bbf8
YZ
3427struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3428{
3429 struct buffer_head *bh;
3430 struct buffer_head *latest = NULL;
3431 struct btrfs_super_block *super;
3432 int i;
3433 u64 transid = 0;
92fc03fb 3434 int ret = -EINVAL;
a512bbf8
YZ
3435
3436 /* we would like to check all the supers, but that would make
3437 * a btrfs mount succeed after a mkfs from a different FS.
3438 * So, we need to add a special mount option to scan for
3439 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3440 */
3441 for (i = 0; i < 1; i++) {
29c36d72
AJ
3442 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3443 if (ret)
a512bbf8
YZ
3444 continue;
3445
3446 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3447
3448 if (!latest || btrfs_super_generation(super) > transid) {
3449 brelse(latest);
3450 latest = bh;
3451 transid = btrfs_super_generation(super);
3452 } else {
3453 brelse(bh);
3454 }
3455 }
92fc03fb
AJ
3456
3457 if (!latest)
3458 return ERR_PTR(ret);
3459
a512bbf8
YZ
3460 return latest;
3461}
3462
4eedeb75 3463/*
abbb3b8e
DS
3464 * Write superblock @sb to the @device. Do not wait for completion, all the
3465 * buffer heads we write are pinned.
4eedeb75 3466 *
abbb3b8e
DS
3467 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3468 * the expected device size at commit time. Note that max_mirrors must be
3469 * same for write and wait phases.
4eedeb75 3470 *
abbb3b8e 3471 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3472 */
a512bbf8 3473static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3474 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3475{
3476 struct buffer_head *bh;
3477 int i;
3478 int ret;
3479 int errors = 0;
3480 u32 crc;
3481 u64 bytenr;
1b9e619c 3482 int op_flags;
a512bbf8
YZ
3483
3484 if (max_mirrors == 0)
3485 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3486
a512bbf8
YZ
3487 for (i = 0; i < max_mirrors; i++) {
3488 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3489 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3490 device->commit_total_bytes)
a512bbf8
YZ
3491 break;
3492
abbb3b8e 3493 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3494
abbb3b8e
DS
3495 crc = ~(u32)0;
3496 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3497 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3498 btrfs_csum_final(crc, sb->csum);
4eedeb75 3499
abbb3b8e 3500 /* One reference for us, and we leave it for the caller */
9f6d2510 3501 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3502 BTRFS_SUPER_INFO_SIZE);
3503 if (!bh) {
3504 btrfs_err(device->fs_info,
3505 "couldn't get super buffer head for bytenr %llu",
3506 bytenr);
3507 errors++;
4eedeb75 3508 continue;
abbb3b8e 3509 }
634554dc 3510
abbb3b8e 3511 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3512
abbb3b8e
DS
3513 /* one reference for submit_bh */
3514 get_bh(bh);
4eedeb75 3515
abbb3b8e
DS
3516 set_buffer_uptodate(bh);
3517 lock_buffer(bh);
3518 bh->b_end_io = btrfs_end_buffer_write_sync;
3519 bh->b_private = device;
a512bbf8 3520
387125fc
CM
3521 /*
3522 * we fua the first super. The others we allow
3523 * to go down lazy.
3524 */
1b9e619c
OS
3525 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3526 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3527 op_flags |= REQ_FUA;
3528 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3529 if (ret)
a512bbf8 3530 errors++;
a512bbf8
YZ
3531 }
3532 return errors < i ? 0 : -1;
3533}
3534
abbb3b8e
DS
3535/*
3536 * Wait for write completion of superblocks done by write_dev_supers,
3537 * @max_mirrors same for write and wait phases.
3538 *
3539 * Return number of errors when buffer head is not found or not marked up to
3540 * date.
3541 */
3542static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3543{
3544 struct buffer_head *bh;
3545 int i;
3546 int errors = 0;
b6a535fa 3547 bool primary_failed = false;
abbb3b8e
DS
3548 u64 bytenr;
3549
3550 if (max_mirrors == 0)
3551 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3552
3553 for (i = 0; i < max_mirrors; i++) {
3554 bytenr = btrfs_sb_offset(i);
3555 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3556 device->commit_total_bytes)
3557 break;
3558
9f6d2510
DS
3559 bh = __find_get_block(device->bdev,
3560 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3561 BTRFS_SUPER_INFO_SIZE);
3562 if (!bh) {
3563 errors++;
b6a535fa
HM
3564 if (i == 0)
3565 primary_failed = true;
abbb3b8e
DS
3566 continue;
3567 }
3568 wait_on_buffer(bh);
b6a535fa 3569 if (!buffer_uptodate(bh)) {
abbb3b8e 3570 errors++;
b6a535fa
HM
3571 if (i == 0)
3572 primary_failed = true;
3573 }
abbb3b8e
DS
3574
3575 /* drop our reference */
3576 brelse(bh);
3577
3578 /* drop the reference from the writing run */
3579 brelse(bh);
3580 }
3581
b6a535fa
HM
3582 /* log error, force error return */
3583 if (primary_failed) {
3584 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3585 device->devid);
3586 return -1;
3587 }
3588
abbb3b8e
DS
3589 return errors < i ? 0 : -1;
3590}
3591
387125fc
CM
3592/*
3593 * endio for the write_dev_flush, this will wake anyone waiting
3594 * for the barrier when it is done
3595 */
4246a0b6 3596static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3597{
e0ae9994 3598 complete(bio->bi_private);
387125fc
CM
3599}
3600
3601/*
4fc6441a
AJ
3602 * Submit a flush request to the device if it supports it. Error handling is
3603 * done in the waiting counterpart.
