]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: make btrfs_alloc_data_chunk_ondemand take btrfs_inode
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
1e144fb8 36#include "free-space-tree.h"
3fed40cc 37#include "math.h"
6ab0a202 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
fec577fb 40
709c0486
AJ
41#undef SCRAMBLE_DELAYED_REFS
42
9e622d6b
MX
43/*
44 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
0e4f8f88
CM
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
9e622d6b
MX
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
0e4f8f88
CM
56 */
57enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
61};
62
ce93ec54 63static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 64 struct btrfs_fs_info *fs_info, u64 bytenr,
ce93ec54 65 u64 num_bytes, int alloc);
5d4f98a2 66static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 67 struct btrfs_fs_info *fs_info,
c682f9b3 68 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
c682f9b3 71 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
72static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 76 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 81 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 84 int level, struct btrfs_key *ins);
6a63209f 85static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 86 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 87 int force);
11833d66
YZ
88static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
ab8d0fc4
JM
90static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 92 int dump_block_groups);
4824f1f4 93static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 94 u64 ram_bytes, u64 num_bytes, int delalloc);
4824f1f4
WX
95static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
96 u64 num_bytes, int delalloc);
5d80366e
JB
97static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
98 u64 num_bytes);
957780eb
JB
99static int __reserve_metadata_bytes(struct btrfs_root *root,
100 struct btrfs_space_info *space_info,
101 u64 orig_bytes,
102 enum btrfs_reserve_flush_enum flush);
103static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
104 struct btrfs_space_info *space_info,
105 u64 num_bytes);
106static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
107 struct btrfs_space_info *space_info,
108 u64 num_bytes);
6a63209f 109
817d52f8
JB
110static noinline int
111block_group_cache_done(struct btrfs_block_group_cache *cache)
112{
113 smp_mb();
36cce922
JB
114 return cache->cached == BTRFS_CACHE_FINISHED ||
115 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
116}
117
0f9dd46c
JB
118static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
119{
120 return (cache->flags & bits) == bits;
121}
122
758f2dfc 123void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
124{
125 atomic_inc(&cache->count);
126}
127
128void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
129{
f0486c68
YZ
130 if (atomic_dec_and_test(&cache->count)) {
131 WARN_ON(cache->pinned > 0);
132 WARN_ON(cache->reserved > 0);
34d52cb6 133 kfree(cache->free_space_ctl);
11dfe35a 134 kfree(cache);
f0486c68 135 }
11dfe35a
JB
136}
137
0f9dd46c
JB
138/*
139 * this adds the block group to the fs_info rb tree for the block group
140 * cache
141 */
b2950863 142static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
143 struct btrfs_block_group_cache *block_group)
144{
145 struct rb_node **p;
146 struct rb_node *parent = NULL;
147 struct btrfs_block_group_cache *cache;
148
149 spin_lock(&info->block_group_cache_lock);
150 p = &info->block_group_cache_tree.rb_node;
151
152 while (*p) {
153 parent = *p;
154 cache = rb_entry(parent, struct btrfs_block_group_cache,
155 cache_node);
156 if (block_group->key.objectid < cache->key.objectid) {
157 p = &(*p)->rb_left;
158 } else if (block_group->key.objectid > cache->key.objectid) {
159 p = &(*p)->rb_right;
160 } else {
161 spin_unlock(&info->block_group_cache_lock);
162 return -EEXIST;
163 }
164 }
165
166 rb_link_node(&block_group->cache_node, parent, p);
167 rb_insert_color(&block_group->cache_node,
168 &info->block_group_cache_tree);
a1897fdd
LB
169
170 if (info->first_logical_byte > block_group->key.objectid)
171 info->first_logical_byte = block_group->key.objectid;
172
0f9dd46c
JB
173 spin_unlock(&info->block_group_cache_lock);
174
175 return 0;
176}
177
178/*
179 * This will return the block group at or after bytenr if contains is 0, else
180 * it will return the block group that contains the bytenr
181 */
182static struct btrfs_block_group_cache *
183block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
184 int contains)
185{
186 struct btrfs_block_group_cache *cache, *ret = NULL;
187 struct rb_node *n;
188 u64 end, start;
189
190 spin_lock(&info->block_group_cache_lock);
191 n = info->block_group_cache_tree.rb_node;
192
193 while (n) {
194 cache = rb_entry(n, struct btrfs_block_group_cache,
195 cache_node);
196 end = cache->key.objectid + cache->key.offset - 1;
197 start = cache->key.objectid;
198
199 if (bytenr < start) {
200 if (!contains && (!ret || start < ret->key.objectid))
201 ret = cache;
202 n = n->rb_left;
203 } else if (bytenr > start) {
204 if (contains && bytenr <= end) {
205 ret = cache;
206 break;
207 }
208 n = n->rb_right;
209 } else {
210 ret = cache;
211 break;
212 }
213 }
a1897fdd 214 if (ret) {
11dfe35a 215 btrfs_get_block_group(ret);
a1897fdd
LB
216 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
217 info->first_logical_byte = ret->key.objectid;
218 }
0f9dd46c
JB
219 spin_unlock(&info->block_group_cache_lock);
220
221 return ret;
222}
223
2ff7e61e 224static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 225 u64 start, u64 num_bytes)
817d52f8 226{
11833d66 227 u64 end = start + num_bytes - 1;
0b246afa 228 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 229 start, end, EXTENT_UPTODATE);
0b246afa 230 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 231 start, end, EXTENT_UPTODATE);
11833d66
YZ
232 return 0;
233}
817d52f8 234
2ff7e61e 235static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
236 struct btrfs_block_group_cache *cache)
237{
238 u64 start, end;
817d52f8 239
11833d66
YZ
240 start = cache->key.objectid;
241 end = start + cache->key.offset - 1;
242
0b246afa 243 clear_extent_bits(&fs_info->freed_extents[0],
91166212 244 start, end, EXTENT_UPTODATE);
0b246afa 245 clear_extent_bits(&fs_info->freed_extents[1],
91166212 246 start, end, EXTENT_UPTODATE);
817d52f8
JB
247}
248
2ff7e61e 249static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 250 struct btrfs_block_group_cache *cache)
817d52f8 251{
817d52f8
JB
252 u64 bytenr;
253 u64 *logical;
254 int stripe_len;
255 int i, nr, ret;
256
06b2331f
YZ
257 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
258 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
259 cache->bytes_super += stripe_len;
2ff7e61e 260 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 261 stripe_len);
835d974f
JB
262 if (ret)
263 return ret;
06b2331f
YZ
264 }
265
817d52f8
JB
266 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
267 bytenr = btrfs_sb_offset(i);
0b246afa 268 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
ab8d0fc4 269 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
270 if (ret)
271 return ret;
11833d66 272
817d52f8 273 while (nr--) {
51bf5f0b
JB
274 u64 start, len;
275
276 if (logical[nr] > cache->key.objectid +
277 cache->key.offset)
278 continue;
279
280 if (logical[nr] + stripe_len <= cache->key.objectid)
281 continue;
282
283 start = logical[nr];
284 if (start < cache->key.objectid) {
285 start = cache->key.objectid;
286 len = (logical[nr] + stripe_len) - start;
287 } else {
288 len = min_t(u64, stripe_len,
289 cache->key.objectid +
290 cache->key.offset - start);
291 }
292
293 cache->bytes_super += len;
2ff7e61e 294 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
295 if (ret) {
296 kfree(logical);
297 return ret;
298 }
817d52f8 299 }
11833d66 300
817d52f8
JB
301 kfree(logical);
302 }
817d52f8
JB
303 return 0;
304}
305
11833d66
YZ
306static struct btrfs_caching_control *
307get_caching_control(struct btrfs_block_group_cache *cache)
308{
309 struct btrfs_caching_control *ctl;
310
311 spin_lock(&cache->lock);
dde5abee
JB
312 if (!cache->caching_ctl) {
313 spin_unlock(&cache->lock);
11833d66
YZ
314 return NULL;
315 }
316
317 ctl = cache->caching_ctl;
318 atomic_inc(&ctl->count);
319 spin_unlock(&cache->lock);
320 return ctl;
321}
322
323static void put_caching_control(struct btrfs_caching_control *ctl)
324{
325 if (atomic_dec_and_test(&ctl->count))
326 kfree(ctl);
327}
328
d0bd4560 329#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 330static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 331{
2ff7e61e 332 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
333 u64 start = block_group->key.objectid;
334 u64 len = block_group->key.offset;
335 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 336 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
337 u64 step = chunk << 1;
338
339 while (len > chunk) {
340 btrfs_remove_free_space(block_group, start, chunk);
341 start += step;
342 if (len < step)
343 len = 0;
344 else
345 len -= step;
346 }
347}
348#endif
349
0f9dd46c
JB
350/*
351 * this is only called by cache_block_group, since we could have freed extents
352 * we need to check the pinned_extents for any extents that can't be used yet
353 * since their free space will be released as soon as the transaction commits.
354 */
a5ed9182
OS
355u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
356 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 357{
817d52f8 358 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
359 int ret;
360
361 while (start < end) {
11833d66 362 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 363 &extent_start, &extent_end,
e6138876
JB
364 EXTENT_DIRTY | EXTENT_UPTODATE,
365 NULL);
0f9dd46c
JB
366 if (ret)
367 break;
368
06b2331f 369 if (extent_start <= start) {
0f9dd46c
JB
370 start = extent_end + 1;
371 } else if (extent_start > start && extent_start < end) {
372 size = extent_start - start;
817d52f8 373 total_added += size;
ea6a478e
JB
374 ret = btrfs_add_free_space(block_group, start,
375 size);
79787eaa 376 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
377 start = extent_end + 1;
378 } else {
379 break;
380 }
381 }
382
383 if (start < end) {
384 size = end - start;
817d52f8 385 total_added += size;
ea6a478e 386 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 387 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
388 }
389
817d52f8 390 return total_added;
0f9dd46c
JB
391}
392
73fa48b6 393static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 394{
0b246afa
JM
395 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
396 struct btrfs_fs_info *fs_info = block_group->fs_info;
397 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 398 struct btrfs_path *path;
5f39d397 399 struct extent_buffer *leaf;
11833d66 400 struct btrfs_key key;
817d52f8 401 u64 total_found = 0;
11833d66
YZ
402 u64 last = 0;
403 u32 nritems;
73fa48b6 404 int ret;
d0bd4560 405 bool wakeup = true;
f510cfec 406
e37c9e69
CM
407 path = btrfs_alloc_path();
408 if (!path)
73fa48b6 409 return -ENOMEM;
7d7d6068 410
817d52f8 411 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 412
d0bd4560
JB
413#ifdef CONFIG_BTRFS_DEBUG
414 /*
415 * If we're fragmenting we don't want to make anybody think we can
416 * allocate from this block group until we've had a chance to fragment
417 * the free space.
418 */
2ff7e61e 419 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
420 wakeup = false;
421#endif
5cd57b2c 422 /*
817d52f8
JB
423 * We don't want to deadlock with somebody trying to allocate a new
424 * extent for the extent root while also trying to search the extent
425 * root to add free space. So we skip locking and search the commit
426 * root, since its read-only
5cd57b2c
CM
427 */
428 path->skip_locking = 1;
817d52f8 429 path->search_commit_root = 1;
e4058b54 430 path->reada = READA_FORWARD;
817d52f8 431
e4404d6e 432 key.objectid = last;
e37c9e69 433 key.offset = 0;
11833d66 434 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 435
52ee28d2 436next:
11833d66 437 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 438 if (ret < 0)
73fa48b6 439 goto out;
a512bbf8 440
11833d66
YZ
441 leaf = path->nodes[0];
442 nritems = btrfs_header_nritems(leaf);
443
d397712b 444 while (1) {
7841cb28 445 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 446 last = (u64)-1;
817d52f8 447 break;
f25784b3 448 }
817d52f8 449
11833d66
YZ
450 if (path->slots[0] < nritems) {
451 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
452 } else {
453 ret = find_next_key(path, 0, &key);
454 if (ret)
e37c9e69 455 break;
817d52f8 456
c9ea7b24 457 if (need_resched() ||
9e351cc8 458 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
459 if (wakeup)
460 caching_ctl->progress = last;
ff5714cc 461 btrfs_release_path(path);
9e351cc8 462 up_read(&fs_info->commit_root_sem);
589d8ade 463 mutex_unlock(&caching_ctl->mutex);
11833d66 464 cond_resched();
73fa48b6
OS
465 mutex_lock(&caching_ctl->mutex);
466 down_read(&fs_info->commit_root_sem);
467 goto next;
589d8ade 468 }
0a3896d0
JB
469
470 ret = btrfs_next_leaf(extent_root, path);
471 if (ret < 0)
73fa48b6 472 goto out;
0a3896d0
JB
473 if (ret)
474 break;
589d8ade
JB
475 leaf = path->nodes[0];
476 nritems = btrfs_header_nritems(leaf);
477 continue;
11833d66 478 }
817d52f8 479
52ee28d2
LB
480 if (key.objectid < last) {
481 key.objectid = last;
482 key.offset = 0;
483 key.type = BTRFS_EXTENT_ITEM_KEY;
484
d0bd4560
JB
485 if (wakeup)
486 caching_ctl->progress = last;
52ee28d2
LB
487 btrfs_release_path(path);
488 goto next;
489 }
490
11833d66
YZ
491 if (key.objectid < block_group->key.objectid) {
492 path->slots[0]++;
817d52f8 493 continue;
e37c9e69 494 }
0f9dd46c 495
e37c9e69 496 if (key.objectid >= block_group->key.objectid +
0f9dd46c 497 block_group->key.offset)
e37c9e69 498 break;
7d7d6068 499
3173a18f
JB
500 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
501 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
502 total_found += add_new_free_space(block_group,
503 fs_info, last,
504 key.objectid);
3173a18f
JB
505 if (key.type == BTRFS_METADATA_ITEM_KEY)
506 last = key.objectid +
da17066c 507 fs_info->nodesize;
3173a18f
JB
508 else
509 last = key.objectid + key.offset;
817d52f8 510
73fa48b6 511 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 512 total_found = 0;
d0bd4560
JB
513 if (wakeup)
514 wake_up(&caching_ctl->wait);
11833d66 515 }
817d52f8 516 }
e37c9e69
CM
517 path->slots[0]++;
518 }
817d52f8 519 ret = 0;
e37c9e69 520
817d52f8
JB
521 total_found += add_new_free_space(block_group, fs_info, last,
522 block_group->key.objectid +
523 block_group->key.offset);
11833d66 524 caching_ctl->progress = (u64)-1;
817d52f8 525
73fa48b6
OS
526out:
527 btrfs_free_path(path);
528 return ret;
529}
530
531static noinline void caching_thread(struct btrfs_work *work)
532{
533 struct btrfs_block_group_cache *block_group;
534 struct btrfs_fs_info *fs_info;
535 struct btrfs_caching_control *caching_ctl;
b4570aa9 536 struct btrfs_root *extent_root;
73fa48b6
OS
537 int ret;
538
539 caching_ctl = container_of(work, struct btrfs_caching_control, work);
540 block_group = caching_ctl->block_group;
541 fs_info = block_group->fs_info;
b4570aa9 542 extent_root = fs_info->extent_root;
73fa48b6
OS
543
544 mutex_lock(&caching_ctl->mutex);
545 down_read(&fs_info->commit_root_sem);
546
1e144fb8
OS
547 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
548 ret = load_free_space_tree(caching_ctl);
549 else
550 ret = load_extent_tree_free(caching_ctl);
73fa48b6 551
817d52f8 552 spin_lock(&block_group->lock);
11833d66 553 block_group->caching_ctl = NULL;
73fa48b6 554 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 555 spin_unlock(&block_group->lock);
0f9dd46c 556
d0bd4560 557#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 558 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
559 u64 bytes_used;
560
561 spin_lock(&block_group->space_info->lock);
562 spin_lock(&block_group->lock);
563 bytes_used = block_group->key.offset -
564 btrfs_block_group_used(&block_group->item);
565 block_group->space_info->bytes_used += bytes_used >> 1;
566 spin_unlock(&block_group->lock);
567 spin_unlock(&block_group->space_info->lock);
2ff7e61e 568 fragment_free_space(block_group);
d0bd4560
JB
569 }
570#endif
571
572 caching_ctl->progress = (u64)-1;
11833d66 573
9e351cc8 574 up_read(&fs_info->commit_root_sem);
2ff7e61e 575 free_excluded_extents(fs_info, block_group);
11833d66 576 mutex_unlock(&caching_ctl->mutex);
73fa48b6 577
11833d66
YZ
578 wake_up(&caching_ctl->wait);
579
580 put_caching_control(caching_ctl);
11dfe35a 581 btrfs_put_block_group(block_group);
817d52f8
JB
582}
583
9d66e233 584static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 585 int load_cache_only)
817d52f8 586{
291c7d2f 587 DEFINE_WAIT(wait);
11833d66
YZ
588 struct btrfs_fs_info *fs_info = cache->fs_info;
589 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
590 int ret = 0;
591
291c7d2f 592 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
593 if (!caching_ctl)
594 return -ENOMEM;
291c7d2f
JB
595
596 INIT_LIST_HEAD(&caching_ctl->list);
597 mutex_init(&caching_ctl->mutex);
598 init_waitqueue_head(&caching_ctl->wait);
599 caching_ctl->block_group = cache;
600 caching_ctl->progress = cache->key.objectid;
601 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
602 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
603 caching_thread, NULL, NULL);
291c7d2f
JB
604
605 spin_lock(&cache->lock);
606 /*
607 * This should be a rare occasion, but this could happen I think in the
608 * case where one thread starts to load the space cache info, and then
609 * some other thread starts a transaction commit which tries to do an
610 * allocation while the other thread is still loading the space cache
611 * info. The previous loop should have kept us from choosing this block
612 * group, but if we've moved to the state where we will wait on caching
613 * block groups we need to first check if we're doing a fast load here,
614 * so we can wait for it to finish, otherwise we could end up allocating
615 * from a block group who's cache gets evicted for one reason or
616 * another.
617 */
618 while (cache->cached == BTRFS_CACHE_FAST) {
619 struct btrfs_caching_control *ctl;
620
621 ctl = cache->caching_ctl;
622 atomic_inc(&ctl->count);
623 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
624 spin_unlock(&cache->lock);
625
626 schedule();
627
628 finish_wait(&ctl->wait, &wait);
629 put_caching_control(ctl);
630 spin_lock(&cache->lock);
631 }
632
633 if (cache->cached != BTRFS_CACHE_NO) {
634 spin_unlock(&cache->lock);
635 kfree(caching_ctl);
11833d66 636 return 0;
291c7d2f
JB
637 }
638 WARN_ON(cache->caching_ctl);
639 cache->caching_ctl = caching_ctl;
640 cache->cached = BTRFS_CACHE_FAST;
641 spin_unlock(&cache->lock);
11833d66 642
d53ba474 643 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 644 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
645 ret = load_free_space_cache(fs_info, cache);
646
647 spin_lock(&cache->lock);
648 if (ret == 1) {
291c7d2f 649 cache->caching_ctl = NULL;
9d66e233
JB
650 cache->cached = BTRFS_CACHE_FINISHED;
651 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 652 caching_ctl->progress = (u64)-1;
9d66e233 653 } else {
291c7d2f
JB
654 if (load_cache_only) {
655 cache->caching_ctl = NULL;
656 cache->cached = BTRFS_CACHE_NO;
657 } else {
658 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 659 cache->has_caching_ctl = 1;
291c7d2f 660 }
9d66e233
JB
661 }
662 spin_unlock(&cache->lock);
d0bd4560
JB
663#ifdef CONFIG_BTRFS_DEBUG
664 if (ret == 1 &&
2ff7e61e 665 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
666 u64 bytes_used;
667
668 spin_lock(&cache->space_info->lock);
669 spin_lock(&cache->lock);
670 bytes_used = cache->key.offset -
671 btrfs_block_group_used(&cache->item);
672 cache->space_info->bytes_used += bytes_used >> 1;
673 spin_unlock(&cache->lock);
674 spin_unlock(&cache->space_info->lock);
2ff7e61e 675 fragment_free_space(cache);
d0bd4560
JB
676 }
677#endif
cb83b7b8
JB
678 mutex_unlock(&caching_ctl->mutex);
679
291c7d2f 680 wake_up(&caching_ctl->wait);
3c14874a 681 if (ret == 1) {
291c7d2f 682 put_caching_control(caching_ctl);
2ff7e61e 683 free_excluded_extents(fs_info, cache);
9d66e233 684 return 0;
3c14874a 685 }
291c7d2f
JB
686 } else {
687 /*
1e144fb8
OS
688 * We're either using the free space tree or no caching at all.
689 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
690 */
691 spin_lock(&cache->lock);
692 if (load_cache_only) {
693 cache->caching_ctl = NULL;
694 cache->cached = BTRFS_CACHE_NO;
695 } else {
696 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 697 cache->has_caching_ctl = 1;
291c7d2f
JB
698 }
699 spin_unlock(&cache->lock);
700 wake_up(&caching_ctl->wait);
9d66e233
JB
701 }
702
291c7d2f
JB
703 if (load_cache_only) {
704 put_caching_control(caching_ctl);
11833d66 705 return 0;
817d52f8 706 }
817d52f8 707
9e351cc8 708 down_write(&fs_info->commit_root_sem);
291c7d2f 709 atomic_inc(&caching_ctl->count);
11833d66 710 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 711 up_write(&fs_info->commit_root_sem);
11833d66 712
11dfe35a 713 btrfs_get_block_group(cache);
11833d66 714
e66f0bb1 715 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 716
ef8bbdfe 717 return ret;
e37c9e69
CM
718}
719
0f9dd46c
JB
720/*
721 * return the block group that starts at or after bytenr
722 */
d397712b
CM
723static struct btrfs_block_group_cache *
724btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 725{
e2c89907 726 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
727}
728
0f9dd46c 729/*
9f55684c 730 * return the block group that contains the given bytenr
0f9dd46c 731 */
d397712b
CM
732struct btrfs_block_group_cache *btrfs_lookup_block_group(
733 struct btrfs_fs_info *info,
734 u64 bytenr)
be744175 735{
e2c89907 736 return block_group_cache_tree_search(info, bytenr, 1);
be744175 737}
0b86a832 738
0f9dd46c
JB
739static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
740 u64 flags)
6324fbf3 741{
0f9dd46c 742 struct list_head *head = &info->space_info;
0f9dd46c 743 struct btrfs_space_info *found;
4184ea7f 744
52ba6929 745 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 746
4184ea7f
CM
747 rcu_read_lock();
748 list_for_each_entry_rcu(found, head, list) {
67377734 749 if (found->flags & flags) {
4184ea7f 750 rcu_read_unlock();
0f9dd46c 751 return found;
4184ea7f 752 }
0f9dd46c 753 }
4184ea7f 754 rcu_read_unlock();
0f9dd46c 755 return NULL;
6324fbf3
CM
756}
757
4184ea7f
CM
758/*
759 * after adding space to the filesystem, we need to clear the full flags
760 * on all the space infos.
761 */
762void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
763{
764 struct list_head *head = &info->space_info;
765 struct btrfs_space_info *found;
766
767 rcu_read_lock();
768 list_for_each_entry_rcu(found, head, list)
769 found->full = 0;
770 rcu_read_unlock();
771}
772
1a4ed8fd 773/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 774int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
775{
776 int ret;
777 struct btrfs_key key;
31840ae1 778 struct btrfs_path *path;
e02119d5 779
31840ae1 780 path = btrfs_alloc_path();
d8926bb3
MF
781 if (!path)
782 return -ENOMEM;
783
e02119d5
CM
784 key.objectid = start;
785 key.offset = len;
3173a18f 786 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 787 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 788 btrfs_free_path(path);
7bb86316
CM
789 return ret;
790}
791
a22285a6 792/*
3173a18f 793 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
794 *
795 * the head node for delayed ref is used to store the sum of all the
796 * reference count modifications queued up in the rbtree. the head
797 * node may also store the extent flags to set. This way you can check
798 * to see what the reference count and extent flags would be if all of
799 * the delayed refs are not processed.
800 */
801int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 802 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 803 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
804{
805 struct btrfs_delayed_ref_head *head;
806 struct btrfs_delayed_ref_root *delayed_refs;
807 struct btrfs_path *path;
808 struct btrfs_extent_item *ei;
809 struct extent_buffer *leaf;
810 struct btrfs_key key;
811 u32 item_size;
812 u64 num_refs;
813 u64 extent_flags;
814 int ret;
815
3173a18f
JB
816 /*
817 * If we don't have skinny metadata, don't bother doing anything
818 * different
819 */
0b246afa
JM
820 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
821 offset = fs_info->nodesize;
3173a18f
JB
822 metadata = 0;
823 }
824
a22285a6
YZ
825 path = btrfs_alloc_path();
826 if (!path)
827 return -ENOMEM;
828
a22285a6
YZ
829 if (!trans) {
830 path->skip_locking = 1;
831 path->search_commit_root = 1;
832 }
639eefc8
FDBM
833
834search_again:
835 key.objectid = bytenr;
836 key.offset = offset;
837 if (metadata)
838 key.type = BTRFS_METADATA_ITEM_KEY;
839 else
840 key.type = BTRFS_EXTENT_ITEM_KEY;
841
0b246afa 842 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
843 if (ret < 0)
844 goto out_free;
845
3173a18f 846 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
847 if (path->slots[0]) {
848 path->slots[0]--;
849 btrfs_item_key_to_cpu(path->nodes[0], &key,
850 path->slots[0]);
851 if (key.objectid == bytenr &&
852 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 853 key.offset == fs_info->nodesize)
74be9510
FDBM
854 ret = 0;
855 }
3173a18f
JB
856 }
857
a22285a6
YZ
858 if (ret == 0) {
859 leaf = path->nodes[0];
860 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
861 if (item_size >= sizeof(*ei)) {
862 ei = btrfs_item_ptr(leaf, path->slots[0],
863 struct btrfs_extent_item);
864 num_refs = btrfs_extent_refs(leaf, ei);
865 extent_flags = btrfs_extent_flags(leaf, ei);
866 } else {
867#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
868 struct btrfs_extent_item_v0 *ei0;
869 BUG_ON(item_size != sizeof(*ei0));
870 ei0 = btrfs_item_ptr(leaf, path->slots[0],
871 struct btrfs_extent_item_v0);
872 num_refs = btrfs_extent_refs_v0(leaf, ei0);
873 /* FIXME: this isn't correct for data */
874 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
875#else
876 BUG();
877#endif
878 }
879 BUG_ON(num_refs == 0);
880 } else {
881 num_refs = 0;
882 extent_flags = 0;
883 ret = 0;
884 }
885
886 if (!trans)
887 goto out;
888
889 delayed_refs = &trans->transaction->delayed_refs;
890 spin_lock(&delayed_refs->lock);
f72ad18e 891 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
892 if (head) {
893 if (!mutex_trylock(&head->mutex)) {
894 atomic_inc(&head->node.refs);
895 spin_unlock(&delayed_refs->lock);
896
b3b4aa74 897 btrfs_release_path(path);
a22285a6 898
8cc33e5c
DS
899 /*
900 * Mutex was contended, block until it's released and try
901 * again
902 */
a22285a6
YZ
903 mutex_lock(&head->mutex);
904 mutex_unlock(&head->mutex);
905 btrfs_put_delayed_ref(&head->node);
639eefc8 906 goto search_again;
a22285a6 907 }
d7df2c79 908 spin_lock(&head->lock);
a22285a6
YZ
909 if (head->extent_op && head->extent_op->update_flags)
910 extent_flags |= head->extent_op->flags_to_set;
911 else
912 BUG_ON(num_refs == 0);
913
914 num_refs += head->node.ref_mod;
d7df2c79 915 spin_unlock(&head->lock);
a22285a6
YZ
916 mutex_unlock(&head->mutex);
917 }
918 spin_unlock(&delayed_refs->lock);
919out:
920 WARN_ON(num_refs == 0);
921 if (refs)
922 *refs = num_refs;
923 if (flags)
924 *flags = extent_flags;
925out_free:
926 btrfs_free_path(path);
927 return ret;
928}
929
d8d5f3e1
CM
930/*
931 * Back reference rules. Back refs have three main goals:
932 *
933 * 1) differentiate between all holders of references to an extent so that
934 * when a reference is dropped we can make sure it was a valid reference
935 * before freeing the extent.
936 *
937 * 2) Provide enough information to quickly find the holders of an extent
938 * if we notice a given block is corrupted or bad.
939 *
940 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
941 * maintenance. This is actually the same as #2, but with a slightly
942 * different use case.
943 *
5d4f98a2
YZ
944 * There are two kinds of back refs. The implicit back refs is optimized
945 * for pointers in non-shared tree blocks. For a given pointer in a block,
946 * back refs of this kind provide information about the block's owner tree
947 * and the pointer's key. These information allow us to find the block by
948 * b-tree searching. The full back refs is for pointers in tree blocks not
949 * referenced by their owner trees. The location of tree block is recorded
950 * in the back refs. Actually the full back refs is generic, and can be
951 * used in all cases the implicit back refs is used. The major shortcoming
952 * of the full back refs is its overhead. Every time a tree block gets
953 * COWed, we have to update back refs entry for all pointers in it.
954 *
955 * For a newly allocated tree block, we use implicit back refs for
956 * pointers in it. This means most tree related operations only involve
957 * implicit back refs. For a tree block created in old transaction, the
958 * only way to drop a reference to it is COW it. So we can detect the
959 * event that tree block loses its owner tree's reference and do the
960 * back refs conversion.
961 *
01327610 962 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
963 *
964 * The reference count of the block is one and the tree is the block's
965 * owner tree. Nothing to do in this case.
966 *
967 * The reference count of the block is one and the tree is not the
968 * block's owner tree. In this case, full back refs is used for pointers
969 * in the block. Remove these full back refs, add implicit back refs for
970 * every pointers in the new block.
971 *
972 * The reference count of the block is greater than one and the tree is
973 * the block's owner tree. In this case, implicit back refs is used for
974 * pointers in the block. Add full back refs for every pointers in the
975 * block, increase lower level extents' reference counts. The original
976 * implicit back refs are entailed to the new block.
977 *
978 * The reference count of the block is greater than one and the tree is
979 * not the block's owner tree. Add implicit back refs for every pointer in
980 * the new block, increase lower level extents' reference count.
981 *
982 * Back Reference Key composing:
983 *
984 * The key objectid corresponds to the first byte in the extent,
985 * The key type is used to differentiate between types of back refs.
986 * There are different meanings of the key offset for different types
987 * of back refs.
988 *
d8d5f3e1
CM
989 * File extents can be referenced by:
990 *
991 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 992 * - different files inside a single subvolume
d8d5f3e1
CM
993 * - different offsets inside a file (bookend extents in file.c)
994 *
5d4f98a2 995 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
996 *
997 * - Objectid of the subvolume root
d8d5f3e1 998 * - objectid of the file holding the reference
5d4f98a2
YZ
999 * - original offset in the file
1000 * - how many bookend extents
d8d5f3e1 1001 *
5d4f98a2
YZ
1002 * The key offset for the implicit back refs is hash of the first
1003 * three fields.
d8d5f3e1 1004 *
5d4f98a2 1005 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1006 *
5d4f98a2 1007 * - number of pointers in the tree leaf
d8d5f3e1 1008 *
5d4f98a2
YZ
1009 * The key offset for the implicit back refs is the first byte of
1010 * the tree leaf
d8d5f3e1 1011 *
5d4f98a2
YZ
1012 * When a file extent is allocated, The implicit back refs is used.
1013 * the fields are filled in:
d8d5f3e1 1014 *
5d4f98a2 1015 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1016 *
5d4f98a2
YZ
1017 * When a file extent is removed file truncation, we find the
1018 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1019 *
5d4f98a2 1020 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1021 *
5d4f98a2 1022 * Btree extents can be referenced by:
d8d5f3e1 1023 *
5d4f98a2 1024 * - Different subvolumes
d8d5f3e1 1025 *
5d4f98a2
YZ
1026 * Both the implicit back refs and the full back refs for tree blocks
1027 * only consist of key. The key offset for the implicit back refs is
1028 * objectid of block's owner tree. The key offset for the full back refs
1029 * is the first byte of parent block.
d8d5f3e1 1030 *
5d4f98a2
YZ
1031 * When implicit back refs is used, information about the lowest key and
1032 * level of the tree block are required. These information are stored in
1033 * tree block info structure.
d8d5f3e1 1034 */
31840ae1 1035
5d4f98a2
YZ
1036#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1037static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1038 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1039 struct btrfs_path *path,
1040 u64 owner, u32 extra_size)
7bb86316 1041{
87bde3cd 1042 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1043 struct btrfs_extent_item *item;
1044 struct btrfs_extent_item_v0 *ei0;
1045 struct btrfs_extent_ref_v0 *ref0;
1046 struct btrfs_tree_block_info *bi;
1047 struct extent_buffer *leaf;
7bb86316 1048 struct btrfs_key key;
5d4f98a2
YZ
1049 struct btrfs_key found_key;
1050 u32 new_size = sizeof(*item);
1051 u64 refs;
1052 int ret;
1053
1054 leaf = path->nodes[0];
1055 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1056
1057 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1058 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1059 struct btrfs_extent_item_v0);
1060 refs = btrfs_extent_refs_v0(leaf, ei0);
1061
1062 if (owner == (u64)-1) {
1063 while (1) {
1064 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1065 ret = btrfs_next_leaf(root, path);
1066 if (ret < 0)
1067 return ret;
79787eaa 1068 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1069 leaf = path->nodes[0];
1070 }
1071 btrfs_item_key_to_cpu(leaf, &found_key,
1072 path->slots[0]);
1073 BUG_ON(key.objectid != found_key.objectid);
1074 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1075 path->slots[0]++;
1076 continue;
1077 }
1078 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1079 struct btrfs_extent_ref_v0);
1080 owner = btrfs_ref_objectid_v0(leaf, ref0);
1081 break;
1082 }
1083 }
b3b4aa74 1084 btrfs_release_path(path);
5d4f98a2
YZ
1085
1086 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1087 new_size += sizeof(*bi);
1088
1089 new_size -= sizeof(*ei0);
1090 ret = btrfs_search_slot(trans, root, &key, path,
1091 new_size + extra_size, 1);
1092 if (ret < 0)
1093 return ret;
79787eaa 1094 BUG_ON(ret); /* Corruption */
5d4f98a2 1095
87bde3cd 1096 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1097
1098 leaf = path->nodes[0];
1099 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1100 btrfs_set_extent_refs(leaf, item, refs);
1101 /* FIXME: get real generation */
1102 btrfs_set_extent_generation(leaf, item, 0);
1103 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1104 btrfs_set_extent_flags(leaf, item,
1105 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1106 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1107 bi = (struct btrfs_tree_block_info *)(item + 1);
1108 /* FIXME: get first key of the block */
b159fa28 1109 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1110 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1111 } else {
1112 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1113 }
1114 btrfs_mark_buffer_dirty(leaf);
1115 return 0;
1116}
1117#endif
1118
1119static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1120{
1121 u32 high_crc = ~(u32)0;
1122 u32 low_crc = ~(u32)0;
1123 __le64 lenum;
1124
1125 lenum = cpu_to_le64(root_objectid);
14a958e6 1126 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1127 lenum = cpu_to_le64(owner);
14a958e6 1128 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1129 lenum = cpu_to_le64(offset);
14a958e6 1130 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1131
1132 return ((u64)high_crc << 31) ^ (u64)low_crc;
1133}
1134
1135static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1136 struct btrfs_extent_data_ref *ref)
1137{
1138 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1139 btrfs_extent_data_ref_objectid(leaf, ref),
1140 btrfs_extent_data_ref_offset(leaf, ref));
1141}
1142
1143static int match_extent_data_ref(struct extent_buffer *leaf,
1144 struct btrfs_extent_data_ref *ref,
1145 u64 root_objectid, u64 owner, u64 offset)
1146{
1147 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1148 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1149 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1150 return 0;
1151 return 1;
1152}
1153
1154static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1155 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1156 struct btrfs_path *path,
1157 u64 bytenr, u64 parent,
1158 u64 root_objectid,
1159 u64 owner, u64 offset)
1160{
87bde3cd 1161 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1162 struct btrfs_key key;
1163 struct btrfs_extent_data_ref *ref;
31840ae1 1164 struct extent_buffer *leaf;
5d4f98a2 1165 u32 nritems;
74493f7a 1166 int ret;
5d4f98a2
YZ
1167 int recow;
1168 int err = -ENOENT;
74493f7a 1169
31840ae1 1170 key.objectid = bytenr;
5d4f98a2
YZ
1171 if (parent) {
1172 key.type = BTRFS_SHARED_DATA_REF_KEY;
1173 key.offset = parent;
1174 } else {
1175 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1176 key.offset = hash_extent_data_ref(root_objectid,
1177 owner, offset);
1178 }
1179again:
1180 recow = 0;
1181 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1182 if (ret < 0) {
1183 err = ret;
1184 goto fail;
1185 }
31840ae1 1186
5d4f98a2
YZ
1187 if (parent) {
1188 if (!ret)
1189 return 0;
1190#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1191 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1192 btrfs_release_path(path);
5d4f98a2
YZ
1193 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1194 if (ret < 0) {
1195 err = ret;
1196 goto fail;
1197 }
1198 if (!ret)
1199 return 0;
1200#endif
1201 goto fail;
31840ae1
ZY
1202 }
1203
1204 leaf = path->nodes[0];
5d4f98a2
YZ
1205 nritems = btrfs_header_nritems(leaf);
1206 while (1) {
1207 if (path->slots[0] >= nritems) {
1208 ret = btrfs_next_leaf(root, path);
1209 if (ret < 0)
1210 err = ret;
1211 if (ret)
1212 goto fail;
1213
1214 leaf = path->nodes[0];
1215 nritems = btrfs_header_nritems(leaf);
1216 recow = 1;
1217 }
1218
1219 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1220 if (key.objectid != bytenr ||
1221 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1222 goto fail;
1223
1224 ref = btrfs_item_ptr(leaf, path->slots[0],
1225 struct btrfs_extent_data_ref);
1226
1227 if (match_extent_data_ref(leaf, ref, root_objectid,
1228 owner, offset)) {
1229 if (recow) {
b3b4aa74 1230 btrfs_release_path(path);
5d4f98a2
YZ
1231 goto again;
1232 }
1233 err = 0;
1234 break;
1235 }
1236 path->slots[0]++;
31840ae1 1237 }
5d4f98a2
YZ
1238fail:
1239 return err;
31840ae1
ZY
1240}
1241
5d4f98a2 1242static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1243 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1244 struct btrfs_path *path,
1245 u64 bytenr, u64 parent,
1246 u64 root_objectid, u64 owner,
1247 u64 offset, int refs_to_add)
31840ae1 1248{
87bde3cd 1249 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1250 struct btrfs_key key;
1251 struct extent_buffer *leaf;
5d4f98a2 1252 u32 size;
31840ae1
ZY
1253 u32 num_refs;
1254 int ret;
74493f7a 1255
74493f7a 1256 key.objectid = bytenr;
5d4f98a2
YZ
1257 if (parent) {
1258 key.type = BTRFS_SHARED_DATA_REF_KEY;
1259 key.offset = parent;
1260 size = sizeof(struct btrfs_shared_data_ref);
1261 } else {
1262 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1263 key.offset = hash_extent_data_ref(root_objectid,
1264 owner, offset);
1265 size = sizeof(struct btrfs_extent_data_ref);
1266 }
74493f7a 1267
5d4f98a2
YZ
1268 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1269 if (ret && ret != -EEXIST)
1270 goto fail;
1271
1272 leaf = path->nodes[0];
1273 if (parent) {
1274 struct btrfs_shared_data_ref *ref;
31840ae1 1275 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1276 struct btrfs_shared_data_ref);
1277 if (ret == 0) {
1278 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1279 } else {
1280 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1281 num_refs += refs_to_add;
1282 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1283 }
5d4f98a2
YZ
1284 } else {
1285 struct btrfs_extent_data_ref *ref;
1286 while (ret == -EEXIST) {
1287 ref = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_data_ref);
1289 if (match_extent_data_ref(leaf, ref, root_objectid,
1290 owner, offset))
1291 break;
b3b4aa74 1292 btrfs_release_path(path);
5d4f98a2
YZ
1293 key.offset++;
1294 ret = btrfs_insert_empty_item(trans, root, path, &key,
1295 size);
1296 if (ret && ret != -EEXIST)
1297 goto fail;
31840ae1 1298
5d4f98a2
YZ
1299 leaf = path->nodes[0];
1300 }
1301 ref = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 if (ret == 0) {
1304 btrfs_set_extent_data_ref_root(leaf, ref,
1305 root_objectid);
1306 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1307 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1308 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1309 } else {
1310 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1311 num_refs += refs_to_add;
1312 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1313 }
31840ae1 1314 }
5d4f98a2
YZ
1315 btrfs_mark_buffer_dirty(leaf);
1316 ret = 0;
1317fail:
b3b4aa74 1318 btrfs_release_path(path);
7bb86316 1319 return ret;
74493f7a
CM
1320}
1321
5d4f98a2 1322static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1323 struct btrfs_fs_info *fs_info,
5d4f98a2 1324 struct btrfs_path *path,
fcebe456 1325 int refs_to_drop, int *last_ref)
31840ae1 1326{
5d4f98a2
YZ
1327 struct btrfs_key key;
1328 struct btrfs_extent_data_ref *ref1 = NULL;
1329 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1330 struct extent_buffer *leaf;
5d4f98a2 1331 u32 num_refs = 0;
31840ae1
ZY
1332 int ret = 0;
1333
1334 leaf = path->nodes[0];
5d4f98a2
YZ
1335 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1336
1337 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1338 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1339 struct btrfs_extent_data_ref);
1340 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1341 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1342 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_shared_data_ref);
1344 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1345#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1346 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1347 struct btrfs_extent_ref_v0 *ref0;
1348 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1349 struct btrfs_extent_ref_v0);
1350 num_refs = btrfs_ref_count_v0(leaf, ref0);
1351#endif
1352 } else {
1353 BUG();
1354 }
1355
56bec294
CM
1356 BUG_ON(num_refs < refs_to_drop);
1357 num_refs -= refs_to_drop;
5d4f98a2 1358
31840ae1 1359 if (num_refs == 0) {
87bde3cd 1360 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1361 *last_ref = 1;
31840ae1 1362 } else {
5d4f98a2
YZ
1363 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1364 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1365 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1366 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1367#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1368 else {
1369 struct btrfs_extent_ref_v0 *ref0;
1370 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1371 struct btrfs_extent_ref_v0);
1372 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1373 }
1374#endif
31840ae1
ZY
1375 btrfs_mark_buffer_dirty(leaf);
1376 }
31840ae1
ZY
1377 return ret;
1378}
1379
9ed0dea0 1380static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1381 struct btrfs_extent_inline_ref *iref)
15916de8 1382{
5d4f98a2
YZ
1383 struct btrfs_key key;
1384 struct extent_buffer *leaf;
1385 struct btrfs_extent_data_ref *ref1;
1386 struct btrfs_shared_data_ref *ref2;
1387 u32 num_refs = 0;
1388
1389 leaf = path->nodes[0];
1390 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1391 if (iref) {
1392 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1393 BTRFS_EXTENT_DATA_REF_KEY) {
1394 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1395 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1396 } else {
1397 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1398 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1399 }
1400 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1401 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1402 struct btrfs_extent_data_ref);
1403 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1404 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1405 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1406 struct btrfs_shared_data_ref);
1407 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1408#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1409 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1410 struct btrfs_extent_ref_v0 *ref0;
1411 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1412 struct btrfs_extent_ref_v0);
1413 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1414#endif
5d4f98a2
YZ
1415 } else {
1416 WARN_ON(1);
1417 }
1418 return num_refs;
1419}
15916de8 1420
5d4f98a2 1421static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1422 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1423 struct btrfs_path *path,
1424 u64 bytenr, u64 parent,
1425 u64 root_objectid)
1f3c79a2 1426{
87bde3cd 1427 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1428 struct btrfs_key key;
1f3c79a2 1429 int ret;
1f3c79a2 1430
5d4f98a2
YZ
1431 key.objectid = bytenr;
1432 if (parent) {
1433 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1434 key.offset = parent;
1435 } else {
1436 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1437 key.offset = root_objectid;
1f3c79a2
LH
1438 }
1439
5d4f98a2
YZ
1440 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1441 if (ret > 0)
1442 ret = -ENOENT;
1443#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1444 if (ret == -ENOENT && parent) {
b3b4aa74 1445 btrfs_release_path(path);
5d4f98a2
YZ
1446 key.type = BTRFS_EXTENT_REF_V0_KEY;
1447 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1448 if (ret > 0)
1449 ret = -ENOENT;
1450 }
1f3c79a2 1451#endif
5d4f98a2 1452 return ret;
1f3c79a2
LH
1453}
1454
5d4f98a2 1455static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1456 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1457 struct btrfs_path *path,
1458 u64 bytenr, u64 parent,
1459 u64 root_objectid)
31840ae1 1460{
5d4f98a2 1461 struct btrfs_key key;
31840ae1 1462 int ret;
31840ae1 1463
5d4f98a2
YZ
1464 key.objectid = bytenr;
1465 if (parent) {
1466 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1467 key.offset = parent;
1468 } else {
1469 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1470 key.offset = root_objectid;
1471 }
1472
87bde3cd
JM
1473 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1474 path, &key, 0);
b3b4aa74 1475 btrfs_release_path(path);
31840ae1
ZY
1476 return ret;
1477}
1478
5d4f98a2 1479static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1480{
5d4f98a2
YZ
1481 int type;
1482 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1483 if (parent > 0)
1484 type = BTRFS_SHARED_BLOCK_REF_KEY;
1485 else
1486 type = BTRFS_TREE_BLOCK_REF_KEY;
1487 } else {
1488 if (parent > 0)
1489 type = BTRFS_SHARED_DATA_REF_KEY;
1490 else
1491 type = BTRFS_EXTENT_DATA_REF_KEY;
1492 }
1493 return type;
31840ae1 1494}
56bec294 1495
2c47e605
YZ
1496static int find_next_key(struct btrfs_path *path, int level,
1497 struct btrfs_key *key)
56bec294 1498
02217ed2 1499{
2c47e605 1500 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1501 if (!path->nodes[level])
1502 break;
5d4f98a2
YZ
1503 if (path->slots[level] + 1 >=
1504 btrfs_header_nritems(path->nodes[level]))
1505 continue;
1506 if (level == 0)
1507 btrfs_item_key_to_cpu(path->nodes[level], key,
1508 path->slots[level] + 1);
1509 else
1510 btrfs_node_key_to_cpu(path->nodes[level], key,
1511 path->slots[level] + 1);
1512 return 0;
1513 }
1514 return 1;
1515}
037e6390 1516
5d4f98a2
YZ
1517/*
1518 * look for inline back ref. if back ref is found, *ref_ret is set
1519 * to the address of inline back ref, and 0 is returned.
