]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: don't attempt to trim devices that don't support it
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
5d4f98a2 54static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
55 struct btrfs_delayed_ref_node *node, u64 parent,
56 u64 root_objectid, u64 owner_objectid,
57 u64 owner_offset, int refs_to_drop,
58 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
59static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
60 struct extent_buffer *leaf,
61 struct btrfs_extent_item *ei);
62static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
63 u64 parent, u64 root_objectid,
64 u64 flags, u64 owner, u64 offset,
65 struct btrfs_key *ins, int ref_mod);
66static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 67 struct btrfs_delayed_ref_node *node,
21ebfbe7 68 struct btrfs_delayed_extent_op *extent_op);
01458828 69static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
698d0082 70 int force);
11833d66
YZ
71static int find_next_key(struct btrfs_path *path, int level,
72 struct btrfs_key *key);
ab8d0fc4
JM
73static void dump_space_info(struct btrfs_fs_info *fs_info,
74 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 75 int dump_block_groups);
5d80366e
JB
76static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
77 u64 num_bytes);
957780eb
JB
78static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *space_info,
80 u64 num_bytes);
81static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
83 u64 num_bytes);
6a63209f 84
817d52f8
JB
85static noinline int
86block_group_cache_done(struct btrfs_block_group_cache *cache)
87{
88 smp_mb();
36cce922
JB
89 return cache->cached == BTRFS_CACHE_FINISHED ||
90 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
91}
92
0f9dd46c
JB
93static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
94{
95 return (cache->flags & bits) == bits;
96}
97
758f2dfc 98void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
99{
100 atomic_inc(&cache->count);
101}
102
103void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
104{
f0486c68
YZ
105 if (atomic_dec_and_test(&cache->count)) {
106 WARN_ON(cache->pinned > 0);
107 WARN_ON(cache->reserved > 0);
0966a7b1
QW
108
109 /*
110 * If not empty, someone is still holding mutex of
111 * full_stripe_lock, which can only be released by caller.
112 * And it will definitely cause use-after-free when caller
113 * tries to release full stripe lock.
114 *
115 * No better way to resolve, but only to warn.
116 */
117 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 118 kfree(cache->free_space_ctl);
11dfe35a 119 kfree(cache);
f0486c68 120 }
11dfe35a
JB
121}
122
0f9dd46c
JB
123/*
124 * this adds the block group to the fs_info rb tree for the block group
125 * cache
126 */
b2950863 127static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
128 struct btrfs_block_group_cache *block_group)
129{
130 struct rb_node **p;
131 struct rb_node *parent = NULL;
132 struct btrfs_block_group_cache *cache;
133
134 spin_lock(&info->block_group_cache_lock);
135 p = &info->block_group_cache_tree.rb_node;
136
137 while (*p) {
138 parent = *p;
139 cache = rb_entry(parent, struct btrfs_block_group_cache,
140 cache_node);
141 if (block_group->key.objectid < cache->key.objectid) {
142 p = &(*p)->rb_left;
143 } else if (block_group->key.objectid > cache->key.objectid) {
144 p = &(*p)->rb_right;
145 } else {
146 spin_unlock(&info->block_group_cache_lock);
147 return -EEXIST;
148 }
149 }
150
151 rb_link_node(&block_group->cache_node, parent, p);
152 rb_insert_color(&block_group->cache_node,
153 &info->block_group_cache_tree);
a1897fdd
LB
154
155 if (info->first_logical_byte > block_group->key.objectid)
156 info->first_logical_byte = block_group->key.objectid;
157
0f9dd46c
JB
158 spin_unlock(&info->block_group_cache_lock);
159
160 return 0;
161}
162
163/*
164 * This will return the block group at or after bytenr if contains is 0, else
165 * it will return the block group that contains the bytenr
166 */
167static struct btrfs_block_group_cache *
168block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
169 int contains)
170{
171 struct btrfs_block_group_cache *cache, *ret = NULL;
172 struct rb_node *n;
173 u64 end, start;
174
175 spin_lock(&info->block_group_cache_lock);
176 n = info->block_group_cache_tree.rb_node;
177
178 while (n) {
179 cache = rb_entry(n, struct btrfs_block_group_cache,
180 cache_node);
181 end = cache->key.objectid + cache->key.offset - 1;
182 start = cache->key.objectid;
183
184 if (bytenr < start) {
185 if (!contains && (!ret || start < ret->key.objectid))
186 ret = cache;
187 n = n->rb_left;
188 } else if (bytenr > start) {
189 if (contains && bytenr <= end) {
190 ret = cache;
191 break;
192 }
193 n = n->rb_right;
194 } else {
195 ret = cache;
196 break;
197 }
198 }
a1897fdd 199 if (ret) {
11dfe35a 200 btrfs_get_block_group(ret);
a1897fdd
LB
201 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
202 info->first_logical_byte = ret->key.objectid;
203 }
0f9dd46c
JB
204 spin_unlock(&info->block_group_cache_lock);
205
206 return ret;
207}
208
2ff7e61e 209static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 210 u64 start, u64 num_bytes)
817d52f8 211{
11833d66 212 u64 end = start + num_bytes - 1;
0b246afa 213 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 214 start, end, EXTENT_UPTODATE);
0b246afa 215 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 216 start, end, EXTENT_UPTODATE);
11833d66
YZ
217 return 0;
218}
817d52f8 219
9e715da8 220static void free_excluded_extents(struct btrfs_block_group_cache *cache)
11833d66 221{
9e715da8 222 struct btrfs_fs_info *fs_info = cache->fs_info;
11833d66 223 u64 start, end;
817d52f8 224
11833d66
YZ
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
227
0b246afa 228 clear_extent_bits(&fs_info->freed_extents[0],
91166212 229 start, end, EXTENT_UPTODATE);
0b246afa 230 clear_extent_bits(&fs_info->freed_extents[1],
91166212 231 start, end, EXTENT_UPTODATE);
817d52f8
JB
232}
233
3c4da657 234static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
817d52f8 235{
3c4da657 236 struct btrfs_fs_info *fs_info = cache->fs_info;
817d52f8
JB
237 u64 bytenr;
238 u64 *logical;
239 int stripe_len;
240 int i, nr, ret;
241
06b2331f
YZ
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
2ff7e61e 245 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 246 stripe_len);
835d974f
JB
247 if (ret)
248 return ret;
06b2331f
YZ
249 }
250
817d52f8
JB
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
0b246afa 253 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
63a9c7b9 254 bytenr, &logical, &nr, &stripe_len);
835d974f
JB
255 if (ret)
256 return ret;
11833d66 257
817d52f8 258 while (nr--) {
51bf5f0b
JB
259 u64 start, len;
260
261 if (logical[nr] > cache->key.objectid +
262 cache->key.offset)
263 continue;
264
265 if (logical[nr] + stripe_len <= cache->key.objectid)
266 continue;
267
268 start = logical[nr];
269 if (start < cache->key.objectid) {
270 start = cache->key.objectid;
271 len = (logical[nr] + stripe_len) - start;
272 } else {
273 len = min_t(u64, stripe_len,
274 cache->key.objectid +
275 cache->key.offset - start);
276 }
277
278 cache->bytes_super += len;
2ff7e61e 279 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
280 if (ret) {
281 kfree(logical);
282 return ret;
283 }
817d52f8 284 }
11833d66 285
817d52f8
JB
286 kfree(logical);
287 }
817d52f8
JB
288 return 0;
289}
290
11833d66
YZ
291static struct btrfs_caching_control *
292get_caching_control(struct btrfs_block_group_cache *cache)
293{
294 struct btrfs_caching_control *ctl;
295
296 spin_lock(&cache->lock);
dde5abee
JB
297 if (!cache->caching_ctl) {
298 spin_unlock(&cache->lock);
11833d66
YZ
299 return NULL;
300 }
301
302 ctl = cache->caching_ctl;
1e4f4714 303 refcount_inc(&ctl->count);
11833d66
YZ
304 spin_unlock(&cache->lock);
305 return ctl;
306}
307
308static void put_caching_control(struct btrfs_caching_control *ctl)
309{
1e4f4714 310 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
311 kfree(ctl);
312}
313
d0bd4560 314#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 315static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 316{
2ff7e61e 317 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
318 u64 start = block_group->key.objectid;
319 u64 len = block_group->key.offset;
320 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 321 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
322 u64 step = chunk << 1;
323
324 while (len > chunk) {
325 btrfs_remove_free_space(block_group, start, chunk);
326 start += step;
327 if (len < step)
328 len = 0;
329 else
330 len -= step;
331 }
332}
333#endif
334
0f9dd46c
JB
335/*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
a5ed9182 340u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
4457c1c7 341 u64 start, u64 end)
0f9dd46c 342{
4457c1c7 343 struct btrfs_fs_info *info = block_group->fs_info;
817d52f8 344 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
345 int ret;
346
347 while (start < end) {
11833d66 348 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 349 &extent_start, &extent_end,
e6138876
JB
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
0f9dd46c
JB
352 if (ret)
353 break;
354
06b2331f 355 if (extent_start <= start) {
0f9dd46c
JB
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
817d52f8 359 total_added += size;
ea6a478e
JB
360 ret = btrfs_add_free_space(block_group, start,
361 size);
79787eaa 362 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
817d52f8 371 total_added += size;
ea6a478e 372 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 373 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
374 }
375
817d52f8 376 return total_added;
0f9dd46c
JB
377}
378
73fa48b6 379static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 380{
0b246afa
JM
381 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
382 struct btrfs_fs_info *fs_info = block_group->fs_info;
383 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 384 struct btrfs_path *path;
5f39d397 385 struct extent_buffer *leaf;
11833d66 386 struct btrfs_key key;
817d52f8 387 u64 total_found = 0;
11833d66
YZ
388 u64 last = 0;
389 u32 nritems;
73fa48b6 390 int ret;
d0bd4560 391 bool wakeup = true;
f510cfec 392
e37c9e69
CM
393 path = btrfs_alloc_path();
394 if (!path)
73fa48b6 395 return -ENOMEM;
7d7d6068 396
817d52f8 397 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 398
d0bd4560
JB
399#ifdef CONFIG_BTRFS_DEBUG
400 /*
401 * If we're fragmenting we don't want to make anybody think we can
402 * allocate from this block group until we've had a chance to fragment
403 * the free space.
404 */
2ff7e61e 405 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
406 wakeup = false;
407#endif
5cd57b2c 408 /*
817d52f8
JB
409 * We don't want to deadlock with somebody trying to allocate a new
410 * extent for the extent root while also trying to search the extent
411 * root to add free space. So we skip locking and search the commit
412 * root, since its read-only
5cd57b2c
CM
413 */
414 path->skip_locking = 1;
817d52f8 415 path->search_commit_root = 1;
e4058b54 416 path->reada = READA_FORWARD;
817d52f8 417
e4404d6e 418 key.objectid = last;
e37c9e69 419 key.offset = 0;
11833d66 420 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 421
52ee28d2 422next:
11833d66 423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 424 if (ret < 0)
73fa48b6 425 goto out;
a512bbf8 426
11833d66
YZ
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
d397712b 430 while (1) {
7841cb28 431 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 432 last = (u64)-1;
817d52f8 433 break;
f25784b3 434 }
817d52f8 435
11833d66
YZ
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
e37c9e69 441 break;
817d52f8 442
c9ea7b24 443 if (need_resched() ||
9e351cc8 444 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
445 if (wakeup)
446 caching_ctl->progress = last;
ff5714cc 447 btrfs_release_path(path);
9e351cc8 448 up_read(&fs_info->commit_root_sem);
589d8ade 449 mutex_unlock(&caching_ctl->mutex);
11833d66 450 cond_resched();
73fa48b6
OS
451 mutex_lock(&caching_ctl->mutex);
452 down_read(&fs_info->commit_root_sem);
453 goto next;
589d8ade 454 }
0a3896d0
JB
455
456 ret = btrfs_next_leaf(extent_root, path);
457 if (ret < 0)
73fa48b6 458 goto out;
0a3896d0
JB
459 if (ret)
460 break;
589d8ade
JB
461 leaf = path->nodes[0];
462 nritems = btrfs_header_nritems(leaf);
463 continue;
11833d66 464 }
817d52f8 465
52ee28d2
LB
466 if (key.objectid < last) {
467 key.objectid = last;
468 key.offset = 0;
469 key.type = BTRFS_EXTENT_ITEM_KEY;
470
d0bd4560
JB
471 if (wakeup)
472 caching_ctl->progress = last;
52ee28d2
LB
473 btrfs_release_path(path);
474 goto next;
475 }
476
11833d66
YZ
477 if (key.objectid < block_group->key.objectid) {
478 path->slots[0]++;
817d52f8 479 continue;
e37c9e69 480 }
0f9dd46c 481
e37c9e69 482 if (key.objectid >= block_group->key.objectid +
0f9dd46c 483 block_group->key.offset)
e37c9e69 484 break;
7d7d6068 485
3173a18f
JB
486 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
487 key.type == BTRFS_METADATA_ITEM_KEY) {
4457c1c7 488 total_found += add_new_free_space(block_group, last,
817d52f8 489 key.objectid);
3173a18f
JB
490 if (key.type == BTRFS_METADATA_ITEM_KEY)
491 last = key.objectid +
da17066c 492 fs_info->nodesize;
3173a18f
JB
493 else
494 last = key.objectid + key.offset;
817d52f8 495
73fa48b6 496 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 497 total_found = 0;
d0bd4560
JB
498 if (wakeup)
499 wake_up(&caching_ctl->wait);
11833d66 500 }
817d52f8 501 }
e37c9e69
CM
502 path->slots[0]++;
503 }
817d52f8 504 ret = 0;
e37c9e69 505
4457c1c7 506 total_found += add_new_free_space(block_group, last,
817d52f8
JB
507 block_group->key.objectid +
508 block_group->key.offset);
11833d66 509 caching_ctl->progress = (u64)-1;
817d52f8 510
73fa48b6
OS
511out:
512 btrfs_free_path(path);
513 return ret;
514}
515
516static noinline void caching_thread(struct btrfs_work *work)
517{
518 struct btrfs_block_group_cache *block_group;
519 struct btrfs_fs_info *fs_info;
520 struct btrfs_caching_control *caching_ctl;
521 int ret;
522
523 caching_ctl = container_of(work, struct btrfs_caching_control, work);
524 block_group = caching_ctl->block_group;
525 fs_info = block_group->fs_info;
526
527 mutex_lock(&caching_ctl->mutex);
528 down_read(&fs_info->commit_root_sem);
529
1e144fb8
OS
530 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
531 ret = load_free_space_tree(caching_ctl);
532 else
533 ret = load_extent_tree_free(caching_ctl);
73fa48b6 534
817d52f8 535 spin_lock(&block_group->lock);
11833d66 536 block_group->caching_ctl = NULL;
73fa48b6 537 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 538 spin_unlock(&block_group->lock);
0f9dd46c 539
d0bd4560 540#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 541 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
542 u64 bytes_used;
543
544 spin_lock(&block_group->space_info->lock);
545 spin_lock(&block_group->lock);
546 bytes_used = block_group->key.offset -
547 btrfs_block_group_used(&block_group->item);
548 block_group->space_info->bytes_used += bytes_used >> 1;
549 spin_unlock(&block_group->lock);
550 spin_unlock(&block_group->space_info->lock);
2ff7e61e 551 fragment_free_space(block_group);
d0bd4560
JB
552 }
553#endif
554
555 caching_ctl->progress = (u64)-1;
11833d66 556
9e351cc8 557 up_read(&fs_info->commit_root_sem);
9e715da8 558 free_excluded_extents(block_group);
11833d66 559 mutex_unlock(&caching_ctl->mutex);
73fa48b6 560
11833d66
YZ
561 wake_up(&caching_ctl->wait);
562
563 put_caching_control(caching_ctl);
11dfe35a 564 btrfs_put_block_group(block_group);
817d52f8
JB
565}
566
9d66e233 567static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 568 int load_cache_only)
817d52f8 569{
291c7d2f 570 DEFINE_WAIT(wait);
11833d66
YZ
571 struct btrfs_fs_info *fs_info = cache->fs_info;
572 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
573 int ret = 0;
574
291c7d2f 575 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
576 if (!caching_ctl)
577 return -ENOMEM;
291c7d2f
JB
578
579 INIT_LIST_HEAD(&caching_ctl->list);
580 mutex_init(&caching_ctl->mutex);
581 init_waitqueue_head(&caching_ctl->wait);
582 caching_ctl->block_group = cache;
583 caching_ctl->progress = cache->key.objectid;
1e4f4714 584 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
585 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
586 caching_thread, NULL, NULL);
291c7d2f
JB
587
588 spin_lock(&cache->lock);
589 /*
590 * This should be a rare occasion, but this could happen I think in the
591 * case where one thread starts to load the space cache info, and then
592 * some other thread starts a transaction commit which tries to do an
593 * allocation while the other thread is still loading the space cache
594 * info. The previous loop should have kept us from choosing this block
595 * group, but if we've moved to the state where we will wait on caching
596 * block groups we need to first check if we're doing a fast load here,
597 * so we can wait for it to finish, otherwise we could end up allocating
598 * from a block group who's cache gets evicted for one reason or
599 * another.
600 */
601 while (cache->cached == BTRFS_CACHE_FAST) {
602 struct btrfs_caching_control *ctl;
603
604 ctl = cache->caching_ctl;
1e4f4714 605 refcount_inc(&ctl->count);
291c7d2f
JB
606 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&cache->lock);
608
609 schedule();
610
611 finish_wait(&ctl->wait, &wait);
612 put_caching_control(ctl);
613 spin_lock(&cache->lock);
614 }
615
616 if (cache->cached != BTRFS_CACHE_NO) {
617 spin_unlock(&cache->lock);
618 kfree(caching_ctl);
11833d66 619 return 0;
291c7d2f
JB
620 }
621 WARN_ON(cache->caching_ctl);
622 cache->caching_ctl = caching_ctl;
623 cache->cached = BTRFS_CACHE_FAST;
624 spin_unlock(&cache->lock);
11833d66 625
d8953d69 626 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 627 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
628 ret = load_free_space_cache(fs_info, cache);
629
630 spin_lock(&cache->lock);
631 if (ret == 1) {
291c7d2f 632 cache->caching_ctl = NULL;
9d66e233
JB
633 cache->cached = BTRFS_CACHE_FINISHED;
634 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 635 caching_ctl->progress = (u64)-1;
9d66e233 636 } else {
291c7d2f
JB
637 if (load_cache_only) {
638 cache->caching_ctl = NULL;
639 cache->cached = BTRFS_CACHE_NO;
640 } else {
641 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 642 cache->has_caching_ctl = 1;
291c7d2f 643 }
9d66e233
JB
644 }
645 spin_unlock(&cache->lock);
d0bd4560
JB
646#ifdef CONFIG_BTRFS_DEBUG
647 if (ret == 1 &&
2ff7e61e 648 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
649 u64 bytes_used;
650
651 spin_lock(&cache->space_info->lock);
652 spin_lock(&cache->lock);
653 bytes_used = cache->key.offset -
654 btrfs_block_group_used(&cache->item);
655 cache->space_info->bytes_used += bytes_used >> 1;
656 spin_unlock(&cache->lock);
657 spin_unlock(&cache->space_info->lock);
2ff7e61e 658 fragment_free_space(cache);
d0bd4560
JB
659 }
660#endif
cb83b7b8
JB
661 mutex_unlock(&caching_ctl->mutex);
662
291c7d2f 663 wake_up(&caching_ctl->wait);
3c14874a 664 if (ret == 1) {
291c7d2f 665 put_caching_control(caching_ctl);
9e715da8 666 free_excluded_extents(cache);
9d66e233 667 return 0;
3c14874a 668 }
291c7d2f
JB
669 } else {
670 /*
1e144fb8
OS
671 * We're either using the free space tree or no caching at all.
672 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
673 */
674 spin_lock(&cache->lock);
675 if (load_cache_only) {
676 cache->caching_ctl = NULL;
677 cache->cached = BTRFS_CACHE_NO;
678 } else {
679 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 680 cache->has_caching_ctl = 1;
291c7d2f
JB
681 }
682 spin_unlock(&cache->lock);
683 wake_up(&caching_ctl->wait);
9d66e233
JB
684 }
685
291c7d2f
JB
686 if (load_cache_only) {
687 put_caching_control(caching_ctl);
11833d66 688 return 0;
817d52f8 689 }
817d52f8 690
9e351cc8 691 down_write(&fs_info->commit_root_sem);
1e4f4714 692 refcount_inc(&caching_ctl->count);
11833d66 693 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 694 up_write(&fs_info->commit_root_sem);
11833d66 695
11dfe35a 696 btrfs_get_block_group(cache);
11833d66 697
e66f0bb1 698 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 699
ef8bbdfe 700 return ret;
e37c9e69
CM
701}
702
0f9dd46c
JB
703/*
704 * return the block group that starts at or after bytenr
705 */
d397712b
CM
706static struct btrfs_block_group_cache *
707btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 708{
e2c89907 709 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
710}
711
0f9dd46c 712/*
9f55684c 713 * return the block group that contains the given bytenr
0f9dd46c 714 */
d397712b
CM
715struct btrfs_block_group_cache *btrfs_lookup_block_group(
716 struct btrfs_fs_info *info,
717 u64 bytenr)
be744175 718{
e2c89907 719 return block_group_cache_tree_search(info, bytenr, 1);
be744175 720}
0b86a832 721
0f9dd46c
JB
722static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
723 u64 flags)
6324fbf3 724{
0f9dd46c 725 struct list_head *head = &info->space_info;
0f9dd46c 726 struct btrfs_space_info *found;
4184ea7f 727
52ba6929 728 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 729
4184ea7f
CM
730 rcu_read_lock();
731 list_for_each_entry_rcu(found, head, list) {
67377734 732 if (found->flags & flags) {
4184ea7f 733 rcu_read_unlock();
0f9dd46c 734 return found;
4184ea7f 735 }
0f9dd46c 736 }
4184ea7f 737 rcu_read_unlock();
0f9dd46c 738 return NULL;
6324fbf3
CM
739}
740
0d9f824d 741static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
29d2b84c 742 bool metadata, u64 root_objectid)
0d9f824d
OS
743{
744 struct btrfs_space_info *space_info;
745 u64 flags;
746
29d2b84c 747 if (metadata) {
0d9f824d
OS
748 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
749 flags = BTRFS_BLOCK_GROUP_SYSTEM;
750 else
751 flags = BTRFS_BLOCK_GROUP_METADATA;
752 } else {
753 flags = BTRFS_BLOCK_GROUP_DATA;
754 }
755
756 space_info = __find_space_info(fs_info, flags);
55e8196a 757 ASSERT(space_info);
dec59fa3
EL
758 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
759 BTRFS_TOTAL_BYTES_PINNED_BATCH);
0d9f824d
OS
760}
761
4184ea7f
CM
762/*
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
765 */
766void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767{
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
770
771 rcu_read_lock();
772 list_for_each_entry_rcu(found, head, list)
773 found->full = 0;
774 rcu_read_unlock();
775}
776
1a4ed8fd 777/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 778int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
779{
780 int ret;
781 struct btrfs_key key;
31840ae1 782 struct btrfs_path *path;
e02119d5 783
31840ae1 784 path = btrfs_alloc_path();
d8926bb3
MF
785 if (!path)
786 return -ENOMEM;
787
e02119d5
CM
788 key.objectid = start;
789 key.offset = len;
3173a18f 790 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 791 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 792 btrfs_free_path(path);
7bb86316
CM
793 return ret;
794}
795
a22285a6 796/*
3173a18f 797 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
798 *
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
804 */
805int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 806 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 807 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
808{
809 struct btrfs_delayed_ref_head *head;
810 struct btrfs_delayed_ref_root *delayed_refs;
811 struct btrfs_path *path;
812 struct btrfs_extent_item *ei;
813 struct extent_buffer *leaf;
814 struct btrfs_key key;
815 u32 item_size;
816 u64 num_refs;
817 u64 extent_flags;
818 int ret;
819
3173a18f
JB
820 /*
821 * If we don't have skinny metadata, don't bother doing anything
822 * different
823 */
0b246afa
JM
824 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
825 offset = fs_info->nodesize;
3173a18f
JB
826 metadata = 0;
827 }
828
a22285a6
YZ
829 path = btrfs_alloc_path();
830 if (!path)
831 return -ENOMEM;
832
a22285a6
YZ
833 if (!trans) {
834 path->skip_locking = 1;
835 path->search_commit_root = 1;
836 }
639eefc8
FDBM
837
838search_again:
839 key.objectid = bytenr;
840 key.offset = offset;
841 if (metadata)
842 key.type = BTRFS_METADATA_ITEM_KEY;
843 else
844 key.type = BTRFS_EXTENT_ITEM_KEY;
845
0b246afa 846 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
847 if (ret < 0)
848 goto out_free;
849
3173a18f 850 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
851 if (path->slots[0]) {
852 path->slots[0]--;
853 btrfs_item_key_to_cpu(path->nodes[0], &key,
854 path->slots[0]);
855 if (key.objectid == bytenr &&
856 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 857 key.offset == fs_info->nodesize)
74be9510
FDBM
858 ret = 0;
859 }
3173a18f
JB
860 }
861
a22285a6
YZ
862 if (ret == 0) {
863 leaf = path->nodes[0];
864 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
865 if (item_size >= sizeof(*ei)) {
866 ei = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_item);
868 num_refs = btrfs_extent_refs(leaf, ei);
869 extent_flags = btrfs_extent_flags(leaf, ei);
870 } else {
ba3c2b19
NB
871 ret = -EINVAL;
872 btrfs_print_v0_err(fs_info);
873 if (trans)
874 btrfs_abort_transaction(trans, ret);
875 else
876 btrfs_handle_fs_error(fs_info, ret, NULL);
877
878 goto out_free;
a22285a6 879 }
ba3c2b19 880
a22285a6
YZ
881 BUG_ON(num_refs == 0);
882 } else {
883 num_refs = 0;
884 extent_flags = 0;
885 ret = 0;
886 }
887
888 if (!trans)
889 goto out;
890
891 delayed_refs = &trans->transaction->delayed_refs;
892 spin_lock(&delayed_refs->lock);
f72ad18e 893 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
894 if (head) {
895 if (!mutex_trylock(&head->mutex)) {
d278850e 896 refcount_inc(&head->refs);
a22285a6
YZ
897 spin_unlock(&delayed_refs->lock);
898
b3b4aa74 899 btrfs_release_path(path);
a22285a6 900
8cc33e5c
DS
901 /*
902 * Mutex was contended, block until it's released and try
903 * again
904 */
a22285a6
YZ
905 mutex_lock(&head->mutex);
906 mutex_unlock(&head->mutex);
d278850e 907 btrfs_put_delayed_ref_head(head);
639eefc8 908 goto search_again;
a22285a6 909 }
d7df2c79 910 spin_lock(&head->lock);
a22285a6
YZ
911 if (head->extent_op && head->extent_op->update_flags)
912 extent_flags |= head->extent_op->flags_to_set;
913 else
914 BUG_ON(num_refs == 0);
915
d278850e 916 num_refs += head->ref_mod;
d7df2c79 917 spin_unlock(&head->lock);
a22285a6
YZ
918 mutex_unlock(&head->mutex);
919 }
920 spin_unlock(&delayed_refs->lock);
921out:
922 WARN_ON(num_refs == 0);
923 if (refs)
924 *refs = num_refs;
925 if (flags)
926 *flags = extent_flags;
927out_free:
928 btrfs_free_path(path);
929 return ret;
930}
931
d8d5f3e1
CM
932/*
933 * Back reference rules. Back refs have three main goals:
934 *
935 * 1) differentiate between all holders of references to an extent so that
936 * when a reference is dropped we can make sure it was a valid reference
937 * before freeing the extent.
938 *
939 * 2) Provide enough information to quickly find the holders of an extent
940 * if we notice a given block is corrupted or bad.
941 *
942 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
943 * maintenance. This is actually the same as #2, but with a slightly
944 * different use case.
945 *
5d4f98a2
YZ
946 * There are two kinds of back refs. The implicit back refs is optimized
947 * for pointers in non-shared tree blocks. For a given pointer in a block,
948 * back refs of this kind provide information about the block's owner tree
949 * and the pointer's key. These information allow us to find the block by
950 * b-tree searching. The full back refs is for pointers in tree blocks not
951 * referenced by their owner trees. The location of tree block is recorded
952 * in the back refs. Actually the full back refs is generic, and can be
953 * used in all cases the implicit back refs is used. The major shortcoming
954 * of the full back refs is its overhead. Every time a tree block gets
955 * COWed, we have to update back refs entry for all pointers in it.
956 *
957 * For a newly allocated tree block, we use implicit back refs for
958 * pointers in it. This means most tree related operations only involve
959 * implicit back refs. For a tree block created in old transaction, the
960 * only way to drop a reference to it is COW it. So we can detect the
961 * event that tree block loses its owner tree's reference and do the
962 * back refs conversion.
963 *
01327610 964 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
965 *
966 * The reference count of the block is one and the tree is the block's
967 * owner tree. Nothing to do in this case.
968 *
969 * The reference count of the block is one and the tree is not the
970 * block's owner tree. In this case, full back refs is used for pointers
971 * in the block. Remove these full back refs, add implicit back refs for
972 * every pointers in the new block.
973 *
974 * The reference count of the block is greater than one and the tree is
975 * the block's owner tree. In this case, implicit back refs is used for
976 * pointers in the block. Add full back refs for every pointers in the
977 * block, increase lower level extents' reference counts. The original
978 * implicit back refs are entailed to the new block.
979 *
980 * The reference count of the block is greater than one and the tree is
981 * not the block's owner tree. Add implicit back refs for every pointer in
982 * the new block, increase lower level extents' reference count.
983 *
984 * Back Reference Key composing:
985 *
986 * The key objectid corresponds to the first byte in the extent,
987 * The key type is used to differentiate between types of back refs.
988 * There are different meanings of the key offset for different types
989 * of back refs.
990 *
d8d5f3e1
CM
991 * File extents can be referenced by:
992 *
993 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 994 * - different files inside a single subvolume
d8d5f3e1
CM
995 * - different offsets inside a file (bookend extents in file.c)
996 *
5d4f98a2 997 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
998 *
999 * - Objectid of the subvolume root
d8d5f3e1 1000 * - objectid of the file holding the reference
5d4f98a2
YZ
1001 * - original offset in the file
1002 * - how many bookend extents
d8d5f3e1 1003 *
5d4f98a2
YZ
1004 * The key offset for the implicit back refs is hash of the first
1005 * three fields.
d8d5f3e1 1006 *
5d4f98a2 1007 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1008 *
5d4f98a2 1009 * - number of pointers in the tree leaf
d8d5f3e1 1010 *
5d4f98a2
YZ
1011 * The key offset for the implicit back refs is the first byte of
1012 * the tree leaf
d8d5f3e1 1013 *
5d4f98a2
YZ
1014 * When a file extent is allocated, The implicit back refs is used.
1015 * the fields are filled in:
d8d5f3e1 1016 *
5d4f98a2 1017 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1018 *
5d4f98a2
YZ
1019 * When a file extent is removed file truncation, we find the
1020 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1021 *
5d4f98a2 1022 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1023 *
5d4f98a2 1024 * Btree extents can be referenced by:
d8d5f3e1 1025 *
5d4f98a2 1026 * - Different subvolumes
d8d5f3e1 1027 *
5d4f98a2
YZ
1028 * Both the implicit back refs and the full back refs for tree blocks
1029 * only consist of key. The key offset for the implicit back refs is
1030 * objectid of block's owner tree. The key offset for the full back refs
1031 * is the first byte of parent block.
d8d5f3e1 1032 *
5d4f98a2
YZ
1033 * When implicit back refs is used, information about the lowest key and
1034 * level of the tree block are required. These information are stored in
1035 * tree block info structure.
d8d5f3e1 1036 */
31840ae1 1037
167ce953
LB
1038/*
1039 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1040 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1041 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1042 */
1043int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1044 struct btrfs_extent_inline_ref *iref,
1045 enum btrfs_inline_ref_type is_data)
1046{
1047 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1048 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1049
1050 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1051 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1052 type == BTRFS_SHARED_DATA_REF_KEY ||
1053 type == BTRFS_EXTENT_DATA_REF_KEY) {
1054 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1055 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1056 return type;
64ecdb64
LB
1057 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1058 ASSERT(eb->fs_info);
1059 /*
1060 * Every shared one has parent tree
1061 * block, which must be aligned to
1062 * nodesize.
1063 */
1064 if (offset &&
1065 IS_ALIGNED(offset, eb->fs_info->nodesize))
1066 return type;
1067 }
167ce953 1068 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1069 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1070 return type;
64ecdb64
LB
1071 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1072 ASSERT(eb->fs_info);
1073 /*
1074 * Every shared one has parent tree
1075 * block, which must be aligned to
1076 * nodesize.
1077 */
1078 if (offset &&
1079 IS_ALIGNED(offset, eb->fs_info->nodesize))
1080 return type;
1081 }
167ce953
LB
1082 } else {
1083 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1084 return type;
1085 }
1086 }
1087
1088 btrfs_print_leaf((struct extent_buffer *)eb);
1089 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1090 eb->start, type);
1091 WARN_ON(1);
1092
1093 return BTRFS_REF_TYPE_INVALID;
1094}
1095
5d4f98a2
YZ
1096static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1097{
1098 u32 high_crc = ~(u32)0;
1099 u32 low_crc = ~(u32)0;
1100 __le64 lenum;
1101
1102 lenum = cpu_to_le64(root_objectid);
9678c543 1103 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1104 lenum = cpu_to_le64(owner);
9678c543 1105 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1106 lenum = cpu_to_le64(offset);
9678c543 1107 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1108
1109 return ((u64)high_crc << 31) ^ (u64)low_crc;
1110}
1111
1112static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1113 struct btrfs_extent_data_ref *ref)
1114{
1115 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1116 btrfs_extent_data_ref_objectid(leaf, ref),
1117 btrfs_extent_data_ref_offset(leaf, ref));
1118}
1119
1120static int match_extent_data_ref(struct extent_buffer *leaf,
1121 struct btrfs_extent_data_ref *ref,
1122 u64 root_objectid, u64 owner, u64 offset)
1123{
1124 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1125 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1126 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1127 return 0;
1128 return 1;
1129}
1130
1131static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1132 struct btrfs_path *path,
1133 u64 bytenr, u64 parent,
1134 u64 root_objectid,
1135 u64 owner, u64 offset)
1136{
bd1d53ef 1137 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2
YZ
1138 struct btrfs_key key;
1139 struct btrfs_extent_data_ref *ref;
31840ae1 1140 struct extent_buffer *leaf;
5d4f98a2 1141 u32 nritems;
74493f7a 1142 int ret;
5d4f98a2
YZ
1143 int recow;
1144 int err = -ENOENT;
74493f7a 1145
31840ae1 1146 key.objectid = bytenr;
5d4f98a2
YZ
1147 if (parent) {
1148 key.type = BTRFS_SHARED_DATA_REF_KEY;
1149 key.offset = parent;
1150 } else {
1151 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1152 key.offset = hash_extent_data_ref(root_objectid,
1153 owner, offset);
1154 }
1155again:
1156 recow = 0;
1157 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1158 if (ret < 0) {
1159 err = ret;
1160 goto fail;
1161 }
31840ae1 1162
5d4f98a2
YZ
1163 if (parent) {
1164 if (!ret)
1165 return 0;
5d4f98a2 1166 goto fail;
31840ae1
ZY
1167 }
1168
1169 leaf = path->nodes[0];
5d4f98a2
YZ
1170 nritems = btrfs_header_nritems(leaf);
1171 while (1) {
1172 if (path->slots[0] >= nritems) {
1173 ret = btrfs_next_leaf(root, path);
1174 if (ret < 0)
1175 err = ret;
1176 if (ret)
1177 goto fail;
1178
1179 leaf = path->nodes[0];
1180 nritems = btrfs_header_nritems(leaf);
1181 recow = 1;
1182 }
1183
1184 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1185 if (key.objectid != bytenr ||
1186 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1187 goto fail;
1188
1189 ref = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_extent_data_ref);
1191
1192 if (match_extent_data_ref(leaf, ref, root_objectid,
1193 owner, offset)) {
1194 if (recow) {
b3b4aa74 1195 btrfs_release_path(path);
5d4f98a2
YZ
1196 goto again;
1197 }
1198 err = 0;
1199 break;
1200 }
1201 path->slots[0]++;
31840ae1 1202 }
5d4f98a2
YZ
1203fail:
1204 return err;
31840ae1
ZY
1205}
1206
5d4f98a2 1207static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1208 struct btrfs_path *path,
1209 u64 bytenr, u64 parent,
1210 u64 root_objectid, u64 owner,
1211 u64 offset, int refs_to_add)
31840ae1 1212{
62b895af 1213 struct btrfs_root *root = trans->fs_info->extent_root;
31840ae1
ZY
1214 struct btrfs_key key;
1215 struct extent_buffer *leaf;
5d4f98a2 1216 u32 size;
31840ae1
ZY
1217 u32 num_refs;
1218 int ret;
74493f7a 1219
74493f7a 1220 key.objectid = bytenr;
5d4f98a2
YZ
1221 if (parent) {
1222 key.type = BTRFS_SHARED_DATA_REF_KEY;
1223 key.offset = parent;
1224 size = sizeof(struct btrfs_shared_data_ref);
1225 } else {
1226 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1227 key.offset = hash_extent_data_ref(root_objectid,
1228 owner, offset);
1229 size = sizeof(struct btrfs_extent_data_ref);
1230 }
74493f7a 1231
5d4f98a2
YZ
1232 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1233 if (ret && ret != -EEXIST)
1234 goto fail;
1235
1236 leaf = path->nodes[0];
1237 if (parent) {
1238 struct btrfs_shared_data_ref *ref;
31840ae1 1239 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1240 struct btrfs_shared_data_ref);
1241 if (ret == 0) {
1242 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1243 } else {
1244 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1245 num_refs += refs_to_add;
1246 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1247 }
5d4f98a2
YZ
1248 } else {
1249 struct btrfs_extent_data_ref *ref;
1250 while (ret == -EEXIST) {
1251 ref = btrfs_item_ptr(leaf, path->slots[0],
1252 struct btrfs_extent_data_ref);
1253 if (match_extent_data_ref(leaf, ref, root_objectid,
1254 owner, offset))
1255 break;
b3b4aa74 1256 btrfs_release_path(path);
5d4f98a2
YZ
1257 key.offset++;
1258 ret = btrfs_insert_empty_item(trans, root, path, &key,
1259 size);
1260 if (ret && ret != -EEXIST)
1261 goto fail;
31840ae1 1262
5d4f98a2
YZ
1263 leaf = path->nodes[0];
1264 }
1265 ref = btrfs_item_ptr(leaf, path->slots[0],
1266 struct btrfs_extent_data_ref);
1267 if (ret == 0) {
1268 btrfs_set_extent_data_ref_root(leaf, ref,
1269 root_objectid);
1270 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1271 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1272 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1273 } else {
1274 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1275 num_refs += refs_to_add;
1276 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1277 }
31840ae1 1278 }
5d4f98a2
YZ
1279 btrfs_mark_buffer_dirty(leaf);
1280 ret = 0;
1281fail:
b3b4aa74 1282 btrfs_release_path(path);
7bb86316 1283 return ret;
74493f7a
CM
1284}
1285
5d4f98a2 1286static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2 1287 struct btrfs_path *path,
fcebe456 1288 int refs_to_drop, int *last_ref)
31840ae1 1289{
5d4f98a2
YZ
1290 struct btrfs_key key;
1291 struct btrfs_extent_data_ref *ref1 = NULL;
1292 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1293 struct extent_buffer *leaf;
5d4f98a2 1294 u32 num_refs = 0;
31840ae1
ZY
1295 int ret = 0;
1296
1297 leaf = path->nodes[0];
5d4f98a2
YZ
1298 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1299
1300 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1301 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1304 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1305 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_shared_data_ref);
1307 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
6d8ff4e4 1308 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
ba3c2b19
NB
1309 btrfs_print_v0_err(trans->fs_info);
1310 btrfs_abort_transaction(trans, -EINVAL);
1311 return -EINVAL;
5d4f98a2
YZ
1312 } else {
1313 BUG();
1314 }
1315
56bec294
CM
1316 BUG_ON(num_refs < refs_to_drop);
1317 num_refs -= refs_to_drop;
5d4f98a2 1318
31840ae1 1319 if (num_refs == 0) {
e9f6290d 1320 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
fcebe456 1321 *last_ref = 1;
31840ae1 1322 } else {
5d4f98a2
YZ
1323 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1324 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1325 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1326 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
31840ae1
ZY
1327 btrfs_mark_buffer_dirty(leaf);
1328 }
31840ae1
ZY
1329 return ret;
1330}
1331
9ed0dea0 1332static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1333 struct btrfs_extent_inline_ref *iref)
15916de8 1334{
5d4f98a2
YZ
1335 struct btrfs_key key;
1336 struct extent_buffer *leaf;
1337 struct btrfs_extent_data_ref *ref1;
1338 struct btrfs_shared_data_ref *ref2;
1339 u32 num_refs = 0;
3de28d57 1340 int type;
5d4f98a2
YZ
1341
1342 leaf = path->nodes[0];
1343 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
ba3c2b19
NB
1344
1345 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
5d4f98a2 1346 if (iref) {
3de28d57
LB
1347 /*
1348 * If type is invalid, we should have bailed out earlier than
1349 * this call.
1350 */
1351 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1352 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1353 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1354 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1355 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1356 } else {
1357 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359 }
1360 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1361 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1362 struct btrfs_extent_data_ref);
1363 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1364 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1365 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_shared_data_ref);
1367 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
5d4f98a2
YZ
1368 } else {
1369 WARN_ON(1);
1370 }
1371 return num_refs;
1372}
15916de8 1373
5d4f98a2 1374static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1375 struct btrfs_path *path,
1376 u64 bytenr, u64 parent,
1377 u64 root_objectid)
1f3c79a2 1378{
b8582eea 1379 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2 1380 struct btrfs_key key;
1f3c79a2 1381 int ret;
1f3c79a2 1382
5d4f98a2
YZ
1383 key.objectid = bytenr;
1384 if (parent) {
1385 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1386 key.offset = parent;
1387 } else {
1388 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1389 key.offset = root_objectid;
1f3c79a2
LH
1390 }
1391
5d4f98a2
YZ
1392 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1393 if (ret > 0)
1394 ret = -ENOENT;
5d4f98a2 1395 return ret;
1f3c79a2
LH
1396}
1397
5d4f98a2 1398static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1399 struct btrfs_path *path,
1400 u64 bytenr, u64 parent,
1401 u64 root_objectid)
31840ae1 1402{
5d4f98a2 1403 struct btrfs_key key;
31840ae1 1404 int ret;
31840ae1 1405
5d4f98a2
YZ
1406 key.objectid = bytenr;
1407 if (parent) {
1408 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1409 key.offset = parent;
1410 } else {
1411 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1412 key.offset = root_objectid;
1413 }
1414
10728404 1415 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
87bde3cd 1416 path, &key, 0);
b3b4aa74 1417 btrfs_release_path(path);
31840ae1
ZY
1418 return ret;
1419}
1420
5d4f98a2 1421static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1422{
5d4f98a2
YZ
1423 int type;
1424 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 else
1428 type = BTRFS_TREE_BLOCK_REF_KEY;
1429 } else {
1430 if (parent > 0)
1431 type = BTRFS_SHARED_DATA_REF_KEY;
1432 else
1433 type = BTRFS_EXTENT_DATA_REF_KEY;
1434 }
1435 return type;
31840ae1 1436}
56bec294 1437
2c47e605
YZ
1438static int find_next_key(struct btrfs_path *path, int level,
1439 struct btrfs_key *key)
56bec294 1440
02217ed2 1441{
2c47e605 1442 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1443 if (!path->nodes[level])
1444 break;
5d4f98a2
YZ
1445 if (path->slots[level] + 1 >=
1446 btrfs_header_nritems(path->nodes[level]))
1447 continue;
1448 if (level == 0)
1449 btrfs_item_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 else
1452 btrfs_node_key_to_cpu(path->nodes[level], key,
1453 path->slots[level] + 1);
1454 return 0;
1455 }
1456 return 1;
1457}
037e6390 1458
5d4f98a2
YZ
1459/*
1460 * look for inline back ref. if back ref is found, *ref_ret is set
1461 * to the address of inline back ref, and 0 is returned.
1462 *
1463 * if back ref isn't found, *ref_ret is set to the address where it
1464 * should be inserted, and -ENOENT is returned.
1465 *
1466 * if insert is true and there are too many inline back refs, the path
1467 * points to the extent item, and -EAGAIN is returned.
1468 *
1469 * NOTE: inline back refs are ordered in the same way that back ref
1470 * items in the tree are ordered.
1471 */
1472static noinline_for_stack
1473int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1474 struct btrfs_path *path,
1475 struct btrfs_extent_inline_ref **ref_ret,
1476 u64 bytenr, u64 num_bytes,
1477 u64 parent, u64 root_objectid,
1478 u64 owner, u64 offset, int insert)
1479{
867cc1fb 1480 struct btrfs_fs_info *fs_info = trans->fs_info;
87bde3cd 1481 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1482 struct btrfs_key key;
1483 struct extent_buffer *leaf;
1484 struct btrfs_extent_item *ei;
1485 struct btrfs_extent_inline_ref *iref;
1486 u64 flags;
1487 u64 item_size;
1488 unsigned long ptr;
1489 unsigned long end;
1490 int extra_size;
1491 int type;
1492 int want;
1493 int ret;
1494 int err = 0;
0b246afa 1495 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1496 int needed;
26b8003f 1497
db94535d 1498 key.objectid = bytenr;
31840ae1 1499 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1500 key.offset = num_bytes;
31840ae1 1501
5d4f98a2
YZ
1502 want = extent_ref_type(parent, owner);
1503 if (insert) {
1504 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1505 path->keep_locks = 1;
5d4f98a2
YZ
1506 } else
1507 extra_size = -1;
3173a18f
JB
1508
1509 /*
16d1c062
NB
1510 * Owner is our level, so we can just add one to get the level for the
1511 * block we are interested in.
