]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: btrfs_relocate_chunk pass extent_root to btrfs_end_transaction
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
1e144fb8 36#include "free-space-tree.h"
3fed40cc 37#include "math.h"
6ab0a202 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
fec577fb 40
709c0486
AJ
41#undef SCRAMBLE_DELAYED_REFS
42
9e622d6b
MX
43/*
44 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
0e4f8f88
CM
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
9e622d6b
MX
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
0e4f8f88
CM
56 */
57enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
61};
62
fb25e914
JB
63/*
64 * Control how reservations are dealt with.
65 *
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * ENOSPC accounting
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 */
72enum {
73 RESERVE_FREE = 0,
74 RESERVE_ALLOC = 1,
75 RESERVE_ALLOC_NO_ACCOUNT = 2,
76};
77
ce93ec54
JB
78static int update_block_group(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root, u64 bytenr,
80 u64 num_bytes, int alloc);
5d4f98a2
YZ
81static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root,
c682f9b3 83 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
84 u64 root_objectid, u64 owner_objectid,
85 u64 owner_offset, int refs_to_drop,
c682f9b3 86 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 99 int level, struct btrfs_key *ins);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
957780eb
JB
114static int __reserve_metadata_bytes(struct btrfs_root *root,
115 struct btrfs_space_info *space_info,
116 u64 orig_bytes,
117 enum btrfs_reserve_flush_enum flush);
118static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
119 struct btrfs_space_info *space_info,
120 u64 num_bytes);
121static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
122 struct btrfs_space_info *space_info,
123 u64 num_bytes);
6a63209f 124
817d52f8
JB
125static noinline int
126block_group_cache_done(struct btrfs_block_group_cache *cache)
127{
128 smp_mb();
36cce922
JB
129 return cache->cached == BTRFS_CACHE_FINISHED ||
130 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
131}
132
0f9dd46c
JB
133static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
134{
135 return (cache->flags & bits) == bits;
136}
137
758f2dfc 138void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
139{
140 atomic_inc(&cache->count);
141}
142
143void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
144{
f0486c68
YZ
145 if (atomic_dec_and_test(&cache->count)) {
146 WARN_ON(cache->pinned > 0);
147 WARN_ON(cache->reserved > 0);
34d52cb6 148 kfree(cache->free_space_ctl);
11dfe35a 149 kfree(cache);
f0486c68 150 }
11dfe35a
JB
151}
152
0f9dd46c
JB
153/*
154 * this adds the block group to the fs_info rb tree for the block group
155 * cache
156 */
b2950863 157static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
158 struct btrfs_block_group_cache *block_group)
159{
160 struct rb_node **p;
161 struct rb_node *parent = NULL;
162 struct btrfs_block_group_cache *cache;
163
164 spin_lock(&info->block_group_cache_lock);
165 p = &info->block_group_cache_tree.rb_node;
166
167 while (*p) {
168 parent = *p;
169 cache = rb_entry(parent, struct btrfs_block_group_cache,
170 cache_node);
171 if (block_group->key.objectid < cache->key.objectid) {
172 p = &(*p)->rb_left;
173 } else if (block_group->key.objectid > cache->key.objectid) {
174 p = &(*p)->rb_right;
175 } else {
176 spin_unlock(&info->block_group_cache_lock);
177 return -EEXIST;
178 }
179 }
180
181 rb_link_node(&block_group->cache_node, parent, p);
182 rb_insert_color(&block_group->cache_node,
183 &info->block_group_cache_tree);
a1897fdd
LB
184
185 if (info->first_logical_byte > block_group->key.objectid)
186 info->first_logical_byte = block_group->key.objectid;
187
0f9dd46c
JB
188 spin_unlock(&info->block_group_cache_lock);
189
190 return 0;
191}
192
193/*
194 * This will return the block group at or after bytenr if contains is 0, else
195 * it will return the block group that contains the bytenr
196 */
197static struct btrfs_block_group_cache *
198block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
199 int contains)
200{
201 struct btrfs_block_group_cache *cache, *ret = NULL;
202 struct rb_node *n;
203 u64 end, start;
204
205 spin_lock(&info->block_group_cache_lock);
206 n = info->block_group_cache_tree.rb_node;
207
208 while (n) {
209 cache = rb_entry(n, struct btrfs_block_group_cache,
210 cache_node);
211 end = cache->key.objectid + cache->key.offset - 1;
212 start = cache->key.objectid;
213
214 if (bytenr < start) {
215 if (!contains && (!ret || start < ret->key.objectid))
216 ret = cache;
217 n = n->rb_left;
218 } else if (bytenr > start) {
219 if (contains && bytenr <= end) {
220 ret = cache;
221 break;
222 }
223 n = n->rb_right;
224 } else {
225 ret = cache;
226 break;
227 }
228 }
a1897fdd 229 if (ret) {
11dfe35a 230 btrfs_get_block_group(ret);
a1897fdd
LB
231 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
232 info->first_logical_byte = ret->key.objectid;
233 }
0f9dd46c
JB
234 spin_unlock(&info->block_group_cache_lock);
235
236 return ret;
237}
238
11833d66
YZ
239static int add_excluded_extent(struct btrfs_root *root,
240 u64 start, u64 num_bytes)
817d52f8 241{
11833d66
YZ
242 u64 end = start + num_bytes - 1;
243 set_extent_bits(&root->fs_info->freed_extents[0],
ceeb0ae7 244 start, end, EXTENT_UPTODATE);
11833d66 245 set_extent_bits(&root->fs_info->freed_extents[1],
ceeb0ae7 246 start, end, EXTENT_UPTODATE);
11833d66
YZ
247 return 0;
248}
817d52f8 249
11833d66
YZ
250static void free_excluded_extents(struct btrfs_root *root,
251 struct btrfs_block_group_cache *cache)
252{
253 u64 start, end;
817d52f8 254
11833d66
YZ
255 start = cache->key.objectid;
256 end = start + cache->key.offset - 1;
257
258 clear_extent_bits(&root->fs_info->freed_extents[0],
91166212 259 start, end, EXTENT_UPTODATE);
11833d66 260 clear_extent_bits(&root->fs_info->freed_extents[1],
91166212 261 start, end, EXTENT_UPTODATE);
817d52f8
JB
262}
263
11833d66
YZ
264static int exclude_super_stripes(struct btrfs_root *root,
265 struct btrfs_block_group_cache *cache)
817d52f8 266{
817d52f8
JB
267 u64 bytenr;
268 u64 *logical;
269 int stripe_len;
270 int i, nr, ret;
271
06b2331f
YZ
272 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
273 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
274 cache->bytes_super += stripe_len;
275 ret = add_excluded_extent(root, cache->key.objectid,
276 stripe_len);
835d974f
JB
277 if (ret)
278 return ret;
06b2331f
YZ
279 }
280
817d52f8
JB
281 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
282 bytenr = btrfs_sb_offset(i);
283 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
284 cache->key.objectid, bytenr,
285 0, &logical, &nr, &stripe_len);
835d974f
JB
286 if (ret)
287 return ret;
11833d66 288
817d52f8 289 while (nr--) {
51bf5f0b
JB
290 u64 start, len;
291
292 if (logical[nr] > cache->key.objectid +
293 cache->key.offset)
294 continue;
295
296 if (logical[nr] + stripe_len <= cache->key.objectid)
297 continue;
298
299 start = logical[nr];
300 if (start < cache->key.objectid) {
301 start = cache->key.objectid;
302 len = (logical[nr] + stripe_len) - start;
303 } else {
304 len = min_t(u64, stripe_len,
305 cache->key.objectid +
306 cache->key.offset - start);
307 }
308
309 cache->bytes_super += len;
310 ret = add_excluded_extent(root, start, len);
835d974f
JB
311 if (ret) {
312 kfree(logical);
313 return ret;
314 }
817d52f8 315 }
11833d66 316
817d52f8
JB
317 kfree(logical);
318 }
817d52f8
JB
319 return 0;
320}
321
11833d66
YZ
322static struct btrfs_caching_control *
323get_caching_control(struct btrfs_block_group_cache *cache)
324{
325 struct btrfs_caching_control *ctl;
326
327 spin_lock(&cache->lock);
dde5abee
JB
328 if (!cache->caching_ctl) {
329 spin_unlock(&cache->lock);
11833d66
YZ
330 return NULL;
331 }
332
333 ctl = cache->caching_ctl;
334 atomic_inc(&ctl->count);
335 spin_unlock(&cache->lock);
336 return ctl;
337}
338
339static void put_caching_control(struct btrfs_caching_control *ctl)
340{
341 if (atomic_dec_and_test(&ctl->count))
342 kfree(ctl);
343}
344
d0bd4560
JB
345#ifdef CONFIG_BTRFS_DEBUG
346static void fragment_free_space(struct btrfs_root *root,
347 struct btrfs_block_group_cache *block_group)
348{
349 u64 start = block_group->key.objectid;
350 u64 len = block_group->key.offset;
351 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
352 root->nodesize : root->sectorsize;
353 u64 step = chunk << 1;
354
355 while (len > chunk) {
356 btrfs_remove_free_space(block_group, start, chunk);
357 start += step;
358 if (len < step)
359 len = 0;
360 else
361 len -= step;
362 }
363}
364#endif
365
0f9dd46c
JB
366/*
367 * this is only called by cache_block_group, since we could have freed extents
368 * we need to check the pinned_extents for any extents that can't be used yet
369 * since their free space will be released as soon as the transaction commits.
370 */
a5ed9182
OS
371u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
372 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 373{
817d52f8 374 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
375 int ret;
376
377 while (start < end) {
11833d66 378 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 379 &extent_start, &extent_end,
e6138876
JB
380 EXTENT_DIRTY | EXTENT_UPTODATE,
381 NULL);
0f9dd46c
JB
382 if (ret)
383 break;
384
06b2331f 385 if (extent_start <= start) {
0f9dd46c
JB
386 start = extent_end + 1;
387 } else if (extent_start > start && extent_start < end) {
388 size = extent_start - start;
817d52f8 389 total_added += size;
ea6a478e
JB
390 ret = btrfs_add_free_space(block_group, start,
391 size);
79787eaa 392 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
393 start = extent_end + 1;
394 } else {
395 break;
396 }
397 }
398
399 if (start < end) {
400 size = end - start;
817d52f8 401 total_added += size;
ea6a478e 402 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 403 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
404 }
405
817d52f8 406 return total_added;
0f9dd46c
JB
407}
408
73fa48b6 409static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 410{
bab39bf9
JB
411 struct btrfs_block_group_cache *block_group;
412 struct btrfs_fs_info *fs_info;
bab39bf9 413 struct btrfs_root *extent_root;
e37c9e69 414 struct btrfs_path *path;
5f39d397 415 struct extent_buffer *leaf;
11833d66 416 struct btrfs_key key;
817d52f8 417 u64 total_found = 0;
11833d66
YZ
418 u64 last = 0;
419 u32 nritems;
73fa48b6 420 int ret;
d0bd4560 421 bool wakeup = true;
f510cfec 422
bab39bf9
JB
423 block_group = caching_ctl->block_group;
424 fs_info = block_group->fs_info;
425 extent_root = fs_info->extent_root;
426
e37c9e69
CM
427 path = btrfs_alloc_path();
428 if (!path)
73fa48b6 429 return -ENOMEM;
7d7d6068 430
817d52f8 431 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 432
d0bd4560
JB
433#ifdef CONFIG_BTRFS_DEBUG
434 /*
435 * If we're fragmenting we don't want to make anybody think we can
436 * allocate from this block group until we've had a chance to fragment
437 * the free space.
438 */
439 if (btrfs_should_fragment_free_space(extent_root, block_group))
440 wakeup = false;
441#endif
5cd57b2c 442 /*
817d52f8
JB
443 * We don't want to deadlock with somebody trying to allocate a new
444 * extent for the extent root while also trying to search the extent
445 * root to add free space. So we skip locking and search the commit
446 * root, since its read-only
5cd57b2c
CM
447 */
448 path->skip_locking = 1;
817d52f8 449 path->search_commit_root = 1;
e4058b54 450 path->reada = READA_FORWARD;
817d52f8 451
e4404d6e 452 key.objectid = last;
e37c9e69 453 key.offset = 0;
11833d66 454 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 455
52ee28d2 456next:
11833d66 457 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 458 if (ret < 0)
73fa48b6 459 goto out;
a512bbf8 460
11833d66
YZ
461 leaf = path->nodes[0];
462 nritems = btrfs_header_nritems(leaf);
463
d397712b 464 while (1) {
7841cb28 465 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 466 last = (u64)-1;
817d52f8 467 break;
f25784b3 468 }
817d52f8 469
11833d66
YZ
470 if (path->slots[0] < nritems) {
471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
472 } else {
473 ret = find_next_key(path, 0, &key);
474 if (ret)
e37c9e69 475 break;
817d52f8 476
c9ea7b24 477 if (need_resched() ||
9e351cc8 478 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
479 if (wakeup)
480 caching_ctl->progress = last;
ff5714cc 481 btrfs_release_path(path);
9e351cc8 482 up_read(&fs_info->commit_root_sem);
589d8ade 483 mutex_unlock(&caching_ctl->mutex);
11833d66 484 cond_resched();
73fa48b6
OS
485 mutex_lock(&caching_ctl->mutex);
486 down_read(&fs_info->commit_root_sem);
487 goto next;
589d8ade 488 }
0a3896d0
JB
489
490 ret = btrfs_next_leaf(extent_root, path);
491 if (ret < 0)
73fa48b6 492 goto out;
0a3896d0
JB
493 if (ret)
494 break;
589d8ade
JB
495 leaf = path->nodes[0];
496 nritems = btrfs_header_nritems(leaf);
497 continue;
11833d66 498 }
817d52f8 499
52ee28d2
LB
500 if (key.objectid < last) {
501 key.objectid = last;
502 key.offset = 0;
503 key.type = BTRFS_EXTENT_ITEM_KEY;
504
d0bd4560
JB
505 if (wakeup)
506 caching_ctl->progress = last;
52ee28d2
LB
507 btrfs_release_path(path);
508 goto next;
509 }
510
11833d66
YZ
511 if (key.objectid < block_group->key.objectid) {
512 path->slots[0]++;
817d52f8 513 continue;
e37c9e69 514 }
0f9dd46c 515
e37c9e69 516 if (key.objectid >= block_group->key.objectid +
0f9dd46c 517 block_group->key.offset)
e37c9e69 518 break;
7d7d6068 519
3173a18f
JB
520 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
521 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
522 total_found += add_new_free_space(block_group,
523 fs_info, last,
524 key.objectid);
3173a18f
JB
525 if (key.type == BTRFS_METADATA_ITEM_KEY)
526 last = key.objectid +
707e8a07 527 fs_info->tree_root->nodesize;
3173a18f
JB
528 else
529 last = key.objectid + key.offset;
817d52f8 530
73fa48b6 531 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 532 total_found = 0;
d0bd4560
JB
533 if (wakeup)
534 wake_up(&caching_ctl->wait);
11833d66 535 }
817d52f8 536 }
e37c9e69
CM
537 path->slots[0]++;
538 }
817d52f8 539 ret = 0;
e37c9e69 540
817d52f8
JB
541 total_found += add_new_free_space(block_group, fs_info, last,
542 block_group->key.objectid +
543 block_group->key.offset);
11833d66 544 caching_ctl->progress = (u64)-1;
817d52f8 545
73fa48b6
OS
546out:
547 btrfs_free_path(path);
548 return ret;
549}
550
551static noinline void caching_thread(struct btrfs_work *work)
552{
553 struct btrfs_block_group_cache *block_group;
554 struct btrfs_fs_info *fs_info;
555 struct btrfs_caching_control *caching_ctl;
b4570aa9 556 struct btrfs_root *extent_root;
73fa48b6
OS
557 int ret;
558
559 caching_ctl = container_of(work, struct btrfs_caching_control, work);
560 block_group = caching_ctl->block_group;
561 fs_info = block_group->fs_info;
b4570aa9 562 extent_root = fs_info->extent_root;
73fa48b6
OS
563
564 mutex_lock(&caching_ctl->mutex);
565 down_read(&fs_info->commit_root_sem);
566
1e144fb8
OS
567 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
568 ret = load_free_space_tree(caching_ctl);
569 else
570 ret = load_extent_tree_free(caching_ctl);
73fa48b6 571
817d52f8 572 spin_lock(&block_group->lock);
11833d66 573 block_group->caching_ctl = NULL;
73fa48b6 574 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 575 spin_unlock(&block_group->lock);
0f9dd46c 576
d0bd4560
JB
577#ifdef CONFIG_BTRFS_DEBUG
578 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
579 u64 bytes_used;
580
581 spin_lock(&block_group->space_info->lock);
582 spin_lock(&block_group->lock);
583 bytes_used = block_group->key.offset -
584 btrfs_block_group_used(&block_group->item);
585 block_group->space_info->bytes_used += bytes_used >> 1;
586 spin_unlock(&block_group->lock);
587 spin_unlock(&block_group->space_info->lock);
588 fragment_free_space(extent_root, block_group);
589 }
590#endif
591
592 caching_ctl->progress = (u64)-1;
11833d66 593
9e351cc8 594 up_read(&fs_info->commit_root_sem);
73fa48b6 595 free_excluded_extents(fs_info->extent_root, block_group);
11833d66 596 mutex_unlock(&caching_ctl->mutex);
73fa48b6 597
11833d66
YZ
598 wake_up(&caching_ctl->wait);
599
600 put_caching_control(caching_ctl);
11dfe35a 601 btrfs_put_block_group(block_group);
817d52f8
JB
602}
603
9d66e233 604static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 605 int load_cache_only)
817d52f8 606{
291c7d2f 607 DEFINE_WAIT(wait);
11833d66
YZ
608 struct btrfs_fs_info *fs_info = cache->fs_info;
609 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
610 int ret = 0;
611
291c7d2f 612 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
613 if (!caching_ctl)
614 return -ENOMEM;
291c7d2f
JB
615
616 INIT_LIST_HEAD(&caching_ctl->list);
617 mutex_init(&caching_ctl->mutex);
618 init_waitqueue_head(&caching_ctl->wait);
619 caching_ctl->block_group = cache;
620 caching_ctl->progress = cache->key.objectid;
621 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
622 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
623 caching_thread, NULL, NULL);
291c7d2f
JB
624
625 spin_lock(&cache->lock);
626 /*
627 * This should be a rare occasion, but this could happen I think in the
628 * case where one thread starts to load the space cache info, and then
629 * some other thread starts a transaction commit which tries to do an
630 * allocation while the other thread is still loading the space cache
631 * info. The previous loop should have kept us from choosing this block
632 * group, but if we've moved to the state where we will wait on caching
633 * block groups we need to first check if we're doing a fast load here,
634 * so we can wait for it to finish, otherwise we could end up allocating
635 * from a block group who's cache gets evicted for one reason or
636 * another.
637 */
638 while (cache->cached == BTRFS_CACHE_FAST) {
639 struct btrfs_caching_control *ctl;
640
641 ctl = cache->caching_ctl;
642 atomic_inc(&ctl->count);
643 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
644 spin_unlock(&cache->lock);
645
646 schedule();
647
648 finish_wait(&ctl->wait, &wait);
649 put_caching_control(ctl);
650 spin_lock(&cache->lock);
651 }
652
653 if (cache->cached != BTRFS_CACHE_NO) {
654 spin_unlock(&cache->lock);
655 kfree(caching_ctl);
11833d66 656 return 0;
291c7d2f
JB
657 }
658 WARN_ON(cache->caching_ctl);
659 cache->caching_ctl = caching_ctl;
660 cache->cached = BTRFS_CACHE_FAST;
661 spin_unlock(&cache->lock);
11833d66 662
d53ba474 663 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 664 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
665 ret = load_free_space_cache(fs_info, cache);
666
667 spin_lock(&cache->lock);
668 if (ret == 1) {
291c7d2f 669 cache->caching_ctl = NULL;
9d66e233
JB
670 cache->cached = BTRFS_CACHE_FINISHED;
671 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 672 caching_ctl->progress = (u64)-1;
9d66e233 673 } else {
291c7d2f
JB
674 if (load_cache_only) {
675 cache->caching_ctl = NULL;
676 cache->cached = BTRFS_CACHE_NO;
677 } else {
678 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 679 cache->has_caching_ctl = 1;
291c7d2f 680 }
9d66e233
JB
681 }
682 spin_unlock(&cache->lock);
d0bd4560
JB
683#ifdef CONFIG_BTRFS_DEBUG
684 if (ret == 1 &&
685 btrfs_should_fragment_free_space(fs_info->extent_root,
686 cache)) {
687 u64 bytes_used;
688
689 spin_lock(&cache->space_info->lock);
690 spin_lock(&cache->lock);
691 bytes_used = cache->key.offset -
692 btrfs_block_group_used(&cache->item);
693 cache->space_info->bytes_used += bytes_used >> 1;
694 spin_unlock(&cache->lock);
695 spin_unlock(&cache->space_info->lock);
696 fragment_free_space(fs_info->extent_root, cache);
697 }
698#endif
cb83b7b8
JB
699 mutex_unlock(&caching_ctl->mutex);
700
291c7d2f 701 wake_up(&caching_ctl->wait);
3c14874a 702 if (ret == 1) {
291c7d2f 703 put_caching_control(caching_ctl);
3c14874a 704 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 705 return 0;
3c14874a 706 }
291c7d2f
JB
707 } else {
708 /*
1e144fb8
OS
709 * We're either using the free space tree or no caching at all.
710 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
711 */
712 spin_lock(&cache->lock);
713 if (load_cache_only) {
714 cache->caching_ctl = NULL;
715 cache->cached = BTRFS_CACHE_NO;
716 } else {
717 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 718 cache->has_caching_ctl = 1;
291c7d2f
JB
719 }
720 spin_unlock(&cache->lock);
721 wake_up(&caching_ctl->wait);
9d66e233
JB
722 }
723
291c7d2f
JB
724 if (load_cache_only) {
725 put_caching_control(caching_ctl);
11833d66 726 return 0;
817d52f8 727 }
817d52f8 728
9e351cc8 729 down_write(&fs_info->commit_root_sem);
291c7d2f 730 atomic_inc(&caching_ctl->count);
11833d66 731 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 732 up_write(&fs_info->commit_root_sem);
11833d66 733
11dfe35a 734 btrfs_get_block_group(cache);
11833d66 735
e66f0bb1 736 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 737
ef8bbdfe 738 return ret;
e37c9e69
CM
739}
740
0f9dd46c
JB
741/*
742 * return the block group that starts at or after bytenr
743 */
d397712b
CM
744static struct btrfs_block_group_cache *
745btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 746{
0f9dd46c 747 struct btrfs_block_group_cache *cache;
0ef3e66b 748
0f9dd46c 749 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 750
0f9dd46c 751 return cache;
0ef3e66b
CM
752}
753
0f9dd46c 754/*
9f55684c 755 * return the block group that contains the given bytenr
0f9dd46c 756 */
d397712b
CM
757struct btrfs_block_group_cache *btrfs_lookup_block_group(
758 struct btrfs_fs_info *info,
759 u64 bytenr)
be744175 760{
0f9dd46c 761 struct btrfs_block_group_cache *cache;
be744175 762
0f9dd46c 763 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 764
0f9dd46c 765 return cache;
be744175 766}
0b86a832 767
0f9dd46c
JB
768static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
769 u64 flags)
6324fbf3 770{
0f9dd46c 771 struct list_head *head = &info->space_info;
0f9dd46c 772 struct btrfs_space_info *found;
4184ea7f 773
52ba6929 774 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 775
4184ea7f
CM
776 rcu_read_lock();
777 list_for_each_entry_rcu(found, head, list) {
67377734 778 if (found->flags & flags) {
4184ea7f 779 rcu_read_unlock();
0f9dd46c 780 return found;
4184ea7f 781 }
0f9dd46c 782 }
4184ea7f 783 rcu_read_unlock();
0f9dd46c 784 return NULL;
6324fbf3
CM
785}
786
4184ea7f
CM
787/*
788 * after adding space to the filesystem, we need to clear the full flags
789 * on all the space infos.
790 */
791void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
792{
793 struct list_head *head = &info->space_info;
794 struct btrfs_space_info *found;
795
796 rcu_read_lock();
797 list_for_each_entry_rcu(found, head, list)
798 found->full = 0;
799 rcu_read_unlock();
800}
801
1a4ed8fd
FM
802/* simple helper to search for an existing data extent at a given offset */
803int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
804{
805 int ret;
806 struct btrfs_key key;
31840ae1 807 struct btrfs_path *path;
e02119d5 808
31840ae1 809 path = btrfs_alloc_path();
d8926bb3
MF
810 if (!path)
811 return -ENOMEM;
812
e02119d5
CM
813 key.objectid = start;
814 key.offset = len;
3173a18f 815 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
816 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
817 0, 0);
31840ae1 818 btrfs_free_path(path);
7bb86316
CM
819 return ret;
820}
821
a22285a6 822/*
3173a18f 823 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
824 *
825 * the head node for delayed ref is used to store the sum of all the
826 * reference count modifications queued up in the rbtree. the head
827 * node may also store the extent flags to set. This way you can check
828 * to see what the reference count and extent flags would be if all of
829 * the delayed refs are not processed.
830 */
831int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
832 struct btrfs_root *root, u64 bytenr,
3173a18f 833 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
834{
835 struct btrfs_delayed_ref_head *head;
836 struct btrfs_delayed_ref_root *delayed_refs;
837 struct btrfs_path *path;
838 struct btrfs_extent_item *ei;
839 struct extent_buffer *leaf;
840 struct btrfs_key key;
841 u32 item_size;
842 u64 num_refs;
843 u64 extent_flags;
844 int ret;
845
3173a18f
JB
846 /*
847 * If we don't have skinny metadata, don't bother doing anything
848 * different
849 */
850 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 851 offset = root->nodesize;
3173a18f
JB
852 metadata = 0;
853 }
854
a22285a6
YZ
855 path = btrfs_alloc_path();
856 if (!path)
857 return -ENOMEM;
858
a22285a6
YZ
859 if (!trans) {
860 path->skip_locking = 1;
861 path->search_commit_root = 1;
862 }
639eefc8
FDBM
863
864search_again:
865 key.objectid = bytenr;
866 key.offset = offset;
867 if (metadata)
868 key.type = BTRFS_METADATA_ITEM_KEY;
869 else
870 key.type = BTRFS_EXTENT_ITEM_KEY;
871
a22285a6
YZ
872 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
873 &key, path, 0, 0);
874 if (ret < 0)
875 goto out_free;
876
3173a18f 877 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
878 if (path->slots[0]) {
879 path->slots[0]--;
880 btrfs_item_key_to_cpu(path->nodes[0], &key,
881 path->slots[0]);
882 if (key.objectid == bytenr &&
883 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 884 key.offset == root->nodesize)
74be9510
FDBM
885 ret = 0;
886 }
3173a18f
JB
887 }
888
a22285a6
YZ
889 if (ret == 0) {
890 leaf = path->nodes[0];
891 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
892 if (item_size >= sizeof(*ei)) {
893 ei = btrfs_item_ptr(leaf, path->slots[0],
894 struct btrfs_extent_item);
895 num_refs = btrfs_extent_refs(leaf, ei);
896 extent_flags = btrfs_extent_flags(leaf, ei);
897 } else {
898#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
899 struct btrfs_extent_item_v0 *ei0;
900 BUG_ON(item_size != sizeof(*ei0));
901 ei0 = btrfs_item_ptr(leaf, path->slots[0],
902 struct btrfs_extent_item_v0);
903 num_refs = btrfs_extent_refs_v0(leaf, ei0);
904 /* FIXME: this isn't correct for data */
905 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
906#else
907 BUG();
908#endif
909 }
910 BUG_ON(num_refs == 0);
911 } else {
912 num_refs = 0;
913 extent_flags = 0;
914 ret = 0;
915 }
916
917 if (!trans)
918 goto out;
919
920 delayed_refs = &trans->transaction->delayed_refs;
921 spin_lock(&delayed_refs->lock);
922 head = btrfs_find_delayed_ref_head(trans, bytenr);
923 if (head) {
924 if (!mutex_trylock(&head->mutex)) {
925 atomic_inc(&head->node.refs);
926 spin_unlock(&delayed_refs->lock);
927
b3b4aa74 928 btrfs_release_path(path);
a22285a6 929
8cc33e5c
DS
930 /*
931 * Mutex was contended, block until it's released and try
932 * again
933 */
a22285a6
YZ
934 mutex_lock(&head->mutex);
935 mutex_unlock(&head->mutex);
936 btrfs_put_delayed_ref(&head->node);
639eefc8 937 goto search_again;
a22285a6 938 }
d7df2c79 939 spin_lock(&head->lock);
a22285a6
YZ
940 if (head->extent_op && head->extent_op->update_flags)
941 extent_flags |= head->extent_op->flags_to_set;
942 else
943 BUG_ON(num_refs == 0);
944
945 num_refs += head->node.ref_mod;
d7df2c79 946 spin_unlock(&head->lock);
a22285a6
YZ
947 mutex_unlock(&head->mutex);
948 }
949 spin_unlock(&delayed_refs->lock);
950out:
951 WARN_ON(num_refs == 0);
952 if (refs)
953 *refs = num_refs;
954 if (flags)
955 *flags = extent_flags;
956out_free:
957 btrfs_free_path(path);
958 return ret;
959}
960
d8d5f3e1
CM
961/*
962 * Back reference rules. Back refs have three main goals:
963 *
964 * 1) differentiate between all holders of references to an extent so that
965 * when a reference is dropped we can make sure it was a valid reference
966 * before freeing the extent.
967 *
968 * 2) Provide enough information to quickly find the holders of an extent
969 * if we notice a given block is corrupted or bad.
970 *
971 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
972 * maintenance. This is actually the same as #2, but with a slightly
973 * different use case.
974 *
5d4f98a2
YZ
975 * There are two kinds of back refs. The implicit back refs is optimized
976 * for pointers in non-shared tree blocks. For a given pointer in a block,
977 * back refs of this kind provide information about the block's owner tree
978 * and the pointer's key. These information allow us to find the block by
979 * b-tree searching. The full back refs is for pointers in tree blocks not
980 * referenced by their owner trees. The location of tree block is recorded
981 * in the back refs. Actually the full back refs is generic, and can be
982 * used in all cases the implicit back refs is used. The major shortcoming
983 * of the full back refs is its overhead. Every time a tree block gets
984 * COWed, we have to update back refs entry for all pointers in it.
985 *
986 * For a newly allocated tree block, we use implicit back refs for
987 * pointers in it. This means most tree related operations only involve
988 * implicit back refs. For a tree block created in old transaction, the
989 * only way to drop a reference to it is COW it. So we can detect the
990 * event that tree block loses its owner tree's reference and do the
991 * back refs conversion.
992 *
01327610 993 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
994 *
995 * The reference count of the block is one and the tree is the block's
996 * owner tree. Nothing to do in this case.
997 *
998 * The reference count of the block is one and the tree is not the
999 * block's owner tree. In this case, full back refs is used for pointers
1000 * in the block. Remove these full back refs, add implicit back refs for
1001 * every pointers in the new block.
1002 *
1003 * The reference count of the block is greater than one and the tree is
1004 * the block's owner tree. In this case, implicit back refs is used for
1005 * pointers in the block. Add full back refs for every pointers in the
1006 * block, increase lower level extents' reference counts. The original
1007 * implicit back refs are entailed to the new block.
1008 *
1009 * The reference count of the block is greater than one and the tree is
1010 * not the block's owner tree. Add implicit back refs for every pointer in
1011 * the new block, increase lower level extents' reference count.
1012 *
1013 * Back Reference Key composing:
1014 *
1015 * The key objectid corresponds to the first byte in the extent,
1016 * The key type is used to differentiate between types of back refs.
1017 * There are different meanings of the key offset for different types
1018 * of back refs.
1019 *
d8d5f3e1
CM
1020 * File extents can be referenced by:
1021 *
1022 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1023 * - different files inside a single subvolume
d8d5f3e1
CM
1024 * - different offsets inside a file (bookend extents in file.c)
1025 *
5d4f98a2 1026 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1027 *
1028 * - Objectid of the subvolume root
d8d5f3e1 1029 * - objectid of the file holding the reference
5d4f98a2
YZ
1030 * - original offset in the file
1031 * - how many bookend extents
d8d5f3e1 1032 *
5d4f98a2
YZ
1033 * The key offset for the implicit back refs is hash of the first
1034 * three fields.
d8d5f3e1 1035 *
5d4f98a2 1036 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1037 *
5d4f98a2 1038 * - number of pointers in the tree leaf
d8d5f3e1 1039 *
5d4f98a2
YZ
1040 * The key offset for the implicit back refs is the first byte of
1041 * the tree leaf
d8d5f3e1 1042 *
5d4f98a2
YZ
1043 * When a file extent is allocated, The implicit back refs is used.
1044 * the fields are filled in:
d8d5f3e1 1045 *
5d4f98a2 1046 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1047 *
5d4f98a2
YZ
1048 * When a file extent is removed file truncation, we find the
1049 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1050 *
5d4f98a2 1051 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1052 *
5d4f98a2 1053 * Btree extents can be referenced by:
d8d5f3e1 1054 *
5d4f98a2 1055 * - Different subvolumes
d8d5f3e1 1056 *
5d4f98a2
YZ
1057 * Both the implicit back refs and the full back refs for tree blocks
1058 * only consist of key. The key offset for the implicit back refs is
1059 * objectid of block's owner tree. The key offset for the full back refs
1060 * is the first byte of parent block.
d8d5f3e1 1061 *
5d4f98a2
YZ
1062 * When implicit back refs is used, information about the lowest key and
1063 * level of the tree block are required. These information are stored in
1064 * tree block info structure.
d8d5f3e1 1065 */
31840ae1 1066
5d4f98a2
YZ
1067#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1068static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1069 struct btrfs_root *root,
1070 struct btrfs_path *path,
1071 u64 owner, u32 extra_size)
7bb86316 1072{
5d4f98a2
YZ
1073 struct btrfs_extent_item *item;
1074 struct btrfs_extent_item_v0 *ei0;
1075 struct btrfs_extent_ref_v0 *ref0;
1076 struct btrfs_tree_block_info *bi;
1077 struct extent_buffer *leaf;
7bb86316 1078 struct btrfs_key key;
5d4f98a2
YZ
1079 struct btrfs_key found_key;
1080 u32 new_size = sizeof(*item);
1081 u64 refs;
1082 int ret;
1083
1084 leaf = path->nodes[0];
1085 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1086
1087 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1088 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1089 struct btrfs_extent_item_v0);
1090 refs = btrfs_extent_refs_v0(leaf, ei0);
1091
1092 if (owner == (u64)-1) {
1093 while (1) {
1094 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1095 ret = btrfs_next_leaf(root, path);
1096 if (ret < 0)
1097 return ret;
79787eaa 1098 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1099 leaf = path->nodes[0];
1100 }
1101 btrfs_item_key_to_cpu(leaf, &found_key,
1102 path->slots[0]);
1103 BUG_ON(key.objectid != found_key.objectid);
1104 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1105 path->slots[0]++;
1106 continue;
1107 }
1108 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1109 struct btrfs_extent_ref_v0);
1110 owner = btrfs_ref_objectid_v0(leaf, ref0);
1111 break;
1112 }
1113 }
b3b4aa74 1114 btrfs_release_path(path);
5d4f98a2
YZ
1115
1116 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1117 new_size += sizeof(*bi);
1118
1119 new_size -= sizeof(*ei0);
1120 ret = btrfs_search_slot(trans, root, &key, path,
1121 new_size + extra_size, 1);
1122 if (ret < 0)
1123 return ret;
79787eaa 1124 BUG_ON(ret); /* Corruption */
5d4f98a2 1125
4b90c680 1126 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1127
1128 leaf = path->nodes[0];
1129 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1130 btrfs_set_extent_refs(leaf, item, refs);
1131 /* FIXME: get real generation */
1132 btrfs_set_extent_generation(leaf, item, 0);
1133 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1134 btrfs_set_extent_flags(leaf, item,
1135 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1136 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1137 bi = (struct btrfs_tree_block_info *)(item + 1);
1138 /* FIXME: get first key of the block */
1139 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1140 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1141 } else {
1142 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1143 }
1144 btrfs_mark_buffer_dirty(leaf);
1145 return 0;
1146}
1147#endif
1148
1149static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1150{
1151 u32 high_crc = ~(u32)0;
1152 u32 low_crc = ~(u32)0;
1153 __le64 lenum;
1154
1155 lenum = cpu_to_le64(root_objectid);
14a958e6 1156 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1157 lenum = cpu_to_le64(owner);
14a958e6 1158 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1159 lenum = cpu_to_le64(offset);
14a958e6 1160 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1161
1162 return ((u64)high_crc << 31) ^ (u64)low_crc;
1163}
1164
1165static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1166 struct btrfs_extent_data_ref *ref)
1167{
1168 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1169 btrfs_extent_data_ref_objectid(leaf, ref),
1170 btrfs_extent_data_ref_offset(leaf, ref));
1171}
1172
1173static int match_extent_data_ref(struct extent_buffer *leaf,
1174 struct btrfs_extent_data_ref *ref,
1175 u64 root_objectid, u64 owner, u64 offset)
1176{
1177 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1178 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1179 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1180 return 0;
1181 return 1;
1182}
1183
1184static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1185 struct btrfs_root *root,
1186 struct btrfs_path *path,
1187 u64 bytenr, u64 parent,
1188 u64 root_objectid,
1189 u64 owner, u64 offset)
1190{
1191 struct btrfs_key key;
1192 struct btrfs_extent_data_ref *ref;
31840ae1 1193 struct extent_buffer *leaf;
5d4f98a2 1194 u32 nritems;
74493f7a 1195 int ret;
5d4f98a2
YZ
1196 int recow;
1197 int err = -ENOENT;
74493f7a 1198
31840ae1 1199 key.objectid = bytenr;
5d4f98a2
YZ
1200 if (parent) {
1201 key.type = BTRFS_SHARED_DATA_REF_KEY;
1202 key.offset = parent;
1203 } else {
1204 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1205 key.offset = hash_extent_data_ref(root_objectid,
1206 owner, offset);
1207 }
1208again:
1209 recow = 0;
1210 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1211 if (ret < 0) {
1212 err = ret;
1213 goto fail;
1214 }
31840ae1 1215
5d4f98a2
YZ
1216 if (parent) {
1217 if (!ret)
1218 return 0;
1219#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1220 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1221 btrfs_release_path(path);
5d4f98a2
YZ
1222 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1223 if (ret < 0) {
1224 err = ret;
1225 goto fail;
1226 }
1227 if (!ret)
1228 return 0;
1229#endif
1230 goto fail;
31840ae1
ZY
1231 }
1232
1233 leaf = path->nodes[0];
5d4f98a2
YZ
1234 nritems = btrfs_header_nritems(leaf);
1235 while (1) {
1236 if (path->slots[0] >= nritems) {
1237 ret = btrfs_next_leaf(root, path);
1238 if (ret < 0)
1239 err = ret;
1240 if (ret)
1241 goto fail;
1242
1243 leaf = path->nodes[0];
1244 nritems = btrfs_header_nritems(leaf);
1245 recow = 1;
1246 }
1247
1248 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1249 if (key.objectid != bytenr ||
1250 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1251 goto fail;
1252
1253 ref = btrfs_item_ptr(leaf, path->slots[0],
1254 struct btrfs_extent_data_ref);
1255
1256 if (match_extent_data_ref(leaf, ref, root_objectid,
1257 owner, offset)) {
1258 if (recow) {
b3b4aa74 1259 btrfs_release_path(path);
5d4f98a2
YZ
1260 goto again;
1261 }
1262 err = 0;
1263 break;
1264 }
1265 path->slots[0]++;
31840ae1 1266 }
5d4f98a2
YZ
1267fail:
1268 return err;
31840ae1
ZY
1269}
1270
5d4f98a2
YZ
1271static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1272 struct btrfs_root *root,
1273 struct btrfs_path *path,
1274 u64 bytenr, u64 parent,
1275 u64 root_objectid, u64 owner,
1276 u64 offset, int refs_to_add)
31840ae1
ZY
1277{
1278 struct btrfs_key key;
1279 struct extent_buffer *leaf;
5d4f98a2 1280 u32 size;
31840ae1
ZY
1281 u32 num_refs;
1282 int ret;
74493f7a 1283
74493f7a 1284 key.objectid = bytenr;
5d4f98a2
YZ
1285 if (parent) {
1286 key.type = BTRFS_SHARED_DATA_REF_KEY;
1287 key.offset = parent;
1288 size = sizeof(struct btrfs_shared_data_ref);
1289 } else {
1290 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1291 key.offset = hash_extent_data_ref(root_objectid,
1292 owner, offset);
1293 size = sizeof(struct btrfs_extent_data_ref);
1294 }
74493f7a 1295
5d4f98a2
YZ
1296 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1297 if (ret && ret != -EEXIST)
1298 goto fail;
1299
1300 leaf = path->nodes[0];
1301 if (parent) {
1302 struct btrfs_shared_data_ref *ref;
31840ae1 1303 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1304 struct btrfs_shared_data_ref);
1305 if (ret == 0) {
1306 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1307 } else {
1308 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1309 num_refs += refs_to_add;
1310 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1311 }
5d4f98a2
YZ
1312 } else {
1313 struct btrfs_extent_data_ref *ref;
1314 while (ret == -EEXIST) {
1315 ref = btrfs_item_ptr(leaf, path->slots[0],
1316 struct btrfs_extent_data_ref);
1317 if (match_extent_data_ref(leaf, ref, root_objectid,
1318 owner, offset))
1319 break;
b3b4aa74 1320 btrfs_release_path(path);
5d4f98a2
YZ
1321 key.offset++;
1322 ret = btrfs_insert_empty_item(trans, root, path, &key,
1323 size);
1324 if (ret && ret != -EEXIST)
1325 goto fail;
31840ae1 1326
5d4f98a2
YZ
1327 leaf = path->nodes[0];
1328 }
1329 ref = btrfs_item_ptr(leaf, path->slots[0],
1330 struct btrfs_extent_data_ref);
1331 if (ret == 0) {
1332 btrfs_set_extent_data_ref_root(leaf, ref,
1333 root_objectid);
1334 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1335 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1336 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1337 } else {
1338 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1339 num_refs += refs_to_add;
1340 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1341 }
31840ae1 1342 }
5d4f98a2
YZ
1343 btrfs_mark_buffer_dirty(leaf);
1344 ret = 0;
1345fail:
b3b4aa74 1346 btrfs_release_path(path);
7bb86316 1347 return ret;
74493f7a
CM
1348}
1349
5d4f98a2
YZ
1350static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1351 struct btrfs_root *root,
1352 struct btrfs_path *path,
fcebe456 1353 int refs_to_drop, int *last_ref)
31840ae1 1354{
5d4f98a2
YZ
1355 struct btrfs_key key;
1356 struct btrfs_extent_data_ref *ref1 = NULL;
1357 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1358 struct extent_buffer *leaf;
5d4f98a2 1359 u32 num_refs = 0;
31840ae1
ZY
1360 int ret = 0;
1361
1362 leaf = path->nodes[0];
5d4f98a2
YZ
1363 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1364
1365 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1366 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_extent_data_ref);
1368 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1369 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1370 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1371 struct btrfs_shared_data_ref);
1372 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1373#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1374 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1375 struct btrfs_extent_ref_v0 *ref0;
1376 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1377 struct btrfs_extent_ref_v0);
1378 num_refs = btrfs_ref_count_v0(leaf, ref0);
1379#endif
1380 } else {
1381 BUG();
1382 }
1383
56bec294
CM
1384 BUG_ON(num_refs < refs_to_drop);
1385 num_refs -= refs_to_drop;
5d4f98a2 1386
31840ae1
ZY
1387 if (num_refs == 0) {
1388 ret = btrfs_del_item(trans, root, path);
fcebe456 1389 *last_ref = 1;
31840ae1 1390 } else {
5d4f98a2
YZ
1391 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1392 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1393 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1394 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1395#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1396 else {
1397 struct btrfs_extent_ref_v0 *ref0;
1398 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1399 struct btrfs_extent_ref_v0);
1400 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1401 }
1402#endif
31840ae1
ZY
1403 btrfs_mark_buffer_dirty(leaf);
1404 }
31840ae1
ZY
1405 return ret;
1406}
1407
9ed0dea0 1408static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1409 struct btrfs_extent_inline_ref *iref)
15916de8 1410{
5d4f98a2
YZ
1411 struct btrfs_key key;
1412 struct extent_buffer *leaf;
1413 struct btrfs_extent_data_ref *ref1;
1414 struct btrfs_shared_data_ref *ref2;
1415 u32 num_refs = 0;
1416
1417 leaf = path->nodes[0];
1418 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1419 if (iref) {
1420 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1421 BTRFS_EXTENT_DATA_REF_KEY) {
1422 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1423 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1424 } else {
1425 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1426 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1427 }
1428 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1429 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1430 struct btrfs_extent_data_ref);
1431 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1432 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1433 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1434 struct btrfs_shared_data_ref);
1435 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1436#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1437 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1438 struct btrfs_extent_ref_v0 *ref0;
1439 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1440 struct btrfs_extent_ref_v0);
1441 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1442#endif
5d4f98a2
YZ
1443 } else {
1444 WARN_ON(1);
1445 }
1446 return num_refs;
1447}
15916de8 1448
5d4f98a2
YZ
1449static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1450 struct btrfs_root *root,
1451 struct btrfs_path *path,
1452 u64 bytenr, u64 parent,
1453 u64 root_objectid)
1f3c79a2 1454{
5d4f98a2 1455 struct btrfs_key key;
1f3c79a2 1456 int ret;
1f3c79a2 1457
5d4f98a2
YZ
1458 key.objectid = bytenr;
1459 if (parent) {
1460 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1461 key.offset = parent;
1462 } else {
1463 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1464 key.offset = root_objectid;
1f3c79a2
LH
1465 }
1466
5d4f98a2
YZ
1467 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1468 if (ret > 0)
1469 ret = -ENOENT;
1470#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1471 if (ret == -ENOENT && parent) {
b3b4aa74 1472 btrfs_release_path(path);
5d4f98a2
YZ
1473 key.type = BTRFS_EXTENT_REF_V0_KEY;
1474 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1475 if (ret > 0)
1476 ret = -ENOENT;
1477 }
1f3c79a2 1478#endif
5d4f98a2 1479 return ret;
1f3c79a2
LH
1480}
1481
5d4f98a2
YZ
1482static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1483 struct btrfs_root *root,
1484 struct btrfs_path *path,
1485 u64 bytenr, u64 parent,
1486 u64 root_objectid)
31840ae1 1487{
5d4f98a2 1488 struct btrfs_key key;
31840ae1 1489 int ret;
31840ae1 1490
5d4f98a2
YZ
1491 key.objectid = bytenr;
1492 if (parent) {
1493 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1494 key.offset = parent;
1495 } else {
1496 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1497 key.offset = root_objectid;
1498 }
1499
1500 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1501 btrfs_release_path(path);
31840ae1
ZY
1502 return ret;
1503}
1504
5d4f98a2 1505static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1506{
5d4f98a2
YZ
1507 int type;
1508 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 if (parent > 0)
1510 type = BTRFS_SHARED_BLOCK_REF_KEY;
1511 else
1512 type = BTRFS_TREE_BLOCK_REF_KEY;
1513 } else {
1514 if (parent > 0)
1515 type = BTRFS_SHARED_DATA_REF_KEY;
1516 else
1517 type = BTRFS_EXTENT_DATA_REF_KEY;
1518 }
1519 return type;
31840ae1 1520}
56bec294 1521
2c47e605
YZ
1522static int find_next_key(struct btrfs_path *path, int level,
1523 struct btrfs_key *key)
56bec294 1524
02217ed2 1525{
2c47e605 1526 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1527 if (!path->nodes[level])
1528 break;
5d4f98a2
YZ
1529 if (path->slots[level] + 1 >=
1530 btrfs_header_nritems(path->nodes[level]))
1531 continue;
1532 if (level == 0)
1533 btrfs_item_key_to_cpu(path->nodes[level], key,
1534 path->slots[level] + 1);
1535 else
1536 btrfs_node_key_to_cpu(path->nodes[level], key,
1537 path->slots[level] + 1);
1538 return 0;
1539 }
1540 return 1;
1541}
037e6390 1542
5d4f98a2
YZ
1543/*
1544 * look for inline back ref. if back ref is found, *ref_ret is set
1545 * to the address of inline back ref, and 0 is returned.
