]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: Verify that every chunk has corresponding block group at mount time
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
f361bf4a 19#include <linux/sched/signal.h>
edbd8d4e 20#include <linux/pagemap.h>
ec44a35c 21#include <linux/writeback.h>
21af804c 22#include <linux/blkdev.h>
b7a9f29f 23#include <linux/sort.h>
4184ea7f 24#include <linux/rcupdate.h>
817d52f8 25#include <linux/kthread.h>
5a0e3ad6 26#include <linux/slab.h>
dff51cd1 27#include <linux/ratelimit.h>
b150a4f1 28#include <linux/percpu_counter.h>
69fe2d75 29#include <linux/lockdep.h>
74493f7a 30#include "hash.h"
995946dd 31#include "tree-log.h"
fec577fb
CM
32#include "disk-io.h"
33#include "print-tree.h"
0b86a832 34#include "volumes.h"
53b381b3 35#include "raid56.h"
925baedd 36#include "locking.h"
fa9c0d79 37#include "free-space-cache.h"
1e144fb8 38#include "free-space-tree.h"
3fed40cc 39#include "math.h"
6ab0a202 40#include "sysfs.h"
fcebe456 41#include "qgroup.h"
fd708b81 42#include "ref-verify.h"
fec577fb 43
709c0486
AJ
44#undef SCRAMBLE_DELAYED_REFS
45
9e622d6b
MX
46/*
47 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49 * if we really need one.
50 *
0e4f8f88
CM
51 * CHUNK_ALLOC_LIMITED means to only try and allocate one
52 * if we have very few chunks already allocated. This is
53 * used as part of the clustering code to help make sure
54 * we have a good pool of storage to cluster in, without
55 * filling the FS with empty chunks
56 *
9e622d6b
MX
57 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 *
0e4f8f88
CM
59 */
60enum {
61 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
62 CHUNK_ALLOC_LIMITED = 1,
63 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
64};
65
5d4f98a2 66static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 67 struct btrfs_fs_info *fs_info,
c682f9b3 68 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
c682f9b3 71 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
72static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 76 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 81 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 84 int level, struct btrfs_key *ins);
6a63209f 85static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 86 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 87 int force);
11833d66
YZ
88static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
ab8d0fc4
JM
90static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 92 int dump_block_groups);
5d80366e
JB
93static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94 u64 num_bytes);
957780eb
JB
95static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96 struct btrfs_space_info *space_info,
97 u64 num_bytes);
98static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99 struct btrfs_space_info *space_info,
100 u64 num_bytes);
6a63209f 101
817d52f8
JB
102static noinline int
103block_group_cache_done(struct btrfs_block_group_cache *cache)
104{
105 smp_mb();
36cce922
JB
106 return cache->cached == BTRFS_CACHE_FINISHED ||
107 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
108}
109
0f9dd46c
JB
110static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111{
112 return (cache->flags & bits) == bits;
113}
114
758f2dfc 115void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
116{
117 atomic_inc(&cache->count);
118}
119
120void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121{
f0486c68
YZ
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
0966a7b1
QW
125
126 /*
127 * If not empty, someone is still holding mutex of
128 * full_stripe_lock, which can only be released by caller.
129 * And it will definitely cause use-after-free when caller
130 * tries to release full stripe lock.
131 *
132 * No better way to resolve, but only to warn.
133 */
134 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 135 kfree(cache->free_space_ctl);
11dfe35a 136 kfree(cache);
f0486c68 137 }
11dfe35a
JB
138}
139
0f9dd46c
JB
140/*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
b2950863 144static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
145 struct btrfs_block_group_cache *block_group)
146{
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
a1897fdd
LB
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
0f9dd46c
JB
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178}
179
180/*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184static struct btrfs_block_group_cache *
185block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187{
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
a1897fdd 216 if (ret) {
11dfe35a 217 btrfs_get_block_group(ret);
a1897fdd
LB
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
0f9dd46c
JB
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224}
225
2ff7e61e 226static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 227 u64 start, u64 num_bytes)
817d52f8 228{
11833d66 229 u64 end = start + num_bytes - 1;
0b246afa 230 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 231 start, end, EXTENT_UPTODATE);
0b246afa 232 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 233 start, end, EXTENT_UPTODATE);
11833d66
YZ
234 return 0;
235}
817d52f8 236
2ff7e61e 237static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
238 struct btrfs_block_group_cache *cache)
239{
240 u64 start, end;
817d52f8 241
11833d66
YZ
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
0b246afa 245 clear_extent_bits(&fs_info->freed_extents[0],
91166212 246 start, end, EXTENT_UPTODATE);
0b246afa 247 clear_extent_bits(&fs_info->freed_extents[1],
91166212 248 start, end, EXTENT_UPTODATE);
817d52f8
JB
249}
250
2ff7e61e 251static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 252 struct btrfs_block_group_cache *cache)
817d52f8 253{
817d52f8
JB
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
06b2331f
YZ
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
2ff7e61e 262 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 263 stripe_len);
835d974f
JB
264 if (ret)
265 return ret;
06b2331f
YZ
266 }
267
817d52f8
JB
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
0b246afa 270 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
ab8d0fc4 271 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
272 if (ret)
273 return ret;
11833d66 274
817d52f8 275 while (nr--) {
51bf5f0b
JB
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
2ff7e61e 296 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
817d52f8 301 }
11833d66 302
817d52f8
JB
303 kfree(logical);
304 }
817d52f8
JB
305 return 0;
306}
307
11833d66
YZ
308static struct btrfs_caching_control *
309get_caching_control(struct btrfs_block_group_cache *cache)
310{
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
dde5abee
JB
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
11833d66
YZ
316 return NULL;
317 }
318
319 ctl = cache->caching_ctl;
1e4f4714 320 refcount_inc(&ctl->count);
11833d66
YZ
321 spin_unlock(&cache->lock);
322 return ctl;
323}
324
325static void put_caching_control(struct btrfs_caching_control *ctl)
326{
1e4f4714 327 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
328 kfree(ctl);
329}
330
d0bd4560 331#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 332static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 333{
2ff7e61e 334 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 338 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
339 u64 step = chunk << 1;
340
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
348 }
349}
350#endif
351
0f9dd46c
JB
352/*
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
356 */
a5ed9182
OS
357u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 359{
817d52f8 360 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
361 int ret;
362
363 while (start < end) {
11833d66 364 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 365 &extent_start, &extent_end,
e6138876
JB
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
0f9dd46c
JB
368 if (ret)
369 break;
370
06b2331f 371 if (extent_start <= start) {
0f9dd46c
JB
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
817d52f8 375 total_added += size;
ea6a478e
JB
376 ret = btrfs_add_free_space(block_group, start,
377 size);
79787eaa 378 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
379 start = extent_end + 1;
380 } else {
381 break;
382 }
383 }
384
385 if (start < end) {
386 size = end - start;
817d52f8 387 total_added += size;
ea6a478e 388 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 389 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
390 }
391
817d52f8 392 return total_added;
0f9dd46c
JB
393}
394
73fa48b6 395static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 396{
0b246afa
JM
397 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398 struct btrfs_fs_info *fs_info = block_group->fs_info;
399 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 400 struct btrfs_path *path;
5f39d397 401 struct extent_buffer *leaf;
11833d66 402 struct btrfs_key key;
817d52f8 403 u64 total_found = 0;
11833d66
YZ
404 u64 last = 0;
405 u32 nritems;
73fa48b6 406 int ret;
d0bd4560 407 bool wakeup = true;
f510cfec 408
e37c9e69
CM
409 path = btrfs_alloc_path();
410 if (!path)
73fa48b6 411 return -ENOMEM;
7d7d6068 412
817d52f8 413 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 414
d0bd4560
JB
415#ifdef CONFIG_BTRFS_DEBUG
416 /*
417 * If we're fragmenting we don't want to make anybody think we can
418 * allocate from this block group until we've had a chance to fragment
419 * the free space.
420 */
2ff7e61e 421 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
422 wakeup = false;
423#endif
5cd57b2c 424 /*
817d52f8
JB
425 * We don't want to deadlock with somebody trying to allocate a new
426 * extent for the extent root while also trying to search the extent
427 * root to add free space. So we skip locking and search the commit
428 * root, since its read-only
5cd57b2c
CM
429 */
430 path->skip_locking = 1;
817d52f8 431 path->search_commit_root = 1;
e4058b54 432 path->reada = READA_FORWARD;
817d52f8 433
e4404d6e 434 key.objectid = last;
e37c9e69 435 key.offset = 0;
11833d66 436 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 437
52ee28d2 438next:
11833d66 439 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 440 if (ret < 0)
73fa48b6 441 goto out;
a512bbf8 442
11833d66
YZ
443 leaf = path->nodes[0];
444 nritems = btrfs_header_nritems(leaf);
445
d397712b 446 while (1) {
7841cb28 447 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 448 last = (u64)-1;
817d52f8 449 break;
f25784b3 450 }
817d52f8 451
11833d66
YZ
452 if (path->slots[0] < nritems) {
453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454 } else {
455 ret = find_next_key(path, 0, &key);
456 if (ret)
e37c9e69 457 break;
817d52f8 458
c9ea7b24 459 if (need_resched() ||
9e351cc8 460 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
461 if (wakeup)
462 caching_ctl->progress = last;
ff5714cc 463 btrfs_release_path(path);
9e351cc8 464 up_read(&fs_info->commit_root_sem);
589d8ade 465 mutex_unlock(&caching_ctl->mutex);
11833d66 466 cond_resched();
73fa48b6
OS
467 mutex_lock(&caching_ctl->mutex);
468 down_read(&fs_info->commit_root_sem);
469 goto next;
589d8ade 470 }
0a3896d0
JB
471
472 ret = btrfs_next_leaf(extent_root, path);
473 if (ret < 0)
73fa48b6 474 goto out;
0a3896d0
JB
475 if (ret)
476 break;
589d8ade
JB
477 leaf = path->nodes[0];
478 nritems = btrfs_header_nritems(leaf);
479 continue;
11833d66 480 }
817d52f8 481
52ee28d2
LB
482 if (key.objectid < last) {
483 key.objectid = last;
484 key.offset = 0;
485 key.type = BTRFS_EXTENT_ITEM_KEY;
486
d0bd4560
JB
487 if (wakeup)
488 caching_ctl->progress = last;
52ee28d2
LB
489 btrfs_release_path(path);
490 goto next;
491 }
492
11833d66
YZ
493 if (key.objectid < block_group->key.objectid) {
494 path->slots[0]++;
817d52f8 495 continue;
e37c9e69 496 }
0f9dd46c 497
e37c9e69 498 if (key.objectid >= block_group->key.objectid +
0f9dd46c 499 block_group->key.offset)
e37c9e69 500 break;
7d7d6068 501
3173a18f
JB
502 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
504 total_found += add_new_free_space(block_group,
505 fs_info, last,
506 key.objectid);
3173a18f
JB
507 if (key.type == BTRFS_METADATA_ITEM_KEY)
508 last = key.objectid +
da17066c 509 fs_info->nodesize;
3173a18f
JB
510 else
511 last = key.objectid + key.offset;
817d52f8 512
73fa48b6 513 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 514 total_found = 0;
d0bd4560
JB
515 if (wakeup)
516 wake_up(&caching_ctl->wait);
11833d66 517 }
817d52f8 518 }
e37c9e69
CM
519 path->slots[0]++;
520 }
817d52f8 521 ret = 0;
e37c9e69 522
817d52f8
JB
523 total_found += add_new_free_space(block_group, fs_info, last,
524 block_group->key.objectid +
525 block_group->key.offset);
11833d66 526 caching_ctl->progress = (u64)-1;
817d52f8 527
73fa48b6
OS
528out:
529 btrfs_free_path(path);
530 return ret;
531}
532
533static noinline void caching_thread(struct btrfs_work *work)
534{
535 struct btrfs_block_group_cache *block_group;
536 struct btrfs_fs_info *fs_info;
537 struct btrfs_caching_control *caching_ctl;
b4570aa9 538 struct btrfs_root *extent_root;
73fa48b6
OS
539 int ret;
540
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
b4570aa9 544 extent_root = fs_info->extent_root;
73fa48b6
OS
545
546 mutex_lock(&caching_ctl->mutex);
547 down_read(&fs_info->commit_root_sem);
548
1e144fb8
OS
549 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550 ret = load_free_space_tree(caching_ctl);
551 else
552 ret = load_extent_tree_free(caching_ctl);
73fa48b6 553
817d52f8 554 spin_lock(&block_group->lock);
11833d66 555 block_group->caching_ctl = NULL;
73fa48b6 556 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 557 spin_unlock(&block_group->lock);
0f9dd46c 558
d0bd4560 559#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 560 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
561 u64 bytes_used;
562
563 spin_lock(&block_group->space_info->lock);
564 spin_lock(&block_group->lock);
565 bytes_used = block_group->key.offset -
566 btrfs_block_group_used(&block_group->item);
567 block_group->space_info->bytes_used += bytes_used >> 1;
568 spin_unlock(&block_group->lock);
569 spin_unlock(&block_group->space_info->lock);
2ff7e61e 570 fragment_free_space(block_group);
d0bd4560
JB
571 }
572#endif
573
574 caching_ctl->progress = (u64)-1;
11833d66 575
9e351cc8 576 up_read(&fs_info->commit_root_sem);
2ff7e61e 577 free_excluded_extents(fs_info, block_group);
11833d66 578 mutex_unlock(&caching_ctl->mutex);
73fa48b6 579
11833d66
YZ
580 wake_up(&caching_ctl->wait);
581
582 put_caching_control(caching_ctl);
11dfe35a 583 btrfs_put_block_group(block_group);
817d52f8
JB
584}
585
9d66e233 586static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 587 int load_cache_only)
817d52f8 588{
291c7d2f 589 DEFINE_WAIT(wait);
11833d66
YZ
590 struct btrfs_fs_info *fs_info = cache->fs_info;
591 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
592 int ret = 0;
593
291c7d2f 594 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
595 if (!caching_ctl)
596 return -ENOMEM;
291c7d2f
JB
597
598 INIT_LIST_HEAD(&caching_ctl->list);
599 mutex_init(&caching_ctl->mutex);
600 init_waitqueue_head(&caching_ctl->wait);
601 caching_ctl->block_group = cache;
602 caching_ctl->progress = cache->key.objectid;
1e4f4714 603 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
604 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605 caching_thread, NULL, NULL);
291c7d2f
JB
606
607 spin_lock(&cache->lock);
608 /*
609 * This should be a rare occasion, but this could happen I think in the
610 * case where one thread starts to load the space cache info, and then
611 * some other thread starts a transaction commit which tries to do an
612 * allocation while the other thread is still loading the space cache
613 * info. The previous loop should have kept us from choosing this block
614 * group, but if we've moved to the state where we will wait on caching
615 * block groups we need to first check if we're doing a fast load here,
616 * so we can wait for it to finish, otherwise we could end up allocating
617 * from a block group who's cache gets evicted for one reason or
618 * another.
619 */
620 while (cache->cached == BTRFS_CACHE_FAST) {
621 struct btrfs_caching_control *ctl;
622
623 ctl = cache->caching_ctl;
1e4f4714 624 refcount_inc(&ctl->count);
291c7d2f
JB
625 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626 spin_unlock(&cache->lock);
627
628 schedule();
629
630 finish_wait(&ctl->wait, &wait);
631 put_caching_control(ctl);
632 spin_lock(&cache->lock);
633 }
634
635 if (cache->cached != BTRFS_CACHE_NO) {
636 spin_unlock(&cache->lock);
637 kfree(caching_ctl);
11833d66 638 return 0;
291c7d2f
JB
639 }
640 WARN_ON(cache->caching_ctl);
641 cache->caching_ctl = caching_ctl;
642 cache->cached = BTRFS_CACHE_FAST;
643 spin_unlock(&cache->lock);
11833d66 644
d8953d69 645 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 646 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
647 ret = load_free_space_cache(fs_info, cache);
648
649 spin_lock(&cache->lock);
650 if (ret == 1) {
291c7d2f 651 cache->caching_ctl = NULL;
9d66e233
JB
652 cache->cached = BTRFS_CACHE_FINISHED;
653 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 654 caching_ctl->progress = (u64)-1;
9d66e233 655 } else {
291c7d2f
JB
656 if (load_cache_only) {
657 cache->caching_ctl = NULL;
658 cache->cached = BTRFS_CACHE_NO;
659 } else {
660 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 661 cache->has_caching_ctl = 1;
291c7d2f 662 }
9d66e233
JB
663 }
664 spin_unlock(&cache->lock);
d0bd4560
JB
665#ifdef CONFIG_BTRFS_DEBUG
666 if (ret == 1 &&
2ff7e61e 667 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
668 u64 bytes_used;
669
670 spin_lock(&cache->space_info->lock);
671 spin_lock(&cache->lock);
672 bytes_used = cache->key.offset -
673 btrfs_block_group_used(&cache->item);
674 cache->space_info->bytes_used += bytes_used >> 1;
675 spin_unlock(&cache->lock);
676 spin_unlock(&cache->space_info->lock);
2ff7e61e 677 fragment_free_space(cache);
d0bd4560
JB
678 }
679#endif
cb83b7b8
JB
680 mutex_unlock(&caching_ctl->mutex);
681
291c7d2f 682 wake_up(&caching_ctl->wait);
3c14874a 683 if (ret == 1) {
291c7d2f 684 put_caching_control(caching_ctl);
2ff7e61e 685 free_excluded_extents(fs_info, cache);
9d66e233 686 return 0;
3c14874a 687 }
291c7d2f
JB
688 } else {
689 /*
1e144fb8
OS
690 * We're either using the free space tree or no caching at all.
691 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
692 */
693 spin_lock(&cache->lock);
694 if (load_cache_only) {
695 cache->caching_ctl = NULL;
696 cache->cached = BTRFS_CACHE_NO;
697 } else {
698 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 699 cache->has_caching_ctl = 1;
291c7d2f
JB
700 }
701 spin_unlock(&cache->lock);
702 wake_up(&caching_ctl->wait);
9d66e233
JB
703 }
704
291c7d2f
JB
705 if (load_cache_only) {
706 put_caching_control(caching_ctl);
11833d66 707 return 0;
817d52f8 708 }
817d52f8 709
9e351cc8 710 down_write(&fs_info->commit_root_sem);
1e4f4714 711 refcount_inc(&caching_ctl->count);
11833d66 712 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 713 up_write(&fs_info->commit_root_sem);
11833d66 714
11dfe35a 715 btrfs_get_block_group(cache);
11833d66 716
e66f0bb1 717 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 718
ef8bbdfe 719 return ret;
e37c9e69
CM
720}
721
0f9dd46c
JB
722/*
723 * return the block group that starts at or after bytenr
724 */
d397712b
CM
725static struct btrfs_block_group_cache *
726btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 727{
e2c89907 728 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
729}
730
0f9dd46c 731/*
9f55684c 732 * return the block group that contains the given bytenr
0f9dd46c 733 */
d397712b
CM
734struct btrfs_block_group_cache *btrfs_lookup_block_group(
735 struct btrfs_fs_info *info,
736 u64 bytenr)
be744175 737{
e2c89907 738 return block_group_cache_tree_search(info, bytenr, 1);
be744175 739}
0b86a832 740
0f9dd46c
JB
741static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742 u64 flags)
6324fbf3 743{
0f9dd46c 744 struct list_head *head = &info->space_info;
0f9dd46c 745 struct btrfs_space_info *found;
4184ea7f 746
52ba6929 747 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 748
4184ea7f
CM
749 rcu_read_lock();
750 list_for_each_entry_rcu(found, head, list) {
67377734 751 if (found->flags & flags) {
4184ea7f 752 rcu_read_unlock();
0f9dd46c 753 return found;
4184ea7f 754 }
0f9dd46c 755 }
4184ea7f 756 rcu_read_unlock();
0f9dd46c 757 return NULL;
6324fbf3
CM
758}
759
0d9f824d
OS
760static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761 u64 owner, u64 root_objectid)
762{
763 struct btrfs_space_info *space_info;
764 u64 flags;
765
766 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768 flags = BTRFS_BLOCK_GROUP_SYSTEM;
769 else
770 flags = BTRFS_BLOCK_GROUP_METADATA;
771 } else {
772 flags = BTRFS_BLOCK_GROUP_DATA;
773 }
774
775 space_info = __find_space_info(fs_info, flags);
55e8196a 776 ASSERT(space_info);
0d9f824d
OS
777 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
778}
779
4184ea7f
CM
780/*
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
783 */
784void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785{
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
788
789 rcu_read_lock();
790 list_for_each_entry_rcu(found, head, list)
791 found->full = 0;
792 rcu_read_unlock();
793}
794
1a4ed8fd 795/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 796int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
797{
798 int ret;
799 struct btrfs_key key;
31840ae1 800 struct btrfs_path *path;
e02119d5 801
31840ae1 802 path = btrfs_alloc_path();
d8926bb3
MF
803 if (!path)
804 return -ENOMEM;
805
e02119d5
CM
806 key.objectid = start;
807 key.offset = len;
3173a18f 808 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 810 btrfs_free_path(path);
7bb86316
CM
811 return ret;
812}
813
a22285a6 814/*
3173a18f 815 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
816 *
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
822 */
823int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 824 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 825 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
826{
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
833 u32 item_size;
834 u64 num_refs;
835 u64 extent_flags;
836 int ret;
837
3173a18f
JB
838 /*
839 * If we don't have skinny metadata, don't bother doing anything
840 * different
841 */
0b246afa
JM
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
3173a18f
JB
844 metadata = 0;
845 }
846
a22285a6
YZ
847 path = btrfs_alloc_path();
848 if (!path)
849 return -ENOMEM;
850
a22285a6
YZ
851 if (!trans) {
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
854 }
639eefc8
FDBM
855
856search_again:
857 key.objectid = bytenr;
858 key.offset = offset;
859 if (metadata)
860 key.type = BTRFS_METADATA_ITEM_KEY;
861 else
862 key.type = BTRFS_EXTENT_ITEM_KEY;
863
0b246afa 864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
865 if (ret < 0)
866 goto out_free;
867
3173a18f 868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
869 if (path->slots[0]) {
870 path->slots[0]--;
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 path->slots[0]);
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 875 key.offset == fs_info->nodesize)
74be9510
FDBM
876 ret = 0;
877 }
3173a18f
JB
878 }
879
a22285a6
YZ
880 if (ret == 0) {
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
888 } else {
889#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890 struct btrfs_extent_item_v0 *ei0;
891 BUG_ON(item_size != sizeof(*ei0));
892 ei0 = btrfs_item_ptr(leaf, path->slots[0],
893 struct btrfs_extent_item_v0);
894 num_refs = btrfs_extent_refs_v0(leaf, ei0);
895 /* FIXME: this isn't correct for data */
896 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897#else
898 BUG();
899#endif
900 }
901 BUG_ON(num_refs == 0);
902 } else {
903 num_refs = 0;
904 extent_flags = 0;
905 ret = 0;
906 }
907
908 if (!trans)
909 goto out;
910
911 delayed_refs = &trans->transaction->delayed_refs;
912 spin_lock(&delayed_refs->lock);
f72ad18e 913 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
914 if (head) {
915 if (!mutex_trylock(&head->mutex)) {
d278850e 916 refcount_inc(&head->refs);
a22285a6
YZ
917 spin_unlock(&delayed_refs->lock);
918
b3b4aa74 919 btrfs_release_path(path);
a22285a6 920
8cc33e5c
DS
921 /*
922 * Mutex was contended, block until it's released and try
923 * again
924 */
a22285a6
YZ
925 mutex_lock(&head->mutex);
926 mutex_unlock(&head->mutex);
d278850e 927 btrfs_put_delayed_ref_head(head);
639eefc8 928 goto search_again;
a22285a6 929 }
d7df2c79 930 spin_lock(&head->lock);
a22285a6
YZ
931 if (head->extent_op && head->extent_op->update_flags)
932 extent_flags |= head->extent_op->flags_to_set;
933 else
934 BUG_ON(num_refs == 0);
935
d278850e 936 num_refs += head->ref_mod;
d7df2c79 937 spin_unlock(&head->lock);
a22285a6
YZ
938 mutex_unlock(&head->mutex);
939 }
940 spin_unlock(&delayed_refs->lock);
941out:
942 WARN_ON(num_refs == 0);
943 if (refs)
944 *refs = num_refs;
945 if (flags)
946 *flags = extent_flags;
947out_free:
948 btrfs_free_path(path);
949 return ret;
950}
951
d8d5f3e1
CM
952/*
953 * Back reference rules. Back refs have three main goals:
954 *
955 * 1) differentiate between all holders of references to an extent so that
956 * when a reference is dropped we can make sure it was a valid reference
957 * before freeing the extent.
958 *
959 * 2) Provide enough information to quickly find the holders of an extent
960 * if we notice a given block is corrupted or bad.
961 *
962 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963 * maintenance. This is actually the same as #2, but with a slightly
964 * different use case.
965 *
5d4f98a2
YZ
966 * There are two kinds of back refs. The implicit back refs is optimized
967 * for pointers in non-shared tree blocks. For a given pointer in a block,
968 * back refs of this kind provide information about the block's owner tree
969 * and the pointer's key. These information allow us to find the block by
970 * b-tree searching. The full back refs is for pointers in tree blocks not
971 * referenced by their owner trees. The location of tree block is recorded
972 * in the back refs. Actually the full back refs is generic, and can be
973 * used in all cases the implicit back refs is used. The major shortcoming
974 * of the full back refs is its overhead. Every time a tree block gets
975 * COWed, we have to update back refs entry for all pointers in it.
976 *
977 * For a newly allocated tree block, we use implicit back refs for
978 * pointers in it. This means most tree related operations only involve
979 * implicit back refs. For a tree block created in old transaction, the
980 * only way to drop a reference to it is COW it. So we can detect the
981 * event that tree block loses its owner tree's reference and do the
982 * back refs conversion.
983 *
01327610 984 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
985 *
986 * The reference count of the block is one and the tree is the block's
987 * owner tree. Nothing to do in this case.
988 *
989 * The reference count of the block is one and the tree is not the
990 * block's owner tree. In this case, full back refs is used for pointers
991 * in the block. Remove these full back refs, add implicit back refs for
992 * every pointers in the new block.
993 *
994 * The reference count of the block is greater than one and the tree is
995 * the block's owner tree. In this case, implicit back refs is used for
996 * pointers in the block. Add full back refs for every pointers in the
997 * block, increase lower level extents' reference counts. The original
998 * implicit back refs are entailed to the new block.
999 *
1000 * The reference count of the block is greater than one and the tree is
1001 * not the block's owner tree. Add implicit back refs for every pointer in
1002 * the new block, increase lower level extents' reference count.
1003 *
1004 * Back Reference Key composing:
1005 *
1006 * The key objectid corresponds to the first byte in the extent,
1007 * The key type is used to differentiate between types of back refs.
1008 * There are different meanings of the key offset for different types
1009 * of back refs.
1010 *
d8d5f3e1
CM
1011 * File extents can be referenced by:
1012 *
1013 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1014 * - different files inside a single subvolume
d8d5f3e1
CM
1015 * - different offsets inside a file (bookend extents in file.c)
1016 *
5d4f98a2 1017 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1018 *
1019 * - Objectid of the subvolume root
d8d5f3e1 1020 * - objectid of the file holding the reference
5d4f98a2
YZ
1021 * - original offset in the file
1022 * - how many bookend extents
d8d5f3e1 1023 *
5d4f98a2
YZ
1024 * The key offset for the implicit back refs is hash of the first
1025 * three fields.
d8d5f3e1 1026 *
5d4f98a2 1027 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1028 *
5d4f98a2 1029 * - number of pointers in the tree leaf
d8d5f3e1 1030 *
5d4f98a2
YZ
1031 * The key offset for the implicit back refs is the first byte of
1032 * the tree leaf
d8d5f3e1 1033 *
5d4f98a2
YZ
1034 * When a file extent is allocated, The implicit back refs is used.
1035 * the fields are filled in:
d8d5f3e1 1036 *
5d4f98a2 1037 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1038 *
5d4f98a2
YZ
1039 * When a file extent is removed file truncation, we find the
1040 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1041 *
5d4f98a2 1042 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1043 *
5d4f98a2 1044 * Btree extents can be referenced by:
d8d5f3e1 1045 *
5d4f98a2 1046 * - Different subvolumes
d8d5f3e1 1047 *
5d4f98a2
YZ
1048 * Both the implicit back refs and the full back refs for tree blocks
1049 * only consist of key. The key offset for the implicit back refs is
1050 * objectid of block's owner tree. The key offset for the full back refs
1051 * is the first byte of parent block.
d8d5f3e1 1052 *
5d4f98a2
YZ
1053 * When implicit back refs is used, information about the lowest key and
1054 * level of the tree block are required. These information are stored in
1055 * tree block info structure.
d8d5f3e1 1056 */
31840ae1 1057
5d4f98a2
YZ
1058#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1060 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1061 struct btrfs_path *path,
1062 u64 owner, u32 extra_size)
7bb86316 1063{
87bde3cd 1064 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1065 struct btrfs_extent_item *item;
1066 struct btrfs_extent_item_v0 *ei0;
1067 struct btrfs_extent_ref_v0 *ref0;
1068 struct btrfs_tree_block_info *bi;
1069 struct extent_buffer *leaf;
7bb86316 1070 struct btrfs_key key;
5d4f98a2
YZ
1071 struct btrfs_key found_key;
1072 u32 new_size = sizeof(*item);
1073 u64 refs;
1074 int ret;
1075
1076 leaf = path->nodes[0];
1077 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1078
1079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081 struct btrfs_extent_item_v0);
1082 refs = btrfs_extent_refs_v0(leaf, ei0);
1083
1084 if (owner == (u64)-1) {
1085 while (1) {
1086 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087 ret = btrfs_next_leaf(root, path);
1088 if (ret < 0)
1089 return ret;
79787eaa 1090 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1091 leaf = path->nodes[0];
1092 }
1093 btrfs_item_key_to_cpu(leaf, &found_key,
1094 path->slots[0]);
1095 BUG_ON(key.objectid != found_key.objectid);
1096 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097 path->slots[0]++;
1098 continue;
1099 }
1100 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101 struct btrfs_extent_ref_v0);
1102 owner = btrfs_ref_objectid_v0(leaf, ref0);
1103 break;
1104 }
1105 }
b3b4aa74 1106 btrfs_release_path(path);
5d4f98a2
YZ
1107
1108 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109 new_size += sizeof(*bi);
1110
1111 new_size -= sizeof(*ei0);
1112 ret = btrfs_search_slot(trans, root, &key, path,
1113 new_size + extra_size, 1);
1114 if (ret < 0)
1115 return ret;
79787eaa 1116 BUG_ON(ret); /* Corruption */
5d4f98a2 1117
87bde3cd 1118 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1119
1120 leaf = path->nodes[0];
1121 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122 btrfs_set_extent_refs(leaf, item, refs);
1123 /* FIXME: get real generation */
1124 btrfs_set_extent_generation(leaf, item, 0);
1125 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126 btrfs_set_extent_flags(leaf, item,
1127 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129 bi = (struct btrfs_tree_block_info *)(item + 1);
1130 /* FIXME: get first key of the block */
b159fa28 1131 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1132 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133 } else {
1134 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1135 }
1136 btrfs_mark_buffer_dirty(leaf);
1137 return 0;
1138}
1139#endif
1140
167ce953
LB
1141/*
1142 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1145 */
1146int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147 struct btrfs_extent_inline_ref *iref,
1148 enum btrfs_inline_ref_type is_data)
1149{
1150 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1151 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1152
1153 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155 type == BTRFS_SHARED_DATA_REF_KEY ||
1156 type == BTRFS_EXTENT_DATA_REF_KEY) {
1157 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1158 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1159 return type;
64ecdb64
LB
1160 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161 ASSERT(eb->fs_info);
1162 /*
1163 * Every shared one has parent tree
1164 * block, which must be aligned to
1165 * nodesize.
1166 */
1167 if (offset &&
1168 IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 return type;
1170 }
167ce953 1171 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1172 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1173 return type;
64ecdb64
LB
1174 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175 ASSERT(eb->fs_info);
1176 /*
1177 * Every shared one has parent tree
1178 * block, which must be aligned to
1179 * nodesize.
1180 */
1181 if (offset &&
1182 IS_ALIGNED(offset, eb->fs_info->nodesize))
1183 return type;
1184 }
167ce953
LB
1185 } else {
1186 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187 return type;
1188 }
1189 }
1190
1191 btrfs_print_leaf((struct extent_buffer *)eb);
1192 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193 eb->start, type);
1194 WARN_ON(1);
1195
1196 return BTRFS_REF_TYPE_INVALID;
1197}
1198
5d4f98a2
YZ
1199static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1200{
1201 u32 high_crc = ~(u32)0;
1202 u32 low_crc = ~(u32)0;
1203 __le64 lenum;
1204
1205 lenum = cpu_to_le64(root_objectid);
14a958e6 1206 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1207 lenum = cpu_to_le64(owner);
14a958e6 1208 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1209 lenum = cpu_to_le64(offset);
14a958e6 1210 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1211
1212 return ((u64)high_crc << 31) ^ (u64)low_crc;
1213}
1214
1215static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216 struct btrfs_extent_data_ref *ref)
1217{
1218 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219 btrfs_extent_data_ref_objectid(leaf, ref),
1220 btrfs_extent_data_ref_offset(leaf, ref));
1221}
1222
1223static int match_extent_data_ref(struct extent_buffer *leaf,
1224 struct btrfs_extent_data_ref *ref,
1225 u64 root_objectid, u64 owner, u64 offset)
1226{
1227 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230 return 0;
1231 return 1;
1232}
1233
1234static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1235 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1236 struct btrfs_path *path,
1237 u64 bytenr, u64 parent,
1238 u64 root_objectid,
1239 u64 owner, u64 offset)
1240{
87bde3cd 1241 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1242 struct btrfs_key key;
1243 struct btrfs_extent_data_ref *ref;
31840ae1 1244 struct extent_buffer *leaf;
5d4f98a2 1245 u32 nritems;
74493f7a 1246 int ret;
5d4f98a2
YZ
1247 int recow;
1248 int err = -ENOENT;
74493f7a 1249
31840ae1 1250 key.objectid = bytenr;
5d4f98a2
YZ
1251 if (parent) {
1252 key.type = BTRFS_SHARED_DATA_REF_KEY;
1253 key.offset = parent;
1254 } else {
1255 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256 key.offset = hash_extent_data_ref(root_objectid,
1257 owner, offset);
1258 }
1259again:
1260 recow = 0;
1261 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262 if (ret < 0) {
1263 err = ret;
1264 goto fail;
1265 }
31840ae1 1266
5d4f98a2
YZ
1267 if (parent) {
1268 if (!ret)
1269 return 0;
1270#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1272 btrfs_release_path(path);
5d4f98a2
YZ
1273 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274 if (ret < 0) {
1275 err = ret;
1276 goto fail;
1277 }
1278 if (!ret)
1279 return 0;
1280#endif
1281 goto fail;
31840ae1
ZY
1282 }
1283
1284 leaf = path->nodes[0];
5d4f98a2
YZ
1285 nritems = btrfs_header_nritems(leaf);
1286 while (1) {
1287 if (path->slots[0] >= nritems) {
1288 ret = btrfs_next_leaf(root, path);
1289 if (ret < 0)
1290 err = ret;
1291 if (ret)
1292 goto fail;
1293
1294 leaf = path->nodes[0];
1295 nritems = btrfs_header_nritems(leaf);
1296 recow = 1;
1297 }
1298
1299 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300 if (key.objectid != bytenr ||
1301 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302 goto fail;
1303
1304 ref = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_extent_data_ref);
1306
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset)) {
1309 if (recow) {
b3b4aa74 1310 btrfs_release_path(path);
5d4f98a2
YZ
1311 goto again;
1312 }
1313 err = 0;
1314 break;
1315 }
1316 path->slots[0]++;
31840ae1 1317 }
5d4f98a2
YZ
1318fail:
1319 return err;
31840ae1
ZY
1320}
1321
5d4f98a2 1322static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1323 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1324 struct btrfs_path *path,
1325 u64 bytenr, u64 parent,
1326 u64 root_objectid, u64 owner,
1327 u64 offset, int refs_to_add)
31840ae1 1328{
87bde3cd 1329 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1330 struct btrfs_key key;
1331 struct extent_buffer *leaf;
5d4f98a2 1332 u32 size;
31840ae1
ZY
1333 u32 num_refs;
1334 int ret;
74493f7a 1335
74493f7a 1336 key.objectid = bytenr;
5d4f98a2
YZ
1337 if (parent) {
1338 key.type = BTRFS_SHARED_DATA_REF_KEY;
1339 key.offset = parent;
1340 size = sizeof(struct btrfs_shared_data_ref);
1341 } else {
1342 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343 key.offset = hash_extent_data_ref(root_objectid,
1344 owner, offset);
1345 size = sizeof(struct btrfs_extent_data_ref);
1346 }
74493f7a 1347
5d4f98a2
YZ
1348 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349 if (ret && ret != -EEXIST)
1350 goto fail;
1351
1352 leaf = path->nodes[0];
1353 if (parent) {
1354 struct btrfs_shared_data_ref *ref;
31840ae1 1355 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1356 struct btrfs_shared_data_ref);
1357 if (ret == 0) {
1358 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359 } else {
1360 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361 num_refs += refs_to_add;
1362 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1363 }
5d4f98a2
YZ
1364 } else {
1365 struct btrfs_extent_data_ref *ref;
1366 while (ret == -EEXIST) {
1367 ref = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_extent_data_ref);
1369 if (match_extent_data_ref(leaf, ref, root_objectid,
1370 owner, offset))
1371 break;
b3b4aa74 1372 btrfs_release_path(path);
5d4f98a2
YZ
1373 key.offset++;
1374 ret = btrfs_insert_empty_item(trans, root, path, &key,
1375 size);
1376 if (ret && ret != -EEXIST)
1377 goto fail;
31840ae1 1378
5d4f98a2
YZ
1379 leaf = path->nodes[0];
1380 }
1381 ref = btrfs_item_ptr(leaf, path->slots[0],
1382 struct btrfs_extent_data_ref);
1383 if (ret == 0) {
1384 btrfs_set_extent_data_ref_root(leaf, ref,
1385 root_objectid);
1386 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389 } else {
1390 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391 num_refs += refs_to_add;
1392 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1393 }
31840ae1 1394 }
5d4f98a2
YZ
1395 btrfs_mark_buffer_dirty(leaf);
1396 ret = 0;
1397fail:
b3b4aa74 1398 btrfs_release_path(path);
7bb86316 1399 return ret;
74493f7a
CM
1400}
1401
5d4f98a2 1402static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1403 struct btrfs_fs_info *fs_info,
5d4f98a2 1404 struct btrfs_path *path,
fcebe456 1405 int refs_to_drop, int *last_ref)
31840ae1 1406{
5d4f98a2
YZ
1407 struct btrfs_key key;
1408 struct btrfs_extent_data_ref *ref1 = NULL;
1409 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1410 struct extent_buffer *leaf;
5d4f98a2 1411 u32 num_refs = 0;
31840ae1
ZY
1412 int ret = 0;
1413
1414 leaf = path->nodes[0];
5d4f98a2
YZ
1415 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1416
1417 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419 struct btrfs_extent_data_ref);
1420 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423 struct btrfs_shared_data_ref);
1424 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427 struct btrfs_extent_ref_v0 *ref0;
1428 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429 struct btrfs_extent_ref_v0);
1430 num_refs = btrfs_ref_count_v0(leaf, ref0);
1431#endif
1432 } else {
1433 BUG();
1434 }
1435
56bec294
CM
1436 BUG_ON(num_refs < refs_to_drop);
1437 num_refs -= refs_to_drop;
5d4f98a2 1438
31840ae1 1439 if (num_refs == 0) {
87bde3cd 1440 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1441 *last_ref = 1;
31840ae1 1442 } else {
5d4f98a2
YZ
1443 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448 else {
1449 struct btrfs_extent_ref_v0 *ref0;
1450 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451 struct btrfs_extent_ref_v0);
1452 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1453 }
1454#endif
31840ae1
ZY
1455 btrfs_mark_buffer_dirty(leaf);
1456 }
31840ae1
ZY
1457 return ret;
1458}
1459
9ed0dea0 1460static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1461 struct btrfs_extent_inline_ref *iref)
15916de8 1462{
5d4f98a2
YZ
1463 struct btrfs_key key;
1464 struct extent_buffer *leaf;
1465 struct btrfs_extent_data_ref *ref1;
1466 struct btrfs_shared_data_ref *ref2;
1467 u32 num_refs = 0;
3de28d57 1468 int type;
5d4f98a2
YZ
1469
1470 leaf = path->nodes[0];
1471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472 if (iref) {
3de28d57
LB
1473 /*
1474 * If type is invalid, we should have bailed out earlier than
1475 * this call.
1476 */
1477 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1480 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482 } else {
1483 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1485 }
1486 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488 struct btrfs_extent_data_ref);
1489 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492 struct btrfs_shared_data_ref);
1493 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496 struct btrfs_extent_ref_v0 *ref0;
1497 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498 struct btrfs_extent_ref_v0);
1499 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1500#endif
5d4f98a2
YZ
1501 } else {
1502 WARN_ON(1);
1503 }
1504 return num_refs;
1505}
15916de8 1506
5d4f98a2 1507static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1508 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1509 struct btrfs_path *path,
1510 u64 bytenr, u64 parent,
1511 u64 root_objectid)
1f3c79a2 1512{
87bde3cd 1513 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1514 struct btrfs_key key;
1f3c79a2 1515 int ret;
1f3c79a2 1516
5d4f98a2
YZ
1517 key.objectid = bytenr;
1518 if (parent) {
1519 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520 key.offset = parent;
1521 } else {
1522 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523 key.offset = root_objectid;
1f3c79a2
LH
1524 }
1525
5d4f98a2
YZ
1526 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527 if (ret > 0)
1528 ret = -ENOENT;
1529#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530 if (ret == -ENOENT && parent) {
b3b4aa74 1531 btrfs_release_path(path);
5d4f98a2
YZ
1532 key.type = BTRFS_EXTENT_REF_V0_KEY;
1533 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534 if (ret > 0)
1535 ret = -ENOENT;
1536 }
1f3c79a2 1537#endif
5d4f98a2 1538 return ret;
1f3c79a2
LH
1539}
1540
5d4f98a2 1541static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1542 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1543 struct btrfs_path *path,
1544 u64 bytenr, u64 parent,
1545 u64 root_objectid)
31840ae1 1546{
5d4f98a2 1547 struct btrfs_key key;
31840ae1 1548 int ret;
31840ae1 1549
5d4f98a2
YZ
1550 key.objectid = bytenr;
1551 if (parent) {
1552 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553 key.offset = parent;
1554 } else {
1555 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556 key.offset = root_objectid;
1557 }
1558
87bde3cd
JM
1559 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560 path, &key, 0);
b3b4aa74 1561 btrfs_release_path(path);
31840ae1
ZY
1562 return ret;
1563}
1564
5d4f98a2 1565static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1566{
5d4f98a2
YZ
1567 int type;
1568 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569 if (parent > 0)
1570 type = BTRFS_SHARED_BLOCK_REF_KEY;
1571 else
1572 type = BTRFS_TREE_BLOCK_REF_KEY;
1573 } else {
1574 if (parent > 0)
1575 type = BTRFS_SHARED_DATA_REF_KEY;
1576 else
1577 type = BTRFS_EXTENT_DATA_REF_KEY;
1578 }
1579 return type;
31840ae1 1580}
56bec294 1581
2c47e605
YZ
1582static int find_next_key(struct btrfs_path *path, int level,
1583 struct btrfs_key *key)
56bec294 1584
02217ed2 1585{
2c47e605 1586 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1587 if (!path->nodes[level])
1588 break;
5d4f98a2
YZ
1589 if (path->slots[level] + 1 >=
1590 btrfs_header_nritems(path->nodes[level]))
1591 continue;
1592 if (level == 0)
1593 btrfs_item_key_to_cpu(path->nodes[level], key,
1594 path->slots[level] + 1);
1595 else
1596 btrfs_node_key_to_cpu(path->nodes[level], key,
1597 path->slots[level] + 1);
1598 return 0;
1599 }
1600 return 1;
1601}
037e6390 1602
5d4f98a2
YZ
1603/*
1604 * look for inline back ref. if back ref is found, *ref_ret is set
1605 * to the address of inline back ref, and 0 is returned.
1606 *
1607 * if back ref isn't found, *ref_ret is set to the address where it
1608 * should be inserted, and -ENOENT is returned.
1609 *
1610 * if insert is true and there are too many inline back refs, the path
1611 * points to the extent item, and -EAGAIN is returned.
1612 *
1613 * NOTE: inline back refs are ordered in the same way that back ref
1614 * items in the tree are ordered.
