]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent-tree.c
mm: vmalloc: show number of vmalloc pages in /proc/meminfo
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
9f9b8e8d
QW
54/*
55 * Declare a helper function to detect underflow of various space info members
56 */
57#define DECLARE_SPACE_INFO_UPDATE(name) \
58static inline void update_##name(struct btrfs_space_info *sinfo, \
59 s64 bytes) \
60{ \
61 if (bytes < 0 && sinfo->name < -bytes) { \
62 WARN_ON(1); \
63 sinfo->name = 0; \
64 return; \
65 } \
66 sinfo->name += bytes; \
67}
68
69DECLARE_SPACE_INFO_UPDATE(bytes_may_use);
e2907c1a 70DECLARE_SPACE_INFO_UPDATE(bytes_pinned);
9f9b8e8d 71
5d4f98a2 72static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
73 struct btrfs_delayed_ref_node *node, u64 parent,
74 u64 root_objectid, u64 owner_objectid,
75 u64 owner_offset, int refs_to_drop,
76 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
77static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
78 struct extent_buffer *leaf,
79 struct btrfs_extent_item *ei);
80static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
81 u64 parent, u64 root_objectid,
82 u64 flags, u64 owner, u64 offset,
83 struct btrfs_key *ins, int ref_mod);
84static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 85 struct btrfs_delayed_ref_node *node,
21ebfbe7 86 struct btrfs_delayed_extent_op *extent_op);
01458828 87static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
698d0082 88 int force);
11833d66
YZ
89static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
ab8d0fc4
JM
91static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 93 int dump_block_groups);
5d80366e
JB
94static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
95 u64 num_bytes);
957780eb
JB
96static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
97 struct btrfs_space_info *space_info,
98 u64 num_bytes);
99static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
100 struct btrfs_space_info *space_info,
101 u64 num_bytes);
6a63209f 102
817d52f8
JB
103static noinline int
104block_group_cache_done(struct btrfs_block_group_cache *cache)
105{
106 smp_mb();
36cce922
JB
107 return cache->cached == BTRFS_CACHE_FINISHED ||
108 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
109}
110
0f9dd46c
JB
111static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112{
113 return (cache->flags & bits) == bits;
114}
115
758f2dfc 116void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
117{
118 atomic_inc(&cache->count);
119}
120
121void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122{
f0486c68
YZ
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
0966a7b1
QW
126
127 /*
128 * If not empty, someone is still holding mutex of
129 * full_stripe_lock, which can only be released by caller.
130 * And it will definitely cause use-after-free when caller
131 * tries to release full stripe lock.
132 *
133 * No better way to resolve, but only to warn.
134 */
135 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 136 kfree(cache->free_space_ctl);
11dfe35a 137 kfree(cache);
f0486c68 138 }
11dfe35a
JB
139}
140
0f9dd46c
JB
141/*
142 * this adds the block group to the fs_info rb tree for the block group
143 * cache
144 */
b2950863 145static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
146 struct btrfs_block_group_cache *block_group)
147{
148 struct rb_node **p;
149 struct rb_node *parent = NULL;
150 struct btrfs_block_group_cache *cache;
151
152 spin_lock(&info->block_group_cache_lock);
153 p = &info->block_group_cache_tree.rb_node;
154
155 while (*p) {
156 parent = *p;
157 cache = rb_entry(parent, struct btrfs_block_group_cache,
158 cache_node);
159 if (block_group->key.objectid < cache->key.objectid) {
160 p = &(*p)->rb_left;
161 } else if (block_group->key.objectid > cache->key.objectid) {
162 p = &(*p)->rb_right;
163 } else {
164 spin_unlock(&info->block_group_cache_lock);
165 return -EEXIST;
166 }
167 }
168
169 rb_link_node(&block_group->cache_node, parent, p);
170 rb_insert_color(&block_group->cache_node,
171 &info->block_group_cache_tree);
a1897fdd
LB
172
173 if (info->first_logical_byte > block_group->key.objectid)
174 info->first_logical_byte = block_group->key.objectid;
175
0f9dd46c
JB
176 spin_unlock(&info->block_group_cache_lock);
177
178 return 0;
179}
180
181/*
182 * This will return the block group at or after bytenr if contains is 0, else
183 * it will return the block group that contains the bytenr
184 */
185static struct btrfs_block_group_cache *
186block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
187 int contains)
188{
189 struct btrfs_block_group_cache *cache, *ret = NULL;
190 struct rb_node *n;
191 u64 end, start;
192
193 spin_lock(&info->block_group_cache_lock);
194 n = info->block_group_cache_tree.rb_node;
195
196 while (n) {
197 cache = rb_entry(n, struct btrfs_block_group_cache,
198 cache_node);
199 end = cache->key.objectid + cache->key.offset - 1;
200 start = cache->key.objectid;
201
202 if (bytenr < start) {
203 if (!contains && (!ret || start < ret->key.objectid))
204 ret = cache;
205 n = n->rb_left;
206 } else if (bytenr > start) {
207 if (contains && bytenr <= end) {
208 ret = cache;
209 break;
210 }
211 n = n->rb_right;
212 } else {
213 ret = cache;
214 break;
215 }
216 }
a1897fdd 217 if (ret) {
11dfe35a 218 btrfs_get_block_group(ret);
a1897fdd
LB
219 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
220 info->first_logical_byte = ret->key.objectid;
221 }
0f9dd46c
JB
222 spin_unlock(&info->block_group_cache_lock);
223
224 return ret;
225}
226
2ff7e61e 227static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 228 u64 start, u64 num_bytes)
817d52f8 229{
11833d66 230 u64 end = start + num_bytes - 1;
0b246afa 231 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 232 start, end, EXTENT_UPTODATE);
0b246afa 233 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 234 start, end, EXTENT_UPTODATE);
11833d66
YZ
235 return 0;
236}
817d52f8 237
9e715da8 238static void free_excluded_extents(struct btrfs_block_group_cache *cache)
11833d66 239{
9e715da8 240 struct btrfs_fs_info *fs_info = cache->fs_info;
11833d66 241 u64 start, end;
817d52f8 242
11833d66
YZ
243 start = cache->key.objectid;
244 end = start + cache->key.offset - 1;
245
0b246afa 246 clear_extent_bits(&fs_info->freed_extents[0],
91166212 247 start, end, EXTENT_UPTODATE);
0b246afa 248 clear_extent_bits(&fs_info->freed_extents[1],
91166212 249 start, end, EXTENT_UPTODATE);
817d52f8
JB
250}
251
3c4da657 252static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
817d52f8 253{
3c4da657 254 struct btrfs_fs_info *fs_info = cache->fs_info;
817d52f8
JB
255 u64 bytenr;
256 u64 *logical;
257 int stripe_len;
258 int i, nr, ret;
259
06b2331f
YZ
260 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
261 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
262 cache->bytes_super += stripe_len;
2ff7e61e 263 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 264 stripe_len);
835d974f
JB
265 if (ret)
266 return ret;
06b2331f
YZ
267 }
268
817d52f8
JB
269 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
270 bytenr = btrfs_sb_offset(i);
0b246afa 271 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
63a9c7b9 272 bytenr, &logical, &nr, &stripe_len);
835d974f
JB
273 if (ret)
274 return ret;
11833d66 275
817d52f8 276 while (nr--) {
51bf5f0b
JB
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
2ff7e61e 297 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
817d52f8 302 }
11833d66 303
817d52f8
JB
304 kfree(logical);
305 }
817d52f8
JB
306 return 0;
307}
308
11833d66
YZ
309static struct btrfs_caching_control *
310get_caching_control(struct btrfs_block_group_cache *cache)
311{
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
dde5abee
JB
315 if (!cache->caching_ctl) {
316 spin_unlock(&cache->lock);
11833d66
YZ
317 return NULL;
318 }
319
320 ctl = cache->caching_ctl;
1e4f4714 321 refcount_inc(&ctl->count);
11833d66
YZ
322 spin_unlock(&cache->lock);
323 return ctl;
324}
325
326static void put_caching_control(struct btrfs_caching_control *ctl)
327{
1e4f4714 328 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
329 kfree(ctl);
330}
331
d0bd4560 332#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 333static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 334{
2ff7e61e 335 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
336 u64 start = block_group->key.objectid;
337 u64 len = block_group->key.offset;
338 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 339 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
340 u64 step = chunk << 1;
341
342 while (len > chunk) {
343 btrfs_remove_free_space(block_group, start, chunk);
344 start += step;
345 if (len < step)
346 len = 0;
347 else
348 len -= step;
349 }
350}
351#endif
352
0f9dd46c
JB
353/*
354 * this is only called by cache_block_group, since we could have freed extents
355 * we need to check the pinned_extents for any extents that can't be used yet
356 * since their free space will be released as soon as the transaction commits.
357 */
a5ed9182 358u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
4457c1c7 359 u64 start, u64 end)
0f9dd46c 360{
4457c1c7 361 struct btrfs_fs_info *info = block_group->fs_info;
817d52f8 362 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
363 int ret;
364
365 while (start < end) {
11833d66 366 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 367 &extent_start, &extent_end,
e6138876
JB
368 EXTENT_DIRTY | EXTENT_UPTODATE,
369 NULL);
0f9dd46c
JB
370 if (ret)
371 break;
372
06b2331f 373 if (extent_start <= start) {
0f9dd46c
JB
374 start = extent_end + 1;
375 } else if (extent_start > start && extent_start < end) {
376 size = extent_start - start;
817d52f8 377 total_added += size;
ea6a478e
JB
378 ret = btrfs_add_free_space(block_group, start,
379 size);
79787eaa 380 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
381 start = extent_end + 1;
382 } else {
383 break;
384 }
385 }
386
387 if (start < end) {
388 size = end - start;
817d52f8 389 total_added += size;
ea6a478e 390 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 391 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
392 }
393
817d52f8 394 return total_added;
0f9dd46c
JB
395}
396
73fa48b6 397static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 398{
0b246afa
JM
399 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
400 struct btrfs_fs_info *fs_info = block_group->fs_info;
401 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 402 struct btrfs_path *path;
5f39d397 403 struct extent_buffer *leaf;
11833d66 404 struct btrfs_key key;
817d52f8 405 u64 total_found = 0;
11833d66
YZ
406 u64 last = 0;
407 u32 nritems;
73fa48b6 408 int ret;
d0bd4560 409 bool wakeup = true;
f510cfec 410
e37c9e69
CM
411 path = btrfs_alloc_path();
412 if (!path)
73fa48b6 413 return -ENOMEM;
7d7d6068 414
817d52f8 415 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 416
d0bd4560
JB
417#ifdef CONFIG_BTRFS_DEBUG
418 /*
419 * If we're fragmenting we don't want to make anybody think we can
420 * allocate from this block group until we've had a chance to fragment
421 * the free space.
422 */
2ff7e61e 423 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
424 wakeup = false;
425#endif
5cd57b2c 426 /*
817d52f8
JB
427 * We don't want to deadlock with somebody trying to allocate a new
428 * extent for the extent root while also trying to search the extent
429 * root to add free space. So we skip locking and search the commit
430 * root, since its read-only
5cd57b2c
CM
431 */
432 path->skip_locking = 1;
817d52f8 433 path->search_commit_root = 1;
e4058b54 434 path->reada = READA_FORWARD;
817d52f8 435
e4404d6e 436 key.objectid = last;
e37c9e69 437 key.offset = 0;
11833d66 438 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 439
52ee28d2 440next:
11833d66 441 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 442 if (ret < 0)
73fa48b6 443 goto out;
a512bbf8 444
11833d66
YZ
445 leaf = path->nodes[0];
446 nritems = btrfs_header_nritems(leaf);
447
d397712b 448 while (1) {
7841cb28 449 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 450 last = (u64)-1;
817d52f8 451 break;
f25784b3 452 }
817d52f8 453
11833d66
YZ
454 if (path->slots[0] < nritems) {
455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
456 } else {
457 ret = find_next_key(path, 0, &key);
458 if (ret)
e37c9e69 459 break;
817d52f8 460
c9ea7b24 461 if (need_resched() ||
9e351cc8 462 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
463 if (wakeup)
464 caching_ctl->progress = last;
ff5714cc 465 btrfs_release_path(path);
9e351cc8 466 up_read(&fs_info->commit_root_sem);
589d8ade 467 mutex_unlock(&caching_ctl->mutex);
11833d66 468 cond_resched();
73fa48b6
OS
469 mutex_lock(&caching_ctl->mutex);
470 down_read(&fs_info->commit_root_sem);
471 goto next;
589d8ade 472 }
0a3896d0
JB
473
474 ret = btrfs_next_leaf(extent_root, path);
475 if (ret < 0)
73fa48b6 476 goto out;
0a3896d0
JB
477 if (ret)
478 break;
589d8ade
JB
479 leaf = path->nodes[0];
480 nritems = btrfs_header_nritems(leaf);
481 continue;
11833d66 482 }
817d52f8 483
52ee28d2
LB
484 if (key.objectid < last) {
485 key.objectid = last;
486 key.offset = 0;
487 key.type = BTRFS_EXTENT_ITEM_KEY;
488
d0bd4560
JB
489 if (wakeup)
490 caching_ctl->progress = last;
52ee28d2
LB
491 btrfs_release_path(path);
492 goto next;
493 }
494
11833d66
YZ
495 if (key.objectid < block_group->key.objectid) {
496 path->slots[0]++;
817d52f8 497 continue;
e37c9e69 498 }
0f9dd46c 499
e37c9e69 500 if (key.objectid >= block_group->key.objectid +
0f9dd46c 501 block_group->key.offset)
e37c9e69 502 break;
7d7d6068 503
3173a18f
JB
504 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
505 key.type == BTRFS_METADATA_ITEM_KEY) {
4457c1c7 506 total_found += add_new_free_space(block_group, last,
817d52f8 507 key.objectid);
3173a18f
JB
508 if (key.type == BTRFS_METADATA_ITEM_KEY)
509 last = key.objectid +
da17066c 510 fs_info->nodesize;
3173a18f
JB
511 else
512 last = key.objectid + key.offset;
817d52f8 513
73fa48b6 514 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 515 total_found = 0;
d0bd4560
JB
516 if (wakeup)
517 wake_up(&caching_ctl->wait);
11833d66 518 }
817d52f8 519 }
e37c9e69
CM
520 path->slots[0]++;
521 }
817d52f8 522 ret = 0;
e37c9e69 523
4457c1c7 524 total_found += add_new_free_space(block_group, last,
817d52f8
JB
525 block_group->key.objectid +
526 block_group->key.offset);
11833d66 527 caching_ctl->progress = (u64)-1;
817d52f8 528
73fa48b6
OS
529out:
530 btrfs_free_path(path);
531 return ret;
532}
533
534static noinline void caching_thread(struct btrfs_work *work)
535{
536 struct btrfs_block_group_cache *block_group;
537 struct btrfs_fs_info *fs_info;
538 struct btrfs_caching_control *caching_ctl;
539 int ret;
540
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
544
545 mutex_lock(&caching_ctl->mutex);
546 down_read(&fs_info->commit_root_sem);
547
1e144fb8
OS
548 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549 ret = load_free_space_tree(caching_ctl);
550 else
551 ret = load_extent_tree_free(caching_ctl);
73fa48b6 552
817d52f8 553 spin_lock(&block_group->lock);
11833d66 554 block_group->caching_ctl = NULL;
73fa48b6 555 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 556 spin_unlock(&block_group->lock);
0f9dd46c 557
d0bd4560 558#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 559 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
560 u64 bytes_used;
561
562 spin_lock(&block_group->space_info->lock);
563 spin_lock(&block_group->lock);
564 bytes_used = block_group->key.offset -
565 btrfs_block_group_used(&block_group->item);
566 block_group->space_info->bytes_used += bytes_used >> 1;
567 spin_unlock(&block_group->lock);
568 spin_unlock(&block_group->space_info->lock);
2ff7e61e 569 fragment_free_space(block_group);
d0bd4560
JB
570 }
571#endif
572
573 caching_ctl->progress = (u64)-1;
11833d66 574
9e351cc8 575 up_read(&fs_info->commit_root_sem);
9e715da8 576 free_excluded_extents(block_group);
11833d66 577 mutex_unlock(&caching_ctl->mutex);
73fa48b6 578
11833d66
YZ
579 wake_up(&caching_ctl->wait);
580
581 put_caching_control(caching_ctl);
11dfe35a 582 btrfs_put_block_group(block_group);
817d52f8
JB
583}
584
9d66e233 585static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 586 int load_cache_only)
817d52f8 587{
291c7d2f 588 DEFINE_WAIT(wait);
11833d66
YZ
589 struct btrfs_fs_info *fs_info = cache->fs_info;
590 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
591 int ret = 0;
592
291c7d2f 593 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
594 if (!caching_ctl)
595 return -ENOMEM;
291c7d2f
JB
596
597 INIT_LIST_HEAD(&caching_ctl->list);
598 mutex_init(&caching_ctl->mutex);
599 init_waitqueue_head(&caching_ctl->wait);
600 caching_ctl->block_group = cache;
601 caching_ctl->progress = cache->key.objectid;
1e4f4714 602 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
603 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604 caching_thread, NULL, NULL);
291c7d2f
JB
605
606 spin_lock(&cache->lock);
607 /*
608 * This should be a rare occasion, but this could happen I think in the
609 * case where one thread starts to load the space cache info, and then
610 * some other thread starts a transaction commit which tries to do an
611 * allocation while the other thread is still loading the space cache
612 * info. The previous loop should have kept us from choosing this block
613 * group, but if we've moved to the state where we will wait on caching
614 * block groups we need to first check if we're doing a fast load here,
615 * so we can wait for it to finish, otherwise we could end up allocating
616 * from a block group who's cache gets evicted for one reason or
617 * another.
618 */
619 while (cache->cached == BTRFS_CACHE_FAST) {
620 struct btrfs_caching_control *ctl;
621
622 ctl = cache->caching_ctl;
1e4f4714 623 refcount_inc(&ctl->count);
291c7d2f
JB
624 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625 spin_unlock(&cache->lock);
626
627 schedule();
628
629 finish_wait(&ctl->wait, &wait);
630 put_caching_control(ctl);
631 spin_lock(&cache->lock);
632 }
633
634 if (cache->cached != BTRFS_CACHE_NO) {
635 spin_unlock(&cache->lock);
636 kfree(caching_ctl);
11833d66 637 return 0;
291c7d2f
JB
638 }
639 WARN_ON(cache->caching_ctl);
640 cache->caching_ctl = caching_ctl;
641 cache->cached = BTRFS_CACHE_FAST;
642 spin_unlock(&cache->lock);
11833d66 643
d8953d69 644 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 645 mutex_lock(&caching_ctl->mutex);
bb6cb1c5 646 ret = load_free_space_cache(cache);
9d66e233
JB
647
648 spin_lock(&cache->lock);
649 if (ret == 1) {
291c7d2f 650 cache->caching_ctl = NULL;
9d66e233
JB
651 cache->cached = BTRFS_CACHE_FINISHED;
652 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 653 caching_ctl->progress = (u64)-1;
9d66e233 654 } else {
291c7d2f
JB
655 if (load_cache_only) {
656 cache->caching_ctl = NULL;
657 cache->cached = BTRFS_CACHE_NO;
658 } else {
659 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 660 cache->has_caching_ctl = 1;
291c7d2f 661 }
9d66e233
JB
662 }
663 spin_unlock(&cache->lock);
d0bd4560
JB
664#ifdef CONFIG_BTRFS_DEBUG
665 if (ret == 1 &&
2ff7e61e 666 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
667 u64 bytes_used;
668
669 spin_lock(&cache->space_info->lock);
670 spin_lock(&cache->lock);
671 bytes_used = cache->key.offset -
672 btrfs_block_group_used(&cache->item);
673 cache->space_info->bytes_used += bytes_used >> 1;
674 spin_unlock(&cache->lock);
675 spin_unlock(&cache->space_info->lock);
2ff7e61e 676 fragment_free_space(cache);
d0bd4560
JB
677 }
678#endif
cb83b7b8
JB
679 mutex_unlock(&caching_ctl->mutex);
680
291c7d2f 681 wake_up(&caching_ctl->wait);
3c14874a 682 if (ret == 1) {
291c7d2f 683 put_caching_control(caching_ctl);
9e715da8 684 free_excluded_extents(cache);
9d66e233 685 return 0;
3c14874a 686 }
291c7d2f
JB
687 } else {
688 /*
1e144fb8
OS
689 * We're either using the free space tree or no caching at all.
690 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
691 */
692 spin_lock(&cache->lock);
693 if (load_cache_only) {
694 cache->caching_ctl = NULL;
695 cache->cached = BTRFS_CACHE_NO;
696 } else {
697 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 698 cache->has_caching_ctl = 1;
291c7d2f
JB
699 }
700 spin_unlock(&cache->lock);
701 wake_up(&caching_ctl->wait);
9d66e233
JB
702 }
703
291c7d2f
JB
704 if (load_cache_only) {
705 put_caching_control(caching_ctl);
11833d66 706 return 0;
817d52f8 707 }
817d52f8 708
9e351cc8 709 down_write(&fs_info->commit_root_sem);
1e4f4714 710 refcount_inc(&caching_ctl->count);
11833d66 711 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 712 up_write(&fs_info->commit_root_sem);
11833d66 713
11dfe35a 714 btrfs_get_block_group(cache);
11833d66 715
e66f0bb1 716 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 717
ef8bbdfe 718 return ret;
e37c9e69
CM
719}
720
0f9dd46c
JB
721/*
722 * return the block group that starts at or after bytenr
723 */
d397712b
CM
724static struct btrfs_block_group_cache *
725btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 726{
e2c89907 727 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
728}
729
0f9dd46c 730/*
9f55684c 731 * return the block group that contains the given bytenr
0f9dd46c 732 */
d397712b
CM
733struct btrfs_block_group_cache *btrfs_lookup_block_group(
734 struct btrfs_fs_info *info,
735 u64 bytenr)
be744175 736{
e2c89907 737 return block_group_cache_tree_search(info, bytenr, 1);
be744175 738}
0b86a832 739
0f9dd46c
JB
740static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
741 u64 flags)
6324fbf3 742{
0f9dd46c 743 struct list_head *head = &info->space_info;
0f9dd46c 744 struct btrfs_space_info *found;
4184ea7f 745
52ba6929 746 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 747
4184ea7f
CM
748 rcu_read_lock();
749 list_for_each_entry_rcu(found, head, list) {
67377734 750 if (found->flags & flags) {
4184ea7f 751 rcu_read_unlock();
0f9dd46c 752 return found;
4184ea7f 753 }
0f9dd46c 754 }
4184ea7f 755 rcu_read_unlock();
0f9dd46c 756 return NULL;
6324fbf3
CM
757}
758
ddf30cf0 759static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
14ae4ec1 760 struct btrfs_ref *ref, int sign)
0d9f824d
OS
761{
762 struct btrfs_space_info *space_info;
14ae4ec1 763 s64 num_bytes;
0d9f824d
OS
764 u64 flags;
765
14ae4ec1
QW
766 ASSERT(sign == 1 || sign == -1);
767 num_bytes = sign * ref->len;
ddf30cf0
QW
768 if (ref->type == BTRFS_REF_METADATA) {
769 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
0d9f824d
OS
770 flags = BTRFS_BLOCK_GROUP_SYSTEM;
771 else
772 flags = BTRFS_BLOCK_GROUP_METADATA;
773 } else {
774 flags = BTRFS_BLOCK_GROUP_DATA;
775 }
776
777 space_info = __find_space_info(fs_info, flags);
55e8196a 778 ASSERT(space_info);
dec59fa3
EL
779 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
780 BTRFS_TOTAL_BYTES_PINNED_BATCH);
0d9f824d
OS
781}
782
4184ea7f
CM
783/*
784 * after adding space to the filesystem, we need to clear the full flags
785 * on all the space infos.
786 */
787void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
788{
789 struct list_head *head = &info->space_info;
790 struct btrfs_space_info *found;
791
792 rcu_read_lock();
793 list_for_each_entry_rcu(found, head, list)
794 found->full = 0;
795 rcu_read_unlock();
796}
797
1a4ed8fd 798/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 799int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
800{
801 int ret;
802 struct btrfs_key key;
31840ae1 803 struct btrfs_path *path;
e02119d5 804
31840ae1 805 path = btrfs_alloc_path();
d8926bb3
MF
806 if (!path)
807 return -ENOMEM;
808
e02119d5
CM
809 key.objectid = start;
810 key.offset = len;
3173a18f 811 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 812 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 813 btrfs_free_path(path);
7bb86316
CM
814 return ret;
815}
816
a22285a6 817/*
3173a18f 818 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
819 *
820 * the head node for delayed ref is used to store the sum of all the
821 * reference count modifications queued up in the rbtree. the head
822 * node may also store the extent flags to set. This way you can check
823 * to see what the reference count and extent flags would be if all of
824 * the delayed refs are not processed.
825 */
826int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 827 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 828 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
829{
830 struct btrfs_delayed_ref_head *head;
831 struct btrfs_delayed_ref_root *delayed_refs;
832 struct btrfs_path *path;
833 struct btrfs_extent_item *ei;
834 struct extent_buffer *leaf;
835 struct btrfs_key key;
836 u32 item_size;
837 u64 num_refs;
838 u64 extent_flags;
839 int ret;
840
3173a18f
JB
841 /*
842 * If we don't have skinny metadata, don't bother doing anything
843 * different
844 */
0b246afa
JM
845 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
846 offset = fs_info->nodesize;
3173a18f
JB
847 metadata = 0;
848 }
849
a22285a6
YZ
850 path = btrfs_alloc_path();
851 if (!path)
852 return -ENOMEM;
853
a22285a6
YZ
854 if (!trans) {
855 path->skip_locking = 1;
856 path->search_commit_root = 1;
857 }
639eefc8
FDBM
858
859search_again:
860 key.objectid = bytenr;
861 key.offset = offset;
862 if (metadata)
863 key.type = BTRFS_METADATA_ITEM_KEY;
864 else
865 key.type = BTRFS_EXTENT_ITEM_KEY;
866
0b246afa 867 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
868 if (ret < 0)
869 goto out_free;
870
3173a18f 871 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
872 if (path->slots[0]) {
873 path->slots[0]--;
874 btrfs_item_key_to_cpu(path->nodes[0], &key,
875 path->slots[0]);
876 if (key.objectid == bytenr &&
877 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 878 key.offset == fs_info->nodesize)
74be9510
FDBM
879 ret = 0;
880 }
3173a18f
JB
881 }
882
a22285a6
YZ
883 if (ret == 0) {
884 leaf = path->nodes[0];
885 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
886 if (item_size >= sizeof(*ei)) {
887 ei = btrfs_item_ptr(leaf, path->slots[0],
888 struct btrfs_extent_item);
889 num_refs = btrfs_extent_refs(leaf, ei);
890 extent_flags = btrfs_extent_flags(leaf, ei);
891 } else {
ba3c2b19
NB
892 ret = -EINVAL;
893 btrfs_print_v0_err(fs_info);
894 if (trans)
895 btrfs_abort_transaction(trans, ret);
896 else
897 btrfs_handle_fs_error(fs_info, ret, NULL);
898
899 goto out_free;
a22285a6 900 }
ba3c2b19 901
a22285a6
YZ
902 BUG_ON(num_refs == 0);
903 } else {
904 num_refs = 0;
905 extent_flags = 0;
906 ret = 0;
907 }
908
909 if (!trans)
910 goto out;
911
912 delayed_refs = &trans->transaction->delayed_refs;
913 spin_lock(&delayed_refs->lock);
f72ad18e 914 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
915 if (head) {
916 if (!mutex_trylock(&head->mutex)) {
d278850e 917 refcount_inc(&head->refs);
a22285a6
YZ
918 spin_unlock(&delayed_refs->lock);
919
b3b4aa74 920 btrfs_release_path(path);
a22285a6 921
8cc33e5c
DS
922 /*
923 * Mutex was contended, block until it's released and try
924 * again
925 */
a22285a6
YZ
926 mutex_lock(&head->mutex);
927 mutex_unlock(&head->mutex);
d278850e 928 btrfs_put_delayed_ref_head(head);
639eefc8 929 goto search_again;
a22285a6 930 }
d7df2c79 931 spin_lock(&head->lock);
a22285a6
YZ
932 if (head->extent_op && head->extent_op->update_flags)
933 extent_flags |= head->extent_op->flags_to_set;
934 else
935 BUG_ON(num_refs == 0);
936
d278850e 937 num_refs += head->ref_mod;
d7df2c79 938 spin_unlock(&head->lock);
a22285a6
YZ
939 mutex_unlock(&head->mutex);
940 }
941 spin_unlock(&delayed_refs->lock);
942out:
943 WARN_ON(num_refs == 0);
944 if (refs)
945 *refs = num_refs;
946 if (flags)
947 *flags = extent_flags;
948out_free:
949 btrfs_free_path(path);
950 return ret;
951}
952
d8d5f3e1
CM
953/*
954 * Back reference rules. Back refs have three main goals:
955 *
956 * 1) differentiate between all holders of references to an extent so that
957 * when a reference is dropped we can make sure it was a valid reference
958 * before freeing the extent.
959 *
960 * 2) Provide enough information to quickly find the holders of an extent
961 * if we notice a given block is corrupted or bad.
962 *
963 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
964 * maintenance. This is actually the same as #2, but with a slightly
965 * different use case.
966 *
5d4f98a2
YZ
967 * There are two kinds of back refs. The implicit back refs is optimized
968 * for pointers in non-shared tree blocks. For a given pointer in a block,
969 * back refs of this kind provide information about the block's owner tree
970 * and the pointer's key. These information allow us to find the block by
971 * b-tree searching. The full back refs is for pointers in tree blocks not
972 * referenced by their owner trees. The location of tree block is recorded
973 * in the back refs. Actually the full back refs is generic, and can be
974 * used in all cases the implicit back refs is used. The major shortcoming
975 * of the full back refs is its overhead. Every time a tree block gets
976 * COWed, we have to update back refs entry for all pointers in it.
977 *
978 * For a newly allocated tree block, we use implicit back refs for
979 * pointers in it. This means most tree related operations only involve
980 * implicit back refs. For a tree block created in old transaction, the
981 * only way to drop a reference to it is COW it. So we can detect the
982 * event that tree block loses its owner tree's reference and do the
983 * back refs conversion.
984 *
01327610 985 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
986 *
987 * The reference count of the block is one and the tree is the block's
988 * owner tree. Nothing to do in this case.
989 *
990 * The reference count of the block is one and the tree is not the
991 * block's owner tree. In this case, full back refs is used for pointers
992 * in the block. Remove these full back refs, add implicit back refs for
993 * every pointers in the new block.
994 *
995 * The reference count of the block is greater than one and the tree is
996 * the block's owner tree. In this case, implicit back refs is used for
997 * pointers in the block. Add full back refs for every pointers in the
998 * block, increase lower level extents' reference counts. The original
999 * implicit back refs are entailed to the new block.
1000 *
1001 * The reference count of the block is greater than one and the tree is
1002 * not the block's owner tree. Add implicit back refs for every pointer in
1003 * the new block, increase lower level extents' reference count.
1004 *
1005 * Back Reference Key composing:
1006 *
1007 * The key objectid corresponds to the first byte in the extent,
1008 * The key type is used to differentiate between types of back refs.
1009 * There are different meanings of the key offset for different types
1010 * of back refs.
1011 *
d8d5f3e1
CM
1012 * File extents can be referenced by:
1013 *
1014 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1015 * - different files inside a single subvolume
d8d5f3e1
CM
1016 * - different offsets inside a file (bookend extents in file.c)
1017 *
5d4f98a2 1018 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1019 *
1020 * - Objectid of the subvolume root
d8d5f3e1 1021 * - objectid of the file holding the reference
5d4f98a2
YZ
1022 * - original offset in the file
1023 * - how many bookend extents
d8d5f3e1 1024 *
5d4f98a2
YZ
1025 * The key offset for the implicit back refs is hash of the first
1026 * three fields.
d8d5f3e1 1027 *
5d4f98a2 1028 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1029 *
5d4f98a2 1030 * - number of pointers in the tree leaf
d8d5f3e1 1031 *
5d4f98a2
YZ
1032 * The key offset for the implicit back refs is the first byte of
1033 * the tree leaf
d8d5f3e1 1034 *
5d4f98a2
YZ
1035 * When a file extent is allocated, The implicit back refs is used.
1036 * the fields are filled in:
d8d5f3e1 1037 *
5d4f98a2 1038 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1039 *
5d4f98a2
YZ
1040 * When a file extent is removed file truncation, we find the
1041 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1042 *
5d4f98a2 1043 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1044 *
5d4f98a2 1045 * Btree extents can be referenced by:
d8d5f3e1 1046 *
5d4f98a2 1047 * - Different subvolumes
d8d5f3e1 1048 *
5d4f98a2
YZ
1049 * Both the implicit back refs and the full back refs for tree blocks
1050 * only consist of key. The key offset for the implicit back refs is
1051 * objectid of block's owner tree. The key offset for the full back refs
1052 * is the first byte of parent block.
d8d5f3e1 1053 *
5d4f98a2
YZ
1054 * When implicit back refs is used, information about the lowest key and
1055 * level of the tree block are required. These information are stored in
1056 * tree block info structure.
d8d5f3e1 1057 */
31840ae1 1058
167ce953
LB
1059/*
1060 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
52042d8e 1061 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
167ce953
LB
1062 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1063 */
1064int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1065 struct btrfs_extent_inline_ref *iref,
1066 enum btrfs_inline_ref_type is_data)
1067{
1068 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1069 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1070
1071 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1072 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1073 type == BTRFS_SHARED_DATA_REF_KEY ||
1074 type == BTRFS_EXTENT_DATA_REF_KEY) {
1075 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1076 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1077 return type;
64ecdb64
LB
1078 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1079 ASSERT(eb->fs_info);
1080 /*
1081 * Every shared one has parent tree
1082 * block, which must be aligned to
1083 * nodesize.
1084 */
1085 if (offset &&
1086 IS_ALIGNED(offset, eb->fs_info->nodesize))
1087 return type;
1088 }
167ce953 1089 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1090 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1091 return type;
64ecdb64
LB
1092 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1093 ASSERT(eb->fs_info);
1094 /*
1095 * Every shared one has parent tree
1096 * block, which must be aligned to
1097 * nodesize.
1098 */
1099 if (offset &&
1100 IS_ALIGNED(offset, eb->fs_info->nodesize))
1101 return type;
1102 }
167ce953
LB
1103 } else {
1104 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1105 return type;
1106 }
1107 }
1108
1109 btrfs_print_leaf((struct extent_buffer *)eb);
1110 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1111 eb->start, type);
1112 WARN_ON(1);
1113
1114 return BTRFS_REF_TYPE_INVALID;
1115}
1116
5d4f98a2
YZ
1117static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1118{
1119 u32 high_crc = ~(u32)0;
1120 u32 low_crc = ~(u32)0;
1121 __le64 lenum;
1122
1123 lenum = cpu_to_le64(root_objectid);
9678c543 1124 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1125 lenum = cpu_to_le64(owner);
9678c543 1126 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1127 lenum = cpu_to_le64(offset);
9678c543 1128 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1129
1130 return ((u64)high_crc << 31) ^ (u64)low_crc;
1131}
1132
1133static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1134 struct btrfs_extent_data_ref *ref)
1135{
1136 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1137 btrfs_extent_data_ref_objectid(leaf, ref),
1138 btrfs_extent_data_ref_offset(leaf, ref));
1139}
1140
1141static int match_extent_data_ref(struct extent_buffer *leaf,
1142 struct btrfs_extent_data_ref *ref,
1143 u64 root_objectid, u64 owner, u64 offset)
1144{
1145 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1146 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1147 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1148 return 0;
1149 return 1;
1150}
1151
1152static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1153 struct btrfs_path *path,
1154 u64 bytenr, u64 parent,
1155 u64 root_objectid,
1156 u64 owner, u64 offset)
1157{
bd1d53ef 1158 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2
YZ
1159 struct btrfs_key key;
1160 struct btrfs_extent_data_ref *ref;
31840ae1 1161 struct extent_buffer *leaf;
5d4f98a2 1162 u32 nritems;
74493f7a 1163 int ret;
5d4f98a2
YZ
1164 int recow;
1165 int err = -ENOENT;
74493f7a 1166
31840ae1 1167 key.objectid = bytenr;
5d4f98a2
YZ
1168 if (parent) {
1169 key.type = BTRFS_SHARED_DATA_REF_KEY;
1170 key.offset = parent;
1171 } else {
1172 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1173 key.offset = hash_extent_data_ref(root_objectid,
1174 owner, offset);
1175 }
1176again:
1177 recow = 0;
1178 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1179 if (ret < 0) {
1180 err = ret;
1181 goto fail;
1182 }
31840ae1 1183
5d4f98a2
YZ
1184 if (parent) {
1185 if (!ret)
1186 return 0;
5d4f98a2 1187 goto fail;
31840ae1
ZY
1188 }
1189
1190 leaf = path->nodes[0];
5d4f98a2
YZ
1191 nritems = btrfs_header_nritems(leaf);
1192 while (1) {
1193 if (path->slots[0] >= nritems) {
1194 ret = btrfs_next_leaf(root, path);
1195 if (ret < 0)
1196 err = ret;
1197 if (ret)
1198 goto fail;
1199
1200 leaf = path->nodes[0];
1201 nritems = btrfs_header_nritems(leaf);
1202 recow = 1;
1203 }
1204
1205 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1206 if (key.objectid != bytenr ||
1207 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1208 goto fail;
1209
1210 ref = btrfs_item_ptr(leaf, path->slots[0],
1211 struct btrfs_extent_data_ref);
1212
1213 if (match_extent_data_ref(leaf, ref, root_objectid,
1214 owner, offset)) {
1215 if (recow) {
b3b4aa74 1216 btrfs_release_path(path);
5d4f98a2
YZ
1217 goto again;
1218 }
1219 err = 0;
1220 break;
1221 }
1222 path->slots[0]++;
31840ae1 1223 }
5d4f98a2
YZ
1224fail:
1225 return err;
31840ae1
ZY
1226}
1227
5d4f98a2 1228static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1229 struct btrfs_path *path,
1230 u64 bytenr, u64 parent,
1231 u64 root_objectid, u64 owner,
1232 u64 offset, int refs_to_add)
31840ae1 1233{
62b895af 1234 struct btrfs_root *root = trans->fs_info->extent_root;
31840ae1
ZY
1235 struct btrfs_key key;
1236 struct extent_buffer *leaf;
5d4f98a2 1237 u32 size;
31840ae1
ZY
1238 u32 num_refs;
1239 int ret;
74493f7a 1240
74493f7a 1241 key.objectid = bytenr;
5d4f98a2
YZ
1242 if (parent) {
1243 key.type = BTRFS_SHARED_DATA_REF_KEY;
1244 key.offset = parent;
1245 size = sizeof(struct btrfs_shared_data_ref);
1246 } else {
1247 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1248 key.offset = hash_extent_data_ref(root_objectid,
1249 owner, offset);
1250 size = sizeof(struct btrfs_extent_data_ref);
1251 }
74493f7a 1252
5d4f98a2
YZ
1253 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1254 if (ret && ret != -EEXIST)
1255 goto fail;
1256
1257 leaf = path->nodes[0];
1258 if (parent) {
1259 struct btrfs_shared_data_ref *ref;
31840ae1 1260 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1261 struct btrfs_shared_data_ref);
1262 if (ret == 0) {
1263 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1264 } else {
1265 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1266 num_refs += refs_to_add;
1267 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1268 }
5d4f98a2
YZ
1269 } else {
1270 struct btrfs_extent_data_ref *ref;
1271 while (ret == -EEXIST) {
1272 ref = btrfs_item_ptr(leaf, path->slots[0],
1273 struct btrfs_extent_data_ref);
1274 if (match_extent_data_ref(leaf, ref, root_objectid,
1275 owner, offset))
1276 break;
b3b4aa74 1277 btrfs_release_path(path);
5d4f98a2
YZ
1278 key.offset++;
1279 ret = btrfs_insert_empty_item(trans, root, path, &key,
1280 size);
1281 if (ret && ret != -EEXIST)
1282 goto fail;
31840ae1 1283
5d4f98a2
YZ
1284 leaf = path->nodes[0];
1285 }
1286 ref = btrfs_item_ptr(leaf, path->slots[0],
1287 struct btrfs_extent_data_ref);
1288 if (ret == 0) {
1289 btrfs_set_extent_data_ref_root(leaf, ref,
1290 root_objectid);
1291 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1292 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1293 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1294 } else {
1295 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1296 num_refs += refs_to_add;
1297 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1298 }
31840ae1 1299 }
5d4f98a2
YZ
1300 btrfs_mark_buffer_dirty(leaf);
1301 ret = 0;
1302fail:
b3b4aa74 1303 btrfs_release_path(path);
7bb86316 1304 return ret;
74493f7a
CM
1305}
1306
5d4f98a2 1307static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2 1308 struct btrfs_path *path,
fcebe456 1309 int refs_to_drop, int *last_ref)
31840ae1 1310{
5d4f98a2
YZ
1311 struct btrfs_key key;
1312 struct btrfs_extent_data_ref *ref1 = NULL;
1313 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1314 struct extent_buffer *leaf;
5d4f98a2 1315 u32 num_refs = 0;
31840ae1
ZY
1316 int ret = 0;
1317
1318 leaf = path->nodes[0];
5d4f98a2
YZ
1319 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1320
1321 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1322 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1323 struct btrfs_extent_data_ref);
1324 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1325 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1326 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1327 struct btrfs_shared_data_ref);
1328 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
6d8ff4e4 1329 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
ba3c2b19
NB
1330 btrfs_print_v0_err(trans->fs_info);
1331 btrfs_abort_transaction(trans, -EINVAL);
1332 return -EINVAL;
5d4f98a2
YZ
1333 } else {
1334 BUG();
1335 }
1336
56bec294
CM
1337 BUG_ON(num_refs < refs_to_drop);
1338 num_refs -= refs_to_drop;
5d4f98a2 1339
31840ae1 1340 if (num_refs == 0) {
e9f6290d 1341 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
fcebe456 1342 *last_ref = 1;
31840ae1 1343 } else {
5d4f98a2
YZ
1344 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1345 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1346 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1347 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
31840ae1
ZY
1348 btrfs_mark_buffer_dirty(leaf);
1349 }
31840ae1
ZY
1350 return ret;
1351}
1352
9ed0dea0 1353static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1354 struct btrfs_extent_inline_ref *iref)
15916de8 1355{
5d4f98a2
YZ
1356 struct btrfs_key key;
1357 struct extent_buffer *leaf;
1358 struct btrfs_extent_data_ref *ref1;
1359 struct btrfs_shared_data_ref *ref2;
1360 u32 num_refs = 0;
3de28d57 1361 int type;
5d4f98a2
YZ
1362
1363 leaf = path->nodes[0];
1364 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
ba3c2b19
NB
1365
1366 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
5d4f98a2 1367 if (iref) {
3de28d57
LB
1368 /*
1369 * If type is invalid, we should have bailed out earlier than
1370 * this call.
1371 */
1372 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1373 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1374 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1375 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1376 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1377 } else {
1378 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1379 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1380 }
1381 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1382 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1383 struct btrfs_extent_data_ref);
1384 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1385 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1386 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1387 struct btrfs_shared_data_ref);
1388 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
5d4f98a2
YZ
1389 } else {
1390 WARN_ON(1);
1391 }
1392 return num_refs;
1393}
15916de8 1394
5d4f98a2 1395static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1396 struct btrfs_path *path,
1397 u64 bytenr, u64 parent,
1398 u64 root_objectid)
1f3c79a2 1399{
b8582eea 1400 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2 1401 struct btrfs_key key;
1f3c79a2 1402 int ret;
1f3c79a2 1403
5d4f98a2
YZ
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1f3c79a2
LH
1411 }
1412
5d4f98a2
YZ
1413 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1414 if (ret > 0)
1415 ret = -ENOENT;
5d4f98a2 1416 return ret;
1f3c79a2
LH
1417}
1418
5d4f98a2 1419static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1420 struct btrfs_path *path,
1421 u64 bytenr, u64 parent,
1422 u64 root_objectid)
31840ae1 1423{
5d4f98a2 1424 struct btrfs_key key;
31840ae1 1425 int ret;
31840ae1 1426
5d4f98a2
YZ
1427 key.objectid = bytenr;
1428 if (parent) {
1429 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1430 key.offset = parent;
1431 } else {
1432 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1433 key.offset = root_objectid;
1434 }
1435
10728404 1436 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
87bde3cd 1437 path, &key, 0);
b3b4aa74 1438 btrfs_release_path(path);
31840ae1
ZY
1439 return ret;
1440}
1441
5d4f98a2 1442static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1443{
5d4f98a2
YZ
1444 int type;
1445 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1446 if (parent > 0)
1447 type = BTRFS_SHARED_BLOCK_REF_KEY;
1448 else
1449 type = BTRFS_TREE_BLOCK_REF_KEY;
1450 } else {
1451 if (parent > 0)
1452 type = BTRFS_SHARED_DATA_REF_KEY;
1453 else
1454 type = BTRFS_EXTENT_DATA_REF_KEY;
1455 }
1456 return type;
31840ae1 1457}
56bec294 1458
2c47e605
YZ
1459static int find_next_key(struct btrfs_path *path, int level,
1460 struct btrfs_key *key)
56bec294 1461
02217ed2 1462{
2c47e605 1463 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1464 if (!path->nodes[level])
1465 break;
5d4f98a2
YZ
1466 if (path->slots[level] + 1 >=
1467 btrfs_header_nritems(path->nodes[level]))
1468 continue;
1469 if (level == 0)
1470 btrfs_item_key_to_cpu(path->nodes[level], key,
1471 path->slots[level] + 1);
1472 else
1473 btrfs_node_key_to_cpu(path->nodes[level], key,
1474 path->slots[level] + 1);
1475 return 0;
1476 }
1477 return 1;
1478}
037e6390 1479
5d4f98a2
YZ
1480/*
1481 * look for inline back ref. if back ref is found, *ref_ret is set
1482 * to the address of inline back ref, and 0 is returned.
1483 *
1484 * if back ref isn't found, *ref_ret is set to the address where it
1485 * should be inserted, and -ENOENT is returned.
1486 *
1487 * if insert is true and there are too many inline back refs, the path
1488 * points to the extent item, and -EAGAIN is returned.
1489 *
1490 * NOTE: inline back refs are ordered in the same way that back ref
1491 * items in the tree are ordered.
1492 */
1493static noinline_for_stack
1494int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1495 struct btrfs_path *path,
1496 struct btrfs_extent_inline_ref **ref_ret,
1497 u64 bytenr, u64 num_bytes,
1498 u64 parent, u64 root_objectid,
1499 u64 owner, u64 offset, int insert)
1500{
867cc1fb 1501 struct btrfs_fs_info *fs_info = trans->fs_info;
87bde3cd 1502 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1503 struct btrfs_key key;
1504 struct extent_buffer *leaf;
1505 struct btrfs_extent_item *ei;
1506 struct btrfs_extent_inline_ref *iref;
1507 u64 flags;
1508 u64 item_size;
1509 unsigned long ptr;
1510 unsigned long end;
1511 int extra_size;
1512 int type;
1513 int want;
1514 int ret;
1515 int err = 0;
0b246afa 1516 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1517 int needed;
26b8003f 1518
db94535d 1519 key.objectid = bytenr;
31840ae1 1520 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1521 key.offset = num_bytes;
31840ae1 1522
5d4f98a2
YZ
1523 want = extent_ref_type(parent, owner);
1524 if (insert) {
1525 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1526 path->keep_locks = 1;
5d4f98a2
YZ
1527 } else
1528 extra_size = -1;
3173a18f
JB
1529
1530 /*
16d1c062
NB
1531 * Owner is our level, so we can just add one to get the level for the
1532 * block we are interested in.
3173a18f
JB
1533 */
1534 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1535 key.type = BTRFS_METADATA_ITEM_KEY;
1536 key.offset = owner;
1537 }
1538
1539again:
5d4f98a2 1540 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1541 if (ret < 0) {
5d4f98a2
YZ
1542 err = ret;
1543 goto out;
1544 }
3173a18f
JB
1545
1546 /*
1547 * We may be a newly converted file system which still has the old fat
1548 * extent entries for metadata, so try and see if we have one of those.