1520 *
1521 * if back ref isn't found, *ref_ret is set to the address where it
1522 * should be inserted, and -ENOENT is returned.
1523 *
1524 * if insert is true and there are too many inline back refs, the path
1525 * points to the extent item, and -EAGAIN is returned.
1526 *
1527 * NOTE: inline back refs are ordered in the same way that back ref
1528 * items in the tree are ordered.
1529 */
1530static noinline_for_stack
1531int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1532 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1533 struct btrfs_path *path,
1534 struct btrfs_extent_inline_ref **ref_ret,
1535 u64 bytenr, u64 num_bytes,
1536 u64 parent, u64 root_objectid,
1537 u64 owner, u64 offset, int insert)
1538{
87bde3cd 1539 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1540 struct btrfs_key key;
1541 struct extent_buffer *leaf;
1542 struct btrfs_extent_item *ei;
1543 struct btrfs_extent_inline_ref *iref;
1544 u64 flags;
1545 u64 item_size;
1546 unsigned long ptr;
1547 unsigned long end;
1548 int extra_size;
1549 int type;
1550 int want;
1551 int ret;
1552 int err = 0;
0b246afa 1553 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
26b8003f 1554
db94535d 1555 key.objectid = bytenr;
31840ae1 1556 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1557 key.offset = num_bytes;
31840ae1 1558
5d4f98a2
YZ
1559 want = extent_ref_type(parent, owner);
1560 if (insert) {
1561 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1562 path->keep_locks = 1;
5d4f98a2
YZ
1563 } else
1564 extra_size = -1;
3173a18f
JB
1565
1566 /*
1567 * Owner is our parent level, so we can just add one to get the level
1568 * for the block we are interested in.
1569 */
1570 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1571 key.type = BTRFS_METADATA_ITEM_KEY;
1572 key.offset = owner;
1573 }
1574
1575again:
5d4f98a2 1576 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1577 if (ret < 0) {
5d4f98a2
YZ
1578 err = ret;
1579 goto out;
1580 }
3173a18f
JB
1581
1582 /*
1583 * We may be a newly converted file system which still has the old fat
1584 * extent entries for metadata, so try and see if we have one of those.
1585 */
1586 if (ret > 0 && skinny_metadata) {
1587 skinny_metadata = false;
1588 if (path->slots[0]) {
1589 path->slots[0]--;
1590 btrfs_item_key_to_cpu(path->nodes[0], &key,
1591 path->slots[0]);
1592 if (key.objectid == bytenr &&
1593 key.type == BTRFS_EXTENT_ITEM_KEY &&
1594 key.offset == num_bytes)
1595 ret = 0;
1596 }
1597 if (ret) {
9ce49a0b 1598 key.objectid = bytenr;
3173a18f
JB
1599 key.type = BTRFS_EXTENT_ITEM_KEY;
1600 key.offset = num_bytes;
1601 btrfs_release_path(path);
1602 goto again;
1603 }
1604 }
1605
79787eaa
JM
1606 if (ret && !insert) {
1607 err = -ENOENT;
1608 goto out;
fae7f21c 1609 } else if (WARN_ON(ret)) {
492104c8 1610 err = -EIO;
492104c8 1611 goto out;
79787eaa 1612 }
5d4f98a2
YZ
1613
1614 leaf = path->nodes[0];
1615 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1616#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1617 if (item_size < sizeof(*ei)) {
1618 if (!insert) {
1619 err = -ENOENT;
1620 goto out;
1621 }
87bde3cd 1622 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1623 extra_size);
1624 if (ret < 0) {
1625 err = ret;
1626 goto out;
1627 }
1628 leaf = path->nodes[0];
1629 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1630 }
1631#endif
1632 BUG_ON(item_size < sizeof(*ei));
1633
5d4f98a2
YZ
1634 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1635 flags = btrfs_extent_flags(leaf, ei);
1636
1637 ptr = (unsigned long)(ei + 1);
1638 end = (unsigned long)ei + item_size;
1639
3173a18f 1640 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1641 ptr += sizeof(struct btrfs_tree_block_info);
1642 BUG_ON(ptr > end);
5d4f98a2
YZ
1643 }
1644
1645 err = -ENOENT;
1646 while (1) {
1647 if (ptr >= end) {
1648 WARN_ON(ptr > end);
1649 break;
1650 }
1651 iref = (struct btrfs_extent_inline_ref *)ptr;
1652 type = btrfs_extent_inline_ref_type(leaf, iref);
1653 if (want < type)
1654 break;
1655 if (want > type) {
1656 ptr += btrfs_extent_inline_ref_size(type);
1657 continue;
1658 }
1659
1660 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1661 struct btrfs_extent_data_ref *dref;
1662 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1663 if (match_extent_data_ref(leaf, dref, root_objectid,
1664 owner, offset)) {
1665 err = 0;
1666 break;
1667 }
1668 if (hash_extent_data_ref_item(leaf, dref) <
1669 hash_extent_data_ref(root_objectid, owner, offset))
1670 break;
1671 } else {
1672 u64 ref_offset;
1673 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1674 if (parent > 0) {
1675 if (parent == ref_offset) {
1676 err = 0;
1677 break;
1678 }
1679 if (ref_offset < parent)
1680 break;
1681 } else {
1682 if (root_objectid == ref_offset) {
1683 err = 0;
1684 break;
1685 }
1686 if (ref_offset < root_objectid)
1687 break;
1688 }
1689 }
1690 ptr += btrfs_extent_inline_ref_size(type);
1691 }
1692 if (err == -ENOENT && insert) {
1693 if (item_size + extra_size >=
1694 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1695 err = -EAGAIN;
1696 goto out;
1697 }
1698 /*
1699 * To add new inline back ref, we have to make sure
1700 * there is no corresponding back ref item.
1701 * For simplicity, we just do not add new inline back
1702 * ref if there is any kind of item for this block
1703 */
2c47e605
YZ
1704 if (find_next_key(path, 0, &key) == 0 &&
1705 key.objectid == bytenr &&
85d4198e 1706 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1707 err = -EAGAIN;
1708 goto out;
1709 }
1710 }
1711 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1712out:
85d4198e 1713 if (insert) {
5d4f98a2
YZ
1714 path->keep_locks = 0;
1715 btrfs_unlock_up_safe(path, 1);
1716 }
1717 return err;
1718}
1719
1720/*
1721 * helper to add new inline back ref
1722 */
1723static noinline_for_stack
87bde3cd 1724void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref *iref,
1727 u64 parent, u64 root_objectid,
1728 u64 owner, u64 offset, int refs_to_add,
1729 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1730{
1731 struct extent_buffer *leaf;
1732 struct btrfs_extent_item *ei;
1733 unsigned long ptr;
1734 unsigned long end;
1735 unsigned long item_offset;
1736 u64 refs;
1737 int size;
1738 int type;
5d4f98a2
YZ
1739
1740 leaf = path->nodes[0];
1741 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1742 item_offset = (unsigned long)iref - (unsigned long)ei;
1743
1744 type = extent_ref_type(parent, owner);
1745 size = btrfs_extent_inline_ref_size(type);
1746
87bde3cd 1747 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1748
1749 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1750 refs = btrfs_extent_refs(leaf, ei);
1751 refs += refs_to_add;
1752 btrfs_set_extent_refs(leaf, ei, refs);
1753 if (extent_op)
1754 __run_delayed_extent_op(extent_op, leaf, ei);
1755
1756 ptr = (unsigned long)ei + item_offset;
1757 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1758 if (ptr < end - size)
1759 memmove_extent_buffer(leaf, ptr + size, ptr,
1760 end - size - ptr);
1761
1762 iref = (struct btrfs_extent_inline_ref *)ptr;
1763 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1764 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1765 struct btrfs_extent_data_ref *dref;
1766 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1767 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1768 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1769 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1770 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1771 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1772 struct btrfs_shared_data_ref *sref;
1773 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1774 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1775 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1776 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1777 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1778 } else {
1779 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1780 }
1781 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1782}
1783
1784static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1785 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1786 struct btrfs_path *path,
1787 struct btrfs_extent_inline_ref **ref_ret,
1788 u64 bytenr, u64 num_bytes, u64 parent,
1789 u64 root_objectid, u64 owner, u64 offset)
1790{
1791 int ret;
1792
87bde3cd 1793 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1794 bytenr, num_bytes, parent,
1795 root_objectid, owner, offset, 0);
1796 if (ret != -ENOENT)
54aa1f4d 1797 return ret;
5d4f98a2 1798
b3b4aa74 1799 btrfs_release_path(path);
5d4f98a2
YZ
1800 *ref_ret = NULL;
1801
1802 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1803 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1804 parent, root_objectid);
5d4f98a2 1805 } else {
87bde3cd
JM
1806 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1807 parent, root_objectid, owner,
1808 offset);
b9473439 1809 }
5d4f98a2
YZ
1810 return ret;
1811}
31840ae1 1812
5d4f98a2
YZ
1813/*
1814 * helper to update/remove inline back ref
1815 */
1816static noinline_for_stack
87bde3cd 1817void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1818 struct btrfs_path *path,
1819 struct btrfs_extent_inline_ref *iref,
1820 int refs_to_mod,
fcebe456
JB
1821 struct btrfs_delayed_extent_op *extent_op,
1822 int *last_ref)
5d4f98a2
YZ
1823{
1824 struct extent_buffer *leaf;
1825 struct btrfs_extent_item *ei;
1826 struct btrfs_extent_data_ref *dref = NULL;
1827 struct btrfs_shared_data_ref *sref = NULL;
1828 unsigned long ptr;
1829 unsigned long end;
1830 u32 item_size;
1831 int size;
1832 int type;
5d4f98a2
YZ
1833 u64 refs;
1834
1835 leaf = path->nodes[0];
1836 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1837 refs = btrfs_extent_refs(leaf, ei);
1838 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1839 refs += refs_to_mod;
1840 btrfs_set_extent_refs(leaf, ei, refs);
1841 if (extent_op)
1842 __run_delayed_extent_op(extent_op, leaf, ei);
1843
1844 type = btrfs_extent_inline_ref_type(leaf, iref);
1845
1846 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1847 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1848 refs = btrfs_extent_data_ref_count(leaf, dref);
1849 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1850 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1851 refs = btrfs_shared_data_ref_count(leaf, sref);
1852 } else {
1853 refs = 1;
1854 BUG_ON(refs_to_mod != -1);
56bec294 1855 }
31840ae1 1856
5d4f98a2
YZ
1857 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1858 refs += refs_to_mod;
1859
1860 if (refs > 0) {
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1862 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1863 else
1864 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1865 } else {
fcebe456 1866 *last_ref = 1;
5d4f98a2
YZ
1867 size = btrfs_extent_inline_ref_size(type);
1868 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1869 ptr = (unsigned long)iref;
1870 end = (unsigned long)ei + item_size;
1871 if (ptr + size < end)
1872 memmove_extent_buffer(leaf, ptr, ptr + size,
1873 end - ptr - size);
1874 item_size -= size;
87bde3cd 1875 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1876 }
1877 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1878}
1879
1880static noinline_for_stack
1881int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1882 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1883 struct btrfs_path *path,
1884 u64 bytenr, u64 num_bytes, u64 parent,
1885 u64 root_objectid, u64 owner,
1886 u64 offset, int refs_to_add,
1887 struct btrfs_delayed_extent_op *extent_op)
1888{
1889 struct btrfs_extent_inline_ref *iref;
1890 int ret;
1891
87bde3cd 1892 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1893 bytenr, num_bytes, parent,
1894 root_objectid, owner, offset, 1);
1895 if (ret == 0) {
1896 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1897 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1898 refs_to_add, extent_op, NULL);
5d4f98a2 1899 } else if (ret == -ENOENT) {
87bde3cd 1900 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
1901 root_objectid, owner, offset,
1902 refs_to_add, extent_op);
1903 ret = 0;
771ed689 1904 }
5d4f98a2
YZ
1905 return ret;
1906}
31840ae1 1907
5d4f98a2 1908static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1909 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1910 struct btrfs_path *path,
1911 u64 bytenr, u64 parent, u64 root_objectid,
1912 u64 owner, u64 offset, int refs_to_add)
1913{
1914 int ret;
1915 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1916 BUG_ON(refs_to_add != 1);
87bde3cd 1917 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
1918 parent, root_objectid);
1919 } else {
87bde3cd 1920 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
1921 parent, root_objectid,
1922 owner, offset, refs_to_add);
1923 }
1924 return ret;
1925}
56bec294 1926
5d4f98a2 1927static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1928 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1929 struct btrfs_path *path,
1930 struct btrfs_extent_inline_ref *iref,
fcebe456 1931 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1932{
143bede5 1933 int ret = 0;
b9473439 1934
5d4f98a2
YZ
1935 BUG_ON(!is_data && refs_to_drop != 1);
1936 if (iref) {
87bde3cd 1937 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1938 -refs_to_drop, NULL, last_ref);
5d4f98a2 1939 } else if (is_data) {
87bde3cd 1940 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 1941 last_ref);
5d4f98a2 1942 } else {
fcebe456 1943 *last_ref = 1;
87bde3cd 1944 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
1945 }
1946 return ret;
1947}
1948
86557861 1949#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1950static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1951 u64 *discarded_bytes)
5d4f98a2 1952{
86557861
JM
1953 int j, ret = 0;
1954 u64 bytes_left, end;
4d89d377 1955 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1956
4d89d377
JM
1957 if (WARN_ON(start != aligned_start)) {
1958 len -= aligned_start - start;
1959 len = round_down(len, 1 << 9);
1960 start = aligned_start;
1961 }
d04c6b88 1962
4d89d377 1963 *discarded_bytes = 0;
86557861
JM
1964
1965 if (!len)
1966 return 0;
1967
1968 end = start + len;
1969 bytes_left = len;
1970
1971 /* Skip any superblocks on this device. */
1972 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1973 u64 sb_start = btrfs_sb_offset(j);
1974 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1975 u64 size = sb_start - start;
1976
1977 if (!in_range(sb_start, start, bytes_left) &&
1978 !in_range(sb_end, start, bytes_left) &&
1979 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1980 continue;
1981
1982 /*
1983 * Superblock spans beginning of range. Adjust start and
1984 * try again.
1985 */
1986 if (sb_start <= start) {
1987 start += sb_end - start;
1988 if (start > end) {
1989 bytes_left = 0;
1990 break;
1991 }
1992 bytes_left = end - start;
1993 continue;
1994 }
1995
1996 if (size) {
1997 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1998 GFP_NOFS, 0);
1999 if (!ret)
2000 *discarded_bytes += size;
2001 else if (ret != -EOPNOTSUPP)
2002 return ret;
2003 }
2004
2005 start = sb_end;
2006 if (start > end) {
2007 bytes_left = 0;
2008 break;
2009 }
2010 bytes_left = end - start;
2011 }
2012
2013 if (bytes_left) {
2014 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2015 GFP_NOFS, 0);
2016 if (!ret)
86557861 2017 *discarded_bytes += bytes_left;
4d89d377 2018 }
d04c6b88 2019 return ret;
5d4f98a2 2020}
5d4f98a2 2021
2ff7e61e 2022int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2023 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2024{
5d4f98a2 2025 int ret;
5378e607 2026 u64 discarded_bytes = 0;
a1d3c478 2027 struct btrfs_bio *bbio = NULL;
5d4f98a2 2028
e244a0ae 2029
2999241d
FM
2030 /*
2031 * Avoid races with device replace and make sure our bbio has devices
2032 * associated to its stripes that don't go away while we are discarding.
2033 */
0b246afa 2034 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2035 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2036 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2037 &bbio, 0);
79787eaa 2038 /* Error condition is -ENOMEM */
5d4f98a2 2039 if (!ret) {
a1d3c478 2040 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2041 int i;
2042
5d4f98a2 2043
a1d3c478 2044 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2045 u64 bytes;
d5e2003c
JB
2046 if (!stripe->dev->can_discard)
2047 continue;
2048
5378e607
LD
2049 ret = btrfs_issue_discard(stripe->dev->bdev,
2050 stripe->physical,
d04c6b88
JM
2051 stripe->length,
2052 &bytes);
5378e607 2053 if (!ret)
d04c6b88 2054 discarded_bytes += bytes;
5378e607 2055 else if (ret != -EOPNOTSUPP)
79787eaa 2056 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2057
2058 /*
2059 * Just in case we get back EOPNOTSUPP for some reason,
2060 * just ignore the return value so we don't screw up
2061 * people calling discard_extent.
2062 */
2063 ret = 0;
5d4f98a2 2064 }
6e9606d2 2065 btrfs_put_bbio(bbio);
5d4f98a2 2066 }
0b246afa 2067 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2068
2069 if (actual_bytes)
2070 *actual_bytes = discarded_bytes;
2071
5d4f98a2 2072
53b381b3
DW
2073 if (ret == -EOPNOTSUPP)
2074 ret = 0;
5d4f98a2 2075 return ret;
5d4f98a2
YZ
2076}
2077
79787eaa 2078/* Can return -ENOMEM */
5d4f98a2 2079int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2080 struct btrfs_fs_info *fs_info,
5d4f98a2 2081 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2082 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2083{
2084 int ret;
66d7e7f0 2085
5d4f98a2
YZ
2086 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2087 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2088
2089 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2090 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2091 num_bytes,
5d4f98a2 2092 parent, root_objectid, (int)owner,
b06c4bf5 2093 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2 2094 } else {
66d7e7f0 2095 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5846a3c2
QW
2096 num_bytes, parent, root_objectid,
2097 owner, offset, 0,
fef394f7 2098 BTRFS_ADD_DELAYED_REF);
5d4f98a2
YZ
2099 }
2100 return ret;
2101}
2102
2103static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2104 struct btrfs_fs_info *fs_info,
c682f9b3 2105 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2106 u64 parent, u64 root_objectid,
2107 u64 owner, u64 offset, int refs_to_add,
2108 struct btrfs_delayed_extent_op *extent_op)
2109{
2110 struct btrfs_path *path;
2111 struct extent_buffer *leaf;
2112 struct btrfs_extent_item *item;
fcebe456 2113 struct btrfs_key key;
c682f9b3
QW
2114 u64 bytenr = node->bytenr;
2115 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2116 u64 refs;
2117 int ret;
5d4f98a2
YZ
2118
2119 path = btrfs_alloc_path();
2120 if (!path)
2121 return -ENOMEM;
2122
e4058b54 2123 path->reada = READA_FORWARD;
5d4f98a2
YZ
2124 path->leave_spinning = 1;
2125 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2126 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2127 num_bytes, parent, root_objectid,
2128 owner, offset,
5d4f98a2 2129 refs_to_add, extent_op);
0ed4792a 2130 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2131 goto out;
fcebe456
JB
2132
2133 /*
2134 * Ok we had -EAGAIN which means we didn't have space to insert and
2135 * inline extent ref, so just update the reference count and add a
2136 * normal backref.
2137 */
5d4f98a2 2138 leaf = path->nodes[0];
fcebe456 2139 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2140 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2141 refs = btrfs_extent_refs(leaf, item);
2142 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2143 if (extent_op)
2144 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2145
5d4f98a2 2146 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2147 btrfs_release_path(path);
56bec294 2148
e4058b54 2149 path->reada = READA_FORWARD;
b9473439 2150 path->leave_spinning = 1;
56bec294 2151 /* now insert the actual backref */
87bde3cd
JM
2152 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2153 root_objectid, owner, offset, refs_to_add);
79787eaa 2154 if (ret)
66642832 2155 btrfs_abort_transaction(trans, ret);
5d4f98a2 2156out:
56bec294 2157 btrfs_free_path(path);
30d133fc 2158 return ret;
56bec294
CM
2159}
2160
5d4f98a2 2161static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2162 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2163 struct btrfs_delayed_ref_node *node,
2164 struct btrfs_delayed_extent_op *extent_op,
2165 int insert_reserved)
56bec294 2166{
5d4f98a2
YZ
2167 int ret = 0;
2168 struct btrfs_delayed_data_ref *ref;
2169 struct btrfs_key ins;
2170 u64 parent = 0;
2171 u64 ref_root = 0;
2172 u64 flags = 0;
2173
2174 ins.objectid = node->bytenr;
2175 ins.offset = node->num_bytes;
2176 ins.type = BTRFS_EXTENT_ITEM_KEY;
2177
2178 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2179 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2180
5d4f98a2
YZ
2181 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2182 parent = ref->parent;
fcebe456 2183 ref_root = ref->root;
5d4f98a2
YZ
2184
2185 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2186 if (extent_op)
5d4f98a2 2187 flags |= extent_op->flags_to_set;
2ff7e61e 2188 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2189 parent, ref_root, flags,
2190 ref->objectid, ref->offset,
2191 &ins, node->ref_mod);
5d4f98a2 2192 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2193 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2194 ref_root, ref->objectid,
2195 ref->offset, node->ref_mod,
c682f9b3 2196 extent_op);
5d4f98a2 2197 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2198 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2199 ref_root, ref->objectid,
2200 ref->offset, node->ref_mod,
c682f9b3 2201 extent_op);
5d4f98a2
YZ
2202 } else {
2203 BUG();
2204 }
2205 return ret;
2206}
2207
2208static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2209 struct extent_buffer *leaf,
2210 struct btrfs_extent_item *ei)
2211{
2212 u64 flags = btrfs_extent_flags(leaf, ei);
2213 if (extent_op->update_flags) {
2214 flags |= extent_op->flags_to_set;
2215 btrfs_set_extent_flags(leaf, ei, flags);
2216 }
2217
2218 if (extent_op->update_key) {
2219 struct btrfs_tree_block_info *bi;
2220 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2221 bi = (struct btrfs_tree_block_info *)(ei + 1);
2222 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2223 }
2224}
2225
2226static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2227 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2228 struct btrfs_delayed_ref_node *node,
2229 struct btrfs_delayed_extent_op *extent_op)
2230{
2231 struct btrfs_key key;
2232 struct btrfs_path *path;
2233 struct btrfs_extent_item *ei;
2234 struct extent_buffer *leaf;
2235 u32 item_size;
56bec294 2236 int ret;
5d4f98a2 2237 int err = 0;
b1c79e09 2238 int metadata = !extent_op->is_data;
5d4f98a2 2239
79787eaa
JM
2240 if (trans->aborted)
2241 return 0;
2242
0b246afa 2243 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2244 metadata = 0;
2245
5d4f98a2
YZ
2246 path = btrfs_alloc_path();
2247 if (!path)
2248 return -ENOMEM;
2249
2250 key.objectid = node->bytenr;
5d4f98a2 2251
3173a18f 2252 if (metadata) {
3173a18f 2253 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2254 key.offset = extent_op->level;
3173a18f
JB
2255 } else {
2256 key.type = BTRFS_EXTENT_ITEM_KEY;
2257 key.offset = node->num_bytes;
2258 }
2259
2260again:
e4058b54 2261 path->reada = READA_FORWARD;
5d4f98a2 2262 path->leave_spinning = 1;
0b246afa 2263 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2264 if (ret < 0) {
2265 err = ret;
2266 goto out;
2267 }
2268 if (ret > 0) {
3173a18f 2269 if (metadata) {
55994887
FDBM
2270 if (path->slots[0] > 0) {
2271 path->slots[0]--;
2272 btrfs_item_key_to_cpu(path->nodes[0], &key,
2273 path->slots[0]);
2274 if (key.objectid == node->bytenr &&
2275 key.type == BTRFS_EXTENT_ITEM_KEY &&
2276 key.offset == node->num_bytes)
2277 ret = 0;
2278 }
2279 if (ret > 0) {
2280 btrfs_release_path(path);
2281 metadata = 0;
3173a18f 2282
55994887
FDBM
2283 key.objectid = node->bytenr;
2284 key.offset = node->num_bytes;
2285 key.type = BTRFS_EXTENT_ITEM_KEY;
2286 goto again;
2287 }
2288 } else {
2289 err = -EIO;
2290 goto out;
3173a18f 2291 }
5d4f98a2
YZ
2292 }
2293
2294 leaf = path->nodes[0];
2295 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2296#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2297 if (item_size < sizeof(*ei)) {
87bde3cd 2298 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2299 if (ret < 0) {
2300 err = ret;
2301 goto out;
2302 }
2303 leaf = path->nodes[0];
2304 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2305 }
2306#endif
2307 BUG_ON(item_size < sizeof(*ei));
2308 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2309 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2310
5d4f98a2
YZ
2311 btrfs_mark_buffer_dirty(leaf);
2312out:
2313 btrfs_free_path(path);
2314 return err;
56bec294
CM
2315}
2316
5d4f98a2 2317static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2318 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2319 struct btrfs_delayed_ref_node *node,
2320 struct btrfs_delayed_extent_op *extent_op,
2321 int insert_reserved)
56bec294
CM
2322{
2323 int ret = 0;
5d4f98a2
YZ
2324 struct btrfs_delayed_tree_ref *ref;
2325 struct btrfs_key ins;
2326 u64 parent = 0;
2327 u64 ref_root = 0;
0b246afa 2328 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
56bec294 2329
5d4f98a2 2330 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2331 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2332
5d4f98a2
YZ
2333 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2334 parent = ref->parent;
fcebe456 2335 ref_root = ref->root;
5d4f98a2 2336
3173a18f
JB
2337 ins.objectid = node->bytenr;
2338 if (skinny_metadata) {
2339 ins.offset = ref->level;
2340 ins.type = BTRFS_METADATA_ITEM_KEY;
2341 } else {
2342 ins.offset = node->num_bytes;
2343 ins.type = BTRFS_EXTENT_ITEM_KEY;
2344 }
2345
02794222 2346 if (node->ref_mod != 1) {
2ff7e61e 2347 btrfs_err(fs_info,
02794222
LB
2348 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2349 node->bytenr, node->ref_mod, node->action, ref_root,
2350 parent);
2351 return -EIO;
2352 }
5d4f98a2 2353 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2354 BUG_ON(!extent_op || !extent_op->update_flags);
2ff7e61e 2355 ret = alloc_reserved_tree_block(trans, fs_info,
5d4f98a2
YZ
2356 parent, ref_root,
2357 extent_op->flags_to_set,
2358 &extent_op->key,
b06c4bf5 2359 ref->level, &ins);
5d4f98a2 2360 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2361 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2362 parent, ref_root,
2363 ref->level, 0, 1,
fcebe456 2364 extent_op);
5d4f98a2 2365 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2366 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2367 parent, ref_root,
2368 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2369 } else {
2370 BUG();
2371 }
56bec294
CM
2372 return ret;
2373}
2374
2375/* helper function to actually process a single delayed ref entry */
5d4f98a2 2376static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2377 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2378 struct btrfs_delayed_ref_node *node,
2379 struct btrfs_delayed_extent_op *extent_op,
2380 int insert_reserved)
56bec294 2381{
79787eaa
JM
2382 int ret = 0;
2383
857cc2fc
JB
2384 if (trans->aborted) {
2385 if (insert_reserved)
2ff7e61e 2386 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2387 node->num_bytes, 1);
79787eaa 2388 return 0;
857cc2fc 2389 }
79787eaa 2390
5d4f98a2 2391 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2392 struct btrfs_delayed_ref_head *head;
2393 /*
2394 * we've hit the end of the chain and we were supposed
2395 * to insert this extent into the tree. But, it got
2396 * deleted before we ever needed to insert it, so all
2397 * we have to do is clean up the accounting
2398 */
5d4f98a2
YZ
2399 BUG_ON(extent_op);
2400 head = btrfs_delayed_node_to_head(node);
0b246afa 2401 trace_run_delayed_ref_head(fs_info, node, head, node->action);
599c75ec 2402
56bec294 2403 if (insert_reserved) {
2ff7e61e 2404 btrfs_pin_extent(fs_info, node->bytenr,
f0486c68 2405 node->num_bytes, 1);
5d4f98a2 2406 if (head->is_data) {
0b246afa 2407 ret = btrfs_del_csums(trans, fs_info,
5d4f98a2
YZ
2408 node->bytenr,
2409 node->num_bytes);
5d4f98a2 2410 }
56bec294 2411 }
297d750b
QW
2412
2413 /* Also free its reserved qgroup space */
0b246afa 2414 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
297d750b 2415 head->qgroup_reserved);
79787eaa 2416 return ret;
56bec294
CM
2417 }
2418
5d4f98a2
YZ
2419 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2420 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2421 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2422 insert_reserved);
2423 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2424 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2425 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2426 insert_reserved);
2427 else
2428 BUG();
2429 return ret;
56bec294
CM
2430}
2431
c6fc2454 2432static inline struct btrfs_delayed_ref_node *
56bec294
CM
2433select_delayed_ref(struct btrfs_delayed_ref_head *head)
2434{
cffc3374
FM
2435 struct btrfs_delayed_ref_node *ref;
2436
c6fc2454
QW
2437 if (list_empty(&head->ref_list))
2438 return NULL;
d7df2c79 2439
cffc3374
FM
2440 /*
2441 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2442 * This is to prevent a ref count from going down to zero, which deletes
2443 * the extent item from the extent tree, when there still are references
2444 * to add, which would fail because they would not find the extent item.
2445 */
1d57ee94
WX
2446 if (!list_empty(&head->ref_add_list))
2447 return list_first_entry(&head->ref_add_list,
2448 struct btrfs_delayed_ref_node, add_list);
2449
2450 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2451 list);
2452 ASSERT(list_empty(&ref->add_list));
2453 return ref;
56bec294
CM
2454}
2455
79787eaa
JM
2456/*
2457 * Returns 0 on success or if called with an already aborted transaction.
2458 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2459 */
d7df2c79 2460static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2461 struct btrfs_fs_info *fs_info,
d7df2c79 2462 unsigned long nr)
56bec294 2463{
56bec294
CM
2464 struct btrfs_delayed_ref_root *delayed_refs;
2465 struct btrfs_delayed_ref_node *ref;
2466 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2467 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2468 ktime_t start = ktime_get();
56bec294 2469 int ret;
d7df2c79 2470 unsigned long count = 0;
0a2b2a84 2471 unsigned long actual_count = 0;
56bec294 2472 int must_insert_reserved = 0;
56bec294
CM
2473
2474 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2475 while (1) {
2476 if (!locked_ref) {
d7df2c79 2477 if (count >= nr)
56bec294 2478 break;
56bec294 2479
d7df2c79
JB
2480 spin_lock(&delayed_refs->lock);
2481 locked_ref = btrfs_select_ref_head(trans);
2482 if (!locked_ref) {
2483 spin_unlock(&delayed_refs->lock);
2484 break;
2485 }
c3e69d58
CM
2486
2487 /* grab the lock that says we are going to process
2488 * all the refs for this head */
2489 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2490 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2491 /*
2492 * we may have dropped the spin lock to get the head
2493 * mutex lock, and that might have given someone else
2494 * time to free the head. If that's true, it has been
2495 * removed from our list and we can move on.
2496 */
2497 if (ret == -EAGAIN) {
2498 locked_ref = NULL;
2499 count++;
2500 continue;
56bec294
CM
2501 }
2502 }
a28ec197 2503
2c3cf7d5
FM
2504 /*
2505 * We need to try and merge add/drops of the same ref since we
2506 * can run into issues with relocate dropping the implicit ref
2507 * and then it being added back again before the drop can
2508 * finish. If we merged anything we need to re-loop so we can
2509 * get a good ref.
2510 * Or we can get node references of the same type that weren't
2511 * merged when created due to bumps in the tree mod seq, and
2512 * we need to merge them to prevent adding an inline extent
2513 * backref before dropping it (triggering a BUG_ON at
2514 * insert_inline_extent_backref()).
2515 */
d7df2c79 2516 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2517 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2518 locked_ref);
ae1e206b 2519
d1270cd9
AJ
2520 /*
2521 * locked_ref is the head node, so we have to go one
2522 * node back for any delayed ref updates
2523 */
2524 ref = select_delayed_ref(locked_ref);
2525
2526 if (ref && ref->seq &&
097b8a7c 2527 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2528 spin_unlock(&locked_ref->lock);
d7df2c79
JB
2529 spin_lock(&delayed_refs->lock);
2530 locked_ref->processing = 0;
d1270cd9
AJ
2531 delayed_refs->num_heads_ready++;
2532 spin_unlock(&delayed_refs->lock);
d0280996 2533 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79 2534 locked_ref = NULL;
d1270cd9 2535 cond_resched();
27a377db 2536 count++;
d1270cd9
AJ
2537 continue;
2538 }
2539
56bec294
CM
2540 /*
2541 * record the must insert reserved flag before we
2542 * drop the spin lock.
2543 */
2544 must_insert_reserved = locked_ref->must_insert_reserved;
2545 locked_ref->must_insert_reserved = 0;
7bb86316 2546
5d4f98a2
YZ
2547 extent_op = locked_ref->extent_op;
2548 locked_ref->extent_op = NULL;
2549
56bec294 2550 if (!ref) {
d7df2c79
JB
2551
2552
56bec294
CM
2553 /* All delayed refs have been processed, Go ahead
2554 * and send the head node to run_one_delayed_ref,
2555 * so that any accounting fixes can happen
2556 */
2557 ref = &locked_ref->node;
5d4f98a2
YZ
2558
2559 if (extent_op && must_insert_reserved) {
78a6184a 2560 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2561 extent_op = NULL;
2562 }
2563
2564 if (extent_op) {
d7df2c79 2565 spin_unlock(&locked_ref->lock);
2ff7e61e 2566 ret = run_delayed_extent_op(trans, fs_info,
5d4f98a2 2567 ref, extent_op);
78a6184a 2568 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2569
79787eaa 2570 if (ret) {
857cc2fc
JB
2571 /*
2572 * Need to reset must_insert_reserved if
2573 * there was an error so the abort stuff
2574 * can cleanup the reserved space
2575 * properly.
2576 */
2577 if (must_insert_reserved)
2578 locked_ref->must_insert_reserved = 1;
aa7c8da3 2579 spin_lock(&delayed_refs->lock);
d7df2c79 2580 locked_ref->processing = 0;
aa7c8da3
JM
2581 delayed_refs->num_heads_ready++;
2582 spin_unlock(&delayed_refs->lock);
5d163e0e
JM
2583 btrfs_debug(fs_info,
2584 "run_delayed_extent_op returned %d",
2585 ret);
093486c4 2586 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2587 return ret;
2588 }
d7df2c79 2589 continue;
5d4f98a2 2590 }
02217ed2 2591
d7df2c79 2592 /*
01327610 2593 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2594 * delayed ref lock and then re-check to make sure
2595 * nobody got added.
2596 */
2597 spin_unlock(&locked_ref->lock);
2598 spin_lock(&delayed_refs->lock);
2599 spin_lock(&locked_ref->lock);
c6fc2454 2600 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2601 locked_ref->extent_op) {
d7df2c79
JB
2602 spin_unlock(&locked_ref->lock);
2603 spin_unlock(&delayed_refs->lock);
2604 continue;
2605 }
2606 ref->in_tree = 0;
2607 delayed_refs->num_heads--;
c46effa6
LB
2608 rb_erase(&locked_ref->href_node,
2609 &delayed_refs->href_root);
d7df2c79
JB
2610 spin_unlock(&delayed_refs->lock);
2611 } else {
0a2b2a84 2612 actual_count++;
d7df2c79 2613 ref->in_tree = 0;
c6fc2454 2614 list_del(&ref->list);
1d57ee94
WX
2615 if (!list_empty(&ref->add_list))
2616 list_del(&ref->add_list);
c46effa6 2617 }
d7df2c79
JB
2618 atomic_dec(&delayed_refs->num_entries);
2619
093486c4 2620 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2621 /*
2622 * when we play the delayed ref, also correct the
2623 * ref_mod on head
2624 */
2625 switch (ref->action) {
2626 case BTRFS_ADD_DELAYED_REF:
2627 case BTRFS_ADD_DELAYED_EXTENT:
2628 locked_ref->node.ref_mod -= ref->ref_mod;
2629 break;
2630 case BTRFS_DROP_DELAYED_REF:
2631 locked_ref->node.ref_mod += ref->ref_mod;
2632 break;
2633 default:
2634 WARN_ON(1);
2635 }
2636 }
d7df2c79 2637 spin_unlock(&locked_ref->lock);
925baedd 2638
2ff7e61e 2639 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2640 must_insert_reserved);
eb099670 2641
78a6184a 2642 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2643 if (ret) {
9d1032cc 2644 spin_lock(&delayed_refs->lock);
d7df2c79 2645 locked_ref->processing = 0;
9d1032cc
WX
2646 delayed_refs->num_heads_ready++;
2647 spin_unlock(&delayed_refs->lock);
093486c4
MX
2648 btrfs_delayed_ref_unlock(locked_ref);
2649 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2650 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2651 ret);
79787eaa
JM
2652 return ret;
2653 }
2654
093486c4
MX
2655 /*
2656 * If this node is a head, that means all the refs in this head
2657 * have been dealt with, and we will pick the next head to deal
2658 * with, so we must unlock the head and drop it from the cluster
2659 * list before we release it.
2660 */
2661 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2662 if (locked_ref->is_data &&
2663 locked_ref->total_ref_mod < 0) {
2664 spin_lock(&delayed_refs->lock);
2665 delayed_refs->pending_csums -= ref->num_bytes;
2666 spin_unlock(&delayed_refs->lock);
2667 }
093486c4
MX
2668 btrfs_delayed_ref_unlock(locked_ref);
2669 locked_ref = NULL;
2670 }
2671 btrfs_put_delayed_ref(ref);
2672 count++;
c3e69d58 2673 cond_resched();
c3e69d58 2674 }
0a2b2a84
JB
2675
2676 /*
2677 * We don't want to include ref heads since we can have empty ref heads
2678 * and those will drastically skew our runtime down since we just do
2679 * accounting, no actual extent tree updates.
2680 */
2681 if (actual_count > 0) {
2682 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2683 u64 avg;
2684
2685 /*
2686 * We weigh the current average higher than our current runtime
2687 * to avoid large swings in the average.
2688 */
2689 spin_lock(&delayed_refs->lock);
2690 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2691 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2692 spin_unlock(&delayed_refs->lock);
2693 }
d7df2c79 2694 return 0;
c3e69d58
CM
2695}
2696
709c0486
AJ
2697#ifdef SCRAMBLE_DELAYED_REFS
2698/*
2699 * Normally delayed refs get processed in ascending bytenr order. This
2700 * correlates in most cases to the order added. To expose dependencies on this
2701 * order, we start to process the tree in the middle instead of the beginning
2702 */
2703static u64 find_middle(struct rb_root *root)
2704{
2705 struct rb_node *n = root->rb_node;
2706 struct btrfs_delayed_ref_node *entry;
2707 int alt = 1;
2708 u64 middle;
2709 u64 first = 0, last = 0;
2710
2711 n = rb_first(root);
2712 if (n) {
2713 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2714 first = entry->bytenr;
2715 }
2716 n = rb_last(root);
2717 if (n) {
2718 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2719 last = entry->bytenr;
2720 }
2721 n = root->rb_node;
2722
2723 while (n) {
2724 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2725 WARN_ON(!entry->in_tree);
2726
2727 middle = entry->bytenr;
2728
2729 if (alt)
2730 n = n->rb_left;
2731 else
2732 n = n->rb_right;
2733
2734 alt = 1 - alt;
2735 }
2736 return middle;
2737}
2738#endif
2739
2ff7e61e 2740static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2741{
2742 u64 num_bytes;
2743
2744 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2745 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2746 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2747 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2748
2749 /*
2750 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2751 * closer to what we're really going to want to use.
1be41b78 2752 */
0b246afa 2753 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2754}
2755
1262133b
JB
2756/*
2757 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2758 * would require to store the csums for that many bytes.
2759 */
2ff7e61e 2760u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2761{
2762 u64 csum_size;
2763 u64 num_csums_per_leaf;
2764 u64 num_csums;
2765
0b246afa 2766 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2767 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2768 (u64)btrfs_super_csum_size(fs_info->super_copy));
2769 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2770 num_csums += num_csums_per_leaf - 1;
2771 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2772 return num_csums;
2773}
2774
0a2b2a84 2775int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2776 struct btrfs_fs_info *fs_info)
1be41b78
JB
2777{
2778 struct btrfs_block_rsv *global_rsv;
2779 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2780 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2781 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2782 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2783 int ret = 0;
2784
0b246afa 2785 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2786 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2787 if (num_heads > 1)
0b246afa 2788 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2789 num_bytes <<= 1;
2ff7e61e
JM
2790 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2791 fs_info->nodesize;
0b246afa 2792 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2793 num_dirty_bgs);
0b246afa 2794 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2795
2796 /*
2797 * If we can't allocate any more chunks lets make sure we have _lots_ of
2798 * wiggle room since running delayed refs can create more delayed refs.
2799 */
cb723e49
JB
2800 if (global_rsv->space_info->full) {
2801 num_dirty_bgs_bytes <<= 1;
1be41b78 2802 num_bytes <<= 1;
cb723e49 2803 }
1be41b78
JB
2804
2805 spin_lock(&global_rsv->lock);
cb723e49 2806 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2807 ret = 1;
2808 spin_unlock(&global_rsv->lock);
2809 return ret;
2810}
2811
0a2b2a84 2812int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2813 struct btrfs_fs_info *fs_info)
0a2b2a84 2814{
0a2b2a84
JB
2815 u64 num_entries =
2816 atomic_read(&trans->transaction->delayed_refs.num_entries);
2817 u64 avg_runtime;
a79b7d4b 2818 u64 val;
0a2b2a84
JB
2819
2820 smp_mb();
2821 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2822 val = num_entries * avg_runtime;
dc1a90c6 2823 if (val >= NSEC_PER_SEC)
0a2b2a84 2824 return 1;
a79b7d4b
CM
2825 if (val >= NSEC_PER_SEC / 2)
2826 return 2;
0a2b2a84 2827
2ff7e61e 2828 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2829}
2830
a79b7d4b
CM
2831struct async_delayed_refs {
2832 struct btrfs_root *root;
31b9655f 2833 u64 transid;
a79b7d4b
CM
2834 int count;
2835 int error;
2836 int sync;
2837 struct completion wait;
2838 struct btrfs_work work;
2839};
2840
2ff7e61e
JM
2841static inline struct async_delayed_refs *
2842to_async_delayed_refs(struct btrfs_work *work)
2843{
2844 return container_of(work, struct async_delayed_refs, work);
2845}
2846
a79b7d4b
CM
2847static void delayed_ref_async_start(struct btrfs_work *work)
2848{
2ff7e61e 2849 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2850 struct btrfs_trans_handle *trans;
2ff7e61e 2851 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2852 int ret;
2853
0f873eca 2854 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2855 if (btrfs_transaction_blocked(fs_info))
31b9655f 2856 goto done;
31b9655f 2857
0f873eca
CM
2858 trans = btrfs_join_transaction(async->root);
2859 if (IS_ERR(trans)) {
2860 async->error = PTR_ERR(trans);
a79b7d4b
CM
2861 goto done;
2862 }
2863
2864 /*
01327610 2865 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2866 * wait on delayed refs
2867 */
2868 trans->sync = true;
0f873eca
CM
2869
2870 /* Don't bother flushing if we got into a different transaction */
2871 if (trans->transid > async->transid)
2872 goto end;
2873
2ff7e61e 2874 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
a79b7d4b
CM
2875 if (ret)
2876 async->error = ret;
0f873eca 2877end:
3a45bb20 2878 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2879 if (ret && !async->error)
2880 async->error = ret;
2881done:
2882 if (async->sync)
2883 complete(&async->wait);
2884 else
2885 kfree(async);
2886}
2887
2ff7e61e 2888int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2889 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2890{
2891 struct async_delayed_refs *async;
2892 int ret;
2893
2894 async = kmalloc(sizeof(*async), GFP_NOFS);
2895 if (!async)
2896 return -ENOMEM;
2897
0b246afa 2898 async->root = fs_info->tree_root;
a79b7d4b
CM
2899 async->count = count;
2900 async->error = 0;
31b9655f 2901 async->transid = transid;
a79b7d4b
CM
2902 if (wait)
2903 async->sync = 1;
2904 else
2905 async->sync = 0;
2906 init_completion(&async->wait);
2907
9e0af237
LB
2908 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2909 delayed_ref_async_start, NULL, NULL);
a79b7d4b 2910
0b246afa 2911 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
2912
2913 if (wait) {
2914 wait_for_completion(&async->wait);
2915 ret = async->error;
2916 kfree(async);
2917 return ret;
2918 }
2919 return 0;
2920}
2921
c3e69d58
CM
2922/*
2923 * this starts processing the delayed reference count updates and
2924 * extent insertions we have queued up so far. count can be
2925 * 0, which means to process everything in the tree at the start
2926 * of the run (but not newly added entries), or it can be some target
2927 * number you'd like to process.