1615 */
1616static noinline_for_stack
1617int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1618 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1619 struct btrfs_path *path,
1620 struct btrfs_extent_inline_ref **ref_ret,
1621 u64 bytenr, u64 num_bytes,
1622 u64 parent, u64 root_objectid,
1623 u64 owner, u64 offset, int insert)
1624{
87bde3cd 1625 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1626 struct btrfs_key key;
1627 struct extent_buffer *leaf;
1628 struct btrfs_extent_item *ei;
1629 struct btrfs_extent_inline_ref *iref;
1630 u64 flags;
1631 u64 item_size;
1632 unsigned long ptr;
1633 unsigned long end;
1634 int extra_size;
1635 int type;
1636 int want;
1637 int ret;
1638 int err = 0;
0b246afa 1639 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1640 int needed;
26b8003f 1641
db94535d 1642 key.objectid = bytenr;
31840ae1 1643 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1644 key.offset = num_bytes;
31840ae1 1645
5d4f98a2
YZ
1646 want = extent_ref_type(parent, owner);
1647 if (insert) {
1648 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1649 path->keep_locks = 1;
5d4f98a2
YZ
1650 } else
1651 extra_size = -1;
3173a18f
JB
1652
1653 /*
1654 * Owner is our parent level, so we can just add one to get the level
1655 * for the block we are interested in.
1656 */
1657 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658 key.type = BTRFS_METADATA_ITEM_KEY;
1659 key.offset = owner;
1660 }
1661
1662again:
5d4f98a2 1663 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1664 if (ret < 0) {
5d4f98a2
YZ
1665 err = ret;
1666 goto out;
1667 }
3173a18f
JB
1668
1669 /*
1670 * We may be a newly converted file system which still has the old fat
1671 * extent entries for metadata, so try and see if we have one of those.
1672 */
1673 if (ret > 0 && skinny_metadata) {
1674 skinny_metadata = false;
1675 if (path->slots[0]) {
1676 path->slots[0]--;
1677 btrfs_item_key_to_cpu(path->nodes[0], &key,
1678 path->slots[0]);
1679 if (key.objectid == bytenr &&
1680 key.type == BTRFS_EXTENT_ITEM_KEY &&
1681 key.offset == num_bytes)
1682 ret = 0;
1683 }
1684 if (ret) {
9ce49a0b 1685 key.objectid = bytenr;
3173a18f
JB
1686 key.type = BTRFS_EXTENT_ITEM_KEY;
1687 key.offset = num_bytes;
1688 btrfs_release_path(path);
1689 goto again;
1690 }
1691 }
1692
79787eaa
JM
1693 if (ret && !insert) {
1694 err = -ENOENT;
1695 goto out;
fae7f21c 1696 } else if (WARN_ON(ret)) {
492104c8 1697 err = -EIO;
492104c8 1698 goto out;
79787eaa 1699 }
5d4f98a2
YZ
1700
1701 leaf = path->nodes[0];
1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704 if (item_size < sizeof(*ei)) {
1705 if (!insert) {
1706 err = -ENOENT;
1707 goto out;
1708 }
87bde3cd 1709 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1710 extra_size);
1711 if (ret < 0) {
1712 err = ret;
1713 goto out;
1714 }
1715 leaf = path->nodes[0];
1716 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1717 }
1718#endif
1719 BUG_ON(item_size < sizeof(*ei));
1720
5d4f98a2
YZ
1721 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722 flags = btrfs_extent_flags(leaf, ei);
1723
1724 ptr = (unsigned long)(ei + 1);
1725 end = (unsigned long)ei + item_size;
1726
3173a18f 1727 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1728 ptr += sizeof(struct btrfs_tree_block_info);
1729 BUG_ON(ptr > end);
5d4f98a2
YZ
1730 }
1731
3de28d57
LB
1732 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733 needed = BTRFS_REF_TYPE_DATA;
1734 else
1735 needed = BTRFS_REF_TYPE_BLOCK;
1736
5d4f98a2
YZ
1737 err = -ENOENT;
1738 while (1) {
1739 if (ptr >= end) {
1740 WARN_ON(ptr > end);
1741 break;
1742 }
1743 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1744 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745 if (type == BTRFS_REF_TYPE_INVALID) {
1746 err = -EINVAL;
1747 goto out;
1748 }
1749
5d4f98a2
YZ
1750 if (want < type)
1751 break;
1752 if (want > type) {
1753 ptr += btrfs_extent_inline_ref_size(type);
1754 continue;
1755 }
1756
1757 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758 struct btrfs_extent_data_ref *dref;
1759 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760 if (match_extent_data_ref(leaf, dref, root_objectid,
1761 owner, offset)) {
1762 err = 0;
1763 break;
1764 }
1765 if (hash_extent_data_ref_item(leaf, dref) <
1766 hash_extent_data_ref(root_objectid, owner, offset))
1767 break;
1768 } else {
1769 u64 ref_offset;
1770 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771 if (parent > 0) {
1772 if (parent == ref_offset) {
1773 err = 0;
1774 break;
1775 }
1776 if (ref_offset < parent)
1777 break;
1778 } else {
1779 if (root_objectid == ref_offset) {
1780 err = 0;
1781 break;
1782 }
1783 if (ref_offset < root_objectid)
1784 break;
1785 }
1786 }
1787 ptr += btrfs_extent_inline_ref_size(type);
1788 }
1789 if (err == -ENOENT && insert) {
1790 if (item_size + extra_size >=
1791 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792 err = -EAGAIN;
1793 goto out;
1794 }
1795 /*
1796 * To add new inline back ref, we have to make sure
1797 * there is no corresponding back ref item.
1798 * For simplicity, we just do not add new inline back
1799 * ref if there is any kind of item for this block
1800 */
2c47e605
YZ
1801 if (find_next_key(path, 0, &key) == 0 &&
1802 key.objectid == bytenr &&
85d4198e 1803 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1804 err = -EAGAIN;
1805 goto out;
1806 }
1807 }
1808 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809out:
85d4198e 1810 if (insert) {
5d4f98a2
YZ
1811 path->keep_locks = 0;
1812 btrfs_unlock_up_safe(path, 1);
1813 }
1814 return err;
1815}
1816
1817/*
1818 * helper to add new inline back ref
1819 */
1820static noinline_for_stack
87bde3cd 1821void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1822 struct btrfs_path *path,
1823 struct btrfs_extent_inline_ref *iref,
1824 u64 parent, u64 root_objectid,
1825 u64 owner, u64 offset, int refs_to_add,
1826 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1827{
1828 struct extent_buffer *leaf;
1829 struct btrfs_extent_item *ei;
1830 unsigned long ptr;
1831 unsigned long end;
1832 unsigned long item_offset;
1833 u64 refs;
1834 int size;
1835 int type;
5d4f98a2
YZ
1836
1837 leaf = path->nodes[0];
1838 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839 item_offset = (unsigned long)iref - (unsigned long)ei;
1840
1841 type = extent_ref_type(parent, owner);
1842 size = btrfs_extent_inline_ref_size(type);
1843
87bde3cd 1844 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1845
1846 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847 refs = btrfs_extent_refs(leaf, ei);
1848 refs += refs_to_add;
1849 btrfs_set_extent_refs(leaf, ei, refs);
1850 if (extent_op)
1851 __run_delayed_extent_op(extent_op, leaf, ei);
1852
1853 ptr = (unsigned long)ei + item_offset;
1854 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855 if (ptr < end - size)
1856 memmove_extent_buffer(leaf, ptr + size, ptr,
1857 end - size - ptr);
1858
1859 iref = (struct btrfs_extent_inline_ref *)ptr;
1860 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 struct btrfs_extent_data_ref *dref;
1863 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869 struct btrfs_shared_data_ref *sref;
1870 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875 } else {
1876 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1877 }
1878 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1879}
1880
1881static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1882 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1883 struct btrfs_path *path,
1884 struct btrfs_extent_inline_ref **ref_ret,
1885 u64 bytenr, u64 num_bytes, u64 parent,
1886 u64 root_objectid, u64 owner, u64 offset)
1887{
1888 int ret;
1889
87bde3cd 1890 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1891 bytenr, num_bytes, parent,
1892 root_objectid, owner, offset, 0);
1893 if (ret != -ENOENT)
54aa1f4d 1894 return ret;
5d4f98a2 1895
b3b4aa74 1896 btrfs_release_path(path);
5d4f98a2
YZ
1897 *ref_ret = NULL;
1898
1899 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1900 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901 parent, root_objectid);
5d4f98a2 1902 } else {
87bde3cd
JM
1903 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904 parent, root_objectid, owner,
1905 offset);
b9473439 1906 }
5d4f98a2
YZ
1907 return ret;
1908}
31840ae1 1909
5d4f98a2
YZ
1910/*
1911 * helper to update/remove inline back ref
1912 */
1913static noinline_for_stack
87bde3cd 1914void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1915 struct btrfs_path *path,
1916 struct btrfs_extent_inline_ref *iref,
1917 int refs_to_mod,
fcebe456
JB
1918 struct btrfs_delayed_extent_op *extent_op,
1919 int *last_ref)
5d4f98a2
YZ
1920{
1921 struct extent_buffer *leaf;
1922 struct btrfs_extent_item *ei;
1923 struct btrfs_extent_data_ref *dref = NULL;
1924 struct btrfs_shared_data_ref *sref = NULL;
1925 unsigned long ptr;
1926 unsigned long end;
1927 u32 item_size;
1928 int size;
1929 int type;
5d4f98a2
YZ
1930 u64 refs;
1931
1932 leaf = path->nodes[0];
1933 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934 refs = btrfs_extent_refs(leaf, ei);
1935 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936 refs += refs_to_mod;
1937 btrfs_set_extent_refs(leaf, ei, refs);
1938 if (extent_op)
1939 __run_delayed_extent_op(extent_op, leaf, ei);
1940
3de28d57
LB
1941 /*
1942 * If type is invalid, we should have bailed out after
1943 * lookup_inline_extent_backref().
1944 */
1945 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1947
1948 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950 refs = btrfs_extent_data_ref_count(leaf, dref);
1951 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953 refs = btrfs_shared_data_ref_count(leaf, sref);
1954 } else {
1955 refs = 1;
1956 BUG_ON(refs_to_mod != -1);
56bec294 1957 }
31840ae1 1958
5d4f98a2
YZ
1959 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960 refs += refs_to_mod;
1961
1962 if (refs > 0) {
1963 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965 else
1966 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967 } else {
fcebe456 1968 *last_ref = 1;
5d4f98a2
YZ
1969 size = btrfs_extent_inline_ref_size(type);
1970 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971 ptr = (unsigned long)iref;
1972 end = (unsigned long)ei + item_size;
1973 if (ptr + size < end)
1974 memmove_extent_buffer(leaf, ptr, ptr + size,
1975 end - ptr - size);
1976 item_size -= size;
87bde3cd 1977 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1978 }
1979 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1980}
1981
1982static noinline_for_stack
1983int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1984 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1985 struct btrfs_path *path,
1986 u64 bytenr, u64 num_bytes, u64 parent,
1987 u64 root_objectid, u64 owner,
1988 u64 offset, int refs_to_add,
1989 struct btrfs_delayed_extent_op *extent_op)
1990{
1991 struct btrfs_extent_inline_ref *iref;
1992 int ret;
1993
87bde3cd 1994 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1995 bytenr, num_bytes, parent,
1996 root_objectid, owner, offset, 1);
1997 if (ret == 0) {
1998 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1999 update_inline_extent_backref(fs_info, path, iref,
fcebe456 2000 refs_to_add, extent_op, NULL);
5d4f98a2 2001 } else if (ret == -ENOENT) {
87bde3cd 2002 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
2003 root_objectid, owner, offset,
2004 refs_to_add, extent_op);
2005 ret = 0;
771ed689 2006 }
5d4f98a2
YZ
2007 return ret;
2008}
31840ae1 2009
5d4f98a2 2010static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2011 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2012 struct btrfs_path *path,
2013 u64 bytenr, u64 parent, u64 root_objectid,
2014 u64 owner, u64 offset, int refs_to_add)
2015{
2016 int ret;
2017 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018 BUG_ON(refs_to_add != 1);
87bde3cd 2019 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2020 parent, root_objectid);
2021 } else {
87bde3cd 2022 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2023 parent, root_objectid,
2024 owner, offset, refs_to_add);
2025 }
2026 return ret;
2027}
56bec294 2028
5d4f98a2 2029static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2030 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2031 struct btrfs_path *path,
2032 struct btrfs_extent_inline_ref *iref,
fcebe456 2033 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 2034{
143bede5 2035 int ret = 0;
b9473439 2036
5d4f98a2
YZ
2037 BUG_ON(!is_data && refs_to_drop != 1);
2038 if (iref) {
87bde3cd 2039 update_inline_extent_backref(fs_info, path, iref,
fcebe456 2040 -refs_to_drop, NULL, last_ref);
5d4f98a2 2041 } else if (is_data) {
87bde3cd 2042 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 2043 last_ref);
5d4f98a2 2044 } else {
fcebe456 2045 *last_ref = 1;
87bde3cd 2046 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
2047 }
2048 return ret;
2049}
2050
86557861 2051#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
2052static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053 u64 *discarded_bytes)
5d4f98a2 2054{
86557861
JM
2055 int j, ret = 0;
2056 u64 bytes_left, end;
4d89d377 2057 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 2058
4d89d377
JM
2059 if (WARN_ON(start != aligned_start)) {
2060 len -= aligned_start - start;
2061 len = round_down(len, 1 << 9);
2062 start = aligned_start;
2063 }
d04c6b88 2064
4d89d377 2065 *discarded_bytes = 0;
86557861
JM
2066
2067 if (!len)
2068 return 0;
2069
2070 end = start + len;
2071 bytes_left = len;
2072
2073 /* Skip any superblocks on this device. */
2074 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075 u64 sb_start = btrfs_sb_offset(j);
2076 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077 u64 size = sb_start - start;
2078
2079 if (!in_range(sb_start, start, bytes_left) &&
2080 !in_range(sb_end, start, bytes_left) &&
2081 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082 continue;
2083
2084 /*
2085 * Superblock spans beginning of range. Adjust start and
2086 * try again.
2087 */
2088 if (sb_start <= start) {
2089 start += sb_end - start;
2090 if (start > end) {
2091 bytes_left = 0;
2092 break;
2093 }
2094 bytes_left = end - start;
2095 continue;
2096 }
2097
2098 if (size) {
2099 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100 GFP_NOFS, 0);
2101 if (!ret)
2102 *discarded_bytes += size;
2103 else if (ret != -EOPNOTSUPP)
2104 return ret;
2105 }
2106
2107 start = sb_end;
2108 if (start > end) {
2109 bytes_left = 0;
2110 break;
2111 }
2112 bytes_left = end - start;
2113 }
2114
2115 if (bytes_left) {
2116 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2117 GFP_NOFS, 0);
2118 if (!ret)
86557861 2119 *discarded_bytes += bytes_left;
4d89d377 2120 }
d04c6b88 2121 return ret;
5d4f98a2 2122}
5d4f98a2 2123
2ff7e61e 2124int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2125 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2126{
5d4f98a2 2127 int ret;
5378e607 2128 u64 discarded_bytes = 0;
a1d3c478 2129 struct btrfs_bio *bbio = NULL;
5d4f98a2 2130
e244a0ae 2131
2999241d
FM
2132 /*
2133 * Avoid races with device replace and make sure our bbio has devices
2134 * associated to its stripes that don't go away while we are discarding.
2135 */
0b246afa 2136 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2137 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2138 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139 &bbio, 0);
79787eaa 2140 /* Error condition is -ENOMEM */
5d4f98a2 2141 if (!ret) {
a1d3c478 2142 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2143 int i;
2144
5d4f98a2 2145
a1d3c478 2146 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2147 u64 bytes;
d5e2003c
JB
2148 if (!stripe->dev->can_discard)
2149 continue;
2150
5378e607
LD
2151 ret = btrfs_issue_discard(stripe->dev->bdev,
2152 stripe->physical,
d04c6b88
JM
2153 stripe->length,
2154 &bytes);
5378e607 2155 if (!ret)
d04c6b88 2156 discarded_bytes += bytes;
5378e607 2157 else if (ret != -EOPNOTSUPP)
79787eaa 2158 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2159
2160 /*
2161 * Just in case we get back EOPNOTSUPP for some reason,
2162 * just ignore the return value so we don't screw up
2163 * people calling discard_extent.
2164 */
2165 ret = 0;
5d4f98a2 2166 }
6e9606d2 2167 btrfs_put_bbio(bbio);
5d4f98a2 2168 }
0b246afa 2169 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2170
2171 if (actual_bytes)
2172 *actual_bytes = discarded_bytes;
2173
5d4f98a2 2174
53b381b3
DW
2175 if (ret == -EOPNOTSUPP)
2176 ret = 0;
5d4f98a2 2177 return ret;
5d4f98a2
YZ
2178}
2179
79787eaa 2180/* Can return -ENOMEM */
5d4f98a2 2181int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2182 struct btrfs_root *root,
5d4f98a2 2183 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2184 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2185{
84f7d8e6 2186 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2187 int old_ref_mod, new_ref_mod;
5d4f98a2 2188 int ret;
66d7e7f0 2189
5d4f98a2
YZ
2190 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2191 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2192
fd708b81
JB
2193 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2194 owner, offset, BTRFS_ADD_DELAYED_REF);
2195
5d4f98a2 2196 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 2197 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
2198 num_bytes, parent,
2199 root_objectid, (int)owner,
2200 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2201 &old_ref_mod, &new_ref_mod);
5d4f98a2 2202 } else {
66d7e7f0 2203 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
2204 num_bytes, parent,
2205 root_objectid, owner, offset,
d7eae340
OS
2206 0, BTRFS_ADD_DELAYED_REF,
2207 &old_ref_mod, &new_ref_mod);
5d4f98a2 2208 }
d7eae340
OS
2209
2210 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2211 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2212
5d4f98a2
YZ
2213 return ret;
2214}
2215
2216static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2217 struct btrfs_fs_info *fs_info,
c682f9b3 2218 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2219 u64 parent, u64 root_objectid,
2220 u64 owner, u64 offset, int refs_to_add,
2221 struct btrfs_delayed_extent_op *extent_op)
2222{
2223 struct btrfs_path *path;
2224 struct extent_buffer *leaf;
2225 struct btrfs_extent_item *item;
fcebe456 2226 struct btrfs_key key;
c682f9b3
QW
2227 u64 bytenr = node->bytenr;
2228 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2229 u64 refs;
2230 int ret;
5d4f98a2
YZ
2231
2232 path = btrfs_alloc_path();
2233 if (!path)
2234 return -ENOMEM;
2235
e4058b54 2236 path->reada = READA_FORWARD;
5d4f98a2
YZ
2237 path->leave_spinning = 1;
2238 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2239 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2240 num_bytes, parent, root_objectid,
2241 owner, offset,
5d4f98a2 2242 refs_to_add, extent_op);
0ed4792a 2243 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2244 goto out;
fcebe456
JB
2245
2246 /*
2247 * Ok we had -EAGAIN which means we didn't have space to insert and
2248 * inline extent ref, so just update the reference count and add a
2249 * normal backref.
2250 */
5d4f98a2 2251 leaf = path->nodes[0];
fcebe456 2252 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2253 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2254 refs = btrfs_extent_refs(leaf, item);
2255 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2256 if (extent_op)
2257 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2258
5d4f98a2 2259 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2260 btrfs_release_path(path);
56bec294 2261
e4058b54 2262 path->reada = READA_FORWARD;
b9473439 2263 path->leave_spinning = 1;
56bec294 2264 /* now insert the actual backref */
87bde3cd
JM
2265 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2266 root_objectid, owner, offset, refs_to_add);
79787eaa 2267 if (ret)
66642832 2268 btrfs_abort_transaction(trans, ret);
5d4f98a2 2269out:
56bec294 2270 btrfs_free_path(path);
30d133fc 2271 return ret;
56bec294
CM
2272}
2273
5d4f98a2 2274static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2275 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
56bec294 2279{
5d4f98a2
YZ
2280 int ret = 0;
2281 struct btrfs_delayed_data_ref *ref;
2282 struct btrfs_key ins;
2283 u64 parent = 0;
2284 u64 ref_root = 0;
2285 u64 flags = 0;
2286
2287 ins.objectid = node->bytenr;
2288 ins.offset = node->num_bytes;
2289 ins.type = BTRFS_EXTENT_ITEM_KEY;
2290
2291 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2292 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2293
5d4f98a2
YZ
2294 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2295 parent = ref->parent;
fcebe456 2296 ref_root = ref->root;
5d4f98a2
YZ
2297
2298 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2299 if (extent_op)
5d4f98a2 2300 flags |= extent_op->flags_to_set;
2ff7e61e 2301 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2302 parent, ref_root, flags,
2303 ref->objectid, ref->offset,
2304 &ins, node->ref_mod);
5d4f98a2 2305 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2306 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2307 ref_root, ref->objectid,
2308 ref->offset, node->ref_mod,
c682f9b3 2309 extent_op);
5d4f98a2 2310 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2311 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2312 ref_root, ref->objectid,
2313 ref->offset, node->ref_mod,
c682f9b3 2314 extent_op);
5d4f98a2
YZ
2315 } else {
2316 BUG();
2317 }
2318 return ret;
2319}
2320
2321static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2322 struct extent_buffer *leaf,
2323 struct btrfs_extent_item *ei)
2324{
2325 u64 flags = btrfs_extent_flags(leaf, ei);
2326 if (extent_op->update_flags) {
2327 flags |= extent_op->flags_to_set;
2328 btrfs_set_extent_flags(leaf, ei, flags);
2329 }
2330
2331 if (extent_op->update_key) {
2332 struct btrfs_tree_block_info *bi;
2333 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2334 bi = (struct btrfs_tree_block_info *)(ei + 1);
2335 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2336 }
2337}
2338
2339static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2340 struct btrfs_fs_info *fs_info,
d278850e 2341 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2342 struct btrfs_delayed_extent_op *extent_op)
2343{
2344 struct btrfs_key key;
2345 struct btrfs_path *path;
2346 struct btrfs_extent_item *ei;
2347 struct extent_buffer *leaf;
2348 u32 item_size;
56bec294 2349 int ret;
5d4f98a2 2350 int err = 0;
b1c79e09 2351 int metadata = !extent_op->is_data;
5d4f98a2 2352
79787eaa
JM
2353 if (trans->aborted)
2354 return 0;
2355
0b246afa 2356 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2357 metadata = 0;
2358
5d4f98a2
YZ
2359 path = btrfs_alloc_path();
2360 if (!path)
2361 return -ENOMEM;
2362
d278850e 2363 key.objectid = head->bytenr;
5d4f98a2 2364
3173a18f 2365 if (metadata) {
3173a18f 2366 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2367 key.offset = extent_op->level;
3173a18f
JB
2368 } else {
2369 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2370 key.offset = head->num_bytes;
3173a18f
JB
2371 }
2372
2373again:
e4058b54 2374 path->reada = READA_FORWARD;
5d4f98a2 2375 path->leave_spinning = 1;
0b246afa 2376 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2377 if (ret < 0) {
2378 err = ret;
2379 goto out;
2380 }
2381 if (ret > 0) {
3173a18f 2382 if (metadata) {
55994887
FDBM
2383 if (path->slots[0] > 0) {
2384 path->slots[0]--;
2385 btrfs_item_key_to_cpu(path->nodes[0], &key,
2386 path->slots[0]);
d278850e 2387 if (key.objectid == head->bytenr &&
55994887 2388 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2389 key.offset == head->num_bytes)
55994887
FDBM
2390 ret = 0;
2391 }
2392 if (ret > 0) {
2393 btrfs_release_path(path);
2394 metadata = 0;
3173a18f 2395
d278850e
JB
2396 key.objectid = head->bytenr;
2397 key.offset = head->num_bytes;
55994887
FDBM
2398 key.type = BTRFS_EXTENT_ITEM_KEY;
2399 goto again;
2400 }
2401 } else {
2402 err = -EIO;
2403 goto out;
3173a18f 2404 }
5d4f98a2
YZ
2405 }
2406
2407 leaf = path->nodes[0];
2408 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2409#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2410 if (item_size < sizeof(*ei)) {
87bde3cd 2411 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2412 if (ret < 0) {
2413 err = ret;
2414 goto out;
2415 }
2416 leaf = path->nodes[0];
2417 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2418 }
2419#endif
2420 BUG_ON(item_size < sizeof(*ei));
2421 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2422 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2423
5d4f98a2
YZ
2424 btrfs_mark_buffer_dirty(leaf);
2425out:
2426 btrfs_free_path(path);
2427 return err;
56bec294
CM
2428}
2429
5d4f98a2 2430static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2431 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2432 struct btrfs_delayed_ref_node *node,
2433 struct btrfs_delayed_extent_op *extent_op,
2434 int insert_reserved)
56bec294
CM
2435{
2436 int ret = 0;
5d4f98a2
YZ
2437 struct btrfs_delayed_tree_ref *ref;
2438 struct btrfs_key ins;
2439 u64 parent = 0;
2440 u64 ref_root = 0;
0b246afa 2441 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
56bec294 2442
5d4f98a2 2443 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2444 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2445
5d4f98a2
YZ
2446 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2447 parent = ref->parent;
fcebe456 2448 ref_root = ref->root;
5d4f98a2 2449
3173a18f
JB
2450 ins.objectid = node->bytenr;
2451 if (skinny_metadata) {
2452 ins.offset = ref->level;
2453 ins.type = BTRFS_METADATA_ITEM_KEY;
2454 } else {
2455 ins.offset = node->num_bytes;
2456 ins.type = BTRFS_EXTENT_ITEM_KEY;
2457 }
2458
02794222 2459 if (node->ref_mod != 1) {
2ff7e61e 2460 btrfs_err(fs_info,
02794222
LB
2461 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2462 node->bytenr, node->ref_mod, node->action, ref_root,
2463 parent);
2464 return -EIO;
2465 }
5d4f98a2 2466 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2467 BUG_ON(!extent_op || !extent_op->update_flags);
2ff7e61e 2468 ret = alloc_reserved_tree_block(trans, fs_info,
5d4f98a2
YZ
2469 parent, ref_root,
2470 extent_op->flags_to_set,
2471 &extent_op->key,
b06c4bf5 2472 ref->level, &ins);
5d4f98a2 2473 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2474 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2475 parent, ref_root,
2476 ref->level, 0, 1,
fcebe456 2477 extent_op);
5d4f98a2 2478 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2479 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2480 parent, ref_root,
2481 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2482 } else {
2483 BUG();
2484 }
56bec294
CM
2485 return ret;
2486}
2487
2488/* helper function to actually process a single delayed ref entry */
5d4f98a2 2489static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2490 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2491 struct btrfs_delayed_ref_node *node,
2492 struct btrfs_delayed_extent_op *extent_op,
2493 int insert_reserved)
56bec294 2494{
79787eaa
JM
2495 int ret = 0;
2496
857cc2fc
JB
2497 if (trans->aborted) {
2498 if (insert_reserved)
2ff7e61e 2499 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2500 node->num_bytes, 1);
79787eaa 2501 return 0;
857cc2fc 2502 }
79787eaa 2503
5d4f98a2
YZ
2504 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2505 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2506 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2507 insert_reserved);
2508 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2509 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2510 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2511 insert_reserved);
2512 else
2513 BUG();
4acc0c9a
JB
2514 if (ret && insert_reserved)
2515 btrfs_pin_extent(trans->fs_info, node->bytenr,
2516 node->num_bytes, 1);
5d4f98a2 2517 return ret;
56bec294
CM
2518}
2519
c6fc2454 2520static inline struct btrfs_delayed_ref_node *
56bec294
CM
2521select_delayed_ref(struct btrfs_delayed_ref_head *head)
2522{
cffc3374
FM
2523 struct btrfs_delayed_ref_node *ref;
2524
0e0adbcf 2525 if (RB_EMPTY_ROOT(&head->ref_tree))
c6fc2454 2526 return NULL;
d7df2c79 2527
cffc3374
FM
2528 /*
2529 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2530 * This is to prevent a ref count from going down to zero, which deletes
2531 * the extent item from the extent tree, when there still are references
2532 * to add, which would fail because they would not find the extent item.
2533 */
1d57ee94
WX
2534 if (!list_empty(&head->ref_add_list))
2535 return list_first_entry(&head->ref_add_list,
2536 struct btrfs_delayed_ref_node, add_list);
2537
0e0adbcf
JB
2538 ref = rb_entry(rb_first(&head->ref_tree),
2539 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2540 ASSERT(list_empty(&ref->add_list));
2541 return ref;
56bec294
CM
2542}
2543
2eadaa22
JB
2544static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2545 struct btrfs_delayed_ref_head *head)
2546{
2547 spin_lock(&delayed_refs->lock);
2548 head->processing = 0;
2549 delayed_refs->num_heads_ready++;
2550 spin_unlock(&delayed_refs->lock);
2551 btrfs_delayed_ref_unlock(head);
2552}
2553
b00e6250
JB
2554static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2555 struct btrfs_fs_info *fs_info,
2556 struct btrfs_delayed_ref_head *head)
2557{
2558 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2559 int ret;
2560
2561 if (!extent_op)
2562 return 0;
2563 head->extent_op = NULL;
2564 if (head->must_insert_reserved) {
2565 btrfs_free_delayed_extent_op(extent_op);
2566 return 0;
2567 }
2568 spin_unlock(&head->lock);
d278850e 2569 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
b00e6250
JB
2570 btrfs_free_delayed_extent_op(extent_op);
2571 return ret ? ret : 1;
2572}
2573
194ab0bc
JB
2574static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2575 struct btrfs_fs_info *fs_info,
2576 struct btrfs_delayed_ref_head *head)
2577{
2578 struct btrfs_delayed_ref_root *delayed_refs;
2579 int ret;
2580
2581 delayed_refs = &trans->transaction->delayed_refs;
2582
2583 ret = cleanup_extent_op(trans, fs_info, head);
2584 if (ret < 0) {
2585 unselect_delayed_ref_head(delayed_refs, head);
2586 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2587 return ret;
2588 } else if (ret) {
2589 return ret;
2590 }
2591
2592 /*
2593 * Need to drop our head ref lock and re-acquire the delayed ref lock
2594 * and then re-check to make sure nobody got added.
2595 */
2596 spin_unlock(&head->lock);
2597 spin_lock(&delayed_refs->lock);
2598 spin_lock(&head->lock);
0e0adbcf 2599 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
194ab0bc
JB
2600 spin_unlock(&head->lock);
2601 spin_unlock(&delayed_refs->lock);
2602 return 1;
2603 }
194ab0bc
JB
2604 delayed_refs->num_heads--;
2605 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 2606 RB_CLEAR_NODE(&head->href_node);
194ab0bc 2607 spin_unlock(&delayed_refs->lock);
c1103f7a
JB
2608 spin_unlock(&head->lock);
2609 atomic_dec(&delayed_refs->num_entries);
2610
d278850e 2611 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a
JB
2612
2613 if (head->total_ref_mod < 0) {
d59e2961
NB
2614 struct btrfs_space_info *space_info;
2615 u64 flags;
c1103f7a 2616
d59e2961
NB
2617 if (head->is_data)
2618 flags = BTRFS_BLOCK_GROUP_DATA;
2619 else if (head->is_system)
2620 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2621 else
2622 flags = BTRFS_BLOCK_GROUP_METADATA;
2623 space_info = __find_space_info(fs_info, flags);
2624 ASSERT(space_info);
2625 percpu_counter_add(&space_info->total_bytes_pinned,
d278850e 2626 -head->num_bytes);
c1103f7a
JB
2627
2628 if (head->is_data) {
2629 spin_lock(&delayed_refs->lock);
d278850e 2630 delayed_refs->pending_csums -= head->num_bytes;
c1103f7a
JB
2631 spin_unlock(&delayed_refs->lock);
2632 }
2633 }
2634
2635 if (head->must_insert_reserved) {
d278850e
JB
2636 btrfs_pin_extent(fs_info, head->bytenr,
2637 head->num_bytes, 1);
c1103f7a 2638 if (head->is_data) {
d278850e
JB
2639 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2640 head->num_bytes);
c1103f7a
JB
2641 }
2642 }
2643
2644 /* Also free its reserved qgroup space */
2645 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2646 head->qgroup_reserved);
2647 btrfs_delayed_ref_unlock(head);
d278850e 2648 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2649 return 0;
2650}
2651
79787eaa
JM
2652/*
2653 * Returns 0 on success or if called with an already aborted transaction.
2654 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2655 */
d7df2c79 2656static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2657 struct btrfs_fs_info *fs_info,
d7df2c79 2658 unsigned long nr)
56bec294 2659{
56bec294
CM
2660 struct btrfs_delayed_ref_root *delayed_refs;
2661 struct btrfs_delayed_ref_node *ref;
2662 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2663 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2664 ktime_t start = ktime_get();
56bec294 2665 int ret;
d7df2c79 2666 unsigned long count = 0;
0a2b2a84 2667 unsigned long actual_count = 0;
56bec294 2668 int must_insert_reserved = 0;
56bec294
CM
2669
2670 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2671 while (1) {
2672 if (!locked_ref) {
d7df2c79 2673 if (count >= nr)
56bec294 2674 break;
56bec294 2675
d7df2c79
JB
2676 spin_lock(&delayed_refs->lock);
2677 locked_ref = btrfs_select_ref_head(trans);
2678 if (!locked_ref) {
2679 spin_unlock(&delayed_refs->lock);
2680 break;
2681 }
c3e69d58
CM
2682
2683 /* grab the lock that says we are going to process
2684 * all the refs for this head */
2685 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2686 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2687 /*
2688 * we may have dropped the spin lock to get the head
2689 * mutex lock, and that might have given someone else
2690 * time to free the head. If that's true, it has been
2691 * removed from our list and we can move on.
2692 */
2693 if (ret == -EAGAIN) {
2694 locked_ref = NULL;
2695 count++;
2696 continue;
56bec294
CM
2697 }
2698 }
a28ec197 2699
2c3cf7d5
FM
2700 /*
2701 * We need to try and merge add/drops of the same ref since we
2702 * can run into issues with relocate dropping the implicit ref
2703 * and then it being added back again before the drop can
2704 * finish. If we merged anything we need to re-loop so we can
2705 * get a good ref.
2706 * Or we can get node references of the same type that weren't
2707 * merged when created due to bumps in the tree mod seq, and
2708 * we need to merge them to prevent adding an inline extent
2709 * backref before dropping it (triggering a BUG_ON at
2710 * insert_inline_extent_backref()).
2711 */
d7df2c79 2712 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2713 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2714 locked_ref);
ae1e206b 2715
d1270cd9
AJ
2716 /*
2717 * locked_ref is the head node, so we have to go one
2718 * node back for any delayed ref updates
2719 */
2720 ref = select_delayed_ref(locked_ref);
2721
2722 if (ref && ref->seq &&
097b8a7c 2723 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2724 spin_unlock(&locked_ref->lock);
2eadaa22 2725 unselect_delayed_ref_head(delayed_refs, locked_ref);
d7df2c79 2726 locked_ref = NULL;
d1270cd9 2727 cond_resched();
27a377db 2728 count++;
d1270cd9
AJ
2729 continue;
2730 }
2731
c1103f7a
JB
2732 /*
2733 * We're done processing refs in this ref_head, clean everything
2734 * up and move on to the next ref_head.
2735 */
56bec294 2736 if (!ref) {
194ab0bc
JB
2737 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2738 if (ret > 0 ) {
b00e6250
JB
2739 /* We dropped our lock, we need to loop. */
2740 ret = 0;
d7df2c79 2741 continue;
194ab0bc
JB
2742 } else if (ret) {
2743 return ret;
5d4f98a2 2744 }
c1103f7a
JB
2745 locked_ref = NULL;
2746 count++;
2747 continue;
2748 }
02217ed2 2749
c1103f7a
JB
2750 actual_count++;
2751 ref->in_tree = 0;
0e0adbcf
JB
2752 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2753 RB_CLEAR_NODE(&ref->ref_node);
c1103f7a
JB
2754 if (!list_empty(&ref->add_list))
2755 list_del(&ref->add_list);
2756 /*
2757 * When we play the delayed ref, also correct the ref_mod on
2758 * head
2759 */
2760 switch (ref->action) {
2761 case BTRFS_ADD_DELAYED_REF:
2762 case BTRFS_ADD_DELAYED_EXTENT:
d278850e 2763 locked_ref->ref_mod -= ref->ref_mod;
c1103f7a
JB
2764 break;
2765 case BTRFS_DROP_DELAYED_REF:
d278850e 2766 locked_ref->ref_mod += ref->ref_mod;
c1103f7a
JB
2767 break;
2768 default:
2769 WARN_ON(1);
22cd2e7d 2770 }
1ce7a5ec
JB
2771 atomic_dec(&delayed_refs->num_entries);
2772
b00e6250
JB
2773 /*
2774 * Record the must-insert_reserved flag before we drop the spin
2775 * lock.
2776 */
2777 must_insert_reserved = locked_ref->must_insert_reserved;
2778 locked_ref->must_insert_reserved = 0;
2779
2780 extent_op = locked_ref->extent_op;
2781 locked_ref->extent_op = NULL;
d7df2c79 2782 spin_unlock(&locked_ref->lock);
925baedd 2783
2ff7e61e 2784 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2785 must_insert_reserved);
eb099670 2786
78a6184a 2787 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2788 if (ret) {
2eadaa22 2789 unselect_delayed_ref_head(delayed_refs, locked_ref);
093486c4 2790 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2791 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2792 ret);
79787eaa
JM
2793 return ret;
2794 }
2795
093486c4
MX
2796 btrfs_put_delayed_ref(ref);
2797 count++;
c3e69d58 2798 cond_resched();
c3e69d58 2799 }
0a2b2a84
JB
2800
2801 /*
2802 * We don't want to include ref heads since we can have empty ref heads
2803 * and those will drastically skew our runtime down since we just do
2804 * accounting, no actual extent tree updates.
2805 */
2806 if (actual_count > 0) {
2807 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2808 u64 avg;
2809
2810 /*
2811 * We weigh the current average higher than our current runtime
2812 * to avoid large swings in the average.
2813 */
2814 spin_lock(&delayed_refs->lock);
2815 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2816 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2817 spin_unlock(&delayed_refs->lock);
2818 }
d7df2c79 2819 return 0;
c3e69d58
CM
2820}
2821
709c0486
AJ
2822#ifdef SCRAMBLE_DELAYED_REFS
2823/*
2824 * Normally delayed refs get processed in ascending bytenr order. This
2825 * correlates in most cases to the order added. To expose dependencies on this
2826 * order, we start to process the tree in the middle instead of the beginning
2827 */
2828static u64 find_middle(struct rb_root *root)
2829{
2830 struct rb_node *n = root->rb_node;
2831 struct btrfs_delayed_ref_node *entry;
2832 int alt = 1;
2833 u64 middle;
2834 u64 first = 0, last = 0;
2835
2836 n = rb_first(root);
2837 if (n) {
2838 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2839 first = entry->bytenr;
2840 }
2841 n = rb_last(root);
2842 if (n) {
2843 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2844 last = entry->bytenr;
2845 }
2846 n = root->rb_node;
2847
2848 while (n) {
2849 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2850 WARN_ON(!entry->in_tree);
2851
2852 middle = entry->bytenr;
2853
2854 if (alt)
2855 n = n->rb_left;
2856 else
2857 n = n->rb_right;
2858
2859 alt = 1 - alt;
2860 }
2861 return middle;
2862}
2863#endif
2864
2ff7e61e 2865static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2866{
2867 u64 num_bytes;
2868
2869 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2870 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2871 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2872 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2873
2874 /*
2875 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2876 * closer to what we're really going to want to use.
1be41b78 2877 */
0b246afa 2878 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2879}
2880
1262133b
JB
2881/*
2882 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2883 * would require to store the csums for that many bytes.
2884 */
2ff7e61e 2885u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2886{
2887 u64 csum_size;
2888 u64 num_csums_per_leaf;
2889 u64 num_csums;
2890
0b246afa 2891 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2892 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2893 (u64)btrfs_super_csum_size(fs_info->super_copy));
2894 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2895 num_csums += num_csums_per_leaf - 1;
2896 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2897 return num_csums;
2898}
2899
0a2b2a84 2900int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2901 struct btrfs_fs_info *fs_info)
1be41b78
JB
2902{
2903 struct btrfs_block_rsv *global_rsv;
2904 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2905 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2906 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2907 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2908 int ret = 0;
2909
0b246afa 2910 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2911 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2912 if (num_heads > 1)
0b246afa 2913 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2914 num_bytes <<= 1;
2ff7e61e
JM
2915 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2916 fs_info->nodesize;
0b246afa 2917 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2918 num_dirty_bgs);
0b246afa 2919 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2920
2921 /*
2922 * If we can't allocate any more chunks lets make sure we have _lots_ of
2923 * wiggle room since running delayed refs can create more delayed refs.
2924 */
cb723e49
JB
2925 if (global_rsv->space_info->full) {
2926 num_dirty_bgs_bytes <<= 1;
1be41b78 2927 num_bytes <<= 1;
cb723e49 2928 }
1be41b78
JB
2929
2930 spin_lock(&global_rsv->lock);
cb723e49 2931 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2932 ret = 1;
2933 spin_unlock(&global_rsv->lock);
2934 return ret;
2935}
2936
0a2b2a84 2937int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2938 struct btrfs_fs_info *fs_info)
0a2b2a84 2939{
0a2b2a84
JB
2940 u64 num_entries =
2941 atomic_read(&trans->transaction->delayed_refs.num_entries);
2942 u64 avg_runtime;
a79b7d4b 2943 u64 val;
0a2b2a84
JB
2944
2945 smp_mb();
2946 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2947 val = num_entries * avg_runtime;
dc1a90c6 2948 if (val >= NSEC_PER_SEC)
0a2b2a84 2949 return 1;
a79b7d4b
CM
2950 if (val >= NSEC_PER_SEC / 2)
2951 return 2;
0a2b2a84 2952
2ff7e61e 2953 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2954}
2955
a79b7d4b
CM
2956struct async_delayed_refs {
2957 struct btrfs_root *root;
31b9655f 2958 u64 transid;
a79b7d4b
CM
2959 int count;
2960 int error;
2961 int sync;
2962 struct completion wait;
2963 struct btrfs_work work;
2964};
2965
2ff7e61e
JM
2966static inline struct async_delayed_refs *
2967to_async_delayed_refs(struct btrfs_work *work)
2968{
2969 return container_of(work, struct async_delayed_refs, work);
2970}
2971
a79b7d4b
CM
2972static void delayed_ref_async_start(struct btrfs_work *work)
2973{
2ff7e61e 2974 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2975 struct btrfs_trans_handle *trans;
2ff7e61e 2976 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2977 int ret;
2978
0f873eca 2979 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2980 if (btrfs_transaction_blocked(fs_info))
31b9655f 2981 goto done;
31b9655f 2982
0f873eca
CM
2983 trans = btrfs_join_transaction(async->root);
2984 if (IS_ERR(trans)) {
2985 async->error = PTR_ERR(trans);
a79b7d4b
CM
2986 goto done;
2987 }
2988
2989 /*
01327610 2990 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2991 * wait on delayed refs
2992 */
2993 trans->sync = true;
0f873eca
CM
2994
2995 /* Don't bother flushing if we got into a different transaction */
2996 if (trans->transid > async->transid)
2997 goto end;
2998
2ff7e61e 2999 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
a79b7d4b
CM
3000 if (ret)
3001 async->error = ret;
0f873eca 3002end:
3a45bb20 3003 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
3004 if (ret && !async->error)
3005 async->error = ret;
3006done:
3007 if (async->sync)
3008 complete(&async->wait);
3009 else
3010 kfree(async);
3011}
3012
2ff7e61e 3013int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 3014 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
3015{
3016 struct async_delayed_refs *async;
3017 int ret;
3018
3019 async = kmalloc(sizeof(*async), GFP_NOFS);
3020 if (!async)
3021 return -ENOMEM;
3022
0b246afa 3023 async->root = fs_info->tree_root;
a79b7d4b
CM
3024 async->count = count;
3025 async->error = 0;
31b9655f 3026 async->transid = transid;
a79b7d4b
CM
3027 if (wait)
3028 async->sync = 1;
3029 else
3030 async->sync = 0;
3031 init_completion(&async->wait);
3032
9e0af237
LB
3033 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3034 delayed_ref_async_start, NULL, NULL);
a79b7d4b 3035
0b246afa 3036 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
3037
3038 if (wait) {
3039 wait_for_completion(&async->wait);
3040 ret = async->error;
3041 kfree(async);
3042 return ret;
3043 }
3044 return 0;
3045}
3046
c3e69d58
CM
3047/*
3048 * this starts processing the delayed reference count updates and
3049 * extent insertions we have queued up so far. count can be
3050 * 0, which means to process everything in the tree at the start
3051 * of the run (but not newly added entries), or it can be some target
3052 * number you'd like to process.