3173a18f
JB
1512 */
1513 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1514 key.type = BTRFS_METADATA_ITEM_KEY;
1515 key.offset = owner;
1516 }
1517
1518again:
5d4f98a2 1519 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1520 if (ret < 0) {
5d4f98a2
YZ
1521 err = ret;
1522 goto out;
1523 }
3173a18f
JB
1524
1525 /*
1526 * We may be a newly converted file system which still has the old fat
1527 * extent entries for metadata, so try and see if we have one of those.
1528 */
1529 if (ret > 0 && skinny_metadata) {
1530 skinny_metadata = false;
1531 if (path->slots[0]) {
1532 path->slots[0]--;
1533 btrfs_item_key_to_cpu(path->nodes[0], &key,
1534 path->slots[0]);
1535 if (key.objectid == bytenr &&
1536 key.type == BTRFS_EXTENT_ITEM_KEY &&
1537 key.offset == num_bytes)
1538 ret = 0;
1539 }
1540 if (ret) {
9ce49a0b 1541 key.objectid = bytenr;
3173a18f
JB
1542 key.type = BTRFS_EXTENT_ITEM_KEY;
1543 key.offset = num_bytes;
1544 btrfs_release_path(path);
1545 goto again;
1546 }
1547 }
1548
79787eaa
JM
1549 if (ret && !insert) {
1550 err = -ENOENT;
1551 goto out;
fae7f21c 1552 } else if (WARN_ON(ret)) {
492104c8 1553 err = -EIO;
492104c8 1554 goto out;
79787eaa 1555 }
5d4f98a2
YZ
1556
1557 leaf = path->nodes[0];
1558 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6d8ff4e4 1559 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
1560 err = -EINVAL;
1561 btrfs_print_v0_err(fs_info);
1562 btrfs_abort_transaction(trans, err);
1563 goto out;
1564 }
5d4f98a2 1565
5d4f98a2
YZ
1566 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1567 flags = btrfs_extent_flags(leaf, ei);
1568
1569 ptr = (unsigned long)(ei + 1);
1570 end = (unsigned long)ei + item_size;
1571
3173a18f 1572 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1573 ptr += sizeof(struct btrfs_tree_block_info);
1574 BUG_ON(ptr > end);
5d4f98a2
YZ
1575 }
1576
3de28d57
LB
1577 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1578 needed = BTRFS_REF_TYPE_DATA;
1579 else
1580 needed = BTRFS_REF_TYPE_BLOCK;
1581
5d4f98a2
YZ
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1589 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1590 if (type == BTRFS_REF_TYPE_INVALID) {
af431dcb 1591 err = -EUCLEAN;
3de28d57
LB
1592 goto out;
1593 }
1594
5d4f98a2
YZ
1595 if (want < type)
1596 break;
1597 if (want > type) {
1598 ptr += btrfs_extent_inline_ref_size(type);
1599 continue;
1600 }
1601
1602 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1603 struct btrfs_extent_data_ref *dref;
1604 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1605 if (match_extent_data_ref(leaf, dref, root_objectid,
1606 owner, offset)) {
1607 err = 0;
1608 break;
1609 }
1610 if (hash_extent_data_ref_item(leaf, dref) <
1611 hash_extent_data_ref(root_objectid, owner, offset))
1612 break;
1613 } else {
1614 u64 ref_offset;
1615 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1616 if (parent > 0) {
1617 if (parent == ref_offset) {
1618 err = 0;
1619 break;
1620 }
1621 if (ref_offset < parent)
1622 break;
1623 } else {
1624 if (root_objectid == ref_offset) {
1625 err = 0;
1626 break;
1627 }
1628 if (ref_offset < root_objectid)
1629 break;
1630 }
1631 }
1632 ptr += btrfs_extent_inline_ref_size(type);
1633 }
1634 if (err == -ENOENT && insert) {
1635 if (item_size + extra_size >=
1636 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1637 err = -EAGAIN;
1638 goto out;
1639 }
1640 /*
1641 * To add new inline back ref, we have to make sure
1642 * there is no corresponding back ref item.
1643 * For simplicity, we just do not add new inline back
1644 * ref if there is any kind of item for this block
1645 */
2c47e605
YZ
1646 if (find_next_key(path, 0, &key) == 0 &&
1647 key.objectid == bytenr &&
85d4198e 1648 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1649 err = -EAGAIN;
1650 goto out;
1651 }
1652 }
1653 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1654out:
85d4198e 1655 if (insert) {
5d4f98a2
YZ
1656 path->keep_locks = 0;
1657 btrfs_unlock_up_safe(path, 1);
1658 }
1659 return err;
1660}
1661
1662/*
1663 * helper to add new inline back ref
1664 */
1665static noinline_for_stack
87bde3cd 1666void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1667 struct btrfs_path *path,
1668 struct btrfs_extent_inline_ref *iref,
1669 u64 parent, u64 root_objectid,
1670 u64 owner, u64 offset, int refs_to_add,
1671 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1672{
1673 struct extent_buffer *leaf;
1674 struct btrfs_extent_item *ei;
1675 unsigned long ptr;
1676 unsigned long end;
1677 unsigned long item_offset;
1678 u64 refs;
1679 int size;
1680 int type;
5d4f98a2
YZ
1681
1682 leaf = path->nodes[0];
1683 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1684 item_offset = (unsigned long)iref - (unsigned long)ei;
1685
1686 type = extent_ref_type(parent, owner);
1687 size = btrfs_extent_inline_ref_size(type);
1688
87bde3cd 1689 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1690
1691 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1692 refs = btrfs_extent_refs(leaf, ei);
1693 refs += refs_to_add;
1694 btrfs_set_extent_refs(leaf, ei, refs);
1695 if (extent_op)
1696 __run_delayed_extent_op(extent_op, leaf, ei);
1697
1698 ptr = (unsigned long)ei + item_offset;
1699 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1700 if (ptr < end - size)
1701 memmove_extent_buffer(leaf, ptr + size, ptr,
1702 end - size - ptr);
1703
1704 iref = (struct btrfs_extent_inline_ref *)ptr;
1705 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1706 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 struct btrfs_extent_data_ref *dref;
1708 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1709 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1710 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1711 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1712 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1713 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1714 struct btrfs_shared_data_ref *sref;
1715 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1716 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1718 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1719 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1720 } else {
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1722 }
1723 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1724}
1725
1726static int lookup_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1727 struct btrfs_path *path,
1728 struct btrfs_extent_inline_ref **ref_ret,
1729 u64 bytenr, u64 num_bytes, u64 parent,
1730 u64 root_objectid, u64 owner, u64 offset)
1731{
1732 int ret;
1733
867cc1fb
NB
1734 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1735 num_bytes, parent, root_objectid,
1736 owner, offset, 0);
5d4f98a2 1737 if (ret != -ENOENT)
54aa1f4d 1738 return ret;
5d4f98a2 1739
b3b4aa74 1740 btrfs_release_path(path);
5d4f98a2
YZ
1741 *ref_ret = NULL;
1742
1743 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
b8582eea
NB
1744 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1745 root_objectid);
5d4f98a2 1746 } else {
bd1d53ef
NB
1747 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1748 root_objectid, owner, offset);
b9473439 1749 }
5d4f98a2
YZ
1750 return ret;
1751}
31840ae1 1752
5d4f98a2
YZ
1753/*
1754 * helper to update/remove inline back ref
1755 */
1756static noinline_for_stack
61a18f1c 1757void update_inline_extent_backref(struct btrfs_path *path,
143bede5
JM
1758 struct btrfs_extent_inline_ref *iref,
1759 int refs_to_mod,
fcebe456
JB
1760 struct btrfs_delayed_extent_op *extent_op,
1761 int *last_ref)
5d4f98a2 1762{
61a18f1c
NB
1763 struct extent_buffer *leaf = path->nodes[0];
1764 struct btrfs_fs_info *fs_info = leaf->fs_info;
5d4f98a2
YZ
1765 struct btrfs_extent_item *ei;
1766 struct btrfs_extent_data_ref *dref = NULL;
1767 struct btrfs_shared_data_ref *sref = NULL;
1768 unsigned long ptr;
1769 unsigned long end;
1770 u32 item_size;
1771 int size;
1772 int type;
5d4f98a2
YZ
1773 u64 refs;
1774
5d4f98a2
YZ
1775 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 refs = btrfs_extent_refs(leaf, ei);
1777 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1778 refs += refs_to_mod;
1779 btrfs_set_extent_refs(leaf, ei, refs);
1780 if (extent_op)
1781 __run_delayed_extent_op(extent_op, leaf, ei);
1782
3de28d57
LB
1783 /*
1784 * If type is invalid, we should have bailed out after
1785 * lookup_inline_extent_backref().
1786 */
1787 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1788 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1789
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 refs = btrfs_extent_data_ref_count(leaf, dref);
1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 refs = btrfs_shared_data_ref_count(leaf, sref);
1796 } else {
1797 refs = 1;
1798 BUG_ON(refs_to_mod != -1);
56bec294 1799 }
31840ae1 1800
5d4f98a2
YZ
1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 refs += refs_to_mod;
1803
1804 if (refs > 0) {
1805 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 else
1808 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 } else {
fcebe456 1810 *last_ref = 1;
5d4f98a2
YZ
1811 size = btrfs_extent_inline_ref_size(type);
1812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1813 ptr = (unsigned long)iref;
1814 end = (unsigned long)ei + item_size;
1815 if (ptr + size < end)
1816 memmove_extent_buffer(leaf, ptr, ptr + size,
1817 end - ptr - size);
1818 item_size -= size;
87bde3cd 1819 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1820 }
1821 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1822}
1823
1824static noinline_for_stack
1825int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1831{
1832 struct btrfs_extent_inline_ref *iref;
1833 int ret;
1834
867cc1fb
NB
1835 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1836 num_bytes, parent, root_objectid,
1837 owner, offset, 1);
5d4f98a2
YZ
1838 if (ret == 0) {
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
61a18f1c
NB
1840 update_inline_extent_backref(path, iref, refs_to_add,
1841 extent_op, NULL);
5d4f98a2 1842 } else if (ret == -ENOENT) {
a639cdeb 1843 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
143bede5
JM
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1846 ret = 0;
771ed689 1847 }
5d4f98a2
YZ
1848 return ret;
1849}
31840ae1 1850
5d4f98a2 1851static int insert_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1852 struct btrfs_path *path,
1853 u64 bytenr, u64 parent, u64 root_objectid,
1854 u64 owner, u64 offset, int refs_to_add)
1855{
1856 int ret;
1857 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1858 BUG_ON(refs_to_add != 1);
10728404
NB
1859 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1860 root_objectid);
5d4f98a2 1861 } else {
62b895af
NB
1862 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1863 root_objectid, owner, offset,
1864 refs_to_add);
5d4f98a2
YZ
1865 }
1866 return ret;
1867}
56bec294 1868
5d4f98a2 1869static int remove_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1870 struct btrfs_path *path,
1871 struct btrfs_extent_inline_ref *iref,
fcebe456 1872 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1873{
143bede5 1874 int ret = 0;
b9473439 1875
5d4f98a2
YZ
1876 BUG_ON(!is_data && refs_to_drop != 1);
1877 if (iref) {
61a18f1c
NB
1878 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1879 last_ref);
5d4f98a2 1880 } else if (is_data) {
e9f6290d 1881 ret = remove_extent_data_ref(trans, path, refs_to_drop,
fcebe456 1882 last_ref);
5d4f98a2 1883 } else {
fcebe456 1884 *last_ref = 1;
87cc7a8a 1885 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
5d4f98a2
YZ
1886 }
1887 return ret;
1888}
1889
86557861 1890#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1891static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1892 u64 *discarded_bytes)
5d4f98a2 1893{
86557861
JM
1894 int j, ret = 0;
1895 u64 bytes_left, end;
4d89d377 1896 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1897
4d89d377
JM
1898 if (WARN_ON(start != aligned_start)) {
1899 len -= aligned_start - start;
1900 len = round_down(len, 1 << 9);
1901 start = aligned_start;
1902 }
d04c6b88 1903
4d89d377 1904 *discarded_bytes = 0;
86557861
JM
1905
1906 if (!len)
1907 return 0;
1908
1909 end = start + len;
1910 bytes_left = len;
1911
1912 /* Skip any superblocks on this device. */
1913 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1914 u64 sb_start = btrfs_sb_offset(j);
1915 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1916 u64 size = sb_start - start;
1917
1918 if (!in_range(sb_start, start, bytes_left) &&
1919 !in_range(sb_end, start, bytes_left) &&
1920 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1921 continue;
1922
1923 /*
1924 * Superblock spans beginning of range. Adjust start and
1925 * try again.
1926 */
1927 if (sb_start <= start) {
1928 start += sb_end - start;
1929 if (start > end) {
1930 bytes_left = 0;
1931 break;
1932 }
1933 bytes_left = end - start;
1934 continue;
1935 }
1936
1937 if (size) {
1938 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1939 GFP_NOFS, 0);
1940 if (!ret)
1941 *discarded_bytes += size;
1942 else if (ret != -EOPNOTSUPP)
1943 return ret;
1944 }
1945
1946 start = sb_end;
1947 if (start > end) {
1948 bytes_left = 0;
1949 break;
1950 }
1951 bytes_left = end - start;
1952 }
1953
1954 if (bytes_left) {
1955 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1956 GFP_NOFS, 0);
1957 if (!ret)
86557861 1958 *discarded_bytes += bytes_left;
4d89d377 1959 }
d04c6b88 1960 return ret;
5d4f98a2 1961}
5d4f98a2 1962
2ff7e61e 1963int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 1964 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1965{
5d4f98a2 1966 int ret;
5378e607 1967 u64 discarded_bytes = 0;
a1d3c478 1968 struct btrfs_bio *bbio = NULL;
5d4f98a2 1969
e244a0ae 1970
2999241d
FM
1971 /*
1972 * Avoid races with device replace and make sure our bbio has devices
1973 * associated to its stripes that don't go away while we are discarding.
1974 */
0b246afa 1975 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 1976 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
1977 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1978 &bbio, 0);
79787eaa 1979 /* Error condition is -ENOMEM */
5d4f98a2 1980 if (!ret) {
a1d3c478 1981 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1982 int i;
1983
5d4f98a2 1984
a1d3c478 1985 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 1986 u64 bytes;
38b5f68e
AJ
1987 struct request_queue *req_q;
1988
627e0873
FM
1989 if (!stripe->dev->bdev) {
1990 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1991 continue;
1992 }
38b5f68e
AJ
1993 req_q = bdev_get_queue(stripe->dev->bdev);
1994 if (!blk_queue_discard(req_q))
d5e2003c
JB
1995 continue;
1996
5378e607
LD
1997 ret = btrfs_issue_discard(stripe->dev->bdev,
1998 stripe->physical,
d04c6b88
JM
1999 stripe->length,
2000 &bytes);
5378e607 2001 if (!ret)
d04c6b88 2002 discarded_bytes += bytes;
5378e607 2003 else if (ret != -EOPNOTSUPP)
79787eaa 2004 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2005
2006 /*
2007 * Just in case we get back EOPNOTSUPP for some reason,
2008 * just ignore the return value so we don't screw up
2009 * people calling discard_extent.
2010 */
2011 ret = 0;
5d4f98a2 2012 }
6e9606d2 2013 btrfs_put_bbio(bbio);
5d4f98a2 2014 }
0b246afa 2015 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2016
2017 if (actual_bytes)
2018 *actual_bytes = discarded_bytes;
2019
5d4f98a2 2020
53b381b3
DW
2021 if (ret == -EOPNOTSUPP)
2022 ret = 0;
5d4f98a2 2023 return ret;
5d4f98a2
YZ
2024}
2025
79787eaa 2026/* Can return -ENOMEM */
5d4f98a2 2027int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2028 struct btrfs_root *root,
5d4f98a2 2029 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2030 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2031{
84f7d8e6 2032 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2033 int old_ref_mod, new_ref_mod;
5d4f98a2 2034 int ret;
66d7e7f0 2035
5d4f98a2
YZ
2036 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2037 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2038
fd708b81
JB
2039 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2040 owner, offset, BTRFS_ADD_DELAYED_REF);
2041
5d4f98a2 2042 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
44e1c47d 2043 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7be07912
OS
2044 num_bytes, parent,
2045 root_objectid, (int)owner,
2046 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2047 &old_ref_mod, &new_ref_mod);
5d4f98a2 2048 } else {
88a979c6 2049 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7be07912
OS
2050 num_bytes, parent,
2051 root_objectid, owner, offset,
d7eae340
OS
2052 0, BTRFS_ADD_DELAYED_REF,
2053 &old_ref_mod, &new_ref_mod);
5d4f98a2 2054 }
d7eae340 2055
29d2b84c
NB
2056 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2057 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2058
2059 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2060 }
d7eae340 2061
5d4f98a2
YZ
2062 return ret;
2063}
2064
bd3c685e
NB
2065/*
2066 * __btrfs_inc_extent_ref - insert backreference for a given extent
2067 *
2068 * @trans: Handle of transaction
2069 *
2070 * @node: The delayed ref node used to get the bytenr/length for
2071 * extent whose references are incremented.
2072 *
2073 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2074 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2075 * bytenr of the parent block. Since new extents are always
2076 * created with indirect references, this will only be the case
2077 * when relocating a shared extent. In that case, root_objectid
2078 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2079 * be 0
2080 *
2081 * @root_objectid: The id of the root where this modification has originated,
2082 * this can be either one of the well-known metadata trees or
2083 * the subvolume id which references this extent.
2084 *
2085 * @owner: For data extents it is the inode number of the owning file.
2086 * For metadata extents this parameter holds the level in the
2087 * tree of the extent.
2088 *
2089 * @offset: For metadata extents the offset is ignored and is currently
2090 * always passed as 0. For data extents it is the fileoffset
2091 * this extent belongs to.
2092 *
2093 * @refs_to_add Number of references to add
2094 *
2095 * @extent_op Pointer to a structure, holding information necessary when
2096 * updating a tree block's flags
2097 *
2098 */
5d4f98a2 2099static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
c682f9b3 2100 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2101 u64 parent, u64 root_objectid,
2102 u64 owner, u64 offset, int refs_to_add,
2103 struct btrfs_delayed_extent_op *extent_op)
2104{
2105 struct btrfs_path *path;
2106 struct extent_buffer *leaf;
2107 struct btrfs_extent_item *item;
fcebe456 2108 struct btrfs_key key;
c682f9b3
QW
2109 u64 bytenr = node->bytenr;
2110 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2111 u64 refs;
2112 int ret;
5d4f98a2
YZ
2113
2114 path = btrfs_alloc_path();
2115 if (!path)
2116 return -ENOMEM;
2117
e4058b54 2118 path->reada = READA_FORWARD;
5d4f98a2
YZ
2119 path->leave_spinning = 1;
2120 /* this will setup the path even if it fails to insert the back ref */
a639cdeb
NB
2121 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2122 parent, root_objectid, owner,
2123 offset, refs_to_add, extent_op);
0ed4792a 2124 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2125 goto out;
fcebe456
JB
2126
2127 /*
2128 * Ok we had -EAGAIN which means we didn't have space to insert and
2129 * inline extent ref, so just update the reference count and add a
2130 * normal backref.
2131 */
5d4f98a2 2132 leaf = path->nodes[0];
fcebe456 2133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2134 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2135 refs = btrfs_extent_refs(leaf, item);
2136 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2137 if (extent_op)
2138 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2139
5d4f98a2 2140 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2141 btrfs_release_path(path);
56bec294 2142
e4058b54 2143 path->reada = READA_FORWARD;
b9473439 2144 path->leave_spinning = 1;
56bec294 2145 /* now insert the actual backref */
37593410
NB
2146 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2147 owner, offset, refs_to_add);
79787eaa 2148 if (ret)
66642832 2149 btrfs_abort_transaction(trans, ret);
5d4f98a2 2150out:
56bec294 2151 btrfs_free_path(path);
30d133fc 2152 return ret;
56bec294
CM
2153}
2154
5d4f98a2 2155static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2156 struct btrfs_delayed_ref_node *node,
2157 struct btrfs_delayed_extent_op *extent_op,
2158 int insert_reserved)
56bec294 2159{
5d4f98a2
YZ
2160 int ret = 0;
2161 struct btrfs_delayed_data_ref *ref;
2162 struct btrfs_key ins;
2163 u64 parent = 0;
2164 u64 ref_root = 0;
2165 u64 flags = 0;
2166
2167 ins.objectid = node->bytenr;
2168 ins.offset = node->num_bytes;
2169 ins.type = BTRFS_EXTENT_ITEM_KEY;
2170
2171 ref = btrfs_delayed_node_to_data_ref(node);
2bf98ef3 2172 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
599c75ec 2173
5d4f98a2
YZ
2174 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2175 parent = ref->parent;
fcebe456 2176 ref_root = ref->root;
5d4f98a2
YZ
2177
2178 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2179 if (extent_op)
5d4f98a2 2180 flags |= extent_op->flags_to_set;
ef89b824
NB
2181 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2182 flags, ref->objectid,
2183 ref->offset, &ins,
2184 node->ref_mod);
5d4f98a2 2185 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2186 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2187 ref->objectid, ref->offset,
2188 node->ref_mod, extent_op);
5d4f98a2 2189 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2190 ret = __btrfs_free_extent(trans, node, parent,
5d4f98a2
YZ
2191 ref_root, ref->objectid,
2192 ref->offset, node->ref_mod,
c682f9b3 2193 extent_op);
5d4f98a2
YZ
2194 } else {
2195 BUG();
2196 }
2197 return ret;
2198}
2199
2200static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2201 struct extent_buffer *leaf,
2202 struct btrfs_extent_item *ei)
2203{
2204 u64 flags = btrfs_extent_flags(leaf, ei);
2205 if (extent_op->update_flags) {
2206 flags |= extent_op->flags_to_set;
2207 btrfs_set_extent_flags(leaf, ei, flags);
2208 }
2209
2210 if (extent_op->update_key) {
2211 struct btrfs_tree_block_info *bi;
2212 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2213 bi = (struct btrfs_tree_block_info *)(ei + 1);
2214 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2215 }
2216}
2217
2218static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
d278850e 2219 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2220 struct btrfs_delayed_extent_op *extent_op)
2221{
20b9a2d6 2222 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
2223 struct btrfs_key key;
2224 struct btrfs_path *path;
2225 struct btrfs_extent_item *ei;
2226 struct extent_buffer *leaf;
2227 u32 item_size;
56bec294 2228 int ret;
5d4f98a2 2229 int err = 0;
b1c79e09 2230 int metadata = !extent_op->is_data;
5d4f98a2 2231
79787eaa
JM
2232 if (trans->aborted)
2233 return 0;
2234
0b246afa 2235 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2236 metadata = 0;
2237
5d4f98a2
YZ
2238 path = btrfs_alloc_path();
2239 if (!path)
2240 return -ENOMEM;
2241
d278850e 2242 key.objectid = head->bytenr;
5d4f98a2 2243
3173a18f 2244 if (metadata) {
3173a18f 2245 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2246 key.offset = extent_op->level;
3173a18f
JB
2247 } else {
2248 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2249 key.offset = head->num_bytes;
3173a18f
JB
2250 }
2251
2252again:
e4058b54 2253 path->reada = READA_FORWARD;
5d4f98a2 2254 path->leave_spinning = 1;
0b246afa 2255 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2256 if (ret < 0) {
2257 err = ret;
2258 goto out;
2259 }
2260 if (ret > 0) {
3173a18f 2261 if (metadata) {
55994887
FDBM
2262 if (path->slots[0] > 0) {
2263 path->slots[0]--;
2264 btrfs_item_key_to_cpu(path->nodes[0], &key,
2265 path->slots[0]);
d278850e 2266 if (key.objectid == head->bytenr &&
55994887 2267 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2268 key.offset == head->num_bytes)
55994887
FDBM
2269 ret = 0;
2270 }
2271 if (ret > 0) {
2272 btrfs_release_path(path);
2273 metadata = 0;
3173a18f 2274
d278850e
JB
2275 key.objectid = head->bytenr;
2276 key.offset = head->num_bytes;
55994887
FDBM
2277 key.type = BTRFS_EXTENT_ITEM_KEY;
2278 goto again;
2279 }
2280 } else {
2281 err = -EIO;
2282 goto out;
3173a18f 2283 }
5d4f98a2
YZ
2284 }
2285
2286 leaf = path->nodes[0];
2287 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ba3c2b19 2288
6d8ff4e4 2289 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
2290 err = -EINVAL;
2291 btrfs_print_v0_err(fs_info);
2292 btrfs_abort_transaction(trans, err);
2293 goto out;
2294 }
2295
5d4f98a2
YZ
2296 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2297 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2298
5d4f98a2
YZ
2299 btrfs_mark_buffer_dirty(leaf);
2300out:
2301 btrfs_free_path(path);
2302 return err;
56bec294
CM
2303}
2304
5d4f98a2 2305static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2306 struct btrfs_delayed_ref_node *node,
2307 struct btrfs_delayed_extent_op *extent_op,
2308 int insert_reserved)
56bec294
CM
2309{
2310 int ret = 0;
5d4f98a2 2311 struct btrfs_delayed_tree_ref *ref;
5d4f98a2
YZ
2312 u64 parent = 0;
2313 u64 ref_root = 0;
56bec294 2314
5d4f98a2 2315 ref = btrfs_delayed_node_to_tree_ref(node);
f97806f2 2316 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
599c75ec 2317
5d4f98a2
YZ
2318 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2319 parent = ref->parent;
fcebe456 2320 ref_root = ref->root;
5d4f98a2 2321
02794222 2322 if (node->ref_mod != 1) {
f97806f2 2323 btrfs_err(trans->fs_info,
02794222
LB
2324 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2325 node->bytenr, node->ref_mod, node->action, ref_root,
2326 parent);
2327 return -EIO;
2328 }
5d4f98a2 2329 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2330 BUG_ON(!extent_op || !extent_op->update_flags);
21ebfbe7 2331 ret = alloc_reserved_tree_block(trans, node, extent_op);
5d4f98a2 2332 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2333 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2334 ref->level, 0, 1, extent_op);
5d4f98a2 2335 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2336 ret = __btrfs_free_extent(trans, node, parent, ref_root,
c682f9b3 2337 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2338 } else {
2339 BUG();
2340 }
56bec294
CM
2341 return ret;
2342}
2343
2344/* helper function to actually process a single delayed ref entry */
5d4f98a2 2345static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2346 struct btrfs_delayed_ref_node *node,
2347 struct btrfs_delayed_extent_op *extent_op,
2348 int insert_reserved)
56bec294 2349{
79787eaa
JM
2350 int ret = 0;
2351
857cc2fc
JB
2352 if (trans->aborted) {
2353 if (insert_reserved)
5fac7f9e 2354 btrfs_pin_extent(trans->fs_info, node->bytenr,
857cc2fc 2355 node->num_bytes, 1);
79787eaa 2356 return 0;
857cc2fc 2357 }
79787eaa 2358
5d4f98a2
YZ
2359 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2360 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
f97806f2 2361 ret = run_delayed_tree_ref(trans, node, extent_op,
5d4f98a2
YZ
2362 insert_reserved);
2363 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2364 node->type == BTRFS_SHARED_DATA_REF_KEY)
2bf98ef3 2365 ret = run_delayed_data_ref(trans, node, extent_op,
5d4f98a2
YZ
2366 insert_reserved);
2367 else
2368 BUG();
2369 return ret;
56bec294
CM
2370}
2371
c6fc2454 2372static inline struct btrfs_delayed_ref_node *
56bec294
CM
2373select_delayed_ref(struct btrfs_delayed_ref_head *head)
2374{
cffc3374
FM
2375 struct btrfs_delayed_ref_node *ref;
2376
0e0adbcf 2377 if (RB_EMPTY_ROOT(&head->ref_tree))
c6fc2454 2378 return NULL;
d7df2c79 2379
cffc3374
FM
2380 /*
2381 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2382 * This is to prevent a ref count from going down to zero, which deletes
2383 * the extent item from the extent tree, when there still are references
2384 * to add, which would fail because they would not find the extent item.
2385 */
1d57ee94
WX
2386 if (!list_empty(&head->ref_add_list))
2387 return list_first_entry(&head->ref_add_list,
2388 struct btrfs_delayed_ref_node, add_list);
2389
0e0adbcf
JB
2390 ref = rb_entry(rb_first(&head->ref_tree),
2391 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2392 ASSERT(list_empty(&ref->add_list));
2393 return ref;
56bec294
CM
2394}
2395
2eadaa22
JB
2396static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2397 struct btrfs_delayed_ref_head *head)
2398{
2399 spin_lock(&delayed_refs->lock);
2400 head->processing = 0;
2401 delayed_refs->num_heads_ready++;
2402 spin_unlock(&delayed_refs->lock);
2403 btrfs_delayed_ref_unlock(head);
2404}
2405
b00e6250 2406static int cleanup_extent_op(struct btrfs_trans_handle *trans,
b00e6250
JB
2407 struct btrfs_delayed_ref_head *head)
2408{
2409 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2410 int ret;
2411
2412 if (!extent_op)
2413 return 0;
2414 head->extent_op = NULL;
2415 if (head->must_insert_reserved) {
2416 btrfs_free_delayed_extent_op(extent_op);
2417 return 0;
2418 }
2419 spin_unlock(&head->lock);
20b9a2d6 2420 ret = run_delayed_extent_op(trans, head, extent_op);
b00e6250
JB
2421 btrfs_free_delayed_extent_op(extent_op);
2422 return ret ? ret : 1;
2423}
2424
194ab0bc 2425static int cleanup_ref_head(struct btrfs_trans_handle *trans,
194ab0bc
JB
2426 struct btrfs_delayed_ref_head *head)
2427{
f9871edd
NB
2428
2429 struct btrfs_fs_info *fs_info = trans->fs_info;
194ab0bc
JB
2430 struct btrfs_delayed_ref_root *delayed_refs;
2431 int ret;
2432
2433 delayed_refs = &trans->transaction->delayed_refs;
2434
c4d56d4a 2435 ret = cleanup_extent_op(trans, head);
194ab0bc
JB
2436 if (ret < 0) {
2437 unselect_delayed_ref_head(delayed_refs, head);
2438 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2439 return ret;
2440 } else if (ret) {
2441 return ret;
2442 }
2443
2444 /*
2445 * Need to drop our head ref lock and re-acquire the delayed ref lock
2446 * and then re-check to make sure nobody got added.
2447 */
2448 spin_unlock(&head->lock);
2449 spin_lock(&delayed_refs->lock);
2450 spin_lock(&head->lock);
0e0adbcf 2451 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
194ab0bc
JB
2452 spin_unlock(&head->lock);
2453 spin_unlock(&delayed_refs->lock);
2454 return 1;
2455 }
194ab0bc
JB
2456 delayed_refs->num_heads--;
2457 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 2458 RB_CLEAR_NODE(&head->href_node);
c1103f7a 2459 spin_unlock(&head->lock);
1e7a1421 2460 spin_unlock(&delayed_refs->lock);
c1103f7a
JB
2461 atomic_dec(&delayed_refs->num_entries);
2462
d278850e 2463 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a
JB
2464
2465 if (head->total_ref_mod < 0) {
5e388e95
NB
2466 struct btrfs_space_info *space_info;
2467 u64 flags;
c1103f7a 2468
5e388e95
NB
2469 if (head->is_data)
2470 flags = BTRFS_BLOCK_GROUP_DATA;
2471 else if (head->is_system)
2472 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2473 else
2474 flags = BTRFS_BLOCK_GROUP_METADATA;
2475 space_info = __find_space_info(fs_info, flags);
2476 ASSERT(space_info);
dec59fa3
EL
2477 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2478 -head->num_bytes,
2479 BTRFS_TOTAL_BYTES_PINNED_BATCH);
c1103f7a
JB
2480
2481 if (head->is_data) {
2482 spin_lock(&delayed_refs->lock);
d278850e 2483 delayed_refs->pending_csums -= head->num_bytes;
c1103f7a
JB
2484 spin_unlock(&delayed_refs->lock);
2485 }
2486 }
2487
2488 if (head->must_insert_reserved) {
d278850e
JB
2489 btrfs_pin_extent(fs_info, head->bytenr,
2490 head->num_bytes, 1);
c1103f7a 2491 if (head->is_data) {
d278850e
JB
2492 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2493 head->num_bytes);
c1103f7a
JB
2494 }
2495 }
2496
2497 /* Also free its reserved qgroup space */
2498 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2499 head->qgroup_reserved);
2500 btrfs_delayed_ref_unlock(head);
d278850e 2501 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2502 return 0;
2503}
2504
79787eaa
JM
2505/*
2506 * Returns 0 on success or if called with an already aborted transaction.
2507 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2508 */
d7df2c79 2509static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2510 unsigned long nr)
56bec294 2511{
0a1e458a 2512 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294
CM
2513 struct btrfs_delayed_ref_root *delayed_refs;
2514 struct btrfs_delayed_ref_node *ref;
2515 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2516 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2517 ktime_t start = ktime_get();
56bec294 2518 int ret;
d7df2c79 2519 unsigned long count = 0;
0a2b2a84 2520 unsigned long actual_count = 0;
56bec294 2521 int must_insert_reserved = 0;
56bec294
CM
2522
2523 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2524 while (1) {
2525 if (!locked_ref) {
d7df2c79 2526 if (count >= nr)
56bec294 2527 break;
56bec294 2528
d7df2c79
JB
2529 spin_lock(&delayed_refs->lock);
2530 locked_ref = btrfs_select_ref_head(trans);
2531 if (!locked_ref) {
2532 spin_unlock(&delayed_refs->lock);
2533 break;
2534 }
c3e69d58
CM
2535
2536 /* grab the lock that says we are going to process
2537 * all the refs for this head */
2538 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2539 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2540 /*
2541 * we may have dropped the spin lock to get the head
2542 * mutex lock, and that might have given someone else
2543 * time to free the head. If that's true, it has been
2544 * removed from our list and we can move on.
2545 */
2546 if (ret == -EAGAIN) {
2547 locked_ref = NULL;
2548 count++;
2549 continue;
56bec294
CM
2550 }
2551 }
a28ec197 2552
2c3cf7d5
FM
2553 /*
2554 * We need to try and merge add/drops of the same ref since we
2555 * can run into issues with relocate dropping the implicit ref
2556 * and then it being added back again before the drop can
2557 * finish. If we merged anything we need to re-loop so we can
2558 * get a good ref.
2559 * Or we can get node references of the same type that weren't
2560 * merged when created due to bumps in the tree mod seq, and
2561 * we need to merge them to prevent adding an inline extent
2562 * backref before dropping it (triggering a BUG_ON at
2563 * insert_inline_extent_backref()).
2564 */
d7df2c79 2565 spin_lock(&locked_ref->lock);
be97f133 2566 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
ae1e206b 2567
d1270cd9
AJ
2568 ref = select_delayed_ref(locked_ref);
2569
2570 if (ref && ref->seq &&
41d0bd3b 2571 btrfs_check_delayed_seq(fs_info, ref->seq)) {
d7df2c79 2572 spin_unlock(&locked_ref->lock);
2eadaa22 2573 unselect_delayed_ref_head(delayed_refs, locked_ref);
d7df2c79 2574 locked_ref = NULL;
d1270cd9 2575 cond_resched();
27a377db 2576 count++;
d1270cd9
AJ
2577 continue;
2578 }
2579
c1103f7a
JB
2580 /*
2581 * We're done processing refs in this ref_head, clean everything
2582 * up and move on to the next ref_head.
2583 */
56bec294 2584 if (!ref) {
f9871edd 2585 ret = cleanup_ref_head(trans, locked_ref);
194ab0bc 2586 if (ret > 0 ) {
b00e6250
JB
2587 /* We dropped our lock, we need to loop. */
2588 ret = 0;
d7df2c79 2589 continue;
194ab0bc
JB
2590 } else if (ret) {
2591 return ret;
5d4f98a2 2592 }
c1103f7a
JB
2593 locked_ref = NULL;
2594 count++;
2595 continue;
2596 }
02217ed2 2597
c1103f7a
JB
2598 actual_count++;
2599 ref->in_tree = 0;
0e0adbcf
JB
2600 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2601 RB_CLEAR_NODE(&ref->ref_node);
c1103f7a
JB
2602 if (!list_empty(&ref->add_list))
2603 list_del(&ref->add_list);
2604 /*
2605 * When we play the delayed ref, also correct the ref_mod on
2606 * head
2607 */
2608 switch (ref->action) {
2609 case BTRFS_ADD_DELAYED_REF:
2610 case BTRFS_ADD_DELAYED_EXTENT:
d278850e 2611 locked_ref->ref_mod -= ref->ref_mod;
c1103f7a
JB
2612 break;
2613 case BTRFS_DROP_DELAYED_REF:
d278850e 2614 locked_ref->ref_mod += ref->ref_mod;
c1103f7a
JB
2615 break;
2616 default:
2617 WARN_ON(1);
22cd2e7d 2618 }
1ce7a5ec
JB
2619 atomic_dec(&delayed_refs->num_entries);
2620
b00e6250
JB
2621 /*
2622 * Record the must-insert_reserved flag before we drop the spin
2623 * lock.
2624 */
2625 must_insert_reserved = locked_ref->must_insert_reserved;
2626 locked_ref->must_insert_reserved = 0;
2627
2628 extent_op = locked_ref->extent_op;
2629 locked_ref->extent_op = NULL;
d7df2c79 2630 spin_unlock(&locked_ref->lock);
925baedd 2631
5fac7f9e 2632 ret = run_one_delayed_ref(trans, ref, extent_op,
56bec294 2633 must_insert_reserved);
eb099670 2634
78a6184a 2635 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2636 if (ret) {
2eadaa22 2637 unselect_delayed_ref_head(delayed_refs, locked_ref);
093486c4 2638 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2639 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2640 ret);
79787eaa
JM
2641 return ret;
2642 }
2643
093486c4
MX
2644 btrfs_put_delayed_ref(ref);
2645 count++;
c3e69d58 2646 cond_resched();
c3e69d58 2647 }
0a2b2a84
JB
2648
2649 /*
2650 * We don't want to include ref heads since we can have empty ref heads
2651 * and those will drastically skew our runtime down since we just do
2652 * accounting, no actual extent tree updates.
2653 */
2654 if (actual_count > 0) {
2655 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2656 u64 avg;
2657
2658 /*
2659 * We weigh the current average higher than our current runtime
2660 * to avoid large swings in the average.
2661 */
2662 spin_lock(&delayed_refs->lock);
2663 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2664 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2665 spin_unlock(&delayed_refs->lock);
2666 }
d7df2c79 2667 return 0;
c3e69d58
CM
2668}
2669
709c0486
AJ
2670#ifdef SCRAMBLE_DELAYED_REFS
2671/*
2672 * Normally delayed refs get processed in ascending bytenr order. This
2673 * correlates in most cases to the order added. To expose dependencies on this
2674 * order, we start to process the tree in the middle instead of the beginning
2675 */
2676static u64 find_middle(struct rb_root *root)
2677{
2678 struct rb_node *n = root->rb_node;
2679 struct btrfs_delayed_ref_node *entry;
2680 int alt = 1;
2681 u64 middle;
2682 u64 first = 0, last = 0;
2683
2684 n = rb_first(root);
2685 if (n) {
2686 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2687 first = entry->bytenr;
2688 }
2689 n = rb_last(root);
2690 if (n) {
2691 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2692 last = entry->bytenr;
2693 }
2694 n = root->rb_node;
2695
2696 while (n) {
2697 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2698 WARN_ON(!entry->in_tree);
2699
2700 middle = entry->bytenr;
2701
2702 if (alt)
2703 n = n->rb_left;
2704 else
2705 n = n->rb_right;
2706
2707 alt = 1 - alt;
2708 }
2709 return middle;
2710}
2711#endif
2712
2ff7e61e 2713static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2714{
2715 u64 num_bytes;
2716
2717 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2718 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2719 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2720 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2721
2722 /*
2723 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2724 * closer to what we're really going to want to use.
1be41b78 2725 */
0b246afa 2726 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2727}
2728
1262133b
JB
2729/*
2730 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2731 * would require to store the csums for that many bytes.
2732 */
2ff7e61e 2733u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2734{
2735 u64 csum_size;
2736 u64 num_csums_per_leaf;
2737 u64 num_csums;
2738
0b246afa 2739 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2740 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2741 (u64)btrfs_super_csum_size(fs_info->super_copy));
2742 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2743 num_csums += num_csums_per_leaf - 1;
2744 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2745 return num_csums;
2746}
2747
0a2b2a84 2748int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2749 struct btrfs_fs_info *fs_info)
1be41b78
JB
2750{
2751 struct btrfs_block_rsv *global_rsv;
2752 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2753 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
165c8b02 2754 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
cb723e49 2755 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2756 int ret = 0;
2757
0b246afa 2758 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2759 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2760 if (num_heads > 1)
0b246afa 2761 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2762 num_bytes <<= 1;
2ff7e61e
JM
2763 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2764 fs_info->nodesize;
0b246afa 2765 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2766 num_dirty_bgs);
0b246afa 2767 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2768
2769 /*
2770 * If we can't allocate any more chunks lets make sure we have _lots_ of
2771 * wiggle room since running delayed refs can create more delayed refs.
2772 */
cb723e49
JB
2773 if (global_rsv->space_info->full) {
2774 num_dirty_bgs_bytes <<= 1;
1be41b78 2775 num_bytes <<= 1;
cb723e49 2776 }
1be41b78
JB
2777
2778 spin_lock(&global_rsv->lock);
cb723e49 2779 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2780 ret = 1;
2781 spin_unlock(&global_rsv->lock);
2782 return ret;
2783}
2784
0a2b2a84 2785int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2786 struct btrfs_fs_info *fs_info)
0a2b2a84 2787{
0a2b2a84
JB
2788 u64 num_entries =
2789 atomic_read(&trans->transaction->delayed_refs.num_entries);
2790 u64 avg_runtime;
a79b7d4b 2791 u64 val;
0a2b2a84
JB
2792
2793 smp_mb();
2794 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2795 val = num_entries * avg_runtime;
dc1a90c6 2796 if (val >= NSEC_PER_SEC)
0a2b2a84 2797 return 1;
a79b7d4b
CM
2798 if (val >= NSEC_PER_SEC / 2)
2799 return 2;
0a2b2a84 2800
2ff7e61e 2801 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2802}
2803
a79b7d4b
CM
2804struct async_delayed_refs {
2805 struct btrfs_root *root;
31b9655f 2806 u64 transid;
a79b7d4b
CM
2807 int count;
2808 int error;
2809 int sync;
2810 struct completion wait;
2811 struct btrfs_work work;
2812};
2813
2ff7e61e
JM
2814static inline struct async_delayed_refs *
2815to_async_delayed_refs(struct btrfs_work *work)
2816{
2817 return container_of(work, struct async_delayed_refs, work);
2818}
2819
a79b7d4b
CM
2820static void delayed_ref_async_start(struct btrfs_work *work)
2821{
2ff7e61e 2822 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2823 struct btrfs_trans_handle *trans;
2ff7e61e 2824 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2825 int ret;
2826
0f873eca 2827 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2828 if (btrfs_transaction_blocked(fs_info))
31b9655f 2829 goto done;
31b9655f 2830
0f873eca
CM
2831 trans = btrfs_join_transaction(async->root);
2832 if (IS_ERR(trans)) {
2833 async->error = PTR_ERR(trans);
a79b7d4b
CM
2834 goto done;
2835 }
2836
2837 /*
01327610 2838 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2839 * wait on delayed refs
2840 */
2841 trans->sync = true;
0f873eca
CM
2842
2843 /* Don't bother flushing if we got into a different transaction */
2844 if (trans->transid > async->transid)
2845 goto end;
2846
c79a70b1 2847 ret = btrfs_run_delayed_refs(trans, async->count);
a79b7d4b
CM
2848 if (ret)
2849 async->error = ret;
0f873eca 2850end:
3a45bb20 2851 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2852 if (ret && !async->error)
2853 async->error = ret;
2854done:
2855 if (async->sync)
2856 complete(&async->wait);
2857 else
2858 kfree(async);
2859}
2860
2ff7e61e 2861int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2862 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2863{
2864 struct async_delayed_refs *async;
2865 int ret;
2866
2867 async = kmalloc(sizeof(*async), GFP_NOFS);
2868 if (!async)
2869 return -ENOMEM;
2870
0b246afa 2871 async->root = fs_info->tree_root;
a79b7d4b
CM
2872 async->count = count;
2873 async->error = 0;
31b9655f 2874 async->transid = transid;
a79b7d4b
CM
2875 if (wait)
2876 async->sync = 1;
2877 else
2878 async->sync = 0;
2879 init_completion(&async->wait);
2880
9e0af237
LB
2881 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2882 delayed_ref_async_start, NULL, NULL);
a79b7d4b 2883
0b246afa 2884 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
2885
2886 if (wait) {
2887 wait_for_completion(&async->wait);
2888 ret = async->error;
2889 kfree(async);
2890 return ret;
2891 }
2892 return 0;
2893}
2894
c3e69d58
CM
2895/*
2896 * this starts processing the delayed reference count updates and
2897 * extent insertions we have queued up so far. count can be
2898 * 0, which means to process everything in the tree at the start
2899 * of the run (but not newly added entries), or it can be some target
2900 * number you'd like to process.