79787eaa
JM
2928 *
2929 * Returns 0 on success or if called with an aborted transaction
2930 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2931 */
2932int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2933 struct btrfs_fs_info *fs_info, unsigned long count)
c3e69d58
CM
2934{
2935 struct rb_node *node;
2936 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2937 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2938 int ret;
2939 int run_all = count == (unsigned long)-1;
d9a0540a 2940 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2941
79787eaa
JM
2942 /* We'll clean this up in btrfs_cleanup_transaction */
2943 if (trans->aborted)
2944 return 0;
2945
0b246afa 2946 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2947 return 0;
2948
c3e69d58 2949 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2950 if (count == 0)
d7df2c79 2951 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2952
c3e69d58 2953again:
709c0486
AJ
2954#ifdef SCRAMBLE_DELAYED_REFS
2955 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2956#endif
d9a0540a 2957 trans->can_flush_pending_bgs = false;
2ff7e61e 2958 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
d7df2c79 2959 if (ret < 0) {
66642832 2960 btrfs_abort_transaction(trans, ret);
d7df2c79 2961 return ret;
eb099670 2962 }
c3e69d58 2963
56bec294 2964 if (run_all) {
d7df2c79 2965 if (!list_empty(&trans->new_bgs))
2ff7e61e 2966 btrfs_create_pending_block_groups(trans, fs_info);
ea658bad 2967
d7df2c79 2968 spin_lock(&delayed_refs->lock);
c46effa6 2969 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2970 if (!node) {
2971 spin_unlock(&delayed_refs->lock);
56bec294 2972 goto out;
d7df2c79 2973 }
e9d0b13b 2974
56bec294 2975 while (node) {
c46effa6
LB
2976 head = rb_entry(node, struct btrfs_delayed_ref_head,
2977 href_node);
2978 if (btrfs_delayed_ref_is_head(&head->node)) {
2979 struct btrfs_delayed_ref_node *ref;
5caf2a00 2980
c46effa6 2981 ref = &head->node;
56bec294
CM
2982 atomic_inc(&ref->refs);
2983
2984 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2985 /*
2986 * Mutex was contended, block until it's
2987 * released and try again
2988 */
56bec294
CM
2989 mutex_lock(&head->mutex);
2990 mutex_unlock(&head->mutex);
2991
2992 btrfs_put_delayed_ref(ref);
1887be66 2993 cond_resched();
56bec294 2994 goto again;
c46effa6
LB
2995 } else {
2996 WARN_ON(1);
56bec294
CM
2997 }
2998 node = rb_next(node);
2999 }
3000 spin_unlock(&delayed_refs->lock);
d7df2c79 3001 cond_resched();
56bec294 3002 goto again;
5f39d397 3003 }
54aa1f4d 3004out:
edf39272 3005 assert_qgroups_uptodate(trans);
d9a0540a 3006 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3007 return 0;
3008}
3009
5d4f98a2 3010int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3011 struct btrfs_fs_info *fs_info,
5d4f98a2 3012 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3013 int level, int is_data)
5d4f98a2
YZ
3014{
3015 struct btrfs_delayed_extent_op *extent_op;
3016 int ret;
3017
78a6184a 3018 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3019 if (!extent_op)
3020 return -ENOMEM;
3021
3022 extent_op->flags_to_set = flags;
35b3ad50
DS
3023 extent_op->update_flags = true;
3024 extent_op->update_key = false;
3025 extent_op->is_data = is_data ? true : false;
b1c79e09 3026 extent_op->level = level;
5d4f98a2 3027
0b246afa 3028 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3029 num_bytes, extent_op);
5d4f98a2 3030 if (ret)
78a6184a 3031 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3032 return ret;
3033}
3034
e4c3b2dc 3035static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3036 struct btrfs_path *path,
3037 u64 objectid, u64 offset, u64 bytenr)
3038{
3039 struct btrfs_delayed_ref_head *head;
3040 struct btrfs_delayed_ref_node *ref;
3041 struct btrfs_delayed_data_ref *data_ref;
3042 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3043 struct btrfs_transaction *cur_trans;
5d4f98a2
YZ
3044 int ret = 0;
3045
e4c3b2dc
LB
3046 cur_trans = root->fs_info->running_transaction;
3047 if (!cur_trans)
3048 return 0;
3049
3050 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3051 spin_lock(&delayed_refs->lock);
f72ad18e 3052 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3053 if (!head) {
3054 spin_unlock(&delayed_refs->lock);
3055 return 0;
3056 }
5d4f98a2
YZ
3057
3058 if (!mutex_trylock(&head->mutex)) {
3059 atomic_inc(&head->node.refs);
3060 spin_unlock(&delayed_refs->lock);
3061
b3b4aa74 3062 btrfs_release_path(path);
5d4f98a2 3063
8cc33e5c
DS
3064 /*
3065 * Mutex was contended, block until it's released and let
3066 * caller try again
3067 */
5d4f98a2
YZ
3068 mutex_lock(&head->mutex);
3069 mutex_unlock(&head->mutex);
3070 btrfs_put_delayed_ref(&head->node);
3071 return -EAGAIN;
3072 }
d7df2c79 3073 spin_unlock(&delayed_refs->lock);
5d4f98a2 3074
d7df2c79 3075 spin_lock(&head->lock);
c6fc2454 3076 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3077 /* If it's a shared ref we know a cross reference exists */
3078 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3079 ret = 1;
3080 break;
3081 }
5d4f98a2 3082
d7df2c79 3083 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3084
d7df2c79
JB
3085 /*
3086 * If our ref doesn't match the one we're currently looking at
3087 * then we have a cross reference.
3088 */
3089 if (data_ref->root != root->root_key.objectid ||
3090 data_ref->objectid != objectid ||
3091 data_ref->offset != offset) {
3092 ret = 1;
3093 break;
3094 }
5d4f98a2 3095 }
d7df2c79 3096 spin_unlock(&head->lock);
5d4f98a2 3097 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3098 return ret;
3099}
3100
e4c3b2dc 3101static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3102 struct btrfs_path *path,
3103 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3104{
0b246afa
JM
3105 struct btrfs_fs_info *fs_info = root->fs_info;
3106 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3107 struct extent_buffer *leaf;
5d4f98a2
YZ
3108 struct btrfs_extent_data_ref *ref;
3109 struct btrfs_extent_inline_ref *iref;
3110 struct btrfs_extent_item *ei;
f321e491 3111 struct btrfs_key key;
5d4f98a2 3112 u32 item_size;
be20aa9d 3113 int ret;
925baedd 3114
be20aa9d 3115 key.objectid = bytenr;
31840ae1 3116 key.offset = (u64)-1;
f321e491 3117 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3118
be20aa9d
CM
3119 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3120 if (ret < 0)
3121 goto out;
79787eaa 3122 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3123
3124 ret = -ENOENT;
3125 if (path->slots[0] == 0)
31840ae1 3126 goto out;
be20aa9d 3127
31840ae1 3128 path->slots[0]--;
f321e491 3129 leaf = path->nodes[0];
5d4f98a2 3130 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3131
5d4f98a2 3132 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3133 goto out;
f321e491 3134
5d4f98a2
YZ
3135 ret = 1;
3136 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3137#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3138 if (item_size < sizeof(*ei)) {
3139 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3140 goto out;
3141 }
3142#endif
3143 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3144
5d4f98a2
YZ
3145 if (item_size != sizeof(*ei) +
3146 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3147 goto out;
be20aa9d 3148
5d4f98a2
YZ
3149 if (btrfs_extent_generation(leaf, ei) <=
3150 btrfs_root_last_snapshot(&root->root_item))
3151 goto out;
3152
3153 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3154 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3155 BTRFS_EXTENT_DATA_REF_KEY)
3156 goto out;
3157
3158 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3159 if (btrfs_extent_refs(leaf, ei) !=
3160 btrfs_extent_data_ref_count(leaf, ref) ||
3161 btrfs_extent_data_ref_root(leaf, ref) !=
3162 root->root_key.objectid ||
3163 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3164 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3165 goto out;
3166
3167 ret = 0;
3168out:
3169 return ret;
3170}
3171
e4c3b2dc
LB
3172int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3173 u64 bytenr)
5d4f98a2
YZ
3174{
3175 struct btrfs_path *path;
3176 int ret;
3177 int ret2;
3178
3179 path = btrfs_alloc_path();
3180 if (!path)
3181 return -ENOENT;
3182
3183 do {
e4c3b2dc 3184 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3185 offset, bytenr);
3186 if (ret && ret != -ENOENT)
f321e491 3187 goto out;
80ff3856 3188
e4c3b2dc 3189 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3190 offset, bytenr);
3191 } while (ret2 == -EAGAIN);
3192
3193 if (ret2 && ret2 != -ENOENT) {
3194 ret = ret2;
3195 goto out;
f321e491 3196 }
5d4f98a2
YZ
3197
3198 if (ret != -ENOENT || ret2 != -ENOENT)
3199 ret = 0;
be20aa9d 3200out:
80ff3856 3201 btrfs_free_path(path);
f0486c68
YZ
3202 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3203 WARN_ON(ret > 0);
f321e491 3204 return ret;
be20aa9d 3205}
c5739bba 3206
5d4f98a2 3207static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3208 struct btrfs_root *root,
5d4f98a2 3209 struct extent_buffer *buf,
e339a6b0 3210 int full_backref, int inc)
31840ae1 3211{
0b246afa 3212 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3213 u64 bytenr;
5d4f98a2
YZ
3214 u64 num_bytes;
3215 u64 parent;
31840ae1 3216 u64 ref_root;
31840ae1 3217 u32 nritems;
31840ae1
ZY
3218 struct btrfs_key key;
3219 struct btrfs_file_extent_item *fi;
3220 int i;
3221 int level;
3222 int ret = 0;
2ff7e61e
JM
3223 int (*process_func)(struct btrfs_trans_handle *,
3224 struct btrfs_fs_info *,
b06c4bf5 3225 u64, u64, u64, u64, u64, u64);
31840ae1 3226
fccb84c9 3227
0b246afa 3228 if (btrfs_is_testing(fs_info))
faa2dbf0 3229 return 0;
fccb84c9 3230
31840ae1 3231 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3232 nritems = btrfs_header_nritems(buf);
3233 level = btrfs_header_level(buf);
3234
27cdeb70 3235 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3236 return 0;
31840ae1 3237
5d4f98a2
YZ
3238 if (inc)
3239 process_func = btrfs_inc_extent_ref;
3240 else
3241 process_func = btrfs_free_extent;
31840ae1 3242
5d4f98a2
YZ
3243 if (full_backref)
3244 parent = buf->start;
3245 else
3246 parent = 0;
3247
3248 for (i = 0; i < nritems; i++) {
31840ae1 3249 if (level == 0) {
5d4f98a2 3250 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3251 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3252 continue;
5d4f98a2 3253 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3254 struct btrfs_file_extent_item);
3255 if (btrfs_file_extent_type(buf, fi) ==
3256 BTRFS_FILE_EXTENT_INLINE)
3257 continue;
3258 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3259 if (bytenr == 0)
3260 continue;
5d4f98a2
YZ
3261
3262 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3263 key.offset -= btrfs_file_extent_offset(buf, fi);
2ff7e61e 3264 ret = process_func(trans, fs_info, bytenr, num_bytes,
5d4f98a2 3265 parent, ref_root, key.objectid,
b06c4bf5 3266 key.offset);
31840ae1
ZY
3267 if (ret)
3268 goto fail;
3269 } else {
5d4f98a2 3270 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3271 num_bytes = fs_info->nodesize;
2ff7e61e 3272 ret = process_func(trans, fs_info, bytenr, num_bytes,
b06c4bf5 3273 parent, ref_root, level - 1, 0);
31840ae1
ZY
3274 if (ret)
3275 goto fail;
3276 }
3277 }
3278 return 0;
3279fail:
5d4f98a2
YZ
3280 return ret;
3281}
3282
3283int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3284 struct extent_buffer *buf, int full_backref)
5d4f98a2 3285{
e339a6b0 3286 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3287}
3288
3289int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3290 struct extent_buffer *buf, int full_backref)
5d4f98a2 3291{
e339a6b0 3292 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3293}
3294
9078a3e1 3295static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3296 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3297 struct btrfs_path *path,
3298 struct btrfs_block_group_cache *cache)
3299{
3300 int ret;
0b246afa 3301 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3302 unsigned long bi;
3303 struct extent_buffer *leaf;
9078a3e1 3304
9078a3e1 3305 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3306 if (ret) {
3307 if (ret > 0)
3308 ret = -ENOENT;
54aa1f4d 3309 goto fail;
df95e7f0 3310 }
5f39d397
CM
3311
3312 leaf = path->nodes[0];
3313 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3314 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3315 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3316fail:
24b89d08 3317 btrfs_release_path(path);
df95e7f0 3318 return ret;
9078a3e1
CM
3319
3320}
3321
4a8c9a62 3322static struct btrfs_block_group_cache *
2ff7e61e 3323next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3324 struct btrfs_block_group_cache *cache)
3325{
3326 struct rb_node *node;
292cbd51 3327
0b246afa 3328 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3329
3330 /* If our block group was removed, we need a full search. */
3331 if (RB_EMPTY_NODE(&cache->cache_node)) {
3332 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3333
0b246afa 3334 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3335 btrfs_put_block_group(cache);
0b246afa 3336 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3337 }
4a8c9a62
YZ
3338 node = rb_next(&cache->cache_node);
3339 btrfs_put_block_group(cache);
3340 if (node) {
3341 cache = rb_entry(node, struct btrfs_block_group_cache,
3342 cache_node);
11dfe35a 3343 btrfs_get_block_group(cache);
4a8c9a62
YZ
3344 } else
3345 cache = NULL;
0b246afa 3346 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3347 return cache;
3348}
3349
0af3d00b
JB
3350static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3351 struct btrfs_trans_handle *trans,
3352 struct btrfs_path *path)
3353{
0b246afa
JM
3354 struct btrfs_fs_info *fs_info = block_group->fs_info;
3355 struct btrfs_root *root = fs_info->tree_root;
0af3d00b
JB
3356 struct inode *inode = NULL;
3357 u64 alloc_hint = 0;
2b20982e 3358 int dcs = BTRFS_DC_ERROR;
f8c269d7 3359 u64 num_pages = 0;
0af3d00b
JB
3360 int retries = 0;
3361 int ret = 0;
3362
3363 /*
3364 * If this block group is smaller than 100 megs don't bother caching the
3365 * block group.
3366 */
ee22184b 3367 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3368 spin_lock(&block_group->lock);
3369 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3370 spin_unlock(&block_group->lock);
3371 return 0;
3372 }
3373
0c0ef4bc
JB
3374 if (trans->aborted)
3375 return 0;
0af3d00b 3376again:
77ab86bf 3377 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3378 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3379 ret = PTR_ERR(inode);
b3b4aa74 3380 btrfs_release_path(path);
0af3d00b
JB
3381 goto out;
3382 }
3383
3384 if (IS_ERR(inode)) {
3385 BUG_ON(retries);
3386 retries++;
3387
3388 if (block_group->ro)
3389 goto out_free;
3390
77ab86bf
JM
3391 ret = create_free_space_inode(fs_info, trans, block_group,
3392 path);
0af3d00b
JB
3393 if (ret)
3394 goto out_free;
3395 goto again;
3396 }
3397
5b0e95bf
JB
3398 /* We've already setup this transaction, go ahead and exit */
3399 if (block_group->cache_generation == trans->transid &&
3400 i_size_read(inode)) {
3401 dcs = BTRFS_DC_SETUP;
3402 goto out_put;
3403 }
3404
0af3d00b
JB
3405 /*
3406 * We want to set the generation to 0, that way if anything goes wrong
3407 * from here on out we know not to trust this cache when we load up next
3408 * time.
3409 */
3410 BTRFS_I(inode)->generation = 0;
3411 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3412 if (ret) {
3413 /*
3414 * So theoretically we could recover from this, simply set the
3415 * super cache generation to 0 so we know to invalidate the
3416 * cache, but then we'd have to keep track of the block groups
3417 * that fail this way so we know we _have_ to reset this cache
3418 * before the next commit or risk reading stale cache. So to
3419 * limit our exposure to horrible edge cases lets just abort the
3420 * transaction, this only happens in really bad situations
3421 * anyway.
3422 */
66642832 3423 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3424 goto out_put;
3425 }
0af3d00b
JB
3426 WARN_ON(ret);
3427
3428 if (i_size_read(inode) > 0) {
2ff7e61e 3429 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3430 &fs_info->global_block_rsv);
7b61cd92
MX
3431 if (ret)
3432 goto out_put;
3433
77ab86bf 3434 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3435 if (ret)
3436 goto out_put;
3437 }
3438
3439 spin_lock(&block_group->lock);
cf7c1ef6 3440 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3441 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3442 /*
3443 * don't bother trying to write stuff out _if_
3444 * a) we're not cached,
3445 * b) we're with nospace_cache mount option.
3446 */
2b20982e 3447 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3448 spin_unlock(&block_group->lock);
3449 goto out_put;
3450 }
3451 spin_unlock(&block_group->lock);
3452
2968b1f4
JB
3453 /*
3454 * We hit an ENOSPC when setting up the cache in this transaction, just
3455 * skip doing the setup, we've already cleared the cache so we're safe.
3456 */
3457 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3458 ret = -ENOSPC;
3459 goto out_put;
3460 }
3461
6fc823b1
JB
3462 /*
3463 * Try to preallocate enough space based on how big the block group is.
3464 * Keep in mind this has to include any pinned space which could end up
3465 * taking up quite a bit since it's not folded into the other space
3466 * cache.
3467 */
ee22184b 3468 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3469 if (!num_pages)
3470 num_pages = 1;
3471
0af3d00b 3472 num_pages *= 16;
09cbfeaf 3473 num_pages *= PAGE_SIZE;
0af3d00b 3474
7cf5b976 3475 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3476 if (ret)
3477 goto out_put;
3478
3479 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3480 num_pages, num_pages,
3481 &alloc_hint);
2968b1f4
JB
3482 /*
3483 * Our cache requires contiguous chunks so that we don't modify a bunch
3484 * of metadata or split extents when writing the cache out, which means
3485 * we can enospc if we are heavily fragmented in addition to just normal
3486 * out of space conditions. So if we hit this just skip setting up any
3487 * other block groups for this transaction, maybe we'll unpin enough
3488 * space the next time around.
3489 */
2b20982e
JB
3490 if (!ret)
3491 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3492 else if (ret == -ENOSPC)
3493 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3494
0af3d00b
JB
3495out_put:
3496 iput(inode);
3497out_free:
b3b4aa74 3498 btrfs_release_path(path);
0af3d00b
JB
3499out:
3500 spin_lock(&block_group->lock);
e65cbb94 3501 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3502 block_group->cache_generation = trans->transid;
2b20982e 3503 block_group->disk_cache_state = dcs;
0af3d00b
JB
3504 spin_unlock(&block_group->lock);
3505
3506 return ret;
3507}
3508
dcdf7f6d 3509int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3510 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3511{
3512 struct btrfs_block_group_cache *cache, *tmp;
3513 struct btrfs_transaction *cur_trans = trans->transaction;
3514 struct btrfs_path *path;
3515
3516 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3517 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3518 return 0;
3519
3520 path = btrfs_alloc_path();
3521 if (!path)
3522 return -ENOMEM;
3523
3524 /* Could add new block groups, use _safe just in case */
3525 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3526 dirty_list) {
3527 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3528 cache_save_setup(cache, trans, path);
3529 }
3530
3531 btrfs_free_path(path);
3532 return 0;
3533}
3534
1bbc621e
CM
3535/*
3536 * transaction commit does final block group cache writeback during a
3537 * critical section where nothing is allowed to change the FS. This is
3538 * required in order for the cache to actually match the block group,
3539 * but can introduce a lot of latency into the commit.
3540 *
3541 * So, btrfs_start_dirty_block_groups is here to kick off block group
3542 * cache IO. There's a chance we'll have to redo some of it if the
3543 * block group changes again during the commit, but it greatly reduces
3544 * the commit latency by getting rid of the easy block groups while
3545 * we're still allowing others to join the commit.
3546 */
3547int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3548 struct btrfs_fs_info *fs_info)
9078a3e1 3549{
4a8c9a62 3550 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3551 struct btrfs_transaction *cur_trans = trans->transaction;
3552 int ret = 0;
c9dc4c65 3553 int should_put;
1bbc621e
CM
3554 struct btrfs_path *path = NULL;
3555 LIST_HEAD(dirty);
3556 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3557 int num_started = 0;
1bbc621e
CM
3558 int loops = 0;
3559
3560 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3561 if (list_empty(&cur_trans->dirty_bgs)) {
3562 spin_unlock(&cur_trans->dirty_bgs_lock);
3563 return 0;
1bbc621e 3564 }
b58d1a9e 3565 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3566 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3567
1bbc621e 3568again:
1bbc621e
CM
3569 /*
3570 * make sure all the block groups on our dirty list actually
3571 * exist
3572 */
2ff7e61e 3573 btrfs_create_pending_block_groups(trans, fs_info);
1bbc621e
CM
3574
3575 if (!path) {
3576 path = btrfs_alloc_path();
3577 if (!path)
3578 return -ENOMEM;
3579 }
3580
b58d1a9e
FM
3581 /*
3582 * cache_write_mutex is here only to save us from balance or automatic
3583 * removal of empty block groups deleting this block group while we are
3584 * writing out the cache
3585 */
3586 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3587 while (!list_empty(&dirty)) {
3588 cache = list_first_entry(&dirty,
3589 struct btrfs_block_group_cache,
3590 dirty_list);
1bbc621e
CM
3591 /*
3592 * this can happen if something re-dirties a block
3593 * group that is already under IO. Just wait for it to
3594 * finish and then do it all again
3595 */
3596 if (!list_empty(&cache->io_list)) {
3597 list_del_init(&cache->io_list);
afdb5718 3598 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3599 btrfs_put_block_group(cache);
3600 }
3601
3602
3603 /*
3604 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3605 * if it should update the cache_state. Don't delete
3606 * until after we wait.
3607 *
3608 * Since we're not running in the commit critical section
3609 * we need the dirty_bgs_lock to protect from update_block_group
3610 */
3611 spin_lock(&cur_trans->dirty_bgs_lock);
3612 list_del_init(&cache->dirty_list);
3613 spin_unlock(&cur_trans->dirty_bgs_lock);
3614
3615 should_put = 1;
3616
3617 cache_save_setup(cache, trans, path);
3618
3619 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3620 cache->io_ctl.inode = NULL;
0b246afa 3621 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3622 cache, path);
1bbc621e
CM
3623 if (ret == 0 && cache->io_ctl.inode) {
3624 num_started++;
3625 should_put = 0;
3626
3627 /*
3628 * the cache_write_mutex is protecting
3629 * the io_list
3630 */
3631 list_add_tail(&cache->io_list, io);
3632 } else {
3633 /*
3634 * if we failed to write the cache, the
3635 * generation will be bad and life goes on
3636 */
3637 ret = 0;
3638 }
3639 }
ff1f8250 3640 if (!ret) {
2ff7e61e
JM
3641 ret = write_one_cache_group(trans, fs_info,
3642 path, cache);
ff1f8250
FM
3643 /*
3644 * Our block group might still be attached to the list
3645 * of new block groups in the transaction handle of some
3646 * other task (struct btrfs_trans_handle->new_bgs). This
3647 * means its block group item isn't yet in the extent
3648 * tree. If this happens ignore the error, as we will
3649 * try again later in the critical section of the
3650 * transaction commit.
3651 */
3652 if (ret == -ENOENT) {
3653 ret = 0;
3654 spin_lock(&cur_trans->dirty_bgs_lock);
3655 if (list_empty(&cache->dirty_list)) {
3656 list_add_tail(&cache->dirty_list,
3657 &cur_trans->dirty_bgs);
3658 btrfs_get_block_group(cache);
3659 }
3660 spin_unlock(&cur_trans->dirty_bgs_lock);
3661 } else if (ret) {
66642832 3662 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3663 }
3664 }
1bbc621e
CM
3665
3666 /* if its not on the io list, we need to put the block group */
3667 if (should_put)
3668 btrfs_put_block_group(cache);
3669
3670 if (ret)
3671 break;
b58d1a9e
FM
3672
3673 /*
3674 * Avoid blocking other tasks for too long. It might even save
3675 * us from writing caches for block groups that are going to be
3676 * removed.
3677 */
3678 mutex_unlock(&trans->transaction->cache_write_mutex);
3679 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3680 }
b58d1a9e 3681 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3682
3683 /*
3684 * go through delayed refs for all the stuff we've just kicked off
3685 * and then loop back (just once)
3686 */
2ff7e61e 3687 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1bbc621e
CM
3688 if (!ret && loops == 0) {
3689 loops++;
3690 spin_lock(&cur_trans->dirty_bgs_lock);
3691 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3692 /*
3693 * dirty_bgs_lock protects us from concurrent block group
3694 * deletes too (not just cache_write_mutex).
3695 */
3696 if (!list_empty(&dirty)) {
3697 spin_unlock(&cur_trans->dirty_bgs_lock);
3698 goto again;
3699 }
1bbc621e 3700 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3701 } else if (ret < 0) {
2ff7e61e 3702 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3703 }
3704
3705 btrfs_free_path(path);
3706 return ret;
3707}
3708
3709int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3710 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3711{
3712 struct btrfs_block_group_cache *cache;
3713 struct btrfs_transaction *cur_trans = trans->transaction;
3714 int ret = 0;
3715 int should_put;
3716 struct btrfs_path *path;
3717 struct list_head *io = &cur_trans->io_bgs;
3718 int num_started = 0;
9078a3e1
CM
3719
3720 path = btrfs_alloc_path();
3721 if (!path)
3722 return -ENOMEM;
3723
ce93ec54 3724 /*
e44081ef
FM
3725 * Even though we are in the critical section of the transaction commit,
3726 * we can still have concurrent tasks adding elements to this
3727 * transaction's list of dirty block groups. These tasks correspond to
3728 * endio free space workers started when writeback finishes for a
3729 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3730 * allocate new block groups as a result of COWing nodes of the root
3731 * tree when updating the free space inode. The writeback for the space
3732 * caches is triggered by an earlier call to
3733 * btrfs_start_dirty_block_groups() and iterations of the following
3734 * loop.
3735 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3736 * delayed refs to make sure we have the best chance at doing this all
3737 * in one shot.
3738 */
e44081ef 3739 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3740 while (!list_empty(&cur_trans->dirty_bgs)) {
3741 cache = list_first_entry(&cur_trans->dirty_bgs,
3742 struct btrfs_block_group_cache,
3743 dirty_list);
c9dc4c65
CM
3744
3745 /*
3746 * this can happen if cache_save_setup re-dirties a block
3747 * group that is already under IO. Just wait for it to
3748 * finish and then do it all again
3749 */
3750 if (!list_empty(&cache->io_list)) {
e44081ef 3751 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3752 list_del_init(&cache->io_list);
afdb5718 3753 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3754 btrfs_put_block_group(cache);
e44081ef 3755 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3756 }
3757
1bbc621e
CM
3758 /*
3759 * don't remove from the dirty list until after we've waited
3760 * on any pending IO
3761 */
ce93ec54 3762 list_del_init(&cache->dirty_list);
e44081ef 3763 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3764 should_put = 1;
3765
1bbc621e 3766 cache_save_setup(cache, trans, path);
c9dc4c65 3767
ce93ec54 3768 if (!ret)
2ff7e61e
JM
3769 ret = btrfs_run_delayed_refs(trans, fs_info,
3770 (unsigned long) -1);
c9dc4c65
CM
3771
3772 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3773 cache->io_ctl.inode = NULL;
0b246afa 3774 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3775 cache, path);
c9dc4c65
CM
3776 if (ret == 0 && cache->io_ctl.inode) {
3777 num_started++;
3778 should_put = 0;
1bbc621e 3779 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3780 } else {
3781 /*
3782 * if we failed to write the cache, the
3783 * generation will be bad and life goes on
3784 */
3785 ret = 0;
3786 }
3787 }
ff1f8250 3788 if (!ret) {
2ff7e61e
JM
3789 ret = write_one_cache_group(trans, fs_info,
3790 path, cache);
2bc0bb5f
FM
3791 /*
3792 * One of the free space endio workers might have
3793 * created a new block group while updating a free space
3794 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3795 * and hasn't released its transaction handle yet, in
3796 * which case the new block group is still attached to
3797 * its transaction handle and its creation has not
3798 * finished yet (no block group item in the extent tree
3799 * yet, etc). If this is the case, wait for all free
3800 * space endio workers to finish and retry. This is a
3801 * a very rare case so no need for a more efficient and
3802 * complex approach.
3803 */
3804 if (ret == -ENOENT) {
3805 wait_event(cur_trans->writer_wait,
3806 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3807 ret = write_one_cache_group(trans, fs_info,
3808 path, cache);
2bc0bb5f 3809 }
ff1f8250 3810 if (ret)
66642832 3811 btrfs_abort_transaction(trans, ret);
ff1f8250 3812 }
c9dc4c65
CM
3813
3814 /* if its not on the io list, we need to put the block group */
3815 if (should_put)
3816 btrfs_put_block_group(cache);
e44081ef 3817 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3818 }
e44081ef 3819 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3820
1bbc621e
CM
3821 while (!list_empty(io)) {
3822 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3823 io_list);
3824 list_del_init(&cache->io_list);
afdb5718 3825 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3826 btrfs_put_block_group(cache);
3827 }
3828
9078a3e1 3829 btrfs_free_path(path);
ce93ec54 3830 return ret;
9078a3e1
CM
3831}
3832
2ff7e61e 3833int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3834{
3835 struct btrfs_block_group_cache *block_group;
3836 int readonly = 0;
3837
0b246afa 3838 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3839 if (!block_group || block_group->ro)
3840 readonly = 1;
3841 if (block_group)
fa9c0d79 3842 btrfs_put_block_group(block_group);
d2fb3437
YZ
3843 return readonly;
3844}
3845
f78c436c
FM
3846bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3847{
3848 struct btrfs_block_group_cache *bg;
3849 bool ret = true;
3850
3851 bg = btrfs_lookup_block_group(fs_info, bytenr);
3852 if (!bg)
3853 return false;
3854
3855 spin_lock(&bg->lock);
3856 if (bg->ro)
3857 ret = false;
3858 else
3859 atomic_inc(&bg->nocow_writers);
3860 spin_unlock(&bg->lock);
3861
3862 /* no put on block group, done by btrfs_dec_nocow_writers */
3863 if (!ret)
3864 btrfs_put_block_group(bg);
3865
3866 return ret;
3867
3868}
3869
3870void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3871{
3872 struct btrfs_block_group_cache *bg;
3873
3874 bg = btrfs_lookup_block_group(fs_info, bytenr);
3875 ASSERT(bg);
3876 if (atomic_dec_and_test(&bg->nocow_writers))
3877 wake_up_atomic_t(&bg->nocow_writers);
3878 /*
3879 * Once for our lookup and once for the lookup done by a previous call
3880 * to btrfs_inc_nocow_writers()
3881 */
3882 btrfs_put_block_group(bg);
3883 btrfs_put_block_group(bg);
3884}
3885
3886static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3887{
3888 schedule();
3889 return 0;
3890}
3891
3892void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3893{
3894 wait_on_atomic_t(&bg->nocow_writers,
3895 btrfs_wait_nocow_writers_atomic_t,
3896 TASK_UNINTERRUPTIBLE);
3897}
3898
6ab0a202
JM
3899static const char *alloc_name(u64 flags)
3900{
3901 switch (flags) {
3902 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3903 return "mixed";
3904 case BTRFS_BLOCK_GROUP_METADATA:
3905 return "metadata";
3906 case BTRFS_BLOCK_GROUP_DATA:
3907 return "data";
3908 case BTRFS_BLOCK_GROUP_SYSTEM:
3909 return "system";
3910 default:
3911 WARN_ON(1);
3912 return "invalid-combination";
3913 };
3914}
3915
593060d7
CM
3916static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3917 u64 total_bytes, u64 bytes_used,
e40edf2d 3918 u64 bytes_readonly,
593060d7
CM
3919 struct btrfs_space_info **space_info)
3920{
3921 struct btrfs_space_info *found;
b742bb82
YZ
3922 int i;
3923 int factor;
b150a4f1 3924 int ret;
b742bb82
YZ
3925
3926 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3927 BTRFS_BLOCK_GROUP_RAID10))
3928 factor = 2;
3929 else
3930 factor = 1;
593060d7
CM
3931
3932 found = __find_space_info(info, flags);
3933 if (found) {
25179201 3934 spin_lock(&found->lock);
593060d7 3935 found->total_bytes += total_bytes;
89a55897 3936 found->disk_total += total_bytes * factor;
593060d7 3937 found->bytes_used += bytes_used;
b742bb82 3938 found->disk_used += bytes_used * factor;
e40edf2d 3939 found->bytes_readonly += bytes_readonly;
2e6e5183
FM
3940 if (total_bytes > 0)
3941 found->full = 0;
957780eb
JB
3942 space_info_add_new_bytes(info, found, total_bytes -
3943 bytes_used - bytes_readonly);
25179201 3944 spin_unlock(&found->lock);
593060d7
CM
3945 *space_info = found;
3946 return 0;
3947 }
c146afad 3948 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3949 if (!found)
3950 return -ENOMEM;
3951
908c7f19 3952 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3953 if (ret) {
3954 kfree(found);
3955 return ret;
3956 }
3957
c1895442 3958 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3959 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3960 init_rwsem(&found->groups_sem);
0f9dd46c 3961 spin_lock_init(&found->lock);
52ba6929 3962 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3963 found->total_bytes = total_bytes;
89a55897 3964 found->disk_total = total_bytes * factor;
593060d7 3965 found->bytes_used = bytes_used;
b742bb82 3966 found->disk_used = bytes_used * factor;
593060d7 3967 found->bytes_pinned = 0;
e8569813 3968 found->bytes_reserved = 0;
e40edf2d 3969 found->bytes_readonly = bytes_readonly;
f0486c68 3970 found->bytes_may_use = 0;
6af3e3ad 3971 found->full = 0;
4f4db217 3972 found->max_extent_size = 0;
0e4f8f88 3973 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3974 found->chunk_alloc = 0;
fdb5effd
JB
3975 found->flush = 0;
3976 init_waitqueue_head(&found->wait);
633c0aad 3977 INIT_LIST_HEAD(&found->ro_bgs);
957780eb
JB
3978 INIT_LIST_HEAD(&found->tickets);
3979 INIT_LIST_HEAD(&found->priority_tickets);
6ab0a202
JM
3980
3981 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3982 info->space_info_kobj, "%s",
3983 alloc_name(found->flags));
3984 if (ret) {
3985 kfree(found);
3986 return ret;
3987 }
3988
593060d7 3989 *space_info = found;
4184ea7f 3990 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3991 if (flags & BTRFS_BLOCK_GROUP_DATA)
3992 info->data_sinfo = found;
6ab0a202
JM
3993
3994 return ret;
593060d7
CM
3995}
3996
8790d502
CM
3997static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3998{
899c81ea
ID
3999 u64 extra_flags = chunk_to_extended(flags) &
4000 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4001
de98ced9 4002 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4003 if (flags & BTRFS_BLOCK_GROUP_DATA)
4004 fs_info->avail_data_alloc_bits |= extra_flags;
4005 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4006 fs_info->avail_metadata_alloc_bits |= extra_flags;
4007 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4008 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4009 write_sequnlock(&fs_info->profiles_lock);
8790d502 4010}
593060d7 4011
fc67c450
ID
4012/*
4013 * returns target flags in extended format or 0 if restripe for this
4014 * chunk_type is not in progress
c6664b42
ID
4015 *
4016 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4017 */
4018static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4019{
4020 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4021 u64 target = 0;
4022
fc67c450
ID
4023 if (!bctl)
4024 return 0;
4025
4026 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4027 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4028 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4029 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4030 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4031 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4032 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4033 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4034 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4035 }
4036
4037 return target;
4038}
4039
a46d11a8
ID
4040/*
4041 * @flags: available profiles in extended format (see ctree.h)
4042 *
e4d8ec0f
ID
4043 * Returns reduced profile in chunk format. If profile changing is in
4044 * progress (either running or paused) picks the target profile (if it's
4045 * already available), otherwise falls back to plain reducing.
a46d11a8 4046 */
2ff7e61e 4047static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4048{
0b246afa 4049 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4050 u64 target;
9c170b26
ZL
4051 u64 raid_type;
4052 u64 allowed = 0;
a061fc8d 4053
fc67c450
ID
4054 /*
4055 * see if restripe for this chunk_type is in progress, if so
4056 * try to reduce to the target profile
4057 */
0b246afa
JM
4058 spin_lock(&fs_info->balance_lock);
4059 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4060 if (target) {
4061 /* pick target profile only if it's already available */
4062 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4063 spin_unlock(&fs_info->balance_lock);
fc67c450 4064 return extended_to_chunk(target);
e4d8ec0f
ID
4065 }
4066 }
0b246afa 4067 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4068
53b381b3 4069 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4070 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4071 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4072 allowed |= btrfs_raid_group[raid_type];
4073 }
4074 allowed &= flags;
4075
4076 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4077 allowed = BTRFS_BLOCK_GROUP_RAID6;
4078 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4079 allowed = BTRFS_BLOCK_GROUP_RAID5;
4080 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4081 allowed = BTRFS_BLOCK_GROUP_RAID10;
4082 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4083 allowed = BTRFS_BLOCK_GROUP_RAID1;
4084 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4085 allowed = BTRFS_BLOCK_GROUP_RAID0;
4086
4087 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4088
4089 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4090}
4091
2ff7e61e 4092static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4093{
de98ced9 4094 unsigned seq;
f8213bdc 4095 u64 flags;
de98ced9
MX
4096
4097 do {
f8213bdc 4098 flags = orig_flags;
0b246afa 4099 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4100
4101 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4102 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4103 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4104 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4105 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4106 flags |= fs_info->avail_metadata_alloc_bits;
4107 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4108
2ff7e61e 4109 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4110}
4111
6d07bcec 4112u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 4113{
0b246afa 4114 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4115 u64 flags;
53b381b3 4116 u64 ret;
9ed74f2d 4117
b742bb82
YZ
4118 if (data)
4119 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4120 else if (root == fs_info->chunk_root)
b742bb82 4121 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4122 else
b742bb82 4123 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4124
2ff7e61e 4125 ret = get_alloc_profile(fs_info, flags);
53b381b3 4126 return ret;
6a63209f 4127}
9ed74f2d 4128
4136135b
LB
4129static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4130 bool may_use_included)
4131{
4132 ASSERT(s_info);
4133 return s_info->bytes_used + s_info->bytes_reserved +
4134 s_info->bytes_pinned + s_info->bytes_readonly +
4135 (may_use_included ? s_info->bytes_may_use : 0);
4136}
4137
04f4f916 4138int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4139{
6a63209f 4140 struct btrfs_space_info *data_sinfo;
04f4f916 4141 struct btrfs_root *root = inode->root;
b4d7c3c9 4142 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4143 u64 used;
94b947b2 4144 int ret = 0;
c99f1b0c
ZL
4145 int need_commit = 2;
4146 int have_pinned_space;
6a63209f 4147
6a63209f 4148 /* make sure bytes are sectorsize aligned */
0b246afa 4149 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4150
04f4f916 4151 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4152 need_commit = 0;
9dced186 4153 ASSERT(current->journal_info);
0af3d00b
JB
4154 }
4155
b4d7c3c9 4156 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4157 if (!data_sinfo)
4158 goto alloc;
9ed74f2d 4159
6a63209f
JB
4160again:
4161 /* make sure we have enough space to handle the data first */
4162 spin_lock(&data_sinfo->lock);
4136135b 4163 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4164
4165 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4166 struct btrfs_trans_handle *trans;
9ed74f2d 4167
6a63209f
JB
4168 /*
4169 * if we don't have enough free bytes in this space then we need
4170 * to alloc a new chunk.
4171 */
b9fd47cd 4172 if (!data_sinfo->full) {
6a63209f 4173 u64 alloc_target;
9ed74f2d 4174
0e4f8f88 4175 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4176 spin_unlock(&data_sinfo->lock);
33b4d47f 4177alloc:
6a63209f 4178 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4179 /*
4180 * It is ugly that we don't call nolock join
4181 * transaction for the free space inode case here.
4182 * But it is safe because we only do the data space
4183 * reservation for the free space cache in the
4184 * transaction context, the common join transaction
4185 * just increase the counter of the current transaction
4186 * handler, doesn't try to acquire the trans_lock of
4187 * the fs.
4188 */
7a7eaa40 4189 trans = btrfs_join_transaction(root);
a22285a6
YZ
4190 if (IS_ERR(trans))
4191 return PTR_ERR(trans);
9ed74f2d 4192
2ff7e61e 4193 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4194 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4195 btrfs_end_transaction(trans);
d52a5b5f
MX
4196 if (ret < 0) {
4197 if (ret != -ENOSPC)
4198 return ret;
c99f1b0c
ZL
4199 else {
4200 have_pinned_space = 1;
d52a5b5f 4201 goto commit_trans;
c99f1b0c 4202 }
d52a5b5f 4203 }
9ed74f2d 4204
b4d7c3c9
LZ
4205 if (!data_sinfo)
4206 data_sinfo = fs_info->data_sinfo;
4207
6a63209f
JB
4208 goto again;
4209 }
f2bb8f5c
JB
4210
4211 /*
b150a4f1 4212 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4213 * allocation, and no removed chunk in current transaction,
4214 * don't bother committing the transaction.
f2bb8f5c 4215 */
c99f1b0c
ZL
4216 have_pinned_space = percpu_counter_compare(
4217 &data_sinfo->total_bytes_pinned,
4218 used + bytes - data_sinfo->total_bytes);
6a63209f 4219 spin_unlock(&data_sinfo->lock);
6a63209f 4220
4e06bdd6 4221 /* commit the current transaction and try again */
d52a5b5f 4222commit_trans:
c99f1b0c 4223 if (need_commit &&
0b246afa 4224 !atomic_read(&fs_info->open_ioctl_trans)) {
c99f1b0c 4225 need_commit--;
b150a4f1 4226
e1746e83
ZL
4227 if (need_commit > 0) {
4228 btrfs_start_delalloc_roots(fs_info, 0, -1);
0b246afa
JM
4229 btrfs_wait_ordered_roots(fs_info, -1, 0,
4230 (u64)-1);
e1746e83 4231 }
9a4e7276 4232
7a7eaa40 4233 trans = btrfs_join_transaction(root);
a22285a6
YZ
4234 if (IS_ERR(trans))
4235 return PTR_ERR(trans);
c99f1b0c 4236 if (have_pinned_space >= 0 ||
3204d33c
JB
4237 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4238 &trans->transaction->flags) ||
c99f1b0c 4239 need_commit > 0) {
3a45bb20 4240 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4241 if (ret)
4242 return ret;
d7c15171 4243 /*
c2d6cb16
FM
4244 * The cleaner kthread might still be doing iput
4245 * operations. Wait for it to finish so that
4246 * more space is released.
d7c15171 4247 */
0b246afa
JM
4248 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4249 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4250 goto again;
4251 } else {
3a45bb20 4252 btrfs_end_transaction(trans);
94b947b2 4253 }
4e06bdd6 4254 }
9ed74f2d 4255
0b246afa 4256 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4257 "space_info:enospc",
4258 data_sinfo->flags, bytes, 1);
6a63209f
JB
4259 return -ENOSPC;
4260 }
4261 data_sinfo->bytes_may_use += bytes;
0b246afa 4262 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4263 data_sinfo->flags, bytes, 1);
6a63209f 4264 spin_unlock(&data_sinfo->lock);
6a63209f 4265
237c0e9f 4266 return ret;
9ed74f2d 4267}
6a63209f 4268
4ceff079
QW
4269/*
4270 * New check_data_free_space() with ability for precious data reservation
4271 * Will replace old btrfs_check_data_free_space(), but for patch split,
4272 * add a new function first and then replace it.
4273 */
7cf5b976 4274int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079 4275{
0b246afa 4276 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4277 int ret;
4278
4279 /* align the range */
0b246afa
JM
4280 len = round_up(start + len, fs_info->sectorsize) -
4281 round_down(start, fs_info->sectorsize);
4282 start = round_down(start, fs_info->sectorsize);
4ceff079 4283
04f4f916 4284 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4285 if (ret < 0)
4286 return ret;
4287
1e5ec2e7 4288 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4ceff079 4289 ret = btrfs_qgroup_reserve_data(inode, start, len);
1e5ec2e7
JB
4290 if (ret)
4291 btrfs_free_reserved_data_space_noquota(inode, start, len);
4ceff079
QW
4292 return ret;
4293}
4294
4ceff079
QW
4295/*
4296 * Called if we need to clear a data reservation for this inode
4297 * Normally in a error case.
4298 *
51773bec
QW
4299 * This one will *NOT* use accurate qgroup reserved space API, just for case
4300 * which we can't sleep and is sure it won't affect qgroup reserved space.