79787eaa
JM
3053 *
3054 * Returns 0 on success or if called with an aborted transaction
3055 * Returns <0 on error and aborts the transaction
c3e69d58
CM
3056 */
3057int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 3058 struct btrfs_fs_info *fs_info, unsigned long count)
c3e69d58
CM
3059{
3060 struct rb_node *node;
3061 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 3062 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
3063 int ret;
3064 int run_all = count == (unsigned long)-1;
c3e69d58 3065
79787eaa
JM
3066 /* We'll clean this up in btrfs_cleanup_transaction */
3067 if (trans->aborted)
3068 return 0;
3069
0b246afa 3070 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
3071 return 0;
3072
c3e69d58 3073 delayed_refs = &trans->transaction->delayed_refs;
26455d33 3074 if (count == 0)
d7df2c79 3075 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3076
c3e69d58 3077again:
709c0486
AJ
3078#ifdef SCRAMBLE_DELAYED_REFS
3079 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3080#endif
2ff7e61e 3081 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
d7df2c79 3082 if (ret < 0) {
66642832 3083 btrfs_abort_transaction(trans, ret);
d7df2c79 3084 return ret;
eb099670 3085 }
c3e69d58 3086
56bec294 3087 if (run_all) {
d7df2c79 3088 if (!list_empty(&trans->new_bgs))
2ff7e61e 3089 btrfs_create_pending_block_groups(trans, fs_info);
ea658bad 3090
d7df2c79 3091 spin_lock(&delayed_refs->lock);
c46effa6 3092 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
3093 if (!node) {
3094 spin_unlock(&delayed_refs->lock);
56bec294 3095 goto out;
d7df2c79 3096 }
d278850e
JB
3097 head = rb_entry(node, struct btrfs_delayed_ref_head,
3098 href_node);
3099 refcount_inc(&head->refs);
3100 spin_unlock(&delayed_refs->lock);
e9d0b13b 3101
d278850e
JB
3102 /* Mutex was contended, block until it's released and retry. */
3103 mutex_lock(&head->mutex);
3104 mutex_unlock(&head->mutex);
56bec294 3105
d278850e 3106 btrfs_put_delayed_ref_head(head);
d7df2c79 3107 cond_resched();
56bec294 3108 goto again;
5f39d397 3109 }
54aa1f4d 3110out:
a28ec197
CM
3111 return 0;
3112}
3113
5d4f98a2 3114int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3115 struct btrfs_fs_info *fs_info,
5d4f98a2 3116 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3117 int level, int is_data)
5d4f98a2
YZ
3118{
3119 struct btrfs_delayed_extent_op *extent_op;
3120 int ret;
3121
78a6184a 3122 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3123 if (!extent_op)
3124 return -ENOMEM;
3125
3126 extent_op->flags_to_set = flags;
35b3ad50
DS
3127 extent_op->update_flags = true;
3128 extent_op->update_key = false;
3129 extent_op->is_data = is_data ? true : false;
b1c79e09 3130 extent_op->level = level;
5d4f98a2 3131
0b246afa 3132 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3133 num_bytes, extent_op);
5d4f98a2 3134 if (ret)
78a6184a 3135 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3136 return ret;
3137}
3138
e4c3b2dc 3139static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3140 struct btrfs_path *path,
3141 u64 objectid, u64 offset, u64 bytenr)
3142{
3143 struct btrfs_delayed_ref_head *head;
3144 struct btrfs_delayed_ref_node *ref;
3145 struct btrfs_delayed_data_ref *data_ref;
3146 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3147 struct btrfs_transaction *cur_trans;
0e0adbcf 3148 struct rb_node *node;
5d4f98a2
YZ
3149 int ret = 0;
3150
5bc16a28 3151 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 3152 cur_trans = root->fs_info->running_transaction;
5bc16a28 3153 if (cur_trans)
3154 refcount_inc(&cur_trans->use_count);
3155 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
3156 if (!cur_trans)
3157 return 0;
3158
3159 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3160 spin_lock(&delayed_refs->lock);
f72ad18e 3161 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3162 if (!head) {
3163 spin_unlock(&delayed_refs->lock);
5bc16a28 3164 btrfs_put_transaction(cur_trans);
d7df2c79
JB
3165 return 0;
3166 }
5d4f98a2
YZ
3167
3168 if (!mutex_trylock(&head->mutex)) {
d278850e 3169 refcount_inc(&head->refs);
5d4f98a2
YZ
3170 spin_unlock(&delayed_refs->lock);
3171
b3b4aa74 3172 btrfs_release_path(path);
5d4f98a2 3173
8cc33e5c
DS
3174 /*
3175 * Mutex was contended, block until it's released and let
3176 * caller try again
3177 */
5d4f98a2
YZ
3178 mutex_lock(&head->mutex);
3179 mutex_unlock(&head->mutex);
d278850e 3180 btrfs_put_delayed_ref_head(head);
5bc16a28 3181 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3182 return -EAGAIN;
3183 }
d7df2c79 3184 spin_unlock(&delayed_refs->lock);
5d4f98a2 3185
d7df2c79 3186 spin_lock(&head->lock);
0e0adbcf
JB
3187 /*
3188 * XXX: We should replace this with a proper search function in the
3189 * future.
3190 */
3191 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3192 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3193 /* If it's a shared ref we know a cross reference exists */
3194 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3195 ret = 1;
3196 break;
3197 }
5d4f98a2 3198
d7df2c79 3199 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3200
d7df2c79
JB
3201 /*
3202 * If our ref doesn't match the one we're currently looking at
3203 * then we have a cross reference.
3204 */
3205 if (data_ref->root != root->root_key.objectid ||
3206 data_ref->objectid != objectid ||
3207 data_ref->offset != offset) {
3208 ret = 1;
3209 break;
3210 }
5d4f98a2 3211 }
d7df2c79 3212 spin_unlock(&head->lock);
5d4f98a2 3213 mutex_unlock(&head->mutex);
5bc16a28 3214 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3215 return ret;
3216}
3217
e4c3b2dc 3218static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3219 struct btrfs_path *path,
3220 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3221{
0b246afa
JM
3222 struct btrfs_fs_info *fs_info = root->fs_info;
3223 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3224 struct extent_buffer *leaf;
5d4f98a2
YZ
3225 struct btrfs_extent_data_ref *ref;
3226 struct btrfs_extent_inline_ref *iref;
3227 struct btrfs_extent_item *ei;
f321e491 3228 struct btrfs_key key;
5d4f98a2 3229 u32 item_size;
3de28d57 3230 int type;
be20aa9d 3231 int ret;
925baedd 3232
be20aa9d 3233 key.objectid = bytenr;
31840ae1 3234 key.offset = (u64)-1;
f321e491 3235 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3236
be20aa9d
CM
3237 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3238 if (ret < 0)
3239 goto out;
79787eaa 3240 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3241
3242 ret = -ENOENT;
3243 if (path->slots[0] == 0)
31840ae1 3244 goto out;
be20aa9d 3245
31840ae1 3246 path->slots[0]--;
f321e491 3247 leaf = path->nodes[0];
5d4f98a2 3248 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3249
5d4f98a2 3250 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3251 goto out;
f321e491 3252
5d4f98a2
YZ
3253 ret = 1;
3254 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3255#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3256 if (item_size < sizeof(*ei)) {
3257 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3258 goto out;
3259 }
3260#endif
3261 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3262
5d4f98a2
YZ
3263 if (item_size != sizeof(*ei) +
3264 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3265 goto out;
be20aa9d 3266
5d4f98a2
YZ
3267 if (btrfs_extent_generation(leaf, ei) <=
3268 btrfs_root_last_snapshot(&root->root_item))
3269 goto out;
3270
3271 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3272
3273 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3274 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3275 goto out;
3276
3277 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3278 if (btrfs_extent_refs(leaf, ei) !=
3279 btrfs_extent_data_ref_count(leaf, ref) ||
3280 btrfs_extent_data_ref_root(leaf, ref) !=
3281 root->root_key.objectid ||
3282 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3283 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3284 goto out;
3285
3286 ret = 0;
3287out:
3288 return ret;
3289}
3290
e4c3b2dc
LB
3291int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3292 u64 bytenr)
5d4f98a2
YZ
3293{
3294 struct btrfs_path *path;
3295 int ret;
3296 int ret2;
3297
3298 path = btrfs_alloc_path();
3299 if (!path)
3300 return -ENOENT;
3301
3302 do {
e4c3b2dc 3303 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3304 offset, bytenr);
3305 if (ret && ret != -ENOENT)
f321e491 3306 goto out;
80ff3856 3307
e4c3b2dc 3308 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3309 offset, bytenr);
3310 } while (ret2 == -EAGAIN);
3311
3312 if (ret2 && ret2 != -ENOENT) {
3313 ret = ret2;
3314 goto out;
f321e491 3315 }
5d4f98a2
YZ
3316
3317 if (ret != -ENOENT || ret2 != -ENOENT)
3318 ret = 0;
be20aa9d 3319out:
80ff3856 3320 btrfs_free_path(path);
f0486c68
YZ
3321 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3322 WARN_ON(ret > 0);
f321e491 3323 return ret;
be20aa9d 3324}
c5739bba 3325
5d4f98a2 3326static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3327 struct btrfs_root *root,
5d4f98a2 3328 struct extent_buffer *buf,
e339a6b0 3329 int full_backref, int inc)
31840ae1 3330{
0b246afa 3331 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3332 u64 bytenr;
5d4f98a2
YZ
3333 u64 num_bytes;
3334 u64 parent;
31840ae1 3335 u64 ref_root;
31840ae1 3336 u32 nritems;
31840ae1
ZY
3337 struct btrfs_key key;
3338 struct btrfs_file_extent_item *fi;
3339 int i;
3340 int level;
3341 int ret = 0;
2ff7e61e 3342 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3343 struct btrfs_root *,
b06c4bf5 3344 u64, u64, u64, u64, u64, u64);
31840ae1 3345
fccb84c9 3346
0b246afa 3347 if (btrfs_is_testing(fs_info))
faa2dbf0 3348 return 0;
fccb84c9 3349
31840ae1 3350 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3351 nritems = btrfs_header_nritems(buf);
3352 level = btrfs_header_level(buf);
3353
27cdeb70 3354 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3355 return 0;
31840ae1 3356
5d4f98a2
YZ
3357 if (inc)
3358 process_func = btrfs_inc_extent_ref;
3359 else
3360 process_func = btrfs_free_extent;
31840ae1 3361
5d4f98a2
YZ
3362 if (full_backref)
3363 parent = buf->start;
3364 else
3365 parent = 0;
3366
3367 for (i = 0; i < nritems; i++) {
31840ae1 3368 if (level == 0) {
5d4f98a2 3369 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3370 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3371 continue;
5d4f98a2 3372 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3373 struct btrfs_file_extent_item);
3374 if (btrfs_file_extent_type(buf, fi) ==
3375 BTRFS_FILE_EXTENT_INLINE)
3376 continue;
3377 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3378 if (bytenr == 0)
3379 continue;
5d4f98a2
YZ
3380
3381 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3382 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3383 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3384 parent, ref_root, key.objectid,
b06c4bf5 3385 key.offset);
31840ae1
ZY
3386 if (ret)
3387 goto fail;
3388 } else {
5d4f98a2 3389 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3390 num_bytes = fs_info->nodesize;
84f7d8e6 3391 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3392 parent, ref_root, level - 1, 0);
31840ae1
ZY
3393 if (ret)
3394 goto fail;
3395 }
3396 }
3397 return 0;
3398fail:
5d4f98a2
YZ
3399 return ret;
3400}
3401
3402int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3403 struct extent_buffer *buf, int full_backref)
5d4f98a2 3404{
e339a6b0 3405 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3406}
3407
3408int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3409 struct extent_buffer *buf, int full_backref)
5d4f98a2 3410{
e339a6b0 3411 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3412}
3413
9078a3e1 3414static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3415 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3416 struct btrfs_path *path,
3417 struct btrfs_block_group_cache *cache)
3418{
3419 int ret;
0b246afa 3420 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3421 unsigned long bi;
3422 struct extent_buffer *leaf;
9078a3e1 3423
9078a3e1 3424 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3425 if (ret) {
3426 if (ret > 0)
3427 ret = -ENOENT;
54aa1f4d 3428 goto fail;
df95e7f0 3429 }
5f39d397
CM
3430
3431 leaf = path->nodes[0];
3432 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3433 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3434 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3435fail:
24b89d08 3436 btrfs_release_path(path);
df95e7f0 3437 return ret;
9078a3e1
CM
3438
3439}
3440
4a8c9a62 3441static struct btrfs_block_group_cache *
2ff7e61e 3442next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3443 struct btrfs_block_group_cache *cache)
3444{
3445 struct rb_node *node;
292cbd51 3446
0b246afa 3447 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3448
3449 /* If our block group was removed, we need a full search. */
3450 if (RB_EMPTY_NODE(&cache->cache_node)) {
3451 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3452
0b246afa 3453 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3454 btrfs_put_block_group(cache);
0b246afa 3455 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3456 }
4a8c9a62
YZ
3457 node = rb_next(&cache->cache_node);
3458 btrfs_put_block_group(cache);
3459 if (node) {
3460 cache = rb_entry(node, struct btrfs_block_group_cache,
3461 cache_node);
11dfe35a 3462 btrfs_get_block_group(cache);
4a8c9a62
YZ
3463 } else
3464 cache = NULL;
0b246afa 3465 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3466 return cache;
3467}
3468
0af3d00b
JB
3469static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3470 struct btrfs_trans_handle *trans,
3471 struct btrfs_path *path)
3472{
0b246afa
JM
3473 struct btrfs_fs_info *fs_info = block_group->fs_info;
3474 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3475 struct inode *inode = NULL;
364ecf36 3476 struct extent_changeset *data_reserved = NULL;
0af3d00b 3477 u64 alloc_hint = 0;
2b20982e 3478 int dcs = BTRFS_DC_ERROR;
f8c269d7 3479 u64 num_pages = 0;
0af3d00b
JB
3480 int retries = 0;
3481 int ret = 0;
3482
3483 /*
3484 * If this block group is smaller than 100 megs don't bother caching the
3485 * block group.
3486 */
ee22184b 3487 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3488 spin_lock(&block_group->lock);
3489 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3490 spin_unlock(&block_group->lock);
3491 return 0;
3492 }
3493
0c0ef4bc
JB
3494 if (trans->aborted)
3495 return 0;
0af3d00b 3496again:
77ab86bf 3497 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3498 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3499 ret = PTR_ERR(inode);
b3b4aa74 3500 btrfs_release_path(path);
0af3d00b
JB
3501 goto out;
3502 }
3503
3504 if (IS_ERR(inode)) {
3505 BUG_ON(retries);
3506 retries++;
3507
3508 if (block_group->ro)
3509 goto out_free;
3510
77ab86bf
JM
3511 ret = create_free_space_inode(fs_info, trans, block_group,
3512 path);
0af3d00b
JB
3513 if (ret)
3514 goto out_free;
3515 goto again;
3516 }
3517
3518 /*
3519 * We want to set the generation to 0, that way if anything goes wrong
3520 * from here on out we know not to trust this cache when we load up next
3521 * time.
3522 */
3523 BTRFS_I(inode)->generation = 0;
3524 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3525 if (ret) {
3526 /*
3527 * So theoretically we could recover from this, simply set the
3528 * super cache generation to 0 so we know to invalidate the
3529 * cache, but then we'd have to keep track of the block groups
3530 * that fail this way so we know we _have_ to reset this cache
3531 * before the next commit or risk reading stale cache. So to
3532 * limit our exposure to horrible edge cases lets just abort the
3533 * transaction, this only happens in really bad situations
3534 * anyway.
3535 */
66642832 3536 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3537 goto out_put;
3538 }
0af3d00b
JB
3539 WARN_ON(ret);
3540
8e138e0d
JB
3541 /* We've already setup this transaction, go ahead and exit */
3542 if (block_group->cache_generation == trans->transid &&
3543 i_size_read(inode)) {
3544 dcs = BTRFS_DC_SETUP;
3545 goto out_put;
3546 }
3547
0af3d00b 3548 if (i_size_read(inode) > 0) {
2ff7e61e 3549 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3550 &fs_info->global_block_rsv);
7b61cd92
MX
3551 if (ret)
3552 goto out_put;
3553
77ab86bf 3554 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3555 if (ret)
3556 goto out_put;
3557 }
3558
3559 spin_lock(&block_group->lock);
cf7c1ef6 3560 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3561 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3562 /*
3563 * don't bother trying to write stuff out _if_
3564 * a) we're not cached,
1a79c1f2
LB
3565 * b) we're with nospace_cache mount option,
3566 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3567 */
2b20982e 3568 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3569 spin_unlock(&block_group->lock);
3570 goto out_put;
3571 }
3572 spin_unlock(&block_group->lock);
3573
2968b1f4
JB
3574 /*
3575 * We hit an ENOSPC when setting up the cache in this transaction, just
3576 * skip doing the setup, we've already cleared the cache so we're safe.
3577 */
3578 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3579 ret = -ENOSPC;
3580 goto out_put;
3581 }
3582
6fc823b1
JB
3583 /*
3584 * Try to preallocate enough space based on how big the block group is.
3585 * Keep in mind this has to include any pinned space which could end up
3586 * taking up quite a bit since it's not folded into the other space
3587 * cache.
3588 */
ee22184b 3589 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3590 if (!num_pages)
3591 num_pages = 1;
3592
0af3d00b 3593 num_pages *= 16;
09cbfeaf 3594 num_pages *= PAGE_SIZE;
0af3d00b 3595
364ecf36 3596 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3597 if (ret)
3598 goto out_put;
3599
3600 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3601 num_pages, num_pages,
3602 &alloc_hint);
2968b1f4
JB
3603 /*
3604 * Our cache requires contiguous chunks so that we don't modify a bunch
3605 * of metadata or split extents when writing the cache out, which means
3606 * we can enospc if we are heavily fragmented in addition to just normal
3607 * out of space conditions. So if we hit this just skip setting up any
3608 * other block groups for this transaction, maybe we'll unpin enough
3609 * space the next time around.
3610 */
2b20982e
JB
3611 if (!ret)
3612 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3613 else if (ret == -ENOSPC)
3614 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3615
0af3d00b
JB
3616out_put:
3617 iput(inode);
3618out_free:
b3b4aa74 3619 btrfs_release_path(path);
0af3d00b
JB
3620out:
3621 spin_lock(&block_group->lock);
e65cbb94 3622 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3623 block_group->cache_generation = trans->transid;
2b20982e 3624 block_group->disk_cache_state = dcs;
0af3d00b
JB
3625 spin_unlock(&block_group->lock);
3626
364ecf36 3627 extent_changeset_free(data_reserved);
0af3d00b
JB
3628 return ret;
3629}
3630
dcdf7f6d 3631int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3632 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3633{
3634 struct btrfs_block_group_cache *cache, *tmp;
3635 struct btrfs_transaction *cur_trans = trans->transaction;
3636 struct btrfs_path *path;
3637
3638 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3639 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3640 return 0;
3641
3642 path = btrfs_alloc_path();
3643 if (!path)
3644 return -ENOMEM;
3645
3646 /* Could add new block groups, use _safe just in case */
3647 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3648 dirty_list) {
3649 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3650 cache_save_setup(cache, trans, path);
3651 }
3652
3653 btrfs_free_path(path);
3654 return 0;
3655}
3656
1bbc621e
CM
3657/*
3658 * transaction commit does final block group cache writeback during a
3659 * critical section where nothing is allowed to change the FS. This is
3660 * required in order for the cache to actually match the block group,
3661 * but can introduce a lot of latency into the commit.
3662 *
3663 * So, btrfs_start_dirty_block_groups is here to kick off block group
3664 * cache IO. There's a chance we'll have to redo some of it if the
3665 * block group changes again during the commit, but it greatly reduces
3666 * the commit latency by getting rid of the easy block groups while
3667 * we're still allowing others to join the commit.
3668 */
3669int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3670 struct btrfs_fs_info *fs_info)
9078a3e1 3671{
4a8c9a62 3672 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3673 struct btrfs_transaction *cur_trans = trans->transaction;
3674 int ret = 0;
c9dc4c65 3675 int should_put;
1bbc621e
CM
3676 struct btrfs_path *path = NULL;
3677 LIST_HEAD(dirty);
3678 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3679 int num_started = 0;
1bbc621e
CM
3680 int loops = 0;
3681
3682 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3683 if (list_empty(&cur_trans->dirty_bgs)) {
3684 spin_unlock(&cur_trans->dirty_bgs_lock);
3685 return 0;
1bbc621e 3686 }
b58d1a9e 3687 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3688 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3689
1bbc621e 3690again:
1bbc621e
CM
3691 /*
3692 * make sure all the block groups on our dirty list actually
3693 * exist
3694 */
2ff7e61e 3695 btrfs_create_pending_block_groups(trans, fs_info);
1bbc621e
CM
3696
3697 if (!path) {
3698 path = btrfs_alloc_path();
3699 if (!path)
3700 return -ENOMEM;
3701 }
3702
b58d1a9e
FM
3703 /*
3704 * cache_write_mutex is here only to save us from balance or automatic
3705 * removal of empty block groups deleting this block group while we are
3706 * writing out the cache
3707 */
3708 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3709 while (!list_empty(&dirty)) {
3710 cache = list_first_entry(&dirty,
3711 struct btrfs_block_group_cache,
3712 dirty_list);
1bbc621e
CM
3713 /*
3714 * this can happen if something re-dirties a block
3715 * group that is already under IO. Just wait for it to
3716 * finish and then do it all again
3717 */
3718 if (!list_empty(&cache->io_list)) {
3719 list_del_init(&cache->io_list);
afdb5718 3720 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3721 btrfs_put_block_group(cache);
3722 }
3723
3724
3725 /*
3726 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3727 * if it should update the cache_state. Don't delete
3728 * until after we wait.
3729 *
3730 * Since we're not running in the commit critical section
3731 * we need the dirty_bgs_lock to protect from update_block_group
3732 */
3733 spin_lock(&cur_trans->dirty_bgs_lock);
3734 list_del_init(&cache->dirty_list);
3735 spin_unlock(&cur_trans->dirty_bgs_lock);
3736
3737 should_put = 1;
3738
3739 cache_save_setup(cache, trans, path);
3740
3741 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3742 cache->io_ctl.inode = NULL;
0b246afa 3743 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3744 cache, path);
1bbc621e
CM
3745 if (ret == 0 && cache->io_ctl.inode) {
3746 num_started++;
3747 should_put = 0;
3748
3749 /*
3750 * the cache_write_mutex is protecting
3751 * the io_list
3752 */
3753 list_add_tail(&cache->io_list, io);
3754 } else {
3755 /*
3756 * if we failed to write the cache, the
3757 * generation will be bad and life goes on
3758 */
3759 ret = 0;
3760 }
3761 }
ff1f8250 3762 if (!ret) {
2ff7e61e
JM
3763 ret = write_one_cache_group(trans, fs_info,
3764 path, cache);
ff1f8250
FM
3765 /*
3766 * Our block group might still be attached to the list
3767 * of new block groups in the transaction handle of some
3768 * other task (struct btrfs_trans_handle->new_bgs). This
3769 * means its block group item isn't yet in the extent
3770 * tree. If this happens ignore the error, as we will
3771 * try again later in the critical section of the
3772 * transaction commit.
3773 */
3774 if (ret == -ENOENT) {
3775 ret = 0;
3776 spin_lock(&cur_trans->dirty_bgs_lock);
3777 if (list_empty(&cache->dirty_list)) {
3778 list_add_tail(&cache->dirty_list,
3779 &cur_trans->dirty_bgs);
3780 btrfs_get_block_group(cache);
3781 }
3782 spin_unlock(&cur_trans->dirty_bgs_lock);
3783 } else if (ret) {
66642832 3784 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3785 }
3786 }
1bbc621e
CM
3787
3788 /* if its not on the io list, we need to put the block group */
3789 if (should_put)
3790 btrfs_put_block_group(cache);
3791
3792 if (ret)
3793 break;
b58d1a9e
FM
3794
3795 /*
3796 * Avoid blocking other tasks for too long. It might even save
3797 * us from writing caches for block groups that are going to be
3798 * removed.
3799 */
3800 mutex_unlock(&trans->transaction->cache_write_mutex);
3801 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3802 }
b58d1a9e 3803 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3804
3805 /*
3806 * go through delayed refs for all the stuff we've just kicked off
3807 * and then loop back (just once)
3808 */
2ff7e61e 3809 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1bbc621e
CM
3810 if (!ret && loops == 0) {
3811 loops++;
3812 spin_lock(&cur_trans->dirty_bgs_lock);
3813 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3814 /*
3815 * dirty_bgs_lock protects us from concurrent block group
3816 * deletes too (not just cache_write_mutex).
3817 */
3818 if (!list_empty(&dirty)) {
3819 spin_unlock(&cur_trans->dirty_bgs_lock);
3820 goto again;
3821 }
1bbc621e 3822 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3823 } else if (ret < 0) {
2ff7e61e 3824 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3825 }
3826
3827 btrfs_free_path(path);
3828 return ret;
3829}
3830
3831int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3832 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3833{
3834 struct btrfs_block_group_cache *cache;
3835 struct btrfs_transaction *cur_trans = trans->transaction;
3836 int ret = 0;
3837 int should_put;
3838 struct btrfs_path *path;
3839 struct list_head *io = &cur_trans->io_bgs;
3840 int num_started = 0;
9078a3e1
CM
3841
3842 path = btrfs_alloc_path();
3843 if (!path)
3844 return -ENOMEM;
3845
ce93ec54 3846 /*
e44081ef
FM
3847 * Even though we are in the critical section of the transaction commit,
3848 * we can still have concurrent tasks adding elements to this
3849 * transaction's list of dirty block groups. These tasks correspond to
3850 * endio free space workers started when writeback finishes for a
3851 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3852 * allocate new block groups as a result of COWing nodes of the root
3853 * tree when updating the free space inode. The writeback for the space
3854 * caches is triggered by an earlier call to
3855 * btrfs_start_dirty_block_groups() and iterations of the following
3856 * loop.
3857 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3858 * delayed refs to make sure we have the best chance at doing this all
3859 * in one shot.
3860 */
e44081ef 3861 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3862 while (!list_empty(&cur_trans->dirty_bgs)) {
3863 cache = list_first_entry(&cur_trans->dirty_bgs,
3864 struct btrfs_block_group_cache,
3865 dirty_list);
c9dc4c65
CM
3866
3867 /*
3868 * this can happen if cache_save_setup re-dirties a block
3869 * group that is already under IO. Just wait for it to
3870 * finish and then do it all again
3871 */
3872 if (!list_empty(&cache->io_list)) {
e44081ef 3873 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3874 list_del_init(&cache->io_list);
afdb5718 3875 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3876 btrfs_put_block_group(cache);
e44081ef 3877 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3878 }
3879
1bbc621e
CM
3880 /*
3881 * don't remove from the dirty list until after we've waited
3882 * on any pending IO
3883 */
ce93ec54 3884 list_del_init(&cache->dirty_list);
e44081ef 3885 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3886 should_put = 1;
3887
1bbc621e 3888 cache_save_setup(cache, trans, path);
c9dc4c65 3889
ce93ec54 3890 if (!ret)
2ff7e61e
JM
3891 ret = btrfs_run_delayed_refs(trans, fs_info,
3892 (unsigned long) -1);
c9dc4c65
CM
3893
3894 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3895 cache->io_ctl.inode = NULL;
0b246afa 3896 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3897 cache, path);
c9dc4c65
CM
3898 if (ret == 0 && cache->io_ctl.inode) {
3899 num_started++;
3900 should_put = 0;
1bbc621e 3901 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3902 } else {
3903 /*
3904 * if we failed to write the cache, the
3905 * generation will be bad and life goes on
3906 */
3907 ret = 0;
3908 }
3909 }
ff1f8250 3910 if (!ret) {
2ff7e61e
JM
3911 ret = write_one_cache_group(trans, fs_info,
3912 path, cache);
2bc0bb5f
FM
3913 /*
3914 * One of the free space endio workers might have
3915 * created a new block group while updating a free space
3916 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3917 * and hasn't released its transaction handle yet, in
3918 * which case the new block group is still attached to
3919 * its transaction handle and its creation has not
3920 * finished yet (no block group item in the extent tree
3921 * yet, etc). If this is the case, wait for all free
3922 * space endio workers to finish and retry. This is a
3923 * a very rare case so no need for a more efficient and
3924 * complex approach.
3925 */
3926 if (ret == -ENOENT) {
3927 wait_event(cur_trans->writer_wait,
3928 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3929 ret = write_one_cache_group(trans, fs_info,
3930 path, cache);
2bc0bb5f 3931 }
ff1f8250 3932 if (ret)
66642832 3933 btrfs_abort_transaction(trans, ret);
ff1f8250 3934 }
c9dc4c65
CM
3935
3936 /* if its not on the io list, we need to put the block group */
3937 if (should_put)
3938 btrfs_put_block_group(cache);
e44081ef 3939 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3940 }
e44081ef 3941 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3942
1bbc621e
CM
3943 while (!list_empty(io)) {
3944 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3945 io_list);
3946 list_del_init(&cache->io_list);
afdb5718 3947 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3948 btrfs_put_block_group(cache);
3949 }
3950
9078a3e1 3951 btrfs_free_path(path);
ce93ec54 3952 return ret;
9078a3e1
CM
3953}
3954
2ff7e61e 3955int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3956{
3957 struct btrfs_block_group_cache *block_group;
3958 int readonly = 0;
3959
0b246afa 3960 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3961 if (!block_group || block_group->ro)
3962 readonly = 1;
3963 if (block_group)
fa9c0d79 3964 btrfs_put_block_group(block_group);
d2fb3437
YZ
3965 return readonly;
3966}
3967
f78c436c
FM
3968bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3969{
3970 struct btrfs_block_group_cache *bg;
3971 bool ret = true;
3972
3973 bg = btrfs_lookup_block_group(fs_info, bytenr);
3974 if (!bg)
3975 return false;
3976
3977 spin_lock(&bg->lock);
3978 if (bg->ro)
3979 ret = false;
3980 else
3981 atomic_inc(&bg->nocow_writers);
3982 spin_unlock(&bg->lock);
3983
3984 /* no put on block group, done by btrfs_dec_nocow_writers */
3985 if (!ret)
3986 btrfs_put_block_group(bg);
3987
3988 return ret;
3989
3990}
3991
3992void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3993{
3994 struct btrfs_block_group_cache *bg;
3995
3996 bg = btrfs_lookup_block_group(fs_info, bytenr);
3997 ASSERT(bg);
3998 if (atomic_dec_and_test(&bg->nocow_writers))
3999 wake_up_atomic_t(&bg->nocow_writers);
4000 /*
4001 * Once for our lookup and once for the lookup done by a previous call
4002 * to btrfs_inc_nocow_writers()
4003 */
4004 btrfs_put_block_group(bg);
4005 btrfs_put_block_group(bg);
4006}
4007
f78c436c
FM
4008void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4009{
5e4def20 4010 wait_on_atomic_t(&bg->nocow_writers, atomic_t_wait,
f78c436c
FM
4011 TASK_UNINTERRUPTIBLE);
4012}
4013
6ab0a202
JM
4014static const char *alloc_name(u64 flags)
4015{
4016 switch (flags) {
4017 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4018 return "mixed";
4019 case BTRFS_BLOCK_GROUP_METADATA:
4020 return "metadata";
4021 case BTRFS_BLOCK_GROUP_DATA:
4022 return "data";
4023 case BTRFS_BLOCK_GROUP_SYSTEM:
4024 return "system";
4025 default:
4026 WARN_ON(1);
4027 return "invalid-combination";
4028 };
4029}
4030
2be12ef7
NB
4031static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4032 struct btrfs_space_info **new)
4033{
4034
4035 struct btrfs_space_info *space_info;
4036 int i;
4037 int ret;
4038
4039 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4040 if (!space_info)
4041 return -ENOMEM;
4042
4043 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4044 GFP_KERNEL);
4045 if (ret) {
4046 kfree(space_info);
4047 return ret;
4048 }
4049
4050 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4051 INIT_LIST_HEAD(&space_info->block_groups[i]);
4052 init_rwsem(&space_info->groups_sem);
4053 spin_lock_init(&space_info->lock);
4054 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4055 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4056 init_waitqueue_head(&space_info->wait);
4057 INIT_LIST_HEAD(&space_info->ro_bgs);
4058 INIT_LIST_HEAD(&space_info->tickets);
4059 INIT_LIST_HEAD(&space_info->priority_tickets);
4060
4061 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4062 info->space_info_kobj, "%s",
4063 alloc_name(space_info->flags));
4064 if (ret) {
4065 percpu_counter_destroy(&space_info->total_bytes_pinned);
4066 kfree(space_info);
4067 return ret;
4068 }
4069
4070 *new = space_info;
4071 list_add_rcu(&space_info->list, &info->space_info);
4072 if (flags & BTRFS_BLOCK_GROUP_DATA)
4073 info->data_sinfo = space_info;
4074
4075 return ret;
4076}
4077
d2006e6d 4078static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4079 u64 total_bytes, u64 bytes_used,
e40edf2d 4080 u64 bytes_readonly,
593060d7
CM
4081 struct btrfs_space_info **space_info)
4082{
4083 struct btrfs_space_info *found;
b742bb82
YZ
4084 int factor;
4085
4086 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4087 BTRFS_BLOCK_GROUP_RAID10))
4088 factor = 2;
4089 else
4090 factor = 1;
593060d7
CM
4091
4092 found = __find_space_info(info, flags);
d2006e6d
NB
4093 ASSERT(found);
4094 spin_lock(&found->lock);
4095 found->total_bytes += total_bytes;
4096 found->disk_total += total_bytes * factor;
4097 found->bytes_used += bytes_used;
4098 found->disk_used += bytes_used * factor;
4099 found->bytes_readonly += bytes_readonly;
4100 if (total_bytes > 0)
4101 found->full = 0;
4102 space_info_add_new_bytes(info, found, total_bytes -
4103 bytes_used - bytes_readonly);
4104 spin_unlock(&found->lock);
4105 *space_info = found;
593060d7
CM
4106}
4107
8790d502
CM
4108static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4109{
899c81ea
ID
4110 u64 extra_flags = chunk_to_extended(flags) &
4111 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4112
de98ced9 4113 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4114 if (flags & BTRFS_BLOCK_GROUP_DATA)
4115 fs_info->avail_data_alloc_bits |= extra_flags;
4116 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4117 fs_info->avail_metadata_alloc_bits |= extra_flags;
4118 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4119 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4120 write_sequnlock(&fs_info->profiles_lock);
8790d502 4121}
593060d7 4122
fc67c450
ID
4123/*
4124 * returns target flags in extended format or 0 if restripe for this
4125 * chunk_type is not in progress
c6664b42
ID
4126 *
4127 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4128 */
4129static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4130{
4131 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4132 u64 target = 0;
4133
fc67c450
ID
4134 if (!bctl)
4135 return 0;
4136
4137 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4138 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4139 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4140 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4141 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4142 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4143 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4144 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4145 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4146 }
4147
4148 return target;
4149}
4150
a46d11a8
ID
4151/*
4152 * @flags: available profiles in extended format (see ctree.h)
4153 *
e4d8ec0f
ID
4154 * Returns reduced profile in chunk format. If profile changing is in
4155 * progress (either running or paused) picks the target profile (if it's
4156 * already available), otherwise falls back to plain reducing.
a46d11a8 4157 */
2ff7e61e 4158static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4159{
0b246afa 4160 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4161 u64 target;
9c170b26
ZL
4162 u64 raid_type;
4163 u64 allowed = 0;
a061fc8d 4164
fc67c450
ID
4165 /*
4166 * see if restripe for this chunk_type is in progress, if so
4167 * try to reduce to the target profile
4168 */
0b246afa
JM
4169 spin_lock(&fs_info->balance_lock);
4170 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4171 if (target) {
4172 /* pick target profile only if it's already available */
4173 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4174 spin_unlock(&fs_info->balance_lock);
fc67c450 4175 return extended_to_chunk(target);
e4d8ec0f
ID
4176 }
4177 }
0b246afa 4178 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4179
53b381b3 4180 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4181 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4182 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4183 allowed |= btrfs_raid_group[raid_type];
4184 }
4185 allowed &= flags;
4186
4187 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4188 allowed = BTRFS_BLOCK_GROUP_RAID6;
4189 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4190 allowed = BTRFS_BLOCK_GROUP_RAID5;
4191 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4192 allowed = BTRFS_BLOCK_GROUP_RAID10;
4193 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4194 allowed = BTRFS_BLOCK_GROUP_RAID1;
4195 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4196 allowed = BTRFS_BLOCK_GROUP_RAID0;
4197
4198 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4199
4200 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4201}
4202
2ff7e61e 4203static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4204{
de98ced9 4205 unsigned seq;
f8213bdc 4206 u64 flags;
de98ced9
MX
4207
4208 do {
f8213bdc 4209 flags = orig_flags;
0b246afa 4210 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4211
4212 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4213 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4214 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4215 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4216 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4217 flags |= fs_info->avail_metadata_alloc_bits;
4218 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4219
2ff7e61e 4220 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4221}
4222
1b86826d 4223static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4224{
0b246afa 4225 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4226 u64 flags;
53b381b3 4227 u64 ret;
9ed74f2d 4228
b742bb82
YZ
4229 if (data)
4230 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4231 else if (root == fs_info->chunk_root)
b742bb82 4232 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4233 else
b742bb82 4234 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4235
2ff7e61e 4236 ret = get_alloc_profile(fs_info, flags);
53b381b3 4237 return ret;
6a63209f 4238}
9ed74f2d 4239
1b86826d
JM
4240u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4241{
4242 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4243}
4244
4245u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4246{
4247 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4248}
4249
4250u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4251{
4252 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4253}
4254
4136135b
LB
4255static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4256 bool may_use_included)
4257{
4258 ASSERT(s_info);
4259 return s_info->bytes_used + s_info->bytes_reserved +
4260 s_info->bytes_pinned + s_info->bytes_readonly +
4261 (may_use_included ? s_info->bytes_may_use : 0);
4262}
4263
04f4f916 4264int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4265{
04f4f916 4266 struct btrfs_root *root = inode->root;
b4d7c3c9 4267 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4268 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4269 u64 used;
94b947b2 4270 int ret = 0;
c99f1b0c
ZL
4271 int need_commit = 2;
4272 int have_pinned_space;
6a63209f 4273
6a63209f 4274 /* make sure bytes are sectorsize aligned */
0b246afa 4275 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4276
9dced186 4277 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4278 need_commit = 0;
9dced186 4279 ASSERT(current->journal_info);
0af3d00b
JB
4280 }
4281
6a63209f
JB
4282again:
4283 /* make sure we have enough space to handle the data first */
4284 spin_lock(&data_sinfo->lock);
4136135b 4285 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4286
4287 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4288 struct btrfs_trans_handle *trans;
9ed74f2d 4289
6a63209f
JB
4290 /*
4291 * if we don't have enough free bytes in this space then we need
4292 * to alloc a new chunk.
4293 */
b9fd47cd 4294 if (!data_sinfo->full) {
6a63209f 4295 u64 alloc_target;
9ed74f2d 4296
0e4f8f88 4297 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4298 spin_unlock(&data_sinfo->lock);
1174cade 4299
1b86826d 4300 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4301 /*
4302 * It is ugly that we don't call nolock join
4303 * transaction for the free space inode case here.
4304 * But it is safe because we only do the data space
4305 * reservation for the free space cache in the
4306 * transaction context, the common join transaction
4307 * just increase the counter of the current transaction
4308 * handler, doesn't try to acquire the trans_lock of
4309 * the fs.
4310 */
7a7eaa40 4311 trans = btrfs_join_transaction(root);
a22285a6
YZ
4312 if (IS_ERR(trans))
4313 return PTR_ERR(trans);
9ed74f2d 4314
2ff7e61e 4315 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4316 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4317 btrfs_end_transaction(trans);
d52a5b5f
MX
4318 if (ret < 0) {
4319 if (ret != -ENOSPC)
4320 return ret;
c99f1b0c
ZL
4321 else {
4322 have_pinned_space = 1;
d52a5b5f 4323 goto commit_trans;
c99f1b0c 4324 }
d52a5b5f 4325 }
9ed74f2d 4326
6a63209f
JB
4327 goto again;
4328 }
f2bb8f5c
JB
4329
4330 /*
b150a4f1 4331 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4332 * allocation, and no removed chunk in current transaction,
4333 * don't bother committing the transaction.
f2bb8f5c 4334 */
c99f1b0c
ZL
4335 have_pinned_space = percpu_counter_compare(
4336 &data_sinfo->total_bytes_pinned,
4337 used + bytes - data_sinfo->total_bytes);
6a63209f 4338 spin_unlock(&data_sinfo->lock);
6a63209f 4339
4e06bdd6 4340 /* commit the current transaction and try again */
d52a5b5f 4341commit_trans:
c99f1b0c 4342 if (need_commit &&
0b246afa 4343 !atomic_read(&fs_info->open_ioctl_trans)) {
c99f1b0c 4344 need_commit--;
b150a4f1 4345
e1746e83
ZL
4346 if (need_commit > 0) {
4347 btrfs_start_delalloc_roots(fs_info, 0, -1);
6374e57a 4348 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4349 (u64)-1);
e1746e83 4350 }
9a4e7276 4351
7a7eaa40 4352 trans = btrfs_join_transaction(root);
a22285a6
YZ
4353 if (IS_ERR(trans))
4354 return PTR_ERR(trans);
c99f1b0c 4355 if (have_pinned_space >= 0 ||
3204d33c
JB
4356 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4357 &trans->transaction->flags) ||
c99f1b0c 4358 need_commit > 0) {
3a45bb20 4359 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4360 if (ret)
4361 return ret;
d7c15171 4362 /*
c2d6cb16
FM
4363 * The cleaner kthread might still be doing iput
4364 * operations. Wait for it to finish so that
4365 * more space is released.
d7c15171 4366 */
0b246afa
JM
4367 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4368 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4369 goto again;
4370 } else {
3a45bb20 4371 btrfs_end_transaction(trans);
94b947b2 4372 }
4e06bdd6 4373 }
9ed74f2d 4374
0b246afa 4375 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4376 "space_info:enospc",
4377 data_sinfo->flags, bytes, 1);
6a63209f
JB
4378 return -ENOSPC;
4379 }
4380 data_sinfo->bytes_may_use += bytes;
0b246afa 4381 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4382 data_sinfo->flags, bytes, 1);
6a63209f 4383 spin_unlock(&data_sinfo->lock);
6a63209f 4384
d4cfc546 4385 return 0;
9ed74f2d 4386}
6a63209f 4387
364ecf36
QW
4388int btrfs_check_data_free_space(struct inode *inode,
4389 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4390{
0b246afa 4391 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4392 int ret;
4393
4394 /* align the range */
0b246afa
JM
4395 len = round_up(start + len, fs_info->sectorsize) -
4396 round_down(start, fs_info->sectorsize);
4397 start = round_down(start, fs_info->sectorsize);
4ceff079 4398
04f4f916 4399 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4400 if (ret < 0)
4401 return ret;
4402
1e5ec2e7 4403 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4404 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4405 if (ret < 0)
1e5ec2e7 4406 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4407 else
4408 ret = 0;
4ceff079
QW
4409 return ret;
4410}
4411
4ceff079
QW
4412/*
4413 * Called if we need to clear a data reservation for this inode
4414 * Normally in a error case.
4415 *
51773bec
QW
4416 * This one will *NOT* use accurate qgroup reserved space API, just for case
4417 * which we can't sleep and is sure it won't affect qgroup reserved space.
4418 * Like clear_bit_hook().
4ceff079 4419 */
51773bec
QW
4420void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4421 u64 len)
4ceff079 4422{
0b246afa 4423 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4424 struct btrfs_space_info *data_sinfo;
4425
4426 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4427 len = round_up(start + len, fs_info->sectorsize) -
4428 round_down(start, fs_info->sectorsize);
4429 start = round_down(start, fs_info->sectorsize);
4ceff079 4430
0b246afa 4431 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4432 spin_lock(&data_sinfo->lock);
4433 if (WARN_ON(data_sinfo->bytes_may_use < len))
4434 data_sinfo->bytes_may_use = 0;
4435 else
4436 data_sinfo->bytes_may_use -= len;
0b246afa 4437 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4438 data_sinfo->flags, len, 0);
4439 spin_unlock(&data_sinfo->lock);
4440}
4441
51773bec
QW
4442/*
4443 * Called if we need to clear a data reservation for this inode
4444 * Normally in a error case.
4445 *
01327610 4446 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4447 * space framework.
4448 */
bc42bda2
QW
4449void btrfs_free_reserved_data_space(struct inode *inode,
4450 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4451{
0c476a5d
JM
4452 struct btrfs_root *root = BTRFS_I(inode)->root;
4453
4454 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4455 len = round_up(start + len, root->fs_info->sectorsize) -
4456 round_down(start, root->fs_info->sectorsize);
4457 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4458
51773bec 4459 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4460 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4461}
4462
97e728d4 4463static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4464{
97e728d4
JB
4465 struct list_head *head = &info->space_info;
4466 struct btrfs_space_info *found;
e3ccfa98 4467
97e728d4
JB
4468 rcu_read_lock();
4469 list_for_each_entry_rcu(found, head, list) {
4470 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4471 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4472 }
97e728d4 4473 rcu_read_unlock();
e3ccfa98
JB
4474}
4475
3c76cd84
MX
4476static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4477{
4478 return (global->size << 1);
4479}
4480
2ff7e61e 4481static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4482 struct btrfs_space_info *sinfo, int force)
32c00aff 4483{
0b246afa 4484 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4485 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4486 u64 thresh;
e3ccfa98 4487
0e4f8f88
CM
4488 if (force == CHUNK_ALLOC_FORCE)
4489 return 1;
4490
fb25e914
JB
4491 /*
4492 * We need to take into account the global rsv because for all intents
4493 * and purposes it's used space. Don't worry about locking the
4494 * global_rsv, it doesn't change except when the transaction commits.