387125fc 3604 */
4fc6441a 3605static void write_dev_flush(struct btrfs_device *device)
387125fc 3606{
c2a9c7ab 3607 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3608 struct bio *bio = device->flush_bio;
387125fc 3609
c2a9c7ab 3610 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3611 return;
387125fc 3612
e0ae9994 3613 bio_reset(bio);
387125fc 3614 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3615 bio_set_dev(bio, device->bdev);
8d910125 3616 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3617 init_completion(&device->flush_wait);
3618 bio->bi_private = &device->flush_wait;
387125fc 3619
43a01111 3620 btrfsic_submit_bio(bio);
1c3063b6 3621 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3622}
387125fc 3623
4fc6441a
AJ
3624/*
3625 * If the flush bio has been submitted by write_dev_flush, wait for it.
3626 */
8c27cb35 3627static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3628{
4fc6441a 3629 struct bio *bio = device->flush_bio;
387125fc 3630
1c3063b6 3631 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3632 return BLK_STS_OK;
387125fc 3633
1c3063b6 3634 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3635 wait_for_completion_io(&device->flush_wait);
387125fc 3636
8c27cb35 3637 return bio->bi_status;
387125fc 3638}
387125fc 3639
d10b82fe 3640static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3641{
6528b99d 3642 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3643 return -EIO;
387125fc
CM
3644 return 0;
3645}
3646
3647/*
3648 * send an empty flush down to each device in parallel,
3649 * then wait for them
3650 */
3651static int barrier_all_devices(struct btrfs_fs_info *info)
3652{
3653 struct list_head *head;
3654 struct btrfs_device *dev;
5af3e8cc 3655 int errors_wait = 0;
4e4cbee9 3656 blk_status_t ret;
387125fc 3657
1538e6c5 3658 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3659 /* send down all the barriers */
3660 head = &info->fs_devices->devices;
1538e6c5 3661 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3662 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3663 continue;
cea7c8bf 3664 if (!dev->bdev)
387125fc 3665 continue;
e12c9621 3666 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3667 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3668 continue;
3669
4fc6441a 3670 write_dev_flush(dev);
58efbc9f 3671 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3672 }
3673
3674 /* wait for all the barriers */
1538e6c5 3675 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3676 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3677 continue;
387125fc 3678 if (!dev->bdev) {
5af3e8cc 3679 errors_wait++;
387125fc
CM
3680 continue;
3681 }
e12c9621 3682 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3683 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3684 continue;
3685
4fc6441a 3686 ret = wait_dev_flush(dev);
401b41e5
AJ
3687 if (ret) {
3688 dev->last_flush_error = ret;
66b4993e
DS
3689 btrfs_dev_stat_inc_and_print(dev,
3690 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3691 errors_wait++;
401b41e5
AJ
3692 }
3693 }
3694
cea7c8bf 3695 if (errors_wait) {
401b41e5
AJ
3696 /*
3697 * At some point we need the status of all disks
3698 * to arrive at the volume status. So error checking
3699 * is being pushed to a separate loop.
3700 */
d10b82fe 3701 return check_barrier_error(info);
387125fc 3702 }
387125fc
CM
3703 return 0;
3704}
3705
943c6e99
ZL
3706int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3707{
8789f4fe
ZL
3708 int raid_type;
3709 int min_tolerated = INT_MAX;
943c6e99 3710
8789f4fe
ZL
3711 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3712 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3713 min_tolerated = min(min_tolerated,
3714 btrfs_raid_array[BTRFS_RAID_SINGLE].
3715 tolerated_failures);
943c6e99 3716
8789f4fe
ZL
3717 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3718 if (raid_type == BTRFS_RAID_SINGLE)
3719 continue;
41a6e891 3720 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe
ZL
3721 continue;
3722 min_tolerated = min(min_tolerated,
3723 btrfs_raid_array[raid_type].
