]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: raid56: Remove VLA usage
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
5d4f98a2 54static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 55 struct btrfs_fs_info *fs_info,
c682f9b3 56 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
57 u64 root_objectid, u64 owner_objectid,
58 u64 owner_offset, int refs_to_drop,
c682f9b3 59 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
60static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
61 struct extent_buffer *leaf,
62 struct btrfs_extent_item *ei);
63static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 64 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
65 u64 parent, u64 root_objectid,
66 u64 flags, u64 owner, u64 offset,
67 struct btrfs_key *ins, int ref_mod);
68static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 69 struct btrfs_delayed_ref_node *node,
21ebfbe7 70 struct btrfs_delayed_extent_op *extent_op);
6a63209f 71static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 72 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 73 int force);
11833d66
YZ
74static int find_next_key(struct btrfs_path *path, int level,
75 struct btrfs_key *key);
ab8d0fc4
JM
76static void dump_space_info(struct btrfs_fs_info *fs_info,
77 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 78 int dump_block_groups);
5d80366e
JB
79static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
80 u64 num_bytes);
957780eb
JB
81static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
83 u64 num_bytes);
84static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
85 struct btrfs_space_info *space_info,
86 u64 num_bytes);
6a63209f 87
817d52f8
JB
88static noinline int
89block_group_cache_done(struct btrfs_block_group_cache *cache)
90{
91 smp_mb();
36cce922
JB
92 return cache->cached == BTRFS_CACHE_FINISHED ||
93 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
94}
95
0f9dd46c
JB
96static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
97{
98 return (cache->flags & bits) == bits;
99}
100
758f2dfc 101void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
102{
103 atomic_inc(&cache->count);
104}
105
106void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
107{
f0486c68
YZ
108 if (atomic_dec_and_test(&cache->count)) {
109 WARN_ON(cache->pinned > 0);
110 WARN_ON(cache->reserved > 0);
0966a7b1
QW
111
112 /*
113 * If not empty, someone is still holding mutex of
114 * full_stripe_lock, which can only be released by caller.
115 * And it will definitely cause use-after-free when caller
116 * tries to release full stripe lock.
117 *
118 * No better way to resolve, but only to warn.
119 */
120 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 121 kfree(cache->free_space_ctl);
11dfe35a 122 kfree(cache);
f0486c68 123 }
11dfe35a
JB
124}
125
0f9dd46c
JB
126/*
127 * this adds the block group to the fs_info rb tree for the block group
128 * cache
129 */
b2950863 130static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
131 struct btrfs_block_group_cache *block_group)
132{
133 struct rb_node **p;
134 struct rb_node *parent = NULL;
135 struct btrfs_block_group_cache *cache;
136
137 spin_lock(&info->block_group_cache_lock);
138 p = &info->block_group_cache_tree.rb_node;
139
140 while (*p) {
141 parent = *p;
142 cache = rb_entry(parent, struct btrfs_block_group_cache,
143 cache_node);
144 if (block_group->key.objectid < cache->key.objectid) {
145 p = &(*p)->rb_left;
146 } else if (block_group->key.objectid > cache->key.objectid) {
147 p = &(*p)->rb_right;
148 } else {
149 spin_unlock(&info->block_group_cache_lock);
150 return -EEXIST;
151 }
152 }
153
154 rb_link_node(&block_group->cache_node, parent, p);
155 rb_insert_color(&block_group->cache_node,
156 &info->block_group_cache_tree);
a1897fdd
LB
157
158 if (info->first_logical_byte > block_group->key.objectid)
159 info->first_logical_byte = block_group->key.objectid;
160
0f9dd46c
JB
161 spin_unlock(&info->block_group_cache_lock);
162
163 return 0;
164}
165
166/*
167 * This will return the block group at or after bytenr if contains is 0, else
168 * it will return the block group that contains the bytenr
169 */
170static struct btrfs_block_group_cache *
171block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
172 int contains)
173{
174 struct btrfs_block_group_cache *cache, *ret = NULL;
175 struct rb_node *n;
176 u64 end, start;
177
178 spin_lock(&info->block_group_cache_lock);
179 n = info->block_group_cache_tree.rb_node;
180
181 while (n) {
182 cache = rb_entry(n, struct btrfs_block_group_cache,
183 cache_node);
184 end = cache->key.objectid + cache->key.offset - 1;
185 start = cache->key.objectid;
186
187 if (bytenr < start) {
188 if (!contains && (!ret || start < ret->key.objectid))
189 ret = cache;
190 n = n->rb_left;
191 } else if (bytenr > start) {
192 if (contains && bytenr <= end) {
193 ret = cache;
194 break;
195 }
196 n = n->rb_right;
197 } else {
198 ret = cache;
199 break;
200 }
201 }
a1897fdd 202 if (ret) {
11dfe35a 203 btrfs_get_block_group(ret);
a1897fdd
LB
204 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
205 info->first_logical_byte = ret->key.objectid;
206 }
0f9dd46c
JB
207 spin_unlock(&info->block_group_cache_lock);
208
209 return ret;
210}
211
2ff7e61e 212static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 213 u64 start, u64 num_bytes)
817d52f8 214{
11833d66 215 u64 end = start + num_bytes - 1;
0b246afa 216 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 217 start, end, EXTENT_UPTODATE);
0b246afa 218 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 219 start, end, EXTENT_UPTODATE);
11833d66
YZ
220 return 0;
221}
817d52f8 222
2ff7e61e 223static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
224 struct btrfs_block_group_cache *cache)
225{
226 u64 start, end;
817d52f8 227
11833d66
YZ
228 start = cache->key.objectid;
229 end = start + cache->key.offset - 1;
230
0b246afa 231 clear_extent_bits(&fs_info->freed_extents[0],
91166212 232 start, end, EXTENT_UPTODATE);
0b246afa 233 clear_extent_bits(&fs_info->freed_extents[1],
91166212 234 start, end, EXTENT_UPTODATE);
817d52f8
JB
235}
236
2ff7e61e 237static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 238 struct btrfs_block_group_cache *cache)
817d52f8 239{
817d52f8
JB
240 u64 bytenr;
241 u64 *logical;
242 int stripe_len;
243 int i, nr, ret;
244
06b2331f
YZ
245 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
246 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
247 cache->bytes_super += stripe_len;
2ff7e61e 248 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 249 stripe_len);
835d974f
JB
250 if (ret)
251 return ret;
06b2331f
YZ
252 }
253
817d52f8
JB
254 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
255 bytenr = btrfs_sb_offset(i);
0b246afa 256 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
63a9c7b9 257 bytenr, &logical, &nr, &stripe_len);
835d974f
JB
258 if (ret)
259 return ret;
11833d66 260
817d52f8 261 while (nr--) {
51bf5f0b
JB
262 u64 start, len;
263
264 if (logical[nr] > cache->key.objectid +
265 cache->key.offset)
266 continue;
267
268 if (logical[nr] + stripe_len <= cache->key.objectid)
269 continue;
270
271 start = logical[nr];
272 if (start < cache->key.objectid) {
273 start = cache->key.objectid;
274 len = (logical[nr] + stripe_len) - start;
275 } else {
276 len = min_t(u64, stripe_len,
277 cache->key.objectid +
278 cache->key.offset - start);
279 }
280
281 cache->bytes_super += len;
2ff7e61e 282 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
283 if (ret) {
284 kfree(logical);
285 return ret;
286 }
817d52f8 287 }
11833d66 288
817d52f8
JB
289 kfree(logical);
290 }
817d52f8
JB
291 return 0;
292}
293
11833d66
YZ
294static struct btrfs_caching_control *
295get_caching_control(struct btrfs_block_group_cache *cache)
296{
297 struct btrfs_caching_control *ctl;
298
299 spin_lock(&cache->lock);
dde5abee
JB
300 if (!cache->caching_ctl) {
301 spin_unlock(&cache->lock);
11833d66
YZ
302 return NULL;
303 }
304
305 ctl = cache->caching_ctl;
1e4f4714 306 refcount_inc(&ctl->count);
11833d66
YZ
307 spin_unlock(&cache->lock);
308 return ctl;
309}
310
311static void put_caching_control(struct btrfs_caching_control *ctl)
312{
1e4f4714 313 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
314 kfree(ctl);
315}
316
d0bd4560 317#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 318static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 319{
2ff7e61e 320 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
321 u64 start = block_group->key.objectid;
322 u64 len = block_group->key.offset;
323 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 324 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
325 u64 step = chunk << 1;
326
327 while (len > chunk) {
328 btrfs_remove_free_space(block_group, start, chunk);
329 start += step;
330 if (len < step)
331 len = 0;
332 else
333 len -= step;
334 }
335}
336#endif
337
0f9dd46c
JB
338/*
339 * this is only called by cache_block_group, since we could have freed extents
340 * we need to check the pinned_extents for any extents that can't be used yet
341 * since their free space will be released as soon as the transaction commits.
342 */
a5ed9182 343u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
4457c1c7 344 u64 start, u64 end)
0f9dd46c 345{
4457c1c7 346 struct btrfs_fs_info *info = block_group->fs_info;
817d52f8 347 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
348 int ret;
349
350 while (start < end) {
11833d66 351 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 352 &extent_start, &extent_end,
e6138876
JB
353 EXTENT_DIRTY | EXTENT_UPTODATE,
354 NULL);
0f9dd46c
JB
355 if (ret)
356 break;
357
06b2331f 358 if (extent_start <= start) {
0f9dd46c
JB
359 start = extent_end + 1;
360 } else if (extent_start > start && extent_start < end) {
361 size = extent_start - start;
817d52f8 362 total_added += size;
ea6a478e
JB
363 ret = btrfs_add_free_space(block_group, start,
364 size);
79787eaa 365 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
366 start = extent_end + 1;
367 } else {
368 break;
369 }
370 }
371
372 if (start < end) {
373 size = end - start;
817d52f8 374 total_added += size;
ea6a478e 375 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 376 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
377 }
378
817d52f8 379 return total_added;
0f9dd46c
JB
380}
381
73fa48b6 382static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 383{
0b246afa
JM
384 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
385 struct btrfs_fs_info *fs_info = block_group->fs_info;
386 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 387 struct btrfs_path *path;
5f39d397 388 struct extent_buffer *leaf;
11833d66 389 struct btrfs_key key;
817d52f8 390 u64 total_found = 0;
11833d66
YZ
391 u64 last = 0;
392 u32 nritems;
73fa48b6 393 int ret;
d0bd4560 394 bool wakeup = true;
f510cfec 395
e37c9e69
CM
396 path = btrfs_alloc_path();
397 if (!path)
73fa48b6 398 return -ENOMEM;
7d7d6068 399
817d52f8 400 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 401
d0bd4560
JB
402#ifdef CONFIG_BTRFS_DEBUG
403 /*
404 * If we're fragmenting we don't want to make anybody think we can
405 * allocate from this block group until we've had a chance to fragment
406 * the free space.