4301 * Like clear_bit_hook().
4ceff079 4302 */
51773bec
QW
4303void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4304 u64 len)
4ceff079 4305{
0b246afa 4306 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4307 struct btrfs_space_info *data_sinfo;
4308
4309 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4310 len = round_up(start + len, fs_info->sectorsize) -
4311 round_down(start, fs_info->sectorsize);
4312 start = round_down(start, fs_info->sectorsize);
4ceff079 4313
0b246afa 4314 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4315 spin_lock(&data_sinfo->lock);
4316 if (WARN_ON(data_sinfo->bytes_may_use < len))
4317 data_sinfo->bytes_may_use = 0;
4318 else
4319 data_sinfo->bytes_may_use -= len;
0b246afa 4320 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4321 data_sinfo->flags, len, 0);
4322 spin_unlock(&data_sinfo->lock);
4323}
4324
51773bec
QW
4325/*
4326 * Called if we need to clear a data reservation for this inode
4327 * Normally in a error case.
4328 *
01327610 4329 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4330 * space framework.
4331 */
4332void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4333{
0c476a5d
JM
4334 struct btrfs_root *root = BTRFS_I(inode)->root;
4335
4336 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4337 len = round_up(start + len, root->fs_info->sectorsize) -
4338 round_down(start, root->fs_info->sectorsize);
4339 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4340
51773bec
QW
4341 btrfs_free_reserved_data_space_noquota(inode, start, len);
4342 btrfs_qgroup_free_data(inode, start, len);
4343}
4344
97e728d4 4345static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4346{
97e728d4
JB
4347 struct list_head *head = &info->space_info;
4348 struct btrfs_space_info *found;
e3ccfa98 4349
97e728d4
JB
4350 rcu_read_lock();
4351 list_for_each_entry_rcu(found, head, list) {
4352 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4353 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4354 }
97e728d4 4355 rcu_read_unlock();
e3ccfa98
JB
4356}
4357
3c76cd84
MX
4358static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4359{
4360 return (global->size << 1);
4361}
4362
2ff7e61e 4363static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4364 struct btrfs_space_info *sinfo, int force)
32c00aff 4365{
0b246afa 4366 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
424499db 4367 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4368 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4369 u64 thresh;
e3ccfa98 4370
0e4f8f88
CM
4371 if (force == CHUNK_ALLOC_FORCE)
4372 return 1;
4373
fb25e914
JB
4374 /*
4375 * We need to take into account the global rsv because for all intents
4376 * and purposes it's used space. Don't worry about locking the
4377 * global_rsv, it doesn't change except when the transaction commits.
4378 */
54338b5c 4379 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4380 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4381
0e4f8f88
CM
4382 /*
4383 * in limited mode, we want to have some free space up to
4384 * about 1% of the FS size.
4385 */
4386 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4387 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4388 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4389
4390 if (num_bytes - num_allocated < thresh)
4391 return 1;
4392 }
0e4f8f88 4393
ee22184b 4394 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4395 return 0;
424499db 4396 return 1;
32c00aff
JB
4397}
4398
2ff7e61e 4399static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4400{
4401 u64 num_dev;
4402
53b381b3
DW
4403 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4404 BTRFS_BLOCK_GROUP_RAID0 |
4405 BTRFS_BLOCK_GROUP_RAID5 |
4406 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4407 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4408 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4409 num_dev = 2;
4410 else
4411 num_dev = 1; /* DUP or single */
4412
39c2d7fa 4413 return num_dev;
15d1ff81
LB
4414}
4415
39c2d7fa
FM
4416/*
4417 * If @is_allocation is true, reserve space in the system space info necessary
4418 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4419 * removing a chunk.
4420 */
4421void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4422 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4423{
4424 struct btrfs_space_info *info;
4425 u64 left;
4426 u64 thresh;
4fbcdf66 4427 int ret = 0;
39c2d7fa 4428 u64 num_devs;
4fbcdf66
FM
4429
4430 /*
4431 * Needed because we can end up allocating a system chunk and for an
4432 * atomic and race free space reservation in the chunk block reserve.
4433 */
0b246afa 4434 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
15d1ff81 4435
0b246afa 4436 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4437 spin_lock(&info->lock);
4136135b 4438 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4439 spin_unlock(&info->lock);
4440
2ff7e61e 4441 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4442
4443 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4444 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4445 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4446
0b246afa
JM
4447 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4448 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4449 left, thresh, type);
4450 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4451 }
4452
4453 if (left < thresh) {
4454 u64 flags;
4455
0b246afa 4456 flags = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4fbcdf66
FM
4457 /*
4458 * Ignore failure to create system chunk. We might end up not
4459 * needing it, as we might not need to COW all nodes/leafs from
4460 * the paths we visit in the chunk tree (they were already COWed
4461 * or created in the current transaction for example).
4462 */
2ff7e61e 4463 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4464 }
4465
4466 if (!ret) {
0b246afa
JM
4467 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4468 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4469 thresh, BTRFS_RESERVE_NO_FLUSH);
4470 if (!ret)
4471 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4472 }
4473}
4474
28b737f6
LB
4475/*
4476 * If force is CHUNK_ALLOC_FORCE:
4477 * - return 1 if it successfully allocates a chunk,
4478 * - return errors including -ENOSPC otherwise.
4479 * If force is NOT CHUNK_ALLOC_FORCE:
4480 * - return 0 if it doesn't need to allocate a new chunk,
4481 * - return 1 if it successfully allocates a chunk,
4482 * - return errors including -ENOSPC otherwise.
4483 */
6324fbf3 4484static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4485 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4486{
6324fbf3 4487 struct btrfs_space_info *space_info;
6d74119f 4488 int wait_for_alloc = 0;
9ed74f2d 4489 int ret = 0;
9ed74f2d 4490
c6b305a8
JB
4491 /* Don't re-enter if we're already allocating a chunk */
4492 if (trans->allocating_chunk)
4493 return -ENOSPC;
4494
0b246afa 4495 space_info = __find_space_info(fs_info, flags);
593060d7 4496 if (!space_info) {
0b246afa 4497 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
79787eaa 4498 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4499 }
79787eaa 4500 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4501
6d74119f 4502again:
25179201 4503 spin_lock(&space_info->lock);
9e622d6b 4504 if (force < space_info->force_alloc)
0e4f8f88 4505 force = space_info->force_alloc;
25179201 4506 if (space_info->full) {
2ff7e61e 4507 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4508 ret = -ENOSPC;
4509 else
4510 ret = 0;
25179201 4511 spin_unlock(&space_info->lock);
09fb99a6 4512 return ret;
9ed74f2d
JB
4513 }
4514
2ff7e61e 4515 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4516 spin_unlock(&space_info->lock);
6d74119f
JB
4517 return 0;
4518 } else if (space_info->chunk_alloc) {
4519 wait_for_alloc = 1;
4520 } else {
4521 space_info->chunk_alloc = 1;
9ed74f2d 4522 }
0e4f8f88 4523
25179201 4524 spin_unlock(&space_info->lock);
9ed74f2d 4525
6d74119f
JB
4526 mutex_lock(&fs_info->chunk_mutex);
4527
4528 /*
4529 * The chunk_mutex is held throughout the entirety of a chunk
4530 * allocation, so once we've acquired the chunk_mutex we know that the
4531 * other guy is done and we need to recheck and see if we should
4532 * allocate.
4533 */
4534 if (wait_for_alloc) {
4535 mutex_unlock(&fs_info->chunk_mutex);
4536 wait_for_alloc = 0;
4537 goto again;
4538 }
4539
c6b305a8
JB
4540 trans->allocating_chunk = true;
4541
67377734
JB
4542 /*
4543 * If we have mixed data/metadata chunks we want to make sure we keep
4544 * allocating mixed chunks instead of individual chunks.
4545 */
4546 if (btrfs_mixed_space_info(space_info))
4547 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4548
97e728d4
JB
4549 /*
4550 * if we're doing a data chunk, go ahead and make sure that
4551 * we keep a reasonable number of metadata chunks allocated in the
4552 * FS as well.
4553 */
9ed74f2d 4554 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4555 fs_info->data_chunk_allocations++;
4556 if (!(fs_info->data_chunk_allocations %
4557 fs_info->metadata_ratio))
4558 force_metadata_allocation(fs_info);
9ed74f2d
JB
4559 }
4560
15d1ff81
LB
4561 /*
4562 * Check if we have enough space in SYSTEM chunk because we may need
4563 * to update devices.
4564 */
2ff7e61e 4565 check_system_chunk(trans, fs_info, flags);
15d1ff81 4566
2ff7e61e 4567 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4568 trans->allocating_chunk = false;
92b8e897 4569
9ed74f2d 4570 spin_lock(&space_info->lock);
a81cb9a2
AO
4571 if (ret < 0 && ret != -ENOSPC)
4572 goto out;
9ed74f2d 4573 if (ret)
6324fbf3 4574 space_info->full = 1;
424499db
YZ
4575 else
4576 ret = 1;
6d74119f 4577
0e4f8f88 4578 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4579out:
6d74119f 4580 space_info->chunk_alloc = 0;
9ed74f2d 4581 spin_unlock(&space_info->lock);
a25c75d5 4582 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4583 /*
4584 * When we allocate a new chunk we reserve space in the chunk block
4585 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4586 * add new nodes/leafs to it if we end up needing to do it when
4587 * inserting the chunk item and updating device items as part of the
4588 * second phase of chunk allocation, performed by
4589 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4590 * large number of new block groups to create in our transaction
4591 * handle's new_bgs list to avoid exhausting the chunk block reserve
4592 * in extreme cases - like having a single transaction create many new
4593 * block groups when starting to write out the free space caches of all
4594 * the block groups that were made dirty during the lifetime of the
4595 * transaction.
4596 */
d9a0540a 4597 if (trans->can_flush_pending_bgs &&
ee22184b 4598 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
2ff7e61e 4599 btrfs_create_pending_block_groups(trans, fs_info);
00d80e34
FM
4600 btrfs_trans_release_chunk_metadata(trans);
4601 }
0f9dd46c 4602 return ret;
6324fbf3 4603}
9ed74f2d 4604
a80c8dcf
JB
4605static int can_overcommit(struct btrfs_root *root,
4606 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4607 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4608{
0b246afa
JM
4609 struct btrfs_fs_info *fs_info = root->fs_info;
4610 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4611 u64 profile;
3c76cd84 4612 u64 space_size;
a80c8dcf
JB
4613 u64 avail;
4614 u64 used;
4615
957780eb
JB
4616 /* Don't overcommit when in mixed mode. */
4617 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4618 return 0;
4619
957780eb 4620 profile = btrfs_get_alloc_profile(root, 0);
4136135b 4621 used = btrfs_space_info_used(space_info, false);
96f1bb57 4622
96f1bb57
JB
4623 /*
4624 * We only want to allow over committing if we have lots of actual space
4625 * free, but if we don't have enough space to handle the global reserve
4626 * space then we could end up having a real enospc problem when trying
4627 * to allocate a chunk or some other such important allocation.
4628 */
3c76cd84
MX
4629 spin_lock(&global_rsv->lock);
4630 space_size = calc_global_rsv_need_space(global_rsv);
4631 spin_unlock(&global_rsv->lock);
4632 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4633 return 0;
4634
4635 used += space_info->bytes_may_use;
a80c8dcf 4636
0b246afa
JM
4637 spin_lock(&fs_info->free_chunk_lock);
4638 avail = fs_info->free_chunk_space;
4639 spin_unlock(&fs_info->free_chunk_lock);
a80c8dcf
JB
4640
4641 /*
4642 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4643 * space is actually useable. For raid56, the space info used
4644 * doesn't include the parity drive, so we don't have to
4645 * change the math
a80c8dcf
JB
4646 */
4647 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4648 BTRFS_BLOCK_GROUP_RAID1 |
4649 BTRFS_BLOCK_GROUP_RAID10))
4650 avail >>= 1;
4651
4652 /*
561c294d
MX
4653 * If we aren't flushing all things, let us overcommit up to
4654 * 1/2th of the space. If we can flush, don't let us overcommit
4655 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4656 */
08e007d2 4657 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4658 avail >>= 3;
a80c8dcf 4659 else
14575aef 4660 avail >>= 1;
a80c8dcf 4661
14575aef 4662 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4663 return 1;
4664 return 0;
4665}
4666
2ff7e61e 4667static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4668 unsigned long nr_pages, int nr_items)
da633a42 4669{
0b246afa 4670 struct super_block *sb = fs_info->sb;
da633a42 4671
925a6efb
JB
4672 if (down_read_trylock(&sb->s_umount)) {
4673 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4674 up_read(&sb->s_umount);
4675 } else {
da633a42
MX
4676 /*
4677 * We needn't worry the filesystem going from r/w to r/o though
4678 * we don't acquire ->s_umount mutex, because the filesystem
4679 * should guarantee the delalloc inodes list be empty after
4680 * the filesystem is readonly(all dirty pages are written to
4681 * the disk).
4682 */
0b246afa 4683 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
98ad69cf 4684 if (!current->journal_info)
0b246afa 4685 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4686 }
4687}
4688
2ff7e61e
JM
4689static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4690 u64 to_reclaim)
18cd8ea6
MX
4691{
4692 u64 bytes;
4693 int nr;
4694
2ff7e61e 4695 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
18cd8ea6
MX
4696 nr = (int)div64_u64(to_reclaim, bytes);
4697 if (!nr)
4698 nr = 1;
4699 return nr;
4700}
4701
ee22184b 4702#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4703
9ed74f2d 4704/*
5da9d01b 4705 * shrink metadata reservation for delalloc
9ed74f2d 4706 */
f4c738c2
JB
4707static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4708 bool wait_ordered)
5da9d01b 4709{
0b246afa 4710 struct btrfs_fs_info *fs_info = root->fs_info;
0ca1f7ce 4711 struct btrfs_block_rsv *block_rsv;
0019f10d 4712 struct btrfs_space_info *space_info;
663350ac 4713 struct btrfs_trans_handle *trans;
f4c738c2 4714 u64 delalloc_bytes;
5da9d01b 4715 u64 max_reclaim;
b1953bce 4716 long time_left;
d3ee29e3
MX
4717 unsigned long nr_pages;
4718 int loops;
b0244199 4719 int items;
08e007d2 4720 enum btrfs_reserve_flush_enum flush;
5da9d01b 4721
c61a16a7 4722 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4723 items = calc_reclaim_items_nr(fs_info, to_reclaim);
8eb0dfdb 4724 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4725
663350ac 4726 trans = (struct btrfs_trans_handle *)current->journal_info;
0b246afa 4727 block_rsv = &fs_info->delalloc_block_rsv;
0019f10d 4728 space_info = block_rsv->space_info;
bf9022e0 4729
963d678b 4730 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4731 &fs_info->delalloc_bytes);
f4c738c2 4732 if (delalloc_bytes == 0) {
fdb5effd 4733 if (trans)
f4c738c2 4734 return;
38c135af 4735 if (wait_ordered)
0b246afa 4736 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4737 return;
fdb5effd
JB
4738 }
4739
d3ee29e3 4740 loops = 0;
f4c738c2
JB
4741 while (delalloc_bytes && loops < 3) {
4742 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4743 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4744 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4745 /*
4746 * We need to wait for the async pages to actually start before
4747 * we do anything.
4748 */
0b246afa 4749 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4750 if (!max_reclaim)
4751 goto skip_async;
4752
4753 if (max_reclaim <= nr_pages)
4754 max_reclaim = 0;
4755 else
4756 max_reclaim -= nr_pages;
dea31f52 4757
0b246afa
JM
4758 wait_event(fs_info->async_submit_wait,
4759 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4760 (int)max_reclaim);
4761skip_async:
08e007d2
MX
4762 if (!trans)
4763 flush = BTRFS_RESERVE_FLUSH_ALL;
4764 else
4765 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4766 spin_lock(&space_info->lock);
08e007d2 4767 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4768 spin_unlock(&space_info->lock);
4769 break;
4770 }
957780eb
JB
4771 if (list_empty(&space_info->tickets) &&
4772 list_empty(&space_info->priority_tickets)) {
4773 spin_unlock(&space_info->lock);
4774 break;
4775 }
0019f10d 4776 spin_unlock(&space_info->lock);
5da9d01b 4777
36e39c40 4778 loops++;
f104d044 4779 if (wait_ordered && !trans) {
0b246afa 4780 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4781 } else {
f4c738c2 4782 time_left = schedule_timeout_killable(1);
f104d044
JB
4783 if (time_left)
4784 break;
4785 }
963d678b 4786 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4787 &fs_info->delalloc_bytes);
5da9d01b 4788 }
5da9d01b
YZ
4789}
4790
663350ac
JB
4791/**
4792 * maybe_commit_transaction - possibly commit the transaction if its ok to
4793 * @root - the root we're allocating for
4794 * @bytes - the number of bytes we want to reserve
4795 * @force - force the commit
8bb8ab2e 4796 *
663350ac
JB
4797 * This will check to make sure that committing the transaction will actually
4798 * get us somewhere and then commit the transaction if it does. Otherwise it
4799 * will return -ENOSPC.
8bb8ab2e 4800 */
0c9ab349 4801static int may_commit_transaction(struct btrfs_fs_info *fs_info,
663350ac
JB
4802 struct btrfs_space_info *space_info,
4803 u64 bytes, int force)
4804{
0b246afa 4805 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac
JB
4806 struct btrfs_trans_handle *trans;
4807
4808 trans = (struct btrfs_trans_handle *)current->journal_info;
4809 if (trans)
4810 return -EAGAIN;
4811
4812 if (force)
4813 goto commit;
4814
4815 /* See if there is enough pinned space to make this reservation */
b150a4f1 4816 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4817 bytes) >= 0)
663350ac 4818 goto commit;
663350ac
JB
4819
4820 /*
4821 * See if there is some space in the delayed insertion reservation for
4822 * this reservation.
4823 */
4824 if (space_info != delayed_rsv->space_info)
4825 return -ENOSPC;
4826
4827 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4828 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4829 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4830 spin_unlock(&delayed_rsv->lock);
4831 return -ENOSPC;
4832 }
4833 spin_unlock(&delayed_rsv->lock);
4834
4835commit:
0c9ab349 4836 trans = btrfs_join_transaction(fs_info->fs_root);
663350ac
JB
4837 if (IS_ERR(trans))
4838 return -ENOSPC;
4839
3a45bb20 4840 return btrfs_commit_transaction(trans);
663350ac
JB
4841}
4842
957780eb
JB
4843struct reserve_ticket {
4844 u64 bytes;
4845 int error;
4846 struct list_head list;
4847 wait_queue_head_t wait;
96c3f433
JB
4848};
4849
0c9ab349 4850static int flush_space(struct btrfs_fs_info *fs_info,
96c3f433
JB
4851 struct btrfs_space_info *space_info, u64 num_bytes,
4852 u64 orig_bytes, int state)
4853{
0c9ab349 4854 struct btrfs_root *root = fs_info->fs_root;
96c3f433
JB
4855 struct btrfs_trans_handle *trans;
4856 int nr;
f4c738c2 4857 int ret = 0;
96c3f433
JB
4858
4859 switch (state) {
96c3f433
JB
4860 case FLUSH_DELAYED_ITEMS_NR:
4861 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4862 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4863 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4864 else
96c3f433 4865 nr = -1;
18cd8ea6 4866
96c3f433
JB
4867 trans = btrfs_join_transaction(root);
4868 if (IS_ERR(trans)) {
4869 ret = PTR_ERR(trans);
4870 break;
4871 }
2ff7e61e 4872 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
3a45bb20 4873 btrfs_end_transaction(trans);
96c3f433 4874 break;
67b0fd63
JB
4875 case FLUSH_DELALLOC:
4876 case FLUSH_DELALLOC_WAIT:
24af7dd1 4877 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4878 state == FLUSH_DELALLOC_WAIT);
4879 break;
ea658bad
JB
4880 case ALLOC_CHUNK:
4881 trans = btrfs_join_transaction(root);
4882 if (IS_ERR(trans)) {
4883 ret = PTR_ERR(trans);
4884 break;
4885 }
2ff7e61e 4886 ret = do_chunk_alloc(trans, fs_info,
ea658bad
JB
4887 btrfs_get_alloc_profile(root, 0),
4888 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4889 btrfs_end_transaction(trans);
eecba891 4890 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4891 ret = 0;
4892 break;
96c3f433 4893 case COMMIT_TRANS:
0c9ab349
JM
4894 ret = may_commit_transaction(fs_info, space_info,
4895 orig_bytes, 0);
96c3f433
JB
4896 break;
4897 default:
4898 ret = -ENOSPC;
4899 break;
4900 }
4901
0b246afa 4902 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
f376df2b 4903 orig_bytes, state, ret);
96c3f433
JB
4904 return ret;
4905}
21c7e756
MX
4906
4907static inline u64
4908btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4909 struct btrfs_space_info *space_info)
4910{
957780eb 4911 struct reserve_ticket *ticket;
21c7e756
MX
4912 u64 used;
4913 u64 expected;
957780eb 4914 u64 to_reclaim = 0;
21c7e756 4915
957780eb
JB
4916 list_for_each_entry(ticket, &space_info->tickets, list)
4917 to_reclaim += ticket->bytes;
4918 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4919 to_reclaim += ticket->bytes;
4920 if (to_reclaim)
4921 return to_reclaim;
21c7e756 4922
e0af2484
WX
4923 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4924 if (can_overcommit(root, space_info, to_reclaim,
4925 BTRFS_RESERVE_FLUSH_ALL))
4926 return 0;
4927
21c7e756
MX
4928 used = space_info->bytes_used + space_info->bytes_reserved +
4929 space_info->bytes_pinned + space_info->bytes_readonly +
4930 space_info->bytes_may_use;
ee22184b 4931 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
21c7e756
MX
4932 expected = div_factor_fine(space_info->total_bytes, 95);
4933 else
4934 expected = div_factor_fine(space_info->total_bytes, 90);
4935
4936 if (used > expected)
4937 to_reclaim = used - expected;
4938 else
4939 to_reclaim = 0;
4940 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4941 space_info->bytes_reserved);
21c7e756
MX
4942 return to_reclaim;
4943}
4944
4945static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
87241c2e 4946 struct btrfs_root *root, u64 used)
21c7e756 4947{
0b246afa 4948 struct btrfs_fs_info *fs_info = root->fs_info;
365c5313
JB
4949 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4950
4951 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4952 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4953 return 0;
4954
87241c2e 4955 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
d38b349c
JB
4956 return 0;
4957
0b246afa
JM
4958 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4959 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
4960}
4961
957780eb 4962static void wake_all_tickets(struct list_head *head)
21c7e756 4963{
957780eb 4964 struct reserve_ticket *ticket;
25ce459c 4965
957780eb
JB
4966 while (!list_empty(head)) {
4967 ticket = list_first_entry(head, struct reserve_ticket, list);
4968 list_del_init(&ticket->list);
4969 ticket->error = -ENOSPC;
4970 wake_up(&ticket->wait);
21c7e756 4971 }
21c7e756
MX
4972}
4973
957780eb
JB
4974/*
4975 * This is for normal flushers, we can wait all goddamned day if we want to. We
4976 * will loop and continuously try to flush as long as we are making progress.
4977 * We count progress as clearing off tickets each time we have to loop.
4978 */
21c7e756
MX
4979static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4980{
4981 struct btrfs_fs_info *fs_info;
4982 struct btrfs_space_info *space_info;
4983 u64 to_reclaim;
4984 int flush_state;
957780eb 4985 int commit_cycles = 0;
ce129655 4986 u64 last_tickets_id;
21c7e756
MX
4987
4988 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4989 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4990
957780eb 4991 spin_lock(&space_info->lock);
21c7e756
MX
4992 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4993 space_info);
957780eb
JB
4994 if (!to_reclaim) {
4995 space_info->flush = 0;
4996 spin_unlock(&space_info->lock);
21c7e756 4997 return;
957780eb 4998 }
ce129655 4999 last_tickets_id = space_info->tickets_id;
957780eb 5000 spin_unlock(&space_info->lock);
21c7e756
MX
5001
5002 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb
JB
5003 do {
5004 struct reserve_ticket *ticket;
5005 int ret;
5006
0c9ab349
JM
5007 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5008 flush_state);
957780eb
JB
5009 spin_lock(&space_info->lock);
5010 if (list_empty(&space_info->tickets)) {
5011 space_info->flush = 0;
5012 spin_unlock(&space_info->lock);
5013 return;
5014 }
5015 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5016 space_info);
5017 ticket = list_first_entry(&space_info->tickets,
5018 struct reserve_ticket, list);
ce129655 5019 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5020 flush_state++;
5021 } else {
ce129655 5022 last_tickets_id = space_info->tickets_id;
957780eb
JB
5023 flush_state = FLUSH_DELAYED_ITEMS_NR;
5024 if (commit_cycles)
5025 commit_cycles--;
5026 }
5027
5028 if (flush_state > COMMIT_TRANS) {
5029 commit_cycles++;
5030 if (commit_cycles > 2) {
5031 wake_all_tickets(&space_info->tickets);
5032 space_info->flush = 0;
5033 } else {
5034 flush_state = FLUSH_DELAYED_ITEMS_NR;
5035 }
5036 }
5037 spin_unlock(&space_info->lock);
5038 } while (flush_state <= COMMIT_TRANS);
5039}
5040
5041void btrfs_init_async_reclaim_work(struct work_struct *work)
5042{
5043 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5044}
5045
5046static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5047 struct btrfs_space_info *space_info,
5048 struct reserve_ticket *ticket)
5049{
5050 u64 to_reclaim;
5051 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5052
5053 spin_lock(&space_info->lock);
5054 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5055 space_info);
5056 if (!to_reclaim) {
5057 spin_unlock(&space_info->lock);
5058 return;
5059 }
5060 spin_unlock(&space_info->lock);
5061
21c7e756 5062 do {
0c9ab349
JM
5063 flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5064 flush_state);
21c7e756 5065 flush_state++;
957780eb
JB
5066 spin_lock(&space_info->lock);
5067 if (ticket->bytes == 0) {
5068 spin_unlock(&space_info->lock);
21c7e756 5069 return;
957780eb
JB
5070 }
5071 spin_unlock(&space_info->lock);
5072
5073 /*
5074 * Priority flushers can't wait on delalloc without
5075 * deadlocking.
5076 */
5077 if (flush_state == FLUSH_DELALLOC ||
5078 flush_state == FLUSH_DELALLOC_WAIT)
5079 flush_state = ALLOC_CHUNK;
365c5313 5080 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5081}
5082
957780eb
JB
5083static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5084 struct btrfs_space_info *space_info,
5085 struct reserve_ticket *ticket, u64 orig_bytes)
5086
21c7e756 5087{
957780eb
JB
5088 DEFINE_WAIT(wait);
5089 int ret = 0;
5090
5091 spin_lock(&space_info->lock);
5092 while (ticket->bytes > 0 && ticket->error == 0) {
5093 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5094 if (ret) {
5095 ret = -EINTR;
5096 break;
5097 }
5098 spin_unlock(&space_info->lock);
5099
5100 schedule();
5101
5102 finish_wait(&ticket->wait, &wait);
5103 spin_lock(&space_info->lock);
5104 }
5105 if (!ret)
5106 ret = ticket->error;
5107 if (!list_empty(&ticket->list))
5108 list_del_init(&ticket->list);
5109 if (ticket->bytes && ticket->bytes < orig_bytes) {
5110 u64 num_bytes = orig_bytes - ticket->bytes;
5111 space_info->bytes_may_use -= num_bytes;
5112 trace_btrfs_space_reservation(fs_info, "space_info",
5113 space_info->flags, num_bytes, 0);
5114 }
5115 spin_unlock(&space_info->lock);
5116
5117 return ret;
21c7e756
MX
5118}
5119
4a92b1b8
JB
5120/**
5121 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5122 * @root - the root we're allocating for
957780eb 5123 * @space_info - the space info we want to allocate from
4a92b1b8 5124 * @orig_bytes - the number of bytes we want
48fc7f7e 5125 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5126 *
01327610 5127 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5128 * with the block_rsv. If there is not enough space it will make an attempt to
5129 * flush out space to make room. It will do this by flushing delalloc if
5130 * possible or committing the transaction. If flush is 0 then no attempts to
5131 * regain reservations will be made and this will fail if there is not enough
5132 * space already.
8bb8ab2e 5133 */
957780eb
JB
5134static int __reserve_metadata_bytes(struct btrfs_root *root,
5135 struct btrfs_space_info *space_info,
5136 u64 orig_bytes,
5137 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5138{
0b246afa 5139 struct btrfs_fs_info *fs_info = root->fs_info;
957780eb 5140 struct reserve_ticket ticket;
2bf64758 5141 u64 used;
8bb8ab2e 5142 int ret = 0;
9ed74f2d 5143
957780eb 5144 ASSERT(orig_bytes);
8ca17f0f 5145 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5146
8bb8ab2e 5147 spin_lock(&space_info->lock);
fdb5effd 5148 ret = -ENOSPC;
4136135b 5149 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5150
8bb8ab2e 5151 /*
957780eb
JB
5152 * If we have enough space then hooray, make our reservation and carry
5153 * on. If not see if we can overcommit, and if we can, hooray carry on.
5154 * If not things get more complicated.
8bb8ab2e 5155 */
957780eb
JB
5156 if (used + orig_bytes <= space_info->total_bytes) {
5157 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5158 trace_btrfs_space_reservation(fs_info, "space_info",
5159 space_info->flags, orig_bytes, 1);
957780eb
JB
5160 ret = 0;
5161 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
44734ed1 5162 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5163 trace_btrfs_space_reservation(fs_info, "space_info",
5164 space_info->flags, orig_bytes, 1);
44734ed1 5165 ret = 0;
2bf64758
JB
5166 }
5167
8bb8ab2e 5168 /*
957780eb
JB
5169 * If we couldn't make a reservation then setup our reservation ticket
5170 * and kick the async worker if it's not already running.
08e007d2 5171 *
957780eb
JB
5172 * If we are a priority flusher then we just need to add our ticket to
5173 * the list and we will do our own flushing further down.
8bb8ab2e 5174 */
72bcd99d 5175 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5176 ticket.bytes = orig_bytes;
5177 ticket.error = 0;
5178 init_waitqueue_head(&ticket.wait);
5179 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5180 list_add_tail(&ticket.list, &space_info->tickets);
5181 if (!space_info->flush) {
5182 space_info->flush = 1;
0b246afa 5183 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5184 space_info->flags,
5185 orig_bytes, flush,
5186 "enospc");
957780eb
JB
5187 queue_work(system_unbound_wq,
5188 &root->fs_info->async_reclaim_work);
5189 }
5190 } else {
5191 list_add_tail(&ticket.list,
5192 &space_info->priority_tickets);
5193 }
21c7e756
MX
5194 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5195 used += orig_bytes;
f6acfd50
JB
5196 /*
5197 * We will do the space reservation dance during log replay,
5198 * which means we won't have fs_info->fs_root set, so don't do
5199 * the async reclaim as we will panic.
5200 */
0b246afa 5201 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
87241c2e 5202 need_do_async_reclaim(space_info, root, used) &&
0b246afa
JM
5203 !work_busy(&fs_info->async_reclaim_work)) {
5204 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5205 orig_bytes, flush, "preempt");
21c7e756 5206 queue_work(system_unbound_wq,
0b246afa 5207 &fs_info->async_reclaim_work);
f376df2b 5208 }
8bb8ab2e 5209 }
f0486c68 5210 spin_unlock(&space_info->lock);
08e007d2 5211 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5212 return ret;
f0486c68 5213
957780eb 5214 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5215 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5216 orig_bytes);
08e007d2 5217
957780eb 5218 ret = 0;
0b246afa 5219 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5220 spin_lock(&space_info->lock);
5221 if (ticket.bytes) {
5222 if (ticket.bytes < orig_bytes) {
5223 u64 num_bytes = orig_bytes - ticket.bytes;
5224 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5225 trace_btrfs_space_reservation(fs_info, "space_info",
5226 space_info->flags,
5227 num_bytes, 0);
08e007d2 5228
957780eb
JB
5229 }
5230 list_del_init(&ticket.list);
5231 ret = -ENOSPC;
5232 }
5233 spin_unlock(&space_info->lock);
5234 ASSERT(list_empty(&ticket.list));
5235 return ret;
5236}
8bb8ab2e 5237
957780eb
JB
5238/**
5239 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5240 * @root - the root we're allocating for
5241 * @block_rsv - the block_rsv we're allocating for
5242 * @orig_bytes - the number of bytes we want
5243 * @flush - whether or not we can flush to make our reservation
5244 *
5245 * This will reserve orgi_bytes number of bytes from the space info associated
5246 * with the block_rsv. If there is not enough space it will make an attempt to
5247 * flush out space to make room. It will do this by flushing delalloc if
5248 * possible or committing the transaction. If flush is 0 then no attempts to
5249 * regain reservations will be made and this will fail if there is not enough
5250 * space already.
5251 */
5252static int reserve_metadata_bytes(struct btrfs_root *root,
5253 struct btrfs_block_rsv *block_rsv,
5254 u64 orig_bytes,
5255 enum btrfs_reserve_flush_enum flush)
5256{
0b246afa
JM
5257 struct btrfs_fs_info *fs_info = root->fs_info;
5258 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb
JB
5259 int ret;
5260
5261 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5262 flush);
5d80366e
JB
5263 if (ret == -ENOSPC &&
5264 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5265 if (block_rsv != global_rsv &&
5266 !block_rsv_use_bytes(global_rsv, orig_bytes))
5267 ret = 0;
5268 }
cab45e22 5269 if (ret == -ENOSPC)
0b246afa 5270 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5271 block_rsv->space_info->flags,
5272 orig_bytes, 1);
f0486c68
YZ
5273 return ret;
5274}
5275
79787eaa
JM
5276static struct btrfs_block_rsv *get_block_rsv(
5277 const struct btrfs_trans_handle *trans,
5278 const struct btrfs_root *root)
f0486c68 5279{
0b246afa 5280 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5281 struct btrfs_block_rsv *block_rsv = NULL;
5282
e9cf439f 5283 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5284 (root == fs_info->csum_root && trans->adding_csums) ||
5285 (root == fs_info->uuid_root))
f7a81ea4
SB
5286 block_rsv = trans->block_rsv;
5287
4c13d758 5288 if (!block_rsv)
f0486c68
YZ
5289 block_rsv = root->block_rsv;
5290
5291 if (!block_rsv)
0b246afa 5292 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5293
5294 return block_rsv;
5295}
5296
5297static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5298 u64 num_bytes)
5299{
5300 int ret = -ENOSPC;
5301 spin_lock(&block_rsv->lock);
5302 if (block_rsv->reserved >= num_bytes) {
5303 block_rsv->reserved -= num_bytes;
5304 if (block_rsv->reserved < block_rsv->size)
5305 block_rsv->full = 0;
5306 ret = 0;
5307 }
5308 spin_unlock(&block_rsv->lock);
5309 return ret;
5310}
5311
5312static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5313 u64 num_bytes, int update_size)
5314{
5315 spin_lock(&block_rsv->lock);
5316 block_rsv->reserved += num_bytes;
5317 if (update_size)
5318 block_rsv->size += num_bytes;
5319 else if (block_rsv->reserved >= block_rsv->size)
5320 block_rsv->full = 1;
5321 spin_unlock(&block_rsv->lock);
5322}
5323
d52be818
JB
5324int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5325 struct btrfs_block_rsv *dest, u64 num_bytes,
5326 int min_factor)
5327{
5328 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5329 u64 min_bytes;
5330
5331 if (global_rsv->space_info != dest->space_info)
5332 return -ENOSPC;
5333
5334 spin_lock(&global_rsv->lock);
5335 min_bytes = div_factor(global_rsv->size, min_factor);
5336 if (global_rsv->reserved < min_bytes + num_bytes) {
5337 spin_unlock(&global_rsv->lock);
5338 return -ENOSPC;
5339 }
5340 global_rsv->reserved -= num_bytes;
5341 if (global_rsv->reserved < global_rsv->size)
5342 global_rsv->full = 0;
5343 spin_unlock(&global_rsv->lock);
5344
5345 block_rsv_add_bytes(dest, num_bytes, 1);
5346 return 0;
5347}
5348
957780eb
JB
5349/*
5350 * This is for space we already have accounted in space_info->bytes_may_use, so
5351 * basically when we're returning space from block_rsv's.
5352 */
5353static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5354 struct btrfs_space_info *space_info,
5355 u64 num_bytes)
5356{
5357 struct reserve_ticket *ticket;
5358 struct list_head *head;
5359 u64 used;
5360 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5361 bool check_overcommit = false;
5362
5363 spin_lock(&space_info->lock);
5364 head = &space_info->priority_tickets;
5365
5366 /*
5367 * If we are over our limit then we need to check and see if we can
5368 * overcommit, and if we can't then we just need to free up our space
5369 * and not satisfy any requests.
5370 */
5371 used = space_info->bytes_used + space_info->bytes_reserved +
5372 space_info->bytes_pinned + space_info->bytes_readonly +
5373 space_info->bytes_may_use;
5374 if (used - num_bytes >= space_info->total_bytes)
5375 check_overcommit = true;
5376again:
5377 while (!list_empty(head) && num_bytes) {
5378 ticket = list_first_entry(head, struct reserve_ticket,
5379 list);
5380 /*
5381 * We use 0 bytes because this space is already reserved, so
5382 * adding the ticket space would be a double count.
5383 */
5384 if (check_overcommit &&
5385 !can_overcommit(fs_info->extent_root, space_info, 0,
5386 flush))
5387 break;
5388 if (num_bytes >= ticket->bytes) {
5389 list_del_init(&ticket->list);
5390 num_bytes -= ticket->bytes;
5391 ticket->bytes = 0;
ce129655 5392 space_info->tickets_id++;
957780eb
JB
5393 wake_up(&ticket->wait);
5394 } else {
5395 ticket->bytes -= num_bytes;
5396 num_bytes = 0;
5397 }
5398 }
5399
5400 if (num_bytes && head == &space_info->priority_tickets) {
5401 head = &space_info->tickets;
5402 flush = BTRFS_RESERVE_FLUSH_ALL;
5403 goto again;
5404 }
5405 space_info->bytes_may_use -= num_bytes;
5406 trace_btrfs_space_reservation(fs_info, "space_info",
5407 space_info->flags, num_bytes, 0);
5408 spin_unlock(&space_info->lock);
5409}
5410
5411/*
5412 * This is for newly allocated space that isn't accounted in
5413 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5414 * we use this helper.
5415 */
5416static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5417 struct btrfs_space_info *space_info,
5418 u64 num_bytes)
5419{
5420 struct reserve_ticket *ticket;
5421 struct list_head *head = &space_info->priority_tickets;
5422
5423again:
5424 while (!list_empty(head) && num_bytes) {
5425 ticket = list_first_entry(head, struct reserve_ticket,
5426 list);
5427 if (num_bytes >= ticket->bytes) {
5428 trace_btrfs_space_reservation(fs_info, "space_info",
5429 space_info->flags,
5430 ticket->bytes, 1);
5431 list_del_init(&ticket->list);
5432 num_bytes -= ticket->bytes;
5433 space_info->bytes_may_use += ticket->bytes;
5434 ticket->bytes = 0;
ce129655 5435 space_info->tickets_id++;
957780eb
JB
5436 wake_up(&ticket->wait);
5437 } else {
5438 trace_btrfs_space_reservation(fs_info, "space_info",
5439 space_info->flags,
5440 num_bytes, 1);
5441 space_info->bytes_may_use += num_bytes;
5442 ticket->bytes -= num_bytes;
5443 num_bytes = 0;
5444 }
5445 }
5446
5447 if (num_bytes && head == &space_info->priority_tickets) {
5448 head = &space_info->tickets;
5449 goto again;
5450 }
5451}
5452
8c2a3ca2
JB
5453static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5454 struct btrfs_block_rsv *block_rsv,
62a45b60 5455 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5456{
5457 struct btrfs_space_info *space_info = block_rsv->space_info;
5458
5459 spin_lock(&block_rsv->lock);
5460 if (num_bytes == (u64)-1)
5461 num_bytes = block_rsv->size;
5462 block_rsv->size -= num_bytes;
5463 if (block_rsv->reserved >= block_rsv->size) {
5464 num_bytes = block_rsv->reserved - block_rsv->size;
5465 block_rsv->reserved = block_rsv->size;
5466 block_rsv->full = 1;
5467 } else {
5468 num_bytes = 0;
5469 }
5470 spin_unlock(&block_rsv->lock);
5471
5472 if (num_bytes > 0) {
5473 if (dest) {
e9e22899
JB
5474 spin_lock(&dest->lock);
5475 if (!dest->full) {
5476 u64 bytes_to_add;
5477
5478 bytes_to_add = dest->size - dest->reserved;
5479 bytes_to_add = min(num_bytes, bytes_to_add);
5480 dest->reserved += bytes_to_add;
5481 if (dest->reserved >= dest->size)
5482 dest->full = 1;
5483 num_bytes -= bytes_to_add;
5484 }
5485 spin_unlock(&dest->lock);
5486 }
957780eb
JB
5487 if (num_bytes)
5488 space_info_add_old_bytes(fs_info, space_info,
5489 num_bytes);
9ed74f2d 5490 }
f0486c68 5491}
4e06bdd6 5492
25d609f8
JB
5493int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5494 struct btrfs_block_rsv *dst, u64 num_bytes,
5495 int update_size)
f0486c68
YZ
5496{
5497 int ret;
9ed74f2d 5498
f0486c68
YZ
5499 ret = block_rsv_use_bytes(src, num_bytes);
5500 if (ret)
5501 return ret;
9ed74f2d 5502
25d609f8 5503 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5504 return 0;
5505}
5506
66d8f3dd 5507void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5508{
f0486c68
YZ
5509 memset(rsv, 0, sizeof(*rsv));
5510 spin_lock_init(&rsv->lock);
66d8f3dd 5511 rsv->type = type;
f0486c68
YZ
5512}
5513
2ff7e61e 5514struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5515 unsigned short type)
f0486c68
YZ
5516{
5517 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5518
f0486c68
YZ
5519 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5520 if (!block_rsv)
5521 return NULL;
9ed74f2d 5522
66d8f3dd 5523 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5524 block_rsv->space_info = __find_space_info(fs_info,
5525 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5526 return block_rsv;
5527}
9ed74f2d 5528
2ff7e61e 5529void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5530 struct btrfs_block_rsv *rsv)
5531{
2aaa6655
JB
5532 if (!rsv)
5533 return;
2ff7e61e 5534 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5535 kfree(rsv);
9ed74f2d
JB
5536}
5537
cdfb080e
CM
5538void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5539{
5540 kfree(rsv);
5541}
5542
08e007d2
MX
5543int btrfs_block_rsv_add(struct btrfs_root *root,
5544 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5545 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5546{
f0486c68 5547 int ret;
9ed74f2d 5548
f0486c68
YZ
5549 if (num_bytes == 0)
5550 return 0;
8bb8ab2e 5551
61b520a9 5552 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5553 if (!ret) {
5554 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5555 return 0;
5556 }
9ed74f2d 5557
f0486c68 5558 return ret;
f0486c68 5559}
9ed74f2d 5560
2ff7e61e 5561int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5562{
5563 u64 num_bytes = 0;
f0486c68 5564 int ret = -ENOSPC;
9ed74f2d 5565
f0486c68
YZ
5566 if (!block_rsv)
5567 return 0;
9ed74f2d 5568
f0486c68 5569 spin_lock(&block_rsv->lock);
36ba022a
JB
5570 num_bytes = div_factor(block_rsv->size, min_factor);
5571 if (block_rsv->reserved >= num_bytes)
5572 ret = 0;
5573 spin_unlock(&block_rsv->lock);
9ed74f2d 5574
36ba022a
JB
5575 return ret;
5576}
5577
08e007d2
MX
5578int btrfs_block_rsv_refill(struct btrfs_root *root,
5579 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5580 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5581{
5582 u64 num_bytes = 0;
5583 int ret = -ENOSPC;
5584
5585 if (!block_rsv)
5586 return 0;
5587
5588 spin_lock(&block_rsv->lock);
5589 num_bytes = min_reserved;
13553e52 5590 if (block_rsv->reserved >= num_bytes)
f0486c68 5591 ret = 0;
13553e52 5592 else
f0486c68 5593 num_bytes -= block_rsv->reserved;
f0486c68 5594 spin_unlock(&block_rsv->lock);
13553e52 5595
f0486c68
YZ
5596 if (!ret)
5597 return 0;
5598
aa38a711 5599 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5600 if (!ret) {
5601 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5602 return 0;
6a63209f 5603 }
9ed74f2d 5604
13553e52 5605 return ret;
f0486c68
YZ
5606}
5607
2ff7e61e 5608void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5609 struct btrfs_block_rsv *block_rsv,
5610 u64 num_bytes)
5611{
0b246afa
JM
5612 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5613
17504584 5614 if (global_rsv == block_rsv ||
f0486c68
YZ
5615 block_rsv->space_info != global_rsv->space_info)
5616 global_rsv = NULL;
0b246afa 5617 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
6a63209f
JB
5618}
5619
8929ecfa
YZ
5620static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5621{
5622 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5623 struct btrfs_space_info *sinfo = block_rsv->space_info;
5624 u64 num_bytes;
6a63209f 5625
ae2e4728
JB
5626 /*
5627 * The global block rsv is based on the size of the extent tree, the
5628 * checksum tree and the root tree. If the fs is empty we want to set
5629 * it to a minimal amount for safety.