3724 tolerated_failures);
3725 }
943c6e99 3726
8789f4fe 3727 if (min_tolerated == INT_MAX) {
ab8d0fc4 3728 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3729 min_tolerated = 0;
3730 }
3731
3732 return min_tolerated;
943c6e99
ZL
3733}
3734
eece6a9c 3735int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3736{
e5e9a520 3737 struct list_head *head;
f2984462 3738 struct btrfs_device *dev;
a061fc8d 3739 struct btrfs_super_block *sb;
f2984462 3740 struct btrfs_dev_item *dev_item;
f2984462
CM
3741 int ret;
3742 int do_barriers;
a236aed1
CM
3743 int max_errors;
3744 int total_errors = 0;
a061fc8d 3745 u64 flags;
f2984462 3746
0b246afa 3747 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3748
3749 /*
3750 * max_mirrors == 0 indicates we're from commit_transaction,
3751 * not from fsync where the tree roots in fs_info have not
3752 * been consistent on disk.
3753 */
3754 if (max_mirrors == 0)
3755 backup_super_roots(fs_info);
f2984462 3756
0b246afa 3757 sb = fs_info->super_for_commit;
a061fc8d 3758 dev_item = &sb->dev_item;
e5e9a520 3759
0b246afa
JM
3760 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3761 head = &fs_info->fs_devices->devices;
3762 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3763
5af3e8cc 3764 if (do_barriers) {
0b246afa 3765 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3766 if (ret) {
3767 mutex_unlock(
0b246afa
JM
3768 &fs_info->fs_devices->device_list_mutex);
3769 btrfs_handle_fs_error(fs_info, ret,
3770 "errors while submitting device barriers.");
5af3e8cc
SB
3771 return ret;
3772 }
3773 }
387125fc 3774
1538e6c5 3775 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3776 if (!dev->bdev) {
3777 total_errors++;
3778 continue;
3779 }
e12c9621 3780 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3781 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3782 continue;
3783
2b82032c 3784 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3785 btrfs_set_stack_device_type(dev_item, dev->type);
3786 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3787 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3788 dev->commit_total_bytes);
ce7213c7
MX
3789 btrfs_set_stack_device_bytes_used(dev_item,
3790 dev->commit_bytes_used);
a061fc8d
CM
3791 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3792 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3793 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3794 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3795 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3796 BTRFS_FSID_SIZE);
a512bbf8 3797
a061fc8d
CM
3798 flags = btrfs_super_flags(sb);
3799 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3800
75cb857d
QW
3801 ret = btrfs_validate_write_super(fs_info, sb);
3802 if (ret < 0) {
3803 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3804 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3805 "unexpected superblock corruption detected");
3806 return -EUCLEAN;
3807 }
3808
abbb3b8e 3809 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3810 if (ret)
3811 total_errors++;
f2984462 3812 }
a236aed1 3813 if (total_errors > max_errors) {
0b246afa
JM
3814 btrfs_err(fs_info, "%d errors while writing supers",
3815 total_errors);
3816 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3817
9d565ba4 3818 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3819 btrfs_handle_fs_error(fs_info, -EIO,
3820 "%d errors while writing supers",
3821 total_errors);
9d565ba4 3822 return -EIO;
a236aed1 3823 }
f2984462 3824
a512bbf8 3825 total_errors = 0;
1538e6c5 3826 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3827 if (!dev->bdev)
3828 continue;
e12c9621 3829 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3830 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3831 continue;
3832
abbb3b8e 3833 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3834 if (ret)
3835 total_errors++;
f2984462 3836 }
0b246afa 3837 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3838 if (total_errors > max_errors) {
0b246afa
JM
3839 btrfs_handle_fs_error(fs_info, -EIO,
3840 "%d errors while writing supers",
3841 total_errors);
79787eaa 3842 return -EIO;
a236aed1 3843 }
f2984462
CM
3844 return 0;
3845}
3846
cb517eab
MX
3847/* Drop a fs root from the radix tree and free it. */
3848void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3849 struct btrfs_root *root)
2619ba1f 3850{
4df27c4d 3851 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3852 radix_tree_delete(&fs_info->fs_roots_radix,
3853 (unsigned long)root->root_key.objectid);
4df27c4d 3854 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3855
3856 if (btrfs_root_refs(&root->root_item) == 0)
3857 synchronize_srcu(&fs_info->subvol_srcu);
3858
1c1ea4f7 3859 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3860 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3861 if (root->reloc_root) {
3862 free_extent_buffer(root->reloc_root->node);