79787eaa
JM
2901 *
2902 * Returns 0 on success or if called with an aborted transaction
2903 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2904 */
2905int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 2906 unsigned long count)
c3e69d58 2907{
c79a70b1 2908 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
2909 struct rb_node *node;
2910 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2911 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2912 int ret;
2913 int run_all = count == (unsigned long)-1;
d9a0540a 2914 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2915
79787eaa
JM
2916 /* We'll clean this up in btrfs_cleanup_transaction */
2917 if (trans->aborted)
2918 return 0;
2919
0b246afa 2920 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2921 return 0;
2922
c3e69d58 2923 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2924 if (count == 0)
d7df2c79 2925 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2926
c3e69d58 2927again:
709c0486
AJ
2928#ifdef SCRAMBLE_DELAYED_REFS
2929 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2930#endif
d9a0540a 2931 trans->can_flush_pending_bgs = false;
0a1e458a 2932 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 2933 if (ret < 0) {
66642832 2934 btrfs_abort_transaction(trans, ret);
d7df2c79 2935 return ret;
eb099670 2936 }
c3e69d58 2937
56bec294 2938 if (run_all) {
d7df2c79 2939 if (!list_empty(&trans->new_bgs))
6c686b35 2940 btrfs_create_pending_block_groups(trans);
ea658bad 2941
d7df2c79 2942 spin_lock(&delayed_refs->lock);
c46effa6 2943 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2944 if (!node) {
2945 spin_unlock(&delayed_refs->lock);
56bec294 2946 goto out;
d7df2c79 2947 }
d278850e
JB
2948 head = rb_entry(node, struct btrfs_delayed_ref_head,
2949 href_node);
2950 refcount_inc(&head->refs);
2951 spin_unlock(&delayed_refs->lock);
e9d0b13b 2952
d278850e
JB
2953 /* Mutex was contended, block until it's released and retry. */
2954 mutex_lock(&head->mutex);
2955 mutex_unlock(&head->mutex);
56bec294 2956
d278850e 2957 btrfs_put_delayed_ref_head(head);
d7df2c79 2958 cond_resched();
56bec294 2959 goto again;
5f39d397 2960 }
54aa1f4d 2961out:
d9a0540a 2962 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
2963 return 0;
2964}
2965
5d4f98a2 2966int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 2967 struct btrfs_fs_info *fs_info,
5d4f98a2 2968 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2969 int level, int is_data)
5d4f98a2
YZ
2970{
2971 struct btrfs_delayed_extent_op *extent_op;
2972 int ret;
2973
78a6184a 2974 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2975 if (!extent_op)
2976 return -ENOMEM;
2977
2978 extent_op->flags_to_set = flags;
35b3ad50
DS
2979 extent_op->update_flags = true;
2980 extent_op->update_key = false;
2981 extent_op->is_data = is_data ? true : false;
b1c79e09 2982 extent_op->level = level;
5d4f98a2 2983
0b246afa 2984 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 2985 num_bytes, extent_op);
5d4f98a2 2986 if (ret)
78a6184a 2987 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2988 return ret;
2989}
2990
e4c3b2dc 2991static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
2992 struct btrfs_path *path,
2993 u64 objectid, u64 offset, u64 bytenr)
2994{
2995 struct btrfs_delayed_ref_head *head;
2996 struct btrfs_delayed_ref_node *ref;
2997 struct btrfs_delayed_data_ref *data_ref;
2998 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 2999 struct btrfs_transaction *cur_trans;
0e0adbcf 3000 struct rb_node *node;
5d4f98a2
YZ
3001 int ret = 0;
3002
998ac6d2 3003 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 3004 cur_trans = root->fs_info->running_transaction;
998ac6d2 3005 if (cur_trans)
3006 refcount_inc(&cur_trans->use_count);
3007 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
3008 if (!cur_trans)
3009 return 0;
3010
3011 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3012 spin_lock(&delayed_refs->lock);
f72ad18e 3013 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3014 if (!head) {
3015 spin_unlock(&delayed_refs->lock);
998ac6d2 3016 btrfs_put_transaction(cur_trans);
d7df2c79
JB
3017 return 0;
3018 }
5d4f98a2
YZ
3019
3020 if (!mutex_trylock(&head->mutex)) {
d278850e 3021 refcount_inc(&head->refs);
5d4f98a2
YZ
3022 spin_unlock(&delayed_refs->lock);
3023
b3b4aa74 3024 btrfs_release_path(path);
5d4f98a2 3025
8cc33e5c
DS
3026 /*
3027 * Mutex was contended, block until it's released and let
3028 * caller try again
3029 */
5d4f98a2
YZ
3030 mutex_lock(&head->mutex);
3031 mutex_unlock(&head->mutex);
d278850e 3032 btrfs_put_delayed_ref_head(head);
998ac6d2 3033 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3034 return -EAGAIN;
3035 }
d7df2c79 3036 spin_unlock(&delayed_refs->lock);
5d4f98a2 3037
d7df2c79 3038 spin_lock(&head->lock);
0e0adbcf
JB
3039 /*
3040 * XXX: We should replace this with a proper search function in the
3041 * future.
3042 */
3043 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3044 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3045 /* If it's a shared ref we know a cross reference exists */
3046 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3047 ret = 1;
3048 break;
3049 }
5d4f98a2 3050
d7df2c79 3051 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3052
d7df2c79
JB
3053 /*
3054 * If our ref doesn't match the one we're currently looking at
3055 * then we have a cross reference.
3056 */
3057 if (data_ref->root != root->root_key.objectid ||
3058 data_ref->objectid != objectid ||
3059 data_ref->offset != offset) {
3060 ret = 1;
3061 break;
3062 }
5d4f98a2 3063 }
d7df2c79 3064 spin_unlock(&head->lock);
5d4f98a2 3065 mutex_unlock(&head->mutex);
998ac6d2 3066 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3067 return ret;
3068}
3069
e4c3b2dc 3070static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3071 struct btrfs_path *path,
3072 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3073{
0b246afa
JM
3074 struct btrfs_fs_info *fs_info = root->fs_info;
3075 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3076 struct extent_buffer *leaf;
5d4f98a2
YZ
3077 struct btrfs_extent_data_ref *ref;
3078 struct btrfs_extent_inline_ref *iref;
3079 struct btrfs_extent_item *ei;
f321e491 3080 struct btrfs_key key;
5d4f98a2 3081 u32 item_size;
3de28d57 3082 int type;
be20aa9d 3083 int ret;
925baedd 3084
be20aa9d 3085 key.objectid = bytenr;
31840ae1 3086 key.offset = (u64)-1;
f321e491 3087 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3088
be20aa9d
CM
3089 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3090 if (ret < 0)
3091 goto out;
79787eaa 3092 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3093
3094 ret = -ENOENT;
3095 if (path->slots[0] == 0)
31840ae1 3096 goto out;
be20aa9d 3097
31840ae1 3098 path->slots[0]--;
f321e491 3099 leaf = path->nodes[0];
5d4f98a2 3100 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3101
5d4f98a2 3102 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3103 goto out;
f321e491 3104
5d4f98a2
YZ
3105 ret = 1;
3106 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5d4f98a2 3107 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3108
5d4f98a2
YZ
3109 if (item_size != sizeof(*ei) +
3110 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3111 goto out;
be20aa9d 3112
5d4f98a2
YZ
3113 if (btrfs_extent_generation(leaf, ei) <=
3114 btrfs_root_last_snapshot(&root->root_item))
3115 goto out;
3116
3117 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3118
3119 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3120 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3121 goto out;
3122
3123 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3124 if (btrfs_extent_refs(leaf, ei) !=
3125 btrfs_extent_data_ref_count(leaf, ref) ||
3126 btrfs_extent_data_ref_root(leaf, ref) !=
3127 root->root_key.objectid ||
3128 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3129 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3130 goto out;
3131
3132 ret = 0;
3133out:
3134 return ret;
3135}
3136
e4c3b2dc
LB
3137int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3138 u64 bytenr)
5d4f98a2
YZ
3139{
3140 struct btrfs_path *path;
3141 int ret;
5d4f98a2
YZ
3142
3143 path = btrfs_alloc_path();
3144 if (!path)
9132c4ff 3145 return -ENOMEM;
5d4f98a2
YZ
3146
3147 do {
e4c3b2dc 3148 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3149 offset, bytenr);
3150 if (ret && ret != -ENOENT)
f321e491 3151 goto out;
80ff3856 3152
380fd066
MT
3153 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3154 } while (ret == -EAGAIN);
5d4f98a2 3155
be20aa9d 3156out:
80ff3856 3157 btrfs_free_path(path);
f0486c68
YZ
3158 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3159 WARN_ON(ret > 0);
f321e491 3160 return ret;
be20aa9d 3161}
c5739bba 3162
5d4f98a2 3163static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3164 struct btrfs_root *root,
5d4f98a2 3165 struct extent_buffer *buf,
e339a6b0 3166 int full_backref, int inc)
31840ae1 3167{
0b246afa 3168 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3169 u64 bytenr;
5d4f98a2
YZ
3170 u64 num_bytes;
3171 u64 parent;
31840ae1 3172 u64 ref_root;
31840ae1 3173 u32 nritems;
31840ae1
ZY
3174 struct btrfs_key key;
3175 struct btrfs_file_extent_item *fi;
3176 int i;
3177 int level;
3178 int ret = 0;
2ff7e61e 3179 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3180 struct btrfs_root *,
b06c4bf5 3181 u64, u64, u64, u64, u64, u64);
31840ae1 3182
fccb84c9 3183
0b246afa 3184 if (btrfs_is_testing(fs_info))
faa2dbf0 3185 return 0;
fccb84c9 3186
31840ae1 3187 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3188 nritems = btrfs_header_nritems(buf);
3189 level = btrfs_header_level(buf);
3190
27cdeb70 3191 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3192 return 0;
31840ae1 3193
5d4f98a2
YZ
3194 if (inc)
3195 process_func = btrfs_inc_extent_ref;
3196 else
3197 process_func = btrfs_free_extent;
31840ae1 3198
5d4f98a2
YZ
3199 if (full_backref)
3200 parent = buf->start;
3201 else
3202 parent = 0;
3203
3204 for (i = 0; i < nritems; i++) {
31840ae1 3205 if (level == 0) {
5d4f98a2 3206 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3207 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3208 continue;
5d4f98a2 3209 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3210 struct btrfs_file_extent_item);
3211 if (btrfs_file_extent_type(buf, fi) ==
3212 BTRFS_FILE_EXTENT_INLINE)
3213 continue;
3214 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3215 if (bytenr == 0)
3216 continue;
5d4f98a2
YZ
3217
3218 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3219 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3220 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3221 parent, ref_root, key.objectid,
b06c4bf5 3222 key.offset);
31840ae1
ZY
3223 if (ret)
3224 goto fail;
3225 } else {
5d4f98a2 3226 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3227 num_bytes = fs_info->nodesize;
84f7d8e6 3228 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3229 parent, ref_root, level - 1, 0);
31840ae1
ZY
3230 if (ret)
3231 goto fail;
3232 }
3233 }
3234 return 0;
3235fail:
5d4f98a2
YZ
3236 return ret;
3237}
3238
3239int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3240 struct extent_buffer *buf, int full_backref)
5d4f98a2 3241{
e339a6b0 3242 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3243}
3244
3245int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3246 struct extent_buffer *buf, int full_backref)
5d4f98a2 3247{
e339a6b0 3248 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3249}
3250
9078a3e1 3251static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3252 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3253 struct btrfs_path *path,
3254 struct btrfs_block_group_cache *cache)
3255{
3256 int ret;
0b246afa 3257 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3258 unsigned long bi;
3259 struct extent_buffer *leaf;
9078a3e1 3260
9078a3e1 3261 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3262 if (ret) {
3263 if (ret > 0)
3264 ret = -ENOENT;
54aa1f4d 3265 goto fail;
df95e7f0 3266 }
5f39d397
CM
3267
3268 leaf = path->nodes[0];
3269 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3270 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3271 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3272fail:
24b89d08 3273 btrfs_release_path(path);
df95e7f0 3274 return ret;
9078a3e1
CM
3275
3276}
3277
4a8c9a62 3278static struct btrfs_block_group_cache *
2ff7e61e 3279next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3280 struct btrfs_block_group_cache *cache)
3281{
3282 struct rb_node *node;
292cbd51 3283
0b246afa 3284 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3285
3286 /* If our block group was removed, we need a full search. */
3287 if (RB_EMPTY_NODE(&cache->cache_node)) {
3288 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3289
0b246afa 3290 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3291 btrfs_put_block_group(cache);
0b246afa 3292 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3293 }
4a8c9a62
YZ
3294 node = rb_next(&cache->cache_node);
3295 btrfs_put_block_group(cache);
3296 if (node) {
3297 cache = rb_entry(node, struct btrfs_block_group_cache,
3298 cache_node);
11dfe35a 3299 btrfs_get_block_group(cache);
4a8c9a62
YZ
3300 } else
3301 cache = NULL;
0b246afa 3302 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3303 return cache;
3304}
3305
0af3d00b
JB
3306static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3307 struct btrfs_trans_handle *trans,
3308 struct btrfs_path *path)
3309{
0b246afa
JM
3310 struct btrfs_fs_info *fs_info = block_group->fs_info;
3311 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3312 struct inode *inode = NULL;
364ecf36 3313 struct extent_changeset *data_reserved = NULL;
0af3d00b 3314 u64 alloc_hint = 0;
2b20982e 3315 int dcs = BTRFS_DC_ERROR;
f8c269d7 3316 u64 num_pages = 0;
0af3d00b
JB
3317 int retries = 0;
3318 int ret = 0;
3319
3320 /*
3321 * If this block group is smaller than 100 megs don't bother caching the
3322 * block group.
3323 */
ee22184b 3324 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3325 spin_lock(&block_group->lock);
3326 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3327 spin_unlock(&block_group->lock);
3328 return 0;
3329 }
3330
0c0ef4bc
JB
3331 if (trans->aborted)
3332 return 0;
0af3d00b 3333again:
77ab86bf 3334 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3335 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3336 ret = PTR_ERR(inode);
b3b4aa74 3337 btrfs_release_path(path);
0af3d00b
JB
3338 goto out;
3339 }
3340
3341 if (IS_ERR(inode)) {
3342 BUG_ON(retries);
3343 retries++;
3344
3345 if (block_group->ro)
3346 goto out_free;
3347
77ab86bf
JM
3348 ret = create_free_space_inode(fs_info, trans, block_group,
3349 path);
0af3d00b
JB
3350 if (ret)
3351 goto out_free;
3352 goto again;
3353 }
3354
3355 /*
3356 * We want to set the generation to 0, that way if anything goes wrong
3357 * from here on out we know not to trust this cache when we load up next
3358 * time.
3359 */
3360 BTRFS_I(inode)->generation = 0;
3361 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3362 if (ret) {
3363 /*
3364 * So theoretically we could recover from this, simply set the
3365 * super cache generation to 0 so we know to invalidate the
3366 * cache, but then we'd have to keep track of the block groups
3367 * that fail this way so we know we _have_ to reset this cache
3368 * before the next commit or risk reading stale cache. So to
3369 * limit our exposure to horrible edge cases lets just abort the
3370 * transaction, this only happens in really bad situations
3371 * anyway.
3372 */
66642832 3373 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3374 goto out_put;
3375 }
0af3d00b
JB
3376 WARN_ON(ret);
3377
8e138e0d
JB
3378 /* We've already setup this transaction, go ahead and exit */
3379 if (block_group->cache_generation == trans->transid &&
3380 i_size_read(inode)) {
3381 dcs = BTRFS_DC_SETUP;
3382 goto out_put;
3383 }
3384
0af3d00b 3385 if (i_size_read(inode) > 0) {
2ff7e61e 3386 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3387 &fs_info->global_block_rsv);
7b61cd92
MX
3388 if (ret)
3389 goto out_put;
3390
77ab86bf 3391 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3392 if (ret)
3393 goto out_put;
3394 }
3395
3396 spin_lock(&block_group->lock);
cf7c1ef6 3397 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3398 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3399 /*
3400 * don't bother trying to write stuff out _if_
3401 * a) we're not cached,
1a79c1f2
LB
3402 * b) we're with nospace_cache mount option,
3403 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3404 */
2b20982e 3405 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3406 spin_unlock(&block_group->lock);
3407 goto out_put;
3408 }
3409 spin_unlock(&block_group->lock);
3410
2968b1f4
JB
3411 /*
3412 * We hit an ENOSPC when setting up the cache in this transaction, just
3413 * skip doing the setup, we've already cleared the cache so we're safe.
3414 */
3415 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3416 ret = -ENOSPC;
3417 goto out_put;
3418 }
3419
6fc823b1
JB
3420 /*
3421 * Try to preallocate enough space based on how big the block group is.
3422 * Keep in mind this has to include any pinned space which could end up
3423 * taking up quite a bit since it's not folded into the other space
3424 * cache.
3425 */
ee22184b 3426 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3427 if (!num_pages)
3428 num_pages = 1;
3429
0af3d00b 3430 num_pages *= 16;
09cbfeaf 3431 num_pages *= PAGE_SIZE;
0af3d00b 3432
364ecf36 3433 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3434 if (ret)
3435 goto out_put;
3436
3437 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3438 num_pages, num_pages,
3439 &alloc_hint);
2968b1f4
JB
3440 /*
3441 * Our cache requires contiguous chunks so that we don't modify a bunch
3442 * of metadata or split extents when writing the cache out, which means
3443 * we can enospc if we are heavily fragmented in addition to just normal
3444 * out of space conditions. So if we hit this just skip setting up any
3445 * other block groups for this transaction, maybe we'll unpin enough
3446 * space the next time around.
3447 */
2b20982e
JB
3448 if (!ret)
3449 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3450 else if (ret == -ENOSPC)
3451 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3452
0af3d00b
JB
3453out_put:
3454 iput(inode);
3455out_free:
b3b4aa74 3456 btrfs_release_path(path);
0af3d00b
JB
3457out:
3458 spin_lock(&block_group->lock);
e65cbb94 3459 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3460 block_group->cache_generation = trans->transid;
2b20982e 3461 block_group->disk_cache_state = dcs;
0af3d00b
JB
3462 spin_unlock(&block_group->lock);
3463
364ecf36 3464 extent_changeset_free(data_reserved);
0af3d00b
JB
3465 return ret;
3466}
3467
dcdf7f6d 3468int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3469 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3470{
3471 struct btrfs_block_group_cache *cache, *tmp;
3472 struct btrfs_transaction *cur_trans = trans->transaction;
3473 struct btrfs_path *path;
3474
3475 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3476 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3477 return 0;
3478
3479 path = btrfs_alloc_path();
3480 if (!path)
3481 return -ENOMEM;
3482
3483 /* Could add new block groups, use _safe just in case */
3484 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3485 dirty_list) {
3486 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3487 cache_save_setup(cache, trans, path);
3488 }
3489
3490 btrfs_free_path(path);
3491 return 0;
3492}
3493
1bbc621e
CM
3494/*
3495 * transaction commit does final block group cache writeback during a
3496 * critical section where nothing is allowed to change the FS. This is
3497 * required in order for the cache to actually match the block group,
3498 * but can introduce a lot of latency into the commit.
3499 *
3500 * So, btrfs_start_dirty_block_groups is here to kick off block group
3501 * cache IO. There's a chance we'll have to redo some of it if the
3502 * block group changes again during the commit, but it greatly reduces
3503 * the commit latency by getting rid of the easy block groups while
3504 * we're still allowing others to join the commit.
3505 */
21217054 3506int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3507{
21217054 3508 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3509 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3510 struct btrfs_transaction *cur_trans = trans->transaction;
3511 int ret = 0;
c9dc4c65 3512 int should_put;
1bbc621e
CM
3513 struct btrfs_path *path = NULL;
3514 LIST_HEAD(dirty);
3515 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3516 int num_started = 0;
1bbc621e
CM
3517 int loops = 0;
3518
3519 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3520 if (list_empty(&cur_trans->dirty_bgs)) {
3521 spin_unlock(&cur_trans->dirty_bgs_lock);
3522 return 0;
1bbc621e 3523 }
b58d1a9e 3524 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3525 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3526
1bbc621e 3527again:
1bbc621e
CM
3528 /*
3529 * make sure all the block groups on our dirty list actually
3530 * exist
3531 */
6c686b35 3532 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3533
3534 if (!path) {
3535 path = btrfs_alloc_path();
3536 if (!path)
3537 return -ENOMEM;
3538 }
3539
b58d1a9e
FM
3540 /*
3541 * cache_write_mutex is here only to save us from balance or automatic
3542 * removal of empty block groups deleting this block group while we are
3543 * writing out the cache
3544 */
3545 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3546 while (!list_empty(&dirty)) {
3547 cache = list_first_entry(&dirty,
3548 struct btrfs_block_group_cache,
3549 dirty_list);
1bbc621e
CM
3550 /*
3551 * this can happen if something re-dirties a block
3552 * group that is already under IO. Just wait for it to
3553 * finish and then do it all again
3554 */
3555 if (!list_empty(&cache->io_list)) {
3556 list_del_init(&cache->io_list);
afdb5718 3557 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3558 btrfs_put_block_group(cache);
3559 }
3560
3561
3562 /*
3563 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3564 * if it should update the cache_state. Don't delete
3565 * until after we wait.
3566 *
3567 * Since we're not running in the commit critical section
3568 * we need the dirty_bgs_lock to protect from update_block_group
3569 */
3570 spin_lock(&cur_trans->dirty_bgs_lock);
3571 list_del_init(&cache->dirty_list);
3572 spin_unlock(&cur_trans->dirty_bgs_lock);
3573
3574 should_put = 1;
3575
3576 cache_save_setup(cache, trans, path);
3577
3578 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3579 cache->io_ctl.inode = NULL;
0b246afa 3580 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3581 cache, path);
1bbc621e
CM
3582 if (ret == 0 && cache->io_ctl.inode) {
3583 num_started++;
3584 should_put = 0;
3585
3586 /*
45ae2c18
NB
3587 * The cache_write_mutex is protecting the
3588 * io_list, also refer to the definition of
3589 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3590 */
3591 list_add_tail(&cache->io_list, io);
3592 } else {
3593 /*
3594 * if we failed to write the cache, the
3595 * generation will be bad and life goes on
3596 */
3597 ret = 0;
3598 }
3599 }
ff1f8250 3600 if (!ret) {
2ff7e61e
JM
3601 ret = write_one_cache_group(trans, fs_info,
3602 path, cache);
ff1f8250
FM
3603 /*
3604 * Our block group might still be attached to the list
3605 * of new block groups in the transaction handle of some
3606 * other task (struct btrfs_trans_handle->new_bgs). This
3607 * means its block group item isn't yet in the extent
3608 * tree. If this happens ignore the error, as we will
3609 * try again later in the critical section of the
3610 * transaction commit.
3611 */
3612 if (ret == -ENOENT) {
3613 ret = 0;
3614 spin_lock(&cur_trans->dirty_bgs_lock);
3615 if (list_empty(&cache->dirty_list)) {
3616 list_add_tail(&cache->dirty_list,
3617 &cur_trans->dirty_bgs);
3618 btrfs_get_block_group(cache);
3619 }
3620 spin_unlock(&cur_trans->dirty_bgs_lock);
3621 } else if (ret) {
66642832 3622 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3623 }
3624 }
1bbc621e
CM
3625
3626 /* if its not on the io list, we need to put the block group */
3627 if (should_put)
3628 btrfs_put_block_group(cache);
3629
3630 if (ret)
3631 break;
b58d1a9e
FM
3632
3633 /*
3634 * Avoid blocking other tasks for too long. It might even save
3635 * us from writing caches for block groups that are going to be
3636 * removed.
3637 */
3638 mutex_unlock(&trans->transaction->cache_write_mutex);
3639 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3640 }
b58d1a9e 3641 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3642
3643 /*
3644 * go through delayed refs for all the stuff we've just kicked off
3645 * and then loop back (just once)
3646 */
c79a70b1 3647 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3648 if (!ret && loops == 0) {
3649 loops++;
3650 spin_lock(&cur_trans->dirty_bgs_lock);
3651 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3652 /*
3653 * dirty_bgs_lock protects us from concurrent block group
3654 * deletes too (not just cache_write_mutex).
3655 */
3656 if (!list_empty(&dirty)) {
3657 spin_unlock(&cur_trans->dirty_bgs_lock);
3658 goto again;
3659 }
1bbc621e 3660 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3661 } else if (ret < 0) {
2ff7e61e 3662 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3663 }
3664
3665 btrfs_free_path(path);
3666 return ret;
3667}
3668
3669int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3670 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3671{
3672 struct btrfs_block_group_cache *cache;
3673 struct btrfs_transaction *cur_trans = trans->transaction;
3674 int ret = 0;
3675 int should_put;
3676 struct btrfs_path *path;
3677 struct list_head *io = &cur_trans->io_bgs;
3678 int num_started = 0;
9078a3e1
CM
3679
3680 path = btrfs_alloc_path();
3681 if (!path)
3682 return -ENOMEM;
3683
ce93ec54 3684 /*
e44081ef
FM
3685 * Even though we are in the critical section of the transaction commit,
3686 * we can still have concurrent tasks adding elements to this
3687 * transaction's list of dirty block groups. These tasks correspond to
3688 * endio free space workers started when writeback finishes for a
3689 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3690 * allocate new block groups as a result of COWing nodes of the root
3691 * tree when updating the free space inode. The writeback for the space
3692 * caches is triggered by an earlier call to
3693 * btrfs_start_dirty_block_groups() and iterations of the following
3694 * loop.
3695 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3696 * delayed refs to make sure we have the best chance at doing this all
3697 * in one shot.
3698 */
e44081ef 3699 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3700 while (!list_empty(&cur_trans->dirty_bgs)) {
3701 cache = list_first_entry(&cur_trans->dirty_bgs,
3702 struct btrfs_block_group_cache,
3703 dirty_list);
c9dc4c65
CM
3704
3705 /*
3706 * this can happen if cache_save_setup re-dirties a block
3707 * group that is already under IO. Just wait for it to
3708 * finish and then do it all again
3709 */
3710 if (!list_empty(&cache->io_list)) {
e44081ef 3711 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3712 list_del_init(&cache->io_list);
afdb5718 3713 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3714 btrfs_put_block_group(cache);
e44081ef 3715 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3716 }
3717
1bbc621e
CM
3718 /*
3719 * don't remove from the dirty list until after we've waited
3720 * on any pending IO
3721 */
ce93ec54 3722 list_del_init(&cache->dirty_list);
e44081ef 3723 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3724 should_put = 1;
3725
1bbc621e 3726 cache_save_setup(cache, trans, path);
c9dc4c65 3727
ce93ec54 3728 if (!ret)
c79a70b1 3729 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3730 (unsigned long) -1);
c9dc4c65
CM
3731
3732 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3733 cache->io_ctl.inode = NULL;
0b246afa 3734 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3735 cache, path);
c9dc4c65
CM
3736 if (ret == 0 && cache->io_ctl.inode) {
3737 num_started++;
3738 should_put = 0;
1bbc621e 3739 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3740 } else {
3741 /*
3742 * if we failed to write the cache, the
3743 * generation will be bad and life goes on
3744 */
3745 ret = 0;
3746 }
3747 }
ff1f8250 3748 if (!ret) {
2ff7e61e
JM
3749 ret = write_one_cache_group(trans, fs_info,
3750 path, cache);
2bc0bb5f
FM
3751 /*
3752 * One of the free space endio workers might have
3753 * created a new block group while updating a free space
3754 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3755 * and hasn't released its transaction handle yet, in
3756 * which case the new block group is still attached to
3757 * its transaction handle and its creation has not
3758 * finished yet (no block group item in the extent tree
3759 * yet, etc). If this is the case, wait for all free
3760 * space endio workers to finish and retry. This is a
3761 * a very rare case so no need for a more efficient and
3762 * complex approach.
3763 */
3764 if (ret == -ENOENT) {
3765 wait_event(cur_trans->writer_wait,
3766 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3767 ret = write_one_cache_group(trans, fs_info,
3768 path, cache);
2bc0bb5f 3769 }
ff1f8250 3770 if (ret)
66642832 3771 btrfs_abort_transaction(trans, ret);
ff1f8250 3772 }
c9dc4c65
CM
3773
3774 /* if its not on the io list, we need to put the block group */
3775 if (should_put)
3776 btrfs_put_block_group(cache);
e44081ef 3777 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3778 }
e44081ef 3779 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3780
45ae2c18
NB
3781 /*
3782 * Refer to the definition of io_bgs member for details why it's safe
3783 * to use it without any locking
3784 */
1bbc621e
CM
3785 while (!list_empty(io)) {
3786 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3787 io_list);
3788 list_del_init(&cache->io_list);
afdb5718 3789 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3790 btrfs_put_block_group(cache);
3791 }
3792
9078a3e1 3793 btrfs_free_path(path);
ce93ec54 3794 return ret;
9078a3e1
CM
3795}
3796
2ff7e61e 3797int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3798{
3799 struct btrfs_block_group_cache *block_group;
3800 int readonly = 0;
3801
0b246afa 3802 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3803 if (!block_group || block_group->ro)
3804 readonly = 1;
3805 if (block_group)
fa9c0d79 3806 btrfs_put_block_group(block_group);
d2fb3437
YZ
3807 return readonly;
3808}
3809
f78c436c
FM
3810bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3811{
3812 struct btrfs_block_group_cache *bg;
3813 bool ret = true;
3814
3815 bg = btrfs_lookup_block_group(fs_info, bytenr);
3816 if (!bg)
3817 return false;
3818
3819 spin_lock(&bg->lock);
3820 if (bg->ro)
3821 ret = false;
3822 else
3823 atomic_inc(&bg->nocow_writers);
3824 spin_unlock(&bg->lock);
3825
3826 /* no put on block group, done by btrfs_dec_nocow_writers */
3827 if (!ret)
3828 btrfs_put_block_group(bg);
3829
3830 return ret;
3831
3832}
3833
3834void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3835{
3836 struct btrfs_block_group_cache *bg;
3837
3838 bg = btrfs_lookup_block_group(fs_info, bytenr);
3839 ASSERT(bg);
3840 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 3841 wake_up_var(&bg->nocow_writers);
f78c436c
FM
3842 /*
3843 * Once for our lookup and once for the lookup done by a previous call
3844 * to btrfs_inc_nocow_writers()
3845 */
3846 btrfs_put_block_group(bg);
3847 btrfs_put_block_group(bg);
3848}
3849
f78c436c
FM
3850void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3851{
4625956a 3852 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
3853}
3854
6ab0a202
JM
3855static const char *alloc_name(u64 flags)
3856{
3857 switch (flags) {
3858 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3859 return "mixed";
3860 case BTRFS_BLOCK_GROUP_METADATA:
3861 return "metadata";
3862 case BTRFS_BLOCK_GROUP_DATA:
3863 return "data";
3864 case BTRFS_BLOCK_GROUP_SYSTEM:
3865 return "system";
3866 default:
3867 WARN_ON(1);
3868 return "invalid-combination";
3869 };
3870}
3871
4ca61683 3872static int create_space_info(struct btrfs_fs_info *info, u64 flags)
2be12ef7
NB
3873{
3874
3875 struct btrfs_space_info *space_info;
3876 int i;
3877 int ret;
3878
3879 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3880 if (!space_info)
3881 return -ENOMEM;
3882
3883 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3884 GFP_KERNEL);
3885 if (ret) {
3886 kfree(space_info);
3887 return ret;
3888 }
3889
3890 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3891 INIT_LIST_HEAD(&space_info->block_groups[i]);
3892 init_rwsem(&space_info->groups_sem);
3893 spin_lock_init(&space_info->lock);
3894 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3895 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3896 init_waitqueue_head(&space_info->wait);
3897 INIT_LIST_HEAD(&space_info->ro_bgs);
3898 INIT_LIST_HEAD(&space_info->tickets);
3899 INIT_LIST_HEAD(&space_info->priority_tickets);
3900
3901 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3902 info->space_info_kobj, "%s",
3903 alloc_name(space_info->flags));
3904 if (ret) {
3905 percpu_counter_destroy(&space_info->total_bytes_pinned);
3906 kfree(space_info);
3907 return ret;
3908 }
3909
2be12ef7
NB
3910 list_add_rcu(&space_info->list, &info->space_info);
3911 if (flags & BTRFS_BLOCK_GROUP_DATA)
3912 info->data_sinfo = space_info;
3913
3914 return ret;
3915}
3916
d2006e6d 3917static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 3918 u64 total_bytes, u64 bytes_used,
e40edf2d 3919 u64 bytes_readonly,
593060d7
CM
3920 struct btrfs_space_info **space_info)
3921{
3922 struct btrfs_space_info *found;
b742bb82
YZ
3923 int factor;
3924
46df06b8 3925 factor = btrfs_bg_type_to_factor(flags);
593060d7
CM
3926
3927 found = __find_space_info(info, flags);
d2006e6d
NB
3928 ASSERT(found);
3929 spin_lock(&found->lock);
3930 found->total_bytes += total_bytes;
3931 found->disk_total += total_bytes * factor;
3932 found->bytes_used += bytes_used;
3933 found->disk_used += bytes_used * factor;
3934 found->bytes_readonly += bytes_readonly;
3935 if (total_bytes > 0)
3936 found->full = 0;
3937 space_info_add_new_bytes(info, found, total_bytes -
3938 bytes_used - bytes_readonly);
3939 spin_unlock(&found->lock);
3940 *space_info = found;
593060d7
CM
3941}
3942
8790d502
CM
3943static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3944{
899c81ea
ID
3945 u64 extra_flags = chunk_to_extended(flags) &
3946 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3947
de98ced9 3948 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3949 if (flags & BTRFS_BLOCK_GROUP_DATA)
3950 fs_info->avail_data_alloc_bits |= extra_flags;
3951 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3952 fs_info->avail_metadata_alloc_bits |= extra_flags;
3953 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3954 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3955 write_sequnlock(&fs_info->profiles_lock);
8790d502 3956}
593060d7 3957
fc67c450
ID
3958/*
3959 * returns target flags in extended format or 0 if restripe for this
3960 * chunk_type is not in progress
c6664b42 3961 *
dccdb07b 3962 * should be called with balance_lock held
fc67c450
ID
3963 */
3964static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3965{
3966 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3967 u64 target = 0;
3968
fc67c450
ID
3969 if (!bctl)
3970 return 0;
3971
3972 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3973 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3974 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3975 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3976 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3977 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3978 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3979 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3980 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3981 }
3982
3983 return target;
3984}
3985
a46d11a8
ID
3986/*
3987 * @flags: available profiles in extended format (see ctree.h)
3988 *
e4d8ec0f
ID
3989 * Returns reduced profile in chunk format. If profile changing is in
3990 * progress (either running or paused) picks the target profile (if it's
3991 * already available), otherwise falls back to plain reducing.
a46d11a8 3992 */
2ff7e61e 3993static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 3994{
0b246afa 3995 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 3996 u64 target;
9c170b26
ZL
3997 u64 raid_type;
3998 u64 allowed = 0;
a061fc8d 3999
fc67c450
ID
4000 /*
4001 * see if restripe for this chunk_type is in progress, if so
4002 * try to reduce to the target profile
4003 */
0b246afa
JM
4004 spin_lock(&fs_info->balance_lock);
4005 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4006 if (target) {
4007 /* pick target profile only if it's already available */
4008 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4009 spin_unlock(&fs_info->balance_lock);
fc67c450 4010 return extended_to_chunk(target);
e4d8ec0f
ID
4011 }
4012 }
0b246afa 4013 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4014
53b381b3 4015 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4016 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4017 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
41a6e891 4018 allowed |= btrfs_raid_array[raid_type].bg_flag;
9c170b26
ZL
4019 }
4020 allowed &= flags;
4021
4022 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4023 allowed = BTRFS_BLOCK_GROUP_RAID6;
4024 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4025 allowed = BTRFS_BLOCK_GROUP_RAID5;
4026 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4027 allowed = BTRFS_BLOCK_GROUP_RAID10;
4028 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4029 allowed = BTRFS_BLOCK_GROUP_RAID1;
4030 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4031 allowed = BTRFS_BLOCK_GROUP_RAID0;
4032
4033 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4034
4035 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4036}
4037
2ff7e61e 4038static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4039{
de98ced9 4040 unsigned seq;
f8213bdc 4041 u64 flags;
de98ced9
MX
4042
4043 do {
f8213bdc 4044 flags = orig_flags;
0b246afa 4045 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4046
4047 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4048 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4049 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4050 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4051 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4052 flags |= fs_info->avail_metadata_alloc_bits;
4053 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4054
2ff7e61e 4055 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4056}
4057
1b86826d 4058static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4059{
0b246afa 4060 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4061 u64 flags;
53b381b3 4062 u64 ret;
9ed74f2d 4063
b742bb82
YZ
4064 if (data)
4065 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4066 else if (root == fs_info->chunk_root)
b742bb82 4067 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4068 else
b742bb82 4069 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4070
2ff7e61e 4071 ret = get_alloc_profile(fs_info, flags);
53b381b3 4072 return ret;
6a63209f 4073}
9ed74f2d 4074
1b86826d
JM
4075u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4076{
4077 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4078}
4079
4080u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4081{
4082 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4083}
4084
4085u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4086{
4087 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4088}
4089
4136135b
LB
4090static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4091 bool may_use_included)
4092{
4093 ASSERT(s_info);
4094 return s_info->bytes_used + s_info->bytes_reserved +
4095 s_info->bytes_pinned + s_info->bytes_readonly +
4096 (may_use_included ? s_info->bytes_may_use : 0);
4097}
4098
04f4f916 4099int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4100{
04f4f916 4101 struct btrfs_root *root = inode->root;
b4d7c3c9 4102 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4103 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4104 u64 used;
94b947b2 4105 int ret = 0;
c99f1b0c
ZL
4106 int need_commit = 2;
4107 int have_pinned_space;
6a63209f 4108
6a63209f 4109 /* make sure bytes are sectorsize aligned */
0b246afa 4110 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4111
9dced186 4112 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4113 need_commit = 0;
9dced186 4114 ASSERT(current->journal_info);
0af3d00b
JB
4115 }
4116
6a63209f
JB
4117again:
4118 /* make sure we have enough space to handle the data first */
4119 spin_lock(&data_sinfo->lock);
4136135b 4120 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4121
4122 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4123 struct btrfs_trans_handle *trans;
9ed74f2d 4124
6a63209f
JB
4125 /*
4126 * if we don't have enough free bytes in this space then we need
4127 * to alloc a new chunk.
4128 */
b9fd47cd 4129 if (!data_sinfo->full) {
6a63209f 4130 u64 alloc_target;
9ed74f2d 4131
0e4f8f88 4132 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4133 spin_unlock(&data_sinfo->lock);
1174cade 4134
1b86826d 4135 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4136 /*
4137 * It is ugly that we don't call nolock join
4138 * transaction for the free space inode case here.
4139 * But it is safe because we only do the data space
4140 * reservation for the free space cache in the
4141 * transaction context, the common join transaction
4142 * just increase the counter of the current transaction
4143 * handler, doesn't try to acquire the trans_lock of
4144 * the fs.
4145 */
7a7eaa40 4146 trans = btrfs_join_transaction(root);
a22285a6
YZ
4147 if (IS_ERR(trans))
4148 return PTR_ERR(trans);
9ed74f2d 4149
01458828 4150 ret = do_chunk_alloc(trans, alloc_target,
0e4f8f88 4151 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4152 btrfs_end_transaction(trans);
d52a5b5f
MX
4153 if (ret < 0) {
4154 if (ret != -ENOSPC)
4155 return ret;
c99f1b0c
ZL
4156 else {
4157 have_pinned_space = 1;
d52a5b5f 4158 goto commit_trans;
c99f1b0c 4159 }
d52a5b5f 4160 }
9ed74f2d 4161
6a63209f
JB
4162 goto again;
4163 }
f2bb8f5c
JB
4164
4165 /*
b150a4f1 4166 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4167 * allocation, and no removed chunk in current transaction,
4168 * don't bother committing the transaction.
f2bb8f5c 4169 */
dec59fa3 4170 have_pinned_space = __percpu_counter_compare(
c99f1b0c 4171 &data_sinfo->total_bytes_pinned,
dec59fa3
EL
4172 used + bytes - data_sinfo->total_bytes,
4173 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6a63209f 4174 spin_unlock(&data_sinfo->lock);
6a63209f 4175
4e06bdd6 4176 /* commit the current transaction and try again */
d52a5b5f 4177commit_trans:
92e2f7e3 4178 if (need_commit) {
c99f1b0c 4179 need_commit--;
b150a4f1 4180
e1746e83 4181 if (need_commit > 0) {
82b3e53b 4182 btrfs_start_delalloc_roots(fs_info, -1);
6374e57a 4183 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4184 (u64)-1);
e1746e83 4185 }
9a4e7276 4186
7a7eaa40 4187 trans = btrfs_join_transaction(root);
a22285a6
YZ
4188 if (IS_ERR(trans))
4189 return PTR_ERR(trans);
c99f1b0c 4190 if (have_pinned_space >= 0 ||
3204d33c
JB
4191 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4192 &trans->transaction->flags) ||
c99f1b0c 4193 need_commit > 0) {
3a45bb20 4194 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4195 if (ret)
4196 return ret;
d7c15171 4197 /*
c2d6cb16
FM
4198 * The cleaner kthread might still be doing iput
4199 * operations. Wait for it to finish so that
4200 * more space is released.
d7c15171 4201 */
0b246afa
JM
4202 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4203 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4204 goto again;
4205 } else {
3a45bb20 4206 btrfs_end_transaction(trans);
94b947b2 4207 }
4e06bdd6 4208 }
9ed74f2d 4209
0b246afa 4210 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4211 "space_info:enospc",
4212 data_sinfo->flags, bytes, 1);
6a63209f
JB
4213 return -ENOSPC;
4214 }
4215 data_sinfo->bytes_may_use += bytes;
0b246afa 4216 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4217 data_sinfo->flags, bytes, 1);
6a63209f 4218 spin_unlock(&data_sinfo->lock);
6a63209f 4219
4559b0a7 4220 return 0;
9ed74f2d 4221}
6a63209f 4222
364ecf36
QW
4223int btrfs_check_data_free_space(struct inode *inode,
4224 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4225{
0b246afa 4226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4227 int ret;
4228
4229 /* align the range */
0b246afa
JM
4230 len = round_up(start + len, fs_info->sectorsize) -
4231 round_down(start, fs_info->sectorsize);
4232 start = round_down(start, fs_info->sectorsize);
4ceff079 4233
04f4f916 4234 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4235 if (ret < 0)
4236 return ret;
4237
1e5ec2e7 4238 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4239 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4240 if (ret < 0)
1e5ec2e7 4241 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4242 else
4243 ret = 0;
4ceff079
QW
4244 return ret;
4245}
4246
4ceff079
QW
4247/*
4248 * Called if we need to clear a data reservation for this inode
4249 * Normally in a error case.
4250 *
51773bec
QW
4251 * This one will *NOT* use accurate qgroup reserved space API, just for case
4252 * which we can't sleep and is sure it won't affect qgroup reserved space.
4253 * Like clear_bit_hook().
4ceff079 4254 */
51773bec
QW
4255void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4256 u64 len)
4ceff079 4257{
0b246afa 4258 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4259 struct btrfs_space_info *data_sinfo;
4260
4261 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4262 len = round_up(start + len, fs_info->sectorsize) -
4263 round_down(start, fs_info->sectorsize);
4264 start = round_down(start, fs_info->sectorsize);
4ceff079 4265
0b246afa 4266 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4267 spin_lock(&data_sinfo->lock);
4268 if (WARN_ON(data_sinfo->bytes_may_use < len))
4269 data_sinfo->bytes_may_use = 0;
4270 else
4271 data_sinfo->bytes_may_use -= len;
0b246afa 4272 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4273 data_sinfo->flags, len, 0);
4274 spin_unlock(&data_sinfo->lock);
4275}
4276
51773bec
QW
4277/*
4278 * Called if we need to clear a data reservation for this inode
4279 * Normally in a error case.
4280 *
01327610 4281 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4282 * space framework.
4283 */
bc42bda2
QW
4284void btrfs_free_reserved_data_space(struct inode *inode,
4285 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4286{
0c476a5d
JM
4287 struct btrfs_root *root = BTRFS_I(inode)->root;
4288
4289 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4290 len = round_up(start + len, root->fs_info->sectorsize) -
4291 round_down(start, root->fs_info->sectorsize);
4292 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4293
51773bec 4294 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4295 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4296}
4297
97e728d4 4298static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4299{
97e728d4
JB
4300 struct list_head *head = &info->space_info;
4301 struct btrfs_space_info *found;
e3ccfa98 4302
97e728d4
JB
4303 rcu_read_lock();
4304 list_for_each_entry_rcu(found, head, list) {
4305 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4306 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4307 }
97e728d4 4308 rcu_read_unlock();
e3ccfa98
JB
4309}
4310
3c76cd84
MX
4311static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4312{
4313 return (global->size << 1);
4314}
4315
2ff7e61e 4316static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4317 struct btrfs_space_info *sinfo, int force)
32c00aff 4318{
0b246afa 4319 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4320 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4321 u64 thresh;
e3ccfa98 4322
0e4f8f88
CM
4323 if (force == CHUNK_ALLOC_FORCE)
4324 return 1;
4325
fb25e914
JB
4326 /*
4327 * We need to take into account the global rsv because for all intents
4328 * and purposes it's used space. Don't worry about locking the
4329 * global_rsv, it doesn't change except when the transaction commits.