1549 */
1550 if (ret > 0 && skinny_metadata) {
1551 skinny_metadata = false;
1552 if (path->slots[0]) {
1553 path->slots[0]--;
1554 btrfs_item_key_to_cpu(path->nodes[0], &key,
1555 path->slots[0]);
1556 if (key.objectid == bytenr &&
1557 key.type == BTRFS_EXTENT_ITEM_KEY &&
1558 key.offset == num_bytes)
1559 ret = 0;
1560 }
1561 if (ret) {
9ce49a0b 1562 key.objectid = bytenr;
3173a18f
JB
1563 key.type = BTRFS_EXTENT_ITEM_KEY;
1564 key.offset = num_bytes;
1565 btrfs_release_path(path);
1566 goto again;
1567 }
1568 }
1569
79787eaa
JM
1570 if (ret && !insert) {
1571 err = -ENOENT;
1572 goto out;
fae7f21c 1573 } else if (WARN_ON(ret)) {
492104c8 1574 err = -EIO;
492104c8 1575 goto out;
79787eaa 1576 }
5d4f98a2
YZ
1577
1578 leaf = path->nodes[0];
1579 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6d8ff4e4 1580 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
1581 err = -EINVAL;
1582 btrfs_print_v0_err(fs_info);
1583 btrfs_abort_transaction(trans, err);
1584 goto out;
1585 }
5d4f98a2 1586
5d4f98a2
YZ
1587 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1588 flags = btrfs_extent_flags(leaf, ei);
1589
1590 ptr = (unsigned long)(ei + 1);
1591 end = (unsigned long)ei + item_size;
1592
3173a18f 1593 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1594 ptr += sizeof(struct btrfs_tree_block_info);
1595 BUG_ON(ptr > end);
5d4f98a2
YZ
1596 }
1597
3de28d57
LB
1598 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1599 needed = BTRFS_REF_TYPE_DATA;
1600 else
1601 needed = BTRFS_REF_TYPE_BLOCK;
1602
5d4f98a2
YZ
1603 err = -ENOENT;
1604 while (1) {
1605 if (ptr >= end) {
1606 WARN_ON(ptr > end);
1607 break;
1608 }
1609 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1610 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1611 if (type == BTRFS_REF_TYPE_INVALID) {
af431dcb 1612 err = -EUCLEAN;
3de28d57
LB
1613 goto out;
1614 }
1615
5d4f98a2
YZ
1616 if (want < type)
1617 break;
1618 if (want > type) {
1619 ptr += btrfs_extent_inline_ref_size(type);
1620 continue;
1621 }
1622
1623 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1624 struct btrfs_extent_data_ref *dref;
1625 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1626 if (match_extent_data_ref(leaf, dref, root_objectid,
1627 owner, offset)) {
1628 err = 0;
1629 break;
1630 }
1631 if (hash_extent_data_ref_item(leaf, dref) <
1632 hash_extent_data_ref(root_objectid, owner, offset))
1633 break;
1634 } else {
1635 u64 ref_offset;
1636 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1637 if (parent > 0) {
1638 if (parent == ref_offset) {
1639 err = 0;
1640 break;
1641 }
1642 if (ref_offset < parent)
1643 break;
1644 } else {
1645 if (root_objectid == ref_offset) {
1646 err = 0;
1647 break;
1648 }
1649 if (ref_offset < root_objectid)
1650 break;
1651 }
1652 }
1653 ptr += btrfs_extent_inline_ref_size(type);
1654 }
1655 if (err == -ENOENT && insert) {
1656 if (item_size + extra_size >=
1657 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1658 err = -EAGAIN;
1659 goto out;
1660 }
1661 /*
1662 * To add new inline back ref, we have to make sure
1663 * there is no corresponding back ref item.
1664 * For simplicity, we just do not add new inline back
1665 * ref if there is any kind of item for this block
1666 */
2c47e605
YZ
1667 if (find_next_key(path, 0, &key) == 0 &&
1668 key.objectid == bytenr &&
85d4198e 1669 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1670 err = -EAGAIN;
1671 goto out;
1672 }
1673 }
1674 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1675out:
85d4198e 1676 if (insert) {
5d4f98a2
YZ
1677 path->keep_locks = 0;
1678 btrfs_unlock_up_safe(path, 1);
1679 }
1680 return err;
1681}
1682
1683/*
1684 * helper to add new inline back ref
1685 */
1686static noinline_for_stack
87bde3cd 1687void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1688 struct btrfs_path *path,
1689 struct btrfs_extent_inline_ref *iref,
1690 u64 parent, u64 root_objectid,
1691 u64 owner, u64 offset, int refs_to_add,
1692 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1693{
1694 struct extent_buffer *leaf;
1695 struct btrfs_extent_item *ei;
1696 unsigned long ptr;
1697 unsigned long end;
1698 unsigned long item_offset;
1699 u64 refs;
1700 int size;
1701 int type;
5d4f98a2
YZ
1702
1703 leaf = path->nodes[0];
1704 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1705 item_offset = (unsigned long)iref - (unsigned long)ei;
1706
1707 type = extent_ref_type(parent, owner);
1708 size = btrfs_extent_inline_ref_size(type);
1709
c71dd880 1710 btrfs_extend_item(path, size);
5d4f98a2
YZ
1711
1712 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1713 refs = btrfs_extent_refs(leaf, ei);
1714 refs += refs_to_add;
1715 btrfs_set_extent_refs(leaf, ei, refs);
1716 if (extent_op)
1717 __run_delayed_extent_op(extent_op, leaf, ei);
1718
1719 ptr = (unsigned long)ei + item_offset;
1720 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1721 if (ptr < end - size)
1722 memmove_extent_buffer(leaf, ptr + size, ptr,
1723 end - size - ptr);
1724
1725 iref = (struct btrfs_extent_inline_ref *)ptr;
1726 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1727 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1728 struct btrfs_extent_data_ref *dref;
1729 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1730 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1731 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1732 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1733 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1734 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1735 struct btrfs_shared_data_ref *sref;
1736 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1737 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1738 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1739 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1740 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1741 } else {
1742 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1743 }
1744 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1745}
1746
1747static int lookup_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1748 struct btrfs_path *path,
1749 struct btrfs_extent_inline_ref **ref_ret,
1750 u64 bytenr, u64 num_bytes, u64 parent,
1751 u64 root_objectid, u64 owner, u64 offset)
1752{
1753 int ret;
1754
867cc1fb
NB
1755 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1756 num_bytes, parent, root_objectid,
1757 owner, offset, 0);
5d4f98a2 1758 if (ret != -ENOENT)
54aa1f4d 1759 return ret;
5d4f98a2 1760
b3b4aa74 1761 btrfs_release_path(path);
5d4f98a2
YZ
1762 *ref_ret = NULL;
1763
1764 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
b8582eea
NB
1765 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1766 root_objectid);
5d4f98a2 1767 } else {
bd1d53ef
NB
1768 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1769 root_objectid, owner, offset);
b9473439 1770 }
5d4f98a2
YZ
1771 return ret;
1772}
31840ae1 1773
5d4f98a2
YZ
1774/*
1775 * helper to update/remove inline back ref
1776 */
1777static noinline_for_stack
61a18f1c 1778void update_inline_extent_backref(struct btrfs_path *path,
143bede5
JM
1779 struct btrfs_extent_inline_ref *iref,
1780 int refs_to_mod,
fcebe456
JB
1781 struct btrfs_delayed_extent_op *extent_op,
1782 int *last_ref)
5d4f98a2 1783{
61a18f1c 1784 struct extent_buffer *leaf = path->nodes[0];
5d4f98a2
YZ
1785 struct btrfs_extent_item *ei;
1786 struct btrfs_extent_data_ref *dref = NULL;
1787 struct btrfs_shared_data_ref *sref = NULL;
1788 unsigned long ptr;
1789 unsigned long end;
1790 u32 item_size;
1791 int size;
1792 int type;
5d4f98a2
YZ
1793 u64 refs;
1794
5d4f98a2
YZ
1795 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1796 refs = btrfs_extent_refs(leaf, ei);
1797 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1798 refs += refs_to_mod;
1799 btrfs_set_extent_refs(leaf, ei, refs);
1800 if (extent_op)
1801 __run_delayed_extent_op(extent_op, leaf, ei);
1802
3de28d57
LB
1803 /*
1804 * If type is invalid, we should have bailed out after
1805 * lookup_inline_extent_backref().
1806 */
1807 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1808 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1809
1810 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1811 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1812 refs = btrfs_extent_data_ref_count(leaf, dref);
1813 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1814 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1815 refs = btrfs_shared_data_ref_count(leaf, sref);
1816 } else {
1817 refs = 1;
1818 BUG_ON(refs_to_mod != -1);
56bec294 1819 }
31840ae1 1820
5d4f98a2
YZ
1821 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1822 refs += refs_to_mod;
1823
1824 if (refs > 0) {
1825 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1826 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1827 else
1828 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1829 } else {
fcebe456 1830 *last_ref = 1;
5d4f98a2
YZ
1831 size = btrfs_extent_inline_ref_size(type);
1832 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1833 ptr = (unsigned long)iref;
1834 end = (unsigned long)ei + item_size;
1835 if (ptr + size < end)
1836 memmove_extent_buffer(leaf, ptr, ptr + size,
1837 end - ptr - size);
1838 item_size -= size;
78ac4f9e 1839 btrfs_truncate_item(path, item_size, 1);
5d4f98a2
YZ
1840 }
1841 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1842}
1843
1844static noinline_for_stack
1845int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1846 struct btrfs_path *path,
1847 u64 bytenr, u64 num_bytes, u64 parent,
1848 u64 root_objectid, u64 owner,
1849 u64 offset, int refs_to_add,
1850 struct btrfs_delayed_extent_op *extent_op)
1851{
1852 struct btrfs_extent_inline_ref *iref;
1853 int ret;
1854
867cc1fb
NB
1855 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1856 num_bytes, parent, root_objectid,
1857 owner, offset, 1);
5d4f98a2
YZ
1858 if (ret == 0) {
1859 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
61a18f1c
NB
1860 update_inline_extent_backref(path, iref, refs_to_add,
1861 extent_op, NULL);
5d4f98a2 1862 } else if (ret == -ENOENT) {
a639cdeb 1863 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
143bede5
JM
1864 root_objectid, owner, offset,
1865 refs_to_add, extent_op);
1866 ret = 0;
771ed689 1867 }
5d4f98a2
YZ
1868 return ret;
1869}
31840ae1 1870
5d4f98a2 1871static int insert_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1872 struct btrfs_path *path,
1873 u64 bytenr, u64 parent, u64 root_objectid,
1874 u64 owner, u64 offset, int refs_to_add)
1875{
1876 int ret;
1877 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1878 BUG_ON(refs_to_add != 1);
10728404
NB
1879 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1880 root_objectid);
5d4f98a2 1881 } else {
62b895af
NB
1882 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1883 root_objectid, owner, offset,
1884 refs_to_add);
5d4f98a2
YZ
1885 }
1886 return ret;
1887}
56bec294 1888
5d4f98a2 1889static int remove_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1890 struct btrfs_path *path,
1891 struct btrfs_extent_inline_ref *iref,
fcebe456 1892 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1893{
143bede5 1894 int ret = 0;
b9473439 1895
5d4f98a2
YZ
1896 BUG_ON(!is_data && refs_to_drop != 1);
1897 if (iref) {
61a18f1c
NB
1898 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1899 last_ref);
5d4f98a2 1900 } else if (is_data) {
e9f6290d 1901 ret = remove_extent_data_ref(trans, path, refs_to_drop,
fcebe456 1902 last_ref);
5d4f98a2 1903 } else {
fcebe456 1904 *last_ref = 1;
87cc7a8a 1905 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
5d4f98a2
YZ
1906 }
1907 return ret;
1908}
1909
d04c6b88
JM
1910static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1911 u64 *discarded_bytes)
5d4f98a2 1912{
86557861
JM
1913 int j, ret = 0;
1914 u64 bytes_left, end;
4d89d377 1915 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1916
4d89d377
JM
1917 if (WARN_ON(start != aligned_start)) {
1918 len -= aligned_start - start;
1919 len = round_down(len, 1 << 9);
1920 start = aligned_start;
1921 }
d04c6b88 1922
4d89d377 1923 *discarded_bytes = 0;
86557861
JM
1924
1925 if (!len)
1926 return 0;
1927
1928 end = start + len;
1929 bytes_left = len;
1930
1931 /* Skip any superblocks on this device. */
1932 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1933 u64 sb_start = btrfs_sb_offset(j);
1934 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1935 u64 size = sb_start - start;
1936
1937 if (!in_range(sb_start, start, bytes_left) &&
1938 !in_range(sb_end, start, bytes_left) &&
1939 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1940 continue;
1941
1942 /*
1943 * Superblock spans beginning of range. Adjust start and
1944 * try again.
1945 */
1946 if (sb_start <= start) {
1947 start += sb_end - start;
1948 if (start > end) {
1949 bytes_left = 0;
1950 break;
1951 }
1952 bytes_left = end - start;
1953 continue;
1954 }
1955
1956 if (size) {
1957 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1958 GFP_NOFS, 0);
1959 if (!ret)
1960 *discarded_bytes += size;
1961 else if (ret != -EOPNOTSUPP)
1962 return ret;
1963 }
1964
1965 start = sb_end;
1966 if (start > end) {
1967 bytes_left = 0;
1968 break;
1969 }
1970 bytes_left = end - start;
1971 }
1972
1973 if (bytes_left) {
1974 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1975 GFP_NOFS, 0);
1976 if (!ret)
86557861 1977 *discarded_bytes += bytes_left;
4d89d377 1978 }
d04c6b88 1979 return ret;
5d4f98a2 1980}
5d4f98a2 1981
2ff7e61e 1982int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 1983 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1984{
5d4f98a2 1985 int ret;
5378e607 1986 u64 discarded_bytes = 0;
a1d3c478 1987 struct btrfs_bio *bbio = NULL;
5d4f98a2 1988
e244a0ae 1989
2999241d
FM
1990 /*
1991 * Avoid races with device replace and make sure our bbio has devices
1992 * associated to its stripes that don't go away while we are discarding.
1993 */
0b246afa 1994 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 1995 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
1996 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1997 &bbio, 0);
79787eaa 1998 /* Error condition is -ENOMEM */
5d4f98a2 1999 if (!ret) {
a1d3c478 2000 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2001 int i;
2002
5d4f98a2 2003
a1d3c478 2004 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2005 u64 bytes;
38b5f68e
AJ
2006 struct request_queue *req_q;
2007
627e0873
FM
2008 if (!stripe->dev->bdev) {
2009 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2010 continue;
2011 }
38b5f68e
AJ
2012 req_q = bdev_get_queue(stripe->dev->bdev);
2013 if (!blk_queue_discard(req_q))
d5e2003c
JB
2014 continue;
2015
5378e607
LD
2016 ret = btrfs_issue_discard(stripe->dev->bdev,
2017 stripe->physical,
d04c6b88
JM
2018 stripe->length,
2019 &bytes);
5378e607 2020 if (!ret)
d04c6b88 2021 discarded_bytes += bytes;
5378e607 2022 else if (ret != -EOPNOTSUPP)
79787eaa 2023 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2024
2025 /*
2026 * Just in case we get back EOPNOTSUPP for some reason,
2027 * just ignore the return value so we don't screw up
2028 * people calling discard_extent.
2029 */
2030 ret = 0;
5d4f98a2 2031 }
6e9606d2 2032 btrfs_put_bbio(bbio);
5d4f98a2 2033 }
0b246afa 2034 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2035
2036 if (actual_bytes)
2037 *actual_bytes = discarded_bytes;
2038
5d4f98a2 2039
53b381b3
DW
2040 if (ret == -EOPNOTSUPP)
2041 ret = 0;
5d4f98a2 2042 return ret;
5d4f98a2
YZ
2043}
2044
79787eaa 2045/* Can return -ENOMEM */
5d4f98a2 2046int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
82fa113f 2047 struct btrfs_ref *generic_ref)
5d4f98a2 2048{
82fa113f 2049 struct btrfs_fs_info *fs_info = trans->fs_info;
d7eae340 2050 int old_ref_mod, new_ref_mod;
5d4f98a2 2051 int ret;
66d7e7f0 2052
82fa113f
QW
2053 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
2054 generic_ref->action);
2055 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
2056 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 2057
82fa113f
QW
2058 if (generic_ref->type == BTRFS_REF_METADATA)
2059 ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
ed4f255b 2060 NULL, &old_ref_mod, &new_ref_mod);
82fa113f
QW
2061 else
2062 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
d7eae340 2063 &old_ref_mod, &new_ref_mod);
d7eae340 2064
82fa113f 2065 btrfs_ref_tree_mod(fs_info, generic_ref);
8a5040f7 2066
ddf30cf0 2067 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
14ae4ec1 2068 add_pinned_bytes(fs_info, generic_ref, -1);
d7eae340 2069
5d4f98a2
YZ
2070 return ret;
2071}
2072
bd3c685e
NB
2073/*
2074 * __btrfs_inc_extent_ref - insert backreference for a given extent
2075 *
2076 * @trans: Handle of transaction
2077 *
2078 * @node: The delayed ref node used to get the bytenr/length for
2079 * extent whose references are incremented.
2080 *
2081 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2082 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2083 * bytenr of the parent block. Since new extents are always
2084 * created with indirect references, this will only be the case
2085 * when relocating a shared extent. In that case, root_objectid
2086 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2087 * be 0
2088 *
2089 * @root_objectid: The id of the root where this modification has originated,
2090 * this can be either one of the well-known metadata trees or
2091 * the subvolume id which references this extent.
2092 *
2093 * @owner: For data extents it is the inode number of the owning file.
2094 * For metadata extents this parameter holds the level in the
2095 * tree of the extent.
2096 *
2097 * @offset: For metadata extents the offset is ignored and is currently
2098 * always passed as 0. For data extents it is the fileoffset
2099 * this extent belongs to.
2100 *
2101 * @refs_to_add Number of references to add
2102 *
2103 * @extent_op Pointer to a structure, holding information necessary when
2104 * updating a tree block's flags
2105 *
2106 */
5d4f98a2 2107static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
c682f9b3 2108 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2109 u64 parent, u64 root_objectid,
2110 u64 owner, u64 offset, int refs_to_add,
2111 struct btrfs_delayed_extent_op *extent_op)
2112{
2113 struct btrfs_path *path;
2114 struct extent_buffer *leaf;
2115 struct btrfs_extent_item *item;
fcebe456 2116 struct btrfs_key key;
c682f9b3
QW
2117 u64 bytenr = node->bytenr;
2118 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2119 u64 refs;
2120 int ret;
5d4f98a2
YZ
2121
2122 path = btrfs_alloc_path();
2123 if (!path)
2124 return -ENOMEM;
2125
e4058b54 2126 path->reada = READA_FORWARD;
5d4f98a2
YZ
2127 path->leave_spinning = 1;
2128 /* this will setup the path even if it fails to insert the back ref */
a639cdeb
NB
2129 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2130 parent, root_objectid, owner,
2131 offset, refs_to_add, extent_op);
0ed4792a 2132 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2133 goto out;
fcebe456
JB
2134
2135 /*
2136 * Ok we had -EAGAIN which means we didn't have space to insert and
2137 * inline extent ref, so just update the reference count and add a
2138 * normal backref.
2139 */
5d4f98a2 2140 leaf = path->nodes[0];
fcebe456 2141 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2142 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2143 refs = btrfs_extent_refs(leaf, item);
2144 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2145 if (extent_op)
2146 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2147
5d4f98a2 2148 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2149 btrfs_release_path(path);
56bec294 2150
e4058b54 2151 path->reada = READA_FORWARD;
b9473439 2152 path->leave_spinning = 1;
56bec294 2153 /* now insert the actual backref */
37593410
NB
2154 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2155 owner, offset, refs_to_add);
79787eaa 2156 if (ret)
66642832 2157 btrfs_abort_transaction(trans, ret);
5d4f98a2 2158out:
56bec294 2159 btrfs_free_path(path);
30d133fc 2160 return ret;
56bec294
CM
2161}
2162
5d4f98a2 2163static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2164 struct btrfs_delayed_ref_node *node,
2165 struct btrfs_delayed_extent_op *extent_op,
2166 int insert_reserved)
56bec294 2167{
5d4f98a2
YZ
2168 int ret = 0;
2169 struct btrfs_delayed_data_ref *ref;
2170 struct btrfs_key ins;
2171 u64 parent = 0;
2172 u64 ref_root = 0;
2173 u64 flags = 0;
2174
2175 ins.objectid = node->bytenr;
2176 ins.offset = node->num_bytes;
2177 ins.type = BTRFS_EXTENT_ITEM_KEY;
2178
2179 ref = btrfs_delayed_node_to_data_ref(node);
2bf98ef3 2180 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
599c75ec 2181
5d4f98a2
YZ
2182 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2183 parent = ref->parent;
fcebe456 2184 ref_root = ref->root;
5d4f98a2
YZ
2185
2186 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2187 if (extent_op)
5d4f98a2 2188 flags |= extent_op->flags_to_set;
ef89b824
NB
2189 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2190 flags, ref->objectid,
2191 ref->offset, &ins,
2192 node->ref_mod);
5d4f98a2 2193 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2194 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2195 ref->objectid, ref->offset,
2196 node->ref_mod, extent_op);
5d4f98a2 2197 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2198 ret = __btrfs_free_extent(trans, node, parent,
5d4f98a2
YZ
2199 ref_root, ref->objectid,
2200 ref->offset, node->ref_mod,
c682f9b3 2201 extent_op);
5d4f98a2
YZ
2202 } else {
2203 BUG();
2204 }
2205 return ret;
2206}
2207
2208static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2209 struct extent_buffer *leaf,
2210 struct btrfs_extent_item *ei)
2211{
2212 u64 flags = btrfs_extent_flags(leaf, ei);
2213 if (extent_op->update_flags) {
2214 flags |= extent_op->flags_to_set;
2215 btrfs_set_extent_flags(leaf, ei, flags);
2216 }
2217
2218 if (extent_op->update_key) {
2219 struct btrfs_tree_block_info *bi;
2220 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2221 bi = (struct btrfs_tree_block_info *)(ei + 1);
2222 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2223 }
2224}
2225
2226static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
d278850e 2227 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2228 struct btrfs_delayed_extent_op *extent_op)
2229{
20b9a2d6 2230 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
2231 struct btrfs_key key;
2232 struct btrfs_path *path;
2233 struct btrfs_extent_item *ei;
2234 struct extent_buffer *leaf;
2235 u32 item_size;
56bec294 2236 int ret;
5d4f98a2 2237 int err = 0;
b1c79e09 2238 int metadata = !extent_op->is_data;
5d4f98a2 2239
79787eaa
JM
2240 if (trans->aborted)
2241 return 0;
2242
0b246afa 2243 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2244 metadata = 0;
2245
5d4f98a2
YZ
2246 path = btrfs_alloc_path();
2247 if (!path)
2248 return -ENOMEM;
2249
d278850e 2250 key.objectid = head->bytenr;
5d4f98a2 2251
3173a18f 2252 if (metadata) {
3173a18f 2253 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2254 key.offset = extent_op->level;
3173a18f
JB
2255 } else {
2256 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2257 key.offset = head->num_bytes;
3173a18f
JB
2258 }
2259
2260again:
e4058b54 2261 path->reada = READA_FORWARD;
5d4f98a2 2262 path->leave_spinning = 1;
0b246afa 2263 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2264 if (ret < 0) {
2265 err = ret;
2266 goto out;
2267 }
2268 if (ret > 0) {
3173a18f 2269 if (metadata) {
55994887
FDBM
2270 if (path->slots[0] > 0) {
2271 path->slots[0]--;
2272 btrfs_item_key_to_cpu(path->nodes[0], &key,
2273 path->slots[0]);
d278850e 2274 if (key.objectid == head->bytenr &&
55994887 2275 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2276 key.offset == head->num_bytes)
55994887
FDBM
2277 ret = 0;
2278 }
2279 if (ret > 0) {
2280 btrfs_release_path(path);
2281 metadata = 0;
3173a18f 2282
d278850e
JB
2283 key.objectid = head->bytenr;
2284 key.offset = head->num_bytes;
55994887
FDBM
2285 key.type = BTRFS_EXTENT_ITEM_KEY;
2286 goto again;
2287 }
2288 } else {
2289 err = -EIO;
2290 goto out;
3173a18f 2291 }
5d4f98a2
YZ
2292 }
2293
2294 leaf = path->nodes[0];
2295 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ba3c2b19 2296
6d8ff4e4 2297 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
2298 err = -EINVAL;
2299 btrfs_print_v0_err(fs_info);
2300 btrfs_abort_transaction(trans, err);
2301 goto out;
2302 }
2303
5d4f98a2
YZ
2304 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2305 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2306
5d4f98a2
YZ
2307 btrfs_mark_buffer_dirty(leaf);
2308out:
2309 btrfs_free_path(path);
2310 return err;
56bec294
CM
2311}
2312
5d4f98a2 2313static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2314 struct btrfs_delayed_ref_node *node,
2315 struct btrfs_delayed_extent_op *extent_op,
2316 int insert_reserved)
56bec294
CM
2317{
2318 int ret = 0;
5d4f98a2 2319 struct btrfs_delayed_tree_ref *ref;
5d4f98a2
YZ
2320 u64 parent = 0;
2321 u64 ref_root = 0;
56bec294 2322
5d4f98a2 2323 ref = btrfs_delayed_node_to_tree_ref(node);
f97806f2 2324 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
599c75ec 2325
5d4f98a2
YZ
2326 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2327 parent = ref->parent;
fcebe456 2328 ref_root = ref->root;
5d4f98a2 2329
02794222 2330 if (node->ref_mod != 1) {
f97806f2 2331 btrfs_err(trans->fs_info,
02794222
LB
2332 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2333 node->bytenr, node->ref_mod, node->action, ref_root,
2334 parent);
2335 return -EIO;
2336 }
5d4f98a2 2337 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2338 BUG_ON(!extent_op || !extent_op->update_flags);
21ebfbe7 2339 ret = alloc_reserved_tree_block(trans, node, extent_op);
5d4f98a2 2340 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2341 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2342 ref->level, 0, 1, extent_op);
5d4f98a2 2343 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2344 ret = __btrfs_free_extent(trans, node, parent, ref_root,
c682f9b3 2345 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2346 } else {
2347 BUG();
2348 }
56bec294
CM
2349 return ret;
2350}
2351
2352/* helper function to actually process a single delayed ref entry */
5d4f98a2 2353static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2354 struct btrfs_delayed_ref_node *node,
2355 struct btrfs_delayed_extent_op *extent_op,
2356 int insert_reserved)
56bec294 2357{
79787eaa
JM
2358 int ret = 0;
2359
857cc2fc
JB
2360 if (trans->aborted) {
2361 if (insert_reserved)
5fac7f9e 2362 btrfs_pin_extent(trans->fs_info, node->bytenr,
857cc2fc 2363 node->num_bytes, 1);
79787eaa 2364 return 0;
857cc2fc 2365 }
79787eaa 2366
5d4f98a2
YZ
2367 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2368 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
f97806f2 2369 ret = run_delayed_tree_ref(trans, node, extent_op,
5d4f98a2
YZ
2370 insert_reserved);
2371 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2372 node->type == BTRFS_SHARED_DATA_REF_KEY)
2bf98ef3 2373 ret = run_delayed_data_ref(trans, node, extent_op,
5d4f98a2
YZ
2374 insert_reserved);
2375 else
2376 BUG();
80ee54bf
JB
2377 if (ret && insert_reserved)
2378 btrfs_pin_extent(trans->fs_info, node->bytenr,
2379 node->num_bytes, 1);
5d4f98a2 2380 return ret;
56bec294
CM
2381}
2382
c6fc2454 2383static inline struct btrfs_delayed_ref_node *
56bec294
CM
2384select_delayed_ref(struct btrfs_delayed_ref_head *head)
2385{
cffc3374
FM
2386 struct btrfs_delayed_ref_node *ref;
2387
e3d03965 2388 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
c6fc2454 2389 return NULL;
d7df2c79 2390
cffc3374
FM
2391 /*
2392 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2393 * This is to prevent a ref count from going down to zero, which deletes
2394 * the extent item from the extent tree, when there still are references
2395 * to add, which would fail because they would not find the extent item.
2396 */
1d57ee94
WX
2397 if (!list_empty(&head->ref_add_list))
2398 return list_first_entry(&head->ref_add_list,
2399 struct btrfs_delayed_ref_node, add_list);
2400
e3d03965 2401 ref = rb_entry(rb_first_cached(&head->ref_tree),
0e0adbcf 2402 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2403 ASSERT(list_empty(&ref->add_list));
2404 return ref;
56bec294
CM
2405}
2406
2eadaa22
JB
2407static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2408 struct btrfs_delayed_ref_head *head)
2409{
2410 spin_lock(&delayed_refs->lock);
2411 head->processing = 0;
2412 delayed_refs->num_heads_ready++;
2413 spin_unlock(&delayed_refs->lock);
2414 btrfs_delayed_ref_unlock(head);
2415}
2416
bedc6617
JB
2417static struct btrfs_delayed_extent_op *cleanup_extent_op(
2418 struct btrfs_delayed_ref_head *head)
b00e6250
JB
2419{
2420 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
b00e6250
JB
2421
2422 if (!extent_op)
bedc6617
JB
2423 return NULL;
2424
b00e6250 2425 if (head->must_insert_reserved) {
bedc6617 2426 head->extent_op = NULL;
b00e6250 2427 btrfs_free_delayed_extent_op(extent_op);
bedc6617 2428 return NULL;
b00e6250 2429 }
bedc6617
JB
2430 return extent_op;
2431}
2432
2433static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
2434 struct btrfs_delayed_ref_head *head)
2435{
2436 struct btrfs_delayed_extent_op *extent_op;
2437 int ret;
2438
2439 extent_op = cleanup_extent_op(head);
2440 if (!extent_op)
2441 return 0;
2442 head->extent_op = NULL;
b00e6250 2443 spin_unlock(&head->lock);
20b9a2d6 2444 ret = run_delayed_extent_op(trans, head, extent_op);
b00e6250
JB
2445 btrfs_free_delayed_extent_op(extent_op);
2446 return ret ? ret : 1;
2447}
2448
31890da0
JB
2449void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2450 struct btrfs_delayed_ref_root *delayed_refs,
2451 struct btrfs_delayed_ref_head *head)
07c47775 2452{
ba2c4d4e 2453 int nr_items = 1; /* Dropping this ref head update. */
07c47775
JB
2454
2455 if (head->total_ref_mod < 0) {
2456 struct btrfs_space_info *space_info;
2457 u64 flags;
2458
2459 if (head->is_data)
2460 flags = BTRFS_BLOCK_GROUP_DATA;
2461 else if (head->is_system)
2462 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2463 else
2464 flags = BTRFS_BLOCK_GROUP_METADATA;
2465 space_info = __find_space_info(fs_info, flags);
2466 ASSERT(space_info);
2467 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2468 -head->num_bytes,
2469 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2470
ba2c4d4e
JB
2471 /*
2472 * We had csum deletions accounted for in our delayed refs rsv,
2473 * we need to drop the csum leaves for this update from our
2474 * delayed_refs_rsv.
2475 */
07c47775
JB
2476 if (head->is_data) {
2477 spin_lock(&delayed_refs->lock);
2478 delayed_refs->pending_csums -= head->num_bytes;
2479 spin_unlock(&delayed_refs->lock);
ba2c4d4e
JB
2480 nr_items += btrfs_csum_bytes_to_leaves(fs_info,
2481 head->num_bytes);
07c47775
JB
2482 }
2483 }
2484
ba2c4d4e 2485 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
07c47775
JB
2486}
2487
194ab0bc 2488static int cleanup_ref_head(struct btrfs_trans_handle *trans,
194ab0bc
JB
2489 struct btrfs_delayed_ref_head *head)
2490{
f9871edd
NB
2491
2492 struct btrfs_fs_info *fs_info = trans->fs_info;
194ab0bc
JB
2493 struct btrfs_delayed_ref_root *delayed_refs;
2494 int ret;
2495
2496 delayed_refs = &trans->transaction->delayed_refs;
2497
bedc6617 2498 ret = run_and_cleanup_extent_op(trans, head);
194ab0bc
JB
2499 if (ret < 0) {
2500 unselect_delayed_ref_head(delayed_refs, head);
2501 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2502 return ret;
2503 } else if (ret) {
2504 return ret;
2505 }
2506
2507 /*
2508 * Need to drop our head ref lock and re-acquire the delayed ref lock
2509 * and then re-check to make sure nobody got added.
2510 */
2511 spin_unlock(&head->lock);
2512 spin_lock(&delayed_refs->lock);
2513 spin_lock(&head->lock);
e3d03965 2514 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
194ab0bc
JB
2515 spin_unlock(&head->lock);
2516 spin_unlock(&delayed_refs->lock);
2517 return 1;
2518 }
d7baffda 2519 btrfs_delete_ref_head(delayed_refs, head);
c1103f7a 2520 spin_unlock(&head->lock);
1e7a1421 2521 spin_unlock(&delayed_refs->lock);
c1103f7a 2522
c1103f7a 2523 if (head->must_insert_reserved) {
d278850e
JB
2524 btrfs_pin_extent(fs_info, head->bytenr,
2525 head->num_bytes, 1);
c1103f7a 2526 if (head->is_data) {
d278850e
JB
2527 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2528 head->num_bytes);
c1103f7a
JB
2529 }
2530 }
2531
31890da0 2532 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
07c47775
JB
2533
2534 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a 2535 btrfs_delayed_ref_unlock(head);
d278850e 2536 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2537 return 0;
2538}
2539
b1cdbcb5
NB
2540static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2541 struct btrfs_trans_handle *trans)
2542{
2543 struct btrfs_delayed_ref_root *delayed_refs =
2544 &trans->transaction->delayed_refs;
2545 struct btrfs_delayed_ref_head *head = NULL;
2546 int ret;
2547
2548 spin_lock(&delayed_refs->lock);
5637c74b 2549 head = btrfs_select_ref_head(delayed_refs);
b1cdbcb5
NB
2550 if (!head) {
2551 spin_unlock(&delayed_refs->lock);
2552 return head;
2553 }
2554
2555 /*
2556 * Grab the lock that says we are going to process all the refs for
2557 * this head
2558 */
9e920a6f 2559 ret = btrfs_delayed_ref_lock(delayed_refs, head);
b1cdbcb5
NB
2560 spin_unlock(&delayed_refs->lock);
2561
2562 /*
2563 * We may have dropped the spin lock to get the head mutex lock, and
2564 * that might have given someone else time to free the head. If that's
2565 * true, it has been removed from our list and we can move on.
2566 */
2567 if (ret == -EAGAIN)
2568 head = ERR_PTR(-EAGAIN);
2569
2570 return head;
2571}
2572
e7261386
NB
2573static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2574 struct btrfs_delayed_ref_head *locked_ref,
2575 unsigned long *run_refs)
2576{
2577 struct btrfs_fs_info *fs_info = trans->fs_info;
2578 struct btrfs_delayed_ref_root *delayed_refs;
2579 struct btrfs_delayed_extent_op *extent_op;
2580 struct btrfs_delayed_ref_node *ref;
2581 int must_insert_reserved = 0;
2582 int ret;
2583
2584 delayed_refs = &trans->transaction->delayed_refs;
2585
0110a4c4
NB
2586 lockdep_assert_held(&locked_ref->mutex);
2587 lockdep_assert_held(&locked_ref->lock);
2588
e7261386
NB
2589 while ((ref = select_delayed_ref(locked_ref))) {
2590 if (ref->seq &&
2591 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2592 spin_unlock(&locked_ref->lock);
2593 unselect_delayed_ref_head(delayed_refs, locked_ref);
2594 return -EAGAIN;
2595 }
2596
2597 (*run_refs)++;
2598 ref->in_tree = 0;
2599 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2600 RB_CLEAR_NODE(&ref->ref_node);
2601 if (!list_empty(&ref->add_list))
2602 list_del(&ref->add_list);
2603 /*
2604 * When we play the delayed ref, also correct the ref_mod on
2605 * head
2606 */
2607 switch (ref->action) {
2608 case BTRFS_ADD_DELAYED_REF:
2609 case BTRFS_ADD_DELAYED_EXTENT:
2610 locked_ref->ref_mod -= ref->ref_mod;
2611 break;
2612 case BTRFS_DROP_DELAYED_REF:
2613 locked_ref->ref_mod += ref->ref_mod;
2614 break;
2615 default:
2616 WARN_ON(1);
2617 }
2618 atomic_dec(&delayed_refs->num_entries);
2619
2620 /*
2621 * Record the must_insert_reserved flag before we drop the
2622 * spin lock.
2623 */
2624 must_insert_reserved = locked_ref->must_insert_reserved;
2625 locked_ref->must_insert_reserved = 0;
2626
2627 extent_op = locked_ref->extent_op;
2628 locked_ref->extent_op = NULL;
2629 spin_unlock(&locked_ref->lock);
2630
2631 ret = run_one_delayed_ref(trans, ref, extent_op,
2632 must_insert_reserved);
2633
2634 btrfs_free_delayed_extent_op(extent_op);
2635 if (ret) {
2636 unselect_delayed_ref_head(delayed_refs, locked_ref);
2637 btrfs_put_delayed_ref(ref);
2638 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2639 ret);
2640 return ret;
2641 }
2642
2643 btrfs_put_delayed_ref(ref);
2644 cond_resched();
2645
2646 spin_lock(&locked_ref->lock);
2647 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2648 }
2649
2650 return 0;
2651}
2652
79787eaa
JM
2653/*
2654 * Returns 0 on success or if called with an already aborted transaction.
2655 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2656 */
d7df2c79 2657static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2658 unsigned long nr)
56bec294 2659{
0a1e458a 2660 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294 2661 struct btrfs_delayed_ref_root *delayed_refs;
56bec294 2662 struct btrfs_delayed_ref_head *locked_ref = NULL;
0a2b2a84 2663 ktime_t start = ktime_get();
56bec294 2664 int ret;
d7df2c79 2665 unsigned long count = 0;
0a2b2a84 2666 unsigned long actual_count = 0;
56bec294
CM
2667
2668 delayed_refs = &trans->transaction->delayed_refs;
0110a4c4 2669 do {
56bec294 2670 if (!locked_ref) {
b1cdbcb5 2671 locked_ref = btrfs_obtain_ref_head(trans);
0110a4c4
NB
2672 if (IS_ERR_OR_NULL(locked_ref)) {
2673 if (PTR_ERR(locked_ref) == -EAGAIN) {
2674 continue;
2675 } else {
2676 break;
2677 }
56bec294 2678 }
0110a4c4 2679 count++;
56bec294 2680 }
2c3cf7d5
FM
2681 /*
2682 * We need to try and merge add/drops of the same ref since we
2683 * can run into issues with relocate dropping the implicit ref
2684 * and then it being added back again before the drop can
2685 * finish. If we merged anything we need to re-loop so we can
2686 * get a good ref.
2687 * Or we can get node references of the same type that weren't
2688 * merged when created due to bumps in the tree mod seq, and
2689 * we need to merge them to prevent adding an inline extent
2690 * backref before dropping it (triggering a BUG_ON at
2691 * insert_inline_extent_backref()).
2692 */
d7df2c79 2693 spin_lock(&locked_ref->lock);
be97f133 2694 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
ae1e206b 2695
0110a4c4
NB
2696 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2697 &actual_count);
2698 if (ret < 0 && ret != -EAGAIN) {
2699 /*
2700 * Error, btrfs_run_delayed_refs_for_head already
2701 * unlocked everything so just bail out
2702 */
2703 return ret;
2704 } else if (!ret) {
2705 /*
2706 * Success, perform the usual cleanup of a processed
2707 * head
2708 */
f9871edd 2709 ret = cleanup_ref_head(trans, locked_ref);
194ab0bc 2710 if (ret > 0 ) {
b00e6250
JB
2711 /* We dropped our lock, we need to loop. */
2712 ret = 0;
d7df2c79 2713 continue;
194ab0bc
JB
2714 } else if (ret) {
2715 return ret;
5d4f98a2 2716 }
22cd2e7d 2717 }
1ce7a5ec 2718
b00e6250 2719 /*
0110a4c4
NB
2720 * Either success case or btrfs_run_delayed_refs_for_head
2721 * returned -EAGAIN, meaning we need to select another head
b00e6250 2722 */
b00e6250 2723
0110a4c4 2724 locked_ref = NULL;
c3e69d58 2725 cond_resched();
0110a4c4 2726 } while ((nr != -1 && count < nr) || locked_ref);
0a2b2a84
JB
2727
2728 /*
2729 * We don't want to include ref heads since we can have empty ref heads
2730 * and those will drastically skew our runtime down since we just do
2731 * accounting, no actual extent tree updates.
2732 */
2733 if (actual_count > 0) {
2734 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2735 u64 avg;
2736
2737 /*
2738 * We weigh the current average higher than our current runtime
2739 * to avoid large swings in the average.
2740 */
2741 spin_lock(&delayed_refs->lock);
2742 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2743 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2744 spin_unlock(&delayed_refs->lock);
2745 }
d7df2c79 2746 return 0;
c3e69d58
CM
2747}
2748
709c0486
AJ
2749#ifdef SCRAMBLE_DELAYED_REFS
2750/*
2751 * Normally delayed refs get processed in ascending bytenr order. This
2752 * correlates in most cases to the order added. To expose dependencies on this
2753 * order, we start to process the tree in the middle instead of the beginning
2754 */
2755static u64 find_middle(struct rb_root *root)
2756{
2757 struct rb_node *n = root->rb_node;
2758 struct btrfs_delayed_ref_node *entry;
2759 int alt = 1;
2760 u64 middle;
2761 u64 first = 0, last = 0;
2762
2763 n = rb_first(root);
2764 if (n) {
2765 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2766 first = entry->bytenr;
2767 }
2768 n = rb_last(root);
2769 if (n) {
2770 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2771 last = entry->bytenr;
2772 }
2773 n = root->rb_node;
2774
2775 while (n) {
2776 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2777 WARN_ON(!entry->in_tree);
2778
2779 middle = entry->bytenr;
2780
2781 if (alt)
2782 n = n->rb_left;
2783 else
2784 n = n->rb_right;
2785
2786 alt = 1 - alt;
2787 }
2788 return middle;
2789}
2790#endif
2791
2ff7e61e 2792static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2793{
2794 u64 num_bytes;
2795
2796 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2797 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2798 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2799 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2800
2801 /*
2802 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2803 * closer to what we're really going to want to use.
1be41b78 2804 */
0b246afa 2805 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2806}
2807
1262133b
JB
2808/*
2809 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2810 * would require to store the csums for that many bytes.
2811 */
2ff7e61e 2812u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2813{
2814 u64 csum_size;
2815 u64 num_csums_per_leaf;
2816 u64 num_csums;
2817
0b246afa 2818 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2819 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2820 (u64)btrfs_super_csum_size(fs_info->super_copy));
2821 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2822 num_csums += num_csums_per_leaf - 1;
2823 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2824 return num_csums;
2825}
2826
64403612 2827bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
1be41b78 2828{
64403612
JB
2829 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
2830 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2831 bool ret = false;
2832 u64 reserved;
1be41b78 2833
64403612
JB
2834 spin_lock(&global_rsv->lock);
2835 reserved = global_rsv->reserved;
2836 spin_unlock(&global_rsv->lock);
1be41b78
JB
2837
2838 /*
64403612
JB
2839 * Since the global reserve is just kind of magic we don't really want
2840 * to rely on it to save our bacon, so if our size is more than the
2841 * delayed_refs_rsv and the global rsv then it's time to think about
2842 * bailing.
1be41b78 2843 */
64403612
JB
2844 spin_lock(&delayed_refs_rsv->lock);
2845 reserved += delayed_refs_rsv->reserved;
2846 if (delayed_refs_rsv->size >= reserved)
2847 ret = true;
2848 spin_unlock(&delayed_refs_rsv->lock);
1be41b78
JB
2849 return ret;
2850}
2851
7c861627 2852int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
0a2b2a84 2853{
0a2b2a84
JB
2854 u64 num_entries =
2855 atomic_read(&trans->transaction->delayed_refs.num_entries);
2856 u64 avg_runtime;
a79b7d4b 2857 u64 val;
0a2b2a84
JB
2858
2859 smp_mb();
7c861627 2860 avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
a79b7d4b 2861 val = num_entries * avg_runtime;
dc1a90c6 2862 if (val >= NSEC_PER_SEC)
0a2b2a84 2863 return 1;
a79b7d4b
CM
2864 if (val >= NSEC_PER_SEC / 2)
2865 return 2;
0a2b2a84 2866
64403612 2867 return btrfs_check_space_for_delayed_refs(trans->fs_info);
0a2b2a84
JB
2868}
2869
c3e69d58
CM
2870/*
2871 * this starts processing the delayed reference count updates and
2872 * extent insertions we have queued up so far. count can be
2873 * 0, which means to process everything in the tree at the start
2874 * of the run (but not newly added entries), or it can be some target
2875 * number you'd like to process.
79787eaa
JM
2876 *
2877 * Returns 0 on success or if called with an aborted transaction
2878 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2879 */
2880int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 2881 unsigned long count)
c3e69d58 2882{
c79a70b1 2883 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
2884 struct rb_node *node;
2885 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2886 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2887 int ret;
2888 int run_all = count == (unsigned long)-1;
c3e69d58 2889
79787eaa
JM
2890 /* We'll clean this up in btrfs_cleanup_transaction */
2891 if (trans->aborted)
2892 return 0;
2893
0b246afa 2894 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2895 return 0;
2896
c3e69d58 2897 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2898 if (count == 0)
d7df2c79 2899 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2900
c3e69d58 2901again:
709c0486
AJ
2902#ifdef SCRAMBLE_DELAYED_REFS
2903 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2904#endif
0a1e458a 2905 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 2906 if (ret < 0) {
66642832 2907 btrfs_abort_transaction(trans, ret);
d7df2c79 2908 return ret;
eb099670 2909 }
c3e69d58 2910
56bec294 2911 if (run_all) {
119e80df 2912 btrfs_create_pending_block_groups(trans);
ea658bad 2913
d7df2c79 2914 spin_lock(&delayed_refs->lock);
5c9d028b 2915 node = rb_first_cached(&delayed_refs->href_root);
d7df2c79
JB
2916 if (!node) {
2917 spin_unlock(&delayed_refs->lock);
56bec294 2918 goto out;
d7df2c79 2919 }
d278850e
JB
2920 head = rb_entry(node, struct btrfs_delayed_ref_head,
2921 href_node);
2922 refcount_inc(&head->refs);
2923 spin_unlock(&delayed_refs->lock);
e9d0b13b 2924
d278850e
JB
2925 /* Mutex was contended, block until it's released and retry. */
2926 mutex_lock(&head->mutex);
2927 mutex_unlock(&head->mutex);
56bec294 2928
d278850e 2929 btrfs_put_delayed_ref_head(head);
d7df2c79 2930 cond_resched();
56bec294 2931 goto again;
5f39d397 2932 }
54aa1f4d 2933out:
a28ec197
CM
2934 return 0;
2935}
2936
5d4f98a2 2937int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
5d4f98a2 2938 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2939 int level, int is_data)
5d4f98a2
YZ
2940{
2941 struct btrfs_delayed_extent_op *extent_op;
2942 int ret;
2943
78a6184a 2944 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2945 if (!extent_op)
2946 return -ENOMEM;
2947
2948 extent_op->flags_to_set = flags;
35b3ad50
DS
2949 extent_op->update_flags = true;
2950 extent_op->update_key = false;
2951 extent_op->is_data = is_data ? true : false;
b1c79e09 2952 extent_op->level = level;
5d4f98a2 2953
c6e340bc 2954 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
5d4f98a2 2955 if (ret)
78a6184a 2956 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2957 return ret;
2958}
2959
e4c3b2dc 2960static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
2961 struct btrfs_path *path,
2962 u64 objectid, u64 offset, u64 bytenr)
2963{
2964 struct btrfs_delayed_ref_head *head;
2965 struct btrfs_delayed_ref_node *ref;
2966 struct btrfs_delayed_data_ref *data_ref;
2967 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 2968 struct btrfs_transaction *cur_trans;
0e0adbcf 2969 struct rb_node *node;
5d4f98a2
YZ
2970 int ret = 0;
2971
998ac6d2 2972 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 2973 cur_trans = root->fs_info->running_transaction;
998ac6d2 2974 if (cur_trans)
2975 refcount_inc(&cur_trans->use_count);
2976 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
2977 if (!cur_trans)
2978 return 0;
2979
2980 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 2981 spin_lock(&delayed_refs->lock);
f72ad18e 2982 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
2983 if (!head) {
2984 spin_unlock(&delayed_refs->lock);
998ac6d2 2985 btrfs_put_transaction(cur_trans);
d7df2c79
JB
2986 return 0;
2987 }
5d4f98a2
YZ
2988
2989 if (!mutex_trylock(&head->mutex)) {
d278850e 2990 refcount_inc(&head->refs);
5d4f98a2
YZ
2991 spin_unlock(&delayed_refs->lock);
2992
b3b4aa74 2993 btrfs_release_path(path);
5d4f98a2 2994
8cc33e5c
DS
2995 /*
2996 * Mutex was contended, block until it's released and let
2997 * caller try again
2998 */
5d4f98a2
YZ
2999 mutex_lock(&head->mutex);
3000 mutex_unlock(&head->mutex);
d278850e 3001 btrfs_put_delayed_ref_head(head);
998ac6d2 3002 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3003 return -EAGAIN;
3004 }
d7df2c79 3005 spin_unlock(&delayed_refs->lock);
5d4f98a2 3006
d7df2c79 3007 spin_lock(&head->lock);
0e0adbcf
JB
3008 /*
3009 * XXX: We should replace this with a proper search function in the
3010 * future.