3863 free_extent_buffer(root->reloc_root->commit_root);
3864 btrfs_put_fs_root(root->reloc_root);
3865 root->reloc_root = NULL;
3866 }
3867 }
3321719e 3868
faa2dbf0
JB
3869 if (root->free_ino_pinned)
3870 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3871 if (root->free_ino_ctl)
3872 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3873 btrfs_free_fs_root(root);
4df27c4d
YZ
3874}
3875
84db5ccf 3876void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3877{
57cdc8db 3878 iput(root->ino_cache_inode);
4df27c4d 3879 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3880 if (root->anon_dev)
3881 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3882 if (root->subv_writers)
3883 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3884 free_extent_buffer(root->node);
3885 free_extent_buffer(root->commit_root);
581bb050
LZ
3886 kfree(root->free_ino_ctl);
3887 kfree(root->free_ino_pinned);
b0feb9d9 3888 btrfs_put_fs_root(root);
2619ba1f
CM
3889}
3890
c146afad 3891int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3892{
c146afad
YZ
3893 u64 root_objectid = 0;
3894 struct btrfs_root *gang[8];
65d33fd7
QW
3895 int i = 0;
3896 int err = 0;
3897 unsigned int ret = 0;
3898 int index;
e089f05c 3899
c146afad 3900 while (1) {
65d33fd7 3901 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3902 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3903 (void **)gang, root_objectid,
3904 ARRAY_SIZE(gang));
65d33fd7
QW
3905 if (!ret) {
3906 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3907 break;
65d33fd7 3908 }
5d4f98a2 3909 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3910
c146afad 3911 for (i = 0; i < ret; i++) {
65d33fd7
QW
3912 /* Avoid to grab roots in dead_roots */
3913 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3914 gang[i] = NULL;
3915 continue;
3916 }
3917 /* grab all the search result for later use */
3918 gang[i] = btrfs_grab_fs_root(gang[i]);
3919 }
3920 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3921
65d33fd7
QW
3922 for (i = 0; i < ret; i++) {
3923 if (!gang[i])
3924 continue;
c146afad 3925 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3926 err = btrfs_orphan_cleanup(gang[i]);
3927 if (err)
65d33fd7
QW
3928 break;
3929 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3930 }
3931 root_objectid++;
3932 }
65d33fd7
QW
3933
3934 /* release the uncleaned roots due to error */
3935 for (; i < ret; i++) {
3936 if (gang[i])
3937 btrfs_put_fs_root(gang[i]);
3938 }
3939 return err;
c146afad 3940}
a2135011 3941
6bccf3ab 3942int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3943{
6bccf3ab 3944 struct btrfs_root *root = fs_info->tree_root;
c146afad 3945 struct btrfs_trans_handle *trans;
a74a4b97 3946
0b246afa 3947 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3948 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3949 mutex_unlock(&fs_info->cleaner_mutex);
3950 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3951
3952 /* wait until ongoing cleanup work done */
0b246afa
JM
3953 down_write(&fs_info->cleanup_work_sem);
3954 up_write(&fs_info->cleanup_work_sem);
c71bf099 3955
7a7eaa40 3956 trans = btrfs_join_transaction(root);
3612b495
TI
3957 if (IS_ERR(trans))
3958 return PTR_ERR(trans);
3a45bb20 3959 return btrfs_commit_transaction(trans);
c146afad
YZ
3960}
3961
6bccf3ab 3962void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3963{
c146afad
YZ
3964 int ret;
3965
afcdd129 3966 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3967 /*
3968 * We don't want the cleaner to start new transactions, add more delayed
3969 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3970 * because that frees the task_struct, and the transaction kthread might
3971 * still try to wake up the cleaner.
3972 */
3973 kthread_park(fs_info->cleaner_kthread);
c146afad 3974
7343dd61 3975 /* wait for the qgroup rescan worker to stop */
d06f23d6 3976 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3977
803b2f54
SB
3978 /* wait for the uuid_scan task to finish */
3979 down(&fs_info->uuid_tree_rescan_sem);
3980 /* avoid complains from lockdep et al., set sem back to initial state */
3981 up(&fs_info->uuid_tree_rescan_sem);
3982
837d5b6e 3983 /* pause restriper - we want to resume on mount */
aa1b8cd4 3984 btrfs_pause_balance(fs_info);
837d5b6e 3985
8dabb742
SB
3986 btrfs_dev_replace_suspend_for_unmount(fs_info);
3987
aa1b8cd4 3988 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3989
3990 /* wait for any defraggers to finish */
3991 wait_event(fs_info->transaction_wait,
3992 (atomic_read(&fs_info->defrag_running) == 0));
3993
3994 /* clear out the rbtree of defraggable inodes */
26176e7c 3995 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3996
21c7e756
MX
3997 cancel_work_sync(&fs_info->async_reclaim_work);
3998
bc98a42c 3999 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4000 /*
d6fd0ae2
OS
4001 * The cleaner kthread is stopped, so do one final pass over
4002 * unused block groups.