407 */
2ff7e61e 408 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
409 wakeup = false;
410#endif
5cd57b2c 411 /*
817d52f8
JB
412 * We don't want to deadlock with somebody trying to allocate a new
413 * extent for the extent root while also trying to search the extent
414 * root to add free space. So we skip locking and search the commit
415 * root, since its read-only
5cd57b2c
CM
416 */
417 path->skip_locking = 1;
817d52f8 418 path->search_commit_root = 1;
e4058b54 419 path->reada = READA_FORWARD;
817d52f8 420
e4404d6e 421 key.objectid = last;
e37c9e69 422 key.offset = 0;
11833d66 423 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 424
52ee28d2 425next:
11833d66 426 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 427 if (ret < 0)
73fa48b6 428 goto out;
a512bbf8 429
11833d66
YZ
430 leaf = path->nodes[0];
431 nritems = btrfs_header_nritems(leaf);
432
d397712b 433 while (1) {
7841cb28 434 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 435 last = (u64)-1;
817d52f8 436 break;
f25784b3 437 }
817d52f8 438
11833d66
YZ
439 if (path->slots[0] < nritems) {
440 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
441 } else {
442 ret = find_next_key(path, 0, &key);
443 if (ret)
e37c9e69 444 break;
817d52f8 445
c9ea7b24 446 if (need_resched() ||
9e351cc8 447 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
448 if (wakeup)
449 caching_ctl->progress = last;
ff5714cc 450 btrfs_release_path(path);
9e351cc8 451 up_read(&fs_info->commit_root_sem);
589d8ade 452 mutex_unlock(&caching_ctl->mutex);
11833d66 453 cond_resched();
73fa48b6
OS
454 mutex_lock(&caching_ctl->mutex);
455 down_read(&fs_info->commit_root_sem);
456 goto next;
589d8ade 457 }
0a3896d0
JB
458
459 ret = btrfs_next_leaf(extent_root, path);
460 if (ret < 0)
73fa48b6 461 goto out;
0a3896d0
JB
462 if (ret)
463 break;
589d8ade
JB
464 leaf = path->nodes[0];
465 nritems = btrfs_header_nritems(leaf);
466 continue;
11833d66 467 }
817d52f8 468
52ee28d2
LB
469 if (key.objectid < last) {
470 key.objectid = last;
471 key.offset = 0;
472 key.type = BTRFS_EXTENT_ITEM_KEY;
473
d0bd4560
JB
474 if (wakeup)
475 caching_ctl->progress = last;
52ee28d2
LB
476 btrfs_release_path(path);
477 goto next;
478 }
479
11833d66
YZ
480 if (key.objectid < block_group->key.objectid) {
481 path->slots[0]++;
817d52f8 482 continue;
e37c9e69 483 }
0f9dd46c 484
e37c9e69 485 if (key.objectid >= block_group->key.objectid +
0f9dd46c 486 block_group->key.offset)
e37c9e69 487 break;
7d7d6068 488
3173a18f
JB
489 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
490 key.type == BTRFS_METADATA_ITEM_KEY) {
4457c1c7 491 total_found += add_new_free_space(block_group, last,
817d52f8 492 key.objectid);
3173a18f
JB
493 if (key.type == BTRFS_METADATA_ITEM_KEY)
494 last = key.objectid +
da17066c 495 fs_info->nodesize;
3173a18f
JB
496 else
497 last = key.objectid + key.offset;
817d52f8 498
73fa48b6 499 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 500 total_found = 0;
d0bd4560
JB
501 if (wakeup)
502 wake_up(&caching_ctl->wait);
11833d66 503 }
817d52f8 504 }
e37c9e69
CM
505 path->slots[0]++;
506 }
817d52f8 507 ret = 0;
e37c9e69 508
4457c1c7 509 total_found += add_new_free_space(block_group, last,
817d52f8
JB
510 block_group->key.objectid +
511 block_group->key.offset);
11833d66 512 caching_ctl->progress = (u64)-1;
817d52f8 513
73fa48b6
OS
514out:
515 btrfs_free_path(path);
516 return ret;
517}
518
519static noinline void caching_thread(struct btrfs_work *work)
520{
521 struct btrfs_block_group_cache *block_group;
522 struct btrfs_fs_info *fs_info;
523 struct btrfs_caching_control *caching_ctl;
524 int ret;
525
526 caching_ctl = container_of(work, struct btrfs_caching_control, work);
527 block_group = caching_ctl->block_group;
528 fs_info = block_group->fs_info;
529
530 mutex_lock(&caching_ctl->mutex);
531 down_read(&fs_info->commit_root_sem);
532
1e144fb8
OS
533 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
534 ret = load_free_space_tree(caching_ctl);
535 else
536 ret = load_extent_tree_free(caching_ctl);
73fa48b6 537
817d52f8 538 spin_lock(&block_group->lock);
11833d66 539 block_group->caching_ctl = NULL;
73fa48b6 540 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 541 spin_unlock(&block_group->lock);
0f9dd46c 542
d0bd4560 543#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 544 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
545 u64 bytes_used;
546
547 spin_lock(&block_group->space_info->lock);
548 spin_lock(&block_group->lock);
549 bytes_used = block_group->key.offset -
550 btrfs_block_group_used(&block_group->item);
551 block_group->space_info->bytes_used += bytes_used >> 1;
552 spin_unlock(&block_group->lock);
553 spin_unlock(&block_group->space_info->lock);
2ff7e61e 554 fragment_free_space(block_group);
d0bd4560
JB
555 }
556#endif
557
558 caching_ctl->progress = (u64)-1;
11833d66 559
9e351cc8 560 up_read(&fs_info->commit_root_sem);
2ff7e61e 561 free_excluded_extents(fs_info, block_group);
11833d66 562 mutex_unlock(&caching_ctl->mutex);
73fa48b6 563
11833d66
YZ
564 wake_up(&caching_ctl->wait);
565
566 put_caching_control(caching_ctl);
11dfe35a 567 btrfs_put_block_group(block_group);
817d52f8
JB
568}
569
9d66e233 570static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 571 int load_cache_only)
817d52f8 572{
291c7d2f 573 DEFINE_WAIT(wait);
11833d66
YZ
574 struct btrfs_fs_info *fs_info = cache->fs_info;
575 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
576 int ret = 0;
577
291c7d2f 578 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
579 if (!caching_ctl)
580 return -ENOMEM;
291c7d2f
JB
581
582 INIT_LIST_HEAD(&caching_ctl->list);
583 mutex_init(&caching_ctl->mutex);
584 init_waitqueue_head(&caching_ctl->wait);
585 caching_ctl->block_group = cache;
586 caching_ctl->progress = cache->key.objectid;
1e4f4714 587 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
588 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
589 caching_thread, NULL, NULL);
291c7d2f
JB
590
591 spin_lock(&cache->lock);
592 /*
593 * This should be a rare occasion, but this could happen I think in the
594 * case where one thread starts to load the space cache info, and then
595 * some other thread starts a transaction commit which tries to do an
596 * allocation while the other thread is still loading the space cache
597 * info. The previous loop should have kept us from choosing this block
598 * group, but if we've moved to the state where we will wait on caching
599 * block groups we need to first check if we're doing a fast load here,
600 * so we can wait for it to finish, otherwise we could end up allocating
601 * from a block group who's cache gets evicted for one reason or
602 * another.
603 */
604 while (cache->cached == BTRFS_CACHE_FAST) {
605 struct btrfs_caching_control *ctl;
606
607 ctl = cache->caching_ctl;
1e4f4714 608 refcount_inc(&ctl->count);
291c7d2f
JB
609 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
610 spin_unlock(&cache->lock);
611
612 schedule();
613
614 finish_wait(&ctl->wait, &wait);
615 put_caching_control(ctl);
616 spin_lock(&cache->lock);
617 }
618
619 if (cache->cached != BTRFS_CACHE_NO) {
620 spin_unlock(&cache->lock);
621 kfree(caching_ctl);
11833d66 622 return 0;
291c7d2f
JB
623 }
624 WARN_ON(cache->caching_ctl);
625 cache->caching_ctl = caching_ctl;
626 cache->cached = BTRFS_CACHE_FAST;
627 spin_unlock(&cache->lock);
11833d66 628
d8953d69 629 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 630 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
631 ret = load_free_space_cache(fs_info, cache);
632
633 spin_lock(&cache->lock);
634 if (ret == 1) {
291c7d2f 635 cache->caching_ctl = NULL;
9d66e233
JB
636 cache->cached = BTRFS_CACHE_FINISHED;
637 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 638 caching_ctl->progress = (u64)-1;
9d66e233 639 } else {
291c7d2f
JB
640 if (load_cache_only) {
641 cache->caching_ctl = NULL;
642 cache->cached = BTRFS_CACHE_NO;
643 } else {
644 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 645 cache->has_caching_ctl = 1;
291c7d2f 646 }
9d66e233
JB
647 }
648 spin_unlock(&cache->lock);
d0bd4560
JB
649#ifdef CONFIG_BTRFS_DEBUG
650 if (ret == 1 &&
2ff7e61e 651 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
652 u64 bytes_used;
653
654 spin_lock(&cache->space_info->lock);
655 spin_lock(&cache->lock);
656 bytes_used = cache->key.offset -
657 btrfs_block_group_used(&cache->item);
658 cache->space_info->bytes_used += bytes_used >> 1;
659 spin_unlock(&cache->lock);
660 spin_unlock(&cache->space_info->lock);
2ff7e61e 661 fragment_free_space(cache);
d0bd4560
JB
662 }
663#endif
cb83b7b8
JB
664 mutex_unlock(&caching_ctl->mutex);
665
291c7d2f 666 wake_up(&caching_ctl->wait);
3c14874a 667 if (ret == 1) {
291c7d2f 668 put_caching_control(caching_ctl);
2ff7e61e 669 free_excluded_extents(fs_info, cache);
9d66e233 670 return 0;
3c14874a 671 }
291c7d2f
JB
672 } else {
673 /*
1e144fb8
OS
674 * We're either using the free space tree or no caching at all.
675 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
676 */
677 spin_lock(&cache->lock);
678 if (load_cache_only) {
679 cache->caching_ctl = NULL;
680 cache->cached = BTRFS_CACHE_NO;
681 } else {
682 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 683 cache->has_caching_ctl = 1;
291c7d2f
JB
684 }
685 spin_unlock(&cache->lock);
686 wake_up(&caching_ctl->wait);
9d66e233
JB
687 }
688
291c7d2f
JB
689 if (load_cache_only) {
690 put_caching_control(caching_ctl);
11833d66 691 return 0;
817d52f8 692 }
817d52f8 693
9e351cc8 694 down_write(&fs_info->commit_root_sem);
1e4f4714 695 refcount_inc(&caching_ctl->count);
11833d66 696 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 697 up_write(&fs_info->commit_root_sem);
11833d66 698
11dfe35a 699 btrfs_get_block_group(cache);
11833d66 700
e66f0bb1 701 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 702
ef8bbdfe 703 return ret;
e37c9e69
CM
704}
705
0f9dd46c
JB
706/*
707 * return the block group that starts at or after bytenr
708 */
d397712b
CM
709static struct btrfs_block_group_cache *
710btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 711{
e2c89907 712 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
713}
714
0f9dd46c 715/*
9f55684c 716 * return the block group that contains the given bytenr
0f9dd46c 717 */
d397712b
CM
718struct btrfs_block_group_cache *btrfs_lookup_block_group(
719 struct btrfs_fs_info *info,
720 u64 bytenr)
be744175 721{
e2c89907 722 return block_group_cache_tree_search(info, bytenr, 1);
be744175 723}
0b86a832 724
0f9dd46c
JB
725static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
726 u64 flags)
6324fbf3 727{
0f9dd46c 728 struct list_head *head = &info->space_info;
0f9dd46c 729 struct btrfs_space_info *found;
4184ea7f 730
52ba6929 731 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 732
4184ea7f
CM
733 rcu_read_lock();
734 list_for_each_entry_rcu(found, head, list) {
67377734 735 if (found->flags & flags) {
4184ea7f 736 rcu_read_unlock();
0f9dd46c 737 return found;
4184ea7f 738 }
0f9dd46c 739 }
4184ea7f 740 rcu_read_unlock();
0f9dd46c 741 return NULL;
6324fbf3
CM
742}
743
0d9f824d 744static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
29d2b84c 745 bool metadata, u64 root_objectid)
0d9f824d
OS
746{
747 struct btrfs_space_info *space_info;
748 u64 flags;
749
29d2b84c 750 if (metadata) {
0d9f824d
OS
751 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
752 flags = BTRFS_BLOCK_GROUP_SYSTEM;
753 else
754 flags = BTRFS_BLOCK_GROUP_METADATA;
755 } else {
756 flags = BTRFS_BLOCK_GROUP_DATA;
757 }
758
759 space_info = __find_space_info(fs_info, flags);
55e8196a 760 ASSERT(space_info);
0d9f824d
OS
761 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
762}
763
4184ea7f
CM
764/*
765 * after adding space to the filesystem, we need to clear the full flags
766 * on all the space infos.