3011 */
e3d03965
LB
3012 for (node = rb_first_cached(&head->ref_tree); node;
3013 node = rb_next(node)) {
0e0adbcf 3014 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3015 /* If it's a shared ref we know a cross reference exists */
3016 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3017 ret = 1;
3018 break;
3019 }
5d4f98a2 3020
d7df2c79 3021 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3022
d7df2c79
JB
3023 /*
3024 * If our ref doesn't match the one we're currently looking at
3025 * then we have a cross reference.
3026 */
3027 if (data_ref->root != root->root_key.objectid ||
3028 data_ref->objectid != objectid ||
3029 data_ref->offset != offset) {
3030 ret = 1;
3031 break;
3032 }
5d4f98a2 3033 }
d7df2c79 3034 spin_unlock(&head->lock);
5d4f98a2 3035 mutex_unlock(&head->mutex);
998ac6d2 3036 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3037 return ret;
3038}
3039
e4c3b2dc 3040static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3041 struct btrfs_path *path,
3042 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3043{
0b246afa
JM
3044 struct btrfs_fs_info *fs_info = root->fs_info;
3045 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3046 struct extent_buffer *leaf;
5d4f98a2
YZ
3047 struct btrfs_extent_data_ref *ref;
3048 struct btrfs_extent_inline_ref *iref;
3049 struct btrfs_extent_item *ei;
f321e491 3050 struct btrfs_key key;
5d4f98a2 3051 u32 item_size;
3de28d57 3052 int type;
be20aa9d 3053 int ret;
925baedd 3054
be20aa9d 3055 key.objectid = bytenr;
31840ae1 3056 key.offset = (u64)-1;
f321e491 3057 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3058
be20aa9d
CM
3059 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3060 if (ret < 0)
3061 goto out;
79787eaa 3062 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3063
3064 ret = -ENOENT;
3065 if (path->slots[0] == 0)
31840ae1 3066 goto out;
be20aa9d 3067
31840ae1 3068 path->slots[0]--;
f321e491 3069 leaf = path->nodes[0];
5d4f98a2 3070 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3071
5d4f98a2 3072 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3073 goto out;
f321e491 3074
5d4f98a2
YZ
3075 ret = 1;
3076 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5d4f98a2 3077 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3078
5d4f98a2
YZ
3079 if (item_size != sizeof(*ei) +
3080 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3081 goto out;
be20aa9d 3082
5d4f98a2
YZ
3083 if (btrfs_extent_generation(leaf, ei) <=
3084 btrfs_root_last_snapshot(&root->root_item))
3085 goto out;
3086
3087 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3088
3089 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3090 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3091 goto out;
3092
3093 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3094 if (btrfs_extent_refs(leaf, ei) !=
3095 btrfs_extent_data_ref_count(leaf, ref) ||
3096 btrfs_extent_data_ref_root(leaf, ref) !=
3097 root->root_key.objectid ||
3098 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3099 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3100 goto out;
3101
3102 ret = 0;
3103out:
3104 return ret;
3105}
3106
e4c3b2dc
LB
3107int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3108 u64 bytenr)
5d4f98a2
YZ
3109{
3110 struct btrfs_path *path;
3111 int ret;
5d4f98a2
YZ
3112
3113 path = btrfs_alloc_path();
3114 if (!path)
9132c4ff 3115 return -ENOMEM;
5d4f98a2
YZ
3116
3117 do {
e4c3b2dc 3118 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3119 offset, bytenr);
3120 if (ret && ret != -ENOENT)
f321e491 3121 goto out;
80ff3856 3122
380fd066
MT
3123 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3124 } while (ret == -EAGAIN);
5d4f98a2 3125
be20aa9d 3126out:
80ff3856 3127 btrfs_free_path(path);
f0486c68
YZ
3128 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3129 WARN_ON(ret > 0);
f321e491 3130 return ret;
be20aa9d 3131}
c5739bba 3132
5d4f98a2 3133static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3134 struct btrfs_root *root,
5d4f98a2 3135 struct extent_buffer *buf,
e339a6b0 3136 int full_backref, int inc)
31840ae1 3137{
0b246afa 3138 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3139 u64 bytenr;
5d4f98a2
YZ
3140 u64 num_bytes;
3141 u64 parent;
31840ae1 3142 u64 ref_root;
31840ae1 3143 u32 nritems;
31840ae1
ZY
3144 struct btrfs_key key;
3145 struct btrfs_file_extent_item *fi;
82fa113f
QW
3146 struct btrfs_ref generic_ref = { 0 };
3147 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
31840ae1 3148 int i;
82fa113f 3149 int action;
31840ae1
ZY
3150 int level;
3151 int ret = 0;
fccb84c9 3152
0b246afa 3153 if (btrfs_is_testing(fs_info))
faa2dbf0 3154 return 0;
fccb84c9 3155
31840ae1 3156 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3157 nritems = btrfs_header_nritems(buf);
3158 level = btrfs_header_level(buf);
3159
27cdeb70 3160 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3161 return 0;
31840ae1 3162
5d4f98a2
YZ
3163 if (full_backref)
3164 parent = buf->start;
3165 else
3166 parent = 0;
82fa113f
QW
3167 if (inc)
3168 action = BTRFS_ADD_DELAYED_REF;
3169 else
3170 action = BTRFS_DROP_DELAYED_REF;
5d4f98a2
YZ
3171
3172 for (i = 0; i < nritems; i++) {
31840ae1 3173 if (level == 0) {
5d4f98a2 3174 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3175 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3176 continue;
5d4f98a2 3177 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3178 struct btrfs_file_extent_item);
3179 if (btrfs_file_extent_type(buf, fi) ==
3180 BTRFS_FILE_EXTENT_INLINE)
3181 continue;
3182 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3183 if (bytenr == 0)
3184 continue;
5d4f98a2
YZ
3185
3186 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3187 key.offset -= btrfs_file_extent_offset(buf, fi);
82fa113f
QW
3188 btrfs_init_generic_ref(&generic_ref, action, bytenr,
3189 num_bytes, parent);
3190 generic_ref.real_root = root->root_key.objectid;
3191 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
3192 key.offset);
3193 generic_ref.skip_qgroup = for_reloc;
dd28b6a5 3194 if (inc)
82fa113f 3195 ret = btrfs_inc_extent_ref(trans, &generic_ref);
dd28b6a5 3196 else
ffd4bb2a 3197 ret = btrfs_free_extent(trans, &generic_ref);
31840ae1
ZY
3198 if (ret)
3199 goto fail;
3200 } else {
5d4f98a2 3201 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3202 num_bytes = fs_info->nodesize;
82fa113f
QW
3203 btrfs_init_generic_ref(&generic_ref, action, bytenr,
3204 num_bytes, parent);
3205 generic_ref.real_root = root->root_key.objectid;
3206 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
3207 generic_ref.skip_qgroup = for_reloc;
dd28b6a5 3208 if (inc)
82fa113f 3209 ret = btrfs_inc_extent_ref(trans, &generic_ref);
dd28b6a5 3210 else
ffd4bb2a 3211 ret = btrfs_free_extent(trans, &generic_ref);
31840ae1
ZY
3212 if (ret)
3213 goto fail;
3214 }
3215 }
3216 return 0;
3217fail:
5d4f98a2
YZ
3218 return ret;
3219}
3220
3221int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3222 struct extent_buffer *buf, int full_backref)
5d4f98a2 3223{
e339a6b0 3224 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3225}
3226
3227int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3228 struct extent_buffer *buf, int full_backref)
5d4f98a2 3229{
e339a6b0 3230 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3231}
3232
9078a3e1 3233static int write_one_cache_group(struct btrfs_trans_handle *trans,
9078a3e1
CM
3234 struct btrfs_path *path,
3235 struct btrfs_block_group_cache *cache)
3236{
39db232d 3237 struct btrfs_fs_info *fs_info = trans->fs_info;
9078a3e1 3238 int ret;
0b246afa 3239 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3240 unsigned long bi;
3241 struct extent_buffer *leaf;
9078a3e1 3242
9078a3e1 3243 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3244 if (ret) {
3245 if (ret > 0)
3246 ret = -ENOENT;
54aa1f4d 3247 goto fail;
df95e7f0 3248 }
5f39d397
CM
3249
3250 leaf = path->nodes[0];
3251 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3252 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3253 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3254fail:
24b89d08 3255 btrfs_release_path(path);
df95e7f0 3256 return ret;
9078a3e1
CM
3257
3258}
3259
f87b7eb8
DS
3260static struct btrfs_block_group_cache *next_block_group(
3261 struct btrfs_block_group_cache *cache)
4a8c9a62 3262{
f87b7eb8 3263 struct btrfs_fs_info *fs_info = cache->fs_info;
4a8c9a62 3264 struct rb_node *node;
292cbd51 3265
0b246afa 3266 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3267
3268 /* If our block group was removed, we need a full search. */
3269 if (RB_EMPTY_NODE(&cache->cache_node)) {
3270 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3271
0b246afa 3272 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3273 btrfs_put_block_group(cache);
0b246afa 3274 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3275 }
4a8c9a62
YZ
3276 node = rb_next(&cache->cache_node);
3277 btrfs_put_block_group(cache);
3278 if (node) {
3279 cache = rb_entry(node, struct btrfs_block_group_cache,
3280 cache_node);
11dfe35a 3281 btrfs_get_block_group(cache);
4a8c9a62
YZ
3282 } else
3283 cache = NULL;
0b246afa 3284 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3285 return cache;
3286}
3287
0af3d00b
JB
3288static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3289 struct btrfs_trans_handle *trans,
3290 struct btrfs_path *path)
3291{
0b246afa
JM
3292 struct btrfs_fs_info *fs_info = block_group->fs_info;
3293 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3294 struct inode *inode = NULL;
364ecf36 3295 struct extent_changeset *data_reserved = NULL;
0af3d00b 3296 u64 alloc_hint = 0;
2b20982e 3297 int dcs = BTRFS_DC_ERROR;
f8c269d7 3298 u64 num_pages = 0;
0af3d00b
JB
3299 int retries = 0;
3300 int ret = 0;
3301
3302 /*
3303 * If this block group is smaller than 100 megs don't bother caching the
3304 * block group.
3305 */
ee22184b 3306 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3307 spin_lock(&block_group->lock);
3308 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3309 spin_unlock(&block_group->lock);
3310 return 0;
3311 }
3312
0c0ef4bc
JB
3313 if (trans->aborted)
3314 return 0;
0af3d00b 3315again:
7949f339 3316 inode = lookup_free_space_inode(block_group, path);
0af3d00b
JB
3317 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3318 ret = PTR_ERR(inode);
b3b4aa74 3319 btrfs_release_path(path);
0af3d00b
JB
3320 goto out;
3321 }
3322
3323 if (IS_ERR(inode)) {
3324 BUG_ON(retries);
3325 retries++;
3326
3327 if (block_group->ro)
3328 goto out_free;
3329
4ca75f1b 3330 ret = create_free_space_inode(trans, block_group, path);
0af3d00b
JB
3331 if (ret)
3332 goto out_free;
3333 goto again;
3334 }
3335
3336 /*
3337 * We want to set the generation to 0, that way if anything goes wrong
3338 * from here on out we know not to trust this cache when we load up next
3339 * time.
3340 */
3341 BTRFS_I(inode)->generation = 0;
3342 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3343 if (ret) {
3344 /*
3345 * So theoretically we could recover from this, simply set the
3346 * super cache generation to 0 so we know to invalidate the
3347 * cache, but then we'd have to keep track of the block groups
3348 * that fail this way so we know we _have_ to reset this cache
3349 * before the next commit or risk reading stale cache. So to
3350 * limit our exposure to horrible edge cases lets just abort the
3351 * transaction, this only happens in really bad situations
3352 * anyway.
3353 */
66642832 3354 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3355 goto out_put;
3356 }
0af3d00b
JB
3357 WARN_ON(ret);
3358
8e138e0d
JB
3359 /* We've already setup this transaction, go ahead and exit */
3360 if (block_group->cache_generation == trans->transid &&
3361 i_size_read(inode)) {
3362 dcs = BTRFS_DC_SETUP;
3363 goto out_put;
3364 }
3365
0af3d00b 3366 if (i_size_read(inode) > 0) {
2ff7e61e 3367 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3368 &fs_info->global_block_rsv);
7b61cd92
MX
3369 if (ret)
3370 goto out_put;
3371
77ab86bf 3372 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3373 if (ret)
3374 goto out_put;
3375 }
3376
3377 spin_lock(&block_group->lock);
cf7c1ef6 3378 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3379 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3380 /*
3381 * don't bother trying to write stuff out _if_
3382 * a) we're not cached,
1a79c1f2
LB
3383 * b) we're with nospace_cache mount option,
3384 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3385 */
2b20982e 3386 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3387 spin_unlock(&block_group->lock);
3388 goto out_put;
3389 }
3390 spin_unlock(&block_group->lock);
3391
2968b1f4
JB
3392 /*
3393 * We hit an ENOSPC when setting up the cache in this transaction, just
3394 * skip doing the setup, we've already cleared the cache so we're safe.
3395 */
3396 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3397 ret = -ENOSPC;
3398 goto out_put;
3399 }
3400
6fc823b1
JB
3401 /*
3402 * Try to preallocate enough space based on how big the block group is.
3403 * Keep in mind this has to include any pinned space which could end up
3404 * taking up quite a bit since it's not folded into the other space
3405 * cache.
3406 */
ee22184b 3407 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3408 if (!num_pages)
3409 num_pages = 1;
3410
0af3d00b 3411 num_pages *= 16;
09cbfeaf 3412 num_pages *= PAGE_SIZE;
0af3d00b 3413
364ecf36 3414 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3415 if (ret)
3416 goto out_put;
3417
3418 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3419 num_pages, num_pages,
3420 &alloc_hint);
2968b1f4
JB
3421 /*
3422 * Our cache requires contiguous chunks so that we don't modify a bunch
3423 * of metadata or split extents when writing the cache out, which means
3424 * we can enospc if we are heavily fragmented in addition to just normal
3425 * out of space conditions. So if we hit this just skip setting up any
3426 * other block groups for this transaction, maybe we'll unpin enough
3427 * space the next time around.
3428 */
2b20982e
JB
3429 if (!ret)
3430 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3431 else if (ret == -ENOSPC)
3432 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3433
0af3d00b
JB
3434out_put:
3435 iput(inode);
3436out_free:
b3b4aa74 3437 btrfs_release_path(path);
0af3d00b
JB
3438out:
3439 spin_lock(&block_group->lock);
e65cbb94 3440 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3441 block_group->cache_generation = trans->transid;
2b20982e 3442 block_group->disk_cache_state = dcs;
0af3d00b
JB
3443 spin_unlock(&block_group->lock);
3444
364ecf36 3445 extent_changeset_free(data_reserved);
0af3d00b
JB
3446 return ret;
3447}
3448
bbebb3e0 3449int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
dcdf7f6d 3450{
bbebb3e0 3451 struct btrfs_fs_info *fs_info = trans->fs_info;
dcdf7f6d
JB
3452 struct btrfs_block_group_cache *cache, *tmp;
3453 struct btrfs_transaction *cur_trans = trans->transaction;
3454 struct btrfs_path *path;
3455
3456 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3457 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3458 return 0;
3459
3460 path = btrfs_alloc_path();
3461 if (!path)
3462 return -ENOMEM;
3463
3464 /* Could add new block groups, use _safe just in case */
3465 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3466 dirty_list) {
3467 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3468 cache_save_setup(cache, trans, path);
3469 }
3470
3471 btrfs_free_path(path);
3472 return 0;
3473}
3474
1bbc621e
CM
3475/*
3476 * transaction commit does final block group cache writeback during a
3477 * critical section where nothing is allowed to change the FS. This is
3478 * required in order for the cache to actually match the block group,
3479 * but can introduce a lot of latency into the commit.
3480 *
3481 * So, btrfs_start_dirty_block_groups is here to kick off block group
3482 * cache IO. There's a chance we'll have to redo some of it if the
3483 * block group changes again during the commit, but it greatly reduces
3484 * the commit latency by getting rid of the easy block groups while
3485 * we're still allowing others to join the commit.
3486 */
21217054 3487int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3488{
21217054 3489 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3490 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3491 struct btrfs_transaction *cur_trans = trans->transaction;
3492 int ret = 0;
c9dc4c65 3493 int should_put;
1bbc621e
CM
3494 struct btrfs_path *path = NULL;
3495 LIST_HEAD(dirty);
3496 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3497 int num_started = 0;
1bbc621e
CM
3498 int loops = 0;
3499
3500 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3501 if (list_empty(&cur_trans->dirty_bgs)) {
3502 spin_unlock(&cur_trans->dirty_bgs_lock);
3503 return 0;
1bbc621e 3504 }
b58d1a9e 3505 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3506 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3507
1bbc621e 3508again:
1bbc621e
CM
3509 /*
3510 * make sure all the block groups on our dirty list actually
3511 * exist
3512 */
6c686b35 3513 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3514
3515 if (!path) {
3516 path = btrfs_alloc_path();
3517 if (!path)
3518 return -ENOMEM;
3519 }
3520
b58d1a9e
FM
3521 /*
3522 * cache_write_mutex is here only to save us from balance or automatic
3523 * removal of empty block groups deleting this block group while we are
3524 * writing out the cache
3525 */
3526 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3527 while (!list_empty(&dirty)) {
ba2c4d4e
JB
3528 bool drop_reserve = true;
3529
1bbc621e
CM
3530 cache = list_first_entry(&dirty,
3531 struct btrfs_block_group_cache,
3532 dirty_list);
1bbc621e
CM
3533 /*
3534 * this can happen if something re-dirties a block
3535 * group that is already under IO. Just wait for it to
3536 * finish and then do it all again
3537 */
3538 if (!list_empty(&cache->io_list)) {
3539 list_del_init(&cache->io_list);
afdb5718 3540 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3541 btrfs_put_block_group(cache);
3542 }
3543
3544
3545 /*
3546 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3547 * if it should update the cache_state. Don't delete
3548 * until after we wait.
3549 *
3550 * Since we're not running in the commit critical section
3551 * we need the dirty_bgs_lock to protect from update_block_group
3552 */
3553 spin_lock(&cur_trans->dirty_bgs_lock);
3554 list_del_init(&cache->dirty_list);
3555 spin_unlock(&cur_trans->dirty_bgs_lock);
3556
3557 should_put = 1;
3558
3559 cache_save_setup(cache, trans, path);
3560
3561 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3562 cache->io_ctl.inode = NULL;
fe041534 3563 ret = btrfs_write_out_cache(trans, cache, path);
1bbc621e
CM
3564 if (ret == 0 && cache->io_ctl.inode) {
3565 num_started++;
3566 should_put = 0;
3567
3568 /*
45ae2c18
NB
3569 * The cache_write_mutex is protecting the
3570 * io_list, also refer to the definition of
3571 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3572 */
3573 list_add_tail(&cache->io_list, io);
3574 } else {
3575 /*
3576 * if we failed to write the cache, the
3577 * generation will be bad and life goes on
3578 */
3579 ret = 0;
3580 }
3581 }
ff1f8250 3582 if (!ret) {
39db232d 3583 ret = write_one_cache_group(trans, path, cache);
ff1f8250
FM
3584 /*
3585 * Our block group might still be attached to the list
3586 * of new block groups in the transaction handle of some
3587 * other task (struct btrfs_trans_handle->new_bgs). This
3588 * means its block group item isn't yet in the extent
3589 * tree. If this happens ignore the error, as we will
3590 * try again later in the critical section of the
3591 * transaction commit.
3592 */
3593 if (ret == -ENOENT) {
3594 ret = 0;
3595 spin_lock(&cur_trans->dirty_bgs_lock);
3596 if (list_empty(&cache->dirty_list)) {
3597 list_add_tail(&cache->dirty_list,
3598 &cur_trans->dirty_bgs);
3599 btrfs_get_block_group(cache);
ba2c4d4e 3600 drop_reserve = false;
ff1f8250
FM
3601 }
3602 spin_unlock(&cur_trans->dirty_bgs_lock);
3603 } else if (ret) {
66642832 3604 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3605 }
3606 }
1bbc621e 3607
52042d8e 3608 /* if it's not on the io list, we need to put the block group */
1bbc621e
CM
3609 if (should_put)
3610 btrfs_put_block_group(cache);
ba2c4d4e
JB
3611 if (drop_reserve)
3612 btrfs_delayed_refs_rsv_release(fs_info, 1);
1bbc621e
CM
3613
3614 if (ret)
3615 break;
b58d1a9e
FM
3616
3617 /*
3618 * Avoid blocking other tasks for too long. It might even save
3619 * us from writing caches for block groups that are going to be
3620 * removed.
3621 */
3622 mutex_unlock(&trans->transaction->cache_write_mutex);
3623 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3624 }
b58d1a9e 3625 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3626
3627 /*
3628 * go through delayed refs for all the stuff we've just kicked off
3629 * and then loop back (just once)
3630 */
c79a70b1 3631 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3632 if (!ret && loops == 0) {
3633 loops++;
3634 spin_lock(&cur_trans->dirty_bgs_lock);
3635 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3636 /*
3637 * dirty_bgs_lock protects us from concurrent block group
3638 * deletes too (not just cache_write_mutex).
3639 */
3640 if (!list_empty(&dirty)) {
3641 spin_unlock(&cur_trans->dirty_bgs_lock);
3642 goto again;
3643 }
1bbc621e 3644 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3645 } else if (ret < 0) {
2ff7e61e 3646 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3647 }
3648
3649 btrfs_free_path(path);
3650 return ret;
3651}
3652
5742d15f 3653int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
1bbc621e 3654{
5742d15f 3655 struct btrfs_fs_info *fs_info = trans->fs_info;
1bbc621e
CM
3656 struct btrfs_block_group_cache *cache;
3657 struct btrfs_transaction *cur_trans = trans->transaction;
3658 int ret = 0;
3659 int should_put;
3660 struct btrfs_path *path;
3661 struct list_head *io = &cur_trans->io_bgs;
3662 int num_started = 0;
9078a3e1
CM
3663
3664 path = btrfs_alloc_path();
3665 if (!path)
3666 return -ENOMEM;
3667
ce93ec54 3668 /*
e44081ef
FM
3669 * Even though we are in the critical section of the transaction commit,
3670 * we can still have concurrent tasks adding elements to this
3671 * transaction's list of dirty block groups. These tasks correspond to
3672 * endio free space workers started when writeback finishes for a
3673 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3674 * allocate new block groups as a result of COWing nodes of the root
3675 * tree when updating the free space inode. The writeback for the space
3676 * caches is triggered by an earlier call to
3677 * btrfs_start_dirty_block_groups() and iterations of the following
3678 * loop.
3679 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3680 * delayed refs to make sure we have the best chance at doing this all
3681 * in one shot.
3682 */
e44081ef 3683 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3684 while (!list_empty(&cur_trans->dirty_bgs)) {
3685 cache = list_first_entry(&cur_trans->dirty_bgs,
3686 struct btrfs_block_group_cache,
3687 dirty_list);
c9dc4c65
CM
3688
3689 /*
3690 * this can happen if cache_save_setup re-dirties a block
3691 * group that is already under IO. Just wait for it to
3692 * finish and then do it all again
3693 */
3694 if (!list_empty(&cache->io_list)) {
e44081ef 3695 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3696 list_del_init(&cache->io_list);
afdb5718 3697 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3698 btrfs_put_block_group(cache);
e44081ef 3699 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3700 }
3701
1bbc621e
CM
3702 /*
3703 * don't remove from the dirty list until after we've waited
3704 * on any pending IO
3705 */
ce93ec54 3706 list_del_init(&cache->dirty_list);
e44081ef 3707 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3708 should_put = 1;
3709
1bbc621e 3710 cache_save_setup(cache, trans, path);
c9dc4c65 3711
ce93ec54 3712 if (!ret)
c79a70b1 3713 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3714 (unsigned long) -1);
c9dc4c65
CM
3715
3716 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3717 cache->io_ctl.inode = NULL;
fe041534 3718 ret = btrfs_write_out_cache(trans, cache, path);
c9dc4c65
CM
3719 if (ret == 0 && cache->io_ctl.inode) {
3720 num_started++;
3721 should_put = 0;
1bbc621e 3722 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3723 } else {
3724 /*
3725 * if we failed to write the cache, the
3726 * generation will be bad and life goes on
3727 */
3728 ret = 0;
3729 }
3730 }
ff1f8250 3731 if (!ret) {
39db232d 3732 ret = write_one_cache_group(trans, path, cache);
2bc0bb5f
FM
3733 /*
3734 * One of the free space endio workers might have
3735 * created a new block group while updating a free space
3736 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3737 * and hasn't released its transaction handle yet, in
3738 * which case the new block group is still attached to
3739 * its transaction handle and its creation has not
3740 * finished yet (no block group item in the extent tree
3741 * yet, etc). If this is the case, wait for all free
3742 * space endio workers to finish and retry. This is a
3743 * a very rare case so no need for a more efficient and
3744 * complex approach.
3745 */
3746 if (ret == -ENOENT) {
3747 wait_event(cur_trans->writer_wait,
3748 atomic_read(&cur_trans->num_writers) == 1);
39db232d 3749 ret = write_one_cache_group(trans, path, cache);
2bc0bb5f 3750 }
ff1f8250 3751 if (ret)
66642832 3752 btrfs_abort_transaction(trans, ret);
ff1f8250 3753 }
c9dc4c65
CM
3754
3755 /* if its not on the io list, we need to put the block group */
3756 if (should_put)
3757 btrfs_put_block_group(cache);
ba2c4d4e 3758 btrfs_delayed_refs_rsv_release(fs_info, 1);
e44081ef 3759 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3760 }
e44081ef 3761 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3762
45ae2c18
NB
3763 /*
3764 * Refer to the definition of io_bgs member for details why it's safe
3765 * to use it without any locking
3766 */
1bbc621e
CM
3767 while (!list_empty(io)) {
3768 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3769 io_list);
3770 list_del_init(&cache->io_list);
afdb5718 3771 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3772 btrfs_put_block_group(cache);
3773 }
3774
9078a3e1 3775 btrfs_free_path(path);
ce93ec54 3776 return ret;
9078a3e1
CM
3777}
3778
2ff7e61e 3779int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3780{
3781 struct btrfs_block_group_cache *block_group;
3782 int readonly = 0;
3783
0b246afa 3784 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3785 if (!block_group || block_group->ro)
3786 readonly = 1;
3787 if (block_group)
fa9c0d79 3788 btrfs_put_block_group(block_group);
d2fb3437
YZ
3789 return readonly;
3790}
3791
f78c436c
FM
3792bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3793{
3794 struct btrfs_block_group_cache *bg;
3795 bool ret = true;
3796
3797 bg = btrfs_lookup_block_group(fs_info, bytenr);
3798 if (!bg)
3799 return false;
3800
3801 spin_lock(&bg->lock);
3802 if (bg->ro)
3803 ret = false;
3804 else
3805 atomic_inc(&bg->nocow_writers);
3806 spin_unlock(&bg->lock);
3807
3808 /* no put on block group, done by btrfs_dec_nocow_writers */
3809 if (!ret)
3810 btrfs_put_block_group(bg);
3811
3812 return ret;
3813
3814}
3815
3816void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3817{
3818 struct btrfs_block_group_cache *bg;
3819
3820 bg = btrfs_lookup_block_group(fs_info, bytenr);
3821 ASSERT(bg);
3822 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 3823 wake_up_var(&bg->nocow_writers);
f78c436c
FM
3824 /*
3825 * Once for our lookup and once for the lookup done by a previous call
3826 * to btrfs_inc_nocow_writers()
3827 */
3828 btrfs_put_block_group(bg);
3829 btrfs_put_block_group(bg);
3830}
3831
f78c436c
FM
3832void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3833{
4625956a 3834 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
3835}
3836
6ab0a202
JM
3837static const char *alloc_name(u64 flags)
3838{
3839 switch (flags) {
3840 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3841 return "mixed";
3842 case BTRFS_BLOCK_GROUP_METADATA:
3843 return "metadata";
3844 case BTRFS_BLOCK_GROUP_DATA:
3845 return "data";
3846 case BTRFS_BLOCK_GROUP_SYSTEM:
3847 return "system";
3848 default:
3849 WARN_ON(1);
3850 return "invalid-combination";
3851 };
3852}
3853
4ca61683 3854static int create_space_info(struct btrfs_fs_info *info, u64 flags)
2be12ef7
NB
3855{
3856
3857 struct btrfs_space_info *space_info;
3858 int i;
3859 int ret;
3860
3861 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3862 if (!space_info)
3863 return -ENOMEM;
3864
3865 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3866 GFP_KERNEL);
3867 if (ret) {
3868 kfree(space_info);
3869 return ret;
3870 }
3871
3872 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3873 INIT_LIST_HEAD(&space_info->block_groups[i]);
3874 init_rwsem(&space_info->groups_sem);
3875 spin_lock_init(&space_info->lock);
3876 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3877 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3878 init_waitqueue_head(&space_info->wait);
3879 INIT_LIST_HEAD(&space_info->ro_bgs);
3880 INIT_LIST_HEAD(&space_info->tickets);
3881 INIT_LIST_HEAD(&space_info->priority_tickets);
3882
3883 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3884 info->space_info_kobj, "%s",
3885 alloc_name(space_info->flags));
3886 if (ret) {
450ff834 3887 kobject_put(&space_info->kobj);
2be12ef7
NB
3888 return ret;
3889 }
3890
2be12ef7
NB
3891 list_add_rcu(&space_info->list, &info->space_info);
3892 if (flags & BTRFS_BLOCK_GROUP_DATA)
3893 info->data_sinfo = space_info;
3894
3895 return ret;
3896}
3897
d2006e6d 3898static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 3899 u64 total_bytes, u64 bytes_used,
e40edf2d 3900 u64 bytes_readonly,
593060d7
CM
3901 struct btrfs_space_info **space_info)
3902{
3903 struct btrfs_space_info *found;
b742bb82
YZ
3904 int factor;
3905
46df06b8 3906 factor = btrfs_bg_type_to_factor(flags);
593060d7
CM
3907
3908 found = __find_space_info(info, flags);
d2006e6d
NB
3909 ASSERT(found);
3910 spin_lock(&found->lock);
3911 found->total_bytes += total_bytes;
3912 found->disk_total += total_bytes * factor;
3913 found->bytes_used += bytes_used;
3914 found->disk_used += bytes_used * factor;
3915 found->bytes_readonly += bytes_readonly;
3916 if (total_bytes > 0)
3917 found->full = 0;
3918 space_info_add_new_bytes(info, found, total_bytes -
3919 bytes_used - bytes_readonly);
3920 spin_unlock(&found->lock);
3921 *space_info = found;
593060d7
CM
3922}
3923
8790d502
CM
3924static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3925{
899c81ea
ID
3926 u64 extra_flags = chunk_to_extended(flags) &
3927 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3928
de98ced9 3929 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3930 if (flags & BTRFS_BLOCK_GROUP_DATA)
3931 fs_info->avail_data_alloc_bits |= extra_flags;
3932 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3933 fs_info->avail_metadata_alloc_bits |= extra_flags;
3934 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3935 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3936 write_sequnlock(&fs_info->profiles_lock);
8790d502 3937}
593060d7 3938
fc67c450
ID
3939/*
3940 * returns target flags in extended format or 0 if restripe for this
3941 * chunk_type is not in progress
c6664b42 3942 *
dccdb07b 3943 * should be called with balance_lock held
fc67c450
ID
3944 */
3945static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3946{
3947 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3948 u64 target = 0;
3949
fc67c450
ID
3950 if (!bctl)
3951 return 0;
3952
3953 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3954 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3955 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3956 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3957 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3958 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3959 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3960 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3961 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3962 }
3963
3964 return target;
3965}
3966
a46d11a8
ID
3967/*
3968 * @flags: available profiles in extended format (see ctree.h)
3969 *
e4d8ec0f
ID
3970 * Returns reduced profile in chunk format. If profile changing is in
3971 * progress (either running or paused) picks the target profile (if it's
3972 * already available), otherwise falls back to plain reducing.
a46d11a8 3973 */
2ff7e61e 3974static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 3975{
0b246afa 3976 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 3977 u64 target;
9c170b26
ZL
3978 u64 raid_type;
3979 u64 allowed = 0;
a061fc8d 3980
fc67c450
ID
3981 /*
3982 * see if restripe for this chunk_type is in progress, if so
3983 * try to reduce to the target profile
3984 */
0b246afa
JM
3985 spin_lock(&fs_info->balance_lock);
3986 target = get_restripe_target(fs_info, flags);
fc67c450
ID
3987 if (target) {
3988 /* pick target profile only if it's already available */
3989 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 3990 spin_unlock(&fs_info->balance_lock);
fc67c450 3991 return extended_to_chunk(target);
e4d8ec0f
ID
3992 }
3993 }
0b246afa 3994 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 3995
53b381b3 3996 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
3997 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3998 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
41a6e891 3999 allowed |= btrfs_raid_array[raid_type].bg_flag;
9c170b26
ZL
4000 }
4001 allowed &= flags;
4002
4003 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4004 allowed = BTRFS_BLOCK_GROUP_RAID6;
4005 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4006 allowed = BTRFS_BLOCK_GROUP_RAID5;
4007 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4008 allowed = BTRFS_BLOCK_GROUP_RAID10;
4009 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4010 allowed = BTRFS_BLOCK_GROUP_RAID1;
4011 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4012 allowed = BTRFS_BLOCK_GROUP_RAID0;
4013
4014 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4015
4016 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4017}
4018
2ff7e61e 4019static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4020{
de98ced9 4021 unsigned seq;
f8213bdc 4022 u64 flags;
de98ced9
MX
4023
4024 do {
f8213bdc 4025 flags = orig_flags;
0b246afa 4026 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4027
4028 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4029 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4030 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4031 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4032 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4033 flags |= fs_info->avail_metadata_alloc_bits;
4034 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4035
2ff7e61e 4036 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4037}
4038
1b86826d 4039static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4040{
0b246afa 4041 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4042 u64 flags;
53b381b3 4043 u64 ret;
9ed74f2d 4044
b742bb82
YZ
4045 if (data)
4046 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4047 else if (root == fs_info->chunk_root)
b742bb82 4048 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4049 else
b742bb82 4050 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4051
2ff7e61e 4052 ret = get_alloc_profile(fs_info, flags);
53b381b3 4053 return ret;
6a63209f 4054}
9ed74f2d 4055
1b86826d
JM
4056u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4057{
4058 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4059}
4060
4061u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4062{
4063 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4064}
4065
4066u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4067{
4068 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4069}
4070
4136135b
LB
4071static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4072 bool may_use_included)
4073{
4074 ASSERT(s_info);
4075 return s_info->bytes_used + s_info->bytes_reserved +
4076 s_info->bytes_pinned + s_info->bytes_readonly +
4077 (may_use_included ? s_info->bytes_may_use : 0);
4078}
4079
04f4f916 4080int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4081{
04f4f916 4082 struct btrfs_root *root = inode->root;
b4d7c3c9 4083 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4084 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4085 u64 used;
94b947b2 4086 int ret = 0;
c99f1b0c
ZL
4087 int need_commit = 2;
4088 int have_pinned_space;
6a63209f 4089
6a63209f 4090 /* make sure bytes are sectorsize aligned */
0b246afa 4091 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4092
9dced186 4093 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4094 need_commit = 0;
9dced186 4095 ASSERT(current->journal_info);
0af3d00b
JB
4096 }
4097
6a63209f
JB
4098again:
4099 /* make sure we have enough space to handle the data first */
4100 spin_lock(&data_sinfo->lock);
4136135b 4101 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4102
4103 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4104 struct btrfs_trans_handle *trans;
9ed74f2d 4105
6a63209f
JB
4106 /*
4107 * if we don't have enough free bytes in this space then we need
4108 * to alloc a new chunk.
4109 */
b9fd47cd 4110 if (!data_sinfo->full) {
6a63209f 4111 u64 alloc_target;
9ed74f2d 4112
0e4f8f88 4113 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4114 spin_unlock(&data_sinfo->lock);
1174cade 4115
1b86826d 4116 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4117 /*
4118 * It is ugly that we don't call nolock join
4119 * transaction for the free space inode case here.
4120 * But it is safe because we only do the data space
4121 * reservation for the free space cache in the
4122 * transaction context, the common join transaction
4123 * just increase the counter of the current transaction
4124 * handler, doesn't try to acquire the trans_lock of
4125 * the fs.
4126 */
7a7eaa40 4127 trans = btrfs_join_transaction(root);
a22285a6
YZ
4128 if (IS_ERR(trans))
4129 return PTR_ERR(trans);
9ed74f2d 4130
01458828 4131 ret = do_chunk_alloc(trans, alloc_target,
0e4f8f88 4132 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4133 btrfs_end_transaction(trans);
d52a5b5f
MX
4134 if (ret < 0) {
4135 if (ret != -ENOSPC)
4136 return ret;
c99f1b0c
ZL
4137 else {
4138 have_pinned_space = 1;
d52a5b5f 4139 goto commit_trans;
c99f1b0c 4140 }
d52a5b5f 4141 }
9ed74f2d 4142
6a63209f
JB
4143 goto again;
4144 }
f2bb8f5c
JB
4145
4146 /*
b150a4f1 4147 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4148 * allocation, and no removed chunk in current transaction,
4149 * don't bother committing the transaction.
f2bb8f5c 4150 */
dec59fa3 4151 have_pinned_space = __percpu_counter_compare(
c99f1b0c 4152 &data_sinfo->total_bytes_pinned,
dec59fa3
EL
4153 used + bytes - data_sinfo->total_bytes,
4154 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6a63209f 4155 spin_unlock(&data_sinfo->lock);
6a63209f 4156
4e06bdd6 4157 /* commit the current transaction and try again */
d52a5b5f 4158commit_trans:
92e2f7e3 4159 if (need_commit) {
c99f1b0c 4160 need_commit--;
b150a4f1 4161
e1746e83 4162 if (need_commit > 0) {
82b3e53b 4163 btrfs_start_delalloc_roots(fs_info, -1);
6374e57a 4164 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4165 (u64)-1);
e1746e83 4166 }
9a4e7276 4167
7a7eaa40 4168 trans = btrfs_join_transaction(root);
a22285a6
YZ
4169 if (IS_ERR(trans))
4170 return PTR_ERR(trans);
c99f1b0c 4171 if (have_pinned_space >= 0 ||
3204d33c
JB
4172 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4173 &trans->transaction->flags) ||
c99f1b0c 4174 need_commit > 0) {
3a45bb20 4175 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4176 if (ret)
4177 return ret;
d7c15171 4178 /*
c2d6cb16
FM
4179 * The cleaner kthread might still be doing iput
4180 * operations. Wait for it to finish so that
034f784d
JB
4181 * more space is released. We don't need to
4182 * explicitly run the delayed iputs here because
4183 * the commit_transaction would have woken up
4184 * the cleaner.
d7c15171 4185 */
034f784d
JB
4186 ret = btrfs_wait_on_delayed_iputs(fs_info);
4187 if (ret)
4188 return ret;
94b947b2
ZL
4189 goto again;
4190 } else {
3a45bb20 4191 btrfs_end_transaction(trans);
94b947b2 4192 }
4e06bdd6 4193 }
9ed74f2d 4194
0b246afa 4195 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4196 "space_info:enospc",
4197 data_sinfo->flags, bytes, 1);
6a63209f
JB
4198 return -ENOSPC;
4199 }
9f9b8e8d 4200 update_bytes_may_use(data_sinfo, bytes);
0b246afa 4201 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4202 data_sinfo->flags, bytes, 1);
6a63209f 4203 spin_unlock(&data_sinfo->lock);
6a63209f 4204
4559b0a7 4205 return 0;
9ed74f2d 4206}
6a63209f 4207
364ecf36
QW
4208int btrfs_check_data_free_space(struct inode *inode,
4209 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4210{
0b246afa 4211 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4212 int ret;
4213
4214 /* align the range */
0b246afa
JM
4215 len = round_up(start + len, fs_info->sectorsize) -
4216 round_down(start, fs_info->sectorsize);
4217 start = round_down(start, fs_info->sectorsize);
4ceff079 4218
04f4f916 4219 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4220 if (ret < 0)
4221 return ret;
4222
1e5ec2e7 4223 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4224 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4225 if (ret < 0)
1e5ec2e7 4226 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4227 else
4228 ret = 0;
4ceff079
QW
4229 return ret;
4230}
4231
4ceff079
QW
4232/*
4233 * Called if we need to clear a data reservation for this inode
4234 * Normally in a error case.
4235 *
51773bec
QW
4236 * This one will *NOT* use accurate qgroup reserved space API, just for case
4237 * which we can't sleep and is sure it won't affect qgroup reserved space.
4238 * Like clear_bit_hook().
4ceff079 4239 */
51773bec
QW
4240void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4241 u64 len)
4ceff079 4242{
0b246afa 4243 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4244 struct btrfs_space_info *data_sinfo;
4245
4246 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4247 len = round_up(start + len, fs_info->sectorsize) -
4248 round_down(start, fs_info->sectorsize);
4249 start = round_down(start, fs_info->sectorsize);
4ceff079 4250
0b246afa 4251 data_sinfo = fs_info->data_sinfo;
4ceff079 4252 spin_lock(&data_sinfo->lock);
9f9b8e8d 4253 update_bytes_may_use(data_sinfo, -len);
0b246afa 4254 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4255 data_sinfo->flags, len, 0);
4256 spin_unlock(&data_sinfo->lock);
4257}
4258
51773bec
QW
4259/*
4260 * Called if we need to clear a data reservation for this inode
4261 * Normally in a error case.
4262 *
01327610 4263 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4264 * space framework.
4265 */
bc42bda2
QW
4266void btrfs_free_reserved_data_space(struct inode *inode,
4267 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4268{
0c476a5d
JM
4269 struct btrfs_root *root = BTRFS_I(inode)->root;
4270
4271 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4272 len = round_up(start + len, root->fs_info->sectorsize) -
4273 round_down(start, root->fs_info->sectorsize);
4274 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4275
51773bec 4276 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4277 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4278}
4279
97e728d4 4280static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4281{
97e728d4
JB
4282 struct list_head *head = &info->space_info;
4283 struct btrfs_space_info *found;
e3ccfa98 4284
97e728d4
JB
4285 rcu_read_lock();
4286 list_for_each_entry_rcu(found, head, list) {
4287 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4288 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4289 }
97e728d4 4290 rcu_read_unlock();
e3ccfa98
JB
4291}
4292
3c76cd84
MX
4293static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4294{
4295 return (global->size << 1);
4296}
4297
2ff7e61e 4298static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4299 struct btrfs_space_info *sinfo, int force)
32c00aff 4300{
8d8aafee 4301 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4302 u64 thresh;
e3ccfa98 4303
0e4f8f88
CM
4304 if (force == CHUNK_ALLOC_FORCE)
4305 return 1;
4306
4307 /*
4308 * in limited mode, we want to have some free space up to
4309 * about 1% of the FS size.
4310 */
4311 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4312 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4313 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4314
8d8aafee 4315 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4316 return 1;
4317 }
0e4f8f88 4318
8d8aafee 4319 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4320 return 0;
424499db 4321 return 1;
32c00aff
JB
4322}
4323
2ff7e61e 4324static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4325{
4326 u64 num_dev;
4327
53b381b3
DW
4328 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4329 BTRFS_BLOCK_GROUP_RAID0 |
4330 BTRFS_BLOCK_GROUP_RAID5 |
4331 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4332 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4333 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4334 num_dev = 2;
4335 else
4336 num_dev = 1; /* DUP or single */
4337
39c2d7fa 4338 return num_dev;
15d1ff81
LB
4339}
4340
39c2d7fa
FM
4341/*
4342 * If @is_allocation is true, reserve space in the system space info necessary
4343 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4344 * removing a chunk.
4345 */
451a2c13 4346void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
15d1ff81 4347{
451a2c13 4348 struct btrfs_fs_info *fs_info = trans->fs_info;
15d1ff81
LB
4349 struct btrfs_space_info *info;
4350 u64 left;
4351 u64 thresh;
4fbcdf66 4352 int ret = 0;
39c2d7fa 4353 u64 num_devs;
4fbcdf66
FM
4354
4355 /*
4356 * Needed because we can end up allocating a system chunk and for an
4357 * atomic and race free space reservation in the chunk block reserve.
4358 */
a32bf9a3 4359 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4360
0b246afa 4361 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4362 spin_lock(&info->lock);
4136135b 4363 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4364 spin_unlock(&info->lock);
4365
2ff7e61e 4366 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4367
4368 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4369 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4370 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4371
0b246afa
JM
4372 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4373 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4374 left, thresh, type);
4375 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4376 }
4377
4378 if (left < thresh) {
1b86826d 4379 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4380
4fbcdf66
FM
4381 /*
4382 * Ignore failure to create system chunk. We might end up not
4383 * needing it, as we might not need to COW all nodes/leafs from
4384 * the paths we visit in the chunk tree (they were already COWed
4385 * or created in the current transaction for example).
4386 */
c216b203 4387 ret = btrfs_alloc_chunk(trans, flags);
4fbcdf66
FM
4388 }
4389
4390 if (!ret) {
0b246afa
JM
4391 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4392 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4393 thresh, BTRFS_RESERVE_NO_FLUSH);
4394 if (!ret)
4395 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4396 }
4397}
4398
28b737f6
LB
4399/*
4400 * If force is CHUNK_ALLOC_FORCE:
4401 * - return 1 if it successfully allocates a chunk,
4402 * - return errors including -ENOSPC otherwise.
4403 * If force is NOT CHUNK_ALLOC_FORCE:
4404 * - return 0 if it doesn't need to allocate a new chunk,
4405 * - return 1 if it successfully allocates a chunk,
4406 * - return errors including -ENOSPC otherwise.
4407 */
01458828
NB
4408static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4409 int force)
9ed74f2d 4410{
01458828 4411 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 4412 struct btrfs_space_info *space_info;
2556fbb0
NB
4413 bool wait_for_alloc = false;
4414 bool should_alloc = false;
9ed74f2d 4415 int ret = 0;
9ed74f2d 4416
c6b305a8
JB
4417 /* Don't re-enter if we're already allocating a chunk */
4418 if (trans->allocating_chunk)
4419 return -ENOSPC;
4420
0b246afa 4421 space_info = __find_space_info(fs_info, flags);
dc2d3005 4422 ASSERT(space_info);
9ed74f2d 4423
2556fbb0
NB
4424 do {
4425 spin_lock(&space_info->lock);
4426 if (force < space_info->force_alloc)
4427 force = space_info->force_alloc;
4428 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4429 if (space_info->full) {
4430 /* No more free physical space */
4431 if (should_alloc)
4432 ret = -ENOSPC;
4433 else
4434 ret = 0;
4435 spin_unlock(&space_info->lock);
4436 return ret;
4437 } else if (!should_alloc) {
4438 spin_unlock(&space_info->lock);
4439 return 0;
4440 } else if (space_info->chunk_alloc) {
4441 /*
4442 * Someone is already allocating, so we need to block
4443 * until this someone is finished and then loop to
4444 * recheck if we should continue with our allocation
4445 * attempt.
4446 */
4447 wait_for_alloc = true;
4448 spin_unlock(&space_info->lock);
4449 mutex_lock(&fs_info->chunk_mutex);
4450 mutex_unlock(&fs_info->chunk_mutex);
4451 } else {
4452 /* Proceed with allocation */
4453 space_info->chunk_alloc = 1;
4454 wait_for_alloc = false;
4455 spin_unlock(&space_info->lock);
4456 }
6d74119f 4457
1e1c50a9 4458 cond_resched();
2556fbb0 4459 } while (wait_for_alloc);
6d74119f 4460
2556fbb0 4461 mutex_lock(&fs_info->chunk_mutex);
c6b305a8
JB
4462 trans->allocating_chunk = true;
4463
67377734
JB
4464 /*
4465 * If we have mixed data/metadata chunks we want to make sure we keep
4466 * allocating mixed chunks instead of individual chunks.
4467 */
4468 if (btrfs_mixed_space_info(space_info))
4469 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4470
97e728d4
JB
4471 /*
4472 * if we're doing a data chunk, go ahead and make sure that
4473 * we keep a reasonable number of metadata chunks allocated in the
4474 * FS as well.