1546 *
1547 * if back ref isn't found, *ref_ret is set to the address where it
1548 * should be inserted, and -ENOENT is returned.
1549 *
1550 * if insert is true and there are too many inline back refs, the path
1551 * points to the extent item, and -EAGAIN is returned.
1552 *
1553 * NOTE: inline back refs are ordered in the same way that back ref
1554 * items in the tree are ordered.
1555 */
1556static noinline_for_stack
1557int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1558 struct btrfs_root *root,
1559 struct btrfs_path *path,
1560 struct btrfs_extent_inline_ref **ref_ret,
1561 u64 bytenr, u64 num_bytes,
1562 u64 parent, u64 root_objectid,
1563 u64 owner, u64 offset, int insert)
1564{
1565 struct btrfs_key key;
1566 struct extent_buffer *leaf;
1567 struct btrfs_extent_item *ei;
1568 struct btrfs_extent_inline_ref *iref;
1569 u64 flags;
1570 u64 item_size;
1571 unsigned long ptr;
1572 unsigned long end;
1573 int extra_size;
1574 int type;
1575 int want;
1576 int ret;
1577 int err = 0;
3173a18f
JB
1578 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1579 SKINNY_METADATA);
26b8003f 1580
db94535d 1581 key.objectid = bytenr;
31840ae1 1582 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1583 key.offset = num_bytes;
31840ae1 1584
5d4f98a2
YZ
1585 want = extent_ref_type(parent, owner);
1586 if (insert) {
1587 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1588 path->keep_locks = 1;
5d4f98a2
YZ
1589 } else
1590 extra_size = -1;
3173a18f
JB
1591
1592 /*
1593 * Owner is our parent level, so we can just add one to get the level
1594 * for the block we are interested in.
1595 */
1596 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1597 key.type = BTRFS_METADATA_ITEM_KEY;
1598 key.offset = owner;
1599 }
1600
1601again:
5d4f98a2 1602 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1603 if (ret < 0) {
5d4f98a2
YZ
1604 err = ret;
1605 goto out;
1606 }
3173a18f
JB
1607
1608 /*
1609 * We may be a newly converted file system which still has the old fat
1610 * extent entries for metadata, so try and see if we have one of those.
1611 */
1612 if (ret > 0 && skinny_metadata) {
1613 skinny_metadata = false;
1614 if (path->slots[0]) {
1615 path->slots[0]--;
1616 btrfs_item_key_to_cpu(path->nodes[0], &key,
1617 path->slots[0]);
1618 if (key.objectid == bytenr &&
1619 key.type == BTRFS_EXTENT_ITEM_KEY &&
1620 key.offset == num_bytes)
1621 ret = 0;
1622 }
1623 if (ret) {
9ce49a0b 1624 key.objectid = bytenr;
3173a18f
JB
1625 key.type = BTRFS_EXTENT_ITEM_KEY;
1626 key.offset = num_bytes;
1627 btrfs_release_path(path);
1628 goto again;
1629 }
1630 }
1631
79787eaa
JM
1632 if (ret && !insert) {
1633 err = -ENOENT;
1634 goto out;
fae7f21c 1635 } else if (WARN_ON(ret)) {
492104c8 1636 err = -EIO;
492104c8 1637 goto out;
79787eaa 1638 }
5d4f98a2
YZ
1639
1640 leaf = path->nodes[0];
1641 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1642#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1643 if (item_size < sizeof(*ei)) {
1644 if (!insert) {
1645 err = -ENOENT;
1646 goto out;
1647 }
1648 ret = convert_extent_item_v0(trans, root, path, owner,
1649 extra_size);
1650 if (ret < 0) {
1651 err = ret;
1652 goto out;
1653 }
1654 leaf = path->nodes[0];
1655 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1656 }
1657#endif
1658 BUG_ON(item_size < sizeof(*ei));
1659
5d4f98a2
YZ
1660 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1661 flags = btrfs_extent_flags(leaf, ei);
1662
1663 ptr = (unsigned long)(ei + 1);
1664 end = (unsigned long)ei + item_size;
1665
3173a18f 1666 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1667 ptr += sizeof(struct btrfs_tree_block_info);
1668 BUG_ON(ptr > end);
5d4f98a2
YZ
1669 }
1670
1671 err = -ENOENT;
1672 while (1) {
1673 if (ptr >= end) {
1674 WARN_ON(ptr > end);
1675 break;
1676 }
1677 iref = (struct btrfs_extent_inline_ref *)ptr;
1678 type = btrfs_extent_inline_ref_type(leaf, iref);
1679 if (want < type)
1680 break;
1681 if (want > type) {
1682 ptr += btrfs_extent_inline_ref_size(type);
1683 continue;
1684 }
1685
1686 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1687 struct btrfs_extent_data_ref *dref;
1688 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1689 if (match_extent_data_ref(leaf, dref, root_objectid,
1690 owner, offset)) {
1691 err = 0;
1692 break;
1693 }
1694 if (hash_extent_data_ref_item(leaf, dref) <
1695 hash_extent_data_ref(root_objectid, owner, offset))
1696 break;
1697 } else {
1698 u64 ref_offset;
1699 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1700 if (parent > 0) {
1701 if (parent == ref_offset) {
1702 err = 0;
1703 break;
1704 }
1705 if (ref_offset < parent)
1706 break;
1707 } else {
1708 if (root_objectid == ref_offset) {
1709 err = 0;
1710 break;
1711 }
1712 if (ref_offset < root_objectid)
1713 break;
1714 }
1715 }
1716 ptr += btrfs_extent_inline_ref_size(type);
1717 }
1718 if (err == -ENOENT && insert) {
1719 if (item_size + extra_size >=
1720 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1721 err = -EAGAIN;
1722 goto out;
1723 }
1724 /*
1725 * To add new inline back ref, we have to make sure
1726 * there is no corresponding back ref item.
1727 * For simplicity, we just do not add new inline back
1728 * ref if there is any kind of item for this block
1729 */
2c47e605
YZ
1730 if (find_next_key(path, 0, &key) == 0 &&
1731 key.objectid == bytenr &&
85d4198e 1732 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1733 err = -EAGAIN;
1734 goto out;
1735 }
1736 }
1737 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1738out:
85d4198e 1739 if (insert) {
5d4f98a2
YZ
1740 path->keep_locks = 0;
1741 btrfs_unlock_up_safe(path, 1);
1742 }
1743 return err;
1744}
1745
1746/*
1747 * helper to add new inline back ref
1748 */
1749static noinline_for_stack
fd279fae 1750void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1751 struct btrfs_path *path,
1752 struct btrfs_extent_inline_ref *iref,
1753 u64 parent, u64 root_objectid,
1754 u64 owner, u64 offset, int refs_to_add,
1755 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1756{
1757 struct extent_buffer *leaf;
1758 struct btrfs_extent_item *ei;
1759 unsigned long ptr;
1760 unsigned long end;
1761 unsigned long item_offset;
1762 u64 refs;
1763 int size;
1764 int type;
5d4f98a2
YZ
1765
1766 leaf = path->nodes[0];
1767 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1768 item_offset = (unsigned long)iref - (unsigned long)ei;
1769
1770 type = extent_ref_type(parent, owner);
1771 size = btrfs_extent_inline_ref_size(type);
1772
4b90c680 1773 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1774
1775 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 refs = btrfs_extent_refs(leaf, ei);
1777 refs += refs_to_add;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 ptr = (unsigned long)ei + item_offset;
1783 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1784 if (ptr < end - size)
1785 memmove_extent_buffer(leaf, ptr + size, ptr,
1786 end - size - ptr);
1787
1788 iref = (struct btrfs_extent_inline_ref *)ptr;
1789 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 struct btrfs_extent_data_ref *dref;
1792 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1793 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1794 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1795 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1796 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1797 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1798 struct btrfs_shared_data_ref *sref;
1799 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1800 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1801 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1802 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1803 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1804 } else {
1805 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1806 }
1807 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1808}
1809
1810static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1811 struct btrfs_root *root,
1812 struct btrfs_path *path,
1813 struct btrfs_extent_inline_ref **ref_ret,
1814 u64 bytenr, u64 num_bytes, u64 parent,
1815 u64 root_objectid, u64 owner, u64 offset)
1816{
1817 int ret;
1818
1819 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1820 bytenr, num_bytes, parent,
1821 root_objectid, owner, offset, 0);
1822 if (ret != -ENOENT)
54aa1f4d 1823 return ret;
5d4f98a2 1824
b3b4aa74 1825 btrfs_release_path(path);
5d4f98a2
YZ
1826 *ref_ret = NULL;
1827
1828 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1829 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1830 root_objectid);
1831 } else {
1832 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1833 root_objectid, owner, offset);
b9473439 1834 }
5d4f98a2
YZ
1835 return ret;
1836}
31840ae1 1837
5d4f98a2
YZ
1838/*
1839 * helper to update/remove inline back ref
1840 */
1841static noinline_for_stack
afe5fea7 1842void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1843 struct btrfs_path *path,
1844 struct btrfs_extent_inline_ref *iref,
1845 int refs_to_mod,
fcebe456
JB
1846 struct btrfs_delayed_extent_op *extent_op,
1847 int *last_ref)
5d4f98a2
YZ
1848{
1849 struct extent_buffer *leaf;
1850 struct btrfs_extent_item *ei;
1851 struct btrfs_extent_data_ref *dref = NULL;
1852 struct btrfs_shared_data_ref *sref = NULL;
1853 unsigned long ptr;
1854 unsigned long end;
1855 u32 item_size;
1856 int size;
1857 int type;
5d4f98a2
YZ
1858 u64 refs;
1859
1860 leaf = path->nodes[0];
1861 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1862 refs = btrfs_extent_refs(leaf, ei);
1863 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1864 refs += refs_to_mod;
1865 btrfs_set_extent_refs(leaf, ei, refs);
1866 if (extent_op)
1867 __run_delayed_extent_op(extent_op, leaf, ei);
1868
1869 type = btrfs_extent_inline_ref_type(leaf, iref);
1870
1871 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1872 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1873 refs = btrfs_extent_data_ref_count(leaf, dref);
1874 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1875 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1876 refs = btrfs_shared_data_ref_count(leaf, sref);
1877 } else {
1878 refs = 1;
1879 BUG_ON(refs_to_mod != -1);
56bec294 1880 }
31840ae1 1881
5d4f98a2
YZ
1882 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1883 refs += refs_to_mod;
1884
1885 if (refs > 0) {
1886 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1887 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1888 else
1889 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1890 } else {
fcebe456 1891 *last_ref = 1;
5d4f98a2
YZ
1892 size = btrfs_extent_inline_ref_size(type);
1893 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1894 ptr = (unsigned long)iref;
1895 end = (unsigned long)ei + item_size;
1896 if (ptr + size < end)
1897 memmove_extent_buffer(leaf, ptr, ptr + size,
1898 end - ptr - size);
1899 item_size -= size;
afe5fea7 1900 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1901 }
1902 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1903}
1904
1905static noinline_for_stack
1906int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1907 struct btrfs_root *root,
1908 struct btrfs_path *path,
1909 u64 bytenr, u64 num_bytes, u64 parent,
1910 u64 root_objectid, u64 owner,
1911 u64 offset, int refs_to_add,
1912 struct btrfs_delayed_extent_op *extent_op)
1913{
1914 struct btrfs_extent_inline_ref *iref;
1915 int ret;
1916
1917 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1918 bytenr, num_bytes, parent,
1919 root_objectid, owner, offset, 1);
1920 if (ret == 0) {
1921 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1922 update_inline_extent_backref(root, path, iref,
fcebe456 1923 refs_to_add, extent_op, NULL);
5d4f98a2 1924 } else if (ret == -ENOENT) {
fd279fae 1925 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1926 root_objectid, owner, offset,
1927 refs_to_add, extent_op);
1928 ret = 0;
771ed689 1929 }
5d4f98a2
YZ
1930 return ret;
1931}
31840ae1 1932
5d4f98a2
YZ
1933static int insert_extent_backref(struct btrfs_trans_handle *trans,
1934 struct btrfs_root *root,
1935 struct btrfs_path *path,
1936 u64 bytenr, u64 parent, u64 root_objectid,
1937 u64 owner, u64 offset, int refs_to_add)
1938{
1939 int ret;
1940 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1941 BUG_ON(refs_to_add != 1);
1942 ret = insert_tree_block_ref(trans, root, path, bytenr,
1943 parent, root_objectid);
1944 } else {
1945 ret = insert_extent_data_ref(trans, root, path, bytenr,
1946 parent, root_objectid,
1947 owner, offset, refs_to_add);
1948 }
1949 return ret;
1950}
56bec294 1951
5d4f98a2
YZ
1952static int remove_extent_backref(struct btrfs_trans_handle *trans,
1953 struct btrfs_root *root,
1954 struct btrfs_path *path,
1955 struct btrfs_extent_inline_ref *iref,
fcebe456 1956 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1957{
143bede5 1958 int ret = 0;
b9473439 1959
5d4f98a2
YZ
1960 BUG_ON(!is_data && refs_to_drop != 1);
1961 if (iref) {
afe5fea7 1962 update_inline_extent_backref(root, path, iref,
fcebe456 1963 -refs_to_drop, NULL, last_ref);
5d4f98a2 1964 } else if (is_data) {
fcebe456
JB
1965 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1966 last_ref);
5d4f98a2 1967 } else {
fcebe456 1968 *last_ref = 1;
5d4f98a2
YZ
1969 ret = btrfs_del_item(trans, root, path);
1970 }
1971 return ret;
1972}
1973
86557861 1974#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1975static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1976 u64 *discarded_bytes)
5d4f98a2 1977{
86557861
JM
1978 int j, ret = 0;
1979 u64 bytes_left, end;
4d89d377 1980 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1981
4d89d377
JM
1982 if (WARN_ON(start != aligned_start)) {
1983 len -= aligned_start - start;
1984 len = round_down(len, 1 << 9);
1985 start = aligned_start;
1986 }
d04c6b88 1987
4d89d377 1988 *discarded_bytes = 0;
86557861
JM
1989
1990 if (!len)
1991 return 0;
1992
1993 end = start + len;
1994 bytes_left = len;
1995
1996 /* Skip any superblocks on this device. */
1997 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1998 u64 sb_start = btrfs_sb_offset(j);
1999 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2000 u64 size = sb_start - start;
2001
2002 if (!in_range(sb_start, start, bytes_left) &&
2003 !in_range(sb_end, start, bytes_left) &&
2004 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2005 continue;
2006
2007 /*
2008 * Superblock spans beginning of range. Adjust start and
2009 * try again.
2010 */
2011 if (sb_start <= start) {
2012 start += sb_end - start;
2013 if (start > end) {
2014 bytes_left = 0;
2015 break;
2016 }
2017 bytes_left = end - start;
2018 continue;
2019 }
2020
2021 if (size) {
2022 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2023 GFP_NOFS, 0);
2024 if (!ret)
2025 *discarded_bytes += size;
2026 else if (ret != -EOPNOTSUPP)
2027 return ret;
2028 }
2029
2030 start = sb_end;
2031 if (start > end) {
2032 bytes_left = 0;
2033 break;
2034 }
2035 bytes_left = end - start;
2036 }
2037
2038 if (bytes_left) {
2039 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2040 GFP_NOFS, 0);
2041 if (!ret)
86557861 2042 *discarded_bytes += bytes_left;
4d89d377 2043 }
d04c6b88 2044 return ret;
5d4f98a2 2045}
5d4f98a2 2046
1edb647b
FM
2047int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2048 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2049{
5d4f98a2 2050 int ret;
5378e607 2051 u64 discarded_bytes = 0;
a1d3c478 2052 struct btrfs_bio *bbio = NULL;
5d4f98a2 2053
e244a0ae 2054
2999241d
FM
2055 /*
2056 * Avoid races with device replace and make sure our bbio has devices
2057 * associated to its stripes that don't go away while we are discarding.
2058 */
2059 btrfs_bio_counter_inc_blocked(root->fs_info);
5d4f98a2 2060 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 2061 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 2062 bytenr, &num_bytes, &bbio, 0);
79787eaa 2063 /* Error condition is -ENOMEM */
5d4f98a2 2064 if (!ret) {
a1d3c478 2065 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2066 int i;
2067
5d4f98a2 2068
a1d3c478 2069 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2070 u64 bytes;
d5e2003c
JB
2071 if (!stripe->dev->can_discard)
2072 continue;
2073
5378e607
LD
2074 ret = btrfs_issue_discard(stripe->dev->bdev,
2075 stripe->physical,
d04c6b88
JM
2076 stripe->length,
2077 &bytes);
5378e607 2078 if (!ret)
d04c6b88 2079 discarded_bytes += bytes;
5378e607 2080 else if (ret != -EOPNOTSUPP)
79787eaa 2081 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2082
2083 /*
2084 * Just in case we get back EOPNOTSUPP for some reason,
2085 * just ignore the return value so we don't screw up
2086 * people calling discard_extent.
2087 */
2088 ret = 0;
5d4f98a2 2089 }
6e9606d2 2090 btrfs_put_bbio(bbio);
5d4f98a2 2091 }
2999241d 2092 btrfs_bio_counter_dec(root->fs_info);
5378e607
LD
2093
2094 if (actual_bytes)
2095 *actual_bytes = discarded_bytes;
2096
5d4f98a2 2097
53b381b3
DW
2098 if (ret == -EOPNOTSUPP)
2099 ret = 0;
5d4f98a2 2100 return ret;
5d4f98a2
YZ
2101}
2102
79787eaa 2103/* Can return -ENOMEM */
5d4f98a2
YZ
2104int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2105 struct btrfs_root *root,
2106 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2107 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2108{
2109 int ret;
66d7e7f0
AJ
2110 struct btrfs_fs_info *fs_info = root->fs_info;
2111
5d4f98a2
YZ
2112 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2113 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2114
2115 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2116 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2117 num_bytes,
5d4f98a2 2118 parent, root_objectid, (int)owner,
b06c4bf5 2119 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2 2120 } else {
66d7e7f0 2121 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5846a3c2
QW
2122 num_bytes, parent, root_objectid,
2123 owner, offset, 0,
b06c4bf5 2124 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2
YZ
2125 }
2126 return ret;
2127}
2128
2129static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2130 struct btrfs_root *root,
c682f9b3 2131 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2132 u64 parent, u64 root_objectid,
2133 u64 owner, u64 offset, int refs_to_add,
2134 struct btrfs_delayed_extent_op *extent_op)
2135{
fcebe456 2136 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2137 struct btrfs_path *path;
2138 struct extent_buffer *leaf;
2139 struct btrfs_extent_item *item;
fcebe456 2140 struct btrfs_key key;
c682f9b3
QW
2141 u64 bytenr = node->bytenr;
2142 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2143 u64 refs;
2144 int ret;
5d4f98a2
YZ
2145
2146 path = btrfs_alloc_path();
2147 if (!path)
2148 return -ENOMEM;
2149
e4058b54 2150 path->reada = READA_FORWARD;
5d4f98a2
YZ
2151 path->leave_spinning = 1;
2152 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2153 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2154 bytenr, num_bytes, parent,
5d4f98a2
YZ
2155 root_objectid, owner, offset,
2156 refs_to_add, extent_op);
0ed4792a 2157 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2158 goto out;
fcebe456
JB
2159
2160 /*
2161 * Ok we had -EAGAIN which means we didn't have space to insert and
2162 * inline extent ref, so just update the reference count and add a
2163 * normal backref.
2164 */
5d4f98a2 2165 leaf = path->nodes[0];
fcebe456 2166 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2167 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2168 refs = btrfs_extent_refs(leaf, item);
2169 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2170 if (extent_op)
2171 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2172
5d4f98a2 2173 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2174 btrfs_release_path(path);
56bec294 2175
e4058b54 2176 path->reada = READA_FORWARD;
b9473439 2177 path->leave_spinning = 1;
56bec294
CM
2178 /* now insert the actual backref */
2179 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2180 path, bytenr, parent, root_objectid,
2181 owner, offset, refs_to_add);
79787eaa
JM
2182 if (ret)
2183 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2184out:
56bec294 2185 btrfs_free_path(path);
30d133fc 2186 return ret;
56bec294
CM
2187}
2188
5d4f98a2
YZ
2189static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2190 struct btrfs_root *root,
2191 struct btrfs_delayed_ref_node *node,
2192 struct btrfs_delayed_extent_op *extent_op,
2193 int insert_reserved)
56bec294 2194{
5d4f98a2
YZ
2195 int ret = 0;
2196 struct btrfs_delayed_data_ref *ref;
2197 struct btrfs_key ins;
2198 u64 parent = 0;
2199 u64 ref_root = 0;
2200 u64 flags = 0;
2201
2202 ins.objectid = node->bytenr;
2203 ins.offset = node->num_bytes;
2204 ins.type = BTRFS_EXTENT_ITEM_KEY;
2205
2206 ref = btrfs_delayed_node_to_data_ref(node);
bc074524 2207 trace_run_delayed_data_ref(root->fs_info, node, ref, node->action);
599c75ec 2208
5d4f98a2
YZ
2209 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2210 parent = ref->parent;
fcebe456 2211 ref_root = ref->root;
5d4f98a2
YZ
2212
2213 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2214 if (extent_op)
5d4f98a2 2215 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2216 ret = alloc_reserved_file_extent(trans, root,
2217 parent, ref_root, flags,
2218 ref->objectid, ref->offset,
2219 &ins, node->ref_mod);
5d4f98a2 2220 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2221 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2222 ref_root, ref->objectid,
2223 ref->offset, node->ref_mod,
c682f9b3 2224 extent_op);
5d4f98a2 2225 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2226 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2227 ref_root, ref->objectid,
2228 ref->offset, node->ref_mod,
c682f9b3 2229 extent_op);
5d4f98a2
YZ
2230 } else {
2231 BUG();
2232 }
2233 return ret;
2234}
2235
2236static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2237 struct extent_buffer *leaf,
2238 struct btrfs_extent_item *ei)
2239{
2240 u64 flags = btrfs_extent_flags(leaf, ei);
2241 if (extent_op->update_flags) {
2242 flags |= extent_op->flags_to_set;
2243 btrfs_set_extent_flags(leaf, ei, flags);
2244 }
2245
2246 if (extent_op->update_key) {
2247 struct btrfs_tree_block_info *bi;
2248 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2249 bi = (struct btrfs_tree_block_info *)(ei + 1);
2250 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2251 }
2252}
2253
2254static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2255 struct btrfs_root *root,
2256 struct btrfs_delayed_ref_node *node,
2257 struct btrfs_delayed_extent_op *extent_op)
2258{
2259 struct btrfs_key key;
2260 struct btrfs_path *path;
2261 struct btrfs_extent_item *ei;
2262 struct extent_buffer *leaf;
2263 u32 item_size;
56bec294 2264 int ret;
5d4f98a2 2265 int err = 0;
b1c79e09 2266 int metadata = !extent_op->is_data;
5d4f98a2 2267
79787eaa
JM
2268 if (trans->aborted)
2269 return 0;
2270
3173a18f
JB
2271 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2272 metadata = 0;
2273
5d4f98a2
YZ
2274 path = btrfs_alloc_path();
2275 if (!path)
2276 return -ENOMEM;
2277
2278 key.objectid = node->bytenr;
5d4f98a2 2279
3173a18f 2280 if (metadata) {
3173a18f 2281 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2282 key.offset = extent_op->level;
3173a18f
JB
2283 } else {
2284 key.type = BTRFS_EXTENT_ITEM_KEY;
2285 key.offset = node->num_bytes;
2286 }
2287
2288again:
e4058b54 2289 path->reada = READA_FORWARD;
5d4f98a2
YZ
2290 path->leave_spinning = 1;
2291 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2292 path, 0, 1);
2293 if (ret < 0) {
2294 err = ret;
2295 goto out;
2296 }
2297 if (ret > 0) {
3173a18f 2298 if (metadata) {
55994887
FDBM
2299 if (path->slots[0] > 0) {
2300 path->slots[0]--;
2301 btrfs_item_key_to_cpu(path->nodes[0], &key,
2302 path->slots[0]);
2303 if (key.objectid == node->bytenr &&
2304 key.type == BTRFS_EXTENT_ITEM_KEY &&
2305 key.offset == node->num_bytes)
2306 ret = 0;
2307 }
2308 if (ret > 0) {
2309 btrfs_release_path(path);
2310 metadata = 0;
3173a18f 2311
55994887
FDBM
2312 key.objectid = node->bytenr;
2313 key.offset = node->num_bytes;
2314 key.type = BTRFS_EXTENT_ITEM_KEY;
2315 goto again;
2316 }
2317 } else {
2318 err = -EIO;
2319 goto out;
3173a18f 2320 }
5d4f98a2
YZ
2321 }
2322
2323 leaf = path->nodes[0];
2324 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2325#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2326 if (item_size < sizeof(*ei)) {
2327 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2328 path, (u64)-1, 0);
2329 if (ret < 0) {
2330 err = ret;
2331 goto out;
2332 }
2333 leaf = path->nodes[0];
2334 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2335 }
2336#endif
2337 BUG_ON(item_size < sizeof(*ei));
2338 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2339 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2340
5d4f98a2
YZ
2341 btrfs_mark_buffer_dirty(leaf);
2342out:
2343 btrfs_free_path(path);
2344 return err;
56bec294
CM
2345}
2346
5d4f98a2
YZ
2347static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2348 struct btrfs_root *root,
2349 struct btrfs_delayed_ref_node *node,
2350 struct btrfs_delayed_extent_op *extent_op,
2351 int insert_reserved)
56bec294
CM
2352{
2353 int ret = 0;
5d4f98a2
YZ
2354 struct btrfs_delayed_tree_ref *ref;
2355 struct btrfs_key ins;
2356 u64 parent = 0;
2357 u64 ref_root = 0;
3173a18f
JB
2358 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2359 SKINNY_METADATA);
56bec294 2360
5d4f98a2 2361 ref = btrfs_delayed_node_to_tree_ref(node);
bc074524 2362 trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action);
599c75ec 2363
5d4f98a2
YZ
2364 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2365 parent = ref->parent;
fcebe456 2366 ref_root = ref->root;
5d4f98a2 2367
3173a18f
JB
2368 ins.objectid = node->bytenr;
2369 if (skinny_metadata) {
2370 ins.offset = ref->level;
2371 ins.type = BTRFS_METADATA_ITEM_KEY;
2372 } else {
2373 ins.offset = node->num_bytes;
2374 ins.type = BTRFS_EXTENT_ITEM_KEY;
2375 }
2376
5d4f98a2
YZ
2377 BUG_ON(node->ref_mod != 1);
2378 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2379 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2380 ret = alloc_reserved_tree_block(trans, root,
2381 parent, ref_root,
2382 extent_op->flags_to_set,
2383 &extent_op->key,
b06c4bf5 2384 ref->level, &ins);
5d4f98a2 2385 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2386 ret = __btrfs_inc_extent_ref(trans, root, node,
2387 parent, ref_root,
2388 ref->level, 0, 1,
fcebe456 2389 extent_op);
5d4f98a2 2390 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2391 ret = __btrfs_free_extent(trans, root, node,
2392 parent, ref_root,
2393 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2394 } else {
2395 BUG();
2396 }
56bec294
CM
2397 return ret;
2398}
2399
2400/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2401static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2402 struct btrfs_root *root,
2403 struct btrfs_delayed_ref_node *node,
2404 struct btrfs_delayed_extent_op *extent_op,
2405 int insert_reserved)
56bec294 2406{
79787eaa
JM
2407 int ret = 0;
2408
857cc2fc
JB
2409 if (trans->aborted) {
2410 if (insert_reserved)
2411 btrfs_pin_extent(root, node->bytenr,
2412 node->num_bytes, 1);
79787eaa 2413 return 0;
857cc2fc 2414 }
79787eaa 2415
5d4f98a2 2416 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2417 struct btrfs_delayed_ref_head *head;
2418 /*
2419 * we've hit the end of the chain and we were supposed
2420 * to insert this extent into the tree. But, it got
2421 * deleted before we ever needed to insert it, so all
2422 * we have to do is clean up the accounting
2423 */
5d4f98a2
YZ
2424 BUG_ON(extent_op);
2425 head = btrfs_delayed_node_to_head(node);
bc074524
JM
2426 trace_run_delayed_ref_head(root->fs_info, node, head,
2427 node->action);
599c75ec 2428
56bec294 2429 if (insert_reserved) {
f0486c68
YZ
2430 btrfs_pin_extent(root, node->bytenr,
2431 node->num_bytes, 1);
5d4f98a2
YZ
2432 if (head->is_data) {
2433 ret = btrfs_del_csums(trans, root,
2434 node->bytenr,
2435 node->num_bytes);
5d4f98a2 2436 }
56bec294 2437 }
297d750b
QW
2438
2439 /* Also free its reserved qgroup space */
2440 btrfs_qgroup_free_delayed_ref(root->fs_info,
2441 head->qgroup_ref_root,
2442 head->qgroup_reserved);
79787eaa 2443 return ret;
56bec294
CM
2444 }
2445
5d4f98a2
YZ
2446 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2447 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2448 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2449 insert_reserved);
2450 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2451 node->type == BTRFS_SHARED_DATA_REF_KEY)
2452 ret = run_delayed_data_ref(trans, root, node, extent_op,
2453 insert_reserved);
2454 else
2455 BUG();
2456 return ret;
56bec294
CM
2457}
2458
c6fc2454 2459static inline struct btrfs_delayed_ref_node *
56bec294
CM
2460select_delayed_ref(struct btrfs_delayed_ref_head *head)
2461{
cffc3374
FM
2462 struct btrfs_delayed_ref_node *ref;
2463
c6fc2454
QW
2464 if (list_empty(&head->ref_list))
2465 return NULL;
d7df2c79 2466
cffc3374
FM
2467 /*
2468 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2469 * This is to prevent a ref count from going down to zero, which deletes
2470 * the extent item from the extent tree, when there still are references
2471 * to add, which would fail because they would not find the extent item.
2472 */
2473 list_for_each_entry(ref, &head->ref_list, list) {
2474 if (ref->action == BTRFS_ADD_DELAYED_REF)
2475 return ref;
2476 }
2477
c6fc2454
QW
2478 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2479 list);
56bec294
CM
2480}
2481
79787eaa
JM
2482/*
2483 * Returns 0 on success or if called with an already aborted transaction.
2484 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2485 */
d7df2c79
JB
2486static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2487 struct btrfs_root *root,
2488 unsigned long nr)
56bec294 2489{
56bec294
CM
2490 struct btrfs_delayed_ref_root *delayed_refs;
2491 struct btrfs_delayed_ref_node *ref;
2492 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2493 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2494 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2495 ktime_t start = ktime_get();
56bec294 2496 int ret;
d7df2c79 2497 unsigned long count = 0;
0a2b2a84 2498 unsigned long actual_count = 0;
56bec294 2499 int must_insert_reserved = 0;
56bec294
CM
2500
2501 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2502 while (1) {
2503 if (!locked_ref) {
d7df2c79 2504 if (count >= nr)
56bec294 2505 break;
56bec294 2506
d7df2c79
JB
2507 spin_lock(&delayed_refs->lock);
2508 locked_ref = btrfs_select_ref_head(trans);
2509 if (!locked_ref) {
2510 spin_unlock(&delayed_refs->lock);
2511 break;
2512 }
c3e69d58
CM
2513
2514 /* grab the lock that says we are going to process
2515 * all the refs for this head */
2516 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2517 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2518 /*
2519 * we may have dropped the spin lock to get the head
2520 * mutex lock, and that might have given someone else
2521 * time to free the head. If that's true, it has been
2522 * removed from our list and we can move on.
2523 */
2524 if (ret == -EAGAIN) {
2525 locked_ref = NULL;
2526 count++;
2527 continue;
56bec294
CM
2528 }
2529 }
a28ec197 2530
2c3cf7d5
FM
2531 /*
2532 * We need to try and merge add/drops of the same ref since we
2533 * can run into issues with relocate dropping the implicit ref
2534 * and then it being added back again before the drop can
2535 * finish. If we merged anything we need to re-loop so we can
2536 * get a good ref.
2537 * Or we can get node references of the same type that weren't
2538 * merged when created due to bumps in the tree mod seq, and
2539 * we need to merge them to prevent adding an inline extent
2540 * backref before dropping it (triggering a BUG_ON at
2541 * insert_inline_extent_backref()).
2542 */
d7df2c79 2543 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2544 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2545 locked_ref);
ae1e206b 2546
d1270cd9
AJ
2547 /*
2548 * locked_ref is the head node, so we have to go one
2549 * node back for any delayed ref updates
2550 */
2551 ref = select_delayed_ref(locked_ref);
2552
2553 if (ref && ref->seq &&
097b8a7c 2554 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2555 spin_unlock(&locked_ref->lock);
093486c4 2556 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2557 spin_lock(&delayed_refs->lock);
2558 locked_ref->processing = 0;
d1270cd9
AJ
2559 delayed_refs->num_heads_ready++;
2560 spin_unlock(&delayed_refs->lock);
d7df2c79 2561 locked_ref = NULL;
d1270cd9 2562 cond_resched();
27a377db 2563 count++;
d1270cd9
AJ
2564 continue;
2565 }
2566
56bec294
CM
2567 /*
2568 * record the must insert reserved flag before we
2569 * drop the spin lock.
2570 */
2571 must_insert_reserved = locked_ref->must_insert_reserved;
2572 locked_ref->must_insert_reserved = 0;
7bb86316 2573
5d4f98a2
YZ
2574 extent_op = locked_ref->extent_op;
2575 locked_ref->extent_op = NULL;
2576
56bec294 2577 if (!ref) {
d7df2c79
JB
2578
2579
56bec294
CM
2580 /* All delayed refs have been processed, Go ahead
2581 * and send the head node to run_one_delayed_ref,
2582 * so that any accounting fixes can happen
2583 */
2584 ref = &locked_ref->node;
5d4f98a2
YZ
2585
2586 if (extent_op && must_insert_reserved) {
78a6184a 2587 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2588 extent_op = NULL;
2589 }
2590
2591 if (extent_op) {
d7df2c79 2592 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2593 ret = run_delayed_extent_op(trans, root,
2594 ref, extent_op);
78a6184a 2595 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2596
79787eaa 2597 if (ret) {
857cc2fc
JB
2598 /*
2599 * Need to reset must_insert_reserved if
2600 * there was an error so the abort stuff
2601 * can cleanup the reserved space
2602 * properly.
2603 */
2604 if (must_insert_reserved)
2605 locked_ref->must_insert_reserved = 1;
d7df2c79 2606 locked_ref->processing = 0;
c2cf52eb 2607 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2608 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2609 return ret;
2610 }
d7df2c79 2611 continue;
5d4f98a2 2612 }
02217ed2 2613
d7df2c79 2614 /*
01327610 2615 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2616 * delayed ref lock and then re-check to make sure
2617 * nobody got added.
2618 */
2619 spin_unlock(&locked_ref->lock);
2620 spin_lock(&delayed_refs->lock);
2621 spin_lock(&locked_ref->lock);
c6fc2454 2622 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2623 locked_ref->extent_op) {
d7df2c79
JB
2624 spin_unlock(&locked_ref->lock);
2625 spin_unlock(&delayed_refs->lock);
2626 continue;
2627 }
2628 ref->in_tree = 0;
2629 delayed_refs->num_heads--;
c46effa6
LB
2630 rb_erase(&locked_ref->href_node,
2631 &delayed_refs->href_root);
d7df2c79
JB
2632 spin_unlock(&delayed_refs->lock);
2633 } else {
0a2b2a84 2634 actual_count++;
d7df2c79 2635 ref->in_tree = 0;
c6fc2454 2636 list_del(&ref->list);
c46effa6 2637 }
d7df2c79
JB
2638 atomic_dec(&delayed_refs->num_entries);
2639
093486c4 2640 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2641 /*
2642 * when we play the delayed ref, also correct the
2643 * ref_mod on head
2644 */
2645 switch (ref->action) {
2646 case BTRFS_ADD_DELAYED_REF:
2647 case BTRFS_ADD_DELAYED_EXTENT:
2648 locked_ref->node.ref_mod -= ref->ref_mod;
2649 break;
2650 case BTRFS_DROP_DELAYED_REF:
2651 locked_ref->node.ref_mod += ref->ref_mod;
2652 break;
2653 default:
2654 WARN_ON(1);
2655 }
2656 }
d7df2c79 2657 spin_unlock(&locked_ref->lock);
925baedd 2658
5d4f98a2 2659 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2660 must_insert_reserved);
eb099670 2661
78a6184a 2662 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2663 if (ret) {
d7df2c79 2664 locked_ref->processing = 0;
093486c4
MX
2665 btrfs_delayed_ref_unlock(locked_ref);
2666 btrfs_put_delayed_ref(ref);
c2cf52eb 2667 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2668 return ret;
2669 }
2670
093486c4
MX
2671 /*
2672 * If this node is a head, that means all the refs in this head
2673 * have been dealt with, and we will pick the next head to deal
2674 * with, so we must unlock the head and drop it from the cluster
2675 * list before we release it.
2676 */
2677 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2678 if (locked_ref->is_data &&
2679 locked_ref->total_ref_mod < 0) {
2680 spin_lock(&delayed_refs->lock);
2681 delayed_refs->pending_csums -= ref->num_bytes;
2682 spin_unlock(&delayed_refs->lock);
2683 }
093486c4
MX
2684 btrfs_delayed_ref_unlock(locked_ref);
2685 locked_ref = NULL;
2686 }
2687 btrfs_put_delayed_ref(ref);
2688 count++;
c3e69d58 2689 cond_resched();
c3e69d58 2690 }
0a2b2a84
JB
2691
2692 /*
2693 * We don't want to include ref heads since we can have empty ref heads
2694 * and those will drastically skew our runtime down since we just do
2695 * accounting, no actual extent tree updates.
2696 */
2697 if (actual_count > 0) {
2698 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2699 u64 avg;
2700
2701 /*
2702 * We weigh the current average higher than our current runtime
2703 * to avoid large swings in the average.
2704 */
2705 spin_lock(&delayed_refs->lock);
2706 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2707 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2708 spin_unlock(&delayed_refs->lock);
2709 }
d7df2c79 2710 return 0;
c3e69d58
CM
2711}
2712
709c0486
AJ
2713#ifdef SCRAMBLE_DELAYED_REFS
2714/*
2715 * Normally delayed refs get processed in ascending bytenr order. This
2716 * correlates in most cases to the order added. To expose dependencies on this
2717 * order, we start to process the tree in the middle instead of the beginning
2718 */
2719static u64 find_middle(struct rb_root *root)
2720{
2721 struct rb_node *n = root->rb_node;
2722 struct btrfs_delayed_ref_node *entry;
2723 int alt = 1;
2724 u64 middle;
2725 u64 first = 0, last = 0;
2726
2727 n = rb_first(root);
2728 if (n) {
2729 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 first = entry->bytenr;
2731 }
2732 n = rb_last(root);
2733 if (n) {
2734 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2735 last = entry->bytenr;
2736 }
2737 n = root->rb_node;
2738
2739 while (n) {
2740 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2741 WARN_ON(!entry->in_tree);
2742
2743 middle = entry->bytenr;
2744
2745 if (alt)
2746 n = n->rb_left;
2747 else
2748 n = n->rb_right;
2749
2750 alt = 1 - alt;
2751 }
2752 return middle;
2753}
2754#endif
2755
1be41b78
JB
2756static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2757{
2758 u64 num_bytes;
2759
2760 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2761 sizeof(struct btrfs_extent_inline_ref));
2762 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2763 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2764
2765 /*
2766 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2767 * closer to what we're really going to want to use.
1be41b78 2768 */
f8c269d7 2769 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2770}
2771
1262133b
JB
2772/*
2773 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2774 * would require to store the csums for that many bytes.
2775 */
28f75a0e 2776u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2777{
2778 u64 csum_size;
2779 u64 num_csums_per_leaf;
2780 u64 num_csums;
2781
14a1e067 2782 csum_size = BTRFS_MAX_ITEM_SIZE(root);
1262133b
JB
2783 num_csums_per_leaf = div64_u64(csum_size,
2784 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2785 num_csums = div64_u64(csum_bytes, root->sectorsize);
2786 num_csums += num_csums_per_leaf - 1;
2787 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2788 return num_csums;
2789}
2790
0a2b2a84 2791int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2792 struct btrfs_root *root)
2793{
2794 struct btrfs_block_rsv *global_rsv;
2795 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2796 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2797 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2798 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2799 int ret = 0;
2800
2801 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2802 num_heads = heads_to_leaves(root, num_heads);
2803 if (num_heads > 1)
707e8a07 2804 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2805 num_bytes <<= 1;
28f75a0e 2806 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2807 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2808 num_dirty_bgs);
1be41b78
JB
2809 global_rsv = &root->fs_info->global_block_rsv;
2810
2811 /*
2812 * If we can't allocate any more chunks lets make sure we have _lots_ of
2813 * wiggle room since running delayed refs can create more delayed refs.
2814 */
cb723e49
JB
2815 if (global_rsv->space_info->full) {
2816 num_dirty_bgs_bytes <<= 1;
1be41b78 2817 num_bytes <<= 1;
cb723e49 2818 }
1be41b78
JB
2819
2820 spin_lock(&global_rsv->lock);
cb723e49 2821 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2822 ret = 1;
2823 spin_unlock(&global_rsv->lock);
2824 return ret;
2825}
2826
0a2b2a84
JB
2827int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2828 struct btrfs_root *root)
2829{
2830 struct btrfs_fs_info *fs_info = root->fs_info;
2831 u64 num_entries =
2832 atomic_read(&trans->transaction->delayed_refs.num_entries);
2833 u64 avg_runtime;
a79b7d4b 2834 u64 val;
0a2b2a84
JB
2835
2836 smp_mb();
2837 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2838 val = num_entries * avg_runtime;
0a2b2a84
JB
2839 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2840 return 1;
a79b7d4b
CM
2841 if (val >= NSEC_PER_SEC / 2)
2842 return 2;
0a2b2a84
JB
2843
2844 return btrfs_check_space_for_delayed_refs(trans, root);
2845}
2846
a79b7d4b
CM
2847struct async_delayed_refs {
2848 struct btrfs_root *root;
31b9655f 2849 u64 transid;
a79b7d4b
CM
2850 int count;
2851 int error;
2852 int sync;
2853 struct completion wait;
2854 struct btrfs_work work;
2855};
2856
2857static void delayed_ref_async_start(struct btrfs_work *work)
2858{
2859 struct async_delayed_refs *async;
2860 struct btrfs_trans_handle *trans;
2861 int ret;
2862
2863 async = container_of(work, struct async_delayed_refs, work);
2864
0f873eca
CM
2865 /* if the commit is already started, we don't need to wait here */
2866 if (btrfs_transaction_blocked(async->root->fs_info))
31b9655f 2867 goto done;
31b9655f 2868
0f873eca
CM
2869 trans = btrfs_join_transaction(async->root);
2870 if (IS_ERR(trans)) {
2871 async->error = PTR_ERR(trans);
a79b7d4b
CM
2872 goto done;
2873 }
2874
2875 /*
01327610 2876 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2877 * wait on delayed refs
2878 */
2879 trans->sync = true;
0f873eca
CM
2880
2881 /* Don't bother flushing if we got into a different transaction */
2882 if (trans->transid > async->transid)
2883 goto end;
2884
a79b7d4b
CM
2885 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2886 if (ret)
2887 async->error = ret;
0f873eca 2888end:
a79b7d4b
CM
2889 ret = btrfs_end_transaction(trans, async->root);
2890 if (ret && !async->error)
2891 async->error = ret;
2892done:
2893 if (async->sync)
2894 complete(&async->wait);
2895 else
2896 kfree(async);
2897}
2898
2899int btrfs_async_run_delayed_refs(struct btrfs_root *root,
31b9655f 2900 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2901{
2902 struct async_delayed_refs *async;
2903 int ret;
2904
2905 async = kmalloc(sizeof(*async), GFP_NOFS);
2906 if (!async)
2907 return -ENOMEM;
2908
2909 async->root = root->fs_info->tree_root;
2910 async->count = count;
2911 async->error = 0;
31b9655f 2912 async->transid = transid;
a79b7d4b
CM
2913 if (wait)
2914 async->sync = 1;
2915 else
2916 async->sync = 0;
2917 init_completion(&async->wait);
2918
9e0af237
LB
2919 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2920 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2921
2922 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2923
2924 if (wait) {
2925 wait_for_completion(&async->wait);
2926 ret = async->error;
2927 kfree(async);
2928 return ret;
2929 }
2930 return 0;
2931}
2932
c3e69d58
CM
2933/*
2934 * this starts processing the delayed reference count updates and
2935 * extent insertions we have queued up so far. count can be
2936 * 0, which means to process everything in the tree at the start
2937 * of the run (but not newly added entries), or it can be some target
2938 * number you'd like to process.