e44163e1 4003 */
0b246afa 4004 btrfs_delete_unused_bgs(fs_info);
e44163e1 4005
6bccf3ab 4006 ret = btrfs_commit_super(fs_info);
acce952b 4007 if (ret)
04892340 4008 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4009 }
4010
af722733
LB
4011 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4012 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4013 btrfs_error_commit_super(fs_info);
0f7d52f4 4014
e3029d9f
AV
4015 kthread_stop(fs_info->transaction_kthread);
4016 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4017
e187831e 4018 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4019 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4020
04892340 4021 btrfs_free_qgroup_config(fs_info);
fe816d0f 4022 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4023
963d678b 4024 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4025 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4026 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4027 }
bcc63abb 4028
6618a59b 4029 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4030 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4031
faa2dbf0 4032 btrfs_free_fs_roots(fs_info);
d10c5f31 4033
1a4319cc
LB
4034 btrfs_put_block_group_cache(fs_info);
4035
de348ee0
WS
4036 /*
4037 * we must make sure there is not any read request to
4038 * submit after we stopping all workers.
4039 */
4040 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4041 btrfs_stop_all_workers(fs_info);
4042
5cdd7db6
FM
4043 btrfs_free_block_groups(fs_info);
4044
afcdd129 4045 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 4046 free_root_pointers(fs_info, 1);
9ad6b7bc 4047
13e6c37b 4048 iput(fs_info->btree_inode);
d6bfde87 4049
21adbd5c 4050#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4051 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4052 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4053#endif
4054
dfe25020 4055 btrfs_close_devices(fs_info->fs_devices);
0b86a832 4056 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 4057
e2d84521 4058 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4059 percpu_counter_destroy(&fs_info->delalloc_bytes);
7f8d236a 4060 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4061 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4062
53b381b3 4063 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4064 btrfs_free_ref_cache(fs_info);
53b381b3 4065
04216820
FM
4066 while (!list_empty(&fs_info->pinned_chunks)) {
4067 struct extent_map *em;
4068
4069 em = list_first_entry(&fs_info->pinned_chunks,
4070 struct extent_map, list);
4071 list_del_init(&em->list);
4072 free_extent_map(em);
4073 }
eb60ceac
CM
4074}
4075
b9fab919
CM
4076int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4077 int atomic)
5f39d397 4078{
1259ab75 4079 int ret;
727011e0 4080 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4081
0b32f4bb 4082 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4083 if (!ret)
4084 return ret;
4085
4086 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4087 parent_transid, atomic);
4088 if (ret == -EAGAIN)
4089 return ret;
1259ab75 4090 return !ret;
5f39d397
CM
4091}
4092
5f39d397
CM
4093void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4094{
0b246afa 4095 struct btrfs_fs_info *fs_info;
06ea65a3 4096 struct btrfs_root *root;
5f39d397 4097 u64 transid = btrfs_header_generation(buf);
b9473439 4098 int was_dirty;
b4ce94de 4099
06ea65a3
JB
4100#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4101 /*
4102 * This is a fast path so only do this check if we have sanity tests
52042d8e 4103 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4104 * outside of the sanity tests.
4105 */
b0132a3b 4106 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4107 return;
4108#endif
4109 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4110 fs_info = root->fs_info;
b9447ef8 4111 btrfs_assert_tree_locked(buf);
0b246afa 4112 if (transid != fs_info->generation)
5d163e0e 4113 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4114 buf->start, transid, fs_info->generation);
0b32f4bb 4115 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4116 if (!was_dirty)
104b4e51
NB
4117 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4118 buf->len,
4119 fs_info->dirty_metadata_batch);
1f21ef0a 4120#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4121 /*
4122 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4123 * but item data not updated.
4124 * So here we should only check item pointers, not item data.