4475 */
9ed74f2d 4476 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4477 fs_info->data_chunk_allocations++;
4478 if (!(fs_info->data_chunk_allocations %
4479 fs_info->metadata_ratio))
4480 force_metadata_allocation(fs_info);
9ed74f2d
JB
4481 }
4482
15d1ff81
LB
4483 /*
4484 * Check if we have enough space in SYSTEM chunk because we may need
4485 * to update devices.
4486 */
451a2c13 4487 check_system_chunk(trans, flags);
15d1ff81 4488
c216b203 4489 ret = btrfs_alloc_chunk(trans, flags);
c6b305a8 4490 trans->allocating_chunk = false;
92b8e897 4491
9ed74f2d 4492 spin_lock(&space_info->lock);
57f1642e
NB
4493 if (ret < 0) {
4494 if (ret == -ENOSPC)
4495 space_info->full = 1;
4496 else
4497 goto out;
4498 } else {
424499db 4499 ret = 1;
21a94f7a 4500 space_info->max_extent_size = 0;
57f1642e 4501 }
6d74119f 4502
0e4f8f88 4503 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4504out:
6d74119f 4505 space_info->chunk_alloc = 0;
9ed74f2d 4506 spin_unlock(&space_info->lock);
a25c75d5 4507 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4508 /*
4509 * When we allocate a new chunk we reserve space in the chunk block
4510 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4511 * add new nodes/leafs to it if we end up needing to do it when
4512 * inserting the chunk item and updating device items as part of the
4513 * second phase of chunk allocation, performed by
4514 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4515 * large number of new block groups to create in our transaction
4516 * handle's new_bgs list to avoid exhausting the chunk block reserve
4517 * in extreme cases - like having a single transaction create many new
4518 * block groups when starting to write out the free space caches of all
4519 * the block groups that were made dirty during the lifetime of the
4520 * transaction.
4521 */
5ce55557 4522 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
6c686b35 4523 btrfs_create_pending_block_groups(trans);
5ce55557 4524
0f9dd46c 4525 return ret;
6324fbf3 4526}
9ed74f2d 4527
c1c4919b 4528static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4529 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4530 enum btrfs_reserve_flush_enum flush,
4531 bool system_chunk)
a80c8dcf 4532{
0b246afa 4533 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4534 u64 profile;
3c76cd84 4535 u64 space_size;
a80c8dcf
JB
4536 u64 avail;
4537 u64 used;
46df06b8 4538 int factor;
a80c8dcf 4539
957780eb
JB
4540 /* Don't overcommit when in mixed mode. */
4541 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4542 return 0;
4543
c1c4919b
JM
4544 if (system_chunk)
4545 profile = btrfs_system_alloc_profile(fs_info);
4546 else
4547 profile = btrfs_metadata_alloc_profile(fs_info);
4548
4136135b 4549 used = btrfs_space_info_used(space_info, false);
96f1bb57 4550
96f1bb57
JB
4551 /*
4552 * We only want to allow over committing if we have lots of actual space
4553 * free, but if we don't have enough space to handle the global reserve
4554 * space then we could end up having a real enospc problem when trying
4555 * to allocate a chunk or some other such important allocation.
4556 */
3c76cd84
MX
4557 spin_lock(&global_rsv->lock);
4558 space_size = calc_global_rsv_need_space(global_rsv);
4559 spin_unlock(&global_rsv->lock);
4560 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4561 return 0;
4562
4563 used += space_info->bytes_may_use;
a80c8dcf 4564
a5ed45f8 4565 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4566
4567 /*
4568 * If we have dup, raid1 or raid10 then only half of the free
52042d8e 4569 * space is actually usable. For raid56, the space info used
53b381b3
DW
4570 * doesn't include the parity drive, so we don't have to
4571 * change the math
a80c8dcf 4572 */
46df06b8
DS
4573 factor = btrfs_bg_type_to_factor(profile);
4574 avail = div_u64(avail, factor);
a80c8dcf
JB
4575
4576 /*
561c294d
MX
4577 * If we aren't flushing all things, let us overcommit up to
4578 * 1/2th of the space. If we can flush, don't let us overcommit
4579 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4580 */
08e007d2 4581 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4582 avail >>= 3;
a80c8dcf 4583 else
14575aef 4584 avail >>= 1;
a80c8dcf 4585
14575aef 4586 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4587 return 1;
4588 return 0;
4589}
4590
2ff7e61e 4591static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4592 unsigned long nr_pages, int nr_items)
da633a42 4593{
0b246afa 4594 struct super_block *sb = fs_info->sb;
da633a42 4595
925a6efb
JB
4596 if (down_read_trylock(&sb->s_umount)) {
4597 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4598 up_read(&sb->s_umount);
4599 } else {
da633a42
MX
4600 /*
4601 * We needn't worry the filesystem going from r/w to r/o though
4602 * we don't acquire ->s_umount mutex, because the filesystem
4603 * should guarantee the delalloc inodes list be empty after
4604 * the filesystem is readonly(all dirty pages are written to
4605 * the disk).
4606 */
82b3e53b 4607 btrfs_start_delalloc_roots(fs_info, nr_items);
98ad69cf 4608 if (!current->journal_info)
0b246afa 4609 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4610 }
4611}
4612
6374e57a 4613static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4614 u64 to_reclaim)
18cd8ea6
MX
4615{
4616 u64 bytes;
6374e57a 4617 u64 nr;
18cd8ea6 4618
2ff7e61e 4619 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4620 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4621 if (!nr)
4622 nr = 1;
4623 return nr;
4624}
4625
ee22184b 4626#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4627
9ed74f2d 4628/*
5da9d01b 4629 * shrink metadata reservation for delalloc
9ed74f2d 4630 */
c1c4919b
JM
4631static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4632 u64 orig, bool wait_ordered)
5da9d01b 4633{
0019f10d 4634 struct btrfs_space_info *space_info;
663350ac 4635 struct btrfs_trans_handle *trans;
f4c738c2 4636 u64 delalloc_bytes;
4297ff84 4637 u64 dio_bytes;
420829d8 4638 u64 async_pages;
6374e57a 4639 u64 items;
b1953bce 4640 long time_left;
d3ee29e3
MX
4641 unsigned long nr_pages;
4642 int loops;
5da9d01b 4643
c61a16a7 4644 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4645 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4646 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4647
663350ac 4648 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4649 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4650
963d678b 4651 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4652 &fs_info->delalloc_bytes);
4297ff84
JB
4653 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
4654 if (delalloc_bytes == 0 && dio_bytes == 0) {
fdb5effd 4655 if (trans)
f4c738c2 4656 return;
38c135af 4657 if (wait_ordered)
0b246afa 4658 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4659 return;
fdb5effd
JB
4660 }
4661
4297ff84
JB
4662 /*
4663 * If we are doing more ordered than delalloc we need to just wait on
4664 * ordered extents, otherwise we'll waste time trying to flush delalloc
4665 * that likely won't give us the space back we need.
4666 */
4667 if (dio_bytes > delalloc_bytes)
4668 wait_ordered = true;
4669
d3ee29e3 4670 loops = 0;
4297ff84 4671 while ((delalloc_bytes || dio_bytes) && loops < 3) {
420829d8
NB
4672 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
4673
4674 /*
4675 * Triggers inode writeback for up to nr_pages. This will invoke
4676 * ->writepages callback and trigger delalloc filling
4677 * (btrfs_run_delalloc_range()).
4678 */
2ff7e61e 4679 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
420829d8 4680
dea31f52 4681 /*
420829d8
NB
4682 * We need to wait for the compressed pages to start before
4683 * we continue.
dea31f52 4684 */
420829d8
NB
4685 async_pages = atomic_read(&fs_info->async_delalloc_pages);
4686 if (!async_pages)
9f3a074d
MX
4687 goto skip_async;
4688
420829d8
NB
4689 /*
4690 * Calculate how many compressed pages we want to be written
4691 * before we continue. I.e if there are more async pages than we
4692 * require wait_event will wait until nr_pages are written.
4693 */
4694 if (async_pages <= nr_pages)
4695 async_pages = 0;
9f3a074d 4696 else
420829d8 4697 async_pages -= nr_pages;
dea31f52 4698
0b246afa
JM
4699 wait_event(fs_info->async_submit_wait,
4700 atomic_read(&fs_info->async_delalloc_pages) <=
420829d8 4701 (int)async_pages);
9f3a074d 4702skip_async:
0019f10d 4703 spin_lock(&space_info->lock);
957780eb
JB
4704 if (list_empty(&space_info->tickets) &&
4705 list_empty(&space_info->priority_tickets)) {
4706 spin_unlock(&space_info->lock);
4707 break;
4708 }
0019f10d 4709 spin_unlock(&space_info->lock);
5da9d01b 4710
36e39c40 4711 loops++;
f104d044 4712 if (wait_ordered && !trans) {
0b246afa 4713 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4714 } else {
f4c738c2 4715 time_left = schedule_timeout_killable(1);
f104d044
JB
4716 if (time_left)
4717 break;
4718 }
963d678b 4719 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4720 &fs_info->delalloc_bytes);
4297ff84 4721 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
5da9d01b 4722 }
5da9d01b
YZ
4723}
4724
996478ca 4725struct reserve_ticket {
f91587e4 4726 u64 orig_bytes;
996478ca
JB
4727 u64 bytes;
4728 int error;
4729 struct list_head list;
4730 wait_queue_head_t wait;
4731};
4732
663350ac
JB
4733/**
4734 * maybe_commit_transaction - possibly commit the transaction if its ok to
4735 * @root - the root we're allocating for
4736 * @bytes - the number of bytes we want to reserve
4737 * @force - force the commit
8bb8ab2e 4738 *
663350ac
JB
4739 * This will check to make sure that committing the transaction will actually
4740 * get us somewhere and then commit the transaction if it does. Otherwise it
4741 * will return -ENOSPC.
8bb8ab2e 4742 */
0c9ab349 4743static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4744 struct btrfs_space_info *space_info)
663350ac 4745{
996478ca 4746 struct reserve_ticket *ticket = NULL;
0b246afa 4747 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4c8edbc7 4748 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
663350ac 4749 struct btrfs_trans_handle *trans;
4c8edbc7
JB
4750 u64 bytes_needed;
4751 u64 reclaim_bytes = 0;
663350ac
JB
4752
4753 trans = (struct btrfs_trans_handle *)current->journal_info;
4754 if (trans)
4755 return -EAGAIN;
4756
996478ca
JB
4757 spin_lock(&space_info->lock);
4758 if (!list_empty(&space_info->priority_tickets))
4759 ticket = list_first_entry(&space_info->priority_tickets,
4760 struct reserve_ticket, list);
4761 else if (!list_empty(&space_info->tickets))
4762 ticket = list_first_entry(&space_info->tickets,
4763 struct reserve_ticket, list);
4c8edbc7 4764 bytes_needed = (ticket) ? ticket->bytes : 0;
996478ca
JB
4765 spin_unlock(&space_info->lock);
4766
4c8edbc7 4767 if (!bytes_needed)
996478ca 4768 return 0;
663350ac 4769
d89dbefb
JB
4770 trans = btrfs_join_transaction(fs_info->extent_root);
4771 if (IS_ERR(trans))
4772 return PTR_ERR(trans);
4773
4774 /*
4775 * See if there is enough pinned space to make this reservation, or if
4776 * we have block groups that are going to be freed, allowing us to
4777 * possibly do a chunk allocation the next loop through.
4778 */
4779 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
4780 __percpu_counter_compare(&space_info->total_bytes_pinned,
4781 bytes_needed,
4782 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
663350ac 4783 goto commit;
663350ac
JB
4784
4785 /*
4786 * See if there is some space in the delayed insertion reservation for
4787 * this reservation.
4788 */
4789 if (space_info != delayed_rsv->space_info)
d89dbefb 4790 goto enospc;
663350ac
JB
4791
4792 spin_lock(&delayed_rsv->lock);
4c8edbc7 4793 reclaim_bytes += delayed_rsv->reserved;
057aac3e
NB
4794 spin_unlock(&delayed_rsv->lock);
4795
4c8edbc7
JB
4796 spin_lock(&delayed_refs_rsv->lock);
4797 reclaim_bytes += delayed_refs_rsv->reserved;
4798 spin_unlock(&delayed_refs_rsv->lock);
4799 if (reclaim_bytes >= bytes_needed)
4800 goto commit;
4801 bytes_needed -= reclaim_bytes;
4802
dec59fa3 4803 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4c8edbc7 4804 bytes_needed,
d89dbefb
JB
4805 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
4806 goto enospc;
663350ac
JB
4807
4808commit:
3a45bb20 4809 return btrfs_commit_transaction(trans);
d89dbefb
JB
4810enospc:
4811 btrfs_end_transaction(trans);
4812 return -ENOSPC;
663350ac
JB
4813}
4814
e38ae7a0
NB
4815/*
4816 * Try to flush some data based on policy set by @state. This is only advisory
4817 * and may fail for various reasons. The caller is supposed to examine the
4818 * state of @space_info to detect the outcome.
4819 */
4820static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4821 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4822 int state)
96c3f433 4823{
a9b3311e 4824 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4825 struct btrfs_trans_handle *trans;
4826 int nr;
f4c738c2 4827 int ret = 0;
96c3f433
JB
4828
4829 switch (state) {
96c3f433
JB
4830 case FLUSH_DELAYED_ITEMS_NR:
4831 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4832 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4833 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4834 else
96c3f433 4835 nr = -1;
18cd8ea6 4836
96c3f433
JB
4837 trans = btrfs_join_transaction(root);
4838 if (IS_ERR(trans)) {
4839 ret = PTR_ERR(trans);
4840 break;
4841 }
e5c304e6 4842 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4843 btrfs_end_transaction(trans);
96c3f433 4844 break;
67b0fd63
JB
4845 case FLUSH_DELALLOC:
4846 case FLUSH_DELALLOC_WAIT:
7bdd6277 4847 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4848 state == FLUSH_DELALLOC_WAIT);
4849 break;
413df725
JB
4850 case FLUSH_DELAYED_REFS_NR:
4851 case FLUSH_DELAYED_REFS:
4852 trans = btrfs_join_transaction(root);
4853 if (IS_ERR(trans)) {
4854 ret = PTR_ERR(trans);
4855 break;
4856 }
4857 if (state == FLUSH_DELAYED_REFS_NR)
4858 nr = calc_reclaim_items_nr(fs_info, num_bytes);
4859 else
4860 nr = 0;
4861 btrfs_run_delayed_refs(trans, nr);
4862 btrfs_end_transaction(trans);
4863 break;
ea658bad 4864 case ALLOC_CHUNK:
450114fc 4865 case ALLOC_CHUNK_FORCE:
ea658bad
JB
4866 trans = btrfs_join_transaction(root);
4867 if (IS_ERR(trans)) {
4868 ret = PTR_ERR(trans);
4869 break;
4870 }
01458828 4871 ret = do_chunk_alloc(trans,
1b86826d 4872 btrfs_metadata_alloc_profile(fs_info),
450114fc
JB
4873 (state == ALLOC_CHUNK) ?
4874 CHUNK_ALLOC_NO_FORCE : CHUNK_ALLOC_FORCE);
3a45bb20 4875 btrfs_end_transaction(trans);
eecba891 4876 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4877 ret = 0;
4878 break;
96c3f433 4879 case COMMIT_TRANS:
3ec9a4c8
JB
4880 /*
4881 * If we have pending delayed iputs then we could free up a
4882 * bunch of pinned space, so make sure we run the iputs before
4883 * we do our pinned bytes check below.
4884 */
3ec9a4c8 4885 btrfs_run_delayed_iputs(fs_info);
034f784d 4886 btrfs_wait_on_delayed_iputs(fs_info);
3ec9a4c8 4887
996478ca 4888 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
4889 break;
4890 default:
4891 ret = -ENOSPC;
4892 break;
4893 }
4894
7bdd6277
NB
4895 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4896 ret);
e38ae7a0 4897 return;
96c3f433 4898}
21c7e756
MX
4899
4900static inline u64
c1c4919b
JM
4901btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4902 struct btrfs_space_info *space_info,
4903 bool system_chunk)
21c7e756 4904{
957780eb 4905 struct reserve_ticket *ticket;
21c7e756
MX
4906 u64 used;
4907 u64 expected;
957780eb 4908 u64 to_reclaim = 0;
21c7e756 4909
957780eb
JB
4910 list_for_each_entry(ticket, &space_info->tickets, list)
4911 to_reclaim += ticket->bytes;
4912 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4913 to_reclaim += ticket->bytes;
4914 if (to_reclaim)
4915 return to_reclaim;
21c7e756 4916
e0af2484 4917 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
4918 if (can_overcommit(fs_info, space_info, to_reclaim,
4919 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
4920 return 0;
4921
0eee8a49
NB
4922 used = btrfs_space_info_used(space_info, true);
4923
c1c4919b
JM
4924 if (can_overcommit(fs_info, space_info, SZ_1M,
4925 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
4926 expected = div_factor_fine(space_info->total_bytes, 95);
4927 else
4928 expected = div_factor_fine(space_info->total_bytes, 90);
4929
4930 if (used > expected)
4931 to_reclaim = used - expected;
4932 else
4933 to_reclaim = 0;
4934 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4935 space_info->bytes_reserved);
21c7e756
MX
4936 return to_reclaim;
4937}
4938
c1c4919b
JM
4939static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4940 struct btrfs_space_info *space_info,
4941 u64 used, bool system_chunk)
21c7e756 4942{
365c5313
JB
4943 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4944
4945 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4946 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4947 return 0;
4948
c1c4919b
JM
4949 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4950 system_chunk))
d38b349c
JB
4951 return 0;
4952
0b246afa
JM
4953 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4954 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
4955}
4956
f91587e4 4957static bool wake_all_tickets(struct list_head *head)
21c7e756 4958{
957780eb 4959 struct reserve_ticket *ticket;
25ce459c 4960
957780eb
JB
4961 while (!list_empty(head)) {
4962 ticket = list_first_entry(head, struct reserve_ticket, list);
4963 list_del_init(&ticket->list);
4964 ticket->error = -ENOSPC;
4965 wake_up(&ticket->wait);
f91587e4
JB
4966 if (ticket->bytes != ticket->orig_bytes)
4967 return true;
21c7e756 4968 }
f91587e4 4969 return false;
21c7e756
MX
4970}
4971
957780eb
JB
4972/*
4973 * This is for normal flushers, we can wait all goddamned day if we want to. We
4974 * will loop and continuously try to flush as long as we are making progress.
4975 * We count progress as clearing off tickets each time we have to loop.
4976 */
21c7e756
MX
4977static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4978{
4979 struct btrfs_fs_info *fs_info;
4980 struct btrfs_space_info *space_info;
4981 u64 to_reclaim;
4982 int flush_state;
957780eb 4983 int commit_cycles = 0;
ce129655 4984 u64 last_tickets_id;
21c7e756
MX
4985
4986 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4987 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4988
957780eb 4989 spin_lock(&space_info->lock);
c1c4919b
JM
4990 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4991 false);
957780eb
JB
4992 if (!to_reclaim) {
4993 space_info->flush = 0;
4994 spin_unlock(&space_info->lock);
21c7e756 4995 return;
957780eb 4996 }
ce129655 4997 last_tickets_id = space_info->tickets_id;
957780eb 4998 spin_unlock(&space_info->lock);
21c7e756
MX
4999
5000 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5001 do {
e38ae7a0 5002 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5003 spin_lock(&space_info->lock);
5004 if (list_empty(&space_info->tickets)) {
5005 space_info->flush = 0;
5006 spin_unlock(&space_info->lock);
5007 return;
5008 }
c1c4919b
JM
5009 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5010 space_info,
5011 false);
ce129655 5012 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5013 flush_state++;
5014 } else {
ce129655 5015 last_tickets_id = space_info->tickets_id;
957780eb
JB
5016 flush_state = FLUSH_DELAYED_ITEMS_NR;
5017 if (commit_cycles)
5018 commit_cycles--;
5019 }
5020
450114fc
JB
5021 /*
5022 * We don't want to force a chunk allocation until we've tried
5023 * pretty hard to reclaim space. Think of the case where we
5024 * freed up a bunch of space and so have a lot of pinned space
5025 * to reclaim. We would rather use that than possibly create a
5026 * underutilized metadata chunk. So if this is our first run
5027 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
5028 * commit the transaction. If nothing has changed the next go
5029 * around then we can force a chunk allocation.
5030 */
5031 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
5032 flush_state++;
5033
957780eb
JB
5034 if (flush_state > COMMIT_TRANS) {
5035 commit_cycles++;
5036 if (commit_cycles > 2) {
f91587e4
JB
5037 if (wake_all_tickets(&space_info->tickets)) {
5038 flush_state = FLUSH_DELAYED_ITEMS_NR;
5039 commit_cycles--;
5040 } else {
5041 space_info->flush = 0;
5042 }
957780eb
JB
5043 } else {
5044 flush_state = FLUSH_DELAYED_ITEMS_NR;
5045 }
5046 }
5047 spin_unlock(&space_info->lock);
5048 } while (flush_state <= COMMIT_TRANS);
5049}
5050
5051void btrfs_init_async_reclaim_work(struct work_struct *work)
5052{
5053 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5054}
5055
8a1bbe1d
JB
5056static const enum btrfs_flush_state priority_flush_states[] = {
5057 FLUSH_DELAYED_ITEMS_NR,
5058 FLUSH_DELAYED_ITEMS,
5059 ALLOC_CHUNK,
5060};
5061
957780eb
JB
5062static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5063 struct btrfs_space_info *space_info,
5064 struct reserve_ticket *ticket)
5065{
5066 u64 to_reclaim;
8a1bbe1d 5067 int flush_state;
957780eb
JB
5068
5069 spin_lock(&space_info->lock);
c1c4919b
JM
5070 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5071 false);
957780eb
JB
5072 if (!to_reclaim) {
5073 spin_unlock(&space_info->lock);
5074 return;
5075 }
5076 spin_unlock(&space_info->lock);
5077
8a1bbe1d 5078 flush_state = 0;
21c7e756 5079 do {
8a1bbe1d
JB
5080 flush_space(fs_info, space_info, to_reclaim,
5081 priority_flush_states[flush_state]);
21c7e756 5082 flush_state++;
957780eb
JB
5083 spin_lock(&space_info->lock);
5084 if (ticket->bytes == 0) {
5085 spin_unlock(&space_info->lock);
21c7e756 5086 return;
957780eb
JB
5087 }
5088 spin_unlock(&space_info->lock);
8a1bbe1d 5089 } while (flush_state < ARRAY_SIZE(priority_flush_states));
21c7e756
MX
5090}
5091
957780eb
JB
5092static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5093 struct btrfs_space_info *space_info,
f91587e4 5094 struct reserve_ticket *ticket)
957780eb 5095
21c7e756 5096{
957780eb 5097 DEFINE_WAIT(wait);
f91587e4 5098 u64 reclaim_bytes = 0;
957780eb
JB
5099 int ret = 0;
5100
5101 spin_lock(&space_info->lock);
5102 while (ticket->bytes > 0 && ticket->error == 0) {
5103 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5104 if (ret) {
5105 ret = -EINTR;
5106 break;
5107 }
5108 spin_unlock(&space_info->lock);
5109
5110 schedule();
5111
5112 finish_wait(&ticket->wait, &wait);
5113 spin_lock(&space_info->lock);
5114 }
5115 if (!ret)
5116 ret = ticket->error;
5117 if (!list_empty(&ticket->list))
5118 list_del_init(&ticket->list);
f91587e4
JB
5119 if (ticket->bytes && ticket->bytes < ticket->orig_bytes)
5120 reclaim_bytes = ticket->orig_bytes - ticket->bytes;
957780eb
JB
5121 spin_unlock(&space_info->lock);
5122
f91587e4
JB
5123 if (reclaim_bytes)
5124 space_info_add_old_bytes(fs_info, space_info, reclaim_bytes);
957780eb 5125 return ret;
21c7e756
MX
5126}
5127
4a92b1b8
JB
5128/**
5129 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5130 * @root - the root we're allocating for
957780eb 5131 * @space_info - the space info we want to allocate from
4a92b1b8 5132 * @orig_bytes - the number of bytes we want
48fc7f7e 5133 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5134 *
01327610 5135 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5136 * with the block_rsv. If there is not enough space it will make an attempt to
5137 * flush out space to make room. It will do this by flushing delalloc if
5138 * possible or committing the transaction. If flush is 0 then no attempts to
5139 * regain reservations will be made and this will fail if there is not enough
5140 * space already.
8bb8ab2e 5141 */
c1c4919b 5142static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5143 struct btrfs_space_info *space_info,
5144 u64 orig_bytes,
c1c4919b
JM
5145 enum btrfs_reserve_flush_enum flush,
5146 bool system_chunk)
9ed74f2d 5147{
957780eb 5148 struct reserve_ticket ticket;
2bf64758 5149 u64 used;
f91587e4 5150 u64 reclaim_bytes = 0;
8bb8ab2e 5151 int ret = 0;
9ed74f2d 5152
957780eb 5153 ASSERT(orig_bytes);
8ca17f0f 5154 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5155
8bb8ab2e 5156 spin_lock(&space_info->lock);
fdb5effd 5157 ret = -ENOSPC;
4136135b 5158 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5159
8bb8ab2e 5160 /*
957780eb
JB
5161 * If we have enough space then hooray, make our reservation and carry
5162 * on. If not see if we can overcommit, and if we can, hooray carry on.
5163 * If not things get more complicated.
8bb8ab2e 5164 */
957780eb 5165 if (used + orig_bytes <= space_info->total_bytes) {
9f9b8e8d 5166 update_bytes_may_use(space_info, orig_bytes);
0b246afa
JM
5167 trace_btrfs_space_reservation(fs_info, "space_info",
5168 space_info->flags, orig_bytes, 1);
957780eb 5169 ret = 0;
c1c4919b
JM
5170 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5171 system_chunk)) {
9f9b8e8d 5172 update_bytes_may_use(space_info, orig_bytes);
0b246afa
JM
5173 trace_btrfs_space_reservation(fs_info, "space_info",
5174 space_info->flags, orig_bytes, 1);
44734ed1 5175 ret = 0;
2bf64758
JB
5176 }
5177
8bb8ab2e 5178 /*
957780eb
JB
5179 * If we couldn't make a reservation then setup our reservation ticket
5180 * and kick the async worker if it's not already running.
08e007d2 5181 *
957780eb
JB
5182 * If we are a priority flusher then we just need to add our ticket to
5183 * the list and we will do our own flushing further down.
8bb8ab2e 5184 */
72bcd99d 5185 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
f91587e4 5186 ticket.orig_bytes = orig_bytes;
957780eb
JB
5187 ticket.bytes = orig_bytes;
5188 ticket.error = 0;
5189 init_waitqueue_head(&ticket.wait);
5190 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5191 list_add_tail(&ticket.list, &space_info->tickets);
5192 if (!space_info->flush) {
5193 space_info->flush = 1;
0b246afa 5194 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5195 space_info->flags,
5196 orig_bytes, flush,
5197 "enospc");
957780eb 5198 queue_work(system_unbound_wq,
c1c4919b 5199 &fs_info->async_reclaim_work);
957780eb
JB
5200 }
5201 } else {
5202 list_add_tail(&ticket.list,
5203 &space_info->priority_tickets);
5204 }
21c7e756
MX
5205 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5206 used += orig_bytes;
f6acfd50
JB
5207 /*
5208 * We will do the space reservation dance during log replay,
5209 * which means we won't have fs_info->fs_root set, so don't do
5210 * the async reclaim as we will panic.
5211 */
0b246afa 5212 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5213 need_do_async_reclaim(fs_info, space_info,
5214 used, system_chunk) &&
0b246afa
JM
5215 !work_busy(&fs_info->async_reclaim_work)) {
5216 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5217 orig_bytes, flush, "preempt");
21c7e756 5218 queue_work(system_unbound_wq,
0b246afa 5219 &fs_info->async_reclaim_work);
f376df2b 5220 }
8bb8ab2e 5221 }
f0486c68 5222 spin_unlock(&space_info->lock);
08e007d2 5223 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5224 return ret;
f0486c68 5225
957780eb 5226 if (flush == BTRFS_RESERVE_FLUSH_ALL)
f91587e4 5227 return wait_reserve_ticket(fs_info, space_info, &ticket);
08e007d2 5228
957780eb 5229 ret = 0;
0b246afa 5230 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5231 spin_lock(&space_info->lock);
5232 if (ticket.bytes) {
f91587e4
JB
5233 if (ticket.bytes < orig_bytes)
5234 reclaim_bytes = orig_bytes - ticket.bytes;
957780eb
JB
5235 list_del_init(&ticket.list);
5236 ret = -ENOSPC;
5237 }
5238 spin_unlock(&space_info->lock);
f91587e4
JB
5239
5240 if (reclaim_bytes)
5241 space_info_add_old_bytes(fs_info, space_info, reclaim_bytes);
957780eb
JB
5242 ASSERT(list_empty(&ticket.list));
5243 return ret;
5244}
8bb8ab2e 5245
957780eb
JB
5246/**
5247 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5248 * @root - the root we're allocating for
5249 * @block_rsv - the block_rsv we're allocating for
5250 * @orig_bytes - the number of bytes we want
5251 * @flush - whether or not we can flush to make our reservation
5252 *
52042d8e 5253 * This will reserve orig_bytes number of bytes from the space info associated
957780eb
JB
5254 * with the block_rsv. If there is not enough space it will make an attempt to
5255 * flush out space to make room. It will do this by flushing delalloc if
5256 * possible or committing the transaction. If flush is 0 then no attempts to
5257 * regain reservations will be made and this will fail if there is not enough
5258 * space already.
5259 */
5260static int reserve_metadata_bytes(struct btrfs_root *root,
5261 struct btrfs_block_rsv *block_rsv,
5262 u64 orig_bytes,
5263 enum btrfs_reserve_flush_enum flush)
5264{
0b246afa
JM
5265 struct btrfs_fs_info *fs_info = root->fs_info;
5266 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5267 int ret;
c1c4919b 5268 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5269
c1c4919b
JM
5270 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5271 orig_bytes, flush, system_chunk);
5d80366e
JB
5272 if (ret == -ENOSPC &&
5273 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5274 if (block_rsv != global_rsv &&
5275 !block_rsv_use_bytes(global_rsv, orig_bytes))
5276 ret = 0;
5277 }
9a3daff3 5278 if (ret == -ENOSPC) {
0b246afa 5279 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5280 block_rsv->space_info->flags,
5281 orig_bytes, 1);
9a3daff3
NB
5282
5283 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5284 dump_space_info(fs_info, block_rsv->space_info,
5285 orig_bytes, 0);
5286 }
f0486c68
YZ
5287 return ret;
5288}
5289
79787eaa
JM
5290static struct btrfs_block_rsv *get_block_rsv(
5291 const struct btrfs_trans_handle *trans,
5292 const struct btrfs_root *root)
f0486c68 5293{
0b246afa 5294 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5295 struct btrfs_block_rsv *block_rsv = NULL;
5296
e9cf439f 5297 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5298 (root == fs_info->csum_root && trans->adding_csums) ||
5299 (root == fs_info->uuid_root))
f7a81ea4
SB
5300 block_rsv = trans->block_rsv;
5301
4c13d758 5302 if (!block_rsv)
f0486c68
YZ
5303 block_rsv = root->block_rsv;
5304
5305 if (!block_rsv)
0b246afa 5306 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5307
5308 return block_rsv;
5309}
5310
5311static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5312 u64 num_bytes)
5313{
5314 int ret = -ENOSPC;
5315 spin_lock(&block_rsv->lock);
5316 if (block_rsv->reserved >= num_bytes) {
5317 block_rsv->reserved -= num_bytes;
5318 if (block_rsv->reserved < block_rsv->size)
5319 block_rsv->full = 0;
5320 ret = 0;
5321 }
5322 spin_unlock(&block_rsv->lock);
5323 return ret;
5324}
5325
5326static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3a584174 5327 u64 num_bytes, bool update_size)
f0486c68
YZ
5328{
5329 spin_lock(&block_rsv->lock);
5330 block_rsv->reserved += num_bytes;
5331 if (update_size)
5332 block_rsv->size += num_bytes;
5333 else if (block_rsv->reserved >= block_rsv->size)
5334 block_rsv->full = 1;
5335 spin_unlock(&block_rsv->lock);
5336}
5337
d52be818
JB
5338int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5339 struct btrfs_block_rsv *dest, u64 num_bytes,
5340 int min_factor)
5341{
5342 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5343 u64 min_bytes;
5344
5345 if (global_rsv->space_info != dest->space_info)
5346 return -ENOSPC;
5347
5348 spin_lock(&global_rsv->lock);
5349 min_bytes = div_factor(global_rsv->size, min_factor);
5350 if (global_rsv->reserved < min_bytes + num_bytes) {
5351 spin_unlock(&global_rsv->lock);
5352 return -ENOSPC;
5353 }
5354 global_rsv->reserved -= num_bytes;
5355 if (global_rsv->reserved < global_rsv->size)
5356 global_rsv->full = 0;
5357 spin_unlock(&global_rsv->lock);
5358
3a584174 5359 block_rsv_add_bytes(dest, num_bytes, true);
d52be818
JB
5360 return 0;
5361}
5362
ba2c4d4e
JB
5363/**
5364 * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
5365 * @fs_info - the fs info for our fs.
5366 * @src - the source block rsv to transfer from.
5367 * @num_bytes - the number of bytes to transfer.
5368 *
5369 * This transfers up to the num_bytes amount from the src rsv to the
5370 * delayed_refs_rsv. Any extra bytes are returned to the space info.
5371 */
5372void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
5373 struct btrfs_block_rsv *src,
5374 u64 num_bytes)
5375{
5376 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
5377 u64 to_free = 0;
5378
5379 spin_lock(&src->lock);
5380 src->reserved -= num_bytes;
5381 src->size -= num_bytes;
5382 spin_unlock(&src->lock);
5383
5384 spin_lock(&delayed_refs_rsv->lock);
5385 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
5386 u64 delta = delayed_refs_rsv->size -
5387 delayed_refs_rsv->reserved;
5388 if (num_bytes > delta) {
5389 to_free = num_bytes - delta;
5390 num_bytes = delta;
5391 }
5392 } else {
5393 to_free = num_bytes;
5394 num_bytes = 0;
5395 }
5396
5397 if (num_bytes)
5398 delayed_refs_rsv->reserved += num_bytes;
5399 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
5400 delayed_refs_rsv->full = 1;
5401 spin_unlock(&delayed_refs_rsv->lock);
5402
5403 if (num_bytes)
5404 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5405 0, num_bytes, 1);
5406 if (to_free)
5407 space_info_add_old_bytes(fs_info, delayed_refs_rsv->space_info,
5408 to_free);
5409}
5410
5411/**
5412 * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
5413 * @fs_info - the fs_info for our fs.
5414 * @flush - control how we can flush for this reservation.
5415 *
5416 * This will refill the delayed block_rsv up to 1 items size worth of space and
5417 * will return -ENOSPC if we can't make the reservation.
5418 */
5419int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
5420 enum btrfs_reserve_flush_enum flush)
5421{
5422 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5423 u64 limit = btrfs_calc_trans_metadata_size(fs_info, 1);
5424 u64 num_bytes = 0;
5425 int ret = -ENOSPC;
5426
5427 spin_lock(&block_rsv->lock);
5428 if (block_rsv->reserved < block_rsv->size) {
5429 num_bytes = block_rsv->size - block_rsv->reserved;
5430 num_bytes = min(num_bytes, limit);
5431 }
5432 spin_unlock(&block_rsv->lock);
5433
5434 if (!num_bytes)
5435 return 0;
5436
5437 ret = reserve_metadata_bytes(fs_info->extent_root, block_rsv,
5438 num_bytes, flush);
5439 if (ret)
5440 return ret;
5441 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5442 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5443 0, num_bytes, 1);
5444 return 0;
5445}
5446
957780eb
JB
5447/*
5448 * This is for space we already have accounted in space_info->bytes_may_use, so
5449 * basically when we're returning space from block_rsv's.
5450 */
5451static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5452 struct btrfs_space_info *space_info,
5453 u64 num_bytes)
5454{
5455 struct reserve_ticket *ticket;
5456 struct list_head *head;
5457 u64 used;
5458 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5459 bool check_overcommit = false;
5460
5461 spin_lock(&space_info->lock);
5462 head = &space_info->priority_tickets;
5463
5464 /*
5465 * If we are over our limit then we need to check and see if we can
5466 * overcommit, and if we can't then we just need to free up our space
5467 * and not satisfy any requests.
5468 */
0eee8a49 5469 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5470 if (used - num_bytes >= space_info->total_bytes)
5471 check_overcommit = true;
5472again:
5473 while (!list_empty(head) && num_bytes) {
5474 ticket = list_first_entry(head, struct reserve_ticket,
5475 list);
5476 /*
5477 * We use 0 bytes because this space is already reserved, so
5478 * adding the ticket space would be a double count.
5479 */
5480 if (check_overcommit &&
c1c4919b 5481 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5482 break;
5483 if (num_bytes >= ticket->bytes) {
5484 list_del_init(&ticket->list);
5485 num_bytes -= ticket->bytes;
5486 ticket->bytes = 0;
ce129655 5487 space_info->tickets_id++;
957780eb
JB
5488 wake_up(&ticket->wait);
5489 } else {
5490 ticket->bytes -= num_bytes;
5491 num_bytes = 0;
5492 }
5493 }
5494
5495 if (num_bytes && head == &space_info->priority_tickets) {
5496 head = &space_info->tickets;
5497 flush = BTRFS_RESERVE_FLUSH_ALL;
5498 goto again;
5499 }
9f9b8e8d 5500 update_bytes_may_use(space_info, -num_bytes);
957780eb
JB
5501 trace_btrfs_space_reservation(fs_info, "space_info",
5502 space_info->flags, num_bytes, 0);
5503 spin_unlock(&space_info->lock);
5504}
5505
5506/*
5507 * This is for newly allocated space that isn't accounted in
5508 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5509 * we use this helper.
5510 */
5511static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5512 struct btrfs_space_info *space_info,
5513 u64 num_bytes)
5514{
5515 struct reserve_ticket *ticket;
5516 struct list_head *head = &space_info->priority_tickets;
5517
5518again:
5519 while (!list_empty(head) && num_bytes) {
5520 ticket = list_first_entry(head, struct reserve_ticket,
5521 list);
5522 if (num_bytes >= ticket->bytes) {
5523 trace_btrfs_space_reservation(fs_info, "space_info",
5524 space_info->flags,
5525 ticket->bytes, 1);
5526 list_del_init(&ticket->list);
5527 num_bytes -= ticket->bytes;
9f9b8e8d 5528 update_bytes_may_use(space_info, ticket->bytes);
957780eb 5529 ticket->bytes = 0;
ce129655 5530 space_info->tickets_id++;
957780eb
JB
5531 wake_up(&ticket->wait);
5532 } else {
5533 trace_btrfs_space_reservation(fs_info, "space_info",
5534 space_info->flags,
5535 num_bytes, 1);
9f9b8e8d 5536 update_bytes_may_use(space_info, num_bytes);
957780eb
JB
5537 ticket->bytes -= num_bytes;
5538 num_bytes = 0;
5539 }
5540 }
5541
5542 if (num_bytes && head == &space_info->priority_tickets) {
5543 head = &space_info->tickets;
5544 goto again;
5545 }
5546}
5547
69fe2d75 5548static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5549 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5550 struct btrfs_block_rsv *dest, u64 num_bytes,
5551 u64 *qgroup_to_release_ret)
f0486c68
YZ
5552{
5553 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5554 u64 qgroup_to_release = 0;
69fe2d75 5555 u64 ret;
f0486c68
YZ
5556
5557 spin_lock(&block_rsv->lock);
ff6bc37e 5558 if (num_bytes == (u64)-1) {
f0486c68 5559 num_bytes = block_rsv->size;
ff6bc37e
QW
5560 qgroup_to_release = block_rsv->qgroup_rsv_size;
5561 }
f0486c68
YZ
5562 block_rsv->size -= num_bytes;
5563 if (block_rsv->reserved >= block_rsv->size) {
5564 num_bytes = block_rsv->reserved - block_rsv->size;
5565 block_rsv->reserved = block_rsv->size;
5566 block_rsv->full = 1;
5567 } else {
5568 num_bytes = 0;
5569 }
ff6bc37e
QW
5570 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5571 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5572 block_rsv->qgroup_rsv_size;
5573 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5574 } else {
5575 qgroup_to_release = 0;
5576 }
f0486c68
YZ
5577 spin_unlock(&block_rsv->lock);
5578
69fe2d75 5579 ret = num_bytes;
f0486c68
YZ
5580 if (num_bytes > 0) {
5581 if (dest) {
e9e22899
JB
5582 spin_lock(&dest->lock);
5583 if (!dest->full) {
5584 u64 bytes_to_add;
5585
5586 bytes_to_add = dest->size - dest->reserved;
5587 bytes_to_add = min(num_bytes, bytes_to_add);
5588 dest->reserved += bytes_to_add;
5589 if (dest->reserved >= dest->size)
5590 dest->full = 1;
5591 num_bytes -= bytes_to_add;
5592 }
5593 spin_unlock(&dest->lock);
5594 }
957780eb
JB
5595 if (num_bytes)
5596 space_info_add_old_bytes(fs_info, space_info,
5597 num_bytes);
9ed74f2d 5598 }
ff6bc37e
QW
5599 if (qgroup_to_release_ret)
5600 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5601 return ret;
f0486c68 5602}
4e06bdd6 5603
25d609f8
JB
5604int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5605 struct btrfs_block_rsv *dst, u64 num_bytes,
3a584174 5606 bool update_size)
f0486c68
YZ
5607{
5608 int ret;
9ed74f2d 5609
f0486c68
YZ
5610 ret = block_rsv_use_bytes(src, num_bytes);
5611 if (ret)
5612 return ret;
9ed74f2d 5613
25d609f8 5614 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5615 return 0;
5616}
5617
66d8f3dd 5618void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5619{
f0486c68
YZ
5620 memset(rsv, 0, sizeof(*rsv));
5621 spin_lock_init(&rsv->lock);
66d8f3dd 5622 rsv->type = type;
f0486c68
YZ
5623}
5624
69fe2d75
JB
5625void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5626 struct btrfs_block_rsv *rsv,
5627 unsigned short type)
5628{
5629 btrfs_init_block_rsv(rsv, type);
5630 rsv->space_info = __find_space_info(fs_info,
5631 BTRFS_BLOCK_GROUP_METADATA);
5632}
5633
2ff7e61e 5634struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5635 unsigned short type)
f0486c68
YZ
5636{
5637 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5638
f0486c68
YZ
5639 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5640 if (!block_rsv)
5641 return NULL;
9ed74f2d 5642
69fe2d75 5643 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5644 return block_rsv;
5645}
9ed74f2d 5646
2ff7e61e 5647void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5648 struct btrfs_block_rsv *rsv)
5649{
2aaa6655
JB
5650 if (!rsv)
5651 return;
2ff7e61e 5652 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5653 kfree(rsv);
9ed74f2d
JB
5654}
5655
08e007d2
MX
5656int btrfs_block_rsv_add(struct btrfs_root *root,
5657 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5658 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5659{
f0486c68 5660 int ret;
9ed74f2d 5661
f0486c68
YZ
5662 if (num_bytes == 0)
5663 return 0;
8bb8ab2e 5664
61b520a9 5665 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5a2cb25a 5666 if (!ret)
3a584174 5667 block_rsv_add_bytes(block_rsv, num_bytes, true);
9ed74f2d 5668
f0486c68 5669 return ret;
f0486c68 5670}
9ed74f2d 5671
2ff7e61e 5672int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5673{
5674 u64 num_bytes = 0;
f0486c68 5675 int ret = -ENOSPC;
9ed74f2d 5676
f0486c68
YZ
5677 if (!block_rsv)
5678 return 0;
9ed74f2d 5679
f0486c68 5680 spin_lock(&block_rsv->lock);
36ba022a
JB
5681 num_bytes = div_factor(block_rsv->size, min_factor);
5682 if (block_rsv->reserved >= num_bytes)
5683 ret = 0;
5684 spin_unlock(&block_rsv->lock);
9ed74f2d 5685
36ba022a
JB
5686 return ret;
5687}
5688
08e007d2
MX
5689int btrfs_block_rsv_refill(struct btrfs_root *root,
5690 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5691 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5692{
5693 u64 num_bytes = 0;
5694 int ret = -ENOSPC;
5695
5696 if (!block_rsv)
5697 return 0;
5698
5699 spin_lock(&block_rsv->lock);
5700 num_bytes = min_reserved;
13553e52 5701 if (block_rsv->reserved >= num_bytes)
f0486c68 5702 ret = 0;
13553e52 5703 else
f0486c68 5704 num_bytes -= block_rsv->reserved;
f0486c68 5705 spin_unlock(&block_rsv->lock);
13553e52 5706
f0486c68
YZ
5707 if (!ret)
5708 return 0;
5709
aa38a711 5710 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640 5711 if (!ret) {
3a584174 5712 block_rsv_add_bytes(block_rsv, num_bytes, false);
f0486c68 5713 return 0;
6a63209f 5714 }
9ed74f2d 5715
13553e52 5716 return ret;
f0486c68
YZ
5717}
5718
ba2c4d4e
JB
5719static u64 __btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5720 struct btrfs_block_rsv *block_rsv,
5721 u64 num_bytes, u64 *qgroup_to_release)
5722{
5723 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5724 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5725 struct btrfs_block_rsv *target = delayed_rsv;
5726
5727 if (target->full || target == block_rsv)
5728 target = global_rsv;
5729
5730 if (block_rsv->space_info != target->space_info)
5731 target = NULL;
5732
5733 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
5734 qgroup_to_release);
5735}
5736
5737void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5738 struct btrfs_block_rsv *block_rsv,
5739 u64 num_bytes)
5740{
5741 __btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
5742}
5743
69fe2d75
JB
5744/**
5745 * btrfs_inode_rsv_release - release any excessive reservation.
5746 * @inode - the inode we need to release from.
43b18595
QW
5747 * @qgroup_free - free or convert qgroup meta.
5748 * Unlike normal operation, qgroup meta reservation needs to know if we are
5749 * freeing qgroup reservation or just converting it into per-trans. Normally
5750 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5751 *
5752 * This is the same as btrfs_block_rsv_release, except that it handles the
5753 * tracepoint for the reservation.
5754 */
43b18595 5755static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5756{
5757 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75
JB
5758 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5759 u64 released = 0;
ff6bc37e 5760 u64 qgroup_to_release = 0;
69fe2d75
JB
5761
5762 /*
5763 * Since we statically set the block_rsv->size we just want to say we
5764 * are releasing 0 bytes, and then we'll just get the reservation over
5765 * the size free'd.
5766 */
ba2c4d4e
JB
5767 released = __btrfs_block_rsv_release(fs_info, block_rsv, 0,
5768 &qgroup_to_release);
69fe2d75
JB
5769 if (released > 0)
5770 trace_btrfs_space_reservation(fs_info, "delalloc",
5771 btrfs_ino(inode), released, 0);
43b18595 5772 if (qgroup_free)
ff6bc37e 5773 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5774 else
ff6bc37e
QW
5775 btrfs_qgroup_convert_reserved_meta(inode->root,
5776 qgroup_to_release);
69fe2d75
JB
5777}
5778
ba2c4d4e
JB
5779/**
5780 * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
5781 * @fs_info - the fs_info for our fs.
5782 * @nr - the number of items to drop.
5783 *
5784 * This drops the delayed ref head's count from the delayed refs rsv and frees
5785 * any excess reservation we had.
5786 */
5787void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
f0486c68 5788{
ba2c4d4e 5789 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
0b246afa 5790 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
ba2c4d4e
JB
5791 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, nr);
5792 u64 released = 0;
0b246afa 5793
ba2c4d4e
JB
5794 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv,
5795 num_bytes, NULL);
5796 if (released)
5797 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5798 0, released, 0);
6a63209f
JB
5799}
5800
8929ecfa
YZ
5801static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5802{
5803 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5804 struct btrfs_space_info *sinfo = block_rsv->space_info;
5805 u64 num_bytes;
6a63209f 5806
ae2e4728
JB
5807 /*
5808 * The global block rsv is based on the size of the extent tree, the
5809 * checksum tree and the root tree. If the fs is empty we want to set
5810 * it to a minimal amount for safety.