79787eaa
JM
2939 *
2940 * Returns 0 on success or if called with an aborted transaction
2941 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2942 */
2943int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2944 struct btrfs_root *root, unsigned long count)
2945{
2946 struct rb_node *node;
2947 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2948 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2949 int ret;
2950 int run_all = count == (unsigned long)-1;
d9a0540a 2951 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2952
79787eaa
JM
2953 /* We'll clean this up in btrfs_cleanup_transaction */
2954 if (trans->aborted)
2955 return 0;
2956
511711af
CM
2957 if (root->fs_info->creating_free_space_tree)
2958 return 0;
2959
c3e69d58
CM
2960 if (root == root->fs_info->extent_root)
2961 root = root->fs_info->tree_root;
2962
2963 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2964 if (count == 0)
d7df2c79 2965 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2966
c3e69d58 2967again:
709c0486
AJ
2968#ifdef SCRAMBLE_DELAYED_REFS
2969 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2970#endif
d9a0540a 2971 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2972 ret = __btrfs_run_delayed_refs(trans, root, count);
2973 if (ret < 0) {
2974 btrfs_abort_transaction(trans, root, ret);
2975 return ret;
eb099670 2976 }
c3e69d58 2977
56bec294 2978 if (run_all) {
d7df2c79 2979 if (!list_empty(&trans->new_bgs))
ea658bad 2980 btrfs_create_pending_block_groups(trans, root);
ea658bad 2981
d7df2c79 2982 spin_lock(&delayed_refs->lock);
c46effa6 2983 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2984 if (!node) {
2985 spin_unlock(&delayed_refs->lock);
56bec294 2986 goto out;
d7df2c79 2987 }
c3e69d58 2988 count = (unsigned long)-1;
e9d0b13b 2989
56bec294 2990 while (node) {
c46effa6
LB
2991 head = rb_entry(node, struct btrfs_delayed_ref_head,
2992 href_node);
2993 if (btrfs_delayed_ref_is_head(&head->node)) {
2994 struct btrfs_delayed_ref_node *ref;
5caf2a00 2995
c46effa6 2996 ref = &head->node;
56bec294
CM
2997 atomic_inc(&ref->refs);
2998
2999 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
3000 /*
3001 * Mutex was contended, block until it's
3002 * released and try again
3003 */
56bec294
CM
3004 mutex_lock(&head->mutex);
3005 mutex_unlock(&head->mutex);
3006
3007 btrfs_put_delayed_ref(ref);
1887be66 3008 cond_resched();
56bec294 3009 goto again;
c46effa6
LB
3010 } else {
3011 WARN_ON(1);
56bec294
CM
3012 }
3013 node = rb_next(node);
3014 }
3015 spin_unlock(&delayed_refs->lock);
d7df2c79 3016 cond_resched();
56bec294 3017 goto again;
5f39d397 3018 }
54aa1f4d 3019out:
edf39272 3020 assert_qgroups_uptodate(trans);
d9a0540a 3021 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3022 return 0;
3023}
3024
5d4f98a2
YZ
3025int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3026 struct btrfs_root *root,
3027 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3028 int level, int is_data)
5d4f98a2
YZ
3029{
3030 struct btrfs_delayed_extent_op *extent_op;
3031 int ret;
3032
78a6184a 3033 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3034 if (!extent_op)
3035 return -ENOMEM;
3036
3037 extent_op->flags_to_set = flags;
35b3ad50
DS
3038 extent_op->update_flags = true;
3039 extent_op->update_key = false;
3040 extent_op->is_data = is_data ? true : false;
b1c79e09 3041 extent_op->level = level;
5d4f98a2 3042
66d7e7f0
AJ
3043 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3044 num_bytes, extent_op);
5d4f98a2 3045 if (ret)
78a6184a 3046 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3047 return ret;
3048}
3049
3050static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3051 struct btrfs_root *root,
3052 struct btrfs_path *path,
3053 u64 objectid, u64 offset, u64 bytenr)
3054{
3055 struct btrfs_delayed_ref_head *head;
3056 struct btrfs_delayed_ref_node *ref;
3057 struct btrfs_delayed_data_ref *data_ref;
3058 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
3059 int ret = 0;
3060
5d4f98a2
YZ
3061 delayed_refs = &trans->transaction->delayed_refs;
3062 spin_lock(&delayed_refs->lock);
3063 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
3064 if (!head) {
3065 spin_unlock(&delayed_refs->lock);
3066 return 0;
3067 }
5d4f98a2
YZ
3068
3069 if (!mutex_trylock(&head->mutex)) {
3070 atomic_inc(&head->node.refs);
3071 spin_unlock(&delayed_refs->lock);
3072
b3b4aa74 3073 btrfs_release_path(path);
5d4f98a2 3074
8cc33e5c
DS
3075 /*
3076 * Mutex was contended, block until it's released and let
3077 * caller try again
3078 */
5d4f98a2
YZ
3079 mutex_lock(&head->mutex);
3080 mutex_unlock(&head->mutex);
3081 btrfs_put_delayed_ref(&head->node);
3082 return -EAGAIN;
3083 }
d7df2c79 3084 spin_unlock(&delayed_refs->lock);
5d4f98a2 3085
d7df2c79 3086 spin_lock(&head->lock);
c6fc2454 3087 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3088 /* If it's a shared ref we know a cross reference exists */
3089 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3090 ret = 1;
3091 break;
3092 }
5d4f98a2 3093
d7df2c79 3094 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3095
d7df2c79
JB
3096 /*
3097 * If our ref doesn't match the one we're currently looking at
3098 * then we have a cross reference.
3099 */
3100 if (data_ref->root != root->root_key.objectid ||
3101 data_ref->objectid != objectid ||
3102 data_ref->offset != offset) {
3103 ret = 1;
3104 break;
3105 }
5d4f98a2 3106 }
d7df2c79 3107 spin_unlock(&head->lock);
5d4f98a2 3108 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3109 return ret;
3110}
3111
3112static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3113 struct btrfs_root *root,
3114 struct btrfs_path *path,
3115 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
3116{
3117 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3118 struct extent_buffer *leaf;
5d4f98a2
YZ
3119 struct btrfs_extent_data_ref *ref;
3120 struct btrfs_extent_inline_ref *iref;
3121 struct btrfs_extent_item *ei;
f321e491 3122 struct btrfs_key key;
5d4f98a2 3123 u32 item_size;
be20aa9d 3124 int ret;
925baedd 3125
be20aa9d 3126 key.objectid = bytenr;
31840ae1 3127 key.offset = (u64)-1;
f321e491 3128 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3129
be20aa9d
CM
3130 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3131 if (ret < 0)
3132 goto out;
79787eaa 3133 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3134
3135 ret = -ENOENT;
3136 if (path->slots[0] == 0)
31840ae1 3137 goto out;
be20aa9d 3138
31840ae1 3139 path->slots[0]--;
f321e491 3140 leaf = path->nodes[0];
5d4f98a2 3141 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3142
5d4f98a2 3143 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3144 goto out;
f321e491 3145
5d4f98a2
YZ
3146 ret = 1;
3147 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3148#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3149 if (item_size < sizeof(*ei)) {
3150 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3151 goto out;
3152 }
3153#endif
3154 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3155
5d4f98a2
YZ
3156 if (item_size != sizeof(*ei) +
3157 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3158 goto out;
be20aa9d 3159
5d4f98a2
YZ
3160 if (btrfs_extent_generation(leaf, ei) <=
3161 btrfs_root_last_snapshot(&root->root_item))
3162 goto out;
3163
3164 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3165 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3166 BTRFS_EXTENT_DATA_REF_KEY)
3167 goto out;
3168
3169 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3170 if (btrfs_extent_refs(leaf, ei) !=
3171 btrfs_extent_data_ref_count(leaf, ref) ||
3172 btrfs_extent_data_ref_root(leaf, ref) !=
3173 root->root_key.objectid ||
3174 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3175 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3176 goto out;
3177
3178 ret = 0;
3179out:
3180 return ret;
3181}
3182
3183int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3184 struct btrfs_root *root,
3185 u64 objectid, u64 offset, u64 bytenr)
3186{
3187 struct btrfs_path *path;
3188 int ret;
3189 int ret2;
3190
3191 path = btrfs_alloc_path();
3192 if (!path)
3193 return -ENOENT;
3194
3195 do {
3196 ret = check_committed_ref(trans, root, path, objectid,
3197 offset, bytenr);
3198 if (ret && ret != -ENOENT)
f321e491 3199 goto out;
80ff3856 3200
5d4f98a2
YZ
3201 ret2 = check_delayed_ref(trans, root, path, objectid,
3202 offset, bytenr);
3203 } while (ret2 == -EAGAIN);
3204
3205 if (ret2 && ret2 != -ENOENT) {
3206 ret = ret2;
3207 goto out;
f321e491 3208 }
5d4f98a2
YZ
3209
3210 if (ret != -ENOENT || ret2 != -ENOENT)
3211 ret = 0;
be20aa9d 3212out:
80ff3856 3213 btrfs_free_path(path);
f0486c68
YZ
3214 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3215 WARN_ON(ret > 0);
f321e491 3216 return ret;
be20aa9d 3217}
c5739bba 3218
5d4f98a2 3219static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3220 struct btrfs_root *root,
5d4f98a2 3221 struct extent_buffer *buf,
e339a6b0 3222 int full_backref, int inc)
31840ae1
ZY
3223{
3224 u64 bytenr;
5d4f98a2
YZ
3225 u64 num_bytes;
3226 u64 parent;
31840ae1 3227 u64 ref_root;
31840ae1 3228 u32 nritems;
31840ae1
ZY
3229 struct btrfs_key key;
3230 struct btrfs_file_extent_item *fi;
3231 int i;
3232 int level;
3233 int ret = 0;
31840ae1 3234 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
b06c4bf5 3235 u64, u64, u64, u64, u64, u64);
31840ae1 3236
fccb84c9 3237
f5ee5c9a 3238 if (btrfs_is_testing(root->fs_info))
faa2dbf0 3239 return 0;
fccb84c9 3240
31840ae1 3241 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3242 nritems = btrfs_header_nritems(buf);
3243 level = btrfs_header_level(buf);
3244
27cdeb70 3245 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3246 return 0;
31840ae1 3247
5d4f98a2
YZ
3248 if (inc)
3249 process_func = btrfs_inc_extent_ref;
3250 else
3251 process_func = btrfs_free_extent;
31840ae1 3252
5d4f98a2
YZ
3253 if (full_backref)
3254 parent = buf->start;
3255 else
3256 parent = 0;
3257
3258 for (i = 0; i < nritems; i++) {
31840ae1 3259 if (level == 0) {
5d4f98a2 3260 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3261 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3262 continue;
5d4f98a2 3263 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3264 struct btrfs_file_extent_item);
3265 if (btrfs_file_extent_type(buf, fi) ==
3266 BTRFS_FILE_EXTENT_INLINE)
3267 continue;
3268 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3269 if (bytenr == 0)
3270 continue;
5d4f98a2
YZ
3271
3272 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3273 key.offset -= btrfs_file_extent_offset(buf, fi);
3274 ret = process_func(trans, root, bytenr, num_bytes,
3275 parent, ref_root, key.objectid,
b06c4bf5 3276 key.offset);
31840ae1
ZY
3277 if (ret)
3278 goto fail;
3279 } else {
5d4f98a2 3280 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3281 num_bytes = root->nodesize;
5d4f98a2 3282 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3283 parent, ref_root, level - 1, 0);
31840ae1
ZY
3284 if (ret)
3285 goto fail;
3286 }
3287 }
3288 return 0;
3289fail:
5d4f98a2
YZ
3290 return ret;
3291}
3292
3293int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3294 struct extent_buffer *buf, int full_backref)
5d4f98a2 3295{
e339a6b0 3296 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3297}
3298
3299int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3300 struct extent_buffer *buf, int full_backref)
5d4f98a2 3301{
e339a6b0 3302 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3303}
3304
9078a3e1
CM
3305static int write_one_cache_group(struct btrfs_trans_handle *trans,
3306 struct btrfs_root *root,
3307 struct btrfs_path *path,
3308 struct btrfs_block_group_cache *cache)
3309{
3310 int ret;
9078a3e1 3311 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3312 unsigned long bi;
3313 struct extent_buffer *leaf;
9078a3e1 3314
9078a3e1 3315 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3316 if (ret) {
3317 if (ret > 0)
3318 ret = -ENOENT;
54aa1f4d 3319 goto fail;
df95e7f0 3320 }
5f39d397
CM
3321
3322 leaf = path->nodes[0];
3323 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3324 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3325 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3326fail:
24b89d08 3327 btrfs_release_path(path);
df95e7f0 3328 return ret;
9078a3e1
CM
3329
3330}
3331
4a8c9a62
YZ
3332static struct btrfs_block_group_cache *
3333next_block_group(struct btrfs_root *root,
3334 struct btrfs_block_group_cache *cache)
3335{
3336 struct rb_node *node;
292cbd51 3337
4a8c9a62 3338 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3339
3340 /* If our block group was removed, we need a full search. */
3341 if (RB_EMPTY_NODE(&cache->cache_node)) {
3342 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3343
3344 spin_unlock(&root->fs_info->block_group_cache_lock);
3345 btrfs_put_block_group(cache);
3346 cache = btrfs_lookup_first_block_group(root->fs_info,
3347 next_bytenr);
3348 return cache;
3349 }
4a8c9a62
YZ
3350 node = rb_next(&cache->cache_node);
3351 btrfs_put_block_group(cache);
3352 if (node) {
3353 cache = rb_entry(node, struct btrfs_block_group_cache,
3354 cache_node);
11dfe35a 3355 btrfs_get_block_group(cache);
4a8c9a62
YZ
3356 } else
3357 cache = NULL;
3358 spin_unlock(&root->fs_info->block_group_cache_lock);
3359 return cache;
3360}
3361
0af3d00b
JB
3362static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3363 struct btrfs_trans_handle *trans,
3364 struct btrfs_path *path)
3365{
3366 struct btrfs_root *root = block_group->fs_info->tree_root;
3367 struct inode *inode = NULL;
3368 u64 alloc_hint = 0;
2b20982e 3369 int dcs = BTRFS_DC_ERROR;
f8c269d7 3370 u64 num_pages = 0;
0af3d00b
JB
3371 int retries = 0;
3372 int ret = 0;
3373
3374 /*
3375 * If this block group is smaller than 100 megs don't bother caching the
3376 * block group.
3377 */
ee22184b 3378 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3379 spin_lock(&block_group->lock);
3380 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3381 spin_unlock(&block_group->lock);
3382 return 0;
3383 }
3384
0c0ef4bc
JB
3385 if (trans->aborted)
3386 return 0;
0af3d00b
JB
3387again:
3388 inode = lookup_free_space_inode(root, block_group, path);
3389 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3390 ret = PTR_ERR(inode);
b3b4aa74 3391 btrfs_release_path(path);
0af3d00b
JB
3392 goto out;
3393 }
3394
3395 if (IS_ERR(inode)) {
3396 BUG_ON(retries);
3397 retries++;
3398
3399 if (block_group->ro)
3400 goto out_free;
3401
3402 ret = create_free_space_inode(root, trans, block_group, path);
3403 if (ret)
3404 goto out_free;
3405 goto again;
3406 }
3407
5b0e95bf
JB
3408 /* We've already setup this transaction, go ahead and exit */
3409 if (block_group->cache_generation == trans->transid &&
3410 i_size_read(inode)) {
3411 dcs = BTRFS_DC_SETUP;
3412 goto out_put;
3413 }
3414
0af3d00b
JB
3415 /*
3416 * We want to set the generation to 0, that way if anything goes wrong
3417 * from here on out we know not to trust this cache when we load up next
3418 * time.
3419 */
3420 BTRFS_I(inode)->generation = 0;
3421 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3422 if (ret) {
3423 /*
3424 * So theoretically we could recover from this, simply set the
3425 * super cache generation to 0 so we know to invalidate the
3426 * cache, but then we'd have to keep track of the block groups
3427 * that fail this way so we know we _have_ to reset this cache
3428 * before the next commit or risk reading stale cache. So to
3429 * limit our exposure to horrible edge cases lets just abort the
3430 * transaction, this only happens in really bad situations
3431 * anyway.
3432 */
3433 btrfs_abort_transaction(trans, root, ret);
3434 goto out_put;
3435 }
0af3d00b
JB
3436 WARN_ON(ret);
3437
3438 if (i_size_read(inode) > 0) {
7b61cd92
MX
3439 ret = btrfs_check_trunc_cache_free_space(root,
3440 &root->fs_info->global_block_rsv);
3441 if (ret)
3442 goto out_put;
3443
1bbc621e 3444 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3445 if (ret)
3446 goto out_put;
3447 }
3448
3449 spin_lock(&block_group->lock);
cf7c1ef6 3450 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3cdde224 3451 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3452 /*
3453 * don't bother trying to write stuff out _if_
3454 * a) we're not cached,
3455 * b) we're with nospace_cache mount option.
3456 */
2b20982e 3457 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3458 spin_unlock(&block_group->lock);
3459 goto out_put;
3460 }
3461 spin_unlock(&block_group->lock);
3462
2968b1f4
JB
3463 /*
3464 * We hit an ENOSPC when setting up the cache in this transaction, just
3465 * skip doing the setup, we've already cleared the cache so we're safe.
3466 */
3467 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3468 ret = -ENOSPC;
3469 goto out_put;
3470 }
3471
6fc823b1
JB
3472 /*
3473 * Try to preallocate enough space based on how big the block group is.
3474 * Keep in mind this has to include any pinned space which could end up
3475 * taking up quite a bit since it's not folded into the other space
3476 * cache.
3477 */
ee22184b 3478 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3479 if (!num_pages)
3480 num_pages = 1;
3481
0af3d00b 3482 num_pages *= 16;
09cbfeaf 3483 num_pages *= PAGE_SIZE;
0af3d00b 3484
7cf5b976 3485 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3486 if (ret)
3487 goto out_put;
3488
3489 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3490 num_pages, num_pages,
3491 &alloc_hint);
2968b1f4
JB
3492 /*
3493 * Our cache requires contiguous chunks so that we don't modify a bunch
3494 * of metadata or split extents when writing the cache out, which means
3495 * we can enospc if we are heavily fragmented in addition to just normal
3496 * out of space conditions. So if we hit this just skip setting up any
3497 * other block groups for this transaction, maybe we'll unpin enough
3498 * space the next time around.
3499 */
2b20982e
JB
3500 if (!ret)
3501 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3502 else if (ret == -ENOSPC)
3503 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
7cf5b976 3504 btrfs_free_reserved_data_space(inode, 0, num_pages);
c09544e0 3505
0af3d00b
JB
3506out_put:
3507 iput(inode);
3508out_free:
b3b4aa74 3509 btrfs_release_path(path);
0af3d00b
JB
3510out:
3511 spin_lock(&block_group->lock);
e65cbb94 3512 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3513 block_group->cache_generation = trans->transid;
2b20982e 3514 block_group->disk_cache_state = dcs;
0af3d00b
JB
3515 spin_unlock(&block_group->lock);
3516
3517 return ret;
3518}
3519
dcdf7f6d
JB
3520int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3521 struct btrfs_root *root)
3522{
3523 struct btrfs_block_group_cache *cache, *tmp;
3524 struct btrfs_transaction *cur_trans = trans->transaction;
3525 struct btrfs_path *path;
3526
3527 if (list_empty(&cur_trans->dirty_bgs) ||
3cdde224 3528 !btrfs_test_opt(root->fs_info, SPACE_CACHE))
dcdf7f6d
JB
3529 return 0;
3530
3531 path = btrfs_alloc_path();
3532 if (!path)
3533 return -ENOMEM;
3534
3535 /* Could add new block groups, use _safe just in case */
3536 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3537 dirty_list) {
3538 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3539 cache_save_setup(cache, trans, path);
3540 }
3541
3542 btrfs_free_path(path);
3543 return 0;
3544}
3545
1bbc621e
CM
3546/*
3547 * transaction commit does final block group cache writeback during a
3548 * critical section where nothing is allowed to change the FS. This is
3549 * required in order for the cache to actually match the block group,
3550 * but can introduce a lot of latency into the commit.
3551 *
3552 * So, btrfs_start_dirty_block_groups is here to kick off block group
3553 * cache IO. There's a chance we'll have to redo some of it if the
3554 * block group changes again during the commit, but it greatly reduces
3555 * the commit latency by getting rid of the easy block groups while
3556 * we're still allowing others to join the commit.
3557 */
3558int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3559 struct btrfs_root *root)
9078a3e1 3560{
4a8c9a62 3561 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3562 struct btrfs_transaction *cur_trans = trans->transaction;
3563 int ret = 0;
c9dc4c65 3564 int should_put;
1bbc621e
CM
3565 struct btrfs_path *path = NULL;
3566 LIST_HEAD(dirty);
3567 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3568 int num_started = 0;
1bbc621e
CM
3569 int loops = 0;
3570
3571 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3572 if (list_empty(&cur_trans->dirty_bgs)) {
3573 spin_unlock(&cur_trans->dirty_bgs_lock);
3574 return 0;
1bbc621e 3575 }
b58d1a9e 3576 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3577 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3578
1bbc621e 3579again:
1bbc621e
CM
3580 /*
3581 * make sure all the block groups on our dirty list actually
3582 * exist
3583 */
3584 btrfs_create_pending_block_groups(trans, root);
3585
3586 if (!path) {
3587 path = btrfs_alloc_path();
3588 if (!path)
3589 return -ENOMEM;
3590 }
3591
b58d1a9e
FM
3592 /*
3593 * cache_write_mutex is here only to save us from balance or automatic
3594 * removal of empty block groups deleting this block group while we are
3595 * writing out the cache
3596 */
3597 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3598 while (!list_empty(&dirty)) {
3599 cache = list_first_entry(&dirty,
3600 struct btrfs_block_group_cache,
3601 dirty_list);
1bbc621e
CM
3602 /*
3603 * this can happen if something re-dirties a block
3604 * group that is already under IO. Just wait for it to
3605 * finish and then do it all again
3606 */
3607 if (!list_empty(&cache->io_list)) {
3608 list_del_init(&cache->io_list);
3609 btrfs_wait_cache_io(root, trans, cache,
3610 &cache->io_ctl, path,
3611 cache->key.objectid);
3612 btrfs_put_block_group(cache);
3613 }
3614
3615
3616 /*
3617 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3618 * if it should update the cache_state. Don't delete
3619 * until after we wait.
3620 *
3621 * Since we're not running in the commit critical section
3622 * we need the dirty_bgs_lock to protect from update_block_group
3623 */
3624 spin_lock(&cur_trans->dirty_bgs_lock);
3625 list_del_init(&cache->dirty_list);
3626 spin_unlock(&cur_trans->dirty_bgs_lock);
3627
3628 should_put = 1;
3629
3630 cache_save_setup(cache, trans, path);
3631
3632 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3633 cache->io_ctl.inode = NULL;
3634 ret = btrfs_write_out_cache(root, trans, cache, path);
3635 if (ret == 0 && cache->io_ctl.inode) {
3636 num_started++;
3637 should_put = 0;
3638
3639 /*
3640 * the cache_write_mutex is protecting
3641 * the io_list
3642 */
3643 list_add_tail(&cache->io_list, io);
3644 } else {
3645 /*
3646 * if we failed to write the cache, the
3647 * generation will be bad and life goes on
3648 */
3649 ret = 0;
3650 }
3651 }
ff1f8250 3652 if (!ret) {
1bbc621e 3653 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3654 /*
3655 * Our block group might still be attached to the list
3656 * of new block groups in the transaction handle of some
3657 * other task (struct btrfs_trans_handle->new_bgs). This
3658 * means its block group item isn't yet in the extent
3659 * tree. If this happens ignore the error, as we will
3660 * try again later in the critical section of the
3661 * transaction commit.
3662 */
3663 if (ret == -ENOENT) {
3664 ret = 0;
3665 spin_lock(&cur_trans->dirty_bgs_lock);
3666 if (list_empty(&cache->dirty_list)) {
3667 list_add_tail(&cache->dirty_list,
3668 &cur_trans->dirty_bgs);
3669 btrfs_get_block_group(cache);
3670 }
3671 spin_unlock(&cur_trans->dirty_bgs_lock);
3672 } else if (ret) {
3673 btrfs_abort_transaction(trans, root, ret);
3674 }
3675 }
1bbc621e
CM
3676
3677 /* if its not on the io list, we need to put the block group */
3678 if (should_put)
3679 btrfs_put_block_group(cache);
3680
3681 if (ret)
3682 break;
b58d1a9e
FM
3683
3684 /*
3685 * Avoid blocking other tasks for too long. It might even save
3686 * us from writing caches for block groups that are going to be
3687 * removed.
3688 */
3689 mutex_unlock(&trans->transaction->cache_write_mutex);
3690 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3691 }
b58d1a9e 3692 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3693
3694 /*
3695 * go through delayed refs for all the stuff we've just kicked off
3696 * and then loop back (just once)
3697 */
3698 ret = btrfs_run_delayed_refs(trans, root, 0);
3699 if (!ret && loops == 0) {
3700 loops++;
3701 spin_lock(&cur_trans->dirty_bgs_lock);
3702 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3703 /*
3704 * dirty_bgs_lock protects us from concurrent block group
3705 * deletes too (not just cache_write_mutex).
3706 */
3707 if (!list_empty(&dirty)) {
3708 spin_unlock(&cur_trans->dirty_bgs_lock);
3709 goto again;
3710 }
1bbc621e 3711 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3712 }
3713
3714 btrfs_free_path(path);
3715 return ret;
3716}
3717
3718int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3719 struct btrfs_root *root)
3720{
3721 struct btrfs_block_group_cache *cache;
3722 struct btrfs_transaction *cur_trans = trans->transaction;
3723 int ret = 0;
3724 int should_put;
3725 struct btrfs_path *path;
3726 struct list_head *io = &cur_trans->io_bgs;
3727 int num_started = 0;
9078a3e1
CM
3728
3729 path = btrfs_alloc_path();
3730 if (!path)
3731 return -ENOMEM;
3732
ce93ec54 3733 /*
e44081ef
FM
3734 * Even though we are in the critical section of the transaction commit,
3735 * we can still have concurrent tasks adding elements to this
3736 * transaction's list of dirty block groups. These tasks correspond to
3737 * endio free space workers started when writeback finishes for a
3738 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3739 * allocate new block groups as a result of COWing nodes of the root
3740 * tree when updating the free space inode. The writeback for the space
3741 * caches is triggered by an earlier call to
3742 * btrfs_start_dirty_block_groups() and iterations of the following
3743 * loop.
3744 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3745 * delayed refs to make sure we have the best chance at doing this all
3746 * in one shot.
3747 */
e44081ef 3748 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3749 while (!list_empty(&cur_trans->dirty_bgs)) {
3750 cache = list_first_entry(&cur_trans->dirty_bgs,
3751 struct btrfs_block_group_cache,
3752 dirty_list);
c9dc4c65
CM
3753
3754 /*
3755 * this can happen if cache_save_setup re-dirties a block
3756 * group that is already under IO. Just wait for it to
3757 * finish and then do it all again
3758 */
3759 if (!list_empty(&cache->io_list)) {
e44081ef 3760 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3761 list_del_init(&cache->io_list);
3762 btrfs_wait_cache_io(root, trans, cache,
3763 &cache->io_ctl, path,
3764 cache->key.objectid);
3765 btrfs_put_block_group(cache);
e44081ef 3766 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3767 }
3768
1bbc621e
CM
3769 /*
3770 * don't remove from the dirty list until after we've waited
3771 * on any pending IO
3772 */
ce93ec54 3773 list_del_init(&cache->dirty_list);
e44081ef 3774 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3775 should_put = 1;
3776
1bbc621e 3777 cache_save_setup(cache, trans, path);
c9dc4c65 3778
ce93ec54 3779 if (!ret)
c9dc4c65
CM
3780 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3781
3782 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3783 cache->io_ctl.inode = NULL;
3784 ret = btrfs_write_out_cache(root, trans, cache, path);
3785 if (ret == 0 && cache->io_ctl.inode) {
3786 num_started++;
3787 should_put = 0;
1bbc621e 3788 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3789 } else {
3790 /*
3791 * if we failed to write the cache, the
3792 * generation will be bad and life goes on
3793 */
3794 ret = 0;
3795 }
3796 }
ff1f8250 3797 if (!ret) {
ce93ec54 3798 ret = write_one_cache_group(trans, root, path, cache);
2bc0bb5f
FM
3799 /*
3800 * One of the free space endio workers might have
3801 * created a new block group while updating a free space
3802 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3803 * and hasn't released its transaction handle yet, in
3804 * which case the new block group is still attached to
3805 * its transaction handle and its creation has not
3806 * finished yet (no block group item in the extent tree
3807 * yet, etc). If this is the case, wait for all free
3808 * space endio workers to finish and retry. This is a
3809 * a very rare case so no need for a more efficient and
3810 * complex approach.
3811 */
3812 if (ret == -ENOENT) {
3813 wait_event(cur_trans->writer_wait,
3814 atomic_read(&cur_trans->num_writers) == 1);
3815 ret = write_one_cache_group(trans, root, path,
3816 cache);
3817 }
ff1f8250
FM
3818 if (ret)
3819 btrfs_abort_transaction(trans, root, ret);
3820 }
c9dc4c65
CM
3821
3822 /* if its not on the io list, we need to put the block group */
3823 if (should_put)
3824 btrfs_put_block_group(cache);
e44081ef 3825 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3826 }
e44081ef 3827 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3828
1bbc621e
CM
3829 while (!list_empty(io)) {
3830 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3831 io_list);
3832 list_del_init(&cache->io_list);
c9dc4c65
CM
3833 btrfs_wait_cache_io(root, trans, cache,
3834 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3835 btrfs_put_block_group(cache);
3836 }
3837
9078a3e1 3838 btrfs_free_path(path);
ce93ec54 3839 return ret;
9078a3e1
CM
3840}
3841
d2fb3437
YZ
3842int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3843{
3844 struct btrfs_block_group_cache *block_group;
3845 int readonly = 0;
3846
3847 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3848 if (!block_group || block_group->ro)
3849 readonly = 1;
3850 if (block_group)
fa9c0d79 3851 btrfs_put_block_group(block_group);
d2fb3437
YZ
3852 return readonly;
3853}
3854
f78c436c
FM
3855bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3856{
3857 struct btrfs_block_group_cache *bg;
3858 bool ret = true;
3859
3860 bg = btrfs_lookup_block_group(fs_info, bytenr);
3861 if (!bg)
3862 return false;
3863
3864 spin_lock(&bg->lock);
3865 if (bg->ro)
3866 ret = false;
3867 else
3868 atomic_inc(&bg->nocow_writers);
3869 spin_unlock(&bg->lock);
3870
3871 /* no put on block group, done by btrfs_dec_nocow_writers */
3872 if (!ret)
3873 btrfs_put_block_group(bg);
3874
3875 return ret;
3876
3877}
3878
3879void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3880{
3881 struct btrfs_block_group_cache *bg;
3882
3883 bg = btrfs_lookup_block_group(fs_info, bytenr);
3884 ASSERT(bg);
3885 if (atomic_dec_and_test(&bg->nocow_writers))
3886 wake_up_atomic_t(&bg->nocow_writers);
3887 /*
3888 * Once for our lookup and once for the lookup done by a previous call
3889 * to btrfs_inc_nocow_writers()
3890 */
3891 btrfs_put_block_group(bg);
3892 btrfs_put_block_group(bg);
3893}
3894
3895static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3896{
3897 schedule();
3898 return 0;
3899}
3900
3901void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3902{
3903 wait_on_atomic_t(&bg->nocow_writers,
3904 btrfs_wait_nocow_writers_atomic_t,
3905 TASK_UNINTERRUPTIBLE);
3906}
3907
6ab0a202
JM
3908static const char *alloc_name(u64 flags)
3909{
3910 switch (flags) {
3911 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3912 return "mixed";
3913 case BTRFS_BLOCK_GROUP_METADATA:
3914 return "metadata";
3915 case BTRFS_BLOCK_GROUP_DATA:
3916 return "data";
3917 case BTRFS_BLOCK_GROUP_SYSTEM:
3918 return "system";
3919 default:
3920 WARN_ON(1);
3921 return "invalid-combination";
3922 };
3923}
3924
593060d7
CM
3925static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3926 u64 total_bytes, u64 bytes_used,
e40edf2d 3927 u64 bytes_readonly,
593060d7
CM
3928 struct btrfs_space_info **space_info)
3929{
3930 struct btrfs_space_info *found;
b742bb82
YZ
3931 int i;
3932 int factor;
b150a4f1 3933 int ret;
b742bb82
YZ
3934
3935 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3936 BTRFS_BLOCK_GROUP_RAID10))
3937 factor = 2;
3938 else
3939 factor = 1;
593060d7
CM
3940
3941 found = __find_space_info(info, flags);
3942 if (found) {
25179201 3943 spin_lock(&found->lock);
593060d7 3944 found->total_bytes += total_bytes;
89a55897 3945 found->disk_total += total_bytes * factor;
593060d7 3946 found->bytes_used += bytes_used;
b742bb82 3947 found->disk_used += bytes_used * factor;
e40edf2d 3948 found->bytes_readonly += bytes_readonly;
2e6e5183
FM
3949 if (total_bytes > 0)
3950 found->full = 0;
957780eb
JB
3951 space_info_add_new_bytes(info, found, total_bytes -
3952 bytes_used - bytes_readonly);
25179201 3953 spin_unlock(&found->lock);
593060d7
CM
3954 *space_info = found;
3955 return 0;
3956 }
c146afad 3957 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3958 if (!found)
3959 return -ENOMEM;
3960
908c7f19 3961 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3962 if (ret) {
3963 kfree(found);
3964 return ret;
3965 }
3966
c1895442 3967 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3968 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3969 init_rwsem(&found->groups_sem);
0f9dd46c 3970 spin_lock_init(&found->lock);
52ba6929 3971 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3972 found->total_bytes = total_bytes;
89a55897 3973 found->disk_total = total_bytes * factor;
593060d7 3974 found->bytes_used = bytes_used;
b742bb82 3975 found->disk_used = bytes_used * factor;
593060d7 3976 found->bytes_pinned = 0;
e8569813 3977 found->bytes_reserved = 0;
e40edf2d 3978 found->bytes_readonly = bytes_readonly;
f0486c68 3979 found->bytes_may_use = 0;
6af3e3ad 3980 found->full = 0;
4f4db217 3981 found->max_extent_size = 0;
0e4f8f88 3982 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3983 found->chunk_alloc = 0;
fdb5effd
JB
3984 found->flush = 0;
3985 init_waitqueue_head(&found->wait);
633c0aad 3986 INIT_LIST_HEAD(&found->ro_bgs);
957780eb
JB
3987 INIT_LIST_HEAD(&found->tickets);
3988 INIT_LIST_HEAD(&found->priority_tickets);
6ab0a202
JM
3989
3990 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3991 info->space_info_kobj, "%s",
3992 alloc_name(found->flags));
3993 if (ret) {
3994 kfree(found);
3995 return ret;
3996 }
3997
593060d7 3998 *space_info = found;
4184ea7f 3999 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
4000 if (flags & BTRFS_BLOCK_GROUP_DATA)
4001 info->data_sinfo = found;
6ab0a202
JM
4002
4003 return ret;
593060d7
CM
4004}
4005
8790d502
CM
4006static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4007{
899c81ea
ID
4008 u64 extra_flags = chunk_to_extended(flags) &
4009 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4010
de98ced9 4011 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4012 if (flags & BTRFS_BLOCK_GROUP_DATA)
4013 fs_info->avail_data_alloc_bits |= extra_flags;
4014 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4015 fs_info->avail_metadata_alloc_bits |= extra_flags;
4016 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4017 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4018 write_sequnlock(&fs_info->profiles_lock);
8790d502 4019}
593060d7 4020
fc67c450
ID
4021/*
4022 * returns target flags in extended format or 0 if restripe for this
4023 * chunk_type is not in progress
c6664b42
ID
4024 *
4025 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4026 */
4027static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4028{
4029 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4030 u64 target = 0;
4031
fc67c450
ID
4032 if (!bctl)
4033 return 0;
4034
4035 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4036 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4037 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4038 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4039 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4040 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4041 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4042 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4043 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4044 }
4045
4046 return target;
4047}
4048
a46d11a8
ID
4049/*
4050 * @flags: available profiles in extended format (see ctree.h)
4051 *
e4d8ec0f
ID
4052 * Returns reduced profile in chunk format. If profile changing is in
4053 * progress (either running or paused) picks the target profile (if it's
4054 * already available), otherwise falls back to plain reducing.
a46d11a8 4055 */
48a3b636 4056static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 4057{
95669976 4058 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 4059 u64 target;
9c170b26
ZL
4060 u64 raid_type;
4061 u64 allowed = 0;
a061fc8d 4062
fc67c450
ID
4063 /*
4064 * see if restripe for this chunk_type is in progress, if so
4065 * try to reduce to the target profile
4066 */
e4d8ec0f 4067 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
4068 target = get_restripe_target(root->fs_info, flags);
4069 if (target) {
4070 /* pick target profile only if it's already available */
4071 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 4072 spin_unlock(&root->fs_info->balance_lock);
fc67c450 4073 return extended_to_chunk(target);
e4d8ec0f
ID
4074 }
4075 }
4076 spin_unlock(&root->fs_info->balance_lock);
4077
53b381b3 4078 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4079 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4080 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4081 allowed |= btrfs_raid_group[raid_type];
4082 }
4083 allowed &= flags;
4084
4085 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4086 allowed = BTRFS_BLOCK_GROUP_RAID6;
4087 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4088 allowed = BTRFS_BLOCK_GROUP_RAID5;
4089 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4090 allowed = BTRFS_BLOCK_GROUP_RAID10;
4091 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4092 allowed = BTRFS_BLOCK_GROUP_RAID1;
4093 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4094 allowed = BTRFS_BLOCK_GROUP_RAID0;
4095
4096 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4097
4098 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4099}
4100
f8213bdc 4101static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 4102{
de98ced9 4103 unsigned seq;
f8213bdc 4104 u64 flags;
de98ced9
MX
4105
4106 do {
f8213bdc 4107 flags = orig_flags;
de98ced9
MX
4108 seq = read_seqbegin(&root->fs_info->profiles_lock);
4109
4110 if (flags & BTRFS_BLOCK_GROUP_DATA)
4111 flags |= root->fs_info->avail_data_alloc_bits;
4112 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4113 flags |= root->fs_info->avail_system_alloc_bits;
4114 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4115 flags |= root->fs_info->avail_metadata_alloc_bits;
4116 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 4117
b742bb82 4118 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
4119}
4120
6d07bcec 4121u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 4122{
b742bb82 4123 u64 flags;
53b381b3 4124 u64 ret;
9ed74f2d 4125
b742bb82
YZ
4126 if (data)
4127 flags = BTRFS_BLOCK_GROUP_DATA;
4128 else if (root == root->fs_info->chunk_root)
4129 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4130 else
b742bb82 4131 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4132
53b381b3
DW
4133 ret = get_alloc_profile(root, flags);
4134 return ret;
6a63209f 4135}
9ed74f2d 4136
4ceff079 4137int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 4138{
6a63209f 4139 struct btrfs_space_info *data_sinfo;
0ca1f7ce 4140 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 4141 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4142 u64 used;
94b947b2 4143 int ret = 0;
c99f1b0c
ZL
4144 int need_commit = 2;
4145 int have_pinned_space;
6a63209f 4146
6a63209f 4147 /* make sure bytes are sectorsize aligned */
fda2832f 4148 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 4149
9dced186 4150 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4151 need_commit = 0;
9dced186 4152 ASSERT(current->journal_info);
0af3d00b
JB
4153 }
4154
b4d7c3c9 4155 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4156 if (!data_sinfo)
4157 goto alloc;
9ed74f2d 4158
6a63209f
JB
4159again:
4160 /* make sure we have enough space to handle the data first */
4161 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
4162 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4163 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4164 data_sinfo->bytes_may_use;
ab6e2410
JB
4165
4166 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4167 struct btrfs_trans_handle *trans;
9ed74f2d 4168
6a63209f
JB
4169 /*
4170 * if we don't have enough free bytes in this space then we need
4171 * to alloc a new chunk.
4172 */
b9fd47cd 4173 if (!data_sinfo->full) {
6a63209f 4174 u64 alloc_target;
9ed74f2d 4175
0e4f8f88 4176 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4177 spin_unlock(&data_sinfo->lock);
33b4d47f 4178alloc:
6a63209f 4179 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4180 /*
4181 * It is ugly that we don't call nolock join
4182 * transaction for the free space inode case here.
4183 * But it is safe because we only do the data space
4184 * reservation for the free space cache in the
4185 * transaction context, the common join transaction
4186 * just increase the counter of the current transaction
4187 * handler, doesn't try to acquire the trans_lock of
4188 * the fs.
4189 */
7a7eaa40 4190 trans = btrfs_join_transaction(root);
a22285a6
YZ
4191 if (IS_ERR(trans))
4192 return PTR_ERR(trans);
9ed74f2d 4193
6a63209f 4194 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
4195 alloc_target,
4196 CHUNK_ALLOC_NO_FORCE);
6a63209f 4197 btrfs_end_transaction(trans, root);
d52a5b5f
MX
4198 if (ret < 0) {
4199 if (ret != -ENOSPC)
4200 return ret;
c99f1b0c
ZL
4201 else {
4202 have_pinned_space = 1;
d52a5b5f 4203 goto commit_trans;
c99f1b0c 4204 }
d52a5b5f 4205 }
9ed74f2d 4206
b4d7c3c9
LZ
4207 if (!data_sinfo)
4208 data_sinfo = fs_info->data_sinfo;
4209
6a63209f
JB
4210 goto again;
4211 }
f2bb8f5c
JB
4212
4213 /*
b150a4f1 4214 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4215 * allocation, and no removed chunk in current transaction,
4216 * don't bother committing the transaction.
f2bb8f5c 4217 */
c99f1b0c
ZL
4218 have_pinned_space = percpu_counter_compare(
4219 &data_sinfo->total_bytes_pinned,
4220 used + bytes - data_sinfo->total_bytes);
6a63209f 4221 spin_unlock(&data_sinfo->lock);
6a63209f 4222
4e06bdd6 4223 /* commit the current transaction and try again */
d52a5b5f 4224commit_trans:
c99f1b0c 4225 if (need_commit &&
a4abeea4 4226 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4227 need_commit--;
b150a4f1 4228
e1746e83
ZL
4229 if (need_commit > 0) {
4230 btrfs_start_delalloc_roots(fs_info, 0, -1);
578def7c 4231 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
e1746e83 4232 }
9a4e7276 4233
7a7eaa40 4234 trans = btrfs_join_transaction(root);
a22285a6
YZ
4235 if (IS_ERR(trans))
4236 return PTR_ERR(trans);
c99f1b0c 4237 if (have_pinned_space >= 0 ||
3204d33c
JB
4238 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4239 &trans->transaction->flags) ||
c99f1b0c 4240 need_commit > 0) {
94b947b2
ZL
4241 ret = btrfs_commit_transaction(trans, root);
4242 if (ret)
4243 return ret;
d7c15171 4244 /*
c2d6cb16
FM
4245 * The cleaner kthread might still be doing iput
4246 * operations. Wait for it to finish so that
4247 * more space is released.
d7c15171 4248 */
c2d6cb16
FM
4249 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4250 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4251 goto again;
4252 } else {
4253 btrfs_end_transaction(trans, root);
4254 }
4e06bdd6 4255 }
9ed74f2d 4256
cab45e22
JM
4257 trace_btrfs_space_reservation(root->fs_info,
4258 "space_info:enospc",
4259 data_sinfo->flags, bytes, 1);
6a63209f
JB
4260 return -ENOSPC;
4261 }
4262 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4263 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4264 data_sinfo->flags, bytes, 1);
6a63209f 4265 spin_unlock(&data_sinfo->lock);
6a63209f 4266
237c0e9f 4267 return ret;
9ed74f2d 4268}
6a63209f 4269
4ceff079
QW
4270/*
4271 * New check_data_free_space() with ability for precious data reservation
4272 * Will replace old btrfs_check_data_free_space(), but for patch split,
4273 * add a new function first and then replace it.
4274 */
7cf5b976 4275int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079
QW
4276{
4277 struct btrfs_root *root = BTRFS_I(inode)->root;
4278 int ret;
4279
4280 /* align the range */
4281 len = round_up(start + len, root->sectorsize) -
4282 round_down(start, root->sectorsize);
4283 start = round_down(start, root->sectorsize);
4284
4285 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4286 if (ret < 0)
4287 return ret;
4288
94ed938a
QW
4289 /*
4290 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4291 *
4292 * TODO: Find a good method to avoid reserve data space for NOCOW
4293 * range, but don't impact performance on quota disable case.
4294 */
4ceff079
QW
4295 ret = btrfs_qgroup_reserve_data(inode, start, len);
4296 return ret;
4297}
4298
4ceff079
QW
4299/*
4300 * Called if we need to clear a data reservation for this inode
4301 * Normally in a error case.
4302 *
51773bec
QW
4303 * This one will *NOT* use accurate qgroup reserved space API, just for case
4304 * which we can't sleep and is sure it won't affect qgroup reserved space.
4305 * Like clear_bit_hook().
4ceff079 4306 */
51773bec
QW
4307void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4308 u64 len)
4ceff079
QW
4309{
4310 struct btrfs_root *root = BTRFS_I(inode)->root;
4311 struct btrfs_space_info *data_sinfo;
4312
4313 /* Make sure the range is aligned to sectorsize */
4314 len = round_up(start + len, root->sectorsize) -
4315 round_down(start, root->sectorsize);
4316 start = round_down(start, root->sectorsize);
4317
4ceff079
QW
4318 data_sinfo = root->fs_info->data_sinfo;
4319 spin_lock(&data_sinfo->lock);
4320 if (WARN_ON(data_sinfo->bytes_may_use < len))
4321 data_sinfo->bytes_may_use = 0;
4322 else
4323 data_sinfo->bytes_may_use -= len;
4324 trace_btrfs_space_reservation(root->fs_info, "space_info",
4325 data_sinfo->flags, len, 0);
4326 spin_unlock(&data_sinfo->lock);
4327}
4328
51773bec
QW
4329/*
4330 * Called if we need to clear a data reservation for this inode
4331 * Normally in a error case.
4332 *
01327610 4333 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4334 * space framework.