767 */
768void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
769{
770 struct list_head *head = &info->space_info;
771 struct btrfs_space_info *found;
772
773 rcu_read_lock();
774 list_for_each_entry_rcu(found, head, list)
775 found->full = 0;
776 rcu_read_unlock();
777}
778
1a4ed8fd 779/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 780int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
781{
782 int ret;
783 struct btrfs_key key;
31840ae1 784 struct btrfs_path *path;
e02119d5 785
31840ae1 786 path = btrfs_alloc_path();
d8926bb3
MF
787 if (!path)
788 return -ENOMEM;
789
e02119d5
CM
790 key.objectid = start;
791 key.offset = len;
3173a18f 792 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 793 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 794 btrfs_free_path(path);
7bb86316
CM
795 return ret;
796}
797
a22285a6 798/*
3173a18f 799 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
800 *
801 * the head node for delayed ref is used to store the sum of all the
802 * reference count modifications queued up in the rbtree. the head
803 * node may also store the extent flags to set. This way you can check
804 * to see what the reference count and extent flags would be if all of
805 * the delayed refs are not processed.
806 */
807int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 808 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 809 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
810{
811 struct btrfs_delayed_ref_head *head;
812 struct btrfs_delayed_ref_root *delayed_refs;
813 struct btrfs_path *path;
814 struct btrfs_extent_item *ei;
815 struct extent_buffer *leaf;
816 struct btrfs_key key;
817 u32 item_size;
818 u64 num_refs;
819 u64 extent_flags;
820 int ret;
821
3173a18f
JB
822 /*
823 * If we don't have skinny metadata, don't bother doing anything
824 * different
825 */
0b246afa
JM
826 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
827 offset = fs_info->nodesize;
3173a18f
JB
828 metadata = 0;
829 }
830
a22285a6
YZ
831 path = btrfs_alloc_path();
832 if (!path)
833 return -ENOMEM;
834
a22285a6
YZ
835 if (!trans) {
836 path->skip_locking = 1;
837 path->search_commit_root = 1;
838 }
639eefc8
FDBM
839
840search_again:
841 key.objectid = bytenr;
842 key.offset = offset;
843 if (metadata)
844 key.type = BTRFS_METADATA_ITEM_KEY;
845 else
846 key.type = BTRFS_EXTENT_ITEM_KEY;
847
0b246afa 848 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
849 if (ret < 0)
850 goto out_free;
851
3173a18f 852 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
853 if (path->slots[0]) {
854 path->slots[0]--;
855 btrfs_item_key_to_cpu(path->nodes[0], &key,
856 path->slots[0]);
857 if (key.objectid == bytenr &&
858 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 859 key.offset == fs_info->nodesize)
74be9510
FDBM
860 ret = 0;
861 }
3173a18f
JB
862 }
863
a22285a6
YZ
864 if (ret == 0) {
865 leaf = path->nodes[0];
866 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
867 if (item_size >= sizeof(*ei)) {
868 ei = btrfs_item_ptr(leaf, path->slots[0],
869 struct btrfs_extent_item);
870 num_refs = btrfs_extent_refs(leaf, ei);
871 extent_flags = btrfs_extent_flags(leaf, ei);
872 } else {
873#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
874 struct btrfs_extent_item_v0 *ei0;
875 BUG_ON(item_size != sizeof(*ei0));
876 ei0 = btrfs_item_ptr(leaf, path->slots[0],
877 struct btrfs_extent_item_v0);
878 num_refs = btrfs_extent_refs_v0(leaf, ei0);
879 /* FIXME: this isn't correct for data */
880 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
881#else
882 BUG();
883#endif
884 }
885 BUG_ON(num_refs == 0);
886 } else {
887 num_refs = 0;
888 extent_flags = 0;
889 ret = 0;
890 }
891
892 if (!trans)
893 goto out;
894
895 delayed_refs = &trans->transaction->delayed_refs;
896 spin_lock(&delayed_refs->lock);
f72ad18e 897 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
898 if (head) {
899 if (!mutex_trylock(&head->mutex)) {
d278850e 900 refcount_inc(&head->refs);
a22285a6
YZ
901 spin_unlock(&delayed_refs->lock);
902
b3b4aa74 903 btrfs_release_path(path);
a22285a6 904
8cc33e5c
DS
905 /*
906 * Mutex was contended, block until it's released and try
907 * again
908 */
a22285a6
YZ
909 mutex_lock(&head->mutex);
910 mutex_unlock(&head->mutex);
d278850e 911 btrfs_put_delayed_ref_head(head);
639eefc8 912 goto search_again;
a22285a6 913 }
d7df2c79 914 spin_lock(&head->lock);
a22285a6
YZ
915 if (head->extent_op && head->extent_op->update_flags)
916 extent_flags |= head->extent_op->flags_to_set;
917 else
918 BUG_ON(num_refs == 0);
919
d278850e 920 num_refs += head->ref_mod;
d7df2c79 921 spin_unlock(&head->lock);
a22285a6
YZ
922 mutex_unlock(&head->mutex);
923 }
924 spin_unlock(&delayed_refs->lock);
925out:
926 WARN_ON(num_refs == 0);
927 if (refs)
928 *refs = num_refs;
929 if (flags)
930 *flags = extent_flags;
931out_free:
932 btrfs_free_path(path);
933 return ret;
934}
935
d8d5f3e1
CM
936/*
937 * Back reference rules. Back refs have three main goals:
938 *
939 * 1) differentiate between all holders of references to an extent so that
940 * when a reference is dropped we can make sure it was a valid reference
941 * before freeing the extent.
942 *
943 * 2) Provide enough information to quickly find the holders of an extent
944 * if we notice a given block is corrupted or bad.
945 *
946 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
947 * maintenance. This is actually the same as #2, but with a slightly
948 * different use case.
949 *
5d4f98a2
YZ
950 * There are two kinds of back refs. The implicit back refs is optimized
951 * for pointers in non-shared tree blocks. For a given pointer in a block,
952 * back refs of this kind provide information about the block's owner tree
953 * and the pointer's key. These information allow us to find the block by
954 * b-tree searching. The full back refs is for pointers in tree blocks not
955 * referenced by their owner trees. The location of tree block is recorded
956 * in the back refs. Actually the full back refs is generic, and can be
957 * used in all cases the implicit back refs is used. The major shortcoming
958 * of the full back refs is its overhead. Every time a tree block gets
959 * COWed, we have to update back refs entry for all pointers in it.
960 *
961 * For a newly allocated tree block, we use implicit back refs for
962 * pointers in it. This means most tree related operations only involve
963 * implicit back refs. For a tree block created in old transaction, the
964 * only way to drop a reference to it is COW it. So we can detect the
965 * event that tree block loses its owner tree's reference and do the
966 * back refs conversion.
967 *
01327610 968 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
969 *
970 * The reference count of the block is one and the tree is the block's
971 * owner tree. Nothing to do in this case.
972 *
973 * The reference count of the block is one and the tree is not the
974 * block's owner tree. In this case, full back refs is used for pointers
975 * in the block. Remove these full back refs, add implicit back refs for
976 * every pointers in the new block.
977 *
978 * The reference count of the block is greater than one and the tree is
979 * the block's owner tree. In this case, implicit back refs is used for
980 * pointers in the block. Add full back refs for every pointers in the
981 * block, increase lower level extents' reference counts. The original
982 * implicit back refs are entailed to the new block.
983 *
984 * The reference count of the block is greater than one and the tree is
985 * not the block's owner tree. Add implicit back refs for every pointer in
986 * the new block, increase lower level extents' reference count.
987 *
988 * Back Reference Key composing:
989 *
990 * The key objectid corresponds to the first byte in the extent,
991 * The key type is used to differentiate between types of back refs.
992 * There are different meanings of the key offset for different types
993 * of back refs.
994 *
d8d5f3e1
CM
995 * File extents can be referenced by:
996 *
997 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 998 * - different files inside a single subvolume
d8d5f3e1
CM
999 * - different offsets inside a file (bookend extents in file.c)
1000 *
5d4f98a2 1001 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1002 *
1003 * - Objectid of the subvolume root
d8d5f3e1 1004 * - objectid of the file holding the reference
5d4f98a2
YZ
1005 * - original offset in the file
1006 * - how many bookend extents
d8d5f3e1 1007 *
5d4f98a2
YZ
1008 * The key offset for the implicit back refs is hash of the first
1009 * three fields.
d8d5f3e1 1010 *
5d4f98a2 1011 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1012 *
5d4f98a2 1013 * - number of pointers in the tree leaf
d8d5f3e1 1014 *
5d4f98a2
YZ
1015 * The key offset for the implicit back refs is the first byte of
1016 * the tree leaf
d8d5f3e1 1017 *
5d4f98a2
YZ
1018 * When a file extent is allocated, The implicit back refs is used.
1019 * the fields are filled in:
d8d5f3e1 1020 *
5d4f98a2 1021 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1022 *
5d4f98a2
YZ
1023 * When a file extent is removed file truncation, we find the
1024 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1025 *
5d4f98a2 1026 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1027 *
5d4f98a2 1028 * Btree extents can be referenced by:
d8d5f3e1 1029 *
5d4f98a2 1030 * - Different subvolumes
d8d5f3e1 1031 *
5d4f98a2
YZ
1032 * Both the implicit back refs and the full back refs for tree blocks
1033 * only consist of key. The key offset for the implicit back refs is
1034 * objectid of block's owner tree. The key offset for the full back refs
1035 * is the first byte of parent block.
d8d5f3e1 1036 *
5d4f98a2
YZ
1037 * When implicit back refs is used, information about the lowest key and
1038 * level of the tree block are required. These information are stored in
1039 * tree block info structure.
d8d5f3e1 1040 */
31840ae1 1041
5d4f98a2
YZ
1042#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1043static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1044 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1045 struct btrfs_path *path,
1046 u64 owner, u32 extra_size)
7bb86316 1047{
87bde3cd 1048 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1049 struct btrfs_extent_item *item;
1050 struct btrfs_extent_item_v0 *ei0;
1051 struct btrfs_extent_ref_v0 *ref0;
1052 struct btrfs_tree_block_info *bi;
1053 struct extent_buffer *leaf;
7bb86316 1054 struct btrfs_key key;
5d4f98a2
YZ
1055 struct btrfs_key found_key;
1056 u32 new_size = sizeof(*item);
1057 u64 refs;
1058 int ret;
1059
1060 leaf = path->nodes[0];
1061 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1062
1063 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1064 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1065 struct btrfs_extent_item_v0);
1066 refs = btrfs_extent_refs_v0(leaf, ei0);
1067
1068 if (owner == (u64)-1) {
1069 while (1) {
1070 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1071 ret = btrfs_next_leaf(root, path);
1072 if (ret < 0)
1073 return ret;
79787eaa 1074 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1075 leaf = path->nodes[0];
1076 }
1077 btrfs_item_key_to_cpu(leaf, &found_key,
1078 path->slots[0]);
1079 BUG_ON(key.objectid != found_key.objectid);
1080 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1081 path->slots[0]++;
1082 continue;
1083 }
1084 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1085 struct btrfs_extent_ref_v0);
1086 owner = btrfs_ref_objectid_v0(leaf, ref0);
1087 break;
1088 }
1089 }
b3b4aa74 1090 btrfs_release_path(path);
5d4f98a2
YZ
1091
1092 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1093 new_size += sizeof(*bi);
1094
1095 new_size -= sizeof(*ei0);
1096 ret = btrfs_search_slot(trans, root, &key, path,
1097 new_size + extra_size, 1);
1098 if (ret < 0)
1099 return ret;
79787eaa 1100 BUG_ON(ret); /* Corruption */
5d4f98a2 1101
87bde3cd 1102 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1103
1104 leaf = path->nodes[0];
1105 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1106 btrfs_set_extent_refs(leaf, item, refs);
1107 /* FIXME: get real generation */
1108 btrfs_set_extent_generation(leaf, item, 0);
1109 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1110 btrfs_set_extent_flags(leaf, item,
1111 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1112 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1113 bi = (struct btrfs_tree_block_info *)(item + 1);
1114 /* FIXME: get first key of the block */
b159fa28 1115 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1116 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1117 } else {
1118 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1119 }
1120 btrfs_mark_buffer_dirty(leaf);
1121 return 0;
1122}
1123#endif
1124
167ce953
LB
1125/*
1126 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1127 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1128 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1129 */
1130int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1131 struct btrfs_extent_inline_ref *iref,
1132 enum btrfs_inline_ref_type is_data)
1133{
1134 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1135 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1136
1137 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1138 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1139 type == BTRFS_SHARED_DATA_REF_KEY ||
1140 type == BTRFS_EXTENT_DATA_REF_KEY) {
1141 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1142 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1143 return type;
64ecdb64
LB
1144 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1145 ASSERT(eb->fs_info);
1146 /*
1147 * Every shared one has parent tree
1148 * block, which must be aligned to
1149 * nodesize.