4125 */
4126 if (btrfs_header_level(buf) == 0 &&
2f659546 4127 btrfs_check_leaf_relaxed(fs_info, buf)) {
a4f78750 4128 btrfs_print_leaf(buf);
1f21ef0a
FM
4129 ASSERT(0);
4130 }
4131#endif
eb60ceac
CM
4132}
4133
2ff7e61e 4134static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4135 int flush_delayed)
16cdcec7
MX
4136{
4137 /*
4138 * looks as though older kernels can get into trouble with
4139 * this code, they end up stuck in balance_dirty_pages forever
4140 */
e2d84521 4141 int ret;
16cdcec7
MX
4142
4143 if (current->flags & PF_MEMALLOC)
4144 return;
4145
b53d3f5d 4146 if (flush_delayed)
2ff7e61e 4147 btrfs_balance_delayed_items(fs_info);
16cdcec7 4148
d814a491
EL
4149 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4150 BTRFS_DIRTY_METADATA_THRESH,
4151 fs_info->dirty_metadata_batch);
e2d84521 4152 if (ret > 0) {
0b246afa 4153 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4154 }
16cdcec7
MX
4155}
4156
2ff7e61e 4157void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4158{
2ff7e61e 4159 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4160}
585ad2c3 4161
2ff7e61e 4162void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4163{
2ff7e61e 4164 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4165}
6b80053d 4166
581c1760
QW
4167int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4168 struct btrfs_key *first_key)
6b80053d 4169{
727011e0 4170 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
4171 struct btrfs_fs_info *fs_info = root->fs_info;
4172
581c1760
QW
4173 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4174 level, first_key);
6b80053d 4175}
0da5468f 4176
2ff7e61e 4177static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4178{
fe816d0f
NB
4179 /* cleanup FS via transaction */
4180 btrfs_cleanup_transaction(fs_info);
4181
0b246afa 4182 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4183 btrfs_run_delayed_iputs(fs_info);
0b246afa 4184 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4185
0b246afa
JM
4186 down_write(&fs_info->cleanup_work_sem);
4187 up_write(&fs_info->cleanup_work_sem);
acce952b 4188}
4189
143bede5 4190static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4191{
acce952b 4192 struct btrfs_ordered_extent *ordered;
acce952b 4193
199c2a9c 4194 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4195 /*
4196 * This will just short circuit the ordered completion stuff which will
4197 * make sure the ordered extent gets properly cleaned up.
4198 */
199c2a9c 4199 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4200 root_extent_list)
4201 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4202 spin_unlock(&root->ordered_extent_lock);
4203}
4204
4205static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4206{
4207 struct btrfs_root *root;
4208 struct list_head splice;
4209
4210 INIT_LIST_HEAD(&splice);
4211
4212 spin_lock(&fs_info->ordered_root_lock);
4213 list_splice_init(&fs_info->ordered_roots, &splice);
4214 while (!list_empty(&splice)) {
4215 root = list_first_entry(&splice, struct btrfs_root,
4216 ordered_root);
1de2cfde
JB
4217 list_move_tail(&root->ordered_root,
4218 &fs_info->ordered_roots);
199c2a9c 4219
2a85d9ca 4220 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4221 btrfs_destroy_ordered_extents(root);
4222
2a85d9ca
LB
4223 cond_resched();
4224 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4225 }
4226 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4227
4228 /*
4229 * We need this here because if we've been flipped read-only we won't
4230 * get sync() from the umount, so we need to make sure any ordered
4231 * extents that haven't had their dirty pages IO start writeout yet
4232 * actually get run and error out properly.
4233 */
4234 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4235}
4236
35a3621b 4237static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4238 struct btrfs_fs_info *fs_info)
acce952b 4239{
4240 struct rb_node *node;
4241 struct btrfs_delayed_ref_root *delayed_refs;
4242 struct btrfs_delayed_ref_node *ref;
4243 int ret = 0;
4244
4245 delayed_refs = &trans->delayed_refs;
4246
4247 spin_lock(&delayed_refs->lock);
d7df2c79 4248 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4249 spin_unlock(&delayed_refs->lock);
0b246afa 4250 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4251 return ret;
4252 }
4253
5c9d028b 4254 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4255 struct btrfs_delayed_ref_head *head;
0e0adbcf 4256 struct rb_node *n;
e78417d1 4257 bool pin_bytes = false;
acce952b 4258
d7df2c79
JB
4259 head = rb_entry(node, struct btrfs_delayed_ref_head,
4260 href_node);
3069bd26 4261 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4262 continue;
3069bd26 4263
d7df2c79 4264 spin_lock(&head->lock);
e3d03965 4265 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4266 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4267 ref_node);
d7df2c79 4268 ref->in_tree = 0;
e3d03965 4269 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4270 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4271 if (!list_empty(&ref->add_list))
4272 list_del(&ref->add_list);
d7df2c79
JB
4273 atomic_dec(&delayed_refs->num_entries);
4274 btrfs_put_delayed_ref(ref);
e78417d1 4275 }
d7df2c79
JB
4276 if (head->must_insert_reserved)
4277 pin_bytes = true;
4278 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4279 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4280 spin_unlock(&head->lock);
4281 spin_unlock(&delayed_refs->lock);
4282 mutex_unlock(&head->mutex);
acce952b 4283
d7df2c79 4284 if (pin_bytes)
d278850e
JB
4285 btrfs_pin_extent(fs_info, head->bytenr,
4286 head->num_bytes, 1);
31890da0 4287 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4288 btrfs_put_delayed_ref_head(head);
acce952b 4289 cond_resched();
4290 spin_lock(&delayed_refs->lock);
4291 }
4292
4293 spin_unlock(&delayed_refs->lock);
4294
4295 return ret;
4296}
4297
143bede5 4298static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4299{
4300 struct btrfs_inode *btrfs_inode;
4301 struct list_head splice;
4302
4303 INIT_LIST_HEAD(&splice);
4304
eb73c1b7
MX
4305 spin_lock(&root->delalloc_lock);
4306 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4307
4308 while (!list_empty(&splice)) {
fe816d0f 4309 struct inode *inode = NULL;
eb73c1b7
MX
4310 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4311 delalloc_inodes);
fe816d0f 4312 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4313 spin_unlock(&root->delalloc_lock);
acce952b 4314
fe816d0f
NB
4315 /*
4316 * Make sure we get a live inode and that it'll not disappear
4317 * meanwhile.