4335 */
4336void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4337{
4338 btrfs_free_reserved_data_space_noquota(inode, start, len);
4339 btrfs_qgroup_free_data(inode, start, len);
4340}
4341
97e728d4 4342static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4343{
97e728d4
JB
4344 struct list_head *head = &info->space_info;
4345 struct btrfs_space_info *found;
e3ccfa98 4346
97e728d4
JB
4347 rcu_read_lock();
4348 list_for_each_entry_rcu(found, head, list) {
4349 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4350 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4351 }
97e728d4 4352 rcu_read_unlock();
e3ccfa98
JB
4353}
4354
3c76cd84
MX
4355static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4356{
4357 return (global->size << 1);
4358}
4359
e5bc2458 4360static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4361 struct btrfs_space_info *sinfo, int force)
32c00aff 4362{
fb25e914 4363 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4364 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4365 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4366 u64 thresh;
e3ccfa98 4367
0e4f8f88
CM
4368 if (force == CHUNK_ALLOC_FORCE)
4369 return 1;
4370
fb25e914
JB
4371 /*
4372 * We need to take into account the global rsv because for all intents
4373 * and purposes it's used space. Don't worry about locking the
4374 * global_rsv, it doesn't change except when the transaction commits.
4375 */
54338b5c 4376 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4377 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4378
0e4f8f88
CM
4379 /*
4380 * in limited mode, we want to have some free space up to
4381 * about 1% of the FS size.
4382 */
4383 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4384 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
ee22184b 4385 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4386
4387 if (num_bytes - num_allocated < thresh)
4388 return 1;
4389 }
0e4f8f88 4390
ee22184b 4391 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4392 return 0;
424499db 4393 return 1;
32c00aff
JB
4394}
4395
39c2d7fa 4396static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4397{
4398 u64 num_dev;
4399
53b381b3
DW
4400 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4401 BTRFS_BLOCK_GROUP_RAID0 |
4402 BTRFS_BLOCK_GROUP_RAID5 |
4403 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4404 num_dev = root->fs_info->fs_devices->rw_devices;
4405 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4406 num_dev = 2;
4407 else
4408 num_dev = 1; /* DUP or single */
4409
39c2d7fa 4410 return num_dev;
15d1ff81
LB
4411}
4412
39c2d7fa
FM
4413/*
4414 * If @is_allocation is true, reserve space in the system space info necessary
4415 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4416 * removing a chunk.
4417 */
4418void check_system_chunk(struct btrfs_trans_handle *trans,
4419 struct btrfs_root *root,
4617ea3a 4420 u64 type)
15d1ff81
LB
4421{
4422 struct btrfs_space_info *info;
4423 u64 left;
4424 u64 thresh;
4fbcdf66 4425 int ret = 0;
39c2d7fa 4426 u64 num_devs;
4fbcdf66
FM
4427
4428 /*
4429 * Needed because we can end up allocating a system chunk and for an
4430 * atomic and race free space reservation in the chunk block reserve.
4431 */
4432 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4433
4434 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4435 spin_lock(&info->lock);
4436 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4437 info->bytes_reserved - info->bytes_readonly -
4438 info->bytes_may_use;
15d1ff81
LB
4439 spin_unlock(&info->lock);
4440
39c2d7fa
FM
4441 num_devs = get_profile_num_devs(root, type);
4442
4443 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4444 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4445 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4446
3cdde224 4447 if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
c2cf52eb
SK
4448 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4449 left, thresh, type);
15d1ff81
LB
4450 dump_space_info(info, 0, 0);
4451 }
4452
4453 if (left < thresh) {
4454 u64 flags;
4455
4456 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4457 /*
4458 * Ignore failure to create system chunk. We might end up not
4459 * needing it, as we might not need to COW all nodes/leafs from
4460 * the paths we visit in the chunk tree (they were already COWed
4461 * or created in the current transaction for example).
4462 */
4463 ret = btrfs_alloc_chunk(trans, root, flags);
4464 }
4465
4466 if (!ret) {
4467 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4468 &root->fs_info->chunk_block_rsv,
4469 thresh, BTRFS_RESERVE_NO_FLUSH);
4470 if (!ret)
4471 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4472 }
4473}
4474
6324fbf3 4475static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4476 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4477{
6324fbf3 4478 struct btrfs_space_info *space_info;
97e728d4 4479 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4480 int wait_for_alloc = 0;
9ed74f2d 4481 int ret = 0;
9ed74f2d 4482
c6b305a8
JB
4483 /* Don't re-enter if we're already allocating a chunk */
4484 if (trans->allocating_chunk)
4485 return -ENOSPC;
4486
6324fbf3 4487 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4488 if (!space_info) {
4489 ret = update_space_info(extent_root->fs_info, flags,
e40edf2d 4490 0, 0, 0, &space_info);
79787eaa 4491 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4492 }
79787eaa 4493 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4494
6d74119f 4495again:
25179201 4496 spin_lock(&space_info->lock);
9e622d6b 4497 if (force < space_info->force_alloc)
0e4f8f88 4498 force = space_info->force_alloc;
25179201 4499 if (space_info->full) {
09fb99a6
FDBM
4500 if (should_alloc_chunk(extent_root, space_info, force))
4501 ret = -ENOSPC;
4502 else
4503 ret = 0;
25179201 4504 spin_unlock(&space_info->lock);
09fb99a6 4505 return ret;
9ed74f2d
JB
4506 }
4507
698d0082 4508 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4509 spin_unlock(&space_info->lock);
6d74119f
JB
4510 return 0;
4511 } else if (space_info->chunk_alloc) {
4512 wait_for_alloc = 1;
4513 } else {
4514 space_info->chunk_alloc = 1;
9ed74f2d 4515 }
0e4f8f88 4516
25179201 4517 spin_unlock(&space_info->lock);
9ed74f2d 4518
6d74119f
JB
4519 mutex_lock(&fs_info->chunk_mutex);
4520
4521 /*
4522 * The chunk_mutex is held throughout the entirety of a chunk
4523 * allocation, so once we've acquired the chunk_mutex we know that the
4524 * other guy is done and we need to recheck and see if we should
4525 * allocate.
4526 */
4527 if (wait_for_alloc) {
4528 mutex_unlock(&fs_info->chunk_mutex);
4529 wait_for_alloc = 0;
4530 goto again;
4531 }
4532
c6b305a8
JB
4533 trans->allocating_chunk = true;
4534
67377734
JB
4535 /*
4536 * If we have mixed data/metadata chunks we want to make sure we keep
4537 * allocating mixed chunks instead of individual chunks.
4538 */
4539 if (btrfs_mixed_space_info(space_info))
4540 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4541
97e728d4
JB
4542 /*
4543 * if we're doing a data chunk, go ahead and make sure that
4544 * we keep a reasonable number of metadata chunks allocated in the
4545 * FS as well.
4546 */
9ed74f2d 4547 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4548 fs_info->data_chunk_allocations++;
4549 if (!(fs_info->data_chunk_allocations %
4550 fs_info->metadata_ratio))
4551 force_metadata_allocation(fs_info);
9ed74f2d
JB
4552 }
4553
15d1ff81
LB
4554 /*
4555 * Check if we have enough space in SYSTEM chunk because we may need
4556 * to update devices.
4557 */
4617ea3a 4558 check_system_chunk(trans, extent_root, flags);
15d1ff81 4559
2b82032c 4560 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4561 trans->allocating_chunk = false;
92b8e897 4562
9ed74f2d 4563 spin_lock(&space_info->lock);
a81cb9a2
AO
4564 if (ret < 0 && ret != -ENOSPC)
4565 goto out;
9ed74f2d 4566 if (ret)
6324fbf3 4567 space_info->full = 1;
424499db
YZ
4568 else
4569 ret = 1;
6d74119f 4570
0e4f8f88 4571 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4572out:
6d74119f 4573 space_info->chunk_alloc = 0;
9ed74f2d 4574 spin_unlock(&space_info->lock);
a25c75d5 4575 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4576 /*
4577 * When we allocate a new chunk we reserve space in the chunk block
4578 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4579 * add new nodes/leafs to it if we end up needing to do it when
4580 * inserting the chunk item and updating device items as part of the
4581 * second phase of chunk allocation, performed by
4582 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4583 * large number of new block groups to create in our transaction
4584 * handle's new_bgs list to avoid exhausting the chunk block reserve
4585 * in extreme cases - like having a single transaction create many new
4586 * block groups when starting to write out the free space caches of all
4587 * the block groups that were made dirty during the lifetime of the
4588 * transaction.
4589 */
d9a0540a 4590 if (trans->can_flush_pending_bgs &&
ee22184b 4591 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
00d80e34
FM
4592 btrfs_create_pending_block_groups(trans, trans->root);
4593 btrfs_trans_release_chunk_metadata(trans);
4594 }
0f9dd46c 4595 return ret;
6324fbf3 4596}
9ed74f2d 4597
a80c8dcf
JB
4598static int can_overcommit(struct btrfs_root *root,
4599 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4600 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4601{
957780eb
JB
4602 struct btrfs_block_rsv *global_rsv;
4603 u64 profile;
3c76cd84 4604 u64 space_size;
a80c8dcf
JB
4605 u64 avail;
4606 u64 used;
4607
957780eb
JB
4608 /* Don't overcommit when in mixed mode. */
4609 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4610 return 0;
4611
4612 BUG_ON(root->fs_info == NULL);
4613 global_rsv = &root->fs_info->global_block_rsv;
4614 profile = btrfs_get_alloc_profile(root, 0);
a80c8dcf 4615 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4616 space_info->bytes_pinned + space_info->bytes_readonly;
4617
96f1bb57
JB
4618 /*
4619 * We only want to allow over committing if we have lots of actual space
4620 * free, but if we don't have enough space to handle the global reserve
4621 * space then we could end up having a real enospc problem when trying
4622 * to allocate a chunk or some other such important allocation.
4623 */
3c76cd84
MX
4624 spin_lock(&global_rsv->lock);
4625 space_size = calc_global_rsv_need_space(global_rsv);
4626 spin_unlock(&global_rsv->lock);
4627 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4628 return 0;
4629
4630 used += space_info->bytes_may_use;
a80c8dcf
JB
4631
4632 spin_lock(&root->fs_info->free_chunk_lock);
4633 avail = root->fs_info->free_chunk_space;
4634 spin_unlock(&root->fs_info->free_chunk_lock);
4635
4636 /*
4637 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4638 * space is actually useable. For raid56, the space info used
4639 * doesn't include the parity drive, so we don't have to
4640 * change the math
a80c8dcf
JB
4641 */
4642 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4643 BTRFS_BLOCK_GROUP_RAID1 |
4644 BTRFS_BLOCK_GROUP_RAID10))
4645 avail >>= 1;
4646
4647 /*
561c294d
MX
4648 * If we aren't flushing all things, let us overcommit up to
4649 * 1/2th of the space. If we can flush, don't let us overcommit
4650 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4651 */
08e007d2 4652 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4653 avail >>= 3;
a80c8dcf 4654 else
14575aef 4655 avail >>= 1;
a80c8dcf 4656
14575aef 4657 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4658 return 1;
4659 return 0;
4660}
4661
48a3b636 4662static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4663 unsigned long nr_pages, int nr_items)
da633a42
MX
4664{
4665 struct super_block *sb = root->fs_info->sb;
da633a42 4666
925a6efb
JB
4667 if (down_read_trylock(&sb->s_umount)) {
4668 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4669 up_read(&sb->s_umount);
4670 } else {
da633a42
MX
4671 /*
4672 * We needn't worry the filesystem going from r/w to r/o though
4673 * we don't acquire ->s_umount mutex, because the filesystem
4674 * should guarantee the delalloc inodes list be empty after
4675 * the filesystem is readonly(all dirty pages are written to
4676 * the disk).
4677 */
6c255e67 4678 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4679 if (!current->journal_info)
578def7c
FM
4680 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4681 0, (u64)-1);
da633a42
MX
4682 }
4683}
4684
18cd8ea6
MX
4685static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4686{
4687 u64 bytes;
4688 int nr;
4689
4690 bytes = btrfs_calc_trans_metadata_size(root, 1);
4691 nr = (int)div64_u64(to_reclaim, bytes);
4692 if (!nr)
4693 nr = 1;
4694 return nr;
4695}
4696
ee22184b 4697#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4698
9ed74f2d 4699/*
5da9d01b 4700 * shrink metadata reservation for delalloc
9ed74f2d 4701 */
f4c738c2
JB
4702static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4703 bool wait_ordered)
5da9d01b 4704{
0ca1f7ce 4705 struct btrfs_block_rsv *block_rsv;
0019f10d 4706 struct btrfs_space_info *space_info;
663350ac 4707 struct btrfs_trans_handle *trans;
f4c738c2 4708 u64 delalloc_bytes;
5da9d01b 4709 u64 max_reclaim;
b1953bce 4710 long time_left;
d3ee29e3
MX
4711 unsigned long nr_pages;
4712 int loops;
b0244199 4713 int items;
08e007d2 4714 enum btrfs_reserve_flush_enum flush;
5da9d01b 4715
c61a16a7 4716 /* Calc the number of the pages we need flush for space reservation */
b0244199 4717 items = calc_reclaim_items_nr(root, to_reclaim);
8eb0dfdb 4718 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4719
663350ac 4720 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4721 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4722 space_info = block_rsv->space_info;
bf9022e0 4723
963d678b
MX
4724 delalloc_bytes = percpu_counter_sum_positive(
4725 &root->fs_info->delalloc_bytes);
f4c738c2 4726 if (delalloc_bytes == 0) {
fdb5effd 4727 if (trans)
f4c738c2 4728 return;
38c135af 4729 if (wait_ordered)
578def7c
FM
4730 btrfs_wait_ordered_roots(root->fs_info, items,
4731 0, (u64)-1);
f4c738c2 4732 return;
fdb5effd
JB
4733 }
4734
d3ee29e3 4735 loops = 0;
f4c738c2
JB
4736 while (delalloc_bytes && loops < 3) {
4737 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4738 nr_pages = max_reclaim >> PAGE_SHIFT;
6c255e67 4739 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4740 /*
4741 * We need to wait for the async pages to actually start before
4742 * we do anything.
4743 */
9f3a074d
MX
4744 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4745 if (!max_reclaim)
4746 goto skip_async;
4747
4748 if (max_reclaim <= nr_pages)
4749 max_reclaim = 0;
4750 else
4751 max_reclaim -= nr_pages;
dea31f52 4752
9f3a074d
MX
4753 wait_event(root->fs_info->async_submit_wait,
4754 atomic_read(&root->fs_info->async_delalloc_pages) <=
4755 (int)max_reclaim);
4756skip_async:
08e007d2
MX
4757 if (!trans)
4758 flush = BTRFS_RESERVE_FLUSH_ALL;
4759 else
4760 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4761 spin_lock(&space_info->lock);
08e007d2 4762 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4763 spin_unlock(&space_info->lock);
4764 break;
4765 }
957780eb
JB
4766 if (list_empty(&space_info->tickets) &&
4767 list_empty(&space_info->priority_tickets)) {
4768 spin_unlock(&space_info->lock);
4769 break;
4770 }
0019f10d 4771 spin_unlock(&space_info->lock);
5da9d01b 4772
36e39c40 4773 loops++;
f104d044 4774 if (wait_ordered && !trans) {
578def7c
FM
4775 btrfs_wait_ordered_roots(root->fs_info, items,
4776 0, (u64)-1);
f104d044 4777 } else {
f4c738c2 4778 time_left = schedule_timeout_killable(1);
f104d044
JB
4779 if (time_left)
4780 break;
4781 }
963d678b
MX
4782 delalloc_bytes = percpu_counter_sum_positive(
4783 &root->fs_info->delalloc_bytes);
5da9d01b 4784 }
5da9d01b
YZ
4785}
4786
663350ac
JB
4787/**
4788 * maybe_commit_transaction - possibly commit the transaction if its ok to
4789 * @root - the root we're allocating for
4790 * @bytes - the number of bytes we want to reserve
4791 * @force - force the commit
8bb8ab2e 4792 *
663350ac
JB
4793 * This will check to make sure that committing the transaction will actually
4794 * get us somewhere and then commit the transaction if it does. Otherwise it
4795 * will return -ENOSPC.
8bb8ab2e 4796 */
663350ac
JB
4797static int may_commit_transaction(struct btrfs_root *root,
4798 struct btrfs_space_info *space_info,
4799 u64 bytes, int force)
4800{
4801 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4802 struct btrfs_trans_handle *trans;
4803
4804 trans = (struct btrfs_trans_handle *)current->journal_info;
4805 if (trans)
4806 return -EAGAIN;
4807
4808 if (force)
4809 goto commit;
4810
4811 /* See if there is enough pinned space to make this reservation */
b150a4f1 4812 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4813 bytes) >= 0)
663350ac 4814 goto commit;
663350ac
JB
4815
4816 /*
4817 * See if there is some space in the delayed insertion reservation for
4818 * this reservation.
4819 */
4820 if (space_info != delayed_rsv->space_info)
4821 return -ENOSPC;
4822
4823 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4824 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4825 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4826 spin_unlock(&delayed_rsv->lock);
4827 return -ENOSPC;
4828 }
4829 spin_unlock(&delayed_rsv->lock);
4830
4831commit:
4832 trans = btrfs_join_transaction(root);
4833 if (IS_ERR(trans))
4834 return -ENOSPC;
4835
4836 return btrfs_commit_transaction(trans, root);
4837}
4838
957780eb
JB
4839struct reserve_ticket {
4840 u64 bytes;
4841 int error;
4842 struct list_head list;
4843 wait_queue_head_t wait;
4844};
4845
96c3f433
JB
4846static int flush_space(struct btrfs_root *root,
4847 struct btrfs_space_info *space_info, u64 num_bytes,
4848 u64 orig_bytes, int state)
4849{
4850 struct btrfs_trans_handle *trans;
4851 int nr;
f4c738c2 4852 int ret = 0;
96c3f433
JB
4853
4854 switch (state) {
96c3f433
JB
4855 case FLUSH_DELAYED_ITEMS_NR:
4856 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4857 if (state == FLUSH_DELAYED_ITEMS_NR)
4858 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4859 else
96c3f433 4860 nr = -1;
18cd8ea6 4861
96c3f433
JB
4862 trans = btrfs_join_transaction(root);
4863 if (IS_ERR(trans)) {
4864 ret = PTR_ERR(trans);
4865 break;
4866 }
4867 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4868 btrfs_end_transaction(trans, root);
4869 break;
67b0fd63
JB
4870 case FLUSH_DELALLOC:
4871 case FLUSH_DELALLOC_WAIT:
24af7dd1 4872 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4873 state == FLUSH_DELALLOC_WAIT);
4874 break;
ea658bad
JB
4875 case ALLOC_CHUNK:
4876 trans = btrfs_join_transaction(root);
4877 if (IS_ERR(trans)) {
4878 ret = PTR_ERR(trans);
4879 break;
4880 }
4881 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4882 btrfs_get_alloc_profile(root, 0),
4883 CHUNK_ALLOC_NO_FORCE);
4884 btrfs_end_transaction(trans, root);
4885 if (ret == -ENOSPC)
4886 ret = 0;
4887 break;
96c3f433
JB
4888 case COMMIT_TRANS:
4889 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4890 break;
4891 default:
4892 ret = -ENOSPC;
4893 break;
4894 }
4895
f376df2b
JB
4896 trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes,
4897 orig_bytes, state, ret);
96c3f433
JB
4898 return ret;
4899}
21c7e756
MX
4900
4901static inline u64
4902btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4903 struct btrfs_space_info *space_info)
4904{
957780eb 4905 struct reserve_ticket *ticket;
21c7e756
MX
4906 u64 used;
4907 u64 expected;
957780eb 4908 u64 to_reclaim = 0;
21c7e756 4909
ee22184b 4910 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
21c7e756 4911 if (can_overcommit(root, space_info, to_reclaim,
957780eb
JB
4912 BTRFS_RESERVE_FLUSH_ALL))
4913 return 0;
4914
4915 list_for_each_entry(ticket, &space_info->tickets, list)
4916 to_reclaim += ticket->bytes;
4917 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4918 to_reclaim += ticket->bytes;
4919 if (to_reclaim)
4920 return to_reclaim;
21c7e756
MX
4921
4922 used = space_info->bytes_used + space_info->bytes_reserved +
4923 space_info->bytes_pinned + space_info->bytes_readonly +
4924 space_info->bytes_may_use;
ee22184b 4925 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
21c7e756
MX
4926 expected = div_factor_fine(space_info->total_bytes, 95);
4927 else
4928 expected = div_factor_fine(space_info->total_bytes, 90);
4929
4930 if (used > expected)
4931 to_reclaim = used - expected;
4932 else
4933 to_reclaim = 0;
4934 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4935 space_info->bytes_reserved);
21c7e756
MX
4936 return to_reclaim;
4937}
4938
4939static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
87241c2e 4940 struct btrfs_root *root, u64 used)
21c7e756 4941{
365c5313
JB
4942 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4943
4944 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4945 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4946 return 0;
4947
87241c2e 4948 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
d38b349c
JB
4949 return 0;
4950
87241c2e
JB
4951 return (used >= thresh && !btrfs_fs_closing(root->fs_info) &&
4952 !test_bit(BTRFS_FS_STATE_REMOUNTING,
4953 &root->fs_info->fs_state));
21c7e756
MX
4954}
4955
957780eb 4956static void wake_all_tickets(struct list_head *head)
21c7e756 4957{
957780eb 4958 struct reserve_ticket *ticket;
21c7e756 4959
957780eb
JB
4960 while (!list_empty(head)) {
4961 ticket = list_first_entry(head, struct reserve_ticket, list);
4962 list_del_init(&ticket->list);
4963 ticket->error = -ENOSPC;
4964 wake_up(&ticket->wait);
25ce459c 4965 }
21c7e756
MX
4966}
4967
957780eb
JB
4968/*
4969 * This is for normal flushers, we can wait all goddamned day if we want to. We
4970 * will loop and continuously try to flush as long as we are making progress.
4971 * We count progress as clearing off tickets each time we have to loop.
4972 */
21c7e756
MX
4973static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4974{
957780eb 4975 struct reserve_ticket *last_ticket = NULL;
21c7e756
MX
4976 struct btrfs_fs_info *fs_info;
4977 struct btrfs_space_info *space_info;
4978 u64 to_reclaim;
4979 int flush_state;
957780eb 4980 int commit_cycles = 0;
21c7e756
MX
4981
4982 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4983 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4984
957780eb 4985 spin_lock(&space_info->lock);
21c7e756
MX
4986 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4987 space_info);
957780eb
JB
4988 if (!to_reclaim) {
4989 space_info->flush = 0;
4990 spin_unlock(&space_info->lock);
21c7e756 4991 return;
957780eb
JB
4992 }
4993 last_ticket = list_first_entry(&space_info->tickets,
4994 struct reserve_ticket, list);
4995 spin_unlock(&space_info->lock);
21c7e756
MX
4996
4997 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb
JB
4998 do {
4999 struct reserve_ticket *ticket;
5000 int ret;
5001
5002 ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
5003 to_reclaim, flush_state);
5004 spin_lock(&space_info->lock);
5005 if (list_empty(&space_info->tickets)) {
5006 space_info->flush = 0;
5007 spin_unlock(&space_info->lock);
5008 return;
5009 }
5010 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5011 space_info);
5012 ticket = list_first_entry(&space_info->tickets,
5013 struct reserve_ticket, list);
5014 if (last_ticket == ticket) {
5015 flush_state++;
5016 } else {
5017 last_ticket = ticket;
5018 flush_state = FLUSH_DELAYED_ITEMS_NR;
5019 if (commit_cycles)
5020 commit_cycles--;
5021 }
5022
5023 if (flush_state > COMMIT_TRANS) {
5024 commit_cycles++;
5025 if (commit_cycles > 2) {
5026 wake_all_tickets(&space_info->tickets);
5027 space_info->flush = 0;
5028 } else {
5029 flush_state = FLUSH_DELAYED_ITEMS_NR;
5030 }
5031 }
5032 spin_unlock(&space_info->lock);
5033 } while (flush_state <= COMMIT_TRANS);
5034}
5035
5036void btrfs_init_async_reclaim_work(struct work_struct *work)
5037{
5038 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5039}
5040
5041static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5042 struct btrfs_space_info *space_info,
5043 struct reserve_ticket *ticket)
5044{
5045 u64 to_reclaim;
5046 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5047
5048 spin_lock(&space_info->lock);
5049 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5050 space_info);
5051 if (!to_reclaim) {
5052 spin_unlock(&space_info->lock);
5053 return;
5054 }
5055 spin_unlock(&space_info->lock);
5056
21c7e756
MX
5057 do {
5058 flush_space(fs_info->fs_root, space_info, to_reclaim,
5059 to_reclaim, flush_state);
5060 flush_state++;
957780eb
JB
5061 spin_lock(&space_info->lock);
5062 if (ticket->bytes == 0) {
5063 spin_unlock(&space_info->lock);
21c7e756 5064 return;
957780eb
JB
5065 }
5066 spin_unlock(&space_info->lock);
5067
5068 /*
5069 * Priority flushers can't wait on delalloc without
5070 * deadlocking.
5071 */
5072 if (flush_state == FLUSH_DELALLOC ||
5073 flush_state == FLUSH_DELALLOC_WAIT)
5074 flush_state = ALLOC_CHUNK;
365c5313 5075 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5076}
5077
957780eb
JB
5078static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5079 struct btrfs_space_info *space_info,
5080 struct reserve_ticket *ticket, u64 orig_bytes)
5081
21c7e756 5082{
957780eb
JB
5083 DEFINE_WAIT(wait);
5084 int ret = 0;
5085
5086 spin_lock(&space_info->lock);
5087 while (ticket->bytes > 0 && ticket->error == 0) {
5088 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5089 if (ret) {
5090 ret = -EINTR;
5091 break;
5092 }
5093 spin_unlock(&space_info->lock);
5094
5095 schedule();
5096
5097 finish_wait(&ticket->wait, &wait);
5098 spin_lock(&space_info->lock);
5099 }
5100 if (!ret)
5101 ret = ticket->error;
5102 if (!list_empty(&ticket->list))
5103 list_del_init(&ticket->list);
5104 if (ticket->bytes && ticket->bytes < orig_bytes) {
5105 u64 num_bytes = orig_bytes - ticket->bytes;
5106 space_info->bytes_may_use -= num_bytes;
5107 trace_btrfs_space_reservation(fs_info, "space_info",
5108 space_info->flags, num_bytes, 0);
5109 }
5110 spin_unlock(&space_info->lock);
5111
5112 return ret;
21c7e756
MX
5113}
5114
4a92b1b8
JB
5115/**
5116 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5117 * @root - the root we're allocating for
957780eb 5118 * @space_info - the space info we want to allocate from
4a92b1b8 5119 * @orig_bytes - the number of bytes we want
48fc7f7e 5120 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5121 *
01327610 5122 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5123 * with the block_rsv. If there is not enough space it will make an attempt to
5124 * flush out space to make room. It will do this by flushing delalloc if
5125 * possible or committing the transaction. If flush is 0 then no attempts to
5126 * regain reservations will be made and this will fail if there is not enough
5127 * space already.
8bb8ab2e 5128 */
957780eb
JB
5129static int __reserve_metadata_bytes(struct btrfs_root *root,
5130 struct btrfs_space_info *space_info,
5131 u64 orig_bytes,
5132 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5133{
957780eb 5134 struct reserve_ticket ticket;
2bf64758 5135 u64 used;
8bb8ab2e 5136 int ret = 0;
9ed74f2d 5137
957780eb 5138 ASSERT(orig_bytes);
8ca17f0f
JB
5139 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5140
8bb8ab2e 5141 spin_lock(&space_info->lock);
fdb5effd 5142 ret = -ENOSPC;
2bf64758
JB
5143 used = space_info->bytes_used + space_info->bytes_reserved +
5144 space_info->bytes_pinned + space_info->bytes_readonly +
5145 space_info->bytes_may_use;
9ed74f2d 5146
8bb8ab2e 5147 /*
957780eb
JB
5148 * If we have enough space then hooray, make our reservation and carry
5149 * on. If not see if we can overcommit, and if we can, hooray carry on.
5150 * If not things get more complicated.
8bb8ab2e 5151 */
957780eb
JB
5152 if (used + orig_bytes <= space_info->total_bytes) {
5153 space_info->bytes_may_use += orig_bytes;
5154 trace_btrfs_space_reservation(root->fs_info, "space_info",
5155 space_info->flags, orig_bytes,
5156 1);
5157 ret = 0;
5158 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
44734ed1
JB
5159 space_info->bytes_may_use += orig_bytes;
5160 trace_btrfs_space_reservation(root->fs_info, "space_info",
5161 space_info->flags, orig_bytes,
5162 1);
5163 ret = 0;
2bf64758
JB
5164 }
5165
8bb8ab2e 5166 /*
957780eb
JB
5167 * If we couldn't make a reservation then setup our reservation ticket
5168 * and kick the async worker if it's not already running.
08e007d2 5169 *
957780eb
JB
5170 * If we are a priority flusher then we just need to add our ticket to
5171 * the list and we will do our own flushing further down.
8bb8ab2e 5172 */
72bcd99d 5173 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5174 ticket.bytes = orig_bytes;
5175 ticket.error = 0;
5176 init_waitqueue_head(&ticket.wait);
5177 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5178 list_add_tail(&ticket.list, &space_info->tickets);
5179 if (!space_info->flush) {
5180 space_info->flush = 1;
f376df2b
JB
5181 trace_btrfs_trigger_flush(root->fs_info,
5182 space_info->flags,
5183 orig_bytes, flush,
5184 "enospc");
957780eb
JB
5185 queue_work(system_unbound_wq,
5186 &root->fs_info->async_reclaim_work);
5187 }
5188 } else {
5189 list_add_tail(&ticket.list,
5190 &space_info->priority_tickets);
5191 }
21c7e756
MX
5192 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5193 used += orig_bytes;
f6acfd50
JB
5194 /*
5195 * We will do the space reservation dance during log replay,
5196 * which means we won't have fs_info->fs_root set, so don't do
5197 * the async reclaim as we will panic.
5198 */
5199 if (!root->fs_info->log_root_recovering &&
87241c2e 5200 need_do_async_reclaim(space_info, root, used) &&
f376df2b
JB
5201 !work_busy(&root->fs_info->async_reclaim_work)) {
5202 trace_btrfs_trigger_flush(root->fs_info,
5203 space_info->flags,
5204 orig_bytes, flush,
5205 "preempt");
21c7e756
MX
5206 queue_work(system_unbound_wq,
5207 &root->fs_info->async_reclaim_work);
f376df2b 5208 }
8bb8ab2e 5209 }
f0486c68 5210 spin_unlock(&space_info->lock);
08e007d2 5211 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5212 return ret;
f0486c68 5213
957780eb
JB
5214 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5215 return wait_reserve_ticket(root->fs_info, space_info, &ticket,
5216 orig_bytes);
08e007d2 5217
957780eb
JB
5218 ret = 0;
5219 priority_reclaim_metadata_space(root->fs_info, space_info, &ticket);
5220 spin_lock(&space_info->lock);
5221 if (ticket.bytes) {
5222 if (ticket.bytes < orig_bytes) {
5223 u64 num_bytes = orig_bytes - ticket.bytes;
5224 space_info->bytes_may_use -= num_bytes;
5225 trace_btrfs_space_reservation(root->fs_info,
5226 "space_info", space_info->flags,
5227 num_bytes, 0);
08e007d2 5228
957780eb
JB
5229 }
5230 list_del_init(&ticket.list);
5231 ret = -ENOSPC;
5232 }
5233 spin_unlock(&space_info->lock);
5234 ASSERT(list_empty(&ticket.list));
5235 return ret;
5236}
8bb8ab2e 5237
957780eb
JB
5238/**
5239 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5240 * @root - the root we're allocating for
5241 * @block_rsv - the block_rsv we're allocating for
5242 * @orig_bytes - the number of bytes we want
5243 * @flush - whether or not we can flush to make our reservation
5244 *
5245 * This will reserve orgi_bytes number of bytes from the space info associated
5246 * with the block_rsv. If there is not enough space it will make an attempt to
5247 * flush out space to make room. It will do this by flushing delalloc if
5248 * possible or committing the transaction. If flush is 0 then no attempts to
5249 * regain reservations will be made and this will fail if there is not enough
5250 * space already.
5251 */
5252static int reserve_metadata_bytes(struct btrfs_root *root,
5253 struct btrfs_block_rsv *block_rsv,
5254 u64 orig_bytes,
5255 enum btrfs_reserve_flush_enum flush)
5256{
5257 int ret;
5258
5259 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5260 flush);
5d80366e
JB
5261 if (ret == -ENOSPC &&
5262 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5263 struct btrfs_block_rsv *global_rsv =
5264 &root->fs_info->global_block_rsv;
5265
5266 if (block_rsv != global_rsv &&
5267 !block_rsv_use_bytes(global_rsv, orig_bytes))
5268 ret = 0;
5269 }
cab45e22
JM
5270 if (ret == -ENOSPC)
5271 trace_btrfs_space_reservation(root->fs_info,
5272 "space_info:enospc",
957780eb
JB
5273 block_rsv->space_info->flags,
5274 orig_bytes, 1);
f0486c68
YZ
5275 return ret;
5276}
5277
79787eaa
JM
5278static struct btrfs_block_rsv *get_block_rsv(
5279 const struct btrfs_trans_handle *trans,
5280 const struct btrfs_root *root)
f0486c68 5281{
4c13d758
JB
5282 struct btrfs_block_rsv *block_rsv = NULL;
5283
e9cf439f
AM
5284 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5285 (root == root->fs_info->csum_root && trans->adding_csums) ||
5286 (root == root->fs_info->uuid_root))
f7a81ea4
SB
5287 block_rsv = trans->block_rsv;
5288
4c13d758 5289 if (!block_rsv)
f0486c68
YZ
5290 block_rsv = root->block_rsv;
5291
5292 if (!block_rsv)
5293 block_rsv = &root->fs_info->empty_block_rsv;
5294
5295 return block_rsv;
5296}
5297
5298static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5299 u64 num_bytes)
5300{
5301 int ret = -ENOSPC;
5302 spin_lock(&block_rsv->lock);
5303 if (block_rsv->reserved >= num_bytes) {
5304 block_rsv->reserved -= num_bytes;
5305 if (block_rsv->reserved < block_rsv->size)
5306 block_rsv->full = 0;
5307 ret = 0;
5308 }
5309 spin_unlock(&block_rsv->lock);
5310 return ret;
5311}
5312
5313static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5314 u64 num_bytes, int update_size)
5315{
5316 spin_lock(&block_rsv->lock);
5317 block_rsv->reserved += num_bytes;
5318 if (update_size)
5319 block_rsv->size += num_bytes;
5320 else if (block_rsv->reserved >= block_rsv->size)
5321 block_rsv->full = 1;
5322 spin_unlock(&block_rsv->lock);
5323}
5324
d52be818
JB
5325int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5326 struct btrfs_block_rsv *dest, u64 num_bytes,
5327 int min_factor)
5328{
5329 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5330 u64 min_bytes;
5331
5332 if (global_rsv->space_info != dest->space_info)
5333 return -ENOSPC;
5334
5335 spin_lock(&global_rsv->lock);
5336 min_bytes = div_factor(global_rsv->size, min_factor);
5337 if (global_rsv->reserved < min_bytes + num_bytes) {
5338 spin_unlock(&global_rsv->lock);
5339 return -ENOSPC;
5340 }
5341 global_rsv->reserved -= num_bytes;
5342 if (global_rsv->reserved < global_rsv->size)
5343 global_rsv->full = 0;
5344 spin_unlock(&global_rsv->lock);
5345
5346 block_rsv_add_bytes(dest, num_bytes, 1);
5347 return 0;
5348}
5349
957780eb
JB
5350/*
5351 * This is for space we already have accounted in space_info->bytes_may_use, so
5352 * basically when we're returning space from block_rsv's.
5353 */
5354static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5355 struct btrfs_space_info *space_info,
5356 u64 num_bytes)
5357{
5358 struct reserve_ticket *ticket;
5359 struct list_head *head;
5360 u64 used;
5361 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5362 bool check_overcommit = false;
5363
5364 spin_lock(&space_info->lock);
5365 head = &space_info->priority_tickets;
5366
5367 /*
5368 * If we are over our limit then we need to check and see if we can
5369 * overcommit, and if we can't then we just need to free up our space
5370 * and not satisfy any requests.
5371 */
5372 used = space_info->bytes_used + space_info->bytes_reserved +
5373 space_info->bytes_pinned + space_info->bytes_readonly +
5374 space_info->bytes_may_use;
5375 if (used - num_bytes >= space_info->total_bytes)
5376 check_overcommit = true;
5377again:
5378 while (!list_empty(head) && num_bytes) {
5379 ticket = list_first_entry(head, struct reserve_ticket,
5380 list);
5381 /*
5382 * We use 0 bytes because this space is already reserved, so
5383 * adding the ticket space would be a double count.
5384 */
5385 if (check_overcommit &&
5386 !can_overcommit(fs_info->extent_root, space_info, 0,
5387 flush))
5388 break;
5389 if (num_bytes >= ticket->bytes) {
5390 list_del_init(&ticket->list);
5391 num_bytes -= ticket->bytes;
5392 ticket->bytes = 0;
5393 wake_up(&ticket->wait);
5394 } else {
5395 ticket->bytes -= num_bytes;
5396 num_bytes = 0;
5397 }
5398 }
5399
5400 if (num_bytes && head == &space_info->priority_tickets) {
5401 head = &space_info->tickets;
5402 flush = BTRFS_RESERVE_FLUSH_ALL;
5403 goto again;
5404 }
5405 space_info->bytes_may_use -= num_bytes;
5406 trace_btrfs_space_reservation(fs_info, "space_info",
5407 space_info->flags, num_bytes, 0);
5408 spin_unlock(&space_info->lock);
5409}
5410
5411/*
5412 * This is for newly allocated space that isn't accounted in
5413 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5414 * we use this helper.
5415 */
5416static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5417 struct btrfs_space_info *space_info,
5418 u64 num_bytes)
5419{
5420 struct reserve_ticket *ticket;
5421 struct list_head *head = &space_info->priority_tickets;
5422
5423again:
5424 while (!list_empty(head) && num_bytes) {
5425 ticket = list_first_entry(head, struct reserve_ticket,
5426 list);
5427 if (num_bytes >= ticket->bytes) {
5428 trace_btrfs_space_reservation(fs_info, "space_info",
5429 space_info->flags,
5430 ticket->bytes, 1);
5431 list_del_init(&ticket->list);
5432 num_bytes -= ticket->bytes;
5433 space_info->bytes_may_use += ticket->bytes;
5434 ticket->bytes = 0;
5435 wake_up(&ticket->wait);
5436 } else {
5437 trace_btrfs_space_reservation(fs_info, "space_info",
5438 space_info->flags,
5439 num_bytes, 1);
5440 space_info->bytes_may_use += num_bytes;
5441 ticket->bytes -= num_bytes;
5442 num_bytes = 0;
5443 }
5444 }
5445
5446 if (num_bytes && head == &space_info->priority_tickets) {
5447 head = &space_info->tickets;
5448 goto again;
5449 }
5450}
5451
8c2a3ca2
JB
5452static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5453 struct btrfs_block_rsv *block_rsv,
62a45b60 5454 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5455{
5456 struct btrfs_space_info *space_info = block_rsv->space_info;
5457
5458 spin_lock(&block_rsv->lock);
5459 if (num_bytes == (u64)-1)
5460 num_bytes = block_rsv->size;
5461 block_rsv->size -= num_bytes;
5462 if (block_rsv->reserved >= block_rsv->size) {
5463 num_bytes = block_rsv->reserved - block_rsv->size;
5464 block_rsv->reserved = block_rsv->size;
5465 block_rsv->full = 1;
5466 } else {
5467 num_bytes = 0;
5468 }
5469 spin_unlock(&block_rsv->lock);
5470
5471 if (num_bytes > 0) {
5472 if (dest) {
e9e22899
JB
5473 spin_lock(&dest->lock);
5474 if (!dest->full) {
5475 u64 bytes_to_add;
5476
5477 bytes_to_add = dest->size - dest->reserved;
5478 bytes_to_add = min(num_bytes, bytes_to_add);
5479 dest->reserved += bytes_to_add;
5480 if (dest->reserved >= dest->size)
5481 dest->full = 1;
5482 num_bytes -= bytes_to_add;
5483 }
5484 spin_unlock(&dest->lock);
5485 }
957780eb
JB
5486 if (num_bytes)
5487 space_info_add_old_bytes(fs_info, space_info,
5488 num_bytes);
9ed74f2d 5489 }
f0486c68 5490}
4e06bdd6 5491
25d609f8
JB
5492int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5493 struct btrfs_block_rsv *dst, u64 num_bytes,
5494 int update_size)
f0486c68
YZ
5495{
5496 int ret;
9ed74f2d 5497
f0486c68
YZ
5498 ret = block_rsv_use_bytes(src, num_bytes);
5499 if (ret)
5500 return ret;
9ed74f2d 5501
25d609f8 5502 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5503 return 0;
5504}
5505
66d8f3dd 5506void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5507{
f0486c68
YZ
5508 memset(rsv, 0, sizeof(*rsv));
5509 spin_lock_init(&rsv->lock);
66d8f3dd 5510 rsv->type = type;
f0486c68
YZ
5511}
5512
66d8f3dd
MX
5513struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5514 unsigned short type)
f0486c68
YZ
5515{
5516 struct btrfs_block_rsv *block_rsv;
5517 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5518
f0486c68
YZ
5519 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5520 if (!block_rsv)
5521 return NULL;
9ed74f2d 5522
66d8f3dd 5523 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5524 block_rsv->space_info = __find_space_info(fs_info,
5525 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5526 return block_rsv;
5527}
9ed74f2d 5528
f0486c68
YZ
5529void btrfs_free_block_rsv(struct btrfs_root *root,
5530 struct btrfs_block_rsv *rsv)
5531{
2aaa6655
JB
5532 if (!rsv)
5533 return;
dabdb640
JB
5534 btrfs_block_rsv_release(root, rsv, (u64)-1);
5535 kfree(rsv);
9ed74f2d
JB
5536}
5537
cdfb080e
CM
5538void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5539{
5540 kfree(rsv);
5541}
5542
08e007d2
MX
5543int btrfs_block_rsv_add(struct btrfs_root *root,
5544 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5545 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5546{
f0486c68 5547 int ret;
9ed74f2d 5548
f0486c68
YZ
5549 if (num_bytes == 0)
5550 return 0;
8bb8ab2e 5551
61b520a9 5552 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5553 if (!ret) {
5554 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5555 return 0;
5556 }
9ed74f2d 5557
f0486c68 5558 return ret;
f0486c68 5559}
9ed74f2d 5560
4a92b1b8 5561int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5562 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5563{
5564 u64 num_bytes = 0;
f0486c68 5565 int ret = -ENOSPC;
9ed74f2d 5566
f0486c68
YZ
5567 if (!block_rsv)
5568 return 0;
9ed74f2d 5569
f0486c68 5570 spin_lock(&block_rsv->lock);
36ba022a
JB
5571 num_bytes = div_factor(block_rsv->size, min_factor);
5572 if (block_rsv->reserved >= num_bytes)
5573 ret = 0;
5574 spin_unlock(&block_rsv->lock);
9ed74f2d 5575
36ba022a
JB
5576 return ret;
5577}
5578
08e007d2
MX
5579int btrfs_block_rsv_refill(struct btrfs_root *root,
5580 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5581 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5582{
5583 u64 num_bytes = 0;
5584 int ret = -ENOSPC;
5585
5586 if (!block_rsv)
5587 return 0;
5588
5589 spin_lock(&block_rsv->lock);
5590 num_bytes = min_reserved;
13553e52 5591 if (block_rsv->reserved >= num_bytes)
f0486c68 5592 ret = 0;
13553e52 5593 else
f0486c68 5594 num_bytes -= block_rsv->reserved;
f0486c68 5595 spin_unlock(&block_rsv->lock);
13553e52 5596
f0486c68
YZ
5597 if (!ret)
5598 return 0;
5599
aa38a711 5600 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5601 if (!ret) {
5602 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5603 return 0;
6a63209f 5604 }
9ed74f2d 5605
13553e52 5606 return ret;
f0486c68
YZ
5607}
5608
f0486c68
YZ
5609void btrfs_block_rsv_release(struct btrfs_root *root,
5610 struct btrfs_block_rsv *block_rsv,
5611 u64 num_bytes)
5612{
5613 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5614 if (global_rsv == block_rsv ||
f0486c68
YZ
5615 block_rsv->space_info != global_rsv->space_info)
5616 global_rsv = NULL;
8c2a3ca2
JB
5617 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5618 num_bytes);
6a63209f
JB
5619}
5620
8929ecfa
YZ
5621static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5622{
5623 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5624 struct btrfs_space_info *sinfo = block_rsv->space_info;
5625 u64 num_bytes;
6a63209f 5626
ae2e4728
JB
5627 /*
5628 * The global block rsv is based on the size of the extent tree, the
5629 * checksum tree and the root tree. If the fs is empty we want to set
5630 * it to a minimal amount for safety.
5631 */
5632 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5633 btrfs_root_used(&fs_info->csum_root->root_item) +
5634 btrfs_root_used(&fs_info->tree_root->root_item);
5635 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5636
8929ecfa 5637 spin_lock(&sinfo->lock);
1f699d38 5638 spin_lock(&block_rsv->lock);
4e06bdd6 5639
ee22184b 5640 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5641
fb4b10e5
JB
5642 if (block_rsv->reserved < block_rsv->size) {
5643 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5644 sinfo->bytes_reserved + sinfo->bytes_readonly +
5645 sinfo->bytes_may_use;
5646 if (sinfo->total_bytes > num_bytes) {
5647 num_bytes = sinfo->total_bytes - num_bytes;
5648 num_bytes = min(num_bytes,
5649 block_rsv->size - block_rsv->reserved);
5650 block_rsv->reserved += num_bytes;
5651 sinfo->bytes_may_use += num_bytes;
5652 trace_btrfs_space_reservation(fs_info, "space_info",
5653 sinfo->flags, num_bytes,
5654 1);
5655 }
5656 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5657 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5658 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5659 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5660 sinfo->flags, num_bytes, 0);
8929ecfa 5661 block_rsv->reserved = block_rsv->size;
8929ecfa 5662 }
182608c8 5663
fb4b10e5
JB
5664 if (block_rsv->reserved == block_rsv->size)
5665 block_rsv->full = 1;
5666 else
5667 block_rsv->full = 0;
5668
8929ecfa 5669 spin_unlock(&block_rsv->lock);
1f699d38 5670 spin_unlock(&sinfo->lock);
6a63209f
JB
5671}
5672
f0486c68 5673static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5674{
f0486c68 5675 struct btrfs_space_info *space_info;
6a63209f 5676
f0486c68
YZ
5677 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5678 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5679
f0486c68 5680 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5681 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5682 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5683 fs_info->trans_block_rsv.space_info = space_info;
5684 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5685 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5686
8929ecfa
YZ
5687 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5688 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5689 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5690 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5691 if (fs_info->quota_root)
5692 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5693 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5694
8929ecfa 5695 update_global_block_rsv(fs_info);
6a63209f
JB
5696}
5697
8929ecfa 5698static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5699{
8c2a3ca2
JB
5700 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5701 (u64)-1);
8929ecfa
YZ
5702 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5703 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5704 WARN_ON(fs_info->trans_block_rsv.size > 0);
5705 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5706 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5707 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5708 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5709 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5710}
5711
a22285a6
YZ
5712void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5713 struct btrfs_root *root)
6a63209f 5714{
0e721106
JB
5715 if (!trans->block_rsv)
5716 return;
5717
a22285a6
YZ
5718 if (!trans->bytes_reserved)
5719 return;
6a63209f 5720
e77266e4 5721 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5722 trans->transid, trans->bytes_reserved, 0);
b24e03db 5723 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5724 trans->bytes_reserved = 0;
5725}
6a63209f 5726
4fbcdf66
FM
5727/*
5728 * To be called after all the new block groups attached to the transaction
5729 * handle have been created (btrfs_create_pending_block_groups()).