4495 */
54338b5c 4496 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4497 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4498
0e4f8f88
CM
4499 /*
4500 * in limited mode, we want to have some free space up to
4501 * about 1% of the FS size.
4502 */
4503 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4504 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4505 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4506
8d8aafee 4507 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4508 return 1;
4509 }
0e4f8f88 4510
8d8aafee 4511 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4512 return 0;
424499db 4513 return 1;
32c00aff
JB
4514}
4515
2ff7e61e 4516static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4517{
4518 u64 num_dev;
4519
53b381b3
DW
4520 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4521 BTRFS_BLOCK_GROUP_RAID0 |
4522 BTRFS_BLOCK_GROUP_RAID5 |
4523 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4524 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4525 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4526 num_dev = 2;
4527 else
4528 num_dev = 1; /* DUP or single */
4529
39c2d7fa 4530 return num_dev;
15d1ff81
LB
4531}
4532
39c2d7fa
FM
4533/*
4534 * If @is_allocation is true, reserve space in the system space info necessary
4535 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4536 * removing a chunk.
4537 */
4538void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4539 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4540{
4541 struct btrfs_space_info *info;
4542 u64 left;
4543 u64 thresh;
4fbcdf66 4544 int ret = 0;
39c2d7fa 4545 u64 num_devs;
4fbcdf66
FM
4546
4547 /*
4548 * Needed because we can end up allocating a system chunk and for an
4549 * atomic and race free space reservation in the chunk block reserve.
4550 */
0b246afa 4551 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
15d1ff81 4552
0b246afa 4553 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4554 spin_lock(&info->lock);
4136135b 4555 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4556 spin_unlock(&info->lock);
4557
2ff7e61e 4558 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4559
4560 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4561 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4562 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4563
0b246afa
JM
4564 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4565 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4566 left, thresh, type);
4567 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4568 }
4569
4570 if (left < thresh) {
1b86826d 4571 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4572
4fbcdf66
FM
4573 /*
4574 * Ignore failure to create system chunk. We might end up not
4575 * needing it, as we might not need to COW all nodes/leafs from
4576 * the paths we visit in the chunk tree (they were already COWed
4577 * or created in the current transaction for example).
4578 */
2ff7e61e 4579 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4580 }
4581
4582 if (!ret) {
0b246afa
JM
4583 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4584 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4585 thresh, BTRFS_RESERVE_NO_FLUSH);
4586 if (!ret)
4587 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4588 }
4589}
4590
28b737f6
LB
4591/*
4592 * If force is CHUNK_ALLOC_FORCE:
4593 * - return 1 if it successfully allocates a chunk,
4594 * - return errors including -ENOSPC otherwise.
4595 * If force is NOT CHUNK_ALLOC_FORCE:
4596 * - return 0 if it doesn't need to allocate a new chunk,
4597 * - return 1 if it successfully allocates a chunk,
4598 * - return errors including -ENOSPC otherwise.
4599 */
6324fbf3 4600static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4601 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4602{
6324fbf3 4603 struct btrfs_space_info *space_info;
6d74119f 4604 int wait_for_alloc = 0;
9ed74f2d 4605 int ret = 0;
9ed74f2d 4606
c6b305a8
JB
4607 /* Don't re-enter if we're already allocating a chunk */
4608 if (trans->allocating_chunk)
4609 return -ENOSPC;
4610
0b246afa 4611 space_info = __find_space_info(fs_info, flags);
593060d7 4612 if (!space_info) {
2be12ef7
NB
4613 ret = create_space_info(fs_info, flags, &space_info);
4614 if (ret)
4615 return ret;
9ed74f2d
JB
4616 }
4617
6d74119f 4618again:
25179201 4619 spin_lock(&space_info->lock);
9e622d6b 4620 if (force < space_info->force_alloc)
0e4f8f88 4621 force = space_info->force_alloc;
25179201 4622 if (space_info->full) {
2ff7e61e 4623 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4624 ret = -ENOSPC;
4625 else
4626 ret = 0;
25179201 4627 spin_unlock(&space_info->lock);
09fb99a6 4628 return ret;
9ed74f2d
JB
4629 }
4630
2ff7e61e 4631 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4632 spin_unlock(&space_info->lock);
6d74119f
JB
4633 return 0;
4634 } else if (space_info->chunk_alloc) {
4635 wait_for_alloc = 1;
4636 } else {
4637 space_info->chunk_alloc = 1;
9ed74f2d 4638 }
0e4f8f88 4639
25179201 4640 spin_unlock(&space_info->lock);
9ed74f2d 4641
6d74119f
JB
4642 mutex_lock(&fs_info->chunk_mutex);
4643
4644 /*
4645 * The chunk_mutex is held throughout the entirety of a chunk
4646 * allocation, so once we've acquired the chunk_mutex we know that the
4647 * other guy is done and we need to recheck and see if we should
4648 * allocate.
4649 */
4650 if (wait_for_alloc) {
4651 mutex_unlock(&fs_info->chunk_mutex);
4652 wait_for_alloc = 0;
94330efb 4653 cond_resched();
6d74119f
JB
4654 goto again;
4655 }
4656
c6b305a8
JB
4657 trans->allocating_chunk = true;
4658
67377734
JB
4659 /*
4660 * If we have mixed data/metadata chunks we want to make sure we keep
4661 * allocating mixed chunks instead of individual chunks.
4662 */
4663 if (btrfs_mixed_space_info(space_info))
4664 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4665
97e728d4
JB
4666 /*
4667 * if we're doing a data chunk, go ahead and make sure that
4668 * we keep a reasonable number of metadata chunks allocated in the
4669 * FS as well.
4670 */
9ed74f2d 4671 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4672 fs_info->data_chunk_allocations++;
4673 if (!(fs_info->data_chunk_allocations %
4674 fs_info->metadata_ratio))
4675 force_metadata_allocation(fs_info);
9ed74f2d
JB
4676 }
4677
15d1ff81
LB
4678 /*
4679 * Check if we have enough space in SYSTEM chunk because we may need
4680 * to update devices.
4681 */
2ff7e61e 4682 check_system_chunk(trans, fs_info, flags);
15d1ff81 4683
2ff7e61e 4684 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4685 trans->allocating_chunk = false;
92b8e897 4686
9ed74f2d 4687 spin_lock(&space_info->lock);
a81cb9a2
AO
4688 if (ret < 0 && ret != -ENOSPC)
4689 goto out;
e62d32aa 4690 if (ret) {
6324fbf3 4691 space_info->full = 1;
e62d32aa 4692 } else {
424499db 4693 ret = 1;
e62d32aa
JB
4694 space_info->max_extent_size = 0;
4695 }
6d74119f 4696
0e4f8f88 4697 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4698out:
6d74119f 4699 space_info->chunk_alloc = 0;
9ed74f2d 4700 spin_unlock(&space_info->lock);
a25c75d5 4701 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4702 /*
4703 * When we allocate a new chunk we reserve space in the chunk block
4704 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4705 * add new nodes/leafs to it if we end up needing to do it when
4706 * inserting the chunk item and updating device items as part of the
4707 * second phase of chunk allocation, performed by
4708 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4709 * large number of new block groups to create in our transaction
4710 * handle's new_bgs list to avoid exhausting the chunk block reserve
4711 * in extreme cases - like having a single transaction create many new
4712 * block groups when starting to write out the free space caches of all
4713 * the block groups that were made dirty during the lifetime of the
4714 * transaction.
4715 */
5608e1ef 4716 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
2ff7e61e 4717 btrfs_create_pending_block_groups(trans, fs_info);
5608e1ef 4718
0f9dd46c 4719 return ret;
6324fbf3 4720}
9ed74f2d 4721
c1c4919b 4722static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4723 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4724 enum btrfs_reserve_flush_enum flush,
4725 bool system_chunk)
a80c8dcf 4726{
0b246afa 4727 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4728 u64 profile;
3c76cd84 4729 u64 space_size;
a80c8dcf
JB
4730 u64 avail;
4731 u64 used;
4732
957780eb
JB
4733 /* Don't overcommit when in mixed mode. */
4734 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4735 return 0;
4736
c1c4919b
JM
4737 if (system_chunk)
4738 profile = btrfs_system_alloc_profile(fs_info);
4739 else
4740 profile = btrfs_metadata_alloc_profile(fs_info);
4741
4136135b 4742 used = btrfs_space_info_used(space_info, false);
96f1bb57 4743
96f1bb57
JB
4744 /*
4745 * We only want to allow over committing if we have lots of actual space
4746 * free, but if we don't have enough space to handle the global reserve
4747 * space then we could end up having a real enospc problem when trying
4748 * to allocate a chunk or some other such important allocation.
4749 */
3c76cd84
MX
4750 spin_lock(&global_rsv->lock);
4751 space_size = calc_global_rsv_need_space(global_rsv);
4752 spin_unlock(&global_rsv->lock);
4753 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4754 return 0;
4755
4756 used += space_info->bytes_may_use;
a80c8dcf 4757
a5ed45f8 4758 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4759
4760 /*
4761 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4762 * space is actually useable. For raid56, the space info used
4763 * doesn't include the parity drive, so we don't have to
4764 * change the math
a80c8dcf
JB
4765 */
4766 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4767 BTRFS_BLOCK_GROUP_RAID1 |
4768 BTRFS_BLOCK_GROUP_RAID10))
4769 avail >>= 1;
4770
4771 /*
561c294d
MX
4772 * If we aren't flushing all things, let us overcommit up to
4773 * 1/2th of the space. If we can flush, don't let us overcommit
4774 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4775 */
08e007d2 4776 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4777 avail >>= 3;
a80c8dcf 4778 else
14575aef 4779 avail >>= 1;
a80c8dcf 4780
14575aef 4781 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4782 return 1;
4783 return 0;
4784}
4785
2ff7e61e 4786static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4787 unsigned long nr_pages, int nr_items)
da633a42 4788{
0b246afa 4789 struct super_block *sb = fs_info->sb;
da633a42 4790
925a6efb
JB
4791 if (down_read_trylock(&sb->s_umount)) {
4792 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4793 up_read(&sb->s_umount);
4794 } else {
da633a42
MX
4795 /*
4796 * We needn't worry the filesystem going from r/w to r/o though
4797 * we don't acquire ->s_umount mutex, because the filesystem
4798 * should guarantee the delalloc inodes list be empty after
4799 * the filesystem is readonly(all dirty pages are written to
4800 * the disk).
4801 */
0b246afa 4802 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
98ad69cf 4803 if (!current->journal_info)
0b246afa 4804 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4805 }
4806}
4807
6374e57a 4808static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4809 u64 to_reclaim)
18cd8ea6
MX
4810{
4811 u64 bytes;
6374e57a 4812 u64 nr;
18cd8ea6 4813
2ff7e61e 4814 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4815 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4816 if (!nr)
4817 nr = 1;
4818 return nr;
4819}
4820
ee22184b 4821#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4822
9ed74f2d 4823/*
5da9d01b 4824 * shrink metadata reservation for delalloc
9ed74f2d 4825 */
c1c4919b
JM
4826static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4827 u64 orig, bool wait_ordered)
5da9d01b 4828{
0019f10d 4829 struct btrfs_space_info *space_info;
663350ac 4830 struct btrfs_trans_handle *trans;
f4c738c2 4831 u64 delalloc_bytes;
5da9d01b 4832 u64 max_reclaim;
6374e57a 4833 u64 items;
b1953bce 4834 long time_left;
d3ee29e3
MX
4835 unsigned long nr_pages;
4836 int loops;
08e007d2 4837 enum btrfs_reserve_flush_enum flush;
5da9d01b 4838
c61a16a7 4839 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4840 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4841 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4842
663350ac 4843 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4844 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4845
963d678b 4846 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4847 &fs_info->delalloc_bytes);
f4c738c2 4848 if (delalloc_bytes == 0) {
fdb5effd 4849 if (trans)
f4c738c2 4850 return;
38c135af 4851 if (wait_ordered)
0b246afa 4852 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4853 return;
fdb5effd
JB
4854 }
4855
d3ee29e3 4856 loops = 0;
f4c738c2
JB
4857 while (delalloc_bytes && loops < 3) {
4858 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4859 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4860 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4861 /*
4862 * We need to wait for the async pages to actually start before
4863 * we do anything.
4864 */
0b246afa 4865 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4866 if (!max_reclaim)
4867 goto skip_async;
4868
4869 if (max_reclaim <= nr_pages)
4870 max_reclaim = 0;
4871 else
4872 max_reclaim -= nr_pages;
dea31f52 4873
0b246afa
JM
4874 wait_event(fs_info->async_submit_wait,
4875 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4876 (int)max_reclaim);
4877skip_async:
08e007d2
MX
4878 if (!trans)
4879 flush = BTRFS_RESERVE_FLUSH_ALL;
4880 else
4881 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4882 spin_lock(&space_info->lock);
957780eb
JB
4883 if (list_empty(&space_info->tickets) &&
4884 list_empty(&space_info->priority_tickets)) {
4885 spin_unlock(&space_info->lock);
4886 break;
4887 }
0019f10d 4888 spin_unlock(&space_info->lock);
5da9d01b 4889
36e39c40 4890 loops++;
f104d044 4891 if (wait_ordered && !trans) {
0b246afa 4892 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4893 } else {
f4c738c2 4894 time_left = schedule_timeout_killable(1);
f104d044
JB
4895 if (time_left)
4896 break;
4897 }
963d678b 4898 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4899 &fs_info->delalloc_bytes);
5da9d01b 4900 }
5da9d01b
YZ
4901}
4902
996478ca
JB
4903struct reserve_ticket {
4904 u64 bytes;
4905 int error;
4906 struct list_head list;
4907 wait_queue_head_t wait;
4908};
4909
663350ac
JB
4910/**
4911 * maybe_commit_transaction - possibly commit the transaction if its ok to
4912 * @root - the root we're allocating for
4913 * @bytes - the number of bytes we want to reserve
4914 * @force - force the commit
8bb8ab2e 4915 *
663350ac
JB
4916 * This will check to make sure that committing the transaction will actually
4917 * get us somewhere and then commit the transaction if it does. Otherwise it
4918 * will return -ENOSPC.
8bb8ab2e 4919 */
0c9ab349 4920static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4921 struct btrfs_space_info *space_info)
663350ac 4922{
996478ca 4923 struct reserve_ticket *ticket = NULL;
0b246afa 4924 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac 4925 struct btrfs_trans_handle *trans;
996478ca 4926 u64 bytes;
663350ac
JB
4927
4928 trans = (struct btrfs_trans_handle *)current->journal_info;
4929 if (trans)
4930 return -EAGAIN;
4931
996478ca
JB
4932 spin_lock(&space_info->lock);
4933 if (!list_empty(&space_info->priority_tickets))
4934 ticket = list_first_entry(&space_info->priority_tickets,
4935 struct reserve_ticket, list);
4936 else if (!list_empty(&space_info->tickets))
4937 ticket = list_first_entry(&space_info->tickets,
4938 struct reserve_ticket, list);
4939 bytes = (ticket) ? ticket->bytes : 0;
4940 spin_unlock(&space_info->lock);
4941
4942 if (!bytes)
4943 return 0;
663350ac
JB
4944
4945 /* See if there is enough pinned space to make this reservation */
b150a4f1 4946 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4947 bytes) >= 0)
663350ac 4948 goto commit;
663350ac
JB
4949
4950 /*
4951 * See if there is some space in the delayed insertion reservation for
4952 * this reservation.
4953 */
4954 if (space_info != delayed_rsv->space_info)
4955 return -ENOSPC;
4956
4957 spin_lock(&delayed_rsv->lock);
996478ca
JB
4958 if (delayed_rsv->size > bytes)
4959 bytes = 0;
4960 else
4961 bytes -= delayed_rsv->size;
b150a4f1 4962 if (percpu_counter_compare(&space_info->total_bytes_pinned,
996478ca 4963 bytes) < 0) {
663350ac
JB
4964 spin_unlock(&delayed_rsv->lock);
4965 return -ENOSPC;
4966 }
4967 spin_unlock(&delayed_rsv->lock);
4968
4969commit:
a9b3311e 4970 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4971 if (IS_ERR(trans))
4972 return -ENOSPC;
4973
3a45bb20 4974 return btrfs_commit_transaction(trans);
663350ac
JB
4975}
4976
e38ae7a0
NB
4977/*
4978 * Try to flush some data based on policy set by @state. This is only advisory
4979 * and may fail for various reasons. The caller is supposed to examine the
4980 * state of @space_info to detect the outcome.
4981 */
4982static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4983 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4984 int state)
96c3f433 4985{
a9b3311e 4986 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4987 struct btrfs_trans_handle *trans;
4988 int nr;
f4c738c2 4989 int ret = 0;
96c3f433
JB
4990
4991 switch (state) {
96c3f433
JB
4992 case FLUSH_DELAYED_ITEMS_NR:
4993 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4994 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4995 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4996 else
96c3f433 4997 nr = -1;
18cd8ea6 4998
96c3f433
JB
4999 trans = btrfs_join_transaction(root);
5000 if (IS_ERR(trans)) {
5001 ret = PTR_ERR(trans);
5002 break;
5003 }
2ff7e61e 5004 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
3a45bb20 5005 btrfs_end_transaction(trans);
96c3f433 5006 break;
67b0fd63
JB
5007 case FLUSH_DELALLOC:
5008 case FLUSH_DELALLOC_WAIT:
7bdd6277 5009 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
5010 state == FLUSH_DELALLOC_WAIT);
5011 break;
ea658bad
JB
5012 case ALLOC_CHUNK:
5013 trans = btrfs_join_transaction(root);
5014 if (IS_ERR(trans)) {
5015 ret = PTR_ERR(trans);
5016 break;
5017 }
2ff7e61e 5018 ret = do_chunk_alloc(trans, fs_info,
1b86826d 5019 btrfs_metadata_alloc_profile(fs_info),
ea658bad 5020 CHUNK_ALLOC_NO_FORCE);
3a45bb20 5021 btrfs_end_transaction(trans);
eecba891 5022 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
5023 ret = 0;
5024 break;
96c3f433 5025 case COMMIT_TRANS:
996478ca 5026 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
5027 break;
5028 default:
5029 ret = -ENOSPC;
5030 break;
5031 }
5032
7bdd6277
NB
5033 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5034 ret);
e38ae7a0 5035 return;
96c3f433 5036}
21c7e756
MX
5037
5038static inline u64
c1c4919b
JM
5039btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5040 struct btrfs_space_info *space_info,
5041 bool system_chunk)
21c7e756 5042{
957780eb 5043 struct reserve_ticket *ticket;
21c7e756
MX
5044 u64 used;
5045 u64 expected;
957780eb 5046 u64 to_reclaim = 0;
21c7e756 5047
957780eb
JB
5048 list_for_each_entry(ticket, &space_info->tickets, list)
5049 to_reclaim += ticket->bytes;
5050 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5051 to_reclaim += ticket->bytes;
5052 if (to_reclaim)
5053 return to_reclaim;
21c7e756 5054
e0af2484 5055 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
5056 if (can_overcommit(fs_info, space_info, to_reclaim,
5057 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
5058 return 0;
5059
0eee8a49
NB
5060 used = btrfs_space_info_used(space_info, true);
5061
c1c4919b
JM
5062 if (can_overcommit(fs_info, space_info, SZ_1M,
5063 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
5064 expected = div_factor_fine(space_info->total_bytes, 95);
5065 else
5066 expected = div_factor_fine(space_info->total_bytes, 90);
5067
5068 if (used > expected)
5069 to_reclaim = used - expected;
5070 else
5071 to_reclaim = 0;
5072 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5073 space_info->bytes_reserved);
21c7e756
MX
5074 return to_reclaim;
5075}
5076
c1c4919b
JM
5077static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5078 struct btrfs_space_info *space_info,
5079 u64 used, bool system_chunk)
21c7e756 5080{
365c5313
JB
5081 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5082
5083 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5084 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5085 return 0;
5086
c1c4919b
JM
5087 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5088 system_chunk))
d38b349c
JB
5089 return 0;
5090
0b246afa
JM
5091 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5092 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5093}
5094
957780eb 5095static void wake_all_tickets(struct list_head *head)
21c7e756 5096{
957780eb 5097 struct reserve_ticket *ticket;
25ce459c 5098
957780eb
JB
5099 while (!list_empty(head)) {
5100 ticket = list_first_entry(head, struct reserve_ticket, list);
5101 list_del_init(&ticket->list);
5102 ticket->error = -ENOSPC;
5103 wake_up(&ticket->wait);
21c7e756 5104 }
21c7e756
MX
5105}
5106
957780eb
JB
5107/*
5108 * This is for normal flushers, we can wait all goddamned day if we want to. We
5109 * will loop and continuously try to flush as long as we are making progress.
5110 * We count progress as clearing off tickets each time we have to loop.
5111 */
21c7e756
MX
5112static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5113{
5114 struct btrfs_fs_info *fs_info;
5115 struct btrfs_space_info *space_info;
5116 u64 to_reclaim;
5117 int flush_state;
957780eb 5118 int commit_cycles = 0;
ce129655 5119 u64 last_tickets_id;
21c7e756
MX
5120
5121 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5122 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5123
957780eb 5124 spin_lock(&space_info->lock);
c1c4919b
JM
5125 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5126 false);
957780eb
JB
5127 if (!to_reclaim) {
5128 space_info->flush = 0;
5129 spin_unlock(&space_info->lock);
21c7e756 5130 return;
957780eb 5131 }
ce129655 5132 last_tickets_id = space_info->tickets_id;
957780eb 5133 spin_unlock(&space_info->lock);
21c7e756
MX
5134
5135 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5136 do {
e38ae7a0 5137 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5138 spin_lock(&space_info->lock);
5139 if (list_empty(&space_info->tickets)) {
5140 space_info->flush = 0;
5141 spin_unlock(&space_info->lock);
5142 return;
5143 }
c1c4919b
JM
5144 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5145 space_info,
5146 false);
ce129655 5147 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5148 flush_state++;
5149 } else {
ce129655 5150 last_tickets_id = space_info->tickets_id;
957780eb
JB
5151 flush_state = FLUSH_DELAYED_ITEMS_NR;
5152 if (commit_cycles)
5153 commit_cycles--;
5154 }
5155
5156 if (flush_state > COMMIT_TRANS) {
5157 commit_cycles++;
5158 if (commit_cycles > 2) {
5159 wake_all_tickets(&space_info->tickets);
5160 space_info->flush = 0;
5161 } else {
5162 flush_state = FLUSH_DELAYED_ITEMS_NR;
5163 }
5164 }
5165 spin_unlock(&space_info->lock);
5166 } while (flush_state <= COMMIT_TRANS);
5167}
5168
5169void btrfs_init_async_reclaim_work(struct work_struct *work)
5170{
5171 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5172}
5173
5174static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5175 struct btrfs_space_info *space_info,
5176 struct reserve_ticket *ticket)
5177{
5178 u64 to_reclaim;
5179 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5180
5181 spin_lock(&space_info->lock);
c1c4919b
JM
5182 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5183 false);
957780eb
JB
5184 if (!to_reclaim) {
5185 spin_unlock(&space_info->lock);
5186 return;
5187 }
5188 spin_unlock(&space_info->lock);
5189
21c7e756 5190 do {
7bdd6277 5191 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5192 flush_state++;
957780eb
JB
5193 spin_lock(&space_info->lock);
5194 if (ticket->bytes == 0) {
5195 spin_unlock(&space_info->lock);
21c7e756 5196 return;
957780eb
JB
5197 }
5198 spin_unlock(&space_info->lock);
5199
5200 /*
5201 * Priority flushers can't wait on delalloc without
5202 * deadlocking.
5203 */
5204 if (flush_state == FLUSH_DELALLOC ||
5205 flush_state == FLUSH_DELALLOC_WAIT)
5206 flush_state = ALLOC_CHUNK;
365c5313 5207 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5208}
5209
957780eb
JB
5210static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5211 struct btrfs_space_info *space_info,
5212 struct reserve_ticket *ticket, u64 orig_bytes)
5213
21c7e756 5214{
957780eb
JB
5215 DEFINE_WAIT(wait);
5216 int ret = 0;
5217
5218 spin_lock(&space_info->lock);
5219 while (ticket->bytes > 0 && ticket->error == 0) {
5220 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5221 if (ret) {
5222 ret = -EINTR;
5223 break;
5224 }
5225 spin_unlock(&space_info->lock);
5226
5227 schedule();
5228
5229 finish_wait(&ticket->wait, &wait);
5230 spin_lock(&space_info->lock);
5231 }
5232 if (!ret)
5233 ret = ticket->error;
5234 if (!list_empty(&ticket->list))
5235 list_del_init(&ticket->list);
5236 if (ticket->bytes && ticket->bytes < orig_bytes) {
5237 u64 num_bytes = orig_bytes - ticket->bytes;
5238 space_info->bytes_may_use -= num_bytes;
5239 trace_btrfs_space_reservation(fs_info, "space_info",
5240 space_info->flags, num_bytes, 0);
5241 }
5242 spin_unlock(&space_info->lock);
5243
5244 return ret;
21c7e756
MX
5245}
5246
4a92b1b8
JB
5247/**
5248 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5249 * @root - the root we're allocating for
957780eb 5250 * @space_info - the space info we want to allocate from
4a92b1b8 5251 * @orig_bytes - the number of bytes we want
48fc7f7e 5252 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5253 *
01327610 5254 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5255 * with the block_rsv. If there is not enough space it will make an attempt to
5256 * flush out space to make room. It will do this by flushing delalloc if
5257 * possible or committing the transaction. If flush is 0 then no attempts to
5258 * regain reservations will be made and this will fail if there is not enough
5259 * space already.
8bb8ab2e 5260 */
c1c4919b 5261static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5262 struct btrfs_space_info *space_info,
5263 u64 orig_bytes,
c1c4919b
JM
5264 enum btrfs_reserve_flush_enum flush,
5265 bool system_chunk)
9ed74f2d 5266{
957780eb 5267 struct reserve_ticket ticket;
2bf64758 5268 u64 used;
8bb8ab2e 5269 int ret = 0;
9ed74f2d 5270
957780eb 5271 ASSERT(orig_bytes);
8ca17f0f 5272 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5273
8bb8ab2e 5274 spin_lock(&space_info->lock);
fdb5effd 5275 ret = -ENOSPC;
4136135b 5276 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5277
8bb8ab2e 5278 /*
957780eb
JB
5279 * If we have enough space then hooray, make our reservation and carry
5280 * on. If not see if we can overcommit, and if we can, hooray carry on.
5281 * If not things get more complicated.
8bb8ab2e 5282 */
957780eb
JB
5283 if (used + orig_bytes <= space_info->total_bytes) {
5284 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5285 trace_btrfs_space_reservation(fs_info, "space_info",
5286 space_info->flags, orig_bytes, 1);
957780eb 5287 ret = 0;
c1c4919b
JM
5288 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5289 system_chunk)) {
44734ed1 5290 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5291 trace_btrfs_space_reservation(fs_info, "space_info",
5292 space_info->flags, orig_bytes, 1);
44734ed1 5293 ret = 0;
2bf64758
JB
5294 }
5295
8bb8ab2e 5296 /*
957780eb
JB
5297 * If we couldn't make a reservation then setup our reservation ticket
5298 * and kick the async worker if it's not already running.
08e007d2 5299 *
957780eb
JB
5300 * If we are a priority flusher then we just need to add our ticket to
5301 * the list and we will do our own flushing further down.
8bb8ab2e 5302 */
72bcd99d 5303 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5304 ticket.bytes = orig_bytes;
5305 ticket.error = 0;
5306 init_waitqueue_head(&ticket.wait);
5307 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5308 list_add_tail(&ticket.list, &space_info->tickets);
5309 if (!space_info->flush) {
5310 space_info->flush = 1;
0b246afa 5311 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5312 space_info->flags,
5313 orig_bytes, flush,
5314 "enospc");
957780eb 5315 queue_work(system_unbound_wq,
c1c4919b 5316 &fs_info->async_reclaim_work);
957780eb
JB
5317 }
5318 } else {
5319 list_add_tail(&ticket.list,
5320 &space_info->priority_tickets);
5321 }
21c7e756
MX
5322 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5323 used += orig_bytes;
f6acfd50
JB
5324 /*
5325 * We will do the space reservation dance during log replay,
5326 * which means we won't have fs_info->fs_root set, so don't do
5327 * the async reclaim as we will panic.
5328 */
0b246afa 5329 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5330 need_do_async_reclaim(fs_info, space_info,
5331 used, system_chunk) &&
0b246afa
JM
5332 !work_busy(&fs_info->async_reclaim_work)) {
5333 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5334 orig_bytes, flush, "preempt");
21c7e756 5335 queue_work(system_unbound_wq,
0b246afa 5336 &fs_info->async_reclaim_work);
f376df2b 5337 }
8bb8ab2e 5338 }
f0486c68 5339 spin_unlock(&space_info->lock);
08e007d2 5340 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5341 return ret;
f0486c68 5342
957780eb 5343 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5344 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5345 orig_bytes);
08e007d2 5346
957780eb 5347 ret = 0;
0b246afa 5348 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5349 spin_lock(&space_info->lock);
5350 if (ticket.bytes) {
5351 if (ticket.bytes < orig_bytes) {
5352 u64 num_bytes = orig_bytes - ticket.bytes;
5353 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5354 trace_btrfs_space_reservation(fs_info, "space_info",
5355 space_info->flags,
5356 num_bytes, 0);
08e007d2 5357
957780eb
JB
5358 }
5359 list_del_init(&ticket.list);
5360 ret = -ENOSPC;
5361 }
5362 spin_unlock(&space_info->lock);
5363 ASSERT(list_empty(&ticket.list));
5364 return ret;
5365}
8bb8ab2e 5366
957780eb
JB
5367/**
5368 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5369 * @root - the root we're allocating for
5370 * @block_rsv - the block_rsv we're allocating for
5371 * @orig_bytes - the number of bytes we want
5372 * @flush - whether or not we can flush to make our reservation
5373 *
5374 * This will reserve orgi_bytes number of bytes from the space info associated
5375 * with the block_rsv. If there is not enough space it will make an attempt to
5376 * flush out space to make room. It will do this by flushing delalloc if
5377 * possible or committing the transaction. If flush is 0 then no attempts to
5378 * regain reservations will be made and this will fail if there is not enough
5379 * space already.
5380 */
5381static int reserve_metadata_bytes(struct btrfs_root *root,
5382 struct btrfs_block_rsv *block_rsv,
5383 u64 orig_bytes,
5384 enum btrfs_reserve_flush_enum flush)
5385{
0b246afa
JM
5386 struct btrfs_fs_info *fs_info = root->fs_info;
5387 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5388 int ret;
c1c4919b 5389 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5390
c1c4919b
JM
5391 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5392 orig_bytes, flush, system_chunk);
5d80366e
JB
5393 if (ret == -ENOSPC &&
5394 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5395 if (block_rsv != global_rsv &&
5396 !block_rsv_use_bytes(global_rsv, orig_bytes))
5397 ret = 0;
5398 }
cab45e22 5399 if (ret == -ENOSPC)
0b246afa 5400 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5401 block_rsv->space_info->flags,
5402 orig_bytes, 1);
f0486c68
YZ
5403 return ret;
5404}
5405
79787eaa
JM
5406static struct btrfs_block_rsv *get_block_rsv(
5407 const struct btrfs_trans_handle *trans,
5408 const struct btrfs_root *root)
f0486c68 5409{
0b246afa 5410 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5411 struct btrfs_block_rsv *block_rsv = NULL;
5412
e9cf439f 5413 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5414 (root == fs_info->csum_root && trans->adding_csums) ||
5415 (root == fs_info->uuid_root))
f7a81ea4
SB
5416 block_rsv = trans->block_rsv;
5417
4c13d758 5418 if (!block_rsv)
f0486c68
YZ
5419 block_rsv = root->block_rsv;
5420
5421 if (!block_rsv)
0b246afa 5422 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5423
5424 return block_rsv;
5425}
5426
5427static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5428 u64 num_bytes)
5429{
5430 int ret = -ENOSPC;
5431 spin_lock(&block_rsv->lock);
5432 if (block_rsv->reserved >= num_bytes) {
5433 block_rsv->reserved -= num_bytes;
5434 if (block_rsv->reserved < block_rsv->size)
5435 block_rsv->full = 0;
5436 ret = 0;
5437 }
5438 spin_unlock(&block_rsv->lock);
5439 return ret;
5440}
5441
5442static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5443 u64 num_bytes, int update_size)
5444{
5445 spin_lock(&block_rsv->lock);
5446 block_rsv->reserved += num_bytes;
5447 if (update_size)
5448 block_rsv->size += num_bytes;
5449 else if (block_rsv->reserved >= block_rsv->size)
5450 block_rsv->full = 1;
5451 spin_unlock(&block_rsv->lock);
5452}
5453
d52be818
JB
5454int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5455 struct btrfs_block_rsv *dest, u64 num_bytes,
5456 int min_factor)
5457{
5458 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5459 u64 min_bytes;
5460
5461 if (global_rsv->space_info != dest->space_info)
5462 return -ENOSPC;
5463
5464 spin_lock(&global_rsv->lock);
5465 min_bytes = div_factor(global_rsv->size, min_factor);
5466 if (global_rsv->reserved < min_bytes + num_bytes) {
5467 spin_unlock(&global_rsv->lock);
5468 return -ENOSPC;
5469 }
5470 global_rsv->reserved -= num_bytes;
5471 if (global_rsv->reserved < global_rsv->size)
5472 global_rsv->full = 0;
5473 spin_unlock(&global_rsv->lock);
5474
5475 block_rsv_add_bytes(dest, num_bytes, 1);
5476 return 0;
5477}
5478
957780eb
JB
5479/*
5480 * This is for space we already have accounted in space_info->bytes_may_use, so
5481 * basically when we're returning space from block_rsv's.
5482 */
5483static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5484 struct btrfs_space_info *space_info,
5485 u64 num_bytes)
5486{
5487 struct reserve_ticket *ticket;
5488 struct list_head *head;
5489 u64 used;
5490 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5491 bool check_overcommit = false;
5492
5493 spin_lock(&space_info->lock);
5494 head = &space_info->priority_tickets;
5495
5496 /*
5497 * If we are over our limit then we need to check and see if we can
5498 * overcommit, and if we can't then we just need to free up our space
5499 * and not satisfy any requests.
5500 */
0eee8a49 5501 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5502 if (used - num_bytes >= space_info->total_bytes)
5503 check_overcommit = true;
5504again:
5505 while (!list_empty(head) && num_bytes) {
5506 ticket = list_first_entry(head, struct reserve_ticket,
5507 list);
5508 /*
5509 * We use 0 bytes because this space is already reserved, so
5510 * adding the ticket space would be a double count.
5511 */
5512 if (check_overcommit &&
c1c4919b 5513 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5514 break;
5515 if (num_bytes >= ticket->bytes) {
5516 list_del_init(&ticket->list);
5517 num_bytes -= ticket->bytes;
5518 ticket->bytes = 0;
ce129655 5519 space_info->tickets_id++;
957780eb
JB
5520 wake_up(&ticket->wait);
5521 } else {
5522 ticket->bytes -= num_bytes;
5523 num_bytes = 0;
5524 }
5525 }
5526
5527 if (num_bytes && head == &space_info->priority_tickets) {
5528 head = &space_info->tickets;
5529 flush = BTRFS_RESERVE_FLUSH_ALL;
5530 goto again;
5531 }
5532 space_info->bytes_may_use -= num_bytes;
5533 trace_btrfs_space_reservation(fs_info, "space_info",
5534 space_info->flags, num_bytes, 0);
5535 spin_unlock(&space_info->lock);
5536}
5537
5538/*
5539 * This is for newly allocated space that isn't accounted in
5540 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5541 * we use this helper.
5542 */
5543static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5544 struct btrfs_space_info *space_info,
5545 u64 num_bytes)
5546{
5547 struct reserve_ticket *ticket;
5548 struct list_head *head = &space_info->priority_tickets;
5549
5550again:
5551 while (!list_empty(head) && num_bytes) {
5552 ticket = list_first_entry(head, struct reserve_ticket,
5553 list);
5554 if (num_bytes >= ticket->bytes) {
5555 trace_btrfs_space_reservation(fs_info, "space_info",
5556 space_info->flags,
5557 ticket->bytes, 1);
5558 list_del_init(&ticket->list);
5559 num_bytes -= ticket->bytes;
5560 space_info->bytes_may_use += ticket->bytes;
5561 ticket->bytes = 0;
ce129655 5562 space_info->tickets_id++;
957780eb
JB
5563 wake_up(&ticket->wait);
5564 } else {
5565 trace_btrfs_space_reservation(fs_info, "space_info",
5566 space_info->flags,
5567 num_bytes, 1);
5568 space_info->bytes_may_use += num_bytes;
5569 ticket->bytes -= num_bytes;
5570 num_bytes = 0;
5571 }
5572 }
5573
5574 if (num_bytes && head == &space_info->priority_tickets) {
5575 head = &space_info->tickets;
5576 goto again;
5577 }
5578}
5579
69fe2d75 5580static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5581 struct btrfs_block_rsv *block_rsv,
62a45b60 5582 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5583{
5584 struct btrfs_space_info *space_info = block_rsv->space_info;
69fe2d75 5585 u64 ret;
f0486c68
YZ
5586
5587 spin_lock(&block_rsv->lock);
5588 if (num_bytes == (u64)-1)
5589 num_bytes = block_rsv->size;
5590 block_rsv->size -= num_bytes;
5591 if (block_rsv->reserved >= block_rsv->size) {
5592 num_bytes = block_rsv->reserved - block_rsv->size;
5593 block_rsv->reserved = block_rsv->size;
5594 block_rsv->full = 1;
5595 } else {
5596 num_bytes = 0;
5597 }
5598 spin_unlock(&block_rsv->lock);
5599
69fe2d75 5600 ret = num_bytes;
f0486c68
YZ
5601 if (num_bytes > 0) {
5602 if (dest) {
e9e22899
JB
5603 spin_lock(&dest->lock);
5604 if (!dest->full) {
5605 u64 bytes_to_add;
5606
5607 bytes_to_add = dest->size - dest->reserved;
5608 bytes_to_add = min(num_bytes, bytes_to_add);
5609 dest->reserved += bytes_to_add;
5610 if (dest->reserved >= dest->size)
5611 dest->full = 1;
5612 num_bytes -= bytes_to_add;
5613 }
5614 spin_unlock(&dest->lock);
5615 }
957780eb
JB
5616 if (num_bytes)
5617 space_info_add_old_bytes(fs_info, space_info,
5618 num_bytes);
9ed74f2d 5619 }
69fe2d75 5620 return ret;
f0486c68 5621}
4e06bdd6 5622
25d609f8
JB
5623int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5624 struct btrfs_block_rsv *dst, u64 num_bytes,
5625 int update_size)
f0486c68
YZ
5626{
5627 int ret;
9ed74f2d 5628
f0486c68
YZ
5629 ret = block_rsv_use_bytes(src, num_bytes);
5630 if (ret)
5631 return ret;
9ed74f2d 5632
25d609f8 5633 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5634 return 0;
5635}
5636
66d8f3dd 5637void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5638{
f0486c68
YZ
5639 memset(rsv, 0, sizeof(*rsv));
5640 spin_lock_init(&rsv->lock);
66d8f3dd 5641 rsv->type = type;
f0486c68
YZ
5642}
5643
69fe2d75
JB
5644void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5645 struct btrfs_block_rsv *rsv,
5646 unsigned short type)
5647{
5648 btrfs_init_block_rsv(rsv, type);
5649 rsv->space_info = __find_space_info(fs_info,
5650 BTRFS_BLOCK_GROUP_METADATA);
5651}
5652
2ff7e61e 5653struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5654 unsigned short type)
f0486c68
YZ
5655{
5656 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5657
f0486c68
YZ
5658 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5659 if (!block_rsv)
5660 return NULL;
9ed74f2d 5661
69fe2d75 5662 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5663 return block_rsv;
5664}
9ed74f2d 5665
2ff7e61e 5666void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5667 struct btrfs_block_rsv *rsv)
5668{
2aaa6655
JB
5669 if (!rsv)
5670 return;
2ff7e61e 5671 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5672 kfree(rsv);
9ed74f2d
JB
5673}
5674
cdfb080e
CM
5675void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5676{
5677 kfree(rsv);
5678}
5679
08e007d2
MX
5680int btrfs_block_rsv_add(struct btrfs_root *root,
5681 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5682 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5683{
f0486c68 5684 int ret;
9ed74f2d 5685
f0486c68
YZ
5686 if (num_bytes == 0)
5687 return 0;
8bb8ab2e 5688
61b520a9 5689 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5690 if (!ret) {
5691 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5692 return 0;
5693 }
9ed74f2d 5694
f0486c68 5695 return ret;
f0486c68 5696}
9ed74f2d 5697
2ff7e61e 5698int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5699{
5700 u64 num_bytes = 0;
f0486c68 5701 int ret = -ENOSPC;
9ed74f2d 5702
f0486c68
YZ
5703 if (!block_rsv)
5704 return 0;
9ed74f2d 5705
f0486c68 5706 spin_lock(&block_rsv->lock);
36ba022a
JB
5707 num_bytes = div_factor(block_rsv->size, min_factor);
5708 if (block_rsv->reserved >= num_bytes)
5709 ret = 0;
5710 spin_unlock(&block_rsv->lock);
9ed74f2d 5711
36ba022a
JB
5712 return ret;
5713}
5714
08e007d2
MX
5715int btrfs_block_rsv_refill(struct btrfs_root *root,
5716 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5717 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5718{
5719 u64 num_bytes = 0;
5720 int ret = -ENOSPC;
5721
5722 if (!block_rsv)
5723 return 0;
5724
5725 spin_lock(&block_rsv->lock);
5726 num_bytes = min_reserved;
13553e52 5727 if (block_rsv->reserved >= num_bytes)
f0486c68 5728 ret = 0;
13553e52 5729 else
f0486c68 5730 num_bytes -= block_rsv->reserved;
f0486c68 5731 spin_unlock(&block_rsv->lock);
13553e52 5732
f0486c68
YZ
5733 if (!ret)
5734 return 0;
5735
aa38a711 5736 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5737 if (!ret) {
5738 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5739 return 0;
6a63209f 5740 }
9ed74f2d 5741
13553e52 5742 return ret;
f0486c68
YZ
5743}
5744
69fe2d75
JB
5745/**
5746 * btrfs_inode_rsv_refill - refill the inode block rsv.
5747 * @inode - the inode we are refilling.
5748 * @flush - the flusing restriction.
5749 *
5750 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5751 * block_rsv->size as the minimum size. We'll either refill the missing amount
5752 * or return if we already have enough space. This will also handle the resreve
5753 * tracepoint for the reserved amount.
5754 */
5755int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5756 enum btrfs_reserve_flush_enum flush)
5757{
5758 struct btrfs_root *root = inode->root;
5759 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5760 u64 num_bytes = 0;
5761 int ret = -ENOSPC;
5762
5763 spin_lock(&block_rsv->lock);
5764 if (block_rsv->reserved < block_rsv->size)
5765 num_bytes = block_rsv->size - block_rsv->reserved;
5766 spin_unlock(&block_rsv->lock);
5767
5768 if (num_bytes == 0)
5769 return 0;
5770
5771 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5772 if (!ret) {
5773 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5774 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5775 btrfs_ino(inode), num_bytes, 1);
5776 }
5777 return ret;
5778}
5779
5780/**
5781 * btrfs_inode_rsv_release - release any excessive reservation.
5782 * @inode - the inode we need to release from.
5783 *
5784 * This is the same as btrfs_block_rsv_release, except that it handles the
5785 * tracepoint for the reservation.
5786 */
5787void btrfs_inode_rsv_release(struct btrfs_inode *inode)
5788{
5789 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5790 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5791 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5792 u64 released = 0;
5793
5794 /*
5795 * Since we statically set the block_rsv->size we just want to say we
5796 * are releasing 0 bytes, and then we'll just get the reservation over
5797 * the size free'd.
5798 */
5799 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5800 if (released > 0)
5801 trace_btrfs_space_reservation(fs_info, "delalloc",
5802 btrfs_ino(inode), released, 0);
5803}
5804
2ff7e61e 5805void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5806 struct btrfs_block_rsv *block_rsv,
5807 u64 num_bytes)
5808{
0b246afa
JM
5809 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5810
17504584 5811 if (global_rsv == block_rsv ||
f0486c68
YZ
5812 block_rsv->space_info != global_rsv->space_info)
5813 global_rsv = NULL;
0b246afa 5814 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
6a63209f
JB
5815}
5816
8929ecfa
YZ
5817static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5818{
5819 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5820 struct btrfs_space_info *sinfo = block_rsv->space_info;
5821 u64 num_bytes;
6a63209f 5822
ae2e4728
JB
5823 /*
5824 * The global block rsv is based on the size of the extent tree, the
5825 * checksum tree and the root tree. If the fs is empty we want to set
5826 * it to a minimal amount for safety.