4330 */
54338b5c 4331 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4332 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4333
0e4f8f88
CM
4334 /*
4335 * in limited mode, we want to have some free space up to
4336 * about 1% of the FS size.
4337 */
4338 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4339 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4340 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4341
8d8aafee 4342 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4343 return 1;
4344 }
0e4f8f88 4345
8d8aafee 4346 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4347 return 0;
424499db 4348 return 1;
32c00aff
JB
4349}
4350
2ff7e61e 4351static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4352{
4353 u64 num_dev;
4354
53b381b3
DW
4355 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4356 BTRFS_BLOCK_GROUP_RAID0 |
4357 BTRFS_BLOCK_GROUP_RAID5 |
4358 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4359 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4360 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4361 num_dev = 2;
4362 else
4363 num_dev = 1; /* DUP or single */
4364
39c2d7fa 4365 return num_dev;
15d1ff81
LB
4366}
4367
39c2d7fa
FM
4368/*
4369 * If @is_allocation is true, reserve space in the system space info necessary
4370 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4371 * removing a chunk.
4372 */
451a2c13 4373void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
15d1ff81 4374{
451a2c13 4375 struct btrfs_fs_info *fs_info = trans->fs_info;
15d1ff81
LB
4376 struct btrfs_space_info *info;
4377 u64 left;
4378 u64 thresh;
4fbcdf66 4379 int ret = 0;
39c2d7fa 4380 u64 num_devs;
4fbcdf66
FM
4381
4382 /*
4383 * Needed because we can end up allocating a system chunk and for an
4384 * atomic and race free space reservation in the chunk block reserve.
4385 */
a32bf9a3 4386 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4387
0b246afa 4388 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4389 spin_lock(&info->lock);
4136135b 4390 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4391 spin_unlock(&info->lock);
4392
2ff7e61e 4393 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4394
4395 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4396 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4397 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4398
0b246afa
JM
4399 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4400 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4401 left, thresh, type);
4402 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4403 }
4404
4405 if (left < thresh) {
1b86826d 4406 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4407
4fbcdf66
FM
4408 /*
4409 * Ignore failure to create system chunk. We might end up not
4410 * needing it, as we might not need to COW all nodes/leafs from
4411 * the paths we visit in the chunk tree (they were already COWed
4412 * or created in the current transaction for example).
4413 */
c216b203 4414 ret = btrfs_alloc_chunk(trans, flags);
4fbcdf66
FM
4415 }
4416
4417 if (!ret) {
0b246afa
JM
4418 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4419 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4420 thresh, BTRFS_RESERVE_NO_FLUSH);
4421 if (!ret)
4422 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4423 }
4424}
4425
28b737f6
LB
4426/*
4427 * If force is CHUNK_ALLOC_FORCE:
4428 * - return 1 if it successfully allocates a chunk,
4429 * - return errors including -ENOSPC otherwise.
4430 * If force is NOT CHUNK_ALLOC_FORCE:
4431 * - return 0 if it doesn't need to allocate a new chunk,
4432 * - return 1 if it successfully allocates a chunk,
4433 * - return errors including -ENOSPC otherwise.
4434 */
01458828
NB
4435static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4436 int force)
9ed74f2d 4437{
01458828 4438 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 4439 struct btrfs_space_info *space_info;
2556fbb0
NB
4440 bool wait_for_alloc = false;
4441 bool should_alloc = false;
9ed74f2d 4442 int ret = 0;
9ed74f2d 4443
c6b305a8
JB
4444 /* Don't re-enter if we're already allocating a chunk */
4445 if (trans->allocating_chunk)
4446 return -ENOSPC;
4447
0b246afa 4448 space_info = __find_space_info(fs_info, flags);
dc2d3005 4449 ASSERT(space_info);
9ed74f2d 4450
2556fbb0
NB
4451 do {
4452 spin_lock(&space_info->lock);
4453 if (force < space_info->force_alloc)
4454 force = space_info->force_alloc;
4455 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4456 if (space_info->full) {
4457 /* No more free physical space */
4458 if (should_alloc)
4459 ret = -ENOSPC;
4460 else
4461 ret = 0;
4462 spin_unlock(&space_info->lock);
4463 return ret;
4464 } else if (!should_alloc) {
4465 spin_unlock(&space_info->lock);
4466 return 0;
4467 } else if (space_info->chunk_alloc) {
4468 /*
4469 * Someone is already allocating, so we need to block
4470 * until this someone is finished and then loop to
4471 * recheck if we should continue with our allocation
4472 * attempt.
4473 */
4474 wait_for_alloc = true;
4475 spin_unlock(&space_info->lock);
4476 mutex_lock(&fs_info->chunk_mutex);
4477 mutex_unlock(&fs_info->chunk_mutex);
4478 } else {
4479 /* Proceed with allocation */
4480 space_info->chunk_alloc = 1;
4481 wait_for_alloc = false;
4482 spin_unlock(&space_info->lock);
4483 }
6d74119f 4484
1e1c50a9 4485 cond_resched();
2556fbb0 4486 } while (wait_for_alloc);
6d74119f 4487
2556fbb0 4488 mutex_lock(&fs_info->chunk_mutex);
c6b305a8
JB
4489 trans->allocating_chunk = true;
4490
67377734
JB
4491 /*
4492 * If we have mixed data/metadata chunks we want to make sure we keep
4493 * allocating mixed chunks instead of individual chunks.
4494 */
4495 if (btrfs_mixed_space_info(space_info))
4496 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4497
97e728d4
JB
4498 /*
4499 * if we're doing a data chunk, go ahead and make sure that
4500 * we keep a reasonable number of metadata chunks allocated in the
4501 * FS as well.
4502 */
9ed74f2d 4503 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4504 fs_info->data_chunk_allocations++;
4505 if (!(fs_info->data_chunk_allocations %
4506 fs_info->metadata_ratio))
4507 force_metadata_allocation(fs_info);
9ed74f2d
JB
4508 }
4509
15d1ff81
LB
4510 /*
4511 * Check if we have enough space in SYSTEM chunk because we may need
4512 * to update devices.
4513 */
451a2c13 4514 check_system_chunk(trans, flags);
15d1ff81 4515
c216b203 4516 ret = btrfs_alloc_chunk(trans, flags);
c6b305a8 4517 trans->allocating_chunk = false;
92b8e897 4518
9ed74f2d 4519 spin_lock(&space_info->lock);
57f1642e
NB
4520 if (ret < 0) {
4521 if (ret == -ENOSPC)
4522 space_info->full = 1;
4523 else
4524 goto out;
4525 } else {
424499db 4526 ret = 1;
57f1642e 4527 }
6d74119f 4528
0e4f8f88 4529 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4530out:
6d74119f 4531 space_info->chunk_alloc = 0;
9ed74f2d 4532 spin_unlock(&space_info->lock);
a25c75d5 4533 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4534 /*
4535 * When we allocate a new chunk we reserve space in the chunk block
4536 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4537 * add new nodes/leafs to it if we end up needing to do it when
4538 * inserting the chunk item and updating device items as part of the
4539 * second phase of chunk allocation, performed by
4540 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4541 * large number of new block groups to create in our transaction
4542 * handle's new_bgs list to avoid exhausting the chunk block reserve
4543 * in extreme cases - like having a single transaction create many new
4544 * block groups when starting to write out the free space caches of all
4545 * the block groups that were made dirty during the lifetime of the
4546 * transaction.
4547 */
d9a0540a 4548 if (trans->can_flush_pending_bgs &&
ee22184b 4549 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
6c686b35 4550 btrfs_create_pending_block_groups(trans);
00d80e34
FM
4551 btrfs_trans_release_chunk_metadata(trans);
4552 }
0f9dd46c 4553 return ret;
6324fbf3 4554}
9ed74f2d 4555
c1c4919b 4556static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4557 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4558 enum btrfs_reserve_flush_enum flush,
4559 bool system_chunk)
a80c8dcf 4560{
0b246afa 4561 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4562 u64 profile;
3c76cd84 4563 u64 space_size;
a80c8dcf
JB
4564 u64 avail;
4565 u64 used;
46df06b8 4566 int factor;
a80c8dcf 4567
957780eb
JB
4568 /* Don't overcommit when in mixed mode. */
4569 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4570 return 0;
4571
c1c4919b
JM
4572 if (system_chunk)
4573 profile = btrfs_system_alloc_profile(fs_info);
4574 else
4575 profile = btrfs_metadata_alloc_profile(fs_info);
4576
4136135b 4577 used = btrfs_space_info_used(space_info, false);
96f1bb57 4578
96f1bb57
JB
4579 /*
4580 * We only want to allow over committing if we have lots of actual space
4581 * free, but if we don't have enough space to handle the global reserve
4582 * space then we could end up having a real enospc problem when trying
4583 * to allocate a chunk or some other such important allocation.
4584 */
3c76cd84
MX
4585 spin_lock(&global_rsv->lock);
4586 space_size = calc_global_rsv_need_space(global_rsv);
4587 spin_unlock(&global_rsv->lock);
4588 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4589 return 0;
4590
4591 used += space_info->bytes_may_use;
a80c8dcf 4592
a5ed45f8 4593 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4594
4595 /*
4596 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4597 * space is actually useable. For raid56, the space info used
4598 * doesn't include the parity drive, so we don't have to
4599 * change the math
a80c8dcf 4600 */
46df06b8
DS
4601 factor = btrfs_bg_type_to_factor(profile);
4602 avail = div_u64(avail, factor);
a80c8dcf
JB
4603
4604 /*
561c294d
MX
4605 * If we aren't flushing all things, let us overcommit up to
4606 * 1/2th of the space. If we can flush, don't let us overcommit
4607 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4608 */
08e007d2 4609 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4610 avail >>= 3;
a80c8dcf 4611 else
14575aef 4612 avail >>= 1;
a80c8dcf 4613
14575aef 4614 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4615 return 1;
4616 return 0;
4617}
4618
2ff7e61e 4619static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4620 unsigned long nr_pages, int nr_items)
da633a42 4621{
0b246afa 4622 struct super_block *sb = fs_info->sb;
da633a42 4623
925a6efb
JB
4624 if (down_read_trylock(&sb->s_umount)) {
4625 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4626 up_read(&sb->s_umount);
4627 } else {
da633a42
MX
4628 /*
4629 * We needn't worry the filesystem going from r/w to r/o though
4630 * we don't acquire ->s_umount mutex, because the filesystem
4631 * should guarantee the delalloc inodes list be empty after
4632 * the filesystem is readonly(all dirty pages are written to
4633 * the disk).
4634 */
82b3e53b 4635 btrfs_start_delalloc_roots(fs_info, nr_items);
98ad69cf 4636 if (!current->journal_info)
0b246afa 4637 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4638 }
4639}
4640
6374e57a 4641static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4642 u64 to_reclaim)
18cd8ea6
MX
4643{
4644 u64 bytes;
6374e57a 4645 u64 nr;
18cd8ea6 4646
2ff7e61e 4647 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4648 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4649 if (!nr)
4650 nr = 1;
4651 return nr;
4652}
4653
ee22184b 4654#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4655
9ed74f2d 4656/*
5da9d01b 4657 * shrink metadata reservation for delalloc
9ed74f2d 4658 */
c1c4919b
JM
4659static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4660 u64 orig, bool wait_ordered)
5da9d01b 4661{
0019f10d 4662 struct btrfs_space_info *space_info;
663350ac 4663 struct btrfs_trans_handle *trans;
f4c738c2 4664 u64 delalloc_bytes;
5da9d01b 4665 u64 max_reclaim;
6374e57a 4666 u64 items;
b1953bce 4667 long time_left;
d3ee29e3
MX
4668 unsigned long nr_pages;
4669 int loops;
5da9d01b 4670
c61a16a7 4671 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4672 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4673 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4674
663350ac 4675 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4676 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4677
963d678b 4678 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4679 &fs_info->delalloc_bytes);
f4c738c2 4680 if (delalloc_bytes == 0) {
fdb5effd 4681 if (trans)
f4c738c2 4682 return;
38c135af 4683 if (wait_ordered)
0b246afa 4684 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4685 return;
fdb5effd
JB
4686 }
4687
d3ee29e3 4688 loops = 0;
f4c738c2
JB
4689 while (delalloc_bytes && loops < 3) {
4690 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4691 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4692 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4693 /*
4694 * We need to wait for the async pages to actually start before
4695 * we do anything.
4696 */
0b246afa 4697 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4698 if (!max_reclaim)
4699 goto skip_async;
4700
4701 if (max_reclaim <= nr_pages)
4702 max_reclaim = 0;
4703 else
4704 max_reclaim -= nr_pages;
dea31f52 4705
0b246afa
JM
4706 wait_event(fs_info->async_submit_wait,
4707 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4708 (int)max_reclaim);
4709skip_async:
0019f10d 4710 spin_lock(&space_info->lock);
957780eb
JB
4711 if (list_empty(&space_info->tickets) &&
4712 list_empty(&space_info->priority_tickets)) {
4713 spin_unlock(&space_info->lock);
4714 break;
4715 }
0019f10d 4716 spin_unlock(&space_info->lock);
5da9d01b 4717
36e39c40 4718 loops++;
f104d044 4719 if (wait_ordered && !trans) {
0b246afa 4720 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4721 } else {
f4c738c2 4722 time_left = schedule_timeout_killable(1);
f104d044
JB
4723 if (time_left)
4724 break;
4725 }
963d678b 4726 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4727 &fs_info->delalloc_bytes);
5da9d01b 4728 }
5da9d01b
YZ
4729}
4730
996478ca
JB
4731struct reserve_ticket {
4732 u64 bytes;
4733 int error;
4734 struct list_head list;
4735 wait_queue_head_t wait;
4736};
4737
663350ac
JB
4738/**
4739 * maybe_commit_transaction - possibly commit the transaction if its ok to
4740 * @root - the root we're allocating for
4741 * @bytes - the number of bytes we want to reserve
4742 * @force - force the commit
8bb8ab2e 4743 *
663350ac
JB
4744 * This will check to make sure that committing the transaction will actually
4745 * get us somewhere and then commit the transaction if it does. Otherwise it
4746 * will return -ENOSPC.
8bb8ab2e 4747 */
0c9ab349 4748static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4749 struct btrfs_space_info *space_info)
663350ac 4750{
996478ca 4751 struct reserve_ticket *ticket = NULL;
0b246afa 4752 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac 4753 struct btrfs_trans_handle *trans;
996478ca 4754 u64 bytes;
663350ac
JB
4755
4756 trans = (struct btrfs_trans_handle *)current->journal_info;
4757 if (trans)
4758 return -EAGAIN;
4759
996478ca
JB
4760 spin_lock(&space_info->lock);
4761 if (!list_empty(&space_info->priority_tickets))
4762 ticket = list_first_entry(&space_info->priority_tickets,
4763 struct reserve_ticket, list);
4764 else if (!list_empty(&space_info->tickets))
4765 ticket = list_first_entry(&space_info->tickets,
4766 struct reserve_ticket, list);
4767 bytes = (ticket) ? ticket->bytes : 0;
4768 spin_unlock(&space_info->lock);
4769
4770 if (!bytes)
4771 return 0;
663350ac
JB
4772
4773 /* See if there is enough pinned space to make this reservation */
dec59fa3
EL
4774 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4775 bytes,
4776 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
663350ac 4777 goto commit;
663350ac
JB
4778
4779 /*
4780 * See if there is some space in the delayed insertion reservation for
4781 * this reservation.
4782 */
4783 if (space_info != delayed_rsv->space_info)
4784 return -ENOSPC;
4785
4786 spin_lock(&delayed_rsv->lock);
996478ca
JB
4787 if (delayed_rsv->size > bytes)
4788 bytes = 0;
4789 else
4790 bytes -= delayed_rsv->size;
057aac3e
NB
4791 spin_unlock(&delayed_rsv->lock);
4792
dec59fa3
EL
4793 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4794 bytes,
4795 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
663350ac
JB
4796 return -ENOSPC;
4797 }
663350ac
JB
4798
4799commit:
a9b3311e 4800 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4801 if (IS_ERR(trans))
4802 return -ENOSPC;
4803
3a45bb20 4804 return btrfs_commit_transaction(trans);
663350ac
JB
4805}
4806
e38ae7a0
NB
4807/*
4808 * Try to flush some data based on policy set by @state. This is only advisory
4809 * and may fail for various reasons. The caller is supposed to examine the
4810 * state of @space_info to detect the outcome.
4811 */
4812static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4813 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4814 int state)
96c3f433 4815{
a9b3311e 4816 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4817 struct btrfs_trans_handle *trans;
4818 int nr;
f4c738c2 4819 int ret = 0;
96c3f433
JB
4820
4821 switch (state) {
96c3f433
JB
4822 case FLUSH_DELAYED_ITEMS_NR:
4823 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4824 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4825 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4826 else
96c3f433 4827 nr = -1;
18cd8ea6 4828
96c3f433
JB
4829 trans = btrfs_join_transaction(root);
4830 if (IS_ERR(trans)) {
4831 ret = PTR_ERR(trans);
4832 break;
4833 }
e5c304e6 4834 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4835 btrfs_end_transaction(trans);
96c3f433 4836 break;
67b0fd63
JB
4837 case FLUSH_DELALLOC:
4838 case FLUSH_DELALLOC_WAIT:
7bdd6277 4839 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4840 state == FLUSH_DELALLOC_WAIT);
4841 break;
ea658bad
JB
4842 case ALLOC_CHUNK:
4843 trans = btrfs_join_transaction(root);
4844 if (IS_ERR(trans)) {
4845 ret = PTR_ERR(trans);
4846 break;
4847 }
01458828 4848 ret = do_chunk_alloc(trans,
1b86826d 4849 btrfs_metadata_alloc_profile(fs_info),
ea658bad 4850 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4851 btrfs_end_transaction(trans);
eecba891 4852 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4853 ret = 0;
4854 break;
96c3f433 4855 case COMMIT_TRANS:
996478ca 4856 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
4857 break;
4858 default:
4859 ret = -ENOSPC;
4860 break;
4861 }
4862
7bdd6277
NB
4863 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4864 ret);
e38ae7a0 4865 return;
96c3f433 4866}
21c7e756
MX
4867
4868static inline u64
c1c4919b
JM
4869btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4870 struct btrfs_space_info *space_info,
4871 bool system_chunk)
21c7e756 4872{
957780eb 4873 struct reserve_ticket *ticket;
21c7e756
MX
4874 u64 used;
4875 u64 expected;
957780eb 4876 u64 to_reclaim = 0;
21c7e756 4877
957780eb
JB
4878 list_for_each_entry(ticket, &space_info->tickets, list)
4879 to_reclaim += ticket->bytes;
4880 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4881 to_reclaim += ticket->bytes;
4882 if (to_reclaim)
4883 return to_reclaim;
21c7e756 4884
e0af2484 4885 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
4886 if (can_overcommit(fs_info, space_info, to_reclaim,
4887 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
4888 return 0;
4889
0eee8a49
NB
4890 used = btrfs_space_info_used(space_info, true);
4891
c1c4919b
JM
4892 if (can_overcommit(fs_info, space_info, SZ_1M,
4893 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
4894 expected = div_factor_fine(space_info->total_bytes, 95);
4895 else
4896 expected = div_factor_fine(space_info->total_bytes, 90);
4897
4898 if (used > expected)
4899 to_reclaim = used - expected;
4900 else
4901 to_reclaim = 0;
4902 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4903 space_info->bytes_reserved);
21c7e756
MX
4904 return to_reclaim;
4905}
4906
c1c4919b
JM
4907static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4908 struct btrfs_space_info *space_info,
4909 u64 used, bool system_chunk)
21c7e756 4910{
365c5313
JB
4911 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4912
4913 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4914 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4915 return 0;
4916
c1c4919b
JM
4917 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4918 system_chunk))
d38b349c
JB
4919 return 0;
4920
0b246afa
JM
4921 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4922 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
4923}
4924
957780eb 4925static void wake_all_tickets(struct list_head *head)
21c7e756 4926{
957780eb 4927 struct reserve_ticket *ticket;
25ce459c 4928
957780eb
JB
4929 while (!list_empty(head)) {
4930 ticket = list_first_entry(head, struct reserve_ticket, list);
4931 list_del_init(&ticket->list);
4932 ticket->error = -ENOSPC;
4933 wake_up(&ticket->wait);
21c7e756 4934 }
21c7e756
MX
4935}
4936
957780eb
JB
4937/*
4938 * This is for normal flushers, we can wait all goddamned day if we want to. We
4939 * will loop and continuously try to flush as long as we are making progress.
4940 * We count progress as clearing off tickets each time we have to loop.
4941 */
21c7e756
MX
4942static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4943{
4944 struct btrfs_fs_info *fs_info;
4945 struct btrfs_space_info *space_info;
4946 u64 to_reclaim;
4947 int flush_state;
957780eb 4948 int commit_cycles = 0;
ce129655 4949 u64 last_tickets_id;
21c7e756
MX
4950
4951 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4952 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4953
957780eb 4954 spin_lock(&space_info->lock);
c1c4919b
JM
4955 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4956 false);
957780eb
JB
4957 if (!to_reclaim) {
4958 space_info->flush = 0;
4959 spin_unlock(&space_info->lock);
21c7e756 4960 return;
957780eb 4961 }
ce129655 4962 last_tickets_id = space_info->tickets_id;
957780eb 4963 spin_unlock(&space_info->lock);
21c7e756
MX
4964
4965 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 4966 do {
e38ae7a0 4967 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
4968 spin_lock(&space_info->lock);
4969 if (list_empty(&space_info->tickets)) {
4970 space_info->flush = 0;
4971 spin_unlock(&space_info->lock);
4972 return;
4973 }
c1c4919b
JM
4974 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
4975 space_info,
4976 false);
ce129655 4977 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
4978 flush_state++;
4979 } else {
ce129655 4980 last_tickets_id = space_info->tickets_id;
957780eb
JB
4981 flush_state = FLUSH_DELAYED_ITEMS_NR;
4982 if (commit_cycles)
4983 commit_cycles--;
4984 }
4985
4986 if (flush_state > COMMIT_TRANS) {
4987 commit_cycles++;
4988 if (commit_cycles > 2) {
4989 wake_all_tickets(&space_info->tickets);
4990 space_info->flush = 0;
4991 } else {
4992 flush_state = FLUSH_DELAYED_ITEMS_NR;
4993 }
4994 }
4995 spin_unlock(&space_info->lock);
4996 } while (flush_state <= COMMIT_TRANS);
4997}
4998
4999void btrfs_init_async_reclaim_work(struct work_struct *work)
5000{
5001 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5002}
5003
5004static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5005 struct btrfs_space_info *space_info,
5006 struct reserve_ticket *ticket)
5007{
5008 u64 to_reclaim;
5009 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5010
5011 spin_lock(&space_info->lock);
c1c4919b
JM
5012 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5013 false);
957780eb
JB
5014 if (!to_reclaim) {
5015 spin_unlock(&space_info->lock);
5016 return;
5017 }
5018 spin_unlock(&space_info->lock);
5019
21c7e756 5020 do {
7bdd6277 5021 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5022 flush_state++;
957780eb
JB
5023 spin_lock(&space_info->lock);
5024 if (ticket->bytes == 0) {
5025 spin_unlock(&space_info->lock);
21c7e756 5026 return;
957780eb
JB
5027 }
5028 spin_unlock(&space_info->lock);
5029
5030 /*
5031 * Priority flushers can't wait on delalloc without
5032 * deadlocking.
5033 */
5034 if (flush_state == FLUSH_DELALLOC ||
5035 flush_state == FLUSH_DELALLOC_WAIT)
5036 flush_state = ALLOC_CHUNK;
365c5313 5037 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5038}
5039
957780eb
JB
5040static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5041 struct btrfs_space_info *space_info,
5042 struct reserve_ticket *ticket, u64 orig_bytes)
5043
21c7e756 5044{
957780eb
JB
5045 DEFINE_WAIT(wait);
5046 int ret = 0;
5047
5048 spin_lock(&space_info->lock);
5049 while (ticket->bytes > 0 && ticket->error == 0) {
5050 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5051 if (ret) {
5052 ret = -EINTR;
5053 break;
5054 }
5055 spin_unlock(&space_info->lock);
5056
5057 schedule();
5058
5059 finish_wait(&ticket->wait, &wait);
5060 spin_lock(&space_info->lock);
5061 }
5062 if (!ret)
5063 ret = ticket->error;
5064 if (!list_empty(&ticket->list))
5065 list_del_init(&ticket->list);
5066 if (ticket->bytes && ticket->bytes < orig_bytes) {
5067 u64 num_bytes = orig_bytes - ticket->bytes;
5068 space_info->bytes_may_use -= num_bytes;
5069 trace_btrfs_space_reservation(fs_info, "space_info",
5070 space_info->flags, num_bytes, 0);
5071 }
5072 spin_unlock(&space_info->lock);
5073
5074 return ret;
21c7e756
MX
5075}
5076
4a92b1b8
JB
5077/**
5078 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5079 * @root - the root we're allocating for
957780eb 5080 * @space_info - the space info we want to allocate from
4a92b1b8 5081 * @orig_bytes - the number of bytes we want
48fc7f7e 5082 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5083 *
01327610 5084 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5085 * with the block_rsv. If there is not enough space it will make an attempt to
5086 * flush out space to make room. It will do this by flushing delalloc if
5087 * possible or committing the transaction. If flush is 0 then no attempts to
5088 * regain reservations will be made and this will fail if there is not enough
5089 * space already.
8bb8ab2e 5090 */
c1c4919b 5091static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5092 struct btrfs_space_info *space_info,
5093 u64 orig_bytes,
c1c4919b
JM
5094 enum btrfs_reserve_flush_enum flush,
5095 bool system_chunk)
9ed74f2d 5096{
957780eb 5097 struct reserve_ticket ticket;
2bf64758 5098 u64 used;
8bb8ab2e 5099 int ret = 0;
9ed74f2d 5100
957780eb 5101 ASSERT(orig_bytes);
8ca17f0f 5102 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5103
8bb8ab2e 5104 spin_lock(&space_info->lock);
fdb5effd 5105 ret = -ENOSPC;
4136135b 5106 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5107
8bb8ab2e 5108 /*
957780eb
JB
5109 * If we have enough space then hooray, make our reservation and carry
5110 * on. If not see if we can overcommit, and if we can, hooray carry on.
5111 * If not things get more complicated.
8bb8ab2e 5112 */
957780eb
JB
5113 if (used + orig_bytes <= space_info->total_bytes) {
5114 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5115 trace_btrfs_space_reservation(fs_info, "space_info",
5116 space_info->flags, orig_bytes, 1);
957780eb 5117 ret = 0;
c1c4919b
JM
5118 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5119 system_chunk)) {
44734ed1 5120 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5121 trace_btrfs_space_reservation(fs_info, "space_info",
5122 space_info->flags, orig_bytes, 1);
44734ed1 5123 ret = 0;
2bf64758
JB
5124 }
5125
8bb8ab2e 5126 /*
957780eb
JB
5127 * If we couldn't make a reservation then setup our reservation ticket
5128 * and kick the async worker if it's not already running.
08e007d2 5129 *
957780eb
JB
5130 * If we are a priority flusher then we just need to add our ticket to
5131 * the list and we will do our own flushing further down.
8bb8ab2e 5132 */
72bcd99d 5133 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5134 ticket.bytes = orig_bytes;
5135 ticket.error = 0;
5136 init_waitqueue_head(&ticket.wait);
5137 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5138 list_add_tail(&ticket.list, &space_info->tickets);
5139 if (!space_info->flush) {
5140 space_info->flush = 1;
0b246afa 5141 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5142 space_info->flags,
5143 orig_bytes, flush,
5144 "enospc");
957780eb 5145 queue_work(system_unbound_wq,
c1c4919b 5146 &fs_info->async_reclaim_work);
957780eb
JB
5147 }
5148 } else {
5149 list_add_tail(&ticket.list,
5150 &space_info->priority_tickets);
5151 }
21c7e756
MX
5152 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5153 used += orig_bytes;
f6acfd50
JB
5154 /*
5155 * We will do the space reservation dance during log replay,
5156 * which means we won't have fs_info->fs_root set, so don't do
5157 * the async reclaim as we will panic.
5158 */
0b246afa 5159 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5160 need_do_async_reclaim(fs_info, space_info,
5161 used, system_chunk) &&
0b246afa
JM
5162 !work_busy(&fs_info->async_reclaim_work)) {
5163 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5164 orig_bytes, flush, "preempt");
21c7e756 5165 queue_work(system_unbound_wq,
0b246afa 5166 &fs_info->async_reclaim_work);
f376df2b 5167 }
8bb8ab2e 5168 }
f0486c68 5169 spin_unlock(&space_info->lock);
08e007d2 5170 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5171 return ret;
f0486c68 5172
957780eb 5173 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5174 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5175 orig_bytes);
08e007d2 5176
957780eb 5177 ret = 0;
0b246afa 5178 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5179 spin_lock(&space_info->lock);
5180 if (ticket.bytes) {
5181 if (ticket.bytes < orig_bytes) {
5182 u64 num_bytes = orig_bytes - ticket.bytes;
5183 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5184 trace_btrfs_space_reservation(fs_info, "space_info",
5185 space_info->flags,
5186 num_bytes, 0);
08e007d2 5187
957780eb
JB
5188 }
5189 list_del_init(&ticket.list);
5190 ret = -ENOSPC;
5191 }
5192 spin_unlock(&space_info->lock);
5193 ASSERT(list_empty(&ticket.list));
5194 return ret;
5195}
8bb8ab2e 5196
957780eb
JB
5197/**
5198 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5199 * @root - the root we're allocating for
5200 * @block_rsv - the block_rsv we're allocating for
5201 * @orig_bytes - the number of bytes we want
5202 * @flush - whether or not we can flush to make our reservation
5203 *
5204 * This will reserve orgi_bytes number of bytes from the space info associated
5205 * with the block_rsv. If there is not enough space it will make an attempt to
5206 * flush out space to make room. It will do this by flushing delalloc if
5207 * possible or committing the transaction. If flush is 0 then no attempts to
5208 * regain reservations will be made and this will fail if there is not enough
5209 * space already.
5210 */
5211static int reserve_metadata_bytes(struct btrfs_root *root,
5212 struct btrfs_block_rsv *block_rsv,
5213 u64 orig_bytes,
5214 enum btrfs_reserve_flush_enum flush)
5215{
0b246afa
JM
5216 struct btrfs_fs_info *fs_info = root->fs_info;
5217 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5218 int ret;
c1c4919b 5219 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5220
c1c4919b
JM
5221 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5222 orig_bytes, flush, system_chunk);
5d80366e
JB
5223 if (ret == -ENOSPC &&
5224 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5225 if (block_rsv != global_rsv &&
5226 !block_rsv_use_bytes(global_rsv, orig_bytes))
5227 ret = 0;
5228 }
9a3daff3 5229 if (ret == -ENOSPC) {
0b246afa 5230 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5231 block_rsv->space_info->flags,
5232 orig_bytes, 1);
9a3daff3
NB
5233
5234 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5235 dump_space_info(fs_info, block_rsv->space_info,
5236 orig_bytes, 0);
5237 }
f0486c68
YZ
5238 return ret;
5239}
5240
79787eaa
JM
5241static struct btrfs_block_rsv *get_block_rsv(
5242 const struct btrfs_trans_handle *trans,
5243 const struct btrfs_root *root)
f0486c68 5244{
0b246afa 5245 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5246 struct btrfs_block_rsv *block_rsv = NULL;
5247
e9cf439f 5248 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5249 (root == fs_info->csum_root && trans->adding_csums) ||
5250 (root == fs_info->uuid_root))
f7a81ea4
SB
5251 block_rsv = trans->block_rsv;
5252
4c13d758 5253 if (!block_rsv)
f0486c68
YZ
5254 block_rsv = root->block_rsv;
5255
5256 if (!block_rsv)
0b246afa 5257 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5258
5259 return block_rsv;
5260}
5261
5262static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5263 u64 num_bytes)
5264{
5265 int ret = -ENOSPC;
5266 spin_lock(&block_rsv->lock);
5267 if (block_rsv->reserved >= num_bytes) {
5268 block_rsv->reserved -= num_bytes;
5269 if (block_rsv->reserved < block_rsv->size)
5270 block_rsv->full = 0;
5271 ret = 0;
5272 }
5273 spin_unlock(&block_rsv->lock);
5274 return ret;
5275}
5276
5277static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3a584174 5278 u64 num_bytes, bool update_size)
f0486c68
YZ
5279{
5280 spin_lock(&block_rsv->lock);
5281 block_rsv->reserved += num_bytes;
5282 if (update_size)
5283 block_rsv->size += num_bytes;
5284 else if (block_rsv->reserved >= block_rsv->size)
5285 block_rsv->full = 1;
5286 spin_unlock(&block_rsv->lock);
5287}
5288
d52be818
JB
5289int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5290 struct btrfs_block_rsv *dest, u64 num_bytes,
5291 int min_factor)
5292{
5293 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5294 u64 min_bytes;
5295
5296 if (global_rsv->space_info != dest->space_info)
5297 return -ENOSPC;
5298
5299 spin_lock(&global_rsv->lock);
5300 min_bytes = div_factor(global_rsv->size, min_factor);
5301 if (global_rsv->reserved < min_bytes + num_bytes) {
5302 spin_unlock(&global_rsv->lock);
5303 return -ENOSPC;
5304 }
5305 global_rsv->reserved -= num_bytes;
5306 if (global_rsv->reserved < global_rsv->size)
5307 global_rsv->full = 0;
5308 spin_unlock(&global_rsv->lock);
5309
3a584174 5310 block_rsv_add_bytes(dest, num_bytes, true);
d52be818
JB
5311 return 0;
5312}
5313
957780eb
JB
5314/*
5315 * This is for space we already have accounted in space_info->bytes_may_use, so
5316 * basically when we're returning space from block_rsv's.
5317 */
5318static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5319 struct btrfs_space_info *space_info,
5320 u64 num_bytes)
5321{
5322 struct reserve_ticket *ticket;
5323 struct list_head *head;
5324 u64 used;
5325 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5326 bool check_overcommit = false;
5327
5328 spin_lock(&space_info->lock);
5329 head = &space_info->priority_tickets;
5330
5331 /*
5332 * If we are over our limit then we need to check and see if we can
5333 * overcommit, and if we can't then we just need to free up our space
5334 * and not satisfy any requests.
5335 */
0eee8a49 5336 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5337 if (used - num_bytes >= space_info->total_bytes)
5338 check_overcommit = true;
5339again:
5340 while (!list_empty(head) && num_bytes) {
5341 ticket = list_first_entry(head, struct reserve_ticket,
5342 list);
5343 /*
5344 * We use 0 bytes because this space is already reserved, so
5345 * adding the ticket space would be a double count.
5346 */
5347 if (check_overcommit &&
c1c4919b 5348 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5349 break;
5350 if (num_bytes >= ticket->bytes) {
5351 list_del_init(&ticket->list);
5352 num_bytes -= ticket->bytes;
5353 ticket->bytes = 0;
ce129655 5354 space_info->tickets_id++;
957780eb
JB
5355 wake_up(&ticket->wait);
5356 } else {
5357 ticket->bytes -= num_bytes;
5358 num_bytes = 0;
5359 }
5360 }
5361
5362 if (num_bytes && head == &space_info->priority_tickets) {
5363 head = &space_info->tickets;
5364 flush = BTRFS_RESERVE_FLUSH_ALL;
5365 goto again;
5366 }
5367 space_info->bytes_may_use -= num_bytes;
5368 trace_btrfs_space_reservation(fs_info, "space_info",
5369 space_info->flags, num_bytes, 0);
5370 spin_unlock(&space_info->lock);
5371}
5372
5373/*
5374 * This is for newly allocated space that isn't accounted in
5375 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5376 * we use this helper.
5377 */
5378static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5379 struct btrfs_space_info *space_info,
5380 u64 num_bytes)
5381{
5382 struct reserve_ticket *ticket;
5383 struct list_head *head = &space_info->priority_tickets;
5384
5385again:
5386 while (!list_empty(head) && num_bytes) {
5387 ticket = list_first_entry(head, struct reserve_ticket,
5388 list);
5389 if (num_bytes >= ticket->bytes) {
5390 trace_btrfs_space_reservation(fs_info, "space_info",
5391 space_info->flags,
5392 ticket->bytes, 1);
5393 list_del_init(&ticket->list);
5394 num_bytes -= ticket->bytes;
5395 space_info->bytes_may_use += ticket->bytes;
5396 ticket->bytes = 0;
ce129655 5397 space_info->tickets_id++;
957780eb
JB
5398 wake_up(&ticket->wait);
5399 } else {
5400 trace_btrfs_space_reservation(fs_info, "space_info",
5401 space_info->flags,
5402 num_bytes, 1);
5403 space_info->bytes_may_use += num_bytes;
5404 ticket->bytes -= num_bytes;
5405 num_bytes = 0;
5406 }
5407 }
5408
5409 if (num_bytes && head == &space_info->priority_tickets) {
5410 head = &space_info->tickets;
5411 goto again;
5412 }
5413}
5414
69fe2d75 5415static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5416 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5417 struct btrfs_block_rsv *dest, u64 num_bytes,
5418 u64 *qgroup_to_release_ret)
f0486c68
YZ
5419{
5420 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5421 u64 qgroup_to_release = 0;
69fe2d75 5422 u64 ret;
f0486c68
YZ
5423
5424 spin_lock(&block_rsv->lock);
ff6bc37e 5425 if (num_bytes == (u64)-1) {
f0486c68 5426 num_bytes = block_rsv->size;
ff6bc37e
QW
5427 qgroup_to_release = block_rsv->qgroup_rsv_size;
5428 }
f0486c68
YZ
5429 block_rsv->size -= num_bytes;
5430 if (block_rsv->reserved >= block_rsv->size) {
5431 num_bytes = block_rsv->reserved - block_rsv->size;
5432 block_rsv->reserved = block_rsv->size;
5433 block_rsv->full = 1;
5434 } else {
5435 num_bytes = 0;
5436 }
ff6bc37e
QW
5437 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5438 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5439 block_rsv->qgroup_rsv_size;
5440 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5441 } else {
5442 qgroup_to_release = 0;
5443 }
f0486c68
YZ
5444 spin_unlock(&block_rsv->lock);
5445
69fe2d75 5446 ret = num_bytes;
f0486c68
YZ
5447 if (num_bytes > 0) {
5448 if (dest) {
e9e22899
JB
5449 spin_lock(&dest->lock);
5450 if (!dest->full) {
5451 u64 bytes_to_add;
5452
5453 bytes_to_add = dest->size - dest->reserved;
5454 bytes_to_add = min(num_bytes, bytes_to_add);
5455 dest->reserved += bytes_to_add;
5456 if (dest->reserved >= dest->size)
5457 dest->full = 1;
5458 num_bytes -= bytes_to_add;
5459 }
5460 spin_unlock(&dest->lock);
5461 }
957780eb
JB
5462 if (num_bytes)
5463 space_info_add_old_bytes(fs_info, space_info,
5464 num_bytes);
9ed74f2d 5465 }
ff6bc37e
QW
5466 if (qgroup_to_release_ret)
5467 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5468 return ret;
f0486c68 5469}
4e06bdd6 5470
25d609f8
JB
5471int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5472 struct btrfs_block_rsv *dst, u64 num_bytes,
3a584174 5473 bool update_size)
f0486c68
YZ
5474{
5475 int ret;
9ed74f2d 5476
f0486c68
YZ
5477 ret = block_rsv_use_bytes(src, num_bytes);
5478 if (ret)
5479 return ret;
9ed74f2d 5480
25d609f8 5481 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5482 return 0;
5483}
5484
66d8f3dd 5485void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5486{
f0486c68
YZ
5487 memset(rsv, 0, sizeof(*rsv));
5488 spin_lock_init(&rsv->lock);
66d8f3dd 5489 rsv->type = type;
f0486c68
YZ
5490}
5491
69fe2d75
JB
5492void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5493 struct btrfs_block_rsv *rsv,
5494 unsigned short type)
5495{
5496 btrfs_init_block_rsv(rsv, type);
5497 rsv->space_info = __find_space_info(fs_info,
5498 BTRFS_BLOCK_GROUP_METADATA);
5499}
5500
2ff7e61e 5501struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5502 unsigned short type)
f0486c68
YZ
5503{
5504 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5505
f0486c68
YZ
5506 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5507 if (!block_rsv)
5508 return NULL;
9ed74f2d 5509
69fe2d75 5510 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5511 return block_rsv;
5512}
9ed74f2d 5513
2ff7e61e 5514void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5515 struct btrfs_block_rsv *rsv)
5516{
2aaa6655
JB
5517 if (!rsv)
5518 return;
2ff7e61e 5519 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5520 kfree(rsv);
9ed74f2d
JB
5521}
5522
08e007d2
MX
5523int btrfs_block_rsv_add(struct btrfs_root *root,
5524 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5525 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5526{
f0486c68 5527 int ret;
9ed74f2d 5528
f0486c68
YZ
5529 if (num_bytes == 0)
5530 return 0;
8bb8ab2e 5531
61b520a9 5532 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5a2cb25a 5533 if (!ret)
3a584174 5534 block_rsv_add_bytes(block_rsv, num_bytes, true);
9ed74f2d 5535
f0486c68 5536 return ret;
f0486c68 5537}
9ed74f2d 5538
2ff7e61e 5539int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5540{
5541 u64 num_bytes = 0;
f0486c68 5542 int ret = -ENOSPC;
9ed74f2d 5543
f0486c68
YZ
5544 if (!block_rsv)
5545 return 0;
9ed74f2d 5546
f0486c68 5547 spin_lock(&block_rsv->lock);
36ba022a
JB
5548 num_bytes = div_factor(block_rsv->size, min_factor);
5549 if (block_rsv->reserved >= num_bytes)
5550 ret = 0;
5551 spin_unlock(&block_rsv->lock);
9ed74f2d 5552
36ba022a
JB
5553 return ret;
5554}
5555
08e007d2
MX
5556int btrfs_block_rsv_refill(struct btrfs_root *root,
5557 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5558 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5559{
5560 u64 num_bytes = 0;
5561 int ret = -ENOSPC;
5562
5563 if (!block_rsv)
5564 return 0;
5565
5566 spin_lock(&block_rsv->lock);
5567 num_bytes = min_reserved;
13553e52 5568 if (block_rsv->reserved >= num_bytes)
f0486c68 5569 ret = 0;
13553e52 5570 else
f0486c68 5571 num_bytes -= block_rsv->reserved;
f0486c68 5572 spin_unlock(&block_rsv->lock);
13553e52 5573
f0486c68
YZ
5574 if (!ret)
5575 return 0;
5576
aa38a711 5577 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640 5578 if (!ret) {
3a584174 5579 block_rsv_add_bytes(block_rsv, num_bytes, false);
f0486c68 5580 return 0;
6a63209f 5581 }
9ed74f2d 5582
13553e52 5583 return ret;
f0486c68
YZ
5584}
5585
69fe2d75
JB
5586/**
5587 * btrfs_inode_rsv_refill - refill the inode block rsv.
5588 * @inode - the inode we are refilling.
5589 * @flush - the flusing restriction.
5590 *
5591 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5592 * block_rsv->size as the minimum size. We'll either refill the missing amount
5593 * or return if we already have enough space. This will also handle the resreve
5594 * tracepoint for the reserved amount.
5595 */
3f2dd7a0
QW
5596static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5597 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5598{
5599 struct btrfs_root *root = inode->root;
5600 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5601 u64 num_bytes = 0;
ff6bc37e 5602 u64 qgroup_num_bytes = 0;
69fe2d75
JB
5603 int ret = -ENOSPC;
5604
5605 spin_lock(&block_rsv->lock);
5606 if (block_rsv->reserved < block_rsv->size)
5607 num_bytes = block_rsv->size - block_rsv->reserved;
ff6bc37e
QW
5608 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5609 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5610 block_rsv->qgroup_rsv_reserved;
69fe2d75
JB
5611 spin_unlock(&block_rsv->lock);
5612
5613 if (num_bytes == 0)
5614 return 0;
5615
ff6bc37e 5616 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
43b18595
QW
5617 if (ret)
5618 return ret;
69fe2d75
JB
5619 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5620 if (!ret) {
3a584174 5621 block_rsv_add_bytes(block_rsv, num_bytes, false);
69fe2d75
JB
5622 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5623 btrfs_ino(inode), num_bytes, 1);
ff6bc37e
QW
5624
5625 /* Don't forget to increase qgroup_rsv_reserved */
5626 spin_lock(&block_rsv->lock);
5627 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5628 spin_unlock(&block_rsv->lock);
5629 } else
5630 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
69fe2d75
JB
5631 return ret;
5632}
5633
5634/**
5635 * btrfs_inode_rsv_release - release any excessive reservation.
5636 * @inode - the inode we need to release from.
43b18595
QW
5637 * @qgroup_free - free or convert qgroup meta.
5638 * Unlike normal operation, qgroup meta reservation needs to know if we are
5639 * freeing qgroup reservation or just converting it into per-trans. Normally
5640 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5641 *
5642 * This is the same as btrfs_block_rsv_release, except that it handles the
5643 * tracepoint for the reservation.
5644 */
43b18595 5645static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5646{
5647 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5648 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5649 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5650 u64 released = 0;
ff6bc37e 5651 u64 qgroup_to_release = 0;
69fe2d75
JB
5652
5653 /*
5654 * Since we statically set the block_rsv->size we just want to say we
5655 * are releasing 0 bytes, and then we'll just get the reservation over
5656 * the size free'd.