5730 */
5731void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5732{
5733 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5734
5735 if (!trans->chunk_bytes_reserved)
5736 return;
5737
5738 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5739
5740 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5741 trans->chunk_bytes_reserved);
5742 trans->chunk_bytes_reserved = 0;
5743}
5744
79787eaa 5745/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5746int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5747 struct inode *inode)
5748{
5749 struct btrfs_root *root = BTRFS_I(inode)->root;
40acc3ee
JB
5750 /*
5751 * We always use trans->block_rsv here as we will have reserved space
5752 * for our orphan when starting the transaction, using get_block_rsv()
5753 * here will sometimes make us choose the wrong block rsv as we could be
5754 * doing a reloc inode for a non refcounted root.
5755 */
5756 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5757 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5758
5759 /*
fcb80c2a
JB
5760 * We need to hold space in order to delete our orphan item once we've
5761 * added it, so this takes the reservation so we can release it later
5762 * when we are truly done with the orphan item.
d68fc57b 5763 */
ff5714cc 5764 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5765 trace_btrfs_space_reservation(root->fs_info, "orphan",
5766 btrfs_ino(inode), num_bytes, 1);
25d609f8 5767 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5768}
5769
d68fc57b 5770void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5771{
d68fc57b 5772 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5773 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5774 trace_btrfs_space_reservation(root->fs_info, "orphan",
5775 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5776 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5777}
97e728d4 5778
d5c12070
MX
5779/*
5780 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5781 * root: the root of the parent directory
5782 * rsv: block reservation
5783 * items: the number of items that we need do reservation
5784 * qgroup_reserved: used to return the reserved size in qgroup
5785 *
5786 * This function is used to reserve the space for snapshot/subvolume
5787 * creation and deletion. Those operations are different with the
5788 * common file/directory operations, they change two fs/file trees
5789 * and root tree, the number of items that the qgroup reserves is
5790 * different with the free space reservation. So we can not use
01327610 5791 * the space reservation mechanism in start_transaction().
d5c12070
MX
5792 */
5793int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5794 struct btrfs_block_rsv *rsv,
5795 int items,
ee3441b4
JM
5796 u64 *qgroup_reserved,
5797 bool use_global_rsv)
a22285a6 5798{
d5c12070
MX
5799 u64 num_bytes;
5800 int ret;
ee3441b4 5801 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5802
5803 if (root->fs_info->quota_enabled) {
5804 /* One for parent inode, two for dir entries */
707e8a07 5805 num_bytes = 3 * root->nodesize;
7174109c 5806 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5807 if (ret)
5808 return ret;
5809 } else {
5810 num_bytes = 0;
5811 }
5812
5813 *qgroup_reserved = num_bytes;
5814
5815 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5816 rsv->space_info = __find_space_info(root->fs_info,
5817 BTRFS_BLOCK_GROUP_METADATA);
5818 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5819 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5820
5821 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5822 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5823
7174109c
QW
5824 if (ret && *qgroup_reserved)
5825 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5826
5827 return ret;
5828}
5829
5830void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5831 struct btrfs_block_rsv *rsv,
5832 u64 qgroup_reserved)
5833{
5834 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5835}
5836
7709cde3
JB
5837/**
5838 * drop_outstanding_extent - drop an outstanding extent
5839 * @inode: the inode we're dropping the extent for
01327610 5840 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5841 *
5842 * This is called when we are freeing up an outstanding extent, either called
5843 * after an error or after an extent is written. This will return the number of
5844 * reserved extents that need to be freed. This must be called with
5845 * BTRFS_I(inode)->lock held.
5846 */
dcab6a3b 5847static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5848{
7fd2ae21 5849 unsigned drop_inode_space = 0;
9e0baf60 5850 unsigned dropped_extents = 0;
dcab6a3b 5851 unsigned num_extents = 0;
9e0baf60 5852
dcab6a3b
JB
5853 num_extents = (unsigned)div64_u64(num_bytes +
5854 BTRFS_MAX_EXTENT_SIZE - 1,
5855 BTRFS_MAX_EXTENT_SIZE);
5856 ASSERT(num_extents);
5857 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5858 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5859
7fd2ae21 5860 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5861 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5862 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5863 drop_inode_space = 1;
7fd2ae21 5864
9e0baf60 5865 /*
01327610 5866 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5867 * reserved then we need to leave the reserved extents count alone.
5868 */
5869 if (BTRFS_I(inode)->outstanding_extents >=
5870 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5871 return drop_inode_space;
9e0baf60
JB
5872
5873 dropped_extents = BTRFS_I(inode)->reserved_extents -
5874 BTRFS_I(inode)->outstanding_extents;
5875 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5876 return dropped_extents + drop_inode_space;
9e0baf60
JB
5877}
5878
7709cde3 5879/**
01327610
NS
5880 * calc_csum_metadata_size - return the amount of metadata space that must be
5881 * reserved/freed for the given bytes.
7709cde3
JB
5882 * @inode: the inode we're manipulating
5883 * @num_bytes: the number of bytes in question
5884 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5885 *
5886 * This adjusts the number of csum_bytes in the inode and then returns the
5887 * correct amount of metadata that must either be reserved or freed. We
5888 * calculate how many checksums we can fit into one leaf and then divide the
5889 * number of bytes that will need to be checksumed by this value to figure out
5890 * how many checksums will be required. If we are adding bytes then the number
5891 * may go up and we will return the number of additional bytes that must be
5892 * reserved. If it is going down we will return the number of bytes that must
5893 * be freed.
5894 *
5895 * This must be called with BTRFS_I(inode)->lock held.
5896 */
5897static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5898 int reserve)
6324fbf3 5899{
7709cde3 5900 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5901 u64 old_csums, num_csums;
7709cde3
JB
5902
5903 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5904 BTRFS_I(inode)->csum_bytes == 0)
5905 return 0;
5906
28f75a0e 5907 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5908 if (reserve)
5909 BTRFS_I(inode)->csum_bytes += num_bytes;
5910 else
5911 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5912 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5913
5914 /* No change, no need to reserve more */
5915 if (old_csums == num_csums)
5916 return 0;
5917
5918 if (reserve)
5919 return btrfs_calc_trans_metadata_size(root,
5920 num_csums - old_csums);
5921
5922 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5923}
c146afad 5924
0ca1f7ce
YZ
5925int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5926{
5927 struct btrfs_root *root = BTRFS_I(inode)->root;
5928 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5929 u64 to_reserve = 0;
660d3f6c 5930 u64 csum_bytes;
9e0baf60 5931 unsigned nr_extents = 0;
08e007d2 5932 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5933 int ret = 0;
c64c2bd8 5934 bool delalloc_lock = true;
88e081bf
WS
5935 u64 to_free = 0;
5936 unsigned dropped;
48c3d480 5937 bool release_extra = false;
6324fbf3 5938
c64c2bd8
JB
5939 /* If we are a free space inode we need to not flush since we will be in
5940 * the middle of a transaction commit. We also don't need the delalloc
5941 * mutex since we won't race with anybody. We need this mostly to make
5942 * lockdep shut its filthy mouth.
bac357dc
JB
5943 *
5944 * If we have a transaction open (can happen if we call truncate_block
5945 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
5946 */
5947 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5948 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 5949 delalloc_lock = false;
bac357dc
JB
5950 } else if (current->journal_info) {
5951 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c64c2bd8 5952 }
c09544e0 5953
08e007d2
MX
5954 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5955 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5956 schedule_timeout(1);
ec44a35c 5957
c64c2bd8
JB
5958 if (delalloc_lock)
5959 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5960
0ca1f7ce 5961 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5962
9e0baf60 5963 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5964 nr_extents = (unsigned)div64_u64(num_bytes +
5965 BTRFS_MAX_EXTENT_SIZE - 1,
5966 BTRFS_MAX_EXTENT_SIZE);
5967 BTRFS_I(inode)->outstanding_extents += nr_extents;
9e0baf60 5968
48c3d480 5969 nr_extents = 0;
9e0baf60 5970 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5971 BTRFS_I(inode)->reserved_extents)
48c3d480 5972 nr_extents += BTRFS_I(inode)->outstanding_extents -
9e0baf60 5973 BTRFS_I(inode)->reserved_extents;
57a45ced 5974
48c3d480
JB
5975 /* We always want to reserve a slot for updating the inode. */
5976 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1);
7709cde3 5977 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5978 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5979 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5980
88e081bf 5981 if (root->fs_info->quota_enabled) {
7174109c
QW
5982 ret = btrfs_qgroup_reserve_meta(root,
5983 nr_extents * root->nodesize);
88e081bf
WS
5984 if (ret)
5985 goto out_fail;
5986 }
c5567237 5987
48c3d480 5988 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
88e081bf 5989 if (unlikely(ret)) {
7174109c 5990 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
88e081bf 5991 goto out_fail;
9e0baf60 5992 }
25179201 5993
660d3f6c 5994 spin_lock(&BTRFS_I(inode)->lock);
48c3d480 5995 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
f485c9ee
JB
5996 &BTRFS_I(inode)->runtime_flags)) {
5997 to_reserve -= btrfs_calc_trans_metadata_size(root, 1);
48c3d480 5998 release_extra = true;
f485c9ee 5999 }
660d3f6c
JB
6000 BTRFS_I(inode)->reserved_extents += nr_extents;
6001 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
6002
6003 if (delalloc_lock)
6004 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 6005
8c2a3ca2 6006 if (to_reserve)
67871254 6007 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 6008 btrfs_ino(inode), to_reserve, 1);
48c3d480
JB
6009 if (release_extra)
6010 btrfs_block_rsv_release(root, block_rsv,
6011 btrfs_calc_trans_metadata_size(root,
6012 1));
0ca1f7ce 6013 return 0;
88e081bf
WS
6014
6015out_fail:
6016 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 6017 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
6018 /*
6019 * If the inodes csum_bytes is the same as the original
6020 * csum_bytes then we know we haven't raced with any free()ers
6021 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 6022 */
f4881bc7 6023 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 6024 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
6025 } else {
6026 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6027 u64 bytes;
6028
6029 /*
6030 * This is tricky, but first we need to figure out how much we
01327610 6031 * freed from any free-ers that occurred during this
f4881bc7
JB
6032 * reservation, so we reset ->csum_bytes to the csum_bytes
6033 * before we dropped our lock, and then call the free for the
6034 * number of bytes that were freed while we were trying our
6035 * reservation.
6036 */
6037 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6038 BTRFS_I(inode)->csum_bytes = csum_bytes;
6039 to_free = calc_csum_metadata_size(inode, bytes, 0);
6040
6041
6042 /*
6043 * Now we need to see how much we would have freed had we not
6044 * been making this reservation and our ->csum_bytes were not
6045 * artificially inflated.
6046 */
6047 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6048 bytes = csum_bytes - orig_csum_bytes;
6049 bytes = calc_csum_metadata_size(inode, bytes, 0);
6050
6051 /*
6052 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 6053 * more than to_free then we would have freed more space had we
f4881bc7
JB
6054 * not had an artificially high ->csum_bytes, so we need to free
6055 * the remainder. If bytes is the same or less then we don't
6056 * need to do anything, the other free-ers did the correct
6057 * thing.
6058 */
6059 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6060 if (bytes > to_free)
6061 to_free = bytes - to_free;
6062 else
6063 to_free = 0;
6064 }
88e081bf 6065 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 6066 if (dropped)
88e081bf
WS
6067 to_free += btrfs_calc_trans_metadata_size(root, dropped);
6068
6069 if (to_free) {
6070 btrfs_block_rsv_release(root, block_rsv, to_free);
6071 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6072 btrfs_ino(inode), to_free, 0);
6073 }
6074 if (delalloc_lock)
6075 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6076 return ret;
0ca1f7ce
YZ
6077}
6078
7709cde3
JB
6079/**
6080 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6081 * @inode: the inode to release the reservation for
6082 * @num_bytes: the number of bytes we're releasing
6083 *
6084 * This will release the metadata reservation for an inode. This can be called
6085 * once we complete IO for a given set of bytes to release their metadata
6086 * reservations.
6087 */
0ca1f7ce
YZ
6088void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6089{
6090 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
6091 u64 to_free = 0;
6092 unsigned dropped;
0ca1f7ce
YZ
6093
6094 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 6095 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 6096 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 6097
0934856d
MX
6098 if (num_bytes)
6099 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 6100 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
6101 if (dropped > 0)
6102 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 6103
f5ee5c9a 6104 if (btrfs_is_testing(root->fs_info))
6a3891c5
JB
6105 return;
6106
8c2a3ca2
JB
6107 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6108 btrfs_ino(inode), to_free, 0);
c5567237 6109
0ca1f7ce
YZ
6110 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
6111 to_free);
6112}
6113
1ada3a62 6114/**
7cf5b976 6115 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6116 * delalloc
6117 * @inode: inode we're writing to
6118 * @start: start range we are writing to
6119 * @len: how long the range we are writing to
6120 *
6121 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
6122 *
6123 * This will do the following things
6124 *
6125 * o reserve space in data space info for num bytes
6126 * and reserve precious corresponding qgroup space
6127 * (Done in check_data_free_space)
6128 *
6129 * o reserve space for metadata space, based on the number of outstanding
6130 * extents and how much csums will be needed
6131 * also reserve metadata space in a per root over-reserve method.
6132 * o add to the inodes->delalloc_bytes
6133 * o add it to the fs_info's delalloc inodes list.
6134 * (Above 3 all done in delalloc_reserve_metadata)
6135 *
6136 * Return 0 for success
6137 * Return <0 for error(-ENOSPC or -EQUOT)
6138 */
7cf5b976 6139int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6140{
6141 int ret;
6142
7cf5b976 6143 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
6144 if (ret < 0)
6145 return ret;
6146 ret = btrfs_delalloc_reserve_metadata(inode, len);
6147 if (ret < 0)
7cf5b976 6148 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
6149 return ret;
6150}
6151
7709cde3 6152/**
7cf5b976 6153 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6154 * @inode: inode we're releasing space for
6155 * @start: start position of the space already reserved
6156 * @len: the len of the space already reserved
6157 *
6158 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6159 * called in the case that we don't need the metadata AND data reservations
6160 * anymore. So if there is an error or we insert an inline extent.
6161 *
6162 * This function will release the metadata space that was not used and will
6163 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6164 * list if there are no delalloc bytes left.
6165 * Also it will handle the qgroup reserved space.
6166 */
7cf5b976 6167void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6168{
6169 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 6170 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
6171}
6172
ce93ec54
JB
6173static int update_block_group(struct btrfs_trans_handle *trans,
6174 struct btrfs_root *root, u64 bytenr,
6175 u64 num_bytes, int alloc)
9078a3e1 6176{
0af3d00b 6177 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 6178 struct btrfs_fs_info *info = root->fs_info;
db94535d 6179 u64 total = num_bytes;
9078a3e1 6180 u64 old_val;
db94535d 6181 u64 byte_in_group;
0af3d00b 6182 int factor;
3e1ad54f 6183
5d4f98a2 6184 /* block accounting for super block */
eb73c1b7 6185 spin_lock(&info->delalloc_root_lock);
6c41761f 6186 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6187 if (alloc)
6188 old_val += num_bytes;
6189 else
6190 old_val -= num_bytes;
6c41761f 6191 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6192 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6193
d397712b 6194 while (total) {
db94535d 6195 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6196 if (!cache)
79787eaa 6197 return -ENOENT;
b742bb82
YZ
6198 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6199 BTRFS_BLOCK_GROUP_RAID1 |
6200 BTRFS_BLOCK_GROUP_RAID10))
6201 factor = 2;
6202 else
6203 factor = 1;
9d66e233
JB
6204 /*
6205 * If this block group has free space cache written out, we
6206 * need to make sure to load it if we are removing space. This
6207 * is because we need the unpinning stage to actually add the
6208 * space back to the block group, otherwise we will leak space.
6209 */
6210 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6211 cache_block_group(cache, 1);
0af3d00b 6212
db94535d
CM
6213 byte_in_group = bytenr - cache->key.objectid;
6214 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6215
25179201 6216 spin_lock(&cache->space_info->lock);
c286ac48 6217 spin_lock(&cache->lock);
0af3d00b 6218
3cdde224 6219 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
0af3d00b
JB
6220 cache->disk_cache_state < BTRFS_DC_CLEAR)
6221 cache->disk_cache_state = BTRFS_DC_CLEAR;
6222
9078a3e1 6223 old_val = btrfs_block_group_used(&cache->item);
db94535d 6224 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6225 if (alloc) {
db94535d 6226 old_val += num_bytes;
11833d66
YZ
6227 btrfs_set_block_group_used(&cache->item, old_val);
6228 cache->reserved -= num_bytes;
11833d66 6229 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6230 cache->space_info->bytes_used += num_bytes;
6231 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6232 spin_unlock(&cache->lock);
25179201 6233 spin_unlock(&cache->space_info->lock);
cd1bc465 6234 } else {
db94535d 6235 old_val -= num_bytes;
ae0ab003
FM
6236 btrfs_set_block_group_used(&cache->item, old_val);
6237 cache->pinned += num_bytes;
6238 cache->space_info->bytes_pinned += num_bytes;
6239 cache->space_info->bytes_used -= num_bytes;
6240 cache->space_info->disk_used -= num_bytes * factor;
6241 spin_unlock(&cache->lock);
6242 spin_unlock(&cache->space_info->lock);
47ab2a6c 6243
c51e7bb1
JB
6244 trace_btrfs_space_reservation(root->fs_info, "pinned",
6245 cache->space_info->flags,
6246 num_bytes, 1);
ae0ab003
FM
6247 set_extent_dirty(info->pinned_extents,
6248 bytenr, bytenr + num_bytes - 1,
6249 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6250 }
1bbc621e
CM
6251
6252 spin_lock(&trans->transaction->dirty_bgs_lock);
6253 if (list_empty(&cache->dirty_list)) {
6254 list_add_tail(&cache->dirty_list,
6255 &trans->transaction->dirty_bgs);
6256 trans->transaction->num_dirty_bgs++;
6257 btrfs_get_block_group(cache);
6258 }
6259 spin_unlock(&trans->transaction->dirty_bgs_lock);
6260
036a9348
FM
6261 /*
6262 * No longer have used bytes in this block group, queue it for
6263 * deletion. We do this after adding the block group to the
6264 * dirty list to avoid races between cleaner kthread and space
6265 * cache writeout.
6266 */
6267 if (!alloc && old_val == 0) {
6268 spin_lock(&info->unused_bgs_lock);
6269 if (list_empty(&cache->bg_list)) {
6270 btrfs_get_block_group(cache);
6271 list_add_tail(&cache->bg_list,
6272 &info->unused_bgs);
6273 }
6274 spin_unlock(&info->unused_bgs_lock);
6275 }
6276
fa9c0d79 6277 btrfs_put_block_group(cache);
db94535d
CM
6278 total -= num_bytes;
6279 bytenr += num_bytes;
9078a3e1
CM
6280 }
6281 return 0;
6282}
6324fbf3 6283
a061fc8d
CM
6284static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6285{
0f9dd46c 6286 struct btrfs_block_group_cache *cache;
d2fb3437 6287 u64 bytenr;
0f9dd46c 6288
a1897fdd
LB
6289 spin_lock(&root->fs_info->block_group_cache_lock);
6290 bytenr = root->fs_info->first_logical_byte;
6291 spin_unlock(&root->fs_info->block_group_cache_lock);
6292
6293 if (bytenr < (u64)-1)
6294 return bytenr;
6295
0f9dd46c
JB
6296 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6297 if (!cache)
a061fc8d 6298 return 0;
0f9dd46c 6299
d2fb3437 6300 bytenr = cache->key.objectid;
fa9c0d79 6301 btrfs_put_block_group(cache);
d2fb3437
YZ
6302
6303 return bytenr;
a061fc8d
CM
6304}
6305
f0486c68
YZ
6306static int pin_down_extent(struct btrfs_root *root,
6307 struct btrfs_block_group_cache *cache,
6308 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6309{
11833d66
YZ
6310 spin_lock(&cache->space_info->lock);
6311 spin_lock(&cache->lock);
6312 cache->pinned += num_bytes;
6313 cache->space_info->bytes_pinned += num_bytes;
6314 if (reserved) {
6315 cache->reserved -= num_bytes;
6316 cache->space_info->bytes_reserved -= num_bytes;
6317 }
6318 spin_unlock(&cache->lock);
6319 spin_unlock(&cache->space_info->lock);
68b38550 6320
c51e7bb1
JB
6321 trace_btrfs_space_reservation(root->fs_info, "pinned",
6322 cache->space_info->flags, num_bytes, 1);
f0486c68
YZ
6323 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6324 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6325 return 0;
6326}
68b38550 6327
f0486c68
YZ
6328/*
6329 * this function must be called within transaction
6330 */
6331int btrfs_pin_extent(struct btrfs_root *root,
6332 u64 bytenr, u64 num_bytes, int reserved)
6333{
6334 struct btrfs_block_group_cache *cache;
68b38550 6335
f0486c68 6336 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 6337 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
6338
6339 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6340
6341 btrfs_put_block_group(cache);
11833d66
YZ
6342 return 0;
6343}
6344
f0486c68 6345/*
e688b725
CM
6346 * this function must be called within transaction
6347 */
dcfac415 6348int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
6349 u64 bytenr, u64 num_bytes)
6350{
6351 struct btrfs_block_group_cache *cache;
b50c6e25 6352 int ret;
e688b725
CM
6353
6354 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
6355 if (!cache)
6356 return -EINVAL;
e688b725
CM
6357
6358 /*
6359 * pull in the free space cache (if any) so that our pin
6360 * removes the free space from the cache. We have load_only set
6361 * to one because the slow code to read in the free extents does check
6362 * the pinned extents.
6363 */
f6373bf3 6364 cache_block_group(cache, 1);
e688b725
CM
6365
6366 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6367
6368 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6369 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6370 btrfs_put_block_group(cache);
b50c6e25 6371 return ret;
e688b725
CM
6372}
6373
8c2a1a30
JB
6374static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6375{
6376 int ret;
6377 struct btrfs_block_group_cache *block_group;
6378 struct btrfs_caching_control *caching_ctl;
6379
6380 block_group = btrfs_lookup_block_group(root->fs_info, start);
6381 if (!block_group)
6382 return -EINVAL;
6383
6384 cache_block_group(block_group, 0);
6385 caching_ctl = get_caching_control(block_group);
6386
6387 if (!caching_ctl) {
6388 /* Logic error */
6389 BUG_ON(!block_group_cache_done(block_group));
6390 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6391 } else {
6392 mutex_lock(&caching_ctl->mutex);
6393
6394 if (start >= caching_ctl->progress) {
6395 ret = add_excluded_extent(root, start, num_bytes);
6396 } else if (start + num_bytes <= caching_ctl->progress) {
6397 ret = btrfs_remove_free_space(block_group,
6398 start, num_bytes);
6399 } else {
6400 num_bytes = caching_ctl->progress - start;
6401 ret = btrfs_remove_free_space(block_group,
6402 start, num_bytes);
6403 if (ret)
6404 goto out_lock;
6405
6406 num_bytes = (start + num_bytes) -
6407 caching_ctl->progress;
6408 start = caching_ctl->progress;
6409 ret = add_excluded_extent(root, start, num_bytes);
6410 }
6411out_lock:
6412 mutex_unlock(&caching_ctl->mutex);
6413 put_caching_control(caching_ctl);
6414 }
6415 btrfs_put_block_group(block_group);
6416 return ret;
6417}
6418
6419int btrfs_exclude_logged_extents(struct btrfs_root *log,
6420 struct extent_buffer *eb)
6421{
6422 struct btrfs_file_extent_item *item;
6423 struct btrfs_key key;
6424 int found_type;
6425 int i;
6426
6427 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6428 return 0;
6429
6430 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6431 btrfs_item_key_to_cpu(eb, &key, i);
6432 if (key.type != BTRFS_EXTENT_DATA_KEY)
6433 continue;
6434 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6435 found_type = btrfs_file_extent_type(eb, item);
6436 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6437 continue;
6438 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6439 continue;
6440 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6441 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6442 __exclude_logged_extent(log, key.objectid, key.offset);
6443 }
6444
6445 return 0;
6446}
6447
9cfa3e34
FM
6448static void
6449btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6450{
6451 atomic_inc(&bg->reservations);
6452}
6453
6454void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6455 const u64 start)
6456{
6457 struct btrfs_block_group_cache *bg;
6458
6459 bg = btrfs_lookup_block_group(fs_info, start);
6460 ASSERT(bg);
6461 if (atomic_dec_and_test(&bg->reservations))
6462 wake_up_atomic_t(&bg->reservations);
6463 btrfs_put_block_group(bg);
6464}
6465
6466static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6467{
6468 schedule();
6469 return 0;
6470}
6471
6472void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6473{
6474 struct btrfs_space_info *space_info = bg->space_info;
6475
6476 ASSERT(bg->ro);
6477
6478 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6479 return;
6480
6481 /*
6482 * Our block group is read only but before we set it to read only,
6483 * some task might have had allocated an extent from it already, but it
6484 * has not yet created a respective ordered extent (and added it to a
6485 * root's list of ordered extents).
6486 * Therefore wait for any task currently allocating extents, since the
6487 * block group's reservations counter is incremented while a read lock
6488 * on the groups' semaphore is held and decremented after releasing
6489 * the read access on that semaphore and creating the ordered extent.
6490 */
6491 down_write(&space_info->groups_sem);
6492 up_write(&space_info->groups_sem);
6493
6494 wait_on_atomic_t(&bg->reservations,
6495 btrfs_wait_bg_reservations_atomic_t,
6496 TASK_UNINTERRUPTIBLE);
6497}
6498
fb25e914
JB
6499/**
6500 * btrfs_update_reserved_bytes - update the block_group and space info counters
6501 * @cache: The cache we are manipulating
6502 * @num_bytes: The number of bytes in question
6503 * @reserve: One of the reservation enums
e570fd27 6504 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
6505 *
6506 * This is called by the allocator when it reserves space, or by somebody who is
6507 * freeing space that was never actually used on disk. For example if you
6508 * reserve some space for a new leaf in transaction A and before transaction A
6509 * commits you free that leaf, you call this with reserve set to 0 in order to
6510 * clear the reservation.
6511 *
6512 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6513 * ENOSPC accounting. For data we handle the reservation through clearing the
6514 * delalloc bits in the io_tree. We have to do this since we could end up
6515 * allocating less disk space for the amount of data we have reserved in the
6516 * case of compression.
6517 *
6518 * If this is a reservation and the block group has become read only we cannot
6519 * make the reservation and return -EAGAIN, otherwise this function always
6520 * succeeds.
f0486c68 6521 */
fb25e914 6522static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 6523 u64 num_bytes, int reserve, int delalloc)
11833d66 6524{
fb25e914 6525 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6526 int ret = 0;
79787eaa 6527
fb25e914
JB
6528 spin_lock(&space_info->lock);
6529 spin_lock(&cache->lock);
6530 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6531 if (cache->ro) {
6532 ret = -EAGAIN;
6533 } else {
fb25e914
JB
6534 cache->reserved += num_bytes;
6535 space_info->bytes_reserved += num_bytes;
6536 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6537 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6538 "space_info", space_info->flags,
6539 num_bytes, 0);
fb25e914
JB
6540 space_info->bytes_may_use -= num_bytes;
6541 }
e570fd27
MX
6542
6543 if (delalloc)
6544 cache->delalloc_bytes += num_bytes;
f0486c68 6545 }
fb25e914
JB
6546 } else {
6547 if (cache->ro)
6548 space_info->bytes_readonly += num_bytes;
6549 cache->reserved -= num_bytes;
6550 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6551
6552 if (delalloc)
6553 cache->delalloc_bytes -= num_bytes;
324ae4df 6554 }
fb25e914
JB
6555 spin_unlock(&cache->lock);
6556 spin_unlock(&space_info->lock);
f0486c68 6557 return ret;
324ae4df 6558}
9078a3e1 6559
143bede5 6560void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6561 struct btrfs_root *root)
e8569813 6562{
e8569813 6563 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6564 struct btrfs_caching_control *next;
6565 struct btrfs_caching_control *caching_ctl;
6566 struct btrfs_block_group_cache *cache;
e8569813 6567
9e351cc8 6568 down_write(&fs_info->commit_root_sem);
25179201 6569
11833d66
YZ
6570 list_for_each_entry_safe(caching_ctl, next,
6571 &fs_info->caching_block_groups, list) {
6572 cache = caching_ctl->block_group;
6573 if (block_group_cache_done(cache)) {
6574 cache->last_byte_to_unpin = (u64)-1;
6575 list_del_init(&caching_ctl->list);
6576 put_caching_control(caching_ctl);
e8569813 6577 } else {
11833d66 6578 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6579 }
e8569813 6580 }
11833d66
YZ
6581
6582 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6583 fs_info->pinned_extents = &fs_info->freed_extents[1];
6584 else
6585 fs_info->pinned_extents = &fs_info->freed_extents[0];
6586
9e351cc8 6587 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6588
6589 update_global_block_rsv(fs_info);
e8569813
ZY
6590}
6591
c759c4e1
JB
6592/*
6593 * Returns the free cluster for the given space info and sets empty_cluster to
6594 * what it should be based on the mount options.
6595 */
6596static struct btrfs_free_cluster *
6597fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6598 u64 *empty_cluster)
6599{
6600 struct btrfs_free_cluster *ret = NULL;
3cdde224 6601 bool ssd = btrfs_test_opt(root->fs_info, SSD);
c759c4e1
JB
6602
6603 *empty_cluster = 0;
6604 if (btrfs_mixed_space_info(space_info))
6605 return ret;
6606
6607 if (ssd)
ee22184b 6608 *empty_cluster = SZ_2M;
c759c4e1
JB
6609 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6610 ret = &root->fs_info->meta_alloc_cluster;
6611 if (!ssd)
ee22184b 6612 *empty_cluster = SZ_64K;
c759c4e1
JB
6613 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6614 ret = &root->fs_info->data_alloc_cluster;
6615 }
6616
6617 return ret;
6618}
6619
678886bd
FM
6620static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6621 const bool return_free_space)
ccd467d6 6622{
11833d66
YZ
6623 struct btrfs_fs_info *fs_info = root->fs_info;
6624 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6625 struct btrfs_space_info *space_info;
6626 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6627 struct btrfs_free_cluster *cluster = NULL;
11833d66 6628 u64 len;
c759c4e1
JB
6629 u64 total_unpinned = 0;
6630 u64 empty_cluster = 0;
7b398f8e 6631 bool readonly;
ccd467d6 6632
11833d66 6633 while (start <= end) {
7b398f8e 6634 readonly = false;
11833d66
YZ
6635 if (!cache ||
6636 start >= cache->key.objectid + cache->key.offset) {
6637 if (cache)
6638 btrfs_put_block_group(cache);
c759c4e1 6639 total_unpinned = 0;
11833d66 6640 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6641 BUG_ON(!cache); /* Logic error */
c759c4e1
JB
6642
6643 cluster = fetch_cluster_info(root,
6644 cache->space_info,
6645 &empty_cluster);
6646 empty_cluster <<= 1;
11833d66
YZ
6647 }
6648
6649 len = cache->key.objectid + cache->key.offset - start;
6650 len = min(len, end + 1 - start);
6651
6652 if (start < cache->last_byte_to_unpin) {
6653 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6654 if (return_free_space)
6655 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6656 }
6657
f0486c68 6658 start += len;
c759c4e1 6659 total_unpinned += len;
7b398f8e 6660 space_info = cache->space_info;
f0486c68 6661
c759c4e1
JB
6662 /*
6663 * If this space cluster has been marked as fragmented and we've
6664 * unpinned enough in this block group to potentially allow a
6665 * cluster to be created inside of it go ahead and clear the
6666 * fragmented check.
6667 */
6668 if (cluster && cluster->fragmented &&
6669 total_unpinned > empty_cluster) {
6670 spin_lock(&cluster->lock);
6671 cluster->fragmented = 0;
6672 spin_unlock(&cluster->lock);
6673 }
6674
7b398f8e 6675 spin_lock(&space_info->lock);
11833d66
YZ
6676 spin_lock(&cache->lock);
6677 cache->pinned -= len;
7b398f8e 6678 space_info->bytes_pinned -= len;
c51e7bb1
JB
6679
6680 trace_btrfs_space_reservation(fs_info, "pinned",
6681 space_info->flags, len, 0);
4f4db217 6682 space_info->max_extent_size = 0;
d288db5d 6683 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6684 if (cache->ro) {
6685 space_info->bytes_readonly += len;
6686 readonly = true;
6687 }
11833d66 6688 spin_unlock(&cache->lock);
957780eb
JB
6689 if (!readonly && return_free_space &&
6690 global_rsv->space_info == space_info) {
6691 u64 to_add = len;
6692 WARN_ON(!return_free_space);
7b398f8e
JB
6693 spin_lock(&global_rsv->lock);
6694 if (!global_rsv->full) {
957780eb
JB
6695 to_add = min(len, global_rsv->size -
6696 global_rsv->reserved);
6697 global_rsv->reserved += to_add;
6698 space_info->bytes_may_use += to_add;
7b398f8e
JB
6699 if (global_rsv->reserved >= global_rsv->size)
6700 global_rsv->full = 1;
957780eb
JB
6701 trace_btrfs_space_reservation(fs_info,
6702 "space_info",
6703 space_info->flags,
6704 to_add, 1);
6705 len -= to_add;
7b398f8e
JB
6706 }
6707 spin_unlock(&global_rsv->lock);
957780eb
JB
6708 /* Add to any tickets we may have */
6709 if (len)
6710 space_info_add_new_bytes(fs_info, space_info,
6711 len);
7b398f8e
JB
6712 }
6713 spin_unlock(&space_info->lock);
ccd467d6 6714 }
11833d66
YZ
6715
6716 if (cache)
6717 btrfs_put_block_group(cache);
ccd467d6
CM
6718 return 0;
6719}
6720
6721int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6722 struct btrfs_root *root)
a28ec197 6723{
11833d66 6724 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6725 struct btrfs_block_group_cache *block_group, *tmp;
6726 struct list_head *deleted_bgs;
11833d66 6727 struct extent_io_tree *unpin;
1a5bc167
CM
6728 u64 start;
6729 u64 end;
a28ec197 6730 int ret;
a28ec197 6731
11833d66
YZ
6732 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6733 unpin = &fs_info->freed_extents[1];
6734 else
6735 unpin = &fs_info->freed_extents[0];
6736
e33e17ee 6737 while (!trans->aborted) {
d4b450cd 6738 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6739 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6740 EXTENT_DIRTY, NULL);
d4b450cd
FM
6741 if (ret) {
6742 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6743 break;
d4b450cd 6744 }
1f3c79a2 6745
3cdde224 6746 if (btrfs_test_opt(root->fs_info, DISCARD))
5378e607
LD
6747 ret = btrfs_discard_extent(root, start,
6748 end + 1 - start, NULL);
1f3c79a2 6749
af6f8f60 6750 clear_extent_dirty(unpin, start, end);
678886bd 6751 unpin_extent_range(root, start, end, true);
d4b450cd 6752 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6753 cond_resched();
a28ec197 6754 }
817d52f8 6755
e33e17ee
JM
6756 /*
6757 * Transaction is finished. We don't need the lock anymore. We
6758 * do need to clean up the block groups in case of a transaction
6759 * abort.
6760 */
6761 deleted_bgs = &trans->transaction->deleted_bgs;
6762 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6763 u64 trimmed = 0;
6764
6765 ret = -EROFS;
6766 if (!trans->aborted)
6767 ret = btrfs_discard_extent(root,
6768 block_group->key.objectid,
6769 block_group->key.offset,
6770 &trimmed);
6771
6772 list_del_init(&block_group->bg_list);
6773 btrfs_put_block_group_trimming(block_group);
6774 btrfs_put_block_group(block_group);
6775
6776 if (ret) {
6777 const char *errstr = btrfs_decode_error(ret);
6778 btrfs_warn(fs_info,
6779 "Discard failed while removing blockgroup: errno=%d %s\n",
6780 ret, errstr);
6781 }
6782 }
6783
e20d96d6
CM
6784 return 0;
6785}
6786
b150a4f1
JB
6787static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6788 u64 owner, u64 root_objectid)
6789{
6790 struct btrfs_space_info *space_info;
6791 u64 flags;
6792
6793 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6794 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6795 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6796 else
6797 flags = BTRFS_BLOCK_GROUP_METADATA;
6798 } else {
6799 flags = BTRFS_BLOCK_GROUP_DATA;
6800 }
6801
6802 space_info = __find_space_info(fs_info, flags);
6803 BUG_ON(!space_info); /* Logic bug */
6804 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6805}
6806
6807
5d4f98a2
YZ
6808static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6809 struct btrfs_root *root,
c682f9b3 6810 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6811 u64 root_objectid, u64 owner_objectid,
6812 u64 owner_offset, int refs_to_drop,
c682f9b3 6813 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6814{
e2fa7227 6815 struct btrfs_key key;
5d4f98a2 6816 struct btrfs_path *path;
1261ec42
CM
6817 struct btrfs_fs_info *info = root->fs_info;
6818 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6819 struct extent_buffer *leaf;
5d4f98a2
YZ
6820 struct btrfs_extent_item *ei;
6821 struct btrfs_extent_inline_ref *iref;
a28ec197 6822 int ret;
5d4f98a2 6823 int is_data;
952fccac
CM
6824 int extent_slot = 0;
6825 int found_extent = 0;
6826 int num_to_del = 1;
5d4f98a2
YZ
6827 u32 item_size;
6828 u64 refs;
c682f9b3
QW
6829 u64 bytenr = node->bytenr;
6830 u64 num_bytes = node->num_bytes;
fcebe456 6831 int last_ref = 0;
3173a18f
JB
6832 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6833 SKINNY_METADATA);
037e6390 6834
5caf2a00 6835 path = btrfs_alloc_path();
54aa1f4d
CM
6836 if (!path)
6837 return -ENOMEM;
5f26f772 6838
e4058b54 6839 path->reada = READA_FORWARD;
b9473439 6840 path->leave_spinning = 1;
5d4f98a2
YZ
6841
6842 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6843 BUG_ON(!is_data && refs_to_drop != 1);
6844
3173a18f
JB
6845 if (is_data)
6846 skinny_metadata = 0;
6847
5d4f98a2
YZ
6848 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6849 bytenr, num_bytes, parent,
6850 root_objectid, owner_objectid,
6851 owner_offset);
7bb86316 6852 if (ret == 0) {
952fccac 6853 extent_slot = path->slots[0];
5d4f98a2
YZ
6854 while (extent_slot >= 0) {
6855 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6856 extent_slot);
5d4f98a2 6857 if (key.objectid != bytenr)
952fccac 6858 break;
5d4f98a2
YZ
6859 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6860 key.offset == num_bytes) {
952fccac
CM
6861 found_extent = 1;
6862 break;
6863 }
3173a18f
JB
6864 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6865 key.offset == owner_objectid) {
6866 found_extent = 1;
6867 break;
6868 }
952fccac
CM
6869 if (path->slots[0] - extent_slot > 5)
6870 break;
5d4f98a2 6871 extent_slot--;
952fccac 6872 }
5d4f98a2
YZ
6873#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6874 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6875 if (found_extent && item_size < sizeof(*ei))
6876 found_extent = 0;
6877#endif
31840ae1 6878 if (!found_extent) {
5d4f98a2 6879 BUG_ON(iref);
56bec294 6880 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6881 NULL, refs_to_drop,
fcebe456 6882 is_data, &last_ref);
005d6427
DS
6883 if (ret) {
6884 btrfs_abort_transaction(trans, extent_root, ret);
6885 goto out;
6886 }
b3b4aa74 6887 btrfs_release_path(path);
b9473439 6888 path->leave_spinning = 1;
5d4f98a2
YZ
6889
6890 key.objectid = bytenr;
6891 key.type = BTRFS_EXTENT_ITEM_KEY;
6892 key.offset = num_bytes;
6893
3173a18f
JB
6894 if (!is_data && skinny_metadata) {
6895 key.type = BTRFS_METADATA_ITEM_KEY;
6896 key.offset = owner_objectid;
6897 }
6898
31840ae1
ZY
6899 ret = btrfs_search_slot(trans, extent_root,
6900 &key, path, -1, 1);
3173a18f
JB
6901 if (ret > 0 && skinny_metadata && path->slots[0]) {
6902 /*
6903 * Couldn't find our skinny metadata item,
6904 * see if we have ye olde extent item.
6905 */
6906 path->slots[0]--;
6907 btrfs_item_key_to_cpu(path->nodes[0], &key,
6908 path->slots[0]);
6909 if (key.objectid == bytenr &&
6910 key.type == BTRFS_EXTENT_ITEM_KEY &&
6911 key.offset == num_bytes)
6912 ret = 0;
6913 }
6914
6915 if (ret > 0 && skinny_metadata) {
6916 skinny_metadata = false;
9ce49a0b 6917 key.objectid = bytenr;
3173a18f
JB
6918 key.type = BTRFS_EXTENT_ITEM_KEY;
6919 key.offset = num_bytes;
6920 btrfs_release_path(path);
6921 ret = btrfs_search_slot(trans, extent_root,
6922 &key, path, -1, 1);
6923 }
6924
f3465ca4 6925 if (ret) {
c2cf52eb 6926 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6927 ret, bytenr);
b783e62d
JB
6928 if (ret > 0)
6929 btrfs_print_leaf(extent_root,
6930 path->nodes[0]);
f3465ca4 6931 }
005d6427
DS
6932 if (ret < 0) {
6933 btrfs_abort_transaction(trans, extent_root, ret);
6934 goto out;
6935 }
31840ae1
ZY
6936 extent_slot = path->slots[0];
6937 }
fae7f21c 6938 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6939 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6940 btrfs_err(info,
6941 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6942 bytenr, parent, root_objectid, owner_objectid,
6943 owner_offset);
c4a050bb
JB
6944 btrfs_abort_transaction(trans, extent_root, ret);
6945 goto out;
79787eaa 6946 } else {
005d6427
DS
6947 btrfs_abort_transaction(trans, extent_root, ret);
6948 goto out;
7bb86316 6949 }
5f39d397
CM
6950
6951 leaf = path->nodes[0];
5d4f98a2
YZ
6952 item_size = btrfs_item_size_nr(leaf, extent_slot);
6953#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6954 if (item_size < sizeof(*ei)) {
6955 BUG_ON(found_extent || extent_slot != path->slots[0]);
6956 ret = convert_extent_item_v0(trans, extent_root, path,
6957 owner_objectid, 0);
005d6427
DS
6958 if (ret < 0) {
6959 btrfs_abort_transaction(trans, extent_root, ret);
6960 goto out;
6961 }
5d4f98a2 6962
b3b4aa74 6963 btrfs_release_path(path);
5d4f98a2
YZ
6964 path->leave_spinning = 1;
6965
6966 key.objectid = bytenr;
6967 key.type = BTRFS_EXTENT_ITEM_KEY;
6968 key.offset = num_bytes;
6969
6970 ret = btrfs_search_slot(trans, extent_root, &key, path,
6971 -1, 1);
6972 if (ret) {
c2cf52eb 6973 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6974 ret, bytenr);
5d4f98a2
YZ
6975 btrfs_print_leaf(extent_root, path->nodes[0]);
6976 }
005d6427
DS
6977 if (ret < 0) {
6978 btrfs_abort_transaction(trans, extent_root, ret);
6979 goto out;
6980 }
6981
5d4f98a2
YZ
6982 extent_slot = path->slots[0];
6983 leaf = path->nodes[0];
6984 item_size = btrfs_item_size_nr(leaf, extent_slot);
6985 }
6986#endif
6987 BUG_ON(item_size < sizeof(*ei));
952fccac 6988 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6989 struct btrfs_extent_item);
3173a18f
JB
6990 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6991 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6992 struct btrfs_tree_block_info *bi;
6993 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6994 bi = (struct btrfs_tree_block_info *)(ei + 1);
6995 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6996 }
56bec294 6997
5d4f98a2 6998 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6999 if (refs < refs_to_drop) {
7000 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 7001 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
7002 ret = -EINVAL;
7003 btrfs_abort_transaction(trans, extent_root, ret);
7004 goto out;
7005 }
56bec294 7006 refs -= refs_to_drop;
5f39d397 7007
5d4f98a2
YZ
7008 if (refs > 0) {
7009 if (extent_op)
7010 __run_delayed_extent_op(extent_op, leaf, ei);
7011 /*
7012 * In the case of inline back ref, reference count will
7013 * be updated by remove_extent_backref
952fccac 7014 */
5d4f98a2
YZ
7015 if (iref) {
7016 BUG_ON(!found_extent);
7017 } else {
7018 btrfs_set_extent_refs(leaf, ei, refs);
7019 btrfs_mark_buffer_dirty(leaf);
7020 }
7021 if (found_extent) {
7022 ret = remove_extent_backref(trans, extent_root, path,
7023 iref, refs_to_drop,
fcebe456 7024 is_data, &last_ref);
005d6427
DS
7025 if (ret) {
7026 btrfs_abort_transaction(trans, extent_root, ret);
7027 goto out;
7028 }
952fccac 7029 }
b150a4f1
JB
7030 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
7031 root_objectid);
5d4f98a2 7032 } else {
5d4f98a2
YZ
7033 if (found_extent) {
7034 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7035 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7036 if (iref) {
7037 BUG_ON(path->slots[0] != extent_slot);
7038 } else {
7039 BUG_ON(path->slots[0] != extent_slot + 1);
7040 path->slots[0] = extent_slot;
7041 num_to_del = 2;
7042 }
78fae27e 7043 }
b9473439 7044
fcebe456 7045 last_ref = 1;
952fccac
CM
7046 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7047 num_to_del);
005d6427
DS
7048 if (ret) {
7049 btrfs_abort_transaction(trans, extent_root, ret);
7050 goto out;
7051 }
b3b4aa74 7052 btrfs_release_path(path);
21af804c 7053
5d4f98a2 7054 if (is_data) {
459931ec 7055 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
7056 if (ret) {
7057 btrfs_abort_transaction(trans, extent_root, ret);
7058 goto out;
7059 }
459931ec
CM
7060 }
7061
1e144fb8
OS
7062 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
7063 num_bytes);
7064 if (ret) {
7065 btrfs_abort_transaction(trans, extent_root, ret);
7066 goto out;
7067 }
7068
ce93ec54 7069 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
7070 if (ret) {
7071 btrfs_abort_transaction(trans, extent_root, ret);
7072 goto out;
7073 }
a28ec197 7074 }
fcebe456
JB
7075 btrfs_release_path(path);
7076
79787eaa 7077out:
5caf2a00 7078 btrfs_free_path(path);
a28ec197
CM
7079 return ret;
7080}
7081
1887be66 7082/*
f0486c68 7083 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7084 * delayed ref for that extent as well. This searches the delayed ref tree for
7085 * a given extent, and if there are no other delayed refs to be processed, it
7086 * removes it from the tree.