5630 */
5631 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5632 btrfs_root_used(&fs_info->csum_root->root_item) +
5633 btrfs_root_used(&fs_info->tree_root->root_item);
5634 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5635
8929ecfa 5636 spin_lock(&sinfo->lock);
1f699d38 5637 spin_lock(&block_rsv->lock);
4e06bdd6 5638
ee22184b 5639 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5640
fb4b10e5 5641 if (block_rsv->reserved < block_rsv->size) {
4136135b 5642 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5643 if (sinfo->total_bytes > num_bytes) {
5644 num_bytes = sinfo->total_bytes - num_bytes;
5645 num_bytes = min(num_bytes,
5646 block_rsv->size - block_rsv->reserved);
5647 block_rsv->reserved += num_bytes;
5648 sinfo->bytes_may_use += num_bytes;
5649 trace_btrfs_space_reservation(fs_info, "space_info",
5650 sinfo->flags, num_bytes,
5651 1);
5652 }
5653 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5654 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5655 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5656 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5657 sinfo->flags, num_bytes, 0);
8929ecfa 5658 block_rsv->reserved = block_rsv->size;
8929ecfa 5659 }
182608c8 5660
fb4b10e5
JB
5661 if (block_rsv->reserved == block_rsv->size)
5662 block_rsv->full = 1;
5663 else
5664 block_rsv->full = 0;
5665
8929ecfa 5666 spin_unlock(&block_rsv->lock);
1f699d38 5667 spin_unlock(&sinfo->lock);
6a63209f
JB
5668}
5669
f0486c68 5670static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5671{
f0486c68 5672 struct btrfs_space_info *space_info;
6a63209f 5673
f0486c68
YZ
5674 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5675 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5676
f0486c68 5677 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5678 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5679 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5680 fs_info->trans_block_rsv.space_info = space_info;
5681 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5682 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5683
8929ecfa
YZ
5684 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5685 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5686 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5687 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5688 if (fs_info->quota_root)
5689 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5690 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5691
8929ecfa 5692 update_global_block_rsv(fs_info);
6a63209f
JB
5693}
5694
8929ecfa 5695static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5696{
8c2a3ca2
JB
5697 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5698 (u64)-1);
8929ecfa
YZ
5699 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5700 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5701 WARN_ON(fs_info->trans_block_rsv.size > 0);
5702 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5703 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5704 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5705 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5706 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5707}
5708
a22285a6 5709void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
2ff7e61e 5710 struct btrfs_fs_info *fs_info)
6a63209f 5711{
0e721106
JB
5712 if (!trans->block_rsv)
5713 return;
5714
a22285a6
YZ
5715 if (!trans->bytes_reserved)
5716 return;
6a63209f 5717
0b246afa 5718 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 5719 trans->transid, trans->bytes_reserved, 0);
2ff7e61e
JM
5720 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5721 trans->bytes_reserved);
a22285a6
YZ
5722 trans->bytes_reserved = 0;
5723}
6a63209f 5724
4fbcdf66
FM
5725/*
5726 * To be called after all the new block groups attached to the transaction
5727 * handle have been created (btrfs_create_pending_block_groups()).
5728 */
5729void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5730{
64b63580 5731 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5732
5733 if (!trans->chunk_bytes_reserved)
5734 return;
5735
5736 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5737
5738 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5739 trans->chunk_bytes_reserved);
5740 trans->chunk_bytes_reserved = 0;
5741}
5742
79787eaa 5743/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5744int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5745 struct inode *inode)
5746{
0b246afa 5747 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d68fc57b 5748 struct btrfs_root *root = BTRFS_I(inode)->root;
40acc3ee
JB
5749 /*
5750 * We always use trans->block_rsv here as we will have reserved space
5751 * for our orphan when starting the transaction, using get_block_rsv()
5752 * here will sometimes make us choose the wrong block rsv as we could be
5753 * doing a reloc inode for a non refcounted root.
5754 */
5755 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5756 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5757
5758 /*
fcb80c2a
JB
5759 * We need to hold space in order to delete our orphan item once we've
5760 * added it, so this takes the reservation so we can release it later
5761 * when we are truly done with the orphan item.
d68fc57b 5762 */
0b246afa
JM
5763 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5764
5765 trace_btrfs_space_reservation(fs_info, "orphan",
4a0cc7ca 5766 btrfs_ino(BTRFS_I(inode)), num_bytes, 1);
25d609f8 5767 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5768}
5769
d68fc57b 5770void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5771{
0b246afa 5772 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d68fc57b 5773 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa
JM
5774 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5775
5776 trace_btrfs_space_reservation(fs_info, "orphan",
4a0cc7ca 5777 btrfs_ino(BTRFS_I(inode)), num_bytes, 0);
2ff7e61e 5778 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
d68fc57b 5779}
97e728d4 5780
d5c12070
MX
5781/*
5782 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5783 * root: the root of the parent directory
5784 * rsv: block reservation
5785 * items: the number of items that we need do reservation
5786 * qgroup_reserved: used to return the reserved size in qgroup
5787 *
5788 * This function is used to reserve the space for snapshot/subvolume
5789 * creation and deletion. Those operations are different with the
5790 * common file/directory operations, they change two fs/file trees
5791 * and root tree, the number of items that the qgroup reserves is
5792 * different with the free space reservation. So we can not use
01327610 5793 * the space reservation mechanism in start_transaction().
d5c12070
MX
5794 */
5795int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5796 struct btrfs_block_rsv *rsv,
5797 int items,
ee3441b4
JM
5798 u64 *qgroup_reserved,
5799 bool use_global_rsv)
a22285a6 5800{
d5c12070
MX
5801 u64 num_bytes;
5802 int ret;
0b246afa
JM
5803 struct btrfs_fs_info *fs_info = root->fs_info;
5804 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5805
0b246afa 5806 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5807 /* One for parent inode, two for dir entries */
0b246afa 5808 num_bytes = 3 * fs_info->nodesize;
003d7c59 5809 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
d5c12070
MX
5810 if (ret)
5811 return ret;
5812 } else {
5813 num_bytes = 0;
5814 }
5815
5816 *qgroup_reserved = num_bytes;
5817
0b246afa
JM
5818 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5819 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
5820 BTRFS_BLOCK_GROUP_METADATA);
5821 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5822 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5823
5824 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5825 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5826
7174109c
QW
5827 if (ret && *qgroup_reserved)
5828 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5829
5830 return ret;
5831}
5832
2ff7e61e 5833void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 5834 struct btrfs_block_rsv *rsv)
d5c12070 5835{
2ff7e61e 5836 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
5837}
5838
7709cde3
JB
5839/**
5840 * drop_outstanding_extent - drop an outstanding extent
5841 * @inode: the inode we're dropping the extent for
01327610 5842 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5843 *
5844 * This is called when we are freeing up an outstanding extent, either called
5845 * after an error or after an extent is written. This will return the number of
5846 * reserved extents that need to be freed. This must be called with
5847 * BTRFS_I(inode)->lock held.
5848 */
dcab6a3b 5849static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5850{
7fd2ae21 5851 unsigned drop_inode_space = 0;
9e0baf60 5852 unsigned dropped_extents = 0;
823bb20a 5853 unsigned num_extents;
9e0baf60 5854
823bb20a 5855 num_extents = count_max_extents(num_bytes);
dcab6a3b
JB
5856 ASSERT(num_extents);
5857 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5858 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5859
7fd2ae21 5860 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5861 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5862 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5863 drop_inode_space = 1;
7fd2ae21 5864
9e0baf60 5865 /*
01327610 5866 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5867 * reserved then we need to leave the reserved extents count alone.
5868 */
5869 if (BTRFS_I(inode)->outstanding_extents >=
5870 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5871 return drop_inode_space;
9e0baf60
JB
5872
5873 dropped_extents = BTRFS_I(inode)->reserved_extents -
5874 BTRFS_I(inode)->outstanding_extents;
5875 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5876 return dropped_extents + drop_inode_space;
9e0baf60
JB
5877}
5878
7709cde3 5879/**
01327610
NS
5880 * calc_csum_metadata_size - return the amount of metadata space that must be
5881 * reserved/freed for the given bytes.
7709cde3
JB
5882 * @inode: the inode we're manipulating
5883 * @num_bytes: the number of bytes in question
5884 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5885 *
5886 * This adjusts the number of csum_bytes in the inode and then returns the
5887 * correct amount of metadata that must either be reserved or freed. We
5888 * calculate how many checksums we can fit into one leaf and then divide the
5889 * number of bytes that will need to be checksumed by this value to figure out
5890 * how many checksums will be required. If we are adding bytes then the number
5891 * may go up and we will return the number of additional bytes that must be
5892 * reserved. If it is going down we will return the number of bytes that must
5893 * be freed.
5894 *
5895 * This must be called with BTRFS_I(inode)->lock held.
5896 */
5897static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5898 int reserve)
6324fbf3 5899{
0b246afa 5900 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1262133b 5901 u64 old_csums, num_csums;
7709cde3
JB
5902
5903 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5904 BTRFS_I(inode)->csum_bytes == 0)
5905 return 0;
5906
2ff7e61e
JM
5907 old_csums = btrfs_csum_bytes_to_leaves(fs_info,
5908 BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5909 if (reserve)
5910 BTRFS_I(inode)->csum_bytes += num_bytes;
5911 else
5912 BTRFS_I(inode)->csum_bytes -= num_bytes;
2ff7e61e
JM
5913 num_csums = btrfs_csum_bytes_to_leaves(fs_info,
5914 BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5915
5916 /* No change, no need to reserve more */
5917 if (old_csums == num_csums)
5918 return 0;
5919
5920 if (reserve)
0b246afa 5921 return btrfs_calc_trans_metadata_size(fs_info,
7709cde3
JB
5922 num_csums - old_csums);
5923
0b246afa 5924 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
0ca1f7ce 5925}
c146afad 5926
0ca1f7ce
YZ
5927int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5928{
0b246afa 5929 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0ca1f7ce 5930 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 5931 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
9e0baf60 5932 u64 to_reserve = 0;
660d3f6c 5933 u64 csum_bytes;
823bb20a 5934 unsigned nr_extents;
08e007d2 5935 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5936 int ret = 0;
c64c2bd8 5937 bool delalloc_lock = true;
88e081bf
WS
5938 u64 to_free = 0;
5939 unsigned dropped;
48c3d480 5940 bool release_extra = false;
6324fbf3 5941
c64c2bd8
JB
5942 /* If we are a free space inode we need to not flush since we will be in
5943 * the middle of a transaction commit. We also don't need the delalloc
5944 * mutex since we won't race with anybody. We need this mostly to make
5945 * lockdep shut its filthy mouth.
bac357dc
JB
5946 *
5947 * If we have a transaction open (can happen if we call truncate_block
5948 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8 5949 */
70ddc553 5950 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
08e007d2 5951 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 5952 delalloc_lock = false;
bac357dc
JB
5953 } else if (current->journal_info) {
5954 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c64c2bd8 5955 }
c09544e0 5956
08e007d2 5957 if (flush != BTRFS_RESERVE_NO_FLUSH &&
0b246afa 5958 btrfs_transaction_in_commit(fs_info))
0ca1f7ce 5959 schedule_timeout(1);
ec44a35c 5960
c64c2bd8
JB
5961 if (delalloc_lock)
5962 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5963
0b246afa 5964 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
8bb8ab2e 5965
9e0baf60 5966 spin_lock(&BTRFS_I(inode)->lock);
823bb20a 5967 nr_extents = count_max_extents(num_bytes);
6a41dd09 5968 BTRFS_I(inode)->outstanding_extents += nr_extents;
9e0baf60 5969
48c3d480 5970 nr_extents = 0;
9e0baf60 5971 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5972 BTRFS_I(inode)->reserved_extents)
48c3d480 5973 nr_extents += BTRFS_I(inode)->outstanding_extents -
9e0baf60 5974 BTRFS_I(inode)->reserved_extents;
57a45ced 5975
48c3d480 5976 /* We always want to reserve a slot for updating the inode. */
0b246afa 5977 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
7709cde3 5978 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5979 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5980 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5981
0b246afa 5982 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
7174109c 5983 ret = btrfs_qgroup_reserve_meta(root,
003d7c59 5984 nr_extents * fs_info->nodesize, true);
88e081bf
WS
5985 if (ret)
5986 goto out_fail;
5987 }
c5567237 5988
48c3d480 5989 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
88e081bf 5990 if (unlikely(ret)) {
da17066c 5991 btrfs_qgroup_free_meta(root,
0b246afa 5992 nr_extents * fs_info->nodesize);
88e081bf 5993 goto out_fail;
9e0baf60 5994 }
25179201 5995
660d3f6c 5996 spin_lock(&BTRFS_I(inode)->lock);
48c3d480 5997 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
f485c9ee 5998 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 5999 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
48c3d480 6000 release_extra = true;
660d3f6c
JB
6001 }
6002 BTRFS_I(inode)->reserved_extents += nr_extents;
6003 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
6004
6005 if (delalloc_lock)
6006 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 6007
8c2a3ca2 6008 if (to_reserve)
0b246afa 6009 trace_btrfs_space_reservation(fs_info, "delalloc",
f85b7379 6010 btrfs_ino(BTRFS_I(inode)), to_reserve, 1);
48c3d480 6011 if (release_extra)
2ff7e61e 6012 btrfs_block_rsv_release(fs_info, block_rsv,
0b246afa 6013 btrfs_calc_trans_metadata_size(fs_info, 1));
0ca1f7ce 6014 return 0;
88e081bf
WS
6015
6016out_fail:
6017 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 6018 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
6019 /*
6020 * If the inodes csum_bytes is the same as the original
6021 * csum_bytes then we know we haven't raced with any free()ers
6022 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 6023 */
f4881bc7 6024 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 6025 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
6026 } else {
6027 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6028 u64 bytes;
6029
6030 /*
6031 * This is tricky, but first we need to figure out how much we
01327610 6032 * freed from any free-ers that occurred during this
f4881bc7
JB
6033 * reservation, so we reset ->csum_bytes to the csum_bytes
6034 * before we dropped our lock, and then call the free for the
6035 * number of bytes that were freed while we were trying our
6036 * reservation.
6037 */
6038 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6039 BTRFS_I(inode)->csum_bytes = csum_bytes;
6040 to_free = calc_csum_metadata_size(inode, bytes, 0);
6041
6042
6043 /*
6044 * Now we need to see how much we would have freed had we not
6045 * been making this reservation and our ->csum_bytes were not
6046 * artificially inflated.
6047 */
6048 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6049 bytes = csum_bytes - orig_csum_bytes;
6050 bytes = calc_csum_metadata_size(inode, bytes, 0);
6051
6052 /*
6053 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 6054 * more than to_free then we would have freed more space had we
f4881bc7
JB
6055 * not had an artificially high ->csum_bytes, so we need to free
6056 * the remainder. If bytes is the same or less then we don't
6057 * need to do anything, the other free-ers did the correct
6058 * thing.
6059 */
6060 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6061 if (bytes > to_free)
6062 to_free = bytes - to_free;
6063 else
6064 to_free = 0;
6065 }
88e081bf 6066 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 6067 if (dropped)
0b246afa 6068 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
88e081bf
WS
6069
6070 if (to_free) {
2ff7e61e 6071 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
0b246afa 6072 trace_btrfs_space_reservation(fs_info, "delalloc",
f85b7379 6073 btrfs_ino(BTRFS_I(inode)), to_free, 0);
88e081bf
WS
6074 }
6075 if (delalloc_lock)
6076 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6077 return ret;
0ca1f7ce
YZ
6078}
6079
7709cde3
JB
6080/**
6081 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6082 * @inode: the inode to release the reservation for
6083 * @num_bytes: the number of bytes we're releasing
6084 *
6085 * This will release the metadata reservation for an inode. This can be called
6086 * once we complete IO for a given set of bytes to release their metadata
6087 * reservations.
6088 */
0ca1f7ce
YZ
6089void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6090{
0b246afa 6091 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9e0baf60
JB
6092 u64 to_free = 0;
6093 unsigned dropped;
0ca1f7ce 6094
0b246afa 6095 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
7709cde3 6096 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 6097 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 6098
0934856d
MX
6099 if (num_bytes)
6100 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 6101 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60 6102 if (dropped > 0)
0b246afa 6103 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
0ca1f7ce 6104
0b246afa 6105 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6106 return;
6107
0b246afa 6108 trace_btrfs_space_reservation(fs_info, "delalloc",
4a0cc7ca 6109 btrfs_ino(BTRFS_I(inode)), to_free, 0);
c5567237 6110
2ff7e61e 6111 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
0ca1f7ce
YZ
6112}
6113
1ada3a62 6114/**
7cf5b976 6115 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6116 * delalloc
6117 * @inode: inode we're writing to
6118 * @start: start range we are writing to
6119 * @len: how long the range we are writing to
6120 *
1ada3a62
QW
6121 * This will do the following things
6122 *
6123 * o reserve space in data space info for num bytes
6124 * and reserve precious corresponding qgroup space
6125 * (Done in check_data_free_space)
6126 *
6127 * o reserve space for metadata space, based on the number of outstanding
6128 * extents and how much csums will be needed
6129 * also reserve metadata space in a per root over-reserve method.
6130 * o add to the inodes->delalloc_bytes
6131 * o add it to the fs_info's delalloc inodes list.
6132 * (Above 3 all done in delalloc_reserve_metadata)
6133 *
6134 * Return 0 for success
6135 * Return <0 for error(-ENOSPC or -EQUOT)
6136 */
7cf5b976 6137int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6138{
6139 int ret;
6140
7cf5b976 6141 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
6142 if (ret < 0)
6143 return ret;
6144 ret = btrfs_delalloc_reserve_metadata(inode, len);
6145 if (ret < 0)
7cf5b976 6146 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
6147 return ret;
6148}
6149
7709cde3 6150/**
7cf5b976 6151 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6152 * @inode: inode we're releasing space for
6153 * @start: start position of the space already reserved
6154 * @len: the len of the space already reserved
6155 *
6156 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6157 * called in the case that we don't need the metadata AND data reservations
6158 * anymore. So if there is an error or we insert an inline extent.
6159 *
6160 * This function will release the metadata space that was not used and will
6161 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6162 * list if there are no delalloc bytes left.
6163 * Also it will handle the qgroup reserved space.
6164 */
7cf5b976 6165void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6166{
6167 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 6168 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
6169}
6170
ce93ec54 6171static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6172 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6173 u64 num_bytes, int alloc)
9078a3e1 6174{
0af3d00b 6175 struct btrfs_block_group_cache *cache = NULL;
db94535d 6176 u64 total = num_bytes;
9078a3e1 6177 u64 old_val;
db94535d 6178 u64 byte_in_group;
0af3d00b 6179 int factor;
3e1ad54f 6180
5d4f98a2 6181 /* block accounting for super block */
eb73c1b7 6182 spin_lock(&info->delalloc_root_lock);
6c41761f 6183 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6184 if (alloc)
6185 old_val += num_bytes;
6186 else
6187 old_val -= num_bytes;
6c41761f 6188 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6189 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6190
d397712b 6191 while (total) {
db94535d 6192 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6193 if (!cache)
79787eaa 6194 return -ENOENT;
b742bb82
YZ
6195 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6196 BTRFS_BLOCK_GROUP_RAID1 |
6197 BTRFS_BLOCK_GROUP_RAID10))
6198 factor = 2;
6199 else
6200 factor = 1;
9d66e233
JB
6201 /*
6202 * If this block group has free space cache written out, we
6203 * need to make sure to load it if we are removing space. This
6204 * is because we need the unpinning stage to actually add the
6205 * space back to the block group, otherwise we will leak space.
6206 */
6207 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6208 cache_block_group(cache, 1);
0af3d00b 6209
db94535d
CM
6210 byte_in_group = bytenr - cache->key.objectid;
6211 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6212
25179201 6213 spin_lock(&cache->space_info->lock);
c286ac48 6214 spin_lock(&cache->lock);
0af3d00b 6215
6202df69 6216 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6217 cache->disk_cache_state < BTRFS_DC_CLEAR)
6218 cache->disk_cache_state = BTRFS_DC_CLEAR;
6219
9078a3e1 6220 old_val = btrfs_block_group_used(&cache->item);
db94535d 6221 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6222 if (alloc) {
db94535d 6223 old_val += num_bytes;
11833d66
YZ
6224 btrfs_set_block_group_used(&cache->item, old_val);
6225 cache->reserved -= num_bytes;
11833d66 6226 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6227 cache->space_info->bytes_used += num_bytes;
6228 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6229 spin_unlock(&cache->lock);
25179201 6230 spin_unlock(&cache->space_info->lock);
cd1bc465 6231 } else {
db94535d 6232 old_val -= num_bytes;
ae0ab003
FM
6233 btrfs_set_block_group_used(&cache->item, old_val);
6234 cache->pinned += num_bytes;
6235 cache->space_info->bytes_pinned += num_bytes;
6236 cache->space_info->bytes_used -= num_bytes;
6237 cache->space_info->disk_used -= num_bytes * factor;
6238 spin_unlock(&cache->lock);
6239 spin_unlock(&cache->space_info->lock);
47ab2a6c 6240
0b246afa 6241 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6242 cache->space_info->flags,
6243 num_bytes, 1);
ae0ab003
FM
6244 set_extent_dirty(info->pinned_extents,
6245 bytenr, bytenr + num_bytes - 1,
6246 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6247 }
1bbc621e
CM
6248
6249 spin_lock(&trans->transaction->dirty_bgs_lock);
6250 if (list_empty(&cache->dirty_list)) {
6251 list_add_tail(&cache->dirty_list,
6252 &trans->transaction->dirty_bgs);
6253 trans->transaction->num_dirty_bgs++;
6254 btrfs_get_block_group(cache);
6255 }
6256 spin_unlock(&trans->transaction->dirty_bgs_lock);
6257
036a9348
FM
6258 /*
6259 * No longer have used bytes in this block group, queue it for
6260 * deletion. We do this after adding the block group to the
6261 * dirty list to avoid races between cleaner kthread and space
6262 * cache writeout.
6263 */
6264 if (!alloc && old_val == 0) {
6265 spin_lock(&info->unused_bgs_lock);
6266 if (list_empty(&cache->bg_list)) {
6267 btrfs_get_block_group(cache);
6268 list_add_tail(&cache->bg_list,
6269 &info->unused_bgs);
6270 }
6271 spin_unlock(&info->unused_bgs_lock);
6272 }
6273
fa9c0d79 6274 btrfs_put_block_group(cache);
db94535d
CM
6275 total -= num_bytes;
6276 bytenr += num_bytes;
9078a3e1
CM
6277 }
6278 return 0;
6279}
6324fbf3 6280
2ff7e61e 6281static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6282{
0f9dd46c 6283 struct btrfs_block_group_cache *cache;
d2fb3437 6284 u64 bytenr;
0f9dd46c 6285
0b246afa
JM
6286 spin_lock(&fs_info->block_group_cache_lock);
6287 bytenr = fs_info->first_logical_byte;
6288 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6289
6290 if (bytenr < (u64)-1)
6291 return bytenr;
6292
0b246afa 6293 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6294 if (!cache)
a061fc8d 6295 return 0;
0f9dd46c 6296
d2fb3437 6297 bytenr = cache->key.objectid;
fa9c0d79 6298 btrfs_put_block_group(cache);
d2fb3437
YZ
6299
6300 return bytenr;
a061fc8d
CM
6301}
6302
2ff7e61e 6303static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6304 struct btrfs_block_group_cache *cache,
6305 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6306{
11833d66
YZ
6307 spin_lock(&cache->space_info->lock);
6308 spin_lock(&cache->lock);
6309 cache->pinned += num_bytes;
6310 cache->space_info->bytes_pinned += num_bytes;
6311 if (reserved) {
6312 cache->reserved -= num_bytes;
6313 cache->space_info->bytes_reserved -= num_bytes;
6314 }
6315 spin_unlock(&cache->lock);
6316 spin_unlock(&cache->space_info->lock);
68b38550 6317
0b246afa 6318 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6319 cache->space_info->flags, num_bytes, 1);
0b246afa 6320 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6321 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6322 return 0;
6323}
68b38550 6324
f0486c68
YZ
6325/*
6326 * this function must be called within transaction
6327 */
2ff7e61e 6328int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6329 u64 bytenr, u64 num_bytes, int reserved)
6330{
6331 struct btrfs_block_group_cache *cache;
68b38550 6332
0b246afa 6333 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6334 BUG_ON(!cache); /* Logic error */
f0486c68 6335
2ff7e61e 6336 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6337
6338 btrfs_put_block_group(cache);
11833d66
YZ
6339 return 0;
6340}
6341
f0486c68 6342/*
e688b725
CM
6343 * this function must be called within transaction
6344 */
2ff7e61e 6345int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6346 u64 bytenr, u64 num_bytes)
6347{
6348 struct btrfs_block_group_cache *cache;
b50c6e25 6349 int ret;
e688b725 6350
0b246afa 6351 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6352 if (!cache)
6353 return -EINVAL;
e688b725
CM
6354
6355 /*
6356 * pull in the free space cache (if any) so that our pin
6357 * removes the free space from the cache. We have load_only set
6358 * to one because the slow code to read in the free extents does check
6359 * the pinned extents.
6360 */
f6373bf3 6361 cache_block_group(cache, 1);
e688b725 6362
2ff7e61e 6363 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6364
6365 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6366 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6367 btrfs_put_block_group(cache);
b50c6e25 6368 return ret;
e688b725
CM
6369}
6370
2ff7e61e
JM
6371static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6372 u64 start, u64 num_bytes)
8c2a1a30
JB
6373{
6374 int ret;
6375 struct btrfs_block_group_cache *block_group;
6376 struct btrfs_caching_control *caching_ctl;
6377
0b246afa 6378 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6379 if (!block_group)
6380 return -EINVAL;
6381
6382 cache_block_group(block_group, 0);
6383 caching_ctl = get_caching_control(block_group);
6384
6385 if (!caching_ctl) {
6386 /* Logic error */
6387 BUG_ON(!block_group_cache_done(block_group));
6388 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6389 } else {
6390 mutex_lock(&caching_ctl->mutex);
6391
6392 if (start >= caching_ctl->progress) {
2ff7e61e 6393 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6394 } else if (start + num_bytes <= caching_ctl->progress) {
6395 ret = btrfs_remove_free_space(block_group,
6396 start, num_bytes);
6397 } else {
6398 num_bytes = caching_ctl->progress - start;
6399 ret = btrfs_remove_free_space(block_group,
6400 start, num_bytes);
6401 if (ret)
6402 goto out_lock;
6403
6404 num_bytes = (start + num_bytes) -
6405 caching_ctl->progress;
6406 start = caching_ctl->progress;
2ff7e61e 6407 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6408 }
6409out_lock:
6410 mutex_unlock(&caching_ctl->mutex);
6411 put_caching_control(caching_ctl);
6412 }
6413 btrfs_put_block_group(block_group);
6414 return ret;
6415}
6416
2ff7e61e 6417int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6418 struct extent_buffer *eb)
6419{
6420 struct btrfs_file_extent_item *item;
6421 struct btrfs_key key;
6422 int found_type;
6423 int i;
6424
2ff7e61e 6425 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6426 return 0;
6427
6428 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6429 btrfs_item_key_to_cpu(eb, &key, i);
6430 if (key.type != BTRFS_EXTENT_DATA_KEY)
6431 continue;
6432 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6433 found_type = btrfs_file_extent_type(eb, item);
6434 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6435 continue;
6436 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6437 continue;
6438 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6439 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6440 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6441 }
6442
6443 return 0;
6444}
6445
9cfa3e34
FM
6446static void
6447btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6448{
6449 atomic_inc(&bg->reservations);
6450}
6451
6452void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6453 const u64 start)
6454{
6455 struct btrfs_block_group_cache *bg;
6456
6457 bg = btrfs_lookup_block_group(fs_info, start);
6458 ASSERT(bg);
6459 if (atomic_dec_and_test(&bg->reservations))
6460 wake_up_atomic_t(&bg->reservations);
6461 btrfs_put_block_group(bg);
6462}
6463
6464static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6465{
6466 schedule();
6467 return 0;
6468}
6469
6470void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6471{
6472 struct btrfs_space_info *space_info = bg->space_info;
6473
6474 ASSERT(bg->ro);
6475
6476 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6477 return;
6478
6479 /*
6480 * Our block group is read only but before we set it to read only,
6481 * some task might have had allocated an extent from it already, but it
6482 * has not yet created a respective ordered extent (and added it to a
6483 * root's list of ordered extents).
6484 * Therefore wait for any task currently allocating extents, since the
6485 * block group's reservations counter is incremented while a read lock
6486 * on the groups' semaphore is held and decremented after releasing
6487 * the read access on that semaphore and creating the ordered extent.
6488 */
6489 down_write(&space_info->groups_sem);
6490 up_write(&space_info->groups_sem);
6491
6492 wait_on_atomic_t(&bg->reservations,
6493 btrfs_wait_bg_reservations_atomic_t,
6494 TASK_UNINTERRUPTIBLE);
6495}
6496
fb25e914 6497/**
4824f1f4 6498 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6499 * @cache: The cache we are manipulating
18513091
WX
6500 * @ram_bytes: The number of bytes of file content, and will be same to
6501 * @num_bytes except for the compress path.
fb25e914 6502 * @num_bytes: The number of bytes in question
e570fd27 6503 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6504 *
745699ef
XW
6505 * This is called by the allocator when it reserves space. If this is a
6506 * reservation and the block group has become read only we cannot make the
6507 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6508 */
4824f1f4 6509static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6510 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6511{
fb25e914 6512 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6513 int ret = 0;
79787eaa 6514
fb25e914
JB
6515 spin_lock(&space_info->lock);
6516 spin_lock(&cache->lock);
4824f1f4
WX
6517 if (cache->ro) {
6518 ret = -EAGAIN;
fb25e914 6519 } else {
4824f1f4
WX
6520 cache->reserved += num_bytes;
6521 space_info->bytes_reserved += num_bytes;
e570fd27 6522
18513091
WX
6523 trace_btrfs_space_reservation(cache->fs_info,
6524 "space_info", space_info->flags,
6525 ram_bytes, 0);
6526 space_info->bytes_may_use -= ram_bytes;
e570fd27 6527 if (delalloc)
4824f1f4 6528 cache->delalloc_bytes += num_bytes;
324ae4df 6529 }
fb25e914
JB
6530 spin_unlock(&cache->lock);
6531 spin_unlock(&space_info->lock);
f0486c68 6532 return ret;
324ae4df 6533}
9078a3e1 6534
4824f1f4
WX
6535/**
6536 * btrfs_free_reserved_bytes - update the block_group and space info counters
6537 * @cache: The cache we are manipulating
6538 * @num_bytes: The number of bytes in question
6539 * @delalloc: The blocks are allocated for the delalloc write
6540 *
6541 * This is called by somebody who is freeing space that was never actually used
6542 * on disk. For example if you reserve some space for a new leaf in transaction
6543 * A and before transaction A commits you free that leaf, you call this with
6544 * reserve set to 0 in order to clear the reservation.
6545 */
6546
6547static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6548 u64 num_bytes, int delalloc)
6549{
6550 struct btrfs_space_info *space_info = cache->space_info;
6551 int ret = 0;
6552
6553 spin_lock(&space_info->lock);
6554 spin_lock(&cache->lock);
6555 if (cache->ro)
6556 space_info->bytes_readonly += num_bytes;
6557 cache->reserved -= num_bytes;
6558 space_info->bytes_reserved -= num_bytes;
6559
6560 if (delalloc)
6561 cache->delalloc_bytes -= num_bytes;
6562 spin_unlock(&cache->lock);
6563 spin_unlock(&space_info->lock);
6564 return ret;
6565}
8b74c03e 6566void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6567{
11833d66
YZ
6568 struct btrfs_caching_control *next;
6569 struct btrfs_caching_control *caching_ctl;
6570 struct btrfs_block_group_cache *cache;
e8569813 6571
9e351cc8 6572 down_write(&fs_info->commit_root_sem);
25179201 6573
11833d66
YZ
6574 list_for_each_entry_safe(caching_ctl, next,
6575 &fs_info->caching_block_groups, list) {
6576 cache = caching_ctl->block_group;
6577 if (block_group_cache_done(cache)) {
6578 cache->last_byte_to_unpin = (u64)-1;
6579 list_del_init(&caching_ctl->list);
6580 put_caching_control(caching_ctl);
e8569813 6581 } else {
11833d66 6582 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6583 }
e8569813 6584 }
11833d66
YZ
6585
6586 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6587 fs_info->pinned_extents = &fs_info->freed_extents[1];
6588 else
6589 fs_info->pinned_extents = &fs_info->freed_extents[0];
6590
9e351cc8 6591 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6592
6593 update_global_block_rsv(fs_info);
e8569813
ZY
6594}
6595
c759c4e1
JB
6596/*
6597 * Returns the free cluster for the given space info and sets empty_cluster to
6598 * what it should be based on the mount options.
6599 */
6600static struct btrfs_free_cluster *
2ff7e61e
JM
6601fetch_cluster_info(struct btrfs_fs_info *fs_info,
6602 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6603{
6604 struct btrfs_free_cluster *ret = NULL;
0b246afa 6605 bool ssd = btrfs_test_opt(fs_info, SSD);
c759c4e1
JB
6606
6607 *empty_cluster = 0;
6608 if (btrfs_mixed_space_info(space_info))
6609 return ret;
6610
6611 if (ssd)
ee22184b 6612 *empty_cluster = SZ_2M;
c759c4e1 6613 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6614 ret = &fs_info->meta_alloc_cluster;
c759c4e1 6615 if (!ssd)
ee22184b 6616 *empty_cluster = SZ_64K;
c759c4e1 6617 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
0b246afa 6618 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6619 }
6620
6621 return ret;
6622}
6623
2ff7e61e
JM
6624static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6625 u64 start, u64 end,
678886bd 6626 const bool return_free_space)
ccd467d6 6627{
11833d66 6628 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6629 struct btrfs_space_info *space_info;
6630 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6631 struct btrfs_free_cluster *cluster = NULL;
11833d66 6632 u64 len;
c759c4e1
JB
6633 u64 total_unpinned = 0;
6634 u64 empty_cluster = 0;
7b398f8e 6635 bool readonly;
ccd467d6 6636
11833d66 6637 while (start <= end) {
7b398f8e 6638 readonly = false;
11833d66
YZ
6639 if (!cache ||
6640 start >= cache->key.objectid + cache->key.offset) {
6641 if (cache)
6642 btrfs_put_block_group(cache);
c759c4e1 6643 total_unpinned = 0;
11833d66 6644 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6645 BUG_ON(!cache); /* Logic error */
c759c4e1 6646
2ff7e61e 6647 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6648 cache->space_info,
6649 &empty_cluster);
6650 empty_cluster <<= 1;
11833d66
YZ
6651 }
6652
6653 len = cache->key.objectid + cache->key.offset - start;
6654 len = min(len, end + 1 - start);
6655
6656 if (start < cache->last_byte_to_unpin) {
6657 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6658 if (return_free_space)
6659 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6660 }
6661
f0486c68 6662 start += len;
c759c4e1 6663 total_unpinned += len;
7b398f8e 6664 space_info = cache->space_info;
f0486c68 6665
c759c4e1
JB
6666 /*
6667 * If this space cluster has been marked as fragmented and we've
6668 * unpinned enough in this block group to potentially allow a
6669 * cluster to be created inside of it go ahead and clear the
6670 * fragmented check.
6671 */
6672 if (cluster && cluster->fragmented &&
6673 total_unpinned > empty_cluster) {
6674 spin_lock(&cluster->lock);
6675 cluster->fragmented = 0;
6676 spin_unlock(&cluster->lock);
6677 }
6678
7b398f8e 6679 spin_lock(&space_info->lock);
11833d66
YZ
6680 spin_lock(&cache->lock);
6681 cache->pinned -= len;
7b398f8e 6682 space_info->bytes_pinned -= len;
c51e7bb1
JB
6683
6684 trace_btrfs_space_reservation(fs_info, "pinned",
6685 space_info->flags, len, 0);
4f4db217 6686 space_info->max_extent_size = 0;
d288db5d 6687 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6688 if (cache->ro) {
6689 space_info->bytes_readonly += len;
6690 readonly = true;
6691 }
11833d66 6692 spin_unlock(&cache->lock);
957780eb
JB
6693 if (!readonly && return_free_space &&
6694 global_rsv->space_info == space_info) {
6695 u64 to_add = len;
6696 WARN_ON(!return_free_space);
7b398f8e
JB
6697 spin_lock(&global_rsv->lock);
6698 if (!global_rsv->full) {
957780eb
JB
6699 to_add = min(len, global_rsv->size -
6700 global_rsv->reserved);
6701 global_rsv->reserved += to_add;
6702 space_info->bytes_may_use += to_add;
7b398f8e
JB
6703 if (global_rsv->reserved >= global_rsv->size)
6704 global_rsv->full = 1;
957780eb
JB
6705 trace_btrfs_space_reservation(fs_info,
6706 "space_info",
6707 space_info->flags,
6708 to_add, 1);
6709 len -= to_add;
7b398f8e
JB
6710 }
6711 spin_unlock(&global_rsv->lock);
957780eb
JB
6712 /* Add to any tickets we may have */
6713 if (len)
6714 space_info_add_new_bytes(fs_info, space_info,
6715 len);
7b398f8e
JB
6716 }
6717 spin_unlock(&space_info->lock);
ccd467d6 6718 }
11833d66
YZ
6719
6720 if (cache)
6721 btrfs_put_block_group(cache);
ccd467d6
CM
6722 return 0;
6723}
6724
6725int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2ff7e61e 6726 struct btrfs_fs_info *fs_info)
a28ec197 6727{
e33e17ee
JM
6728 struct btrfs_block_group_cache *block_group, *tmp;
6729 struct list_head *deleted_bgs;
11833d66 6730 struct extent_io_tree *unpin;
1a5bc167
CM
6731 u64 start;
6732 u64 end;
a28ec197 6733 int ret;
a28ec197 6734
11833d66
YZ
6735 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6736 unpin = &fs_info->freed_extents[1];
6737 else
6738 unpin = &fs_info->freed_extents[0];
6739
e33e17ee 6740 while (!trans->aborted) {
d4b450cd 6741 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6742 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6743 EXTENT_DIRTY, NULL);
d4b450cd
FM
6744 if (ret) {
6745 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6746 break;
d4b450cd 6747 }
1f3c79a2 6748
0b246afa 6749 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6750 ret = btrfs_discard_extent(fs_info, start,
5378e607 6751 end + 1 - start, NULL);
1f3c79a2 6752
af6f8f60 6753 clear_extent_dirty(unpin, start, end);
2ff7e61e 6754 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6755 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6756 cond_resched();
a28ec197 6757 }
817d52f8 6758
e33e17ee
JM
6759 /*
6760 * Transaction is finished. We don't need the lock anymore. We
6761 * do need to clean up the block groups in case of a transaction
6762 * abort.
6763 */
6764 deleted_bgs = &trans->transaction->deleted_bgs;
6765 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6766 u64 trimmed = 0;
6767
6768 ret = -EROFS;
6769 if (!trans->aborted)
2ff7e61e 6770 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6771 block_group->key.objectid,
6772 block_group->key.offset,
6773 &trimmed);
6774
6775 list_del_init(&block_group->bg_list);
6776 btrfs_put_block_group_trimming(block_group);
6777 btrfs_put_block_group(block_group);
6778
6779 if (ret) {
6780 const char *errstr = btrfs_decode_error(ret);
6781 btrfs_warn(fs_info,
6782 "Discard failed while removing blockgroup: errno=%d %s\n",
6783 ret, errstr);
6784 }
6785 }
6786
e20d96d6
CM
6787 return 0;
6788}
6789
b150a4f1
JB
6790static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6791 u64 owner, u64 root_objectid)
6792{
6793 struct btrfs_space_info *space_info;
6794 u64 flags;
6795
6796 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6797 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6798 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6799 else
6800 flags = BTRFS_BLOCK_GROUP_METADATA;
6801 } else {
6802 flags = BTRFS_BLOCK_GROUP_DATA;
6803 }
6804
6805 space_info = __find_space_info(fs_info, flags);
6806 BUG_ON(!space_info); /* Logic bug */
6807 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6808}
6809
6810
5d4f98a2 6811static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6812 struct btrfs_fs_info *info,
c682f9b3 6813 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6814 u64 root_objectid, u64 owner_objectid,
6815 u64 owner_offset, int refs_to_drop,
c682f9b3 6816 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6817{
e2fa7227 6818 struct btrfs_key key;
5d4f98a2 6819 struct btrfs_path *path;
1261ec42 6820 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6821 struct extent_buffer *leaf;
5d4f98a2
YZ
6822 struct btrfs_extent_item *ei;
6823 struct btrfs_extent_inline_ref *iref;
a28ec197 6824 int ret;
5d4f98a2 6825 int is_data;
952fccac
CM
6826 int extent_slot = 0;
6827 int found_extent = 0;
6828 int num_to_del = 1;
5d4f98a2
YZ
6829 u32 item_size;
6830 u64 refs;
c682f9b3
QW
6831 u64 bytenr = node->bytenr;
6832 u64 num_bytes = node->num_bytes;
fcebe456 6833 int last_ref = 0;
0b246afa 6834 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6835
5caf2a00 6836 path = btrfs_alloc_path();
54aa1f4d
CM
6837 if (!path)
6838 return -ENOMEM;
5f26f772 6839
e4058b54 6840 path->reada = READA_FORWARD;
b9473439 6841 path->leave_spinning = 1;
5d4f98a2
YZ
6842
6843 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6844 BUG_ON(!is_data && refs_to_drop != 1);
6845
3173a18f
JB
6846 if (is_data)
6847 skinny_metadata = 0;
6848
87bde3cd 6849 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6850 bytenr, num_bytes, parent,
6851 root_objectid, owner_objectid,
6852 owner_offset);
7bb86316 6853 if (ret == 0) {
952fccac 6854 extent_slot = path->slots[0];
5d4f98a2
YZ
6855 while (extent_slot >= 0) {
6856 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6857 extent_slot);
5d4f98a2 6858 if (key.objectid != bytenr)
952fccac 6859 break;
5d4f98a2
YZ
6860 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6861 key.offset == num_bytes) {
952fccac
CM
6862 found_extent = 1;
6863 break;
6864 }
3173a18f
JB
6865 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6866 key.offset == owner_objectid) {
6867 found_extent = 1;
6868 break;
6869 }
952fccac
CM
6870 if (path->slots[0] - extent_slot > 5)
6871 break;
5d4f98a2 6872 extent_slot--;
952fccac 6873 }
5d4f98a2
YZ
6874#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6875 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6876 if (found_extent && item_size < sizeof(*ei))
6877 found_extent = 0;
6878#endif
31840ae1 6879 if (!found_extent) {
5d4f98a2 6880 BUG_ON(iref);
87bde3cd
JM
6881 ret = remove_extent_backref(trans, info, path, NULL,
6882 refs_to_drop,
fcebe456 6883 is_data, &last_ref);
005d6427 6884 if (ret) {
66642832 6885 btrfs_abort_transaction(trans, ret);
005d6427
DS
6886 goto out;
6887 }
b3b4aa74 6888 btrfs_release_path(path);
b9473439 6889 path->leave_spinning = 1;
5d4f98a2
YZ
6890
6891 key.objectid = bytenr;
6892 key.type = BTRFS_EXTENT_ITEM_KEY;
6893 key.offset = num_bytes;
6894
3173a18f
JB
6895 if (!is_data && skinny_metadata) {
6896 key.type = BTRFS_METADATA_ITEM_KEY;
6897 key.offset = owner_objectid;
6898 }
6899
31840ae1
ZY
6900 ret = btrfs_search_slot(trans, extent_root,
6901 &key, path, -1, 1);
3173a18f
JB
6902 if (ret > 0 && skinny_metadata && path->slots[0]) {
6903 /*
6904 * Couldn't find our skinny metadata item,
6905 * see if we have ye olde extent item.