5827 */
5828 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5829 btrfs_root_used(&fs_info->csum_root->root_item) +
5830 btrfs_root_used(&fs_info->tree_root->root_item);
5831 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5832
8929ecfa 5833 spin_lock(&sinfo->lock);
1f699d38 5834 spin_lock(&block_rsv->lock);
4e06bdd6 5835
ee22184b 5836 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5837
fb4b10e5 5838 if (block_rsv->reserved < block_rsv->size) {
4136135b 5839 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5840 if (sinfo->total_bytes > num_bytes) {
5841 num_bytes = sinfo->total_bytes - num_bytes;
5842 num_bytes = min(num_bytes,
5843 block_rsv->size - block_rsv->reserved);
5844 block_rsv->reserved += num_bytes;
5845 sinfo->bytes_may_use += num_bytes;
5846 trace_btrfs_space_reservation(fs_info, "space_info",
5847 sinfo->flags, num_bytes,
5848 1);
5849 }
5850 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5851 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5852 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5853 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5854 sinfo->flags, num_bytes, 0);
8929ecfa 5855 block_rsv->reserved = block_rsv->size;
8929ecfa 5856 }
182608c8 5857
fb4b10e5
JB
5858 if (block_rsv->reserved == block_rsv->size)
5859 block_rsv->full = 1;
5860 else
5861 block_rsv->full = 0;
5862
8929ecfa 5863 spin_unlock(&block_rsv->lock);
1f699d38 5864 spin_unlock(&sinfo->lock);
6a63209f
JB
5865}
5866
f0486c68 5867static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5868{
f0486c68 5869 struct btrfs_space_info *space_info;
6a63209f 5870
f0486c68
YZ
5871 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5872 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5873
f0486c68 5874 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5875 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5876 fs_info->trans_block_rsv.space_info = space_info;
5877 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5878 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5879
8929ecfa
YZ
5880 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5881 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5882 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5883 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5884 if (fs_info->quota_root)
5885 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5886 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5887
8929ecfa 5888 update_global_block_rsv(fs_info);
6a63209f
JB
5889}
5890
8929ecfa 5891static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5892{
8c2a3ca2
JB
5893 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5894 (u64)-1);
8929ecfa
YZ
5895 WARN_ON(fs_info->trans_block_rsv.size > 0);
5896 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5897 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5898 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5899 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5900 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5901}
5902
a22285a6 5903void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
2ff7e61e 5904 struct btrfs_fs_info *fs_info)
6a63209f 5905{
bf2681cb
JB
5906 if (!trans->block_rsv) {
5907 ASSERT(!trans->bytes_reserved);
0e721106 5908 return;
bf2681cb 5909 }
0e721106 5910
a22285a6
YZ
5911 if (!trans->bytes_reserved)
5912 return;
6a63209f 5913
bf2681cb 5914 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
0b246afa 5915 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 5916 trans->transid, trans->bytes_reserved, 0);
2ff7e61e
JM
5917 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5918 trans->bytes_reserved);
a22285a6
YZ
5919 trans->bytes_reserved = 0;
5920}
6a63209f 5921
4fbcdf66
FM
5922/*
5923 * To be called after all the new block groups attached to the transaction
5924 * handle have been created (btrfs_create_pending_block_groups()).
5925 */
5926void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5927{
64b63580 5928 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5929
5930 if (!trans->chunk_bytes_reserved)
5931 return;
5932
5933 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5934
5935 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5936 trans->chunk_bytes_reserved);
5937 trans->chunk_bytes_reserved = 0;
5938}
5939
79787eaa 5940/* Can only return 0 or -ENOSPC */
d68fc57b 5941int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
8ed7a2a0 5942 struct btrfs_inode *inode)
d68fc57b 5943{
8ed7a2a0
NB
5944 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5945 struct btrfs_root *root = inode->root;
40acc3ee
JB
5946 /*
5947 * We always use trans->block_rsv here as we will have reserved space
5948 * for our orphan when starting the transaction, using get_block_rsv()
5949 * here will sometimes make us choose the wrong block rsv as we could be
5950 * doing a reloc inode for a non refcounted root.
5951 */
5952 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5953 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5954
5955 /*
fcb80c2a
JB
5956 * We need to hold space in order to delete our orphan item once we've
5957 * added it, so this takes the reservation so we can release it later
5958 * when we are truly done with the orphan item.
d68fc57b 5959 */
0b246afa
JM
5960 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5961
8ed7a2a0
NB
5962 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5963 num_bytes, 1);
25d609f8 5964 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5965}
5966
703b391a 5967void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
97e728d4 5968{
703b391a
NB
5969 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5970 struct btrfs_root *root = inode->root;
0b246afa
JM
5971 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5972
703b391a
NB
5973 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5974 num_bytes, 0);
2ff7e61e 5975 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
d68fc57b 5976}
97e728d4 5977
d5c12070
MX
5978/*
5979 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5980 * root: the root of the parent directory
5981 * rsv: block reservation
5982 * items: the number of items that we need do reservation
5983 * qgroup_reserved: used to return the reserved size in qgroup
5984 *
5985 * This function is used to reserve the space for snapshot/subvolume
5986 * creation and deletion. Those operations are different with the
5987 * common file/directory operations, they change two fs/file trees
5988 * and root tree, the number of items that the qgroup reserves is
5989 * different with the free space reservation. So we can not use
01327610 5990 * the space reservation mechanism in start_transaction().
d5c12070
MX
5991 */
5992int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5993 struct btrfs_block_rsv *rsv,
5994 int items,
ee3441b4
JM
5995 u64 *qgroup_reserved,
5996 bool use_global_rsv)
a22285a6 5997{
d5c12070
MX
5998 u64 num_bytes;
5999 int ret;
0b246afa
JM
6000 struct btrfs_fs_info *fs_info = root->fs_info;
6001 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 6002
0b246afa 6003 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 6004 /* One for parent inode, two for dir entries */
0b246afa 6005 num_bytes = 3 * fs_info->nodesize;
003d7c59 6006 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
d5c12070
MX
6007 if (ret)
6008 return ret;
6009 } else {
6010 num_bytes = 0;
6011 }
6012
6013 *qgroup_reserved = num_bytes;
6014
0b246afa
JM
6015 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6016 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
6017 BTRFS_BLOCK_GROUP_METADATA);
6018 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6019 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
6020
6021 if (ret == -ENOSPC && use_global_rsv)
25d609f8 6022 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 6023
7174109c
QW
6024 if (ret && *qgroup_reserved)
6025 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
6026
6027 return ret;
6028}
6029
2ff7e61e 6030void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 6031 struct btrfs_block_rsv *rsv)
d5c12070 6032{
2ff7e61e 6033 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
6034}
6035
69fe2d75
JB
6036static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6037 struct btrfs_inode *inode)
9e0baf60 6038{
69fe2d75
JB
6039 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6040 u64 reserve_size = 0;
6041 u64 csum_leaves;
6042 unsigned outstanding_extents;
9e0baf60 6043
69fe2d75
JB
6044 lockdep_assert_held(&inode->lock);
6045 outstanding_extents = inode->outstanding_extents;
6046 if (outstanding_extents)
6047 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6048 outstanding_extents + 1);
6049 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6050 inode->csum_bytes);
6051 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6052 csum_leaves);
9e0baf60 6053
69fe2d75
JB
6054 spin_lock(&block_rsv->lock);
6055 block_rsv->size = reserve_size;
6056 spin_unlock(&block_rsv->lock);
0ca1f7ce 6057}
c146afad 6058
9f3db423 6059int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6060{
9f3db423
NB
6061 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6062 struct btrfs_root *root = inode->root;
69fe2d75 6063 unsigned nr_extents;
08e007d2 6064 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6065 int ret = 0;
c64c2bd8 6066 bool delalloc_lock = true;
6324fbf3 6067
c64c2bd8
JB
6068 /* If we are a free space inode we need to not flush since we will be in
6069 * the middle of a transaction commit. We also don't need the delalloc
6070 * mutex since we won't race with anybody. We need this mostly to make
6071 * lockdep shut its filthy mouth.
bac357dc
JB
6072 *
6073 * If we have a transaction open (can happen if we call truncate_block
6074 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6075 */
6076 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6077 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6078 delalloc_lock = false;
bac357dc
JB
6079 } else if (current->journal_info) {
6080 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c64c2bd8 6081 }
c09544e0 6082
08e007d2 6083 if (flush != BTRFS_RESERVE_NO_FLUSH &&
0b246afa 6084 btrfs_transaction_in_commit(fs_info))
0ca1f7ce 6085 schedule_timeout(1);
ec44a35c 6086
c64c2bd8 6087 if (delalloc_lock)
9f3db423 6088 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6089
0b246afa 6090 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6091
6092 /* Add our new extents and calculate the new rsv size. */
9f3db423 6093 spin_lock(&inode->lock);
69fe2d75 6094 nr_extents = count_max_extents(num_bytes);
8b62f87b 6095 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6096 inode->csum_bytes += num_bytes;
6097 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6098 spin_unlock(&inode->lock);
57a45ced 6099
0b246afa 6100 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
7174109c 6101 ret = btrfs_qgroup_reserve_meta(root,
003d7c59 6102 nr_extents * fs_info->nodesize, true);
88e081bf
WS
6103 if (ret)
6104 goto out_fail;
6105 }
c5567237 6106
69fe2d75 6107 ret = btrfs_inode_rsv_refill(inode, flush);
88e081bf 6108 if (unlikely(ret)) {
da17066c 6109 btrfs_qgroup_free_meta(root,
0b246afa 6110 nr_extents * fs_info->nodesize);
88e081bf 6111 goto out_fail;
9e0baf60 6112 }
25179201 6113
c64c2bd8 6114 if (delalloc_lock)
9f3db423 6115 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6116 return 0;
88e081bf
WS
6117
6118out_fail:
9f3db423 6119 spin_lock(&inode->lock);
8b62f87b
JB
6120 nr_extents = count_max_extents(num_bytes);
6121 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6122 inode->csum_bytes -= num_bytes;
6123 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6124 spin_unlock(&inode->lock);
88e081bf 6125
69fe2d75 6126 btrfs_inode_rsv_release(inode);
88e081bf 6127 if (delalloc_lock)
9f3db423 6128 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6129 return ret;
0ca1f7ce
YZ
6130}
6131
7709cde3
JB
6132/**
6133 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6134 * @inode: the inode to release the reservation for.
6135 * @num_bytes: the number of bytes we are releasing.
7709cde3
JB
6136 *
6137 * This will release the metadata reservation for an inode. This can be called
6138 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6139 * reservations, or on error for the same reason.
7709cde3 6140 */
691fa059 6141void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6142{
691fa059 6143 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0ca1f7ce 6144
0b246afa 6145 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6146 spin_lock(&inode->lock);
69fe2d75
JB
6147 inode->csum_bytes -= num_bytes;
6148 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6149 spin_unlock(&inode->lock);
0ca1f7ce 6150
0b246afa 6151 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6152 return;
6153
69fe2d75 6154 btrfs_inode_rsv_release(inode);
0ca1f7ce
YZ
6155}
6156
8b62f87b
JB
6157/**
6158 * btrfs_delalloc_release_extents - release our outstanding_extents
6159 * @inode: the inode to balance the reservation for.
6160 * @num_bytes: the number of bytes we originally reserved with
6161 *
6162 * When we reserve space we increase outstanding_extents for the extents we may
6163 * add. Once we've set the range as delalloc or created our ordered extents we
6164 * have outstanding_extents to track the real usage, so we use this to free our
6165 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6166 * with btrfs_delalloc_reserve_metadata.
6167 */
6168void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6169{
6170 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6171 unsigned num_extents;
8b62f87b
JB
6172
6173 spin_lock(&inode->lock);
6174 num_extents = count_max_extents(num_bytes);
6175 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6176 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6177 spin_unlock(&inode->lock);
6178
8b62f87b
JB
6179 if (btrfs_is_testing(fs_info))
6180 return;
6181
69fe2d75 6182 btrfs_inode_rsv_release(inode);
8b62f87b
JB
6183}
6184
1ada3a62 6185/**
7cf5b976 6186 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6187 * delalloc
6188 * @inode: inode we're writing to
6189 * @start: start range we are writing to
6190 * @len: how long the range we are writing to
364ecf36
QW
6191 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6192 * current reservation.
1ada3a62 6193 *
1ada3a62
QW
6194 * This will do the following things
6195 *
6196 * o reserve space in data space info for num bytes
6197 * and reserve precious corresponding qgroup space
6198 * (Done in check_data_free_space)
6199 *
6200 * o reserve space for metadata space, based on the number of outstanding
6201 * extents and how much csums will be needed
6202 * also reserve metadata space in a per root over-reserve method.
6203 * o add to the inodes->delalloc_bytes
6204 * o add it to the fs_info's delalloc inodes list.
6205 * (Above 3 all done in delalloc_reserve_metadata)
6206 *
6207 * Return 0 for success
6208 * Return <0 for error(-ENOSPC or -EQUOT)
6209 */
364ecf36
QW
6210int btrfs_delalloc_reserve_space(struct inode *inode,
6211 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6212{
6213 int ret;
6214
364ecf36 6215 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6216 if (ret < 0)
6217 return ret;
9f3db423 6218 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6219 if (ret < 0)
bc42bda2 6220 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6221 return ret;
6222}
6223
7709cde3 6224/**
7cf5b976 6225 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6226 * @inode: inode we're releasing space for
6227 * @start: start position of the space already reserved
6228 * @len: the len of the space already reserved
8b62f87b 6229 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6230 *
6231 * This function will release the metadata space that was not used and will
6232 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6233 * list if there are no delalloc bytes left.
6234 * Also it will handle the qgroup reserved space.
6235 */
bc42bda2 6236void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b
JB
6237 struct extent_changeset *reserved,
6238 u64 start, u64 len)
1ada3a62 6239{
691fa059 6240 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
bc42bda2 6241 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6242}
6243
ce93ec54 6244static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6245 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6246 u64 num_bytes, int alloc)
9078a3e1 6247{
0af3d00b 6248 struct btrfs_block_group_cache *cache = NULL;
db94535d 6249 u64 total = num_bytes;
9078a3e1 6250 u64 old_val;
db94535d 6251 u64 byte_in_group;
0af3d00b 6252 int factor;
3e1ad54f 6253
5d4f98a2 6254 /* block accounting for super block */
eb73c1b7 6255 spin_lock(&info->delalloc_root_lock);
6c41761f 6256 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6257 if (alloc)
6258 old_val += num_bytes;
6259 else
6260 old_val -= num_bytes;
6c41761f 6261 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6262 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6263
d397712b 6264 while (total) {
db94535d 6265 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6266 if (!cache)
79787eaa 6267 return -ENOENT;
b742bb82
YZ
6268 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6269 BTRFS_BLOCK_GROUP_RAID1 |
6270 BTRFS_BLOCK_GROUP_RAID10))
6271 factor = 2;
6272 else
6273 factor = 1;
9d66e233
JB
6274 /*
6275 * If this block group has free space cache written out, we
6276 * need to make sure to load it if we are removing space. This
6277 * is because we need the unpinning stage to actually add the
6278 * space back to the block group, otherwise we will leak space.
6279 */
6280 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6281 cache_block_group(cache, 1);
0af3d00b 6282
db94535d
CM
6283 byte_in_group = bytenr - cache->key.objectid;
6284 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6285
25179201 6286 spin_lock(&cache->space_info->lock);
c286ac48 6287 spin_lock(&cache->lock);
0af3d00b 6288
6202df69 6289 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6290 cache->disk_cache_state < BTRFS_DC_CLEAR)
6291 cache->disk_cache_state = BTRFS_DC_CLEAR;
6292
9078a3e1 6293 old_val = btrfs_block_group_used(&cache->item);
db94535d 6294 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6295 if (alloc) {
db94535d 6296 old_val += num_bytes;
11833d66
YZ
6297 btrfs_set_block_group_used(&cache->item, old_val);
6298 cache->reserved -= num_bytes;
11833d66 6299 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6300 cache->space_info->bytes_used += num_bytes;
6301 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6302 spin_unlock(&cache->lock);
25179201 6303 spin_unlock(&cache->space_info->lock);
cd1bc465 6304 } else {
db94535d 6305 old_val -= num_bytes;
ae0ab003
FM
6306 btrfs_set_block_group_used(&cache->item, old_val);
6307 cache->pinned += num_bytes;
6308 cache->space_info->bytes_pinned += num_bytes;
6309 cache->space_info->bytes_used -= num_bytes;
6310 cache->space_info->disk_used -= num_bytes * factor;
6311 spin_unlock(&cache->lock);
6312 spin_unlock(&cache->space_info->lock);
47ab2a6c 6313
0b246afa 6314 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6315 cache->space_info->flags,
6316 num_bytes, 1);
d7eae340
OS
6317 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6318 num_bytes);
ae0ab003
FM
6319 set_extent_dirty(info->pinned_extents,
6320 bytenr, bytenr + num_bytes - 1,
6321 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6322 }
1bbc621e
CM
6323
6324 spin_lock(&trans->transaction->dirty_bgs_lock);
6325 if (list_empty(&cache->dirty_list)) {
6326 list_add_tail(&cache->dirty_list,
6327 &trans->transaction->dirty_bgs);
6328 trans->transaction->num_dirty_bgs++;
6329 btrfs_get_block_group(cache);
6330 }
6331 spin_unlock(&trans->transaction->dirty_bgs_lock);
6332
036a9348
FM
6333 /*
6334 * No longer have used bytes in this block group, queue it for
6335 * deletion. We do this after adding the block group to the
6336 * dirty list to avoid races between cleaner kthread and space
6337 * cache writeout.
6338 */
6339 if (!alloc && old_val == 0) {
6340 spin_lock(&info->unused_bgs_lock);
6341 if (list_empty(&cache->bg_list)) {
6342 btrfs_get_block_group(cache);
6343 list_add_tail(&cache->bg_list,
6344 &info->unused_bgs);
6345 }
6346 spin_unlock(&info->unused_bgs_lock);
6347 }
6348
fa9c0d79 6349 btrfs_put_block_group(cache);
db94535d
CM
6350 total -= num_bytes;
6351 bytenr += num_bytes;
9078a3e1
CM
6352 }
6353 return 0;
6354}
6324fbf3 6355
2ff7e61e 6356static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6357{
0f9dd46c 6358 struct btrfs_block_group_cache *cache;
d2fb3437 6359 u64 bytenr;
0f9dd46c 6360
0b246afa
JM
6361 spin_lock(&fs_info->block_group_cache_lock);
6362 bytenr = fs_info->first_logical_byte;
6363 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6364
6365 if (bytenr < (u64)-1)
6366 return bytenr;
6367
0b246afa 6368 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6369 if (!cache)
a061fc8d 6370 return 0;
0f9dd46c 6371
d2fb3437 6372 bytenr = cache->key.objectid;
fa9c0d79 6373 btrfs_put_block_group(cache);
d2fb3437
YZ
6374
6375 return bytenr;
a061fc8d
CM
6376}
6377
2ff7e61e 6378static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6379 struct btrfs_block_group_cache *cache,
6380 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6381{
11833d66
YZ
6382 spin_lock(&cache->space_info->lock);
6383 spin_lock(&cache->lock);
6384 cache->pinned += num_bytes;
6385 cache->space_info->bytes_pinned += num_bytes;
6386 if (reserved) {
6387 cache->reserved -= num_bytes;
6388 cache->space_info->bytes_reserved -= num_bytes;
6389 }
6390 spin_unlock(&cache->lock);
6391 spin_unlock(&cache->space_info->lock);
68b38550 6392
0b246afa 6393 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6394 cache->space_info->flags, num_bytes, 1);
4da8b76d 6395 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
0b246afa 6396 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6397 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6398 return 0;
6399}
68b38550 6400
f0486c68
YZ
6401/*
6402 * this function must be called within transaction
6403 */
2ff7e61e 6404int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6405 u64 bytenr, u64 num_bytes, int reserved)
6406{
6407 struct btrfs_block_group_cache *cache;
68b38550 6408
0b246afa 6409 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6410 BUG_ON(!cache); /* Logic error */
f0486c68 6411
2ff7e61e 6412 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6413
6414 btrfs_put_block_group(cache);
11833d66
YZ
6415 return 0;
6416}
6417
f0486c68 6418/*
e688b725
CM
6419 * this function must be called within transaction
6420 */
2ff7e61e 6421int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6422 u64 bytenr, u64 num_bytes)
6423{
6424 struct btrfs_block_group_cache *cache;
b50c6e25 6425 int ret;
e688b725 6426
0b246afa 6427 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6428 if (!cache)
6429 return -EINVAL;
e688b725
CM
6430
6431 /*
6432 * pull in the free space cache (if any) so that our pin
6433 * removes the free space from the cache. We have load_only set
6434 * to one because the slow code to read in the free extents does check
6435 * the pinned extents.
6436 */
f6373bf3 6437 cache_block_group(cache, 1);
e688b725 6438
2ff7e61e 6439 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6440
6441 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6442 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6443 btrfs_put_block_group(cache);
b50c6e25 6444 return ret;
e688b725
CM
6445}
6446
2ff7e61e
JM
6447static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6448 u64 start, u64 num_bytes)
8c2a1a30
JB
6449{
6450 int ret;
6451 struct btrfs_block_group_cache *block_group;
6452 struct btrfs_caching_control *caching_ctl;
6453
0b246afa 6454 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6455 if (!block_group)
6456 return -EINVAL;
6457
6458 cache_block_group(block_group, 0);
6459 caching_ctl = get_caching_control(block_group);
6460
6461 if (!caching_ctl) {
6462 /* Logic error */
6463 BUG_ON(!block_group_cache_done(block_group));
6464 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6465 } else {
6466 mutex_lock(&caching_ctl->mutex);
6467
6468 if (start >= caching_ctl->progress) {
2ff7e61e 6469 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6470 } else if (start + num_bytes <= caching_ctl->progress) {
6471 ret = btrfs_remove_free_space(block_group,
6472 start, num_bytes);
6473 } else {
6474 num_bytes = caching_ctl->progress - start;
6475 ret = btrfs_remove_free_space(block_group,
6476 start, num_bytes);
6477 if (ret)
6478 goto out_lock;
6479
6480 num_bytes = (start + num_bytes) -
6481 caching_ctl->progress;
6482 start = caching_ctl->progress;
2ff7e61e 6483 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6484 }
6485out_lock:
6486 mutex_unlock(&caching_ctl->mutex);
6487 put_caching_control(caching_ctl);
6488 }
6489 btrfs_put_block_group(block_group);
6490 return ret;
6491}
6492
2ff7e61e 6493int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6494 struct extent_buffer *eb)
6495{
6496 struct btrfs_file_extent_item *item;
6497 struct btrfs_key key;
6498 int found_type;
6499 int i;
6500
2ff7e61e 6501 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6502 return 0;
6503
6504 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6505 btrfs_item_key_to_cpu(eb, &key, i);
6506 if (key.type != BTRFS_EXTENT_DATA_KEY)
6507 continue;
6508 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6509 found_type = btrfs_file_extent_type(eb, item);
6510 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6511 continue;
6512 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6513 continue;
6514 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6515 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6516 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6517 }
6518
6519 return 0;
6520}
6521
9cfa3e34
FM
6522static void
6523btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6524{
6525 atomic_inc(&bg->reservations);
6526}
6527
6528void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6529 const u64 start)
6530{
6531 struct btrfs_block_group_cache *bg;
6532
6533 bg = btrfs_lookup_block_group(fs_info, start);
6534 ASSERT(bg);
6535 if (atomic_dec_and_test(&bg->reservations))
6536 wake_up_atomic_t(&bg->reservations);
6537 btrfs_put_block_group(bg);
6538}
6539
9cfa3e34
FM
6540void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6541{
6542 struct btrfs_space_info *space_info = bg->space_info;
6543
6544 ASSERT(bg->ro);
6545
6546 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6547 return;
6548
6549 /*
6550 * Our block group is read only but before we set it to read only,
6551 * some task might have had allocated an extent from it already, but it
6552 * has not yet created a respective ordered extent (and added it to a
6553 * root's list of ordered extents).
6554 * Therefore wait for any task currently allocating extents, since the
6555 * block group's reservations counter is incremented while a read lock
6556 * on the groups' semaphore is held and decremented after releasing
6557 * the read access on that semaphore and creating the ordered extent.
6558 */
6559 down_write(&space_info->groups_sem);
6560 up_write(&space_info->groups_sem);
6561
5e4def20 6562 wait_on_atomic_t(&bg->reservations, atomic_t_wait,
9cfa3e34
FM
6563 TASK_UNINTERRUPTIBLE);
6564}
6565
fb25e914 6566/**
4824f1f4 6567 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6568 * @cache: The cache we are manipulating
18513091
WX
6569 * @ram_bytes: The number of bytes of file content, and will be same to
6570 * @num_bytes except for the compress path.
fb25e914 6571 * @num_bytes: The number of bytes in question
e570fd27 6572 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6573 *
745699ef
XW
6574 * This is called by the allocator when it reserves space. If this is a
6575 * reservation and the block group has become read only we cannot make the
6576 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6577 */
4824f1f4 6578static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6579 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6580{
fb25e914 6581 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6582 int ret = 0;
79787eaa 6583
fb25e914
JB
6584 spin_lock(&space_info->lock);
6585 spin_lock(&cache->lock);
4824f1f4
WX
6586 if (cache->ro) {
6587 ret = -EAGAIN;
fb25e914 6588 } else {
4824f1f4
WX
6589 cache->reserved += num_bytes;
6590 space_info->bytes_reserved += num_bytes;
e570fd27 6591
18513091
WX
6592 trace_btrfs_space_reservation(cache->fs_info,
6593 "space_info", space_info->flags,
6594 ram_bytes, 0);
6595 space_info->bytes_may_use -= ram_bytes;
e570fd27 6596 if (delalloc)
4824f1f4 6597 cache->delalloc_bytes += num_bytes;
324ae4df 6598 }
fb25e914
JB
6599 spin_unlock(&cache->lock);
6600 spin_unlock(&space_info->lock);
f0486c68 6601 return ret;
324ae4df 6602}
9078a3e1 6603
4824f1f4
WX
6604/**
6605 * btrfs_free_reserved_bytes - update the block_group and space info counters
6606 * @cache: The cache we are manipulating
6607 * @num_bytes: The number of bytes in question
6608 * @delalloc: The blocks are allocated for the delalloc write
6609 *
6610 * This is called by somebody who is freeing space that was never actually used
6611 * on disk. For example if you reserve some space for a new leaf in transaction
6612 * A and before transaction A commits you free that leaf, you call this with
6613 * reserve set to 0 in order to clear the reservation.
6614 */
6615
6616static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6617 u64 num_bytes, int delalloc)
6618{
6619 struct btrfs_space_info *space_info = cache->space_info;
6620 int ret = 0;
6621
6622 spin_lock(&space_info->lock);
6623 spin_lock(&cache->lock);
6624 if (cache->ro)
6625 space_info->bytes_readonly += num_bytes;
6626 cache->reserved -= num_bytes;
6627 space_info->bytes_reserved -= num_bytes;
e62d32aa 6628 space_info->max_extent_size = 0;
4824f1f4
WX
6629
6630 if (delalloc)
6631 cache->delalloc_bytes -= num_bytes;
6632 spin_unlock(&cache->lock);
6633 spin_unlock(&space_info->lock);
6634 return ret;
6635}
8b74c03e 6636void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6637{
11833d66
YZ
6638 struct btrfs_caching_control *next;
6639 struct btrfs_caching_control *caching_ctl;
6640 struct btrfs_block_group_cache *cache;
e8569813 6641
9e351cc8 6642 down_write(&fs_info->commit_root_sem);
25179201 6643
11833d66
YZ
6644 list_for_each_entry_safe(caching_ctl, next,
6645 &fs_info->caching_block_groups, list) {
6646 cache = caching_ctl->block_group;
6647 if (block_group_cache_done(cache)) {
6648 cache->last_byte_to_unpin = (u64)-1;
6649 list_del_init(&caching_ctl->list);
6650 put_caching_control(caching_ctl);
e8569813 6651 } else {
11833d66 6652 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6653 }
e8569813 6654 }
11833d66
YZ
6655
6656 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6657 fs_info->pinned_extents = &fs_info->freed_extents[1];
6658 else
6659 fs_info->pinned_extents = &fs_info->freed_extents[0];
6660
9e351cc8 6661 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6662
6663 update_global_block_rsv(fs_info);
e8569813
ZY
6664}
6665
c759c4e1
JB
6666/*
6667 * Returns the free cluster for the given space info and sets empty_cluster to
6668 * what it should be based on the mount options.
6669 */
6670static struct btrfs_free_cluster *
2ff7e61e
JM
6671fetch_cluster_info(struct btrfs_fs_info *fs_info,
6672 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6673{
6674 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6675
6676 *empty_cluster = 0;
6677 if (btrfs_mixed_space_info(space_info))
6678 return ret;
6679
c759c4e1 6680 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6681 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6682 if (btrfs_test_opt(fs_info, SSD))
6683 *empty_cluster = SZ_2M;
6684 else
ee22184b 6685 *empty_cluster = SZ_64K;
583b7231
HK
6686 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6687 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6688 *empty_cluster = SZ_2M;
0b246afa 6689 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6690 }
6691
6692 return ret;
6693}
6694
2ff7e61e
JM
6695static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6696 u64 start, u64 end,
678886bd 6697 const bool return_free_space)
ccd467d6 6698{
11833d66 6699 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6700 struct btrfs_space_info *space_info;
6701 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6702 struct btrfs_free_cluster *cluster = NULL;
11833d66 6703 u64 len;
c759c4e1
JB
6704 u64 total_unpinned = 0;
6705 u64 empty_cluster = 0;
7b398f8e 6706 bool readonly;
ccd467d6 6707
11833d66 6708 while (start <= end) {
7b398f8e 6709 readonly = false;
11833d66
YZ
6710 if (!cache ||
6711 start >= cache->key.objectid + cache->key.offset) {
6712 if (cache)
6713 btrfs_put_block_group(cache);
c759c4e1 6714 total_unpinned = 0;
11833d66 6715 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6716 BUG_ON(!cache); /* Logic error */
c759c4e1 6717
2ff7e61e 6718 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6719 cache->space_info,
6720 &empty_cluster);
6721 empty_cluster <<= 1;
11833d66
YZ
6722 }
6723
6724 len = cache->key.objectid + cache->key.offset - start;
6725 len = min(len, end + 1 - start);
6726
6727 if (start < cache->last_byte_to_unpin) {
6728 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6729 if (return_free_space)
6730 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6731 }
6732
f0486c68 6733 start += len;
c759c4e1 6734 total_unpinned += len;
7b398f8e 6735 space_info = cache->space_info;
f0486c68 6736
c759c4e1
JB
6737 /*
6738 * If this space cluster has been marked as fragmented and we've
6739 * unpinned enough in this block group to potentially allow a
6740 * cluster to be created inside of it go ahead and clear the
6741 * fragmented check.
6742 */
6743 if (cluster && cluster->fragmented &&
6744 total_unpinned > empty_cluster) {
6745 spin_lock(&cluster->lock);
6746 cluster->fragmented = 0;
6747 spin_unlock(&cluster->lock);
6748 }
6749
7b398f8e 6750 spin_lock(&space_info->lock);
11833d66
YZ
6751 spin_lock(&cache->lock);
6752 cache->pinned -= len;
7b398f8e 6753 space_info->bytes_pinned -= len;
c51e7bb1
JB
6754
6755 trace_btrfs_space_reservation(fs_info, "pinned",
6756 space_info->flags, len, 0);
4f4db217 6757 space_info->max_extent_size = 0;
d288db5d 6758 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6759 if (cache->ro) {
6760 space_info->bytes_readonly += len;
6761 readonly = true;
6762 }
11833d66 6763 spin_unlock(&cache->lock);
957780eb
JB
6764 if (!readonly && return_free_space &&
6765 global_rsv->space_info == space_info) {
6766 u64 to_add = len;
92ac58ec 6767
7b398f8e
JB
6768 spin_lock(&global_rsv->lock);
6769 if (!global_rsv->full) {
957780eb
JB
6770 to_add = min(len, global_rsv->size -
6771 global_rsv->reserved);
6772 global_rsv->reserved += to_add;
6773 space_info->bytes_may_use += to_add;
7b398f8e
JB
6774 if (global_rsv->reserved >= global_rsv->size)
6775 global_rsv->full = 1;
957780eb
JB
6776 trace_btrfs_space_reservation(fs_info,
6777 "space_info",
6778 space_info->flags,
6779 to_add, 1);
6780 len -= to_add;
7b398f8e
JB
6781 }
6782 spin_unlock(&global_rsv->lock);
957780eb
JB
6783 /* Add to any tickets we may have */
6784 if (len)
6785 space_info_add_new_bytes(fs_info, space_info,
6786 len);
7b398f8e
JB
6787 }
6788 spin_unlock(&space_info->lock);
ccd467d6 6789 }
11833d66
YZ
6790
6791 if (cache)
6792 btrfs_put_block_group(cache);
ccd467d6
CM
6793 return 0;
6794}
6795
6796int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2ff7e61e 6797 struct btrfs_fs_info *fs_info)
a28ec197 6798{
e33e17ee
JM
6799 struct btrfs_block_group_cache *block_group, *tmp;
6800 struct list_head *deleted_bgs;
11833d66 6801 struct extent_io_tree *unpin;
1a5bc167
CM
6802 u64 start;
6803 u64 end;
a28ec197 6804 int ret;
a28ec197 6805
11833d66
YZ
6806 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6807 unpin = &fs_info->freed_extents[1];
6808 else
6809 unpin = &fs_info->freed_extents[0];
6810
e33e17ee 6811 while (!trans->aborted) {
d4b450cd 6812 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6813 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6814 EXTENT_DIRTY, NULL);
d4b450cd
FM
6815 if (ret) {
6816 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6817 break;
d4b450cd 6818 }
1f3c79a2 6819
0b246afa 6820 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6821 ret = btrfs_discard_extent(fs_info, start,
5378e607 6822 end + 1 - start, NULL);
1f3c79a2 6823
af6f8f60 6824 clear_extent_dirty(unpin, start, end);
2ff7e61e 6825 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6826 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6827 cond_resched();
a28ec197 6828 }
817d52f8 6829
e33e17ee
JM
6830 /*
6831 * Transaction is finished. We don't need the lock anymore. We
6832 * do need to clean up the block groups in case of a transaction
6833 * abort.
6834 */
6835 deleted_bgs = &trans->transaction->deleted_bgs;
6836 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6837 u64 trimmed = 0;
6838
6839 ret = -EROFS;
6840 if (!trans->aborted)
2ff7e61e 6841 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6842 block_group->key.objectid,
6843 block_group->key.offset,
6844 &trimmed);
6845
6846 list_del_init(&block_group->bg_list);
6847 btrfs_put_block_group_trimming(block_group);
6848 btrfs_put_block_group(block_group);
6849
6850 if (ret) {
6851 const char *errstr = btrfs_decode_error(ret);
6852 btrfs_warn(fs_info,
913e1535 6853 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6854 ret, errstr);
6855 }
6856 }
6857
e20d96d6
CM
6858 return 0;
6859}
6860
5d4f98a2 6861static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6862 struct btrfs_fs_info *info,
c682f9b3 6863 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6864 u64 root_objectid, u64 owner_objectid,
6865 u64 owner_offset, int refs_to_drop,
c682f9b3 6866 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6867{
e2fa7227 6868 struct btrfs_key key;
5d4f98a2 6869 struct btrfs_path *path;
1261ec42 6870 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6871 struct extent_buffer *leaf;
5d4f98a2
YZ
6872 struct btrfs_extent_item *ei;
6873 struct btrfs_extent_inline_ref *iref;
a28ec197 6874 int ret;
5d4f98a2 6875 int is_data;
952fccac
CM
6876 int extent_slot = 0;
6877 int found_extent = 0;
6878 int num_to_del = 1;
5d4f98a2
YZ
6879 u32 item_size;
6880 u64 refs;
c682f9b3
QW
6881 u64 bytenr = node->bytenr;
6882 u64 num_bytes = node->num_bytes;
fcebe456 6883 int last_ref = 0;
0b246afa 6884 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6885
5caf2a00 6886 path = btrfs_alloc_path();
54aa1f4d
CM
6887 if (!path)
6888 return -ENOMEM;
5f26f772 6889
e4058b54 6890 path->reada = READA_FORWARD;
b9473439 6891 path->leave_spinning = 1;
5d4f98a2
YZ
6892
6893 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6894 BUG_ON(!is_data && refs_to_drop != 1);
6895
3173a18f 6896 if (is_data)
897ca819 6897 skinny_metadata = false;
3173a18f 6898
87bde3cd 6899 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6900 bytenr, num_bytes, parent,
6901 root_objectid, owner_objectid,
6902 owner_offset);
7bb86316 6903 if (ret == 0) {
952fccac 6904 extent_slot = path->slots[0];
5d4f98a2
YZ
6905 while (extent_slot >= 0) {
6906 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6907 extent_slot);
5d4f98a2 6908 if (key.objectid != bytenr)
952fccac 6909 break;
5d4f98a2
YZ
6910 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6911 key.offset == num_bytes) {
952fccac
CM
6912 found_extent = 1;
6913 break;
6914 }
3173a18f
JB
6915 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6916 key.offset == owner_objectid) {
6917 found_extent = 1;
6918 break;
6919 }
952fccac
CM
6920 if (path->slots[0] - extent_slot > 5)
6921 break;
5d4f98a2 6922 extent_slot--;
952fccac 6923 }
5d4f98a2
YZ
6924#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6925 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6926 if (found_extent && item_size < sizeof(*ei))
6927 found_extent = 0;
6928#endif
31840ae1 6929 if (!found_extent) {
5d4f98a2 6930 BUG_ON(iref);
87bde3cd
JM
6931 ret = remove_extent_backref(trans, info, path, NULL,
6932 refs_to_drop,
fcebe456 6933 is_data, &last_ref);
005d6427 6934 if (ret) {
66642832 6935 btrfs_abort_transaction(trans, ret);
005d6427
DS
6936 goto out;
6937 }
b3b4aa74 6938 btrfs_release_path(path);
b9473439 6939 path->leave_spinning = 1;
5d4f98a2
YZ
6940
6941 key.objectid = bytenr;
6942 key.type = BTRFS_EXTENT_ITEM_KEY;
6943 key.offset = num_bytes;
6944
3173a18f
JB
6945 if (!is_data && skinny_metadata) {
6946 key.type = BTRFS_METADATA_ITEM_KEY;
6947 key.offset = owner_objectid;
6948 }
6949
31840ae1
ZY
6950 ret = btrfs_search_slot(trans, extent_root,
6951 &key, path, -1, 1);
3173a18f
JB
6952 if (ret > 0 && skinny_metadata && path->slots[0]) {
6953 /*
6954 * Couldn't find our skinny metadata item,
6955 * see if we have ye olde extent item.
6956 */
6957 path->slots[0]--;
6958 btrfs_item_key_to_cpu(path->nodes[0], &key,
6959 path->slots[0]);
6960 if (key.objectid == bytenr &&
6961 key.type == BTRFS_EXTENT_ITEM_KEY &&
6962 key.offset == num_bytes)
6963 ret = 0;
6964 }
6965
6966 if (ret > 0 && skinny_metadata) {
6967 skinny_metadata = false;
9ce49a0b 6968 key.objectid = bytenr;
3173a18f
JB
6969 key.type = BTRFS_EXTENT_ITEM_KEY;
6970 key.offset = num_bytes;
6971 btrfs_release_path(path);
6972 ret = btrfs_search_slot(trans, extent_root,
6973 &key, path, -1, 1);
6974 }
6975
f3465ca4 6976 if (ret) {
5d163e0e
JM
6977 btrfs_err(info,
6978 "umm, got %d back from search, was looking for %llu",
6979 ret, bytenr);
b783e62d 6980 if (ret > 0)
a4f78750 6981 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6982 }
005d6427 6983 if (ret < 0) {
66642832 6984 btrfs_abort_transaction(trans, ret);
005d6427
DS
6985 goto out;
6986 }
31840ae1
ZY
6987 extent_slot = path->slots[0];
6988 }
fae7f21c 6989 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 6990 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
6991 btrfs_err(info,
6992 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6993 bytenr, parent, root_objectid, owner_objectid,
6994 owner_offset);
66642832 6995 btrfs_abort_transaction(trans, ret);
c4a050bb 6996 goto out;
79787eaa 6997 } else {
66642832 6998 btrfs_abort_transaction(trans, ret);
005d6427 6999 goto out;
7bb86316 7000 }
5f39d397
CM
7001
7002 leaf = path->nodes[0];
5d4f98a2
YZ
7003 item_size = btrfs_item_size_nr(leaf, extent_slot);
7004#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7005 if (item_size < sizeof(*ei)) {
7006 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
7007 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7008 0);
005d6427 7009 if (ret < 0) {
66642832 7010 btrfs_abort_transaction(trans, ret);
005d6427
DS
7011 goto out;
7012 }
5d4f98a2 7013
b3b4aa74 7014 btrfs_release_path(path);
5d4f98a2
YZ
7015 path->leave_spinning = 1;
7016
7017 key.objectid = bytenr;
7018 key.type = BTRFS_EXTENT_ITEM_KEY;
7019 key.offset = num_bytes;
7020
7021 ret = btrfs_search_slot(trans, extent_root, &key, path,
7022 -1, 1);
7023 if (ret) {
5d163e0e
JM
7024 btrfs_err(info,
7025 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 7026 ret, bytenr);
a4f78750 7027 btrfs_print_leaf(path->nodes[0]);
5d4f98a2 7028 }
005d6427 7029 if (ret < 0) {
66642832 7030 btrfs_abort_transaction(trans, ret);
005d6427
DS
7031 goto out;
7032 }
7033
5d4f98a2
YZ
7034 extent_slot = path->slots[0];
7035 leaf = path->nodes[0];
7036 item_size = btrfs_item_size_nr(leaf, extent_slot);
7037 }
7038#endif
7039 BUG_ON(item_size < sizeof(*ei));
952fccac 7040 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7041 struct btrfs_extent_item);
3173a18f
JB
7042 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7043 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7044 struct btrfs_tree_block_info *bi;
7045 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7046 bi = (struct btrfs_tree_block_info *)(ei + 1);
7047 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7048 }
56bec294 7049
5d4f98a2 7050 refs = btrfs_extent_refs(leaf, ei);
32b02538 7051 if (refs < refs_to_drop) {
5d163e0e
JM
7052 btrfs_err(info,
7053 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7054 refs_to_drop, refs, bytenr);
32b02538 7055 ret = -EINVAL;
66642832 7056 btrfs_abort_transaction(trans, ret);
32b02538
JB
7057 goto out;
7058 }
56bec294 7059 refs -= refs_to_drop;
5f39d397 7060
5d4f98a2
YZ
7061 if (refs > 0) {
7062 if (extent_op)
7063 __run_delayed_extent_op(extent_op, leaf, ei);
7064 /*
7065 * In the case of inline back ref, reference count will
7066 * be updated by remove_extent_backref
952fccac 7067 */
5d4f98a2
YZ
7068 if (iref) {
7069 BUG_ON(!found_extent);
7070 } else {
7071 btrfs_set_extent_refs(leaf, ei, refs);
7072 btrfs_mark_buffer_dirty(leaf);
7073 }
7074 if (found_extent) {
87bde3cd 7075 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7076 iref, refs_to_drop,
fcebe456 7077 is_data, &last_ref);
005d6427 7078 if (ret) {
66642832 7079 btrfs_abort_transaction(trans, ret);
005d6427
DS
7080 goto out;
7081 }
952fccac 7082 }
5d4f98a2 7083 } else {
5d4f98a2
YZ
7084 if (found_extent) {
7085 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7086 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7087 if (iref) {
7088 BUG_ON(path->slots[0] != extent_slot);
7089 } else {
7090 BUG_ON(path->slots[0] != extent_slot + 1);
7091 path->slots[0] = extent_slot;
7092 num_to_del = 2;
7093 }
78fae27e 7094 }
b9473439 7095
fcebe456 7096 last_ref = 1;
952fccac
CM
7097 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7098 num_to_del);
005d6427 7099 if (ret) {
66642832 7100 btrfs_abort_transaction(trans, ret);
005d6427
DS
7101 goto out;
7102 }
b3b4aa74 7103 btrfs_release_path(path);
21af804c 7104
5d4f98a2 7105 if (is_data) {
5b4aacef 7106 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7107 if (ret) {
66642832 7108 btrfs_abort_transaction(trans, ret);
005d6427
DS
7109 goto out;
7110 }
459931ec
CM
7111 }
7112
0b246afa 7113 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
1e144fb8 7114 if (ret) {
66642832 7115 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7116 goto out;
7117 }
7118
0b246afa 7119 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7120 if (ret) {
66642832 7121 btrfs_abort_transaction(trans, ret);
005d6427
DS
7122 goto out;
7123 }
a28ec197 7124 }
fcebe456
JB
7125 btrfs_release_path(path);
7126
79787eaa 7127out:
5caf2a00 7128 btrfs_free_path(path);
a28ec197
CM
7129 return ret;
7130}
7131
1887be66 7132/*
f0486c68 7133 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7134 * delayed ref for that extent as well. This searches the delayed ref tree for
7135 * a given extent, and if there are no other delayed refs to be processed, it
7136 * removes it from the tree.