7087 */
7088static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7089 struct btrfs_root *root, u64 bytenr)
7090{
7091 struct btrfs_delayed_ref_head *head;
7092 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7093 int ret = 0;
1887be66
CM
7094
7095 delayed_refs = &trans->transaction->delayed_refs;
7096 spin_lock(&delayed_refs->lock);
7097 head = btrfs_find_delayed_ref_head(trans, bytenr);
7098 if (!head)
cf93da7b 7099 goto out_delayed_unlock;
1887be66 7100
d7df2c79 7101 spin_lock(&head->lock);
c6fc2454 7102 if (!list_empty(&head->ref_list))
1887be66
CM
7103 goto out;
7104
5d4f98a2
YZ
7105 if (head->extent_op) {
7106 if (!head->must_insert_reserved)
7107 goto out;
78a6184a 7108 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7109 head->extent_op = NULL;
7110 }
7111
1887be66
CM
7112 /*
7113 * waiting for the lock here would deadlock. If someone else has it
7114 * locked they are already in the process of dropping it anyway
7115 */
7116 if (!mutex_trylock(&head->mutex))
7117 goto out;
7118
7119 /*
7120 * at this point we have a head with no other entries. Go
7121 * ahead and process it.
7122 */
7123 head->node.in_tree = 0;
c46effa6 7124 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 7125
d7df2c79 7126 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7127
7128 /*
7129 * we don't take a ref on the node because we're removing it from the
7130 * tree, so we just steal the ref the tree was holding.
7131 */
c3e69d58 7132 delayed_refs->num_heads--;
d7df2c79 7133 if (head->processing == 0)
c3e69d58 7134 delayed_refs->num_heads_ready--;
d7df2c79
JB
7135 head->processing = 0;
7136 spin_unlock(&head->lock);
1887be66
CM
7137 spin_unlock(&delayed_refs->lock);
7138
f0486c68
YZ
7139 BUG_ON(head->extent_op);
7140 if (head->must_insert_reserved)
7141 ret = 1;
7142
7143 mutex_unlock(&head->mutex);
1887be66 7144 btrfs_put_delayed_ref(&head->node);
f0486c68 7145 return ret;
1887be66 7146out:
d7df2c79 7147 spin_unlock(&head->lock);
cf93da7b
CM
7148
7149out_delayed_unlock:
1887be66
CM
7150 spin_unlock(&delayed_refs->lock);
7151 return 0;
7152}
7153
f0486c68
YZ
7154void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7155 struct btrfs_root *root,
7156 struct extent_buffer *buf,
5581a51a 7157 u64 parent, int last_ref)
f0486c68 7158{
b150a4f1 7159 int pin = 1;
f0486c68
YZ
7160 int ret;
7161
7162 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
7163 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7164 buf->start, buf->len,
7165 parent, root->root_key.objectid,
7166 btrfs_header_level(buf),
b06c4bf5 7167 BTRFS_DROP_DELAYED_REF, NULL);
79787eaa 7168 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
7169 }
7170
7171 if (!last_ref)
7172 return;
7173
f0486c68 7174 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7175 struct btrfs_block_group_cache *cache;
7176
f0486c68
YZ
7177 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7178 ret = check_ref_cleanup(trans, root, buf->start);
7179 if (!ret)
37be25bc 7180 goto out;
f0486c68
YZ
7181 }
7182
6219872d
FM
7183 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
7184
f0486c68
YZ
7185 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7186 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 7187 btrfs_put_block_group(cache);
37be25bc 7188 goto out;
f0486c68
YZ
7189 }
7190
7191 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7192
7193 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 7194 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 7195 btrfs_put_block_group(cache);
0be5dc67 7196 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 7197 pin = 0;
f0486c68
YZ
7198 }
7199out:
b150a4f1
JB
7200 if (pin)
7201 add_pinned_bytes(root->fs_info, buf->len,
7202 btrfs_header_level(buf),
7203 root->root_key.objectid);
7204
a826d6dc
JB
7205 /*
7206 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7207 * anymore.
7208 */
7209 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
7210}
7211
79787eaa 7212/* Can return -ENOMEM */
66d7e7f0
AJ
7213int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7214 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7215 u64 owner, u64 offset)
925baedd
CM
7216{
7217 int ret;
66d7e7f0 7218 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 7219
f5ee5c9a 7220 if (btrfs_is_testing(fs_info))
faa2dbf0 7221 return 0;
fccb84c9 7222
b150a4f1
JB
7223 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7224
56bec294
CM
7225 /*
7226 * tree log blocks never actually go into the extent allocation
7227 * tree, just update pinning info and exit early.
56bec294 7228 */
5d4f98a2
YZ
7229 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7230 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7231 /* unlocks the pinned mutex */
11833d66 7232 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 7233 ret = 0;
5d4f98a2 7234 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
7235 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7236 num_bytes,
5d4f98a2 7237 parent, root_objectid, (int)owner,
b06c4bf5 7238 BTRFS_DROP_DELAYED_REF, NULL);
5d4f98a2 7239 } else {
66d7e7f0
AJ
7240 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7241 num_bytes,
7242 parent, root_objectid, owner,
5846a3c2
QW
7243 offset, 0,
7244 BTRFS_DROP_DELAYED_REF, NULL);
56bec294 7245 }
925baedd
CM
7246 return ret;
7247}
7248
817d52f8
JB
7249/*
7250 * when we wait for progress in the block group caching, its because
7251 * our allocation attempt failed at least once. So, we must sleep
7252 * and let some progress happen before we try again.
7253 *
7254 * This function will sleep at least once waiting for new free space to
7255 * show up, and then it will check the block group free space numbers
7256 * for our min num_bytes. Another option is to have it go ahead
7257 * and look in the rbtree for a free extent of a given size, but this
7258 * is a good start.
36cce922
JB
7259 *
7260 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7261 * any of the information in this block group.
817d52f8 7262 */
36cce922 7263static noinline void
817d52f8
JB
7264wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7265 u64 num_bytes)
7266{
11833d66 7267 struct btrfs_caching_control *caching_ctl;
817d52f8 7268
11833d66
YZ
7269 caching_ctl = get_caching_control(cache);
7270 if (!caching_ctl)
36cce922 7271 return;
817d52f8 7272
11833d66 7273 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7274 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7275
7276 put_caching_control(caching_ctl);
11833d66
YZ
7277}
7278
7279static noinline int
7280wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7281{
7282 struct btrfs_caching_control *caching_ctl;
36cce922 7283 int ret = 0;
11833d66
YZ
7284
7285 caching_ctl = get_caching_control(cache);
7286 if (!caching_ctl)
36cce922 7287 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7288
7289 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7290 if (cache->cached == BTRFS_CACHE_ERROR)
7291 ret = -EIO;
11833d66 7292 put_caching_control(caching_ctl);
36cce922 7293 return ret;
817d52f8
JB
7294}
7295
31e50229 7296int __get_raid_index(u64 flags)
b742bb82 7297{
7738a53a 7298 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7299 return BTRFS_RAID_RAID10;
7738a53a 7300 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7301 return BTRFS_RAID_RAID1;
7738a53a 7302 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7303 return BTRFS_RAID_DUP;
7738a53a 7304 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7305 return BTRFS_RAID_RAID0;
53b381b3 7306 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7307 return BTRFS_RAID_RAID5;
53b381b3 7308 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7309 return BTRFS_RAID_RAID6;
7738a53a 7310
e942f883 7311 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7312}
7313
6ab0a202 7314int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7315{
31e50229 7316 return __get_raid_index(cache->flags);
7738a53a
ID
7317}
7318
6ab0a202
JM
7319static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7320 [BTRFS_RAID_RAID10] = "raid10",
7321 [BTRFS_RAID_RAID1] = "raid1",
7322 [BTRFS_RAID_DUP] = "dup",
7323 [BTRFS_RAID_RAID0] = "raid0",
7324 [BTRFS_RAID_SINGLE] = "single",
7325 [BTRFS_RAID_RAID5] = "raid5",
7326 [BTRFS_RAID_RAID6] = "raid6",
7327};
7328
1b8e5df6 7329static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7330{
7331 if (type >= BTRFS_NR_RAID_TYPES)
7332 return NULL;
7333
7334 return btrfs_raid_type_names[type];
7335}
7336
817d52f8 7337enum btrfs_loop_type {
285ff5af
JB
7338 LOOP_CACHING_NOWAIT = 0,
7339 LOOP_CACHING_WAIT = 1,
7340 LOOP_ALLOC_CHUNK = 2,
7341 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7342};
7343
e570fd27
MX
7344static inline void
7345btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7346 int delalloc)
7347{
7348 if (delalloc)
7349 down_read(&cache->data_rwsem);
7350}
7351
7352static inline void
7353btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7354 int delalloc)
7355{
7356 btrfs_get_block_group(cache);
7357 if (delalloc)
7358 down_read(&cache->data_rwsem);
7359}
7360
7361static struct btrfs_block_group_cache *
7362btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7363 struct btrfs_free_cluster *cluster,
7364 int delalloc)
7365{
89771cc9 7366 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7367
e570fd27 7368 spin_lock(&cluster->refill_lock);
6719afdc
GU
7369 while (1) {
7370 used_bg = cluster->block_group;
7371 if (!used_bg)
7372 return NULL;
7373
7374 if (used_bg == block_group)
e570fd27
MX
7375 return used_bg;
7376
6719afdc 7377 btrfs_get_block_group(used_bg);
e570fd27 7378
6719afdc
GU
7379 if (!delalloc)
7380 return used_bg;
e570fd27 7381
6719afdc
GU
7382 if (down_read_trylock(&used_bg->data_rwsem))
7383 return used_bg;
e570fd27 7384
6719afdc 7385 spin_unlock(&cluster->refill_lock);
e570fd27 7386
6719afdc 7387 down_read(&used_bg->data_rwsem);
e570fd27 7388
6719afdc
GU
7389 spin_lock(&cluster->refill_lock);
7390 if (used_bg == cluster->block_group)
7391 return used_bg;
e570fd27 7392
6719afdc
GU
7393 up_read(&used_bg->data_rwsem);
7394 btrfs_put_block_group(used_bg);
7395 }
e570fd27
MX
7396}
7397
7398static inline void
7399btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7400 int delalloc)
7401{
7402 if (delalloc)
7403 up_read(&cache->data_rwsem);
7404 btrfs_put_block_group(cache);
7405}
7406
fec577fb
CM
7407/*
7408 * walks the btree of allocated extents and find a hole of a given size.
7409 * The key ins is changed to record the hole:
a4820398 7410 * ins->objectid == start position
62e2749e 7411 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7412 * ins->offset == the size of the hole.
fec577fb 7413 * Any available blocks before search_start are skipped.
a4820398
MX
7414 *
7415 * If there is no suitable free space, we will record the max size of
7416 * the free space extent currently.
fec577fb 7417 */
00361589 7418static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 7419 u64 num_bytes, u64 empty_size,
98ed5174 7420 u64 hint_byte, struct btrfs_key *ins,
e570fd27 7421 u64 flags, int delalloc)
fec577fb 7422{
80eb234a 7423 int ret = 0;
d397712b 7424 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 7425 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7426 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7427 u64 search_start = 0;
a4820398 7428 u64 max_extent_size = 0;
c759c4e1 7429 u64 empty_cluster = 0;
80eb234a 7430 struct btrfs_space_info *space_info;
fa9c0d79 7431 int loop = 0;
b6919a58
DS
7432 int index = __get_raid_index(flags);
7433 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 7434 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 7435 bool failed_cluster_refill = false;
1cdda9b8 7436 bool failed_alloc = false;
67377734 7437 bool use_cluster = true;
60d2adbb 7438 bool have_caching_bg = false;
13a0db5a 7439 bool orig_have_caching_bg = false;
a5e681d9 7440 bool full_search = false;
fec577fb 7441
db94535d 7442 WARN_ON(num_bytes < root->sectorsize);
962a298f 7443 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7444 ins->objectid = 0;
7445 ins->offset = 0;
b1a4d965 7446
b6919a58 7447 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 7448
b6919a58 7449 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 7450 if (!space_info) {
b6919a58 7451 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7452 return -ENOSPC;
7453 }
2552d17e 7454
67377734 7455 /*
4f4db217
JB
7456 * If our free space is heavily fragmented we may not be able to make
7457 * big contiguous allocations, so instead of doing the expensive search
7458 * for free space, simply return ENOSPC with our max_extent_size so we
7459 * can go ahead and search for a more manageable chunk.
7460 *
7461 * If our max_extent_size is large enough for our allocation simply
7462 * disable clustering since we will likely not be able to find enough
7463 * space to create a cluster and induce latency trying.
67377734 7464 */
4f4db217
JB
7465 if (unlikely(space_info->max_extent_size)) {
7466 spin_lock(&space_info->lock);
7467 if (space_info->max_extent_size &&
7468 num_bytes > space_info->max_extent_size) {
7469 ins->offset = space_info->max_extent_size;
7470 spin_unlock(&space_info->lock);
7471 return -ENOSPC;
7472 } else if (space_info->max_extent_size) {
7473 use_cluster = false;
7474 }
7475 spin_unlock(&space_info->lock);
fa9c0d79 7476 }
0f9dd46c 7477
c759c4e1 7478 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
239b14b3 7479 if (last_ptr) {
fa9c0d79
CM
7480 spin_lock(&last_ptr->lock);
7481 if (last_ptr->block_group)
7482 hint_byte = last_ptr->window_start;
c759c4e1
JB
7483 if (last_ptr->fragmented) {
7484 /*
7485 * We still set window_start so we can keep track of the
7486 * last place we found an allocation to try and save
7487 * some time.
7488 */
7489 hint_byte = last_ptr->window_start;
7490 use_cluster = false;
7491 }
fa9c0d79 7492 spin_unlock(&last_ptr->lock);
239b14b3 7493 }
fa9c0d79 7494
a061fc8d 7495 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 7496 search_start = max(search_start, hint_byte);
2552d17e 7497 if (search_start == hint_byte) {
2552d17e
JB
7498 block_group = btrfs_lookup_block_group(root->fs_info,
7499 search_start);
817d52f8
JB
7500 /*
7501 * we don't want to use the block group if it doesn't match our
7502 * allocation bits, or if its not cached.
ccf0e725
JB
7503 *
7504 * However if we are re-searching with an ideal block group
7505 * picked out then we don't care that the block group is cached.
817d52f8 7506 */
b6919a58 7507 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7508 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7509 down_read(&space_info->groups_sem);
44fb5511
CM
7510 if (list_empty(&block_group->list) ||
7511 block_group->ro) {
7512 /*
7513 * someone is removing this block group,
7514 * we can't jump into the have_block_group
7515 * target because our list pointers are not
7516 * valid
7517 */
7518 btrfs_put_block_group(block_group);
7519 up_read(&space_info->groups_sem);
ccf0e725 7520 } else {
b742bb82 7521 index = get_block_group_index(block_group);
e570fd27 7522 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7523 goto have_block_group;
ccf0e725 7524 }
2552d17e 7525 } else if (block_group) {
fa9c0d79 7526 btrfs_put_block_group(block_group);
2552d17e 7527 }
42e70e7a 7528 }
2552d17e 7529search:
60d2adbb 7530 have_caching_bg = false;
a5e681d9
JB
7531 if (index == 0 || index == __get_raid_index(flags))
7532 full_search = true;
80eb234a 7533 down_read(&space_info->groups_sem);
b742bb82
YZ
7534 list_for_each_entry(block_group, &space_info->block_groups[index],
7535 list) {
6226cb0a 7536 u64 offset;
817d52f8 7537 int cached;
8a1413a2 7538
e570fd27 7539 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7540 search_start = block_group->key.objectid;
42e70e7a 7541
83a50de9
CM
7542 /*
7543 * this can happen if we end up cycling through all the
7544 * raid types, but we want to make sure we only allocate
7545 * for the proper type.
7546 */
b6919a58 7547 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7548 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7549 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7550 BTRFS_BLOCK_GROUP_RAID5 |
7551 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7552 BTRFS_BLOCK_GROUP_RAID10;
7553
7554 /*
7555 * if they asked for extra copies and this block group
7556 * doesn't provide them, bail. This does allow us to
7557 * fill raid0 from raid1.
7558 */
b6919a58 7559 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7560 goto loop;
7561 }
7562
2552d17e 7563have_block_group:
291c7d2f
JB
7564 cached = block_group_cache_done(block_group);
7565 if (unlikely(!cached)) {
a5e681d9 7566 have_caching_bg = true;
f6373bf3 7567 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7568 BUG_ON(ret < 0);
7569 ret = 0;
817d52f8
JB
7570 }
7571
36cce922
JB
7572 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7573 goto loop;
ea6a478e 7574 if (unlikely(block_group->ro))
2552d17e 7575 goto loop;
0f9dd46c 7576
0a24325e 7577 /*
062c05c4
AO
7578 * Ok we want to try and use the cluster allocator, so
7579 * lets look there
0a24325e 7580 */
c759c4e1 7581 if (last_ptr && use_cluster) {
215a63d1 7582 struct btrfs_block_group_cache *used_block_group;
8de972b4 7583 unsigned long aligned_cluster;
fa9c0d79
CM
7584 /*
7585 * the refill lock keeps out other
7586 * people trying to start a new cluster
7587 */
e570fd27
MX
7588 used_block_group = btrfs_lock_cluster(block_group,
7589 last_ptr,
7590 delalloc);
7591 if (!used_block_group)
44fb5511 7592 goto refill_cluster;
274bd4fb 7593
e570fd27
MX
7594 if (used_block_group != block_group &&
7595 (used_block_group->ro ||
7596 !block_group_bits(used_block_group, flags)))
7597 goto release_cluster;
44fb5511 7598
274bd4fb 7599 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7600 last_ptr,
7601 num_bytes,
7602 used_block_group->key.objectid,
7603 &max_extent_size);
fa9c0d79
CM
7604 if (offset) {
7605 /* we have a block, we're done */
7606 spin_unlock(&last_ptr->refill_lock);
3f7de037 7607 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7608 used_block_group,
7609 search_start, num_bytes);
215a63d1 7610 if (used_block_group != block_group) {
e570fd27
MX
7611 btrfs_release_block_group(block_group,
7612 delalloc);
215a63d1
MX
7613 block_group = used_block_group;
7614 }
fa9c0d79
CM
7615 goto checks;
7616 }
7617
274bd4fb 7618 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7619release_cluster:
062c05c4
AO
7620 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7621 * set up a new clusters, so lets just skip it
7622 * and let the allocator find whatever block
7623 * it can find. If we reach this point, we
7624 * will have tried the cluster allocator
7625 * plenty of times and not have found
7626 * anything, so we are likely way too
7627 * fragmented for the clustering stuff to find
a5f6f719
AO
7628 * anything.
7629 *
7630 * However, if the cluster is taken from the
7631 * current block group, release the cluster
7632 * first, so that we stand a better chance of
7633 * succeeding in the unclustered
7634 * allocation. */
7635 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7636 used_block_group != block_group) {
062c05c4 7637 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7638 btrfs_release_block_group(used_block_group,
7639 delalloc);
062c05c4
AO
7640 goto unclustered_alloc;
7641 }
7642
fa9c0d79
CM
7643 /*
7644 * this cluster didn't work out, free it and
7645 * start over
7646 */
7647 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7648
e570fd27
MX
7649 if (used_block_group != block_group)
7650 btrfs_release_block_group(used_block_group,
7651 delalloc);
7652refill_cluster:
a5f6f719
AO
7653 if (loop >= LOOP_NO_EMPTY_SIZE) {
7654 spin_unlock(&last_ptr->refill_lock);
7655 goto unclustered_alloc;
7656 }
7657
8de972b4
CM
7658 aligned_cluster = max_t(unsigned long,
7659 empty_cluster + empty_size,
7660 block_group->full_stripe_len);
7661
fa9c0d79 7662 /* allocate a cluster in this block group */
00361589
JB
7663 ret = btrfs_find_space_cluster(root, block_group,
7664 last_ptr, search_start,
7665 num_bytes,
7666 aligned_cluster);
fa9c0d79
CM
7667 if (ret == 0) {
7668 /*
7669 * now pull our allocation out of this
7670 * cluster
7671 */
7672 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7673 last_ptr,
7674 num_bytes,
7675 search_start,
7676 &max_extent_size);
fa9c0d79
CM
7677 if (offset) {
7678 /* we found one, proceed */
7679 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7680 trace_btrfs_reserve_extent_cluster(root,
7681 block_group, search_start,
7682 num_bytes);
fa9c0d79
CM
7683 goto checks;
7684 }
0a24325e
JB
7685 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7686 && !failed_cluster_refill) {
817d52f8
JB
7687 spin_unlock(&last_ptr->refill_lock);
7688
0a24325e 7689 failed_cluster_refill = true;
817d52f8
JB
7690 wait_block_group_cache_progress(block_group,
7691 num_bytes + empty_cluster + empty_size);
7692 goto have_block_group;
fa9c0d79 7693 }
817d52f8 7694
fa9c0d79
CM
7695 /*
7696 * at this point we either didn't find a cluster
7697 * or we weren't able to allocate a block from our
7698 * cluster. Free the cluster we've been trying
7699 * to use, and go to the next block group
7700 */
0a24325e 7701 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7702 spin_unlock(&last_ptr->refill_lock);
0a24325e 7703 goto loop;
fa9c0d79
CM
7704 }
7705
062c05c4 7706unclustered_alloc:
c759c4e1
JB
7707 /*
7708 * We are doing an unclustered alloc, set the fragmented flag so
7709 * we don't bother trying to setup a cluster again until we get
7710 * more space.
7711 */
7712 if (unlikely(last_ptr)) {
7713 spin_lock(&last_ptr->lock);
7714 last_ptr->fragmented = 1;
7715 spin_unlock(&last_ptr->lock);
7716 }
a5f6f719
AO
7717 spin_lock(&block_group->free_space_ctl->tree_lock);
7718 if (cached &&
7719 block_group->free_space_ctl->free_space <
7720 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7721 if (block_group->free_space_ctl->free_space >
7722 max_extent_size)
7723 max_extent_size =
7724 block_group->free_space_ctl->free_space;
a5f6f719
AO
7725 spin_unlock(&block_group->free_space_ctl->tree_lock);
7726 goto loop;
7727 }
7728 spin_unlock(&block_group->free_space_ctl->tree_lock);
7729
6226cb0a 7730 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7731 num_bytes, empty_size,
7732 &max_extent_size);
1cdda9b8
JB
7733 /*
7734 * If we didn't find a chunk, and we haven't failed on this
7735 * block group before, and this block group is in the middle of
7736 * caching and we are ok with waiting, then go ahead and wait
7737 * for progress to be made, and set failed_alloc to true.
7738 *
7739 * If failed_alloc is true then we've already waited on this
7740 * block group once and should move on to the next block group.
7741 */
7742 if (!offset && !failed_alloc && !cached &&
7743 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7744 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7745 num_bytes + empty_size);
7746 failed_alloc = true;
817d52f8 7747 goto have_block_group;
1cdda9b8
JB
7748 } else if (!offset) {
7749 goto loop;
817d52f8 7750 }
fa9c0d79 7751checks:
4e54b17a 7752 search_start = ALIGN(offset, root->stripesize);
25179201 7753
2552d17e
JB
7754 /* move on to the next group */
7755 if (search_start + num_bytes >
215a63d1
MX
7756 block_group->key.objectid + block_group->key.offset) {
7757 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7758 goto loop;
6226cb0a 7759 }
f5a31e16 7760
f0486c68 7761 if (offset < search_start)
215a63d1 7762 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7763 search_start - offset);
7764 BUG_ON(offset > search_start);
2552d17e 7765
215a63d1 7766 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7767 alloc_type, delalloc);
f0486c68 7768 if (ret == -EAGAIN) {
215a63d1 7769 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7770 goto loop;
0f9dd46c 7771 }
9cfa3e34 7772 btrfs_inc_block_group_reservations(block_group);
0b86a832 7773
f0486c68 7774 /* we are all good, lets return */
2552d17e
JB
7775 ins->objectid = search_start;
7776 ins->offset = num_bytes;
d2fb3437 7777
3f7de037
JB
7778 trace_btrfs_reserve_extent(orig_root, block_group,
7779 search_start, num_bytes);
e570fd27 7780 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7781 break;
7782loop:
0a24325e 7783 failed_cluster_refill = false;
1cdda9b8 7784 failed_alloc = false;
b742bb82 7785 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7786 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7787 }
7788 up_read(&space_info->groups_sem);
7789
13a0db5a 7790 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7791 && !orig_have_caching_bg)
7792 orig_have_caching_bg = true;
7793
60d2adbb
MX
7794 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7795 goto search;
7796
b742bb82
YZ
7797 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7798 goto search;
7799
285ff5af 7800 /*
ccf0e725
JB
7801 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7802 * caching kthreads as we move along
817d52f8
JB
7803 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7804 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7805 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7806 * again
fa9c0d79 7807 */
723bda20 7808 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7809 index = 0;
a5e681d9
JB
7810 if (loop == LOOP_CACHING_NOWAIT) {
7811 /*
7812 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7813 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7814 * full search through.
7815 */
13a0db5a 7816 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7817 loop = LOOP_CACHING_WAIT;
7818 else
7819 loop = LOOP_ALLOC_CHUNK;
7820 } else {
7821 loop++;
7822 }
7823
817d52f8 7824 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7825 struct btrfs_trans_handle *trans;
f017f15f
WS
7826 int exist = 0;
7827
7828 trans = current->journal_info;
7829 if (trans)
7830 exist = 1;
7831 else
7832 trans = btrfs_join_transaction(root);
00361589 7833
00361589
JB
7834 if (IS_ERR(trans)) {
7835 ret = PTR_ERR(trans);
7836 goto out;
7837 }
7838
b6919a58 7839 ret = do_chunk_alloc(trans, root, flags,
ea658bad 7840 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7841
7842 /*
7843 * If we can't allocate a new chunk we've already looped
7844 * through at least once, move on to the NO_EMPTY_SIZE
7845 * case.
7846 */
7847 if (ret == -ENOSPC)
7848 loop = LOOP_NO_EMPTY_SIZE;
7849
ea658bad
JB
7850 /*
7851 * Do not bail out on ENOSPC since we
7852 * can do more things.
7853 */
00361589 7854 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7855 btrfs_abort_transaction(trans,
7856 root, ret);
00361589
JB
7857 else
7858 ret = 0;
f017f15f
WS
7859 if (!exist)
7860 btrfs_end_transaction(trans, root);
00361589 7861 if (ret)
ea658bad 7862 goto out;
2552d17e
JB
7863 }
7864
723bda20 7865 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7866 /*
7867 * Don't loop again if we already have no empty_size and
7868 * no empty_cluster.
7869 */
7870 if (empty_size == 0 &&
7871 empty_cluster == 0) {
7872 ret = -ENOSPC;
7873 goto out;
7874 }
723bda20
JB
7875 empty_size = 0;
7876 empty_cluster = 0;
fa9c0d79 7877 }
723bda20
JB
7878
7879 goto search;
2552d17e
JB
7880 } else if (!ins->objectid) {
7881 ret = -ENOSPC;
d82a6f1d 7882 } else if (ins->objectid) {
c759c4e1
JB
7883 if (!use_cluster && last_ptr) {
7884 spin_lock(&last_ptr->lock);
7885 last_ptr->window_start = ins->objectid;
7886 spin_unlock(&last_ptr->lock);
7887 }
80eb234a 7888 ret = 0;
be744175 7889 }
79787eaa 7890out:
4f4db217
JB
7891 if (ret == -ENOSPC) {
7892 spin_lock(&space_info->lock);
7893 space_info->max_extent_size = max_extent_size;
7894 spin_unlock(&space_info->lock);
a4820398 7895 ins->offset = max_extent_size;
4f4db217 7896 }
0f70abe2 7897 return ret;
fec577fb 7898}
ec44a35c 7899
9ed74f2d
JB
7900static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7901 int dump_block_groups)
0f9dd46c
JB
7902{
7903 struct btrfs_block_group_cache *cache;
b742bb82 7904 int index = 0;
0f9dd46c 7905
9ed74f2d 7906 spin_lock(&info->lock);
efe120a0 7907 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7908 info->flags,
7909 info->total_bytes - info->bytes_used - info->bytes_pinned -
39581a3a
WX
7910 info->bytes_reserved - info->bytes_readonly -
7911 info->bytes_may_use, (info->full) ? "" : "not ");
efe120a0 7912 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7913 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7914 info->total_bytes, info->bytes_used, info->bytes_pinned,
7915 info->bytes_reserved, info->bytes_may_use,
7916 info->bytes_readonly);
9ed74f2d
JB
7917 spin_unlock(&info->lock);
7918
7919 if (!dump_block_groups)
7920 return;
0f9dd46c 7921
80eb234a 7922 down_read(&info->groups_sem);
b742bb82
YZ
7923again:
7924 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7925 spin_lock(&cache->lock);
efe120a0
FH
7926 printk(KERN_INFO "BTRFS: "
7927 "block group %llu has %llu bytes, "
7928 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7929 cache->key.objectid, cache->key.offset,
7930 btrfs_block_group_used(&cache->item), cache->pinned,
7931 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7932 btrfs_dump_free_space(cache, bytes);
7933 spin_unlock(&cache->lock);
7934 }
b742bb82
YZ
7935 if (++index < BTRFS_NR_RAID_TYPES)
7936 goto again;
80eb234a 7937 up_read(&info->groups_sem);
0f9dd46c 7938}
e8569813 7939
00361589 7940int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7941 u64 num_bytes, u64 min_alloc_size,
7942 u64 empty_size, u64 hint_byte,
e570fd27 7943 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7944{
36af4e07 7945 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7946 u64 flags;
fec577fb 7947 int ret;
925baedd 7948
b6919a58 7949 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7950again:
db94535d 7951 WARN_ON(num_bytes < root->sectorsize);
00361589 7952 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7953 flags, delalloc);
9cfa3e34
FM
7954 if (!ret && !is_data) {
7955 btrfs_dec_block_group_reservations(root->fs_info,
7956 ins->objectid);
7957 } else if (ret == -ENOSPC) {
a4820398
MX
7958 if (!final_tried && ins->offset) {
7959 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7960 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7961 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7962 if (num_bytes == min_alloc_size)
7963 final_tried = true;
7964 goto again;
3cdde224 7965 } else if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
7966 struct btrfs_space_info *sinfo;
7967
b6919a58 7968 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7969 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7970 flags, num_bytes);
53804280
JM
7971 if (sinfo)
7972 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7973 }
925baedd 7974 }
0f9dd46c
JB
7975
7976 return ret;
e6dcd2dc
CM
7977}
7978
e688b725 7979static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7980 u64 start, u64 len,
7981 int pin, int delalloc)
65b51a00 7982{
0f9dd46c 7983 struct btrfs_block_group_cache *cache;
1f3c79a2 7984 int ret = 0;
0f9dd46c 7985
0f9dd46c
JB
7986 cache = btrfs_lookup_block_group(root->fs_info, start);
7987 if (!cache) {
c2cf52eb 7988 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7989 start);
0f9dd46c
JB
7990 return -ENOSPC;
7991 }
1f3c79a2 7992
e688b725
CM
7993 if (pin)
7994 pin_down_extent(root, cache, start, len, 1);
7995 else {
3cdde224 7996 if (btrfs_test_opt(root->fs_info, DISCARD))
dcc82f47 7997 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7998 btrfs_add_free_space(cache, start, len);
e570fd27 7999 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
31bada7c 8000 trace_btrfs_reserved_extent_free(root, start, len);
e688b725 8001 }
31193213 8002
fa9c0d79 8003 btrfs_put_block_group(cache);
e6dcd2dc
CM
8004 return ret;
8005}
8006
e688b725 8007int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 8008 u64 start, u64 len, int delalloc)
e688b725 8009{
e570fd27 8010 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
8011}
8012
8013int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
8014 u64 start, u64 len)
8015{
e570fd27 8016 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
8017}
8018
5d4f98a2
YZ
8019static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8020 struct btrfs_root *root,
8021 u64 parent, u64 root_objectid,
8022 u64 flags, u64 owner, u64 offset,
8023 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8024{
8025 int ret;
5d4f98a2 8026 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 8027 struct btrfs_extent_item *extent_item;
5d4f98a2 8028 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8029 struct btrfs_path *path;
5d4f98a2
YZ
8030 struct extent_buffer *leaf;
8031 int type;
8032 u32 size;
26b8003f 8033
5d4f98a2
YZ
8034 if (parent > 0)
8035 type = BTRFS_SHARED_DATA_REF_KEY;
8036 else
8037 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8038
5d4f98a2 8039 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8040
8041 path = btrfs_alloc_path();
db5b493a
TI
8042 if (!path)
8043 return -ENOMEM;
47e4bb98 8044
b9473439 8045 path->leave_spinning = 1;
5d4f98a2
YZ
8046 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8047 ins, size);
79787eaa
JM
8048 if (ret) {
8049 btrfs_free_path(path);
8050 return ret;
8051 }
0f9dd46c 8052
5d4f98a2
YZ
8053 leaf = path->nodes[0];
8054 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8055 struct btrfs_extent_item);
5d4f98a2
YZ
8056 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8057 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8058 btrfs_set_extent_flags(leaf, extent_item,
8059 flags | BTRFS_EXTENT_FLAG_DATA);
8060
8061 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8062 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8063 if (parent > 0) {
8064 struct btrfs_shared_data_ref *ref;
8065 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8066 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8067 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8068 } else {
8069 struct btrfs_extent_data_ref *ref;
8070 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8071 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8072 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8073 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8074 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8075 }
47e4bb98
CM
8076
8077 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8078 btrfs_free_path(path);
f510cfec 8079
1e144fb8
OS
8080 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8081 ins->offset);
8082 if (ret)
8083 return ret;
8084
ce93ec54 8085 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 8086 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8087 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8088 ins->objectid, ins->offset);
f5947066
CM
8089 BUG();
8090 }
0be5dc67 8091 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
8092 return ret;
8093}
8094
5d4f98a2
YZ
8095static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8096 struct btrfs_root *root,
8097 u64 parent, u64 root_objectid,
8098 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8099 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8100{
8101 int ret;
5d4f98a2
YZ
8102 struct btrfs_fs_info *fs_info = root->fs_info;
8103 struct btrfs_extent_item *extent_item;
8104 struct btrfs_tree_block_info *block_info;
8105 struct btrfs_extent_inline_ref *iref;
8106 struct btrfs_path *path;
8107 struct extent_buffer *leaf;
3173a18f 8108 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8109 u64 num_bytes = ins->offset;
3173a18f
JB
8110 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8111 SKINNY_METADATA);
8112
8113 if (!skinny_metadata)
8114 size += sizeof(*block_info);
1c2308f8 8115
5d4f98a2 8116 path = btrfs_alloc_path();
857cc2fc
JB
8117 if (!path) {
8118 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 8119 root->nodesize);
d8926bb3 8120 return -ENOMEM;
857cc2fc 8121 }
56bec294 8122
5d4f98a2
YZ
8123 path->leave_spinning = 1;
8124 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8125 ins, size);
79787eaa 8126 if (ret) {
dd825259 8127 btrfs_free_path(path);
857cc2fc 8128 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 8129 root->nodesize);
79787eaa
JM
8130 return ret;
8131 }
5d4f98a2
YZ
8132
8133 leaf = path->nodes[0];
8134 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8135 struct btrfs_extent_item);
8136 btrfs_set_extent_refs(leaf, extent_item, 1);
8137 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8138 btrfs_set_extent_flags(leaf, extent_item,
8139 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8140
3173a18f
JB
8141 if (skinny_metadata) {
8142 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 8143 num_bytes = root->nodesize;
3173a18f
JB
8144 } else {
8145 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8146 btrfs_set_tree_block_key(leaf, block_info, key);
8147 btrfs_set_tree_block_level(leaf, block_info, level);
8148 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8149 }
5d4f98a2 8150
5d4f98a2
YZ
8151 if (parent > 0) {
8152 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8153 btrfs_set_extent_inline_ref_type(leaf, iref,
8154 BTRFS_SHARED_BLOCK_REF_KEY);
8155 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8156 } else {
8157 btrfs_set_extent_inline_ref_type(leaf, iref,
8158 BTRFS_TREE_BLOCK_REF_KEY);
8159 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8160 }
8161
8162 btrfs_mark_buffer_dirty(leaf);
8163 btrfs_free_path(path);
8164
1e144fb8
OS
8165 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8166 num_bytes);
8167 if (ret)
8168 return ret;
8169
ce93ec54
JB
8170 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
8171 1);
79787eaa 8172 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8173 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8174 ins->objectid, ins->offset);
5d4f98a2
YZ
8175 BUG();
8176 }
0be5dc67 8177
707e8a07 8178 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
8179 return ret;
8180}
8181
8182int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8183 struct btrfs_root *root,
8184 u64 root_objectid, u64 owner,
5846a3c2
QW
8185 u64 offset, u64 ram_bytes,
8186 struct btrfs_key *ins)
5d4f98a2
YZ
8187{
8188 int ret;
8189
8190 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8191
66d7e7f0
AJ
8192 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
8193 ins->offset, 0,
8194 root_objectid, owner, offset,
5846a3c2
QW
8195 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8196 NULL);
e6dcd2dc
CM
8197 return ret;
8198}
e02119d5
CM
8199
8200/*
8201 * this is used by the tree logging recovery code. It records that
8202 * an extent has been allocated and makes sure to clear the free
8203 * space cache bits as well
8204 */
5d4f98a2
YZ
8205int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8206 struct btrfs_root *root,
8207 u64 root_objectid, u64 owner, u64 offset,
8208 struct btrfs_key *ins)
e02119d5
CM
8209{
8210 int ret;
8211 struct btrfs_block_group_cache *block_group;
11833d66 8212
8c2a1a30
JB
8213 /*
8214 * Mixed block groups will exclude before processing the log so we only
01327610 8215 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30
JB
8216 */
8217 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8218 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 8219 if (ret)
8c2a1a30 8220 return ret;
11833d66
YZ
8221 }
8222
8c2a1a30
JB
8223 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8224 if (!block_group)
8225 return -EINVAL;
8226
fb25e914 8227 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 8228 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 8229 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
8230 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8231 0, owner, offset, ins, 1);
b50c6e25 8232 btrfs_put_block_group(block_group);
e02119d5
CM
8233 return ret;
8234}
8235
48a3b636
ES
8236static struct extent_buffer *
8237btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8238 u64 bytenr, int level)
65b51a00
CM
8239{
8240 struct extent_buffer *buf;
8241
a83fffb7 8242 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8243 if (IS_ERR(buf))
8244 return buf;
8245
65b51a00 8246 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8247 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8248 btrfs_tree_lock(buf);
01d58472 8249 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 8250 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8251
8252 btrfs_set_lock_blocking(buf);
4db8c528 8253 set_extent_buffer_uptodate(buf);
b4ce94de 8254
d0c803c4 8255 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8256 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8257 /*
8258 * we allow two log transactions at a time, use different
8259 * EXENT bit to differentiate dirty pages.
8260 */
656f30db 8261 if (buf->log_index == 0)
8cef4e16
YZ
8262 set_extent_dirty(&root->dirty_log_pages, buf->start,
8263 buf->start + buf->len - 1, GFP_NOFS);
8264 else
8265 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8266 buf->start + buf->len - 1);
d0c803c4 8267 } else {
656f30db 8268 buf->log_index = -1;
d0c803c4 8269 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8270 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8271 }
64c12921 8272 trans->dirty = true;
b4ce94de 8273 /* this returns a buffer locked for blocking */
65b51a00
CM
8274 return buf;
8275}
8276
f0486c68
YZ
8277static struct btrfs_block_rsv *
8278use_block_rsv(struct btrfs_trans_handle *trans,
8279 struct btrfs_root *root, u32 blocksize)
8280{
8281 struct btrfs_block_rsv *block_rsv;
68a82277 8282 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 8283 int ret;
d88033db 8284 bool global_updated = false;
f0486c68
YZ
8285
8286 block_rsv = get_block_rsv(trans, root);
8287
b586b323
MX
8288 if (unlikely(block_rsv->size == 0))
8289 goto try_reserve;
d88033db 8290again:
f0486c68
YZ
8291 ret = block_rsv_use_bytes(block_rsv, blocksize);
8292 if (!ret)
8293 return block_rsv;
8294
b586b323
MX
8295 if (block_rsv->failfast)
8296 return ERR_PTR(ret);
8297
d88033db
MX
8298 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8299 global_updated = true;
8300 update_global_block_rsv(root->fs_info);
8301 goto again;
8302 }
8303
3cdde224 8304 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8305 static DEFINE_RATELIMIT_STATE(_rs,
8306 DEFAULT_RATELIMIT_INTERVAL * 10,
8307 /*DEFAULT_RATELIMIT_BURST*/ 1);
8308 if (__ratelimit(&_rs))
8309 WARN(1, KERN_DEBUG
efe120a0 8310 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8311 }
8312try_reserve:
8313 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8314 BTRFS_RESERVE_NO_FLUSH);
8315 if (!ret)
8316 return block_rsv;
8317 /*
8318 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8319 * the global reserve if its space type is the same as the global
8320 * reservation.
b586b323 8321 */
5881cfc9
MX
8322 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8323 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8324 ret = block_rsv_use_bytes(global_rsv, blocksize);
8325 if (!ret)
8326 return global_rsv;
8327 }
8328 return ERR_PTR(ret);
f0486c68
YZ
8329}
8330
8c2a3ca2
JB
8331static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8332 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8333{
8334 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8335 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8336}
8337
fec577fb 8338/*
f0486c68 8339 * finds a free extent and does all the dirty work required for allocation
67b7859e 8340 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8341 */
4d75f8a9
DS
8342struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8343 struct btrfs_root *root,
5d4f98a2
YZ
8344 u64 parent, u64 root_objectid,
8345 struct btrfs_disk_key *key, int level,
5581a51a 8346 u64 hint, u64 empty_size)
fec577fb 8347{
e2fa7227 8348 struct btrfs_key ins;
f0486c68 8349 struct btrfs_block_rsv *block_rsv;
5f39d397 8350 struct extent_buffer *buf;
67b7859e 8351 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8352 u64 flags = 0;
8353 int ret;
4d75f8a9 8354 u32 blocksize = root->nodesize;
3173a18f
JB
8355 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8356 SKINNY_METADATA);
fec577fb 8357
05653ef3 8358#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
f5ee5c9a 8359 if (btrfs_is_testing(root->fs_info)) {
faa2dbf0 8360 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8361 level);
faa2dbf0
JB
8362 if (!IS_ERR(buf))
8363 root->alloc_bytenr += blocksize;
8364 return buf;
8365 }
05653ef3 8366#endif
fccb84c9 8367
f0486c68
YZ
8368 block_rsv = use_block_rsv(trans, root, blocksize);
8369 if (IS_ERR(block_rsv))
8370 return ERR_CAST(block_rsv);
8371
00361589 8372 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 8373 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8374 if (ret)
8375 goto out_unuse;
55c69072 8376
fe864576 8377 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8378 if (IS_ERR(buf)) {
8379 ret = PTR_ERR(buf);
8380 goto out_free_reserved;
8381 }
f0486c68
YZ
8382
8383 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8384 if (parent == 0)
8385 parent = ins.objectid;
8386 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8387 } else
8388 BUG_ON(parent > 0);
8389
8390 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8391 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8392 if (!extent_op) {
8393 ret = -ENOMEM;
8394 goto out_free_buf;
8395 }
f0486c68
YZ
8396 if (key)
8397 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8398 else
8399 memset(&extent_op->key, 0, sizeof(extent_op->key));
8400 extent_op->flags_to_set = flags;
35b3ad50
DS
8401 extent_op->update_key = skinny_metadata ? false : true;
8402 extent_op->update_flags = true;
8403 extent_op->is_data = false;
b1c79e09 8404 extent_op->level = level;
f0486c68 8405
66d7e7f0 8406 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
8407 ins.objectid, ins.offset,
8408 parent, root_objectid, level,
8409 BTRFS_ADD_DELAYED_EXTENT,
b06c4bf5 8410 extent_op);
67b7859e
OS
8411 if (ret)
8412 goto out_free_delayed;
f0486c68 8413 }
fec577fb 8414 return buf;
67b7859e
OS
8415
8416out_free_delayed:
8417 btrfs_free_delayed_extent_op(extent_op);
8418out_free_buf:
8419 free_extent_buffer(buf);
8420out_free_reserved:
8421 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8422out_unuse:
8423 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8424 return ERR_PTR(ret);
fec577fb 8425}
a28ec197 8426
2c47e605
YZ
8427struct walk_control {
8428 u64 refs[BTRFS_MAX_LEVEL];
8429 u64 flags[BTRFS_MAX_LEVEL];
8430 struct btrfs_key update_progress;
8431 int stage;
8432 int level;
8433 int shared_level;
8434 int update_ref;
8435 int keep_locks;
1c4850e2
YZ
8436 int reada_slot;
8437 int reada_count;
66d7e7f0 8438 int for_reloc;
2c47e605
YZ
8439};
8440
8441#define DROP_REFERENCE 1
8442#define UPDATE_BACKREF 2
8443
1c4850e2
YZ
8444static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8445 struct btrfs_root *root,
8446 struct walk_control *wc,
8447 struct btrfs_path *path)
6407bf6d 8448{
1c4850e2
YZ
8449 u64 bytenr;
8450 u64 generation;
8451 u64 refs;
94fcca9f 8452 u64 flags;
5d4f98a2 8453 u32 nritems;
1c4850e2
YZ
8454 u32 blocksize;
8455 struct btrfs_key key;
8456 struct extent_buffer *eb;
6407bf6d 8457 int ret;
1c4850e2
YZ
8458 int slot;
8459 int nread = 0;
6407bf6d 8460
1c4850e2
YZ
8461 if (path->slots[wc->level] < wc->reada_slot) {
8462 wc->reada_count = wc->reada_count * 2 / 3;
8463 wc->reada_count = max(wc->reada_count, 2);
8464 } else {
8465 wc->reada_count = wc->reada_count * 3 / 2;
8466 wc->reada_count = min_t(int, wc->reada_count,
8467 BTRFS_NODEPTRS_PER_BLOCK(root));
8468 }
7bb86316 8469
1c4850e2
YZ
8470 eb = path->nodes[wc->level];
8471 nritems = btrfs_header_nritems(eb);
707e8a07 8472 blocksize = root->nodesize;
bd56b302 8473
1c4850e2
YZ
8474 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8475 if (nread >= wc->reada_count)
8476 break;
bd56b302 8477
2dd3e67b 8478 cond_resched();
1c4850e2
YZ
8479 bytenr = btrfs_node_blockptr(eb, slot);
8480 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8481
1c4850e2
YZ
8482 if (slot == path->slots[wc->level])
8483 goto reada;
5d4f98a2 8484
1c4850e2
YZ
8485 if (wc->stage == UPDATE_BACKREF &&
8486 generation <= root->root_key.offset)
bd56b302
CM
8487 continue;
8488
94fcca9f 8489 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
8490 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8491 wc->level - 1, 1, &refs,
8492 &flags);
79787eaa
JM
8493 /* We don't care about errors in readahead. */
8494 if (ret < 0)
8495 continue;
94fcca9f
YZ
8496 BUG_ON(refs == 0);
8497
1c4850e2 8498 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8499 if (refs == 1)
8500 goto reada;
bd56b302 8501
94fcca9f
YZ
8502 if (wc->level == 1 &&
8503 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8504 continue;
1c4850e2
YZ
8505 if (!wc->update_ref ||
8506 generation <= root->root_key.offset)
8507 continue;
8508 btrfs_node_key_to_cpu(eb, &key, slot);
8509 ret = btrfs_comp_cpu_keys(&key,
8510 &wc->update_progress);
8511 if (ret < 0)
8512 continue;
94fcca9f
YZ
8513 } else {
8514 if (wc->level == 1 &&
8515 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8516 continue;
6407bf6d 8517 }
1c4850e2 8518reada:
d3e46fea 8519 readahead_tree_block(root, bytenr);
1c4850e2 8520 nread++;
20524f02 8521 }
1c4850e2 8522 wc->reada_slot = slot;
20524f02 8523}
2c47e605 8524
0ed4792a 8525/*
82bd101b
MF
8526 * These may not be seen by the usual inc/dec ref code so we have to
8527 * add them here.