5657 */
ff6bc37e
QW
5658 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5659 &qgroup_to_release);
69fe2d75
JB
5660 if (released > 0)
5661 trace_btrfs_space_reservation(fs_info, "delalloc",
5662 btrfs_ino(inode), released, 0);
43b18595 5663 if (qgroup_free)
ff6bc37e 5664 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5665 else
ff6bc37e
QW
5666 btrfs_qgroup_convert_reserved_meta(inode->root,
5667 qgroup_to_release);
69fe2d75
JB
5668}
5669
2ff7e61e 5670void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5671 struct btrfs_block_rsv *block_rsv,
5672 u64 num_bytes)
5673{
0b246afa
JM
5674 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5675
17504584 5676 if (global_rsv == block_rsv ||
f0486c68
YZ
5677 block_rsv->space_info != global_rsv->space_info)
5678 global_rsv = NULL;
ff6bc37e 5679 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
6a63209f
JB
5680}
5681
8929ecfa
YZ
5682static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5683{
5684 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5685 struct btrfs_space_info *sinfo = block_rsv->space_info;
5686 u64 num_bytes;
6a63209f 5687
ae2e4728
JB
5688 /*
5689 * The global block rsv is based on the size of the extent tree, the
5690 * checksum tree and the root tree. If the fs is empty we want to set
5691 * it to a minimal amount for safety.
5692 */
5693 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5694 btrfs_root_used(&fs_info->csum_root->root_item) +
5695 btrfs_root_used(&fs_info->tree_root->root_item);
5696 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5697
8929ecfa 5698 spin_lock(&sinfo->lock);
1f699d38 5699 spin_lock(&block_rsv->lock);
4e06bdd6 5700
ee22184b 5701 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5702
fb4b10e5 5703 if (block_rsv->reserved < block_rsv->size) {
4136135b 5704 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5705 if (sinfo->total_bytes > num_bytes) {
5706 num_bytes = sinfo->total_bytes - num_bytes;
5707 num_bytes = min(num_bytes,
5708 block_rsv->size - block_rsv->reserved);
5709 block_rsv->reserved += num_bytes;
5710 sinfo->bytes_may_use += num_bytes;
5711 trace_btrfs_space_reservation(fs_info, "space_info",
5712 sinfo->flags, num_bytes,
5713 1);
5714 }
5715 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5716 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5717 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5718 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5719 sinfo->flags, num_bytes, 0);
8929ecfa 5720 block_rsv->reserved = block_rsv->size;
8929ecfa 5721 }
182608c8 5722
fb4b10e5
JB
5723 if (block_rsv->reserved == block_rsv->size)
5724 block_rsv->full = 1;
5725 else
5726 block_rsv->full = 0;
5727
8929ecfa 5728 spin_unlock(&block_rsv->lock);
1f699d38 5729 spin_unlock(&sinfo->lock);
6a63209f
JB
5730}
5731
f0486c68 5732static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5733{
f0486c68 5734 struct btrfs_space_info *space_info;
6a63209f 5735
f0486c68
YZ
5736 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5737 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5738
f0486c68 5739 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5740 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5741 fs_info->trans_block_rsv.space_info = space_info;
5742 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5743 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5744
8929ecfa
YZ
5745 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5746 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5747 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5748 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5749 if (fs_info->quota_root)
5750 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5751 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5752
8929ecfa 5753 update_global_block_rsv(fs_info);
6a63209f
JB
5754}
5755
8929ecfa 5756static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5757{
8c2a3ca2 5758 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 5759 (u64)-1, NULL);
8929ecfa
YZ
5760 WARN_ON(fs_info->trans_block_rsv.size > 0);
5761 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5762 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5763 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5764 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5765 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5766}
5767
6a63209f 5768
4fbcdf66
FM
5769/*
5770 * To be called after all the new block groups attached to the transaction
5771 * handle have been created (btrfs_create_pending_block_groups()).
5772 */
5773void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5774{
64b63580 5775 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5776
5777 if (!trans->chunk_bytes_reserved)
5778 return;
5779
5780 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5781
5782 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 5783 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
5784 trans->chunk_bytes_reserved = 0;
5785}
5786
d5c12070
MX
5787/*
5788 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5789 * root: the root of the parent directory
5790 * rsv: block reservation
5791 * items: the number of items that we need do reservation
a5b7f429 5792 * use_global_rsv: allow fallback to the global block reservation
d5c12070
MX
5793 *
5794 * This function is used to reserve the space for snapshot/subvolume
5795 * creation and deletion. Those operations are different with the
5796 * common file/directory operations, they change two fs/file trees
5797 * and root tree, the number of items that the qgroup reserves is
5798 * different with the free space reservation. So we can not use
01327610 5799 * the space reservation mechanism in start_transaction().
d5c12070
MX
5800 */
5801int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
a5b7f429 5802 struct btrfs_block_rsv *rsv, int items,
ee3441b4 5803 bool use_global_rsv)
a22285a6 5804{
a5b7f429 5805 u64 qgroup_num_bytes = 0;
d5c12070
MX
5806 u64 num_bytes;
5807 int ret;
0b246afa
JM
5808 struct btrfs_fs_info *fs_info = root->fs_info;
5809 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5810
0b246afa 5811 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5812 /* One for parent inode, two for dir entries */
a5b7f429
LF
5813 qgroup_num_bytes = 3 * fs_info->nodesize;
5814 ret = btrfs_qgroup_reserve_meta_prealloc(root,
5815 qgroup_num_bytes, true);
d5c12070
MX
5816 if (ret)
5817 return ret;
d5c12070
MX
5818 }
5819
0b246afa
JM
5820 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5821 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
5822 BTRFS_BLOCK_GROUP_METADATA);
5823 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5824 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5825
5826 if (ret == -ENOSPC && use_global_rsv)
3a584174 5827 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
ee3441b4 5828
a5b7f429
LF
5829 if (ret && qgroup_num_bytes)
5830 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
d5c12070
MX
5831
5832 return ret;
5833}
5834
2ff7e61e 5835void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 5836 struct btrfs_block_rsv *rsv)
d5c12070 5837{
2ff7e61e 5838 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
5839}
5840
69fe2d75
JB
5841static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5842 struct btrfs_inode *inode)
9e0baf60 5843{
69fe2d75
JB
5844 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5845 u64 reserve_size = 0;
ff6bc37e 5846 u64 qgroup_rsv_size = 0;
69fe2d75
JB
5847 u64 csum_leaves;
5848 unsigned outstanding_extents;
9e0baf60 5849
69fe2d75
JB
5850 lockdep_assert_held(&inode->lock);
5851 outstanding_extents = inode->outstanding_extents;
5852 if (outstanding_extents)
5853 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
5854 outstanding_extents + 1);
5855 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
5856 inode->csum_bytes);
5857 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
5858 csum_leaves);
ff6bc37e
QW
5859 /*
5860 * For qgroup rsv, the calculation is very simple:
5861 * account one nodesize for each outstanding extent
5862 *
5863 * This is overestimating in most cases.
5864 */
5865 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
9e0baf60 5866
69fe2d75
JB
5867 spin_lock(&block_rsv->lock);
5868 block_rsv->size = reserve_size;
ff6bc37e 5869 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 5870 spin_unlock(&block_rsv->lock);
0ca1f7ce 5871}
c146afad 5872
9f3db423 5873int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 5874{
3ffbd68c 5875 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75 5876 unsigned nr_extents;
08e007d2 5877 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5878 int ret = 0;
c64c2bd8 5879 bool delalloc_lock = true;
6324fbf3 5880
c64c2bd8
JB
5881 /* If we are a free space inode we need to not flush since we will be in
5882 * the middle of a transaction commit. We also don't need the delalloc
5883 * mutex since we won't race with anybody. We need this mostly to make
5884 * lockdep shut its filthy mouth.
bac357dc
JB
5885 *
5886 * If we have a transaction open (can happen if we call truncate_block
5887 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
5888 */
5889 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5890 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 5891 delalloc_lock = false;
da07d4ab
NB
5892 } else {
5893 if (current->journal_info)
5894 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 5895
da07d4ab
NB
5896 if (btrfs_transaction_in_commit(fs_info))
5897 schedule_timeout(1);
5898 }
ec44a35c 5899
c64c2bd8 5900 if (delalloc_lock)
9f3db423 5901 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 5902
0b246afa 5903 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
5904
5905 /* Add our new extents and calculate the new rsv size. */
9f3db423 5906 spin_lock(&inode->lock);
69fe2d75 5907 nr_extents = count_max_extents(num_bytes);
8b62f87b 5908 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
5909 inode->csum_bytes += num_bytes;
5910 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 5911 spin_unlock(&inode->lock);
57a45ced 5912
69fe2d75 5913 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 5914 if (unlikely(ret))
88e081bf 5915 goto out_fail;
25179201 5916
c64c2bd8 5917 if (delalloc_lock)
9f3db423 5918 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 5919 return 0;
88e081bf
WS
5920
5921out_fail:
9f3db423 5922 spin_lock(&inode->lock);
8b62f87b
JB
5923 nr_extents = count_max_extents(num_bytes);
5924 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
5925 inode->csum_bytes -= num_bytes;
5926 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 5927 spin_unlock(&inode->lock);
88e081bf 5928
43b18595 5929 btrfs_inode_rsv_release(inode, true);
88e081bf 5930 if (delalloc_lock)
9f3db423 5931 mutex_unlock(&inode->delalloc_mutex);
88e081bf 5932 return ret;
0ca1f7ce
YZ
5933}
5934
7709cde3
JB
5935/**
5936 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
5937 * @inode: the inode to release the reservation for.
5938 * @num_bytes: the number of bytes we are releasing.
43b18595 5939 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
5940 *
5941 * This will release the metadata reservation for an inode. This can be called
5942 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 5943 * reservations, or on error for the same reason.
7709cde3 5944 */
43b18595
QW
5945void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
5946 bool qgroup_free)
0ca1f7ce 5947{
3ffbd68c 5948 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0ca1f7ce 5949
0b246afa 5950 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 5951 spin_lock(&inode->lock);
69fe2d75
JB
5952 inode->csum_bytes -= num_bytes;
5953 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 5954 spin_unlock(&inode->lock);
0ca1f7ce 5955
0b246afa 5956 if (btrfs_is_testing(fs_info))
6a3891c5
JB
5957 return;
5958
43b18595 5959 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
5960}
5961
8b62f87b
JB
5962/**
5963 * btrfs_delalloc_release_extents - release our outstanding_extents
5964 * @inode: the inode to balance the reservation for.
5965 * @num_bytes: the number of bytes we originally reserved with
43b18595 5966 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
5967 *
5968 * When we reserve space we increase outstanding_extents for the extents we may
5969 * add. Once we've set the range as delalloc or created our ordered extents we
5970 * have outstanding_extents to track the real usage, so we use this to free our
5971 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
5972 * with btrfs_delalloc_reserve_metadata.
5973 */
43b18595
QW
5974void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
5975 bool qgroup_free)
8b62f87b 5976{
3ffbd68c 5977 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8b62f87b 5978 unsigned num_extents;
8b62f87b
JB
5979
5980 spin_lock(&inode->lock);
5981 num_extents = count_max_extents(num_bytes);
5982 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 5983 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
5984 spin_unlock(&inode->lock);
5985
8b62f87b
JB
5986 if (btrfs_is_testing(fs_info))
5987 return;
5988
43b18595 5989 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
5990}
5991
1ada3a62 5992/**
7cf5b976 5993 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
5994 * delalloc
5995 * @inode: inode we're writing to
5996 * @start: start range we are writing to
5997 * @len: how long the range we are writing to
364ecf36
QW
5998 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
5999 * current reservation.
1ada3a62 6000 *
1ada3a62
QW
6001 * This will do the following things
6002 *
6003 * o reserve space in data space info for num bytes
6004 * and reserve precious corresponding qgroup space
6005 * (Done in check_data_free_space)
6006 *
6007 * o reserve space for metadata space, based on the number of outstanding
6008 * extents and how much csums will be needed
6009 * also reserve metadata space in a per root over-reserve method.
6010 * o add to the inodes->delalloc_bytes
6011 * o add it to the fs_info's delalloc inodes list.
6012 * (Above 3 all done in delalloc_reserve_metadata)
6013 *
6014 * Return 0 for success
6015 * Return <0 for error(-ENOSPC or -EQUOT)
6016 */
364ecf36
QW
6017int btrfs_delalloc_reserve_space(struct inode *inode,
6018 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6019{
6020 int ret;
6021
364ecf36 6022 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6023 if (ret < 0)
6024 return ret;
9f3db423 6025 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6026 if (ret < 0)
bc42bda2 6027 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6028 return ret;
6029}
6030
7709cde3 6031/**
7cf5b976 6032 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6033 * @inode: inode we're releasing space for
6034 * @start: start position of the space already reserved
6035 * @len: the len of the space already reserved
8b62f87b 6036 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6037 *
6038 * This function will release the metadata space that was not used and will
6039 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6040 * list if there are no delalloc bytes left.
6041 * Also it will handle the qgroup reserved space.
6042 */
bc42bda2 6043void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6044 struct extent_changeset *reserved,
43b18595 6045 u64 start, u64 len, bool qgroup_free)
1ada3a62 6046{
43b18595 6047 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6048 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6049}
6050
ce93ec54 6051static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6052 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6053 u64 num_bytes, int alloc)
9078a3e1 6054{
0af3d00b 6055 struct btrfs_block_group_cache *cache = NULL;
db94535d 6056 u64 total = num_bytes;
9078a3e1 6057 u64 old_val;
db94535d 6058 u64 byte_in_group;
0af3d00b 6059 int factor;
3e1ad54f 6060
5d4f98a2 6061 /* block accounting for super block */
eb73c1b7 6062 spin_lock(&info->delalloc_root_lock);
6c41761f 6063 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6064 if (alloc)
6065 old_val += num_bytes;
6066 else
6067 old_val -= num_bytes;
6c41761f 6068 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6069 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6070
d397712b 6071 while (total) {
db94535d 6072 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6073 if (!cache)
79787eaa 6074 return -ENOENT;
46df06b8
DS
6075 factor = btrfs_bg_type_to_factor(cache->flags);
6076
9d66e233
JB
6077 /*
6078 * If this block group has free space cache written out, we
6079 * need to make sure to load it if we are removing space. This
6080 * is because we need the unpinning stage to actually add the
6081 * space back to the block group, otherwise we will leak space.
6082 */
6083 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6084 cache_block_group(cache, 1);
0af3d00b 6085
db94535d
CM
6086 byte_in_group = bytenr - cache->key.objectid;
6087 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6088
25179201 6089 spin_lock(&cache->space_info->lock);
c286ac48 6090 spin_lock(&cache->lock);
0af3d00b 6091
6202df69 6092 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6093 cache->disk_cache_state < BTRFS_DC_CLEAR)
6094 cache->disk_cache_state = BTRFS_DC_CLEAR;
6095
9078a3e1 6096 old_val = btrfs_block_group_used(&cache->item);
db94535d 6097 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6098 if (alloc) {
db94535d 6099 old_val += num_bytes;
11833d66
YZ
6100 btrfs_set_block_group_used(&cache->item, old_val);
6101 cache->reserved -= num_bytes;
11833d66 6102 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6103 cache->space_info->bytes_used += num_bytes;
6104 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6105 spin_unlock(&cache->lock);
25179201 6106 spin_unlock(&cache->space_info->lock);
cd1bc465 6107 } else {
db94535d 6108 old_val -= num_bytes;
ae0ab003
FM
6109 btrfs_set_block_group_used(&cache->item, old_val);
6110 cache->pinned += num_bytes;
6111 cache->space_info->bytes_pinned += num_bytes;
6112 cache->space_info->bytes_used -= num_bytes;
6113 cache->space_info->disk_used -= num_bytes * factor;
6114 spin_unlock(&cache->lock);
6115 spin_unlock(&cache->space_info->lock);
47ab2a6c 6116
0b246afa 6117 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6118 cache->space_info->flags,
6119 num_bytes, 1);
dec59fa3
EL
6120 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6121 num_bytes,
6122 BTRFS_TOTAL_BYTES_PINNED_BATCH);
ae0ab003
FM
6123 set_extent_dirty(info->pinned_extents,
6124 bytenr, bytenr + num_bytes - 1,
6125 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6126 }
1bbc621e
CM
6127
6128 spin_lock(&trans->transaction->dirty_bgs_lock);
6129 if (list_empty(&cache->dirty_list)) {
6130 list_add_tail(&cache->dirty_list,
6131 &trans->transaction->dirty_bgs);
bece2e82 6132 trans->transaction->num_dirty_bgs++;
1bbc621e
CM
6133 btrfs_get_block_group(cache);
6134 }
6135 spin_unlock(&trans->transaction->dirty_bgs_lock);
6136
036a9348
FM
6137 /*
6138 * No longer have used bytes in this block group, queue it for
6139 * deletion. We do this after adding the block group to the
6140 * dirty list to avoid races between cleaner kthread and space
6141 * cache writeout.
6142 */
031f24da
QW
6143 if (!alloc && old_val == 0)
6144 btrfs_mark_bg_unused(cache);
036a9348 6145
fa9c0d79 6146 btrfs_put_block_group(cache);
db94535d
CM
6147 total -= num_bytes;
6148 bytenr += num_bytes;
9078a3e1
CM
6149 }
6150 return 0;
6151}
6324fbf3 6152
2ff7e61e 6153static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6154{
0f9dd46c 6155 struct btrfs_block_group_cache *cache;
d2fb3437 6156 u64 bytenr;
0f9dd46c 6157
0b246afa
JM
6158 spin_lock(&fs_info->block_group_cache_lock);
6159 bytenr = fs_info->first_logical_byte;
6160 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6161
6162 if (bytenr < (u64)-1)
6163 return bytenr;
6164
0b246afa 6165 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6166 if (!cache)
a061fc8d 6167 return 0;
0f9dd46c 6168
d2fb3437 6169 bytenr = cache->key.objectid;
fa9c0d79 6170 btrfs_put_block_group(cache);
d2fb3437
YZ
6171
6172 return bytenr;
a061fc8d
CM
6173}
6174
2ff7e61e 6175static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6176 struct btrfs_block_group_cache *cache,
6177 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6178{
11833d66
YZ
6179 spin_lock(&cache->space_info->lock);
6180 spin_lock(&cache->lock);
6181 cache->pinned += num_bytes;
6182 cache->space_info->bytes_pinned += num_bytes;
6183 if (reserved) {
6184 cache->reserved -= num_bytes;
6185 cache->space_info->bytes_reserved -= num_bytes;
6186 }
6187 spin_unlock(&cache->lock);
6188 spin_unlock(&cache->space_info->lock);
68b38550 6189
0b246afa 6190 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6191 cache->space_info->flags, num_bytes, 1);
dec59fa3
EL
6192 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6193 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
0b246afa 6194 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6195 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6196 return 0;
6197}
68b38550 6198
f0486c68
YZ
6199/*
6200 * this function must be called within transaction
6201 */
2ff7e61e 6202int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6203 u64 bytenr, u64 num_bytes, int reserved)
6204{
6205 struct btrfs_block_group_cache *cache;
68b38550 6206
0b246afa 6207 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6208 BUG_ON(!cache); /* Logic error */
f0486c68 6209
2ff7e61e 6210 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6211
6212 btrfs_put_block_group(cache);
11833d66
YZ
6213 return 0;
6214}
6215
f0486c68 6216/*
e688b725
CM
6217 * this function must be called within transaction
6218 */
2ff7e61e 6219int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6220 u64 bytenr, u64 num_bytes)
6221{
6222 struct btrfs_block_group_cache *cache;
b50c6e25 6223 int ret;
e688b725 6224
0b246afa 6225 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6226 if (!cache)
6227 return -EINVAL;
e688b725
CM
6228
6229 /*
6230 * pull in the free space cache (if any) so that our pin
6231 * removes the free space from the cache. We have load_only set
6232 * to one because the slow code to read in the free extents does check
6233 * the pinned extents.
6234 */
f6373bf3 6235 cache_block_group(cache, 1);
e688b725 6236
2ff7e61e 6237 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6238
6239 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6240 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6241 btrfs_put_block_group(cache);
b50c6e25 6242 return ret;
e688b725
CM
6243}
6244
2ff7e61e
JM
6245static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6246 u64 start, u64 num_bytes)
8c2a1a30
JB
6247{
6248 int ret;
6249 struct btrfs_block_group_cache *block_group;
6250 struct btrfs_caching_control *caching_ctl;
6251
0b246afa 6252 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6253 if (!block_group)
6254 return -EINVAL;
6255
6256 cache_block_group(block_group, 0);
6257 caching_ctl = get_caching_control(block_group);
6258
6259 if (!caching_ctl) {
6260 /* Logic error */
6261 BUG_ON(!block_group_cache_done(block_group));
6262 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6263 } else {
6264 mutex_lock(&caching_ctl->mutex);
6265
6266 if (start >= caching_ctl->progress) {
2ff7e61e 6267 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6268 } else if (start + num_bytes <= caching_ctl->progress) {
6269 ret = btrfs_remove_free_space(block_group,
6270 start, num_bytes);
6271 } else {
6272 num_bytes = caching_ctl->progress - start;
6273 ret = btrfs_remove_free_space(block_group,
6274 start, num_bytes);
6275 if (ret)
6276 goto out_lock;
6277
6278 num_bytes = (start + num_bytes) -
6279 caching_ctl->progress;
6280 start = caching_ctl->progress;
2ff7e61e 6281 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6282 }
6283out_lock:
6284 mutex_unlock(&caching_ctl->mutex);
6285 put_caching_control(caching_ctl);
6286 }
6287 btrfs_put_block_group(block_group);
6288 return ret;
6289}
6290
2ff7e61e 6291int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6292 struct extent_buffer *eb)
6293{
6294 struct btrfs_file_extent_item *item;
6295 struct btrfs_key key;
6296 int found_type;
6297 int i;
b89311ef 6298 int ret = 0;
8c2a1a30 6299
2ff7e61e 6300 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6301 return 0;
6302
6303 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6304 btrfs_item_key_to_cpu(eb, &key, i);
6305 if (key.type != BTRFS_EXTENT_DATA_KEY)
6306 continue;
6307 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6308 found_type = btrfs_file_extent_type(eb, item);
6309 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6310 continue;
6311 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6312 continue;
6313 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6314 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
b89311ef
GJ
6315 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6316 if (ret)
6317 break;
8c2a1a30
JB
6318 }
6319
b89311ef 6320 return ret;
8c2a1a30
JB
6321}
6322
9cfa3e34
FM
6323static void
6324btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6325{
6326 atomic_inc(&bg->reservations);
6327}
6328
6329void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6330 const u64 start)
6331{
6332 struct btrfs_block_group_cache *bg;
6333
6334 bg = btrfs_lookup_block_group(fs_info, start);
6335 ASSERT(bg);
6336 if (atomic_dec_and_test(&bg->reservations))
4625956a 6337 wake_up_var(&bg->reservations);
9cfa3e34
FM
6338 btrfs_put_block_group(bg);
6339}
6340
9cfa3e34
FM
6341void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6342{
6343 struct btrfs_space_info *space_info = bg->space_info;
6344
6345 ASSERT(bg->ro);
6346
6347 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6348 return;
6349
6350 /*
6351 * Our block group is read only but before we set it to read only,
6352 * some task might have had allocated an extent from it already, but it
6353 * has not yet created a respective ordered extent (and added it to a
6354 * root's list of ordered extents).
6355 * Therefore wait for any task currently allocating extents, since the
6356 * block group's reservations counter is incremented while a read lock
6357 * on the groups' semaphore is held and decremented after releasing
6358 * the read access on that semaphore and creating the ordered extent.
6359 */
6360 down_write(&space_info->groups_sem);
6361 up_write(&space_info->groups_sem);
6362
4625956a 6363 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6364}
6365
fb25e914 6366/**
4824f1f4 6367 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6368 * @cache: The cache we are manipulating
18513091
WX
6369 * @ram_bytes: The number of bytes of file content, and will be same to
6370 * @num_bytes except for the compress path.
fb25e914 6371 * @num_bytes: The number of bytes in question
e570fd27 6372 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6373 *
745699ef
XW
6374 * This is called by the allocator when it reserves space. If this is a
6375 * reservation and the block group has become read only we cannot make the
6376 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6377 */
4824f1f4 6378static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6379 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6380{
fb25e914 6381 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6382 int ret = 0;
79787eaa 6383
fb25e914
JB
6384 spin_lock(&space_info->lock);
6385 spin_lock(&cache->lock);
4824f1f4
WX
6386 if (cache->ro) {
6387 ret = -EAGAIN;
fb25e914 6388 } else {
4824f1f4
WX
6389 cache->reserved += num_bytes;
6390 space_info->bytes_reserved += num_bytes;
18513091 6391 space_info->bytes_may_use -= ram_bytes;
e570fd27 6392 if (delalloc)
4824f1f4 6393 cache->delalloc_bytes += num_bytes;
324ae4df 6394 }
fb25e914
JB
6395 spin_unlock(&cache->lock);
6396 spin_unlock(&space_info->lock);
f0486c68 6397 return ret;
324ae4df 6398}
9078a3e1 6399
4824f1f4
WX
6400/**
6401 * btrfs_free_reserved_bytes - update the block_group and space info counters
6402 * @cache: The cache we are manipulating
6403 * @num_bytes: The number of bytes in question
6404 * @delalloc: The blocks are allocated for the delalloc write
6405 *
6406 * This is called by somebody who is freeing space that was never actually used
6407 * on disk. For example if you reserve some space for a new leaf in transaction
6408 * A and before transaction A commits you free that leaf, you call this with
6409 * reserve set to 0 in order to clear the reservation.
6410 */
6411
556f3ca8 6412static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6413 u64 num_bytes, int delalloc)
4824f1f4
WX
6414{
6415 struct btrfs_space_info *space_info = cache->space_info;
4824f1f4
WX
6416
6417 spin_lock(&space_info->lock);
6418 spin_lock(&cache->lock);
6419 if (cache->ro)
6420 space_info->bytes_readonly += num_bytes;
6421 cache->reserved -= num_bytes;
6422 space_info->bytes_reserved -= num_bytes;
6423
6424 if (delalloc)
6425 cache->delalloc_bytes -= num_bytes;
6426 spin_unlock(&cache->lock);
6427 spin_unlock(&space_info->lock);
4824f1f4 6428}
8b74c03e 6429void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6430{
11833d66
YZ
6431 struct btrfs_caching_control *next;
6432 struct btrfs_caching_control *caching_ctl;
6433 struct btrfs_block_group_cache *cache;
e8569813 6434
9e351cc8 6435 down_write(&fs_info->commit_root_sem);
25179201 6436
11833d66
YZ
6437 list_for_each_entry_safe(caching_ctl, next,
6438 &fs_info->caching_block_groups, list) {
6439 cache = caching_ctl->block_group;
6440 if (block_group_cache_done(cache)) {
6441 cache->last_byte_to_unpin = (u64)-1;
6442 list_del_init(&caching_ctl->list);
6443 put_caching_control(caching_ctl);
e8569813 6444 } else {
11833d66 6445 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6446 }
e8569813 6447 }
11833d66
YZ
6448
6449 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6450 fs_info->pinned_extents = &fs_info->freed_extents[1];
6451 else
6452 fs_info->pinned_extents = &fs_info->freed_extents[0];
6453
9e351cc8 6454 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6455
6456 update_global_block_rsv(fs_info);
e8569813
ZY
6457}
6458
c759c4e1
JB
6459/*
6460 * Returns the free cluster for the given space info and sets empty_cluster to
6461 * what it should be based on the mount options.
6462 */
6463static struct btrfs_free_cluster *
2ff7e61e
JM
6464fetch_cluster_info(struct btrfs_fs_info *fs_info,
6465 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6466{
6467 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6468
6469 *empty_cluster = 0;
6470 if (btrfs_mixed_space_info(space_info))
6471 return ret;
6472
c759c4e1 6473 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6474 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6475 if (btrfs_test_opt(fs_info, SSD))
6476 *empty_cluster = SZ_2M;
6477 else
ee22184b 6478 *empty_cluster = SZ_64K;
583b7231
HK
6479 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6480 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6481 *empty_cluster = SZ_2M;
0b246afa 6482 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6483 }
6484
6485 return ret;
6486}
6487
2ff7e61e
JM
6488static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6489 u64 start, u64 end,
678886bd 6490 const bool return_free_space)
ccd467d6 6491{
11833d66 6492 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6493 struct btrfs_space_info *space_info;
6494 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6495 struct btrfs_free_cluster *cluster = NULL;
11833d66 6496 u64 len;
c759c4e1
JB
6497 u64 total_unpinned = 0;
6498 u64 empty_cluster = 0;
7b398f8e 6499 bool readonly;
ccd467d6 6500
11833d66 6501 while (start <= end) {
7b398f8e 6502 readonly = false;
11833d66
YZ
6503 if (!cache ||
6504 start >= cache->key.objectid + cache->key.offset) {
6505 if (cache)
6506 btrfs_put_block_group(cache);
c759c4e1 6507 total_unpinned = 0;
11833d66 6508 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6509 BUG_ON(!cache); /* Logic error */
c759c4e1 6510
2ff7e61e 6511 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6512 cache->space_info,
6513 &empty_cluster);
6514 empty_cluster <<= 1;
11833d66
YZ
6515 }
6516
6517 len = cache->key.objectid + cache->key.offset - start;
6518 len = min(len, end + 1 - start);
6519
6520 if (start < cache->last_byte_to_unpin) {
6521 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6522 if (return_free_space)
6523 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6524 }
6525
f0486c68 6526 start += len;
c759c4e1 6527 total_unpinned += len;
7b398f8e 6528 space_info = cache->space_info;
f0486c68 6529
c759c4e1
JB
6530 /*
6531 * If this space cluster has been marked as fragmented and we've
6532 * unpinned enough in this block group to potentially allow a
6533 * cluster to be created inside of it go ahead and clear the
6534 * fragmented check.
6535 */
6536 if (cluster && cluster->fragmented &&
6537 total_unpinned > empty_cluster) {
6538 spin_lock(&cluster->lock);
6539 cluster->fragmented = 0;
6540 spin_unlock(&cluster->lock);
6541 }
6542
7b398f8e 6543 spin_lock(&space_info->lock);
11833d66
YZ
6544 spin_lock(&cache->lock);
6545 cache->pinned -= len;
7b398f8e 6546 space_info->bytes_pinned -= len;
c51e7bb1
JB
6547
6548 trace_btrfs_space_reservation(fs_info, "pinned",
6549 space_info->flags, len, 0);
4f4db217 6550 space_info->max_extent_size = 0;
dec59fa3
EL
6551 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6552 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
7b398f8e
JB
6553 if (cache->ro) {
6554 space_info->bytes_readonly += len;
6555 readonly = true;
6556 }
11833d66 6557 spin_unlock(&cache->lock);
957780eb
JB
6558 if (!readonly && return_free_space &&
6559 global_rsv->space_info == space_info) {
6560 u64 to_add = len;
92ac58ec 6561
7b398f8e
JB
6562 spin_lock(&global_rsv->lock);
6563 if (!global_rsv->full) {
957780eb
JB
6564 to_add = min(len, global_rsv->size -
6565 global_rsv->reserved);
6566 global_rsv->reserved += to_add;
6567 space_info->bytes_may_use += to_add;
7b398f8e
JB
6568 if (global_rsv->reserved >= global_rsv->size)
6569 global_rsv->full = 1;
957780eb
JB
6570 trace_btrfs_space_reservation(fs_info,
6571 "space_info",
6572 space_info->flags,
6573 to_add, 1);
6574 len -= to_add;
7b398f8e
JB
6575 }
6576 spin_unlock(&global_rsv->lock);
957780eb
JB
6577 /* Add to any tickets we may have */
6578 if (len)
6579 space_info_add_new_bytes(fs_info, space_info,
6580 len);
7b398f8e
JB
6581 }
6582 spin_unlock(&space_info->lock);
ccd467d6 6583 }
11833d66
YZ
6584
6585 if (cache)
6586 btrfs_put_block_group(cache);
ccd467d6
CM
6587 return 0;
6588}
6589
5ead2dd0 6590int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6591{
5ead2dd0 6592 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6593 struct btrfs_block_group_cache *block_group, *tmp;
6594 struct list_head *deleted_bgs;
11833d66 6595 struct extent_io_tree *unpin;
1a5bc167
CM
6596 u64 start;
6597 u64 end;
a28ec197 6598 int ret;
a28ec197 6599
11833d66
YZ
6600 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6601 unpin = &fs_info->freed_extents[1];
6602 else
6603 unpin = &fs_info->freed_extents[0];
6604
e33e17ee 6605 while (!trans->aborted) {
d4b450cd 6606 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6607 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6608 EXTENT_DIRTY, NULL);
d4b450cd
FM
6609 if (ret) {
6610 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6611 break;
d4b450cd 6612 }
1f3c79a2 6613
0b246afa 6614 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6615 ret = btrfs_discard_extent(fs_info, start,
5378e607 6616 end + 1 - start, NULL);
1f3c79a2 6617
af6f8f60 6618 clear_extent_dirty(unpin, start, end);
2ff7e61e 6619 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6620 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6621 cond_resched();
a28ec197 6622 }
817d52f8 6623
e33e17ee
JM
6624 /*
6625 * Transaction is finished. We don't need the lock anymore. We
6626 * do need to clean up the block groups in case of a transaction
6627 * abort.
6628 */
6629 deleted_bgs = &trans->transaction->deleted_bgs;
6630 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6631 u64 trimmed = 0;
6632
6633 ret = -EROFS;
6634 if (!trans->aborted)
2ff7e61e 6635 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6636 block_group->key.objectid,
6637 block_group->key.offset,
6638 &trimmed);
6639
6640 list_del_init(&block_group->bg_list);
6641 btrfs_put_block_group_trimming(block_group);
6642 btrfs_put_block_group(block_group);
6643
6644 if (ret) {
6645 const char *errstr = btrfs_decode_error(ret);
6646 btrfs_warn(fs_info,
913e1535 6647 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6648 ret, errstr);
6649 }
6650 }
6651
e20d96d6
CM
6652 return 0;
6653}
6654
5d4f98a2 6655static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
6656 struct btrfs_delayed_ref_node *node, u64 parent,
6657 u64 root_objectid, u64 owner_objectid,
6658 u64 owner_offset, int refs_to_drop,
6659 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6660{
e72cb923 6661 struct btrfs_fs_info *info = trans->fs_info;
e2fa7227 6662 struct btrfs_key key;
5d4f98a2 6663 struct btrfs_path *path;
1261ec42 6664 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6665 struct extent_buffer *leaf;
5d4f98a2
YZ
6666 struct btrfs_extent_item *ei;
6667 struct btrfs_extent_inline_ref *iref;
a28ec197 6668 int ret;
5d4f98a2 6669 int is_data;
952fccac
CM
6670 int extent_slot = 0;
6671 int found_extent = 0;
6672 int num_to_del = 1;
5d4f98a2
YZ
6673 u32 item_size;
6674 u64 refs;
c682f9b3
QW
6675 u64 bytenr = node->bytenr;
6676 u64 num_bytes = node->num_bytes;
fcebe456 6677 int last_ref = 0;
0b246afa 6678 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6679
5caf2a00 6680 path = btrfs_alloc_path();
54aa1f4d
CM
6681 if (!path)
6682 return -ENOMEM;
5f26f772 6683
e4058b54 6684 path->reada = READA_FORWARD;
b9473439 6685 path->leave_spinning = 1;
5d4f98a2
YZ
6686
6687 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6688 BUG_ON(!is_data && refs_to_drop != 1);
6689
3173a18f 6690 if (is_data)
897ca819 6691 skinny_metadata = false;
3173a18f 6692
fbe4801b
NB
6693 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6694 parent, root_objectid, owner_objectid,
5d4f98a2 6695 owner_offset);
7bb86316 6696 if (ret == 0) {
952fccac 6697 extent_slot = path->slots[0];
5d4f98a2
YZ
6698 while (extent_slot >= 0) {
6699 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6700 extent_slot);
5d4f98a2 6701 if (key.objectid != bytenr)
952fccac 6702 break;
5d4f98a2
YZ
6703 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6704 key.offset == num_bytes) {
952fccac
CM
6705 found_extent = 1;
6706 break;
6707 }
3173a18f
JB
6708 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6709 key.offset == owner_objectid) {
6710 found_extent = 1;
6711 break;
6712 }
952fccac
CM
6713 if (path->slots[0] - extent_slot > 5)
6714 break;
5d4f98a2 6715 extent_slot--;
952fccac 6716 }
a79865c6 6717
31840ae1 6718 if (!found_extent) {
5d4f98a2 6719 BUG_ON(iref);
87cc7a8a 6720 ret = remove_extent_backref(trans, path, NULL,
87bde3cd 6721 refs_to_drop,
fcebe456 6722 is_data, &last_ref);
005d6427 6723 if (ret) {
66642832 6724 btrfs_abort_transaction(trans, ret);
005d6427
DS
6725 goto out;
6726 }
b3b4aa74 6727 btrfs_release_path(path);
b9473439 6728 path->leave_spinning = 1;
5d4f98a2
YZ
6729
6730 key.objectid = bytenr;
6731 key.type = BTRFS_EXTENT_ITEM_KEY;
6732 key.offset = num_bytes;
6733
3173a18f
JB
6734 if (!is_data && skinny_metadata) {
6735 key.type = BTRFS_METADATA_ITEM_KEY;
6736 key.offset = owner_objectid;
6737 }
6738
31840ae1
ZY
6739 ret = btrfs_search_slot(trans, extent_root,
6740 &key, path, -1, 1);
3173a18f
JB
6741 if (ret > 0 && skinny_metadata && path->slots[0]) {
6742 /*
6743 * Couldn't find our skinny metadata item,
6744 * see if we have ye olde extent item.
6745 */
6746 path->slots[0]--;
6747 btrfs_item_key_to_cpu(path->nodes[0], &key,
6748 path->slots[0]);
6749 if (key.objectid == bytenr &&
6750 key.type == BTRFS_EXTENT_ITEM_KEY &&
6751 key.offset == num_bytes)
6752 ret = 0;
6753 }
6754
6755 if (ret > 0 && skinny_metadata) {
6756 skinny_metadata = false;
9ce49a0b 6757 key.objectid = bytenr;
3173a18f
JB
6758 key.type = BTRFS_EXTENT_ITEM_KEY;
6759 key.offset = num_bytes;
6760 btrfs_release_path(path);
6761 ret = btrfs_search_slot(trans, extent_root,
6762 &key, path, -1, 1);
6763 }
6764
f3465ca4 6765 if (ret) {
5d163e0e
JM
6766 btrfs_err(info,
6767 "umm, got %d back from search, was looking for %llu",
6768 ret, bytenr);
b783e62d 6769 if (ret > 0)
a4f78750 6770 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6771 }
005d6427 6772 if (ret < 0) {
66642832 6773 btrfs_abort_transaction(trans, ret);
005d6427
DS
6774 goto out;
6775 }
31840ae1
ZY
6776 extent_slot = path->slots[0];
6777 }
fae7f21c 6778 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 6779 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
6780 btrfs_err(info,
6781 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6782 bytenr, parent, root_objectid, owner_objectid,
6783 owner_offset);
66642832 6784 btrfs_abort_transaction(trans, ret);
c4a050bb 6785 goto out;
79787eaa 6786 } else {
66642832 6787 btrfs_abort_transaction(trans, ret);
005d6427 6788 goto out;
7bb86316 6789 }
5f39d397
CM
6790
6791 leaf = path->nodes[0];
5d4f98a2 6792 item_size = btrfs_item_size_nr(leaf, extent_slot);
6d8ff4e4 6793 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
6794 ret = -EINVAL;
6795 btrfs_print_v0_err(info);
6796 btrfs_abort_transaction(trans, ret);
6797 goto out;
6798 }
952fccac 6799 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6800 struct btrfs_extent_item);
3173a18f
JB
6801 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6802 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6803 struct btrfs_tree_block_info *bi;
6804 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6805 bi = (struct btrfs_tree_block_info *)(ei + 1);
6806 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6807 }
56bec294 6808
5d4f98a2 6809 refs = btrfs_extent_refs(leaf, ei);
32b02538 6810 if (refs < refs_to_drop) {
5d163e0e
JM
6811 btrfs_err(info,
6812 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
6813 refs_to_drop, refs, bytenr);
32b02538 6814 ret = -EINVAL;
66642832 6815 btrfs_abort_transaction(trans, ret);
32b02538
JB
6816 goto out;
6817 }
56bec294 6818 refs -= refs_to_drop;
5f39d397 6819
5d4f98a2
YZ
6820 if (refs > 0) {
6821 if (extent_op)
6822 __run_delayed_extent_op(extent_op, leaf, ei);
6823 /*
6824 * In the case of inline back ref, reference count will
6825 * be updated by remove_extent_backref
952fccac 6826 */
5d4f98a2
YZ
6827 if (iref) {
6828 BUG_ON(!found_extent);
6829 } else {
6830 btrfs_set_extent_refs(leaf, ei, refs);
6831 btrfs_mark_buffer_dirty(leaf);
6832 }
6833 if (found_extent) {
87cc7a8a
NB
6834 ret = remove_extent_backref(trans, path, iref,
6835 refs_to_drop, is_data,
6836 &last_ref);
005d6427 6837 if (ret) {
66642832 6838 btrfs_abort_transaction(trans, ret);
005d6427
DS
6839 goto out;
6840 }
952fccac 6841 }
5d4f98a2 6842 } else {
5d4f98a2
YZ
6843 if (found_extent) {
6844 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6845 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6846 if (iref) {
6847 BUG_ON(path->slots[0] != extent_slot);
6848 } else {
6849 BUG_ON(path->slots[0] != extent_slot + 1);
6850 path->slots[0] = extent_slot;
6851 num_to_del = 2;
6852 }
78fae27e 6853 }
b9473439 6854
fcebe456 6855 last_ref = 1;
952fccac
CM
6856 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6857 num_to_del);
005d6427 6858 if (ret) {
66642832 6859 btrfs_abort_transaction(trans, ret);
005d6427
DS
6860 goto out;
6861 }
b3b4aa74 6862 btrfs_release_path(path);
21af804c 6863
5d4f98a2 6864 if (is_data) {
5b4aacef 6865 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 6866 if (ret) {
66642832 6867 btrfs_abort_transaction(trans, ret);
005d6427
DS
6868 goto out;
6869 }
459931ec
CM
6870 }
6871
e7355e50 6872 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
1e144fb8 6873 if (ret) {
66642832 6874 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
6875 goto out;
6876 }
6877
0b246afa 6878 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 6879 if (ret) {
66642832 6880 btrfs_abort_transaction(trans, ret);
005d6427
DS
6881 goto out;
6882 }
a28ec197 6883 }
fcebe456
JB
6884 btrfs_release_path(path);
6885
79787eaa 6886out:
5caf2a00 6887 btrfs_free_path(path);
a28ec197
CM
6888 return ret;
6889}
6890
1887be66 6891/*
f0486c68 6892 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6893 * delayed ref for that extent as well. This searches the delayed ref tree for
6894 * a given extent, and if there are no other delayed refs to be processed, it
6895 * removes it from the tree.
6896 */
6897static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 6898 u64 bytenr)
1887be66
CM
6899{
6900 struct btrfs_delayed_ref_head *head;
6901 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6902 int ret = 0;
1887be66
CM
6903
6904 delayed_refs = &trans->transaction->delayed_refs;
6905 spin_lock(&delayed_refs->lock);
f72ad18e 6906 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 6907 if (!head)
cf93da7b 6908 goto out_delayed_unlock;
1887be66 6909
d7df2c79 6910 spin_lock(&head->lock);
0e0adbcf 6911 if (!RB_EMPTY_ROOT(&head->ref_tree))
1887be66
CM
6912 goto out;
6913
5d4f98a2
YZ
6914 if (head->extent_op) {
6915 if (!head->must_insert_reserved)
6916 goto out;
78a6184a 6917 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6918 head->extent_op = NULL;
6919 }
6920
1887be66
CM
6921 /*
6922 * waiting for the lock here would deadlock. If someone else has it
6923 * locked they are already in the process of dropping it anyway
6924 */
6925 if (!mutex_trylock(&head->mutex))
6926 goto out;
6927
6928 /*
6929 * at this point we have a head with no other entries. Go
6930 * ahead and process it.
6931 */
c46effa6 6932 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 6933 RB_CLEAR_NODE(&head->href_node);
d7df2c79 6934 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6935
6936 /*
6937 * we don't take a ref on the node because we're removing it from the
6938 * tree, so we just steal the ref the tree was holding.