1150 */
1151 if (offset &&
1152 IS_ALIGNED(offset, eb->fs_info->nodesize))
1153 return type;
1154 }
167ce953 1155 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1156 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1157 return type;
64ecdb64
LB
1158 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1159 ASSERT(eb->fs_info);
1160 /*
1161 * Every shared one has parent tree
1162 * block, which must be aligned to
1163 * nodesize.
1164 */
1165 if (offset &&
1166 IS_ALIGNED(offset, eb->fs_info->nodesize))
1167 return type;
1168 }
167ce953
LB
1169 } else {
1170 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1171 return type;
1172 }
1173 }
1174
1175 btrfs_print_leaf((struct extent_buffer *)eb);
1176 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1177 eb->start, type);
1178 WARN_ON(1);
1179
1180 return BTRFS_REF_TYPE_INVALID;
1181}
1182
5d4f98a2
YZ
1183static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1184{
1185 u32 high_crc = ~(u32)0;
1186 u32 low_crc = ~(u32)0;
1187 __le64 lenum;
1188
1189 lenum = cpu_to_le64(root_objectid);
9678c543 1190 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1191 lenum = cpu_to_le64(owner);
9678c543 1192 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1193 lenum = cpu_to_le64(offset);
9678c543 1194 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1195
1196 return ((u64)high_crc << 31) ^ (u64)low_crc;
1197}
1198
1199static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1200 struct btrfs_extent_data_ref *ref)
1201{
1202 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1203 btrfs_extent_data_ref_objectid(leaf, ref),
1204 btrfs_extent_data_ref_offset(leaf, ref));
1205}
1206
1207static int match_extent_data_ref(struct extent_buffer *leaf,
1208 struct btrfs_extent_data_ref *ref,
1209 u64 root_objectid, u64 owner, u64 offset)
1210{
1211 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1212 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1213 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1214 return 0;
1215 return 1;
1216}
1217
1218static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1219 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1220 struct btrfs_path *path,
1221 u64 bytenr, u64 parent,
1222 u64 root_objectid,
1223 u64 owner, u64 offset)
1224{
87bde3cd 1225 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1226 struct btrfs_key key;
1227 struct btrfs_extent_data_ref *ref;
31840ae1 1228 struct extent_buffer *leaf;
5d4f98a2 1229 u32 nritems;
74493f7a 1230 int ret;
5d4f98a2
YZ
1231 int recow;
1232 int err = -ENOENT;
74493f7a 1233
31840ae1 1234 key.objectid = bytenr;
5d4f98a2
YZ
1235 if (parent) {
1236 key.type = BTRFS_SHARED_DATA_REF_KEY;
1237 key.offset = parent;
1238 } else {
1239 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1240 key.offset = hash_extent_data_ref(root_objectid,
1241 owner, offset);
1242 }
1243again:
1244 recow = 0;
1245 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1246 if (ret < 0) {
1247 err = ret;
1248 goto fail;
1249 }
31840ae1 1250
5d4f98a2
YZ
1251 if (parent) {
1252 if (!ret)
1253 return 0;
1254#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1255 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1256 btrfs_release_path(path);
5d4f98a2
YZ
1257 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1258 if (ret < 0) {
1259 err = ret;
1260 goto fail;
1261 }
1262 if (!ret)
1263 return 0;
1264#endif
1265 goto fail;
31840ae1
ZY
1266 }
1267
1268 leaf = path->nodes[0];
5d4f98a2
YZ
1269 nritems = btrfs_header_nritems(leaf);
1270 while (1) {
1271 if (path->slots[0] >= nritems) {
1272 ret = btrfs_next_leaf(root, path);
1273 if (ret < 0)
1274 err = ret;
1275 if (ret)
1276 goto fail;
1277
1278 leaf = path->nodes[0];
1279 nritems = btrfs_header_nritems(leaf);
1280 recow = 1;
1281 }
1282
1283 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1284 if (key.objectid != bytenr ||
1285 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1286 goto fail;
1287
1288 ref = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_data_ref);
1290
1291 if (match_extent_data_ref(leaf, ref, root_objectid,
1292 owner, offset)) {
1293 if (recow) {
b3b4aa74 1294 btrfs_release_path(path);
5d4f98a2
YZ
1295 goto again;
1296 }
1297 err = 0;
1298 break;
1299 }
1300 path->slots[0]++;
31840ae1 1301 }
5d4f98a2
YZ
1302fail:
1303 return err;
31840ae1
ZY
1304}
1305
5d4f98a2 1306static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1307 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1308 struct btrfs_path *path,
1309 u64 bytenr, u64 parent,
1310 u64 root_objectid, u64 owner,
1311 u64 offset, int refs_to_add)
31840ae1 1312{
87bde3cd 1313 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1314 struct btrfs_key key;
1315 struct extent_buffer *leaf;
5d4f98a2 1316 u32 size;
31840ae1
ZY
1317 u32 num_refs;
1318 int ret;
74493f7a 1319
74493f7a 1320 key.objectid = bytenr;
5d4f98a2
YZ
1321 if (parent) {
1322 key.type = BTRFS_SHARED_DATA_REF_KEY;
1323 key.offset = parent;
1324 size = sizeof(struct btrfs_shared_data_ref);
1325 } else {
1326 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1327 key.offset = hash_extent_data_ref(root_objectid,
1328 owner, offset);
1329 size = sizeof(struct btrfs_extent_data_ref);
1330 }
74493f7a 1331
5d4f98a2
YZ
1332 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1333 if (ret && ret != -EEXIST)
1334 goto fail;
1335
1336 leaf = path->nodes[0];
1337 if (parent) {
1338 struct btrfs_shared_data_ref *ref;
31840ae1 1339 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1340 struct btrfs_shared_data_ref);
1341 if (ret == 0) {
1342 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1343 } else {
1344 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1345 num_refs += refs_to_add;
1346 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1347 }
5d4f98a2
YZ
1348 } else {
1349 struct btrfs_extent_data_ref *ref;
1350 while (ret == -EEXIST) {
1351 ref = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_data_ref);
1353 if (match_extent_data_ref(leaf, ref, root_objectid,
1354 owner, offset))
1355 break;
b3b4aa74 1356 btrfs_release_path(path);
5d4f98a2
YZ
1357 key.offset++;
1358 ret = btrfs_insert_empty_item(trans, root, path, &key,
1359 size);
1360 if (ret && ret != -EEXIST)
1361 goto fail;
31840ae1 1362
5d4f98a2
YZ
1363 leaf = path->nodes[0];
1364 }
1365 ref = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_extent_data_ref);
1367 if (ret == 0) {
1368 btrfs_set_extent_data_ref_root(leaf, ref,
1369 root_objectid);
1370 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1371 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1372 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1373 } else {
1374 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1375 num_refs += refs_to_add;
1376 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1377 }
31840ae1 1378 }
5d4f98a2
YZ
1379 btrfs_mark_buffer_dirty(leaf);
1380 ret = 0;
1381fail:
b3b4aa74 1382 btrfs_release_path(path);
7bb86316 1383 return ret;
74493f7a
CM
1384}
1385
5d4f98a2 1386static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1387 struct btrfs_fs_info *fs_info,
5d4f98a2 1388 struct btrfs_path *path,
fcebe456 1389 int refs_to_drop, int *last_ref)
31840ae1 1390{
5d4f98a2
YZ
1391 struct btrfs_key key;
1392 struct btrfs_extent_data_ref *ref1 = NULL;
1393 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1394 struct extent_buffer *leaf;
5d4f98a2 1395 u32 num_refs = 0;
31840ae1
ZY
1396 int ret = 0;
1397
1398 leaf = path->nodes[0];
5d4f98a2
YZ
1399 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1400
1401 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1402 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1403 struct btrfs_extent_data_ref);
1404 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1405 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1406 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1407 struct btrfs_shared_data_ref);
1408 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1409#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1410 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1411 struct btrfs_extent_ref_v0 *ref0;
1412 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1413 struct btrfs_extent_ref_v0);
1414 num_refs = btrfs_ref_count_v0(leaf, ref0);
1415#endif
1416 } else {
1417 BUG();
1418 }
1419
56bec294
CM
1420 BUG_ON(num_refs < refs_to_drop);
1421 num_refs -= refs_to_drop;
5d4f98a2 1422
31840ae1 1423 if (num_refs == 0) {
87bde3cd 1424 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1425 *last_ref = 1;
31840ae1 1426 } else {
5d4f98a2
YZ
1427 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1428 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1429 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1430 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1431#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1432 else {
1433 struct btrfs_extent_ref_v0 *ref0;
1434 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1435 struct btrfs_extent_ref_v0);
1436 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1437 }
1438#endif
31840ae1
ZY
1439 btrfs_mark_buffer_dirty(leaf);
1440 }
31840ae1
ZY
1441 return ret;
1442}
1443
9ed0dea0 1444static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1445 struct btrfs_extent_inline_ref *iref)
15916de8 1446{
5d4f98a2
YZ
1447 struct btrfs_key key;
1448 struct extent_buffer *leaf;
1449 struct btrfs_extent_data_ref *ref1;
1450 struct btrfs_shared_data_ref *ref2;
1451 u32 num_refs = 0;
3de28d57 1452 int type;
5d4f98a2
YZ
1453
1454 leaf = path->nodes[0];
1455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1456 if (iref) {
3de28d57
LB
1457 /*
1458 * If type is invalid, we should have bailed out earlier than
1459 * this call.
1460 */
1461 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1462 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1463 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1464 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1465 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1466 } else {
1467 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1468 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1469 }
1470 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1471 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1472 struct btrfs_extent_data_ref);
1473 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1474 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1475 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1476 struct btrfs_shared_data_ref);
1477 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1478#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1479 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1480 struct btrfs_extent_ref_v0 *ref0;
1481 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1482 struct btrfs_extent_ref_v0);
1483 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1484#endif
5d4f98a2
YZ
1485 } else {
1486 WARN_ON(1);
1487 }
1488 return num_refs;
1489}
15916de8 1490
5d4f98a2 1491static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1492 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1493 struct btrfs_path *path,
1494 u64 bytenr, u64 parent,
1495 u64 root_objectid)
1f3c79a2 1496{
87bde3cd 1497 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1498 struct btrfs_key key;
1f3c79a2 1499 int ret;
1f3c79a2 1500
5d4f98a2
YZ
1501 key.objectid = bytenr;
1502 if (parent) {
1503 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1504 key.offset = parent;
1505 } else {
1506 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1507 key.offset = root_objectid;
1f3c79a2
LH
1508 }
1509
5d4f98a2
YZ
1510 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1511 if (ret > 0)
1512 ret = -ENOENT;
1513#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1514 if (ret == -ENOENT && parent) {
b3b4aa74 1515 btrfs_release_path(path);
5d4f98a2
YZ
1516 key.type = BTRFS_EXTENT_REF_V0_KEY;
1517 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1518 if (ret > 0)
1519 ret = -ENOENT;
1520 }
1f3c79a2 1521#endif
5d4f98a2 1522 return ret;
1f3c79a2
LH
1523}
1524
5d4f98a2 1525static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1526 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1527 struct btrfs_path *path,
1528 u64 bytenr, u64 parent,
1529 u64 root_objectid)
31840ae1 1530{
5d4f98a2 1531 struct btrfs_key key;
31840ae1 1532 int ret;
31840ae1 1533
5d4f98a2
YZ
1534 key.objectid = bytenr;
1535 if (parent) {
1536 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1537 key.offset = parent;
1538 } else {
1539 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1540 key.offset = root_objectid;
1541 }
1542
87bde3cd
JM
1543 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1544 path, &key, 0);
b3b4aa74 1545 btrfs_release_path(path);
31840ae1
ZY
1546 return ret;
1547}
1548
5d4f98a2 1549static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1550{
5d4f98a2
YZ
1551 int type;
1552 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1553 if (parent > 0)
1554 type = BTRFS_SHARED_BLOCK_REF_KEY;
1555 else
1556 type = BTRFS_TREE_BLOCK_REF_KEY;
1557 } else {
1558 if (parent > 0)
1559 type = BTRFS_SHARED_DATA_REF_KEY;
1560 else
1561 type = BTRFS_EXTENT_DATA_REF_KEY;
1562 }
1563 return type;
31840ae1 1564}
56bec294 1565
2c47e605
YZ
1566static int find_next_key(struct btrfs_path *path, int level,
1567 struct btrfs_key *key)
56bec294 1568
02217ed2 1569{
2c47e605 1570 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1571 if (!path->nodes[level])
1572 break;
5d4f98a2
YZ
1573 if (path->slots[level] + 1 >=
1574 btrfs_header_nritems(path->nodes[level]))
1575 continue;
1576 if (level == 0)
1577 btrfs_item_key_to_cpu(path->nodes[level], key,
1578 path->slots[level] + 1);
1579 else
1580 btrfs_node_key_to_cpu(path->nodes[level], key,
1581 path->slots[level] + 1);
1582 return 0;
1583 }
1584 return 1;
1585}
037e6390 1586
5d4f98a2
YZ
1587/*
1588 * look for inline back ref. if back ref is found, *ref_ret is set
1589 * to the address of inline back ref, and 0 is returned.