7137 */
7138static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7139 u64 bytenr)
1887be66
CM
7140{
7141 struct btrfs_delayed_ref_head *head;
7142 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7143 int ret = 0;
1887be66
CM
7144
7145 delayed_refs = &trans->transaction->delayed_refs;
7146 spin_lock(&delayed_refs->lock);
f72ad18e 7147 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7148 if (!head)
cf93da7b 7149 goto out_delayed_unlock;
1887be66 7150
d7df2c79 7151 spin_lock(&head->lock);
0e0adbcf 7152 if (!RB_EMPTY_ROOT(&head->ref_tree))
1887be66
CM
7153 goto out;
7154
5d4f98a2
YZ
7155 if (head->extent_op) {
7156 if (!head->must_insert_reserved)
7157 goto out;
78a6184a 7158 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7159 head->extent_op = NULL;
7160 }
7161
1887be66
CM
7162 /*
7163 * waiting for the lock here would deadlock. If someone else has it
7164 * locked they are already in the process of dropping it anyway
7165 */
7166 if (!mutex_trylock(&head->mutex))
7167 goto out;
7168
7169 /*
7170 * at this point we have a head with no other entries. Go
7171 * ahead and process it.
7172 */
c46effa6 7173 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 7174 RB_CLEAR_NODE(&head->href_node);
d7df2c79 7175 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7176
7177 /*
7178 * we don't take a ref on the node because we're removing it from the
7179 * tree, so we just steal the ref the tree was holding.
7180 */
c3e69d58 7181 delayed_refs->num_heads--;
d7df2c79 7182 if (head->processing == 0)
c3e69d58 7183 delayed_refs->num_heads_ready--;
d7df2c79
JB
7184 head->processing = 0;
7185 spin_unlock(&head->lock);
1887be66
CM
7186 spin_unlock(&delayed_refs->lock);
7187
f0486c68
YZ
7188 BUG_ON(head->extent_op);
7189 if (head->must_insert_reserved)
7190 ret = 1;
7191
7192 mutex_unlock(&head->mutex);
d278850e 7193 btrfs_put_delayed_ref_head(head);
f0486c68 7194 return ret;
1887be66 7195out:
d7df2c79 7196 spin_unlock(&head->lock);
cf93da7b
CM
7197
7198out_delayed_unlock:
1887be66
CM
7199 spin_unlock(&delayed_refs->lock);
7200 return 0;
7201}
7202
f0486c68
YZ
7203void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7204 struct btrfs_root *root,
7205 struct extent_buffer *buf,
5581a51a 7206 u64 parent, int last_ref)
f0486c68 7207{
0b246afa 7208 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7209 int pin = 1;
f0486c68
YZ
7210 int ret;
7211
7212 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7213 int old_ref_mod, new_ref_mod;
7214
fd708b81
JB
7215 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7216 root->root_key.objectid,
7217 btrfs_header_level(buf), 0,
7218 BTRFS_DROP_DELAYED_REF);
7be07912
OS
7219 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7220 buf->len, parent,
0b246afa
JM
7221 root->root_key.objectid,
7222 btrfs_header_level(buf),
7be07912 7223 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7224 &old_ref_mod, &new_ref_mod);
79787eaa 7225 BUG_ON(ret); /* -ENOMEM */
d7eae340 7226 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7227 }
7228
0a16c7d7 7229 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7230 struct btrfs_block_group_cache *cache;
7231
f0486c68 7232 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7233 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7234 if (!ret)
37be25bc 7235 goto out;
f0486c68
YZ
7236 }
7237
4da8b76d 7238 pin = 0;
0b246afa 7239 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7240
f0486c68 7241 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7242 pin_down_extent(fs_info, cache, buf->start,
7243 buf->len, 1);
6219872d 7244 btrfs_put_block_group(cache);
37be25bc 7245 goto out;
f0486c68
YZ
7246 }
7247
7248 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7249
7250 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7251 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7252 btrfs_put_block_group(cache);
71ff6437 7253 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7254 }
7255out:
b150a4f1 7256 if (pin)
0b246afa 7257 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
b150a4f1
JB
7258 root->root_key.objectid);
7259
0a16c7d7
OS
7260 if (last_ref) {
7261 /*
7262 * Deleting the buffer, clear the corrupt flag since it doesn't
7263 * matter anymore.
7264 */
7265 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7266 }
f0486c68
YZ
7267}
7268
79787eaa 7269/* Can return -ENOMEM */
2ff7e61e 7270int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7271 struct btrfs_root *root,
66d7e7f0 7272 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7273 u64 owner, u64 offset)
925baedd 7274{
84f7d8e6 7275 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7276 int old_ref_mod, new_ref_mod;
925baedd
CM
7277 int ret;
7278
f5ee5c9a 7279 if (btrfs_is_testing(fs_info))
faa2dbf0 7280 return 0;
fccb84c9 7281
fd708b81
JB
7282 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7283 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7284 root_objectid, owner, offset,
7285 BTRFS_DROP_DELAYED_REF);
7286
56bec294
CM
7287 /*
7288 * tree log blocks never actually go into the extent allocation
7289 * tree, just update pinning info and exit early.
56bec294 7290 */
5d4f98a2
YZ
7291 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7292 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7293 /* unlocks the pinned mutex */
2ff7e61e 7294 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7295 old_ref_mod = new_ref_mod = 0;
56bec294 7296 ret = 0;
5d4f98a2 7297 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 7298 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
7299 num_bytes, parent,
7300 root_objectid, (int)owner,
7301 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7302 &old_ref_mod, &new_ref_mod);
5d4f98a2 7303 } else {
66d7e7f0 7304 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
7305 num_bytes, parent,
7306 root_objectid, owner, offset,
7307 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7308 &old_ref_mod, &new_ref_mod);
56bec294 7309 }
d7eae340
OS
7310
7311 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7312 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7313
925baedd
CM
7314 return ret;
7315}
7316
817d52f8
JB
7317/*
7318 * when we wait for progress in the block group caching, its because
7319 * our allocation attempt failed at least once. So, we must sleep
7320 * and let some progress happen before we try again.
7321 *
7322 * This function will sleep at least once waiting for new free space to
7323 * show up, and then it will check the block group free space numbers
7324 * for our min num_bytes. Another option is to have it go ahead
7325 * and look in the rbtree for a free extent of a given size, but this
7326 * is a good start.
36cce922
JB
7327 *
7328 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7329 * any of the information in this block group.
817d52f8 7330 */
36cce922 7331static noinline void
817d52f8
JB
7332wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7333 u64 num_bytes)
7334{
11833d66 7335 struct btrfs_caching_control *caching_ctl;
817d52f8 7336
11833d66
YZ
7337 caching_ctl = get_caching_control(cache);
7338 if (!caching_ctl)
36cce922 7339 return;
817d52f8 7340
11833d66 7341 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7342 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7343
7344 put_caching_control(caching_ctl);
11833d66
YZ
7345}
7346
7347static noinline int
7348wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7349{
7350 struct btrfs_caching_control *caching_ctl;
36cce922 7351 int ret = 0;
11833d66
YZ
7352
7353 caching_ctl = get_caching_control(cache);
7354 if (!caching_ctl)
36cce922 7355 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7356
7357 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7358 if (cache->cached == BTRFS_CACHE_ERROR)
7359 ret = -EIO;
11833d66 7360 put_caching_control(caching_ctl);
36cce922 7361 return ret;
817d52f8
JB
7362}
7363
31e50229 7364int __get_raid_index(u64 flags)
b742bb82 7365{
7738a53a 7366 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7367 return BTRFS_RAID_RAID10;
7738a53a 7368 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7369 return BTRFS_RAID_RAID1;
7738a53a 7370 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7371 return BTRFS_RAID_DUP;
7738a53a 7372 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7373 return BTRFS_RAID_RAID0;
53b381b3 7374 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7375 return BTRFS_RAID_RAID5;
53b381b3 7376 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7377 return BTRFS_RAID_RAID6;
7738a53a 7378
e942f883 7379 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7380}
7381
6ab0a202 7382int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7383{
31e50229 7384 return __get_raid_index(cache->flags);
7738a53a
ID
7385}
7386
6ab0a202
JM
7387static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7388 [BTRFS_RAID_RAID10] = "raid10",
7389 [BTRFS_RAID_RAID1] = "raid1",
7390 [BTRFS_RAID_DUP] = "dup",
7391 [BTRFS_RAID_RAID0] = "raid0",
7392 [BTRFS_RAID_SINGLE] = "single",
7393 [BTRFS_RAID_RAID5] = "raid5",
7394 [BTRFS_RAID_RAID6] = "raid6",
7395};
7396
1b8e5df6 7397static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7398{
7399 if (type >= BTRFS_NR_RAID_TYPES)
7400 return NULL;
7401
7402 return btrfs_raid_type_names[type];
7403}
7404
817d52f8 7405enum btrfs_loop_type {
285ff5af
JB
7406 LOOP_CACHING_NOWAIT = 0,
7407 LOOP_CACHING_WAIT = 1,
7408 LOOP_ALLOC_CHUNK = 2,
7409 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7410};
7411
e570fd27
MX
7412static inline void
7413btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7414 int delalloc)
7415{
7416 if (delalloc)
7417 down_read(&cache->data_rwsem);
7418}
7419
7420static inline void
7421btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7422 int delalloc)
7423{
7424 btrfs_get_block_group(cache);
7425 if (delalloc)
7426 down_read(&cache->data_rwsem);
7427}
7428
7429static struct btrfs_block_group_cache *
7430btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7431 struct btrfs_free_cluster *cluster,
7432 int delalloc)
7433{
89771cc9 7434 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7435
e570fd27 7436 spin_lock(&cluster->refill_lock);
6719afdc
GU
7437 while (1) {
7438 used_bg = cluster->block_group;
7439 if (!used_bg)
7440 return NULL;
7441
7442 if (used_bg == block_group)
e570fd27
MX
7443 return used_bg;
7444
6719afdc 7445 btrfs_get_block_group(used_bg);
e570fd27 7446
6719afdc
GU
7447 if (!delalloc)
7448 return used_bg;
e570fd27 7449
6719afdc
GU
7450 if (down_read_trylock(&used_bg->data_rwsem))
7451 return used_bg;
e570fd27 7452
6719afdc 7453 spin_unlock(&cluster->refill_lock);
e570fd27 7454
e321f8a8
LB
7455 /* We should only have one-level nested. */
7456 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7457
6719afdc
GU
7458 spin_lock(&cluster->refill_lock);
7459 if (used_bg == cluster->block_group)
7460 return used_bg;
e570fd27 7461
6719afdc
GU
7462 up_read(&used_bg->data_rwsem);
7463 btrfs_put_block_group(used_bg);
7464 }
e570fd27
MX
7465}
7466
7467static inline void
7468btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7469 int delalloc)
7470{
7471 if (delalloc)
7472 up_read(&cache->data_rwsem);
7473 btrfs_put_block_group(cache);
7474}
7475
fec577fb
CM
7476/*
7477 * walks the btree of allocated extents and find a hole of a given size.
7478 * The key ins is changed to record the hole:
a4820398 7479 * ins->objectid == start position
62e2749e 7480 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7481 * ins->offset == the size of the hole.
fec577fb 7482 * Any available blocks before search_start are skipped.
a4820398
MX
7483 *
7484 * If there is no suitable free space, we will record the max size of
7485 * the free space extent currently.
fec577fb 7486 */
87bde3cd 7487static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7488 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7489 u64 hint_byte, struct btrfs_key *ins,
7490 u64 flags, int delalloc)
fec577fb 7491{
80eb234a 7492 int ret = 0;
0b246afa 7493 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7494 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7495 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7496 u64 search_start = 0;
a4820398 7497 u64 max_extent_size = 0;
066da6ad 7498 u64 max_free_space = 0;
c759c4e1 7499 u64 empty_cluster = 0;
80eb234a 7500 struct btrfs_space_info *space_info;
fa9c0d79 7501 int loop = 0;
b6919a58 7502 int index = __get_raid_index(flags);
0a24325e 7503 bool failed_cluster_refill = false;
1cdda9b8 7504 bool failed_alloc = false;
67377734 7505 bool use_cluster = true;
60d2adbb 7506 bool have_caching_bg = false;
13a0db5a 7507 bool orig_have_caching_bg = false;
a5e681d9 7508 bool full_search = false;
fec577fb 7509
0b246afa 7510 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7511 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7512 ins->objectid = 0;
7513 ins->offset = 0;
b1a4d965 7514
71ff6437 7515 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7516
0b246afa 7517 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7518 if (!space_info) {
0b246afa 7519 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7520 return -ENOSPC;
7521 }
2552d17e 7522
67377734 7523 /*
4f4db217
JB
7524 * If our free space is heavily fragmented we may not be able to make
7525 * big contiguous allocations, so instead of doing the expensive search
7526 * for free space, simply return ENOSPC with our max_extent_size so we
7527 * can go ahead and search for a more manageable chunk.
7528 *
7529 * If our max_extent_size is large enough for our allocation simply
7530 * disable clustering since we will likely not be able to find enough
7531 * space to create a cluster and induce latency trying.
67377734 7532 */
4f4db217
JB
7533 if (unlikely(space_info->max_extent_size)) {
7534 spin_lock(&space_info->lock);
7535 if (space_info->max_extent_size &&
7536 num_bytes > space_info->max_extent_size) {
7537 ins->offset = space_info->max_extent_size;
7538 spin_unlock(&space_info->lock);
7539 return -ENOSPC;
7540 } else if (space_info->max_extent_size) {
7541 use_cluster = false;
7542 }
7543 spin_unlock(&space_info->lock);
fa9c0d79 7544 }
0f9dd46c 7545
2ff7e61e 7546 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7547 if (last_ptr) {
fa9c0d79
CM
7548 spin_lock(&last_ptr->lock);
7549 if (last_ptr->block_group)
7550 hint_byte = last_ptr->window_start;
c759c4e1
JB
7551 if (last_ptr->fragmented) {
7552 /*
7553 * We still set window_start so we can keep track of the
7554 * last place we found an allocation to try and save
7555 * some time.
7556 */
7557 hint_byte = last_ptr->window_start;
7558 use_cluster = false;
7559 }
fa9c0d79 7560 spin_unlock(&last_ptr->lock);
239b14b3 7561 }
fa9c0d79 7562
2ff7e61e 7563 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7564 search_start = max(search_start, hint_byte);
2552d17e 7565 if (search_start == hint_byte) {
0b246afa 7566 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7567 /*
7568 * we don't want to use the block group if it doesn't match our
7569 * allocation bits, or if its not cached.
ccf0e725
JB
7570 *
7571 * However if we are re-searching with an ideal block group
7572 * picked out then we don't care that the block group is cached.
817d52f8 7573 */
b6919a58 7574 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7575 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7576 down_read(&space_info->groups_sem);
44fb5511
CM
7577 if (list_empty(&block_group->list) ||
7578 block_group->ro) {
7579 /*
7580 * someone is removing this block group,
7581 * we can't jump into the have_block_group
7582 * target because our list pointers are not
7583 * valid
7584 */
7585 btrfs_put_block_group(block_group);
7586 up_read(&space_info->groups_sem);
ccf0e725 7587 } else {
b742bb82 7588 index = get_block_group_index(block_group);
e570fd27 7589 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7590 goto have_block_group;
ccf0e725 7591 }
2552d17e 7592 } else if (block_group) {
fa9c0d79 7593 btrfs_put_block_group(block_group);
2552d17e 7594 }
42e70e7a 7595 }
2552d17e 7596search:
60d2adbb 7597 have_caching_bg = false;
a5e681d9
JB
7598 if (index == 0 || index == __get_raid_index(flags))
7599 full_search = true;
80eb234a 7600 down_read(&space_info->groups_sem);
b742bb82
YZ
7601 list_for_each_entry(block_group, &space_info->block_groups[index],
7602 list) {
6226cb0a 7603 u64 offset;
817d52f8 7604 int cached;
8a1413a2 7605
14443937
JM
7606 /* If the block group is read-only, we can skip it entirely. */
7607 if (unlikely(block_group->ro))
7608 continue;
7609
e570fd27 7610 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7611 search_start = block_group->key.objectid;
42e70e7a 7612
83a50de9
CM
7613 /*
7614 * this can happen if we end up cycling through all the
7615 * raid types, but we want to make sure we only allocate
7616 * for the proper type.
7617 */
b6919a58 7618 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7619 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7620 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7621 BTRFS_BLOCK_GROUP_RAID5 |
7622 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7623 BTRFS_BLOCK_GROUP_RAID10;
7624
7625 /*
7626 * if they asked for extra copies and this block group
7627 * doesn't provide them, bail. This does allow us to
7628 * fill raid0 from raid1.
7629 */
b6919a58 7630 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7631 goto loop;
7632 }
7633
2552d17e 7634have_block_group:
291c7d2f
JB
7635 cached = block_group_cache_done(block_group);
7636 if (unlikely(!cached)) {
a5e681d9 7637 have_caching_bg = true;
f6373bf3 7638 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7639 BUG_ON(ret < 0);
7640 ret = 0;
817d52f8
JB
7641 }
7642
36cce922
JB
7643 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7644 goto loop;
0f9dd46c 7645
0a24325e 7646 /*
062c05c4
AO
7647 * Ok we want to try and use the cluster allocator, so
7648 * lets look there
0a24325e 7649 */
c759c4e1 7650 if (last_ptr && use_cluster) {
215a63d1 7651 struct btrfs_block_group_cache *used_block_group;
8de972b4 7652 unsigned long aligned_cluster;
fa9c0d79
CM
7653 /*
7654 * the refill lock keeps out other
7655 * people trying to start a new cluster
7656 */
e570fd27
MX
7657 used_block_group = btrfs_lock_cluster(block_group,
7658 last_ptr,
7659 delalloc);
7660 if (!used_block_group)
44fb5511 7661 goto refill_cluster;
274bd4fb 7662
e570fd27
MX
7663 if (used_block_group != block_group &&
7664 (used_block_group->ro ||
7665 !block_group_bits(used_block_group, flags)))
7666 goto release_cluster;
44fb5511 7667
274bd4fb 7668 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7669 last_ptr,
7670 num_bytes,
7671 used_block_group->key.objectid,
7672 &max_extent_size);
fa9c0d79
CM
7673 if (offset) {
7674 /* we have a block, we're done */
7675 spin_unlock(&last_ptr->refill_lock);
71ff6437 7676 trace_btrfs_reserve_extent_cluster(fs_info,
89d4346a
MX
7677 used_block_group,
7678 search_start, num_bytes);
215a63d1 7679 if (used_block_group != block_group) {
e570fd27
MX
7680 btrfs_release_block_group(block_group,
7681 delalloc);
215a63d1
MX
7682 block_group = used_block_group;
7683 }
fa9c0d79
CM
7684 goto checks;
7685 }
7686
274bd4fb 7687 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7688release_cluster:
062c05c4
AO
7689 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7690 * set up a new clusters, so lets just skip it
7691 * and let the allocator find whatever block
7692 * it can find. If we reach this point, we
7693 * will have tried the cluster allocator
7694 * plenty of times and not have found
7695 * anything, so we are likely way too
7696 * fragmented for the clustering stuff to find
a5f6f719
AO
7697 * anything.
7698 *
7699 * However, if the cluster is taken from the
7700 * current block group, release the cluster
7701 * first, so that we stand a better chance of
7702 * succeeding in the unclustered
7703 * allocation. */
7704 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7705 used_block_group != block_group) {
062c05c4 7706 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7707 btrfs_release_block_group(used_block_group,
7708 delalloc);
062c05c4
AO
7709 goto unclustered_alloc;
7710 }
7711
fa9c0d79
CM
7712 /*
7713 * this cluster didn't work out, free it and
7714 * start over
7715 */
7716 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7717
e570fd27
MX
7718 if (used_block_group != block_group)
7719 btrfs_release_block_group(used_block_group,
7720 delalloc);
7721refill_cluster:
a5f6f719
AO
7722 if (loop >= LOOP_NO_EMPTY_SIZE) {
7723 spin_unlock(&last_ptr->refill_lock);
7724 goto unclustered_alloc;
7725 }
7726
8de972b4
CM
7727 aligned_cluster = max_t(unsigned long,
7728 empty_cluster + empty_size,
7729 block_group->full_stripe_len);
7730
fa9c0d79 7731 /* allocate a cluster in this block group */
2ff7e61e 7732 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7733 last_ptr, search_start,
7734 num_bytes,
7735 aligned_cluster);
fa9c0d79
CM
7736 if (ret == 0) {
7737 /*
7738 * now pull our allocation out of this
7739 * cluster
7740 */
7741 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7742 last_ptr,
7743 num_bytes,
7744 search_start,
7745 &max_extent_size);
fa9c0d79
CM
7746 if (offset) {
7747 /* we found one, proceed */
7748 spin_unlock(&last_ptr->refill_lock);
71ff6437 7749 trace_btrfs_reserve_extent_cluster(fs_info,
3f7de037
JB
7750 block_group, search_start,
7751 num_bytes);
fa9c0d79
CM
7752 goto checks;
7753 }
0a24325e
JB
7754 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7755 && !failed_cluster_refill) {
817d52f8
JB
7756 spin_unlock(&last_ptr->refill_lock);
7757
0a24325e 7758 failed_cluster_refill = true;
817d52f8
JB
7759 wait_block_group_cache_progress(block_group,
7760 num_bytes + empty_cluster + empty_size);
7761 goto have_block_group;
fa9c0d79 7762 }
817d52f8 7763
fa9c0d79
CM
7764 /*
7765 * at this point we either didn't find a cluster
7766 * or we weren't able to allocate a block from our
7767 * cluster. Free the cluster we've been trying
7768 * to use, and go to the next block group
7769 */
0a24325e 7770 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7771 spin_unlock(&last_ptr->refill_lock);
0a24325e 7772 goto loop;
fa9c0d79
CM
7773 }
7774
062c05c4 7775unclustered_alloc:
c759c4e1
JB
7776 /*
7777 * We are doing an unclustered alloc, set the fragmented flag so
7778 * we don't bother trying to setup a cluster again until we get
7779 * more space.
7780 */
7781 if (unlikely(last_ptr)) {
7782 spin_lock(&last_ptr->lock);
7783 last_ptr->fragmented = 1;
7784 spin_unlock(&last_ptr->lock);
7785 }
0c9b36e0
LB
7786 if (cached) {
7787 struct btrfs_free_space_ctl *ctl =
7788 block_group->free_space_ctl;
7789
7790 spin_lock(&ctl->tree_lock);
7791 if (ctl->free_space <
7792 num_bytes + empty_cluster + empty_size) {
066da6ad
JB
7793 max_free_space = max(max_free_space,
7794 ctl->free_space);
0c9b36e0
LB
7795 spin_unlock(&ctl->tree_lock);
7796 goto loop;
7797 }
7798 spin_unlock(&ctl->tree_lock);
a5f6f719 7799 }
a5f6f719 7800
6226cb0a 7801 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7802 num_bytes, empty_size,
7803 &max_extent_size);
1cdda9b8
JB
7804 /*
7805 * If we didn't find a chunk, and we haven't failed on this
7806 * block group before, and this block group is in the middle of
7807 * caching and we are ok with waiting, then go ahead and wait
7808 * for progress to be made, and set failed_alloc to true.
7809 *
7810 * If failed_alloc is true then we've already waited on this
7811 * block group once and should move on to the next block group.
7812 */
7813 if (!offset && !failed_alloc && !cached &&
7814 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7815 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7816 num_bytes + empty_size);
7817 failed_alloc = true;
817d52f8 7818 goto have_block_group;
1cdda9b8
JB
7819 } else if (!offset) {
7820 goto loop;
817d52f8 7821 }
fa9c0d79 7822checks:
0b246afa 7823 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7824
2552d17e
JB
7825 /* move on to the next group */
7826 if (search_start + num_bytes >
215a63d1
MX
7827 block_group->key.objectid + block_group->key.offset) {
7828 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7829 goto loop;
6226cb0a 7830 }
f5a31e16 7831
f0486c68 7832 if (offset < search_start)
215a63d1 7833 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7834 search_start - offset);
7835 BUG_ON(offset > search_start);
2552d17e 7836
18513091
WX
7837 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7838 num_bytes, delalloc);
f0486c68 7839 if (ret == -EAGAIN) {
215a63d1 7840 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7841 goto loop;
0f9dd46c 7842 }
9cfa3e34 7843 btrfs_inc_block_group_reservations(block_group);
0b86a832 7844
f0486c68 7845 /* we are all good, lets return */
2552d17e
JB
7846 ins->objectid = search_start;
7847 ins->offset = num_bytes;
d2fb3437 7848
71ff6437 7849 trace_btrfs_reserve_extent(fs_info, block_group,
3f7de037 7850 search_start, num_bytes);
e570fd27 7851 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7852 break;
7853loop:
0a24325e 7854 failed_cluster_refill = false;
1cdda9b8 7855 failed_alloc = false;
b742bb82 7856 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7857 btrfs_release_block_group(block_group, delalloc);
14443937 7858 cond_resched();
2552d17e
JB
7859 }
7860 up_read(&space_info->groups_sem);
7861
13a0db5a 7862 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7863 && !orig_have_caching_bg)
7864 orig_have_caching_bg = true;
7865
60d2adbb
MX
7866 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7867 goto search;
7868
b742bb82
YZ
7869 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7870 goto search;
7871
285ff5af 7872 /*
ccf0e725
JB
7873 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7874 * caching kthreads as we move along
817d52f8
JB
7875 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7876 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7877 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7878 * again
fa9c0d79 7879 */
723bda20 7880 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7881 index = 0;
a5e681d9
JB
7882 if (loop == LOOP_CACHING_NOWAIT) {
7883 /*
7884 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7885 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7886 * full search through.
7887 */
13a0db5a 7888 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7889 loop = LOOP_CACHING_WAIT;
7890 else
7891 loop = LOOP_ALLOC_CHUNK;
7892 } else {
7893 loop++;
7894 }
7895
817d52f8 7896 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7897 struct btrfs_trans_handle *trans;
f017f15f
WS
7898 int exist = 0;
7899
7900 trans = current->journal_info;
7901 if (trans)
7902 exist = 1;
7903 else
7904 trans = btrfs_join_transaction(root);
00361589 7905
00361589
JB
7906 if (IS_ERR(trans)) {
7907 ret = PTR_ERR(trans);
7908 goto out;
7909 }
7910
2ff7e61e 7911 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7912 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7913
7914 /*
7915 * If we can't allocate a new chunk we've already looped
7916 * through at least once, move on to the NO_EMPTY_SIZE
7917 * case.
7918 */
7919 if (ret == -ENOSPC)
7920 loop = LOOP_NO_EMPTY_SIZE;
7921
ea658bad
JB
7922 /*
7923 * Do not bail out on ENOSPC since we
7924 * can do more things.
7925 */
00361589 7926 if (ret < 0 && ret != -ENOSPC)
66642832 7927 btrfs_abort_transaction(trans, ret);
00361589
JB
7928 else
7929 ret = 0;
f017f15f 7930 if (!exist)
3a45bb20 7931 btrfs_end_transaction(trans);
00361589 7932 if (ret)
ea658bad 7933 goto out;
2552d17e
JB
7934 }
7935
723bda20 7936 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7937 /*
7938 * Don't loop again if we already have no empty_size and
7939 * no empty_cluster.
7940 */
7941 if (empty_size == 0 &&
7942 empty_cluster == 0) {
7943 ret = -ENOSPC;
7944 goto out;
7945 }
723bda20
JB
7946 empty_size = 0;
7947 empty_cluster = 0;
fa9c0d79 7948 }
723bda20
JB
7949
7950 goto search;
2552d17e
JB
7951 } else if (!ins->objectid) {
7952 ret = -ENOSPC;
d82a6f1d 7953 } else if (ins->objectid) {
c759c4e1
JB
7954 if (!use_cluster && last_ptr) {
7955 spin_lock(&last_ptr->lock);
7956 last_ptr->window_start = ins->objectid;
7957 spin_unlock(&last_ptr->lock);
7958 }
80eb234a 7959 ret = 0;
be744175 7960 }
79787eaa 7961out:
4f4db217 7962 if (ret == -ENOSPC) {
066da6ad
JB
7963 if (!max_extent_size)
7964 max_extent_size = max_free_space;
4f4db217
JB
7965 spin_lock(&space_info->lock);
7966 space_info->max_extent_size = max_extent_size;
7967 spin_unlock(&space_info->lock);
a4820398 7968 ins->offset = max_extent_size;
4f4db217 7969 }
0f70abe2 7970 return ret;
fec577fb 7971}
ec44a35c 7972
ab8d0fc4
JM
7973static void dump_space_info(struct btrfs_fs_info *fs_info,
7974 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7975 int dump_block_groups)
0f9dd46c
JB
7976{
7977 struct btrfs_block_group_cache *cache;
b742bb82 7978 int index = 0;
0f9dd46c 7979
9ed74f2d 7980 spin_lock(&info->lock);
ab8d0fc4
JM
7981 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7982 info->flags,
4136135b
LB
7983 info->total_bytes - btrfs_space_info_used(info, true),
7984 info->full ? "" : "not ");
ab8d0fc4
JM
7985 btrfs_info(fs_info,
7986 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7987 info->total_bytes, info->bytes_used, info->bytes_pinned,
7988 info->bytes_reserved, info->bytes_may_use,
7989 info->bytes_readonly);
9ed74f2d
JB
7990 spin_unlock(&info->lock);
7991
7992 if (!dump_block_groups)
7993 return;
0f9dd46c 7994
80eb234a 7995 down_read(&info->groups_sem);
b742bb82
YZ
7996again:
7997 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7998 spin_lock(&cache->lock);
ab8d0fc4
JM
7999 btrfs_info(fs_info,
8000 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8001 cache->key.objectid, cache->key.offset,
8002 btrfs_block_group_used(&cache->item), cache->pinned,
8003 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
8004 btrfs_dump_free_space(cache, bytes);
8005 spin_unlock(&cache->lock);
8006 }
b742bb82
YZ
8007 if (++index < BTRFS_NR_RAID_TYPES)
8008 goto again;
80eb234a 8009 up_read(&info->groups_sem);
0f9dd46c 8010}
e8569813 8011
18513091 8012int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
8013 u64 num_bytes, u64 min_alloc_size,
8014 u64 empty_size, u64 hint_byte,
e570fd27 8015 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 8016{
ab8d0fc4 8017 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 8018 bool final_tried = num_bytes == min_alloc_size;
b6919a58 8019 u64 flags;
fec577fb 8020 int ret;
925baedd 8021
1b86826d 8022 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 8023again:
0b246afa 8024 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8025 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8026 hint_byte, ins, flags, delalloc);
9cfa3e34 8027 if (!ret && !is_data) {
ab8d0fc4 8028 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8029 } else if (ret == -ENOSPC) {
a4820398
MX
8030 if (!final_tried && ins->offset) {
8031 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8032 num_bytes = round_down(num_bytes,
0b246afa 8033 fs_info->sectorsize);
9e622d6b 8034 num_bytes = max(num_bytes, min_alloc_size);
18513091 8035 ram_bytes = num_bytes;
9e622d6b
MX
8036 if (num_bytes == min_alloc_size)
8037 final_tried = true;
8038 goto again;
ab8d0fc4 8039 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8040 struct btrfs_space_info *sinfo;
8041
ab8d0fc4 8042 sinfo = __find_space_info(fs_info, flags);
0b246afa 8043 btrfs_err(fs_info,
5d163e0e
JM
8044 "allocation failed flags %llu, wanted %llu",
8045 flags, num_bytes);
53804280 8046 if (sinfo)
ab8d0fc4 8047 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8048 }
925baedd 8049 }
0f9dd46c
JB
8050
8051 return ret;
e6dcd2dc
CM
8052}
8053
2ff7e61e 8054static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8055 u64 start, u64 len,
8056 int pin, int delalloc)
65b51a00 8057{
0f9dd46c 8058 struct btrfs_block_group_cache *cache;
1f3c79a2 8059 int ret = 0;
0f9dd46c 8060
0b246afa 8061 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8062 if (!cache) {
0b246afa
JM
8063 btrfs_err(fs_info, "Unable to find block group for %llu",
8064 start);
0f9dd46c
JB
8065 return -ENOSPC;
8066 }
1f3c79a2 8067
e688b725 8068 if (pin)
2ff7e61e 8069 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8070 else {
0b246afa 8071 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8072 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8073 btrfs_add_free_space(cache, start, len);
4824f1f4 8074 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8075 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8076 }
31193213 8077
fa9c0d79 8078 btrfs_put_block_group(cache);
e6dcd2dc
CM
8079 return ret;
8080}
8081
2ff7e61e 8082int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8083 u64 start, u64 len, int delalloc)
e688b725 8084{
2ff7e61e 8085 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8086}
8087
2ff7e61e 8088int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8089 u64 start, u64 len)
8090{
2ff7e61e 8091 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8092}
8093
5d4f98a2 8094static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8095 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8096 u64 parent, u64 root_objectid,
8097 u64 flags, u64 owner, u64 offset,
8098 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8099{
8100 int ret;
e6dcd2dc 8101 struct btrfs_extent_item *extent_item;
5d4f98a2 8102 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8103 struct btrfs_path *path;
5d4f98a2
YZ
8104 struct extent_buffer *leaf;
8105 int type;
8106 u32 size;
26b8003f 8107
5d4f98a2
YZ
8108 if (parent > 0)
8109 type = BTRFS_SHARED_DATA_REF_KEY;
8110 else
8111 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8112
5d4f98a2 8113 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8114
8115 path = btrfs_alloc_path();
db5b493a
TI
8116 if (!path)
8117 return -ENOMEM;
47e4bb98 8118
b9473439 8119 path->leave_spinning = 1;
5d4f98a2
YZ
8120 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8121 ins, size);
79787eaa
JM
8122 if (ret) {
8123 btrfs_free_path(path);
8124 return ret;
8125 }
0f9dd46c 8126
5d4f98a2
YZ
8127 leaf = path->nodes[0];
8128 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8129 struct btrfs_extent_item);
5d4f98a2
YZ
8130 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8131 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8132 btrfs_set_extent_flags(leaf, extent_item,
8133 flags | BTRFS_EXTENT_FLAG_DATA);
8134
8135 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8136 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8137 if (parent > 0) {
8138 struct btrfs_shared_data_ref *ref;
8139 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8140 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8141 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8142 } else {
8143 struct btrfs_extent_data_ref *ref;
8144 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8145 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8146 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8147 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8148 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8149 }
47e4bb98
CM
8150
8151 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8152 btrfs_free_path(path);
f510cfec 8153
1e144fb8
OS
8154 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8155 ins->offset);
8156 if (ret)
8157 return ret;
8158
6202df69 8159 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8160 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8161 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8162 ins->objectid, ins->offset);
f5947066
CM
8163 BUG();
8164 }
71ff6437 8165 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8166 return ret;
8167}
8168
5d4f98a2 8169static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 8170 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8171 u64 parent, u64 root_objectid,
8172 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8173 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8174{
8175 int ret;
5d4f98a2
YZ
8176 struct btrfs_extent_item *extent_item;
8177 struct btrfs_tree_block_info *block_info;
8178 struct btrfs_extent_inline_ref *iref;
8179 struct btrfs_path *path;
8180 struct extent_buffer *leaf;
3173a18f 8181 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8182 u64 num_bytes = ins->offset;
0b246afa 8183 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f
JB
8184
8185 if (!skinny_metadata)
8186 size += sizeof(*block_info);
1c2308f8 8187
5d4f98a2 8188 path = btrfs_alloc_path();
4acc0c9a 8189 if (!path)
d8926bb3 8190 return -ENOMEM;
56bec294 8191
5d4f98a2
YZ
8192 path->leave_spinning = 1;
8193 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8194 ins, size);
79787eaa 8195 if (ret) {
dd825259 8196 btrfs_free_path(path);
79787eaa
JM
8197 return ret;
8198 }
5d4f98a2
YZ
8199
8200 leaf = path->nodes[0];
8201 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8202 struct btrfs_extent_item);
8203 btrfs_set_extent_refs(leaf, extent_item, 1);
8204 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8205 btrfs_set_extent_flags(leaf, extent_item,
8206 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8207
3173a18f
JB
8208 if (skinny_metadata) {
8209 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
0b246afa 8210 num_bytes = fs_info->nodesize;
3173a18f
JB
8211 } else {
8212 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8213 btrfs_set_tree_block_key(leaf, block_info, key);
8214 btrfs_set_tree_block_level(leaf, block_info, level);
8215 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8216 }
5d4f98a2 8217
5d4f98a2
YZ
8218 if (parent > 0) {
8219 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8220 btrfs_set_extent_inline_ref_type(leaf, iref,
8221 BTRFS_SHARED_BLOCK_REF_KEY);
8222 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8223 } else {
8224 btrfs_set_extent_inline_ref_type(leaf, iref,
8225 BTRFS_TREE_BLOCK_REF_KEY);
8226 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8227 }
8228
8229 btrfs_mark_buffer_dirty(leaf);
8230 btrfs_free_path(path);
8231
1e144fb8
OS
8232 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8233 num_bytes);
8234 if (ret)
8235 return ret;
8236
6202df69
JM
8237 ret = update_block_group(trans, fs_info, ins->objectid,
8238 fs_info->nodesize, 1);
79787eaa 8239 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8240 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8241 ins->objectid, ins->offset);
5d4f98a2
YZ
8242 BUG();
8243 }
0be5dc67 8244
71ff6437 8245 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
0b246afa 8246 fs_info->nodesize);
5d4f98a2
YZ
8247 return ret;
8248}
8249
8250int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8251 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8252 u64 offset, u64 ram_bytes,
8253 struct btrfs_key *ins)
5d4f98a2 8254{
84f7d8e6 8255 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
8256 int ret;
8257
84f7d8e6 8258 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8259
fd708b81
JB
8260 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8261 root->root_key.objectid, owner, offset,
8262 BTRFS_ADD_DELAYED_EXTENT);
8263
0b246afa 8264 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
84f7d8e6
JB
8265 ins->offset, 0,
8266 root->root_key.objectid, owner,
7be07912
OS
8267 offset, ram_bytes,
8268 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8269 return ret;
8270}
e02119d5
CM
8271
8272/*
8273 * this is used by the tree logging recovery code. It records that
8274 * an extent has been allocated and makes sure to clear the free
8275 * space cache bits as well
8276 */
5d4f98a2 8277int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8278 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8279 u64 root_objectid, u64 owner, u64 offset,
8280 struct btrfs_key *ins)
e02119d5
CM
8281{
8282 int ret;
8283 struct btrfs_block_group_cache *block_group;
ed7a6948 8284 struct btrfs_space_info *space_info;
11833d66 8285
8c2a1a30
JB
8286 /*
8287 * Mixed block groups will exclude before processing the log so we only
01327610 8288 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8289 */
0b246afa 8290 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8291 ret = __exclude_logged_extent(fs_info, ins->objectid,
8292 ins->offset);
b50c6e25 8293 if (ret)
8c2a1a30 8294 return ret;
11833d66
YZ
8295 }
8296
0b246afa 8297 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8298 if (!block_group)
8299 return -EINVAL;
8300
ed7a6948
WX
8301 space_info = block_group->space_info;
8302 spin_lock(&space_info->lock);
8303 spin_lock(&block_group->lock);
8304 space_info->bytes_reserved += ins->offset;
8305 block_group->reserved += ins->offset;
8306 spin_unlock(&block_group->lock);
8307 spin_unlock(&space_info->lock);
8308
2ff7e61e 8309 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8310 0, owner, offset, ins, 1);
b50c6e25 8311 btrfs_put_block_group(block_group);
e02119d5
CM
8312 return ret;
8313}
8314
48a3b636
ES
8315static struct extent_buffer *
8316btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8317 u64 bytenr, int level)
65b51a00 8318{
0b246afa 8319 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8320 struct extent_buffer *buf;
8321
2ff7e61e 8322 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8323 if (IS_ERR(buf))
8324 return buf;
8325
dd3bc94e
QW
8326 /*
8327 * Extra safety check in case the extent tree is corrupted and extent
8328 * allocator chooses to use a tree block which is already used and
8329 * locked.
8330 */
8331 if (buf->lock_owner == current->pid) {
8332 btrfs_err_rl(fs_info,
8333"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8334 buf->start, btrfs_header_owner(buf), current->pid);
8335 free_extent_buffer(buf);
8336 return ERR_PTR(-EUCLEAN);
8337 }
8338
65b51a00 8339 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8340 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8341 btrfs_tree_lock(buf);
7c302b49 8342 clean_tree_block(fs_info, buf);
3083ee2e 8343 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8344
8345 btrfs_set_lock_blocking(buf);
4db8c528 8346 set_extent_buffer_uptodate(buf);
b4ce94de 8347
d0c803c4 8348 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8349 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8350 /*
8351 * we allow two log transactions at a time, use different
8352 * EXENT bit to differentiate dirty pages.