6939 */
c3e69d58 6940 delayed_refs->num_heads--;
d7df2c79 6941 if (head->processing == 0)
c3e69d58 6942 delayed_refs->num_heads_ready--;
d7df2c79
JB
6943 head->processing = 0;
6944 spin_unlock(&head->lock);
1887be66
CM
6945 spin_unlock(&delayed_refs->lock);
6946
f0486c68
YZ
6947 BUG_ON(head->extent_op);
6948 if (head->must_insert_reserved)
6949 ret = 1;
6950
6951 mutex_unlock(&head->mutex);
d278850e 6952 btrfs_put_delayed_ref_head(head);
f0486c68 6953 return ret;
1887be66 6954out:
d7df2c79 6955 spin_unlock(&head->lock);
cf93da7b
CM
6956
6957out_delayed_unlock:
1887be66
CM
6958 spin_unlock(&delayed_refs->lock);
6959 return 0;
6960}
6961
f0486c68
YZ
6962void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6963 struct btrfs_root *root,
6964 struct extent_buffer *buf,
5581a51a 6965 u64 parent, int last_ref)
f0486c68 6966{
0b246afa 6967 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 6968 int pin = 1;
f0486c68
YZ
6969 int ret;
6970
6971 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
6972 int old_ref_mod, new_ref_mod;
6973
fd708b81
JB
6974 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
6975 root->root_key.objectid,
6976 btrfs_header_level(buf), 0,
6977 BTRFS_DROP_DELAYED_REF);
44e1c47d 6978 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7be07912 6979 buf->len, parent,
0b246afa
JM
6980 root->root_key.objectid,
6981 btrfs_header_level(buf),
7be07912 6982 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 6983 &old_ref_mod, &new_ref_mod);
79787eaa 6984 BUG_ON(ret); /* -ENOMEM */
d7eae340 6985 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
6986 }
6987
0a16c7d7 6988 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6989 struct btrfs_block_group_cache *cache;
6990
f0486c68 6991 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 6992 ret = check_ref_cleanup(trans, buf->start);
f0486c68 6993 if (!ret)
37be25bc 6994 goto out;
f0486c68
YZ
6995 }
6996
4da8b76d 6997 pin = 0;
0b246afa 6998 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 6999
f0486c68 7000 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7001 pin_down_extent(fs_info, cache, buf->start,
7002 buf->len, 1);
6219872d 7003 btrfs_put_block_group(cache);
37be25bc 7004 goto out;
f0486c68
YZ
7005 }
7006
7007 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7008
7009 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7010 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7011 btrfs_put_block_group(cache);
71ff6437 7012 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7013 }
7014out:
b150a4f1 7015 if (pin)
29d2b84c 7016 add_pinned_bytes(fs_info, buf->len, true,
b150a4f1
JB
7017 root->root_key.objectid);
7018
0a16c7d7
OS
7019 if (last_ref) {
7020 /*
7021 * Deleting the buffer, clear the corrupt flag since it doesn't
7022 * matter anymore.
7023 */
7024 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7025 }
f0486c68
YZ
7026}
7027
79787eaa 7028/* Can return -ENOMEM */
2ff7e61e 7029int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7030 struct btrfs_root *root,
66d7e7f0 7031 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7032 u64 owner, u64 offset)
925baedd 7033{
84f7d8e6 7034 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7035 int old_ref_mod, new_ref_mod;
925baedd
CM
7036 int ret;
7037
f5ee5c9a 7038 if (btrfs_is_testing(fs_info))
faa2dbf0 7039 return 0;
fccb84c9 7040
fd708b81
JB
7041 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7042 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7043 root_objectid, owner, offset,
7044 BTRFS_DROP_DELAYED_REF);
7045
56bec294
CM
7046 /*
7047 * tree log blocks never actually go into the extent allocation
7048 * tree, just update pinning info and exit early.
56bec294 7049 */
5d4f98a2
YZ
7050 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7051 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7052 /* unlocks the pinned mutex */
2ff7e61e 7053 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7054 old_ref_mod = new_ref_mod = 0;
56bec294 7055 ret = 0;
5d4f98a2 7056 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
44e1c47d 7057 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7be07912
OS
7058 num_bytes, parent,
7059 root_objectid, (int)owner,
7060 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7061 &old_ref_mod, &new_ref_mod);
5d4f98a2 7062 } else {
88a979c6 7063 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7be07912
OS
7064 num_bytes, parent,
7065 root_objectid, owner, offset,
7066 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7067 &old_ref_mod, &new_ref_mod);
56bec294 7068 }
d7eae340 7069
29d2b84c
NB
7070 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7071 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7072
7073 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7074 }
d7eae340 7075
925baedd
CM
7076 return ret;
7077}
7078
817d52f8
JB
7079/*
7080 * when we wait for progress in the block group caching, its because
7081 * our allocation attempt failed at least once. So, we must sleep
7082 * and let some progress happen before we try again.
7083 *
7084 * This function will sleep at least once waiting for new free space to
7085 * show up, and then it will check the block group free space numbers
7086 * for our min num_bytes. Another option is to have it go ahead
7087 * and look in the rbtree for a free extent of a given size, but this
7088 * is a good start.
36cce922
JB
7089 *
7090 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7091 * any of the information in this block group.
817d52f8 7092 */
36cce922 7093static noinline void
817d52f8
JB
7094wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7095 u64 num_bytes)
7096{
11833d66 7097 struct btrfs_caching_control *caching_ctl;
817d52f8 7098
11833d66
YZ
7099 caching_ctl = get_caching_control(cache);
7100 if (!caching_ctl)
36cce922 7101 return;
817d52f8 7102
11833d66 7103 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7104 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7105
7106 put_caching_control(caching_ctl);
11833d66
YZ
7107}
7108
7109static noinline int
7110wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7111{
7112 struct btrfs_caching_control *caching_ctl;
36cce922 7113 int ret = 0;
11833d66
YZ
7114
7115 caching_ctl = get_caching_control(cache);
7116 if (!caching_ctl)
36cce922 7117 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7118
7119 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7120 if (cache->cached == BTRFS_CACHE_ERROR)
7121 ret = -EIO;
11833d66 7122 put_caching_control(caching_ctl);
36cce922 7123 return ret;
817d52f8
JB
7124}
7125
7126enum btrfs_loop_type {
285ff5af
JB
7127 LOOP_CACHING_NOWAIT = 0,
7128 LOOP_CACHING_WAIT = 1,
7129 LOOP_ALLOC_CHUNK = 2,
7130 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7131};
7132
e570fd27
MX
7133static inline void
7134btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7135 int delalloc)
7136{
7137 if (delalloc)
7138 down_read(&cache->data_rwsem);
7139}
7140
7141static inline void
7142btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7143 int delalloc)
7144{
7145 btrfs_get_block_group(cache);
7146 if (delalloc)
7147 down_read(&cache->data_rwsem);
7148}
7149
7150static struct btrfs_block_group_cache *
7151btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7152 struct btrfs_free_cluster *cluster,
7153 int delalloc)
7154{
89771cc9 7155 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7156
e570fd27 7157 spin_lock(&cluster->refill_lock);
6719afdc
GU
7158 while (1) {
7159 used_bg = cluster->block_group;
7160 if (!used_bg)
7161 return NULL;
7162
7163 if (used_bg == block_group)
e570fd27
MX
7164 return used_bg;
7165
6719afdc 7166 btrfs_get_block_group(used_bg);
e570fd27 7167
6719afdc
GU
7168 if (!delalloc)
7169 return used_bg;
e570fd27 7170
6719afdc
GU
7171 if (down_read_trylock(&used_bg->data_rwsem))
7172 return used_bg;
e570fd27 7173
6719afdc 7174 spin_unlock(&cluster->refill_lock);
e570fd27 7175
e321f8a8
LB
7176 /* We should only have one-level nested. */
7177 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7178
6719afdc
GU
7179 spin_lock(&cluster->refill_lock);
7180 if (used_bg == cluster->block_group)
7181 return used_bg;
e570fd27 7182
6719afdc
GU
7183 up_read(&used_bg->data_rwsem);
7184 btrfs_put_block_group(used_bg);
7185 }
e570fd27
MX
7186}
7187
7188static inline void
7189btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7190 int delalloc)
7191{
7192 if (delalloc)
7193 up_read(&cache->data_rwsem);
7194 btrfs_put_block_group(cache);
7195}
7196
fec577fb
CM
7197/*
7198 * walks the btree of allocated extents and find a hole of a given size.
7199 * The key ins is changed to record the hole:
a4820398 7200 * ins->objectid == start position
62e2749e 7201 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7202 * ins->offset == the size of the hole.
fec577fb 7203 * Any available blocks before search_start are skipped.
a4820398
MX
7204 *
7205 * If there is no suitable free space, we will record the max size of
7206 * the free space extent currently.
fec577fb 7207 */
87bde3cd 7208static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7209 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7210 u64 hint_byte, struct btrfs_key *ins,
7211 u64 flags, int delalloc)
fec577fb 7212{
80eb234a 7213 int ret = 0;
0b246afa 7214 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7215 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7216 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7217 u64 search_start = 0;
a4820398 7218 u64 max_extent_size = 0;
c759c4e1 7219 u64 empty_cluster = 0;
80eb234a 7220 struct btrfs_space_info *space_info;
fa9c0d79 7221 int loop = 0;
3e72ee88 7222 int index = btrfs_bg_flags_to_raid_index(flags);
0a24325e 7223 bool failed_cluster_refill = false;
1cdda9b8 7224 bool failed_alloc = false;
67377734 7225 bool use_cluster = true;
60d2adbb 7226 bool have_caching_bg = false;
13a0db5a 7227 bool orig_have_caching_bg = false;
a5e681d9 7228 bool full_search = false;
fec577fb 7229
0b246afa 7230 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7231 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7232 ins->objectid = 0;
7233 ins->offset = 0;
b1a4d965 7234
71ff6437 7235 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7236
0b246afa 7237 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7238 if (!space_info) {
0b246afa 7239 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7240 return -ENOSPC;
7241 }
2552d17e 7242
67377734 7243 /*
4f4db217
JB
7244 * If our free space is heavily fragmented we may not be able to make
7245 * big contiguous allocations, so instead of doing the expensive search
7246 * for free space, simply return ENOSPC with our max_extent_size so we
7247 * can go ahead and search for a more manageable chunk.
7248 *
7249 * If our max_extent_size is large enough for our allocation simply
7250 * disable clustering since we will likely not be able to find enough
7251 * space to create a cluster and induce latency trying.
67377734 7252 */
4f4db217
JB
7253 if (unlikely(space_info->max_extent_size)) {
7254 spin_lock(&space_info->lock);
7255 if (space_info->max_extent_size &&
7256 num_bytes > space_info->max_extent_size) {
7257 ins->offset = space_info->max_extent_size;
7258 spin_unlock(&space_info->lock);
7259 return -ENOSPC;
7260 } else if (space_info->max_extent_size) {
7261 use_cluster = false;
7262 }
7263 spin_unlock(&space_info->lock);
fa9c0d79 7264 }
0f9dd46c 7265
2ff7e61e 7266 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7267 if (last_ptr) {
fa9c0d79
CM
7268 spin_lock(&last_ptr->lock);
7269 if (last_ptr->block_group)
7270 hint_byte = last_ptr->window_start;
c759c4e1
JB
7271 if (last_ptr->fragmented) {
7272 /*
7273 * We still set window_start so we can keep track of the
7274 * last place we found an allocation to try and save
7275 * some time.
7276 */
7277 hint_byte = last_ptr->window_start;
7278 use_cluster = false;
7279 }
fa9c0d79 7280 spin_unlock(&last_ptr->lock);
239b14b3 7281 }
fa9c0d79 7282
2ff7e61e 7283 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7284 search_start = max(search_start, hint_byte);
2552d17e 7285 if (search_start == hint_byte) {
0b246afa 7286 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7287 /*
7288 * we don't want to use the block group if it doesn't match our
7289 * allocation bits, or if its not cached.
ccf0e725
JB
7290 *
7291 * However if we are re-searching with an ideal block group
7292 * picked out then we don't care that the block group is cached.
817d52f8 7293 */
b6919a58 7294 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7295 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7296 down_read(&space_info->groups_sem);
44fb5511
CM
7297 if (list_empty(&block_group->list) ||
7298 block_group->ro) {
7299 /*
7300 * someone is removing this block group,
7301 * we can't jump into the have_block_group
7302 * target because our list pointers are not
7303 * valid
7304 */
7305 btrfs_put_block_group(block_group);
7306 up_read(&space_info->groups_sem);
ccf0e725 7307 } else {
3e72ee88
QW
7308 index = btrfs_bg_flags_to_raid_index(
7309 block_group->flags);
e570fd27 7310 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7311 goto have_block_group;
ccf0e725 7312 }
2552d17e 7313 } else if (block_group) {
fa9c0d79 7314 btrfs_put_block_group(block_group);
2552d17e 7315 }
42e70e7a 7316 }
2552d17e 7317search:
60d2adbb 7318 have_caching_bg = false;
3e72ee88 7319 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
a5e681d9 7320 full_search = true;
80eb234a 7321 down_read(&space_info->groups_sem);
b742bb82
YZ
7322 list_for_each_entry(block_group, &space_info->block_groups[index],
7323 list) {
6226cb0a 7324 u64 offset;
817d52f8 7325 int cached;
8a1413a2 7326
14443937
JM
7327 /* If the block group is read-only, we can skip it entirely. */
7328 if (unlikely(block_group->ro))
7329 continue;
7330
e570fd27 7331 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7332 search_start = block_group->key.objectid;
42e70e7a 7333
83a50de9
CM
7334 /*
7335 * this can happen if we end up cycling through all the
7336 * raid types, but we want to make sure we only allocate
7337 * for the proper type.
7338 */
b6919a58 7339 if (!block_group_bits(block_group, flags)) {
bece2e82 7340 u64 extra = BTRFS_BLOCK_GROUP_DUP |
83a50de9 7341 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7342 BTRFS_BLOCK_GROUP_RAID5 |
7343 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7344 BTRFS_BLOCK_GROUP_RAID10;
7345
7346 /*
7347 * if they asked for extra copies and this block group
7348 * doesn't provide them, bail. This does allow us to
7349 * fill raid0 from raid1.
7350 */
b6919a58 7351 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7352 goto loop;
7353 }
7354
2552d17e 7355have_block_group:
291c7d2f
JB
7356 cached = block_group_cache_done(block_group);
7357 if (unlikely(!cached)) {
a5e681d9 7358 have_caching_bg = true;
f6373bf3 7359 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7360 BUG_ON(ret < 0);
7361 ret = 0;
817d52f8
JB
7362 }
7363
36cce922
JB
7364 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7365 goto loop;
0f9dd46c 7366
0a24325e 7367 /*
062c05c4
AO
7368 * Ok we want to try and use the cluster allocator, so
7369 * lets look there
0a24325e 7370 */
c759c4e1 7371 if (last_ptr && use_cluster) {
215a63d1 7372 struct btrfs_block_group_cache *used_block_group;
8de972b4 7373 unsigned long aligned_cluster;
fa9c0d79
CM
7374 /*
7375 * the refill lock keeps out other
7376 * people trying to start a new cluster
7377 */
e570fd27
MX
7378 used_block_group = btrfs_lock_cluster(block_group,
7379 last_ptr,
7380 delalloc);
7381 if (!used_block_group)
44fb5511 7382 goto refill_cluster;
274bd4fb 7383
e570fd27
MX
7384 if (used_block_group != block_group &&
7385 (used_block_group->ro ||
7386 !block_group_bits(used_block_group, flags)))
7387 goto release_cluster;
44fb5511 7388
274bd4fb 7389 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7390 last_ptr,
7391 num_bytes,
7392 used_block_group->key.objectid,
7393 &max_extent_size);
fa9c0d79
CM
7394 if (offset) {
7395 /* we have a block, we're done */
7396 spin_unlock(&last_ptr->refill_lock);
3dca5c94 7397 trace_btrfs_reserve_extent_cluster(
89d4346a
MX
7398 used_block_group,
7399 search_start, num_bytes);
215a63d1 7400 if (used_block_group != block_group) {
e570fd27
MX
7401 btrfs_release_block_group(block_group,
7402 delalloc);
215a63d1
MX
7403 block_group = used_block_group;
7404 }
fa9c0d79
CM
7405 goto checks;
7406 }
7407
274bd4fb 7408 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7409release_cluster:
062c05c4
AO
7410 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7411 * set up a new clusters, so lets just skip it
7412 * and let the allocator find whatever block
7413 * it can find. If we reach this point, we
7414 * will have tried the cluster allocator
7415 * plenty of times and not have found
7416 * anything, so we are likely way too
7417 * fragmented for the clustering stuff to find
a5f6f719
AO
7418 * anything.
7419 *
7420 * However, if the cluster is taken from the
7421 * current block group, release the cluster
7422 * first, so that we stand a better chance of
7423 * succeeding in the unclustered
7424 * allocation. */
7425 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7426 used_block_group != block_group) {
062c05c4 7427 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7428 btrfs_release_block_group(used_block_group,
7429 delalloc);
062c05c4
AO
7430 goto unclustered_alloc;
7431 }
7432
fa9c0d79
CM
7433 /*
7434 * this cluster didn't work out, free it and
7435 * start over
7436 */
7437 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7438
e570fd27
MX
7439 if (used_block_group != block_group)
7440 btrfs_release_block_group(used_block_group,
7441 delalloc);
7442refill_cluster:
a5f6f719
AO
7443 if (loop >= LOOP_NO_EMPTY_SIZE) {
7444 spin_unlock(&last_ptr->refill_lock);
7445 goto unclustered_alloc;
7446 }
7447
8de972b4
CM
7448 aligned_cluster = max_t(unsigned long,
7449 empty_cluster + empty_size,
7450 block_group->full_stripe_len);
7451
fa9c0d79 7452 /* allocate a cluster in this block group */
2ff7e61e 7453 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7454 last_ptr, search_start,
7455 num_bytes,
7456 aligned_cluster);
fa9c0d79
CM
7457 if (ret == 0) {
7458 /*
7459 * now pull our allocation out of this
7460 * cluster
7461 */
7462 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7463 last_ptr,
7464 num_bytes,
7465 search_start,
7466 &max_extent_size);
fa9c0d79
CM
7467 if (offset) {
7468 /* we found one, proceed */
7469 spin_unlock(&last_ptr->refill_lock);
3dca5c94 7470 trace_btrfs_reserve_extent_cluster(
3f7de037
JB
7471 block_group, search_start,
7472 num_bytes);
fa9c0d79
CM
7473 goto checks;
7474 }
0a24325e
JB
7475 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7476 && !failed_cluster_refill) {
817d52f8
JB
7477 spin_unlock(&last_ptr->refill_lock);
7478
0a24325e 7479 failed_cluster_refill = true;
817d52f8
JB
7480 wait_block_group_cache_progress(block_group,
7481 num_bytes + empty_cluster + empty_size);
7482 goto have_block_group;
fa9c0d79 7483 }
817d52f8 7484
fa9c0d79
CM
7485 /*
7486 * at this point we either didn't find a cluster
7487 * or we weren't able to allocate a block from our
7488 * cluster. Free the cluster we've been trying
7489 * to use, and go to the next block group
7490 */
0a24325e 7491 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7492 spin_unlock(&last_ptr->refill_lock);
0a24325e 7493 goto loop;
fa9c0d79
CM
7494 }
7495
062c05c4 7496unclustered_alloc:
c759c4e1
JB
7497 /*
7498 * We are doing an unclustered alloc, set the fragmented flag so
7499 * we don't bother trying to setup a cluster again until we get
7500 * more space.
7501 */
7502 if (unlikely(last_ptr)) {
7503 spin_lock(&last_ptr->lock);
7504 last_ptr->fragmented = 1;
7505 spin_unlock(&last_ptr->lock);
7506 }
0c9b36e0
LB
7507 if (cached) {
7508 struct btrfs_free_space_ctl *ctl =
7509 block_group->free_space_ctl;
7510
7511 spin_lock(&ctl->tree_lock);
7512 if (ctl->free_space <
7513 num_bytes + empty_cluster + empty_size) {
7514 if (ctl->free_space > max_extent_size)
7515 max_extent_size = ctl->free_space;
7516 spin_unlock(&ctl->tree_lock);
7517 goto loop;
7518 }
7519 spin_unlock(&ctl->tree_lock);
a5f6f719 7520 }
a5f6f719 7521
6226cb0a 7522 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7523 num_bytes, empty_size,
7524 &max_extent_size);
1cdda9b8
JB
7525 /*
7526 * If we didn't find a chunk, and we haven't failed on this
7527 * block group before, and this block group is in the middle of
7528 * caching and we are ok with waiting, then go ahead and wait
7529 * for progress to be made, and set failed_alloc to true.
7530 *
7531 * If failed_alloc is true then we've already waited on this
7532 * block group once and should move on to the next block group.
7533 */
7534 if (!offset && !failed_alloc && !cached &&
7535 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7536 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7537 num_bytes + empty_size);
7538 failed_alloc = true;
817d52f8 7539 goto have_block_group;
1cdda9b8
JB
7540 } else if (!offset) {
7541 goto loop;
817d52f8 7542 }
fa9c0d79 7543checks:
5e23a6fe 7544 search_start = round_up(offset, fs_info->stripesize);
25179201 7545
2552d17e
JB
7546 /* move on to the next group */
7547 if (search_start + num_bytes >
215a63d1
MX
7548 block_group->key.objectid + block_group->key.offset) {
7549 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7550 goto loop;
6226cb0a 7551 }
f5a31e16 7552
f0486c68 7553 if (offset < search_start)
215a63d1 7554 btrfs_add_free_space(block_group, offset,
f0486c68 7555 search_start - offset);
2552d17e 7556
18513091
WX
7557 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7558 num_bytes, delalloc);
f0486c68 7559 if (ret == -EAGAIN) {
215a63d1 7560 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7561 goto loop;
0f9dd46c 7562 }
9cfa3e34 7563 btrfs_inc_block_group_reservations(block_group);
0b86a832 7564
f0486c68 7565 /* we are all good, lets return */
2552d17e
JB
7566 ins->objectid = search_start;
7567 ins->offset = num_bytes;
d2fb3437 7568
3dca5c94 7569 trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
e570fd27 7570 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7571 break;
7572loop:
0a24325e 7573 failed_cluster_refill = false;
1cdda9b8 7574 failed_alloc = false;
3e72ee88
QW
7575 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7576 index);
e570fd27 7577 btrfs_release_block_group(block_group, delalloc);
14443937 7578 cond_resched();
2552d17e
JB
7579 }
7580 up_read(&space_info->groups_sem);
7581
13a0db5a 7582 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7583 && !orig_have_caching_bg)
7584 orig_have_caching_bg = true;
7585
60d2adbb
MX
7586 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7587 goto search;
7588
b742bb82
YZ
7589 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7590 goto search;
7591
285ff5af 7592 /*
ccf0e725
JB
7593 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7594 * caching kthreads as we move along
817d52f8
JB
7595 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7596 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7597 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7598 * again
fa9c0d79 7599 */
723bda20 7600 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7601 index = 0;
a5e681d9
JB
7602 if (loop == LOOP_CACHING_NOWAIT) {
7603 /*
7604 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7605 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7606 * full search through.
7607 */
13a0db5a 7608 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7609 loop = LOOP_CACHING_WAIT;
7610 else
7611 loop = LOOP_ALLOC_CHUNK;
7612 } else {
7613 loop++;
7614 }
7615
817d52f8 7616 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7617 struct btrfs_trans_handle *trans;
f017f15f
WS
7618 int exist = 0;
7619
7620 trans = current->journal_info;
7621 if (trans)
7622 exist = 1;
7623 else
7624 trans = btrfs_join_transaction(root);
00361589 7625
00361589
JB
7626 if (IS_ERR(trans)) {
7627 ret = PTR_ERR(trans);
7628 goto out;
7629 }
7630
01458828 7631 ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE);
a5e681d9
JB
7632
7633 /*
7634 * If we can't allocate a new chunk we've already looped
7635 * through at least once, move on to the NO_EMPTY_SIZE
7636 * case.
7637 */
7638 if (ret == -ENOSPC)
7639 loop = LOOP_NO_EMPTY_SIZE;
7640
ea658bad
JB
7641 /*
7642 * Do not bail out on ENOSPC since we
7643 * can do more things.
7644 */
00361589 7645 if (ret < 0 && ret != -ENOSPC)
66642832 7646 btrfs_abort_transaction(trans, ret);
00361589
JB
7647 else
7648 ret = 0;
f017f15f 7649 if (!exist)
3a45bb20 7650 btrfs_end_transaction(trans);
00361589 7651 if (ret)
ea658bad 7652 goto out;
2552d17e
JB
7653 }
7654
723bda20 7655 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7656 /*
7657 * Don't loop again if we already have no empty_size and
7658 * no empty_cluster.
7659 */
7660 if (empty_size == 0 &&
7661 empty_cluster == 0) {
7662 ret = -ENOSPC;
7663 goto out;
7664 }
723bda20
JB
7665 empty_size = 0;
7666 empty_cluster = 0;
fa9c0d79 7667 }
723bda20
JB
7668
7669 goto search;
2552d17e
JB
7670 } else if (!ins->objectid) {
7671 ret = -ENOSPC;
d82a6f1d 7672 } else if (ins->objectid) {
c759c4e1
JB
7673 if (!use_cluster && last_ptr) {
7674 spin_lock(&last_ptr->lock);
7675 last_ptr->window_start = ins->objectid;
7676 spin_unlock(&last_ptr->lock);
7677 }
80eb234a 7678 ret = 0;
be744175 7679 }
79787eaa 7680out:
4f4db217
JB
7681 if (ret == -ENOSPC) {
7682 spin_lock(&space_info->lock);
7683 space_info->max_extent_size = max_extent_size;
7684 spin_unlock(&space_info->lock);
a4820398 7685 ins->offset = max_extent_size;
4f4db217 7686 }
0f70abe2 7687 return ret;
fec577fb 7688}
ec44a35c 7689
ab8d0fc4
JM
7690static void dump_space_info(struct btrfs_fs_info *fs_info,
7691 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7692 int dump_block_groups)
0f9dd46c
JB
7693{
7694 struct btrfs_block_group_cache *cache;
b742bb82 7695 int index = 0;
0f9dd46c 7696
9ed74f2d 7697 spin_lock(&info->lock);
ab8d0fc4
JM
7698 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7699 info->flags,
4136135b
LB
7700 info->total_bytes - btrfs_space_info_used(info, true),
7701 info->full ? "" : "not ");
ab8d0fc4
JM
7702 btrfs_info(fs_info,
7703 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7704 info->total_bytes, info->bytes_used, info->bytes_pinned,
7705 info->bytes_reserved, info->bytes_may_use,
7706 info->bytes_readonly);
9ed74f2d
JB
7707 spin_unlock(&info->lock);
7708
7709 if (!dump_block_groups)
7710 return;
0f9dd46c 7711
80eb234a 7712 down_read(&info->groups_sem);
b742bb82
YZ
7713again:
7714 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7715 spin_lock(&cache->lock);
ab8d0fc4
JM
7716 btrfs_info(fs_info,
7717 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7718 cache->key.objectid, cache->key.offset,
7719 btrfs_block_group_used(&cache->item), cache->pinned,
7720 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7721 btrfs_dump_free_space(cache, bytes);
7722 spin_unlock(&cache->lock);
7723 }
b742bb82
YZ
7724 if (++index < BTRFS_NR_RAID_TYPES)
7725 goto again;
80eb234a 7726 up_read(&info->groups_sem);
0f9dd46c 7727}
e8569813 7728
6f47c706
NB
7729/*
7730 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7731 * hole that is at least as big as @num_bytes.
7732 *
7733 * @root - The root that will contain this extent
7734 *
7735 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7736 * is used for accounting purposes. This value differs
7737 * from @num_bytes only in the case of compressed extents.
7738 *
7739 * @num_bytes - Number of bytes to allocate on-disk.
7740 *
7741 * @min_alloc_size - Indicates the minimum amount of space that the
7742 * allocator should try to satisfy. In some cases
7743 * @num_bytes may be larger than what is required and if
7744 * the filesystem is fragmented then allocation fails.
7745 * However, the presence of @min_alloc_size gives a
7746 * chance to try and satisfy the smaller allocation.
7747 *
7748 * @empty_size - A hint that you plan on doing more COW. This is the
7749 * size in bytes the allocator should try to find free
7750 * next to the block it returns. This is just a hint and
7751 * may be ignored by the allocator.
7752 *
7753 * @hint_byte - Hint to the allocator to start searching above the byte
7754 * address passed. It might be ignored.
7755 *
7756 * @ins - This key is modified to record the found hole. It will
7757 * have the following values:
7758 * ins->objectid == start position
7759 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7760 * ins->offset == the size of the hole.
7761 *
7762 * @is_data - Boolean flag indicating whether an extent is
7763 * allocated for data (true) or metadata (false)
7764 *
7765 * @delalloc - Boolean flag indicating whether this allocation is for
7766 * delalloc or not. If 'true' data_rwsem of block groups
7767 * is going to be acquired.
7768 *
7769 *
7770 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7771 * case -ENOSPC is returned then @ins->offset will contain the size of the
7772 * largest available hole the allocator managed to find.
7773 */
18513091 7774int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7775 u64 num_bytes, u64 min_alloc_size,
7776 u64 empty_size, u64 hint_byte,
e570fd27 7777 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7778{
ab8d0fc4 7779 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7780 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7781 u64 flags;
fec577fb 7782 int ret;
925baedd 7783
1b86826d 7784 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 7785again:
0b246afa 7786 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 7787 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 7788 hint_byte, ins, flags, delalloc);
9cfa3e34 7789 if (!ret && !is_data) {
ab8d0fc4 7790 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 7791 } else if (ret == -ENOSPC) {
a4820398
MX
7792 if (!final_tried && ins->offset) {
7793 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 7794 num_bytes = round_down(num_bytes,
0b246afa 7795 fs_info->sectorsize);
9e622d6b 7796 num_bytes = max(num_bytes, min_alloc_size);
18513091 7797 ram_bytes = num_bytes;
9e622d6b
MX
7798 if (num_bytes == min_alloc_size)
7799 final_tried = true;
7800 goto again;
ab8d0fc4 7801 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
7802 struct btrfs_space_info *sinfo;
7803
ab8d0fc4 7804 sinfo = __find_space_info(fs_info, flags);
0b246afa 7805 btrfs_err(fs_info,
5d163e0e
JM
7806 "allocation failed flags %llu, wanted %llu",
7807 flags, num_bytes);
53804280 7808 if (sinfo)
ab8d0fc4 7809 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 7810 }
925baedd 7811 }
0f9dd46c
JB
7812
7813 return ret;
e6dcd2dc
CM
7814}
7815
2ff7e61e 7816static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
7817 u64 start, u64 len,
7818 int pin, int delalloc)
65b51a00 7819{
0f9dd46c 7820 struct btrfs_block_group_cache *cache;
1f3c79a2 7821 int ret = 0;
0f9dd46c 7822
0b246afa 7823 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 7824 if (!cache) {
0b246afa
JM
7825 btrfs_err(fs_info, "Unable to find block group for %llu",
7826 start);
0f9dd46c
JB
7827 return -ENOSPC;
7828 }
1f3c79a2 7829
e688b725 7830 if (pin)
2ff7e61e 7831 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 7832 else {
0b246afa 7833 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 7834 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 7835 btrfs_add_free_space(cache, start, len);
4824f1f4 7836 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 7837 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 7838 }
31193213 7839
fa9c0d79 7840 btrfs_put_block_group(cache);
e6dcd2dc
CM
7841 return ret;
7842}
7843
2ff7e61e 7844int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 7845 u64 start, u64 len, int delalloc)
e688b725 7846{
2ff7e61e 7847 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
7848}
7849
2ff7e61e 7850int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
7851 u64 start, u64 len)
7852{
2ff7e61e 7853 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
7854}
7855
5d4f98a2 7856static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
7857 u64 parent, u64 root_objectid,
7858 u64 flags, u64 owner, u64 offset,
7859 struct btrfs_key *ins, int ref_mod)
e6dcd2dc 7860{
ef89b824 7861 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 7862 int ret;
e6dcd2dc 7863 struct btrfs_extent_item *extent_item;
5d4f98a2 7864 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7865 struct btrfs_path *path;
5d4f98a2
YZ
7866 struct extent_buffer *leaf;
7867 int type;
7868 u32 size;
26b8003f 7869
5d4f98a2
YZ
7870 if (parent > 0)
7871 type = BTRFS_SHARED_DATA_REF_KEY;
7872 else
7873 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7874
5d4f98a2 7875 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7876
7877 path = btrfs_alloc_path();
db5b493a
TI
7878 if (!path)
7879 return -ENOMEM;
47e4bb98 7880
b9473439 7881 path->leave_spinning = 1;
5d4f98a2
YZ
7882 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7883 ins, size);
79787eaa
JM
7884 if (ret) {
7885 btrfs_free_path(path);
7886 return ret;
7887 }
0f9dd46c 7888
5d4f98a2
YZ
7889 leaf = path->nodes[0];
7890 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7891 struct btrfs_extent_item);
5d4f98a2
YZ
7892 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7893 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7894 btrfs_set_extent_flags(leaf, extent_item,
7895 flags | BTRFS_EXTENT_FLAG_DATA);
7896
7897 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7898 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7899 if (parent > 0) {
7900 struct btrfs_shared_data_ref *ref;
7901 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7902 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7903 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7904 } else {
7905 struct btrfs_extent_data_ref *ref;
7906 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7907 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7908 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7909 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7910 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7911 }
47e4bb98
CM
7912
7913 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7914 btrfs_free_path(path);
f510cfec 7915
25a356d3 7916 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
1e144fb8
OS
7917 if (ret)
7918 return ret;
7919
6202df69 7920 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 7921 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7922 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7923 ins->objectid, ins->offset);
f5947066
CM
7924 BUG();
7925 }
71ff6437 7926 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
7927 return ret;
7928}
7929
5d4f98a2 7930static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 7931 struct btrfs_delayed_ref_node *node,
21ebfbe7 7932 struct btrfs_delayed_extent_op *extent_op)
e6dcd2dc 7933{
9dcdbe01 7934 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 7935 int ret;
5d4f98a2 7936 struct btrfs_extent_item *extent_item;
4e6bd4e0 7937 struct btrfs_key extent_key;
5d4f98a2
YZ
7938 struct btrfs_tree_block_info *block_info;
7939 struct btrfs_extent_inline_ref *iref;
7940 struct btrfs_path *path;
7941 struct extent_buffer *leaf;
4e6bd4e0 7942 struct btrfs_delayed_tree_ref *ref;
3173a18f 7943 u32 size = sizeof(*extent_item) + sizeof(*iref);
4e6bd4e0 7944 u64 num_bytes;
21ebfbe7 7945 u64 flags = extent_op->flags_to_set;
0b246afa 7946 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f 7947
4e6bd4e0
NB
7948 ref = btrfs_delayed_node_to_tree_ref(node);
7949
4e6bd4e0
NB
7950 extent_key.objectid = node->bytenr;
7951 if (skinny_metadata) {
7952 extent_key.offset = ref->level;
7953 extent_key.type = BTRFS_METADATA_ITEM_KEY;
7954 num_bytes = fs_info->nodesize;
7955 } else {
7956 extent_key.offset = node->num_bytes;
7957 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
3173a18f 7958 size += sizeof(*block_info);
4e6bd4e0
NB
7959 num_bytes = node->num_bytes;
7960 }
1c2308f8 7961
5d4f98a2 7962 path = btrfs_alloc_path();
857cc2fc 7963 if (!path) {
4e6bd4e0
NB
7964 btrfs_free_and_pin_reserved_extent(fs_info,
7965 extent_key.objectid,
0b246afa 7966 fs_info->nodesize);
d8926bb3 7967 return -ENOMEM;
857cc2fc 7968 }
56bec294 7969
5d4f98a2
YZ
7970 path->leave_spinning = 1;
7971 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4e6bd4e0 7972 &extent_key, size);
79787eaa 7973 if (ret) {
dd825259 7974 btrfs_free_path(path);
4e6bd4e0
NB
7975 btrfs_free_and_pin_reserved_extent(fs_info,
7976 extent_key.objectid,
0b246afa 7977 fs_info->nodesize);
79787eaa
JM
7978 return ret;
7979 }
5d4f98a2
YZ
7980
7981 leaf = path->nodes[0];
7982 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7983 struct btrfs_extent_item);
7984 btrfs_set_extent_refs(leaf, extent_item, 1);
7985 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7986 btrfs_set_extent_flags(leaf, extent_item,
7987 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7988
3173a18f
JB
7989 if (skinny_metadata) {
7990 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7991 } else {
7992 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
21ebfbe7 7993 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4e6bd4e0 7994 btrfs_set_tree_block_level(leaf, block_info, ref->level);
3173a18f
JB
7995 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7996 }
5d4f98a2 7997
d4b20733 7998 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
5d4f98a2
YZ
7999 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8000 btrfs_set_extent_inline_ref_type(leaf, iref,
8001 BTRFS_SHARED_BLOCK_REF_KEY);
d4b20733 8002 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
5d4f98a2
YZ
8003 } else {
8004 btrfs_set_extent_inline_ref_type(leaf, iref,
8005 BTRFS_TREE_BLOCK_REF_KEY);
4e6bd4e0 8006 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
5d4f98a2
YZ
8007 }
8008
8009 btrfs_mark_buffer_dirty(leaf);
8010 btrfs_free_path(path);
8011
4e6bd4e0
NB
8012 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8013 num_bytes);
1e144fb8
OS
8014 if (ret)
8015 return ret;
8016
4e6bd4e0 8017 ret = update_block_group(trans, fs_info, extent_key.objectid,
6202df69 8018 fs_info->nodesize, 1);
79787eaa 8019 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8020 btrfs_err(fs_info, "update block group failed for %llu %llu",
4e6bd4e0 8021 extent_key.objectid, extent_key.offset);
5d4f98a2
YZ
8022 BUG();
8023 }
0be5dc67 8024
4e6bd4e0 8025 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
0b246afa 8026 fs_info->nodesize);
5d4f98a2
YZ
8027 return ret;
8028}
8029
8030int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8031 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8032 u64 offset, u64 ram_bytes,
8033 struct btrfs_key *ins)
5d4f98a2
YZ
8034{
8035 int ret;
8036
84f7d8e6 8037 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8038
fd708b81
JB
8039 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8040 root->root_key.objectid, owner, offset,
8041 BTRFS_ADD_DELAYED_EXTENT);
8042
88a979c6 8043 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
84f7d8e6
JB
8044 ins->offset, 0,
8045 root->root_key.objectid, owner,
7be07912
OS
8046 offset, ram_bytes,
8047 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8048 return ret;
8049}
e02119d5
CM
8050
8051/*
8052 * this is used by the tree logging recovery code. It records that
8053 * an extent has been allocated and makes sure to clear the free
8054 * space cache bits as well
8055 */
5d4f98a2 8056int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8057 u64 root_objectid, u64 owner, u64 offset,
8058 struct btrfs_key *ins)
e02119d5 8059{
61da2abf 8060 struct btrfs_fs_info *fs_info = trans->fs_info;
e02119d5
CM
8061 int ret;
8062 struct btrfs_block_group_cache *block_group;
ed7a6948 8063 struct btrfs_space_info *space_info;
11833d66 8064
8c2a1a30
JB
8065 /*
8066 * Mixed block groups will exclude before processing the log so we only
01327610 8067 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8068 */
0b246afa 8069 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8070 ret = __exclude_logged_extent(fs_info, ins->objectid,
8071 ins->offset);
b50c6e25 8072 if (ret)
8c2a1a30 8073 return ret;
11833d66
YZ
8074 }
8075
0b246afa 8076 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8077 if (!block_group)
8078 return -EINVAL;
8079
ed7a6948
WX
8080 space_info = block_group->space_info;
8081 spin_lock(&space_info->lock);
8082 spin_lock(&block_group->lock);
8083 space_info->bytes_reserved += ins->offset;
8084 block_group->reserved += ins->offset;
8085 spin_unlock(&block_group->lock);
8086 spin_unlock(&space_info->lock);
8087
ef89b824
NB
8088 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8089 offset, ins, 1);
b50c6e25 8090 btrfs_put_block_group(block_group);
e02119d5
CM
8091 return ret;
8092}
8093
48a3b636
ES
8094static struct extent_buffer *
8095btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
bc877d28 8096 u64 bytenr, int level, u64 owner)
65b51a00 8097{
0b246afa 8098 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8099 struct extent_buffer *buf;
8100
2ff7e61e 8101 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8102 if (IS_ERR(buf))
8103 return buf;
8104
b72c3aba
QW
8105 /*
8106 * Extra safety check in case the extent tree is corrupted and extent
8107 * allocator chooses to use a tree block which is already used and
8108 * locked.
8109 */
8110 if (buf->lock_owner == current->pid) {
8111 btrfs_err_rl(fs_info,
8112"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8113 buf->start, btrfs_header_owner(buf), current->pid);
8114 free_extent_buffer(buf);
8115 return ERR_PTR(-EUCLEAN);
8116 }
8117
85d4e461 8118 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8119 btrfs_tree_lock(buf);
7c302b49 8120 clean_tree_block(fs_info, buf);
3083ee2e 8121 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8122
8123 btrfs_set_lock_blocking(buf);
4db8c528 8124 set_extent_buffer_uptodate(buf);
b4ce94de 8125
bc877d28
NB
8126 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8127 btrfs_set_header_level(buf, level);
8128 btrfs_set_header_bytenr(buf, buf->start);
8129 btrfs_set_header_generation(buf, trans->transid);
8130 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8131 btrfs_set_header_owner(buf, owner);
8132 write_extent_buffer_fsid(buf, fs_info->fsid);
8133 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
d0c803c4 8134 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8135 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8136 /*
8137 * we allow two log transactions at a time, use different
8138 * EXENT bit to differentiate dirty pages.
8139 */
656f30db 8140 if (buf->log_index == 0)
8cef4e16
YZ
8141 set_extent_dirty(&root->dirty_log_pages, buf->start,
8142 buf->start + buf->len - 1, GFP_NOFS);
8143 else
8144 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8145 buf->start + buf->len - 1);
d0c803c4 8146 } else {
656f30db 8147 buf->log_index = -1;
d0c803c4 8148 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8149 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8150 }
64c12921 8151 trans->dirty = true;
b4ce94de 8152 /* this returns a buffer locked for blocking */
65b51a00
CM
8153 return buf;
8154}
8155
f0486c68
YZ
8156static struct btrfs_block_rsv *
8157use_block_rsv(struct btrfs_trans_handle *trans,
8158 struct btrfs_root *root, u32 blocksize)
8159{
0b246afa 8160 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8161 struct btrfs_block_rsv *block_rsv;
0b246afa 8162 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8163 int ret;
d88033db 8164 bool global_updated = false;
f0486c68
YZ
8165
8166 block_rsv = get_block_rsv(trans, root);
8167
b586b323
MX
8168 if (unlikely(block_rsv->size == 0))
8169 goto try_reserve;
d88033db 8170again:
f0486c68
YZ
8171 ret = block_rsv_use_bytes(block_rsv, blocksize);
8172 if (!ret)
8173 return block_rsv;
8174
b586b323
MX
8175 if (block_rsv->failfast)
8176 return ERR_PTR(ret);
8177
d88033db
MX
8178 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8179 global_updated = true;
0b246afa 8180 update_global_block_rsv(fs_info);
d88033db
MX
8181 goto again;
8182 }
8183
0b246afa 8184 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8185 static DEFINE_RATELIMIT_STATE(_rs,
8186 DEFAULT_RATELIMIT_INTERVAL * 10,
8187 /*DEFAULT_RATELIMIT_BURST*/ 1);
8188 if (__ratelimit(&_rs))
8189 WARN(1, KERN_DEBUG
efe120a0 8190 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8191 }
8192try_reserve:
8193 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8194 BTRFS_RESERVE_NO_FLUSH);
8195 if (!ret)
8196 return block_rsv;
8197 /*
8198 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8199 * the global reserve if its space type is the same as the global
8200 * reservation.
b586b323 8201 */
5881cfc9
MX
8202 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8203 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8204 ret = block_rsv_use_bytes(global_rsv, blocksize);
8205 if (!ret)
8206 return global_rsv;
8207 }
8208 return ERR_PTR(ret);
f0486c68
YZ
8209}
8210
8c2a3ca2
JB
8211static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8212 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68 8213{
3a584174 8214 block_rsv_add_bytes(block_rsv, blocksize, false);
ff6bc37e 8215 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8216}
8217
fec577fb 8218/*
f0486c68 8219 * finds a free extent and does all the dirty work required for allocation
67b7859e 8220 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8221 */
4d75f8a9 8222struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8223 struct btrfs_root *root,
8224 u64 parent, u64 root_objectid,
8225 const struct btrfs_disk_key *key,
8226 int level, u64 hint,
8227 u64 empty_size)
fec577fb 8228{
0b246afa 8229 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8230 struct btrfs_key ins;
f0486c68 8231 struct btrfs_block_rsv *block_rsv;
5f39d397 8232 struct extent_buffer *buf;
67b7859e 8233 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8234 u64 flags = 0;
8235 int ret;
0b246afa
JM
8236 u32 blocksize = fs_info->nodesize;
8237 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8238
05653ef3 8239#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8240 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8241 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
bc877d28 8242 level, root_objectid);
faa2dbf0
JB
8243 if (!IS_ERR(buf))
8244 root->alloc_bytenr += blocksize;
8245 return buf;
8246 }
05653ef3 8247#endif
fccb84c9 8248
f0486c68
YZ
8249 block_rsv = use_block_rsv(trans, root, blocksize);
8250 if (IS_ERR(block_rsv))
8251 return ERR_CAST(block_rsv);
8252
18513091 8253 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8254 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8255 if (ret)
8256 goto out_unuse;
55c69072 8257
bc877d28
NB
8258 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8259 root_objectid);
67b7859e
OS
8260 if (IS_ERR(buf)) {
8261 ret = PTR_ERR(buf);
8262 goto out_free_reserved;
8263 }
f0486c68
YZ
8264
8265 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8266 if (parent == 0)
8267 parent = ins.objectid;
8268 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8269 } else
8270 BUG_ON(parent > 0);
8271
8272 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8273 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8274 if (!extent_op) {
8275 ret = -ENOMEM;
8276 goto out_free_buf;
8277 }
f0486c68
YZ
8278 if (key)
8279 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8280 else
8281 memset(&extent_op->key, 0, sizeof(extent_op->key));
8282 extent_op->flags_to_set = flags;
35b3ad50
DS
8283 extent_op->update_key = skinny_metadata ? false : true;
8284 extent_op->update_flags = true;
8285 extent_op->is_data = false;
b1c79e09 8286 extent_op->level = level;
f0486c68 8287
fd708b81
JB
8288 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8289 root_objectid, level, 0,
8290 BTRFS_ADD_DELAYED_EXTENT);
44e1c47d 8291 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
7be07912
OS
8292 ins.offset, parent,
8293 root_objectid, level,
67b7859e 8294 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8295 extent_op, NULL, NULL);
67b7859e
OS
8296 if (ret)
8297 goto out_free_delayed;
f0486c68 8298 }
fec577fb 8299 return buf;
67b7859e
OS
8300
8301out_free_delayed:
8302 btrfs_free_delayed_extent_op(extent_op);
8303out_free_buf:
8304 free_extent_buffer(buf);
8305out_free_reserved:
2ff7e61e 8306 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8307out_unuse:
0b246afa 8308 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8309 return ERR_PTR(ret);
fec577fb 8310}
a28ec197 8311
2c47e605
YZ
8312struct walk_control {
8313 u64 refs[BTRFS_MAX_LEVEL];
8314 u64 flags[BTRFS_MAX_LEVEL];
8315 struct btrfs_key update_progress;
8316 int stage;
8317 int level;
8318 int shared_level;
8319 int update_ref;
8320 int keep_locks;
1c4850e2
YZ
8321 int reada_slot;
8322 int reada_count;
2c47e605
YZ
8323};
8324
8325#define DROP_REFERENCE 1
8326#define UPDATE_BACKREF 2
8327
1c4850e2
YZ
8328static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8329 struct btrfs_root *root,
8330 struct walk_control *wc,
8331 struct btrfs_path *path)
6407bf6d 8332{
0b246afa 8333 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8334 u64 bytenr;
8335 u64 generation;
8336 u64 refs;
94fcca9f 8337 u64 flags;
5d4f98a2 8338 u32 nritems;
1c4850e2
YZ
8339 struct btrfs_key key;
8340 struct extent_buffer *eb;
6407bf6d 8341 int ret;
1c4850e2
YZ
8342 int slot;
8343 int nread = 0;
6407bf6d 8344
1c4850e2
YZ
8345 if (path->slots[wc->level] < wc->reada_slot) {
8346 wc->reada_count = wc->reada_count * 2 / 3;
8347 wc->reada_count = max(wc->reada_count, 2);
8348 } else {
8349 wc->reada_count = wc->reada_count * 3 / 2;
8350 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8351 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8352 }
7bb86316 8353
1c4850e2
YZ
8354 eb = path->nodes[wc->level];
8355 nritems = btrfs_header_nritems(eb);
bd56b302 8356
1c4850e2
YZ
8357 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8358 if (nread >= wc->reada_count)
8359 break;
bd56b302 8360
2dd3e67b 8361 cond_resched();
1c4850e2
YZ
8362 bytenr = btrfs_node_blockptr(eb, slot);
8363 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8364
1c4850e2
YZ
8365 if (slot == path->slots[wc->level])
8366 goto reada;
5d4f98a2 8367
1c4850e2
YZ
8368 if (wc->stage == UPDATE_BACKREF &&
8369 generation <= root->root_key.offset)
bd56b302
CM
8370 continue;
8371
94fcca9f 8372 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8373 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8374 wc->level - 1, 1, &refs,
8375 &flags);
79787eaa
JM
8376 /* We don't care about errors in readahead. */
8377 if (ret < 0)
8378 continue;
94fcca9f
YZ
8379 BUG_ON(refs == 0);
8380
1c4850e2 8381 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8382 if (refs == 1)
8383 goto reada;
bd56b302 8384
94fcca9f
YZ
8385 if (wc->level == 1 &&
8386 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8387 continue;
1c4850e2
YZ
8388 if (!wc->update_ref ||
8389 generation <= root->root_key.offset)
8390 continue;
8391 btrfs_node_key_to_cpu(eb, &key, slot);
8392 ret = btrfs_comp_cpu_keys(&key,
8393 &wc->update_progress);
8394 if (ret < 0)
8395 continue;
94fcca9f
YZ
8396 } else {
8397 if (wc->level == 1 &&
8398 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8399 continue;
6407bf6d 8400 }
1c4850e2 8401reada:
2ff7e61e 8402 readahead_tree_block(fs_info, bytenr);
1c4850e2 8403 nread++;
20524f02 8404 }
1c4850e2 8405 wc->reada_slot = slot;
20524f02 8406}
2c47e605 8407
f82d02d9 8408/*
2c016dc2 8409 * helper to process tree block while walking down the tree.