1590 *
1591 * if back ref isn't found, *ref_ret is set to the address where it
1592 * should be inserted, and -ENOENT is returned.
1593 *
1594 * if insert is true and there are too many inline back refs, the path
1595 * points to the extent item, and -EAGAIN is returned.
1596 *
1597 * NOTE: inline back refs are ordered in the same way that back ref
1598 * items in the tree are ordered.
1599 */
1600static noinline_for_stack
1601int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1602 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1603 struct btrfs_path *path,
1604 struct btrfs_extent_inline_ref **ref_ret,
1605 u64 bytenr, u64 num_bytes,
1606 u64 parent, u64 root_objectid,
1607 u64 owner, u64 offset, int insert)
1608{
87bde3cd 1609 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1610 struct btrfs_key key;
1611 struct extent_buffer *leaf;
1612 struct btrfs_extent_item *ei;
1613 struct btrfs_extent_inline_ref *iref;
1614 u64 flags;
1615 u64 item_size;
1616 unsigned long ptr;
1617 unsigned long end;
1618 int extra_size;
1619 int type;
1620 int want;
1621 int ret;
1622 int err = 0;
0b246afa 1623 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1624 int needed;
26b8003f 1625
db94535d 1626 key.objectid = bytenr;
31840ae1 1627 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1628 key.offset = num_bytes;
31840ae1 1629
5d4f98a2
YZ
1630 want = extent_ref_type(parent, owner);
1631 if (insert) {
1632 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1633 path->keep_locks = 1;
5d4f98a2
YZ
1634 } else
1635 extra_size = -1;
3173a18f
JB
1636
1637 /*
1638 * Owner is our parent level, so we can just add one to get the level
1639 * for the block we are interested in.
1640 */
1641 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1642 key.type = BTRFS_METADATA_ITEM_KEY;
1643 key.offset = owner;
1644 }
1645
1646again:
5d4f98a2 1647 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1648 if (ret < 0) {
5d4f98a2
YZ
1649 err = ret;
1650 goto out;
1651 }
3173a18f
JB
1652
1653 /*
1654 * We may be a newly converted file system which still has the old fat
1655 * extent entries for metadata, so try and see if we have one of those.
1656 */
1657 if (ret > 0 && skinny_metadata) {
1658 skinny_metadata = false;
1659 if (path->slots[0]) {
1660 path->slots[0]--;
1661 btrfs_item_key_to_cpu(path->nodes[0], &key,
1662 path->slots[0]);
1663 if (key.objectid == bytenr &&
1664 key.type == BTRFS_EXTENT_ITEM_KEY &&
1665 key.offset == num_bytes)
1666 ret = 0;
1667 }
1668 if (ret) {
9ce49a0b 1669 key.objectid = bytenr;
3173a18f
JB
1670 key.type = BTRFS_EXTENT_ITEM_KEY;
1671 key.offset = num_bytes;
1672 btrfs_release_path(path);
1673 goto again;
1674 }
1675 }
1676
79787eaa
JM
1677 if (ret && !insert) {
1678 err = -ENOENT;
1679 goto out;
fae7f21c 1680 } else if (WARN_ON(ret)) {
492104c8 1681 err = -EIO;
492104c8 1682 goto out;
79787eaa 1683 }
5d4f98a2
YZ
1684
1685 leaf = path->nodes[0];
1686 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1687#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1688 if (item_size < sizeof(*ei)) {
1689 if (!insert) {
1690 err = -ENOENT;
1691 goto out;
1692 }
87bde3cd 1693 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1694 extra_size);
1695 if (ret < 0) {
1696 err = ret;
1697 goto out;
1698 }
1699 leaf = path->nodes[0];
1700 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1701 }
1702#endif
1703 BUG_ON(item_size < sizeof(*ei));
1704
5d4f98a2
YZ
1705 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1706 flags = btrfs_extent_flags(leaf, ei);
1707
1708 ptr = (unsigned long)(ei + 1);
1709 end = (unsigned long)ei + item_size;
1710
3173a18f 1711 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1712 ptr += sizeof(struct btrfs_tree_block_info);
1713 BUG_ON(ptr > end);
5d4f98a2
YZ
1714 }
1715
3de28d57
LB
1716 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1717 needed = BTRFS_REF_TYPE_DATA;
1718 else
1719 needed = BTRFS_REF_TYPE_BLOCK;
1720
5d4f98a2
YZ
1721 err = -ENOENT;
1722 while (1) {
1723 if (ptr >= end) {
1724 WARN_ON(ptr > end);
1725 break;
1726 }
1727 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1728 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1729 if (type == BTRFS_REF_TYPE_INVALID) {
1730 err = -EINVAL;
1731 goto out;
1732 }
1733
5d4f98a2
YZ
1734 if (want < type)
1735 break;
1736 if (want > type) {
1737 ptr += btrfs_extent_inline_ref_size(type);
1738 continue;
1739 }
1740
1741 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1742 struct btrfs_extent_data_ref *dref;
1743 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1744 if (match_extent_data_ref(leaf, dref, root_objectid,
1745 owner, offset)) {
1746 err = 0;
1747 break;
1748 }
1749 if (hash_extent_data_ref_item(leaf, dref) <
1750 hash_extent_data_ref(root_objectid, owner, offset))
1751 break;
1752 } else {
1753 u64 ref_offset;
1754 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1755 if (parent > 0) {
1756 if (parent == ref_offset) {
1757 err = 0;
1758 break;
1759 }
1760 if (ref_offset < parent)
1761 break;
1762 } else {
1763 if (root_objectid == ref_offset) {
1764 err = 0;
1765 break;
1766 }
1767 if (ref_offset < root_objectid)
1768 break;
1769 }
1770 }
1771 ptr += btrfs_extent_inline_ref_size(type);
1772 }
1773 if (err == -ENOENT && insert) {
1774 if (item_size + extra_size >=
1775 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1776 err = -EAGAIN;
1777 goto out;
1778 }
1779 /*
1780 * To add new inline back ref, we have to make sure
1781 * there is no corresponding back ref item.
1782 * For simplicity, we just do not add new inline back
1783 * ref if there is any kind of item for this block
1784 */
2c47e605
YZ
1785 if (find_next_key(path, 0, &key) == 0 &&
1786 key.objectid == bytenr &&
85d4198e 1787 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1788 err = -EAGAIN;
1789 goto out;
1790 }
1791 }
1792 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1793out:
85d4198e 1794 if (insert) {
5d4f98a2
YZ
1795 path->keep_locks = 0;
1796 btrfs_unlock_up_safe(path, 1);
1797 }
1798 return err;
1799}
1800
1801/*
1802 * helper to add new inline back ref
1803 */
1804static noinline_for_stack
87bde3cd 1805void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1806 struct btrfs_path *path,
1807 struct btrfs_extent_inline_ref *iref,
1808 u64 parent, u64 root_objectid,
1809 u64 owner, u64 offset, int refs_to_add,
1810 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1811{
1812 struct extent_buffer *leaf;
1813 struct btrfs_extent_item *ei;
1814 unsigned long ptr;
1815 unsigned long end;
1816 unsigned long item_offset;
1817 u64 refs;
1818 int size;
1819 int type;
5d4f98a2
YZ
1820
1821 leaf = path->nodes[0];
1822 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1823 item_offset = (unsigned long)iref - (unsigned long)ei;
1824
1825 type = extent_ref_type(parent, owner);
1826 size = btrfs_extent_inline_ref_size(type);
1827
87bde3cd 1828 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1829
1830 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1831 refs = btrfs_extent_refs(leaf, ei);
1832 refs += refs_to_add;
1833 btrfs_set_extent_refs(leaf, ei, refs);
1834 if (extent_op)
1835 __run_delayed_extent_op(extent_op, leaf, ei);
1836
1837 ptr = (unsigned long)ei + item_offset;
1838 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1839 if (ptr < end - size)
1840 memmove_extent_buffer(leaf, ptr + size, ptr,
1841 end - size - ptr);
1842
1843 iref = (struct btrfs_extent_inline_ref *)ptr;
1844 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1845 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1846 struct btrfs_extent_data_ref *dref;
1847 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1848 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1849 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1850 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1851 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1852 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1853 struct btrfs_shared_data_ref *sref;
1854 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1855 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1856 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1857 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1858 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1859 } else {
1860 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1861 }
1862 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1863}
1864
1865static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1866 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref **ref_ret,
1869 u64 bytenr, u64 num_bytes, u64 parent,
1870 u64 root_objectid, u64 owner, u64 offset)
1871{
1872 int ret;
1873
87bde3cd 1874 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1875 bytenr, num_bytes, parent,
1876 root_objectid, owner, offset, 0);
1877 if (ret != -ENOENT)
54aa1f4d 1878 return ret;
5d4f98a2 1879
b3b4aa74 1880 btrfs_release_path(path);
5d4f98a2
YZ
1881 *ref_ret = NULL;
1882
1883 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1884 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1885 parent, root_objectid);
5d4f98a2 1886 } else {
87bde3cd
JM
1887 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1888 parent, root_objectid, owner,
1889 offset);
b9473439 1890 }
5d4f98a2
YZ
1891 return ret;
1892}
31840ae1 1893
5d4f98a2
YZ
1894/*
1895 * helper to update/remove inline back ref
1896 */
1897static noinline_for_stack
87bde3cd 1898void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1899 struct btrfs_path *path,
1900 struct btrfs_extent_inline_ref *iref,
1901 int refs_to_mod,
fcebe456
JB
1902 struct btrfs_delayed_extent_op *extent_op,
1903 int *last_ref)
5d4f98a2
YZ
1904{
1905 struct extent_buffer *leaf;
1906 struct btrfs_extent_item *ei;
1907 struct btrfs_extent_data_ref *dref = NULL;
1908 struct btrfs_shared_data_ref *sref = NULL;
1909 unsigned long ptr;
1910 unsigned long end;
1911 u32 item_size;
1912 int size;
1913 int type;
5d4f98a2
YZ
1914 u64 refs;
1915
1916 leaf = path->nodes[0];
1917 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1918 refs = btrfs_extent_refs(leaf, ei);
1919 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1920 refs += refs_to_mod;
1921 btrfs_set_extent_refs(leaf, ei, refs);
1922 if (extent_op)
1923 __run_delayed_extent_op(extent_op, leaf, ei);
1924
3de28d57
LB
1925 /*
1926 * If type is invalid, we should have bailed out after
1927 * lookup_inline_extent_backref().