4318 */
4319 inode = igrab(&btrfs_inode->vfs_inode);
4320 if (inode) {
4321 invalidate_inode_pages2(inode->i_mapping);
4322 iput(inode);
4323 }
eb73c1b7 4324 spin_lock(&root->delalloc_lock);
acce952b 4325 }
eb73c1b7
MX
4326 spin_unlock(&root->delalloc_lock);
4327}
4328
4329static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4330{
4331 struct btrfs_root *root;
4332 struct list_head splice;
4333
4334 INIT_LIST_HEAD(&splice);
4335
4336 spin_lock(&fs_info->delalloc_root_lock);
4337 list_splice_init(&fs_info->delalloc_roots, &splice);
4338 while (!list_empty(&splice)) {
4339 root = list_first_entry(&splice, struct btrfs_root,
4340 delalloc_root);
eb73c1b7
MX
4341 root = btrfs_grab_fs_root(root);
4342 BUG_ON(!root);
4343 spin_unlock(&fs_info->delalloc_root_lock);
4344
4345 btrfs_destroy_delalloc_inodes(root);
4346 btrfs_put_fs_root(root);
4347
4348 spin_lock(&fs_info->delalloc_root_lock);
4349 }
4350 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4351}
4352
2ff7e61e 4353static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4354 struct extent_io_tree *dirty_pages,
4355 int mark)
4356{
4357 int ret;
acce952b 4358 struct extent_buffer *eb;
4359 u64 start = 0;
4360 u64 end;
acce952b 4361
4362 while (1) {
4363 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4364 mark, NULL);
acce952b 4365 if (ret)
4366 break;
4367
91166212 4368 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4369 while (start <= end) {
0b246afa
JM
4370 eb = find_extent_buffer(fs_info, start);
4371 start += fs_info->nodesize;
fd8b2b61 4372 if (!eb)
acce952b 4373 continue;
fd8b2b61 4374 wait_on_extent_buffer_writeback(eb);
acce952b 4375
fd8b2b61
JB
4376 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4377 &eb->bflags))
4378 clear_extent_buffer_dirty(eb);
4379 free_extent_buffer_stale(eb);
acce952b 4380 }
4381 }
4382
4383 return ret;
4384}
4385
2ff7e61e 4386static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4387 struct extent_io_tree *pinned_extents)
4388{
4389 struct extent_io_tree *unpin;
4390 u64 start;
4391 u64 end;
4392 int ret;
ed0eaa14 4393 bool loop = true;
acce952b 4394
4395 unpin = pinned_extents;
ed0eaa14 4396again:
acce952b 4397 while (1) {
0e6ec385
FM
4398 struct extent_state *cached_state = NULL;
4399
fcd5e742
LF
4400 /*
4401 * The btrfs_finish_extent_commit() may get the same range as
4402 * ours between find_first_extent_bit and clear_extent_dirty.
4403 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4404 * the same extent range.