6906 */
6907 path->slots[0]--;
6908 btrfs_item_key_to_cpu(path->nodes[0], &key,
6909 path->slots[0]);
6910 if (key.objectid == bytenr &&
6911 key.type == BTRFS_EXTENT_ITEM_KEY &&
6912 key.offset == num_bytes)
6913 ret = 0;
6914 }
6915
6916 if (ret > 0 && skinny_metadata) {
6917 skinny_metadata = false;
9ce49a0b 6918 key.objectid = bytenr;
3173a18f
JB
6919 key.type = BTRFS_EXTENT_ITEM_KEY;
6920 key.offset = num_bytes;
6921 btrfs_release_path(path);
6922 ret = btrfs_search_slot(trans, extent_root,
6923 &key, path, -1, 1);
6924 }
6925
f3465ca4 6926 if (ret) {
5d163e0e
JM
6927 btrfs_err(info,
6928 "umm, got %d back from search, was looking for %llu",
6929 ret, bytenr);
b783e62d 6930 if (ret > 0)
2ff7e61e 6931 btrfs_print_leaf(info, path->nodes[0]);
f3465ca4 6932 }
005d6427 6933 if (ret < 0) {
66642832 6934 btrfs_abort_transaction(trans, ret);
005d6427
DS
6935 goto out;
6936 }
31840ae1
ZY
6937 extent_slot = path->slots[0];
6938 }
fae7f21c 6939 } else if (WARN_ON(ret == -ENOENT)) {
2ff7e61e 6940 btrfs_print_leaf(info, path->nodes[0]);
c2cf52eb
SK
6941 btrfs_err(info,
6942 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6943 bytenr, parent, root_objectid, owner_objectid,
6944 owner_offset);
66642832 6945 btrfs_abort_transaction(trans, ret);
c4a050bb 6946 goto out;
79787eaa 6947 } else {
66642832 6948 btrfs_abort_transaction(trans, ret);
005d6427 6949 goto out;
7bb86316 6950 }
5f39d397
CM
6951
6952 leaf = path->nodes[0];
5d4f98a2
YZ
6953 item_size = btrfs_item_size_nr(leaf, extent_slot);
6954#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6955 if (item_size < sizeof(*ei)) {
6956 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
6957 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6958 0);
005d6427 6959 if (ret < 0) {
66642832 6960 btrfs_abort_transaction(trans, ret);
005d6427
DS
6961 goto out;
6962 }
5d4f98a2 6963
b3b4aa74 6964 btrfs_release_path(path);
5d4f98a2
YZ
6965 path->leave_spinning = 1;
6966
6967 key.objectid = bytenr;
6968 key.type = BTRFS_EXTENT_ITEM_KEY;
6969 key.offset = num_bytes;
6970
6971 ret = btrfs_search_slot(trans, extent_root, &key, path,
6972 -1, 1);
6973 if (ret) {
5d163e0e
JM
6974 btrfs_err(info,
6975 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6976 ret, bytenr);
2ff7e61e 6977 btrfs_print_leaf(info, path->nodes[0]);
5d4f98a2 6978 }
005d6427 6979 if (ret < 0) {
66642832 6980 btrfs_abort_transaction(trans, ret);
005d6427
DS
6981 goto out;
6982 }
6983
5d4f98a2
YZ
6984 extent_slot = path->slots[0];
6985 leaf = path->nodes[0];
6986 item_size = btrfs_item_size_nr(leaf, extent_slot);
6987 }
6988#endif
6989 BUG_ON(item_size < sizeof(*ei));
952fccac 6990 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6991 struct btrfs_extent_item);
3173a18f
JB
6992 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6993 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6994 struct btrfs_tree_block_info *bi;
6995 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6996 bi = (struct btrfs_tree_block_info *)(ei + 1);
6997 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6998 }
56bec294 6999
5d4f98a2 7000 refs = btrfs_extent_refs(leaf, ei);
32b02538 7001 if (refs < refs_to_drop) {
5d163e0e
JM
7002 btrfs_err(info,
7003 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7004 refs_to_drop, refs, bytenr);
32b02538 7005 ret = -EINVAL;
66642832 7006 btrfs_abort_transaction(trans, ret);
32b02538
JB
7007 goto out;
7008 }
56bec294 7009 refs -= refs_to_drop;
5f39d397 7010
5d4f98a2
YZ
7011 if (refs > 0) {
7012 if (extent_op)
7013 __run_delayed_extent_op(extent_op, leaf, ei);
7014 /*
7015 * In the case of inline back ref, reference count will
7016 * be updated by remove_extent_backref
952fccac 7017 */
5d4f98a2
YZ
7018 if (iref) {
7019 BUG_ON(!found_extent);
7020 } else {
7021 btrfs_set_extent_refs(leaf, ei, refs);
7022 btrfs_mark_buffer_dirty(leaf);
7023 }
7024 if (found_extent) {
87bde3cd 7025 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7026 iref, refs_to_drop,
fcebe456 7027 is_data, &last_ref);
005d6427 7028 if (ret) {
66642832 7029 btrfs_abort_transaction(trans, ret);
005d6427
DS
7030 goto out;
7031 }
952fccac 7032 }
0b246afa 7033 add_pinned_bytes(info, -num_bytes, owner_objectid,
b150a4f1 7034 root_objectid);
5d4f98a2 7035 } else {
5d4f98a2
YZ
7036 if (found_extent) {
7037 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7038 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7039 if (iref) {
7040 BUG_ON(path->slots[0] != extent_slot);
7041 } else {
7042 BUG_ON(path->slots[0] != extent_slot + 1);
7043 path->slots[0] = extent_slot;
7044 num_to_del = 2;
7045 }
78fae27e 7046 }
b9473439 7047
fcebe456 7048 last_ref = 1;
952fccac
CM
7049 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7050 num_to_del);
005d6427 7051 if (ret) {
66642832 7052 btrfs_abort_transaction(trans, ret);
005d6427
DS
7053 goto out;
7054 }
b3b4aa74 7055 btrfs_release_path(path);
21af804c 7056
5d4f98a2 7057 if (is_data) {
5b4aacef 7058 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7059 if (ret) {
66642832 7060 btrfs_abort_transaction(trans, ret);
005d6427
DS
7061 goto out;
7062 }
459931ec
CM
7063 }
7064
0b246afa 7065 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
1e144fb8 7066 if (ret) {
66642832 7067 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7068 goto out;
7069 }
7070
0b246afa 7071 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7072 if (ret) {
66642832 7073 btrfs_abort_transaction(trans, ret);
005d6427
DS
7074 goto out;
7075 }
a28ec197 7076 }
fcebe456
JB
7077 btrfs_release_path(path);
7078
79787eaa 7079out:
5caf2a00 7080 btrfs_free_path(path);
a28ec197
CM
7081 return ret;
7082}
7083
1887be66 7084/*
f0486c68 7085 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7086 * delayed ref for that extent as well. This searches the delayed ref tree for
7087 * a given extent, and if there are no other delayed refs to be processed, it
7088 * removes it from the tree.
7089 */
7090static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7091 u64 bytenr)
1887be66
CM
7092{
7093 struct btrfs_delayed_ref_head *head;
7094 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7095 int ret = 0;
1887be66
CM
7096
7097 delayed_refs = &trans->transaction->delayed_refs;
7098 spin_lock(&delayed_refs->lock);
f72ad18e 7099 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7100 if (!head)
cf93da7b 7101 goto out_delayed_unlock;
1887be66 7102
d7df2c79 7103 spin_lock(&head->lock);
c6fc2454 7104 if (!list_empty(&head->ref_list))
1887be66
CM
7105 goto out;
7106
5d4f98a2
YZ
7107 if (head->extent_op) {
7108 if (!head->must_insert_reserved)
7109 goto out;
78a6184a 7110 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7111 head->extent_op = NULL;
7112 }
7113
1887be66
CM
7114 /*
7115 * waiting for the lock here would deadlock. If someone else has it
7116 * locked they are already in the process of dropping it anyway
7117 */
7118 if (!mutex_trylock(&head->mutex))
7119 goto out;
7120
7121 /*
7122 * at this point we have a head with no other entries. Go
7123 * ahead and process it.
7124 */
7125 head->node.in_tree = 0;
c46effa6 7126 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 7127
d7df2c79 7128 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7129
7130 /*
7131 * we don't take a ref on the node because we're removing it from the
7132 * tree, so we just steal the ref the tree was holding.
7133 */
c3e69d58 7134 delayed_refs->num_heads--;
d7df2c79 7135 if (head->processing == 0)
c3e69d58 7136 delayed_refs->num_heads_ready--;
d7df2c79
JB
7137 head->processing = 0;
7138 spin_unlock(&head->lock);
1887be66
CM
7139 spin_unlock(&delayed_refs->lock);
7140
f0486c68
YZ
7141 BUG_ON(head->extent_op);
7142 if (head->must_insert_reserved)
7143 ret = 1;
7144
7145 mutex_unlock(&head->mutex);
1887be66 7146 btrfs_put_delayed_ref(&head->node);
f0486c68 7147 return ret;
1887be66 7148out:
d7df2c79 7149 spin_unlock(&head->lock);
cf93da7b
CM
7150
7151out_delayed_unlock:
1887be66
CM
7152 spin_unlock(&delayed_refs->lock);
7153 return 0;
7154}
7155
f0486c68
YZ
7156void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7157 struct btrfs_root *root,
7158 struct extent_buffer *buf,
5581a51a 7159 u64 parent, int last_ref)
f0486c68 7160{
0b246afa 7161 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7162 int pin = 1;
f0486c68
YZ
7163 int ret;
7164
7165 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
0b246afa
JM
7166 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
7167 buf->start, buf->len,
7168 parent,
7169 root->root_key.objectid,
7170 btrfs_header_level(buf),
7171 BTRFS_DROP_DELAYED_REF, NULL);
79787eaa 7172 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
7173 }
7174
7175 if (!last_ref)
7176 return;
7177
f0486c68 7178 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7179 struct btrfs_block_group_cache *cache;
7180
f0486c68 7181 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7182 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7183 if (!ret)
37be25bc 7184 goto out;
f0486c68
YZ
7185 }
7186
0b246afa 7187 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7188
f0486c68 7189 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7190 pin_down_extent(fs_info, cache, buf->start,
7191 buf->len, 1);
6219872d 7192 btrfs_put_block_group(cache);
37be25bc 7193 goto out;
f0486c68
YZ
7194 }
7195
7196 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7197
7198 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7199 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7200 btrfs_put_block_group(cache);
71ff6437 7201 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
b150a4f1 7202 pin = 0;
f0486c68
YZ
7203 }
7204out:
b150a4f1 7205 if (pin)
0b246afa 7206 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
b150a4f1
JB
7207 root->root_key.objectid);
7208
a826d6dc
JB
7209 /*
7210 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7211 * anymore.
7212 */
7213 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
7214}
7215
79787eaa 7216/* Can return -ENOMEM */
2ff7e61e
JM
7217int btrfs_free_extent(struct btrfs_trans_handle *trans,
7218 struct btrfs_fs_info *fs_info,
66d7e7f0 7219 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7220 u64 owner, u64 offset)
925baedd
CM
7221{
7222 int ret;
7223
f5ee5c9a 7224 if (btrfs_is_testing(fs_info))
faa2dbf0 7225 return 0;
fccb84c9 7226
0b246afa 7227 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
b150a4f1 7228
56bec294
CM
7229 /*
7230 * tree log blocks never actually go into the extent allocation
7231 * tree, just update pinning info and exit early.
56bec294 7232 */
5d4f98a2
YZ
7233 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7234 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7235 /* unlocks the pinned mutex */
2ff7e61e 7236 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
56bec294 7237 ret = 0;
5d4f98a2 7238 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
7239 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7240 num_bytes,
5d4f98a2 7241 parent, root_objectid, (int)owner,
b06c4bf5 7242 BTRFS_DROP_DELAYED_REF, NULL);
5d4f98a2 7243 } else {
66d7e7f0
AJ
7244 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7245 num_bytes,
7246 parent, root_objectid, owner,
5846a3c2 7247 offset, 0,
fef394f7 7248 BTRFS_DROP_DELAYED_REF);
56bec294 7249 }
925baedd
CM
7250 return ret;
7251}
7252
817d52f8
JB
7253/*
7254 * when we wait for progress in the block group caching, its because
7255 * our allocation attempt failed at least once. So, we must sleep
7256 * and let some progress happen before we try again.
7257 *
7258 * This function will sleep at least once waiting for new free space to
7259 * show up, and then it will check the block group free space numbers
7260 * for our min num_bytes. Another option is to have it go ahead
7261 * and look in the rbtree for a free extent of a given size, but this
7262 * is a good start.
36cce922
JB
7263 *
7264 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7265 * any of the information in this block group.
817d52f8 7266 */
36cce922 7267static noinline void
817d52f8
JB
7268wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7269 u64 num_bytes)
7270{
11833d66 7271 struct btrfs_caching_control *caching_ctl;
817d52f8 7272
11833d66
YZ
7273 caching_ctl = get_caching_control(cache);
7274 if (!caching_ctl)
36cce922 7275 return;
817d52f8 7276
11833d66 7277 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7278 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7279
7280 put_caching_control(caching_ctl);
11833d66
YZ
7281}
7282
7283static noinline int
7284wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7285{
7286 struct btrfs_caching_control *caching_ctl;
36cce922 7287 int ret = 0;
11833d66
YZ
7288
7289 caching_ctl = get_caching_control(cache);
7290 if (!caching_ctl)
36cce922 7291 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7292
7293 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7294 if (cache->cached == BTRFS_CACHE_ERROR)
7295 ret = -EIO;
11833d66 7296 put_caching_control(caching_ctl);
36cce922 7297 return ret;
817d52f8
JB
7298}
7299
31e50229 7300int __get_raid_index(u64 flags)
b742bb82 7301{
7738a53a 7302 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7303 return BTRFS_RAID_RAID10;
7738a53a 7304 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7305 return BTRFS_RAID_RAID1;
7738a53a 7306 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7307 return BTRFS_RAID_DUP;
7738a53a 7308 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7309 return BTRFS_RAID_RAID0;
53b381b3 7310 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7311 return BTRFS_RAID_RAID5;
53b381b3 7312 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7313 return BTRFS_RAID_RAID6;
7738a53a 7314
e942f883 7315 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7316}
7317
6ab0a202 7318int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7319{
31e50229 7320 return __get_raid_index(cache->flags);
7738a53a
ID
7321}
7322
6ab0a202
JM
7323static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7324 [BTRFS_RAID_RAID10] = "raid10",
7325 [BTRFS_RAID_RAID1] = "raid1",
7326 [BTRFS_RAID_DUP] = "dup",
7327 [BTRFS_RAID_RAID0] = "raid0",
7328 [BTRFS_RAID_SINGLE] = "single",
7329 [BTRFS_RAID_RAID5] = "raid5",
7330 [BTRFS_RAID_RAID6] = "raid6",
7331};
7332
1b8e5df6 7333static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7334{
7335 if (type >= BTRFS_NR_RAID_TYPES)
7336 return NULL;
7337
7338 return btrfs_raid_type_names[type];
7339}
7340
817d52f8 7341enum btrfs_loop_type {
285ff5af
JB
7342 LOOP_CACHING_NOWAIT = 0,
7343 LOOP_CACHING_WAIT = 1,
7344 LOOP_ALLOC_CHUNK = 2,
7345 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7346};
7347
e570fd27
MX
7348static inline void
7349btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7350 int delalloc)
7351{
7352 if (delalloc)
7353 down_read(&cache->data_rwsem);
7354}
7355
7356static inline void
7357btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7358 int delalloc)
7359{
7360 btrfs_get_block_group(cache);
7361 if (delalloc)
7362 down_read(&cache->data_rwsem);
7363}
7364
7365static struct btrfs_block_group_cache *
7366btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7367 struct btrfs_free_cluster *cluster,
7368 int delalloc)
7369{
89771cc9 7370 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7371
e570fd27 7372 spin_lock(&cluster->refill_lock);
6719afdc
GU
7373 while (1) {
7374 used_bg = cluster->block_group;
7375 if (!used_bg)
7376 return NULL;
7377
7378 if (used_bg == block_group)
e570fd27
MX
7379 return used_bg;
7380
6719afdc 7381 btrfs_get_block_group(used_bg);
e570fd27 7382
6719afdc
GU
7383 if (!delalloc)
7384 return used_bg;
e570fd27 7385
6719afdc
GU
7386 if (down_read_trylock(&used_bg->data_rwsem))
7387 return used_bg;
e570fd27 7388
6719afdc 7389 spin_unlock(&cluster->refill_lock);
e570fd27 7390
e321f8a8
LB
7391 /* We should only have one-level nested. */
7392 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7393
6719afdc
GU
7394 spin_lock(&cluster->refill_lock);
7395 if (used_bg == cluster->block_group)
7396 return used_bg;
e570fd27 7397
6719afdc
GU
7398 up_read(&used_bg->data_rwsem);
7399 btrfs_put_block_group(used_bg);
7400 }
e570fd27
MX
7401}
7402
7403static inline void
7404btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7405 int delalloc)
7406{
7407 if (delalloc)
7408 up_read(&cache->data_rwsem);
7409 btrfs_put_block_group(cache);
7410}
7411
fec577fb
CM
7412/*
7413 * walks the btree of allocated extents and find a hole of a given size.
7414 * The key ins is changed to record the hole:
a4820398 7415 * ins->objectid == start position
62e2749e 7416 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7417 * ins->offset == the size of the hole.
fec577fb 7418 * Any available blocks before search_start are skipped.
a4820398
MX
7419 *
7420 * If there is no suitable free space, we will record the max size of
7421 * the free space extent currently.
fec577fb 7422 */
87bde3cd 7423static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7424 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7425 u64 hint_byte, struct btrfs_key *ins,
7426 u64 flags, int delalloc)
fec577fb 7427{
80eb234a 7428 int ret = 0;
0b246afa 7429 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7430 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7431 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7432 u64 search_start = 0;
a4820398 7433 u64 max_extent_size = 0;
c759c4e1 7434 u64 empty_cluster = 0;
80eb234a 7435 struct btrfs_space_info *space_info;
fa9c0d79 7436 int loop = 0;
b6919a58 7437 int index = __get_raid_index(flags);
0a24325e 7438 bool failed_cluster_refill = false;
1cdda9b8 7439 bool failed_alloc = false;
67377734 7440 bool use_cluster = true;
60d2adbb 7441 bool have_caching_bg = false;
13a0db5a 7442 bool orig_have_caching_bg = false;
a5e681d9 7443 bool full_search = false;
fec577fb 7444
0b246afa 7445 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7446 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7447 ins->objectid = 0;
7448 ins->offset = 0;
b1a4d965 7449
71ff6437 7450 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7451
0b246afa 7452 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7453 if (!space_info) {
0b246afa 7454 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7455 return -ENOSPC;
7456 }
2552d17e 7457
67377734 7458 /*
4f4db217
JB
7459 * If our free space is heavily fragmented we may not be able to make
7460 * big contiguous allocations, so instead of doing the expensive search
7461 * for free space, simply return ENOSPC with our max_extent_size so we
7462 * can go ahead and search for a more manageable chunk.
7463 *
7464 * If our max_extent_size is large enough for our allocation simply
7465 * disable clustering since we will likely not be able to find enough
7466 * space to create a cluster and induce latency trying.
67377734 7467 */
4f4db217
JB
7468 if (unlikely(space_info->max_extent_size)) {
7469 spin_lock(&space_info->lock);
7470 if (space_info->max_extent_size &&
7471 num_bytes > space_info->max_extent_size) {
7472 ins->offset = space_info->max_extent_size;
7473 spin_unlock(&space_info->lock);
7474 return -ENOSPC;
7475 } else if (space_info->max_extent_size) {
7476 use_cluster = false;
7477 }
7478 spin_unlock(&space_info->lock);
fa9c0d79 7479 }
0f9dd46c 7480
2ff7e61e 7481 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7482 if (last_ptr) {
fa9c0d79
CM
7483 spin_lock(&last_ptr->lock);
7484 if (last_ptr->block_group)
7485 hint_byte = last_ptr->window_start;
c759c4e1
JB
7486 if (last_ptr->fragmented) {
7487 /*
7488 * We still set window_start so we can keep track of the
7489 * last place we found an allocation to try and save
7490 * some time.
7491 */
7492 hint_byte = last_ptr->window_start;
7493 use_cluster = false;
7494 }
fa9c0d79 7495 spin_unlock(&last_ptr->lock);
239b14b3 7496 }
fa9c0d79 7497
2ff7e61e 7498 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7499 search_start = max(search_start, hint_byte);
2552d17e 7500 if (search_start == hint_byte) {
0b246afa 7501 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7502 /*
7503 * we don't want to use the block group if it doesn't match our
7504 * allocation bits, or if its not cached.
ccf0e725
JB
7505 *
7506 * However if we are re-searching with an ideal block group
7507 * picked out then we don't care that the block group is cached.
817d52f8 7508 */
b6919a58 7509 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7510 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7511 down_read(&space_info->groups_sem);
44fb5511
CM
7512 if (list_empty(&block_group->list) ||
7513 block_group->ro) {
7514 /*
7515 * someone is removing this block group,
7516 * we can't jump into the have_block_group
7517 * target because our list pointers are not
7518 * valid
7519 */
7520 btrfs_put_block_group(block_group);
7521 up_read(&space_info->groups_sem);
ccf0e725 7522 } else {
b742bb82 7523 index = get_block_group_index(block_group);
e570fd27 7524 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7525 goto have_block_group;
ccf0e725 7526 }
2552d17e 7527 } else if (block_group) {
fa9c0d79 7528 btrfs_put_block_group(block_group);
2552d17e 7529 }
42e70e7a 7530 }
2552d17e 7531search:
60d2adbb 7532 have_caching_bg = false;
a5e681d9
JB
7533 if (index == 0 || index == __get_raid_index(flags))
7534 full_search = true;
80eb234a 7535 down_read(&space_info->groups_sem);
b742bb82
YZ
7536 list_for_each_entry(block_group, &space_info->block_groups[index],
7537 list) {
6226cb0a 7538 u64 offset;
817d52f8 7539 int cached;
8a1413a2 7540
e570fd27 7541 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7542 search_start = block_group->key.objectid;
42e70e7a 7543
83a50de9
CM
7544 /*
7545 * this can happen if we end up cycling through all the
7546 * raid types, but we want to make sure we only allocate
7547 * for the proper type.
7548 */
b6919a58 7549 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7550 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7551 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7552 BTRFS_BLOCK_GROUP_RAID5 |
7553 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7554 BTRFS_BLOCK_GROUP_RAID10;
7555
7556 /*
7557 * if they asked for extra copies and this block group
7558 * doesn't provide them, bail. This does allow us to
7559 * fill raid0 from raid1.
7560 */
b6919a58 7561 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7562 goto loop;
7563 }
7564
2552d17e 7565have_block_group:
291c7d2f
JB
7566 cached = block_group_cache_done(block_group);
7567 if (unlikely(!cached)) {
a5e681d9 7568 have_caching_bg = true;
f6373bf3 7569 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7570 BUG_ON(ret < 0);
7571 ret = 0;
817d52f8
JB
7572 }
7573
36cce922
JB
7574 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7575 goto loop;
ea6a478e 7576 if (unlikely(block_group->ro))
2552d17e 7577 goto loop;
0f9dd46c 7578
0a24325e 7579 /*
062c05c4
AO
7580 * Ok we want to try and use the cluster allocator, so
7581 * lets look there
0a24325e 7582 */
c759c4e1 7583 if (last_ptr && use_cluster) {
215a63d1 7584 struct btrfs_block_group_cache *used_block_group;
8de972b4 7585 unsigned long aligned_cluster;
fa9c0d79
CM
7586 /*
7587 * the refill lock keeps out other
7588 * people trying to start a new cluster
7589 */
e570fd27
MX
7590 used_block_group = btrfs_lock_cluster(block_group,
7591 last_ptr,
7592 delalloc);
7593 if (!used_block_group)
44fb5511 7594 goto refill_cluster;
274bd4fb 7595
e570fd27
MX
7596 if (used_block_group != block_group &&
7597 (used_block_group->ro ||
7598 !block_group_bits(used_block_group, flags)))
7599 goto release_cluster;
44fb5511 7600
274bd4fb 7601 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7602 last_ptr,
7603 num_bytes,
7604 used_block_group->key.objectid,
7605 &max_extent_size);
fa9c0d79
CM
7606 if (offset) {
7607 /* we have a block, we're done */
7608 spin_unlock(&last_ptr->refill_lock);
71ff6437 7609 trace_btrfs_reserve_extent_cluster(fs_info,
89d4346a
MX
7610 used_block_group,
7611 search_start, num_bytes);
215a63d1 7612 if (used_block_group != block_group) {
e570fd27
MX
7613 btrfs_release_block_group(block_group,
7614 delalloc);
215a63d1
MX
7615 block_group = used_block_group;
7616 }
fa9c0d79
CM
7617 goto checks;
7618 }
7619
274bd4fb 7620 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7621release_cluster:
062c05c4
AO
7622 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7623 * set up a new clusters, so lets just skip it
7624 * and let the allocator find whatever block
7625 * it can find. If we reach this point, we
7626 * will have tried the cluster allocator
7627 * plenty of times and not have found
7628 * anything, so we are likely way too
7629 * fragmented for the clustering stuff to find
a5f6f719
AO
7630 * anything.
7631 *
7632 * However, if the cluster is taken from the
7633 * current block group, release the cluster
7634 * first, so that we stand a better chance of
7635 * succeeding in the unclustered
7636 * allocation. */
7637 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7638 used_block_group != block_group) {
062c05c4 7639 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7640 btrfs_release_block_group(used_block_group,
7641 delalloc);
062c05c4
AO
7642 goto unclustered_alloc;
7643 }
7644
fa9c0d79
CM
7645 /*
7646 * this cluster didn't work out, free it and
7647 * start over
7648 */
7649 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7650
e570fd27
MX
7651 if (used_block_group != block_group)
7652 btrfs_release_block_group(used_block_group,
7653 delalloc);
7654refill_cluster:
a5f6f719
AO
7655 if (loop >= LOOP_NO_EMPTY_SIZE) {
7656 spin_unlock(&last_ptr->refill_lock);
7657 goto unclustered_alloc;
7658 }
7659
8de972b4
CM
7660 aligned_cluster = max_t(unsigned long,
7661 empty_cluster + empty_size,
7662 block_group->full_stripe_len);
7663
fa9c0d79 7664 /* allocate a cluster in this block group */
2ff7e61e 7665 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7666 last_ptr, search_start,
7667 num_bytes,
7668 aligned_cluster);
fa9c0d79
CM
7669 if (ret == 0) {
7670 /*
7671 * now pull our allocation out of this
7672 * cluster
7673 */
7674 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7675 last_ptr,
7676 num_bytes,
7677 search_start,
7678 &max_extent_size);
fa9c0d79
CM
7679 if (offset) {
7680 /* we found one, proceed */
7681 spin_unlock(&last_ptr->refill_lock);
71ff6437 7682 trace_btrfs_reserve_extent_cluster(fs_info,
3f7de037
JB
7683 block_group, search_start,
7684 num_bytes);
fa9c0d79
CM
7685 goto checks;
7686 }
0a24325e
JB
7687 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7688 && !failed_cluster_refill) {
817d52f8
JB
7689 spin_unlock(&last_ptr->refill_lock);
7690
0a24325e 7691 failed_cluster_refill = true;
817d52f8
JB
7692 wait_block_group_cache_progress(block_group,
7693 num_bytes + empty_cluster + empty_size);
7694 goto have_block_group;
fa9c0d79 7695 }
817d52f8 7696
fa9c0d79
CM
7697 /*
7698 * at this point we either didn't find a cluster
7699 * or we weren't able to allocate a block from our
7700 * cluster. Free the cluster we've been trying
7701 * to use, and go to the next block group
7702 */
0a24325e 7703 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7704 spin_unlock(&last_ptr->refill_lock);
0a24325e 7705 goto loop;
fa9c0d79
CM
7706 }
7707
062c05c4 7708unclustered_alloc:
c759c4e1
JB
7709 /*
7710 * We are doing an unclustered alloc, set the fragmented flag so
7711 * we don't bother trying to setup a cluster again until we get
7712 * more space.
7713 */
7714 if (unlikely(last_ptr)) {
7715 spin_lock(&last_ptr->lock);
7716 last_ptr->fragmented = 1;
7717 spin_unlock(&last_ptr->lock);
7718 }
0c9b36e0
LB
7719 if (cached) {
7720 struct btrfs_free_space_ctl *ctl =
7721 block_group->free_space_ctl;
7722
7723 spin_lock(&ctl->tree_lock);
7724 if (ctl->free_space <
7725 num_bytes + empty_cluster + empty_size) {
7726 if (ctl->free_space > max_extent_size)
7727 max_extent_size = ctl->free_space;
7728 spin_unlock(&ctl->tree_lock);
7729 goto loop;
7730 }
7731 spin_unlock(&ctl->tree_lock);
a5f6f719 7732 }
a5f6f719 7733
6226cb0a 7734 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7735 num_bytes, empty_size,
7736 &max_extent_size);
1cdda9b8
JB
7737 /*
7738 * If we didn't find a chunk, and we haven't failed on this
7739 * block group before, and this block group is in the middle of
7740 * caching and we are ok with waiting, then go ahead and wait
7741 * for progress to be made, and set failed_alloc to true.
7742 *
7743 * If failed_alloc is true then we've already waited on this
7744 * block group once and should move on to the next block group.
7745 */
7746 if (!offset && !failed_alloc && !cached &&
7747 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7748 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7749 num_bytes + empty_size);
7750 failed_alloc = true;
817d52f8 7751 goto have_block_group;
1cdda9b8
JB
7752 } else if (!offset) {
7753 goto loop;
817d52f8 7754 }
fa9c0d79 7755checks:
0b246afa 7756 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7757
2552d17e
JB
7758 /* move on to the next group */
7759 if (search_start + num_bytes >
215a63d1
MX
7760 block_group->key.objectid + block_group->key.offset) {
7761 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7762 goto loop;
6226cb0a 7763 }
f5a31e16 7764
f0486c68 7765 if (offset < search_start)
215a63d1 7766 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7767 search_start - offset);
7768 BUG_ON(offset > search_start);
2552d17e 7769
18513091
WX
7770 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7771 num_bytes, delalloc);
f0486c68 7772 if (ret == -EAGAIN) {
215a63d1 7773 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7774 goto loop;
0f9dd46c 7775 }
9cfa3e34 7776 btrfs_inc_block_group_reservations(block_group);
0b86a832 7777
f0486c68 7778 /* we are all good, lets return */
2552d17e
JB
7779 ins->objectid = search_start;
7780 ins->offset = num_bytes;
d2fb3437 7781
71ff6437 7782 trace_btrfs_reserve_extent(fs_info, block_group,
3f7de037 7783 search_start, num_bytes);
e570fd27 7784 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7785 break;
7786loop:
0a24325e 7787 failed_cluster_refill = false;
1cdda9b8 7788 failed_alloc = false;
b742bb82 7789 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7790 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7791 }
7792 up_read(&space_info->groups_sem);
7793
13a0db5a 7794 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7795 && !orig_have_caching_bg)
7796 orig_have_caching_bg = true;
7797
60d2adbb
MX
7798 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7799 goto search;
7800
b742bb82
YZ
7801 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7802 goto search;
7803
285ff5af 7804 /*
ccf0e725
JB
7805 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7806 * caching kthreads as we move along
817d52f8
JB
7807 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7808 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7809 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7810 * again
fa9c0d79 7811 */
723bda20 7812 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7813 index = 0;
a5e681d9
JB
7814 if (loop == LOOP_CACHING_NOWAIT) {
7815 /*
7816 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7817 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7818 * full search through.
7819 */
13a0db5a 7820 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7821 loop = LOOP_CACHING_WAIT;
7822 else
7823 loop = LOOP_ALLOC_CHUNK;
7824 } else {
7825 loop++;
7826 }
7827
817d52f8 7828 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7829 struct btrfs_trans_handle *trans;
f017f15f
WS
7830 int exist = 0;
7831
7832 trans = current->journal_info;
7833 if (trans)
7834 exist = 1;
7835 else
7836 trans = btrfs_join_transaction(root);
00361589 7837
00361589
JB
7838 if (IS_ERR(trans)) {
7839 ret = PTR_ERR(trans);
7840 goto out;
7841 }
7842
2ff7e61e 7843 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7844 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7845
7846 /*
7847 * If we can't allocate a new chunk we've already looped
7848 * through at least once, move on to the NO_EMPTY_SIZE
7849 * case.
7850 */
7851 if (ret == -ENOSPC)
7852 loop = LOOP_NO_EMPTY_SIZE;
7853
ea658bad
JB
7854 /*
7855 * Do not bail out on ENOSPC since we
7856 * can do more things.
7857 */
00361589 7858 if (ret < 0 && ret != -ENOSPC)
66642832 7859 btrfs_abort_transaction(trans, ret);
00361589
JB
7860 else
7861 ret = 0;
f017f15f 7862 if (!exist)
3a45bb20 7863 btrfs_end_transaction(trans);
00361589 7864 if (ret)
ea658bad 7865 goto out;
2552d17e
JB
7866 }
7867
723bda20 7868 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7869 /*
7870 * Don't loop again if we already have no empty_size and
7871 * no empty_cluster.
7872 */
7873 if (empty_size == 0 &&
7874 empty_cluster == 0) {
7875 ret = -ENOSPC;
7876 goto out;
7877 }
723bda20
JB
7878 empty_size = 0;
7879 empty_cluster = 0;
fa9c0d79 7880 }
723bda20
JB
7881
7882 goto search;
2552d17e
JB
7883 } else if (!ins->objectid) {
7884 ret = -ENOSPC;
d82a6f1d 7885 } else if (ins->objectid) {
c759c4e1
JB
7886 if (!use_cluster && last_ptr) {
7887 spin_lock(&last_ptr->lock);
7888 last_ptr->window_start = ins->objectid;
7889 spin_unlock(&last_ptr->lock);
7890 }
80eb234a 7891 ret = 0;
be744175 7892 }
79787eaa 7893out:
4f4db217
JB
7894 if (ret == -ENOSPC) {
7895 spin_lock(&space_info->lock);
7896 space_info->max_extent_size = max_extent_size;
7897 spin_unlock(&space_info->lock);
a4820398 7898 ins->offset = max_extent_size;
4f4db217 7899 }
0f70abe2 7900 return ret;
fec577fb 7901}
ec44a35c 7902
ab8d0fc4
JM
7903static void dump_space_info(struct btrfs_fs_info *fs_info,
7904 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7905 int dump_block_groups)
0f9dd46c
JB
7906{
7907 struct btrfs_block_group_cache *cache;
b742bb82 7908 int index = 0;
0f9dd46c 7909
9ed74f2d 7910 spin_lock(&info->lock);
ab8d0fc4
JM
7911 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7912 info->flags,
4136135b
LB
7913 info->total_bytes - btrfs_space_info_used(info, true),
7914 info->full ? "" : "not ");
ab8d0fc4
JM
7915 btrfs_info(fs_info,
7916 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7917 info->total_bytes, info->bytes_used, info->bytes_pinned,
7918 info->bytes_reserved, info->bytes_may_use,
7919 info->bytes_readonly);
9ed74f2d
JB
7920 spin_unlock(&info->lock);
7921
7922 if (!dump_block_groups)
7923 return;
0f9dd46c 7924
80eb234a 7925 down_read(&info->groups_sem);
b742bb82
YZ
7926again:
7927 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7928 spin_lock(&cache->lock);
ab8d0fc4
JM
7929 btrfs_info(fs_info,
7930 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7931 cache->key.objectid, cache->key.offset,
7932 btrfs_block_group_used(&cache->item), cache->pinned,
7933 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7934 btrfs_dump_free_space(cache, bytes);
7935 spin_unlock(&cache->lock);
7936 }
b742bb82
YZ
7937 if (++index < BTRFS_NR_RAID_TYPES)
7938 goto again;
80eb234a 7939 up_read(&info->groups_sem);
0f9dd46c 7940}
e8569813 7941
18513091 7942int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7943 u64 num_bytes, u64 min_alloc_size,
7944 u64 empty_size, u64 hint_byte,
e570fd27 7945 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7946{
ab8d0fc4 7947 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7948 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7949 u64 flags;
fec577fb 7950 int ret;
925baedd 7951
b6919a58 7952 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7953again:
0b246afa 7954 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 7955 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 7956 hint_byte, ins, flags, delalloc);
9cfa3e34 7957 if (!ret && !is_data) {
ab8d0fc4 7958 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 7959 } else if (ret == -ENOSPC) {
a4820398
MX
7960 if (!final_tried && ins->offset) {
7961 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 7962 num_bytes = round_down(num_bytes,
0b246afa 7963 fs_info->sectorsize);
9e622d6b 7964 num_bytes = max(num_bytes, min_alloc_size);
18513091 7965 ram_bytes = num_bytes;
9e622d6b
MX
7966 if (num_bytes == min_alloc_size)
7967 final_tried = true;
7968 goto again;
ab8d0fc4 7969 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
7970 struct btrfs_space_info *sinfo;
7971
ab8d0fc4 7972 sinfo = __find_space_info(fs_info, flags);
0b246afa 7973 btrfs_err(fs_info,
5d163e0e
JM
7974 "allocation failed flags %llu, wanted %llu",
7975 flags, num_bytes);
53804280 7976 if (sinfo)
ab8d0fc4 7977 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 7978 }
925baedd 7979 }
0f9dd46c
JB
7980
7981 return ret;
e6dcd2dc
CM
7982}
7983
2ff7e61e 7984static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
7985 u64 start, u64 len,
7986 int pin, int delalloc)
65b51a00 7987{
0f9dd46c 7988 struct btrfs_block_group_cache *cache;
1f3c79a2 7989 int ret = 0;
0f9dd46c 7990
0b246afa 7991 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 7992 if (!cache) {
0b246afa
JM
7993 btrfs_err(fs_info, "Unable to find block group for %llu",
7994 start);
0f9dd46c
JB
7995 return -ENOSPC;
7996 }
1f3c79a2 7997
e688b725 7998 if (pin)
2ff7e61e 7999 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8000 else {
0b246afa 8001 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8002 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8003 btrfs_add_free_space(cache, start, len);
4824f1f4 8004 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8005 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8006 }
31193213 8007
fa9c0d79 8008 btrfs_put_block_group(cache);
e6dcd2dc
CM
8009 return ret;
8010}
8011
2ff7e61e 8012int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8013 u64 start, u64 len, int delalloc)
e688b725 8014{
2ff7e61e 8015 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8016}
8017
2ff7e61e 8018int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8019 u64 start, u64 len)
8020{
2ff7e61e 8021 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8022}
8023
5d4f98a2 8024static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8025 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8026 u64 parent, u64 root_objectid,
8027 u64 flags, u64 owner, u64 offset,
8028 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8029{
8030 int ret;
e6dcd2dc 8031 struct btrfs_extent_item *extent_item;
5d4f98a2 8032 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8033 struct btrfs_path *path;
5d4f98a2
YZ
8034 struct extent_buffer *leaf;
8035 int type;
8036 u32 size;
26b8003f 8037
5d4f98a2
YZ
8038 if (parent > 0)
8039 type = BTRFS_SHARED_DATA_REF_KEY;
8040 else
8041 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8042
5d4f98a2 8043 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8044
8045 path = btrfs_alloc_path();
db5b493a
TI
8046 if (!path)
8047 return -ENOMEM;
47e4bb98 8048
b9473439 8049 path->leave_spinning = 1;
5d4f98a2
YZ
8050 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8051 ins, size);
79787eaa
JM
8052 if (ret) {
8053 btrfs_free_path(path);
8054 return ret;
8055 }
0f9dd46c 8056
5d4f98a2
YZ
8057 leaf = path->nodes[0];
8058 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8059 struct btrfs_extent_item);
5d4f98a2
YZ
8060 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8061 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8062 btrfs_set_extent_flags(leaf, extent_item,
8063 flags | BTRFS_EXTENT_FLAG_DATA);
8064
8065 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8066 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8067 if (parent > 0) {
8068 struct btrfs_shared_data_ref *ref;
8069 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8070 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8071 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8072 } else {
8073 struct btrfs_extent_data_ref *ref;
8074 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8075 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8076 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8077 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8078 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8079 }
47e4bb98
CM
8080
8081 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8082 btrfs_free_path(path);
f510cfec 8083
1e144fb8
OS
8084 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8085 ins->offset);
8086 if (ret)
8087 return ret;
8088
6202df69 8089 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8090 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8091 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8092 ins->objectid, ins->offset);
f5947066
CM
8093 BUG();
8094 }
71ff6437 8095 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8096 return ret;
8097}
8098
5d4f98a2 8099static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 8100 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8101 u64 parent, u64 root_objectid,
8102 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8103 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8104{
8105 int ret;
5d4f98a2
YZ
8106 struct btrfs_extent_item *extent_item;
8107 struct btrfs_tree_block_info *block_info;
8108 struct btrfs_extent_inline_ref *iref;
8109 struct btrfs_path *path;
8110 struct extent_buffer *leaf;
3173a18f 8111 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8112 u64 num_bytes = ins->offset;
0b246afa 8113 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f
JB
8114
8115 if (!skinny_metadata)
8116 size += sizeof(*block_info);
1c2308f8 8117
5d4f98a2 8118 path = btrfs_alloc_path();
857cc2fc 8119 if (!path) {
2ff7e61e 8120 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8121 fs_info->nodesize);
d8926bb3 8122 return -ENOMEM;
857cc2fc 8123 }
56bec294 8124
5d4f98a2
YZ
8125 path->leave_spinning = 1;
8126 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8127 ins, size);
79787eaa 8128 if (ret) {
dd825259 8129 btrfs_free_path(path);
2ff7e61e 8130 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8131 fs_info->nodesize);
79787eaa
JM
8132 return ret;
8133 }
5d4f98a2
YZ
8134
8135 leaf = path->nodes[0];
8136 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8137 struct btrfs_extent_item);
8138 btrfs_set_extent_refs(leaf, extent_item, 1);
8139 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8140 btrfs_set_extent_flags(leaf, extent_item,
8141 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8142
3173a18f
JB
8143 if (skinny_metadata) {
8144 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
0b246afa 8145 num_bytes = fs_info->nodesize;
3173a18f
JB
8146 } else {
8147 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8148 btrfs_set_tree_block_key(leaf, block_info, key);
8149 btrfs_set_tree_block_level(leaf, block_info, level);
8150 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8151 }
5d4f98a2 8152
5d4f98a2
YZ
8153 if (parent > 0) {
8154 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8155 btrfs_set_extent_inline_ref_type(leaf, iref,
8156 BTRFS_SHARED_BLOCK_REF_KEY);
8157 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8158 } else {
8159 btrfs_set_extent_inline_ref_type(leaf, iref,
8160 BTRFS_TREE_BLOCK_REF_KEY);
8161 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8162 }
8163
8164 btrfs_mark_buffer_dirty(leaf);
8165 btrfs_free_path(path);
8166
1e144fb8
OS
8167 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8168 num_bytes);
8169 if (ret)
8170 return ret;
8171
6202df69
JM
8172 ret = update_block_group(trans, fs_info, ins->objectid,
8173 fs_info->nodesize, 1);
79787eaa 8174 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8175 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8176 ins->objectid, ins->offset);
5d4f98a2
YZ
8177 BUG();
8178 }
0be5dc67 8179
71ff6437 8180 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
0b246afa 8181 fs_info->nodesize);
5d4f98a2
YZ
8182 return ret;
8183}
8184
8185int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2 8186 u64 root_objectid, u64 owner,
5846a3c2
QW
8187 u64 offset, u64 ram_bytes,
8188 struct btrfs_key *ins)
5d4f98a2 8189{
2ff7e61e 8190 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
8191 int ret;
8192
8193 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8194
0b246afa 8195 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
66d7e7f0
AJ
8196 ins->offset, 0,
8197 root_objectid, owner, offset,
fef394f7 8198 ram_bytes, BTRFS_ADD_DELAYED_EXTENT);
e6dcd2dc
CM
8199 return ret;
8200}
e02119d5
CM
8201
8202/*
8203 * this is used by the tree logging recovery code. It records that
8204 * an extent has been allocated and makes sure to clear the free
8205 * space cache bits as well
8206 */
5d4f98a2 8207int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8208 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8209 u64 root_objectid, u64 owner, u64 offset,
8210 struct btrfs_key *ins)
e02119d5
CM
8211{
8212 int ret;
8213 struct btrfs_block_group_cache *block_group;
ed7a6948 8214 struct btrfs_space_info *space_info;
11833d66 8215
8c2a1a30
JB
8216 /*
8217 * Mixed block groups will exclude before processing the log so we only
01327610 8218 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8219 */
0b246afa 8220 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8221 ret = __exclude_logged_extent(fs_info, ins->objectid,
8222 ins->offset);
b50c6e25 8223 if (ret)
8c2a1a30 8224 return ret;
11833d66
YZ
8225 }
8226
0b246afa 8227 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8228 if (!block_group)
8229 return -EINVAL;
8230
ed7a6948
WX
8231 space_info = block_group->space_info;
8232 spin_lock(&space_info->lock);
8233 spin_lock(&block_group->lock);
8234 space_info->bytes_reserved += ins->offset;
8235 block_group->reserved += ins->offset;
8236 spin_unlock(&block_group->lock);
8237 spin_unlock(&space_info->lock);
8238
2ff7e61e 8239 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8240 0, owner, offset, ins, 1);
b50c6e25 8241 btrfs_put_block_group(block_group);
e02119d5
CM
8242 return ret;
8243}
8244
48a3b636
ES
8245static struct extent_buffer *
8246btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8247 u64 bytenr, int level)
65b51a00 8248{
0b246afa 8249 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8250 struct extent_buffer *buf;
8251
2ff7e61e 8252 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8253 if (IS_ERR(buf))
8254 return buf;
8255
65b51a00 8256 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8257 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8258 btrfs_tree_lock(buf);
7c302b49 8259 clean_tree_block(fs_info, buf);
3083ee2e 8260 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8261
8262 btrfs_set_lock_blocking(buf);
4db8c528 8263 set_extent_buffer_uptodate(buf);
b4ce94de 8264
d0c803c4 8265 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8266 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8267 /*
8268 * we allow two log transactions at a time, use different
8269 * EXENT bit to differentiate dirty pages.