1928 */
1929 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1930 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1931
1932 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1933 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1934 refs = btrfs_extent_data_ref_count(leaf, dref);
1935 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1936 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1937 refs = btrfs_shared_data_ref_count(leaf, sref);
1938 } else {
1939 refs = 1;
1940 BUG_ON(refs_to_mod != -1);
56bec294 1941 }
31840ae1 1942
5d4f98a2
YZ
1943 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1944 refs += refs_to_mod;
1945
1946 if (refs > 0) {
1947 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1948 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1949 else
1950 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1951 } else {
fcebe456 1952 *last_ref = 1;
5d4f98a2
YZ
1953 size = btrfs_extent_inline_ref_size(type);
1954 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1955 ptr = (unsigned long)iref;
1956 end = (unsigned long)ei + item_size;
1957 if (ptr + size < end)
1958 memmove_extent_buffer(leaf, ptr, ptr + size,
1959 end - ptr - size);
1960 item_size -= size;
87bde3cd 1961 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1962 }
1963 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1964}
1965
1966static noinline_for_stack
1967int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1968 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1969 struct btrfs_path *path,
1970 u64 bytenr, u64 num_bytes, u64 parent,
1971 u64 root_objectid, u64 owner,
1972 u64 offset, int refs_to_add,
1973 struct btrfs_delayed_extent_op *extent_op)
1974{
1975 struct btrfs_extent_inline_ref *iref;
1976 int ret;
1977
87bde3cd 1978 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1979 bytenr, num_bytes, parent,
1980 root_objectid, owner, offset, 1);
1981 if (ret == 0) {
1982 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1983 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1984 refs_to_add, extent_op, NULL);
5d4f98a2 1985 } else if (ret == -ENOENT) {
87bde3cd 1986 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
1987 root_objectid, owner, offset,
1988 refs_to_add, extent_op);
1989 ret = 0;
771ed689 1990 }
5d4f98a2
YZ
1991 return ret;
1992}
31840ae1 1993
5d4f98a2 1994static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1995 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1996 struct btrfs_path *path,
1997 u64 bytenr, u64 parent, u64 root_objectid,
1998 u64 owner, u64 offset, int refs_to_add)
1999{
2000 int ret;
2001 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2002 BUG_ON(refs_to_add != 1);
87bde3cd 2003 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2004 parent, root_objectid);
2005 } else {
87bde3cd 2006 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2007 parent, root_objectid,
2008 owner, offset, refs_to_add);
2009 }
2010 return ret;
2011}
56bec294 2012
5d4f98a2 2013static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2014 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2015 struct btrfs_path *path,
2016 struct btrfs_extent_inline_ref *iref,
fcebe456 2017 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 2018{
143bede5 2019 int ret = 0;
b9473439 2020
5d4f98a2
YZ
2021 BUG_ON(!is_data && refs_to_drop != 1);
2022 if (iref) {
87bde3cd 2023 update_inline_extent_backref(fs_info, path, iref,
fcebe456 2024 -refs_to_drop, NULL, last_ref);
5d4f98a2 2025 } else if (is_data) {
87bde3cd 2026 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 2027 last_ref);
5d4f98a2 2028 } else {
fcebe456 2029 *last_ref = 1;
87bde3cd 2030 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
2031 }
2032 return ret;
2033}
2034
86557861 2035#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
2036static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2037 u64 *discarded_bytes)
5d4f98a2 2038{
86557861
JM
2039 int j, ret = 0;
2040 u64 bytes_left, end;
4d89d377 2041 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 2042
4d89d377
JM
2043 if (WARN_ON(start != aligned_start)) {
2044 len -= aligned_start - start;
2045 len = round_down(len, 1 << 9);
2046 start = aligned_start;
2047 }
d04c6b88 2048
4d89d377 2049 *discarded_bytes = 0;
86557861
JM
2050
2051 if (!len)
2052 return 0;
2053
2054 end = start + len;
2055 bytes_left = len;
2056
2057 /* Skip any superblocks on this device. */
2058 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2059 u64 sb_start = btrfs_sb_offset(j);
2060 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2061 u64 size = sb_start - start;
2062
2063 if (!in_range(sb_start, start, bytes_left) &&
2064 !in_range(sb_end, start, bytes_left) &&
2065 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2066 continue;
2067
2068 /*
2069 * Superblock spans beginning of range. Adjust start and
2070 * try again.
2071 */
2072 if (sb_start <= start) {
2073 start += sb_end - start;
2074 if (start > end) {
2075 bytes_left = 0;
2076 break;
2077 }
2078 bytes_left = end - start;
2079 continue;
2080 }
2081
2082 if (size) {
2083 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2084 GFP_NOFS, 0);
2085 if (!ret)
2086 *discarded_bytes += size;
2087 else if (ret != -EOPNOTSUPP)
2088 return ret;
2089 }
2090
2091 start = sb_end;
2092 if (start > end) {
2093 bytes_left = 0;
2094 break;
2095 }
2096 bytes_left = end - start;
2097 }
2098
2099 if (bytes_left) {
2100 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2101 GFP_NOFS, 0);
2102 if (!ret)
86557861 2103 *discarded_bytes += bytes_left;
4d89d377 2104 }
d04c6b88 2105 return ret;
5d4f98a2 2106}
5d4f98a2 2107
2ff7e61e 2108int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2109 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2110{
5d4f98a2 2111 int ret;
5378e607 2112 u64 discarded_bytes = 0;
a1d3c478 2113 struct btrfs_bio *bbio = NULL;
5d4f98a2 2114
e244a0ae 2115
2999241d
FM
2116 /*
2117 * Avoid races with device replace and make sure our bbio has devices
2118 * associated to its stripes that don't go away while we are discarding.
2119 */
0b246afa 2120 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2121 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2122 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2123 &bbio, 0);
79787eaa 2124 /* Error condition is -ENOMEM */
5d4f98a2 2125 if (!ret) {
a1d3c478 2126 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2127 int i;
2128
5d4f98a2 2129
a1d3c478 2130 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2131 u64 bytes;
38b5f68e
AJ
2132 struct request_queue *req_q;
2133
627e0873
FM
2134 if (!stripe->dev->bdev) {
2135 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2136 continue;
2137 }
38b5f68e
AJ
2138 req_q = bdev_get_queue(stripe->dev->bdev);
2139 if (!blk_queue_discard(req_q))
d5e2003c
JB
2140 continue;
2141
5378e607
LD
2142 ret = btrfs_issue_discard(stripe->dev->bdev,
2143 stripe->physical,
d04c6b88
JM
2144 stripe->length,
2145 &bytes);
5378e607 2146 if (!ret)
d04c6b88 2147 discarded_bytes += bytes;
5378e607 2148 else if (ret != -EOPNOTSUPP)
79787eaa 2149 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2150
2151 /*
2152 * Just in case we get back EOPNOTSUPP for some reason,
2153 * just ignore the return value so we don't screw up
2154 * people calling discard_extent.
2155 */
2156 ret = 0;
5d4f98a2 2157 }
6e9606d2 2158 btrfs_put_bbio(bbio);
5d4f98a2 2159 }
0b246afa 2160 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2161
2162 if (actual_bytes)
2163 *actual_bytes = discarded_bytes;
2164
5d4f98a2 2165
53b381b3
DW
2166 if (ret == -EOPNOTSUPP)
2167 ret = 0;
5d4f98a2 2168 return ret;
5d4f98a2
YZ
2169}
2170
79787eaa 2171/* Can return -ENOMEM */
5d4f98a2 2172int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2173 struct btrfs_root *root,
5d4f98a2 2174 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2175 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2176{
84f7d8e6 2177 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2178 int old_ref_mod, new_ref_mod;
5d4f98a2 2179 int ret;
66d7e7f0 2180
5d4f98a2
YZ
2181 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2182 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2183
fd708b81
JB
2184 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2185 owner, offset, BTRFS_ADD_DELAYED_REF);
2186
5d4f98a2 2187 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 2188 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
2189 num_bytes, parent,
2190 root_objectid, (int)owner,
2191 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2192 &old_ref_mod, &new_ref_mod);
5d4f98a2 2193 } else {
66d7e7f0 2194 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
2195 num_bytes, parent,
2196 root_objectid, owner, offset,
d7eae340
OS
2197 0, BTRFS_ADD_DELAYED_REF,
2198 &old_ref_mod, &new_ref_mod);
5d4f98a2 2199 }
d7eae340 2200
29d2b84c
NB
2201 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2202 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2203
2204 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2205 }
d7eae340 2206
5d4f98a2
YZ
2207 return ret;
2208}
2209
2210static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2211 struct btrfs_fs_info *fs_info,
c682f9b3 2212 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2213 u64 parent, u64 root_objectid,
2214 u64 owner, u64 offset, int refs_to_add,
2215 struct btrfs_delayed_extent_op *extent_op)
2216{
2217 struct btrfs_path *path;
2218 struct extent_buffer *leaf;
2219 struct btrfs_extent_item *item;
fcebe456 2220 struct btrfs_key key;
c682f9b3
QW
2221 u64 bytenr = node->bytenr;
2222 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2223 u64 refs;
2224 int ret;
5d4f98a2
YZ
2225
2226 path = btrfs_alloc_path();
2227 if (!path)
2228 return -ENOMEM;
2229
e4058b54 2230 path->reada = READA_FORWARD;
5d4f98a2
YZ
2231 path->leave_spinning = 1;
2232 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2233 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2234 num_bytes, parent, root_objectid,
2235 owner, offset,
5d4f98a2 2236 refs_to_add, extent_op);
0ed4792a 2237 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2238 goto out;
fcebe456
JB
2239
2240 /*
2241 * Ok we had -EAGAIN which means we didn't have space to insert and
2242 * inline extent ref, so just update the reference count and add a
2243 * normal backref.