5811 */
5812 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5813 btrfs_root_used(&fs_info->csum_root->root_item) +
5814 btrfs_root_used(&fs_info->tree_root->root_item);
5815 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5816
8929ecfa 5817 spin_lock(&sinfo->lock);
1f699d38 5818 spin_lock(&block_rsv->lock);
4e06bdd6 5819
ee22184b 5820 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5821
fb4b10e5 5822 if (block_rsv->reserved < block_rsv->size) {
4136135b 5823 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5824 if (sinfo->total_bytes > num_bytes) {
5825 num_bytes = sinfo->total_bytes - num_bytes;
5826 num_bytes = min(num_bytes,
5827 block_rsv->size - block_rsv->reserved);
5828 block_rsv->reserved += num_bytes;
9f9b8e8d 5829 update_bytes_may_use(sinfo, num_bytes);
fb4b10e5
JB
5830 trace_btrfs_space_reservation(fs_info, "space_info",
5831 sinfo->flags, num_bytes,
5832 1);
5833 }
5834 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5835 num_bytes = block_rsv->reserved - block_rsv->size;
9f9b8e8d 5836 update_bytes_may_use(sinfo, -num_bytes);
8c2a3ca2 5837 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5838 sinfo->flags, num_bytes, 0);
8929ecfa 5839 block_rsv->reserved = block_rsv->size;
8929ecfa 5840 }
182608c8 5841
fb4b10e5
JB
5842 if (block_rsv->reserved == block_rsv->size)
5843 block_rsv->full = 1;
5844 else
5845 block_rsv->full = 0;
5846
8929ecfa 5847 spin_unlock(&block_rsv->lock);
1f699d38 5848 spin_unlock(&sinfo->lock);
6a63209f
JB
5849}
5850
f0486c68 5851static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5852{
f0486c68 5853 struct btrfs_space_info *space_info;
6a63209f 5854
f0486c68
YZ
5855 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5856 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5857
f0486c68 5858 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5859 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5860 fs_info->trans_block_rsv.space_info = space_info;
5861 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5862 fs_info->delayed_block_rsv.space_info = space_info;
ba2c4d4e 5863 fs_info->delayed_refs_rsv.space_info = space_info;
f0486c68 5864
ba2c4d4e
JB
5865 fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
5866 fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
8929ecfa
YZ
5867 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5868 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5869 if (fs_info->quota_root)
5870 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5871 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5872
8929ecfa 5873 update_global_block_rsv(fs_info);
6a63209f
JB
5874}
5875
8929ecfa 5876static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5877{
8c2a3ca2 5878 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 5879 (u64)-1, NULL);
8929ecfa
YZ
5880 WARN_ON(fs_info->trans_block_rsv.size > 0);
5881 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5882 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5883 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5884 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5885 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
ba2c4d4e
JB
5886 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
5887 WARN_ON(fs_info->delayed_refs_rsv.size > 0);
fcb80c2a
JB
5888}
5889
ba2c4d4e
JB
5890/*
5891 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
5892 * @trans - the trans that may have generated delayed refs
5893 *
5894 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
5895 * it'll calculate the additional size and add it to the delayed_refs_rsv.
5896 */
5897void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
5898{
5899 struct btrfs_fs_info *fs_info = trans->fs_info;
5900 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5901 u64 num_bytes;
5902
5903 if (!trans->delayed_ref_updates)
5904 return;
5905
5906 num_bytes = btrfs_calc_trans_metadata_size(fs_info,
5907 trans->delayed_ref_updates);
5908 spin_lock(&delayed_rsv->lock);
5909 delayed_rsv->size += num_bytes;
5910 delayed_rsv->full = 0;
5911 spin_unlock(&delayed_rsv->lock);
5912 trans->delayed_ref_updates = 0;
5913}
6a63209f 5914
4fbcdf66
FM
5915/*
5916 * To be called after all the new block groups attached to the transaction
5917 * handle have been created (btrfs_create_pending_block_groups()).
5918 */
5919void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5920{
64b63580 5921 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5922
5923 if (!trans->chunk_bytes_reserved)
5924 return;
5925
5926 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5927
5928 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 5929 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
5930 trans->chunk_bytes_reserved = 0;
5931}
5932
d5c12070
MX
5933/*
5934 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5935 * root: the root of the parent directory
5936 * rsv: block reservation
5937 * items: the number of items that we need do reservation
a5b7f429 5938 * use_global_rsv: allow fallback to the global block reservation
d5c12070
MX
5939 *
5940 * This function is used to reserve the space for snapshot/subvolume
5941 * creation and deletion. Those operations are different with the
5942 * common file/directory operations, they change two fs/file trees
5943 * and root tree, the number of items that the qgroup reserves is
5944 * different with the free space reservation. So we can not use
01327610 5945 * the space reservation mechanism in start_transaction().
d5c12070
MX
5946 */
5947int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
a5b7f429 5948 struct btrfs_block_rsv *rsv, int items,
ee3441b4 5949 bool use_global_rsv)
a22285a6 5950{
a5b7f429 5951 u64 qgroup_num_bytes = 0;
d5c12070
MX
5952 u64 num_bytes;
5953 int ret;
0b246afa
JM
5954 struct btrfs_fs_info *fs_info = root->fs_info;
5955 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5956
0b246afa 5957 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5958 /* One for parent inode, two for dir entries */
a5b7f429
LF
5959 qgroup_num_bytes = 3 * fs_info->nodesize;
5960 ret = btrfs_qgroup_reserve_meta_prealloc(root,
5961 qgroup_num_bytes, true);
d5c12070
MX
5962 if (ret)
5963 return ret;
d5c12070
MX
5964 }
5965
0b246afa
JM
5966 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5967 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
5968 BTRFS_BLOCK_GROUP_METADATA);
5969 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5970 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5971
5972 if (ret == -ENOSPC && use_global_rsv)
3a584174 5973 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
ee3441b4 5974
a5b7f429
LF
5975 if (ret && qgroup_num_bytes)
5976 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
d5c12070
MX
5977
5978 return ret;
5979}
5980
2ff7e61e 5981void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 5982 struct btrfs_block_rsv *rsv)
d5c12070 5983{
2ff7e61e 5984 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
5985}
5986
69fe2d75
JB
5987static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5988 struct btrfs_inode *inode)
9e0baf60 5989{
69fe2d75
JB
5990 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5991 u64 reserve_size = 0;
ff6bc37e 5992 u64 qgroup_rsv_size = 0;
69fe2d75
JB
5993 u64 csum_leaves;
5994 unsigned outstanding_extents;
9e0baf60 5995
69fe2d75
JB
5996 lockdep_assert_held(&inode->lock);
5997 outstanding_extents = inode->outstanding_extents;
5998 if (outstanding_extents)
5999 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6000 outstanding_extents + 1);
6001 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6002 inode->csum_bytes);
6003 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6004 csum_leaves);
ff6bc37e
QW
6005 /*
6006 * For qgroup rsv, the calculation is very simple:
6007 * account one nodesize for each outstanding extent
6008 *
6009 * This is overestimating in most cases.
6010 */
139a5617 6011 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
9e0baf60 6012
69fe2d75
JB
6013 spin_lock(&block_rsv->lock);
6014 block_rsv->size = reserve_size;
ff6bc37e 6015 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 6016 spin_unlock(&block_rsv->lock);
0ca1f7ce 6017}
c146afad 6018
c8eaeac7
JB
6019static void calc_inode_reservations(struct btrfs_fs_info *fs_info,
6020 u64 num_bytes, u64 *meta_reserve,
6021 u64 *qgroup_reserve)
6022{
6023 u64 nr_extents = count_max_extents(num_bytes);
6024 u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, num_bytes);
6025
6026 /* We add one for the inode update at finish ordered time */
6027 *meta_reserve = btrfs_calc_trans_metadata_size(fs_info,
6028 nr_extents + csum_leaves + 1);
6029 *qgroup_reserve = nr_extents * fs_info->nodesize;
6030}
6031
9f3db423 6032int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6033{
c8eaeac7
JB
6034 struct btrfs_root *root = inode->root;
6035 struct btrfs_fs_info *fs_info = root->fs_info;
6036 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6037 u64 meta_reserve, qgroup_reserve;
69fe2d75 6038 unsigned nr_extents;
08e007d2 6039 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6040 int ret = 0;
c64c2bd8 6041 bool delalloc_lock = true;
6324fbf3 6042
c64c2bd8
JB
6043 /* If we are a free space inode we need to not flush since we will be in
6044 * the middle of a transaction commit. We also don't need the delalloc
6045 * mutex since we won't race with anybody. We need this mostly to make
6046 * lockdep shut its filthy mouth.
bac357dc
JB
6047 *
6048 * If we have a transaction open (can happen if we call truncate_block
6049 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6050 */
6051 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6052 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6053 delalloc_lock = false;
da07d4ab
NB
6054 } else {
6055 if (current->journal_info)
6056 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 6057
da07d4ab
NB
6058 if (btrfs_transaction_in_commit(fs_info))
6059 schedule_timeout(1);
6060 }
ec44a35c 6061
c64c2bd8 6062 if (delalloc_lock)
9f3db423 6063 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6064
0b246afa 6065 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75 6066
c8eaeac7
JB
6067 /*
6068 * We always want to do it this way, every other way is wrong and ends
6069 * in tears. Pre-reserving the amount we are going to add will always
6070 * be the right way, because otherwise if we have enough parallelism we
6071 * could end up with thousands of inodes all holding little bits of
6072 * reservations they were able to make previously and the only way to
6073 * reclaim that space is to ENOSPC out the operations and clear
6074 * everything out and try again, which is bad. This way we just
6075 * over-reserve slightly, and clean up the mess when we are done.
6076 */
6077 calc_inode_reservations(fs_info, num_bytes, &meta_reserve,
6078 &qgroup_reserve);
6079 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true);
6080 if (ret)
6081 goto out_fail;
6082 ret = reserve_metadata_bytes(root, block_rsv, meta_reserve, flush);
6083 if (ret)
6084 goto out_qgroup;
6085
6086 /*
6087 * Now we need to update our outstanding extents and csum bytes _first_
6088 * and then add the reservation to the block_rsv. This keeps us from
6089 * racing with an ordered completion or some such that would think it
6090 * needs to free the reservation we just made.
6091 */
9f3db423 6092 spin_lock(&inode->lock);
69fe2d75 6093 nr_extents = count_max_extents(num_bytes);
8b62f87b 6094 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6095 inode->csum_bytes += num_bytes;
6096 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6097 spin_unlock(&inode->lock);
57a45ced 6098
c8eaeac7
JB
6099 /* Now we can safely add our space to our block rsv */
6100 block_rsv_add_bytes(block_rsv, meta_reserve, false);
6101 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6102 btrfs_ino(inode), meta_reserve, 1);
6103
6104 spin_lock(&block_rsv->lock);
6105 block_rsv->qgroup_rsv_reserved += qgroup_reserve;
6106 spin_unlock(&block_rsv->lock);
25179201 6107
c64c2bd8 6108 if (delalloc_lock)
9f3db423 6109 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6110 return 0;
c8eaeac7
JB
6111out_qgroup:
6112 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
88e081bf 6113out_fail:
43b18595 6114 btrfs_inode_rsv_release(inode, true);
88e081bf 6115 if (delalloc_lock)
9f3db423 6116 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6117 return ret;
0ca1f7ce
YZ
6118}
6119
7709cde3
JB
6120/**
6121 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6122 * @inode: the inode to release the reservation for.
6123 * @num_bytes: the number of bytes we are releasing.
43b18595 6124 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
6125 *
6126 * This will release the metadata reservation for an inode. This can be called
6127 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6128 * reservations, or on error for the same reason.
7709cde3 6129 */
43b18595
QW
6130void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6131 bool qgroup_free)
0ca1f7ce 6132{
3ffbd68c 6133 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0ca1f7ce 6134
0b246afa 6135 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6136 spin_lock(&inode->lock);
69fe2d75
JB
6137 inode->csum_bytes -= num_bytes;
6138 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6139 spin_unlock(&inode->lock);
0ca1f7ce 6140
0b246afa 6141 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6142 return;
6143
43b18595 6144 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
6145}
6146
8b62f87b
JB
6147/**
6148 * btrfs_delalloc_release_extents - release our outstanding_extents
6149 * @inode: the inode to balance the reservation for.
6150 * @num_bytes: the number of bytes we originally reserved with
43b18595 6151 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
6152 *
6153 * When we reserve space we increase outstanding_extents for the extents we may
6154 * add. Once we've set the range as delalloc or created our ordered extents we
6155 * have outstanding_extents to track the real usage, so we use this to free our
6156 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6157 * with btrfs_delalloc_reserve_metadata.
6158 */
43b18595
QW
6159void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6160 bool qgroup_free)
8b62f87b 6161{
3ffbd68c 6162 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8b62f87b 6163 unsigned num_extents;
8b62f87b
JB
6164
6165 spin_lock(&inode->lock);
6166 num_extents = count_max_extents(num_bytes);
6167 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6168 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6169 spin_unlock(&inode->lock);
6170
8b62f87b
JB
6171 if (btrfs_is_testing(fs_info))
6172 return;
6173
43b18595 6174 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
6175}
6176
1ada3a62 6177/**
7cf5b976 6178 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6179 * delalloc
6180 * @inode: inode we're writing to
6181 * @start: start range we are writing to
6182 * @len: how long the range we are writing to
364ecf36
QW
6183 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6184 * current reservation.
1ada3a62 6185 *
1ada3a62
QW
6186 * This will do the following things
6187 *
6188 * o reserve space in data space info for num bytes
6189 * and reserve precious corresponding qgroup space
6190 * (Done in check_data_free_space)
6191 *
6192 * o reserve space for metadata space, based on the number of outstanding
6193 * extents and how much csums will be needed
6194 * also reserve metadata space in a per root over-reserve method.
6195 * o add to the inodes->delalloc_bytes
6196 * o add it to the fs_info's delalloc inodes list.
6197 * (Above 3 all done in delalloc_reserve_metadata)
6198 *
6199 * Return 0 for success
6200 * Return <0 for error(-ENOSPC or -EQUOT)
6201 */
364ecf36
QW
6202int btrfs_delalloc_reserve_space(struct inode *inode,
6203 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6204{
6205 int ret;
6206
364ecf36 6207 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6208 if (ret < 0)
6209 return ret;
9f3db423 6210 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6211 if (ret < 0)
bc42bda2 6212 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6213 return ret;
6214}
6215
7709cde3 6216/**
7cf5b976 6217 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6218 * @inode: inode we're releasing space for
6219 * @start: start position of the space already reserved
6220 * @len: the len of the space already reserved
8b62f87b 6221 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6222 *
6223 * This function will release the metadata space that was not used and will
6224 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6225 * list if there are no delalloc bytes left.
6226 * Also it will handle the qgroup reserved space.
6227 */
bc42bda2 6228void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6229 struct extent_changeset *reserved,
43b18595 6230 u64 start, u64 len, bool qgroup_free)
1ada3a62 6231{
43b18595 6232 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6233 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6234}
6235
ce93ec54 6236static int update_block_group(struct btrfs_trans_handle *trans,
6b279408 6237 u64 bytenr, u64 num_bytes, int alloc)
9078a3e1 6238{
6b279408 6239 struct btrfs_fs_info *info = trans->fs_info;
0af3d00b 6240 struct btrfs_block_group_cache *cache = NULL;
db94535d 6241 u64 total = num_bytes;
9078a3e1 6242 u64 old_val;
db94535d 6243 u64 byte_in_group;
0af3d00b 6244 int factor;
ba2c4d4e 6245 int ret = 0;
3e1ad54f 6246
5d4f98a2 6247 /* block accounting for super block */
eb73c1b7 6248 spin_lock(&info->delalloc_root_lock);
6c41761f 6249 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6250 if (alloc)
6251 old_val += num_bytes;
6252 else
6253 old_val -= num_bytes;
6c41761f 6254 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6255 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6256
d397712b 6257 while (total) {
db94535d 6258 cache = btrfs_lookup_block_group(info, bytenr);
ba2c4d4e
JB
6259 if (!cache) {
6260 ret = -ENOENT;
6261 break;
6262 }
46df06b8
DS
6263 factor = btrfs_bg_type_to_factor(cache->flags);
6264
9d66e233
JB
6265 /*
6266 * If this block group has free space cache written out, we
6267 * need to make sure to load it if we are removing space. This
6268 * is because we need the unpinning stage to actually add the
6269 * space back to the block group, otherwise we will leak space.
6270 */
6271 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6272 cache_block_group(cache, 1);
0af3d00b 6273
db94535d
CM
6274 byte_in_group = bytenr - cache->key.objectid;
6275 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6276
25179201 6277 spin_lock(&cache->space_info->lock);
c286ac48 6278 spin_lock(&cache->lock);
0af3d00b 6279
6202df69 6280 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6281 cache->disk_cache_state < BTRFS_DC_CLEAR)
6282 cache->disk_cache_state = BTRFS_DC_CLEAR;
6283
9078a3e1 6284 old_val = btrfs_block_group_used(&cache->item);
db94535d 6285 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6286 if (alloc) {
db94535d 6287 old_val += num_bytes;
11833d66
YZ
6288 btrfs_set_block_group_used(&cache->item, old_val);
6289 cache->reserved -= num_bytes;
11833d66 6290 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6291 cache->space_info->bytes_used += num_bytes;
6292 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6293 spin_unlock(&cache->lock);
25179201 6294 spin_unlock(&cache->space_info->lock);
cd1bc465 6295 } else {
db94535d 6296 old_val -= num_bytes;
ae0ab003
FM
6297 btrfs_set_block_group_used(&cache->item, old_val);
6298 cache->pinned += num_bytes;
e2907c1a 6299 update_bytes_pinned(cache->space_info, num_bytes);
ae0ab003
FM
6300 cache->space_info->bytes_used -= num_bytes;
6301 cache->space_info->disk_used -= num_bytes * factor;
6302 spin_unlock(&cache->lock);
6303 spin_unlock(&cache->space_info->lock);
47ab2a6c 6304
0b246afa 6305 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6306 cache->space_info->flags,
6307 num_bytes, 1);
dec59fa3
EL
6308 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6309 num_bytes,
6310 BTRFS_TOTAL_BYTES_PINNED_BATCH);
ae0ab003
FM
6311 set_extent_dirty(info->pinned_extents,
6312 bytenr, bytenr + num_bytes - 1,
6313 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6314 }
1bbc621e
CM
6315
6316 spin_lock(&trans->transaction->dirty_bgs_lock);
6317 if (list_empty(&cache->dirty_list)) {
6318 list_add_tail(&cache->dirty_list,
6319 &trans->transaction->dirty_bgs);
ba2c4d4e 6320 trans->delayed_ref_updates++;
1bbc621e
CM
6321 btrfs_get_block_group(cache);
6322 }
6323 spin_unlock(&trans->transaction->dirty_bgs_lock);
6324
036a9348
FM
6325 /*
6326 * No longer have used bytes in this block group, queue it for
6327 * deletion. We do this after adding the block group to the
6328 * dirty list to avoid races between cleaner kthread and space
6329 * cache writeout.
6330 */
031f24da
QW
6331 if (!alloc && old_val == 0)
6332 btrfs_mark_bg_unused(cache);
036a9348 6333
fa9c0d79 6334 btrfs_put_block_group(cache);
db94535d
CM
6335 total -= num_bytes;
6336 bytenr += num_bytes;
9078a3e1 6337 }
ba2c4d4e
JB
6338
6339 /* Modified block groups are accounted for in the delayed_refs_rsv. */
6340 btrfs_update_delayed_refs_rsv(trans);
6341 return ret;
9078a3e1 6342}
6324fbf3 6343
2ff7e61e 6344static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6345{
0f9dd46c 6346 struct btrfs_block_group_cache *cache;
d2fb3437 6347 u64 bytenr;
0f9dd46c 6348
0b246afa
JM
6349 spin_lock(&fs_info->block_group_cache_lock);
6350 bytenr = fs_info->first_logical_byte;
6351 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6352
6353 if (bytenr < (u64)-1)
6354 return bytenr;
6355
0b246afa 6356 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6357 if (!cache)
a061fc8d 6358 return 0;
0f9dd46c 6359
d2fb3437 6360 bytenr = cache->key.objectid;
fa9c0d79 6361 btrfs_put_block_group(cache);
d2fb3437
YZ
6362
6363 return bytenr;
a061fc8d
CM
6364}
6365
fdf08605 6366static int pin_down_extent(struct btrfs_block_group_cache *cache,
f0486c68 6367 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6368{
fdf08605
DS
6369 struct btrfs_fs_info *fs_info = cache->fs_info;
6370
11833d66
YZ
6371 spin_lock(&cache->space_info->lock);
6372 spin_lock(&cache->lock);
6373 cache->pinned += num_bytes;
e2907c1a 6374 update_bytes_pinned(cache->space_info, num_bytes);
11833d66
YZ
6375 if (reserved) {
6376 cache->reserved -= num_bytes;
6377 cache->space_info->bytes_reserved -= num_bytes;
6378 }
6379 spin_unlock(&cache->lock);
6380 spin_unlock(&cache->space_info->lock);
68b38550 6381
0b246afa 6382 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6383 cache->space_info->flags, num_bytes, 1);
dec59fa3
EL
6384 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6385 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
0b246afa 6386 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6387 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6388 return 0;
6389}
68b38550 6390
f0486c68
YZ
6391/*
6392 * this function must be called within transaction
6393 */
2ff7e61e 6394int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6395 u64 bytenr, u64 num_bytes, int reserved)
6396{
6397 struct btrfs_block_group_cache *cache;
68b38550 6398
0b246afa 6399 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6400 BUG_ON(!cache); /* Logic error */
f0486c68 6401
fdf08605 6402 pin_down_extent(cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6403
6404 btrfs_put_block_group(cache);
11833d66
YZ
6405 return 0;
6406}
6407
f0486c68 6408/*
e688b725
CM
6409 * this function must be called within transaction
6410 */
2ff7e61e 6411int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6412 u64 bytenr, u64 num_bytes)
6413{
6414 struct btrfs_block_group_cache *cache;
b50c6e25 6415 int ret;
e688b725 6416
0b246afa 6417 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6418 if (!cache)
6419 return -EINVAL;
e688b725
CM
6420
6421 /*
6422 * pull in the free space cache (if any) so that our pin
6423 * removes the free space from the cache. We have load_only set
6424 * to one because the slow code to read in the free extents does check
6425 * the pinned extents.
6426 */
f6373bf3 6427 cache_block_group(cache, 1);
e688b725 6428
fdf08605 6429 pin_down_extent(cache, bytenr, num_bytes, 0);
e688b725
CM
6430
6431 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6432 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6433 btrfs_put_block_group(cache);
b50c6e25 6434 return ret;
e688b725
CM
6435}
6436
2ff7e61e
JM
6437static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6438 u64 start, u64 num_bytes)
8c2a1a30
JB
6439{
6440 int ret;
6441 struct btrfs_block_group_cache *block_group;
6442 struct btrfs_caching_control *caching_ctl;
6443
0b246afa 6444 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6445 if (!block_group)
6446 return -EINVAL;
6447
6448 cache_block_group(block_group, 0);
6449 caching_ctl = get_caching_control(block_group);
6450
6451 if (!caching_ctl) {
6452 /* Logic error */
6453 BUG_ON(!block_group_cache_done(block_group));
6454 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6455 } else {
6456 mutex_lock(&caching_ctl->mutex);
6457
6458 if (start >= caching_ctl->progress) {
2ff7e61e 6459 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6460 } else if (start + num_bytes <= caching_ctl->progress) {
6461 ret = btrfs_remove_free_space(block_group,
6462 start, num_bytes);
6463 } else {
6464 num_bytes = caching_ctl->progress - start;
6465 ret = btrfs_remove_free_space(block_group,
6466 start, num_bytes);
6467 if (ret)
6468 goto out_lock;
6469
6470 num_bytes = (start + num_bytes) -
6471 caching_ctl->progress;
6472 start = caching_ctl->progress;
2ff7e61e 6473 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6474 }
6475out_lock:
6476 mutex_unlock(&caching_ctl->mutex);
6477 put_caching_control(caching_ctl);
6478 }
6479 btrfs_put_block_group(block_group);
6480 return ret;
6481}
6482
bcdc428c 6483int btrfs_exclude_logged_extents(struct extent_buffer *eb)
8c2a1a30 6484{
bcdc428c 6485 struct btrfs_fs_info *fs_info = eb->fs_info;
8c2a1a30
JB
6486 struct btrfs_file_extent_item *item;
6487 struct btrfs_key key;
6488 int found_type;
6489 int i;
b89311ef 6490 int ret = 0;
8c2a1a30 6491
2ff7e61e 6492 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6493 return 0;
6494
6495 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6496 btrfs_item_key_to_cpu(eb, &key, i);
6497 if (key.type != BTRFS_EXTENT_DATA_KEY)
6498 continue;
6499 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6500 found_type = btrfs_file_extent_type(eb, item);
6501 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6502 continue;
6503 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6504 continue;
6505 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6506 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
b89311ef
GJ
6507 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6508 if (ret)
6509 break;
8c2a1a30
JB
6510 }
6511
b89311ef 6512 return ret;
8c2a1a30
JB
6513}
6514
9cfa3e34
FM
6515static void
6516btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6517{
6518 atomic_inc(&bg->reservations);
6519}
6520
6521void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6522 const u64 start)
6523{
6524 struct btrfs_block_group_cache *bg;
6525
6526 bg = btrfs_lookup_block_group(fs_info, start);
6527 ASSERT(bg);
6528 if (atomic_dec_and_test(&bg->reservations))
4625956a 6529 wake_up_var(&bg->reservations);
9cfa3e34
FM
6530 btrfs_put_block_group(bg);
6531}
6532
9cfa3e34
FM
6533void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6534{
6535 struct btrfs_space_info *space_info = bg->space_info;
6536
6537 ASSERT(bg->ro);
6538
6539 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6540 return;
6541
6542 /*
6543 * Our block group is read only but before we set it to read only,
6544 * some task might have had allocated an extent from it already, but it
6545 * has not yet created a respective ordered extent (and added it to a
6546 * root's list of ordered extents).
6547 * Therefore wait for any task currently allocating extents, since the
6548 * block group's reservations counter is incremented while a read lock
6549 * on the groups' semaphore is held and decremented after releasing
6550 * the read access on that semaphore and creating the ordered extent.
6551 */
6552 down_write(&space_info->groups_sem);
6553 up_write(&space_info->groups_sem);
6554
4625956a 6555 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6556}
6557
fb25e914 6558/**
4824f1f4 6559 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6560 * @cache: The cache we are manipulating
18513091
WX
6561 * @ram_bytes: The number of bytes of file content, and will be same to
6562 * @num_bytes except for the compress path.
fb25e914 6563 * @num_bytes: The number of bytes in question
e570fd27 6564 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6565 *
745699ef
XW
6566 * This is called by the allocator when it reserves space. If this is a
6567 * reservation and the block group has become read only we cannot make the
6568 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6569 */
4824f1f4 6570static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6571 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6572{
fb25e914 6573 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6574 int ret = 0;
79787eaa 6575
fb25e914
JB
6576 spin_lock(&space_info->lock);
6577 spin_lock(&cache->lock);
4824f1f4
WX
6578 if (cache->ro) {
6579 ret = -EAGAIN;
fb25e914 6580 } else {
4824f1f4
WX
6581 cache->reserved += num_bytes;
6582 space_info->bytes_reserved += num_bytes;
9f9b8e8d 6583 update_bytes_may_use(space_info, -ram_bytes);
e570fd27 6584 if (delalloc)
4824f1f4 6585 cache->delalloc_bytes += num_bytes;
324ae4df 6586 }
fb25e914
JB
6587 spin_unlock(&cache->lock);
6588 spin_unlock(&space_info->lock);
f0486c68 6589 return ret;
324ae4df 6590}
9078a3e1 6591
4824f1f4
WX
6592/**
6593 * btrfs_free_reserved_bytes - update the block_group and space info counters
6594 * @cache: The cache we are manipulating
6595 * @num_bytes: The number of bytes in question
6596 * @delalloc: The blocks are allocated for the delalloc write
6597 *
6598 * This is called by somebody who is freeing space that was never actually used
6599 * on disk. For example if you reserve some space for a new leaf in transaction
6600 * A and before transaction A commits you free that leaf, you call this with
6601 * reserve set to 0 in order to clear the reservation.
6602 */
6603
556f3ca8 6604static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6605 u64 num_bytes, int delalloc)
4824f1f4
WX
6606{
6607 struct btrfs_space_info *space_info = cache->space_info;
4824f1f4
WX
6608
6609 spin_lock(&space_info->lock);
6610 spin_lock(&cache->lock);
6611 if (cache->ro)
6612 space_info->bytes_readonly += num_bytes;
6613 cache->reserved -= num_bytes;
6614 space_info->bytes_reserved -= num_bytes;
21a94f7a 6615 space_info->max_extent_size = 0;
4824f1f4
WX
6616
6617 if (delalloc)
6618 cache->delalloc_bytes -= num_bytes;
6619 spin_unlock(&cache->lock);
6620 spin_unlock(&space_info->lock);
4824f1f4 6621}
8b74c03e 6622void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6623{
11833d66
YZ
6624 struct btrfs_caching_control *next;
6625 struct btrfs_caching_control *caching_ctl;
6626 struct btrfs_block_group_cache *cache;
e8569813 6627
9e351cc8 6628 down_write(&fs_info->commit_root_sem);
25179201 6629
11833d66
YZ
6630 list_for_each_entry_safe(caching_ctl, next,
6631 &fs_info->caching_block_groups, list) {
6632 cache = caching_ctl->block_group;
6633 if (block_group_cache_done(cache)) {
6634 cache->last_byte_to_unpin = (u64)-1;
6635 list_del_init(&caching_ctl->list);
6636 put_caching_control(caching_ctl);
e8569813 6637 } else {
11833d66 6638 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6639 }
e8569813 6640 }
11833d66
YZ
6641
6642 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6643 fs_info->pinned_extents = &fs_info->freed_extents[1];
6644 else
6645 fs_info->pinned_extents = &fs_info->freed_extents[0];
6646
9e351cc8 6647 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6648
6649 update_global_block_rsv(fs_info);
e8569813
ZY
6650}
6651
c759c4e1
JB
6652/*
6653 * Returns the free cluster for the given space info and sets empty_cluster to
6654 * what it should be based on the mount options.
6655 */
6656static struct btrfs_free_cluster *
2ff7e61e
JM
6657fetch_cluster_info(struct btrfs_fs_info *fs_info,
6658 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6659{
6660 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6661
6662 *empty_cluster = 0;
6663 if (btrfs_mixed_space_info(space_info))
6664 return ret;
6665
c759c4e1 6666 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6667 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6668 if (btrfs_test_opt(fs_info, SSD))
6669 *empty_cluster = SZ_2M;
6670 else
ee22184b 6671 *empty_cluster = SZ_64K;
583b7231
HK
6672 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6673 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6674 *empty_cluster = SZ_2M;
0b246afa 6675 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6676 }
6677
6678 return ret;
6679}
6680
2ff7e61e
JM
6681static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6682 u64 start, u64 end,
678886bd 6683 const bool return_free_space)
ccd467d6 6684{
11833d66 6685 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6686 struct btrfs_space_info *space_info;
6687 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6688 struct btrfs_free_cluster *cluster = NULL;
11833d66 6689 u64 len;
c759c4e1
JB
6690 u64 total_unpinned = 0;
6691 u64 empty_cluster = 0;
7b398f8e 6692 bool readonly;
ccd467d6 6693
11833d66 6694 while (start <= end) {
7b398f8e 6695 readonly = false;
11833d66
YZ
6696 if (!cache ||
6697 start >= cache->key.objectid + cache->key.offset) {
6698 if (cache)
6699 btrfs_put_block_group(cache);
c759c4e1 6700 total_unpinned = 0;
11833d66 6701 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6702 BUG_ON(!cache); /* Logic error */
c759c4e1 6703
2ff7e61e 6704 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6705 cache->space_info,
6706 &empty_cluster);
6707 empty_cluster <<= 1;
11833d66
YZ
6708 }
6709
6710 len = cache->key.objectid + cache->key.offset - start;
6711 len = min(len, end + 1 - start);
6712
6713 if (start < cache->last_byte_to_unpin) {
6714 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6715 if (return_free_space)
6716 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6717 }
6718
f0486c68 6719 start += len;
c759c4e1 6720 total_unpinned += len;
7b398f8e 6721 space_info = cache->space_info;
f0486c68 6722
c759c4e1
JB
6723 /*
6724 * If this space cluster has been marked as fragmented and we've
6725 * unpinned enough in this block group to potentially allow a
6726 * cluster to be created inside of it go ahead and clear the
6727 * fragmented check.
6728 */
6729 if (cluster && cluster->fragmented &&
6730 total_unpinned > empty_cluster) {
6731 spin_lock(&cluster->lock);
6732 cluster->fragmented = 0;
6733 spin_unlock(&cluster->lock);
6734 }
6735
7b398f8e 6736 spin_lock(&space_info->lock);
11833d66
YZ
6737 spin_lock(&cache->lock);
6738 cache->pinned -= len;
e2907c1a 6739 update_bytes_pinned(space_info, -len);
c51e7bb1
JB
6740
6741 trace_btrfs_space_reservation(fs_info, "pinned",
6742 space_info->flags, len, 0);
4f4db217 6743 space_info->max_extent_size = 0;
dec59fa3
EL
6744 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6745 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
7b398f8e
JB
6746 if (cache->ro) {
6747 space_info->bytes_readonly += len;
6748 readonly = true;
6749 }
11833d66 6750 spin_unlock(&cache->lock);
957780eb
JB
6751 if (!readonly && return_free_space &&
6752 global_rsv->space_info == space_info) {
6753 u64 to_add = len;
92ac58ec 6754
7b398f8e
JB
6755 spin_lock(&global_rsv->lock);
6756 if (!global_rsv->full) {
957780eb
JB
6757 to_add = min(len, global_rsv->size -
6758 global_rsv->reserved);
6759 global_rsv->reserved += to_add;
9f9b8e8d 6760 update_bytes_may_use(space_info, to_add);
7b398f8e
JB
6761 if (global_rsv->reserved >= global_rsv->size)
6762 global_rsv->full = 1;
957780eb
JB
6763 trace_btrfs_space_reservation(fs_info,
6764 "space_info",
6765 space_info->flags,
6766 to_add, 1);
6767 len -= to_add;
7b398f8e
JB
6768 }
6769 spin_unlock(&global_rsv->lock);
957780eb
JB
6770 /* Add to any tickets we may have */
6771 if (len)
6772 space_info_add_new_bytes(fs_info, space_info,
6773 len);
7b398f8e
JB
6774 }
6775 spin_unlock(&space_info->lock);
ccd467d6 6776 }
11833d66
YZ
6777
6778 if (cache)
6779 btrfs_put_block_group(cache);
ccd467d6
CM
6780 return 0;
6781}
6782
5ead2dd0 6783int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6784{
5ead2dd0 6785 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6786 struct btrfs_block_group_cache *block_group, *tmp;
6787 struct list_head *deleted_bgs;
11833d66 6788 struct extent_io_tree *unpin;
1a5bc167
CM
6789 u64 start;
6790 u64 end;
a28ec197 6791 int ret;
a28ec197 6792
11833d66
YZ
6793 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6794 unpin = &fs_info->freed_extents[1];
6795 else
6796 unpin = &fs_info->freed_extents[0];
6797
e33e17ee 6798 while (!trans->aborted) {
0e6ec385
FM
6799 struct extent_state *cached_state = NULL;
6800
d4b450cd 6801 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6802 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 6803 EXTENT_DIRTY, &cached_state);
d4b450cd
FM
6804 if (ret) {
6805 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6806 break;
d4b450cd 6807 }
1f3c79a2 6808
0b246afa 6809 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6810 ret = btrfs_discard_extent(fs_info, start,
5378e607 6811 end + 1 - start, NULL);
1f3c79a2 6812
0e6ec385 6813 clear_extent_dirty(unpin, start, end, &cached_state);
2ff7e61e 6814 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6815 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
0e6ec385 6816 free_extent_state(cached_state);
b9473439 6817 cond_resched();
a28ec197 6818 }
817d52f8 6819
e33e17ee
JM
6820 /*
6821 * Transaction is finished. We don't need the lock anymore. We
6822 * do need to clean up the block groups in case of a transaction
6823 * abort.
6824 */
6825 deleted_bgs = &trans->transaction->deleted_bgs;
6826 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6827 u64 trimmed = 0;
6828
6829 ret = -EROFS;
6830 if (!trans->aborted)
2ff7e61e 6831 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6832 block_group->key.objectid,
6833 block_group->key.offset,
6834 &trimmed);
6835
6836 list_del_init(&block_group->bg_list);
6837 btrfs_put_block_group_trimming(block_group);
6838 btrfs_put_block_group(block_group);
6839
6840 if (ret) {
6841 const char *errstr = btrfs_decode_error(ret);
6842 btrfs_warn(fs_info,
913e1535 6843 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6844 ret, errstr);
6845 }
6846 }
6847
e20d96d6
CM
6848 return 0;
6849}
6850
5d4f98a2 6851static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
6852 struct btrfs_delayed_ref_node *node, u64 parent,
6853 u64 root_objectid, u64 owner_objectid,
6854 u64 owner_offset, int refs_to_drop,
6855 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6856{
e72cb923 6857 struct btrfs_fs_info *info = trans->fs_info;
e2fa7227 6858 struct btrfs_key key;
5d4f98a2 6859 struct btrfs_path *path;
1261ec42 6860 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6861 struct extent_buffer *leaf;
5d4f98a2
YZ
6862 struct btrfs_extent_item *ei;
6863 struct btrfs_extent_inline_ref *iref;
a28ec197 6864 int ret;
5d4f98a2 6865 int is_data;
952fccac
CM
6866 int extent_slot = 0;
6867 int found_extent = 0;
6868 int num_to_del = 1;
5d4f98a2
YZ
6869 u32 item_size;
6870 u64 refs;
c682f9b3
QW
6871 u64 bytenr = node->bytenr;
6872 u64 num_bytes = node->num_bytes;
fcebe456 6873 int last_ref = 0;
0b246afa 6874 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6875
5caf2a00 6876 path = btrfs_alloc_path();
54aa1f4d
CM
6877 if (!path)
6878 return -ENOMEM;
5f26f772 6879
e4058b54 6880 path->reada = READA_FORWARD;
b9473439 6881 path->leave_spinning = 1;
5d4f98a2
YZ
6882
6883 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6884 BUG_ON(!is_data && refs_to_drop != 1);
6885
3173a18f 6886 if (is_data)
897ca819 6887 skinny_metadata = false;
3173a18f 6888
fbe4801b
NB
6889 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6890 parent, root_objectid, owner_objectid,
5d4f98a2 6891 owner_offset);
7bb86316 6892 if (ret == 0) {
952fccac 6893 extent_slot = path->slots[0];
5d4f98a2
YZ
6894 while (extent_slot >= 0) {
6895 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6896 extent_slot);
5d4f98a2 6897 if (key.objectid != bytenr)
952fccac 6898 break;
5d4f98a2
YZ
6899 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6900 key.offset == num_bytes) {
952fccac
CM
6901 found_extent = 1;
6902 break;
6903 }
3173a18f
JB
6904 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6905 key.offset == owner_objectid) {
6906 found_extent = 1;
6907 break;
6908 }
952fccac
CM
6909 if (path->slots[0] - extent_slot > 5)
6910 break;
5d4f98a2 6911 extent_slot--;
952fccac 6912 }
a79865c6 6913
31840ae1 6914 if (!found_extent) {
5d4f98a2 6915 BUG_ON(iref);
87cc7a8a 6916 ret = remove_extent_backref(trans, path, NULL,
87bde3cd 6917 refs_to_drop,
fcebe456 6918 is_data, &last_ref);
005d6427 6919 if (ret) {
66642832 6920 btrfs_abort_transaction(trans, ret);
005d6427
DS
6921 goto out;
6922 }
b3b4aa74 6923 btrfs_release_path(path);
b9473439 6924 path->leave_spinning = 1;
5d4f98a2
YZ
6925
6926 key.objectid = bytenr;
6927 key.type = BTRFS_EXTENT_ITEM_KEY;
6928 key.offset = num_bytes;
6929
3173a18f
JB
6930 if (!is_data && skinny_metadata) {
6931 key.type = BTRFS_METADATA_ITEM_KEY;
6932 key.offset = owner_objectid;
6933 }
6934
31840ae1
ZY
6935 ret = btrfs_search_slot(trans, extent_root,
6936 &key, path, -1, 1);
3173a18f
JB
6937 if (ret > 0 && skinny_metadata && path->slots[0]) {
6938 /*
6939 * Couldn't find our skinny metadata item,
6940 * see if we have ye olde extent item.
6941 */
6942 path->slots[0]--;
6943 btrfs_item_key_to_cpu(path->nodes[0], &key,
6944 path->slots[0]);
6945 if (key.objectid == bytenr &&
6946 key.type == BTRFS_EXTENT_ITEM_KEY &&
6947 key.offset == num_bytes)
6948 ret = 0;
6949 }
6950
6951 if (ret > 0 && skinny_metadata) {
6952 skinny_metadata = false;
9ce49a0b 6953 key.objectid = bytenr;
3173a18f
JB
6954 key.type = BTRFS_EXTENT_ITEM_KEY;
6955 key.offset = num_bytes;
6956 btrfs_release_path(path);
6957 ret = btrfs_search_slot(trans, extent_root,
6958 &key, path, -1, 1);
6959 }
6960
f3465ca4 6961 if (ret) {
5d163e0e
JM
6962 btrfs_err(info,
6963 "umm, got %d back from search, was looking for %llu",
6964 ret, bytenr);
b783e62d 6965 if (ret > 0)
a4f78750 6966 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6967 }
005d6427 6968 if (ret < 0) {
66642832 6969 btrfs_abort_transaction(trans, ret);
005d6427
DS
6970 goto out;
6971 }
31840ae1
ZY
6972 extent_slot = path->slots[0];
6973 }
fae7f21c 6974 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 6975 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
6976 btrfs_err(info,
6977 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6978 bytenr, parent, root_objectid, owner_objectid,
6979 owner_offset);
66642832 6980 btrfs_abort_transaction(trans, ret);
c4a050bb 6981 goto out;
79787eaa 6982 } else {
66642832 6983 btrfs_abort_transaction(trans, ret);
005d6427 6984 goto out;
7bb86316 6985 }
5f39d397
CM
6986
6987 leaf = path->nodes[0];
5d4f98a2 6988 item_size = btrfs_item_size_nr(leaf, extent_slot);
6d8ff4e4 6989 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
6990 ret = -EINVAL;
6991 btrfs_print_v0_err(info);
6992 btrfs_abort_transaction(trans, ret);
6993 goto out;
6994 }
952fccac 6995 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6996 struct btrfs_extent_item);
3173a18f
JB
6997 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6998 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6999 struct btrfs_tree_block_info *bi;
7000 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7001 bi = (struct btrfs_tree_block_info *)(ei + 1);
7002 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7003 }
56bec294 7004
5d4f98a2 7005 refs = btrfs_extent_refs(leaf, ei);
32b02538 7006 if (refs < refs_to_drop) {
5d163e0e
JM
7007 btrfs_err(info,
7008 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7009 refs_to_drop, refs, bytenr);
32b02538 7010 ret = -EINVAL;
66642832 7011 btrfs_abort_transaction(trans, ret);
32b02538
JB
7012 goto out;
7013 }
56bec294 7014 refs -= refs_to_drop;
5f39d397 7015
5d4f98a2
YZ
7016 if (refs > 0) {
7017 if (extent_op)
7018 __run_delayed_extent_op(extent_op, leaf, ei);
7019 /*
7020 * In the case of inline back ref, reference count will
7021 * be updated by remove_extent_backref
952fccac 7022 */
5d4f98a2
YZ
7023 if (iref) {
7024 BUG_ON(!found_extent);
7025 } else {
7026 btrfs_set_extent_refs(leaf, ei, refs);
7027 btrfs_mark_buffer_dirty(leaf);
7028 }
7029 if (found_extent) {
87cc7a8a
NB
7030 ret = remove_extent_backref(trans, path, iref,
7031 refs_to_drop, is_data,
7032 &last_ref);
005d6427 7033 if (ret) {
66642832 7034 btrfs_abort_transaction(trans, ret);
005d6427
DS
7035 goto out;
7036 }
952fccac 7037 }
5d4f98a2 7038 } else {
5d4f98a2
YZ
7039 if (found_extent) {
7040 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7041 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7042 if (iref) {
7043 BUG_ON(path->slots[0] != extent_slot);
7044 } else {
7045 BUG_ON(path->slots[0] != extent_slot + 1);
7046 path->slots[0] = extent_slot;
7047 num_to_del = 2;
7048 }
78fae27e 7049 }
b9473439 7050
fcebe456 7051 last_ref = 1;
952fccac
CM
7052 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7053 num_to_del);
005d6427 7054 if (ret) {
66642832 7055 btrfs_abort_transaction(trans, ret);
005d6427
DS
7056 goto out;
7057 }
b3b4aa74 7058 btrfs_release_path(path);
21af804c 7059
5d4f98a2 7060 if (is_data) {
5b4aacef 7061 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7062 if (ret) {
66642832 7063 btrfs_abort_transaction(trans, ret);
005d6427
DS
7064 goto out;
7065 }
459931ec
CM
7066 }
7067
e7355e50 7068 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
1e144fb8 7069 if (ret) {
66642832 7070 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7071 goto out;
7072 }
7073
6b279408 7074 ret = update_block_group(trans, bytenr, num_bytes, 0);
005d6427 7075 if (ret) {
66642832 7076 btrfs_abort_transaction(trans, ret);
005d6427
DS
7077 goto out;
7078 }
a28ec197 7079 }
fcebe456
JB
7080 btrfs_release_path(path);
7081
79787eaa 7082out:
5caf2a00 7083 btrfs_free_path(path);
a28ec197
CM
7084 return ret;
7085}
7086
1887be66 7087/*
f0486c68 7088 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7089 * delayed ref for that extent as well. This searches the delayed ref tree for
7090 * a given extent, and if there are no other delayed refs to be processed, it
7091 * removes it from the tree.
7092 */
7093static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7094 u64 bytenr)
1887be66
CM
7095{
7096 struct btrfs_delayed_ref_head *head;
7097 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7098 int ret = 0;
1887be66
CM
7099
7100 delayed_refs = &trans->transaction->delayed_refs;
7101 spin_lock(&delayed_refs->lock);
f72ad18e 7102 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7103 if (!head)
cf93da7b 7104 goto out_delayed_unlock;
1887be66 7105
d7df2c79 7106 spin_lock(&head->lock);
e3d03965 7107 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1887be66
CM
7108 goto out;
7109
bedc6617
JB
7110 if (cleanup_extent_op(head) != NULL)
7111 goto out;
5d4f98a2 7112
1887be66
CM
7113 /*
7114 * waiting for the lock here would deadlock. If someone else has it
7115 * locked they are already in the process of dropping it anyway
7116 */
7117 if (!mutex_trylock(&head->mutex))
7118 goto out;
7119
d7baffda 7120 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79 7121 head->processing = 0;
d7baffda 7122
d7df2c79 7123 spin_unlock(&head->lock);
1887be66
CM
7124 spin_unlock(&delayed_refs->lock);
7125
f0486c68
YZ
7126 BUG_ON(head->extent_op);
7127 if (head->must_insert_reserved)
7128 ret = 1;
7129
31890da0 7130 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
f0486c68 7131 mutex_unlock(&head->mutex);
d278850e 7132 btrfs_put_delayed_ref_head(head);
f0486c68 7133 return ret;
1887be66 7134out:
d7df2c79 7135 spin_unlock(&head->lock);
cf93da7b
CM
7136
7137out_delayed_unlock:
1887be66
CM
7138 spin_unlock(&delayed_refs->lock);
7139 return 0;
7140}
7141
f0486c68
YZ
7142void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7143 struct btrfs_root *root,
7144 struct extent_buffer *buf,
5581a51a 7145 u64 parent, int last_ref)
f0486c68 7146{
0b246afa 7147 struct btrfs_fs_info *fs_info = root->fs_info;
ed4f255b 7148 struct btrfs_ref generic_ref = { 0 };
b150a4f1 7149 int pin = 1;
f0486c68
YZ
7150 int ret;
7151
ed4f255b
QW
7152 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
7153 buf->start, buf->len, parent);
7154 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
7155 root->root_key.objectid);
7156
f0486c68 7157 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7158 int old_ref_mod, new_ref_mod;
7159
8a5040f7 7160 btrfs_ref_tree_mod(fs_info, &generic_ref);
ed4f255b 7161 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
d7eae340 7162 &old_ref_mod, &new_ref_mod);
79787eaa 7163 BUG_ON(ret); /* -ENOMEM */
d7eae340 7164 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7165 }
7166
0a16c7d7 7167 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7168 struct btrfs_block_group_cache *cache;
7169
f0486c68 7170 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7171 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7172 if (!ret)
37be25bc 7173 goto out;
f0486c68
YZ
7174 }
7175
4da8b76d 7176 pin = 0;
0b246afa 7177 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7178
f0486c68 7179 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
fdf08605 7180 pin_down_extent(cache, buf->start, buf->len, 1);
6219872d 7181 btrfs_put_block_group(cache);
37be25bc 7182 goto out;
f0486c68
YZ
7183 }
7184
7185 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7186
7187 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7188 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7189 btrfs_put_block_group(cache);
71ff6437 7190 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7191 }
7192out:
b150a4f1 7193 if (pin)
14ae4ec1 7194 add_pinned_bytes(fs_info, &generic_ref, 1);
b150a4f1 7195
0a16c7d7
OS
7196 if (last_ref) {
7197 /*
7198 * Deleting the buffer, clear the corrupt flag since it doesn't
7199 * matter anymore.