4405 */
4406 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4407 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4408 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4409 if (ret) {
4410 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4411 break;
fcd5e742 4412 }
acce952b 4413
0e6ec385
FM
4414 clear_extent_dirty(unpin, start, end, &cached_state);
4415 free_extent_state(cached_state);
2ff7e61e 4416 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4417 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4418 cond_resched();
4419 }
4420
ed0eaa14 4421 if (loop) {
0b246afa
JM
4422 if (unpin == &fs_info->freed_extents[0])
4423 unpin = &fs_info->freed_extents[1];
ed0eaa14 4424 else
0b246afa 4425 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4426 loop = false;
4427 goto again;
4428 }
4429
acce952b 4430 return 0;
4431}
4432
c79a1751
LB
4433static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4434{
4435 struct inode *inode;
4436
4437 inode = cache->io_ctl.inode;
4438 if (inode) {
4439 invalidate_inode_pages2(inode->i_mapping);
4440 BTRFS_I(inode)->generation = 0;
4441 cache->io_ctl.inode = NULL;
4442 iput(inode);
4443 }
4444 btrfs_put_block_group(cache);
4445}
4446
4447void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4448 struct btrfs_fs_info *fs_info)
c79a1751
LB
4449{
4450 struct btrfs_block_group_cache *cache;
4451
4452 spin_lock(&cur_trans->dirty_bgs_lock);
4453 while (!list_empty(&cur_trans->dirty_bgs)) {
4454 cache = list_first_entry(&cur_trans->dirty_bgs,
4455 struct btrfs_block_group_cache,
4456 dirty_list);
c79a1751
LB
4457
4458 if (!list_empty(&cache->io_list)) {
4459 spin_unlock(&cur_trans->dirty_bgs_lock);
4460 list_del_init(&cache->io_list);
4461 btrfs_cleanup_bg_io(cache);
4462 spin_lock(&cur_trans->dirty_bgs_lock);
4463 }
4464
4465 list_del_init(&cache->dirty_list);
4466 spin_lock(&cache->lock);
4467 cache->disk_cache_state = BTRFS_DC_ERROR;
4468 spin_unlock(&cache->lock);
4469
4470 spin_unlock(&cur_trans->dirty_bgs_lock);
4471 btrfs_put_block_group(cache);
ba2c4d4e 4472 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4473 spin_lock(&cur_trans->dirty_bgs_lock);
4474 }
4475 spin_unlock(&cur_trans->dirty_bgs_lock);
4476
45ae2c18
NB
4477 /*
4478 * Refer to the definition of io_bgs member for details why it's safe
4479 * to use it without any locking
4480 */
c79a1751
LB
4481 while (!list_empty(&cur_trans->io_bgs)) {
4482 cache = list_first_entry(&cur_trans->io_bgs,
4483 struct btrfs_block_group_cache,
4484 io_list);
c79a1751
LB
4485
4486 list_del_init(&cache->io_list);
4487 spin_lock(&cache->lock);
4488 cache->disk_cache_state = BTRFS_DC_ERROR;
4489 spin_unlock(&cache->lock);
4490 btrfs_cleanup_bg_io(cache);
4491 }
4492}
4493
49b25e05 4494void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4495 struct btrfs_fs_info *fs_info)
49b25e05 4496{
2ff7e61e 4497 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4498 ASSERT(list_empty(&cur_trans->dirty_bgs));
4499 ASSERT(list_empty(&cur_trans->io_bgs));
4500
2ff7e61e 4501 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4502
4a9d8bde 4503 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4504 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4505
4a9d8bde 4506 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4507 wake_up(&fs_info->transaction_wait);
49b25e05 4508
ccdf9b30
JM
4509 btrfs_destroy_delayed_inodes(fs_info);
4510 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4511
2ff7e61e 4512 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4513 EXTENT_DIRTY);
2ff7e61e 4514 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4515 fs_info->pinned_extents);
49b25e05 4516
4a9d8bde
MX
4517 cur_trans->state =TRANS_STATE_COMPLETED;
4518 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4519}
4520
2ff7e61e 4521static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4522{
4523 struct btrfs_transaction *t;
acce952b 4524
0b246afa 4525 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4526
0b246afa
JM
4527 spin_lock(&fs_info->trans_lock);
4528 while (!list_empty(&fs_info->trans_list)) {
4529 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4530 struct btrfs_transaction, list);
4531 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4532 refcount_inc(&t->use_count);
0b246afa 4533 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4534 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4535 btrfs_put_transaction(t);
0b246afa 4536 spin_lock(&fs_info->trans_lock);
724e2315
JB
4537 continue;
4538 }
0b246afa 4539 if (t == fs_info->running_transaction) {
724e2315 4540 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4541 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4542 /*
4543 * We wait for 0 num_writers since we don't hold a trans
4544 * handle open currently for this transaction.
4545 */
4546 wait_event(t->writer_wait,
4547 atomic_read(&t->num_writers) == 0);
4548 } else {
0b246afa 4549 spin_unlock(&fs_info->trans_lock);
724e2315 4550 }
2ff7e61e 4551 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4552
0b246afa
JM
4553 spin_lock(&fs_info->trans_lock);
4554 if (t == fs_info->running_transaction)
4555 fs_info->running_transaction = NULL;
acce952b 4556 list_del_init(&t->list);
0b246afa 4557 spin_unlock(&fs_info->trans_lock);
acce952b 4558
724e2315 4559 btrfs_put_transaction(t);
2ff7e61e 4560 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4561 spin_lock(&fs_info->trans_lock);
724e2315 4562 }
0b246afa
JM
4563 spin_unlock(&fs_info->trans_lock);
4564 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4565 btrfs_destroy_delayed_inodes(fs_info);
4566 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4567 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4568 btrfs_destroy_all_delalloc_inodes(fs_info);
4569 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4570
4571 return 0;
4572}
4573
e8c9f186 4574static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4575 /* mandatory callbacks */
0b86a832 4576 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4577 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4578};