2244 */
5d4f98a2 2245 leaf = path->nodes[0];
fcebe456 2246 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2247 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2248 refs = btrfs_extent_refs(leaf, item);
2249 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2250 if (extent_op)
2251 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2252
5d4f98a2 2253 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2254 btrfs_release_path(path);
56bec294 2255
e4058b54 2256 path->reada = READA_FORWARD;
b9473439 2257 path->leave_spinning = 1;
56bec294 2258 /* now insert the actual backref */
87bde3cd
JM
2259 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2260 root_objectid, owner, offset, refs_to_add);
79787eaa 2261 if (ret)
66642832 2262 btrfs_abort_transaction(trans, ret);
5d4f98a2 2263out:
56bec294 2264 btrfs_free_path(path);
30d133fc 2265 return ret;
56bec294
CM
2266}
2267
5d4f98a2 2268static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2269 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2270 struct btrfs_delayed_ref_node *node,
2271 struct btrfs_delayed_extent_op *extent_op,
2272 int insert_reserved)
56bec294 2273{
5d4f98a2
YZ
2274 int ret = 0;
2275 struct btrfs_delayed_data_ref *ref;
2276 struct btrfs_key ins;
2277 u64 parent = 0;
2278 u64 ref_root = 0;
2279 u64 flags = 0;
2280
2281 ins.objectid = node->bytenr;
2282 ins.offset = node->num_bytes;
2283 ins.type = BTRFS_EXTENT_ITEM_KEY;
2284
2285 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2286 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2287
5d4f98a2
YZ
2288 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2289 parent = ref->parent;
fcebe456 2290 ref_root = ref->root;
5d4f98a2
YZ
2291
2292 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2293 if (extent_op)
5d4f98a2 2294 flags |= extent_op->flags_to_set;
2ff7e61e 2295 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2296 parent, ref_root, flags,
2297 ref->objectid, ref->offset,
2298 &ins, node->ref_mod);
5d4f98a2 2299 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2300 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2301 ref_root, ref->objectid,
2302 ref->offset, node->ref_mod,
c682f9b3 2303 extent_op);
5d4f98a2 2304 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2305 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2306 ref_root, ref->objectid,
2307 ref->offset, node->ref_mod,
c682f9b3 2308 extent_op);
5d4f98a2
YZ
2309 } else {
2310 BUG();
2311 }
2312 return ret;
2313}
2314
2315static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2316 struct extent_buffer *leaf,
2317 struct btrfs_extent_item *ei)
2318{
2319 u64 flags = btrfs_extent_flags(leaf, ei);
2320 if (extent_op->update_flags) {
2321 flags |= extent_op->flags_to_set;
2322 btrfs_set_extent_flags(leaf, ei, flags);
2323 }
2324
2325 if (extent_op->update_key) {
2326 struct btrfs_tree_block_info *bi;
2327 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2328 bi = (struct btrfs_tree_block_info *)(ei + 1);
2329 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2330 }
2331}
2332
2333static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2334 struct btrfs_fs_info *fs_info,
d278850e 2335 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2336 struct btrfs_delayed_extent_op *extent_op)
2337{
2338 struct btrfs_key key;
2339 struct btrfs_path *path;
2340 struct btrfs_extent_item *ei;
2341 struct extent_buffer *leaf;
2342 u32 item_size;
56bec294 2343 int ret;
5d4f98a2 2344 int err = 0;
b1c79e09 2345 int metadata = !extent_op->is_data;
5d4f98a2 2346
79787eaa
JM
2347 if (trans->aborted)
2348 return 0;
2349
0b246afa 2350 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2351 metadata = 0;
2352
5d4f98a2
YZ
2353 path = btrfs_alloc_path();
2354 if (!path)
2355 return -ENOMEM;
2356
d278850e 2357 key.objectid = head->bytenr;
5d4f98a2 2358
3173a18f 2359 if (metadata) {
3173a18f 2360 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2361 key.offset = extent_op->level;
3173a18f
JB
2362 } else {
2363 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2364 key.offset = head->num_bytes;
3173a18f
JB
2365 }
2366
2367again:
e4058b54 2368 path->reada = READA_FORWARD;
5d4f98a2 2369 path->leave_spinning = 1;
0b246afa 2370 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2371 if (ret < 0) {
2372 err = ret;
2373 goto out;
2374 }
2375 if (ret > 0) {
3173a18f 2376 if (metadata) {
55994887
FDBM
2377 if (path->slots[0] > 0) {
2378 path->slots[0]--;
2379 btrfs_item_key_to_cpu(path->nodes[0], &key,
2380 path->slots[0]);
d278850e 2381 if (key.objectid == head->bytenr &&
55994887 2382 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2383 key.offset == head->num_bytes)
55994887
FDBM
2384 ret = 0;
2385 }
2386 if (ret > 0) {
2387 btrfs_release_path(path);
2388 metadata = 0;
3173a18f 2389
d278850e
JB
2390 key.objectid = head->bytenr;
2391 key.offset = head->num_bytes;
55994887
FDBM
2392 key.type = BTRFS_EXTENT_ITEM_KEY;
2393 goto again;
2394 }
2395 } else {
2396 err = -EIO;
2397 goto out;
3173a18f 2398 }
5d4f98a2
YZ
2399 }
2400
2401 leaf = path->nodes[0];
2402 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2403#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2404 if (item_size < sizeof(*ei)) {
87bde3cd 2405 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2406 if (ret < 0) {
2407 err = ret;
2408 goto out;
2409 }
2410 leaf = path->nodes[0];
2411 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2412 }
2413#endif
2414 BUG_ON(item_size < sizeof(*ei));
2415 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2416 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2417
5d4f98a2
YZ
2418 btrfs_mark_buffer_dirty(leaf);
2419out:
2420 btrfs_free_path(path);
2421 return err;
56bec294
CM
2422}
2423
5d4f98a2 2424static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2425 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2426 struct btrfs_delayed_ref_node *node,
2427 struct btrfs_delayed_extent_op *extent_op,
2428 int insert_reserved)
56bec294
CM
2429{
2430 int ret = 0;
5d4f98a2 2431 struct btrfs_delayed_tree_ref *ref;
5d4f98a2
YZ
2432 u64 parent = 0;
2433 u64 ref_root = 0;
56bec294 2434
5d4f98a2 2435 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2436 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2437
5d4f98a2
YZ
2438 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2439 parent = ref->parent;
fcebe456 2440 ref_root = ref->root;
5d4f98a2 2441
02794222 2442 if (node->ref_mod != 1) {
2ff7e61e 2443 btrfs_err(fs_info,
02794222
LB
2444 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2445 node->bytenr, node->ref_mod, node->action, ref_root,
2446 parent);
2447 return -EIO;
2448 }
5d4f98a2 2449 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2450 BUG_ON(!extent_op || !extent_op->update_flags);
21ebfbe7 2451 ret = alloc_reserved_tree_block(trans, node, extent_op);
5d4f98a2 2452 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2453 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2454 parent, ref_root,
2455 ref->level, 0, 1,
fcebe456 2456 extent_op);
5d4f98a2 2457 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2458 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2459 parent, ref_root,
2460 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2461 } else {
2462 BUG();
2463 }
56bec294
CM
2464 return ret;
2465}
2466
2467/* helper function to actually process a single delayed ref entry */
5d4f98a2 2468static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2469 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2470 struct btrfs_delayed_ref_node *node,
2471 struct btrfs_delayed_extent_op *extent_op,
2472 int insert_reserved)
56bec294 2473{
79787eaa
JM
2474 int ret = 0;
2475
857cc2fc
JB
2476 if (trans->aborted) {
2477 if (insert_reserved)
2ff7e61e 2478 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2479 node->num_bytes, 1);
79787eaa 2480 return 0;
857cc2fc 2481 }
79787eaa 2482
5d4f98a2
YZ
2483 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2484 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2485 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2486 insert_reserved);
2487 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2488 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2489 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2490 insert_reserved);
2491 else
2492 BUG();
2493 return ret;
56bec294
CM
2494}
2495
c6fc2454 2496static inline struct btrfs_delayed_ref_node *
56bec294
CM
2497select_delayed_ref(struct btrfs_delayed_ref_head *head)
2498{
cffc3374
FM
2499 struct btrfs_delayed_ref_node *ref;
2500
0e0adbcf 2501 if (RB_EMPTY_ROOT(&head->ref_tree))
c6fc2454 2502 return NULL;
d7df2c79 2503
cffc3374
FM
2504 /*
2505 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2506 * This is to prevent a ref count from going down to zero, which deletes
2507 * the extent item from the extent tree, when there still are references
2508 * to add, which would fail because they would not find the extent item.
2509 */
1d57ee94
WX
2510 if (!list_empty(&head->ref_add_list))
2511 return list_first_entry(&head->ref_add_list,
2512 struct btrfs_delayed_ref_node, add_list);
2513
0e0adbcf
JB
2514 ref = rb_entry(rb_first(&head->ref_tree),
2515 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2516 ASSERT(list_empty(&ref->add_list));
2517 return ref;
56bec294
CM
2518}
2519
2eadaa22
JB
2520static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2521 struct btrfs_delayed_ref_head *head)
2522{
2523 spin_lock(&delayed_refs->lock);
2524 head->processing = 0;
2525 delayed_refs->num_heads_ready++;
2526 spin_unlock(&delayed_refs->lock);
2527 btrfs_delayed_ref_unlock(head);
2528}
2529
b00e6250
JB
2530static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2531 struct btrfs_fs_info *fs_info,
2532 struct btrfs_delayed_ref_head *head)
2533{
2534 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2535 int ret;
2536
2537 if (!extent_op)
2538 return 0;
2539 head->extent_op = NULL;
2540 if (head->must_insert_reserved) {
2541 btrfs_free_delayed_extent_op(extent_op);
2542 return 0;
2543 }
2544 spin_unlock(&head->lock);
d278850e 2545 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
b00e6250
JB
2546 btrfs_free_delayed_extent_op(extent_op);
2547 return ret ? ret : 1;
2548}
2549
194ab0bc
JB
2550static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2551 struct btrfs_fs_info *fs_info,
2552 struct btrfs_delayed_ref_head *head)
2553{
2554 struct btrfs_delayed_ref_root *delayed_refs;
2555 int ret;
2556
2557 delayed_refs = &trans->transaction->delayed_refs;
2558
2559 ret = cleanup_extent_op(trans, fs_info, head);
2560 if (ret < 0) {
2561 unselect_delayed_ref_head(delayed_refs, head);
2562 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2563 return ret;
2564 } else if (ret) {
2565 return ret;
2566 }
2567
2568 /*
2569 * Need to drop our head ref lock and re-acquire the delayed ref lock
2570 * and then re-check to make sure nobody got added.
2571 */
2572 spin_unlock(&head->lock);
2573 spin_lock(&delayed_refs->lock);
2574 spin_lock(&head->lock);
0e0adbcf 2575 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
194ab0bc
JB
2576 spin_unlock(&head->lock);
2577 spin_unlock(&delayed_refs->lock);
2578 return 1;
2579 }
194ab0bc
JB
2580 delayed_refs->num_heads--;
2581 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 2582 RB_CLEAR_NODE(&head->href_node);
c1103f7a 2583 spin_unlock(&head->lock);
1e7a1421 2584 spin_unlock(&delayed_refs->lock);
c1103f7a
JB
2585 atomic_dec(&delayed_refs->num_entries);
2586
d278850e 2587 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a
JB
2588
2589 if (head->total_ref_mod < 0) {
5e388e95
NB
2590 struct btrfs_space_info *space_info;
2591 u64 flags;
c1103f7a 2592
5e388e95
NB
2593 if (head->is_data)
2594 flags = BTRFS_BLOCK_GROUP_DATA;
2595 else if (head->is_system)
2596 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2597 else
2598 flags = BTRFS_BLOCK_GROUP_METADATA;
2599 space_info = __find_space_info(fs_info, flags);
2600 ASSERT(space_info);
2601 percpu_counter_add(&space_info->total_bytes_pinned,
d278850e 2602 -head->num_bytes);
c1103f7a
JB
2603
2604 if (head->is_data) {
2605 spin_lock(&delayed_refs->lock);
d278850e 2606 delayed_refs->pending_csums -= head->num_bytes;
c1103f7a
JB
2607 spin_unlock(&delayed_refs->lock);
2608 }
2609 }
2610
2611 if (head->must_insert_reserved) {
d278850e
JB
2612 btrfs_pin_extent(fs_info, head->bytenr,
2613 head->num_bytes, 1);
c1103f7a 2614 if (head->is_data) {
d278850e
JB
2615 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2616 head->num_bytes);
c1103f7a
JB
2617 }
2618 }
2619
2620 /* Also free its reserved qgroup space */
2621 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2622 head->qgroup_reserved);
2623 btrfs_delayed_ref_unlock(head);
d278850e 2624 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2625 return 0;
2626}
2627
79787eaa
JM
2628/*
2629 * Returns 0 on success or if called with an already aborted transaction.
2630 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2631 */
d7df2c79 2632static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2633 unsigned long nr)
56bec294 2634{
0a1e458a 2635 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294
CM
2636 struct btrfs_delayed_ref_root *delayed_refs;
2637 struct btrfs_delayed_ref_node *ref;
2638 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2639 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2640 ktime_t start = ktime_get();
56bec294 2641 int ret;
d7df2c79 2642 unsigned long count = 0;
0a2b2a84 2643 unsigned long actual_count = 0;
56bec294 2644 int must_insert_reserved = 0;
56bec294
CM
2645
2646 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2647 while (1) {
2648 if (!locked_ref) {
d7df2c79 2649 if (count >= nr)
56bec294 2650 break;
56bec294 2651
d7df2c79
JB
2652 spin_lock(&delayed_refs->lock);
2653 locked_ref = btrfs_select_ref_head(trans);
2654 if (!locked_ref) {
2655 spin_unlock(&delayed_refs->lock);
2656 break;
2657 }
c3e69d58
CM
2658
2659 /* grab the lock that says we are going to process
2660 * all the refs for this head */
2661 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2662 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2663 /*
2664 * we may have dropped the spin lock to get the head
2665 * mutex lock, and that might have given someone else
2666 * time to free the head. If that's true, it has been
2667 * removed from our list and we can move on.