8353 */
656f30db 8354 if (buf->log_index == 0)
8cef4e16
YZ
8355 set_extent_dirty(&root->dirty_log_pages, buf->start,
8356 buf->start + buf->len - 1, GFP_NOFS);
8357 else
8358 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8359 buf->start + buf->len - 1);
d0c803c4 8360 } else {
656f30db 8361 buf->log_index = -1;
d0c803c4 8362 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8363 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8364 }
64c12921 8365 trans->dirty = true;
b4ce94de 8366 /* this returns a buffer locked for blocking */
65b51a00
CM
8367 return buf;
8368}
8369
f0486c68
YZ
8370static struct btrfs_block_rsv *
8371use_block_rsv(struct btrfs_trans_handle *trans,
8372 struct btrfs_root *root, u32 blocksize)
8373{
0b246afa 8374 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8375 struct btrfs_block_rsv *block_rsv;
0b246afa 8376 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8377 int ret;
d88033db 8378 bool global_updated = false;
f0486c68
YZ
8379
8380 block_rsv = get_block_rsv(trans, root);
8381
b586b323
MX
8382 if (unlikely(block_rsv->size == 0))
8383 goto try_reserve;
d88033db 8384again:
f0486c68
YZ
8385 ret = block_rsv_use_bytes(block_rsv, blocksize);
8386 if (!ret)
8387 return block_rsv;
8388
b586b323
MX
8389 if (block_rsv->failfast)
8390 return ERR_PTR(ret);
8391
d88033db
MX
8392 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8393 global_updated = true;
0b246afa 8394 update_global_block_rsv(fs_info);
d88033db
MX
8395 goto again;
8396 }
8397
0b246afa 8398 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8399 static DEFINE_RATELIMIT_STATE(_rs,
8400 DEFAULT_RATELIMIT_INTERVAL * 10,
8401 /*DEFAULT_RATELIMIT_BURST*/ 1);
8402 if (__ratelimit(&_rs))
8403 WARN(1, KERN_DEBUG
efe120a0 8404 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8405 }
8406try_reserve:
8407 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8408 BTRFS_RESERVE_NO_FLUSH);
8409 if (!ret)
8410 return block_rsv;
8411 /*
8412 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8413 * the global reserve if its space type is the same as the global
8414 * reservation.
b586b323 8415 */
5881cfc9
MX
8416 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8417 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8418 ret = block_rsv_use_bytes(global_rsv, blocksize);
8419 if (!ret)
8420 return global_rsv;
8421 }
8422 return ERR_PTR(ret);
f0486c68
YZ
8423}
8424
8c2a3ca2
JB
8425static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8426 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8427{
8428 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8429 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8430}
8431
fec577fb 8432/*
f0486c68 8433 * finds a free extent and does all the dirty work required for allocation
67b7859e 8434 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8435 */
4d75f8a9 8436struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8437 struct btrfs_root *root,
8438 u64 parent, u64 root_objectid,
8439 const struct btrfs_disk_key *key,
8440 int level, u64 hint,
8441 u64 empty_size)
fec577fb 8442{
0b246afa 8443 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8444 struct btrfs_key ins;
f0486c68 8445 struct btrfs_block_rsv *block_rsv;
5f39d397 8446 struct extent_buffer *buf;
67b7859e 8447 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8448 u64 flags = 0;
8449 int ret;
0b246afa
JM
8450 u32 blocksize = fs_info->nodesize;
8451 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8452
05653ef3 8453#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8454 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8455 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8456 level);
faa2dbf0
JB
8457 if (!IS_ERR(buf))
8458 root->alloc_bytenr += blocksize;
8459 return buf;
8460 }
05653ef3 8461#endif
fccb84c9 8462
f0486c68
YZ
8463 block_rsv = use_block_rsv(trans, root, blocksize);
8464 if (IS_ERR(block_rsv))
8465 return ERR_CAST(block_rsv);
8466
18513091 8467 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8468 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8469 if (ret)
8470 goto out_unuse;
55c69072 8471
fe864576 8472 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8473 if (IS_ERR(buf)) {
8474 ret = PTR_ERR(buf);
8475 goto out_free_reserved;
8476 }
f0486c68
YZ
8477
8478 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8479 if (parent == 0)
8480 parent = ins.objectid;
8481 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8482 } else
8483 BUG_ON(parent > 0);
8484
8485 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8486 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8487 if (!extent_op) {
8488 ret = -ENOMEM;
8489 goto out_free_buf;
8490 }
f0486c68
YZ
8491 if (key)
8492 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8493 else
8494 memset(&extent_op->key, 0, sizeof(extent_op->key));
8495 extent_op->flags_to_set = flags;
35b3ad50
DS
8496 extent_op->update_key = skinny_metadata ? false : true;
8497 extent_op->update_flags = true;
8498 extent_op->is_data = false;
b1c79e09 8499 extent_op->level = level;
f0486c68 8500
fd708b81
JB
8501 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8502 root_objectid, level, 0,
8503 BTRFS_ADD_DELAYED_EXTENT);
7be07912
OS
8504 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8505 ins.offset, parent,
8506 root_objectid, level,
67b7859e 8507 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8508 extent_op, NULL, NULL);
67b7859e
OS
8509 if (ret)
8510 goto out_free_delayed;
f0486c68 8511 }
fec577fb 8512 return buf;
67b7859e
OS
8513
8514out_free_delayed:
8515 btrfs_free_delayed_extent_op(extent_op);
8516out_free_buf:
8517 free_extent_buffer(buf);
8518out_free_reserved:
2ff7e61e 8519 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8520out_unuse:
0b246afa 8521 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8522 return ERR_PTR(ret);
fec577fb 8523}
a28ec197 8524
2c47e605
YZ
8525struct walk_control {
8526 u64 refs[BTRFS_MAX_LEVEL];
8527 u64 flags[BTRFS_MAX_LEVEL];
8528 struct btrfs_key update_progress;
8529 int stage;
8530 int level;
8531 int shared_level;
8532 int update_ref;
8533 int keep_locks;
1c4850e2
YZ
8534 int reada_slot;
8535 int reada_count;
66d7e7f0 8536 int for_reloc;
2c47e605
YZ
8537};
8538
8539#define DROP_REFERENCE 1
8540#define UPDATE_BACKREF 2
8541
1c4850e2
YZ
8542static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8543 struct btrfs_root *root,
8544 struct walk_control *wc,
8545 struct btrfs_path *path)
6407bf6d 8546{
0b246afa 8547 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8548 u64 bytenr;
8549 u64 generation;
8550 u64 refs;
94fcca9f 8551 u64 flags;
5d4f98a2 8552 u32 nritems;
1c4850e2
YZ
8553 struct btrfs_key key;
8554 struct extent_buffer *eb;
6407bf6d 8555 int ret;
1c4850e2
YZ
8556 int slot;
8557 int nread = 0;
6407bf6d 8558
1c4850e2
YZ
8559 if (path->slots[wc->level] < wc->reada_slot) {
8560 wc->reada_count = wc->reada_count * 2 / 3;
8561 wc->reada_count = max(wc->reada_count, 2);
8562 } else {
8563 wc->reada_count = wc->reada_count * 3 / 2;
8564 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8565 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8566 }
7bb86316 8567
1c4850e2
YZ
8568 eb = path->nodes[wc->level];
8569 nritems = btrfs_header_nritems(eb);
bd56b302 8570
1c4850e2
YZ
8571 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8572 if (nread >= wc->reada_count)
8573 break;
bd56b302 8574
2dd3e67b 8575 cond_resched();
1c4850e2
YZ
8576 bytenr = btrfs_node_blockptr(eb, slot);
8577 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8578
1c4850e2
YZ
8579 if (slot == path->slots[wc->level])
8580 goto reada;
5d4f98a2 8581
1c4850e2
YZ
8582 if (wc->stage == UPDATE_BACKREF &&
8583 generation <= root->root_key.offset)
bd56b302
CM
8584 continue;
8585
94fcca9f 8586 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8587 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8588 wc->level - 1, 1, &refs,
8589 &flags);
79787eaa
JM
8590 /* We don't care about errors in readahead. */
8591 if (ret < 0)
8592 continue;
94fcca9f
YZ
8593 BUG_ON(refs == 0);
8594
1c4850e2 8595 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8596 if (refs == 1)
8597 goto reada;
bd56b302 8598
94fcca9f
YZ
8599 if (wc->level == 1 &&
8600 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8601 continue;
1c4850e2
YZ
8602 if (!wc->update_ref ||
8603 generation <= root->root_key.offset)
8604 continue;
8605 btrfs_node_key_to_cpu(eb, &key, slot);
8606 ret = btrfs_comp_cpu_keys(&key,
8607 &wc->update_progress);
8608 if (ret < 0)
8609 continue;
94fcca9f
YZ
8610 } else {
8611 if (wc->level == 1 &&
8612 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8613 continue;
6407bf6d 8614 }
1c4850e2 8615reada:
2ff7e61e 8616 readahead_tree_block(fs_info, bytenr);
1c4850e2 8617 nread++;
20524f02 8618 }
1c4850e2 8619 wc->reada_slot = slot;
20524f02 8620}
2c47e605 8621
f82d02d9 8622/*
2c016dc2 8623 * helper to process tree block while walking down the tree.
2c47e605 8624 *
2c47e605
YZ
8625 * when wc->stage == UPDATE_BACKREF, this function updates
8626 * back refs for pointers in the block.
8627 *
8628 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8629 */
2c47e605 8630static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8631 struct btrfs_root *root,
2c47e605 8632 struct btrfs_path *path,
94fcca9f 8633 struct walk_control *wc, int lookup_info)
f82d02d9 8634{
2ff7e61e 8635 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8636 int level = wc->level;
8637 struct extent_buffer *eb = path->nodes[level];
2c47e605 8638 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8639 int ret;
8640
2c47e605
YZ
8641 if (wc->stage == UPDATE_BACKREF &&
8642 btrfs_header_owner(eb) != root->root_key.objectid)
8643 return 1;
f82d02d9 8644
2c47e605
YZ
8645 /*
8646 * when reference count of tree block is 1, it won't increase
8647 * again. once full backref flag is set, we never clear it.
8648 */
94fcca9f
YZ
8649 if (lookup_info &&
8650 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8651 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8652 BUG_ON(!path->locks[level]);
2ff7e61e 8653 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8654 eb->start, level, 1,
2c47e605
YZ
8655 &wc->refs[level],
8656 &wc->flags[level]);
79787eaa
JM
8657 BUG_ON(ret == -ENOMEM);
8658 if (ret)
8659 return ret;
2c47e605
YZ
8660 BUG_ON(wc->refs[level] == 0);
8661 }
5d4f98a2 8662
2c47e605
YZ
8663 if (wc->stage == DROP_REFERENCE) {
8664 if (wc->refs[level] > 1)
8665 return 1;
f82d02d9 8666
2c47e605 8667 if (path->locks[level] && !wc->keep_locks) {
bd681513 8668 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8669 path->locks[level] = 0;
8670 }
8671 return 0;
8672 }
f82d02d9 8673
2c47e605
YZ
8674 /* wc->stage == UPDATE_BACKREF */
8675 if (!(wc->flags[level] & flag)) {
8676 BUG_ON(!path->locks[level]);
e339a6b0 8677 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8678 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8679 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8680 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8681 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8682 eb->len, flag,
8683 btrfs_header_level(eb), 0);
79787eaa 8684 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8685 wc->flags[level] |= flag;
8686 }
8687
8688 /*
8689 * the block is shared by multiple trees, so it's not good to
8690 * keep the tree lock
8691 */
8692 if (path->locks[level] && level > 0) {
bd681513 8693 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8694 path->locks[level] = 0;
8695 }
8696 return 0;
8697}
8698
1c4850e2 8699/*
2c016dc2 8700 * helper to process tree block pointer.
1c4850e2
YZ
8701 *
8702 * when wc->stage == DROP_REFERENCE, this function checks
8703 * reference count of the block pointed to. if the block
8704 * is shared and we need update back refs for the subtree
8705 * rooted at the block, this function changes wc->stage to
8706 * UPDATE_BACKREF. if the block is shared and there is no
8707 * need to update back, this function drops the reference
8708 * to the block.
8709 *
8710 * NOTE: return value 1 means we should stop walking down.
8711 */
8712static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8713 struct btrfs_root *root,
8714 struct btrfs_path *path,
94fcca9f 8715 struct walk_control *wc, int *lookup_info)
1c4850e2 8716{
0b246afa 8717 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8718 u64 bytenr;
8719 u64 generation;
8720 u64 parent;
8721 u32 blocksize;
8722 struct btrfs_key key;
8723 struct extent_buffer *next;
8724 int level = wc->level;
8725 int reada = 0;
8726 int ret = 0;
1152651a 8727 bool need_account = false;
1c4850e2
YZ
8728
8729 generation = btrfs_node_ptr_generation(path->nodes[level],
8730 path->slots[level]);
8731 /*
8732 * if the lower level block was created before the snapshot
8733 * was created, we know there is no need to update back refs
8734 * for the subtree
8735 */
8736 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8737 generation <= root->root_key.offset) {
8738 *lookup_info = 1;
1c4850e2 8739 return 1;
94fcca9f 8740 }
1c4850e2
YZ
8741
8742 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
0b246afa 8743 blocksize = fs_info->nodesize;
1c4850e2 8744
0b246afa 8745 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8746 if (!next) {
2ff7e61e 8747 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8748 if (IS_ERR(next))
8749 return PTR_ERR(next);
8750
b2aaaa3b
JB
8751 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8752 level - 1);
1c4850e2
YZ
8753 reada = 1;
8754 }
8755 btrfs_tree_lock(next);
8756 btrfs_set_lock_blocking(next);
8757
2ff7e61e 8758 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8759 &wc->refs[level - 1],
8760 &wc->flags[level - 1]);
4867268c
JB
8761 if (ret < 0)
8762 goto out_unlock;
79787eaa 8763
c2cf52eb 8764 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8765 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8766 ret = -EIO;
8767 goto out_unlock;
c2cf52eb 8768 }
94fcca9f 8769 *lookup_info = 0;
1c4850e2 8770
94fcca9f 8771 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8772 if (wc->refs[level - 1] > 1) {
1152651a 8773 need_account = true;
94fcca9f
YZ
8774 if (level == 1 &&
8775 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8776 goto skip;
8777
1c4850e2
YZ
8778 if (!wc->update_ref ||
8779 generation <= root->root_key.offset)
8780 goto skip;
8781
8782 btrfs_node_key_to_cpu(path->nodes[level], &key,
8783 path->slots[level]);
8784 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8785 if (ret < 0)
8786 goto skip;
8787
8788 wc->stage = UPDATE_BACKREF;
8789 wc->shared_level = level - 1;
8790 }
94fcca9f
YZ
8791 } else {
8792 if (level == 1 &&
8793 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8794 goto skip;
1c4850e2
YZ
8795 }
8796
b9fab919 8797 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8798 btrfs_tree_unlock(next);
8799 free_extent_buffer(next);
8800 next = NULL;
94fcca9f 8801 *lookup_info = 1;
1c4850e2
YZ
8802 }
8803
8804 if (!next) {
8805 if (reada && level == 1)
8806 reada_walk_down(trans, root, wc, path);
2ff7e61e 8807 next = read_tree_block(fs_info, bytenr, generation);
64c043de
LB
8808 if (IS_ERR(next)) {
8809 return PTR_ERR(next);
8810 } else if (!extent_buffer_uptodate(next)) {
416bc658 8811 free_extent_buffer(next);
97d9a8a4 8812 return -EIO;
416bc658 8813 }
1c4850e2
YZ
8814 btrfs_tree_lock(next);
8815 btrfs_set_lock_blocking(next);
8816 }
8817
8818 level--;
4867268c
JB
8819 ASSERT(level == btrfs_header_level(next));
8820 if (level != btrfs_header_level(next)) {
8821 btrfs_err(root->fs_info, "mismatched level");
8822 ret = -EIO;
8823 goto out_unlock;
8824 }
1c4850e2
YZ
8825 path->nodes[level] = next;
8826 path->slots[level] = 0;
bd681513 8827 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8828 wc->level = level;
8829 if (wc->level == 1)
8830 wc->reada_slot = 0;
8831 return 0;
8832skip:
8833 wc->refs[level - 1] = 0;
8834 wc->flags[level - 1] = 0;
94fcca9f
YZ
8835 if (wc->stage == DROP_REFERENCE) {
8836 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8837 parent = path->nodes[level]->start;
8838 } else {
4867268c 8839 ASSERT(root->root_key.objectid ==
94fcca9f 8840 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8841 if (root->root_key.objectid !=
8842 btrfs_header_owner(path->nodes[level])) {
8843 btrfs_err(root->fs_info,
8844 "mismatched block owner");
8845 ret = -EIO;
8846 goto out_unlock;
8847 }
94fcca9f
YZ
8848 parent = 0;
8849 }
1c4850e2 8850
1152651a 8851 if (need_account) {
33d1f05c
QW
8852 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8853 generation, level - 1);
1152651a 8854 if (ret) {
0b246afa 8855 btrfs_err_rl(fs_info,
5d163e0e
JM
8856 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8857 ret);
1152651a
MF
8858 }
8859 }
84f7d8e6 8860 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
2ff7e61e
JM
8861 parent, root->root_key.objectid,
8862 level - 1, 0);
4867268c
JB
8863 if (ret)
8864 goto out_unlock;
1c4850e2 8865 }
4867268c
JB
8866
8867 *lookup_info = 1;
8868 ret = 1;
8869
8870out_unlock:
1c4850e2
YZ
8871 btrfs_tree_unlock(next);
8872 free_extent_buffer(next);
4867268c
JB
8873
8874 return ret;
1c4850e2
YZ
8875}
8876
2c47e605 8877/*
2c016dc2 8878 * helper to process tree block while walking up the tree.
2c47e605
YZ
8879 *
8880 * when wc->stage == DROP_REFERENCE, this function drops
8881 * reference count on the block.
8882 *
8883 * when wc->stage == UPDATE_BACKREF, this function changes
8884 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8885 * to UPDATE_BACKREF previously while processing the block.
8886 *
8887 * NOTE: return value 1 means we should stop walking up.
8888 */
8889static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8890 struct btrfs_root *root,
8891 struct btrfs_path *path,
8892 struct walk_control *wc)
8893{
0b246afa 8894 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8895 int ret;
2c47e605
YZ
8896 int level = wc->level;
8897 struct extent_buffer *eb = path->nodes[level];
8898 u64 parent = 0;
8899
8900 if (wc->stage == UPDATE_BACKREF) {
8901 BUG_ON(wc->shared_level < level);
8902 if (level < wc->shared_level)
8903 goto out;
8904
2c47e605
YZ
8905 ret = find_next_key(path, level + 1, &wc->update_progress);
8906 if (ret > 0)
8907 wc->update_ref = 0;
8908
8909 wc->stage = DROP_REFERENCE;
8910 wc->shared_level = -1;
8911 path->slots[level] = 0;
8912
8913 /*
8914 * check reference count again if the block isn't locked.
8915 * we should start walking down the tree again if reference
8916 * count is one.
8917 */
8918 if (!path->locks[level]) {
8919 BUG_ON(level == 0);
8920 btrfs_tree_lock(eb);
8921 btrfs_set_lock_blocking(eb);
bd681513 8922 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8923
2ff7e61e 8924 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8925 eb->start, level, 1,
2c47e605
YZ
8926 &wc->refs[level],
8927 &wc->flags[level]);
79787eaa
JM
8928 if (ret < 0) {
8929 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8930 path->locks[level] = 0;
79787eaa
JM
8931 return ret;
8932 }
2c47e605
YZ
8933 BUG_ON(wc->refs[level] == 0);
8934 if (wc->refs[level] == 1) {
bd681513 8935 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8936 path->locks[level] = 0;
2c47e605
YZ
8937 return 1;
8938 }
f82d02d9 8939 }
2c47e605 8940 }
f82d02d9 8941
2c47e605
YZ
8942 /* wc->stage == DROP_REFERENCE */
8943 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8944
2c47e605
YZ
8945 if (wc->refs[level] == 1) {
8946 if (level == 0) {
8947 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8948 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8949 else
e339a6b0 8950 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8951 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8952 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8953 if (ret) {
0b246afa 8954 btrfs_err_rl(fs_info,
5d163e0e
JM
8955 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8956 ret);
1152651a 8957 }
2c47e605
YZ
8958 }
8959 /* make block locked assertion in clean_tree_block happy */
8960 if (!path->locks[level] &&
8961 btrfs_header_generation(eb) == trans->transid) {
8962 btrfs_tree_lock(eb);
8963 btrfs_set_lock_blocking(eb);
bd681513 8964 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8965 }
7c302b49 8966 clean_tree_block(fs_info, eb);
2c47e605
YZ
8967 }
8968
8969 if (eb == root->node) {
8970 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8971 parent = eb->start;
64add86d
QW
8972 else if (root->root_key.objectid != btrfs_header_owner(eb))
8973 goto owner_mismatch;
2c47e605
YZ
8974 } else {
8975 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8976 parent = path->nodes[level + 1]->start;
64add86d
QW
8977 else if (root->root_key.objectid !=
8978 btrfs_header_owner(path->nodes[level + 1]))
8979 goto owner_mismatch;
f82d02d9 8980 }
f82d02d9 8981
5581a51a 8982 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8983out:
8984 wc->refs[level] = 0;
8985 wc->flags[level] = 0;
f0486c68 8986 return 0;
64add86d
QW
8987
8988owner_mismatch:
8989 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
8990 btrfs_header_owner(eb), root->root_key.objectid);
8991 return -EUCLEAN;
2c47e605
YZ
8992}
8993
8994static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8995 struct btrfs_root *root,
8996 struct btrfs_path *path,
8997 struct walk_control *wc)
8998{
2c47e605 8999 int level = wc->level;
94fcca9f 9000 int lookup_info = 1;
2c47e605
YZ
9001 int ret;
9002
9003 while (level >= 0) {
94fcca9f 9004 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
9005 if (ret > 0)
9006 break;
9007
9008 if (level == 0)
9009 break;
9010
7a7965f8
YZ
9011 if (path->slots[level] >=
9012 btrfs_header_nritems(path->nodes[level]))
9013 break;
9014
94fcca9f 9015 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9016 if (ret > 0) {
9017 path->slots[level]++;
9018 continue;
90d2c51d
MX
9019 } else if (ret < 0)
9020 return ret;
1c4850e2 9021 level = wc->level;
f82d02d9 9022 }
f82d02d9
YZ
9023 return 0;
9024}
9025
d397712b 9026static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9027 struct btrfs_root *root,
f82d02d9 9028 struct btrfs_path *path,
2c47e605 9029 struct walk_control *wc, int max_level)
20524f02 9030{
2c47e605 9031 int level = wc->level;
20524f02 9032 int ret;
9f3a7427 9033
2c47e605
YZ
9034 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9035 while (level < max_level && path->nodes[level]) {
9036 wc->level = level;
9037 if (path->slots[level] + 1 <
9038 btrfs_header_nritems(path->nodes[level])) {
9039 path->slots[level]++;
20524f02
CM
9040 return 0;
9041 } else {
2c47e605
YZ
9042 ret = walk_up_proc(trans, root, path, wc);
9043 if (ret > 0)
9044 return 0;
64add86d
QW
9045 if (ret < 0)
9046 return ret;
bd56b302 9047
2c47e605 9048 if (path->locks[level]) {
bd681513
CM
9049 btrfs_tree_unlock_rw(path->nodes[level],
9050 path->locks[level]);
2c47e605 9051 path->locks[level] = 0;
f82d02d9 9052 }
2c47e605
YZ
9053 free_extent_buffer(path->nodes[level]);
9054 path->nodes[level] = NULL;
9055 level++;
20524f02
CM
9056 }
9057 }
9058 return 1;
9059}
9060
9aca1d51 9061/*
2c47e605
YZ
9062 * drop a subvolume tree.
9063 *
9064 * this function traverses the tree freeing any blocks that only
9065 * referenced by the tree.
9066 *
9067 * when a shared tree block is found. this function decreases its
9068 * reference count by one. if update_ref is true, this function
9069 * also make sure backrefs for the shared block and all lower level
9070 * blocks are properly updated.
9d1a2a3a
DS
9071 *
9072 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9073 */
2c536799 9074int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9075 struct btrfs_block_rsv *block_rsv, int update_ref,
9076 int for_reloc)
20524f02 9077{
ab8d0fc4 9078 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9079 struct btrfs_path *path;
2c47e605 9080 struct btrfs_trans_handle *trans;
ab8d0fc4 9081 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9082 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9083 struct walk_control *wc;
9084 struct btrfs_key key;
9085 int err = 0;
9086 int ret;
9087 int level;
d29a9f62 9088 bool root_dropped = false;
20524f02 9089
ab8d0fc4 9090 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9091
5caf2a00 9092 path = btrfs_alloc_path();
cb1b69f4
TI
9093 if (!path) {
9094 err = -ENOMEM;
9095 goto out;
9096 }
20524f02 9097
2c47e605 9098 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9099 if (!wc) {
9100 btrfs_free_path(path);
cb1b69f4
TI
9101 err = -ENOMEM;
9102 goto out;
38a1a919 9103 }
2c47e605 9104
a22285a6 9105 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9106 if (IS_ERR(trans)) {
9107 err = PTR_ERR(trans);
9108 goto out_free;
9109 }
98d5dc13 9110
3fd0a558
YZ
9111 if (block_rsv)
9112 trans->block_rsv = block_rsv;
2c47e605 9113
9f3a7427 9114 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9115 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9116 path->nodes[level] = btrfs_lock_root_node(root);
9117 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9118 path->slots[level] = 0;
bd681513 9119 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9120 memset(&wc->update_progress, 0,
9121 sizeof(wc->update_progress));
9f3a7427 9122 } else {
9f3a7427 9123 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9124 memcpy(&wc->update_progress, &key,
9125 sizeof(wc->update_progress));
9126
6702ed49 9127 level = root_item->drop_level;
2c47e605 9128 BUG_ON(level == 0);
6702ed49 9129 path->lowest_level = level;
2c47e605
YZ
9130 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9131 path->lowest_level = 0;
9132 if (ret < 0) {
9133 err = ret;
79787eaa 9134 goto out_end_trans;
9f3a7427 9135 }
1c4850e2 9136 WARN_ON(ret > 0);
2c47e605 9137
7d9eb12c
CM
9138 /*
9139 * unlock our path, this is safe because only this
9140 * function is allowed to delete this snapshot
9141 */
5d4f98a2 9142 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9143
9144 level = btrfs_header_level(root->node);
9145 while (1) {
9146 btrfs_tree_lock(path->nodes[level]);
9147 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9148 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9149
2ff7e61e 9150 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9151 path->nodes[level]->start,
3173a18f 9152 level, 1, &wc->refs[level],
2c47e605 9153 &wc->flags[level]);
79787eaa
JM
9154 if (ret < 0) {
9155 err = ret;
9156 goto out_end_trans;
9157 }
2c47e605
YZ
9158 BUG_ON(wc->refs[level] == 0);
9159
9160 if (level == root_item->drop_level)
9161 break;
9162
9163 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9164 path->locks[level] = 0;
2c47e605
YZ
9165 WARN_ON(wc->refs[level] != 1);
9166 level--;
9167 }
9f3a7427 9168 }
2c47e605
YZ
9169
9170 wc->level = level;
9171 wc->shared_level = -1;
9172 wc->stage = DROP_REFERENCE;
9173 wc->update_ref = update_ref;
9174 wc->keep_locks = 0;
66d7e7f0 9175 wc->for_reloc = for_reloc;
0b246afa 9176 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9177
d397712b 9178 while (1) {
9d1a2a3a 9179
2c47e605
YZ
9180 ret = walk_down_tree(trans, root, path, wc);
9181 if (ret < 0) {
9182 err = ret;
20524f02 9183 break;
2c47e605 9184 }
9aca1d51 9185
2c47e605
YZ
9186 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9187 if (ret < 0) {
9188 err = ret;
20524f02 9189 break;
2c47e605
YZ
9190 }
9191
9192 if (ret > 0) {
9193 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9194 break;
9195 }
2c47e605
YZ
9196
9197 if (wc->stage == DROP_REFERENCE) {
9198 level = wc->level;
9199 btrfs_node_key(path->nodes[level],
9200 &root_item->drop_progress,
9201 path->slots[level]);
9202 root_item->drop_level = level;
9203 }
9204
9205 BUG_ON(wc->level == 0);
3a45bb20 9206 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9207 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9208 ret = btrfs_update_root(trans, tree_root,
9209 &root->root_key,
9210 root_item);
79787eaa 9211 if (ret) {
66642832 9212 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9213 err = ret;
9214 goto out_end_trans;
9215 }
2c47e605 9216
3a45bb20 9217 btrfs_end_transaction_throttle(trans);
2ff7e61e 9218 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9219 btrfs_debug(fs_info,
9220 "drop snapshot early exit");
3c8f2422
JB
9221 err = -EAGAIN;
9222 goto out_free;
9223 }
9224
a22285a6 9225 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9226 if (IS_ERR(trans)) {
9227 err = PTR_ERR(trans);
9228 goto out_free;
9229 }
3fd0a558
YZ
9230 if (block_rsv)
9231 trans->block_rsv = block_rsv;
c3e69d58 9232 }
20524f02 9233 }
b3b4aa74 9234 btrfs_release_path(path);
79787eaa
JM
9235 if (err)
9236 goto out_end_trans;
2c47e605 9237
1cd5447e 9238 ret = btrfs_del_root(trans, fs_info, &root->root_key);
79787eaa 9239 if (ret) {
66642832 9240 btrfs_abort_transaction(trans, ret);
e19182c0 9241 err = ret;
79787eaa
JM
9242 goto out_end_trans;
9243 }
2c47e605 9244
76dda93c 9245 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9246 ret = btrfs_find_root(tree_root, &root->root_key, path,
9247 NULL, NULL);
79787eaa 9248 if (ret < 0) {
66642832 9249 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9250 err = ret;
9251 goto out_end_trans;
9252 } else if (ret > 0) {
84cd948c
JB
9253 /* if we fail to delete the orphan item this time
9254 * around, it'll get picked up the next time.
9255 *
9256 * The most common failure here is just -ENOENT.
9257 */
9258 btrfs_del_orphan_item(trans, tree_root,
9259 root->root_key.objectid);
76dda93c
YZ
9260 }
9261 }
9262
27cdeb70 9263 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9264 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9265 } else {
9266 free_extent_buffer(root->node);
9267 free_extent_buffer(root->commit_root);
b0feb9d9 9268 btrfs_put_fs_root(root);
76dda93c 9269 }
d29a9f62 9270 root_dropped = true;
79787eaa 9271out_end_trans:
3a45bb20 9272 btrfs_end_transaction_throttle(trans);
79787eaa 9273out_free:
2c47e605 9274 kfree(wc);
5caf2a00 9275 btrfs_free_path(path);
cb1b69f4 9276out:
d29a9f62
JB
9277 /*
9278 * So if we need to stop dropping the snapshot for whatever reason we
9279 * need to make sure to add it back to the dead root list so that we
9280 * keep trying to do the work later. This also cleans up roots if we
9281 * don't have it in the radix (like when we recover after a power fail
9282 * or unmount) so we don't leak memory.
9283 */
897ca819 9284 if (!for_reloc && !root_dropped)
d29a9f62 9285 btrfs_add_dead_root(root);
90515e7f 9286 if (err && err != -EAGAIN)
ab8d0fc4 9287 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9288 return err;
20524f02 9289}
9078a3e1 9290
2c47e605
YZ
9291/*
9292 * drop subtree rooted at tree block 'node'.
9293 *
9294 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9295 * only used by relocation code
2c47e605 9296 */
f82d02d9
YZ
9297int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9298 struct btrfs_root *root,
9299 struct extent_buffer *node,
9300 struct extent_buffer *parent)
9301{
0b246afa 9302 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9303 struct btrfs_path *path;
2c47e605 9304 struct walk_control *wc;
f82d02d9
YZ
9305 int level;
9306 int parent_level;
9307 int ret = 0;
9308 int wret;
9309
2c47e605
YZ
9310 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9311
f82d02d9 9312 path = btrfs_alloc_path();
db5b493a
TI
9313 if (!path)
9314 return -ENOMEM;
f82d02d9 9315
2c47e605 9316 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9317 if (!wc) {
9318 btrfs_free_path(path);
9319 return -ENOMEM;
9320 }
2c47e605 9321
b9447ef8 9322 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9323 parent_level = btrfs_header_level(parent);
9324 extent_buffer_get(parent);
9325 path->nodes[parent_level] = parent;
9326 path->slots[parent_level] = btrfs_header_nritems(parent);
9327
b9447ef8 9328 btrfs_assert_tree_locked(node);
f82d02d9 9329 level = btrfs_header_level(node);
f82d02d9
YZ
9330 path->nodes[level] = node;
9331 path->slots[level] = 0;
bd681513 9332 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9333
9334 wc->refs[parent_level] = 1;
9335 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9336 wc->level = level;
9337 wc->shared_level = -1;
9338 wc->stage = DROP_REFERENCE;
9339 wc->update_ref = 0;
9340 wc->keep_locks = 1;
66d7e7f0 9341 wc->for_reloc = 1;
0b246afa 9342 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9343
9344 while (1) {
2c47e605
YZ
9345 wret = walk_down_tree(trans, root, path, wc);
9346 if (wret < 0) {
f82d02d9 9347 ret = wret;
f82d02d9 9348 break;
2c47e605 9349 }
f82d02d9 9350
2c47e605 9351 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9352 if (wret < 0)
9353 ret = wret;
9354 if (wret != 0)
9355 break;
9356 }
9357
2c47e605 9358 kfree(wc);
f82d02d9
YZ
9359 btrfs_free_path(path);
9360 return ret;
9361}
9362
6202df69 9363static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9364{
9365 u64 num_devices;
fc67c450 9366 u64 stripped;
e4d8ec0f 9367
fc67c450
ID
9368 /*
9369 * if restripe for this chunk_type is on pick target profile and
9370 * return, otherwise do the usual balance
9371 */
6202df69 9372 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9373 if (stripped)
9374 return extended_to_chunk(stripped);
e4d8ec0f 9375
6202df69 9376 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9377
fc67c450 9378 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9379 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9380 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9381
ec44a35c
CM
9382 if (num_devices == 1) {
9383 stripped |= BTRFS_BLOCK_GROUP_DUP;
9384 stripped = flags & ~stripped;
9385
9386 /* turn raid0 into single device chunks */
9387 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9388 return stripped;
9389
9390 /* turn mirroring into duplication */
9391 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9392 BTRFS_BLOCK_GROUP_RAID10))
9393 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9394 } else {
9395 /* they already had raid on here, just return */
ec44a35c
CM
9396 if (flags & stripped)
9397 return flags;
9398
9399 stripped |= BTRFS_BLOCK_GROUP_DUP;
9400 stripped = flags & ~stripped;
9401
9402 /* switch duplicated blocks with raid1 */
9403 if (flags & BTRFS_BLOCK_GROUP_DUP)
9404 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9405
e3176ca2 9406 /* this is drive concat, leave it alone */
ec44a35c 9407 }
e3176ca2 9408
ec44a35c
CM
9409 return flags;
9410}
9411
868f401a 9412static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9413{
f0486c68
YZ
9414 struct btrfs_space_info *sinfo = cache->space_info;
9415 u64 num_bytes;
199c36ea 9416 u64 min_allocable_bytes;
f0486c68 9417 int ret = -ENOSPC;
0ef3e66b 9418
199c36ea
MX
9419 /*
9420 * We need some metadata space and system metadata space for
9421 * allocating chunks in some corner cases until we force to set
9422 * it to be readonly.
9423 */
9424 if ((sinfo->flags &
9425 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9426 !force)
ee22184b 9427 min_allocable_bytes = SZ_1M;
199c36ea
MX
9428 else
9429 min_allocable_bytes = 0;
9430
f0486c68
YZ
9431 spin_lock(&sinfo->lock);
9432 spin_lock(&cache->lock);
61cfea9b
W
9433
9434 if (cache->ro) {
868f401a 9435 cache->ro++;
61cfea9b
W
9436 ret = 0;
9437 goto out;
9438 }
9439
f0486c68
YZ
9440 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9441 cache->bytes_super - btrfs_block_group_used(&cache->item);
9442
4136135b 9443 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9444 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9445 sinfo->bytes_readonly += num_bytes;
868f401a 9446 cache->ro++;
633c0aad 9447 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9448 ret = 0;
9449 }
61cfea9b 9450out:
f0486c68
YZ
9451 spin_unlock(&cache->lock);
9452 spin_unlock(&sinfo->lock);
9453 return ret;
9454}
7d9eb12c 9455
5e00f193 9456int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9457 struct btrfs_block_group_cache *cache)
c286ac48 9458
f0486c68
YZ
9459{
9460 struct btrfs_trans_handle *trans;
9461 u64 alloc_flags;
9462 int ret;
7d9eb12c 9463
1bbc621e 9464again:
5e00f193 9465 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9466 if (IS_ERR(trans))
9467 return PTR_ERR(trans);
5d4f98a2 9468
1bbc621e
CM
9469 /*
9470 * we're not allowed to set block groups readonly after the dirty
9471 * block groups cache has started writing. If it already started,
9472 * back off and let this transaction commit
9473 */
0b246afa 9474 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9475 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9476 u64 transid = trans->transid;
9477
0b246afa 9478 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9479 btrfs_end_transaction(trans);
1bbc621e 9480
2ff7e61e 9481 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9482 if (ret)
9483 return ret;
9484 goto again;
9485 }
9486
153c35b6
CM
9487 /*
9488 * if we are changing raid levels, try to allocate a corresponding
9489 * block group with the new raid level.
9490 */
0b246afa 9491 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9492 if (alloc_flags != cache->flags) {
2ff7e61e 9493 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9494 CHUNK_ALLOC_FORCE);
9495 /*
9496 * ENOSPC is allowed here, we may have enough space
9497 * already allocated at the new raid level to
9498 * carry on
9499 */
9500 if (ret == -ENOSPC)
9501 ret = 0;
9502 if (ret < 0)
9503 goto out;
9504 }
1bbc621e 9505
868f401a 9506 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9507 if (!ret)
9508 goto out;
2ff7e61e
JM
9509 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9510 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9511 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9512 if (ret < 0)
9513 goto out;
868f401a 9514 ret = inc_block_group_ro(cache, 0);
f0486c68 9515out:
2f081088 9516 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9517 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9518 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9519 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9520 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9521 }
0b246afa 9522 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9523
3a45bb20 9524 btrfs_end_transaction(trans);
f0486c68
YZ
9525 return ret;
9526}
5d4f98a2 9527
c87f08ca 9528int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9529 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9530{
2ff7e61e
JM
9531 u64 alloc_flags = get_alloc_profile(fs_info, type);
9532
9533 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9534}
9535
6d07bcec
MX
9536/*
9537 * helper to account the unused space of all the readonly block group in the
633c0aad 9538 * space_info. takes mirrors into account.
6d07bcec 9539 */
633c0aad 9540u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9541{
9542 struct btrfs_block_group_cache *block_group;
9543 u64 free_bytes = 0;
9544 int factor;
9545
01327610 9546 /* It's df, we don't care if it's racy */
633c0aad
JB
9547 if (list_empty(&sinfo->ro_bgs))
9548 return 0;
9549
9550 spin_lock(&sinfo->lock);
9551 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9552 spin_lock(&block_group->lock);
9553
9554 if (!block_group->ro) {
9555 spin_unlock(&block_group->lock);
9556 continue;
9557 }
9558
9559 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9560 BTRFS_BLOCK_GROUP_RAID10 |
9561 BTRFS_BLOCK_GROUP_DUP))
9562 factor = 2;
9563 else
9564 factor = 1;
9565
9566 free_bytes += (block_group->key.offset -
9567 btrfs_block_group_used(&block_group->item)) *
9568 factor;
9569
9570 spin_unlock(&block_group->lock);
9571 }
6d07bcec
MX
9572 spin_unlock(&sinfo->lock);
9573
9574 return free_bytes;
9575}
9576
2ff7e61e 9577void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9578{
f0486c68
YZ
9579 struct btrfs_space_info *sinfo = cache->space_info;
9580 u64 num_bytes;
9581
9582 BUG_ON(!cache->ro);
9583
9584 spin_lock(&sinfo->lock);
9585 spin_lock(&cache->lock);
868f401a
Z
9586 if (!--cache->ro) {
9587 num_bytes = cache->key.offset - cache->reserved -
9588 cache->pinned - cache->bytes_super -
9589 btrfs_block_group_used(&cache->item);
9590 sinfo->bytes_readonly -= num_bytes;
9591 list_del_init(&cache->ro_list);
9592 }
f0486c68
YZ
9593 spin_unlock(&cache->lock);
9594 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9595}
9596
ba1bf481
JB
9597/*
9598 * checks to see if its even possible to relocate this block group.
9599 *
9600 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9601 * ok to go ahead and try.
9602 */
6bccf3ab 9603int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9604{
6bccf3ab 9605 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9606 struct btrfs_block_group_cache *block_group;
9607 struct btrfs_space_info *space_info;
0b246afa 9608 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9609 struct btrfs_device *device;
6df9a95e 9610 struct btrfs_trans_handle *trans;
cdcb725c 9611 u64 min_free;
6719db6a
JB
9612 u64 dev_min = 1;
9613 u64 dev_nr = 0;
4a5e98f5 9614 u64 target;
0305bc27 9615 int debug;
cdcb725c 9616 int index;
ba1bf481
JB
9617 int full = 0;
9618 int ret = 0;
1a40e23b 9619
0b246afa 9620 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9621
0b246afa 9622 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9623
ba1bf481 9624 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9625 if (!block_group) {
9626 if (debug)
0b246afa 9627 btrfs_warn(fs_info,
0305bc27
QW
9628 "can't find block group for bytenr %llu",
9629 bytenr);
ba1bf481 9630 return -1;
0305bc27 9631 }
1a40e23b 9632
cdcb725c 9633 min_free = btrfs_block_group_used(&block_group->item);
9634
ba1bf481 9635 /* no bytes used, we're good */
cdcb725c 9636 if (!min_free)
1a40e23b
ZY
9637 goto out;
9638
ba1bf481
JB
9639 space_info = block_group->space_info;
9640 spin_lock(&space_info->lock);
17d217fe 9641
ba1bf481 9642 full = space_info->full;
17d217fe 9643
ba1bf481
JB
9644 /*
9645 * if this is the last block group we have in this space, we can't
7ce618db
CM
9646 * relocate it unless we're able to allocate a new chunk below.
9647 *
9648 * Otherwise, we need to make sure we have room in the space to handle
9649 * all of the extents from this block group. If we can, we're good
ba1bf481 9650 */
7ce618db 9651 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9652 (btrfs_space_info_used(space_info, false) + min_free <
9653 space_info->total_bytes)) {
ba1bf481
JB
9654 spin_unlock(&space_info->lock);
9655 goto out;
17d217fe 9656 }
ba1bf481 9657 spin_unlock(&space_info->lock);
ea8c2819 9658
ba1bf481
JB
9659 /*
9660 * ok we don't have enough space, but maybe we have free space on our
9661 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9662 * alloc devices and guess if we have enough space. if this block
9663 * group is going to be restriped, run checks against the target
9664 * profile instead of the current one.
ba1bf481
JB
9665 */
9666 ret = -1;
ea8c2819 9667
cdcb725c 9668 /*
9669 * index:
9670 * 0: raid10
9671 * 1: raid1
9672 * 2: dup
9673 * 3: raid0
9674 * 4: single
9675 */
0b246afa 9676 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9677 if (target) {
31e50229 9678 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9679 } else {
9680 /*
9681 * this is just a balance, so if we were marked as full
9682 * we know there is no space for a new chunk
9683 */
0305bc27
QW
9684 if (full) {
9685 if (debug)
0b246afa
JM
9686 btrfs_warn(fs_info,
9687 "no space to alloc new chunk for block group %llu",
9688 block_group->key.objectid);
4a5e98f5 9689 goto out;
0305bc27 9690 }
4a5e98f5
ID
9691
9692 index = get_block_group_index(block_group);
9693 }
9694
e6ec716f 9695 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9696 dev_min = 4;
6719db6a
JB
9697 /* Divide by 2 */
9698 min_free >>= 1;
e6ec716f 9699 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9700 dev_min = 2;
e6ec716f 9701 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9702 /* Multiply by 2 */
9703 min_free <<= 1;
e6ec716f 9704 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9705 dev_min = fs_devices->rw_devices;
47c5713f 9706 min_free = div64_u64(min_free, dev_min);
cdcb725c 9707 }
9708
6df9a95e
JB
9709 /* We need to do this so that we can look at pending chunks */
9710 trans = btrfs_join_transaction(root);
9711 if (IS_ERR(trans)) {
9712 ret = PTR_ERR(trans);
9713 goto out;
9714 }
9715
0b246afa 9716 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9717 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9718 u64 dev_offset;
56bec294 9719
ba1bf481
JB
9720 /*
9721 * check to make sure we can actually find a chunk with enough
9722 * space to fit our block group in.
9723 */
63a212ab
SB
9724 if (device->total_bytes > device->bytes_used + min_free &&
9725 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9726 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9727 &dev_offset, NULL);
ba1bf481 9728 if (!ret)
cdcb725c 9729 dev_nr++;
9730
9731 if (dev_nr >= dev_min)
73e48b27 9732 break;
cdcb725c 9733
ba1bf481 9734 ret = -1;
725c8463 9735 }
edbd8d4e 9736 }
0305bc27 9737 if (debug && ret == -1)
0b246afa
JM
9738 btrfs_warn(fs_info,
9739 "no space to allocate a new chunk for block group %llu",
9740 block_group->key.objectid);
9741 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9742 btrfs_end_transaction(trans);
edbd8d4e 9743out:
ba1bf481 9744 btrfs_put_block_group(block_group);
edbd8d4e
CM
9745 return ret;
9746}
9747
6bccf3ab
JM
9748static int find_first_block_group(struct btrfs_fs_info *fs_info,
9749 struct btrfs_path *path,
9750 struct btrfs_key *key)
0b86a832 9751{
6bccf3ab 9752 struct btrfs_root *root = fs_info->extent_root;
925baedd 9753 int ret = 0;
0b86a832
CM
9754 struct btrfs_key found_key;
9755 struct extent_buffer *leaf;
9756 int slot;
edbd8d4e 9757
0b86a832
CM
9758 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9759 if (ret < 0)
925baedd
CM
9760 goto out;
9761
d397712b 9762 while (1) {
0b86a832 9763 slot = path->slots[0];
edbd8d4e 9764 leaf = path->nodes[0];
0b86a832
CM
9765 if (slot >= btrfs_header_nritems(leaf)) {
9766 ret = btrfs_next_leaf(root, path);
9767 if (ret == 0)
9768 continue;
9769 if (ret < 0)
925baedd 9770 goto out;
0b86a832 9771 break;
edbd8d4e 9772 }
0b86a832 9773 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9774
0b86a832 9775 if (found_key.objectid >= key->objectid &&
925baedd 9776 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9777 struct extent_map_tree *em_tree;
9778 struct extent_map *em;
9779
9780 em_tree = &root->fs_info->mapping_tree.map_tree;
9781 read_lock(&em_tree->lock);
9782 em = lookup_extent_mapping(em_tree, found_key.objectid,
9783 found_key.offset);
9784 read_unlock(&em_tree->lock);
9785 if (!em) {
0b246afa 9786 btrfs_err(fs_info,
6fb37b75
LB
9787 "logical %llu len %llu found bg but no related chunk",
9788 found_key.objectid, found_key.offset);
9789 ret = -ENOENT;
9790 } else {
9791 ret = 0;
9792 }
187ee58c 9793 free_extent_map(em);
925baedd
CM
9794 goto out;
9795 }
0b86a832 9796 path->slots[0]++;
edbd8d4e 9797 }
925baedd 9798out:
0b86a832 9799 return ret;
edbd8d4e
CM
9800}
9801
0af3d00b
JB
9802void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9803{
9804 struct btrfs_block_group_cache *block_group;
9805 u64 last = 0;
9806
9807 while (1) {
9808 struct inode *inode;
9809
9810 block_group = btrfs_lookup_first_block_group(info, last);
9811 while (block_group) {
f9396e29 9812 wait_block_group_cache_done(block_group);
0af3d00b
JB
9813 spin_lock(&block_group->lock);
9814 if (block_group->iref)
9815 break;
9816 spin_unlock(&block_group->lock);
2ff7e61e 9817 block_group = next_block_group(info, block_group);
0af3d00b
JB
9818 }
9819 if (!block_group) {
9820 if (last == 0)
9821 break;
9822 last = 0;
9823 continue;
9824 }
9825
9826 inode = block_group->inode;
9827 block_group->iref = 0;
9828 block_group->inode = NULL;
9829 spin_unlock(&block_group->lock);
f3bca802 9830 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9831 iput(inode);
9832 last = block_group->key.objectid + block_group->key.offset;
9833 btrfs_put_block_group(block_group);
9834 }
9835}
9836
5cdd7db6
FM
9837/*
9838 * Must be called only after stopping all workers, since we could have block
9839 * group caching kthreads running, and therefore they could race with us if we
9840 * freed the block groups before stopping them.