7200 */
7201 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7202 }
f0486c68
YZ
7203}
7204
79787eaa 7205/* Can return -ENOMEM */
ffd4bb2a 7206int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
925baedd 7207{
ffd4bb2a 7208 struct btrfs_fs_info *fs_info = trans->fs_info;
d7eae340 7209 int old_ref_mod, new_ref_mod;
925baedd
CM
7210 int ret;
7211
f5ee5c9a 7212 if (btrfs_is_testing(fs_info))
faa2dbf0 7213 return 0;
fccb84c9 7214
56bec294
CM
7215 /*
7216 * tree log blocks never actually go into the extent allocation
7217 * tree, just update pinning info and exit early.
56bec294 7218 */
ffd4bb2a
QW
7219 if ((ref->type == BTRFS_REF_METADATA &&
7220 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
7221 (ref->type == BTRFS_REF_DATA &&
7222 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
b9473439 7223 /* unlocks the pinned mutex */
ffd4bb2a 7224 btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1);
d7eae340 7225 old_ref_mod = new_ref_mod = 0;
56bec294 7226 ret = 0;
ffd4bb2a
QW
7227 } else if (ref->type == BTRFS_REF_METADATA) {
7228 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
d7eae340 7229 &old_ref_mod, &new_ref_mod);
5d4f98a2 7230 } else {
ffd4bb2a 7231 ret = btrfs_add_delayed_data_ref(trans, ref, 0,
d7eae340 7232 &old_ref_mod, &new_ref_mod);
56bec294 7233 }
d7eae340 7234
ffd4bb2a
QW
7235 if (!((ref->type == BTRFS_REF_METADATA &&
7236 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
7237 (ref->type == BTRFS_REF_DATA &&
7238 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
7239 btrfs_ref_tree_mod(fs_info, ref);
8a5040f7 7240
ddf30cf0 7241 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
14ae4ec1 7242 add_pinned_bytes(fs_info, ref, 1);
d7eae340 7243
925baedd
CM
7244 return ret;
7245}
7246
817d52f8
JB
7247/*
7248 * when we wait for progress in the block group caching, its because
7249 * our allocation attempt failed at least once. So, we must sleep
7250 * and let some progress happen before we try again.
7251 *
7252 * This function will sleep at least once waiting for new free space to
7253 * show up, and then it will check the block group free space numbers
7254 * for our min num_bytes. Another option is to have it go ahead
7255 * and look in the rbtree for a free extent of a given size, but this
7256 * is a good start.
36cce922
JB
7257 *
7258 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7259 * any of the information in this block group.
817d52f8 7260 */
36cce922 7261static noinline void
817d52f8
JB
7262wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7263 u64 num_bytes)
7264{
11833d66 7265 struct btrfs_caching_control *caching_ctl;
817d52f8 7266
11833d66
YZ
7267 caching_ctl = get_caching_control(cache);
7268 if (!caching_ctl)
36cce922 7269 return;
817d52f8 7270
11833d66 7271 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7272 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7273
7274 put_caching_control(caching_ctl);
11833d66
YZ
7275}
7276
7277static noinline int
7278wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7279{
7280 struct btrfs_caching_control *caching_ctl;
36cce922 7281 int ret = 0;
11833d66
YZ
7282
7283 caching_ctl = get_caching_control(cache);
7284 if (!caching_ctl)
36cce922 7285 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7286
7287 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7288 if (cache->cached == BTRFS_CACHE_ERROR)
7289 ret = -EIO;
11833d66 7290 put_caching_control(caching_ctl);
36cce922 7291 return ret;
817d52f8
JB
7292}
7293
7294enum btrfs_loop_type {
285ff5af
JB
7295 LOOP_CACHING_NOWAIT = 0,
7296 LOOP_CACHING_WAIT = 1,
7297 LOOP_ALLOC_CHUNK = 2,
7298 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7299};
7300
e570fd27
MX
7301static inline void
7302btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7303 int delalloc)
7304{
7305 if (delalloc)
7306 down_read(&cache->data_rwsem);
7307}
7308
7309static inline void
7310btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7311 int delalloc)
7312{
7313 btrfs_get_block_group(cache);
7314 if (delalloc)
7315 down_read(&cache->data_rwsem);
7316}
7317
7318static struct btrfs_block_group_cache *
7319btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7320 struct btrfs_free_cluster *cluster,
7321 int delalloc)
7322{
89771cc9 7323 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7324
e570fd27 7325 spin_lock(&cluster->refill_lock);
6719afdc
GU
7326 while (1) {
7327 used_bg = cluster->block_group;
7328 if (!used_bg)
7329 return NULL;
7330
7331 if (used_bg == block_group)
e570fd27
MX
7332 return used_bg;
7333
6719afdc 7334 btrfs_get_block_group(used_bg);
e570fd27 7335
6719afdc
GU
7336 if (!delalloc)
7337 return used_bg;
e570fd27 7338
6719afdc
GU
7339 if (down_read_trylock(&used_bg->data_rwsem))
7340 return used_bg;
e570fd27 7341
6719afdc 7342 spin_unlock(&cluster->refill_lock);
e570fd27 7343
e321f8a8
LB
7344 /* We should only have one-level nested. */
7345 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7346
6719afdc
GU
7347 spin_lock(&cluster->refill_lock);
7348 if (used_bg == cluster->block_group)
7349 return used_bg;
e570fd27 7350
6719afdc
GU
7351 up_read(&used_bg->data_rwsem);
7352 btrfs_put_block_group(used_bg);
7353 }
e570fd27
MX
7354}
7355
7356static inline void
7357btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7358 int delalloc)
7359{
7360 if (delalloc)
7361 up_read(&cache->data_rwsem);
7362 btrfs_put_block_group(cache);
7363}
7364
b4bd745d
QW
7365/*
7366 * Structure used internally for find_free_extent() function. Wraps needed
7367 * parameters.
7368 */
7369struct find_free_extent_ctl {
7370 /* Basic allocation info */
7371 u64 ram_bytes;
7372 u64 num_bytes;
7373 u64 empty_size;
7374 u64 flags;
7375 int delalloc;
7376
7377 /* Where to start the search inside the bg */
7378 u64 search_start;
7379
7380 /* For clustered allocation */
7381 u64 empty_cluster;
7382
7383 bool have_caching_bg;
7384 bool orig_have_caching_bg;
7385
7386 /* RAID index, converted from flags */
7387 int index;
7388
e72d79d6
QW
7389 /*
7390 * Current loop number, check find_free_extent_update_loop() for details
7391 */
b4bd745d
QW
7392 int loop;
7393
7394 /*
7395 * Whether we're refilling a cluster, if true we need to re-search
7396 * current block group but don't try to refill the cluster again.
7397 */
7398 bool retry_clustered;
7399
7400 /*
7401 * Whether we're updating free space cache, if true we need to re-search
7402 * current block group but don't try updating free space cache again.
7403 */
7404 bool retry_unclustered;
7405
7406 /* If current block group is cached */
7407 int cached;
7408
7409 /* Max contiguous hole found */
7410 u64 max_extent_size;
7411
7412 /* Total free space from free space cache, not always contiguous */
7413 u64 total_free_space;
7414
7415 /* Found result */
7416 u64 found_offset;
7417};
7418
d06e3bb6
QW
7419
7420/*
7421 * Helper function for find_free_extent().
7422 *
7423 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
7424 * Return -EAGAIN to inform caller that we need to re-search this block group
7425 * Return >0 to inform caller that we find nothing
7426 * Return 0 means we have found a location and set ffe_ctl->found_offset.
7427 */
7428static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
7429 struct btrfs_free_cluster *last_ptr,
7430 struct find_free_extent_ctl *ffe_ctl,
7431 struct btrfs_block_group_cache **cluster_bg_ret)
7432{
d06e3bb6
QW
7433 struct btrfs_block_group_cache *cluster_bg;
7434 u64 aligned_cluster;
7435 u64 offset;
7436 int ret;
7437
7438 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
7439 if (!cluster_bg)
7440 goto refill_cluster;
7441 if (cluster_bg != bg && (cluster_bg->ro ||
7442 !block_group_bits(cluster_bg, ffe_ctl->flags)))
7443 goto release_cluster;
7444
7445 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
7446 ffe_ctl->num_bytes, cluster_bg->key.objectid,
7447 &ffe_ctl->max_extent_size);
7448 if (offset) {
7449 /* We have a block, we're done */
7450 spin_unlock(&last_ptr->refill_lock);
7451 trace_btrfs_reserve_extent_cluster(cluster_bg,
7452 ffe_ctl->search_start, ffe_ctl->num_bytes);
7453 *cluster_bg_ret = cluster_bg;
7454 ffe_ctl->found_offset = offset;
7455 return 0;
7456 }
7457 WARN_ON(last_ptr->block_group != cluster_bg);
7458
7459release_cluster:
7460 /*
7461 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
7462 * lets just skip it and let the allocator find whatever block it can
7463 * find. If we reach this point, we will have tried the cluster
7464 * allocator plenty of times and not have found anything, so we are
7465 * likely way too fragmented for the clustering stuff to find anything.
7466 *
7467 * However, if the cluster is taken from the current block group,
7468 * release the cluster first, so that we stand a better chance of
7469 * succeeding in the unclustered allocation.
7470 */
7471 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
7472 spin_unlock(&last_ptr->refill_lock);
7473 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7474 return -ENOENT;
7475 }
7476
7477 /* This cluster didn't work out, free it and start over */
7478 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7479
7480 if (cluster_bg != bg)
7481 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7482
7483refill_cluster:
7484 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
7485 spin_unlock(&last_ptr->refill_lock);
7486 return -ENOENT;
7487 }
7488
7489 aligned_cluster = max_t(u64,
7490 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
7491 bg->full_stripe_len);
2ceeae2e
DS
7492 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
7493 ffe_ctl->num_bytes, aligned_cluster);
d06e3bb6
QW
7494 if (ret == 0) {
7495 /* Now pull our allocation out of this cluster */
7496 offset = btrfs_alloc_from_cluster(bg, last_ptr,
7497 ffe_ctl->num_bytes, ffe_ctl->search_start,
7498 &ffe_ctl->max_extent_size);
7499 if (offset) {
7500 /* We found one, proceed */
7501 spin_unlock(&last_ptr->refill_lock);
7502 trace_btrfs_reserve_extent_cluster(bg,
7503 ffe_ctl->search_start,
7504 ffe_ctl->num_bytes);
7505 ffe_ctl->found_offset = offset;
7506 return 0;
7507 }
7508 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
7509 !ffe_ctl->retry_clustered) {
7510 spin_unlock(&last_ptr->refill_lock);
7511
7512 ffe_ctl->retry_clustered = true;
7513 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7514 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
7515 return -EAGAIN;
7516 }
7517 /*
7518 * At this point we either didn't find a cluster or we weren't able to
7519 * allocate a block from our cluster. Free the cluster we've been
7520 * trying to use, and go to the next block group.
7521 */
7522 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7523 spin_unlock(&last_ptr->refill_lock);
7524 return 1;
7525}
7526
e1a41848
QW
7527/*
7528 * Return >0 to inform caller that we find nothing
7529 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
7530 * Return -EAGAIN to inform caller that we need to re-search this block group
7531 */
7532static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
7533 struct btrfs_free_cluster *last_ptr,
7534 struct find_free_extent_ctl *ffe_ctl)
7535{
7536 u64 offset;
7537
7538 /*
7539 * We are doing an unclustered allocation, set the fragmented flag so
7540 * we don't bother trying to setup a cluster again until we get more
7541 * space.
7542 */
7543 if (unlikely(last_ptr)) {
7544 spin_lock(&last_ptr->lock);
7545 last_ptr->fragmented = 1;
7546 spin_unlock(&last_ptr->lock);
7547 }
7548 if (ffe_ctl->cached) {
7549 struct btrfs_free_space_ctl *free_space_ctl;
7550
7551 free_space_ctl = bg->free_space_ctl;
7552 spin_lock(&free_space_ctl->tree_lock);
7553 if (free_space_ctl->free_space <
7554 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
7555 ffe_ctl->empty_size) {
7556 ffe_ctl->total_free_space = max_t(u64,
7557 ffe_ctl->total_free_space,
7558 free_space_ctl->free_space);
7559 spin_unlock(&free_space_ctl->tree_lock);
7560 return 1;
7561 }
7562 spin_unlock(&free_space_ctl->tree_lock);
7563 }
7564
7565 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
7566 ffe_ctl->num_bytes, ffe_ctl->empty_size,
7567 &ffe_ctl->max_extent_size);
7568
7569 /*
7570 * If we didn't find a chunk, and we haven't failed on this block group
7571 * before, and this block group is in the middle of caching and we are
7572 * ok with waiting, then go ahead and wait for progress to be made, and
7573 * set @retry_unclustered to true.
7574 *
7575 * If @retry_unclustered is true then we've already waited on this
7576 * block group once and should move on to the next block group.
7577 */
7578 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
7579 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
7580 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7581 ffe_ctl->empty_size);
7582 ffe_ctl->retry_unclustered = true;
7583 return -EAGAIN;
7584 } else if (!offset) {
7585 return 1;
7586 }
7587 ffe_ctl->found_offset = offset;
7588 return 0;
7589}
7590
e72d79d6
QW
7591/*
7592 * Return >0 means caller needs to re-search for free extent
7593 * Return 0 means we have the needed free extent.
7594 * Return <0 means we failed to locate any free extent.
7595 */
7596static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
7597 struct btrfs_free_cluster *last_ptr,
7598 struct btrfs_key *ins,
7599 struct find_free_extent_ctl *ffe_ctl,
7600 int full_search, bool use_cluster)
7601{
7602 struct btrfs_root *root = fs_info->extent_root;
7603 int ret;
7604
7605 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
7606 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
7607 ffe_ctl->orig_have_caching_bg = true;
7608
7609 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
7610 ffe_ctl->have_caching_bg)
7611 return 1;
7612
7613 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
7614 return 1;
7615
7616 if (ins->objectid) {
7617 if (!use_cluster && last_ptr) {
7618 spin_lock(&last_ptr->lock);
7619 last_ptr->window_start = ins->objectid;
7620 spin_unlock(&last_ptr->lock);
7621 }
7622 return 0;
7623 }
7624
7625 /*
7626 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7627 * caching kthreads as we move along
7628 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7629 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7630 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7631 * again
7632 */
7633 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
7634 ffe_ctl->index = 0;
7635 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
7636 /*
7637 * We want to skip the LOOP_CACHING_WAIT step if we
7638 * don't have any uncached bgs and we've already done a
7639 * full search through.
7640 */
7641 if (ffe_ctl->orig_have_caching_bg || !full_search)
7642 ffe_ctl->loop = LOOP_CACHING_WAIT;
7643 else
7644 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
7645 } else {
7646 ffe_ctl->loop++;
7647 }
7648
7649 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
7650 struct btrfs_trans_handle *trans;
7651 int exist = 0;
7652
7653 trans = current->journal_info;
7654 if (trans)
7655 exist = 1;
7656 else
7657 trans = btrfs_join_transaction(root);
7658
7659 if (IS_ERR(trans)) {
7660 ret = PTR_ERR(trans);
7661 return ret;
7662 }
7663
7664 ret = do_chunk_alloc(trans, ffe_ctl->flags,
7665 CHUNK_ALLOC_FORCE);
7666
7667 /*
7668 * If we can't allocate a new chunk we've already looped
7669 * through at least once, move on to the NO_EMPTY_SIZE
7670 * case.
7671 */
7672 if (ret == -ENOSPC)
7673 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
7674
7675 /* Do not bail out on ENOSPC since we can do more. */
7676 if (ret < 0 && ret != -ENOSPC)
7677 btrfs_abort_transaction(trans, ret);
7678 else
7679 ret = 0;
7680 if (!exist)
7681 btrfs_end_transaction(trans);
7682 if (ret)
7683 return ret;
7684 }
7685
7686 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
7687 /*
7688 * Don't loop again if we already have no empty_size and
7689 * no empty_cluster.
7690 */
7691 if (ffe_ctl->empty_size == 0 &&
7692 ffe_ctl->empty_cluster == 0)
7693 return -ENOSPC;
7694 ffe_ctl->empty_size = 0;
7695 ffe_ctl->empty_cluster = 0;
7696 }
7697 return 1;
7698 }
7699 return -ENOSPC;
7700}
7701
fec577fb
CM
7702/*
7703 * walks the btree of allocated extents and find a hole of a given size.
7704 * The key ins is changed to record the hole:
a4820398 7705 * ins->objectid == start position
62e2749e 7706 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7707 * ins->offset == the size of the hole.
fec577fb 7708 * Any available blocks before search_start are skipped.
a4820398
MX
7709 *
7710 * If there is no suitable free space, we will record the max size of
7711 * the free space extent currently.
e72d79d6
QW
7712 *
7713 * The overall logic and call chain:
7714 *
7715 * find_free_extent()
7716 * |- Iterate through all block groups
7717 * | |- Get a valid block group
7718 * | |- Try to do clustered allocation in that block group
7719 * | |- Try to do unclustered allocation in that block group
7720 * | |- Check if the result is valid
7721 * | | |- If valid, then exit
7722 * | |- Jump to next block group
7723 * |
7724 * |- Push harder to find free extents
7725 * |- If not found, re-iterate all block groups
fec577fb 7726 */
87bde3cd 7727static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7728 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7729 u64 hint_byte, struct btrfs_key *ins,
7730 u64 flags, int delalloc)
fec577fb 7731{
80eb234a 7732 int ret = 0;
fa9c0d79 7733 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7734 struct btrfs_block_group_cache *block_group = NULL;
b4bd745d 7735 struct find_free_extent_ctl ffe_ctl = {0};
80eb234a 7736 struct btrfs_space_info *space_info;
67377734 7737 bool use_cluster = true;
a5e681d9 7738 bool full_search = false;
fec577fb 7739
0b246afa 7740 WARN_ON(num_bytes < fs_info->sectorsize);
b4bd745d
QW
7741
7742 ffe_ctl.ram_bytes = ram_bytes;
7743 ffe_ctl.num_bytes = num_bytes;
7744 ffe_ctl.empty_size = empty_size;
7745 ffe_ctl.flags = flags;
7746 ffe_ctl.search_start = 0;
7747 ffe_ctl.retry_clustered = false;
7748 ffe_ctl.retry_unclustered = false;
7749 ffe_ctl.delalloc = delalloc;
7750 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
7751 ffe_ctl.have_caching_bg = false;
7752 ffe_ctl.orig_have_caching_bg = false;
7753 ffe_ctl.found_offset = 0;
7754
962a298f 7755 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7756 ins->objectid = 0;
7757 ins->offset = 0;
b1a4d965 7758
71ff6437 7759 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7760
0b246afa 7761 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7762 if (!space_info) {
0b246afa 7763 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7764 return -ENOSPC;
7765 }
2552d17e 7766
67377734 7767 /*
4f4db217
JB
7768 * If our free space is heavily fragmented we may not be able to make
7769 * big contiguous allocations, so instead of doing the expensive search
7770 * for free space, simply return ENOSPC with our max_extent_size so we
7771 * can go ahead and search for a more manageable chunk.
7772 *
7773 * If our max_extent_size is large enough for our allocation simply
7774 * disable clustering since we will likely not be able to find enough
7775 * space to create a cluster and induce latency trying.
67377734 7776 */
4f4db217
JB
7777 if (unlikely(space_info->max_extent_size)) {
7778 spin_lock(&space_info->lock);
7779 if (space_info->max_extent_size &&
7780 num_bytes > space_info->max_extent_size) {
7781 ins->offset = space_info->max_extent_size;
7782 spin_unlock(&space_info->lock);
7783 return -ENOSPC;
7784 } else if (space_info->max_extent_size) {
7785 use_cluster = false;
7786 }
7787 spin_unlock(&space_info->lock);
fa9c0d79 7788 }
0f9dd46c 7789
b4bd745d
QW
7790 last_ptr = fetch_cluster_info(fs_info, space_info,
7791 &ffe_ctl.empty_cluster);
239b14b3 7792 if (last_ptr) {
fa9c0d79
CM
7793 spin_lock(&last_ptr->lock);
7794 if (last_ptr->block_group)
7795 hint_byte = last_ptr->window_start;
c759c4e1
JB
7796 if (last_ptr->fragmented) {
7797 /*
7798 * We still set window_start so we can keep track of the
7799 * last place we found an allocation to try and save
7800 * some time.
7801 */
7802 hint_byte = last_ptr->window_start;
7803 use_cluster = false;
7804 }
fa9c0d79 7805 spin_unlock(&last_ptr->lock);
239b14b3 7806 }
fa9c0d79 7807
b4bd745d
QW
7808 ffe_ctl.search_start = max(ffe_ctl.search_start,
7809 first_logical_byte(fs_info, 0));
7810 ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
7811 if (ffe_ctl.search_start == hint_byte) {
7812 block_group = btrfs_lookup_block_group(fs_info,
7813 ffe_ctl.search_start);
817d52f8
JB
7814 /*
7815 * we don't want to use the block group if it doesn't match our
7816 * allocation bits, or if its not cached.
ccf0e725
JB
7817 *
7818 * However if we are re-searching with an ideal block group
7819 * picked out then we don't care that the block group is cached.
817d52f8 7820 */
b6919a58 7821 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7822 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7823 down_read(&space_info->groups_sem);
44fb5511
CM
7824 if (list_empty(&block_group->list) ||
7825 block_group->ro) {
7826 /*
7827 * someone is removing this block group,
7828 * we can't jump into the have_block_group
7829 * target because our list pointers are not
7830 * valid
7831 */
7832 btrfs_put_block_group(block_group);
7833 up_read(&space_info->groups_sem);
ccf0e725 7834 } else {
b4bd745d 7835 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3e72ee88 7836 block_group->flags);
e570fd27 7837 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7838 goto have_block_group;
ccf0e725 7839 }
2552d17e 7840 } else if (block_group) {
fa9c0d79 7841 btrfs_put_block_group(block_group);
2552d17e 7842 }
42e70e7a 7843 }
2552d17e 7844search:
b4bd745d
QW
7845 ffe_ctl.have_caching_bg = false;
7846 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
7847 ffe_ctl.index == 0)
a5e681d9 7848 full_search = true;
80eb234a 7849 down_read(&space_info->groups_sem);
b4bd745d
QW
7850 list_for_each_entry(block_group,
7851 &space_info->block_groups[ffe_ctl.index], list) {
14443937
JM
7852 /* If the block group is read-only, we can skip it entirely. */
7853 if (unlikely(block_group->ro))
7854 continue;
7855
e570fd27 7856 btrfs_grab_block_group(block_group, delalloc);
b4bd745d 7857 ffe_ctl.search_start = block_group->key.objectid;
42e70e7a 7858
83a50de9
CM
7859 /*
7860 * this can happen if we end up cycling through all the
7861 * raid types, but we want to make sure we only allocate
7862 * for the proper type.
7863 */
b6919a58 7864 if (!block_group_bits(block_group, flags)) {
bece2e82 7865 u64 extra = BTRFS_BLOCK_GROUP_DUP |
83a50de9 7866 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7867 BTRFS_BLOCK_GROUP_RAID5 |
7868 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7869 BTRFS_BLOCK_GROUP_RAID10;
7870
7871 /*
7872 * if they asked for extra copies and this block group
7873 * doesn't provide them, bail. This does allow us to
7874 * fill raid0 from raid1.
7875 */
b6919a58 7876 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7877 goto loop;
7878 }
7879
2552d17e 7880have_block_group:
b4bd745d
QW
7881 ffe_ctl.cached = block_group_cache_done(block_group);
7882 if (unlikely(!ffe_ctl.cached)) {
7883 ffe_ctl.have_caching_bg = true;
f6373bf3 7884 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7885 BUG_ON(ret < 0);
7886 ret = 0;
817d52f8
JB
7887 }
7888
36cce922
JB
7889 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7890 goto loop;
0f9dd46c 7891
0a24325e 7892 /*
062c05c4
AO
7893 * Ok we want to try and use the cluster allocator, so
7894 * lets look there
0a24325e 7895 */
c759c4e1 7896 if (last_ptr && use_cluster) {
d06e3bb6 7897 struct btrfs_block_group_cache *cluster_bg = NULL;
fa9c0d79 7898
d06e3bb6
QW
7899 ret = find_free_extent_clustered(block_group, last_ptr,
7900 &ffe_ctl, &cluster_bg);
062c05c4 7901
fa9c0d79 7902 if (ret == 0) {
d06e3bb6
QW
7903 if (cluster_bg && cluster_bg != block_group) {
7904 btrfs_release_block_group(block_group,
7905 delalloc);
7906 block_group = cluster_bg;
fa9c0d79 7907 }
d06e3bb6
QW
7908 goto checks;
7909 } else if (ret == -EAGAIN) {
817d52f8 7910 goto have_block_group;
d06e3bb6
QW
7911 } else if (ret > 0) {
7912 goto loop;
fa9c0d79 7913 }
d06e3bb6 7914 /* ret == -ENOENT case falls through */
fa9c0d79
CM
7915 }
7916
e1a41848
QW
7917 ret = find_free_extent_unclustered(block_group, last_ptr,
7918 &ffe_ctl);
7919 if (ret == -EAGAIN)
817d52f8 7920 goto have_block_group;
e1a41848 7921 else if (ret > 0)
1cdda9b8 7922 goto loop;
e1a41848 7923 /* ret == 0 case falls through */
fa9c0d79 7924checks:
b4bd745d
QW
7925 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
7926 fs_info->stripesize);
25179201 7927
2552d17e 7928 /* move on to the next group */
b4bd745d 7929 if (ffe_ctl.search_start + num_bytes >
215a63d1 7930 block_group->key.objectid + block_group->key.offset) {
b4bd745d
QW
7931 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7932 num_bytes);
2552d17e 7933 goto loop;
6226cb0a 7934 }
f5a31e16 7935
b4bd745d
QW
7936 if (ffe_ctl.found_offset < ffe_ctl.search_start)
7937 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7938 ffe_ctl.search_start - ffe_ctl.found_offset);
2552d17e 7939
18513091
WX
7940 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7941 num_bytes, delalloc);
f0486c68 7942 if (ret == -EAGAIN) {
b4bd745d
QW
7943 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7944 num_bytes);
2552d17e 7945 goto loop;
0f9dd46c 7946 }
9cfa3e34 7947 btrfs_inc_block_group_reservations(block_group);
0b86a832 7948
f0486c68 7949 /* we are all good, lets return */
b4bd745d 7950 ins->objectid = ffe_ctl.search_start;
2552d17e 7951 ins->offset = num_bytes;
d2fb3437 7952
b4bd745d
QW
7953 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
7954 num_bytes);
e570fd27 7955 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7956 break;
7957loop:
b4bd745d
QW
7958 ffe_ctl.retry_clustered = false;
7959 ffe_ctl.retry_unclustered = false;
3e72ee88 7960 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
b4bd745d 7961 ffe_ctl.index);
e570fd27 7962 btrfs_release_block_group(block_group, delalloc);
14443937 7963 cond_resched();
2552d17e
JB
7964 }
7965 up_read(&space_info->groups_sem);
7966
e72d79d6
QW
7967 ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
7968 full_search, use_cluster);
7969 if (ret > 0)
b742bb82
YZ
7970 goto search;
7971
4f4db217 7972 if (ret == -ENOSPC) {
b4bd745d
QW
7973 /*
7974 * Use ffe_ctl->total_free_space as fallback if we can't find
7975 * any contiguous hole.
7976 */
7977 if (!ffe_ctl.max_extent_size)
7978 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4f4db217 7979 spin_lock(&space_info->lock);
b4bd745d 7980 space_info->max_extent_size = ffe_ctl.max_extent_size;
4f4db217 7981 spin_unlock(&space_info->lock);
b4bd745d 7982 ins->offset = ffe_ctl.max_extent_size;
4f4db217 7983 }
0f70abe2 7984 return ret;
fec577fb 7985}
ec44a35c 7986
b78e5616
JB
7987#define DUMP_BLOCK_RSV(fs_info, rsv_name) \
7988do { \
7989 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
7990 spin_lock(&__rsv->lock); \
7991 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
7992 __rsv->size, __rsv->reserved); \
7993 spin_unlock(&__rsv->lock); \
7994} while (0)
7995
ab8d0fc4
JM
7996static void dump_space_info(struct btrfs_fs_info *fs_info,
7997 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7998 int dump_block_groups)
0f9dd46c
JB
7999{
8000 struct btrfs_block_group_cache *cache;
b742bb82 8001 int index = 0;
0f9dd46c 8002
9ed74f2d 8003 spin_lock(&info->lock);
ab8d0fc4
JM
8004 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
8005 info->flags,
4136135b
LB
8006 info->total_bytes - btrfs_space_info_used(info, true),
8007 info->full ? "" : "not ");
ab8d0fc4
JM
8008 btrfs_info(fs_info,
8009 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
8010 info->total_bytes, info->bytes_used, info->bytes_pinned,
8011 info->bytes_reserved, info->bytes_may_use,
8012 info->bytes_readonly);
9ed74f2d
JB
8013 spin_unlock(&info->lock);
8014
b78e5616
JB
8015 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
8016 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
8017 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
8018 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
8019 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
8020
9ed74f2d
JB
8021 if (!dump_block_groups)
8022 return;
0f9dd46c 8023
80eb234a 8024 down_read(&info->groups_sem);
b742bb82
YZ
8025again:
8026 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 8027 spin_lock(&cache->lock);
ab8d0fc4
JM
8028 btrfs_info(fs_info,
8029 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8030 cache->key.objectid, cache->key.offset,
8031 btrfs_block_group_used(&cache->item), cache->pinned,
8032 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
8033 btrfs_dump_free_space(cache, bytes);
8034 spin_unlock(&cache->lock);
8035 }
b742bb82
YZ
8036 if (++index < BTRFS_NR_RAID_TYPES)
8037 goto again;
80eb234a 8038 up_read(&info->groups_sem);
0f9dd46c 8039}
e8569813 8040
6f47c706
NB
8041/*
8042 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8043 * hole that is at least as big as @num_bytes.
8044 *
8045 * @root - The root that will contain this extent
8046 *
8047 * @ram_bytes - The amount of space in ram that @num_bytes take. This
8048 * is used for accounting purposes. This value differs
8049 * from @num_bytes only in the case of compressed extents.
8050 *
8051 * @num_bytes - Number of bytes to allocate on-disk.
8052 *
8053 * @min_alloc_size - Indicates the minimum amount of space that the
8054 * allocator should try to satisfy. In some cases
8055 * @num_bytes may be larger than what is required and if
8056 * the filesystem is fragmented then allocation fails.
8057 * However, the presence of @min_alloc_size gives a
8058 * chance to try and satisfy the smaller allocation.
8059 *
8060 * @empty_size - A hint that you plan on doing more COW. This is the
8061 * size in bytes the allocator should try to find free
8062 * next to the block it returns. This is just a hint and
8063 * may be ignored by the allocator.
8064 *
8065 * @hint_byte - Hint to the allocator to start searching above the byte
8066 * address passed. It might be ignored.
8067 *
8068 * @ins - This key is modified to record the found hole. It will
8069 * have the following values:
8070 * ins->objectid == start position
8071 * ins->flags = BTRFS_EXTENT_ITEM_KEY
8072 * ins->offset == the size of the hole.
8073 *
8074 * @is_data - Boolean flag indicating whether an extent is
8075 * allocated for data (true) or metadata (false)
8076 *
8077 * @delalloc - Boolean flag indicating whether this allocation is for
8078 * delalloc or not. If 'true' data_rwsem of block groups
8079 * is going to be acquired.
8080 *
8081 *
8082 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8083 * case -ENOSPC is returned then @ins->offset will contain the size of the
8084 * largest available hole the allocator managed to find.
8085 */
18513091 8086int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
8087 u64 num_bytes, u64 min_alloc_size,
8088 u64 empty_size, u64 hint_byte,
e570fd27 8089 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 8090{
ab8d0fc4 8091 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 8092 bool final_tried = num_bytes == min_alloc_size;
b6919a58 8093 u64 flags;
fec577fb 8094 int ret;
925baedd 8095
1b86826d 8096 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 8097again:
0b246afa 8098 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8099 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8100 hint_byte, ins, flags, delalloc);
9cfa3e34 8101 if (!ret && !is_data) {
ab8d0fc4 8102 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8103 } else if (ret == -ENOSPC) {
a4820398
MX
8104 if (!final_tried && ins->offset) {
8105 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8106 num_bytes = round_down(num_bytes,
0b246afa 8107 fs_info->sectorsize);
9e622d6b 8108 num_bytes = max(num_bytes, min_alloc_size);
18513091 8109 ram_bytes = num_bytes;
9e622d6b
MX
8110 if (num_bytes == min_alloc_size)
8111 final_tried = true;
8112 goto again;
ab8d0fc4 8113 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8114 struct btrfs_space_info *sinfo;
8115
ab8d0fc4 8116 sinfo = __find_space_info(fs_info, flags);
0b246afa 8117 btrfs_err(fs_info,
5d163e0e
JM
8118 "allocation failed flags %llu, wanted %llu",
8119 flags, num_bytes);
53804280 8120 if (sinfo)
ab8d0fc4 8121 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8122 }
925baedd 8123 }
0f9dd46c
JB
8124
8125 return ret;
e6dcd2dc
CM
8126}
8127
2ff7e61e 8128static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8129 u64 start, u64 len,
8130 int pin, int delalloc)
65b51a00 8131{
0f9dd46c 8132 struct btrfs_block_group_cache *cache;
1f3c79a2 8133 int ret = 0;
0f9dd46c 8134
0b246afa 8135 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8136 if (!cache) {
0b246afa
JM
8137 btrfs_err(fs_info, "Unable to find block group for %llu",
8138 start);
0f9dd46c
JB
8139 return -ENOSPC;
8140 }
1f3c79a2 8141
e688b725 8142 if (pin)
fdf08605 8143 pin_down_extent(cache, start, len, 1);
e688b725 8144 else {
0b246afa 8145 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8146 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8147 btrfs_add_free_space(cache, start, len);
4824f1f4 8148 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8149 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8150 }
31193213 8151
fa9c0d79 8152 btrfs_put_block_group(cache);
e6dcd2dc
CM
8153 return ret;
8154}
8155
2ff7e61e 8156int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8157 u64 start, u64 len, int delalloc)
e688b725 8158{
2ff7e61e 8159 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8160}
8161
2ff7e61e 8162int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8163 u64 start, u64 len)
8164{
2ff7e61e 8165 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8166}
8167
5d4f98a2 8168static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8169 u64 parent, u64 root_objectid,
8170 u64 flags, u64 owner, u64 offset,
8171 struct btrfs_key *ins, int ref_mod)
e6dcd2dc 8172{
ef89b824 8173 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8174 int ret;
e6dcd2dc 8175 struct btrfs_extent_item *extent_item;
5d4f98a2 8176 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8177 struct btrfs_path *path;
5d4f98a2
YZ
8178 struct extent_buffer *leaf;
8179 int type;
8180 u32 size;
26b8003f 8181
5d4f98a2
YZ
8182 if (parent > 0)
8183 type = BTRFS_SHARED_DATA_REF_KEY;
8184 else
8185 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8186
5d4f98a2 8187 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8188
8189 path = btrfs_alloc_path();
db5b493a
TI
8190 if (!path)
8191 return -ENOMEM;
47e4bb98 8192
b9473439 8193 path->leave_spinning = 1;
5d4f98a2
YZ
8194 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8195 ins, size);
79787eaa
JM
8196 if (ret) {
8197 btrfs_free_path(path);
8198 return ret;
8199 }
0f9dd46c 8200
5d4f98a2
YZ
8201 leaf = path->nodes[0];
8202 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8203 struct btrfs_extent_item);
5d4f98a2
YZ
8204 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8205 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8206 btrfs_set_extent_flags(leaf, extent_item,
8207 flags | BTRFS_EXTENT_FLAG_DATA);
8208
8209 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8210 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8211 if (parent > 0) {
8212 struct btrfs_shared_data_ref *ref;
8213 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8214 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8215 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8216 } else {
8217 struct btrfs_extent_data_ref *ref;
8218 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8219 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8220 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8221 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8222 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8223 }
47e4bb98
CM
8224
8225 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8226 btrfs_free_path(path);
f510cfec 8227
25a356d3 8228 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
1e144fb8
OS
8229 if (ret)
8230 return ret;
8231
6b279408 8232 ret = update_block_group(trans, ins->objectid, ins->offset, 1);
79787eaa 8233 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8234 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8235 ins->objectid, ins->offset);
f5947066
CM
8236 BUG();
8237 }
71ff6437 8238 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8239 return ret;
8240}
8241
5d4f98a2 8242static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 8243 struct btrfs_delayed_ref_node *node,
21ebfbe7 8244 struct btrfs_delayed_extent_op *extent_op)
e6dcd2dc 8245{
9dcdbe01 8246 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8247 int ret;
5d4f98a2 8248 struct btrfs_extent_item *extent_item;
4e6bd4e0 8249 struct btrfs_key extent_key;
5d4f98a2
YZ
8250 struct btrfs_tree_block_info *block_info;
8251 struct btrfs_extent_inline_ref *iref;
8252 struct btrfs_path *path;
8253 struct extent_buffer *leaf;
4e6bd4e0 8254 struct btrfs_delayed_tree_ref *ref;
3173a18f 8255 u32 size = sizeof(*extent_item) + sizeof(*iref);
4e6bd4e0 8256 u64 num_bytes;
21ebfbe7 8257 u64 flags = extent_op->flags_to_set;
0b246afa 8258 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f 8259
4e6bd4e0
NB
8260 ref = btrfs_delayed_node_to_tree_ref(node);
8261
4e6bd4e0
NB
8262 extent_key.objectid = node->bytenr;
8263 if (skinny_metadata) {
8264 extent_key.offset = ref->level;
8265 extent_key.type = BTRFS_METADATA_ITEM_KEY;
8266 num_bytes = fs_info->nodesize;
8267 } else {
8268 extent_key.offset = node->num_bytes;
8269 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
3173a18f 8270 size += sizeof(*block_info);
4e6bd4e0
NB
8271 num_bytes = node->num_bytes;
8272 }
1c2308f8 8273
5d4f98a2 8274 path = btrfs_alloc_path();
80ee54bf 8275 if (!path)
d8926bb3 8276 return -ENOMEM;
56bec294 8277
5d4f98a2
YZ
8278 path->leave_spinning = 1;
8279 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4e6bd4e0 8280 &extent_key, size);
79787eaa 8281 if (ret) {
dd825259 8282 btrfs_free_path(path);
79787eaa
JM
8283 return ret;
8284 }
5d4f98a2
YZ
8285
8286 leaf = path->nodes[0];
8287 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8288 struct btrfs_extent_item);
8289 btrfs_set_extent_refs(leaf, extent_item, 1);
8290 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8291 btrfs_set_extent_flags(leaf, extent_item,
8292 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8293
3173a18f
JB
8294 if (skinny_metadata) {
8295 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8296 } else {
8297 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
21ebfbe7 8298 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4e6bd4e0 8299 btrfs_set_tree_block_level(leaf, block_info, ref->level);
3173a18f
JB
8300 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8301 }
5d4f98a2 8302
d4b20733 8303 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
5d4f98a2
YZ
8304 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8305 btrfs_set_extent_inline_ref_type(leaf, iref,
8306 BTRFS_SHARED_BLOCK_REF_KEY);
d4b20733 8307 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
5d4f98a2
YZ
8308 } else {
8309 btrfs_set_extent_inline_ref_type(leaf, iref,
8310 BTRFS_TREE_BLOCK_REF_KEY);
4e6bd4e0 8311 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
5d4f98a2
YZ
8312 }
8313
8314 btrfs_mark_buffer_dirty(leaf);
8315 btrfs_free_path(path);
8316
4e6bd4e0
NB
8317 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8318 num_bytes);
1e144fb8
OS
8319 if (ret)
8320 return ret;
8321
6b279408 8322 ret = update_block_group(trans, extent_key.objectid,
6202df69 8323 fs_info->nodesize, 1);
79787eaa 8324 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8325 btrfs_err(fs_info, "update block group failed for %llu %llu",
4e6bd4e0 8326 extent_key.objectid, extent_key.offset);
5d4f98a2
YZ
8327 BUG();
8328 }
0be5dc67 8329
4e6bd4e0 8330 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
0b246afa 8331 fs_info->nodesize);
5d4f98a2
YZ
8332 return ret;
8333}
8334
8335int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8336 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8337 u64 offset, u64 ram_bytes,
8338 struct btrfs_key *ins)
5d4f98a2 8339{
76675593 8340 struct btrfs_ref generic_ref = { 0 };
5d4f98a2
YZ
8341 int ret;
8342
84f7d8e6 8343 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8344
76675593
QW
8345 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
8346 ins->objectid, ins->offset, 0);
8347 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
8a5040f7 8348 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
76675593
QW
8349 ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
8350 ram_bytes, NULL, NULL);
e6dcd2dc
CM
8351 return ret;
8352}
e02119d5
CM
8353
8354/*
8355 * this is used by the tree logging recovery code. It records that
8356 * an extent has been allocated and makes sure to clear the free
8357 * space cache bits as well
8358 */
5d4f98a2 8359int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8360 u64 root_objectid, u64 owner, u64 offset,
8361 struct btrfs_key *ins)
e02119d5 8362{
61da2abf 8363 struct btrfs_fs_info *fs_info = trans->fs_info;
e02119d5
CM
8364 int ret;
8365 struct btrfs_block_group_cache *block_group;
ed7a6948 8366 struct btrfs_space_info *space_info;
11833d66 8367
8c2a1a30
JB
8368 /*
8369 * Mixed block groups will exclude before processing the log so we only
01327610 8370 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8371 */
0b246afa 8372 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8373 ret = __exclude_logged_extent(fs_info, ins->objectid,
8374 ins->offset);
b50c6e25 8375 if (ret)
8c2a1a30 8376 return ret;
11833d66
YZ
8377 }
8378
0b246afa 8379 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8380 if (!block_group)
8381 return -EINVAL;
8382
ed7a6948
WX
8383 space_info = block_group->space_info;
8384 spin_lock(&space_info->lock);
8385 spin_lock(&block_group->lock);
8386 space_info->bytes_reserved += ins->offset;
8387 block_group->reserved += ins->offset;
8388 spin_unlock(&block_group->lock);
8389 spin_unlock(&space_info->lock);
8390
ef89b824
NB
8391 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8392 offset, ins, 1);
b50c6e25 8393 btrfs_put_block_group(block_group);
e02119d5
CM
8394 return ret;
8395}
8396
48a3b636
ES
8397static struct extent_buffer *
8398btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
bc877d28 8399 u64 bytenr, int level, u64 owner)
65b51a00 8400{
0b246afa 8401 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8402 struct extent_buffer *buf;
8403
2ff7e61e 8404 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8405 if (IS_ERR(buf))
8406 return buf;
8407
b72c3aba
QW
8408 /*
8409 * Extra safety check in case the extent tree is corrupted and extent
8410 * allocator chooses to use a tree block which is already used and
8411 * locked.
8412 */
8413 if (buf->lock_owner == current->pid) {
8414 btrfs_err_rl(fs_info,
8415"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8416 buf->start, btrfs_header_owner(buf), current->pid);
8417 free_extent_buffer(buf);
8418 return ERR_PTR(-EUCLEAN);
8419 }
8420
85d4e461 8421 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8422 btrfs_tree_lock(buf);
6a884d7d 8423 btrfs_clean_tree_block(buf);
3083ee2e 8424 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de 8425
8bead258 8426 btrfs_set_lock_blocking_write(buf);
4db8c528 8427 set_extent_buffer_uptodate(buf);
b4ce94de 8428
bc877d28
NB
8429 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8430 btrfs_set_header_level(buf, level);
8431 btrfs_set_header_bytenr(buf, buf->start);
8432 btrfs_set_header_generation(buf, trans->transid);
8433 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8434 btrfs_set_header_owner(buf, owner);
de37aa51 8435 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
bc877d28 8436 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
d0c803c4 8437 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8438 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8439 /*
8440 * we allow two log transactions at a time, use different
52042d8e 8441 * EXTENT bit to differentiate dirty pages.
8cef4e16 8442 */
656f30db 8443 if (buf->log_index == 0)
8cef4e16
YZ
8444 set_extent_dirty(&root->dirty_log_pages, buf->start,
8445 buf->start + buf->len - 1, GFP_NOFS);
8446 else
8447 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8448 buf->start + buf->len - 1);
d0c803c4 8449 } else {
656f30db 8450 buf->log_index = -1;
d0c803c4 8451 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8452 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8453 }
64c12921 8454 trans->dirty = true;
b4ce94de 8455 /* this returns a buffer locked for blocking */
65b51a00
CM
8456 return buf;
8457}
8458
f0486c68
YZ
8459static struct btrfs_block_rsv *
8460use_block_rsv(struct btrfs_trans_handle *trans,
8461 struct btrfs_root *root, u32 blocksize)
8462{
0b246afa 8463 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8464 struct btrfs_block_rsv *block_rsv;
0b246afa 8465 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8466 int ret;
d88033db 8467 bool global_updated = false;
f0486c68
YZ
8468
8469 block_rsv = get_block_rsv(trans, root);
8470
b586b323
MX
8471 if (unlikely(block_rsv->size == 0))
8472 goto try_reserve;
d88033db 8473again:
f0486c68
YZ
8474 ret = block_rsv_use_bytes(block_rsv, blocksize);
8475 if (!ret)
8476 return block_rsv;
8477
b586b323
MX
8478 if (block_rsv->failfast)
8479 return ERR_PTR(ret);
8480
d88033db
MX
8481 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8482 global_updated = true;
0b246afa 8483 update_global_block_rsv(fs_info);
d88033db
MX
8484 goto again;
8485 }
8486
ba2c4d4e
JB
8487 /*
8488 * The global reserve still exists to save us from ourselves, so don't
8489 * warn_on if we are short on our delayed refs reserve.