8270 */
656f30db 8271 if (buf->log_index == 0)
8cef4e16
YZ
8272 set_extent_dirty(&root->dirty_log_pages, buf->start,
8273 buf->start + buf->len - 1, GFP_NOFS);
8274 else
8275 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8276 buf->start + buf->len - 1);
d0c803c4 8277 } else {
656f30db 8278 buf->log_index = -1;
d0c803c4 8279 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8280 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8281 }
64c12921 8282 trans->dirty = true;
b4ce94de 8283 /* this returns a buffer locked for blocking */
65b51a00
CM
8284 return buf;
8285}
8286
f0486c68
YZ
8287static struct btrfs_block_rsv *
8288use_block_rsv(struct btrfs_trans_handle *trans,
8289 struct btrfs_root *root, u32 blocksize)
8290{
0b246afa 8291 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8292 struct btrfs_block_rsv *block_rsv;
0b246afa 8293 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8294 int ret;
d88033db 8295 bool global_updated = false;
f0486c68
YZ
8296
8297 block_rsv = get_block_rsv(trans, root);
8298
b586b323
MX
8299 if (unlikely(block_rsv->size == 0))
8300 goto try_reserve;
d88033db 8301again:
f0486c68
YZ
8302 ret = block_rsv_use_bytes(block_rsv, blocksize);
8303 if (!ret)
8304 return block_rsv;
8305
b586b323
MX
8306 if (block_rsv->failfast)
8307 return ERR_PTR(ret);
8308
d88033db
MX
8309 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8310 global_updated = true;
0b246afa 8311 update_global_block_rsv(fs_info);
d88033db
MX
8312 goto again;
8313 }
8314
0b246afa 8315 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8316 static DEFINE_RATELIMIT_STATE(_rs,
8317 DEFAULT_RATELIMIT_INTERVAL * 10,
8318 /*DEFAULT_RATELIMIT_BURST*/ 1);
8319 if (__ratelimit(&_rs))
8320 WARN(1, KERN_DEBUG
efe120a0 8321 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8322 }
8323try_reserve:
8324 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8325 BTRFS_RESERVE_NO_FLUSH);
8326 if (!ret)
8327 return block_rsv;
8328 /*
8329 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8330 * the global reserve if its space type is the same as the global
8331 * reservation.
b586b323 8332 */
5881cfc9
MX
8333 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8334 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8335 ret = block_rsv_use_bytes(global_rsv, blocksize);
8336 if (!ret)
8337 return global_rsv;
8338 }
8339 return ERR_PTR(ret);
f0486c68
YZ
8340}
8341
8c2a3ca2
JB
8342static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8343 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8344{
8345 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8346 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8347}
8348
fec577fb 8349/*
f0486c68 8350 * finds a free extent and does all the dirty work required for allocation
67b7859e 8351 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8352 */
4d75f8a9 8353struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8354 struct btrfs_root *root,
8355 u64 parent, u64 root_objectid,
8356 const struct btrfs_disk_key *key,
8357 int level, u64 hint,
8358 u64 empty_size)
fec577fb 8359{
0b246afa 8360 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8361 struct btrfs_key ins;
f0486c68 8362 struct btrfs_block_rsv *block_rsv;
5f39d397 8363 struct extent_buffer *buf;
67b7859e 8364 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8365 u64 flags = 0;
8366 int ret;
0b246afa
JM
8367 u32 blocksize = fs_info->nodesize;
8368 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8369
05653ef3 8370#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8371 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8372 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8373 level);
faa2dbf0
JB
8374 if (!IS_ERR(buf))
8375 root->alloc_bytenr += blocksize;
8376 return buf;
8377 }
05653ef3 8378#endif
fccb84c9 8379
f0486c68
YZ
8380 block_rsv = use_block_rsv(trans, root, blocksize);
8381 if (IS_ERR(block_rsv))
8382 return ERR_CAST(block_rsv);
8383
18513091 8384 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8385 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8386 if (ret)
8387 goto out_unuse;
55c69072 8388
fe864576 8389 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8390 if (IS_ERR(buf)) {
8391 ret = PTR_ERR(buf);
8392 goto out_free_reserved;
8393 }
f0486c68
YZ
8394
8395 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8396 if (parent == 0)
8397 parent = ins.objectid;
8398 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8399 } else
8400 BUG_ON(parent > 0);
8401
8402 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8403 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8404 if (!extent_op) {
8405 ret = -ENOMEM;
8406 goto out_free_buf;
8407 }
f0486c68
YZ
8408 if (key)
8409 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8410 else
8411 memset(&extent_op->key, 0, sizeof(extent_op->key));
8412 extent_op->flags_to_set = flags;
35b3ad50
DS
8413 extent_op->update_key = skinny_metadata ? false : true;
8414 extent_op->update_flags = true;
8415 extent_op->is_data = false;
b1c79e09 8416 extent_op->level = level;
f0486c68 8417
0b246afa 8418 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
67b7859e
OS
8419 ins.objectid, ins.offset,
8420 parent, root_objectid, level,
8421 BTRFS_ADD_DELAYED_EXTENT,
b06c4bf5 8422 extent_op);
67b7859e
OS
8423 if (ret)
8424 goto out_free_delayed;
f0486c68 8425 }
fec577fb 8426 return buf;
67b7859e
OS
8427
8428out_free_delayed:
8429 btrfs_free_delayed_extent_op(extent_op);
8430out_free_buf:
8431 free_extent_buffer(buf);
8432out_free_reserved:
2ff7e61e 8433 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8434out_unuse:
0b246afa 8435 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8436 return ERR_PTR(ret);
fec577fb 8437}
a28ec197 8438
2c47e605
YZ
8439struct walk_control {
8440 u64 refs[BTRFS_MAX_LEVEL];
8441 u64 flags[BTRFS_MAX_LEVEL];
8442 struct btrfs_key update_progress;
8443 int stage;
8444 int level;
8445 int shared_level;
8446 int update_ref;
8447 int keep_locks;
1c4850e2
YZ
8448 int reada_slot;
8449 int reada_count;
66d7e7f0 8450 int for_reloc;
2c47e605
YZ
8451};
8452
8453#define DROP_REFERENCE 1
8454#define UPDATE_BACKREF 2
8455
1c4850e2
YZ
8456static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8457 struct btrfs_root *root,
8458 struct walk_control *wc,
8459 struct btrfs_path *path)
6407bf6d 8460{
0b246afa 8461 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8462 u64 bytenr;
8463 u64 generation;
8464 u64 refs;
94fcca9f 8465 u64 flags;
5d4f98a2 8466 u32 nritems;
1c4850e2
YZ
8467 struct btrfs_key key;
8468 struct extent_buffer *eb;
6407bf6d 8469 int ret;
1c4850e2
YZ
8470 int slot;
8471 int nread = 0;
6407bf6d 8472
1c4850e2
YZ
8473 if (path->slots[wc->level] < wc->reada_slot) {
8474 wc->reada_count = wc->reada_count * 2 / 3;
8475 wc->reada_count = max(wc->reada_count, 2);
8476 } else {
8477 wc->reada_count = wc->reada_count * 3 / 2;
8478 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8479 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8480 }
7bb86316 8481
1c4850e2
YZ
8482 eb = path->nodes[wc->level];
8483 nritems = btrfs_header_nritems(eb);
bd56b302 8484
1c4850e2
YZ
8485 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8486 if (nread >= wc->reada_count)
8487 break;
bd56b302 8488
2dd3e67b 8489 cond_resched();
1c4850e2
YZ
8490 bytenr = btrfs_node_blockptr(eb, slot);
8491 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8492
1c4850e2
YZ
8493 if (slot == path->slots[wc->level])
8494 goto reada;
5d4f98a2 8495
1c4850e2
YZ
8496 if (wc->stage == UPDATE_BACKREF &&
8497 generation <= root->root_key.offset)
bd56b302
CM
8498 continue;
8499
94fcca9f 8500 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8501 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8502 wc->level - 1, 1, &refs,
8503 &flags);
79787eaa
JM
8504 /* We don't care about errors in readahead. */
8505 if (ret < 0)
8506 continue;
94fcca9f
YZ
8507 BUG_ON(refs == 0);
8508
1c4850e2 8509 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8510 if (refs == 1)
8511 goto reada;
bd56b302 8512
94fcca9f
YZ
8513 if (wc->level == 1 &&
8514 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8515 continue;
1c4850e2
YZ
8516 if (!wc->update_ref ||
8517 generation <= root->root_key.offset)
8518 continue;
8519 btrfs_node_key_to_cpu(eb, &key, slot);
8520 ret = btrfs_comp_cpu_keys(&key,
8521 &wc->update_progress);
8522 if (ret < 0)
8523 continue;
94fcca9f
YZ
8524 } else {
8525 if (wc->level == 1 &&
8526 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8527 continue;
6407bf6d 8528 }
1c4850e2 8529reada:
2ff7e61e 8530 readahead_tree_block(fs_info, bytenr);
1c4850e2 8531 nread++;
20524f02 8532 }
1c4850e2 8533 wc->reada_slot = slot;
20524f02 8534}
2c47e605 8535
f82d02d9 8536/*
2c016dc2 8537 * helper to process tree block while walking down the tree.
2c47e605 8538 *
2c47e605
YZ
8539 * when wc->stage == UPDATE_BACKREF, this function updates
8540 * back refs for pointers in the block.
8541 *
8542 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8543 */
2c47e605 8544static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8545 struct btrfs_root *root,
2c47e605 8546 struct btrfs_path *path,
94fcca9f 8547 struct walk_control *wc, int lookup_info)
f82d02d9 8548{
2ff7e61e 8549 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8550 int level = wc->level;
8551 struct extent_buffer *eb = path->nodes[level];
2c47e605 8552 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8553 int ret;
8554
2c47e605
YZ
8555 if (wc->stage == UPDATE_BACKREF &&
8556 btrfs_header_owner(eb) != root->root_key.objectid)
8557 return 1;
f82d02d9 8558
2c47e605
YZ
8559 /*
8560 * when reference count of tree block is 1, it won't increase
8561 * again. once full backref flag is set, we never clear it.
8562 */
94fcca9f
YZ
8563 if (lookup_info &&
8564 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8565 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8566 BUG_ON(!path->locks[level]);
2ff7e61e 8567 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8568 eb->start, level, 1,
2c47e605
YZ
8569 &wc->refs[level],
8570 &wc->flags[level]);
79787eaa
JM
8571 BUG_ON(ret == -ENOMEM);
8572 if (ret)
8573 return ret;
2c47e605
YZ
8574 BUG_ON(wc->refs[level] == 0);
8575 }
5d4f98a2 8576
2c47e605
YZ
8577 if (wc->stage == DROP_REFERENCE) {
8578 if (wc->refs[level] > 1)
8579 return 1;
f82d02d9 8580
2c47e605 8581 if (path->locks[level] && !wc->keep_locks) {
bd681513 8582 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8583 path->locks[level] = 0;
8584 }
8585 return 0;
8586 }
f82d02d9 8587
2c47e605
YZ
8588 /* wc->stage == UPDATE_BACKREF */
8589 if (!(wc->flags[level] & flag)) {
8590 BUG_ON(!path->locks[level]);
e339a6b0 8591 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8592 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8593 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8594 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8595 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8596 eb->len, flag,
8597 btrfs_header_level(eb), 0);
79787eaa 8598 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8599 wc->flags[level] |= flag;
8600 }
8601
8602 /*
8603 * the block is shared by multiple trees, so it's not good to
8604 * keep the tree lock
8605 */
8606 if (path->locks[level] && level > 0) {
bd681513 8607 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8608 path->locks[level] = 0;
8609 }
8610 return 0;
8611}
8612
1c4850e2 8613/*
2c016dc2 8614 * helper to process tree block pointer.
1c4850e2
YZ
8615 *
8616 * when wc->stage == DROP_REFERENCE, this function checks
8617 * reference count of the block pointed to. if the block
8618 * is shared and we need update back refs for the subtree
8619 * rooted at the block, this function changes wc->stage to
8620 * UPDATE_BACKREF. if the block is shared and there is no
8621 * need to update back, this function drops the reference
8622 * to the block.
8623 *
8624 * NOTE: return value 1 means we should stop walking down.
8625 */
8626static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8627 struct btrfs_root *root,
8628 struct btrfs_path *path,
94fcca9f 8629 struct walk_control *wc, int *lookup_info)
1c4850e2 8630{
0b246afa 8631 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8632 u64 bytenr;
8633 u64 generation;
8634 u64 parent;
8635 u32 blocksize;
8636 struct btrfs_key key;
8637 struct extent_buffer *next;
8638 int level = wc->level;
8639 int reada = 0;
8640 int ret = 0;
1152651a 8641 bool need_account = false;
1c4850e2
YZ
8642
8643 generation = btrfs_node_ptr_generation(path->nodes[level],
8644 path->slots[level]);
8645 /*
8646 * if the lower level block was created before the snapshot
8647 * was created, we know there is no need to update back refs
8648 * for the subtree
8649 */
8650 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8651 generation <= root->root_key.offset) {
8652 *lookup_info = 1;
1c4850e2 8653 return 1;
94fcca9f 8654 }
1c4850e2
YZ
8655
8656 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
0b246afa 8657 blocksize = fs_info->nodesize;
1c4850e2 8658
0b246afa 8659 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8660 if (!next) {
2ff7e61e 8661 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8662 if (IS_ERR(next))
8663 return PTR_ERR(next);
8664
b2aaaa3b
JB
8665 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8666 level - 1);
1c4850e2
YZ
8667 reada = 1;
8668 }
8669 btrfs_tree_lock(next);
8670 btrfs_set_lock_blocking(next);
8671
2ff7e61e 8672 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8673 &wc->refs[level - 1],
8674 &wc->flags[level - 1]);
4867268c
JB
8675 if (ret < 0)
8676 goto out_unlock;
79787eaa 8677
c2cf52eb 8678 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8679 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8680 ret = -EIO;
8681 goto out_unlock;
c2cf52eb 8682 }
94fcca9f 8683 *lookup_info = 0;
1c4850e2 8684
94fcca9f 8685 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8686 if (wc->refs[level - 1] > 1) {
1152651a 8687 need_account = true;
94fcca9f
YZ
8688 if (level == 1 &&
8689 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8690 goto skip;
8691
1c4850e2
YZ
8692 if (!wc->update_ref ||
8693 generation <= root->root_key.offset)
8694 goto skip;
8695
8696 btrfs_node_key_to_cpu(path->nodes[level], &key,
8697 path->slots[level]);
8698 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8699 if (ret < 0)
8700 goto skip;
8701
8702 wc->stage = UPDATE_BACKREF;
8703 wc->shared_level = level - 1;
8704 }
94fcca9f
YZ
8705 } else {
8706 if (level == 1 &&
8707 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8708 goto skip;
1c4850e2
YZ
8709 }
8710
b9fab919 8711 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8712 btrfs_tree_unlock(next);
8713 free_extent_buffer(next);
8714 next = NULL;
94fcca9f 8715 *lookup_info = 1;
1c4850e2
YZ
8716 }
8717
8718 if (!next) {
8719 if (reada && level == 1)
8720 reada_walk_down(trans, root, wc, path);
2ff7e61e 8721 next = read_tree_block(fs_info, bytenr, generation);
64c043de
LB
8722 if (IS_ERR(next)) {
8723 return PTR_ERR(next);
8724 } else if (!extent_buffer_uptodate(next)) {
416bc658 8725 free_extent_buffer(next);
97d9a8a4 8726 return -EIO;
416bc658 8727 }
1c4850e2
YZ
8728 btrfs_tree_lock(next);
8729 btrfs_set_lock_blocking(next);
8730 }
8731
8732 level--;
4867268c
JB
8733 ASSERT(level == btrfs_header_level(next));
8734 if (level != btrfs_header_level(next)) {
8735 btrfs_err(root->fs_info, "mismatched level");
8736 ret = -EIO;
8737 goto out_unlock;
8738 }
1c4850e2
YZ
8739 path->nodes[level] = next;
8740 path->slots[level] = 0;
bd681513 8741 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8742 wc->level = level;
8743 if (wc->level == 1)
8744 wc->reada_slot = 0;
8745 return 0;
8746skip:
8747 wc->refs[level - 1] = 0;
8748 wc->flags[level - 1] = 0;
94fcca9f
YZ
8749 if (wc->stage == DROP_REFERENCE) {
8750 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8751 parent = path->nodes[level]->start;
8752 } else {
4867268c 8753 ASSERT(root->root_key.objectid ==
94fcca9f 8754 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8755 if (root->root_key.objectid !=
8756 btrfs_header_owner(path->nodes[level])) {
8757 btrfs_err(root->fs_info,
8758 "mismatched block owner");
8759 ret = -EIO;
8760 goto out_unlock;
8761 }
94fcca9f
YZ
8762 parent = 0;
8763 }
1c4850e2 8764
1152651a 8765 if (need_account) {
33d1f05c
QW
8766 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8767 generation, level - 1);
1152651a 8768 if (ret) {
0b246afa 8769 btrfs_err_rl(fs_info,
5d163e0e
JM
8770 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8771 ret);
1152651a
MF
8772 }
8773 }
2ff7e61e
JM
8774 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8775 parent, root->root_key.objectid,
8776 level - 1, 0);
4867268c
JB
8777 if (ret)
8778 goto out_unlock;
1c4850e2 8779 }
4867268c
JB
8780
8781 *lookup_info = 1;
8782 ret = 1;
8783
8784out_unlock:
1c4850e2
YZ
8785 btrfs_tree_unlock(next);
8786 free_extent_buffer(next);
4867268c
JB
8787
8788 return ret;
1c4850e2
YZ
8789}
8790
2c47e605 8791/*
2c016dc2 8792 * helper to process tree block while walking up the tree.
2c47e605
YZ
8793 *
8794 * when wc->stage == DROP_REFERENCE, this function drops
8795 * reference count on the block.
8796 *
8797 * when wc->stage == UPDATE_BACKREF, this function changes
8798 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8799 * to UPDATE_BACKREF previously while processing the block.
8800 *
8801 * NOTE: return value 1 means we should stop walking up.
8802 */
8803static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8804 struct btrfs_root *root,
8805 struct btrfs_path *path,
8806 struct walk_control *wc)
8807{
0b246afa 8808 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8809 int ret;
2c47e605
YZ
8810 int level = wc->level;
8811 struct extent_buffer *eb = path->nodes[level];
8812 u64 parent = 0;
8813
8814 if (wc->stage == UPDATE_BACKREF) {
8815 BUG_ON(wc->shared_level < level);
8816 if (level < wc->shared_level)
8817 goto out;
8818
2c47e605
YZ
8819 ret = find_next_key(path, level + 1, &wc->update_progress);
8820 if (ret > 0)
8821 wc->update_ref = 0;
8822
8823 wc->stage = DROP_REFERENCE;
8824 wc->shared_level = -1;
8825 path->slots[level] = 0;
8826
8827 /*
8828 * check reference count again if the block isn't locked.
8829 * we should start walking down the tree again if reference
8830 * count is one.
8831 */
8832 if (!path->locks[level]) {
8833 BUG_ON(level == 0);
8834 btrfs_tree_lock(eb);
8835 btrfs_set_lock_blocking(eb);
bd681513 8836 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8837
2ff7e61e 8838 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8839 eb->start, level, 1,
2c47e605
YZ
8840 &wc->refs[level],
8841 &wc->flags[level]);
79787eaa
JM
8842 if (ret < 0) {
8843 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8844 path->locks[level] = 0;
79787eaa
JM
8845 return ret;
8846 }
2c47e605
YZ
8847 BUG_ON(wc->refs[level] == 0);
8848 if (wc->refs[level] == 1) {
bd681513 8849 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8850 path->locks[level] = 0;
2c47e605
YZ
8851 return 1;
8852 }
f82d02d9 8853 }
2c47e605 8854 }
f82d02d9 8855
2c47e605
YZ
8856 /* wc->stage == DROP_REFERENCE */
8857 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8858
2c47e605
YZ
8859 if (wc->refs[level] == 1) {
8860 if (level == 0) {
8861 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8862 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8863 else
e339a6b0 8864 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8865 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8866 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8867 if (ret) {
0b246afa 8868 btrfs_err_rl(fs_info,
5d163e0e
JM
8869 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8870 ret);
1152651a 8871 }
2c47e605
YZ
8872 }
8873 /* make block locked assertion in clean_tree_block happy */
8874 if (!path->locks[level] &&
8875 btrfs_header_generation(eb) == trans->transid) {
8876 btrfs_tree_lock(eb);
8877 btrfs_set_lock_blocking(eb);
bd681513 8878 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8879 }
7c302b49 8880 clean_tree_block(fs_info, eb);
2c47e605
YZ
8881 }
8882
8883 if (eb == root->node) {
8884 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8885 parent = eb->start;
8886 else
8887 BUG_ON(root->root_key.objectid !=
8888 btrfs_header_owner(eb));
8889 } else {
8890 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8891 parent = path->nodes[level + 1]->start;
8892 else
8893 BUG_ON(root->root_key.objectid !=
8894 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8895 }
f82d02d9 8896
5581a51a 8897 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8898out:
8899 wc->refs[level] = 0;
8900 wc->flags[level] = 0;
f0486c68 8901 return 0;
2c47e605
YZ
8902}
8903
8904static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8905 struct btrfs_root *root,
8906 struct btrfs_path *path,
8907 struct walk_control *wc)
8908{
2c47e605 8909 int level = wc->level;
94fcca9f 8910 int lookup_info = 1;
2c47e605
YZ
8911 int ret;
8912
8913 while (level >= 0) {
94fcca9f 8914 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8915 if (ret > 0)
8916 break;
8917
8918 if (level == 0)
8919 break;
8920
7a7965f8
YZ
8921 if (path->slots[level] >=
8922 btrfs_header_nritems(path->nodes[level]))
8923 break;
8924
94fcca9f 8925 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8926 if (ret > 0) {
8927 path->slots[level]++;
8928 continue;
90d2c51d
MX
8929 } else if (ret < 0)
8930 return ret;
1c4850e2 8931 level = wc->level;
f82d02d9 8932 }
f82d02d9
YZ
8933 return 0;
8934}
8935
d397712b 8936static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8937 struct btrfs_root *root,
f82d02d9 8938 struct btrfs_path *path,
2c47e605 8939 struct walk_control *wc, int max_level)
20524f02 8940{
2c47e605 8941 int level = wc->level;
20524f02 8942 int ret;
9f3a7427 8943
2c47e605
YZ
8944 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8945 while (level < max_level && path->nodes[level]) {
8946 wc->level = level;
8947 if (path->slots[level] + 1 <
8948 btrfs_header_nritems(path->nodes[level])) {
8949 path->slots[level]++;
20524f02
CM
8950 return 0;
8951 } else {
2c47e605
YZ
8952 ret = walk_up_proc(trans, root, path, wc);
8953 if (ret > 0)
8954 return 0;
bd56b302 8955
2c47e605 8956 if (path->locks[level]) {
bd681513
CM
8957 btrfs_tree_unlock_rw(path->nodes[level],
8958 path->locks[level]);
2c47e605 8959 path->locks[level] = 0;
f82d02d9 8960 }
2c47e605
YZ
8961 free_extent_buffer(path->nodes[level]);
8962 path->nodes[level] = NULL;
8963 level++;
20524f02
CM
8964 }
8965 }
8966 return 1;
8967}
8968
9aca1d51 8969/*
2c47e605
YZ
8970 * drop a subvolume tree.
8971 *
8972 * this function traverses the tree freeing any blocks that only
8973 * referenced by the tree.
8974 *
8975 * when a shared tree block is found. this function decreases its
8976 * reference count by one. if update_ref is true, this function
8977 * also make sure backrefs for the shared block and all lower level
8978 * blocks are properly updated.
9d1a2a3a
DS
8979 *
8980 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8981 */
2c536799 8982int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8983 struct btrfs_block_rsv *block_rsv, int update_ref,
8984 int for_reloc)
20524f02 8985{
ab8d0fc4 8986 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 8987 struct btrfs_path *path;
2c47e605 8988 struct btrfs_trans_handle *trans;
ab8d0fc4 8989 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 8990 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8991 struct walk_control *wc;
8992 struct btrfs_key key;
8993 int err = 0;
8994 int ret;
8995 int level;
d29a9f62 8996 bool root_dropped = false;
20524f02 8997
ab8d0fc4 8998 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 8999
5caf2a00 9000 path = btrfs_alloc_path();
cb1b69f4
TI
9001 if (!path) {
9002 err = -ENOMEM;
9003 goto out;
9004 }
20524f02 9005
2c47e605 9006 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9007 if (!wc) {
9008 btrfs_free_path(path);
cb1b69f4
TI
9009 err = -ENOMEM;
9010 goto out;
38a1a919 9011 }
2c47e605 9012
a22285a6 9013 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9014 if (IS_ERR(trans)) {
9015 err = PTR_ERR(trans);
9016 goto out_free;
9017 }
98d5dc13 9018
3fd0a558
YZ
9019 if (block_rsv)
9020 trans->block_rsv = block_rsv;
2c47e605 9021
9f3a7427 9022 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9023 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9024 path->nodes[level] = btrfs_lock_root_node(root);
9025 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9026 path->slots[level] = 0;
bd681513 9027 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9028 memset(&wc->update_progress, 0,
9029 sizeof(wc->update_progress));
9f3a7427 9030 } else {
9f3a7427 9031 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9032 memcpy(&wc->update_progress, &key,
9033 sizeof(wc->update_progress));
9034
6702ed49 9035 level = root_item->drop_level;
2c47e605 9036 BUG_ON(level == 0);
6702ed49 9037 path->lowest_level = level;
2c47e605
YZ
9038 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9039 path->lowest_level = 0;
9040 if (ret < 0) {
9041 err = ret;
79787eaa 9042 goto out_end_trans;
9f3a7427 9043 }
1c4850e2 9044 WARN_ON(ret > 0);
2c47e605 9045
7d9eb12c
CM
9046 /*
9047 * unlock our path, this is safe because only this
9048 * function is allowed to delete this snapshot
9049 */
5d4f98a2 9050 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9051
9052 level = btrfs_header_level(root->node);
9053 while (1) {
9054 btrfs_tree_lock(path->nodes[level]);
9055 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9056 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9057
2ff7e61e 9058 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9059 path->nodes[level]->start,
3173a18f 9060 level, 1, &wc->refs[level],
2c47e605 9061 &wc->flags[level]);
79787eaa
JM
9062 if (ret < 0) {
9063 err = ret;
9064 goto out_end_trans;
9065 }
2c47e605
YZ
9066 BUG_ON(wc->refs[level] == 0);
9067
9068 if (level == root_item->drop_level)
9069 break;
9070
9071 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9072 path->locks[level] = 0;
2c47e605
YZ
9073 WARN_ON(wc->refs[level] != 1);
9074 level--;
9075 }
9f3a7427 9076 }
2c47e605
YZ
9077
9078 wc->level = level;
9079 wc->shared_level = -1;
9080 wc->stage = DROP_REFERENCE;
9081 wc->update_ref = update_ref;
9082 wc->keep_locks = 0;
66d7e7f0 9083 wc->for_reloc = for_reloc;
0b246afa 9084 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9085
d397712b 9086 while (1) {
9d1a2a3a 9087
2c47e605
YZ
9088 ret = walk_down_tree(trans, root, path, wc);
9089 if (ret < 0) {
9090 err = ret;
20524f02 9091 break;
2c47e605 9092 }
9aca1d51 9093
2c47e605
YZ
9094 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9095 if (ret < 0) {
9096 err = ret;
20524f02 9097 break;
2c47e605
YZ
9098 }
9099
9100 if (ret > 0) {
9101 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9102 break;
9103 }
2c47e605
YZ
9104
9105 if (wc->stage == DROP_REFERENCE) {
9106 level = wc->level;
9107 btrfs_node_key(path->nodes[level],
9108 &root_item->drop_progress,
9109 path->slots[level]);
9110 root_item->drop_level = level;
9111 }
9112
9113 BUG_ON(wc->level == 0);
3a45bb20 9114 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9115 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9116 ret = btrfs_update_root(trans, tree_root,
9117 &root->root_key,
9118 root_item);
79787eaa 9119 if (ret) {
66642832 9120 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9121 err = ret;
9122 goto out_end_trans;
9123 }
2c47e605 9124
3a45bb20 9125 btrfs_end_transaction_throttle(trans);
2ff7e61e 9126 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9127 btrfs_debug(fs_info,
9128 "drop snapshot early exit");
3c8f2422
JB
9129 err = -EAGAIN;
9130 goto out_free;
9131 }
9132
a22285a6 9133 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9134 if (IS_ERR(trans)) {
9135 err = PTR_ERR(trans);
9136 goto out_free;
9137 }
3fd0a558
YZ
9138 if (block_rsv)
9139 trans->block_rsv = block_rsv;
c3e69d58 9140 }
20524f02 9141 }
b3b4aa74 9142 btrfs_release_path(path);
79787eaa
JM
9143 if (err)
9144 goto out_end_trans;
2c47e605
YZ
9145
9146 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa 9147 if (ret) {
66642832 9148 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9149 goto out_end_trans;
9150 }
2c47e605 9151
76dda93c 9152 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9153 ret = btrfs_find_root(tree_root, &root->root_key, path,
9154 NULL, NULL);
79787eaa 9155 if (ret < 0) {
66642832 9156 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9157 err = ret;
9158 goto out_end_trans;
9159 } else if (ret > 0) {
84cd948c
JB
9160 /* if we fail to delete the orphan item this time
9161 * around, it'll get picked up the next time.
9162 *
9163 * The most common failure here is just -ENOENT.
9164 */
9165 btrfs_del_orphan_item(trans, tree_root,
9166 root->root_key.objectid);
76dda93c
YZ
9167 }
9168 }
9169
27cdeb70 9170 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9171 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9172 } else {
9173 free_extent_buffer(root->node);
9174 free_extent_buffer(root->commit_root);
b0feb9d9 9175 btrfs_put_fs_root(root);
76dda93c 9176 }
d29a9f62 9177 root_dropped = true;
79787eaa 9178out_end_trans:
3a45bb20 9179 btrfs_end_transaction_throttle(trans);
79787eaa 9180out_free:
2c47e605 9181 kfree(wc);
5caf2a00 9182 btrfs_free_path(path);
cb1b69f4 9183out:
d29a9f62
JB
9184 /*
9185 * So if we need to stop dropping the snapshot for whatever reason we
9186 * need to make sure to add it back to the dead root list so that we
9187 * keep trying to do the work later. This also cleans up roots if we
9188 * don't have it in the radix (like when we recover after a power fail
9189 * or unmount) so we don't leak memory.
9190 */
b37b39cd 9191 if (!for_reloc && root_dropped == false)
d29a9f62 9192 btrfs_add_dead_root(root);
90515e7f 9193 if (err && err != -EAGAIN)
ab8d0fc4 9194 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9195 return err;
20524f02 9196}
9078a3e1 9197
2c47e605
YZ
9198/*
9199 * drop subtree rooted at tree block 'node'.
9200 *
9201 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9202 * only used by relocation code
2c47e605 9203 */
f82d02d9
YZ
9204int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9205 struct btrfs_root *root,
9206 struct extent_buffer *node,
9207 struct extent_buffer *parent)
9208{
0b246afa 9209 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9210 struct btrfs_path *path;
2c47e605 9211 struct walk_control *wc;
f82d02d9
YZ
9212 int level;
9213 int parent_level;
9214 int ret = 0;
9215 int wret;
9216
2c47e605
YZ
9217 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9218
f82d02d9 9219 path = btrfs_alloc_path();
db5b493a
TI
9220 if (!path)
9221 return -ENOMEM;
f82d02d9 9222
2c47e605 9223 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9224 if (!wc) {
9225 btrfs_free_path(path);
9226 return -ENOMEM;
9227 }
2c47e605 9228
b9447ef8 9229 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9230 parent_level = btrfs_header_level(parent);
9231 extent_buffer_get(parent);
9232 path->nodes[parent_level] = parent;
9233 path->slots[parent_level] = btrfs_header_nritems(parent);
9234
b9447ef8 9235 btrfs_assert_tree_locked(node);
f82d02d9 9236 level = btrfs_header_level(node);
f82d02d9
YZ
9237 path->nodes[level] = node;
9238 path->slots[level] = 0;
bd681513 9239 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9240
9241 wc->refs[parent_level] = 1;
9242 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9243 wc->level = level;
9244 wc->shared_level = -1;
9245 wc->stage = DROP_REFERENCE;
9246 wc->update_ref = 0;
9247 wc->keep_locks = 1;
66d7e7f0 9248 wc->for_reloc = 1;
0b246afa 9249 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9250
9251 while (1) {
2c47e605
YZ
9252 wret = walk_down_tree(trans, root, path, wc);
9253 if (wret < 0) {
f82d02d9 9254 ret = wret;
f82d02d9 9255 break;
2c47e605 9256 }
f82d02d9 9257
2c47e605 9258 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9259 if (wret < 0)
9260 ret = wret;
9261 if (wret != 0)
9262 break;
9263 }
9264
2c47e605 9265 kfree(wc);
f82d02d9
YZ
9266 btrfs_free_path(path);
9267 return ret;
9268}
9269
6202df69 9270static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9271{
9272 u64 num_devices;
fc67c450 9273 u64 stripped;
e4d8ec0f 9274
fc67c450
ID
9275 /*
9276 * if restripe for this chunk_type is on pick target profile and
9277 * return, otherwise do the usual balance
9278 */
6202df69 9279 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9280 if (stripped)
9281 return extended_to_chunk(stripped);
e4d8ec0f 9282
6202df69 9283 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9284
fc67c450 9285 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9286 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9287 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9288
ec44a35c
CM
9289 if (num_devices == 1) {
9290 stripped |= BTRFS_BLOCK_GROUP_DUP;
9291 stripped = flags & ~stripped;
9292
9293 /* turn raid0 into single device chunks */
9294 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9295 return stripped;
9296
9297 /* turn mirroring into duplication */
9298 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9299 BTRFS_BLOCK_GROUP_RAID10))
9300 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9301 } else {
9302 /* they already had raid on here, just return */
ec44a35c
CM
9303 if (flags & stripped)
9304 return flags;
9305
9306 stripped |= BTRFS_BLOCK_GROUP_DUP;
9307 stripped = flags & ~stripped;
9308
9309 /* switch duplicated blocks with raid1 */
9310 if (flags & BTRFS_BLOCK_GROUP_DUP)
9311 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9312
e3176ca2 9313 /* this is drive concat, leave it alone */
ec44a35c 9314 }
e3176ca2 9315
ec44a35c
CM
9316 return flags;
9317}
9318
868f401a 9319static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9320{
f0486c68
YZ
9321 struct btrfs_space_info *sinfo = cache->space_info;
9322 u64 num_bytes;
199c36ea 9323 u64 min_allocable_bytes;
f0486c68 9324 int ret = -ENOSPC;
0ef3e66b 9325
199c36ea
MX
9326 /*
9327 * We need some metadata space and system metadata space for
9328 * allocating chunks in some corner cases until we force to set
9329 * it to be readonly.
9330 */
9331 if ((sinfo->flags &
9332 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9333 !force)
ee22184b 9334 min_allocable_bytes = SZ_1M;
199c36ea
MX
9335 else
9336 min_allocable_bytes = 0;
9337
f0486c68
YZ
9338 spin_lock(&sinfo->lock);
9339 spin_lock(&cache->lock);
61cfea9b
W
9340
9341 if (cache->ro) {
868f401a 9342 cache->ro++;
61cfea9b
W
9343 ret = 0;
9344 goto out;
9345 }
9346
f0486c68
YZ
9347 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9348 cache->bytes_super - btrfs_block_group_used(&cache->item);
9349
4136135b 9350 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9351 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9352 sinfo->bytes_readonly += num_bytes;
868f401a 9353 cache->ro++;
633c0aad 9354 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9355 ret = 0;
9356 }
61cfea9b 9357out:
f0486c68
YZ
9358 spin_unlock(&cache->lock);
9359 spin_unlock(&sinfo->lock);
9360 return ret;
9361}
7d9eb12c 9362
5e00f193 9363int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9364 struct btrfs_block_group_cache *cache)
c286ac48 9365
f0486c68
YZ
9366{
9367 struct btrfs_trans_handle *trans;
9368 u64 alloc_flags;
9369 int ret;
7d9eb12c 9370
1bbc621e 9371again:
5e00f193 9372 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9373 if (IS_ERR(trans))
9374 return PTR_ERR(trans);
5d4f98a2 9375
1bbc621e
CM
9376 /*
9377 * we're not allowed to set block groups readonly after the dirty
9378 * block groups cache has started writing. If it already started,
9379 * back off and let this transaction commit
9380 */
0b246afa 9381 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9382 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9383 u64 transid = trans->transid;
9384
0b246afa 9385 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9386 btrfs_end_transaction(trans);
1bbc621e 9387
2ff7e61e 9388 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9389 if (ret)
9390 return ret;
9391 goto again;
9392 }
9393
153c35b6
CM
9394 /*
9395 * if we are changing raid levels, try to allocate a corresponding
9396 * block group with the new raid level.
9397 */
0b246afa 9398 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9399 if (alloc_flags != cache->flags) {
2ff7e61e 9400 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9401 CHUNK_ALLOC_FORCE);
9402 /*
9403 * ENOSPC is allowed here, we may have enough space
9404 * already allocated at the new raid level to
9405 * carry on
9406 */
9407 if (ret == -ENOSPC)
9408 ret = 0;
9409 if (ret < 0)
9410 goto out;
9411 }
1bbc621e 9412
868f401a 9413 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9414 if (!ret)
9415 goto out;
2ff7e61e
JM
9416 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9417 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9418 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9419 if (ret < 0)
9420 goto out;
868f401a 9421 ret = inc_block_group_ro(cache, 0);
f0486c68 9422out:
2f081088 9423 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9424 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9425 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9426 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9427 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9428 }
0b246afa 9429 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9430
3a45bb20 9431 btrfs_end_transaction(trans);
f0486c68
YZ
9432 return ret;
9433}
5d4f98a2 9434
c87f08ca 9435int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9436 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9437{
2ff7e61e
JM
9438 u64 alloc_flags = get_alloc_profile(fs_info, type);
9439
9440 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9441}
9442
6d07bcec
MX
9443/*
9444 * helper to account the unused space of all the readonly block group in the
633c0aad 9445 * space_info. takes mirrors into account.
6d07bcec 9446 */
633c0aad 9447u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9448{
9449 struct btrfs_block_group_cache *block_group;
9450 u64 free_bytes = 0;
9451 int factor;
9452
01327610 9453 /* It's df, we don't care if it's racy */
633c0aad
JB
9454 if (list_empty(&sinfo->ro_bgs))
9455 return 0;
9456
9457 spin_lock(&sinfo->lock);
9458 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9459 spin_lock(&block_group->lock);
9460
9461 if (!block_group->ro) {
9462 spin_unlock(&block_group->lock);
9463 continue;
9464 }
9465
9466 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9467 BTRFS_BLOCK_GROUP_RAID10 |
9468 BTRFS_BLOCK_GROUP_DUP))
9469 factor = 2;
9470 else
9471 factor = 1;
9472
9473 free_bytes += (block_group->key.offset -
9474 btrfs_block_group_used(&block_group->item)) *
9475 factor;
9476
9477 spin_unlock(&block_group->lock);
9478 }
6d07bcec
MX
9479 spin_unlock(&sinfo->lock);
9480
9481 return free_bytes;
9482}
9483
2ff7e61e 9484void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9485{
f0486c68
YZ
9486 struct btrfs_space_info *sinfo = cache->space_info;
9487 u64 num_bytes;
9488
9489 BUG_ON(!cache->ro);
9490
9491 spin_lock(&sinfo->lock);
9492 spin_lock(&cache->lock);
868f401a
Z
9493 if (!--cache->ro) {
9494 num_bytes = cache->key.offset - cache->reserved -
9495 cache->pinned - cache->bytes_super -
9496 btrfs_block_group_used(&cache->item);
9497 sinfo->bytes_readonly -= num_bytes;
9498 list_del_init(&cache->ro_list);
9499 }
f0486c68
YZ
9500 spin_unlock(&cache->lock);
9501 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9502}
9503
ba1bf481
JB
9504/*
9505 * checks to see if its even possible to relocate this block group.
9506 *
9507 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9508 * ok to go ahead and try.
9509 */
6bccf3ab 9510int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9511{
6bccf3ab 9512 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9513 struct btrfs_block_group_cache *block_group;
9514 struct btrfs_space_info *space_info;
0b246afa 9515 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9516 struct btrfs_device *device;
6df9a95e 9517 struct btrfs_trans_handle *trans;
cdcb725c 9518 u64 min_free;
6719db6a
JB
9519 u64 dev_min = 1;
9520 u64 dev_nr = 0;
4a5e98f5 9521 u64 target;
0305bc27 9522 int debug;
cdcb725c 9523 int index;
ba1bf481
JB
9524 int full = 0;
9525 int ret = 0;
1a40e23b 9526
0b246afa 9527 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9528
0b246afa 9529 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9530
ba1bf481 9531 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9532 if (!block_group) {
9533 if (debug)
0b246afa 9534 btrfs_warn(fs_info,
0305bc27
QW
9535 "can't find block group for bytenr %llu",
9536 bytenr);
ba1bf481 9537 return -1;
0305bc27 9538 }
1a40e23b 9539
cdcb725c 9540 min_free = btrfs_block_group_used(&block_group->item);
9541
ba1bf481 9542 /* no bytes used, we're good */
cdcb725c 9543 if (!min_free)
1a40e23b
ZY
9544 goto out;
9545
ba1bf481
JB
9546 space_info = block_group->space_info;
9547 spin_lock(&space_info->lock);
17d217fe 9548
ba1bf481 9549 full = space_info->full;
17d217fe 9550
ba1bf481
JB
9551 /*
9552 * if this is the last block group we have in this space, we can't
7ce618db
CM
9553 * relocate it unless we're able to allocate a new chunk below.
9554 *
9555 * Otherwise, we need to make sure we have room in the space to handle
9556 * all of the extents from this block group. If we can, we're good
ba1bf481 9557 */
7ce618db 9558 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9559 (btrfs_space_info_used(space_info, false) + min_free <
9560 space_info->total_bytes)) {
ba1bf481
JB
9561 spin_unlock(&space_info->lock);
9562 goto out;
17d217fe 9563 }
ba1bf481 9564 spin_unlock(&space_info->lock);
ea8c2819 9565
ba1bf481
JB
9566 /*
9567 * ok we don't have enough space, but maybe we have free space on our
9568 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9569 * alloc devices and guess if we have enough space. if this block
9570 * group is going to be restriped, run checks against the target
9571 * profile instead of the current one.
ba1bf481
JB
9572 */
9573 ret = -1;
ea8c2819 9574
cdcb725c 9575 /*
9576 * index:
9577 * 0: raid10
9578 * 1: raid1
9579 * 2: dup
9580 * 3: raid0
9581 * 4: single
9582 */
0b246afa 9583 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9584 if (target) {
31e50229 9585 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9586 } else {
9587 /*
9588 * this is just a balance, so if we were marked as full
9589 * we know there is no space for a new chunk
9590 */
0305bc27
QW
9591 if (full) {
9592 if (debug)
0b246afa
JM
9593 btrfs_warn(fs_info,
9594 "no space to alloc new chunk for block group %llu",
9595 block_group->key.objectid);
4a5e98f5 9596 goto out;
0305bc27 9597 }
4a5e98f5
ID
9598
9599 index = get_block_group_index(block_group);
9600 }
9601
e6ec716f 9602 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9603 dev_min = 4;
6719db6a
JB
9604 /* Divide by 2 */
9605 min_free >>= 1;
e6ec716f 9606 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9607 dev_min = 2;
e6ec716f 9608 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9609 /* Multiply by 2 */
9610 min_free <<= 1;
e6ec716f 9611 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9612 dev_min = fs_devices->rw_devices;
47c5713f 9613 min_free = div64_u64(min_free, dev_min);
cdcb725c 9614 }
9615
6df9a95e
JB
9616 /* We need to do this so that we can look at pending chunks */
9617 trans = btrfs_join_transaction(root);
9618 if (IS_ERR(trans)) {
9619 ret = PTR_ERR(trans);
9620 goto out;
9621 }
9622
0b246afa 9623 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9624 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9625 u64 dev_offset;
56bec294 9626
ba1bf481
JB
9627 /*
9628 * check to make sure we can actually find a chunk with enough
9629 * space to fit our block group in.