9841 */
1a40e23b
ZY
9842int btrfs_free_block_groups(struct btrfs_fs_info *info)
9843{
9844 struct btrfs_block_group_cache *block_group;
4184ea7f 9845 struct btrfs_space_info *space_info;
11833d66 9846 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9847 struct rb_node *n;
9848
9e351cc8 9849 down_write(&info->commit_root_sem);
11833d66
YZ
9850 while (!list_empty(&info->caching_block_groups)) {
9851 caching_ctl = list_entry(info->caching_block_groups.next,
9852 struct btrfs_caching_control, list);
9853 list_del(&caching_ctl->list);
9854 put_caching_control(caching_ctl);
9855 }
9e351cc8 9856 up_write(&info->commit_root_sem);
11833d66 9857
47ab2a6c
JB
9858 spin_lock(&info->unused_bgs_lock);
9859 while (!list_empty(&info->unused_bgs)) {
9860 block_group = list_first_entry(&info->unused_bgs,
9861 struct btrfs_block_group_cache,
9862 bg_list);
9863 list_del_init(&block_group->bg_list);
9864 btrfs_put_block_group(block_group);
9865 }
9866 spin_unlock(&info->unused_bgs_lock);
9867
1a40e23b
ZY
9868 spin_lock(&info->block_group_cache_lock);
9869 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9870 block_group = rb_entry(n, struct btrfs_block_group_cache,
9871 cache_node);
1a40e23b
ZY
9872 rb_erase(&block_group->cache_node,
9873 &info->block_group_cache_tree);
01eacb27 9874 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9875 spin_unlock(&info->block_group_cache_lock);
9876
80eb234a 9877 down_write(&block_group->space_info->groups_sem);
1a40e23b 9878 list_del(&block_group->list);
80eb234a 9879 up_write(&block_group->space_info->groups_sem);
d2fb3437 9880
3c14874a
JB
9881 /*
9882 * We haven't cached this block group, which means we could
9883 * possibly have excluded extents on this block group.
9884 */
36cce922
JB
9885 if (block_group->cached == BTRFS_CACHE_NO ||
9886 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9887 free_excluded_extents(info, block_group);
3c14874a 9888
817d52f8 9889 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9890 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9891 ASSERT(list_empty(&block_group->dirty_list));
9892 ASSERT(list_empty(&block_group->io_list));
9893 ASSERT(list_empty(&block_group->bg_list));
9894 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9895 btrfs_put_block_group(block_group);
d899e052
YZ
9896
9897 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9898 }
9899 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9900
9901 /* now that all the block groups are freed, go through and
9902 * free all the space_info structs. This is only called during
9903 * the final stages of unmount, and so we know nobody is
9904 * using them. We call synchronize_rcu() once before we start,
9905 * just to be on the safe side.
9906 */
9907 synchronize_rcu();
9908
8929ecfa
YZ
9909 release_global_block_rsv(info);
9910
67871254 9911 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9912 int i;
9913
4184ea7f
CM
9914 space_info = list_entry(info->space_info.next,
9915 struct btrfs_space_info,
9916 list);
d555b6c3
JB
9917
9918 /*
9919 * Do not hide this behind enospc_debug, this is actually
9920 * important and indicates a real bug if this happens.
9921 */
9922 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9923 space_info->bytes_reserved > 0 ||
d555b6c3 9924 space_info->bytes_may_use > 0))
ab8d0fc4 9925 dump_space_info(info, space_info, 0, 0);
4184ea7f 9926 list_del(&space_info->list);
6ab0a202
JM
9927 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9928 struct kobject *kobj;
c1895442
JM
9929 kobj = space_info->block_group_kobjs[i];
9930 space_info->block_group_kobjs[i] = NULL;
9931 if (kobj) {
6ab0a202
JM
9932 kobject_del(kobj);
9933 kobject_put(kobj);
9934 }
9935 }
9936 kobject_del(&space_info->kobj);
9937 kobject_put(&space_info->kobj);
4184ea7f 9938 }
1a40e23b
ZY
9939 return 0;
9940}
9941
c434d21c 9942static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 9943{
c434d21c 9944 struct btrfs_space_info *space_info = cache->space_info;
b742bb82 9945 int index = get_block_group_index(cache);
ed55b6ac 9946 bool first = false;
b742bb82
YZ
9947
9948 down_write(&space_info->groups_sem);
ed55b6ac
JM
9949 if (list_empty(&space_info->block_groups[index]))
9950 first = true;
9951 list_add_tail(&cache->list, &space_info->block_groups[index]);
9952 up_write(&space_info->groups_sem);
9953
9954 if (first) {
c1895442 9955 struct raid_kobject *rkobj;
6ab0a202
JM
9956 int ret;
9957
c1895442
JM
9958 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9959 if (!rkobj)
9960 goto out_err;
9961 rkobj->raid_type = index;
9962 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9963 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9964 "%s", get_raid_name(index));
6ab0a202 9965 if (ret) {
c1895442
JM
9966 kobject_put(&rkobj->kobj);
9967 goto out_err;
6ab0a202 9968 }
c1895442 9969 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9970 }
c1895442
JM
9971
9972 return;
9973out_err:
ab8d0fc4
JM
9974 btrfs_warn(cache->fs_info,
9975 "failed to add kobject for block cache, ignoring");
b742bb82
YZ
9976}
9977
920e4a58 9978static struct btrfs_block_group_cache *
2ff7e61e
JM
9979btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9980 u64 start, u64 size)
920e4a58
MX
9981{
9982 struct btrfs_block_group_cache *cache;
9983
9984 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9985 if (!cache)
9986 return NULL;
9987
9988 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9989 GFP_NOFS);
9990 if (!cache->free_space_ctl) {
9991 kfree(cache);
9992 return NULL;
9993 }
9994
9995 cache->key.objectid = start;
9996 cache->key.offset = size;
9997 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9998
0b246afa 9999 cache->fs_info = fs_info;
e4ff5fb5 10000 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
10001 set_free_space_tree_thresholds(cache);
10002
920e4a58
MX
10003 atomic_set(&cache->count, 1);
10004 spin_lock_init(&cache->lock);
e570fd27 10005 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10006 INIT_LIST_HEAD(&cache->list);
10007 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10008 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10009 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10010 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10011 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10012 btrfs_init_free_space_ctl(cache);
04216820 10013 atomic_set(&cache->trimming, 0);
a5ed9182 10014 mutex_init(&cache->free_space_lock);
0966a7b1 10015 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
10016
10017 return cache;
10018}
10019
f066b85d
QW
10020
10021/*
10022 * Iterate all chunks and verify that each of them has the corresponding block
10023 * group
10024 */
10025static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10026{
10027 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
10028 struct extent_map *em;
10029 struct btrfs_block_group_cache *bg;
10030 u64 start = 0;
10031 int ret = 0;
10032
10033 while (1) {
10034 read_lock(&map_tree->map_tree.lock);
10035 /*
10036 * lookup_extent_mapping will return the first extent map
10037 * intersecting the range, so setting @len to 1 is enough to
10038 * get the first chunk.
10039 */
10040 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10041 read_unlock(&map_tree->map_tree.lock);
10042 if (!em)
10043 break;
10044
10045 bg = btrfs_lookup_block_group(fs_info, em->start);
10046 if (!bg) {
10047 btrfs_err(fs_info,
10048 "chunk start=%llu len=%llu doesn't have corresponding block group",
10049 em->start, em->len);
10050 ret = -EUCLEAN;
10051 free_extent_map(em);
10052 break;
10053 }
10054 if (bg->key.objectid != em->start ||
10055 bg->key.offset != em->len ||
10056 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10057 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10058 btrfs_err(fs_info,
10059"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10060 em->start, em->len,
10061 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10062 bg->key.objectid, bg->key.offset,
10063 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10064 ret = -EUCLEAN;
10065 free_extent_map(em);
10066 btrfs_put_block_group(bg);
10067 break;
10068 }
10069 start = em->start + em->len;
10070 free_extent_map(em);
10071 btrfs_put_block_group(bg);
10072 }
10073 return ret;
10074}
10075
5b4aacef 10076int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10077{
10078 struct btrfs_path *path;
10079 int ret;
9078a3e1 10080 struct btrfs_block_group_cache *cache;
6324fbf3 10081 struct btrfs_space_info *space_info;
9078a3e1
CM
10082 struct btrfs_key key;
10083 struct btrfs_key found_key;
5f39d397 10084 struct extent_buffer *leaf;
0af3d00b
JB
10085 int need_clear = 0;
10086 u64 cache_gen;
49303381
LB
10087 u64 feature;
10088 int mixed;
10089
10090 feature = btrfs_super_incompat_flags(info->super_copy);
10091 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10092
9078a3e1 10093 key.objectid = 0;
0b86a832 10094 key.offset = 0;
962a298f 10095 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10096 path = btrfs_alloc_path();
10097 if (!path)
10098 return -ENOMEM;
e4058b54 10099 path->reada = READA_FORWARD;
9078a3e1 10100
0b246afa
JM
10101 cache_gen = btrfs_super_cache_generation(info->super_copy);
10102 if (btrfs_test_opt(info, SPACE_CACHE) &&
10103 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10104 need_clear = 1;
0b246afa 10105 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10106 need_clear = 1;
0af3d00b 10107
d397712b 10108 while (1) {
6bccf3ab 10109 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10110 if (ret > 0)
10111 break;
0b86a832
CM
10112 if (ret != 0)
10113 goto error;
920e4a58 10114
5f39d397
CM
10115 leaf = path->nodes[0];
10116 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10117
2ff7e61e 10118 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10119 found_key.offset);
9078a3e1 10120 if (!cache) {
0b86a832 10121 ret = -ENOMEM;
f0486c68 10122 goto error;
9078a3e1 10123 }
96303081 10124
cf7c1ef6
LB
10125 if (need_clear) {
10126 /*
10127 * When we mount with old space cache, we need to
10128 * set BTRFS_DC_CLEAR and set dirty flag.
10129 *
10130 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10131 * truncate the old free space cache inode and
10132 * setup a new one.
10133 * b) Setting 'dirty flag' makes sure that we flush
10134 * the new space cache info onto disk.
10135 */
0b246afa 10136 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10137 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10138 }
0af3d00b 10139
5f39d397
CM
10140 read_extent_buffer(leaf, &cache->item,
10141 btrfs_item_ptr_offset(leaf, path->slots[0]),
10142 sizeof(cache->item));
920e4a58 10143 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10144 if (!mixed &&
10145 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10146 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10147 btrfs_err(info,
10148"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10149 cache->key.objectid);
10150 ret = -EINVAL;
10151 goto error;
10152 }
0b86a832 10153
9078a3e1 10154 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10155 btrfs_release_path(path);
34d52cb6 10156
3c14874a
JB
10157 /*
10158 * We need to exclude the super stripes now so that the space
10159 * info has super bytes accounted for, otherwise we'll think
10160 * we have more space than we actually do.
10161 */
2ff7e61e 10162 ret = exclude_super_stripes(info, cache);
835d974f
JB
10163 if (ret) {
10164 /*
10165 * We may have excluded something, so call this just in
10166 * case.
10167 */
2ff7e61e 10168 free_excluded_extents(info, cache);
920e4a58 10169 btrfs_put_block_group(cache);
835d974f
JB
10170 goto error;
10171 }
3c14874a 10172
817d52f8
JB
10173 /*
10174 * check for two cases, either we are full, and therefore
10175 * don't need to bother with the caching work since we won't
10176 * find any space, or we are empty, and we can just add all
10177 * the space in and be done with it. This saves us _alot_ of
10178 * time, particularly in the full case.
10179 */
10180 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10181 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10182 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10183 free_excluded_extents(info, cache);
817d52f8 10184 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10185 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10186 cache->cached = BTRFS_CACHE_FINISHED;
0b246afa 10187 add_new_free_space(cache, info,
817d52f8
JB
10188 found_key.objectid,
10189 found_key.objectid +
10190 found_key.offset);
2ff7e61e 10191 free_excluded_extents(info, cache);
817d52f8 10192 }
96b5179d 10193
0b246afa 10194 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10195 if (ret) {
10196 btrfs_remove_free_space_cache(cache);
10197 btrfs_put_block_group(cache);
10198 goto error;
10199 }
10200
0b246afa 10201 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10202 update_space_info(info, cache->flags, found_key.offset,
10203 btrfs_block_group_used(&cache->item),
10204 cache->bytes_super, &space_info);
8c579fe7 10205
6324fbf3 10206 cache->space_info = space_info;
1b2da372 10207
c434d21c 10208 link_block_group(cache);
0f9dd46c 10209
0b246afa 10210 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10211 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10212 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10213 } else if (btrfs_block_group_used(&cache->item) == 0) {
10214 spin_lock(&info->unused_bgs_lock);
10215 /* Should always be true but just in case. */
10216 if (list_empty(&cache->bg_list)) {
10217 btrfs_get_block_group(cache);
10218 list_add_tail(&cache->bg_list,
10219 &info->unused_bgs);
10220 }
10221 spin_unlock(&info->unused_bgs_lock);
10222 }
9078a3e1 10223 }
b742bb82 10224
0b246afa 10225 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10226 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10227 (BTRFS_BLOCK_GROUP_RAID10 |
10228 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10229 BTRFS_BLOCK_GROUP_RAID5 |
10230 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10231 BTRFS_BLOCK_GROUP_DUP)))
10232 continue;
10233 /*
10234 * avoid allocating from un-mirrored block group if there are
10235 * mirrored block groups.
10236 */
1095cc0d 10237 list_for_each_entry(cache,
10238 &space_info->block_groups[BTRFS_RAID_RAID0],
10239 list)
868f401a 10240 inc_block_group_ro(cache, 1);
1095cc0d 10241 list_for_each_entry(cache,
10242 &space_info->block_groups[BTRFS_RAID_SINGLE],
10243 list)
868f401a 10244 inc_block_group_ro(cache, 1);
9078a3e1 10245 }
f0486c68
YZ
10246
10247 init_global_block_rsv(info);
f066b85d 10248 ret = check_chunk_block_group_mappings(info);
0b86a832 10249error:
9078a3e1 10250 btrfs_free_path(path);
0b86a832 10251 return ret;
9078a3e1 10252}
6324fbf3 10253
ea658bad 10254void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 10255 struct btrfs_fs_info *fs_info)
ea658bad 10256{
df88f99f 10257 struct btrfs_block_group_cache *block_group;
0b246afa 10258 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10259 struct btrfs_block_group_item item;
10260 struct btrfs_key key;
10261 int ret = 0;
10262
5608e1ef
FM
10263 if (!trans->can_flush_pending_bgs)
10264 return;
10265
df88f99f
JB
10266 while (!list_empty(&trans->new_bgs)) {
10267 block_group = list_first_entry(&trans->new_bgs,
10268 struct btrfs_block_group_cache,
10269 bg_list);
ea658bad 10270 if (ret)
c92f6be3 10271 goto next;
ea658bad
JB
10272
10273 spin_lock(&block_group->lock);
10274 memcpy(&item, &block_group->item, sizeof(item));
10275 memcpy(&key, &block_group->key, sizeof(key));
10276 spin_unlock(&block_group->lock);
10277
10278 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10279 sizeof(item));
10280 if (ret)
66642832 10281 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10282 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10283 key.offset);
6df9a95e 10284 if (ret)
66642832 10285 btrfs_abort_transaction(trans, ret);
0b246afa 10286 add_block_group_free_space(trans, fs_info, block_group);
1e144fb8 10287 /* already aborted the transaction if it failed. */
c92f6be3
FM
10288next:
10289 list_del_init(&block_group->bg_list);
ea658bad 10290 }
5608e1ef 10291 btrfs_trans_release_chunk_metadata(trans);
ea658bad
JB
10292}
10293
6324fbf3 10294int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10295 struct btrfs_fs_info *fs_info, u64 bytes_used,
0174484d 10296 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10297{
6324fbf3 10298 struct btrfs_block_group_cache *cache;
0b246afa 10299 int ret;
6324fbf3 10300
0b246afa 10301 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10302
2ff7e61e 10303 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10304 if (!cache)
10305 return -ENOMEM;
34d52cb6 10306
6324fbf3 10307 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10308 btrfs_set_block_group_chunk_objectid(&cache->item,
10309 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10310 btrfs_set_block_group_flags(&cache->item, type);
10311
920e4a58 10312 cache->flags = type;
11833d66 10313 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10314 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10315 cache->needs_free_space = 1;
2ff7e61e 10316 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10317 if (ret) {
10318 /*
10319 * We may have excluded something, so call this just in
10320 * case.
10321 */
2ff7e61e 10322 free_excluded_extents(fs_info, cache);
920e4a58 10323 btrfs_put_block_group(cache);
835d974f
JB
10324 return ret;
10325 }
96303081 10326
0b246afa 10327 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
817d52f8 10328
2ff7e61e 10329 free_excluded_extents(fs_info, cache);
11833d66 10330
d0bd4560 10331#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10332 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10333 u64 new_bytes_used = size - bytes_used;
10334
10335 bytes_used += new_bytes_used >> 1;
2ff7e61e 10336 fragment_free_space(cache);
d0bd4560
JB
10337 }
10338#endif
2e6e5183 10339 /*
2be12ef7
NB
10340 * Ensure the corresponding space_info object is created and
10341 * assigned to our block group. We want our bg to be added to the rbtree
10342 * with its ->space_info set.
2e6e5183 10343 */
2be12ef7
NB
10344 cache->space_info = __find_space_info(fs_info, cache->flags);
10345 if (!cache->space_info) {
10346 ret = create_space_info(fs_info, cache->flags,
10347 &cache->space_info);
10348 if (ret) {
10349 btrfs_remove_free_space_cache(cache);
10350 btrfs_put_block_group(cache);
10351 return ret;
10352 }
2e6e5183
FM
10353 }
10354
0b246afa 10355 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10356 if (ret) {
10357 btrfs_remove_free_space_cache(cache);
10358 btrfs_put_block_group(cache);
10359 return ret;
10360 }
10361
2e6e5183
FM
10362 /*
10363 * Now that our block group has its ->space_info set and is inserted in
10364 * the rbtree, update the space info's counters.
10365 */
0b246afa 10366 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10367 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10368 cache->bytes_super, &cache->space_info);
0b246afa 10369 update_global_block_rsv(fs_info);
1b2da372 10370
c434d21c 10371 link_block_group(cache);
6324fbf3 10372
47ab2a6c 10373 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10374
0b246afa 10375 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10376 return 0;
10377}
1a40e23b 10378
10ea00f5
ID
10379static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10380{
899c81ea
ID
10381 u64 extra_flags = chunk_to_extended(flags) &
10382 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10383
de98ced9 10384 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10385 if (flags & BTRFS_BLOCK_GROUP_DATA)
10386 fs_info->avail_data_alloc_bits &= ~extra_flags;
10387 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10388 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10389 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10390 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10391 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10392}
10393
1a40e23b 10394int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10395 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10396 struct extent_map *em)
1a40e23b 10397{
6bccf3ab 10398 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10399 struct btrfs_path *path;
10400 struct btrfs_block_group_cache *block_group;
44fb5511 10401 struct btrfs_free_cluster *cluster;
0b246afa 10402 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10403 struct btrfs_key key;
0af3d00b 10404 struct inode *inode;
c1895442 10405 struct kobject *kobj = NULL;
1a40e23b 10406 int ret;
10ea00f5 10407 int index;
89a55897 10408 int factor;
4f69cb98 10409 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10410 bool remove_em;
1a40e23b 10411
6bccf3ab 10412 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10413 BUG_ON(!block_group);
c146afad 10414 BUG_ON(!block_group->ro);
1a40e23b 10415
9f7c43c9 10416 /*
10417 * Free the reserved super bytes from this block group before
10418 * remove it.
10419 */
2ff7e61e 10420 free_excluded_extents(fs_info, block_group);
fd708b81
JB
10421 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10422 block_group->key.offset);
9f7c43c9 10423
1a40e23b 10424 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10425 index = get_block_group_index(block_group);
89a55897
JB
10426 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10427 BTRFS_BLOCK_GROUP_RAID1 |
10428 BTRFS_BLOCK_GROUP_RAID10))
10429 factor = 2;
10430 else
10431 factor = 1;
1a40e23b 10432
44fb5511 10433 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10434 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10435 spin_lock(&cluster->refill_lock);
10436 btrfs_return_cluster_to_free_space(block_group, cluster);
10437 spin_unlock(&cluster->refill_lock);
10438
10439 /*
10440 * make sure this block group isn't part of a metadata
10441 * allocation cluster
10442 */
0b246afa 10443 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10444 spin_lock(&cluster->refill_lock);
10445 btrfs_return_cluster_to_free_space(block_group, cluster);
10446 spin_unlock(&cluster->refill_lock);
10447
1a40e23b 10448 path = btrfs_alloc_path();
d8926bb3
MF
10449 if (!path) {
10450 ret = -ENOMEM;
10451 goto out;
10452 }
1a40e23b 10453
1bbc621e
CM
10454 /*
10455 * get the inode first so any iput calls done for the io_list
10456 * aren't the final iput (no unlinks allowed now)
10457 */
77ab86bf 10458 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10459
10460 mutex_lock(&trans->transaction->cache_write_mutex);
10461 /*
10462 * make sure our free spache cache IO is done before remove the
10463 * free space inode
10464 */
10465 spin_lock(&trans->transaction->dirty_bgs_lock);
10466 if (!list_empty(&block_group->io_list)) {
10467 list_del_init(&block_group->io_list);
10468
10469 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10470
10471 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10472 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10473 btrfs_put_block_group(block_group);
10474 spin_lock(&trans->transaction->dirty_bgs_lock);
10475 }
10476
10477 if (!list_empty(&block_group->dirty_list)) {
10478 list_del_init(&block_group->dirty_list);
10479 btrfs_put_block_group(block_group);
10480 }
10481 spin_unlock(&trans->transaction->dirty_bgs_lock);
10482 mutex_unlock(&trans->transaction->cache_write_mutex);
10483
0af3d00b 10484 if (!IS_ERR(inode)) {
73f2e545 10485 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10486 if (ret) {
10487 btrfs_add_delayed_iput(inode);
10488 goto out;
10489 }
0af3d00b
JB
10490 clear_nlink(inode);
10491 /* One for the block groups ref */
10492 spin_lock(&block_group->lock);
10493 if (block_group->iref) {
10494 block_group->iref = 0;
10495 block_group->inode = NULL;
10496 spin_unlock(&block_group->lock);
10497 iput(inode);
10498 } else {
10499 spin_unlock(&block_group->lock);
10500 }
10501 /* One for our lookup ref */
455757c3 10502 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10503 }
10504
10505 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10506 key.offset = block_group->key.objectid;
10507 key.type = 0;
10508
10509 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10510 if (ret < 0)
10511 goto out;
10512 if (ret > 0)
b3b4aa74 10513 btrfs_release_path(path);
0af3d00b
JB
10514 if (ret == 0) {
10515 ret = btrfs_del_item(trans, tree_root, path);
10516 if (ret)
10517 goto out;
b3b4aa74 10518 btrfs_release_path(path);
0af3d00b
JB
10519 }
10520
0b246afa 10521 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10522 rb_erase(&block_group->cache_node,
0b246afa 10523 &fs_info->block_group_cache_tree);
292cbd51 10524 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10525
0b246afa
JM
10526 if (fs_info->first_logical_byte == block_group->key.objectid)
10527 fs_info->first_logical_byte = (u64)-1;
10528 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10529
80eb234a 10530 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10531 /*
10532 * we must use list_del_init so people can check to see if they
10533 * are still on the list after taking the semaphore
10534 */
10535 list_del_init(&block_group->list);
6ab0a202 10536 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10537 kobj = block_group->space_info->block_group_kobjs[index];
10538 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10539 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10540 }
80eb234a 10541 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10542 if (kobj) {
10543 kobject_del(kobj);
10544 kobject_put(kobj);
10545 }
1a40e23b 10546
4f69cb98
FM
10547 if (block_group->has_caching_ctl)
10548 caching_ctl = get_caching_control(block_group);
817d52f8 10549 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10550 wait_block_group_cache_done(block_group);
4f69cb98 10551 if (block_group->has_caching_ctl) {
0b246afa 10552 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10553 if (!caching_ctl) {
10554 struct btrfs_caching_control *ctl;
10555
10556 list_for_each_entry(ctl,
0b246afa 10557 &fs_info->caching_block_groups, list)
4f69cb98
FM
10558 if (ctl->block_group == block_group) {
10559 caching_ctl = ctl;
1e4f4714 10560 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10561 break;
10562 }
10563 }
10564 if (caching_ctl)
10565 list_del_init(&caching_ctl->list);
0b246afa 10566 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10567 if (caching_ctl) {
10568 /* Once for the caching bgs list and once for us. */
10569 put_caching_control(caching_ctl);
10570 put_caching_control(caching_ctl);
10571 }
10572 }
817d52f8 10573
ce93ec54
JB
10574 spin_lock(&trans->transaction->dirty_bgs_lock);
10575 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10576 WARN_ON(1);
10577 }
10578 if (!list_empty(&block_group->io_list)) {
10579 WARN_ON(1);
ce93ec54
JB
10580 }
10581 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10582 btrfs_remove_free_space_cache(block_group);
10583
c146afad 10584 spin_lock(&block_group->space_info->lock);
75c68e9f 10585 list_del_init(&block_group->ro_list);
18d018ad 10586
0b246afa 10587 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10588 WARN_ON(block_group->space_info->total_bytes
10589 < block_group->key.offset);
10590 WARN_ON(block_group->space_info->bytes_readonly
10591 < block_group->key.offset);
10592 WARN_ON(block_group->space_info->disk_total
10593 < block_group->key.offset * factor);
10594 }
c146afad
YZ
10595 block_group->space_info->total_bytes -= block_group->key.offset;
10596 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10597 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10598
c146afad 10599 spin_unlock(&block_group->space_info->lock);
283bb197 10600
0af3d00b
JB
10601 memcpy(&key, &block_group->key, sizeof(key));
10602
34441361 10603 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10604 if (!list_empty(&em->list)) {
10605 /* We're in the transaction->pending_chunks list. */
10606 free_extent_map(em);
10607 }
04216820
FM
10608 spin_lock(&block_group->lock);
10609 block_group->removed = 1;
10610 /*
10611 * At this point trimming can't start on this block group, because we
10612 * removed the block group from the tree fs_info->block_group_cache_tree
10613 * so no one can't find it anymore and even if someone already got this
10614 * block group before we removed it from the rbtree, they have already
10615 * incremented block_group->trimming - if they didn't, they won't find
10616 * any free space entries because we already removed them all when we
10617 * called btrfs_remove_free_space_cache().
10618 *
10619 * And we must not remove the extent map from the fs_info->mapping_tree
10620 * to prevent the same logical address range and physical device space
10621 * ranges from being reused for a new block group. This is because our
10622 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10623 * completely transactionless, so while it is trimming a range the
10624 * currently running transaction might finish and a new one start,
10625 * allowing for new block groups to be created that can reuse the same
10626 * physical device locations unless we take this special care.
e33e17ee
JM
10627 *
10628 * There may also be an implicit trim operation if the file system
10629 * is mounted with -odiscard. The same protections must remain
10630 * in place until the extents have been discarded completely when
10631 * the transaction commit has completed.
04216820
FM
10632 */
10633 remove_em = (atomic_read(&block_group->trimming) == 0);
10634 /*
10635 * Make sure a trimmer task always sees the em in the pinned_chunks list
10636 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10637 * before checking block_group->removed).
10638 */
10639 if (!remove_em) {
10640 /*
10641 * Our em might be in trans->transaction->pending_chunks which
10642 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10643 * and so is the fs_info->pinned_chunks list.
10644 *
10645 * So at this point we must be holding the chunk_mutex to avoid
10646 * any races with chunk allocation (more specifically at
10647 * volumes.c:contains_pending_extent()), to ensure it always
10648 * sees the em, either in the pending_chunks list or in the
10649 * pinned_chunks list.
10650 */
0b246afa 10651 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10652 }
10653 spin_unlock(&block_group->lock);
04216820
FM
10654
10655 if (remove_em) {
10656 struct extent_map_tree *em_tree;
10657
0b246afa 10658 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10659 write_lock(&em_tree->lock);
8dbcd10f
FM
10660 /*
10661 * The em might be in the pending_chunks list, so make sure the
10662 * chunk mutex is locked, since remove_extent_mapping() will
10663 * delete us from that list.
10664 */
04216820
FM
10665 remove_extent_mapping(em_tree, em);
10666 write_unlock(&em_tree->lock);
10667 /* once for the tree */
10668 free_extent_map(em);
10669 }
10670
34441361 10671 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10672
0b246afa 10673 ret = remove_block_group_free_space(trans, fs_info, block_group);
1e144fb8
OS
10674 if (ret)
10675 goto out;
10676
fa9c0d79
CM
10677 btrfs_put_block_group(block_group);
10678 btrfs_put_block_group(block_group);
1a40e23b
ZY
10679
10680 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10681 if (ret > 0)
10682 ret = -EIO;
10683 if (ret < 0)
10684 goto out;
10685
10686 ret = btrfs_del_item(trans, root, path);
10687out:
10688 btrfs_free_path(path);
10689 return ret;
10690}
acce952b 10691
8eab77ff 10692struct btrfs_trans_handle *
7fd01182
FM
10693btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10694 const u64 chunk_offset)
8eab77ff 10695{
7fd01182
FM
10696 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10697 struct extent_map *em;
10698 struct map_lookup *map;
10699 unsigned int num_items;
10700
10701 read_lock(&em_tree->lock);
10702 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10703 read_unlock(&em_tree->lock);
10704 ASSERT(em && em->start == chunk_offset);
10705
8eab77ff 10706 /*
7fd01182
FM
10707 * We need to reserve 3 + N units from the metadata space info in order
10708 * to remove a block group (done at btrfs_remove_chunk() and at
10709 * btrfs_remove_block_group()), which are used for:
10710 *
8eab77ff
FM
10711 * 1 unit for adding the free space inode's orphan (located in the tree
10712 * of tree roots).
7fd01182
FM
10713 * 1 unit for deleting the block group item (located in the extent
10714 * tree).
10715 * 1 unit for deleting the free space item (located in tree of tree
10716 * roots).
10717 * N units for deleting N device extent items corresponding to each
10718 * stripe (located in the device tree).
10719 *
10720 * In order to remove a block group we also need to reserve units in the
10721 * system space info in order to update the chunk tree (update one or
10722 * more device items and remove one chunk item), but this is done at
10723 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10724 */
95617d69 10725 map = em->map_lookup;
7fd01182
FM
10726 num_items = 3 + map->num_stripes;
10727 free_extent_map(em);
10728
8eab77ff 10729 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10730 num_items, 1);
8eab77ff
FM
10731}
10732
47ab2a6c
JB
10733/*
10734 * Process the unused_bgs list and remove any that don't have any allocated
10735 * space inside of them.
10736 */
10737void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10738{
10739 struct btrfs_block_group_cache *block_group;
10740 struct btrfs_space_info *space_info;
47ab2a6c
JB
10741 struct btrfs_trans_handle *trans;
10742 int ret = 0;
10743
afcdd129 10744 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10745 return;
10746
10747 spin_lock(&fs_info->unused_bgs_lock);
10748 while (!list_empty(&fs_info->unused_bgs)) {
10749 u64 start, end;
e33e17ee 10750 int trimming;
47ab2a6c
JB
10751
10752 block_group = list_first_entry(&fs_info->unused_bgs,
10753 struct btrfs_block_group_cache,
10754 bg_list);
47ab2a6c 10755 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10756
10757 space_info = block_group->space_info;
10758
47ab2a6c
JB
10759 if (ret || btrfs_mixed_space_info(space_info)) {
10760 btrfs_put_block_group(block_group);
10761 continue;
10762 }
10763 spin_unlock(&fs_info->unused_bgs_lock);
10764
d5f2e33b 10765 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10766
47ab2a6c
JB
10767 /* Don't want to race with allocators so take the groups_sem */
10768 down_write(&space_info->groups_sem);
10769 spin_lock(&block_group->lock);
5857fd39 10770 if (block_group->reserved || block_group->pinned ||
47ab2a6c 10771 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10772 block_group->ro ||
aefbe9a6 10773 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10774 /*
10775 * We want to bail if we made new allocations or have
10776 * outstanding allocations in this block group. We do
10777 * the ro check in case balance is currently acting on
10778 * this block group.
10779 */
10780 spin_unlock(&block_group->lock);
10781 up_write(&space_info->groups_sem);
10782 goto next;
10783 }
10784 spin_unlock(&block_group->lock);
10785
10786 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10787 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10788 up_write(&space_info->groups_sem);
10789 if (ret < 0) {
10790 ret = 0;
10791 goto next;
10792 }
10793
10794 /*
10795 * Want to do this before we do anything else so we can recover
10796 * properly if we fail to join the transaction.
10797 */
7fd01182
FM
10798 trans = btrfs_start_trans_remove_block_group(fs_info,
10799 block_group->key.objectid);
47ab2a6c 10800 if (IS_ERR(trans)) {
2ff7e61e 10801 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10802 ret = PTR_ERR(trans);
10803 goto next;
10804 }
10805
10806 /*
10807 * We could have pending pinned extents for this block group,
10808 * just delete them, we don't care about them anymore.
10809 */
10810 start = block_group->key.objectid;
10811 end = start + block_group->key.offset - 1;
d4b450cd
FM
10812 /*
10813 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10814 * btrfs_finish_extent_commit(). If we are at transaction N,
10815 * another task might be running finish_extent_commit() for the
10816 * previous transaction N - 1, and have seen a range belonging
10817 * to the block group in freed_extents[] before we were able to
10818 * clear the whole block group range from freed_extents[]. This
10819 * means that task can lookup for the block group after we
10820 * unpinned it from freed_extents[] and removed it, leading to
10821 * a BUG_ON() at btrfs_unpin_extent_range().
10822 */
10823 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10824 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10825 EXTENT_DIRTY);
758eb51e 10826 if (ret) {
d4b450cd 10827 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10828 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10829 goto end_trans;
10830 }
10831 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10832 EXTENT_DIRTY);
758eb51e 10833 if (ret) {
d4b450cd 10834 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10835 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10836 goto end_trans;
10837 }
d4b450cd 10838 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10839
10840 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10841 spin_lock(&space_info->lock);
10842 spin_lock(&block_group->lock);
10843
10844 space_info->bytes_pinned -= block_group->pinned;
10845 space_info->bytes_readonly += block_group->pinned;
10846 percpu_counter_add(&space_info->total_bytes_pinned,
10847 -block_group->pinned);
47ab2a6c
JB
10848 block_group->pinned = 0;
10849
c30666d4
ZL
10850 spin_unlock(&block_group->lock);
10851 spin_unlock(&space_info->lock);
10852
e33e17ee 10853 /* DISCARD can flip during remount */
0b246afa 10854 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10855
10856 /* Implicit trim during transaction commit. */
10857 if (trimming)
10858 btrfs_get_block_group_trimming(block_group);
10859
47ab2a6c
JB
10860 /*
10861 * Btrfs_remove_chunk will abort the transaction if things go
10862 * horribly wrong.
10863 */
5b4aacef 10864 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10865 block_group->key.objectid);
e33e17ee
JM
10866
10867 if (ret) {
10868 if (trimming)
10869 btrfs_put_block_group_trimming(block_group);
10870 goto end_trans;
10871 }
10872
10873 /*
10874 * If we're not mounted with -odiscard, we can just forget
10875 * about this block group. Otherwise we'll need to wait
10876 * until transaction commit to do the actual discard.
10877 */
10878 if (trimming) {
348a0013
FM
10879 spin_lock(&fs_info->unused_bgs_lock);
10880 /*
10881 * A concurrent scrub might have added us to the list
10882 * fs_info->unused_bgs, so use a list_move operation
10883 * to add the block group to the deleted_bgs list.
10884 */
e33e17ee
JM
10885 list_move(&block_group->bg_list,
10886 &trans->transaction->deleted_bgs);
348a0013 10887 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10888 btrfs_get_block_group(block_group);
10889 }
758eb51e 10890end_trans:
3a45bb20 10891 btrfs_end_transaction(trans);
47ab2a6c 10892next:
d5f2e33b 10893 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10894 btrfs_put_block_group(block_group);
10895 spin_lock(&fs_info->unused_bgs_lock);
10896 }
10897 spin_unlock(&fs_info->unused_bgs_lock);
10898}
10899
c59021f8 10900int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10901{
10902 struct btrfs_space_info *space_info;
1aba86d6 10903 struct btrfs_super_block *disk_super;
10904 u64 features;
10905 u64 flags;
10906 int mixed = 0;
c59021f8 10907 int ret;
10908
6c41761f 10909 disk_super = fs_info->super_copy;
1aba86d6 10910 if (!btrfs_super_root(disk_super))
0dc924c5 10911 return -EINVAL;
c59021f8 10912
1aba86d6 10913 features = btrfs_super_incompat_flags(disk_super);
10914 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10915 mixed = 1;
c59021f8 10916
1aba86d6 10917 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2be12ef7 10918 ret = create_space_info(fs_info, flags, &space_info);
c59021f8 10919 if (ret)
1aba86d6 10920 goto out;
c59021f8 10921
1aba86d6 10922 if (mixed) {
10923 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10924 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10925 } else {
10926 flags = BTRFS_BLOCK_GROUP_METADATA;
2be12ef7 10927 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10928 if (ret)
10929 goto out;
10930
10931 flags = BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10932 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10933 }
10934out:
c59021f8 10935 return ret;
10936}
10937
2ff7e61e
JM
10938int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10939 u64 start, u64 end)
acce952b 10940{
2ff7e61e 10941 return unpin_extent_range(fs_info, start, end, false);
acce952b 10942}
10943
499f377f
JM
10944/*
10945 * It used to be that old block groups would be left around forever.
10946 * Iterating over them would be enough to trim unused space. Since we
10947 * now automatically remove them, we also need to iterate over unallocated
10948 * space.
10949 *
10950 * We don't want a transaction for this since the discard may take a
10951 * substantial amount of time. We don't require that a transaction be
10952 * running, but we do need to take a running transaction into account
81e7e768
JM
10953 * to ensure that we're not discarding chunks that were released or
10954 * allocated in the current transaction.
499f377f
JM
10955 *
10956 * Holding the chunks lock will prevent other threads from allocating
10957 * or releasing chunks, but it won't prevent a running transaction
10958 * from committing and releasing the memory that the pending chunks
10959 * list head uses. For that, we need to take a reference to the
81e7e768
JM
10960 * transaction and hold the commit root sem. We only need to hold
10961 * it while performing the free space search since we have already
10962 * held back allocations.
499f377f
JM
10963 */
10964static int btrfs_trim_free_extents(struct btrfs_device *device,
10965 u64 minlen, u64 *trimmed)
10966{
10967 u64 start = 0, len = 0;
10968 int ret;
10969
10970 *trimmed = 0;
10971
2a8d3d48
JM
10972 /* Discard not supported = nothing to do. */
10973 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
10974 return 0;
10975
499f377f
JM
10976 /* Not writeable = nothing to do. */
10977 if (!device->writeable)
10978 return 0;
10979
10980 /* No free space = nothing to do. */
10981 if (device->total_bytes <= device->bytes_used)
10982 return 0;
10983
10984 ret = 0;
10985
10986 while (1) {
fb456252 10987 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10988 struct btrfs_transaction *trans;
10989 u64 bytes;
10990
10991 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10992 if (ret)
81e7e768 10993 break;
499f377f 10994
81e7e768
JM
10995 ret = down_read_killable(&fs_info->commit_root_sem);
10996 if (ret) {
10997 mutex_unlock(&fs_info->chunk_mutex);
10998 break;
10999 }
499f377f
JM
11000
11001 spin_lock(&fs_info->trans_lock);
11002 trans = fs_info->running_transaction;
11003 if (trans)
9b64f57d 11004 refcount_inc(&trans->use_count);
499f377f
JM
11005 spin_unlock(&fs_info->trans_lock);
11006
81e7e768
JM
11007 if (!trans)
11008 up_read(&fs_info->commit_root_sem);
11009
499f377f
JM
11010 ret = find_free_dev_extent_start(trans, device, minlen, start,
11011 &start, &len);
81e7e768
JM
11012 if (trans) {
11013 up_read(&fs_info->commit_root_sem);
499f377f 11014 btrfs_put_transaction(trans);
81e7e768 11015 }
499f377f
JM
11016
11017 if (ret) {
499f377f
JM
11018 mutex_unlock(&fs_info->chunk_mutex);
11019 if (ret == -ENOSPC)
11020 ret = 0;
11021 break;
11022 }
11023
11024 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
499f377f
JM
11025 mutex_unlock(&fs_info->chunk_mutex);
11026
11027 if (ret)
11028 break;
11029
11030 start += len;
11031 *trimmed += bytes;
11032
11033 if (fatal_signal_pending(current)) {
11034 ret = -ERESTARTSYS;
11035 break;
11036 }
11037
11038 cond_resched();
11039 }
11040
11041 return ret;
11042}
11043
9afc0c69
QW
11044/*
11045 * Trim the whole filesystem by:
11046 * 1) trimming the free space in each block group
11047 * 2) trimming the unallocated space on each device
11048 *
11049 * This will also continue trimming even if a block group or device encounters
11050 * an error. The return value will be the last error, or 0 if nothing bad
11051 * happens.
11052 */
2ff7e61e 11053int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 11054{
f7039b1d 11055 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
11056 struct btrfs_device *device;
11057 struct list_head *devices;
f7039b1d
LD
11058 u64 group_trimmed;
11059 u64 start;
11060 u64 end;
11061 u64 trimmed = 0;
9afc0c69
QW
11062 u64 bg_failed = 0;
11063 u64 dev_failed = 0;
11064 int bg_ret = 0;
11065 int dev_ret = 0;
f7039b1d
LD
11066 int ret = 0;
11067
97f76c51 11068 cache = btrfs_lookup_first_block_group(fs_info, range->start);
9afc0c69 11069 for (; cache; cache = next_block_group(fs_info, cache)) {
f7039b1d
LD
11070 if (cache->key.objectid >= (range->start + range->len)) {
11071 btrfs_put_block_group(cache);
11072 break;
11073 }
11074
11075 start = max(range->start, cache->key.objectid);
11076 end = min(range->start + range->len,
11077 cache->key.objectid + cache->key.offset);
11078
11079 if (end - start >= range->minlen) {
11080 if (!block_group_cache_done(cache)) {
f6373bf3 11081 ret = cache_block_group(cache, 0);
1be41b78 11082 if (ret) {
9afc0c69
QW
11083 bg_failed++;
11084 bg_ret = ret;
11085 continue;
1be41b78
JB
11086 }
11087 ret = wait_block_group_cache_done(cache);
11088 if (ret) {
9afc0c69
QW
11089 bg_failed++;
11090 bg_ret = ret;
11091 continue;
1be41b78 11092 }
f7039b1d
LD
11093 }
11094 ret = btrfs_trim_block_group(cache,
11095 &group_trimmed,
11096 start,
11097 end,
11098 range->minlen);
11099
11100 trimmed += group_trimmed;
11101 if (ret) {
9afc0c69
QW
11102 bg_failed++;
11103 bg_ret = ret;
11104 continue;
f7039b1d
LD
11105 }
11106 }
f7039b1d
LD
11107 }
11108
9afc0c69
QW
11109 if (bg_failed)
11110 btrfs_warn(fs_info,
11111 "failed to trim %llu block group(s), last error %d",
11112 bg_failed, bg_ret);
0b246afa 11113 mutex_lock(&fs_info->fs_devices->device_list_mutex);
bac1eaf5
JM
11114 devices = &fs_info->fs_devices->devices;
11115 list_for_each_entry(device, devices, dev_list) {
499f377f
JM
11116 ret = btrfs_trim_free_extents(device, range->minlen,
11117 &group_trimmed);
9afc0c69
QW
11118 if (ret) {
11119 dev_failed++;
11120 dev_ret = ret;
499f377f 11121 break;
9afc0c69 11122 }
499f377f
JM
11123
11124 trimmed += group_trimmed;
11125 }
0b246afa 11126 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11127
9afc0c69
QW
11128 if (dev_failed)
11129 btrfs_warn(fs_info,
11130 "failed to trim %llu device(s), last error %d",
11131 dev_failed, dev_ret);
f7039b1d 11132 range->len = trimmed;
9afc0c69
QW
11133 if (bg_ret)
11134 return bg_ret;
11135 return dev_ret;
f7039b1d 11136}
8257b2dc
MX
11137
11138/*
ea14b57f 11139 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11140 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11141 * data into the page cache through nocow before the subvolume is snapshoted,
11142 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11143 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11144 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11145 */
ea14b57f 11146void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11147{
11148 percpu_counter_dec(&root->subv_writers->counter);
11149 /*
a83342aa 11150 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
11151 */
11152 smp_mb();
11153 if (waitqueue_active(&root->subv_writers->wait))
11154 wake_up(&root->subv_writers->wait);
11155}
11156
ea14b57f 11157int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11158{
ea14b57f 11159 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11160 return 0;
11161
11162 percpu_counter_inc(&root->subv_writers->counter);
11163 /*
11164 * Make sure counter is updated before we check for snapshot creation.
11165 */
11166 smp_mb();
ea14b57f
DS
11167 if (atomic_read(&root->will_be_snapshotted)) {
11168 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11169 return 0;
11170 }
11171 return 1;
11172}
0bc19f90 11173
0bc19f90
ZL
11174void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11175{
11176 while (true) {
11177 int ret;
11178
ea14b57f 11179 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11180 if (ret)
11181 break;
5e4def20 11182 wait_on_atomic_t(&root->will_be_snapshotted, atomic_t_wait,
0bc19f90
ZL
11183 TASK_UNINTERRUPTIBLE);
11184 }
11185}