8490 */
8491 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
8492 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8493 static DEFINE_RATELIMIT_STATE(_rs,
8494 DEFAULT_RATELIMIT_INTERVAL * 10,
8495 /*DEFAULT_RATELIMIT_BURST*/ 1);
8496 if (__ratelimit(&_rs))
8497 WARN(1, KERN_DEBUG
efe120a0 8498 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8499 }
8500try_reserve:
8501 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8502 BTRFS_RESERVE_NO_FLUSH);
8503 if (!ret)
8504 return block_rsv;
8505 /*
8506 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8507 * the global reserve if its space type is the same as the global
8508 * reservation.
b586b323 8509 */
5881cfc9
MX
8510 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8511 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8512 ret = block_rsv_use_bytes(global_rsv, blocksize);
8513 if (!ret)
8514 return global_rsv;
8515 }
8516 return ERR_PTR(ret);
f0486c68
YZ
8517}
8518
8c2a3ca2
JB
8519static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8520 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68 8521{
3a584174 8522 block_rsv_add_bytes(block_rsv, blocksize, false);
ff6bc37e 8523 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8524}
8525
fec577fb 8526/*
f0486c68 8527 * finds a free extent and does all the dirty work required for allocation
67b7859e 8528 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8529 */
4d75f8a9 8530struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8531 struct btrfs_root *root,
8532 u64 parent, u64 root_objectid,
8533 const struct btrfs_disk_key *key,
8534 int level, u64 hint,
8535 u64 empty_size)
fec577fb 8536{
0b246afa 8537 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8538 struct btrfs_key ins;
f0486c68 8539 struct btrfs_block_rsv *block_rsv;
5f39d397 8540 struct extent_buffer *buf;
67b7859e 8541 struct btrfs_delayed_extent_op *extent_op;
ed4f255b 8542 struct btrfs_ref generic_ref = { 0 };
f0486c68
YZ
8543 u64 flags = 0;
8544 int ret;
0b246afa
JM
8545 u32 blocksize = fs_info->nodesize;
8546 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8547
05653ef3 8548#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8549 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8550 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
bc877d28 8551 level, root_objectid);
faa2dbf0
JB
8552 if (!IS_ERR(buf))
8553 root->alloc_bytenr += blocksize;
8554 return buf;
8555 }
05653ef3 8556#endif
fccb84c9 8557
f0486c68
YZ
8558 block_rsv = use_block_rsv(trans, root, blocksize);
8559 if (IS_ERR(block_rsv))
8560 return ERR_CAST(block_rsv);
8561
18513091 8562 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8563 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8564 if (ret)
8565 goto out_unuse;
55c69072 8566
bc877d28
NB
8567 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8568 root_objectid);
67b7859e
OS
8569 if (IS_ERR(buf)) {
8570 ret = PTR_ERR(buf);
8571 goto out_free_reserved;
8572 }
f0486c68
YZ
8573
8574 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8575 if (parent == 0)
8576 parent = ins.objectid;
8577 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8578 } else
8579 BUG_ON(parent > 0);
8580
8581 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8582 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8583 if (!extent_op) {
8584 ret = -ENOMEM;
8585 goto out_free_buf;
8586 }
f0486c68
YZ
8587 if (key)
8588 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8589 else
8590 memset(&extent_op->key, 0, sizeof(extent_op->key));
8591 extent_op->flags_to_set = flags;
35b3ad50
DS
8592 extent_op->update_key = skinny_metadata ? false : true;
8593 extent_op->update_flags = true;
8594 extent_op->is_data = false;
b1c79e09 8595 extent_op->level = level;
f0486c68 8596
ed4f255b
QW
8597 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
8598 ins.objectid, ins.offset, parent);
8599 generic_ref.real_root = root->root_key.objectid;
8600 btrfs_init_tree_ref(&generic_ref, level, root_objectid);
8a5040f7 8601 btrfs_ref_tree_mod(fs_info, &generic_ref);
ed4f255b 8602 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
7be07912 8603 extent_op, NULL, NULL);
67b7859e
OS
8604 if (ret)
8605 goto out_free_delayed;
f0486c68 8606 }
fec577fb 8607 return buf;
67b7859e
OS
8608
8609out_free_delayed:
8610 btrfs_free_delayed_extent_op(extent_op);
8611out_free_buf:
8612 free_extent_buffer(buf);
8613out_free_reserved:
2ff7e61e 8614 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8615out_unuse:
0b246afa 8616 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8617 return ERR_PTR(ret);
fec577fb 8618}
a28ec197 8619
2c47e605
YZ
8620struct walk_control {
8621 u64 refs[BTRFS_MAX_LEVEL];
8622 u64 flags[BTRFS_MAX_LEVEL];
8623 struct btrfs_key update_progress;
aea6f028
JB
8624 struct btrfs_key drop_progress;
8625 int drop_level;
2c47e605
YZ
8626 int stage;
8627 int level;
8628 int shared_level;
8629 int update_ref;
8630 int keep_locks;
1c4850e2
YZ
8631 int reada_slot;
8632 int reada_count;
78c52d9e 8633 int restarted;
2c47e605
YZ
8634};
8635
8636#define DROP_REFERENCE 1
8637#define UPDATE_BACKREF 2
8638
1c4850e2
YZ
8639static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8640 struct btrfs_root *root,
8641 struct walk_control *wc,
8642 struct btrfs_path *path)
6407bf6d 8643{
0b246afa 8644 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8645 u64 bytenr;
8646 u64 generation;
8647 u64 refs;
94fcca9f 8648 u64 flags;
5d4f98a2 8649 u32 nritems;
1c4850e2
YZ
8650 struct btrfs_key key;
8651 struct extent_buffer *eb;
6407bf6d 8652 int ret;
1c4850e2
YZ
8653 int slot;
8654 int nread = 0;
6407bf6d 8655
1c4850e2
YZ
8656 if (path->slots[wc->level] < wc->reada_slot) {
8657 wc->reada_count = wc->reada_count * 2 / 3;
8658 wc->reada_count = max(wc->reada_count, 2);
8659 } else {
8660 wc->reada_count = wc->reada_count * 3 / 2;
8661 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8662 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8663 }
7bb86316 8664
1c4850e2
YZ
8665 eb = path->nodes[wc->level];
8666 nritems = btrfs_header_nritems(eb);
bd56b302 8667
1c4850e2
YZ
8668 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8669 if (nread >= wc->reada_count)
8670 break;
bd56b302 8671
2dd3e67b 8672 cond_resched();
1c4850e2
YZ
8673 bytenr = btrfs_node_blockptr(eb, slot);
8674 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8675
1c4850e2
YZ
8676 if (slot == path->slots[wc->level])
8677 goto reada;
5d4f98a2 8678
1c4850e2
YZ
8679 if (wc->stage == UPDATE_BACKREF &&
8680 generation <= root->root_key.offset)
bd56b302
CM
8681 continue;
8682
94fcca9f 8683 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8684 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8685 wc->level - 1, 1, &refs,
8686 &flags);
79787eaa
JM
8687 /* We don't care about errors in readahead. */
8688 if (ret < 0)
8689 continue;
94fcca9f
YZ
8690 BUG_ON(refs == 0);
8691
1c4850e2 8692 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8693 if (refs == 1)
8694 goto reada;
bd56b302 8695
94fcca9f
YZ
8696 if (wc->level == 1 &&
8697 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8698 continue;
1c4850e2
YZ
8699 if (!wc->update_ref ||
8700 generation <= root->root_key.offset)
8701 continue;
8702 btrfs_node_key_to_cpu(eb, &key, slot);
8703 ret = btrfs_comp_cpu_keys(&key,
8704 &wc->update_progress);
8705 if (ret < 0)
8706 continue;
94fcca9f
YZ
8707 } else {
8708 if (wc->level == 1 &&
8709 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8710 continue;
6407bf6d 8711 }
1c4850e2 8712reada:
2ff7e61e 8713 readahead_tree_block(fs_info, bytenr);
1c4850e2 8714 nread++;
20524f02 8715 }
1c4850e2 8716 wc->reada_slot = slot;
20524f02 8717}
2c47e605 8718
f82d02d9 8719/*
2c016dc2 8720 * helper to process tree block while walking down the tree.
2c47e605 8721 *
2c47e605
YZ
8722 * when wc->stage == UPDATE_BACKREF, this function updates
8723 * back refs for pointers in the block.
8724 *
8725 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8726 */
2c47e605 8727static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8728 struct btrfs_root *root,
2c47e605 8729 struct btrfs_path *path,
94fcca9f 8730 struct walk_control *wc, int lookup_info)
f82d02d9 8731{
2ff7e61e 8732 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8733 int level = wc->level;
8734 struct extent_buffer *eb = path->nodes[level];
2c47e605 8735 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8736 int ret;
8737
2c47e605
YZ
8738 if (wc->stage == UPDATE_BACKREF &&
8739 btrfs_header_owner(eb) != root->root_key.objectid)
8740 return 1;
f82d02d9 8741
2c47e605
YZ
8742 /*
8743 * when reference count of tree block is 1, it won't increase
8744 * again. once full backref flag is set, we never clear it.
8745 */
94fcca9f
YZ
8746 if (lookup_info &&
8747 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8748 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8749 BUG_ON(!path->locks[level]);
2ff7e61e 8750 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8751 eb->start, level, 1,
2c47e605
YZ
8752 &wc->refs[level],
8753 &wc->flags[level]);
79787eaa
JM
8754 BUG_ON(ret == -ENOMEM);
8755 if (ret)
8756 return ret;
2c47e605
YZ
8757 BUG_ON(wc->refs[level] == 0);
8758 }
5d4f98a2 8759
2c47e605
YZ
8760 if (wc->stage == DROP_REFERENCE) {
8761 if (wc->refs[level] > 1)
8762 return 1;
f82d02d9 8763
2c47e605 8764 if (path->locks[level] && !wc->keep_locks) {
bd681513 8765 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8766 path->locks[level] = 0;
8767 }
8768 return 0;
8769 }
f82d02d9 8770
2c47e605
YZ
8771 /* wc->stage == UPDATE_BACKREF */
8772 if (!(wc->flags[level] & flag)) {
8773 BUG_ON(!path->locks[level]);
e339a6b0 8774 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8775 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8776 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8777 BUG_ON(ret); /* -ENOMEM */
f5c8daa5 8778 ret = btrfs_set_disk_extent_flags(trans, eb->start,
b1c79e09
JB
8779 eb->len, flag,
8780 btrfs_header_level(eb), 0);
79787eaa 8781 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8782 wc->flags[level] |= flag;
8783 }
8784
8785 /*
8786 * the block is shared by multiple trees, so it's not good to
8787 * keep the tree lock
8788 */
8789 if (path->locks[level] && level > 0) {
bd681513 8790 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8791 path->locks[level] = 0;
8792 }
8793 return 0;
8794}
8795
78c52d9e
JB
8796/*
8797 * This is used to verify a ref exists for this root to deal with a bug where we
8798 * would have a drop_progress key that hadn't been updated properly.
8799 */
8800static int check_ref_exists(struct btrfs_trans_handle *trans,
8801 struct btrfs_root *root, u64 bytenr, u64 parent,
8802 int level)
8803{
8804 struct btrfs_path *path;
8805 struct btrfs_extent_inline_ref *iref;
8806 int ret;
8807
8808 path = btrfs_alloc_path();
8809 if (!path)
8810 return -ENOMEM;
8811
8812 ret = lookup_extent_backref(trans, path, &iref, bytenr,
8813 root->fs_info->nodesize, parent,
8814 root->root_key.objectid, level, 0);
8815 btrfs_free_path(path);
8816 if (ret == -ENOENT)
8817 return 0;
8818 if (ret < 0)
8819 return ret;
8820 return 1;
8821}
8822
1c4850e2 8823/*
2c016dc2 8824 * helper to process tree block pointer.
1c4850e2
YZ
8825 *
8826 * when wc->stage == DROP_REFERENCE, this function checks
8827 * reference count of the block pointed to. if the block
8828 * is shared and we need update back refs for the subtree
8829 * rooted at the block, this function changes wc->stage to
8830 * UPDATE_BACKREF. if the block is shared and there is no
8831 * need to update back, this function drops the reference
8832 * to the block.
8833 *
8834 * NOTE: return value 1 means we should stop walking down.
8835 */
8836static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8837 struct btrfs_root *root,
8838 struct btrfs_path *path,
94fcca9f 8839 struct walk_control *wc, int *lookup_info)
1c4850e2 8840{
0b246afa 8841 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8842 u64 bytenr;
8843 u64 generation;
8844 u64 parent;
1c4850e2 8845 struct btrfs_key key;
581c1760 8846 struct btrfs_key first_key;
ffd4bb2a 8847 struct btrfs_ref ref = { 0 };
1c4850e2
YZ
8848 struct extent_buffer *next;
8849 int level = wc->level;
8850 int reada = 0;
8851 int ret = 0;
1152651a 8852 bool need_account = false;
1c4850e2
YZ
8853
8854 generation = btrfs_node_ptr_generation(path->nodes[level],
8855 path->slots[level]);
8856 /*
8857 * if the lower level block was created before the snapshot
8858 * was created, we know there is no need to update back refs
8859 * for the subtree
8860 */
8861 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8862 generation <= root->root_key.offset) {
8863 *lookup_info = 1;
1c4850e2 8864 return 1;
94fcca9f 8865 }
1c4850e2
YZ
8866
8867 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8868 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8869 path->slots[level]);
1c4850e2 8870
0b246afa 8871 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8872 if (!next) {
2ff7e61e 8873 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8874 if (IS_ERR(next))
8875 return PTR_ERR(next);
8876
b2aaaa3b
JB
8877 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8878 level - 1);
1c4850e2
YZ
8879 reada = 1;
8880 }
8881 btrfs_tree_lock(next);
8bead258 8882 btrfs_set_lock_blocking_write(next);
1c4850e2 8883
2ff7e61e 8884 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8885 &wc->refs[level - 1],
8886 &wc->flags[level - 1]);
4867268c
JB
8887 if (ret < 0)
8888 goto out_unlock;
79787eaa 8889
c2cf52eb 8890 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8891 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8892 ret = -EIO;
8893 goto out_unlock;
c2cf52eb 8894 }
94fcca9f 8895 *lookup_info = 0;
1c4850e2 8896
94fcca9f 8897 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8898 if (wc->refs[level - 1] > 1) {
1152651a 8899 need_account = true;
94fcca9f
YZ
8900 if (level == 1 &&
8901 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8902 goto skip;
8903
1c4850e2
YZ
8904 if (!wc->update_ref ||
8905 generation <= root->root_key.offset)
8906 goto skip;
8907
8908 btrfs_node_key_to_cpu(path->nodes[level], &key,
8909 path->slots[level]);
8910 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8911 if (ret < 0)
8912 goto skip;
8913
8914 wc->stage = UPDATE_BACKREF;
8915 wc->shared_level = level - 1;
8916 }
94fcca9f
YZ
8917 } else {
8918 if (level == 1 &&
8919 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8920 goto skip;
1c4850e2
YZ
8921 }
8922
b9fab919 8923 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8924 btrfs_tree_unlock(next);
8925 free_extent_buffer(next);
8926 next = NULL;
94fcca9f 8927 *lookup_info = 1;
1c4850e2
YZ
8928 }
8929
8930 if (!next) {
8931 if (reada && level == 1)
8932 reada_walk_down(trans, root, wc, path);
581c1760
QW
8933 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8934 &first_key);
64c043de
LB
8935 if (IS_ERR(next)) {
8936 return PTR_ERR(next);
8937 } else if (!extent_buffer_uptodate(next)) {
416bc658 8938 free_extent_buffer(next);
97d9a8a4 8939 return -EIO;
416bc658 8940 }
1c4850e2 8941 btrfs_tree_lock(next);
8bead258 8942 btrfs_set_lock_blocking_write(next);
1c4850e2
YZ
8943 }
8944
8945 level--;
4867268c
JB
8946 ASSERT(level == btrfs_header_level(next));
8947 if (level != btrfs_header_level(next)) {
8948 btrfs_err(root->fs_info, "mismatched level");
8949 ret = -EIO;
8950 goto out_unlock;
8951 }
1c4850e2
YZ
8952 path->nodes[level] = next;
8953 path->slots[level] = 0;
bd681513 8954 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8955 wc->level = level;
8956 if (wc->level == 1)
8957 wc->reada_slot = 0;
8958 return 0;
8959skip:
8960 wc->refs[level - 1] = 0;
8961 wc->flags[level - 1] = 0;
94fcca9f
YZ
8962 if (wc->stage == DROP_REFERENCE) {
8963 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8964 parent = path->nodes[level]->start;
8965 } else {
4867268c 8966 ASSERT(root->root_key.objectid ==
94fcca9f 8967 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8968 if (root->root_key.objectid !=
8969 btrfs_header_owner(path->nodes[level])) {
8970 btrfs_err(root->fs_info,
8971 "mismatched block owner");
8972 ret = -EIO;
8973 goto out_unlock;
8974 }
94fcca9f
YZ
8975 parent = 0;
8976 }
1c4850e2 8977
78c52d9e
JB
8978 /*
8979 * If we had a drop_progress we need to verify the refs are set
8980 * as expected. If we find our ref then we know that from here
8981 * on out everything should be correct, and we can clear the
8982 * ->restarted flag.
8983 */
8984 if (wc->restarted) {
8985 ret = check_ref_exists(trans, root, bytenr, parent,
8986 level - 1);
8987 if (ret < 0)
8988 goto out_unlock;
8989 if (ret == 0)
8990 goto no_delete;
8991 ret = 0;
8992 wc->restarted = 0;
8993 }
8994
2cd86d30
QW
8995 /*
8996 * Reloc tree doesn't contribute to qgroup numbers, and we have
8997 * already accounted them at merge time (replace_path),
8998 * thus we could skip expensive subtree trace here.
8999 */
9000 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
9001 need_account) {
deb40627 9002 ret = btrfs_qgroup_trace_subtree(trans, next,
33d1f05c 9003 generation, level - 1);
1152651a 9004 if (ret) {
0b246afa 9005 btrfs_err_rl(fs_info,
5d163e0e
JM
9006 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
9007 ret);
1152651a
MF
9008 }
9009 }
aea6f028
JB
9010
9011 /*
9012 * We need to update the next key in our walk control so we can
9013 * update the drop_progress key accordingly. We don't care if
9014 * find_next_key doesn't find a key because that means we're at
9015 * the end and are going to clean up now.
9016 */
9017 wc->drop_level = level;
9018 find_next_key(path, level, &wc->drop_progress);
9019
ffd4bb2a
QW
9020 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
9021 fs_info->nodesize, parent);
9022 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
9023 ret = btrfs_free_extent(trans, &ref);
4867268c
JB
9024 if (ret)
9025 goto out_unlock;
1c4850e2 9026 }
78c52d9e 9027no_delete:
4867268c
JB
9028 *lookup_info = 1;
9029 ret = 1;
9030
9031out_unlock:
1c4850e2
YZ
9032 btrfs_tree_unlock(next);
9033 free_extent_buffer(next);
4867268c
JB
9034
9035 return ret;
1c4850e2
YZ
9036}
9037
2c47e605 9038/*
2c016dc2 9039 * helper to process tree block while walking up the tree.
2c47e605
YZ
9040 *
9041 * when wc->stage == DROP_REFERENCE, this function drops
9042 * reference count on the block.
9043 *
9044 * when wc->stage == UPDATE_BACKREF, this function changes
9045 * wc->stage back to DROP_REFERENCE if we changed wc->stage
9046 * to UPDATE_BACKREF previously while processing the block.
9047 *
9048 * NOTE: return value 1 means we should stop walking up.
9049 */
9050static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9051 struct btrfs_root *root,
9052 struct btrfs_path *path,
9053 struct walk_control *wc)
9054{
0b246afa 9055 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 9056 int ret;
2c47e605
YZ
9057 int level = wc->level;
9058 struct extent_buffer *eb = path->nodes[level];
9059 u64 parent = 0;
9060
9061 if (wc->stage == UPDATE_BACKREF) {
9062 BUG_ON(wc->shared_level < level);
9063 if (level < wc->shared_level)
9064 goto out;
9065
2c47e605
YZ
9066 ret = find_next_key(path, level + 1, &wc->update_progress);
9067 if (ret > 0)
9068 wc->update_ref = 0;
9069
9070 wc->stage = DROP_REFERENCE;
9071 wc->shared_level = -1;
9072 path->slots[level] = 0;
9073
9074 /*
9075 * check reference count again if the block isn't locked.
9076 * we should start walking down the tree again if reference
9077 * count is one.
9078 */
9079 if (!path->locks[level]) {
9080 BUG_ON(level == 0);
9081 btrfs_tree_lock(eb);
8bead258 9082 btrfs_set_lock_blocking_write(eb);
bd681513 9083 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9084
2ff7e61e 9085 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 9086 eb->start, level, 1,
2c47e605
YZ
9087 &wc->refs[level],
9088 &wc->flags[level]);
79787eaa
JM
9089 if (ret < 0) {
9090 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9091 path->locks[level] = 0;
79787eaa
JM
9092 return ret;
9093 }
2c47e605
YZ
9094 BUG_ON(wc->refs[level] == 0);
9095 if (wc->refs[level] == 1) {
bd681513 9096 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9097 path->locks[level] = 0;
2c47e605
YZ
9098 return 1;
9099 }
f82d02d9 9100 }
2c47e605 9101 }
f82d02d9 9102
2c47e605
YZ
9103 /* wc->stage == DROP_REFERENCE */
9104 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 9105
2c47e605
YZ
9106 if (wc->refs[level] == 1) {
9107 if (level == 0) {
9108 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 9109 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 9110 else
e339a6b0 9111 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 9112 BUG_ON(ret); /* -ENOMEM */
c4140cbf
QW
9113 if (is_fstree(root->root_key.objectid)) {
9114 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
9115 if (ret) {
9116 btrfs_err_rl(fs_info,
9117 "error %d accounting leaf items, quota is out of sync, rescan required",
5d163e0e 9118 ret);
c4140cbf 9119 }
1152651a 9120 }
2c47e605 9121 }
6a884d7d 9122 /* make block locked assertion in btrfs_clean_tree_block happy */
2c47e605
YZ
9123 if (!path->locks[level] &&
9124 btrfs_header_generation(eb) == trans->transid) {
9125 btrfs_tree_lock(eb);
8bead258 9126 btrfs_set_lock_blocking_write(eb);
bd681513 9127 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9128 }
6a884d7d 9129 btrfs_clean_tree_block(eb);
2c47e605
YZ
9130 }
9131
9132 if (eb == root->node) {
9133 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9134 parent = eb->start;
65c6e82b
QW
9135 else if (root->root_key.objectid != btrfs_header_owner(eb))
9136 goto owner_mismatch;
2c47e605
YZ
9137 } else {
9138 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9139 parent = path->nodes[level + 1]->start;
65c6e82b
QW
9140 else if (root->root_key.objectid !=
9141 btrfs_header_owner(path->nodes[level + 1]))
9142 goto owner_mismatch;
f82d02d9 9143 }
f82d02d9 9144
5581a51a 9145 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
9146out:
9147 wc->refs[level] = 0;
9148 wc->flags[level] = 0;
f0486c68 9149 return 0;
65c6e82b
QW
9150
9151owner_mismatch:
9152 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
9153 btrfs_header_owner(eb), root->root_key.objectid);
9154 return -EUCLEAN;
2c47e605
YZ
9155}
9156
9157static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9158 struct btrfs_root *root,
9159 struct btrfs_path *path,
9160 struct walk_control *wc)
9161{
2c47e605 9162 int level = wc->level;
94fcca9f 9163 int lookup_info = 1;
2c47e605
YZ
9164 int ret;
9165
9166 while (level >= 0) {
94fcca9f 9167 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
9168 if (ret > 0)
9169 break;
9170
9171 if (level == 0)
9172 break;
9173
7a7965f8
YZ
9174 if (path->slots[level] >=
9175 btrfs_header_nritems(path->nodes[level]))
9176 break;
9177
94fcca9f 9178 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9179 if (ret > 0) {
9180 path->slots[level]++;
9181 continue;
90d2c51d
MX
9182 } else if (ret < 0)
9183 return ret;
1c4850e2 9184 level = wc->level;
f82d02d9 9185 }
f82d02d9
YZ
9186 return 0;
9187}
9188
d397712b 9189static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9190 struct btrfs_root *root,
f82d02d9 9191 struct btrfs_path *path,
2c47e605 9192 struct walk_control *wc, int max_level)
20524f02 9193{
2c47e605 9194 int level = wc->level;
20524f02 9195 int ret;
9f3a7427 9196
2c47e605
YZ
9197 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9198 while (level < max_level && path->nodes[level]) {
9199 wc->level = level;
9200 if (path->slots[level] + 1 <
9201 btrfs_header_nritems(path->nodes[level])) {
9202 path->slots[level]++;
20524f02
CM
9203 return 0;
9204 } else {
2c47e605
YZ
9205 ret = walk_up_proc(trans, root, path, wc);
9206 if (ret > 0)
9207 return 0;
65c6e82b
QW
9208 if (ret < 0)
9209 return ret;
bd56b302 9210
2c47e605 9211 if (path->locks[level]) {
bd681513
CM
9212 btrfs_tree_unlock_rw(path->nodes[level],
9213 path->locks[level]);
2c47e605 9214 path->locks[level] = 0;
f82d02d9 9215 }
2c47e605
YZ
9216 free_extent_buffer(path->nodes[level]);
9217 path->nodes[level] = NULL;
9218 level++;
20524f02
CM
9219 }
9220 }
9221 return 1;
9222}
9223
9aca1d51 9224/*
2c47e605
YZ
9225 * drop a subvolume tree.
9226 *
9227 * this function traverses the tree freeing any blocks that only
9228 * referenced by the tree.
9229 *
9230 * when a shared tree block is found. this function decreases its
9231 * reference count by one. if update_ref is true, this function
9232 * also make sure backrefs for the shared block and all lower level
9233 * blocks are properly updated.
9d1a2a3a
DS
9234 *
9235 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9236 */
2c536799 9237int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9238 struct btrfs_block_rsv *block_rsv, int update_ref,
9239 int for_reloc)
20524f02 9240{
ab8d0fc4 9241 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9242 struct btrfs_path *path;
2c47e605 9243 struct btrfs_trans_handle *trans;
ab8d0fc4 9244 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9245 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9246 struct walk_control *wc;
9247 struct btrfs_key key;
9248 int err = 0;
9249 int ret;
9250 int level;
d29a9f62 9251 bool root_dropped = false;
20524f02 9252
4fd786e6 9253 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
1152651a 9254
5caf2a00 9255 path = btrfs_alloc_path();
cb1b69f4
TI
9256 if (!path) {
9257 err = -ENOMEM;
9258 goto out;
9259 }
20524f02 9260
2c47e605 9261 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9262 if (!wc) {
9263 btrfs_free_path(path);
cb1b69f4
TI
9264 err = -ENOMEM;
9265 goto out;
38a1a919 9266 }
2c47e605 9267
a22285a6 9268 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9269 if (IS_ERR(trans)) {
9270 err = PTR_ERR(trans);
9271 goto out_free;
9272 }
98d5dc13 9273
0568e82d
JB
9274 err = btrfs_run_delayed_items(trans);
9275 if (err)
9276 goto out_end_trans;
9277
3fd0a558
YZ
9278 if (block_rsv)
9279 trans->block_rsv = block_rsv;
2c47e605 9280
83354f07
JB
9281 /*
9282 * This will help us catch people modifying the fs tree while we're
9283 * dropping it. It is unsafe to mess with the fs tree while it's being
9284 * dropped as we unlock the root node and parent nodes as we walk down
9285 * the tree, assuming nothing will change. If something does change
9286 * then we'll have stale information and drop references to blocks we've
9287 * already dropped.
9288 */
9289 set_bit(BTRFS_ROOT_DELETING, &root->state);
9f3a7427 9290 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9291 level = btrfs_header_level(root->node);
5d4f98a2 9292 path->nodes[level] = btrfs_lock_root_node(root);
8bead258 9293 btrfs_set_lock_blocking_write(path->nodes[level]);
9f3a7427 9294 path->slots[level] = 0;
bd681513 9295 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9296 memset(&wc->update_progress, 0,
9297 sizeof(wc->update_progress));
9f3a7427 9298 } else {
9f3a7427 9299 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9300 memcpy(&wc->update_progress, &key,
9301 sizeof(wc->update_progress));
9302
6702ed49 9303 level = root_item->drop_level;
2c47e605 9304 BUG_ON(level == 0);
6702ed49 9305 path->lowest_level = level;
2c47e605
YZ
9306 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9307 path->lowest_level = 0;
9308 if (ret < 0) {
9309 err = ret;
79787eaa 9310 goto out_end_trans;
9f3a7427 9311 }
1c4850e2 9312 WARN_ON(ret > 0);
2c47e605 9313
7d9eb12c
CM
9314 /*
9315 * unlock our path, this is safe because only this
9316 * function is allowed to delete this snapshot
9317 */
5d4f98a2 9318 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9319
9320 level = btrfs_header_level(root->node);
9321 while (1) {
9322 btrfs_tree_lock(path->nodes[level]);
8bead258 9323 btrfs_set_lock_blocking_write(path->nodes[level]);
fec386ac 9324 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9325
2ff7e61e 9326 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9327 path->nodes[level]->start,
3173a18f 9328 level, 1, &wc->refs[level],
2c47e605 9329 &wc->flags[level]);
79787eaa
JM
9330 if (ret < 0) {
9331 err = ret;
9332 goto out_end_trans;
9333 }
2c47e605
YZ
9334 BUG_ON(wc->refs[level] == 0);
9335
9336 if (level == root_item->drop_level)
9337 break;
9338
9339 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9340 path->locks[level] = 0;
2c47e605
YZ
9341 WARN_ON(wc->refs[level] != 1);
9342 level--;
9343 }
9f3a7427 9344 }
2c47e605 9345
78c52d9e 9346 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
2c47e605
YZ
9347 wc->level = level;
9348 wc->shared_level = -1;
9349 wc->stage = DROP_REFERENCE;
9350 wc->update_ref = update_ref;
9351 wc->keep_locks = 0;
0b246afa 9352 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9353
d397712b 9354 while (1) {
9d1a2a3a 9355
2c47e605
YZ
9356 ret = walk_down_tree(trans, root, path, wc);
9357 if (ret < 0) {
9358 err = ret;
20524f02 9359 break;
2c47e605 9360 }
9aca1d51 9361
2c47e605
YZ
9362 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9363 if (ret < 0) {
9364 err = ret;
20524f02 9365 break;
2c47e605
YZ
9366 }
9367
9368 if (ret > 0) {
9369 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9370 break;
9371 }
2c47e605
YZ
9372
9373 if (wc->stage == DROP_REFERENCE) {
aea6f028
JB
9374 wc->drop_level = wc->level;
9375 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
9376 &wc->drop_progress,
9377 path->slots[wc->drop_level]);
9378 }
9379 btrfs_cpu_key_to_disk(&root_item->drop_progress,
9380 &wc->drop_progress);
9381 root_item->drop_level = wc->drop_level;
2c47e605
YZ
9382
9383 BUG_ON(wc->level == 0);
3a45bb20 9384 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9385 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9386 ret = btrfs_update_root(trans, tree_root,
9387 &root->root_key,
9388 root_item);
79787eaa 9389 if (ret) {
66642832 9390 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9391 err = ret;
9392 goto out_end_trans;
9393 }
2c47e605 9394
3a45bb20 9395 btrfs_end_transaction_throttle(trans);
2ff7e61e 9396 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9397 btrfs_debug(fs_info,
9398 "drop snapshot early exit");
3c8f2422
JB
9399 err = -EAGAIN;
9400 goto out_free;
9401 }
9402
a22285a6 9403 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9404 if (IS_ERR(trans)) {
9405 err = PTR_ERR(trans);
9406 goto out_free;
9407 }
3fd0a558
YZ
9408 if (block_rsv)
9409 trans->block_rsv = block_rsv;
c3e69d58 9410 }
20524f02 9411 }
b3b4aa74 9412 btrfs_release_path(path);
79787eaa
JM
9413 if (err)
9414 goto out_end_trans;
2c47e605 9415
ab9ce7d4 9416 ret = btrfs_del_root(trans, &root->root_key);
79787eaa 9417 if (ret) {
66642832 9418 btrfs_abort_transaction(trans, ret);
e19182c0 9419 err = ret;
79787eaa
JM
9420 goto out_end_trans;
9421 }
2c47e605 9422
76dda93c 9423 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9424 ret = btrfs_find_root(tree_root, &root->root_key, path,
9425 NULL, NULL);
79787eaa 9426 if (ret < 0) {
66642832 9427 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9428 err = ret;
9429 goto out_end_trans;
9430 } else if (ret > 0) {
84cd948c
JB
9431 /* if we fail to delete the orphan item this time
9432 * around, it'll get picked up the next time.
9433 *
9434 * The most common failure here is just -ENOENT.
9435 */
9436 btrfs_del_orphan_item(trans, tree_root,
9437 root->root_key.objectid);
76dda93c
YZ
9438 }
9439 }
9440
27cdeb70 9441 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9442 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9443 } else {
9444 free_extent_buffer(root->node);
9445 free_extent_buffer(root->commit_root);
b0feb9d9 9446 btrfs_put_fs_root(root);
76dda93c 9447 }
d29a9f62 9448 root_dropped = true;
79787eaa 9449out_end_trans:
3a45bb20 9450 btrfs_end_transaction_throttle(trans);
79787eaa 9451out_free:
2c47e605 9452 kfree(wc);
5caf2a00 9453 btrfs_free_path(path);
cb1b69f4 9454out:
d29a9f62
JB
9455 /*
9456 * So if we need to stop dropping the snapshot for whatever reason we
9457 * need to make sure to add it back to the dead root list so that we
9458 * keep trying to do the work later. This also cleans up roots if we
9459 * don't have it in the radix (like when we recover after a power fail
9460 * or unmount) so we don't leak memory.
9461 */
897ca819 9462 if (!for_reloc && !root_dropped)
d29a9f62 9463 btrfs_add_dead_root(root);
90515e7f 9464 if (err && err != -EAGAIN)
ab8d0fc4 9465 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9466 return err;
20524f02 9467}
9078a3e1 9468
2c47e605
YZ
9469/*
9470 * drop subtree rooted at tree block 'node'.
9471 *
9472 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9473 * only used by relocation code
2c47e605 9474 */
f82d02d9
YZ
9475int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9476 struct btrfs_root *root,
9477 struct extent_buffer *node,
9478 struct extent_buffer *parent)
9479{
0b246afa 9480 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9481 struct btrfs_path *path;
2c47e605 9482 struct walk_control *wc;
f82d02d9
YZ
9483 int level;
9484 int parent_level;
9485 int ret = 0;
9486 int wret;
9487
2c47e605
YZ
9488 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9489
f82d02d9 9490 path = btrfs_alloc_path();
db5b493a
TI
9491 if (!path)
9492 return -ENOMEM;
f82d02d9 9493
2c47e605 9494 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9495 if (!wc) {
9496 btrfs_free_path(path);
9497 return -ENOMEM;
9498 }
2c47e605 9499
b9447ef8 9500 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9501 parent_level = btrfs_header_level(parent);
9502 extent_buffer_get(parent);
9503 path->nodes[parent_level] = parent;
9504 path->slots[parent_level] = btrfs_header_nritems(parent);
9505
b9447ef8 9506 btrfs_assert_tree_locked(node);
f82d02d9 9507 level = btrfs_header_level(node);
f82d02d9
YZ
9508 path->nodes[level] = node;
9509 path->slots[level] = 0;
bd681513 9510 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9511
9512 wc->refs[parent_level] = 1;
9513 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9514 wc->level = level;
9515 wc->shared_level = -1;
9516 wc->stage = DROP_REFERENCE;
9517 wc->update_ref = 0;
9518 wc->keep_locks = 1;
0b246afa 9519 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9520
9521 while (1) {
2c47e605
YZ
9522 wret = walk_down_tree(trans, root, path, wc);
9523 if (wret < 0) {
f82d02d9 9524 ret = wret;
f82d02d9 9525 break;
2c47e605 9526 }
f82d02d9 9527
2c47e605 9528 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9529 if (wret < 0)
9530 ret = wret;
9531 if (wret != 0)
9532 break;
9533 }
9534
2c47e605 9535 kfree(wc);
f82d02d9
YZ
9536 btrfs_free_path(path);
9537 return ret;
9538}
9539
6202df69 9540static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9541{
9542 u64 num_devices;
fc67c450 9543 u64 stripped;
e4d8ec0f 9544
fc67c450
ID
9545 /*
9546 * if restripe for this chunk_type is on pick target profile and
9547 * return, otherwise do the usual balance
9548 */
6202df69 9549 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9550 if (stripped)
9551 return extended_to_chunk(stripped);
e4d8ec0f 9552
6202df69 9553 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9554
fc67c450 9555 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9556 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9557 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9558
ec44a35c
CM
9559 if (num_devices == 1) {
9560 stripped |= BTRFS_BLOCK_GROUP_DUP;
9561 stripped = flags & ~stripped;
9562
9563 /* turn raid0 into single device chunks */
9564 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9565 return stripped;
9566
9567 /* turn mirroring into duplication */
9568 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9569 BTRFS_BLOCK_GROUP_RAID10))
9570 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9571 } else {
9572 /* they already had raid on here, just return */
ec44a35c
CM
9573 if (flags & stripped)
9574 return flags;
9575
9576 stripped |= BTRFS_BLOCK_GROUP_DUP;
9577 stripped = flags & ~stripped;
9578
9579 /* switch duplicated blocks with raid1 */
9580 if (flags & BTRFS_BLOCK_GROUP_DUP)
9581 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9582
e3176ca2 9583 /* this is drive concat, leave it alone */
ec44a35c 9584 }
e3176ca2 9585
ec44a35c
CM
9586 return flags;
9587}
9588
868f401a 9589static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9590{
f0486c68
YZ
9591 struct btrfs_space_info *sinfo = cache->space_info;
9592 u64 num_bytes;
3ece54e5 9593 u64 sinfo_used;
199c36ea 9594 u64 min_allocable_bytes;
f0486c68 9595 int ret = -ENOSPC;
0ef3e66b 9596
199c36ea
MX
9597 /*
9598 * We need some metadata space and system metadata space for
9599 * allocating chunks in some corner cases until we force to set
9600 * it to be readonly.
9601 */
9602 if ((sinfo->flags &
9603 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9604 !force)
ee22184b 9605 min_allocable_bytes = SZ_1M;
199c36ea
MX
9606 else
9607 min_allocable_bytes = 0;
9608
f0486c68
YZ
9609 spin_lock(&sinfo->lock);
9610 spin_lock(&cache->lock);
61cfea9b
W
9611
9612 if (cache->ro) {
868f401a 9613 cache->ro++;
61cfea9b
W
9614 ret = 0;
9615 goto out;
9616 }
9617
f0486c68
YZ
9618 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9619 cache->bytes_super - btrfs_block_group_used(&cache->item);
3ece54e5 9620 sinfo_used = btrfs_space_info_used(sinfo, true);
f0486c68 9621
3ece54e5
QW
9622 if (sinfo_used + num_bytes + min_allocable_bytes <=
9623 sinfo->total_bytes) {
f0486c68 9624 sinfo->bytes_readonly += num_bytes;
868f401a 9625 cache->ro++;
633c0aad 9626 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9627 ret = 0;
9628 }
61cfea9b 9629out:
f0486c68
YZ
9630 spin_unlock(&cache->lock);
9631 spin_unlock(&sinfo->lock);
3ece54e5
QW
9632 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
9633 btrfs_info(cache->fs_info,
9634 "unable to make block group %llu ro",
9635 cache->key.objectid);
9636 btrfs_info(cache->fs_info,
9637 "sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
9638 sinfo_used, num_bytes, min_allocable_bytes);
9639 dump_space_info(cache->fs_info, cache->space_info, 0, 0);
9640 }
f0486c68
YZ
9641 return ret;
9642}
7d9eb12c 9643
c83488af 9644int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
c286ac48 9645
f0486c68 9646{
c83488af 9647 struct btrfs_fs_info *fs_info = cache->fs_info;
f0486c68
YZ
9648 struct btrfs_trans_handle *trans;
9649 u64 alloc_flags;
9650 int ret;
7d9eb12c 9651
1bbc621e 9652again:
5e00f193 9653 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9654 if (IS_ERR(trans))
9655 return PTR_ERR(trans);
5d4f98a2 9656
1bbc621e
CM
9657 /*
9658 * we're not allowed to set block groups readonly after the dirty
9659 * block groups cache has started writing. If it already started,
9660 * back off and let this transaction commit
9661 */
0b246afa 9662 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9663 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9664 u64 transid = trans->transid;
9665
0b246afa 9666 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9667 btrfs_end_transaction(trans);
1bbc621e 9668
2ff7e61e 9669 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9670 if (ret)
9671 return ret;
9672 goto again;
9673 }
9674
153c35b6
CM
9675 /*
9676 * if we are changing raid levels, try to allocate a corresponding
9677 * block group with the new raid level.
9678 */
0b246afa 9679 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9680 if (alloc_flags != cache->flags) {
01458828 9681 ret = do_chunk_alloc(trans, alloc_flags,
153c35b6
CM
9682 CHUNK_ALLOC_FORCE);
9683 /*
9684 * ENOSPC is allowed here, we may have enough space
9685 * already allocated at the new raid level to
9686 * carry on
9687 */
9688 if (ret == -ENOSPC)
9689 ret = 0;
9690 if (ret < 0)
9691 goto out;
9692 }
1bbc621e 9693
868f401a 9694 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9695 if (!ret)
9696 goto out;
2ff7e61e 9697 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
01458828 9698 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
f0486c68
YZ
9699 if (ret < 0)
9700 goto out;
868f401a 9701 ret = inc_block_group_ro(cache, 0);
f0486c68 9702out:
2f081088 9703 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9704 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9705 mutex_lock(&fs_info->chunk_mutex);
451a2c13 9706 check_system_chunk(trans, alloc_flags);
34441361 9707 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9708 }
0b246afa 9709 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9710
3a45bb20 9711 btrfs_end_transaction(trans);
f0486c68
YZ
9712 return ret;
9713}
5d4f98a2 9714
43a7e99d 9715int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
c87f08ca 9716{
43a7e99d 9717 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
2ff7e61e 9718
01458828 9719 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9720}
9721
6d07bcec
MX
9722/*
9723 * helper to account the unused space of all the readonly block group in the
633c0aad 9724 * space_info. takes mirrors into account.
6d07bcec 9725 */
633c0aad 9726u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9727{
9728 struct btrfs_block_group_cache *block_group;
9729 u64 free_bytes = 0;
9730 int factor;
9731
01327610 9732 /* It's df, we don't care if it's racy */
633c0aad
JB
9733 if (list_empty(&sinfo->ro_bgs))
9734 return 0;
9735
9736 spin_lock(&sinfo->lock);
9737 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9738 spin_lock(&block_group->lock);
9739
9740 if (!block_group->ro) {
9741 spin_unlock(&block_group->lock);
9742 continue;
9743 }
9744
46df06b8 9745 factor = btrfs_bg_type_to_factor(block_group->flags);
6d07bcec
MX
9746 free_bytes += (block_group->key.offset -
9747 btrfs_block_group_used(&block_group->item)) *
9748 factor;
9749
9750 spin_unlock(&block_group->lock);
9751 }
6d07bcec
MX
9752 spin_unlock(&sinfo->lock);
9753
9754 return free_bytes;
9755}
9756
2ff7e61e 9757void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9758{
f0486c68
YZ
9759 struct btrfs_space_info *sinfo = cache->space_info;
9760 u64 num_bytes;
9761
9762 BUG_ON(!cache->ro);
9763
9764 spin_lock(&sinfo->lock);
9765 spin_lock(&cache->lock);
868f401a
Z
9766 if (!--cache->ro) {
9767 num_bytes = cache->key.offset - cache->reserved -
9768 cache->pinned - cache->bytes_super -
9769 btrfs_block_group_used(&cache->item);
9770 sinfo->bytes_readonly -= num_bytes;
9771 list_del_init(&cache->ro_list);
9772 }
f0486c68
YZ
9773 spin_unlock(&cache->lock);
9774 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9775}
9776
ba1bf481 9777/*
52042d8e 9778 * Checks to see if it's even possible to relocate this block group.
ba1bf481
JB
9779 *
9780 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9781 * ok to go ahead and try.
9782 */
6bccf3ab 9783int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9784{
ba1bf481
JB
9785 struct btrfs_block_group_cache *block_group;
9786 struct btrfs_space_info *space_info;
0b246afa 9787 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9788 struct btrfs_device *device;
cdcb725c 9789 u64 min_free;
6719db6a
JB
9790 u64 dev_min = 1;
9791 u64 dev_nr = 0;
4a5e98f5 9792 u64 target;
0305bc27 9793 int debug;
cdcb725c 9794 int index;
ba1bf481
JB
9795 int full = 0;
9796 int ret = 0;
1a40e23b 9797
0b246afa 9798 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9799
0b246afa 9800 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9801
ba1bf481 9802 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9803 if (!block_group) {
9804 if (debug)
0b246afa 9805 btrfs_warn(fs_info,
0305bc27
QW
9806 "can't find block group for bytenr %llu",
9807 bytenr);
ba1bf481 9808 return -1;
0305bc27 9809 }
1a40e23b 9810
cdcb725c 9811 min_free = btrfs_block_group_used(&block_group->item);
9812
ba1bf481 9813 /* no bytes used, we're good */
cdcb725c 9814 if (!min_free)
1a40e23b
ZY
9815 goto out;
9816
ba1bf481
JB
9817 space_info = block_group->space_info;
9818 spin_lock(&space_info->lock);
17d217fe 9819
ba1bf481 9820 full = space_info->full;
17d217fe 9821
ba1bf481
JB
9822 /*
9823 * if this is the last block group we have in this space, we can't
7ce618db
CM
9824 * relocate it unless we're able to allocate a new chunk below.
9825 *
9826 * Otherwise, we need to make sure we have room in the space to handle
9827 * all of the extents from this block group. If we can, we're good
ba1bf481 9828 */
7ce618db 9829 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9830 (btrfs_space_info_used(space_info, false) + min_free <
9831 space_info->total_bytes)) {
ba1bf481
JB
9832 spin_unlock(&space_info->lock);
9833 goto out;
17d217fe 9834 }
ba1bf481 9835 spin_unlock(&space_info->lock);
ea8c2819 9836
ba1bf481
JB
9837 /*
9838 * ok we don't have enough space, but maybe we have free space on our
9839 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9840 * alloc devices and guess if we have enough space. if this block
9841 * group is going to be restriped, run checks against the target
9842 * profile instead of the current one.
ba1bf481
JB
9843 */
9844 ret = -1;
ea8c2819 9845
cdcb725c 9846 /*
9847 * index:
9848 * 0: raid10
9849 * 1: raid1
9850 * 2: dup
9851 * 3: raid0
9852 * 4: single
9853 */
0b246afa 9854 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9855 if (target) {
3e72ee88 9856 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9857 } else {
9858 /*
9859 * this is just a balance, so if we were marked as full
9860 * we know there is no space for a new chunk
9861 */
0305bc27
QW
9862 if (full) {
9863 if (debug)
0b246afa
JM
9864 btrfs_warn(fs_info,
9865 "no space to alloc new chunk for block group %llu",
9866 block_group->key.objectid);
4a5e98f5 9867 goto out;
0305bc27 9868 }
4a5e98f5 9869
3e72ee88 9870 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9871 }
9872
e6ec716f 9873 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9874 dev_min = 4;
6719db6a
JB
9875 /* Divide by 2 */
9876 min_free >>= 1;
e6ec716f 9877 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9878 dev_min = 2;
e6ec716f 9879 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9880 /* Multiply by 2 */
9881 min_free <<= 1;
e6ec716f 9882 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9883 dev_min = fs_devices->rw_devices;
47c5713f 9884 min_free = div64_u64(min_free, dev_min);
cdcb725c 9885 }
9886
0b246afa 9887 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9888 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9889 u64 dev_offset;
56bec294 9890
ba1bf481
JB
9891 /*
9892 * check to make sure we can actually find a chunk with enough
9893 * space to fit our block group in.
9894 */
63a212ab 9895 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9896 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
60dfdf25 9897 ret = find_free_dev_extent(device, min_free,
7bfc837d 9898 &dev_offset, NULL);
ba1bf481 9899 if (!ret)
cdcb725c 9900 dev_nr++;
9901
9902 if (dev_nr >= dev_min)
73e48b27 9903 break;
cdcb725c 9904
ba1bf481 9905 ret = -1;
725c8463 9906 }
edbd8d4e 9907 }
0305bc27 9908 if (debug && ret == -1)
0b246afa
JM
9909 btrfs_warn(fs_info,
9910 "no space to allocate a new chunk for block group %llu",
9911 block_group->key.objectid);
9912 mutex_unlock(&fs_info->chunk_mutex);
edbd8d4e 9913out:
ba1bf481 9914 btrfs_put_block_group(block_group);
edbd8d4e
CM
9915 return ret;
9916}
9917
6bccf3ab
JM
9918static int find_first_block_group(struct btrfs_fs_info *fs_info,
9919 struct btrfs_path *path,
9920 struct btrfs_key *key)
0b86a832 9921{
6bccf3ab 9922 struct btrfs_root *root = fs_info->extent_root;
925baedd 9923 int ret = 0;
0b86a832
CM
9924 struct btrfs_key found_key;
9925 struct extent_buffer *leaf;
514c7dca
QW
9926 struct btrfs_block_group_item bg;
9927 u64 flags;
0b86a832 9928 int slot;
edbd8d4e 9929
0b86a832
CM
9930 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9931 if (ret < 0)
925baedd
CM
9932 goto out;
9933
d397712b 9934 while (1) {
0b86a832 9935 slot = path->slots[0];
edbd8d4e 9936 leaf = path->nodes[0];
0b86a832
CM
9937 if (slot >= btrfs_header_nritems(leaf)) {
9938 ret = btrfs_next_leaf(root, path);
9939 if (ret == 0)
9940 continue;
9941 if (ret < 0)
925baedd 9942 goto out;
0b86a832 9943 break;
edbd8d4e 9944 }
0b86a832 9945 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9946
0b86a832 9947 if (found_key.objectid >= key->objectid &&
925baedd 9948 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9949 struct extent_map_tree *em_tree;
9950 struct extent_map *em;
9951
9952 em_tree = &root->fs_info->mapping_tree.map_tree;
9953 read_lock(&em_tree->lock);
9954 em = lookup_extent_mapping(em_tree, found_key.objectid,
9955 found_key.offset);
9956 read_unlock(&em_tree->lock);
9957 if (!em) {
0b246afa 9958 btrfs_err(fs_info,
6fb37b75
LB
9959 "logical %llu len %llu found bg but no related chunk",
9960 found_key.objectid, found_key.offset);
9961 ret = -ENOENT;
514c7dca
QW
9962 } else if (em->start != found_key.objectid ||
9963 em->len != found_key.offset) {
9964 btrfs_err(fs_info,
9965 "block group %llu len %llu mismatch with chunk %llu len %llu",
9966 found_key.objectid, found_key.offset,
9967 em->start, em->len);
9968 ret = -EUCLEAN;
6fb37b75 9969 } else {
514c7dca
QW
9970 read_extent_buffer(leaf, &bg,
9971 btrfs_item_ptr_offset(leaf, slot),
9972 sizeof(bg));
9973 flags = btrfs_block_group_flags(&bg) &
9974 BTRFS_BLOCK_GROUP_TYPE_MASK;
9975
9976 if (flags != (em->map_lookup->type &
9977 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9978 btrfs_err(fs_info,
9979"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9980 found_key.objectid,
9981 found_key.offset, flags,
9982 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9983 em->map_lookup->type));
9984 ret = -EUCLEAN;
9985 } else {
9986 ret = 0;
9987 }
6fb37b75 9988 }
187ee58c 9989 free_extent_map(em);
925baedd
CM
9990 goto out;
9991 }
0b86a832 9992 path->slots[0]++;
edbd8d4e 9993 }
925baedd 9994out:
0b86a832 9995 return ret;
edbd8d4e
CM
9996}
9997
0af3d00b
JB
9998void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9999{
10000 struct btrfs_block_group_cache *block_group;
10001 u64 last = 0;
10002
10003 while (1) {
10004 struct inode *inode;
10005
10006 block_group = btrfs_lookup_first_block_group(info, last);
10007 while (block_group) {
3aa7c7a3 10008 wait_block_group_cache_done(block_group);
0af3d00b
JB
10009 spin_lock(&block_group->lock);
10010 if (block_group->iref)
10011 break;
10012 spin_unlock(&block_group->lock);
f87b7eb8 10013 block_group = next_block_group(block_group);
0af3d00b
JB
10014 }
10015 if (!block_group) {
10016 if (last == 0)
10017 break;
10018 last = 0;
10019 continue;
10020 }
10021
10022 inode = block_group->inode;
10023 block_group->iref = 0;
10024 block_group->inode = NULL;
10025 spin_unlock(&block_group->lock);
f3bca802 10026 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
10027 iput(inode);
10028 last = block_group->key.objectid + block_group->key.offset;
10029 btrfs_put_block_group(block_group);
10030 }
10031}
10032
5cdd7db6
FM
10033/*
10034 * Must be called only after stopping all workers, since we could have block
10035 * group caching kthreads running, and therefore they could race with us if we
10036 * freed the block groups before stopping them.