0ed4792a 8528 */
82bd101b
MF
8529static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8530 struct btrfs_root *root, u64 bytenr,
8531 u64 num_bytes)
8532{
8533 struct btrfs_qgroup_extent_record *qrecord;
8534 struct btrfs_delayed_ref_root *delayed_refs;
8535
8536 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8537 if (!qrecord)
8538 return -ENOMEM;
8539
8540 qrecord->bytenr = bytenr;
8541 qrecord->num_bytes = num_bytes;
8542 qrecord->old_roots = NULL;
8543
8544 delayed_refs = &trans->transaction->delayed_refs;
8545 spin_lock(&delayed_refs->lock);
bc074524
JM
8546 if (btrfs_qgroup_insert_dirty_extent(trans->root->fs_info,
8547 delayed_refs, qrecord))
82bd101b
MF
8548 kfree(qrecord);
8549 spin_unlock(&delayed_refs->lock);
8550
8551 return 0;
8552}
8553
1152651a
MF
8554static int account_leaf_items(struct btrfs_trans_handle *trans,
8555 struct btrfs_root *root,
8556 struct extent_buffer *eb)
8557{
8558 int nr = btrfs_header_nritems(eb);
82bd101b 8559 int i, extent_type, ret;
1152651a
MF
8560 struct btrfs_key key;
8561 struct btrfs_file_extent_item *fi;
8562 u64 bytenr, num_bytes;
8563
82bd101b
MF
8564 /* We can be called directly from walk_up_proc() */
8565 if (!root->fs_info->quota_enabled)
8566 return 0;
8567
1152651a
MF
8568 for (i = 0; i < nr; i++) {
8569 btrfs_item_key_to_cpu(eb, &key, i);
8570
8571 if (key.type != BTRFS_EXTENT_DATA_KEY)
8572 continue;
8573
8574 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8575 /* filter out non qgroup-accountable extents */
8576 extent_type = btrfs_file_extent_type(eb, fi);
8577
8578 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8579 continue;
8580
8581 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8582 if (!bytenr)
8583 continue;
8584
8585 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
82bd101b
MF
8586
8587 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8588 if (ret)
8589 return ret;
1152651a
MF
8590 }
8591 return 0;
8592}
8593
8594/*
8595 * Walk up the tree from the bottom, freeing leaves and any interior
8596 * nodes which have had all slots visited. If a node (leaf or
8597 * interior) is freed, the node above it will have it's slot
8598 * incremented. The root node will never be freed.
8599 *
8600 * At the end of this function, we should have a path which has all
8601 * slots incremented to the next position for a search. If we need to
8602 * read a new node it will be NULL and the node above it will have the
8603 * correct slot selected for a later read.
8604 *
8605 * If we increment the root nodes slot counter past the number of
8606 * elements, 1 is returned to signal completion of the search.
8607 */
8608static int adjust_slots_upwards(struct btrfs_root *root,
8609 struct btrfs_path *path, int root_level)
8610{
8611 int level = 0;
8612 int nr, slot;
8613 struct extent_buffer *eb;
8614
8615 if (root_level == 0)
8616 return 1;
8617
8618 while (level <= root_level) {
8619 eb = path->nodes[level];
8620 nr = btrfs_header_nritems(eb);
8621 path->slots[level]++;
8622 slot = path->slots[level];
8623 if (slot >= nr || level == 0) {
8624 /*
8625 * Don't free the root - we will detect this
8626 * condition after our loop and return a
8627 * positive value for caller to stop walking the tree.
8628 */
8629 if (level != root_level) {
8630 btrfs_tree_unlock_rw(eb, path->locks[level]);
8631 path->locks[level] = 0;
8632
8633 free_extent_buffer(eb);
8634 path->nodes[level] = NULL;
8635 path->slots[level] = 0;
8636 }
8637 } else {
8638 /*
8639 * We have a valid slot to walk back down
8640 * from. Stop here so caller can process these
8641 * new nodes.
8642 */
8643 break;
8644 }
8645
8646 level++;
8647 }
8648
8649 eb = path->nodes[root_level];
8650 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8651 return 1;
8652
8653 return 0;
8654}
8655
8656/*
8657 * root_eb is the subtree root and is locked before this function is called.
8658 */
8659static int account_shared_subtree(struct btrfs_trans_handle *trans,
8660 struct btrfs_root *root,
8661 struct extent_buffer *root_eb,
8662 u64 root_gen,
8663 int root_level)
8664{
8665 int ret = 0;
8666 int level;
8667 struct extent_buffer *eb = root_eb;
8668 struct btrfs_path *path = NULL;
8669
8670 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8671 BUG_ON(root_eb == NULL);
8672
8673 if (!root->fs_info->quota_enabled)
8674 return 0;
8675
8676 if (!extent_buffer_uptodate(root_eb)) {
8677 ret = btrfs_read_buffer(root_eb, root_gen);
8678 if (ret)
8679 goto out;
8680 }
8681
8682 if (root_level == 0) {
8683 ret = account_leaf_items(trans, root, root_eb);
8684 goto out;
8685 }
8686
8687 path = btrfs_alloc_path();
8688 if (!path)
8689 return -ENOMEM;
8690
8691 /*
8692 * Walk down the tree. Missing extent blocks are filled in as
8693 * we go. Metadata is accounted every time we read a new
8694 * extent block.
8695 *
8696 * When we reach a leaf, we account for file extent items in it,
8697 * walk back up the tree (adjusting slot pointers as we go)
8698 * and restart the search process.
8699 */
8700 extent_buffer_get(root_eb); /* For path */
8701 path->nodes[root_level] = root_eb;
8702 path->slots[root_level] = 0;
8703 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8704walk_down:
8705 level = root_level;
8706 while (level >= 0) {
8707 if (path->nodes[level] == NULL) {
1152651a
MF
8708 int parent_slot;
8709 u64 child_gen;
8710 u64 child_bytenr;
8711
8712 /* We need to get child blockptr/gen from
8713 * parent before we can read it. */
8714 eb = path->nodes[level + 1];
8715 parent_slot = path->slots[level + 1];
8716 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8717 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8718
ce86cd59 8719 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8720 if (IS_ERR(eb)) {
8721 ret = PTR_ERR(eb);
8722 goto out;
8723 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8724 free_extent_buffer(eb);
64c043de 8725 ret = -EIO;
1152651a
MF
8726 goto out;
8727 }
8728
8729 path->nodes[level] = eb;
8730 path->slots[level] = 0;
8731
8732 btrfs_tree_read_lock(eb);
8733 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8734 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
82bd101b
MF
8735
8736 ret = record_one_subtree_extent(trans, root, child_bytenr,
8737 root->nodesize);
8738 if (ret)
8739 goto out;
1152651a
MF
8740 }
8741
8742 if (level == 0) {
8743 ret = account_leaf_items(trans, root, path->nodes[level]);
8744 if (ret)
8745 goto out;
8746
8747 /* Nonzero return here means we completed our search */
8748 ret = adjust_slots_upwards(root, path, root_level);
8749 if (ret)
8750 break;
8751
8752 /* Restart search with new slots */
8753 goto walk_down;
8754 }
8755
8756 level--;
8757 }
8758
8759 ret = 0;
8760out:
8761 btrfs_free_path(path);
8762
8763 return ret;
8764}
8765
f82d02d9 8766/*
2c016dc2 8767 * helper to process tree block while walking down the tree.
2c47e605 8768 *
2c47e605
YZ
8769 * when wc->stage == UPDATE_BACKREF, this function updates
8770 * back refs for pointers in the block.
8771 *
8772 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8773 */
2c47e605 8774static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8775 struct btrfs_root *root,
2c47e605 8776 struct btrfs_path *path,
94fcca9f 8777 struct walk_control *wc, int lookup_info)
f82d02d9 8778{
2c47e605
YZ
8779 int level = wc->level;
8780 struct extent_buffer *eb = path->nodes[level];
2c47e605 8781 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8782 int ret;
8783
2c47e605
YZ
8784 if (wc->stage == UPDATE_BACKREF &&
8785 btrfs_header_owner(eb) != root->root_key.objectid)
8786 return 1;
f82d02d9 8787
2c47e605
YZ
8788 /*
8789 * when reference count of tree block is 1, it won't increase
8790 * again. once full backref flag is set, we never clear it.
8791 */
94fcca9f
YZ
8792 if (lookup_info &&
8793 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8794 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8795 BUG_ON(!path->locks[level]);
8796 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8797 eb->start, level, 1,
2c47e605
YZ
8798 &wc->refs[level],
8799 &wc->flags[level]);
79787eaa
JM
8800 BUG_ON(ret == -ENOMEM);
8801 if (ret)
8802 return ret;
2c47e605
YZ
8803 BUG_ON(wc->refs[level] == 0);
8804 }
5d4f98a2 8805
2c47e605
YZ
8806 if (wc->stage == DROP_REFERENCE) {
8807 if (wc->refs[level] > 1)
8808 return 1;
f82d02d9 8809
2c47e605 8810 if (path->locks[level] && !wc->keep_locks) {
bd681513 8811 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8812 path->locks[level] = 0;
8813 }
8814 return 0;
8815 }
f82d02d9 8816
2c47e605
YZ
8817 /* wc->stage == UPDATE_BACKREF */
8818 if (!(wc->flags[level] & flag)) {
8819 BUG_ON(!path->locks[level]);
e339a6b0 8820 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8821 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8822 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8823 BUG_ON(ret); /* -ENOMEM */
2c47e605 8824 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8825 eb->len, flag,
8826 btrfs_header_level(eb), 0);
79787eaa 8827 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8828 wc->flags[level] |= flag;
8829 }
8830
8831 /*
8832 * the block is shared by multiple trees, so it's not good to
8833 * keep the tree lock
8834 */
8835 if (path->locks[level] && level > 0) {
bd681513 8836 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8837 path->locks[level] = 0;
8838 }
8839 return 0;
8840}
8841
1c4850e2 8842/*
2c016dc2 8843 * helper to process tree block pointer.
1c4850e2
YZ
8844 *
8845 * when wc->stage == DROP_REFERENCE, this function checks
8846 * reference count of the block pointed to. if the block
8847 * is shared and we need update back refs for the subtree
8848 * rooted at the block, this function changes wc->stage to
8849 * UPDATE_BACKREF. if the block is shared and there is no
8850 * need to update back, this function drops the reference
8851 * to the block.
8852 *
8853 * NOTE: return value 1 means we should stop walking down.
8854 */
8855static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8856 struct btrfs_root *root,
8857 struct btrfs_path *path,
94fcca9f 8858 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8859{
8860 u64 bytenr;
8861 u64 generation;
8862 u64 parent;
8863 u32 blocksize;
8864 struct btrfs_key key;
8865 struct extent_buffer *next;
8866 int level = wc->level;
8867 int reada = 0;
8868 int ret = 0;
1152651a 8869 bool need_account = false;
1c4850e2
YZ
8870
8871 generation = btrfs_node_ptr_generation(path->nodes[level],
8872 path->slots[level]);
8873 /*
8874 * if the lower level block was created before the snapshot
8875 * was created, we know there is no need to update back refs
8876 * for the subtree
8877 */
8878 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8879 generation <= root->root_key.offset) {
8880 *lookup_info = 1;
1c4850e2 8881 return 1;
94fcca9f 8882 }
1c4850e2
YZ
8883
8884 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8885 blocksize = root->nodesize;
1c4850e2 8886
01d58472 8887 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8888 if (!next) {
a83fffb7 8889 next = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8890 if (IS_ERR(next))
8891 return PTR_ERR(next);
8892
b2aaaa3b
JB
8893 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8894 level - 1);
1c4850e2
YZ
8895 reada = 1;
8896 }
8897 btrfs_tree_lock(next);
8898 btrfs_set_lock_blocking(next);
8899
3173a18f 8900 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8901 &wc->refs[level - 1],
8902 &wc->flags[level - 1]);
79787eaa
JM
8903 if (ret < 0) {
8904 btrfs_tree_unlock(next);
8905 return ret;
8906 }
8907
c2cf52eb
SK
8908 if (unlikely(wc->refs[level - 1] == 0)) {
8909 btrfs_err(root->fs_info, "Missing references.");
8910 BUG();
8911 }
94fcca9f 8912 *lookup_info = 0;
1c4850e2 8913
94fcca9f 8914 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8915 if (wc->refs[level - 1] > 1) {
1152651a 8916 need_account = true;
94fcca9f
YZ
8917 if (level == 1 &&
8918 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8919 goto skip;
8920
1c4850e2
YZ
8921 if (!wc->update_ref ||
8922 generation <= root->root_key.offset)
8923 goto skip;
8924
8925 btrfs_node_key_to_cpu(path->nodes[level], &key,
8926 path->slots[level]);
8927 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8928 if (ret < 0)
8929 goto skip;
8930
8931 wc->stage = UPDATE_BACKREF;
8932 wc->shared_level = level - 1;
8933 }
94fcca9f
YZ
8934 } else {
8935 if (level == 1 &&
8936 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8937 goto skip;
1c4850e2
YZ
8938 }
8939
b9fab919 8940 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8941 btrfs_tree_unlock(next);
8942 free_extent_buffer(next);
8943 next = NULL;
94fcca9f 8944 *lookup_info = 1;
1c4850e2
YZ
8945 }
8946
8947 if (!next) {
8948 if (reada && level == 1)
8949 reada_walk_down(trans, root, wc, path);
ce86cd59 8950 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8951 if (IS_ERR(next)) {
8952 return PTR_ERR(next);
8953 } else if (!extent_buffer_uptodate(next)) {
416bc658 8954 free_extent_buffer(next);
97d9a8a4 8955 return -EIO;
416bc658 8956 }
1c4850e2
YZ
8957 btrfs_tree_lock(next);
8958 btrfs_set_lock_blocking(next);
8959 }
8960
8961 level--;
8962 BUG_ON(level != btrfs_header_level(next));
8963 path->nodes[level] = next;
8964 path->slots[level] = 0;
bd681513 8965 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8966 wc->level = level;
8967 if (wc->level == 1)
8968 wc->reada_slot = 0;
8969 return 0;
8970skip:
8971 wc->refs[level - 1] = 0;
8972 wc->flags[level - 1] = 0;
94fcca9f
YZ
8973 if (wc->stage == DROP_REFERENCE) {
8974 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8975 parent = path->nodes[level]->start;
8976 } else {
8977 BUG_ON(root->root_key.objectid !=
8978 btrfs_header_owner(path->nodes[level]));
8979 parent = 0;
8980 }
1c4850e2 8981
1152651a
MF
8982 if (need_account) {
8983 ret = account_shared_subtree(trans, root, next,
8984 generation, level - 1);
8985 if (ret) {
94647322
DS
8986 btrfs_err_rl(root->fs_info,
8987 "Error "
1152651a 8988 "%d accounting shared subtree. Quota "
94647322
DS
8989 "is out of sync, rescan required.",
8990 ret);
1152651a
MF
8991 }
8992 }
94fcca9f 8993 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
b06c4bf5 8994 root->root_key.objectid, level - 1, 0);
79787eaa 8995 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8996 }
1c4850e2
YZ
8997 btrfs_tree_unlock(next);
8998 free_extent_buffer(next);
94fcca9f 8999 *lookup_info = 1;
1c4850e2
YZ
9000 return 1;
9001}
9002
2c47e605 9003/*
2c016dc2 9004 * helper to process tree block while walking up the tree.
2c47e605
YZ
9005 *
9006 * when wc->stage == DROP_REFERENCE, this function drops
9007 * reference count on the block.
9008 *
9009 * when wc->stage == UPDATE_BACKREF, this function changes
9010 * wc->stage back to DROP_REFERENCE if we changed wc->stage
9011 * to UPDATE_BACKREF previously while processing the block.
9012 *
9013 * NOTE: return value 1 means we should stop walking up.
9014 */
9015static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9016 struct btrfs_root *root,
9017 struct btrfs_path *path,
9018 struct walk_control *wc)
9019{
f0486c68 9020 int ret;
2c47e605
YZ
9021 int level = wc->level;
9022 struct extent_buffer *eb = path->nodes[level];
9023 u64 parent = 0;
9024
9025 if (wc->stage == UPDATE_BACKREF) {
9026 BUG_ON(wc->shared_level < level);
9027 if (level < wc->shared_level)
9028 goto out;
9029
2c47e605
YZ
9030 ret = find_next_key(path, level + 1, &wc->update_progress);
9031 if (ret > 0)
9032 wc->update_ref = 0;
9033
9034 wc->stage = DROP_REFERENCE;
9035 wc->shared_level = -1;
9036 path->slots[level] = 0;
9037
9038 /*
9039 * check reference count again if the block isn't locked.
9040 * we should start walking down the tree again if reference
9041 * count is one.
9042 */
9043 if (!path->locks[level]) {
9044 BUG_ON(level == 0);
9045 btrfs_tree_lock(eb);
9046 btrfs_set_lock_blocking(eb);
bd681513 9047 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9048
9049 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 9050 eb->start, level, 1,
2c47e605
YZ
9051 &wc->refs[level],
9052 &wc->flags[level]);
79787eaa
JM
9053 if (ret < 0) {
9054 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9055 path->locks[level] = 0;
79787eaa
JM
9056 return ret;
9057 }
2c47e605
YZ
9058 BUG_ON(wc->refs[level] == 0);
9059 if (wc->refs[level] == 1) {
bd681513 9060 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9061 path->locks[level] = 0;
2c47e605
YZ
9062 return 1;
9063 }
f82d02d9 9064 }
2c47e605 9065 }
f82d02d9 9066
2c47e605
YZ
9067 /* wc->stage == DROP_REFERENCE */
9068 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 9069
2c47e605
YZ
9070 if (wc->refs[level] == 1) {
9071 if (level == 0) {
9072 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 9073 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 9074 else
e339a6b0 9075 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 9076 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
9077 ret = account_leaf_items(trans, root, eb);
9078 if (ret) {
94647322
DS
9079 btrfs_err_rl(root->fs_info,
9080 "error "
1152651a 9081 "%d accounting leaf items. Quota "
94647322
DS
9082 "is out of sync, rescan required.",
9083 ret);
1152651a 9084 }
2c47e605
YZ
9085 }
9086 /* make block locked assertion in clean_tree_block happy */
9087 if (!path->locks[level] &&
9088 btrfs_header_generation(eb) == trans->transid) {
9089 btrfs_tree_lock(eb);
9090 btrfs_set_lock_blocking(eb);
bd681513 9091 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9092 }
01d58472 9093 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
9094 }
9095
9096 if (eb == root->node) {
9097 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9098 parent = eb->start;
9099 else
9100 BUG_ON(root->root_key.objectid !=
9101 btrfs_header_owner(eb));
9102 } else {
9103 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9104 parent = path->nodes[level + 1]->start;
9105 else
9106 BUG_ON(root->root_key.objectid !=
9107 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 9108 }
f82d02d9 9109
5581a51a 9110 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
9111out:
9112 wc->refs[level] = 0;
9113 wc->flags[level] = 0;
f0486c68 9114 return 0;
2c47e605
YZ
9115}
9116
9117static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9118 struct btrfs_root *root,
9119 struct btrfs_path *path,
9120 struct walk_control *wc)
9121{
2c47e605 9122 int level = wc->level;
94fcca9f 9123 int lookup_info = 1;
2c47e605
YZ
9124 int ret;
9125
9126 while (level >= 0) {
94fcca9f 9127 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
9128 if (ret > 0)
9129 break;
9130
9131 if (level == 0)
9132 break;
9133
7a7965f8
YZ
9134 if (path->slots[level] >=
9135 btrfs_header_nritems(path->nodes[level]))
9136 break;
9137
94fcca9f 9138 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9139 if (ret > 0) {
9140 path->slots[level]++;
9141 continue;
90d2c51d
MX
9142 } else if (ret < 0)
9143 return ret;
1c4850e2 9144 level = wc->level;
f82d02d9 9145 }
f82d02d9
YZ
9146 return 0;
9147}
9148
d397712b 9149static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9150 struct btrfs_root *root,
f82d02d9 9151 struct btrfs_path *path,
2c47e605 9152 struct walk_control *wc, int max_level)
20524f02 9153{
2c47e605 9154 int level = wc->level;
20524f02 9155 int ret;
9f3a7427 9156
2c47e605
YZ
9157 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9158 while (level < max_level && path->nodes[level]) {
9159 wc->level = level;
9160 if (path->slots[level] + 1 <
9161 btrfs_header_nritems(path->nodes[level])) {
9162 path->slots[level]++;
20524f02
CM
9163 return 0;
9164 } else {
2c47e605
YZ
9165 ret = walk_up_proc(trans, root, path, wc);
9166 if (ret > 0)
9167 return 0;
bd56b302 9168
2c47e605 9169 if (path->locks[level]) {
bd681513
CM
9170 btrfs_tree_unlock_rw(path->nodes[level],
9171 path->locks[level]);
2c47e605 9172 path->locks[level] = 0;
f82d02d9 9173 }
2c47e605
YZ
9174 free_extent_buffer(path->nodes[level]);
9175 path->nodes[level] = NULL;
9176 level++;
20524f02
CM
9177 }
9178 }
9179 return 1;
9180}
9181
9aca1d51 9182/*
2c47e605
YZ
9183 * drop a subvolume tree.
9184 *
9185 * this function traverses the tree freeing any blocks that only
9186 * referenced by the tree.
9187 *
9188 * when a shared tree block is found. this function decreases its
9189 * reference count by one. if update_ref is true, this function
9190 * also make sure backrefs for the shared block and all lower level
9191 * blocks are properly updated.
9d1a2a3a
DS
9192 *
9193 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9194 */
2c536799 9195int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9196 struct btrfs_block_rsv *block_rsv, int update_ref,
9197 int for_reloc)
20524f02 9198{
5caf2a00 9199 struct btrfs_path *path;
2c47e605
YZ
9200 struct btrfs_trans_handle *trans;
9201 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 9202 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9203 struct walk_control *wc;
9204 struct btrfs_key key;
9205 int err = 0;
9206 int ret;
9207 int level;
d29a9f62 9208 bool root_dropped = false;
20524f02 9209
1152651a
MF
9210 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
9211
5caf2a00 9212 path = btrfs_alloc_path();
cb1b69f4
TI
9213 if (!path) {
9214 err = -ENOMEM;
9215 goto out;
9216 }
20524f02 9217
2c47e605 9218 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9219 if (!wc) {
9220 btrfs_free_path(path);
cb1b69f4
TI
9221 err = -ENOMEM;
9222 goto out;
38a1a919 9223 }
2c47e605 9224
a22285a6 9225 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9226 if (IS_ERR(trans)) {
9227 err = PTR_ERR(trans);
9228 goto out_free;
9229 }
98d5dc13 9230
3fd0a558
YZ
9231 if (block_rsv)
9232 trans->block_rsv = block_rsv;
2c47e605 9233
9f3a7427 9234 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9235 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9236 path->nodes[level] = btrfs_lock_root_node(root);
9237 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9238 path->slots[level] = 0;
bd681513 9239 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9240 memset(&wc->update_progress, 0,
9241 sizeof(wc->update_progress));
9f3a7427 9242 } else {
9f3a7427 9243 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9244 memcpy(&wc->update_progress, &key,
9245 sizeof(wc->update_progress));
9246
6702ed49 9247 level = root_item->drop_level;
2c47e605 9248 BUG_ON(level == 0);
6702ed49 9249 path->lowest_level = level;
2c47e605
YZ
9250 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9251 path->lowest_level = 0;
9252 if (ret < 0) {
9253 err = ret;
79787eaa 9254 goto out_end_trans;
9f3a7427 9255 }
1c4850e2 9256 WARN_ON(ret > 0);
2c47e605 9257
7d9eb12c
CM
9258 /*
9259 * unlock our path, this is safe because only this
9260 * function is allowed to delete this snapshot
9261 */
5d4f98a2 9262 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9263
9264 level = btrfs_header_level(root->node);
9265 while (1) {
9266 btrfs_tree_lock(path->nodes[level]);
9267 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9268 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9269
9270 ret = btrfs_lookup_extent_info(trans, root,
9271 path->nodes[level]->start,
3173a18f 9272 level, 1, &wc->refs[level],
2c47e605 9273 &wc->flags[level]);
79787eaa
JM
9274 if (ret < 0) {
9275 err = ret;
9276 goto out_end_trans;
9277 }
2c47e605
YZ
9278 BUG_ON(wc->refs[level] == 0);
9279
9280 if (level == root_item->drop_level)
9281 break;
9282
9283 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9284 path->locks[level] = 0;
2c47e605
YZ
9285 WARN_ON(wc->refs[level] != 1);
9286 level--;
9287 }
9f3a7427 9288 }
2c47e605
YZ
9289
9290 wc->level = level;
9291 wc->shared_level = -1;
9292 wc->stage = DROP_REFERENCE;
9293 wc->update_ref = update_ref;
9294 wc->keep_locks = 0;
66d7e7f0 9295 wc->for_reloc = for_reloc;
1c4850e2 9296 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 9297
d397712b 9298 while (1) {
9d1a2a3a 9299
2c47e605
YZ
9300 ret = walk_down_tree(trans, root, path, wc);
9301 if (ret < 0) {
9302 err = ret;
20524f02 9303 break;
2c47e605 9304 }
9aca1d51 9305
2c47e605
YZ
9306 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9307 if (ret < 0) {
9308 err = ret;
20524f02 9309 break;
2c47e605
YZ
9310 }
9311
9312 if (ret > 0) {
9313 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9314 break;
9315 }
2c47e605
YZ
9316
9317 if (wc->stage == DROP_REFERENCE) {
9318 level = wc->level;
9319 btrfs_node_key(path->nodes[level],
9320 &root_item->drop_progress,
9321 path->slots[level]);
9322 root_item->drop_level = level;
9323 }
9324
9325 BUG_ON(wc->level == 0);
3c8f2422
JB
9326 if (btrfs_should_end_transaction(trans, tree_root) ||
9327 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
9328 ret = btrfs_update_root(trans, tree_root,
9329 &root->root_key,
9330 root_item);
79787eaa
JM
9331 if (ret) {
9332 btrfs_abort_transaction(trans, tree_root, ret);
9333 err = ret;
9334 goto out_end_trans;
9335 }
2c47e605 9336
3fd0a558 9337 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 9338 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 9339 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
9340 err = -EAGAIN;
9341 goto out_free;
9342 }
9343
a22285a6 9344 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9345 if (IS_ERR(trans)) {
9346 err = PTR_ERR(trans);
9347 goto out_free;
9348 }
3fd0a558
YZ
9349 if (block_rsv)
9350 trans->block_rsv = block_rsv;
c3e69d58 9351 }
20524f02 9352 }
b3b4aa74 9353 btrfs_release_path(path);
79787eaa
JM
9354 if (err)
9355 goto out_end_trans;
2c47e605
YZ
9356
9357 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
9358 if (ret) {
9359 btrfs_abort_transaction(trans, tree_root, ret);
9360 goto out_end_trans;
9361 }
2c47e605 9362
76dda93c 9363 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9364 ret = btrfs_find_root(tree_root, &root->root_key, path,
9365 NULL, NULL);
79787eaa
JM
9366 if (ret < 0) {
9367 btrfs_abort_transaction(trans, tree_root, ret);
9368 err = ret;
9369 goto out_end_trans;
9370 } else if (ret > 0) {
84cd948c
JB
9371 /* if we fail to delete the orphan item this time
9372 * around, it'll get picked up the next time.
9373 *
9374 * The most common failure here is just -ENOENT.
9375 */
9376 btrfs_del_orphan_item(trans, tree_root,
9377 root->root_key.objectid);
76dda93c
YZ
9378 }
9379 }
9380
27cdeb70 9381 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9382 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9383 } else {
9384 free_extent_buffer(root->node);
9385 free_extent_buffer(root->commit_root);
b0feb9d9 9386 btrfs_put_fs_root(root);
76dda93c 9387 }
d29a9f62 9388 root_dropped = true;
79787eaa 9389out_end_trans:
3fd0a558 9390 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 9391out_free:
2c47e605 9392 kfree(wc);
5caf2a00 9393 btrfs_free_path(path);
cb1b69f4 9394out:
d29a9f62
JB
9395 /*
9396 * So if we need to stop dropping the snapshot for whatever reason we
9397 * need to make sure to add it back to the dead root list so that we
9398 * keep trying to do the work later. This also cleans up roots if we
9399 * don't have it in the radix (like when we recover after a power fail
9400 * or unmount) so we don't leak memory.
9401 */
b37b39cd 9402 if (!for_reloc && root_dropped == false)
d29a9f62 9403 btrfs_add_dead_root(root);
90515e7f 9404 if (err && err != -EAGAIN)
34d97007 9405 btrfs_handle_fs_error(root->fs_info, err, NULL);
2c536799 9406 return err;
20524f02 9407}
9078a3e1 9408
2c47e605
YZ
9409/*
9410 * drop subtree rooted at tree block 'node'.
9411 *
9412 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9413 * only used by relocation code
2c47e605 9414 */
f82d02d9
YZ
9415int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9416 struct btrfs_root *root,
9417 struct extent_buffer *node,
9418 struct extent_buffer *parent)
9419{
9420 struct btrfs_path *path;
2c47e605 9421 struct walk_control *wc;
f82d02d9
YZ
9422 int level;
9423 int parent_level;
9424 int ret = 0;
9425 int wret;
9426
2c47e605
YZ
9427 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9428
f82d02d9 9429 path = btrfs_alloc_path();
db5b493a
TI
9430 if (!path)
9431 return -ENOMEM;
f82d02d9 9432
2c47e605 9433 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9434 if (!wc) {
9435 btrfs_free_path(path);
9436 return -ENOMEM;
9437 }
2c47e605 9438
b9447ef8 9439 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9440 parent_level = btrfs_header_level(parent);
9441 extent_buffer_get(parent);
9442 path->nodes[parent_level] = parent;
9443 path->slots[parent_level] = btrfs_header_nritems(parent);
9444
b9447ef8 9445 btrfs_assert_tree_locked(node);
f82d02d9 9446 level = btrfs_header_level(node);
f82d02d9
YZ
9447 path->nodes[level] = node;
9448 path->slots[level] = 0;
bd681513 9449 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9450
9451 wc->refs[parent_level] = 1;
9452 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9453 wc->level = level;
9454 wc->shared_level = -1;
9455 wc->stage = DROP_REFERENCE;
9456 wc->update_ref = 0;
9457 wc->keep_locks = 1;
66d7e7f0 9458 wc->for_reloc = 1;
1c4850e2 9459 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
9460
9461 while (1) {
2c47e605
YZ
9462 wret = walk_down_tree(trans, root, path, wc);
9463 if (wret < 0) {
f82d02d9 9464 ret = wret;
f82d02d9 9465 break;
2c47e605 9466 }
f82d02d9 9467
2c47e605 9468 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9469 if (wret < 0)
9470 ret = wret;
9471 if (wret != 0)
9472 break;
9473 }
9474
2c47e605 9475 kfree(wc);
f82d02d9
YZ
9476 btrfs_free_path(path);
9477 return ret;
9478}
9479
ec44a35c
CM
9480static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9481{
9482 u64 num_devices;
fc67c450 9483 u64 stripped;
e4d8ec0f 9484
fc67c450
ID
9485 /*
9486 * if restripe for this chunk_type is on pick target profile and
9487 * return, otherwise do the usual balance
9488 */
9489 stripped = get_restripe_target(root->fs_info, flags);
9490 if (stripped)
9491 return extended_to_chunk(stripped);
e4d8ec0f 9492
95669976 9493 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 9494
fc67c450 9495 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9496 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9497 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9498
ec44a35c
CM
9499 if (num_devices == 1) {
9500 stripped |= BTRFS_BLOCK_GROUP_DUP;
9501 stripped = flags & ~stripped;
9502
9503 /* turn raid0 into single device chunks */
9504 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9505 return stripped;
9506
9507 /* turn mirroring into duplication */
9508 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9509 BTRFS_BLOCK_GROUP_RAID10))
9510 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9511 } else {
9512 /* they already had raid on here, just return */
ec44a35c
CM
9513 if (flags & stripped)
9514 return flags;
9515
9516 stripped |= BTRFS_BLOCK_GROUP_DUP;
9517 stripped = flags & ~stripped;
9518
9519 /* switch duplicated blocks with raid1 */
9520 if (flags & BTRFS_BLOCK_GROUP_DUP)
9521 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9522
e3176ca2 9523 /* this is drive concat, leave it alone */
ec44a35c 9524 }
e3176ca2 9525
ec44a35c
CM
9526 return flags;
9527}
9528
868f401a 9529static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9530{
f0486c68
YZ
9531 struct btrfs_space_info *sinfo = cache->space_info;
9532 u64 num_bytes;
199c36ea 9533 u64 min_allocable_bytes;
f0486c68 9534 int ret = -ENOSPC;
0ef3e66b 9535
199c36ea
MX
9536 /*
9537 * We need some metadata space and system metadata space for
9538 * allocating chunks in some corner cases until we force to set
9539 * it to be readonly.
9540 */
9541 if ((sinfo->flags &
9542 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9543 !force)
ee22184b 9544 min_allocable_bytes = SZ_1M;
199c36ea
MX
9545 else
9546 min_allocable_bytes = 0;
9547
f0486c68
YZ
9548 spin_lock(&sinfo->lock);
9549 spin_lock(&cache->lock);
61cfea9b
W
9550
9551 if (cache->ro) {
868f401a 9552 cache->ro++;
61cfea9b
W
9553 ret = 0;
9554 goto out;
9555 }
9556
f0486c68
YZ
9557 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9558 cache->bytes_super - btrfs_block_group_used(&cache->item);
9559
9560 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
9561 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9562 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9563 sinfo->bytes_readonly += num_bytes;
868f401a 9564 cache->ro++;
633c0aad 9565 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9566 ret = 0;
9567 }
61cfea9b 9568out:
f0486c68
YZ
9569 spin_unlock(&cache->lock);
9570 spin_unlock(&sinfo->lock);
9571 return ret;
9572}
7d9eb12c 9573
868f401a 9574int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 9575 struct btrfs_block_group_cache *cache)
c286ac48 9576
f0486c68
YZ
9577{
9578 struct btrfs_trans_handle *trans;
9579 u64 alloc_flags;
9580 int ret;
7d9eb12c 9581
1bbc621e 9582again:
ff5714cc 9583 trans = btrfs_join_transaction(root);
79787eaa
JM
9584 if (IS_ERR(trans))
9585 return PTR_ERR(trans);
5d4f98a2 9586
1bbc621e
CM
9587 /*
9588 * we're not allowed to set block groups readonly after the dirty
9589 * block groups cache has started writing. If it already started,
9590 * back off and let this transaction commit
9591 */
9592 mutex_lock(&root->fs_info->ro_block_group_mutex);
3204d33c 9593 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9594 u64 transid = trans->transid;
9595
9596 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9597 btrfs_end_transaction(trans, root);
9598
9599 ret = btrfs_wait_for_commit(root, transid);
9600 if (ret)
9601 return ret;
9602 goto again;
9603 }
9604
153c35b6
CM
9605 /*
9606 * if we are changing raid levels, try to allocate a corresponding
9607 * block group with the new raid level.
9608 */
9609 alloc_flags = update_block_group_flags(root, cache->flags);
9610 if (alloc_flags != cache->flags) {
9611 ret = do_chunk_alloc(trans, root, alloc_flags,
9612 CHUNK_ALLOC_FORCE);
9613 /*
9614 * ENOSPC is allowed here, we may have enough space
9615 * already allocated at the new raid level to
9616 * carry on
9617 */
9618 if (ret == -ENOSPC)
9619 ret = 0;
9620 if (ret < 0)
9621 goto out;
9622 }
1bbc621e 9623
868f401a 9624 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9625 if (!ret)
9626 goto out;
9627 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9628 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9629 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9630 if (ret < 0)
9631 goto out;
868f401a 9632 ret = inc_block_group_ro(cache, 0);
f0486c68 9633out:
2f081088
SL
9634 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9635 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 9636 lock_chunks(root->fs_info->chunk_root);
4617ea3a 9637 check_system_chunk(trans, root, alloc_flags);
a9629596 9638 unlock_chunks(root->fs_info->chunk_root);
2f081088 9639 }
1bbc621e 9640 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9641
f0486c68
YZ
9642 btrfs_end_transaction(trans, root);
9643 return ret;
9644}
5d4f98a2 9645
c87f08ca
CM
9646int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9647 struct btrfs_root *root, u64 type)
9648{
9649 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9650 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9651 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9652}
9653
6d07bcec
MX
9654/*
9655 * helper to account the unused space of all the readonly block group in the
633c0aad 9656 * space_info. takes mirrors into account.
6d07bcec 9657 */
633c0aad 9658u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9659{
9660 struct btrfs_block_group_cache *block_group;
9661 u64 free_bytes = 0;
9662 int factor;
9663
01327610 9664 /* It's df, we don't care if it's racy */
633c0aad
JB
9665 if (list_empty(&sinfo->ro_bgs))
9666 return 0;
9667
9668 spin_lock(&sinfo->lock);
9669 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9670 spin_lock(&block_group->lock);
9671
9672 if (!block_group->ro) {
9673 spin_unlock(&block_group->lock);
9674 continue;
9675 }
9676
9677 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9678 BTRFS_BLOCK_GROUP_RAID10 |
9679 BTRFS_BLOCK_GROUP_DUP))
9680 factor = 2;
9681 else
9682 factor = 1;
9683
9684 free_bytes += (block_group->key.offset -
9685 btrfs_block_group_used(&block_group->item)) *
9686 factor;
9687
9688 spin_unlock(&block_group->lock);
9689 }
6d07bcec
MX
9690 spin_unlock(&sinfo->lock);
9691
9692 return free_bytes;
9693}
9694
868f401a 9695void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9696 struct btrfs_block_group_cache *cache)
5d4f98a2 9697{
f0486c68
YZ
9698 struct btrfs_space_info *sinfo = cache->space_info;
9699 u64 num_bytes;
9700
9701 BUG_ON(!cache->ro);
9702
9703 spin_lock(&sinfo->lock);
9704 spin_lock(&cache->lock);
868f401a
Z
9705 if (!--cache->ro) {
9706 num_bytes = cache->key.offset - cache->reserved -
9707 cache->pinned - cache->bytes_super -
9708 btrfs_block_group_used(&cache->item);
9709 sinfo->bytes_readonly -= num_bytes;
9710 list_del_init(&cache->ro_list);
9711 }
f0486c68
YZ
9712 spin_unlock(&cache->lock);
9713 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9714}
9715
ba1bf481
JB
9716/*
9717 * checks to see if its even possible to relocate this block group.
9718 *
9719 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9720 * ok to go ahead and try.
9721 */
9722int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9723{
ba1bf481
JB
9724 struct btrfs_block_group_cache *block_group;
9725 struct btrfs_space_info *space_info;
9726 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9727 struct btrfs_device *device;
6df9a95e 9728 struct btrfs_trans_handle *trans;
cdcb725c 9729 u64 min_free;
6719db6a
JB
9730 u64 dev_min = 1;
9731 u64 dev_nr = 0;
4a5e98f5 9732 u64 target;
0305bc27 9733 int debug;
cdcb725c 9734 int index;
ba1bf481
JB
9735 int full = 0;
9736 int ret = 0;
1a40e23b 9737
3cdde224 9738 debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG);
0305bc27 9739
ba1bf481 9740 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9741
ba1bf481 9742 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9743 if (!block_group) {
9744 if (debug)
9745 btrfs_warn(root->fs_info,
9746 "can't find block group for bytenr %llu",
9747 bytenr);
ba1bf481 9748 return -1;
0305bc27 9749 }
1a40e23b 9750
cdcb725c 9751 min_free = btrfs_block_group_used(&block_group->item);
9752
ba1bf481 9753 /* no bytes used, we're good */
cdcb725c 9754 if (!min_free)
1a40e23b
ZY
9755 goto out;
9756
ba1bf481
JB
9757 space_info = block_group->space_info;
9758 spin_lock(&space_info->lock);
17d217fe 9759
ba1bf481 9760 full = space_info->full;
17d217fe 9761
ba1bf481
JB
9762 /*
9763 * if this is the last block group we have in this space, we can't
7ce618db
CM
9764 * relocate it unless we're able to allocate a new chunk below.
9765 *
9766 * Otherwise, we need to make sure we have room in the space to handle
9767 * all of the extents from this block group. If we can, we're good
ba1bf481 9768 */
7ce618db 9769 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9770 (space_info->bytes_used + space_info->bytes_reserved +
9771 space_info->bytes_pinned + space_info->bytes_readonly +
9772 min_free < space_info->total_bytes)) {
ba1bf481
JB
9773 spin_unlock(&space_info->lock);
9774 goto out;
17d217fe 9775 }
ba1bf481 9776 spin_unlock(&space_info->lock);
ea8c2819 9777
ba1bf481
JB
9778 /*
9779 * ok we don't have enough space, but maybe we have free space on our
9780 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9781 * alloc devices and guess if we have enough space. if this block
9782 * group is going to be restriped, run checks against the target
9783 * profile instead of the current one.
ba1bf481
JB
9784 */
9785 ret = -1;
ea8c2819 9786
cdcb725c 9787 /*
9788 * index:
9789 * 0: raid10
9790 * 1: raid1
9791 * 2: dup
9792 * 3: raid0
9793 * 4: single
9794 */
4a5e98f5
ID
9795 target = get_restripe_target(root->fs_info, block_group->flags);
9796 if (target) {
31e50229 9797 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9798 } else {
9799 /*
9800 * this is just a balance, so if we were marked as full
9801 * we know there is no space for a new chunk
9802 */
0305bc27
QW
9803 if (full) {
9804 if (debug)
9805 btrfs_warn(root->fs_info,
9806 "no space to alloc new chunk for block group %llu",
9807 block_group->key.objectid);
4a5e98f5 9808 goto out;
0305bc27 9809 }
4a5e98f5
ID
9810
9811 index = get_block_group_index(block_group);
9812 }
9813
e6ec716f 9814 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9815 dev_min = 4;
6719db6a
JB
9816 /* Divide by 2 */
9817 min_free >>= 1;
e6ec716f 9818 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9819 dev_min = 2;
e6ec716f 9820 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9821 /* Multiply by 2 */
9822 min_free <<= 1;
e6ec716f 9823 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9824 dev_min = fs_devices->rw_devices;
47c5713f 9825 min_free = div64_u64(min_free, dev_min);
cdcb725c 9826 }
9827
6df9a95e
JB
9828 /* We need to do this so that we can look at pending chunks */
9829 trans = btrfs_join_transaction(root);
9830 if (IS_ERR(trans)) {
9831 ret = PTR_ERR(trans);
9832 goto out;
9833 }
9834
ba1bf481
JB
9835 mutex_lock(&root->fs_info->chunk_mutex);
9836 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9837 u64 dev_offset;
56bec294 9838
ba1bf481
JB
9839 /*
9840 * check to make sure we can actually find a chunk with enough
9841 * space to fit our block group in.