2c47e605 8410 *
2c47e605
YZ
8411 * when wc->stage == UPDATE_BACKREF, this function updates
8412 * back refs for pointers in the block.
8413 *
8414 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8415 */
2c47e605 8416static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8417 struct btrfs_root *root,
2c47e605 8418 struct btrfs_path *path,
94fcca9f 8419 struct walk_control *wc, int lookup_info)
f82d02d9 8420{
2ff7e61e 8421 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8422 int level = wc->level;
8423 struct extent_buffer *eb = path->nodes[level];
2c47e605 8424 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8425 int ret;
8426
2c47e605
YZ
8427 if (wc->stage == UPDATE_BACKREF &&
8428 btrfs_header_owner(eb) != root->root_key.objectid)
8429 return 1;
f82d02d9 8430
2c47e605
YZ
8431 /*
8432 * when reference count of tree block is 1, it won't increase
8433 * again. once full backref flag is set, we never clear it.
8434 */
94fcca9f
YZ
8435 if (lookup_info &&
8436 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8437 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8438 BUG_ON(!path->locks[level]);
2ff7e61e 8439 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8440 eb->start, level, 1,
2c47e605
YZ
8441 &wc->refs[level],
8442 &wc->flags[level]);
79787eaa
JM
8443 BUG_ON(ret == -ENOMEM);
8444 if (ret)
8445 return ret;
2c47e605
YZ
8446 BUG_ON(wc->refs[level] == 0);
8447 }
5d4f98a2 8448
2c47e605
YZ
8449 if (wc->stage == DROP_REFERENCE) {
8450 if (wc->refs[level] > 1)
8451 return 1;
f82d02d9 8452
2c47e605 8453 if (path->locks[level] && !wc->keep_locks) {
bd681513 8454 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8455 path->locks[level] = 0;
8456 }
8457 return 0;
8458 }
f82d02d9 8459
2c47e605
YZ
8460 /* wc->stage == UPDATE_BACKREF */
8461 if (!(wc->flags[level] & flag)) {
8462 BUG_ON(!path->locks[level]);
e339a6b0 8463 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8464 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8465 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8466 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8467 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8468 eb->len, flag,
8469 btrfs_header_level(eb), 0);
79787eaa 8470 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8471 wc->flags[level] |= flag;
8472 }
8473
8474 /*
8475 * the block is shared by multiple trees, so it's not good to
8476 * keep the tree lock
8477 */
8478 if (path->locks[level] && level > 0) {
bd681513 8479 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8480 path->locks[level] = 0;
8481 }
8482 return 0;
8483}
8484
1c4850e2 8485/*
2c016dc2 8486 * helper to process tree block pointer.
1c4850e2
YZ
8487 *
8488 * when wc->stage == DROP_REFERENCE, this function checks
8489 * reference count of the block pointed to. if the block
8490 * is shared and we need update back refs for the subtree
8491 * rooted at the block, this function changes wc->stage to
8492 * UPDATE_BACKREF. if the block is shared and there is no
8493 * need to update back, this function drops the reference
8494 * to the block.
8495 *
8496 * NOTE: return value 1 means we should stop walking down.
8497 */
8498static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8499 struct btrfs_root *root,
8500 struct btrfs_path *path,
94fcca9f 8501 struct walk_control *wc, int *lookup_info)
1c4850e2 8502{
0b246afa 8503 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8504 u64 bytenr;
8505 u64 generation;
8506 u64 parent;
8507 u32 blocksize;
8508 struct btrfs_key key;
581c1760 8509 struct btrfs_key first_key;
1c4850e2
YZ
8510 struct extent_buffer *next;
8511 int level = wc->level;
8512 int reada = 0;
8513 int ret = 0;
1152651a 8514 bool need_account = false;
1c4850e2
YZ
8515
8516 generation = btrfs_node_ptr_generation(path->nodes[level],
8517 path->slots[level]);
8518 /*
8519 * if the lower level block was created before the snapshot
8520 * was created, we know there is no need to update back refs
8521 * for the subtree
8522 */
8523 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8524 generation <= root->root_key.offset) {
8525 *lookup_info = 1;
1c4850e2 8526 return 1;
94fcca9f 8527 }
1c4850e2
YZ
8528
8529 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8530 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8531 path->slots[level]);
0b246afa 8532 blocksize = fs_info->nodesize;
1c4850e2 8533
0b246afa 8534 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8535 if (!next) {
2ff7e61e 8536 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8537 if (IS_ERR(next))
8538 return PTR_ERR(next);
8539
b2aaaa3b
JB
8540 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8541 level - 1);
1c4850e2
YZ
8542 reada = 1;
8543 }
8544 btrfs_tree_lock(next);
8545 btrfs_set_lock_blocking(next);
8546
2ff7e61e 8547 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8548 &wc->refs[level - 1],
8549 &wc->flags[level - 1]);
4867268c
JB
8550 if (ret < 0)
8551 goto out_unlock;
79787eaa 8552
c2cf52eb 8553 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8554 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8555 ret = -EIO;
8556 goto out_unlock;
c2cf52eb 8557 }
94fcca9f 8558 *lookup_info = 0;
1c4850e2 8559
94fcca9f 8560 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8561 if (wc->refs[level - 1] > 1) {
1152651a 8562 need_account = true;
94fcca9f
YZ
8563 if (level == 1 &&
8564 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8565 goto skip;
8566
1c4850e2
YZ
8567 if (!wc->update_ref ||
8568 generation <= root->root_key.offset)
8569 goto skip;
8570
8571 btrfs_node_key_to_cpu(path->nodes[level], &key,
8572 path->slots[level]);
8573 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8574 if (ret < 0)
8575 goto skip;
8576
8577 wc->stage = UPDATE_BACKREF;
8578 wc->shared_level = level - 1;
8579 }
94fcca9f
YZ
8580 } else {
8581 if (level == 1 &&
8582 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8583 goto skip;
1c4850e2
YZ
8584 }
8585
b9fab919 8586 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8587 btrfs_tree_unlock(next);
8588 free_extent_buffer(next);
8589 next = NULL;
94fcca9f 8590 *lookup_info = 1;
1c4850e2
YZ
8591 }
8592
8593 if (!next) {
8594 if (reada && level == 1)
8595 reada_walk_down(trans, root, wc, path);
581c1760
QW
8596 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8597 &first_key);
64c043de
LB
8598 if (IS_ERR(next)) {
8599 return PTR_ERR(next);
8600 } else if (!extent_buffer_uptodate(next)) {
416bc658 8601 free_extent_buffer(next);
97d9a8a4 8602 return -EIO;
416bc658 8603 }
1c4850e2
YZ
8604 btrfs_tree_lock(next);
8605 btrfs_set_lock_blocking(next);
8606 }
8607
8608 level--;
4867268c
JB
8609 ASSERT(level == btrfs_header_level(next));
8610 if (level != btrfs_header_level(next)) {
8611 btrfs_err(root->fs_info, "mismatched level");
8612 ret = -EIO;
8613 goto out_unlock;
8614 }
1c4850e2
YZ
8615 path->nodes[level] = next;
8616 path->slots[level] = 0;
bd681513 8617 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8618 wc->level = level;
8619 if (wc->level == 1)
8620 wc->reada_slot = 0;
8621 return 0;
8622skip:
8623 wc->refs[level - 1] = 0;
8624 wc->flags[level - 1] = 0;
94fcca9f
YZ
8625 if (wc->stage == DROP_REFERENCE) {
8626 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8627 parent = path->nodes[level]->start;
8628 } else {
4867268c 8629 ASSERT(root->root_key.objectid ==
94fcca9f 8630 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8631 if (root->root_key.objectid !=
8632 btrfs_header_owner(path->nodes[level])) {
8633 btrfs_err(root->fs_info,
8634 "mismatched block owner");
8635 ret = -EIO;
8636 goto out_unlock;
8637 }
94fcca9f
YZ
8638 parent = 0;
8639 }
1c4850e2 8640
1152651a 8641 if (need_account) {
deb40627 8642 ret = btrfs_qgroup_trace_subtree(trans, next,
33d1f05c 8643 generation, level - 1);
1152651a 8644 if (ret) {
0b246afa 8645 btrfs_err_rl(fs_info,
5d163e0e
JM
8646 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8647 ret);
1152651a
MF
8648 }
8649 }
84f7d8e6 8650 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
2ff7e61e
JM
8651 parent, root->root_key.objectid,
8652 level - 1, 0);
4867268c
JB
8653 if (ret)
8654 goto out_unlock;
1c4850e2 8655 }
4867268c
JB
8656
8657 *lookup_info = 1;
8658 ret = 1;
8659
8660out_unlock:
1c4850e2
YZ
8661 btrfs_tree_unlock(next);
8662 free_extent_buffer(next);
4867268c
JB
8663
8664 return ret;
1c4850e2
YZ
8665}
8666
2c47e605 8667/*
2c016dc2 8668 * helper to process tree block while walking up the tree.
2c47e605
YZ
8669 *
8670 * when wc->stage == DROP_REFERENCE, this function drops
8671 * reference count on the block.
8672 *
8673 * when wc->stage == UPDATE_BACKREF, this function changes
8674 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8675 * to UPDATE_BACKREF previously while processing the block.
8676 *
8677 * NOTE: return value 1 means we should stop walking up.
8678 */
8679static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8680 struct btrfs_root *root,
8681 struct btrfs_path *path,
8682 struct walk_control *wc)
8683{
0b246afa 8684 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8685 int ret;
2c47e605
YZ
8686 int level = wc->level;
8687 struct extent_buffer *eb = path->nodes[level];
8688 u64 parent = 0;
8689
8690 if (wc->stage == UPDATE_BACKREF) {
8691 BUG_ON(wc->shared_level < level);
8692 if (level < wc->shared_level)
8693 goto out;
8694
2c47e605
YZ
8695 ret = find_next_key(path, level + 1, &wc->update_progress);
8696 if (ret > 0)
8697 wc->update_ref = 0;
8698
8699 wc->stage = DROP_REFERENCE;
8700 wc->shared_level = -1;
8701 path->slots[level] = 0;
8702
8703 /*
8704 * check reference count again if the block isn't locked.
8705 * we should start walking down the tree again if reference
8706 * count is one.
8707 */
8708 if (!path->locks[level]) {
8709 BUG_ON(level == 0);
8710 btrfs_tree_lock(eb);
8711 btrfs_set_lock_blocking(eb);
bd681513 8712 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8713
2ff7e61e 8714 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8715 eb->start, level, 1,
2c47e605
YZ
8716 &wc->refs[level],
8717 &wc->flags[level]);
79787eaa
JM
8718 if (ret < 0) {
8719 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8720 path->locks[level] = 0;
79787eaa
JM
8721 return ret;
8722 }
2c47e605
YZ
8723 BUG_ON(wc->refs[level] == 0);
8724 if (wc->refs[level] == 1) {
bd681513 8725 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8726 path->locks[level] = 0;
2c47e605
YZ
8727 return 1;
8728 }
f82d02d9 8729 }
2c47e605 8730 }
f82d02d9 8731
2c47e605
YZ
8732 /* wc->stage == DROP_REFERENCE */
8733 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8734
2c47e605
YZ
8735 if (wc->refs[level] == 1) {
8736 if (level == 0) {
8737 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8738 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8739 else
e339a6b0 8740 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8741 BUG_ON(ret); /* -ENOMEM */
8d38d7eb 8742 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
1152651a 8743 if (ret) {
0b246afa 8744 btrfs_err_rl(fs_info,
5d163e0e
JM
8745 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8746 ret);
1152651a 8747 }
2c47e605
YZ
8748 }
8749 /* make block locked assertion in clean_tree_block happy */
8750 if (!path->locks[level] &&
8751 btrfs_header_generation(eb) == trans->transid) {
8752 btrfs_tree_lock(eb);
8753 btrfs_set_lock_blocking(eb);
bd681513 8754 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8755 }
7c302b49 8756 clean_tree_block(fs_info, eb);
2c47e605
YZ
8757 }
8758
8759 if (eb == root->node) {
8760 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8761 parent = eb->start;
65c6e82b
QW
8762 else if (root->root_key.objectid != btrfs_header_owner(eb))
8763 goto owner_mismatch;
2c47e605
YZ
8764 } else {
8765 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8766 parent = path->nodes[level + 1]->start;
65c6e82b
QW
8767 else if (root->root_key.objectid !=
8768 btrfs_header_owner(path->nodes[level + 1]))
8769 goto owner_mismatch;
f82d02d9 8770 }
f82d02d9 8771
5581a51a 8772 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8773out:
8774 wc->refs[level] = 0;
8775 wc->flags[level] = 0;
f0486c68 8776 return 0;
65c6e82b
QW
8777
8778owner_mismatch:
8779 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
8780 btrfs_header_owner(eb), root->root_key.objectid);
8781 return -EUCLEAN;
2c47e605
YZ
8782}
8783
8784static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8785 struct btrfs_root *root,
8786 struct btrfs_path *path,
8787 struct walk_control *wc)
8788{
2c47e605 8789 int level = wc->level;
94fcca9f 8790 int lookup_info = 1;
2c47e605
YZ
8791 int ret;
8792
8793 while (level >= 0) {
94fcca9f 8794 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8795 if (ret > 0)
8796 break;
8797
8798 if (level == 0)
8799 break;
8800
7a7965f8
YZ
8801 if (path->slots[level] >=
8802 btrfs_header_nritems(path->nodes[level]))
8803 break;
8804
94fcca9f 8805 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8806 if (ret > 0) {
8807 path->slots[level]++;
8808 continue;
90d2c51d
MX
8809 } else if (ret < 0)
8810 return ret;
1c4850e2 8811 level = wc->level;
f82d02d9 8812 }
f82d02d9
YZ
8813 return 0;
8814}
8815
d397712b 8816static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8817 struct btrfs_root *root,
f82d02d9 8818 struct btrfs_path *path,
2c47e605 8819 struct walk_control *wc, int max_level)
20524f02 8820{
2c47e605 8821 int level = wc->level;
20524f02 8822 int ret;
9f3a7427 8823
2c47e605
YZ
8824 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8825 while (level < max_level && path->nodes[level]) {
8826 wc->level = level;
8827 if (path->slots[level] + 1 <
8828 btrfs_header_nritems(path->nodes[level])) {
8829 path->slots[level]++;
20524f02
CM
8830 return 0;
8831 } else {
2c47e605
YZ
8832 ret = walk_up_proc(trans, root, path, wc);
8833 if (ret > 0)
8834 return 0;
65c6e82b
QW
8835 if (ret < 0)
8836 return ret;
bd56b302 8837
2c47e605 8838 if (path->locks[level]) {
bd681513
CM
8839 btrfs_tree_unlock_rw(path->nodes[level],
8840 path->locks[level]);
2c47e605 8841 path->locks[level] = 0;
f82d02d9 8842 }
2c47e605
YZ
8843 free_extent_buffer(path->nodes[level]);
8844 path->nodes[level] = NULL;
8845 level++;
20524f02
CM
8846 }
8847 }
8848 return 1;
8849}
8850
9aca1d51 8851/*
2c47e605
YZ
8852 * drop a subvolume tree.
8853 *
8854 * this function traverses the tree freeing any blocks that only
8855 * referenced by the tree.
8856 *
8857 * when a shared tree block is found. this function decreases its
8858 * reference count by one. if update_ref is true, this function
8859 * also make sure backrefs for the shared block and all lower level
8860 * blocks are properly updated.
9d1a2a3a
DS
8861 *
8862 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8863 */
2c536799 8864int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8865 struct btrfs_block_rsv *block_rsv, int update_ref,
8866 int for_reloc)
20524f02 8867{
ab8d0fc4 8868 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 8869 struct btrfs_path *path;
2c47e605 8870 struct btrfs_trans_handle *trans;
ab8d0fc4 8871 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 8872 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8873 struct walk_control *wc;
8874 struct btrfs_key key;
8875 int err = 0;
8876 int ret;
8877 int level;
d29a9f62 8878 bool root_dropped = false;
20524f02 8879
4fd786e6 8880 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
1152651a 8881
5caf2a00 8882 path = btrfs_alloc_path();
cb1b69f4
TI
8883 if (!path) {
8884 err = -ENOMEM;
8885 goto out;
8886 }
20524f02 8887
2c47e605 8888 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8889 if (!wc) {
8890 btrfs_free_path(path);
cb1b69f4
TI
8891 err = -ENOMEM;
8892 goto out;
38a1a919 8893 }
2c47e605 8894
a22285a6 8895 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8896 if (IS_ERR(trans)) {
8897 err = PTR_ERR(trans);
8898 goto out_free;
8899 }
98d5dc13 8900
3fd0a558
YZ
8901 if (block_rsv)
8902 trans->block_rsv = block_rsv;
2c47e605 8903
9f3a7427 8904 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8905 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8906 path->nodes[level] = btrfs_lock_root_node(root);
8907 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8908 path->slots[level] = 0;
bd681513 8909 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8910 memset(&wc->update_progress, 0,
8911 sizeof(wc->update_progress));
9f3a7427 8912 } else {
9f3a7427 8913 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8914 memcpy(&wc->update_progress, &key,
8915 sizeof(wc->update_progress));
8916
6702ed49 8917 level = root_item->drop_level;
2c47e605 8918 BUG_ON(level == 0);
6702ed49 8919 path->lowest_level = level;
2c47e605
YZ
8920 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8921 path->lowest_level = 0;
8922 if (ret < 0) {
8923 err = ret;
79787eaa 8924 goto out_end_trans;
9f3a7427 8925 }
1c4850e2 8926 WARN_ON(ret > 0);
2c47e605 8927
7d9eb12c
CM
8928 /*
8929 * unlock our path, this is safe because only this
8930 * function is allowed to delete this snapshot
8931 */
5d4f98a2 8932 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8933
8934 level = btrfs_header_level(root->node);
8935 while (1) {
8936 btrfs_tree_lock(path->nodes[level]);
8937 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8938 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8939
2ff7e61e 8940 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 8941 path->nodes[level]->start,
3173a18f 8942 level, 1, &wc->refs[level],
2c47e605 8943 &wc->flags[level]);
79787eaa
JM
8944 if (ret < 0) {
8945 err = ret;
8946 goto out_end_trans;
8947 }
2c47e605
YZ
8948 BUG_ON(wc->refs[level] == 0);
8949
8950 if (level == root_item->drop_level)
8951 break;
8952
8953 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8954 path->locks[level] = 0;
2c47e605
YZ
8955 WARN_ON(wc->refs[level] != 1);
8956 level--;
8957 }
9f3a7427 8958 }
2c47e605
YZ
8959
8960 wc->level = level;
8961 wc->shared_level = -1;
8962 wc->stage = DROP_REFERENCE;
8963 wc->update_ref = update_ref;
8964 wc->keep_locks = 0;
0b246afa 8965 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 8966
d397712b 8967 while (1) {
9d1a2a3a 8968
2c47e605
YZ
8969 ret = walk_down_tree(trans, root, path, wc);
8970 if (ret < 0) {
8971 err = ret;
20524f02 8972 break;
2c47e605 8973 }
9aca1d51 8974
2c47e605
YZ
8975 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8976 if (ret < 0) {
8977 err = ret;
20524f02 8978 break;
2c47e605
YZ
8979 }
8980
8981 if (ret > 0) {
8982 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8983 break;
8984 }
2c47e605
YZ
8985
8986 if (wc->stage == DROP_REFERENCE) {
8987 level = wc->level;
8988 btrfs_node_key(path->nodes[level],
8989 &root_item->drop_progress,
8990 path->slots[level]);
8991 root_item->drop_level = level;
8992 }
8993
8994 BUG_ON(wc->level == 0);
3a45bb20 8995 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 8996 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
8997 ret = btrfs_update_root(trans, tree_root,
8998 &root->root_key,
8999 root_item);
79787eaa 9000 if (ret) {
66642832 9001 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9002 err = ret;
9003 goto out_end_trans;
9004 }
2c47e605 9005
3a45bb20 9006 btrfs_end_transaction_throttle(trans);
2ff7e61e 9007 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9008 btrfs_debug(fs_info,
9009 "drop snapshot early exit");
3c8f2422
JB
9010 err = -EAGAIN;
9011 goto out_free;
9012 }
9013
a22285a6 9014 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9015 if (IS_ERR(trans)) {
9016 err = PTR_ERR(trans);
9017 goto out_free;
9018 }
3fd0a558
YZ
9019 if (block_rsv)
9020 trans->block_rsv = block_rsv;
c3e69d58 9021 }
20524f02 9022 }
b3b4aa74 9023 btrfs_release_path(path);
79787eaa
JM
9024 if (err)
9025 goto out_end_trans;
2c47e605 9026
ab9ce7d4 9027 ret = btrfs_del_root(trans, &root->root_key);
79787eaa 9028 if (ret) {
66642832 9029 btrfs_abort_transaction(trans, ret);
e19182c0 9030 err = ret;
79787eaa
JM
9031 goto out_end_trans;
9032 }
2c47e605 9033
76dda93c 9034 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9035 ret = btrfs_find_root(tree_root, &root->root_key, path,
9036 NULL, NULL);
79787eaa 9037 if (ret < 0) {
66642832 9038 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9039 err = ret;
9040 goto out_end_trans;
9041 } else if (ret > 0) {
84cd948c
JB
9042 /* if we fail to delete the orphan item this time
9043 * around, it'll get picked up the next time.
9044 *
9045 * The most common failure here is just -ENOENT.
9046 */
9047 btrfs_del_orphan_item(trans, tree_root,
9048 root->root_key.objectid);
76dda93c
YZ
9049 }
9050 }
9051
27cdeb70 9052 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9053 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9054 } else {
9055 free_extent_buffer(root->node);
9056 free_extent_buffer(root->commit_root);
b0feb9d9 9057 btrfs_put_fs_root(root);
76dda93c 9058 }
d29a9f62 9059 root_dropped = true;
79787eaa 9060out_end_trans:
3a45bb20 9061 btrfs_end_transaction_throttle(trans);
79787eaa 9062out_free:
2c47e605 9063 kfree(wc);
5caf2a00 9064 btrfs_free_path(path);
cb1b69f4 9065out:
d29a9f62
JB
9066 /*
9067 * So if we need to stop dropping the snapshot for whatever reason we
9068 * need to make sure to add it back to the dead root list so that we
9069 * keep trying to do the work later. This also cleans up roots if we
9070 * don't have it in the radix (like when we recover after a power fail
9071 * or unmount) so we don't leak memory.
9072 */
897ca819 9073 if (!for_reloc && !root_dropped)
d29a9f62 9074 btrfs_add_dead_root(root);
90515e7f 9075 if (err && err != -EAGAIN)
ab8d0fc4 9076 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9077 return err;
20524f02 9078}
9078a3e1 9079
2c47e605
YZ
9080/*
9081 * drop subtree rooted at tree block 'node'.
9082 *
9083 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9084 * only used by relocation code
2c47e605 9085 */
f82d02d9
YZ
9086int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9087 struct btrfs_root *root,
9088 struct extent_buffer *node,
9089 struct extent_buffer *parent)
9090{
0b246afa 9091 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9092 struct btrfs_path *path;
2c47e605 9093 struct walk_control *wc;
f82d02d9
YZ
9094 int level;
9095 int parent_level;
9096 int ret = 0;
9097 int wret;
9098
2c47e605
YZ
9099 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9100
f82d02d9 9101 path = btrfs_alloc_path();
db5b493a
TI
9102 if (!path)
9103 return -ENOMEM;
f82d02d9 9104
2c47e605 9105 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9106 if (!wc) {
9107 btrfs_free_path(path);
9108 return -ENOMEM;
9109 }
2c47e605 9110
b9447ef8 9111 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9112 parent_level = btrfs_header_level(parent);
9113 extent_buffer_get(parent);
9114 path->nodes[parent_level] = parent;
9115 path->slots[parent_level] = btrfs_header_nritems(parent);
9116
b9447ef8 9117 btrfs_assert_tree_locked(node);
f82d02d9 9118 level = btrfs_header_level(node);
f82d02d9
YZ
9119 path->nodes[level] = node;
9120 path->slots[level] = 0;
bd681513 9121 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9122
9123 wc->refs[parent_level] = 1;
9124 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9125 wc->level = level;
9126 wc->shared_level = -1;
9127 wc->stage = DROP_REFERENCE;
9128 wc->update_ref = 0;
9129 wc->keep_locks = 1;
0b246afa 9130 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9131
9132 while (1) {
2c47e605
YZ
9133 wret = walk_down_tree(trans, root, path, wc);
9134 if (wret < 0) {
f82d02d9 9135 ret = wret;
f82d02d9 9136 break;
2c47e605 9137 }
f82d02d9 9138
2c47e605 9139 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9140 if (wret < 0)
9141 ret = wret;
9142 if (wret != 0)
9143 break;
9144 }
9145
2c47e605 9146 kfree(wc);
f82d02d9
YZ
9147 btrfs_free_path(path);
9148 return ret;
9149}
9150
6202df69 9151static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9152{
9153 u64 num_devices;
fc67c450 9154 u64 stripped;
e4d8ec0f 9155
fc67c450
ID
9156 /*
9157 * if restripe for this chunk_type is on pick target profile and
9158 * return, otherwise do the usual balance
9159 */
6202df69 9160 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9161 if (stripped)
9162 return extended_to_chunk(stripped);
e4d8ec0f 9163
6202df69 9164 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9165
fc67c450 9166 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9167 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9168 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9169
ec44a35c
CM
9170 if (num_devices == 1) {
9171 stripped |= BTRFS_BLOCK_GROUP_DUP;
9172 stripped = flags & ~stripped;
9173
9174 /* turn raid0 into single device chunks */
9175 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9176 return stripped;
9177
9178 /* turn mirroring into duplication */
9179 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9180 BTRFS_BLOCK_GROUP_RAID10))
9181 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9182 } else {
9183 /* they already had raid on here, just return */
ec44a35c
CM
9184 if (flags & stripped)
9185 return flags;
9186
9187 stripped |= BTRFS_BLOCK_GROUP_DUP;
9188 stripped = flags & ~stripped;
9189
9190 /* switch duplicated blocks with raid1 */
9191 if (flags & BTRFS_BLOCK_GROUP_DUP)
9192 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9193
e3176ca2 9194 /* this is drive concat, leave it alone */
ec44a35c 9195 }
e3176ca2 9196
ec44a35c
CM
9197 return flags;
9198}
9199
868f401a 9200static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9201{
f0486c68
YZ
9202 struct btrfs_space_info *sinfo = cache->space_info;
9203 u64 num_bytes;
199c36ea 9204 u64 min_allocable_bytes;
f0486c68 9205 int ret = -ENOSPC;
0ef3e66b 9206
199c36ea
MX
9207 /*
9208 * We need some metadata space and system metadata space for
9209 * allocating chunks in some corner cases until we force to set
9210 * it to be readonly.
9211 */
9212 if ((sinfo->flags &
9213 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9214 !force)
ee22184b 9215 min_allocable_bytes = SZ_1M;
199c36ea
MX
9216 else
9217 min_allocable_bytes = 0;
9218
f0486c68
YZ
9219 spin_lock(&sinfo->lock);
9220 spin_lock(&cache->lock);
61cfea9b
W
9221
9222 if (cache->ro) {
868f401a 9223 cache->ro++;
61cfea9b
W
9224 ret = 0;
9225 goto out;
9226 }
9227
f0486c68
YZ
9228 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9229 cache->bytes_super - btrfs_block_group_used(&cache->item);
9230
4136135b 9231 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9232 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9233 sinfo->bytes_readonly += num_bytes;
868f401a 9234 cache->ro++;
633c0aad 9235 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9236 ret = 0;
9237 }
61cfea9b 9238out:
f0486c68
YZ
9239 spin_unlock(&cache->lock);
9240 spin_unlock(&sinfo->lock);
9241 return ret;
9242}
7d9eb12c 9243
c83488af 9244int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
c286ac48 9245
f0486c68 9246{
c83488af 9247 struct btrfs_fs_info *fs_info = cache->fs_info;
f0486c68
YZ
9248 struct btrfs_trans_handle *trans;
9249 u64 alloc_flags;
9250 int ret;
7d9eb12c 9251
1bbc621e 9252again:
5e00f193 9253 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9254 if (IS_ERR(trans))
9255 return PTR_ERR(trans);
5d4f98a2 9256
1bbc621e
CM
9257 /*
9258 * we're not allowed to set block groups readonly after the dirty
9259 * block groups cache has started writing. If it already started,
9260 * back off and let this transaction commit
9261 */
0b246afa 9262 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9263 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9264 u64 transid = trans->transid;
9265
0b246afa 9266 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9267 btrfs_end_transaction(trans);
1bbc621e 9268
2ff7e61e 9269 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9270 if (ret)
9271 return ret;
9272 goto again;
9273 }
9274
153c35b6
CM
9275 /*
9276 * if we are changing raid levels, try to allocate a corresponding
9277 * block group with the new raid level.
9278 */
0b246afa 9279 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9280 if (alloc_flags != cache->flags) {
01458828 9281 ret = do_chunk_alloc(trans, alloc_flags,
153c35b6
CM
9282 CHUNK_ALLOC_FORCE);
9283 /*
9284 * ENOSPC is allowed here, we may have enough space
9285 * already allocated at the new raid level to
9286 * carry on
9287 */
9288 if (ret == -ENOSPC)
9289 ret = 0;
9290 if (ret < 0)
9291 goto out;
9292 }
1bbc621e 9293
868f401a 9294 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9295 if (!ret)
9296 goto out;
2ff7e61e 9297 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
01458828 9298 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
f0486c68
YZ
9299 if (ret < 0)
9300 goto out;
868f401a 9301 ret = inc_block_group_ro(cache, 0);
f0486c68 9302out:
2f081088 9303 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9304 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9305 mutex_lock(&fs_info->chunk_mutex);
451a2c13 9306 check_system_chunk(trans, alloc_flags);
34441361 9307 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9308 }
0b246afa 9309 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9310
3a45bb20 9311 btrfs_end_transaction(trans);
f0486c68
YZ
9312 return ret;
9313}
5d4f98a2 9314
43a7e99d 9315int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
c87f08ca 9316{
43a7e99d 9317 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
2ff7e61e 9318
01458828 9319 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9320}
9321
6d07bcec
MX
9322/*
9323 * helper to account the unused space of all the readonly block group in the
633c0aad 9324 * space_info. takes mirrors into account.
6d07bcec 9325 */
633c0aad 9326u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9327{
9328 struct btrfs_block_group_cache *block_group;
9329 u64 free_bytes = 0;
9330 int factor;
9331
01327610 9332 /* It's df, we don't care if it's racy */
633c0aad
JB
9333 if (list_empty(&sinfo->ro_bgs))
9334 return 0;
9335
9336 spin_lock(&sinfo->lock);
9337 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9338 spin_lock(&block_group->lock);
9339
9340 if (!block_group->ro) {
9341 spin_unlock(&block_group->lock);
9342 continue;
9343 }
9344
46df06b8 9345 factor = btrfs_bg_type_to_factor(block_group->flags);
6d07bcec
MX
9346 free_bytes += (block_group->key.offset -
9347 btrfs_block_group_used(&block_group->item)) *
9348 factor;
9349
9350 spin_unlock(&block_group->lock);
9351 }
6d07bcec
MX
9352 spin_unlock(&sinfo->lock);
9353
9354 return free_bytes;
9355}
9356
2ff7e61e 9357void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9358{
f0486c68
YZ
9359 struct btrfs_space_info *sinfo = cache->space_info;
9360 u64 num_bytes;
9361
9362 BUG_ON(!cache->ro);
9363
9364 spin_lock(&sinfo->lock);
9365 spin_lock(&cache->lock);
868f401a
Z
9366 if (!--cache->ro) {
9367 num_bytes = cache->key.offset - cache->reserved -
9368 cache->pinned - cache->bytes_super -
9369 btrfs_block_group_used(&cache->item);
9370 sinfo->bytes_readonly -= num_bytes;
9371 list_del_init(&cache->ro_list);
9372 }
f0486c68
YZ
9373 spin_unlock(&cache->lock);
9374 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9375}
9376
ba1bf481
JB
9377/*
9378 * checks to see if its even possible to relocate this block group.
9379 *
9380 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9381 * ok to go ahead and try.
9382 */
6bccf3ab 9383int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9384{
6bccf3ab 9385 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9386 struct btrfs_block_group_cache *block_group;
9387 struct btrfs_space_info *space_info;
0b246afa 9388 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9389 struct btrfs_device *device;
6df9a95e 9390 struct btrfs_trans_handle *trans;
cdcb725c 9391 u64 min_free;
6719db6a
JB
9392 u64 dev_min = 1;
9393 u64 dev_nr = 0;
4a5e98f5 9394 u64 target;
0305bc27 9395 int debug;
cdcb725c 9396 int index;
ba1bf481
JB
9397 int full = 0;
9398 int ret = 0;
1a40e23b 9399
0b246afa 9400 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9401
0b246afa 9402 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9403
ba1bf481 9404 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9405 if (!block_group) {
9406 if (debug)
0b246afa 9407 btrfs_warn(fs_info,
0305bc27
QW
9408 "can't find block group for bytenr %llu",
9409 bytenr);
ba1bf481 9410 return -1;
0305bc27 9411 }
1a40e23b 9412
cdcb725c 9413 min_free = btrfs_block_group_used(&block_group->item);
9414
ba1bf481 9415 /* no bytes used, we're good */
cdcb725c 9416 if (!min_free)
1a40e23b
ZY
9417 goto out;
9418
ba1bf481
JB
9419 space_info = block_group->space_info;
9420 spin_lock(&space_info->lock);
17d217fe 9421
ba1bf481 9422 full = space_info->full;
17d217fe 9423
ba1bf481
JB
9424 /*
9425 * if this is the last block group we have in this space, we can't
7ce618db
CM
9426 * relocate it unless we're able to allocate a new chunk below.
9427 *
9428 * Otherwise, we need to make sure we have room in the space to handle
9429 * all of the extents from this block group. If we can, we're good
ba1bf481 9430 */
7ce618db 9431 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9432 (btrfs_space_info_used(space_info, false) + min_free <
9433 space_info->total_bytes)) {
ba1bf481
JB
9434 spin_unlock(&space_info->lock);
9435 goto out;
17d217fe 9436 }
ba1bf481 9437 spin_unlock(&space_info->lock);
ea8c2819 9438
ba1bf481
JB
9439 /*
9440 * ok we don't have enough space, but maybe we have free space on our
9441 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9442 * alloc devices and guess if we have enough space. if this block
9443 * group is going to be restriped, run checks against the target
9444 * profile instead of the current one.
ba1bf481
JB
9445 */
9446 ret = -1;
ea8c2819 9447
cdcb725c 9448 /*
9449 * index:
9450 * 0: raid10
9451 * 1: raid1
9452 * 2: dup
9453 * 3: raid0
9454 * 4: single
9455 */
0b246afa 9456 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9457 if (target) {
3e72ee88 9458 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9459 } else {
9460 /*
9461 * this is just a balance, so if we were marked as full
9462 * we know there is no space for a new chunk
9463 */
0305bc27
QW
9464 if (full) {
9465 if (debug)
0b246afa
JM
9466 btrfs_warn(fs_info,
9467 "no space to alloc new chunk for block group %llu",
9468 block_group->key.objectid);
4a5e98f5 9469 goto out;
0305bc27 9470 }
4a5e98f5 9471
3e72ee88 9472 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9473 }
9474
e6ec716f 9475 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9476 dev_min = 4;
6719db6a
JB
9477 /* Divide by 2 */
9478 min_free >>= 1;
e6ec716f 9479 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9480 dev_min = 2;
e6ec716f 9481 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9482 /* Multiply by 2 */
9483 min_free <<= 1;
e6ec716f 9484 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9485 dev_min = fs_devices->rw_devices;
47c5713f 9486 min_free = div64_u64(min_free, dev_min);
cdcb725c 9487 }
9488
6df9a95e
JB
9489 /* We need to do this so that we can look at pending chunks */
9490 trans = btrfs_join_transaction(root);
9491 if (IS_ERR(trans)) {
9492 ret = PTR_ERR(trans);
9493 goto out;
9494 }
9495
0b246afa 9496 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9497 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9498 u64 dev_offset;
56bec294 9499
ba1bf481
JB
9500 /*
9501 * check to make sure we can actually find a chunk with enough
9502 * space to fit our block group in.
9503 */
63a212ab 9504 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9505 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9506 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9507 &dev_offset, NULL);
ba1bf481 9508 if (!ret)
cdcb725c 9509 dev_nr++;
9510
9511 if (dev_nr >= dev_min)
73e48b27 9512 break;
cdcb725c 9513
ba1bf481 9514 ret = -1;
725c8463 9515 }
edbd8d4e 9516 }
0305bc27 9517 if (debug && ret == -1)
0b246afa
JM
9518 btrfs_warn(fs_info,
9519 "no space to allocate a new chunk for block group %llu",
9520 block_group->key.objectid);
9521 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9522 btrfs_end_transaction(trans);
edbd8d4e 9523out:
ba1bf481 9524 btrfs_put_block_group(block_group);
edbd8d4e
CM
9525 return ret;
9526}
9527
6bccf3ab
JM
9528static int find_first_block_group(struct btrfs_fs_info *fs_info,
9529 struct btrfs_path *path,
9530 struct btrfs_key *key)
0b86a832 9531{
6bccf3ab 9532 struct btrfs_root *root = fs_info->extent_root;
925baedd 9533 int ret = 0;
0b86a832
CM
9534 struct btrfs_key found_key;
9535 struct extent_buffer *leaf;
514c7dca
QW
9536 struct btrfs_block_group_item bg;
9537 u64 flags;
0b86a832 9538 int slot;
edbd8d4e 9539
0b86a832
CM
9540 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9541 if (ret < 0)
925baedd
CM
9542 goto out;
9543
d397712b 9544 while (1) {
0b86a832 9545 slot = path->slots[0];
edbd8d4e 9546 leaf = path->nodes[0];
0b86a832
CM
9547 if (slot >= btrfs_header_nritems(leaf)) {
9548 ret = btrfs_next_leaf(root, path);
9549 if (ret == 0)
9550 continue;
9551 if (ret < 0)
925baedd 9552 goto out;
0b86a832 9553 break;
edbd8d4e 9554 }
0b86a832 9555 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9556
0b86a832 9557 if (found_key.objectid >= key->objectid &&
925baedd 9558 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9559 struct extent_map_tree *em_tree;
9560 struct extent_map *em;
9561
9562 em_tree = &root->fs_info->mapping_tree.map_tree;
9563 read_lock(&em_tree->lock);
9564 em = lookup_extent_mapping(em_tree, found_key.objectid,
9565 found_key.offset);
9566 read_unlock(&em_tree->lock);
9567 if (!em) {
0b246afa 9568 btrfs_err(fs_info,
6fb37b75
LB
9569 "logical %llu len %llu found bg but no related chunk",
9570 found_key.objectid, found_key.offset);
9571 ret = -ENOENT;
514c7dca
QW
9572 } else if (em->start != found_key.objectid ||
9573 em->len != found_key.offset) {
9574 btrfs_err(fs_info,
9575 "block group %llu len %llu mismatch with chunk %llu len %llu",
9576 found_key.objectid, found_key.offset,
9577 em->start, em->len);
9578 ret = -EUCLEAN;
6fb37b75 9579 } else {
514c7dca
QW
9580 read_extent_buffer(leaf, &bg,
9581 btrfs_item_ptr_offset(leaf, slot),
9582 sizeof(bg));
9583 flags = btrfs_block_group_flags(&bg) &
9584 BTRFS_BLOCK_GROUP_TYPE_MASK;
9585
9586 if (flags != (em->map_lookup->type &
9587 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9588 btrfs_err(fs_info,
9589"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9590 found_key.objectid,
9591 found_key.offset, flags,
9592 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9593 em->map_lookup->type));
9594 ret = -EUCLEAN;
9595 } else {
9596 ret = 0;
9597 }
6fb37b75 9598 }
187ee58c 9599 free_extent_map(em);
925baedd
CM
9600 goto out;
9601 }
0b86a832 9602 path->slots[0]++;
edbd8d4e 9603 }
925baedd 9604out:
0b86a832 9605 return ret;
edbd8d4e
CM
9606}
9607
0af3d00b
JB
9608void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9609{
9610 struct btrfs_block_group_cache *block_group;
9611 u64 last = 0;
9612
9613 while (1) {
9614 struct inode *inode;
9615
9616 block_group = btrfs_lookup_first_block_group(info, last);
9617 while (block_group) {
9618 spin_lock(&block_group->lock);
9619 if (block_group->iref)
9620 break;
9621 spin_unlock(&block_group->lock);
2ff7e61e 9622 block_group = next_block_group(info, block_group);
0af3d00b
JB
9623 }
9624 if (!block_group) {
9625 if (last == 0)
9626 break;
9627 last = 0;
9628 continue;
9629 }
9630
9631 inode = block_group->inode;
9632 block_group->iref = 0;
9633 block_group->inode = NULL;
9634 spin_unlock(&block_group->lock);
f3bca802 9635 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9636 iput(inode);
9637 last = block_group->key.objectid + block_group->key.offset;
9638 btrfs_put_block_group(block_group);
9639 }
9640}
9641
5cdd7db6
FM
9642/*
9643 * Must be called only after stopping all workers, since we could have block
9644 * group caching kthreads running, and therefore they could race with us if we
9645 * freed the block groups before stopping them.