10037 */
1a40e23b
ZY
10038int btrfs_free_block_groups(struct btrfs_fs_info *info)
10039{
10040 struct btrfs_block_group_cache *block_group;
4184ea7f 10041 struct btrfs_space_info *space_info;
11833d66 10042 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
10043 struct rb_node *n;
10044
9e351cc8 10045 down_write(&info->commit_root_sem);
11833d66
YZ
10046 while (!list_empty(&info->caching_block_groups)) {
10047 caching_ctl = list_entry(info->caching_block_groups.next,
10048 struct btrfs_caching_control, list);
10049 list_del(&caching_ctl->list);
10050 put_caching_control(caching_ctl);
10051 }
9e351cc8 10052 up_write(&info->commit_root_sem);
11833d66 10053
47ab2a6c
JB
10054 spin_lock(&info->unused_bgs_lock);
10055 while (!list_empty(&info->unused_bgs)) {
10056 block_group = list_first_entry(&info->unused_bgs,
10057 struct btrfs_block_group_cache,
10058 bg_list);
10059 list_del_init(&block_group->bg_list);
10060 btrfs_put_block_group(block_group);
10061 }
10062 spin_unlock(&info->unused_bgs_lock);
10063
1a40e23b
ZY
10064 spin_lock(&info->block_group_cache_lock);
10065 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
10066 block_group = rb_entry(n, struct btrfs_block_group_cache,
10067 cache_node);
1a40e23b
ZY
10068 rb_erase(&block_group->cache_node,
10069 &info->block_group_cache_tree);
01eacb27 10070 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
10071 spin_unlock(&info->block_group_cache_lock);
10072
80eb234a 10073 down_write(&block_group->space_info->groups_sem);
1a40e23b 10074 list_del(&block_group->list);
80eb234a 10075 up_write(&block_group->space_info->groups_sem);
d2fb3437 10076
3c14874a
JB
10077 /*
10078 * We haven't cached this block group, which means we could
10079 * possibly have excluded extents on this block group.
10080 */
36cce922
JB
10081 if (block_group->cached == BTRFS_CACHE_NO ||
10082 block_group->cached == BTRFS_CACHE_ERROR)
9e715da8 10083 free_excluded_extents(block_group);
3c14874a 10084
817d52f8 10085 btrfs_remove_free_space_cache(block_group);
5cdd7db6 10086 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
10087 ASSERT(list_empty(&block_group->dirty_list));
10088 ASSERT(list_empty(&block_group->io_list));
10089 ASSERT(list_empty(&block_group->bg_list));
10090 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 10091 btrfs_put_block_group(block_group);
d899e052
YZ
10092
10093 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
10094 }
10095 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
10096
10097 /* now that all the block groups are freed, go through and
10098 * free all the space_info structs. This is only called during
10099 * the final stages of unmount, and so we know nobody is
10100 * using them. We call synchronize_rcu() once before we start,
10101 * just to be on the safe side.
10102 */
10103 synchronize_rcu();
10104
8929ecfa
YZ
10105 release_global_block_rsv(info);
10106
67871254 10107 while (!list_empty(&info->space_info)) {
6ab0a202
JM
10108 int i;
10109
4184ea7f
CM
10110 space_info = list_entry(info->space_info.next,
10111 struct btrfs_space_info,
10112 list);
d555b6c3
JB
10113
10114 /*
10115 * Do not hide this behind enospc_debug, this is actually
10116 * important and indicates a real bug if this happens.
10117 */
10118 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 10119 space_info->bytes_reserved > 0 ||
d555b6c3 10120 space_info->bytes_may_use > 0))
ab8d0fc4 10121 dump_space_info(info, space_info, 0, 0);
4184ea7f 10122 list_del(&space_info->list);
6ab0a202
JM
10123 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10124 struct kobject *kobj;
c1895442
JM
10125 kobj = space_info->block_group_kobjs[i];
10126 space_info->block_group_kobjs[i] = NULL;
10127 if (kobj) {
6ab0a202
JM
10128 kobject_del(kobj);
10129 kobject_put(kobj);
10130 }
10131 }
10132 kobject_del(&space_info->kobj);
10133 kobject_put(&space_info->kobj);
4184ea7f 10134 }
1a40e23b
ZY
10135 return 0;
10136}
10137
75cb379d
JM
10138/* link_block_group will queue up kobjects to add when we're reclaim-safe */
10139void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
10140{
10141 struct btrfs_space_info *space_info;
10142 struct raid_kobject *rkobj;
10143 LIST_HEAD(list);
10144 int index;
10145 int ret = 0;
10146
10147 spin_lock(&fs_info->pending_raid_kobjs_lock);
10148 list_splice_init(&fs_info->pending_raid_kobjs, &list);
10149 spin_unlock(&fs_info->pending_raid_kobjs_lock);
10150
10151 list_for_each_entry(rkobj, &list, list) {
10152 space_info = __find_space_info(fs_info, rkobj->flags);
10153 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
10154
10155 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10156 "%s", get_raid_name(index));
10157 if (ret) {
10158 kobject_put(&rkobj->kobj);
10159 break;
10160 }
10161 }
10162 if (ret)
10163 btrfs_warn(fs_info,
10164 "failed to add kobject for block cache, ignoring");
10165}
10166
c434d21c 10167static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 10168{
c434d21c 10169 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 10170 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 10171 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 10172 bool first = false;
b742bb82
YZ
10173
10174 down_write(&space_info->groups_sem);
ed55b6ac
JM
10175 if (list_empty(&space_info->block_groups[index]))
10176 first = true;
10177 list_add_tail(&cache->list, &space_info->block_groups[index]);
10178 up_write(&space_info->groups_sem);
10179
10180 if (first) {
75cb379d
JM
10181 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10182 if (!rkobj) {
10183 btrfs_warn(cache->fs_info,
10184 "couldn't alloc memory for raid level kobject");
10185 return;
6ab0a202 10186 }
75cb379d
JM
10187 rkobj->flags = cache->flags;
10188 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10189
10190 spin_lock(&fs_info->pending_raid_kobjs_lock);
10191 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10192 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 10193 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 10194 }
b742bb82
YZ
10195}
10196
920e4a58 10197static struct btrfs_block_group_cache *
2ff7e61e
JM
10198btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10199 u64 start, u64 size)
920e4a58
MX
10200{
10201 struct btrfs_block_group_cache *cache;
10202
10203 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10204 if (!cache)
10205 return NULL;
10206
10207 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10208 GFP_NOFS);
10209 if (!cache->free_space_ctl) {
10210 kfree(cache);
10211 return NULL;
10212 }
10213
10214 cache->key.objectid = start;
10215 cache->key.offset = size;
10216 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10217
0b246afa 10218 cache->fs_info = fs_info;
e4ff5fb5 10219 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
10220 set_free_space_tree_thresholds(cache);
10221
920e4a58
MX
10222 atomic_set(&cache->count, 1);
10223 spin_lock_init(&cache->lock);
e570fd27 10224 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10225 INIT_LIST_HEAD(&cache->list);
10226 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10227 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10228 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10229 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10230 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10231 btrfs_init_free_space_ctl(cache);
04216820 10232 atomic_set(&cache->trimming, 0);
a5ed9182 10233 mutex_init(&cache->free_space_lock);
0966a7b1 10234 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
10235
10236 return cache;
10237}
10238
7ef49515
QW
10239
10240/*
10241 * Iterate all chunks and verify that each of them has the corresponding block
10242 * group
10243 */
10244static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10245{
10246 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
10247 struct extent_map *em;
10248 struct btrfs_block_group_cache *bg;
10249 u64 start = 0;
10250 int ret = 0;
10251
10252 while (1) {
10253 read_lock(&map_tree->map_tree.lock);
10254 /*
10255 * lookup_extent_mapping will return the first extent map
10256 * intersecting the range, so setting @len to 1 is enough to
10257 * get the first chunk.
10258 */
10259 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10260 read_unlock(&map_tree->map_tree.lock);
10261 if (!em)
10262 break;
10263
10264 bg = btrfs_lookup_block_group(fs_info, em->start);
10265 if (!bg) {
10266 btrfs_err(fs_info,
10267 "chunk start=%llu len=%llu doesn't have corresponding block group",
10268 em->start, em->len);
10269 ret = -EUCLEAN;
10270 free_extent_map(em);
10271 break;
10272 }
10273 if (bg->key.objectid != em->start ||
10274 bg->key.offset != em->len ||
10275 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10276 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10277 btrfs_err(fs_info,
10278"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10279 em->start, em->len,
10280 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10281 bg->key.objectid, bg->key.offset,
10282 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10283 ret = -EUCLEAN;
10284 free_extent_map(em);
10285 btrfs_put_block_group(bg);
10286 break;
10287 }
10288 start = em->start + em->len;
10289 free_extent_map(em);
10290 btrfs_put_block_group(bg);
10291 }
10292 return ret;
10293}
10294
5b4aacef 10295int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10296{
10297 struct btrfs_path *path;
10298 int ret;
9078a3e1 10299 struct btrfs_block_group_cache *cache;
6324fbf3 10300 struct btrfs_space_info *space_info;
9078a3e1
CM
10301 struct btrfs_key key;
10302 struct btrfs_key found_key;
5f39d397 10303 struct extent_buffer *leaf;
0af3d00b
JB
10304 int need_clear = 0;
10305 u64 cache_gen;
49303381
LB
10306 u64 feature;
10307 int mixed;
10308
10309 feature = btrfs_super_incompat_flags(info->super_copy);
10310 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10311
9078a3e1 10312 key.objectid = 0;
0b86a832 10313 key.offset = 0;
962a298f 10314 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10315 path = btrfs_alloc_path();
10316 if (!path)
10317 return -ENOMEM;
e4058b54 10318 path->reada = READA_FORWARD;
9078a3e1 10319
0b246afa
JM
10320 cache_gen = btrfs_super_cache_generation(info->super_copy);
10321 if (btrfs_test_opt(info, SPACE_CACHE) &&
10322 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10323 need_clear = 1;
0b246afa 10324 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10325 need_clear = 1;
0af3d00b 10326
d397712b 10327 while (1) {
6bccf3ab 10328 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10329 if (ret > 0)
10330 break;
0b86a832
CM
10331 if (ret != 0)
10332 goto error;
920e4a58 10333
5f39d397
CM
10334 leaf = path->nodes[0];
10335 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10336
2ff7e61e 10337 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10338 found_key.offset);
9078a3e1 10339 if (!cache) {
0b86a832 10340 ret = -ENOMEM;
f0486c68 10341 goto error;
9078a3e1 10342 }
96303081 10343
cf7c1ef6
LB
10344 if (need_clear) {
10345 /*
10346 * When we mount with old space cache, we need to
10347 * set BTRFS_DC_CLEAR and set dirty flag.
10348 *
10349 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10350 * truncate the old free space cache inode and
10351 * setup a new one.
10352 * b) Setting 'dirty flag' makes sure that we flush
10353 * the new space cache info onto disk.
10354 */
0b246afa 10355 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10356 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10357 }
0af3d00b 10358
5f39d397
CM
10359 read_extent_buffer(leaf, &cache->item,
10360 btrfs_item_ptr_offset(leaf, path->slots[0]),
10361 sizeof(cache->item));
920e4a58 10362 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10363 if (!mixed &&
10364 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10365 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10366 btrfs_err(info,
10367"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10368 cache->key.objectid);
10369 ret = -EINVAL;
10370 goto error;
10371 }
0b86a832 10372
9078a3e1 10373 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10374 btrfs_release_path(path);
34d52cb6 10375
3c14874a
JB
10376 /*
10377 * We need to exclude the super stripes now so that the space
10378 * info has super bytes accounted for, otherwise we'll think
10379 * we have more space than we actually do.
10380 */
3c4da657 10381 ret = exclude_super_stripes(cache);
835d974f
JB
10382 if (ret) {
10383 /*
10384 * We may have excluded something, so call this just in
10385 * case.
10386 */
9e715da8 10387 free_excluded_extents(cache);
920e4a58 10388 btrfs_put_block_group(cache);
835d974f
JB
10389 goto error;
10390 }
3c14874a 10391
817d52f8
JB
10392 /*
10393 * check for two cases, either we are full, and therefore
10394 * don't need to bother with the caching work since we won't
10395 * find any space, or we are empty, and we can just add all
52042d8e 10396 * the space in and be done with it. This saves us _a_lot_ of
817d52f8
JB
10397 * time, particularly in the full case.
10398 */
10399 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10400 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10401 cache->cached = BTRFS_CACHE_FINISHED;
9e715da8 10402 free_excluded_extents(cache);
817d52f8 10403 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10404 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10405 cache->cached = BTRFS_CACHE_FINISHED;
4457c1c7 10406 add_new_free_space(cache, found_key.objectid,
817d52f8
JB
10407 found_key.objectid +
10408 found_key.offset);
9e715da8 10409 free_excluded_extents(cache);
817d52f8 10410 }
96b5179d 10411
0b246afa 10412 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10413 if (ret) {
10414 btrfs_remove_free_space_cache(cache);
10415 btrfs_put_block_group(cache);
10416 goto error;
10417 }
10418
0b246afa 10419 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10420 update_space_info(info, cache->flags, found_key.offset,
10421 btrfs_block_group_used(&cache->item),
10422 cache->bytes_super, &space_info);
8c579fe7 10423
6324fbf3 10424 cache->space_info = space_info;
1b2da372 10425
c434d21c 10426 link_block_group(cache);
0f9dd46c 10427
0b246afa 10428 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10429 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10430 inc_block_group_ro(cache, 1);
47ab2a6c 10431 } else if (btrfs_block_group_used(&cache->item) == 0) {
031f24da
QW
10432 ASSERT(list_empty(&cache->bg_list));
10433 btrfs_mark_bg_unused(cache);
47ab2a6c 10434 }
9078a3e1 10435 }
b742bb82 10436
0b246afa 10437 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10438 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10439 (BTRFS_BLOCK_GROUP_RAID10 |
10440 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10441 BTRFS_BLOCK_GROUP_RAID5 |
10442 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10443 BTRFS_BLOCK_GROUP_DUP)))
10444 continue;
10445 /*
10446 * avoid allocating from un-mirrored block group if there are
10447 * mirrored block groups.
10448 */
1095cc0d 10449 list_for_each_entry(cache,
10450 &space_info->block_groups[BTRFS_RAID_RAID0],
10451 list)
868f401a 10452 inc_block_group_ro(cache, 1);
1095cc0d 10453 list_for_each_entry(cache,
10454 &space_info->block_groups[BTRFS_RAID_SINGLE],
10455 list)
868f401a 10456 inc_block_group_ro(cache, 1);
9078a3e1 10457 }
f0486c68 10458
75cb379d 10459 btrfs_add_raid_kobjects(info);
f0486c68 10460 init_global_block_rsv(info);
7ef49515 10461 ret = check_chunk_block_group_mappings(info);
0b86a832 10462error:
9078a3e1 10463 btrfs_free_path(path);
0b86a832 10464 return ret;
9078a3e1 10465}
6324fbf3 10466
6c686b35 10467void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10468{
6c686b35 10469 struct btrfs_fs_info *fs_info = trans->fs_info;
545e3366 10470 struct btrfs_block_group_cache *block_group;
0b246afa 10471 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10472 struct btrfs_block_group_item item;
10473 struct btrfs_key key;
10474 int ret = 0;
10475
5ce55557
FM
10476 if (!trans->can_flush_pending_bgs)
10477 return;
10478
545e3366
JB
10479 while (!list_empty(&trans->new_bgs)) {
10480 block_group = list_first_entry(&trans->new_bgs,
10481 struct btrfs_block_group_cache,
10482 bg_list);
ea658bad 10483 if (ret)
c92f6be3 10484 goto next;
ea658bad
JB
10485
10486 spin_lock(&block_group->lock);
10487 memcpy(&item, &block_group->item, sizeof(item));
10488 memcpy(&key, &block_group->key, sizeof(key));
10489 spin_unlock(&block_group->lock);
10490
10491 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10492 sizeof(item));
10493 if (ret)
66642832 10494 btrfs_abort_transaction(trans, ret);
97aff912 10495 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
6df9a95e 10496 if (ret)
66642832 10497 btrfs_abort_transaction(trans, ret);
e4e0711c 10498 add_block_group_free_space(trans, block_group);
1e144fb8 10499 /* already aborted the transaction if it failed. */
c92f6be3 10500next:
ba2c4d4e 10501 btrfs_delayed_refs_rsv_release(fs_info, 1);
c92f6be3 10502 list_del_init(&block_group->bg_list);
ea658bad 10503 }
5ce55557 10504 btrfs_trans_release_chunk_metadata(trans);
ea658bad
JB
10505}
10506
e7e02096 10507int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
0174484d 10508 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10509{
e7e02096 10510 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 10511 struct btrfs_block_group_cache *cache;
0b246afa 10512 int ret;
6324fbf3 10513
90787766 10514 btrfs_set_log_full_commit(trans);
e02119d5 10515
2ff7e61e 10516 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10517 if (!cache)
10518 return -ENOMEM;
34d52cb6 10519
6324fbf3 10520 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10521 btrfs_set_block_group_chunk_objectid(&cache->item,
10522 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10523 btrfs_set_block_group_flags(&cache->item, type);
10524
920e4a58 10525 cache->flags = type;
11833d66 10526 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10527 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10528 cache->needs_free_space = 1;
3c4da657 10529 ret = exclude_super_stripes(cache);
835d974f
JB
10530 if (ret) {
10531 /*
10532 * We may have excluded something, so call this just in
10533 * case.
10534 */
9e715da8 10535 free_excluded_extents(cache);
920e4a58 10536 btrfs_put_block_group(cache);
835d974f
JB
10537 return ret;
10538 }
96303081 10539
4457c1c7 10540 add_new_free_space(cache, chunk_offset, chunk_offset + size);
817d52f8 10541
9e715da8 10542 free_excluded_extents(cache);
11833d66 10543
d0bd4560 10544#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10545 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10546 u64 new_bytes_used = size - bytes_used;
10547
10548 bytes_used += new_bytes_used >> 1;
2ff7e61e 10549 fragment_free_space(cache);
d0bd4560
JB
10550 }
10551#endif
2e6e5183 10552 /*
2be12ef7
NB
10553 * Ensure the corresponding space_info object is created and
10554 * assigned to our block group. We want our bg to be added to the rbtree
10555 * with its ->space_info set.
2e6e5183 10556 */
2be12ef7 10557 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10558 ASSERT(cache->space_info);
2e6e5183 10559
0b246afa 10560 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10561 if (ret) {
10562 btrfs_remove_free_space_cache(cache);
10563 btrfs_put_block_group(cache);
10564 return ret;
10565 }
10566
2e6e5183
FM
10567 /*
10568 * Now that our block group has its ->space_info set and is inserted in
10569 * the rbtree, update the space info's counters.
10570 */
0b246afa 10571 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10572 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10573 cache->bytes_super, &cache->space_info);
0b246afa 10574 update_global_block_rsv(fs_info);
1b2da372 10575
c434d21c 10576 link_block_group(cache);
6324fbf3 10577
47ab2a6c 10578 list_add_tail(&cache->bg_list, &trans->new_bgs);
ba2c4d4e
JB
10579 trans->delayed_ref_updates++;
10580 btrfs_update_delayed_refs_rsv(trans);
6324fbf3 10581
0b246afa 10582 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10583 return 0;
10584}
1a40e23b 10585
10ea00f5
ID
10586static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10587{
899c81ea
ID
10588 u64 extra_flags = chunk_to_extended(flags) &
10589 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10590
de98ced9 10591 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10592 if (flags & BTRFS_BLOCK_GROUP_DATA)
10593 fs_info->avail_data_alloc_bits &= ~extra_flags;
10594 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10595 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10596 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10597 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10598 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10599}
10600
1a40e23b 10601int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
5a98ec01 10602 u64 group_start, struct extent_map *em)
1a40e23b 10603{
5a98ec01 10604 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 10605 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10606 struct btrfs_path *path;
10607 struct btrfs_block_group_cache *block_group;
44fb5511 10608 struct btrfs_free_cluster *cluster;
0b246afa 10609 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10610 struct btrfs_key key;
0af3d00b 10611 struct inode *inode;
c1895442 10612 struct kobject *kobj = NULL;
1a40e23b 10613 int ret;
10ea00f5 10614 int index;
89a55897 10615 int factor;
4f69cb98 10616 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10617 bool remove_em;
ba2c4d4e 10618 bool remove_rsv = false;
1a40e23b 10619
6bccf3ab 10620 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10621 BUG_ON(!block_group);
c146afad 10622 BUG_ON(!block_group->ro);
1a40e23b 10623
4ed0a7a3 10624 trace_btrfs_remove_block_group(block_group);
9f7c43c9 10625 /*
10626 * Free the reserved super bytes from this block group before
10627 * remove it.
10628 */
9e715da8 10629 free_excluded_extents(block_group);
fd708b81
JB
10630 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10631 block_group->key.offset);
9f7c43c9 10632
1a40e23b 10633 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10634 index = btrfs_bg_flags_to_raid_index(block_group->flags);
46df06b8 10635 factor = btrfs_bg_type_to_factor(block_group->flags);
1a40e23b 10636
44fb5511 10637 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10638 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10639 spin_lock(&cluster->refill_lock);
10640 btrfs_return_cluster_to_free_space(block_group, cluster);
10641 spin_unlock(&cluster->refill_lock);
10642
10643 /*
10644 * make sure this block group isn't part of a metadata
10645 * allocation cluster
10646 */
0b246afa 10647 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10648 spin_lock(&cluster->refill_lock);
10649 btrfs_return_cluster_to_free_space(block_group, cluster);
10650 spin_unlock(&cluster->refill_lock);
10651
1a40e23b 10652 path = btrfs_alloc_path();
d8926bb3
MF
10653 if (!path) {
10654 ret = -ENOMEM;
10655 goto out;
10656 }
1a40e23b 10657
1bbc621e
CM
10658 /*
10659 * get the inode first so any iput calls done for the io_list
10660 * aren't the final iput (no unlinks allowed now)
10661 */
7949f339 10662 inode = lookup_free_space_inode(block_group, path);
1bbc621e
CM
10663
10664 mutex_lock(&trans->transaction->cache_write_mutex);
10665 /*
52042d8e 10666 * Make sure our free space cache IO is done before removing the
1bbc621e
CM
10667 * free space inode
10668 */
10669 spin_lock(&trans->transaction->dirty_bgs_lock);
10670 if (!list_empty(&block_group->io_list)) {
10671 list_del_init(&block_group->io_list);
10672
10673 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10674
10675 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10676 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10677 btrfs_put_block_group(block_group);
10678 spin_lock(&trans->transaction->dirty_bgs_lock);
10679 }
10680
10681 if (!list_empty(&block_group->dirty_list)) {
10682 list_del_init(&block_group->dirty_list);
ba2c4d4e 10683 remove_rsv = true;
1bbc621e
CM
10684 btrfs_put_block_group(block_group);
10685 }
10686 spin_unlock(&trans->transaction->dirty_bgs_lock);
10687 mutex_unlock(&trans->transaction->cache_write_mutex);
10688
0af3d00b 10689 if (!IS_ERR(inode)) {
73f2e545 10690 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10691 if (ret) {
10692 btrfs_add_delayed_iput(inode);
10693 goto out;
10694 }
0af3d00b
JB
10695 clear_nlink(inode);
10696 /* One for the block groups ref */
10697 spin_lock(&block_group->lock);
10698 if (block_group->iref) {
10699 block_group->iref = 0;
10700 block_group->inode = NULL;
10701 spin_unlock(&block_group->lock);
10702 iput(inode);
10703 } else {
10704 spin_unlock(&block_group->lock);
10705 }
10706 /* One for our lookup ref */
455757c3 10707 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10708 }
10709
10710 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10711 key.offset = block_group->key.objectid;
10712 key.type = 0;
10713
10714 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10715 if (ret < 0)
10716 goto out;
10717 if (ret > 0)
b3b4aa74 10718 btrfs_release_path(path);
0af3d00b
JB
10719 if (ret == 0) {
10720 ret = btrfs_del_item(trans, tree_root, path);
10721 if (ret)
10722 goto out;
b3b4aa74 10723 btrfs_release_path(path);
0af3d00b
JB
10724 }
10725
0b246afa 10726 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10727 rb_erase(&block_group->cache_node,
0b246afa 10728 &fs_info->block_group_cache_tree);
292cbd51 10729 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10730
0b246afa
JM
10731 if (fs_info->first_logical_byte == block_group->key.objectid)
10732 fs_info->first_logical_byte = (u64)-1;
10733 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10734
80eb234a 10735 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10736 /*
10737 * we must use list_del_init so people can check to see if they
10738 * are still on the list after taking the semaphore
10739 */
10740 list_del_init(&block_group->list);
6ab0a202 10741 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10742 kobj = block_group->space_info->block_group_kobjs[index];
10743 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10744 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10745 }
80eb234a 10746 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10747 if (kobj) {
10748 kobject_del(kobj);
10749 kobject_put(kobj);
10750 }
1a40e23b 10751
4f69cb98
FM
10752 if (block_group->has_caching_ctl)
10753 caching_ctl = get_caching_control(block_group);
817d52f8 10754 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10755 wait_block_group_cache_done(block_group);
4f69cb98 10756 if (block_group->has_caching_ctl) {
0b246afa 10757 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10758 if (!caching_ctl) {
10759 struct btrfs_caching_control *ctl;
10760
10761 list_for_each_entry(ctl,
0b246afa 10762 &fs_info->caching_block_groups, list)
4f69cb98
FM
10763 if (ctl->block_group == block_group) {
10764 caching_ctl = ctl;
1e4f4714 10765 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10766 break;
10767 }
10768 }
10769 if (caching_ctl)
10770 list_del_init(&caching_ctl->list);
0b246afa 10771 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10772 if (caching_ctl) {
10773 /* Once for the caching bgs list and once for us. */
10774 put_caching_control(caching_ctl);
10775 put_caching_control(caching_ctl);
10776 }
10777 }
817d52f8 10778
ce93ec54 10779 spin_lock(&trans->transaction->dirty_bgs_lock);
9a0ec83d
NB
10780 WARN_ON(!list_empty(&block_group->dirty_list));
10781 WARN_ON(!list_empty(&block_group->io_list));
ce93ec54 10782 spin_unlock(&trans->transaction->dirty_bgs_lock);
9a0ec83d 10783
817d52f8
JB
10784 btrfs_remove_free_space_cache(block_group);
10785
c146afad 10786 spin_lock(&block_group->space_info->lock);
75c68e9f 10787 list_del_init(&block_group->ro_list);
18d018ad 10788
0b246afa 10789 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10790 WARN_ON(block_group->space_info->total_bytes
10791 < block_group->key.offset);
10792 WARN_ON(block_group->space_info->bytes_readonly
10793 < block_group->key.offset);
10794 WARN_ON(block_group->space_info->disk_total
10795 < block_group->key.offset * factor);
10796 }
c146afad
YZ
10797 block_group->space_info->total_bytes -= block_group->key.offset;
10798 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10799 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10800
c146afad 10801 spin_unlock(&block_group->space_info->lock);
283bb197 10802
0af3d00b
JB
10803 memcpy(&key, &block_group->key, sizeof(key));
10804
34441361 10805 mutex_lock(&fs_info->chunk_mutex);
04216820
FM
10806 spin_lock(&block_group->lock);
10807 block_group->removed = 1;
10808 /*
10809 * At this point trimming can't start on this block group, because we
10810 * removed the block group from the tree fs_info->block_group_cache_tree
10811 * so no one can't find it anymore and even if someone already got this
10812 * block group before we removed it from the rbtree, they have already
10813 * incremented block_group->trimming - if they didn't, they won't find
10814 * any free space entries because we already removed them all when we
10815 * called btrfs_remove_free_space_cache().
10816 *
10817 * And we must not remove the extent map from the fs_info->mapping_tree
10818 * to prevent the same logical address range and physical device space
10819 * ranges from being reused for a new block group. This is because our
10820 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10821 * completely transactionless, so while it is trimming a range the
10822 * currently running transaction might finish and a new one start,
10823 * allowing for new block groups to be created that can reuse the same
10824 * physical device locations unless we take this special care.
e33e17ee
JM
10825 *
10826 * There may also be an implicit trim operation if the file system
10827 * is mounted with -odiscard. The same protections must remain
10828 * in place until the extents have been discarded completely when
10829 * the transaction commit has completed.
04216820
FM
10830 */
10831 remove_em = (atomic_read(&block_group->trimming) == 0);
04216820 10832 spin_unlock(&block_group->lock);
04216820 10833
34441361 10834 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10835
f3f72779 10836 ret = remove_block_group_free_space(trans, block_group);
1e144fb8
OS
10837 if (ret)
10838 goto out;
10839
fa9c0d79
CM
10840 btrfs_put_block_group(block_group);
10841 btrfs_put_block_group(block_group);
1a40e23b
ZY
10842
10843 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10844 if (ret > 0)
10845 ret = -EIO;
10846 if (ret < 0)
10847 goto out;
10848
10849 ret = btrfs_del_item(trans, root, path);
8eaf40c0
FM
10850 if (ret)
10851 goto out;
10852
10853 if (remove_em) {
10854 struct extent_map_tree *em_tree;
10855
10856 em_tree = &fs_info->mapping_tree.map_tree;
10857 write_lock(&em_tree->lock);
10858 remove_extent_mapping(em_tree, em);
10859 write_unlock(&em_tree->lock);
10860 /* once for the tree */
10861 free_extent_map(em);
10862 }
1a40e23b 10863out:
ba2c4d4e
JB
10864 if (remove_rsv)
10865 btrfs_delayed_refs_rsv_release(fs_info, 1);
1a40e23b
ZY
10866 btrfs_free_path(path);
10867 return ret;
10868}
acce952b 10869
8eab77ff 10870struct btrfs_trans_handle *
7fd01182
FM
10871btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10872 const u64 chunk_offset)
8eab77ff 10873{
7fd01182
FM
10874 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10875 struct extent_map *em;
10876 struct map_lookup *map;
10877 unsigned int num_items;
10878
10879 read_lock(&em_tree->lock);
10880 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10881 read_unlock(&em_tree->lock);
10882 ASSERT(em && em->start == chunk_offset);
10883
8eab77ff 10884 /*
7fd01182
FM
10885 * We need to reserve 3 + N units from the metadata space info in order
10886 * to remove a block group (done at btrfs_remove_chunk() and at
10887 * btrfs_remove_block_group()), which are used for:
10888 *
8eab77ff
FM
10889 * 1 unit for adding the free space inode's orphan (located in the tree
10890 * of tree roots).
7fd01182
FM
10891 * 1 unit for deleting the block group item (located in the extent
10892 * tree).
10893 * 1 unit for deleting the free space item (located in tree of tree
10894 * roots).
10895 * N units for deleting N device extent items corresponding to each
10896 * stripe (located in the device tree).
10897 *
10898 * In order to remove a block group we also need to reserve units in the
10899 * system space info in order to update the chunk tree (update one or
10900 * more device items and remove one chunk item), but this is done at
10901 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10902 */
95617d69 10903 map = em->map_lookup;
7fd01182
FM
10904 num_items = 3 + map->num_stripes;
10905 free_extent_map(em);
10906
8eab77ff 10907 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10908 num_items, 1);
8eab77ff
FM
10909}
10910
47ab2a6c
JB
10911/*
10912 * Process the unused_bgs list and remove any that don't have any allocated
10913 * space inside of them.
10914 */
10915void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10916{
10917 struct btrfs_block_group_cache *block_group;
10918 struct btrfs_space_info *space_info;
47ab2a6c
JB
10919 struct btrfs_trans_handle *trans;
10920 int ret = 0;
10921
afcdd129 10922 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10923 return;
10924
10925 spin_lock(&fs_info->unused_bgs_lock);
10926 while (!list_empty(&fs_info->unused_bgs)) {
10927 u64 start, end;
e33e17ee 10928 int trimming;
47ab2a6c
JB
10929
10930 block_group = list_first_entry(&fs_info->unused_bgs,
10931 struct btrfs_block_group_cache,
10932 bg_list);
47ab2a6c 10933 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10934
10935 space_info = block_group->space_info;
10936
47ab2a6c
JB
10937 if (ret || btrfs_mixed_space_info(space_info)) {
10938 btrfs_put_block_group(block_group);
10939 continue;
10940 }
10941 spin_unlock(&fs_info->unused_bgs_lock);
10942
d5f2e33b 10943 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10944
47ab2a6c
JB
10945 /* Don't want to race with allocators so take the groups_sem */
10946 down_write(&space_info->groups_sem);
10947 spin_lock(&block_group->lock);
43794446 10948 if (block_group->reserved || block_group->pinned ||
47ab2a6c 10949 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10950 block_group->ro ||
aefbe9a6 10951 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10952 /*
10953 * We want to bail if we made new allocations or have
10954 * outstanding allocations in this block group. We do
10955 * the ro check in case balance is currently acting on
10956 * this block group.
10957 */
4ed0a7a3 10958 trace_btrfs_skip_unused_block_group(block_group);
47ab2a6c
JB
10959 spin_unlock(&block_group->lock);
10960 up_write(&space_info->groups_sem);
10961 goto next;
10962 }
10963 spin_unlock(&block_group->lock);
10964
10965 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10966 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10967 up_write(&space_info->groups_sem);
10968 if (ret < 0) {
10969 ret = 0;
10970 goto next;
10971 }
10972
10973 /*
10974 * Want to do this before we do anything else so we can recover
10975 * properly if we fail to join the transaction.
10976 */
7fd01182
FM
10977 trans = btrfs_start_trans_remove_block_group(fs_info,
10978 block_group->key.objectid);
47ab2a6c 10979 if (IS_ERR(trans)) {
2ff7e61e 10980 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10981 ret = PTR_ERR(trans);
10982 goto next;
10983 }
10984
10985 /*
10986 * We could have pending pinned extents for this block group,
10987 * just delete them, we don't care about them anymore.
10988 */
10989 start = block_group->key.objectid;
10990 end = start + block_group->key.offset - 1;
d4b450cd
FM
10991 /*
10992 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10993 * btrfs_finish_extent_commit(). If we are at transaction N,
10994 * another task might be running finish_extent_commit() for the
10995 * previous transaction N - 1, and have seen a range belonging
10996 * to the block group in freed_extents[] before we were able to
10997 * clear the whole block group range from freed_extents[]. This
10998 * means that task can lookup for the block group after we
10999 * unpinned it from freed_extents[] and removed it, leading to
11000 * a BUG_ON() at btrfs_unpin_extent_range().
11001 */
11002 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 11003 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 11004 EXTENT_DIRTY);
758eb51e 11005 if (ret) {
d4b450cd 11006 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 11007 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
11008 goto end_trans;
11009 }
11010 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 11011 EXTENT_DIRTY);
758eb51e 11012 if (ret) {
d4b450cd 11013 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 11014 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
11015 goto end_trans;
11016 }
d4b450cd 11017 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
11018
11019 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
11020 spin_lock(&space_info->lock);
11021 spin_lock(&block_group->lock);
11022
e2907c1a 11023 update_bytes_pinned(space_info, -block_group->pinned);
c30666d4 11024 space_info->bytes_readonly += block_group->pinned;
dec59fa3
EL
11025 percpu_counter_add_batch(&space_info->total_bytes_pinned,
11026 -block_group->pinned,
11027 BTRFS_TOTAL_BYTES_PINNED_BATCH);
47ab2a6c
JB
11028 block_group->pinned = 0;
11029
c30666d4
ZL
11030 spin_unlock(&block_group->lock);
11031 spin_unlock(&space_info->lock);
11032
e33e17ee 11033 /* DISCARD can flip during remount */
0b246afa 11034 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
11035
11036 /* Implicit trim during transaction commit. */
11037 if (trimming)
11038 btrfs_get_block_group_trimming(block_group);
11039
47ab2a6c
JB
11040 /*
11041 * Btrfs_remove_chunk will abort the transaction if things go
11042 * horribly wrong.
11043 */
97aff912 11044 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
e33e17ee
JM
11045
11046 if (ret) {
11047 if (trimming)
11048 btrfs_put_block_group_trimming(block_group);
11049 goto end_trans;
11050 }
11051
11052 /*
11053 * If we're not mounted with -odiscard, we can just forget
11054 * about this block group. Otherwise we'll need to wait
11055 * until transaction commit to do the actual discard.
11056 */
11057 if (trimming) {
348a0013
FM
11058 spin_lock(&fs_info->unused_bgs_lock);
11059 /*
11060 * A concurrent scrub might have added us to the list
11061 * fs_info->unused_bgs, so use a list_move operation
11062 * to add the block group to the deleted_bgs list.
11063 */
e33e17ee
JM
11064 list_move(&block_group->bg_list,
11065 &trans->transaction->deleted_bgs);
348a0013 11066 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
11067 btrfs_get_block_group(block_group);
11068 }
758eb51e 11069end_trans:
3a45bb20 11070 btrfs_end_transaction(trans);
47ab2a6c 11071next:
d5f2e33b 11072 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
11073 btrfs_put_block_group(block_group);
11074 spin_lock(&fs_info->unused_bgs_lock);
11075 }
11076 spin_unlock(&fs_info->unused_bgs_lock);
11077}
11078
c59021f8 11079int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
11080{
1aba86d6 11081 struct btrfs_super_block *disk_super;
11082 u64 features;
11083 u64 flags;
11084 int mixed = 0;
c59021f8 11085 int ret;
11086
6c41761f 11087 disk_super = fs_info->super_copy;
1aba86d6 11088 if (!btrfs_super_root(disk_super))
0dc924c5 11089 return -EINVAL;
c59021f8 11090
1aba86d6 11091 features = btrfs_super_incompat_flags(disk_super);
11092 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11093 mixed = 1;
c59021f8 11094
1aba86d6 11095 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4ca61683 11096 ret = create_space_info(fs_info, flags);
c59021f8 11097 if (ret)
1aba86d6 11098 goto out;
c59021f8 11099
1aba86d6 11100 if (mixed) {
11101 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
4ca61683 11102 ret = create_space_info(fs_info, flags);
1aba86d6 11103 } else {
11104 flags = BTRFS_BLOCK_GROUP_METADATA;
4ca61683 11105 ret = create_space_info(fs_info, flags);
1aba86d6 11106 if (ret)
11107 goto out;
11108
11109 flags = BTRFS_BLOCK_GROUP_DATA;
4ca61683 11110 ret = create_space_info(fs_info, flags);
1aba86d6 11111 }
11112out:
c59021f8 11113 return ret;
11114}
11115
2ff7e61e
JM
11116int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
11117 u64 start, u64 end)
acce952b 11118{
2ff7e61e 11119 return unpin_extent_range(fs_info, start, end, false);
acce952b 11120}
11121
499f377f
JM
11122/*
11123 * It used to be that old block groups would be left around forever.
11124 * Iterating over them would be enough to trim unused space. Since we
11125 * now automatically remove them, we also need to iterate over unallocated
11126 * space.
11127 *
11128 * We don't want a transaction for this since the discard may take a
11129 * substantial amount of time. We don't require that a transaction be
11130 * running, but we do need to take a running transaction into account
fee7acc3
JM
11131 * to ensure that we're not discarding chunks that were released or
11132 * allocated in the current transaction.
499f377f
JM
11133 *
11134 * Holding the chunks lock will prevent other threads from allocating
11135 * or releasing chunks, but it won't prevent a running transaction
11136 * from committing and releasing the memory that the pending chunks
11137 * list head uses. For that, we need to take a reference to the
fee7acc3
JM
11138 * transaction and hold the commit root sem. We only need to hold
11139 * it while performing the free space search since we have already
11140 * held back allocations.
499f377f 11141 */
8103d10b 11142static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
499f377f 11143{
8103d10b 11144 u64 start = SZ_1M, len = 0, end = 0;
499f377f
JM
11145 int ret;
11146
11147 *trimmed = 0;
11148
0be88e36
JM
11149 /* Discard not supported = nothing to do. */
11150 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
11151 return 0;
11152
52042d8e 11153 /* Not writable = nothing to do. */
ebbede42 11154 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
11155 return 0;
11156
11157 /* No free space = nothing to do. */
11158 if (device->total_bytes <= device->bytes_used)
11159 return 0;
11160
11161 ret = 0;
11162
11163 while (1) {
fb456252 11164 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
11165 u64 bytes;
11166
11167 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11168 if (ret)
fee7acc3 11169 break;
499f377f 11170
929be17a
NB
11171 find_first_clear_extent_bit(&device->alloc_state, start,
11172 &start, &end,
11173 CHUNK_TRIMMED | CHUNK_ALLOCATED);
11174 /*
11175 * If find_first_clear_extent_bit find a range that spans the
11176 * end of the device it will set end to -1, in this case it's up
11177 * to the caller to trim the value to the size of the device.
11178 */
11179 end = min(end, device->total_bytes - 1);
11180 len = end - start + 1;
499f377f 11181
929be17a
NB
11182 /* We didn't find any extents */
11183 if (!len) {
499f377f 11184 mutex_unlock(&fs_info->chunk_mutex);
929be17a 11185 ret = 0;
499f377f
JM
11186 break;
11187 }
11188
929be17a
NB
11189 ret = btrfs_issue_discard(device->bdev, start, len,
11190 &bytes);
11191 if (!ret)
11192 set_extent_bits(&device->alloc_state, start,
11193 start + bytes - 1,
11194 CHUNK_TRIMMED);
499f377f
JM
11195 mutex_unlock(&fs_info->chunk_mutex);
11196
11197 if (ret)
11198 break;
11199
11200 start += len;
11201 *trimmed += bytes;
11202
11203 if (fatal_signal_pending(current)) {
11204 ret = -ERESTARTSYS;
11205 break;
11206 }
11207
11208 cond_resched();
11209 }
11210
11211 return ret;
11212}
11213
93bba24d
QW
11214/*
11215 * Trim the whole filesystem by:
11216 * 1) trimming the free space in each block group
11217 * 2) trimming the unallocated space on each device
11218 *
11219 * This will also continue trimming even if a block group or device encounters
11220 * an error. The return value will be the last error, or 0 if nothing bad
11221 * happens.
11222 */
2ff7e61e 11223int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 11224{
f7039b1d 11225 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
11226 struct btrfs_device *device;
11227 struct list_head *devices;
f7039b1d
LD
11228 u64 group_trimmed;
11229 u64 start;
11230 u64 end;
11231 u64 trimmed = 0;
93bba24d
QW
11232 u64 bg_failed = 0;
11233 u64 dev_failed = 0;
11234 int bg_ret = 0;
11235 int dev_ret = 0;
f7039b1d
LD
11236 int ret = 0;
11237
6ba9fc8e 11238 cache = btrfs_lookup_first_block_group(fs_info, range->start);
f87b7eb8 11239 for (; cache; cache = next_block_group(cache)) {
f7039b1d
LD
11240 if (cache->key.objectid >= (range->start + range->len)) {
11241 btrfs_put_block_group(cache);
11242 break;
11243 }
11244
11245 start = max(range->start, cache->key.objectid);
11246 end = min(range->start + range->len,
11247 cache->key.objectid + cache->key.offset);
11248
11249 if (end - start >= range->minlen) {
11250 if (!block_group_cache_done(cache)) {
f6373bf3 11251 ret = cache_block_group(cache, 0);
1be41b78 11252 if (ret) {
93bba24d
QW
11253 bg_failed++;
11254 bg_ret = ret;
11255 continue;
1be41b78
JB
11256 }
11257 ret = wait_block_group_cache_done(cache);
11258 if (ret) {
93bba24d
QW
11259 bg_failed++;
11260 bg_ret = ret;
11261 continue;
1be41b78 11262 }
f7039b1d
LD
11263 }
11264 ret = btrfs_trim_block_group(cache,
11265 &group_trimmed,
11266 start,
11267 end,
11268 range->minlen);
11269
11270 trimmed += group_trimmed;
11271 if (ret) {
93bba24d
QW
11272 bg_failed++;
11273 bg_ret = ret;
11274 continue;
f7039b1d
LD
11275 }
11276 }
f7039b1d
LD
11277 }
11278
93bba24d
QW
11279 if (bg_failed)
11280 btrfs_warn(fs_info,
11281 "failed to trim %llu block group(s), last error %d",
11282 bg_failed, bg_ret);
0b246afa 11283 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d4e329de
JM
11284 devices = &fs_info->fs_devices->devices;
11285 list_for_each_entry(device, devices, dev_list) {
8103d10b 11286 ret = btrfs_trim_free_extents(device, &group_trimmed);
93bba24d
QW
11287 if (ret) {
11288 dev_failed++;
11289 dev_ret = ret;
499f377f 11290 break;
93bba24d 11291 }
499f377f
JM
11292
11293 trimmed += group_trimmed;
11294 }
0b246afa 11295 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11296
93bba24d
QW
11297 if (dev_failed)
11298 btrfs_warn(fs_info,
11299 "failed to trim %llu device(s), last error %d",
11300 dev_failed, dev_ret);
f7039b1d 11301 range->len = trimmed;
93bba24d
QW
11302 if (bg_ret)
11303 return bg_ret;
11304 return dev_ret;
f7039b1d 11305}
8257b2dc
MX
11306
11307/*
ea14b57f 11308 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11309 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11310 * data into the page cache through nocow before the subvolume is snapshoted,
11311 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11312 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11313 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11314 */
ea14b57f 11315void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11316{
11317 percpu_counter_dec(&root->subv_writers->counter);
093258e6 11318 cond_wake_up(&root->subv_writers->wait);
8257b2dc
MX
11319}
11320
ea14b57f 11321int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11322{
ea14b57f 11323 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11324 return 0;
11325
11326 percpu_counter_inc(&root->subv_writers->counter);
11327 /*
11328 * Make sure counter is updated before we check for snapshot creation.
11329 */
11330 smp_mb();
ea14b57f
DS
11331 if (atomic_read(&root->will_be_snapshotted)) {
11332 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11333 return 0;
11334 }
11335 return 1;
11336}
0bc19f90 11337
0bc19f90
ZL
11338void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11339{
11340 while (true) {
11341 int ret;
11342
ea14b57f 11343 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11344 if (ret)
11345 break;
4625956a
PZ
11346 wait_var_event(&root->will_be_snapshotted,
11347 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
11348 }
11349}
031f24da
QW
11350
11351void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11352{
11353 struct btrfs_fs_info *fs_info = bg->fs_info;
11354
11355 spin_lock(&fs_info->unused_bgs_lock);
11356 if (list_empty(&bg->bg_list)) {
11357 btrfs_get_block_group(bg);
11358 trace_btrfs_add_unused_block_group(bg);
11359 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11360 }
11361 spin_unlock(&fs_info->unused_bgs_lock);
11362}