9842 */
63a212ab
SB
9843 if (device->total_bytes > device->bytes_used + min_free &&
9844 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9845 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9846 &dev_offset, NULL);
ba1bf481 9847 if (!ret)
cdcb725c 9848 dev_nr++;
9849
9850 if (dev_nr >= dev_min)
73e48b27 9851 break;
cdcb725c 9852
ba1bf481 9853 ret = -1;
725c8463 9854 }
edbd8d4e 9855 }
0305bc27
QW
9856 if (debug && ret == -1)
9857 btrfs_warn(root->fs_info,
9858 "no space to allocate a new chunk for block group %llu",
9859 block_group->key.objectid);
ba1bf481 9860 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9861 btrfs_end_transaction(trans, root);
edbd8d4e 9862out:
ba1bf481 9863 btrfs_put_block_group(block_group);
edbd8d4e
CM
9864 return ret;
9865}
9866
b2950863
CH
9867static int find_first_block_group(struct btrfs_root *root,
9868 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9869{
925baedd 9870 int ret = 0;
0b86a832
CM
9871 struct btrfs_key found_key;
9872 struct extent_buffer *leaf;
9873 int slot;
edbd8d4e 9874
0b86a832
CM
9875 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9876 if (ret < 0)
925baedd
CM
9877 goto out;
9878
d397712b 9879 while (1) {
0b86a832 9880 slot = path->slots[0];
edbd8d4e 9881 leaf = path->nodes[0];
0b86a832
CM
9882 if (slot >= btrfs_header_nritems(leaf)) {
9883 ret = btrfs_next_leaf(root, path);
9884 if (ret == 0)
9885 continue;
9886 if (ret < 0)
925baedd 9887 goto out;
0b86a832 9888 break;
edbd8d4e 9889 }
0b86a832 9890 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9891
0b86a832 9892 if (found_key.objectid >= key->objectid &&
925baedd 9893 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9894 struct extent_map_tree *em_tree;
9895 struct extent_map *em;
9896
9897 em_tree = &root->fs_info->mapping_tree.map_tree;
9898 read_lock(&em_tree->lock);
9899 em = lookup_extent_mapping(em_tree, found_key.objectid,
9900 found_key.offset);
9901 read_unlock(&em_tree->lock);
9902 if (!em) {
9903 btrfs_err(root->fs_info,
9904 "logical %llu len %llu found bg but no related chunk",
9905 found_key.objectid, found_key.offset);
9906 ret = -ENOENT;
9907 } else {
9908 ret = 0;
9909 }
925baedd
CM
9910 goto out;
9911 }
0b86a832 9912 path->slots[0]++;
edbd8d4e 9913 }
925baedd 9914out:
0b86a832 9915 return ret;
edbd8d4e
CM
9916}
9917
0af3d00b
JB
9918void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9919{
9920 struct btrfs_block_group_cache *block_group;
9921 u64 last = 0;
9922
9923 while (1) {
9924 struct inode *inode;
9925
9926 block_group = btrfs_lookup_first_block_group(info, last);
9927 while (block_group) {
9928 spin_lock(&block_group->lock);
9929 if (block_group->iref)
9930 break;
9931 spin_unlock(&block_group->lock);
9932 block_group = next_block_group(info->tree_root,
9933 block_group);
9934 }
9935 if (!block_group) {
9936 if (last == 0)
9937 break;
9938 last = 0;
9939 continue;
9940 }
9941
9942 inode = block_group->inode;
9943 block_group->iref = 0;
9944 block_group->inode = NULL;
9945 spin_unlock(&block_group->lock);
9946 iput(inode);
9947 last = block_group->key.objectid + block_group->key.offset;
9948 btrfs_put_block_group(block_group);
9949 }
9950}
9951
1a40e23b
ZY
9952int btrfs_free_block_groups(struct btrfs_fs_info *info)
9953{
9954 struct btrfs_block_group_cache *block_group;
4184ea7f 9955 struct btrfs_space_info *space_info;
11833d66 9956 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9957 struct rb_node *n;
9958
9e351cc8 9959 down_write(&info->commit_root_sem);
11833d66
YZ
9960 while (!list_empty(&info->caching_block_groups)) {
9961 caching_ctl = list_entry(info->caching_block_groups.next,
9962 struct btrfs_caching_control, list);
9963 list_del(&caching_ctl->list);
9964 put_caching_control(caching_ctl);
9965 }
9e351cc8 9966 up_write(&info->commit_root_sem);
11833d66 9967
47ab2a6c
JB
9968 spin_lock(&info->unused_bgs_lock);
9969 while (!list_empty(&info->unused_bgs)) {
9970 block_group = list_first_entry(&info->unused_bgs,
9971 struct btrfs_block_group_cache,
9972 bg_list);
9973 list_del_init(&block_group->bg_list);
9974 btrfs_put_block_group(block_group);
9975 }
9976 spin_unlock(&info->unused_bgs_lock);
9977
1a40e23b
ZY
9978 spin_lock(&info->block_group_cache_lock);
9979 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9980 block_group = rb_entry(n, struct btrfs_block_group_cache,
9981 cache_node);
1a40e23b
ZY
9982 rb_erase(&block_group->cache_node,
9983 &info->block_group_cache_tree);
01eacb27 9984 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9985 spin_unlock(&info->block_group_cache_lock);
9986
80eb234a 9987 down_write(&block_group->space_info->groups_sem);
1a40e23b 9988 list_del(&block_group->list);
80eb234a 9989 up_write(&block_group->space_info->groups_sem);
d2fb3437 9990
817d52f8 9991 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9992 wait_block_group_cache_done(block_group);
817d52f8 9993
3c14874a
JB
9994 /*
9995 * We haven't cached this block group, which means we could
9996 * possibly have excluded extents on this block group.
9997 */
36cce922
JB
9998 if (block_group->cached == BTRFS_CACHE_NO ||
9999 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
10000 free_excluded_extents(info->extent_root, block_group);
10001
817d52f8 10002 btrfs_remove_free_space_cache(block_group);
11dfe35a 10003 btrfs_put_block_group(block_group);
d899e052
YZ
10004
10005 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
10006 }
10007 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
10008
10009 /* now that all the block groups are freed, go through and
10010 * free all the space_info structs. This is only called during
10011 * the final stages of unmount, and so we know nobody is
10012 * using them. We call synchronize_rcu() once before we start,
10013 * just to be on the safe side.
10014 */
10015 synchronize_rcu();
10016
8929ecfa
YZ
10017 release_global_block_rsv(info);
10018
67871254 10019 while (!list_empty(&info->space_info)) {
6ab0a202
JM
10020 int i;
10021
4184ea7f
CM
10022 space_info = list_entry(info->space_info.next,
10023 struct btrfs_space_info,
10024 list);
d555b6c3
JB
10025
10026 /*
10027 * Do not hide this behind enospc_debug, this is actually
10028 * important and indicates a real bug if this happens.
10029 */
10030 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 10031 space_info->bytes_reserved > 0 ||
d555b6c3
JB
10032 space_info->bytes_may_use > 0))
10033 dump_space_info(space_info, 0, 0);
4184ea7f 10034 list_del(&space_info->list);
6ab0a202
JM
10035 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10036 struct kobject *kobj;
c1895442
JM
10037 kobj = space_info->block_group_kobjs[i];
10038 space_info->block_group_kobjs[i] = NULL;
10039 if (kobj) {
6ab0a202
JM
10040 kobject_del(kobj);
10041 kobject_put(kobj);
10042 }
10043 }
10044 kobject_del(&space_info->kobj);
10045 kobject_put(&space_info->kobj);
4184ea7f 10046 }
1a40e23b
ZY
10047 return 0;
10048}
10049
b742bb82
YZ
10050static void __link_block_group(struct btrfs_space_info *space_info,
10051 struct btrfs_block_group_cache *cache)
10052{
10053 int index = get_block_group_index(cache);
ed55b6ac 10054 bool first = false;
b742bb82
YZ
10055
10056 down_write(&space_info->groups_sem);
ed55b6ac
JM
10057 if (list_empty(&space_info->block_groups[index]))
10058 first = true;
10059 list_add_tail(&cache->list, &space_info->block_groups[index]);
10060 up_write(&space_info->groups_sem);
10061
10062 if (first) {
c1895442 10063 struct raid_kobject *rkobj;
6ab0a202
JM
10064 int ret;
10065
c1895442
JM
10066 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10067 if (!rkobj)
10068 goto out_err;
10069 rkobj->raid_type = index;
10070 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10071 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10072 "%s", get_raid_name(index));
6ab0a202 10073 if (ret) {
c1895442
JM
10074 kobject_put(&rkobj->kobj);
10075 goto out_err;
6ab0a202 10076 }
c1895442 10077 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 10078 }
c1895442
JM
10079
10080 return;
10081out_err:
10082 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
10083}
10084
920e4a58
MX
10085static struct btrfs_block_group_cache *
10086btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
10087{
10088 struct btrfs_block_group_cache *cache;
10089
10090 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10091 if (!cache)
10092 return NULL;
10093
10094 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10095 GFP_NOFS);
10096 if (!cache->free_space_ctl) {
10097 kfree(cache);
10098 return NULL;
10099 }
10100
10101 cache->key.objectid = start;
10102 cache->key.offset = size;
10103 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10104
10105 cache->sectorsize = root->sectorsize;
10106 cache->fs_info = root->fs_info;
10107 cache->full_stripe_len = btrfs_full_stripe_len(root,
10108 &root->fs_info->mapping_tree,
10109 start);
1e144fb8
OS
10110 set_free_space_tree_thresholds(cache);
10111
920e4a58
MX
10112 atomic_set(&cache->count, 1);
10113 spin_lock_init(&cache->lock);
e570fd27 10114 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10115 INIT_LIST_HEAD(&cache->list);
10116 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10117 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10118 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10119 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10120 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10121 btrfs_init_free_space_ctl(cache);
04216820 10122 atomic_set(&cache->trimming, 0);
a5ed9182 10123 mutex_init(&cache->free_space_lock);
920e4a58
MX
10124
10125 return cache;
10126}
10127
9078a3e1
CM
10128int btrfs_read_block_groups(struct btrfs_root *root)
10129{
10130 struct btrfs_path *path;
10131 int ret;
9078a3e1 10132 struct btrfs_block_group_cache *cache;
be744175 10133 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 10134 struct btrfs_space_info *space_info;
9078a3e1
CM
10135 struct btrfs_key key;
10136 struct btrfs_key found_key;
5f39d397 10137 struct extent_buffer *leaf;
0af3d00b
JB
10138 int need_clear = 0;
10139 u64 cache_gen;
96b5179d 10140
be744175 10141 root = info->extent_root;
9078a3e1 10142 key.objectid = 0;
0b86a832 10143 key.offset = 0;
962a298f 10144 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10145 path = btrfs_alloc_path();
10146 if (!path)
10147 return -ENOMEM;
e4058b54 10148 path->reada = READA_FORWARD;
9078a3e1 10149
6c41761f 10150 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
3cdde224 10151 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
6c41761f 10152 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 10153 need_clear = 1;
3cdde224 10154 if (btrfs_test_opt(root->fs_info, CLEAR_CACHE))
88c2ba3b 10155 need_clear = 1;
0af3d00b 10156
d397712b 10157 while (1) {
0b86a832 10158 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
10159 if (ret > 0)
10160 break;
0b86a832
CM
10161 if (ret != 0)
10162 goto error;
920e4a58 10163
5f39d397
CM
10164 leaf = path->nodes[0];
10165 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
10166
10167 cache = btrfs_create_block_group_cache(root, found_key.objectid,
10168 found_key.offset);
9078a3e1 10169 if (!cache) {
0b86a832 10170 ret = -ENOMEM;
f0486c68 10171 goto error;
9078a3e1 10172 }
96303081 10173
cf7c1ef6
LB
10174 if (need_clear) {
10175 /*
10176 * When we mount with old space cache, we need to
10177 * set BTRFS_DC_CLEAR and set dirty flag.
10178 *
10179 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10180 * truncate the old free space cache inode and
10181 * setup a new one.
10182 * b) Setting 'dirty flag' makes sure that we flush
10183 * the new space cache info onto disk.
10184 */
3cdde224 10185 if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
ce93ec54 10186 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10187 }
0af3d00b 10188
5f39d397
CM
10189 read_extent_buffer(leaf, &cache->item,
10190 btrfs_item_ptr_offset(leaf, path->slots[0]),
10191 sizeof(cache->item));
920e4a58 10192 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 10193
9078a3e1 10194 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10195 btrfs_release_path(path);
34d52cb6 10196
3c14874a
JB
10197 /*
10198 * We need to exclude the super stripes now so that the space
10199 * info has super bytes accounted for, otherwise we'll think
10200 * we have more space than we actually do.
10201 */
835d974f
JB
10202 ret = exclude_super_stripes(root, cache);
10203 if (ret) {
10204 /*
10205 * We may have excluded something, so call this just in
10206 * case.
10207 */
10208 free_excluded_extents(root, cache);
920e4a58 10209 btrfs_put_block_group(cache);
835d974f
JB
10210 goto error;
10211 }
3c14874a 10212
817d52f8
JB
10213 /*
10214 * check for two cases, either we are full, and therefore
10215 * don't need to bother with the caching work since we won't
10216 * find any space, or we are empty, and we can just add all
10217 * the space in and be done with it. This saves us _alot_ of
10218 * time, particularly in the full case.
10219 */
10220 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10221 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10222 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 10223 free_excluded_extents(root, cache);
817d52f8 10224 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10225 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
10226 cache->cached = BTRFS_CACHE_FINISHED;
10227 add_new_free_space(cache, root->fs_info,
10228 found_key.objectid,
10229 found_key.objectid +
10230 found_key.offset);
11833d66 10231 free_excluded_extents(root, cache);
817d52f8 10232 }
96b5179d 10233
8c579fe7
JB
10234 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10235 if (ret) {
10236 btrfs_remove_free_space_cache(cache);
10237 btrfs_put_block_group(cache);
10238 goto error;
10239 }
10240
c83f8eff 10241 trace_btrfs_add_block_group(root->fs_info, cache, 0);
6324fbf3
CM
10242 ret = update_space_info(info, cache->flags, found_key.offset,
10243 btrfs_block_group_used(&cache->item),
e40edf2d 10244 cache->bytes_super, &space_info);
8c579fe7
JB
10245 if (ret) {
10246 btrfs_remove_free_space_cache(cache);
10247 spin_lock(&info->block_group_cache_lock);
10248 rb_erase(&cache->cache_node,
10249 &info->block_group_cache_tree);
01eacb27 10250 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10251 spin_unlock(&info->block_group_cache_lock);
10252 btrfs_put_block_group(cache);
10253 goto error;
10254 }
10255
6324fbf3 10256 cache->space_info = space_info;
1b2da372 10257
b742bb82 10258 __link_block_group(space_info, cache);
0f9dd46c 10259
75ccf47d 10260 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 10261 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 10262 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10263 } else if (btrfs_block_group_used(&cache->item) == 0) {
10264 spin_lock(&info->unused_bgs_lock);
10265 /* Should always be true but just in case. */
10266 if (list_empty(&cache->bg_list)) {
10267 btrfs_get_block_group(cache);
10268 list_add_tail(&cache->bg_list,
10269 &info->unused_bgs);
10270 }
10271 spin_unlock(&info->unused_bgs_lock);
10272 }
9078a3e1 10273 }
b742bb82
YZ
10274
10275 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10276 if (!(get_alloc_profile(root, space_info->flags) &
10277 (BTRFS_BLOCK_GROUP_RAID10 |
10278 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10279 BTRFS_BLOCK_GROUP_RAID5 |
10280 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10281 BTRFS_BLOCK_GROUP_DUP)))
10282 continue;
10283 /*
10284 * avoid allocating from un-mirrored block group if there are
10285 * mirrored block groups.
10286 */
1095cc0d 10287 list_for_each_entry(cache,
10288 &space_info->block_groups[BTRFS_RAID_RAID0],
10289 list)
868f401a 10290 inc_block_group_ro(cache, 1);
1095cc0d 10291 list_for_each_entry(cache,
10292 &space_info->block_groups[BTRFS_RAID_SINGLE],
10293 list)
868f401a 10294 inc_block_group_ro(cache, 1);
9078a3e1 10295 }
f0486c68
YZ
10296
10297 init_global_block_rsv(info);
0b86a832
CM
10298 ret = 0;
10299error:
9078a3e1 10300 btrfs_free_path(path);
0b86a832 10301 return ret;
9078a3e1 10302}
6324fbf3 10303
ea658bad
JB
10304void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10305 struct btrfs_root *root)
10306{
10307 struct btrfs_block_group_cache *block_group, *tmp;
10308 struct btrfs_root *extent_root = root->fs_info->extent_root;
10309 struct btrfs_block_group_item item;
10310 struct btrfs_key key;
10311 int ret = 0;
d9a0540a 10312 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10313
d9a0540a 10314 trans->can_flush_pending_bgs = false;
47ab2a6c 10315 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10316 if (ret)
c92f6be3 10317 goto next;
ea658bad
JB
10318
10319 spin_lock(&block_group->lock);
10320 memcpy(&item, &block_group->item, sizeof(item));
10321 memcpy(&key, &block_group->key, sizeof(key));
10322 spin_unlock(&block_group->lock);
10323
10324 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10325 sizeof(item));
10326 if (ret)
10327 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
10328 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10329 key.objectid, key.offset);
10330 if (ret)
10331 btrfs_abort_transaction(trans, extent_root, ret);
1e144fb8
OS
10332 add_block_group_free_space(trans, root->fs_info, block_group);
10333 /* already aborted the transaction if it failed. */
c92f6be3
FM
10334next:
10335 list_del_init(&block_group->bg_list);
ea658bad 10336 }
d9a0540a 10337 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10338}
10339
6324fbf3
CM
10340int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10341 struct btrfs_root *root, u64 bytes_used,
e17cade2 10342 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10343 u64 size)
10344{
10345 int ret;
6324fbf3
CM
10346 struct btrfs_root *extent_root;
10347 struct btrfs_block_group_cache *cache;
6324fbf3 10348 extent_root = root->fs_info->extent_root;
6324fbf3 10349
995946dd 10350 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 10351
920e4a58 10352 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
10353 if (!cache)
10354 return -ENOMEM;
34d52cb6 10355
6324fbf3 10356 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10357 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10358 btrfs_set_block_group_flags(&cache->item, type);
10359
920e4a58 10360 cache->flags = type;
11833d66 10361 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10362 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10363 cache->needs_free_space = 1;
835d974f
JB
10364 ret = exclude_super_stripes(root, cache);
10365 if (ret) {
10366 /*
10367 * We may have excluded something, so call this just in
10368 * case.
10369 */
10370 free_excluded_extents(root, cache);
920e4a58 10371 btrfs_put_block_group(cache);
835d974f
JB
10372 return ret;
10373 }
96303081 10374
817d52f8
JB
10375 add_new_free_space(cache, root->fs_info, chunk_offset,
10376 chunk_offset + size);
10377
11833d66
YZ
10378 free_excluded_extents(root, cache);
10379
d0bd4560
JB
10380#ifdef CONFIG_BTRFS_DEBUG
10381 if (btrfs_should_fragment_free_space(root, cache)) {
10382 u64 new_bytes_used = size - bytes_used;
10383
10384 bytes_used += new_bytes_used >> 1;
10385 fragment_free_space(root, cache);
10386 }
10387#endif
2e6e5183
FM
10388 /*
10389 * Call to ensure the corresponding space_info object is created and
10390 * assigned to our block group, but don't update its counters just yet.
10391 * We want our bg to be added to the rbtree with its ->space_info set.
10392 */
e40edf2d 10393 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
2e6e5183
FM
10394 &cache->space_info);
10395 if (ret) {
10396 btrfs_remove_free_space_cache(cache);
10397 btrfs_put_block_group(cache);
10398 return ret;
10399 }
10400
8c579fe7
JB
10401 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10402 if (ret) {
10403 btrfs_remove_free_space_cache(cache);
10404 btrfs_put_block_group(cache);
10405 return ret;
10406 }
10407
2e6e5183
FM
10408 /*
10409 * Now that our block group has its ->space_info set and is inserted in
10410 * the rbtree, update the space info's counters.
10411 */
c83f8eff 10412 trace_btrfs_add_block_group(root->fs_info, cache, 1);
6324fbf3 10413 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
e40edf2d 10414 cache->bytes_super, &cache->space_info);
8c579fe7
JB
10415 if (ret) {
10416 btrfs_remove_free_space_cache(cache);
10417 spin_lock(&root->fs_info->block_group_cache_lock);
10418 rb_erase(&cache->cache_node,
10419 &root->fs_info->block_group_cache_tree);
01eacb27 10420 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10421 spin_unlock(&root->fs_info->block_group_cache_lock);
10422 btrfs_put_block_group(cache);
10423 return ret;
10424 }
c7c144db 10425 update_global_block_rsv(root->fs_info);
1b2da372 10426
b742bb82 10427 __link_block_group(cache->space_info, cache);
6324fbf3 10428
47ab2a6c 10429 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10430
d18a2c44 10431 set_avail_alloc_bits(extent_root->fs_info, type);
6324fbf3
CM
10432 return 0;
10433}
1a40e23b 10434
10ea00f5
ID
10435static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10436{
899c81ea
ID
10437 u64 extra_flags = chunk_to_extended(flags) &
10438 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10439
de98ced9 10440 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10441 if (flags & BTRFS_BLOCK_GROUP_DATA)
10442 fs_info->avail_data_alloc_bits &= ~extra_flags;
10443 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10444 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10445 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10446 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10447 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10448}
10449
1a40e23b 10450int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
10451 struct btrfs_root *root, u64 group_start,
10452 struct extent_map *em)
1a40e23b
ZY
10453{
10454 struct btrfs_path *path;
10455 struct btrfs_block_group_cache *block_group;
44fb5511 10456 struct btrfs_free_cluster *cluster;
0af3d00b 10457 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 10458 struct btrfs_key key;
0af3d00b 10459 struct inode *inode;
c1895442 10460 struct kobject *kobj = NULL;
1a40e23b 10461 int ret;
10ea00f5 10462 int index;
89a55897 10463 int factor;
4f69cb98 10464 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10465 bool remove_em;
1a40e23b 10466
1a40e23b
ZY
10467 root = root->fs_info->extent_root;
10468
10469 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10470 BUG_ON(!block_group);
c146afad 10471 BUG_ON(!block_group->ro);
1a40e23b 10472
9f7c43c9 10473 /*
10474 * Free the reserved super bytes from this block group before
10475 * remove it.
10476 */
10477 free_excluded_extents(root, block_group);
10478
1a40e23b 10479 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10480 index = get_block_group_index(block_group);
89a55897
JB
10481 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10482 BTRFS_BLOCK_GROUP_RAID1 |
10483 BTRFS_BLOCK_GROUP_RAID10))
10484 factor = 2;
10485 else
10486 factor = 1;
1a40e23b 10487
44fb5511
CM
10488 /* make sure this block group isn't part of an allocation cluster */
10489 cluster = &root->fs_info->data_alloc_cluster;
10490 spin_lock(&cluster->refill_lock);
10491 btrfs_return_cluster_to_free_space(block_group, cluster);
10492 spin_unlock(&cluster->refill_lock);
10493
10494 /*
10495 * make sure this block group isn't part of a metadata
10496 * allocation cluster
10497 */
10498 cluster = &root->fs_info->meta_alloc_cluster;
10499 spin_lock(&cluster->refill_lock);
10500 btrfs_return_cluster_to_free_space(block_group, cluster);
10501 spin_unlock(&cluster->refill_lock);
10502
1a40e23b 10503 path = btrfs_alloc_path();
d8926bb3
MF
10504 if (!path) {
10505 ret = -ENOMEM;
10506 goto out;
10507 }
1a40e23b 10508
1bbc621e
CM
10509 /*
10510 * get the inode first so any iput calls done for the io_list
10511 * aren't the final iput (no unlinks allowed now)
10512 */
10b2f34d 10513 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
10514
10515 mutex_lock(&trans->transaction->cache_write_mutex);
10516 /*
10517 * make sure our free spache cache IO is done before remove the
10518 * free space inode
10519 */
10520 spin_lock(&trans->transaction->dirty_bgs_lock);
10521 if (!list_empty(&block_group->io_list)) {
10522 list_del_init(&block_group->io_list);
10523
10524 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10525
10526 spin_unlock(&trans->transaction->dirty_bgs_lock);
10527 btrfs_wait_cache_io(root, trans, block_group,
10528 &block_group->io_ctl, path,
10529 block_group->key.objectid);
10530 btrfs_put_block_group(block_group);
10531 spin_lock(&trans->transaction->dirty_bgs_lock);
10532 }
10533
10534 if (!list_empty(&block_group->dirty_list)) {
10535 list_del_init(&block_group->dirty_list);
10536 btrfs_put_block_group(block_group);
10537 }
10538 spin_unlock(&trans->transaction->dirty_bgs_lock);
10539 mutex_unlock(&trans->transaction->cache_write_mutex);
10540
0af3d00b 10541 if (!IS_ERR(inode)) {
b532402e 10542 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
10543 if (ret) {
10544 btrfs_add_delayed_iput(inode);
10545 goto out;
10546 }
0af3d00b
JB
10547 clear_nlink(inode);
10548 /* One for the block groups ref */
10549 spin_lock(&block_group->lock);
10550 if (block_group->iref) {
10551 block_group->iref = 0;
10552 block_group->inode = NULL;
10553 spin_unlock(&block_group->lock);
10554 iput(inode);
10555 } else {
10556 spin_unlock(&block_group->lock);
10557 }
10558 /* One for our lookup ref */
455757c3 10559 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10560 }
10561
10562 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10563 key.offset = block_group->key.objectid;
10564 key.type = 0;
10565
10566 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10567 if (ret < 0)
10568 goto out;
10569 if (ret > 0)
b3b4aa74 10570 btrfs_release_path(path);
0af3d00b
JB
10571 if (ret == 0) {
10572 ret = btrfs_del_item(trans, tree_root, path);
10573 if (ret)
10574 goto out;
b3b4aa74 10575 btrfs_release_path(path);
0af3d00b
JB
10576 }
10577
3dfdb934 10578 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
10579 rb_erase(&block_group->cache_node,
10580 &root->fs_info->block_group_cache_tree);
292cbd51 10581 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
10582
10583 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10584 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 10585 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 10586
80eb234a 10587 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10588 /*
10589 * we must use list_del_init so people can check to see if they
10590 * are still on the list after taking the semaphore
10591 */
10592 list_del_init(&block_group->list);
6ab0a202 10593 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10594 kobj = block_group->space_info->block_group_kobjs[index];
10595 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 10596 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 10597 }
80eb234a 10598 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10599 if (kobj) {
10600 kobject_del(kobj);
10601 kobject_put(kobj);
10602 }
1a40e23b 10603
4f69cb98
FM
10604 if (block_group->has_caching_ctl)
10605 caching_ctl = get_caching_control(block_group);
817d52f8 10606 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10607 wait_block_group_cache_done(block_group);
4f69cb98
FM
10608 if (block_group->has_caching_ctl) {
10609 down_write(&root->fs_info->commit_root_sem);
10610 if (!caching_ctl) {
10611 struct btrfs_caching_control *ctl;
10612
10613 list_for_each_entry(ctl,
10614 &root->fs_info->caching_block_groups, list)
10615 if (ctl->block_group == block_group) {
10616 caching_ctl = ctl;
10617 atomic_inc(&caching_ctl->count);
10618 break;
10619 }
10620 }
10621 if (caching_ctl)
10622 list_del_init(&caching_ctl->list);
10623 up_write(&root->fs_info->commit_root_sem);
10624 if (caching_ctl) {
10625 /* Once for the caching bgs list and once for us. */
10626 put_caching_control(caching_ctl);
10627 put_caching_control(caching_ctl);
10628 }
10629 }
817d52f8 10630
ce93ec54
JB
10631 spin_lock(&trans->transaction->dirty_bgs_lock);
10632 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10633 WARN_ON(1);
10634 }
10635 if (!list_empty(&block_group->io_list)) {
10636 WARN_ON(1);
ce93ec54
JB
10637 }
10638 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10639 btrfs_remove_free_space_cache(block_group);
10640
c146afad 10641 spin_lock(&block_group->space_info->lock);
75c68e9f 10642 list_del_init(&block_group->ro_list);
18d018ad 10643
3cdde224 10644 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10645 WARN_ON(block_group->space_info->total_bytes
10646 < block_group->key.offset);
10647 WARN_ON(block_group->space_info->bytes_readonly
10648 < block_group->key.offset);
10649 WARN_ON(block_group->space_info->disk_total
10650 < block_group->key.offset * factor);
10651 }
c146afad
YZ
10652 block_group->space_info->total_bytes -= block_group->key.offset;
10653 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10654 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10655
c146afad 10656 spin_unlock(&block_group->space_info->lock);
283bb197 10657
0af3d00b
JB
10658 memcpy(&key, &block_group->key, sizeof(key));
10659
04216820 10660 lock_chunks(root);
495e64f4
FM
10661 if (!list_empty(&em->list)) {
10662 /* We're in the transaction->pending_chunks list. */
10663 free_extent_map(em);
10664 }
04216820
FM
10665 spin_lock(&block_group->lock);
10666 block_group->removed = 1;
10667 /*
10668 * At this point trimming can't start on this block group, because we
10669 * removed the block group from the tree fs_info->block_group_cache_tree
10670 * so no one can't find it anymore and even if someone already got this
10671 * block group before we removed it from the rbtree, they have already
10672 * incremented block_group->trimming - if they didn't, they won't find
10673 * any free space entries because we already removed them all when we
10674 * called btrfs_remove_free_space_cache().
10675 *
10676 * And we must not remove the extent map from the fs_info->mapping_tree
10677 * to prevent the same logical address range and physical device space
10678 * ranges from being reused for a new block group. This is because our
10679 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10680 * completely transactionless, so while it is trimming a range the
10681 * currently running transaction might finish and a new one start,
10682 * allowing for new block groups to be created that can reuse the same
10683 * physical device locations unless we take this special care.
e33e17ee
JM
10684 *
10685 * There may also be an implicit trim operation if the file system
10686 * is mounted with -odiscard. The same protections must remain
10687 * in place until the extents have been discarded completely when
10688 * the transaction commit has completed.
04216820
FM
10689 */
10690 remove_em = (atomic_read(&block_group->trimming) == 0);
10691 /*
10692 * Make sure a trimmer task always sees the em in the pinned_chunks list
10693 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10694 * before checking block_group->removed).
10695 */
10696 if (!remove_em) {
10697 /*
10698 * Our em might be in trans->transaction->pending_chunks which
10699 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10700 * and so is the fs_info->pinned_chunks list.
10701 *
10702 * So at this point we must be holding the chunk_mutex to avoid
10703 * any races with chunk allocation (more specifically at
10704 * volumes.c:contains_pending_extent()), to ensure it always
10705 * sees the em, either in the pending_chunks list or in the
10706 * pinned_chunks list.
10707 */
10708 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10709 }
10710 spin_unlock(&block_group->lock);
04216820
FM
10711
10712 if (remove_em) {
10713 struct extent_map_tree *em_tree;
10714
10715 em_tree = &root->fs_info->mapping_tree.map_tree;
10716 write_lock(&em_tree->lock);
8dbcd10f
FM
10717 /*
10718 * The em might be in the pending_chunks list, so make sure the
10719 * chunk mutex is locked, since remove_extent_mapping() will
10720 * delete us from that list.
10721 */
04216820
FM
10722 remove_extent_mapping(em_tree, em);
10723 write_unlock(&em_tree->lock);
10724 /* once for the tree */
10725 free_extent_map(em);
10726 }
10727
8dbcd10f
FM
10728 unlock_chunks(root);
10729
1e144fb8
OS
10730 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10731 if (ret)
10732 goto out;
10733
fa9c0d79
CM
10734 btrfs_put_block_group(block_group);
10735 btrfs_put_block_group(block_group);
1a40e23b
ZY
10736
10737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10738 if (ret > 0)
10739 ret = -EIO;
10740 if (ret < 0)
10741 goto out;
10742
10743 ret = btrfs_del_item(trans, root, path);
10744out:
10745 btrfs_free_path(path);
10746 return ret;
10747}
acce952b 10748
8eab77ff 10749struct btrfs_trans_handle *
7fd01182
FM
10750btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10751 const u64 chunk_offset)
8eab77ff 10752{
7fd01182
FM
10753 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10754 struct extent_map *em;
10755 struct map_lookup *map;
10756 unsigned int num_items;
10757
10758 read_lock(&em_tree->lock);
10759 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10760 read_unlock(&em_tree->lock);
10761 ASSERT(em && em->start == chunk_offset);
10762
8eab77ff 10763 /*
7fd01182
FM
10764 * We need to reserve 3 + N units from the metadata space info in order
10765 * to remove a block group (done at btrfs_remove_chunk() and at
10766 * btrfs_remove_block_group()), which are used for:
10767 *
8eab77ff
FM
10768 * 1 unit for adding the free space inode's orphan (located in the tree
10769 * of tree roots).
7fd01182
FM
10770 * 1 unit for deleting the block group item (located in the extent
10771 * tree).
10772 * 1 unit for deleting the free space item (located in tree of tree
10773 * roots).
10774 * N units for deleting N device extent items corresponding to each
10775 * stripe (located in the device tree).
10776 *
10777 * In order to remove a block group we also need to reserve units in the
10778 * system space info in order to update the chunk tree (update one or
10779 * more device items and remove one chunk item), but this is done at
10780 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10781 */
95617d69 10782 map = em->map_lookup;
7fd01182
FM
10783 num_items = 3 + map->num_stripes;
10784 free_extent_map(em);
10785
8eab77ff 10786 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10787 num_items, 1);
8eab77ff
FM
10788}
10789
47ab2a6c
JB
10790/*
10791 * Process the unused_bgs list and remove any that don't have any allocated
10792 * space inside of them.
10793 */
10794void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10795{
10796 struct btrfs_block_group_cache *block_group;
10797 struct btrfs_space_info *space_info;
10798 struct btrfs_root *root = fs_info->extent_root;
10799 struct btrfs_trans_handle *trans;
10800 int ret = 0;
10801
10802 if (!fs_info->open)
10803 return;
10804
10805 spin_lock(&fs_info->unused_bgs_lock);
10806 while (!list_empty(&fs_info->unused_bgs)) {
10807 u64 start, end;
e33e17ee 10808 int trimming;
47ab2a6c
JB
10809
10810 block_group = list_first_entry(&fs_info->unused_bgs,
10811 struct btrfs_block_group_cache,
10812 bg_list);
47ab2a6c 10813 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10814
10815 space_info = block_group->space_info;
10816
47ab2a6c
JB
10817 if (ret || btrfs_mixed_space_info(space_info)) {
10818 btrfs_put_block_group(block_group);
10819 continue;
10820 }
10821 spin_unlock(&fs_info->unused_bgs_lock);
10822
d5f2e33b 10823 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10824
47ab2a6c
JB
10825 /* Don't want to race with allocators so take the groups_sem */
10826 down_write(&space_info->groups_sem);
10827 spin_lock(&block_group->lock);
10828 if (block_group->reserved ||
10829 btrfs_block_group_used(&block_group->item) ||
aefbe9a6
ZL
10830 block_group->ro ||
10831 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10832 /*
10833 * We want to bail if we made new allocations or have
10834 * outstanding allocations in this block group. We do
10835 * the ro check in case balance is currently acting on
10836 * this block group.
10837 */
10838 spin_unlock(&block_group->lock);
10839 up_write(&space_info->groups_sem);
10840 goto next;
10841 }
10842 spin_unlock(&block_group->lock);
10843
10844 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10845 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10846 up_write(&space_info->groups_sem);
10847 if (ret < 0) {
10848 ret = 0;
10849 goto next;
10850 }
10851
10852 /*
10853 * Want to do this before we do anything else so we can recover
10854 * properly if we fail to join the transaction.
10855 */
7fd01182
FM
10856 trans = btrfs_start_trans_remove_block_group(fs_info,
10857 block_group->key.objectid);
47ab2a6c 10858 if (IS_ERR(trans)) {
868f401a 10859 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10860 ret = PTR_ERR(trans);
10861 goto next;
10862 }
10863
10864 /*
10865 * We could have pending pinned extents for this block group,
10866 * just delete them, we don't care about them anymore.
10867 */
10868 start = block_group->key.objectid;
10869 end = start + block_group->key.offset - 1;
d4b450cd
FM
10870 /*
10871 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10872 * btrfs_finish_extent_commit(). If we are at transaction N,
10873 * another task might be running finish_extent_commit() for the
10874 * previous transaction N - 1, and have seen a range belonging
10875 * to the block group in freed_extents[] before we were able to
10876 * clear the whole block group range from freed_extents[]. This
10877 * means that task can lookup for the block group after we
10878 * unpinned it from freed_extents[] and removed it, leading to
10879 * a BUG_ON() at btrfs_unpin_extent_range().
10880 */
10881 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10882 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10883 EXTENT_DIRTY);
758eb51e 10884 if (ret) {
d4b450cd 10885 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10886 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10887 goto end_trans;
10888 }
10889 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10890 EXTENT_DIRTY);
758eb51e 10891 if (ret) {
d4b450cd 10892 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10893 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10894 goto end_trans;
10895 }
d4b450cd 10896 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10897
10898 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10899 spin_lock(&space_info->lock);
10900 spin_lock(&block_group->lock);
10901
10902 space_info->bytes_pinned -= block_group->pinned;
10903 space_info->bytes_readonly += block_group->pinned;
10904 percpu_counter_add(&space_info->total_bytes_pinned,
10905 -block_group->pinned);
47ab2a6c
JB
10906 block_group->pinned = 0;
10907
c30666d4
ZL
10908 spin_unlock(&block_group->lock);
10909 spin_unlock(&space_info->lock);
10910
e33e17ee 10911 /* DISCARD can flip during remount */
3cdde224 10912 trimming = btrfs_test_opt(root->fs_info, DISCARD);
e33e17ee
JM
10913
10914 /* Implicit trim during transaction commit. */
10915 if (trimming)
10916 btrfs_get_block_group_trimming(block_group);
10917
47ab2a6c
JB
10918 /*
10919 * Btrfs_remove_chunk will abort the transaction if things go
10920 * horribly wrong.
10921 */
10922 ret = btrfs_remove_chunk(trans, root,
10923 block_group->key.objectid);
e33e17ee
JM
10924
10925 if (ret) {
10926 if (trimming)
10927 btrfs_put_block_group_trimming(block_group);
10928 goto end_trans;
10929 }
10930
10931 /*
10932 * If we're not mounted with -odiscard, we can just forget
10933 * about this block group. Otherwise we'll need to wait
10934 * until transaction commit to do the actual discard.
10935 */
10936 if (trimming) {
348a0013
FM
10937 spin_lock(&fs_info->unused_bgs_lock);
10938 /*
10939 * A concurrent scrub might have added us to the list
10940 * fs_info->unused_bgs, so use a list_move operation
10941 * to add the block group to the deleted_bgs list.
10942 */
e33e17ee
JM
10943 list_move(&block_group->bg_list,
10944 &trans->transaction->deleted_bgs);
348a0013 10945 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10946 btrfs_get_block_group(block_group);
10947 }
758eb51e 10948end_trans:
47ab2a6c
JB
10949 btrfs_end_transaction(trans, root);
10950next:
d5f2e33b 10951 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10952 btrfs_put_block_group(block_group);
10953 spin_lock(&fs_info->unused_bgs_lock);
10954 }
10955 spin_unlock(&fs_info->unused_bgs_lock);
10956}
10957
c59021f8 10958int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10959{
10960 struct btrfs_space_info *space_info;
1aba86d6 10961 struct btrfs_super_block *disk_super;
10962 u64 features;
10963 u64 flags;
10964 int mixed = 0;
c59021f8 10965 int ret;
10966
6c41761f 10967 disk_super = fs_info->super_copy;
1aba86d6 10968 if (!btrfs_super_root(disk_super))
0dc924c5 10969 return -EINVAL;
c59021f8 10970
1aba86d6 10971 features = btrfs_super_incompat_flags(disk_super);
10972 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10973 mixed = 1;
c59021f8 10974
1aba86d6 10975 flags = BTRFS_BLOCK_GROUP_SYSTEM;
e40edf2d 10976 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
c59021f8 10977 if (ret)
1aba86d6 10978 goto out;
c59021f8 10979
1aba86d6 10980 if (mixed) {
10981 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10982 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10983 } else {
10984 flags = BTRFS_BLOCK_GROUP_METADATA;
e40edf2d 10985 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10986 if (ret)
10987 goto out;
10988
10989 flags = BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10990 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10991 }
10992out:
c59021f8 10993 return ret;
10994}
10995
acce952b 10996int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10997{
678886bd 10998 return unpin_extent_range(root, start, end, false);
acce952b 10999}
11000
499f377f
JM
11001/*
11002 * It used to be that old block groups would be left around forever.
11003 * Iterating over them would be enough to trim unused space. Since we
11004 * now automatically remove them, we also need to iterate over unallocated
11005 * space.
11006 *
11007 * We don't want a transaction for this since the discard may take a
11008 * substantial amount of time. We don't require that a transaction be
11009 * running, but we do need to take a running transaction into account
11010 * to ensure that we're not discarding chunks that were released in
11011 * the current transaction.
11012 *
11013 * Holding the chunks lock will prevent other threads from allocating
11014 * or releasing chunks, but it won't prevent a running transaction
11015 * from committing and releasing the memory that the pending chunks
11016 * list head uses. For that, we need to take a reference to the
11017 * transaction.
11018 */
11019static int btrfs_trim_free_extents(struct btrfs_device *device,
11020 u64 minlen, u64 *trimmed)
11021{
11022 u64 start = 0, len = 0;
11023 int ret;
11024
11025 *trimmed = 0;
11026
11027 /* Not writeable = nothing to do. */
11028 if (!device->writeable)
11029 return 0;
11030
11031 /* No free space = nothing to do. */
11032 if (device->total_bytes <= device->bytes_used)
11033 return 0;
11034
11035 ret = 0;
11036
11037 while (1) {
11038 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
11039 struct btrfs_transaction *trans;
11040 u64 bytes;
11041
11042 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11043 if (ret)
11044 return ret;
11045
11046 down_read(&fs_info->commit_root_sem);
11047
11048 spin_lock(&fs_info->trans_lock);
11049 trans = fs_info->running_transaction;
11050 if (trans)
11051 atomic_inc(&trans->use_count);
11052 spin_unlock(&fs_info->trans_lock);
11053
11054 ret = find_free_dev_extent_start(trans, device, minlen, start,
11055 &start, &len);
11056 if (trans)
11057 btrfs_put_transaction(trans);
11058
11059 if (ret) {
11060 up_read(&fs_info->commit_root_sem);
11061 mutex_unlock(&fs_info->chunk_mutex);
11062 if (ret == -ENOSPC)
11063 ret = 0;
11064 break;
11065 }
11066
11067 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11068 up_read(&fs_info->commit_root_sem);
11069 mutex_unlock(&fs_info->chunk_mutex);
11070
11071 if (ret)
11072 break;
11073
11074 start += len;
11075 *trimmed += bytes;
11076
11077 if (fatal_signal_pending(current)) {
11078 ret = -ERESTARTSYS;
11079 break;
11080 }
11081
11082 cond_resched();
11083 }
11084
11085 return ret;
11086}
11087
f7039b1d
LD
11088int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
11089{
11090 struct btrfs_fs_info *fs_info = root->fs_info;
11091 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
11092 struct btrfs_device *device;
11093 struct list_head *devices;
f7039b1d
LD
11094 u64 group_trimmed;
11095 u64 start;
11096 u64 end;
11097 u64 trimmed = 0;
2cac13e4 11098 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
11099 int ret = 0;
11100
2cac13e4
LB
11101 /*
11102 * try to trim all FS space, our block group may start from non-zero.
11103 */
11104 if (range->len == total_bytes)
11105 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11106 else
11107 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
11108
11109 while (cache) {
11110 if (cache->key.objectid >= (range->start + range->len)) {
11111 btrfs_put_block_group(cache);
11112 break;
11113 }
11114
11115 start = max(range->start, cache->key.objectid);
11116 end = min(range->start + range->len,
11117 cache->key.objectid + cache->key.offset);
11118
11119 if (end - start >= range->minlen) {
11120 if (!block_group_cache_done(cache)) {
f6373bf3 11121 ret = cache_block_group(cache, 0);
1be41b78
JB
11122 if (ret) {
11123 btrfs_put_block_group(cache);
11124 break;
11125 }
11126 ret = wait_block_group_cache_done(cache);
11127 if (ret) {
11128 btrfs_put_block_group(cache);
11129 break;
11130 }
f7039b1d
LD
11131 }
11132 ret = btrfs_trim_block_group(cache,
11133 &group_trimmed,
11134 start,
11135 end,
11136 range->minlen);
11137
11138 trimmed += group_trimmed;
11139 if (ret) {
11140 btrfs_put_block_group(cache);
11141 break;
11142 }
11143 }
11144
11145 cache = next_block_group(fs_info->tree_root, cache);
11146 }
11147
499f377f
JM
11148 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
11149 devices = &root->fs_info->fs_devices->alloc_list;
11150 list_for_each_entry(device, devices, dev_alloc_list) {
11151 ret = btrfs_trim_free_extents(device, range->minlen,
11152 &group_trimmed);
11153 if (ret)
11154 break;
11155
11156 trimmed += group_trimmed;
11157 }
11158 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
11159
f7039b1d
LD
11160 range->len = trimmed;
11161 return ret;
11162}
8257b2dc
MX
11163
11164/*
9ea24bbe
FM
11165 * btrfs_{start,end}_write_no_snapshoting() are similar to
11166 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11167 * data into the page cache through nocow before the subvolume is snapshoted,
11168 * but flush the data into disk after the snapshot creation, or to prevent
11169 * operations while snapshoting is ongoing and that cause the snapshot to be
11170 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11171 */
9ea24bbe 11172void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
11173{
11174 percpu_counter_dec(&root->subv_writers->counter);
11175 /*
a83342aa 11176 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
11177 */
11178 smp_mb();
11179 if (waitqueue_active(&root->subv_writers->wait))
11180 wake_up(&root->subv_writers->wait);
11181}
11182
9ea24bbe 11183int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 11184{
ee39b432 11185 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
11186 return 0;
11187
11188 percpu_counter_inc(&root->subv_writers->counter);
11189 /*
11190 * Make sure counter is updated before we check for snapshot creation.
11191 */
11192 smp_mb();
ee39b432 11193 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 11194 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
11195 return 0;
11196 }
11197 return 1;
11198}
0bc19f90
ZL
11199
11200static int wait_snapshoting_atomic_t(atomic_t *a)
11201{
11202 schedule();
11203 return 0;
11204}
11205
11206void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11207{
11208 while (true) {
11209 int ret;
11210
11211 ret = btrfs_start_write_no_snapshoting(root);
11212 if (ret)
11213 break;
11214 wait_on_atomic_t(&root->will_be_snapshoted,
11215 wait_snapshoting_atomic_t,
11216 TASK_UNINTERRUPTIBLE);
11217 }
11218}