9630 */
63a212ab
SB
9631 if (device->total_bytes > device->bytes_used + min_free &&
9632 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9633 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9634 &dev_offset, NULL);
ba1bf481 9635 if (!ret)
cdcb725c 9636 dev_nr++;
9637
9638 if (dev_nr >= dev_min)
73e48b27 9639 break;
cdcb725c 9640
ba1bf481 9641 ret = -1;
725c8463 9642 }
edbd8d4e 9643 }
0305bc27 9644 if (debug && ret == -1)
0b246afa
JM
9645 btrfs_warn(fs_info,
9646 "no space to allocate a new chunk for block group %llu",
9647 block_group->key.objectid);
9648 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9649 btrfs_end_transaction(trans);
edbd8d4e 9650out:
ba1bf481 9651 btrfs_put_block_group(block_group);
edbd8d4e
CM
9652 return ret;
9653}
9654
6bccf3ab
JM
9655static int find_first_block_group(struct btrfs_fs_info *fs_info,
9656 struct btrfs_path *path,
9657 struct btrfs_key *key)
0b86a832 9658{
6bccf3ab 9659 struct btrfs_root *root = fs_info->extent_root;
925baedd 9660 int ret = 0;
0b86a832
CM
9661 struct btrfs_key found_key;
9662 struct extent_buffer *leaf;
9663 int slot;
edbd8d4e 9664
0b86a832
CM
9665 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9666 if (ret < 0)
925baedd
CM
9667 goto out;
9668
d397712b 9669 while (1) {
0b86a832 9670 slot = path->slots[0];
edbd8d4e 9671 leaf = path->nodes[0];
0b86a832
CM
9672 if (slot >= btrfs_header_nritems(leaf)) {
9673 ret = btrfs_next_leaf(root, path);
9674 if (ret == 0)
9675 continue;
9676 if (ret < 0)
925baedd 9677 goto out;
0b86a832 9678 break;
edbd8d4e 9679 }
0b86a832 9680 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9681
0b86a832 9682 if (found_key.objectid >= key->objectid &&
925baedd 9683 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9684 struct extent_map_tree *em_tree;
9685 struct extent_map *em;
9686
9687 em_tree = &root->fs_info->mapping_tree.map_tree;
9688 read_lock(&em_tree->lock);
9689 em = lookup_extent_mapping(em_tree, found_key.objectid,
9690 found_key.offset);
9691 read_unlock(&em_tree->lock);
9692 if (!em) {
0b246afa 9693 btrfs_err(fs_info,
6fb37b75
LB
9694 "logical %llu len %llu found bg but no related chunk",
9695 found_key.objectid, found_key.offset);
9696 ret = -ENOENT;
9697 } else {
9698 ret = 0;
9699 }
187ee58c 9700 free_extent_map(em);
925baedd
CM
9701 goto out;
9702 }
0b86a832 9703 path->slots[0]++;
edbd8d4e 9704 }
925baedd 9705out:
0b86a832 9706 return ret;
edbd8d4e
CM
9707}
9708
0af3d00b
JB
9709void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9710{
9711 struct btrfs_block_group_cache *block_group;
9712 u64 last = 0;
9713
9714 while (1) {
9715 struct inode *inode;
9716
9717 block_group = btrfs_lookup_first_block_group(info, last);
9718 while (block_group) {
9719 spin_lock(&block_group->lock);
9720 if (block_group->iref)
9721 break;
9722 spin_unlock(&block_group->lock);
2ff7e61e 9723 block_group = next_block_group(info, block_group);
0af3d00b
JB
9724 }
9725 if (!block_group) {
9726 if (last == 0)
9727 break;
9728 last = 0;
9729 continue;
9730 }
9731
9732 inode = block_group->inode;
9733 block_group->iref = 0;
9734 block_group->inode = NULL;
9735 spin_unlock(&block_group->lock);
f3bca802 9736 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9737 iput(inode);
9738 last = block_group->key.objectid + block_group->key.offset;
9739 btrfs_put_block_group(block_group);
9740 }
9741}
9742
1a40e23b
ZY
9743int btrfs_free_block_groups(struct btrfs_fs_info *info)
9744{
9745 struct btrfs_block_group_cache *block_group;
4184ea7f 9746 struct btrfs_space_info *space_info;
11833d66 9747 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9748 struct rb_node *n;
9749
9e351cc8 9750 down_write(&info->commit_root_sem);
11833d66
YZ
9751 while (!list_empty(&info->caching_block_groups)) {
9752 caching_ctl = list_entry(info->caching_block_groups.next,
9753 struct btrfs_caching_control, list);
9754 list_del(&caching_ctl->list);
9755 put_caching_control(caching_ctl);
9756 }
9e351cc8 9757 up_write(&info->commit_root_sem);
11833d66 9758
47ab2a6c
JB
9759 spin_lock(&info->unused_bgs_lock);
9760 while (!list_empty(&info->unused_bgs)) {
9761 block_group = list_first_entry(&info->unused_bgs,
9762 struct btrfs_block_group_cache,
9763 bg_list);
9764 list_del_init(&block_group->bg_list);
9765 btrfs_put_block_group(block_group);
9766 }
9767 spin_unlock(&info->unused_bgs_lock);
9768
1a40e23b
ZY
9769 spin_lock(&info->block_group_cache_lock);
9770 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9771 block_group = rb_entry(n, struct btrfs_block_group_cache,
9772 cache_node);
1a40e23b
ZY
9773 rb_erase(&block_group->cache_node,
9774 &info->block_group_cache_tree);
01eacb27 9775 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9776 spin_unlock(&info->block_group_cache_lock);
9777
80eb234a 9778 down_write(&block_group->space_info->groups_sem);
1a40e23b 9779 list_del(&block_group->list);
80eb234a 9780 up_write(&block_group->space_info->groups_sem);
d2fb3437 9781
817d52f8 9782 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9783 wait_block_group_cache_done(block_group);
817d52f8 9784
3c14874a
JB
9785 /*
9786 * We haven't cached this block group, which means we could
9787 * possibly have excluded extents on this block group.
9788 */
36cce922
JB
9789 if (block_group->cached == BTRFS_CACHE_NO ||
9790 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9791 free_excluded_extents(info, block_group);
3c14874a 9792
817d52f8 9793 btrfs_remove_free_space_cache(block_group);
f3bca802
LB
9794 ASSERT(list_empty(&block_group->dirty_list));
9795 ASSERT(list_empty(&block_group->io_list));
9796 ASSERT(list_empty(&block_group->bg_list));
9797 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9798 btrfs_put_block_group(block_group);
d899e052
YZ
9799
9800 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9801 }
9802 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9803
9804 /* now that all the block groups are freed, go through and
9805 * free all the space_info structs. This is only called during
9806 * the final stages of unmount, and so we know nobody is
9807 * using them. We call synchronize_rcu() once before we start,
9808 * just to be on the safe side.
9809 */
9810 synchronize_rcu();
9811
8929ecfa
YZ
9812 release_global_block_rsv(info);
9813
67871254 9814 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9815 int i;
9816
4184ea7f
CM
9817 space_info = list_entry(info->space_info.next,
9818 struct btrfs_space_info,
9819 list);
d555b6c3
JB
9820
9821 /*
9822 * Do not hide this behind enospc_debug, this is actually
9823 * important and indicates a real bug if this happens.
9824 */
9825 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9826 space_info->bytes_reserved > 0 ||
d555b6c3 9827 space_info->bytes_may_use > 0))
ab8d0fc4 9828 dump_space_info(info, space_info, 0, 0);
4184ea7f 9829 list_del(&space_info->list);
6ab0a202
JM
9830 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9831 struct kobject *kobj;
c1895442
JM
9832 kobj = space_info->block_group_kobjs[i];
9833 space_info->block_group_kobjs[i] = NULL;
9834 if (kobj) {
6ab0a202
JM
9835 kobject_del(kobj);
9836 kobject_put(kobj);
9837 }
9838 }
9839 kobject_del(&space_info->kobj);
9840 kobject_put(&space_info->kobj);
4184ea7f 9841 }
1a40e23b
ZY
9842 return 0;
9843}
9844
b742bb82
YZ
9845static void __link_block_group(struct btrfs_space_info *space_info,
9846 struct btrfs_block_group_cache *cache)
9847{
9848 int index = get_block_group_index(cache);
ed55b6ac 9849 bool first = false;
b742bb82
YZ
9850
9851 down_write(&space_info->groups_sem);
ed55b6ac
JM
9852 if (list_empty(&space_info->block_groups[index]))
9853 first = true;
9854 list_add_tail(&cache->list, &space_info->block_groups[index]);
9855 up_write(&space_info->groups_sem);
9856
9857 if (first) {
c1895442 9858 struct raid_kobject *rkobj;
6ab0a202
JM
9859 int ret;
9860
c1895442
JM
9861 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9862 if (!rkobj)
9863 goto out_err;
9864 rkobj->raid_type = index;
9865 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9866 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9867 "%s", get_raid_name(index));
6ab0a202 9868 if (ret) {
c1895442
JM
9869 kobject_put(&rkobj->kobj);
9870 goto out_err;
6ab0a202 9871 }
c1895442 9872 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9873 }
c1895442
JM
9874
9875 return;
9876out_err:
ab8d0fc4
JM
9877 btrfs_warn(cache->fs_info,
9878 "failed to add kobject for block cache, ignoring");
b742bb82
YZ
9879}
9880
920e4a58 9881static struct btrfs_block_group_cache *
2ff7e61e
JM
9882btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9883 u64 start, u64 size)
920e4a58
MX
9884{
9885 struct btrfs_block_group_cache *cache;
9886
9887 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9888 if (!cache)
9889 return NULL;
9890
9891 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9892 GFP_NOFS);
9893 if (!cache->free_space_ctl) {
9894 kfree(cache);
9895 return NULL;
9896 }
9897
9898 cache->key.objectid = start;
9899 cache->key.offset = size;
9900 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9901
0b246afa
JM
9902 cache->sectorsize = fs_info->sectorsize;
9903 cache->fs_info = fs_info;
2ff7e61e
JM
9904 cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9905 &fs_info->mapping_tree,
9906 start);
1e144fb8
OS
9907 set_free_space_tree_thresholds(cache);
9908
920e4a58
MX
9909 atomic_set(&cache->count, 1);
9910 spin_lock_init(&cache->lock);
e570fd27 9911 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9912 INIT_LIST_HEAD(&cache->list);
9913 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9914 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9915 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9916 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9917 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9918 btrfs_init_free_space_ctl(cache);
04216820 9919 atomic_set(&cache->trimming, 0);
a5ed9182 9920 mutex_init(&cache->free_space_lock);
920e4a58
MX
9921
9922 return cache;
9923}
9924
5b4aacef 9925int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
9926{
9927 struct btrfs_path *path;
9928 int ret;
9078a3e1 9929 struct btrfs_block_group_cache *cache;
6324fbf3 9930 struct btrfs_space_info *space_info;
9078a3e1
CM
9931 struct btrfs_key key;
9932 struct btrfs_key found_key;
5f39d397 9933 struct extent_buffer *leaf;
0af3d00b
JB
9934 int need_clear = 0;
9935 u64 cache_gen;
49303381
LB
9936 u64 feature;
9937 int mixed;
9938
9939 feature = btrfs_super_incompat_flags(info->super_copy);
9940 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 9941
9078a3e1 9942 key.objectid = 0;
0b86a832 9943 key.offset = 0;
962a298f 9944 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9945 path = btrfs_alloc_path();
9946 if (!path)
9947 return -ENOMEM;
e4058b54 9948 path->reada = READA_FORWARD;
9078a3e1 9949
0b246afa
JM
9950 cache_gen = btrfs_super_cache_generation(info->super_copy);
9951 if (btrfs_test_opt(info, SPACE_CACHE) &&
9952 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 9953 need_clear = 1;
0b246afa 9954 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 9955 need_clear = 1;
0af3d00b 9956
d397712b 9957 while (1) {
6bccf3ab 9958 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
9959 if (ret > 0)
9960 break;
0b86a832
CM
9961 if (ret != 0)
9962 goto error;
920e4a58 9963
5f39d397
CM
9964 leaf = path->nodes[0];
9965 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 9966
2ff7e61e 9967 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 9968 found_key.offset);
9078a3e1 9969 if (!cache) {
0b86a832 9970 ret = -ENOMEM;
f0486c68 9971 goto error;
9078a3e1 9972 }
96303081 9973
cf7c1ef6
LB
9974 if (need_clear) {
9975 /*
9976 * When we mount with old space cache, we need to
9977 * set BTRFS_DC_CLEAR and set dirty flag.
9978 *
9979 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9980 * truncate the old free space cache inode and
9981 * setup a new one.
9982 * b) Setting 'dirty flag' makes sure that we flush
9983 * the new space cache info onto disk.
9984 */
0b246afa 9985 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 9986 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9987 }
0af3d00b 9988
5f39d397
CM
9989 read_extent_buffer(leaf, &cache->item,
9990 btrfs_item_ptr_offset(leaf, path->slots[0]),
9991 sizeof(cache->item));
920e4a58 9992 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
9993 if (!mixed &&
9994 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9995 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9996 btrfs_err(info,
9997"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9998 cache->key.objectid);
9999 ret = -EINVAL;
10000 goto error;
10001 }
0b86a832 10002
9078a3e1 10003 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10004 btrfs_release_path(path);
34d52cb6 10005
3c14874a
JB
10006 /*
10007 * We need to exclude the super stripes now so that the space
10008 * info has super bytes accounted for, otherwise we'll think
10009 * we have more space than we actually do.
10010 */
2ff7e61e 10011 ret = exclude_super_stripes(info, cache);
835d974f
JB
10012 if (ret) {
10013 /*
10014 * We may have excluded something, so call this just in
10015 * case.
10016 */
2ff7e61e 10017 free_excluded_extents(info, cache);
920e4a58 10018 btrfs_put_block_group(cache);
835d974f
JB
10019 goto error;
10020 }
3c14874a 10021
817d52f8
JB
10022 /*
10023 * check for two cases, either we are full, and therefore
10024 * don't need to bother with the caching work since we won't
10025 * find any space, or we are empty, and we can just add all
10026 * the space in and be done with it. This saves us _alot_ of
10027 * time, particularly in the full case.
10028 */
10029 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10030 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10031 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10032 free_excluded_extents(info, cache);
817d52f8 10033 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10034 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10035 cache->cached = BTRFS_CACHE_FINISHED;
0b246afa 10036 add_new_free_space(cache, info,
817d52f8
JB
10037 found_key.objectid,
10038 found_key.objectid +
10039 found_key.offset);
2ff7e61e 10040 free_excluded_extents(info, cache);
817d52f8 10041 }
96b5179d 10042
0b246afa 10043 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10044 if (ret) {
10045 btrfs_remove_free_space_cache(cache);
10046 btrfs_put_block_group(cache);
10047 goto error;
10048 }
10049
0b246afa 10050 trace_btrfs_add_block_group(info, cache, 0);
6324fbf3
CM
10051 ret = update_space_info(info, cache->flags, found_key.offset,
10052 btrfs_block_group_used(&cache->item),
e40edf2d 10053 cache->bytes_super, &space_info);
8c579fe7
JB
10054 if (ret) {
10055 btrfs_remove_free_space_cache(cache);
10056 spin_lock(&info->block_group_cache_lock);
10057 rb_erase(&cache->cache_node,
10058 &info->block_group_cache_tree);
01eacb27 10059 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10060 spin_unlock(&info->block_group_cache_lock);
10061 btrfs_put_block_group(cache);
10062 goto error;
10063 }
10064
6324fbf3 10065 cache->space_info = space_info;
1b2da372 10066
b742bb82 10067 __link_block_group(space_info, cache);
0f9dd46c 10068
0b246afa 10069 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10070 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10071 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10072 } else if (btrfs_block_group_used(&cache->item) == 0) {
10073 spin_lock(&info->unused_bgs_lock);
10074 /* Should always be true but just in case. */
10075 if (list_empty(&cache->bg_list)) {
10076 btrfs_get_block_group(cache);
10077 list_add_tail(&cache->bg_list,
10078 &info->unused_bgs);
10079 }
10080 spin_unlock(&info->unused_bgs_lock);
10081 }
9078a3e1 10082 }
b742bb82 10083
0b246afa 10084 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10085 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10086 (BTRFS_BLOCK_GROUP_RAID10 |
10087 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10088 BTRFS_BLOCK_GROUP_RAID5 |
10089 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10090 BTRFS_BLOCK_GROUP_DUP)))
10091 continue;
10092 /*
10093 * avoid allocating from un-mirrored block group if there are
10094 * mirrored block groups.
10095 */
1095cc0d 10096 list_for_each_entry(cache,
10097 &space_info->block_groups[BTRFS_RAID_RAID0],
10098 list)
868f401a 10099 inc_block_group_ro(cache, 1);
1095cc0d 10100 list_for_each_entry(cache,
10101 &space_info->block_groups[BTRFS_RAID_SINGLE],
10102 list)
868f401a 10103 inc_block_group_ro(cache, 1);
9078a3e1 10104 }
f0486c68
YZ
10105
10106 init_global_block_rsv(info);
0b86a832
CM
10107 ret = 0;
10108error:
9078a3e1 10109 btrfs_free_path(path);
0b86a832 10110 return ret;
9078a3e1 10111}
6324fbf3 10112
ea658bad 10113void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 10114 struct btrfs_fs_info *fs_info)
ea658bad
JB
10115{
10116 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10117 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10118 struct btrfs_block_group_item item;
10119 struct btrfs_key key;
10120 int ret = 0;
d9a0540a 10121 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10122
d9a0540a 10123 trans->can_flush_pending_bgs = false;
47ab2a6c 10124 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10125 if (ret)
c92f6be3 10126 goto next;
ea658bad
JB
10127
10128 spin_lock(&block_group->lock);
10129 memcpy(&item, &block_group->item, sizeof(item));
10130 memcpy(&key, &block_group->key, sizeof(key));
10131 spin_unlock(&block_group->lock);
10132
10133 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10134 sizeof(item));
10135 if (ret)
66642832 10136 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10137 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10138 key.offset);
6df9a95e 10139 if (ret)
66642832 10140 btrfs_abort_transaction(trans, ret);
0b246afa 10141 add_block_group_free_space(trans, fs_info, block_group);
1e144fb8 10142 /* already aborted the transaction if it failed. */
c92f6be3
FM
10143next:
10144 list_del_init(&block_group->bg_list);
ea658bad 10145 }
d9a0540a 10146 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10147}
10148
6324fbf3 10149int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10150 struct btrfs_fs_info *fs_info, u64 bytes_used,
e17cade2 10151 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10152 u64 size)
10153{
6324fbf3 10154 struct btrfs_block_group_cache *cache;
0b246afa 10155 int ret;
6324fbf3 10156
0b246afa 10157 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10158
2ff7e61e 10159 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10160 if (!cache)
10161 return -ENOMEM;
34d52cb6 10162
6324fbf3 10163 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10164 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10165 btrfs_set_block_group_flags(&cache->item, type);
10166
920e4a58 10167 cache->flags = type;
11833d66 10168 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10169 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10170 cache->needs_free_space = 1;
2ff7e61e 10171 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10172 if (ret) {
10173 /*
10174 * We may have excluded something, so call this just in
10175 * case.
10176 */
2ff7e61e 10177 free_excluded_extents(fs_info, cache);
920e4a58 10178 btrfs_put_block_group(cache);
835d974f
JB
10179 return ret;
10180 }
96303081 10181
0b246afa 10182 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
817d52f8 10183
2ff7e61e 10184 free_excluded_extents(fs_info, cache);
11833d66 10185
d0bd4560 10186#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10187 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10188 u64 new_bytes_used = size - bytes_used;
10189
10190 bytes_used += new_bytes_used >> 1;
2ff7e61e 10191 fragment_free_space(cache);
d0bd4560
JB
10192 }
10193#endif
2e6e5183
FM
10194 /*
10195 * Call to ensure the corresponding space_info object is created and
10196 * assigned to our block group, but don't update its counters just yet.
10197 * We want our bg to be added to the rbtree with its ->space_info set.
10198 */
0b246afa 10199 ret = update_space_info(fs_info, cache->flags, 0, 0, 0,
2e6e5183
FM
10200 &cache->space_info);
10201 if (ret) {
10202 btrfs_remove_free_space_cache(cache);
10203 btrfs_put_block_group(cache);
10204 return ret;
10205 }
10206
0b246afa 10207 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10208 if (ret) {
10209 btrfs_remove_free_space_cache(cache);
10210 btrfs_put_block_group(cache);
10211 return ret;
10212 }
10213
2e6e5183
FM
10214 /*
10215 * Now that our block group has its ->space_info set and is inserted in
10216 * the rbtree, update the space info's counters.
10217 */
0b246afa
JM
10218 trace_btrfs_add_block_group(fs_info, cache, 1);
10219 ret = update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10220 cache->bytes_super, &cache->space_info);
8c579fe7
JB
10221 if (ret) {
10222 btrfs_remove_free_space_cache(cache);
0b246afa 10223 spin_lock(&fs_info->block_group_cache_lock);
8c579fe7 10224 rb_erase(&cache->cache_node,
0b246afa 10225 &fs_info->block_group_cache_tree);
01eacb27 10226 RB_CLEAR_NODE(&cache->cache_node);
0b246afa 10227 spin_unlock(&fs_info->block_group_cache_lock);
8c579fe7
JB
10228 btrfs_put_block_group(cache);
10229 return ret;
10230 }
0b246afa 10231 update_global_block_rsv(fs_info);
1b2da372 10232
b742bb82 10233 __link_block_group(cache->space_info, cache);
6324fbf3 10234
47ab2a6c 10235 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10236
0b246afa 10237 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10238 return 0;
10239}
1a40e23b 10240
10ea00f5
ID
10241static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10242{
899c81ea
ID
10243 u64 extra_flags = chunk_to_extended(flags) &
10244 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10245
de98ced9 10246 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10247 if (flags & BTRFS_BLOCK_GROUP_DATA)
10248 fs_info->avail_data_alloc_bits &= ~extra_flags;
10249 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10250 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10251 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10252 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10253 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10254}
10255
1a40e23b 10256int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10257 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10258 struct extent_map *em)
1a40e23b 10259{
6bccf3ab 10260 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10261 struct btrfs_path *path;
10262 struct btrfs_block_group_cache *block_group;
44fb5511 10263 struct btrfs_free_cluster *cluster;
0b246afa 10264 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10265 struct btrfs_key key;
0af3d00b 10266 struct inode *inode;
c1895442 10267 struct kobject *kobj = NULL;
1a40e23b 10268 int ret;
10ea00f5 10269 int index;
89a55897 10270 int factor;
4f69cb98 10271 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10272 bool remove_em;
1a40e23b 10273
6bccf3ab 10274 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10275 BUG_ON(!block_group);
c146afad 10276 BUG_ON(!block_group->ro);
1a40e23b 10277
9f7c43c9 10278 /*
10279 * Free the reserved super bytes from this block group before
10280 * remove it.
10281 */
2ff7e61e 10282 free_excluded_extents(fs_info, block_group);
9f7c43c9 10283
1a40e23b 10284 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10285 index = get_block_group_index(block_group);
89a55897
JB
10286 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10287 BTRFS_BLOCK_GROUP_RAID1 |
10288 BTRFS_BLOCK_GROUP_RAID10))
10289 factor = 2;
10290 else
10291 factor = 1;
1a40e23b 10292
44fb5511 10293 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10294 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10295 spin_lock(&cluster->refill_lock);
10296 btrfs_return_cluster_to_free_space(block_group, cluster);
10297 spin_unlock(&cluster->refill_lock);
10298
10299 /*
10300 * make sure this block group isn't part of a metadata
10301 * allocation cluster
10302 */
0b246afa 10303 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10304 spin_lock(&cluster->refill_lock);
10305 btrfs_return_cluster_to_free_space(block_group, cluster);
10306 spin_unlock(&cluster->refill_lock);
10307
1a40e23b 10308 path = btrfs_alloc_path();
d8926bb3
MF
10309 if (!path) {
10310 ret = -ENOMEM;
10311 goto out;
10312 }
1a40e23b 10313
1bbc621e
CM
10314 /*
10315 * get the inode first so any iput calls done for the io_list
10316 * aren't the final iput (no unlinks allowed now)
10317 */
77ab86bf 10318 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10319
10320 mutex_lock(&trans->transaction->cache_write_mutex);
10321 /*
10322 * make sure our free spache cache IO is done before remove the
10323 * free space inode
10324 */
10325 spin_lock(&trans->transaction->dirty_bgs_lock);
10326 if (!list_empty(&block_group->io_list)) {
10327 list_del_init(&block_group->io_list);
10328
10329 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10330
10331 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10332 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10333 btrfs_put_block_group(block_group);
10334 spin_lock(&trans->transaction->dirty_bgs_lock);
10335 }
10336
10337 if (!list_empty(&block_group->dirty_list)) {
10338 list_del_init(&block_group->dirty_list);
10339 btrfs_put_block_group(block_group);
10340 }
10341 spin_unlock(&trans->transaction->dirty_bgs_lock);
10342 mutex_unlock(&trans->transaction->cache_write_mutex);
10343
0af3d00b 10344 if (!IS_ERR(inode)) {
b532402e 10345 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
10346 if (ret) {
10347 btrfs_add_delayed_iput(inode);
10348 goto out;
10349 }
0af3d00b
JB
10350 clear_nlink(inode);
10351 /* One for the block groups ref */
10352 spin_lock(&block_group->lock);
10353 if (block_group->iref) {
10354 block_group->iref = 0;
10355 block_group->inode = NULL;
10356 spin_unlock(&block_group->lock);
10357 iput(inode);
10358 } else {
10359 spin_unlock(&block_group->lock);
10360 }
10361 /* One for our lookup ref */
455757c3 10362 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10363 }
10364
10365 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10366 key.offset = block_group->key.objectid;
10367 key.type = 0;
10368
10369 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10370 if (ret < 0)
10371 goto out;
10372 if (ret > 0)
b3b4aa74 10373 btrfs_release_path(path);
0af3d00b
JB
10374 if (ret == 0) {
10375 ret = btrfs_del_item(trans, tree_root, path);
10376 if (ret)
10377 goto out;
b3b4aa74 10378 btrfs_release_path(path);
0af3d00b
JB
10379 }
10380
0b246afa 10381 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10382 rb_erase(&block_group->cache_node,
0b246afa 10383 &fs_info->block_group_cache_tree);
292cbd51 10384 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10385
0b246afa
JM
10386 if (fs_info->first_logical_byte == block_group->key.objectid)
10387 fs_info->first_logical_byte = (u64)-1;
10388 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10389
80eb234a 10390 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10391 /*
10392 * we must use list_del_init so people can check to see if they
10393 * are still on the list after taking the semaphore
10394 */
10395 list_del_init(&block_group->list);
6ab0a202 10396 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10397 kobj = block_group->space_info->block_group_kobjs[index];
10398 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10399 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10400 }
80eb234a 10401 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10402 if (kobj) {
10403 kobject_del(kobj);
10404 kobject_put(kobj);
10405 }
1a40e23b 10406
4f69cb98
FM
10407 if (block_group->has_caching_ctl)
10408 caching_ctl = get_caching_control(block_group);
817d52f8 10409 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10410 wait_block_group_cache_done(block_group);
4f69cb98 10411 if (block_group->has_caching_ctl) {
0b246afa 10412 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10413 if (!caching_ctl) {
10414 struct btrfs_caching_control *ctl;
10415
10416 list_for_each_entry(ctl,
0b246afa 10417 &fs_info->caching_block_groups, list)
4f69cb98
FM
10418 if (ctl->block_group == block_group) {
10419 caching_ctl = ctl;
10420 atomic_inc(&caching_ctl->count);
10421 break;
10422 }
10423 }
10424 if (caching_ctl)
10425 list_del_init(&caching_ctl->list);
0b246afa 10426 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10427 if (caching_ctl) {
10428 /* Once for the caching bgs list and once for us. */
10429 put_caching_control(caching_ctl);
10430 put_caching_control(caching_ctl);
10431 }
10432 }
817d52f8 10433
ce93ec54
JB
10434 spin_lock(&trans->transaction->dirty_bgs_lock);
10435 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10436 WARN_ON(1);
10437 }
10438 if (!list_empty(&block_group->io_list)) {
10439 WARN_ON(1);
ce93ec54
JB
10440 }
10441 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10442 btrfs_remove_free_space_cache(block_group);
10443
c146afad 10444 spin_lock(&block_group->space_info->lock);
75c68e9f 10445 list_del_init(&block_group->ro_list);
18d018ad 10446
0b246afa 10447 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10448 WARN_ON(block_group->space_info->total_bytes
10449 < block_group->key.offset);
10450 WARN_ON(block_group->space_info->bytes_readonly
10451 < block_group->key.offset);
10452 WARN_ON(block_group->space_info->disk_total
10453 < block_group->key.offset * factor);
10454 }
c146afad
YZ
10455 block_group->space_info->total_bytes -= block_group->key.offset;
10456 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10457 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10458
c146afad 10459 spin_unlock(&block_group->space_info->lock);
283bb197 10460
0af3d00b
JB
10461 memcpy(&key, &block_group->key, sizeof(key));
10462
34441361 10463 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10464 if (!list_empty(&em->list)) {
10465 /* We're in the transaction->pending_chunks list. */
10466 free_extent_map(em);
10467 }
04216820
FM
10468 spin_lock(&block_group->lock);
10469 block_group->removed = 1;
10470 /*
10471 * At this point trimming can't start on this block group, because we
10472 * removed the block group from the tree fs_info->block_group_cache_tree
10473 * so no one can't find it anymore and even if someone already got this
10474 * block group before we removed it from the rbtree, they have already
10475 * incremented block_group->trimming - if they didn't, they won't find
10476 * any free space entries because we already removed them all when we
10477 * called btrfs_remove_free_space_cache().
10478 *
10479 * And we must not remove the extent map from the fs_info->mapping_tree
10480 * to prevent the same logical address range and physical device space
10481 * ranges from being reused for a new block group. This is because our
10482 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10483 * completely transactionless, so while it is trimming a range the
10484 * currently running transaction might finish and a new one start,
10485 * allowing for new block groups to be created that can reuse the same
10486 * physical device locations unless we take this special care.
e33e17ee
JM
10487 *
10488 * There may also be an implicit trim operation if the file system
10489 * is mounted with -odiscard. The same protections must remain
10490 * in place until the extents have been discarded completely when
10491 * the transaction commit has completed.
04216820
FM
10492 */
10493 remove_em = (atomic_read(&block_group->trimming) == 0);
10494 /*
10495 * Make sure a trimmer task always sees the em in the pinned_chunks list
10496 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10497 * before checking block_group->removed).
10498 */
10499 if (!remove_em) {
10500 /*
10501 * Our em might be in trans->transaction->pending_chunks which
10502 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10503 * and so is the fs_info->pinned_chunks list.
10504 *
10505 * So at this point we must be holding the chunk_mutex to avoid
10506 * any races with chunk allocation (more specifically at
10507 * volumes.c:contains_pending_extent()), to ensure it always
10508 * sees the em, either in the pending_chunks list or in the
10509 * pinned_chunks list.
10510 */
0b246afa 10511 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10512 }
10513 spin_unlock(&block_group->lock);
04216820
FM
10514
10515 if (remove_em) {
10516 struct extent_map_tree *em_tree;
10517
0b246afa 10518 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10519 write_lock(&em_tree->lock);
8dbcd10f
FM
10520 /*
10521 * The em might be in the pending_chunks list, so make sure the
10522 * chunk mutex is locked, since remove_extent_mapping() will
10523 * delete us from that list.
10524 */
04216820
FM
10525 remove_extent_mapping(em_tree, em);
10526 write_unlock(&em_tree->lock);
10527 /* once for the tree */
10528 free_extent_map(em);
10529 }
10530
34441361 10531 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10532
0b246afa 10533 ret = remove_block_group_free_space(trans, fs_info, block_group);
1e144fb8
OS
10534 if (ret)
10535 goto out;
10536
fa9c0d79
CM
10537 btrfs_put_block_group(block_group);
10538 btrfs_put_block_group(block_group);
1a40e23b
ZY
10539
10540 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10541 if (ret > 0)
10542 ret = -EIO;
10543 if (ret < 0)
10544 goto out;
10545
10546 ret = btrfs_del_item(trans, root, path);
10547out:
10548 btrfs_free_path(path);
10549 return ret;
10550}
acce952b 10551
8eab77ff 10552struct btrfs_trans_handle *
7fd01182
FM
10553btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10554 const u64 chunk_offset)
8eab77ff 10555{
7fd01182
FM
10556 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10557 struct extent_map *em;
10558 struct map_lookup *map;
10559 unsigned int num_items;
10560
10561 read_lock(&em_tree->lock);
10562 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10563 read_unlock(&em_tree->lock);
10564 ASSERT(em && em->start == chunk_offset);
10565
8eab77ff 10566 /*
7fd01182
FM
10567 * We need to reserve 3 + N units from the metadata space info in order
10568 * to remove a block group (done at btrfs_remove_chunk() and at
10569 * btrfs_remove_block_group()), which are used for:
10570 *
8eab77ff
FM
10571 * 1 unit for adding the free space inode's orphan (located in the tree
10572 * of tree roots).
7fd01182
FM
10573 * 1 unit for deleting the block group item (located in the extent
10574 * tree).
10575 * 1 unit for deleting the free space item (located in tree of tree
10576 * roots).
10577 * N units for deleting N device extent items corresponding to each
10578 * stripe (located in the device tree).
10579 *
10580 * In order to remove a block group we also need to reserve units in the
10581 * system space info in order to update the chunk tree (update one or
10582 * more device items and remove one chunk item), but this is done at
10583 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10584 */
95617d69 10585 map = em->map_lookup;
7fd01182
FM
10586 num_items = 3 + map->num_stripes;
10587 free_extent_map(em);
10588
8eab77ff 10589 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10590 num_items, 1);
8eab77ff
FM
10591}
10592
47ab2a6c
JB
10593/*
10594 * Process the unused_bgs list and remove any that don't have any allocated
10595 * space inside of them.
10596 */
10597void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10598{
10599 struct btrfs_block_group_cache *block_group;
10600 struct btrfs_space_info *space_info;
47ab2a6c
JB
10601 struct btrfs_trans_handle *trans;
10602 int ret = 0;
10603
afcdd129 10604 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10605 return;
10606
10607 spin_lock(&fs_info->unused_bgs_lock);
10608 while (!list_empty(&fs_info->unused_bgs)) {
10609 u64 start, end;
e33e17ee 10610 int trimming;
47ab2a6c
JB
10611
10612 block_group = list_first_entry(&fs_info->unused_bgs,
10613 struct btrfs_block_group_cache,
10614 bg_list);
47ab2a6c 10615 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10616
10617 space_info = block_group->space_info;
10618
47ab2a6c
JB
10619 if (ret || btrfs_mixed_space_info(space_info)) {
10620 btrfs_put_block_group(block_group);
10621 continue;
10622 }
10623 spin_unlock(&fs_info->unused_bgs_lock);
10624
d5f2e33b 10625 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10626
47ab2a6c
JB
10627 /* Don't want to race with allocators so take the groups_sem */
10628 down_write(&space_info->groups_sem);
10629 spin_lock(&block_group->lock);
10630 if (block_group->reserved ||
10631 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10632 block_group->ro ||
aefbe9a6 10633 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10634 /*
10635 * We want to bail if we made new allocations or have
10636 * outstanding allocations in this block group. We do
10637 * the ro check in case balance is currently acting on
10638 * this block group.
10639 */
10640 spin_unlock(&block_group->lock);
10641 up_write(&space_info->groups_sem);
10642 goto next;
10643 }
10644 spin_unlock(&block_group->lock);
10645
10646 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10647 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10648 up_write(&space_info->groups_sem);
10649 if (ret < 0) {
10650 ret = 0;
10651 goto next;
10652 }
10653
10654 /*
10655 * Want to do this before we do anything else so we can recover
10656 * properly if we fail to join the transaction.
10657 */
7fd01182
FM
10658 trans = btrfs_start_trans_remove_block_group(fs_info,
10659 block_group->key.objectid);
47ab2a6c 10660 if (IS_ERR(trans)) {
2ff7e61e 10661 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10662 ret = PTR_ERR(trans);
10663 goto next;
10664 }
10665
10666 /*
10667 * We could have pending pinned extents for this block group,
10668 * just delete them, we don't care about them anymore.
10669 */
10670 start = block_group->key.objectid;
10671 end = start + block_group->key.offset - 1;
d4b450cd
FM
10672 /*
10673 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10674 * btrfs_finish_extent_commit(). If we are at transaction N,
10675 * another task might be running finish_extent_commit() for the
10676 * previous transaction N - 1, and have seen a range belonging
10677 * to the block group in freed_extents[] before we were able to
10678 * clear the whole block group range from freed_extents[]. This
10679 * means that task can lookup for the block group after we
10680 * unpinned it from freed_extents[] and removed it, leading to
10681 * a BUG_ON() at btrfs_unpin_extent_range().
10682 */
10683 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10684 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10685 EXTENT_DIRTY);
758eb51e 10686 if (ret) {
d4b450cd 10687 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10688 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10689 goto end_trans;
10690 }
10691 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10692 EXTENT_DIRTY);
758eb51e 10693 if (ret) {
d4b450cd 10694 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10695 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10696 goto end_trans;
10697 }
d4b450cd 10698 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10699
10700 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10701 spin_lock(&space_info->lock);
10702 spin_lock(&block_group->lock);
10703
10704 space_info->bytes_pinned -= block_group->pinned;
10705 space_info->bytes_readonly += block_group->pinned;
10706 percpu_counter_add(&space_info->total_bytes_pinned,
10707 -block_group->pinned);
47ab2a6c
JB
10708 block_group->pinned = 0;
10709
c30666d4
ZL
10710 spin_unlock(&block_group->lock);
10711 spin_unlock(&space_info->lock);
10712
e33e17ee 10713 /* DISCARD can flip during remount */
0b246afa 10714 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10715
10716 /* Implicit trim during transaction commit. */
10717 if (trimming)
10718 btrfs_get_block_group_trimming(block_group);
10719
47ab2a6c
JB
10720 /*
10721 * Btrfs_remove_chunk will abort the transaction if things go
10722 * horribly wrong.
10723 */
5b4aacef 10724 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10725 block_group->key.objectid);
e33e17ee
JM
10726
10727 if (ret) {
10728 if (trimming)
10729 btrfs_put_block_group_trimming(block_group);
10730 goto end_trans;
10731 }
10732
10733 /*
10734 * If we're not mounted with -odiscard, we can just forget
10735 * about this block group. Otherwise we'll need to wait
10736 * until transaction commit to do the actual discard.
10737 */
10738 if (trimming) {
348a0013
FM
10739 spin_lock(&fs_info->unused_bgs_lock);
10740 /*
10741 * A concurrent scrub might have added us to the list
10742 * fs_info->unused_bgs, so use a list_move operation
10743 * to add the block group to the deleted_bgs list.
10744 */
e33e17ee
JM
10745 list_move(&block_group->bg_list,
10746 &trans->transaction->deleted_bgs);
348a0013 10747 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10748 btrfs_get_block_group(block_group);
10749 }
758eb51e 10750end_trans:
3a45bb20 10751 btrfs_end_transaction(trans);
47ab2a6c 10752next:
d5f2e33b 10753 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10754 btrfs_put_block_group(block_group);
10755 spin_lock(&fs_info->unused_bgs_lock);
10756 }
10757 spin_unlock(&fs_info->unused_bgs_lock);
10758}
10759
c59021f8 10760int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10761{
10762 struct btrfs_space_info *space_info;
1aba86d6 10763 struct btrfs_super_block *disk_super;
10764 u64 features;
10765 u64 flags;
10766 int mixed = 0;
c59021f8 10767 int ret;
10768
6c41761f 10769 disk_super = fs_info->super_copy;
1aba86d6 10770 if (!btrfs_super_root(disk_super))
0dc924c5 10771 return -EINVAL;
c59021f8 10772
1aba86d6 10773 features = btrfs_super_incompat_flags(disk_super);
10774 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10775 mixed = 1;
c59021f8 10776
1aba86d6 10777 flags = BTRFS_BLOCK_GROUP_SYSTEM;
e40edf2d 10778 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
c59021f8 10779 if (ret)
1aba86d6 10780 goto out;
c59021f8 10781
1aba86d6 10782 if (mixed) {
10783 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10784 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10785 } else {
10786 flags = BTRFS_BLOCK_GROUP_METADATA;
e40edf2d 10787 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10788 if (ret)
10789 goto out;
10790
10791 flags = BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10792 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10793 }
10794out:
c59021f8 10795 return ret;
10796}
10797
2ff7e61e
JM
10798int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10799 u64 start, u64 end)
acce952b 10800{
2ff7e61e 10801 return unpin_extent_range(fs_info, start, end, false);
acce952b 10802}
10803
499f377f
JM
10804/*
10805 * It used to be that old block groups would be left around forever.
10806 * Iterating over them would be enough to trim unused space. Since we
10807 * now automatically remove them, we also need to iterate over unallocated
10808 * space.
10809 *
10810 * We don't want a transaction for this since the discard may take a
10811 * substantial amount of time. We don't require that a transaction be
10812 * running, but we do need to take a running transaction into account
10813 * to ensure that we're not discarding chunks that were released in
10814 * the current transaction.
10815 *
10816 * Holding the chunks lock will prevent other threads from allocating
10817 * or releasing chunks, but it won't prevent a running transaction
10818 * from committing and releasing the memory that the pending chunks
10819 * list head uses. For that, we need to take a reference to the
10820 * transaction.
10821 */
10822static int btrfs_trim_free_extents(struct btrfs_device *device,
10823 u64 minlen, u64 *trimmed)
10824{
10825 u64 start = 0, len = 0;
10826 int ret;
10827
10828 *trimmed = 0;
10829
10830 /* Not writeable = nothing to do. */
10831 if (!device->writeable)
10832 return 0;
10833
10834 /* No free space = nothing to do. */
10835 if (device->total_bytes <= device->bytes_used)
10836 return 0;
10837
10838 ret = 0;
10839
10840 while (1) {
fb456252 10841 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10842 struct btrfs_transaction *trans;
10843 u64 bytes;
10844
10845 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10846 if (ret)
10847 return ret;
10848
10849 down_read(&fs_info->commit_root_sem);
10850
10851 spin_lock(&fs_info->trans_lock);
10852 trans = fs_info->running_transaction;
10853 if (trans)
10854 atomic_inc(&trans->use_count);
10855 spin_unlock(&fs_info->trans_lock);
10856
10857 ret = find_free_dev_extent_start(trans, device, minlen, start,
10858 &start, &len);
10859 if (trans)
10860 btrfs_put_transaction(trans);
10861
10862 if (ret) {
10863 up_read(&fs_info->commit_root_sem);
10864 mutex_unlock(&fs_info->chunk_mutex);
10865 if (ret == -ENOSPC)
10866 ret = 0;
10867 break;
10868 }
10869
10870 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10871 up_read(&fs_info->commit_root_sem);
10872 mutex_unlock(&fs_info->chunk_mutex);
10873
10874 if (ret)
10875 break;
10876
10877 start += len;
10878 *trimmed += bytes;
10879
10880 if (fatal_signal_pending(current)) {
10881 ret = -ERESTARTSYS;
10882 break;
10883 }
10884
10885 cond_resched();
10886 }
10887
10888 return ret;
10889}
10890
2ff7e61e 10891int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10892{
f7039b1d 10893 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10894 struct btrfs_device *device;
10895 struct list_head *devices;
f7039b1d
LD
10896 u64 group_trimmed;
10897 u64 start;
10898 u64 end;
10899 u64 trimmed = 0;
2cac13e4 10900 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10901 int ret = 0;
10902
2cac13e4
LB
10903 /*
10904 * try to trim all FS space, our block group may start from non-zero.
10905 */
10906 if (range->len == total_bytes)
10907 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10908 else
10909 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10910
10911 while (cache) {
10912 if (cache->key.objectid >= (range->start + range->len)) {
10913 btrfs_put_block_group(cache);
10914 break;
10915 }
10916
10917 start = max(range->start, cache->key.objectid);
10918 end = min(range->start + range->len,
10919 cache->key.objectid + cache->key.offset);
10920
10921 if (end - start >= range->minlen) {
10922 if (!block_group_cache_done(cache)) {
f6373bf3 10923 ret = cache_block_group(cache, 0);
1be41b78
JB
10924 if (ret) {
10925 btrfs_put_block_group(cache);
10926 break;
10927 }
10928 ret = wait_block_group_cache_done(cache);
10929 if (ret) {
10930 btrfs_put_block_group(cache);
10931 break;
10932 }
f7039b1d
LD
10933 }
10934 ret = btrfs_trim_block_group(cache,
10935 &group_trimmed,
10936 start,
10937 end,
10938 range->minlen);
10939
10940 trimmed += group_trimmed;
10941 if (ret) {
10942 btrfs_put_block_group(cache);
10943 break;
10944 }
10945 }
10946
2ff7e61e 10947 cache = next_block_group(fs_info, cache);
f7039b1d
LD
10948 }
10949
0b246afa
JM
10950 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10951 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
10952 list_for_each_entry(device, devices, dev_alloc_list) {
10953 ret = btrfs_trim_free_extents(device, range->minlen,
10954 &group_trimmed);
10955 if (ret)
10956 break;
10957
10958 trimmed += group_trimmed;
10959 }
0b246afa 10960 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 10961
f7039b1d
LD
10962 range->len = trimmed;
10963 return ret;
10964}
8257b2dc
MX
10965
10966/*
9ea24bbe
FM
10967 * btrfs_{start,end}_write_no_snapshoting() are similar to
10968 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10969 * data into the page cache through nocow before the subvolume is snapshoted,
10970 * but flush the data into disk after the snapshot creation, or to prevent
10971 * operations while snapshoting is ongoing and that cause the snapshot to be
10972 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10973 */
9ea24bbe 10974void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10975{
10976 percpu_counter_dec(&root->subv_writers->counter);
10977 /*
a83342aa 10978 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10979 */
10980 smp_mb();
10981 if (waitqueue_active(&root->subv_writers->wait))
10982 wake_up(&root->subv_writers->wait);
10983}
10984
9ea24bbe 10985int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10986{
ee39b432 10987 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10988 return 0;
10989
10990 percpu_counter_inc(&root->subv_writers->counter);
10991 /*
10992 * Make sure counter is updated before we check for snapshot creation.
10993 */
10994 smp_mb();
ee39b432 10995 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10996 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10997 return 0;
10998 }
10999 return 1;
11000}
0bc19f90
ZL
11001
11002static int wait_snapshoting_atomic_t(atomic_t *a)
11003{
11004 schedule();
11005 return 0;
11006}
11007
11008void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11009{
11010 while (true) {
11011 int ret;
11012
11013 ret = btrfs_start_write_no_snapshoting(root);
11014 if (ret)
11015 break;
11016 wait_on_atomic_t(&root->will_be_snapshoted,
11017 wait_snapshoting_atomic_t,
11018 TASK_UNINTERRUPTIBLE);
11019 }
11020}