9646 */
1a40e23b
ZY
9647int btrfs_free_block_groups(struct btrfs_fs_info *info)
9648{
9649 struct btrfs_block_group_cache *block_group;
4184ea7f 9650 struct btrfs_space_info *space_info;
11833d66 9651 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9652 struct rb_node *n;
9653
9e351cc8 9654 down_write(&info->commit_root_sem);
11833d66
YZ
9655 while (!list_empty(&info->caching_block_groups)) {
9656 caching_ctl = list_entry(info->caching_block_groups.next,
9657 struct btrfs_caching_control, list);
9658 list_del(&caching_ctl->list);
9659 put_caching_control(caching_ctl);
9660 }
9e351cc8 9661 up_write(&info->commit_root_sem);
11833d66 9662
47ab2a6c
JB
9663 spin_lock(&info->unused_bgs_lock);
9664 while (!list_empty(&info->unused_bgs)) {
9665 block_group = list_first_entry(&info->unused_bgs,
9666 struct btrfs_block_group_cache,
9667 bg_list);
9668 list_del_init(&block_group->bg_list);
9669 btrfs_put_block_group(block_group);
9670 }
9671 spin_unlock(&info->unused_bgs_lock);
9672
1a40e23b
ZY
9673 spin_lock(&info->block_group_cache_lock);
9674 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9675 block_group = rb_entry(n, struct btrfs_block_group_cache,
9676 cache_node);
1a40e23b
ZY
9677 rb_erase(&block_group->cache_node,
9678 &info->block_group_cache_tree);
01eacb27 9679 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9680 spin_unlock(&info->block_group_cache_lock);
9681
80eb234a 9682 down_write(&block_group->space_info->groups_sem);
1a40e23b 9683 list_del(&block_group->list);
80eb234a 9684 up_write(&block_group->space_info->groups_sem);
d2fb3437 9685
3c14874a
JB
9686 /*
9687 * We haven't cached this block group, which means we could
9688 * possibly have excluded extents on this block group.
9689 */
36cce922
JB
9690 if (block_group->cached == BTRFS_CACHE_NO ||
9691 block_group->cached == BTRFS_CACHE_ERROR)
9e715da8 9692 free_excluded_extents(block_group);
3c14874a 9693
817d52f8 9694 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9695 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9696 ASSERT(list_empty(&block_group->dirty_list));
9697 ASSERT(list_empty(&block_group->io_list));
9698 ASSERT(list_empty(&block_group->bg_list));
9699 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9700 btrfs_put_block_group(block_group);
d899e052
YZ
9701
9702 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9703 }
9704 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9705
9706 /* now that all the block groups are freed, go through and
9707 * free all the space_info structs. This is only called during
9708 * the final stages of unmount, and so we know nobody is
9709 * using them. We call synchronize_rcu() once before we start,
9710 * just to be on the safe side.
9711 */
9712 synchronize_rcu();
9713
8929ecfa
YZ
9714 release_global_block_rsv(info);
9715
67871254 9716 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9717 int i;
9718
4184ea7f
CM
9719 space_info = list_entry(info->space_info.next,
9720 struct btrfs_space_info,
9721 list);
d555b6c3
JB
9722
9723 /*
9724 * Do not hide this behind enospc_debug, this is actually
9725 * important and indicates a real bug if this happens.
9726 */
9727 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9728 space_info->bytes_reserved > 0 ||
d555b6c3 9729 space_info->bytes_may_use > 0))
ab8d0fc4 9730 dump_space_info(info, space_info, 0, 0);
4184ea7f 9731 list_del(&space_info->list);
6ab0a202
JM
9732 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9733 struct kobject *kobj;
c1895442
JM
9734 kobj = space_info->block_group_kobjs[i];
9735 space_info->block_group_kobjs[i] = NULL;
9736 if (kobj) {
6ab0a202
JM
9737 kobject_del(kobj);
9738 kobject_put(kobj);
9739 }
9740 }
9741 kobject_del(&space_info->kobj);
9742 kobject_put(&space_info->kobj);
4184ea7f 9743 }
1a40e23b
ZY
9744 return 0;
9745}
9746
75cb379d
JM
9747/* link_block_group will queue up kobjects to add when we're reclaim-safe */
9748void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9749{
9750 struct btrfs_space_info *space_info;
9751 struct raid_kobject *rkobj;
9752 LIST_HEAD(list);
9753 int index;
9754 int ret = 0;
9755
9756 spin_lock(&fs_info->pending_raid_kobjs_lock);
9757 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9758 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9759
9760 list_for_each_entry(rkobj, &list, list) {
9761 space_info = __find_space_info(fs_info, rkobj->flags);
9762 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9763
9764 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9765 "%s", get_raid_name(index));
9766 if (ret) {
9767 kobject_put(&rkobj->kobj);
9768 break;
9769 }
9770 }
9771 if (ret)
9772 btrfs_warn(fs_info,
9773 "failed to add kobject for block cache, ignoring");
9774}
9775
c434d21c 9776static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 9777{
c434d21c 9778 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 9779 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 9780 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 9781 bool first = false;
b742bb82
YZ
9782
9783 down_write(&space_info->groups_sem);
ed55b6ac
JM
9784 if (list_empty(&space_info->block_groups[index]))
9785 first = true;
9786 list_add_tail(&cache->list, &space_info->block_groups[index]);
9787 up_write(&space_info->groups_sem);
9788
9789 if (first) {
75cb379d
JM
9790 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9791 if (!rkobj) {
9792 btrfs_warn(cache->fs_info,
9793 "couldn't alloc memory for raid level kobject");
9794 return;
6ab0a202 9795 }
75cb379d
JM
9796 rkobj->flags = cache->flags;
9797 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9798
9799 spin_lock(&fs_info->pending_raid_kobjs_lock);
9800 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9801 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 9802 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9803 }
b742bb82
YZ
9804}
9805
920e4a58 9806static struct btrfs_block_group_cache *
2ff7e61e
JM
9807btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9808 u64 start, u64 size)
920e4a58
MX
9809{
9810 struct btrfs_block_group_cache *cache;
9811
9812 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9813 if (!cache)
9814 return NULL;
9815
9816 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9817 GFP_NOFS);
9818 if (!cache->free_space_ctl) {
9819 kfree(cache);
9820 return NULL;
9821 }
9822
9823 cache->key.objectid = start;
9824 cache->key.offset = size;
9825 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9826
0b246afa 9827 cache->fs_info = fs_info;
e4ff5fb5 9828 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
9829 set_free_space_tree_thresholds(cache);
9830
920e4a58
MX
9831 atomic_set(&cache->count, 1);
9832 spin_lock_init(&cache->lock);
e570fd27 9833 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9834 INIT_LIST_HEAD(&cache->list);
9835 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9836 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9837 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9838 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9839 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9840 btrfs_init_free_space_ctl(cache);
04216820 9841 atomic_set(&cache->trimming, 0);
a5ed9182 9842 mutex_init(&cache->free_space_lock);
0966a7b1 9843 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
9844
9845 return cache;
9846}
9847
7ef49515
QW
9848
9849/*
9850 * Iterate all chunks and verify that each of them has the corresponding block
9851 * group
9852 */
9853static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
9854{
9855 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
9856 struct extent_map *em;
9857 struct btrfs_block_group_cache *bg;
9858 u64 start = 0;
9859 int ret = 0;
9860
9861 while (1) {
9862 read_lock(&map_tree->map_tree.lock);
9863 /*
9864 * lookup_extent_mapping will return the first extent map
9865 * intersecting the range, so setting @len to 1 is enough to
9866 * get the first chunk.
9867 */
9868 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
9869 read_unlock(&map_tree->map_tree.lock);
9870 if (!em)
9871 break;
9872
9873 bg = btrfs_lookup_block_group(fs_info, em->start);
9874 if (!bg) {
9875 btrfs_err(fs_info,
9876 "chunk start=%llu len=%llu doesn't have corresponding block group",
9877 em->start, em->len);
9878 ret = -EUCLEAN;
9879 free_extent_map(em);
9880 break;
9881 }
9882 if (bg->key.objectid != em->start ||
9883 bg->key.offset != em->len ||
9884 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
9885 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9886 btrfs_err(fs_info,
9887"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
9888 em->start, em->len,
9889 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
9890 bg->key.objectid, bg->key.offset,
9891 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
9892 ret = -EUCLEAN;
9893 free_extent_map(em);
9894 btrfs_put_block_group(bg);
9895 break;
9896 }
9897 start = em->start + em->len;
9898 free_extent_map(em);
9899 btrfs_put_block_group(bg);
9900 }
9901 return ret;
9902}
9903
5b4aacef 9904int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
9905{
9906 struct btrfs_path *path;
9907 int ret;
9078a3e1 9908 struct btrfs_block_group_cache *cache;
6324fbf3 9909 struct btrfs_space_info *space_info;
9078a3e1
CM
9910 struct btrfs_key key;
9911 struct btrfs_key found_key;
5f39d397 9912 struct extent_buffer *leaf;
0af3d00b
JB
9913 int need_clear = 0;
9914 u64 cache_gen;
49303381
LB
9915 u64 feature;
9916 int mixed;
9917
9918 feature = btrfs_super_incompat_flags(info->super_copy);
9919 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 9920
9078a3e1 9921 key.objectid = 0;
0b86a832 9922 key.offset = 0;
962a298f 9923 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9924 path = btrfs_alloc_path();
9925 if (!path)
9926 return -ENOMEM;
e4058b54 9927 path->reada = READA_FORWARD;
9078a3e1 9928
0b246afa
JM
9929 cache_gen = btrfs_super_cache_generation(info->super_copy);
9930 if (btrfs_test_opt(info, SPACE_CACHE) &&
9931 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 9932 need_clear = 1;
0b246afa 9933 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 9934 need_clear = 1;
0af3d00b 9935
d397712b 9936 while (1) {
6bccf3ab 9937 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
9938 if (ret > 0)
9939 break;
0b86a832
CM
9940 if (ret != 0)
9941 goto error;
920e4a58 9942
5f39d397
CM
9943 leaf = path->nodes[0];
9944 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 9945
2ff7e61e 9946 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 9947 found_key.offset);
9078a3e1 9948 if (!cache) {
0b86a832 9949 ret = -ENOMEM;
f0486c68 9950 goto error;
9078a3e1 9951 }
96303081 9952
cf7c1ef6
LB
9953 if (need_clear) {
9954 /*
9955 * When we mount with old space cache, we need to
9956 * set BTRFS_DC_CLEAR and set dirty flag.
9957 *
9958 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9959 * truncate the old free space cache inode and
9960 * setup a new one.
9961 * b) Setting 'dirty flag' makes sure that we flush
9962 * the new space cache info onto disk.
9963 */
0b246afa 9964 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 9965 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9966 }
0af3d00b 9967
5f39d397
CM
9968 read_extent_buffer(leaf, &cache->item,
9969 btrfs_item_ptr_offset(leaf, path->slots[0]),
9970 sizeof(cache->item));
920e4a58 9971 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
9972 if (!mixed &&
9973 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9974 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9975 btrfs_err(info,
9976"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9977 cache->key.objectid);
9978 ret = -EINVAL;
9979 goto error;
9980 }
0b86a832 9981
9078a3e1 9982 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9983 btrfs_release_path(path);
34d52cb6 9984
3c14874a
JB
9985 /*
9986 * We need to exclude the super stripes now so that the space
9987 * info has super bytes accounted for, otherwise we'll think
9988 * we have more space than we actually do.
9989 */
3c4da657 9990 ret = exclude_super_stripes(cache);
835d974f
JB
9991 if (ret) {
9992 /*
9993 * We may have excluded something, so call this just in
9994 * case.
9995 */
9e715da8 9996 free_excluded_extents(cache);
920e4a58 9997 btrfs_put_block_group(cache);
835d974f
JB
9998 goto error;
9999 }
3c14874a 10000
817d52f8
JB
10001 /*
10002 * check for two cases, either we are full, and therefore
10003 * don't need to bother with the caching work since we won't
10004 * find any space, or we are empty, and we can just add all
10005 * the space in and be done with it. This saves us _alot_ of
10006 * time, particularly in the full case.
10007 */
10008 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10009 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10010 cache->cached = BTRFS_CACHE_FINISHED;
9e715da8 10011 free_excluded_extents(cache);
817d52f8 10012 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10013 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10014 cache->cached = BTRFS_CACHE_FINISHED;
4457c1c7 10015 add_new_free_space(cache, found_key.objectid,
817d52f8
JB
10016 found_key.objectid +
10017 found_key.offset);
9e715da8 10018 free_excluded_extents(cache);
817d52f8 10019 }
96b5179d 10020
0b246afa 10021 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10022 if (ret) {
10023 btrfs_remove_free_space_cache(cache);
10024 btrfs_put_block_group(cache);
10025 goto error;
10026 }
10027
0b246afa 10028 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10029 update_space_info(info, cache->flags, found_key.offset,
10030 btrfs_block_group_used(&cache->item),
10031 cache->bytes_super, &space_info);
8c579fe7 10032
6324fbf3 10033 cache->space_info = space_info;
1b2da372 10034
c434d21c 10035 link_block_group(cache);
0f9dd46c 10036
0b246afa 10037 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10038 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10039 inc_block_group_ro(cache, 1);
47ab2a6c 10040 } else if (btrfs_block_group_used(&cache->item) == 0) {
031f24da
QW
10041 ASSERT(list_empty(&cache->bg_list));
10042 btrfs_mark_bg_unused(cache);
47ab2a6c 10043 }
9078a3e1 10044 }
b742bb82 10045
0b246afa 10046 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10047 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10048 (BTRFS_BLOCK_GROUP_RAID10 |
10049 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10050 BTRFS_BLOCK_GROUP_RAID5 |
10051 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10052 BTRFS_BLOCK_GROUP_DUP)))
10053 continue;
10054 /*
10055 * avoid allocating from un-mirrored block group if there are
10056 * mirrored block groups.
10057 */
1095cc0d 10058 list_for_each_entry(cache,
10059 &space_info->block_groups[BTRFS_RAID_RAID0],
10060 list)
868f401a 10061 inc_block_group_ro(cache, 1);
1095cc0d 10062 list_for_each_entry(cache,
10063 &space_info->block_groups[BTRFS_RAID_SINGLE],
10064 list)
868f401a 10065 inc_block_group_ro(cache, 1);
9078a3e1 10066 }
f0486c68 10067
75cb379d 10068 btrfs_add_raid_kobjects(info);
f0486c68 10069 init_global_block_rsv(info);
7ef49515 10070 ret = check_chunk_block_group_mappings(info);
0b86a832 10071error:
9078a3e1 10072 btrfs_free_path(path);
0b86a832 10073 return ret;
9078a3e1 10074}
6324fbf3 10075
6c686b35 10076void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10077{
6c686b35 10078 struct btrfs_fs_info *fs_info = trans->fs_info;
ea658bad 10079 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10080 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10081 struct btrfs_block_group_item item;
10082 struct btrfs_key key;
10083 int ret = 0;
d9a0540a 10084 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10085
d9a0540a 10086 trans->can_flush_pending_bgs = false;
47ab2a6c 10087 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10088 if (ret)
c92f6be3 10089 goto next;
ea658bad
JB
10090
10091 spin_lock(&block_group->lock);
10092 memcpy(&item, &block_group->item, sizeof(item));
10093 memcpy(&key, &block_group->key, sizeof(key));
10094 spin_unlock(&block_group->lock);
10095
10096 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10097 sizeof(item));
10098 if (ret)
66642832 10099 btrfs_abort_transaction(trans, ret);
97aff912 10100 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
6df9a95e 10101 if (ret)
66642832 10102 btrfs_abort_transaction(trans, ret);
e4e0711c 10103 add_block_group_free_space(trans, block_group);
1e144fb8 10104 /* already aborted the transaction if it failed. */
c92f6be3
FM
10105next:
10106 list_del_init(&block_group->bg_list);
ea658bad 10107 }
d9a0540a 10108 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10109}
10110
e7e02096 10111int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
0174484d 10112 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10113{
e7e02096 10114 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 10115 struct btrfs_block_group_cache *cache;
0b246afa 10116 int ret;
6324fbf3 10117
0b246afa 10118 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10119
2ff7e61e 10120 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10121 if (!cache)
10122 return -ENOMEM;
34d52cb6 10123
6324fbf3 10124 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10125 btrfs_set_block_group_chunk_objectid(&cache->item,
10126 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10127 btrfs_set_block_group_flags(&cache->item, type);
10128
920e4a58 10129 cache->flags = type;
11833d66 10130 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10131 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10132 cache->needs_free_space = 1;
3c4da657 10133 ret = exclude_super_stripes(cache);
835d974f
JB
10134 if (ret) {
10135 /*
10136 * We may have excluded something, so call this just in
10137 * case.
10138 */
9e715da8 10139 free_excluded_extents(cache);
920e4a58 10140 btrfs_put_block_group(cache);
835d974f
JB
10141 return ret;
10142 }
96303081 10143
4457c1c7 10144 add_new_free_space(cache, chunk_offset, chunk_offset + size);
817d52f8 10145
9e715da8 10146 free_excluded_extents(cache);
11833d66 10147
d0bd4560 10148#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10149 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10150 u64 new_bytes_used = size - bytes_used;
10151
10152 bytes_used += new_bytes_used >> 1;
2ff7e61e 10153 fragment_free_space(cache);
d0bd4560
JB
10154 }
10155#endif
2e6e5183 10156 /*
2be12ef7
NB
10157 * Ensure the corresponding space_info object is created and
10158 * assigned to our block group. We want our bg to be added to the rbtree
10159 * with its ->space_info set.
2e6e5183 10160 */
2be12ef7 10161 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10162 ASSERT(cache->space_info);
2e6e5183 10163
0b246afa 10164 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10165 if (ret) {
10166 btrfs_remove_free_space_cache(cache);
10167 btrfs_put_block_group(cache);
10168 return ret;
10169 }
10170
2e6e5183
FM
10171 /*
10172 * Now that our block group has its ->space_info set and is inserted in
10173 * the rbtree, update the space info's counters.
10174 */
0b246afa 10175 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10176 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10177 cache->bytes_super, &cache->space_info);
0b246afa 10178 update_global_block_rsv(fs_info);
1b2da372 10179
c434d21c 10180 link_block_group(cache);
6324fbf3 10181
47ab2a6c 10182 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10183
0b246afa 10184 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10185 return 0;
10186}
1a40e23b 10187
10ea00f5
ID
10188static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10189{
899c81ea
ID
10190 u64 extra_flags = chunk_to_extended(flags) &
10191 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10192
de98ced9 10193 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10194 if (flags & BTRFS_BLOCK_GROUP_DATA)
10195 fs_info->avail_data_alloc_bits &= ~extra_flags;
10196 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10197 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10198 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10199 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10200 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10201}
10202
1a40e23b 10203int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
5a98ec01 10204 u64 group_start, struct extent_map *em)
1a40e23b 10205{
5a98ec01 10206 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 10207 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10208 struct btrfs_path *path;
10209 struct btrfs_block_group_cache *block_group;
44fb5511 10210 struct btrfs_free_cluster *cluster;
0b246afa 10211 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10212 struct btrfs_key key;
0af3d00b 10213 struct inode *inode;
c1895442 10214 struct kobject *kobj = NULL;
1a40e23b 10215 int ret;
10ea00f5 10216 int index;
89a55897 10217 int factor;
4f69cb98 10218 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10219 bool remove_em;
1a40e23b 10220
6bccf3ab 10221 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10222 BUG_ON(!block_group);
c146afad 10223 BUG_ON(!block_group->ro);
1a40e23b 10224
4ed0a7a3 10225 trace_btrfs_remove_block_group(block_group);
9f7c43c9 10226 /*
10227 * Free the reserved super bytes from this block group before
10228 * remove it.
10229 */
9e715da8 10230 free_excluded_extents(block_group);
fd708b81
JB
10231 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10232 block_group->key.offset);
9f7c43c9 10233
1a40e23b 10234 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10235 index = btrfs_bg_flags_to_raid_index(block_group->flags);
46df06b8 10236 factor = btrfs_bg_type_to_factor(block_group->flags);
1a40e23b 10237
44fb5511 10238 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10239 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10240 spin_lock(&cluster->refill_lock);
10241 btrfs_return_cluster_to_free_space(block_group, cluster);
10242 spin_unlock(&cluster->refill_lock);
10243
10244 /*
10245 * make sure this block group isn't part of a metadata
10246 * allocation cluster
10247 */
0b246afa 10248 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10249 spin_lock(&cluster->refill_lock);
10250 btrfs_return_cluster_to_free_space(block_group, cluster);
10251 spin_unlock(&cluster->refill_lock);
10252
1a40e23b 10253 path = btrfs_alloc_path();
d8926bb3
MF
10254 if (!path) {
10255 ret = -ENOMEM;
10256 goto out;
10257 }
1a40e23b 10258
1bbc621e
CM
10259 /*
10260 * get the inode first so any iput calls done for the io_list
10261 * aren't the final iput (no unlinks allowed now)
10262 */
77ab86bf 10263 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10264
10265 mutex_lock(&trans->transaction->cache_write_mutex);
10266 /*
10267 * make sure our free spache cache IO is done before remove the
10268 * free space inode
10269 */
10270 spin_lock(&trans->transaction->dirty_bgs_lock);
10271 if (!list_empty(&block_group->io_list)) {
10272 list_del_init(&block_group->io_list);
10273
10274 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10275
10276 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10277 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10278 btrfs_put_block_group(block_group);
10279 spin_lock(&trans->transaction->dirty_bgs_lock);
10280 }
10281
10282 if (!list_empty(&block_group->dirty_list)) {
10283 list_del_init(&block_group->dirty_list);
10284 btrfs_put_block_group(block_group);
10285 }
10286 spin_unlock(&trans->transaction->dirty_bgs_lock);
10287 mutex_unlock(&trans->transaction->cache_write_mutex);
10288
0af3d00b 10289 if (!IS_ERR(inode)) {
73f2e545 10290 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10291 if (ret) {
10292 btrfs_add_delayed_iput(inode);
10293 goto out;
10294 }
0af3d00b
JB
10295 clear_nlink(inode);
10296 /* One for the block groups ref */
10297 spin_lock(&block_group->lock);
10298 if (block_group->iref) {
10299 block_group->iref = 0;
10300 block_group->inode = NULL;
10301 spin_unlock(&block_group->lock);
10302 iput(inode);
10303 } else {
10304 spin_unlock(&block_group->lock);
10305 }
10306 /* One for our lookup ref */
455757c3 10307 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10308 }
10309
10310 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10311 key.offset = block_group->key.objectid;
10312 key.type = 0;
10313
10314 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10315 if (ret < 0)
10316 goto out;
10317 if (ret > 0)
b3b4aa74 10318 btrfs_release_path(path);
0af3d00b
JB
10319 if (ret == 0) {
10320 ret = btrfs_del_item(trans, tree_root, path);
10321 if (ret)
10322 goto out;
b3b4aa74 10323 btrfs_release_path(path);
0af3d00b
JB
10324 }
10325
0b246afa 10326 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10327 rb_erase(&block_group->cache_node,
0b246afa 10328 &fs_info->block_group_cache_tree);
292cbd51 10329 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10330
0b246afa
JM
10331 if (fs_info->first_logical_byte == block_group->key.objectid)
10332 fs_info->first_logical_byte = (u64)-1;
10333 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10334
80eb234a 10335 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10336 /*
10337 * we must use list_del_init so people can check to see if they
10338 * are still on the list after taking the semaphore
10339 */
10340 list_del_init(&block_group->list);
6ab0a202 10341 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10342 kobj = block_group->space_info->block_group_kobjs[index];
10343 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10344 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10345 }
80eb234a 10346 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10347 if (kobj) {
10348 kobject_del(kobj);
10349 kobject_put(kobj);
10350 }
1a40e23b 10351
4f69cb98
FM
10352 if (block_group->has_caching_ctl)
10353 caching_ctl = get_caching_control(block_group);
817d52f8 10354 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10355 wait_block_group_cache_done(block_group);
4f69cb98 10356 if (block_group->has_caching_ctl) {
0b246afa 10357 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10358 if (!caching_ctl) {
10359 struct btrfs_caching_control *ctl;
10360
10361 list_for_each_entry(ctl,
0b246afa 10362 &fs_info->caching_block_groups, list)
4f69cb98
FM
10363 if (ctl->block_group == block_group) {
10364 caching_ctl = ctl;
1e4f4714 10365 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10366 break;
10367 }
10368 }
10369 if (caching_ctl)
10370 list_del_init(&caching_ctl->list);
0b246afa 10371 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10372 if (caching_ctl) {
10373 /* Once for the caching bgs list and once for us. */
10374 put_caching_control(caching_ctl);
10375 put_caching_control(caching_ctl);
10376 }
10377 }
817d52f8 10378
ce93ec54
JB
10379 spin_lock(&trans->transaction->dirty_bgs_lock);
10380 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10381 WARN_ON(1);
10382 }
10383 if (!list_empty(&block_group->io_list)) {
10384 WARN_ON(1);
ce93ec54
JB
10385 }
10386 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10387 btrfs_remove_free_space_cache(block_group);
10388
c146afad 10389 spin_lock(&block_group->space_info->lock);
75c68e9f 10390 list_del_init(&block_group->ro_list);
18d018ad 10391
0b246afa 10392 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10393 WARN_ON(block_group->space_info->total_bytes
10394 < block_group->key.offset);
10395 WARN_ON(block_group->space_info->bytes_readonly
10396 < block_group->key.offset);
10397 WARN_ON(block_group->space_info->disk_total
10398 < block_group->key.offset * factor);
10399 }
c146afad
YZ
10400 block_group->space_info->total_bytes -= block_group->key.offset;
10401 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10402 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10403
c146afad 10404 spin_unlock(&block_group->space_info->lock);
283bb197 10405
0af3d00b
JB
10406 memcpy(&key, &block_group->key, sizeof(key));
10407
34441361 10408 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10409 if (!list_empty(&em->list)) {
10410 /* We're in the transaction->pending_chunks list. */
10411 free_extent_map(em);
10412 }
04216820
FM
10413 spin_lock(&block_group->lock);
10414 block_group->removed = 1;
10415 /*
10416 * At this point trimming can't start on this block group, because we
10417 * removed the block group from the tree fs_info->block_group_cache_tree
10418 * so no one can't find it anymore and even if someone already got this
10419 * block group before we removed it from the rbtree, they have already
10420 * incremented block_group->trimming - if they didn't, they won't find
10421 * any free space entries because we already removed them all when we
10422 * called btrfs_remove_free_space_cache().
10423 *
10424 * And we must not remove the extent map from the fs_info->mapping_tree
10425 * to prevent the same logical address range and physical device space
10426 * ranges from being reused for a new block group. This is because our
10427 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10428 * completely transactionless, so while it is trimming a range the
10429 * currently running transaction might finish and a new one start,
10430 * allowing for new block groups to be created that can reuse the same
10431 * physical device locations unless we take this special care.
e33e17ee
JM
10432 *
10433 * There may also be an implicit trim operation if the file system
10434 * is mounted with -odiscard. The same protections must remain
10435 * in place until the extents have been discarded completely when
10436 * the transaction commit has completed.
04216820
FM
10437 */
10438 remove_em = (atomic_read(&block_group->trimming) == 0);
10439 /*
10440 * Make sure a trimmer task always sees the em in the pinned_chunks list
10441 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10442 * before checking block_group->removed).
10443 */
10444 if (!remove_em) {
10445 /*
10446 * Our em might be in trans->transaction->pending_chunks which
10447 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10448 * and so is the fs_info->pinned_chunks list.
10449 *
10450 * So at this point we must be holding the chunk_mutex to avoid
10451 * any races with chunk allocation (more specifically at
10452 * volumes.c:contains_pending_extent()), to ensure it always
10453 * sees the em, either in the pending_chunks list or in the
10454 * pinned_chunks list.
10455 */
0b246afa 10456 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10457 }
10458 spin_unlock(&block_group->lock);
04216820
FM
10459
10460 if (remove_em) {
10461 struct extent_map_tree *em_tree;
10462
0b246afa 10463 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10464 write_lock(&em_tree->lock);
8dbcd10f
FM
10465 /*
10466 * The em might be in the pending_chunks list, so make sure the
10467 * chunk mutex is locked, since remove_extent_mapping() will
10468 * delete us from that list.
10469 */
04216820
FM
10470 remove_extent_mapping(em_tree, em);
10471 write_unlock(&em_tree->lock);
10472 /* once for the tree */
10473 free_extent_map(em);
10474 }
10475
34441361 10476 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10477
f3f72779 10478 ret = remove_block_group_free_space(trans, block_group);
1e144fb8
OS
10479 if (ret)
10480 goto out;
10481
fa9c0d79
CM
10482 btrfs_put_block_group(block_group);
10483 btrfs_put_block_group(block_group);
1a40e23b
ZY
10484
10485 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10486 if (ret > 0)
10487 ret = -EIO;
10488 if (ret < 0)
10489 goto out;
10490
10491 ret = btrfs_del_item(trans, root, path);
10492out:
10493 btrfs_free_path(path);
10494 return ret;
10495}
acce952b 10496
8eab77ff 10497struct btrfs_trans_handle *
7fd01182
FM
10498btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10499 const u64 chunk_offset)
8eab77ff 10500{
7fd01182
FM
10501 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10502 struct extent_map *em;
10503 struct map_lookup *map;
10504 unsigned int num_items;
10505
10506 read_lock(&em_tree->lock);
10507 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10508 read_unlock(&em_tree->lock);
10509 ASSERT(em && em->start == chunk_offset);
10510
8eab77ff 10511 /*
7fd01182
FM
10512 * We need to reserve 3 + N units from the metadata space info in order
10513 * to remove a block group (done at btrfs_remove_chunk() and at
10514 * btrfs_remove_block_group()), which are used for:
10515 *
8eab77ff
FM
10516 * 1 unit for adding the free space inode's orphan (located in the tree
10517 * of tree roots).
7fd01182
FM
10518 * 1 unit for deleting the block group item (located in the extent
10519 * tree).
10520 * 1 unit for deleting the free space item (located in tree of tree
10521 * roots).
10522 * N units for deleting N device extent items corresponding to each
10523 * stripe (located in the device tree).
10524 *
10525 * In order to remove a block group we also need to reserve units in the
10526 * system space info in order to update the chunk tree (update one or
10527 * more device items and remove one chunk item), but this is done at
10528 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10529 */
95617d69 10530 map = em->map_lookup;
7fd01182
FM
10531 num_items = 3 + map->num_stripes;
10532 free_extent_map(em);
10533
8eab77ff 10534 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10535 num_items, 1);
8eab77ff
FM
10536}
10537
47ab2a6c
JB
10538/*
10539 * Process the unused_bgs list and remove any that don't have any allocated
10540 * space inside of them.
10541 */
10542void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10543{
10544 struct btrfs_block_group_cache *block_group;
10545 struct btrfs_space_info *space_info;
47ab2a6c
JB
10546 struct btrfs_trans_handle *trans;
10547 int ret = 0;
10548
afcdd129 10549 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10550 return;
10551
10552 spin_lock(&fs_info->unused_bgs_lock);
10553 while (!list_empty(&fs_info->unused_bgs)) {
10554 u64 start, end;
e33e17ee 10555 int trimming;
47ab2a6c
JB
10556
10557 block_group = list_first_entry(&fs_info->unused_bgs,
10558 struct btrfs_block_group_cache,
10559 bg_list);
47ab2a6c 10560 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10561
10562 space_info = block_group->space_info;
10563
47ab2a6c
JB
10564 if (ret || btrfs_mixed_space_info(space_info)) {
10565 btrfs_put_block_group(block_group);
10566 continue;
10567 }
10568 spin_unlock(&fs_info->unused_bgs_lock);
10569
d5f2e33b 10570 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10571
47ab2a6c
JB
10572 /* Don't want to race with allocators so take the groups_sem */
10573 down_write(&space_info->groups_sem);
10574 spin_lock(&block_group->lock);
43794446 10575 if (block_group->reserved || block_group->pinned ||
47ab2a6c 10576 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10577 block_group->ro ||
aefbe9a6 10578 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10579 /*
10580 * We want to bail if we made new allocations or have
10581 * outstanding allocations in this block group. We do
10582 * the ro check in case balance is currently acting on
10583 * this block group.
10584 */
4ed0a7a3 10585 trace_btrfs_skip_unused_block_group(block_group);
47ab2a6c
JB
10586 spin_unlock(&block_group->lock);
10587 up_write(&space_info->groups_sem);
10588 goto next;
10589 }
10590 spin_unlock(&block_group->lock);
10591
10592 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10593 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10594 up_write(&space_info->groups_sem);
10595 if (ret < 0) {
10596 ret = 0;
10597 goto next;
10598 }
10599
10600 /*
10601 * Want to do this before we do anything else so we can recover
10602 * properly if we fail to join the transaction.
10603 */
7fd01182
FM
10604 trans = btrfs_start_trans_remove_block_group(fs_info,
10605 block_group->key.objectid);
47ab2a6c 10606 if (IS_ERR(trans)) {
2ff7e61e 10607 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10608 ret = PTR_ERR(trans);
10609 goto next;
10610 }
10611
10612 /*
10613 * We could have pending pinned extents for this block group,
10614 * just delete them, we don't care about them anymore.
10615 */
10616 start = block_group->key.objectid;
10617 end = start + block_group->key.offset - 1;
d4b450cd
FM
10618 /*
10619 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10620 * btrfs_finish_extent_commit(). If we are at transaction N,
10621 * another task might be running finish_extent_commit() for the
10622 * previous transaction N - 1, and have seen a range belonging
10623 * to the block group in freed_extents[] before we were able to
10624 * clear the whole block group range from freed_extents[]. This
10625 * means that task can lookup for the block group after we
10626 * unpinned it from freed_extents[] and removed it, leading to
10627 * a BUG_ON() at btrfs_unpin_extent_range().
10628 */
10629 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10630 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10631 EXTENT_DIRTY);
758eb51e 10632 if (ret) {
d4b450cd 10633 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10634 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10635 goto end_trans;
10636 }
10637 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10638 EXTENT_DIRTY);
758eb51e 10639 if (ret) {
d4b450cd 10640 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10641 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10642 goto end_trans;
10643 }
d4b450cd 10644 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10645
10646 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10647 spin_lock(&space_info->lock);
10648 spin_lock(&block_group->lock);
10649
10650 space_info->bytes_pinned -= block_group->pinned;
10651 space_info->bytes_readonly += block_group->pinned;
dec59fa3
EL
10652 percpu_counter_add_batch(&space_info->total_bytes_pinned,
10653 -block_group->pinned,
10654 BTRFS_TOTAL_BYTES_PINNED_BATCH);
47ab2a6c
JB
10655 block_group->pinned = 0;
10656
c30666d4
ZL
10657 spin_unlock(&block_group->lock);
10658 spin_unlock(&space_info->lock);
10659
e33e17ee 10660 /* DISCARD can flip during remount */
0b246afa 10661 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10662
10663 /* Implicit trim during transaction commit. */
10664 if (trimming)
10665 btrfs_get_block_group_trimming(block_group);
10666
47ab2a6c
JB
10667 /*
10668 * Btrfs_remove_chunk will abort the transaction if things go
10669 * horribly wrong.
10670 */
97aff912 10671 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
e33e17ee
JM
10672
10673 if (ret) {
10674 if (trimming)
10675 btrfs_put_block_group_trimming(block_group);
10676 goto end_trans;
10677 }
10678
10679 /*
10680 * If we're not mounted with -odiscard, we can just forget
10681 * about this block group. Otherwise we'll need to wait
10682 * until transaction commit to do the actual discard.
10683 */
10684 if (trimming) {
348a0013
FM
10685 spin_lock(&fs_info->unused_bgs_lock);
10686 /*
10687 * A concurrent scrub might have added us to the list
10688 * fs_info->unused_bgs, so use a list_move operation
10689 * to add the block group to the deleted_bgs list.
10690 */
e33e17ee
JM
10691 list_move(&block_group->bg_list,
10692 &trans->transaction->deleted_bgs);
348a0013 10693 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10694 btrfs_get_block_group(block_group);
10695 }
758eb51e 10696end_trans:
3a45bb20 10697 btrfs_end_transaction(trans);
47ab2a6c 10698next:
d5f2e33b 10699 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10700 btrfs_put_block_group(block_group);
10701 spin_lock(&fs_info->unused_bgs_lock);
10702 }
10703 spin_unlock(&fs_info->unused_bgs_lock);
10704}
10705
c59021f8 10706int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10707{
1aba86d6 10708 struct btrfs_super_block *disk_super;
10709 u64 features;
10710 u64 flags;
10711 int mixed = 0;
c59021f8 10712 int ret;
10713
6c41761f 10714 disk_super = fs_info->super_copy;
1aba86d6 10715 if (!btrfs_super_root(disk_super))
0dc924c5 10716 return -EINVAL;
c59021f8 10717
1aba86d6 10718 features = btrfs_super_incompat_flags(disk_super);
10719 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10720 mixed = 1;
c59021f8 10721
1aba86d6 10722 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4ca61683 10723 ret = create_space_info(fs_info, flags);
c59021f8 10724 if (ret)
1aba86d6 10725 goto out;
c59021f8 10726
1aba86d6 10727 if (mixed) {
10728 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
4ca61683 10729 ret = create_space_info(fs_info, flags);
1aba86d6 10730 } else {
10731 flags = BTRFS_BLOCK_GROUP_METADATA;
4ca61683 10732 ret = create_space_info(fs_info, flags);
1aba86d6 10733 if (ret)
10734 goto out;
10735
10736 flags = BTRFS_BLOCK_GROUP_DATA;
4ca61683 10737 ret = create_space_info(fs_info, flags);
1aba86d6 10738 }
10739out:
c59021f8 10740 return ret;
10741}
10742
2ff7e61e
JM
10743int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10744 u64 start, u64 end)
acce952b 10745{
2ff7e61e 10746 return unpin_extent_range(fs_info, start, end, false);
acce952b 10747}
10748
499f377f
JM
10749/*
10750 * It used to be that old block groups would be left around forever.
10751 * Iterating over them would be enough to trim unused space. Since we
10752 * now automatically remove them, we also need to iterate over unallocated
10753 * space.
10754 *
10755 * We don't want a transaction for this since the discard may take a
10756 * substantial amount of time. We don't require that a transaction be
10757 * running, but we do need to take a running transaction into account
10758 * to ensure that we're not discarding chunks that were released in
10759 * the current transaction.
10760 *
10761 * Holding the chunks lock will prevent other threads from allocating
10762 * or releasing chunks, but it won't prevent a running transaction
10763 * from committing and releasing the memory that the pending chunks
10764 * list head uses. For that, we need to take a reference to the
10765 * transaction.
10766 */
10767static int btrfs_trim_free_extents(struct btrfs_device *device,
10768 u64 minlen, u64 *trimmed)
10769{
10770 u64 start = 0, len = 0;
10771 int ret;
10772
10773 *trimmed = 0;
10774
0be88e36
JM
10775 /* Discard not supported = nothing to do. */
10776 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
10777 return 0;
10778
499f377f 10779 /* Not writeable = nothing to do. */
ebbede42 10780 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
10781 return 0;
10782
10783 /* No free space = nothing to do. */
10784 if (device->total_bytes <= device->bytes_used)
10785 return 0;
10786
10787 ret = 0;
10788
10789 while (1) {
fb456252 10790 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10791 struct btrfs_transaction *trans;
10792 u64 bytes;
10793
10794 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10795 if (ret)
10796 return ret;
10797
10798 down_read(&fs_info->commit_root_sem);
10799
10800 spin_lock(&fs_info->trans_lock);
10801 trans = fs_info->running_transaction;
10802 if (trans)
9b64f57d 10803 refcount_inc(&trans->use_count);
499f377f
JM
10804 spin_unlock(&fs_info->trans_lock);
10805
10806 ret = find_free_dev_extent_start(trans, device, minlen, start,
10807 &start, &len);
10808 if (trans)
10809 btrfs_put_transaction(trans);
10810
10811 if (ret) {
10812 up_read(&fs_info->commit_root_sem);
10813 mutex_unlock(&fs_info->chunk_mutex);
10814 if (ret == -ENOSPC)
10815 ret = 0;
10816 break;
10817 }
10818
10819 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10820 up_read(&fs_info->commit_root_sem);
10821 mutex_unlock(&fs_info->chunk_mutex);
10822
10823 if (ret)
10824 break;
10825
10826 start += len;
10827 *trimmed += bytes;
10828
10829 if (fatal_signal_pending(current)) {
10830 ret = -ERESTARTSYS;
10831 break;
10832 }
10833
10834 cond_resched();
10835 }
10836
10837 return ret;
10838}
10839
93bba24d
QW
10840/*
10841 * Trim the whole filesystem by:
10842 * 1) trimming the free space in each block group
10843 * 2) trimming the unallocated space on each device
10844 *
10845 * This will also continue trimming even if a block group or device encounters
10846 * an error. The return value will be the last error, or 0 if nothing bad
10847 * happens.
10848 */
2ff7e61e 10849int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10850{
f7039b1d 10851 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10852 struct btrfs_device *device;
10853 struct list_head *devices;
f7039b1d
LD
10854 u64 group_trimmed;
10855 u64 start;
10856 u64 end;
10857 u64 trimmed = 0;
93bba24d
QW
10858 u64 bg_failed = 0;
10859 u64 dev_failed = 0;
10860 int bg_ret = 0;
10861 int dev_ret = 0;
f7039b1d
LD
10862 int ret = 0;
10863
6ba9fc8e 10864 cache = btrfs_lookup_first_block_group(fs_info, range->start);
93bba24d 10865 for (; cache; cache = next_block_group(fs_info, cache)) {
f7039b1d
LD
10866 if (cache->key.objectid >= (range->start + range->len)) {
10867 btrfs_put_block_group(cache);
10868 break;
10869 }
10870
10871 start = max(range->start, cache->key.objectid);
10872 end = min(range->start + range->len,
10873 cache->key.objectid + cache->key.offset);
10874
10875 if (end - start >= range->minlen) {
10876 if (!block_group_cache_done(cache)) {
f6373bf3 10877 ret = cache_block_group(cache, 0);
1be41b78 10878 if (ret) {
93bba24d
QW
10879 bg_failed++;
10880 bg_ret = ret;
10881 continue;
1be41b78
JB
10882 }
10883 ret = wait_block_group_cache_done(cache);
10884 if (ret) {
93bba24d
QW
10885 bg_failed++;
10886 bg_ret = ret;
10887 continue;
1be41b78 10888 }
f7039b1d
LD
10889 }
10890 ret = btrfs_trim_block_group(cache,
10891 &group_trimmed,
10892 start,
10893 end,
10894 range->minlen);
10895
10896 trimmed += group_trimmed;
10897 if (ret) {
93bba24d
QW
10898 bg_failed++;
10899 bg_ret = ret;
10900 continue;
f7039b1d
LD
10901 }
10902 }
f7039b1d
LD
10903 }
10904
93bba24d
QW
10905 if (bg_failed)
10906 btrfs_warn(fs_info,
10907 "failed to trim %llu block group(s), last error %d",
10908 bg_failed, bg_ret);
0b246afa 10909 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d4e329de
JM
10910 devices = &fs_info->fs_devices->devices;
10911 list_for_each_entry(device, devices, dev_list) {
499f377f
JM
10912 ret = btrfs_trim_free_extents(device, range->minlen,
10913 &group_trimmed);
93bba24d
QW
10914 if (ret) {
10915 dev_failed++;
10916 dev_ret = ret;
499f377f 10917 break;
93bba24d 10918 }
499f377f
JM
10919
10920 trimmed += group_trimmed;
10921 }
0b246afa 10922 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 10923
93bba24d
QW
10924 if (dev_failed)
10925 btrfs_warn(fs_info,
10926 "failed to trim %llu device(s), last error %d",
10927 dev_failed, dev_ret);
f7039b1d 10928 range->len = trimmed;
93bba24d
QW
10929 if (bg_ret)
10930 return bg_ret;
10931 return dev_ret;
f7039b1d 10932}
8257b2dc
MX
10933
10934/*
ea14b57f 10935 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
10936 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10937 * data into the page cache through nocow before the subvolume is snapshoted,
10938 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 10939 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 10940 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10941 */
ea14b57f 10942void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
10943{
10944 percpu_counter_dec(&root->subv_writers->counter);
093258e6 10945 cond_wake_up(&root->subv_writers->wait);
8257b2dc
MX
10946}
10947
ea14b57f 10948int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 10949{
ea14b57f 10950 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
10951 return 0;
10952
10953 percpu_counter_inc(&root->subv_writers->counter);
10954 /*
10955 * Make sure counter is updated before we check for snapshot creation.
10956 */
10957 smp_mb();
ea14b57f
DS
10958 if (atomic_read(&root->will_be_snapshotted)) {
10959 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
10960 return 0;
10961 }
10962 return 1;
10963}
0bc19f90 10964
0bc19f90
ZL
10965void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10966{
10967 while (true) {
10968 int ret;
10969
ea14b57f 10970 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
10971 if (ret)
10972 break;
4625956a
PZ
10973 wait_var_event(&root->will_be_snapshotted,
10974 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
10975 }
10976}
031f24da
QW
10977
10978void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
10979{
10980 struct btrfs_fs_info *fs_info = bg->fs_info;
10981
10982 spin_lock(&fs_info->unused_bgs_lock);
10983 if (list_empty(&bg->bg_list)) {
10984 btrfs_get_block_group(bg);
10985 trace_btrfs_add_unused_block_group(bg);
10986 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
10987 }
10988 spin_unlock(&fs_info->unused_bgs_lock);
10989}