2668 */
2669 if (ret == -EAGAIN) {
2670 locked_ref = NULL;
2671 count++;
2672 continue;
56bec294
CM
2673 }
2674 }
a28ec197 2675
2c3cf7d5
FM
2676 /*
2677 * We need to try and merge add/drops of the same ref since we
2678 * can run into issues with relocate dropping the implicit ref
2679 * and then it being added back again before the drop can
2680 * finish. If we merged anything we need to re-loop so we can
2681 * get a good ref.
2682 * Or we can get node references of the same type that weren't
2683 * merged when created due to bumps in the tree mod seq, and
2684 * we need to merge them to prevent adding an inline extent
2685 * backref before dropping it (triggering a BUG_ON at
2686 * insert_inline_extent_backref()).
2687 */
d7df2c79 2688 spin_lock(&locked_ref->lock);
be97f133 2689 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
ae1e206b 2690
d1270cd9
AJ
2691 ref = select_delayed_ref(locked_ref);
2692
2693 if (ref && ref->seq &&
41d0bd3b 2694 btrfs_check_delayed_seq(fs_info, ref->seq)) {
d7df2c79 2695 spin_unlock(&locked_ref->lock);
2eadaa22 2696 unselect_delayed_ref_head(delayed_refs, locked_ref);
d7df2c79 2697 locked_ref = NULL;
d1270cd9 2698 cond_resched();
27a377db 2699 count++;
d1270cd9
AJ
2700 continue;
2701 }
2702
c1103f7a
JB
2703 /*
2704 * We're done processing refs in this ref_head, clean everything
2705 * up and move on to the next ref_head.
2706 */
56bec294 2707 if (!ref) {
194ab0bc
JB
2708 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2709 if (ret > 0 ) {
b00e6250
JB
2710 /* We dropped our lock, we need to loop. */
2711 ret = 0;
d7df2c79 2712 continue;
194ab0bc
JB
2713 } else if (ret) {
2714 return ret;
5d4f98a2 2715 }
c1103f7a
JB
2716 locked_ref = NULL;
2717 count++;
2718 continue;
2719 }
02217ed2 2720
c1103f7a
JB
2721 actual_count++;
2722 ref->in_tree = 0;
0e0adbcf
JB
2723 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2724 RB_CLEAR_NODE(&ref->ref_node);
c1103f7a
JB
2725 if (!list_empty(&ref->add_list))
2726 list_del(&ref->add_list);
2727 /*
2728 * When we play the delayed ref, also correct the ref_mod on
2729 * head
2730 */
2731 switch (ref->action) {
2732 case BTRFS_ADD_DELAYED_REF:
2733 case BTRFS_ADD_DELAYED_EXTENT:
d278850e 2734 locked_ref->ref_mod -= ref->ref_mod;
c1103f7a
JB
2735 break;
2736 case BTRFS_DROP_DELAYED_REF:
d278850e 2737 locked_ref->ref_mod += ref->ref_mod;
c1103f7a
JB
2738 break;
2739 default:
2740 WARN_ON(1);
22cd2e7d 2741 }
1ce7a5ec
JB
2742 atomic_dec(&delayed_refs->num_entries);
2743
b00e6250
JB
2744 /*
2745 * Record the must-insert_reserved flag before we drop the spin
2746 * lock.
2747 */
2748 must_insert_reserved = locked_ref->must_insert_reserved;
2749 locked_ref->must_insert_reserved = 0;
2750
2751 extent_op = locked_ref->extent_op;
2752 locked_ref->extent_op = NULL;
d7df2c79 2753 spin_unlock(&locked_ref->lock);
925baedd 2754
2ff7e61e 2755 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2756 must_insert_reserved);
eb099670 2757
78a6184a 2758 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2759 if (ret) {
2eadaa22 2760 unselect_delayed_ref_head(delayed_refs, locked_ref);
093486c4 2761 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2762 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2763 ret);
79787eaa
JM
2764 return ret;
2765 }
2766
093486c4
MX
2767 btrfs_put_delayed_ref(ref);
2768 count++;
c3e69d58 2769 cond_resched();
c3e69d58 2770 }
0a2b2a84
JB
2771
2772 /*
2773 * We don't want to include ref heads since we can have empty ref heads
2774 * and those will drastically skew our runtime down since we just do
2775 * accounting, no actual extent tree updates.
2776 */
2777 if (actual_count > 0) {
2778 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2779 u64 avg;
2780
2781 /*
2782 * We weigh the current average higher than our current runtime
2783 * to avoid large swings in the average.
2784 */
2785 spin_lock(&delayed_refs->lock);
2786 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2787 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2788 spin_unlock(&delayed_refs->lock);
2789 }
d7df2c79 2790 return 0;
c3e69d58
CM
2791}
2792
709c0486
AJ
2793#ifdef SCRAMBLE_DELAYED_REFS
2794/*
2795 * Normally delayed refs get processed in ascending bytenr order. This
2796 * correlates in most cases to the order added. To expose dependencies on this
2797 * order, we start to process the tree in the middle instead of the beginning
2798 */
2799static u64 find_middle(struct rb_root *root)
2800{
2801 struct rb_node *n = root->rb_node;
2802 struct btrfs_delayed_ref_node *entry;
2803 int alt = 1;
2804 u64 middle;
2805 u64 first = 0, last = 0;
2806
2807 n = rb_first(root);
2808 if (n) {
2809 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2810 first = entry->bytenr;
2811 }
2812 n = rb_last(root);
2813 if (n) {
2814 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2815 last = entry->bytenr;
2816 }
2817 n = root->rb_node;
2818
2819 while (n) {
2820 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2821 WARN_ON(!entry->in_tree);
2822
2823 middle = entry->bytenr;
2824
2825 if (alt)
2826 n = n->rb_left;
2827 else
2828 n = n->rb_right;
2829
2830 alt = 1 - alt;
2831 }
2832 return middle;
2833}
2834#endif
2835
2ff7e61e 2836static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2837{
2838 u64 num_bytes;
2839
2840 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2841 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2842 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2843 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2844
2845 /*
2846 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2847 * closer to what we're really going to want to use.
1be41b78 2848 */
0b246afa 2849 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2850}
2851
1262133b
JB
2852/*
2853 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2854 * would require to store the csums for that many bytes.
2855 */
2ff7e61e 2856u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2857{
2858 u64 csum_size;
2859 u64 num_csums_per_leaf;
2860 u64 num_csums;
2861
0b246afa 2862 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2863 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2864 (u64)btrfs_super_csum_size(fs_info->super_copy));
2865 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2866 num_csums += num_csums_per_leaf - 1;
2867 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2868 return num_csums;
2869}
2870
0a2b2a84 2871int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2872 struct btrfs_fs_info *fs_info)
1be41b78
JB
2873{
2874 struct btrfs_block_rsv *global_rsv;
2875 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2876 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
165c8b02 2877 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
cb723e49 2878 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2879 int ret = 0;
2880
0b246afa 2881 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2882 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2883 if (num_heads > 1)
0b246afa 2884 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2885 num_bytes <<= 1;
2ff7e61e
JM
2886 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2887 fs_info->nodesize;
0b246afa 2888 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2889 num_dirty_bgs);
0b246afa 2890 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2891
2892 /*
2893 * If we can't allocate any more chunks lets make sure we have _lots_ of
2894 * wiggle room since running delayed refs can create more delayed refs.
2895 */
cb723e49
JB
2896 if (global_rsv->space_info->full) {
2897 num_dirty_bgs_bytes <<= 1;
1be41b78 2898 num_bytes <<= 1;
cb723e49 2899 }
1be41b78
JB
2900
2901 spin_lock(&global_rsv->lock);
cb723e49 2902 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2903 ret = 1;
2904 spin_unlock(&global_rsv->lock);
2905 return ret;
2906}
2907
0a2b2a84 2908int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2909 struct btrfs_fs_info *fs_info)
0a2b2a84 2910{
0a2b2a84
JB
2911 u64 num_entries =
2912 atomic_read(&trans->transaction->delayed_refs.num_entries);
2913 u64 avg_runtime;
a79b7d4b 2914 u64 val;
0a2b2a84
JB
2915
2916 smp_mb();
2917 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2918 val = num_entries * avg_runtime;
dc1a90c6 2919 if (val >= NSEC_PER_SEC)
0a2b2a84 2920 return 1;
a79b7d4b
CM
2921 if (val >= NSEC_PER_SEC / 2)
2922 return 2;
0a2b2a84 2923
2ff7e61e 2924 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2925}
2926
a79b7d4b
CM
2927struct async_delayed_refs {
2928 struct btrfs_root *root;
31b9655f 2929 u64 transid;
a79b7d4b
CM
2930 int count;
2931 int error;
2932 int sync;
2933 struct completion wait;
2934 struct btrfs_work work;
2935};
2936
2ff7e61e
JM
2937static inline struct async_delayed_refs *
2938to_async_delayed_refs(struct btrfs_work *work)
2939{
2940 return container_of(work, struct async_delayed_refs, work);
2941}
2942
a79b7d4b
CM
2943static void delayed_ref_async_start(struct btrfs_work *work)
2944{
2ff7e61e 2945 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2946 struct btrfs_trans_handle *trans;
2ff7e61e 2947 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2948 int ret;
2949
0f873eca 2950 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2951 if (btrfs_transaction_blocked(fs_info))
31b9655f 2952 goto done;
31b9655f 2953
0f873eca
CM
2954 trans = btrfs_join_transaction(async->root);
2955 if (IS_ERR(trans)) {
2956 async->error = PTR_ERR(trans);
a79b7d4b
CM
2957 goto done;
2958 }
2959
2960 /*
01327610 2961 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2962 * wait on delayed refs
2963 */
2964 trans->sync = true;
0f873eca
CM
2965
2966 /* Don't bother flushing if we got into a different transaction */
2967 if (trans->transid > async->transid)
2968 goto end;
2969
c79a70b1 2970 ret = btrfs_run_delayed_refs(trans, async->count);
a79b7d4b
CM
2971 if (ret)
2972 async->error = ret;
0f873eca 2973end:
3a45bb20 2974 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2975 if (ret && !async->error)
2976 async->error = ret;
2977done:
2978 if (async->sync)
2979 complete(&async->wait);
2980 else
2981 kfree(async);
2982}
2983
2ff7e61e 2984int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2985 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2986{
2987 struct async_delayed_refs *async;
2988 int ret;
2989
2990 async = kmalloc(sizeof(*async), GFP_NOFS);
2991 if (!async)
2992 return -ENOMEM;
2993
0b246afa 2994 async->root = fs_info->tree_root;
a79b7d4b
CM
2995 async->count = count;
2996 async->error = 0;
31b9655f 2997 async->transid = transid;
a79b7d4b
CM
2998 if (wait)
2999 async->sync = 1;
3000 else
3001 async->sync = 0;
3002 init_completion(&async->wait);
3003
9e0af237
LB
3004 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3005 delayed_ref_async_start, NULL, NULL);
a79b7d4b 3006
0b246afa 3007 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
3008
3009 if (wait) {
3010 wait_for_completion(&async->wait);
3011 ret = async->error;
3012 kfree(async);
3013 return ret;
3014 }
3015 return 0;
3016}
3017
c3e69d58
CM
3018/*
3019 * this starts processing the delayed reference count updates and
3020 * extent insertions we have queued up so far. count can be
3021 * 0, which means to process everything in the tree at the start
3022 * of the run (but not newly added entries), or it can be some target
3023 * number you'd like to process.
79787eaa
JM
3024 *
3025 * Returns 0 on success or if called with an aborted transaction
3026 * Returns <0 on error and aborts the transaction
c3e69d58
CM
3027 */
3028int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 3029 unsigned long count)
c3e69d58 3030{
c79a70b1 3031 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
3032 struct rb_node *node;
3033 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 3034 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
3035 int ret;
3036 int run_all = count == (unsigned long)-1;
d9a0540a 3037 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 3038
79787eaa
JM
3039 /* We'll clean this up in btrfs_cleanup_transaction */
3040 if (trans->aborted)
3041 return 0;
3042
0b246afa 3043 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
3044 return 0;
3045
c3e69d58 3046 delayed_refs = &trans->transaction->delayed_refs;
26455d33 3047 if (count == 0)
d7df2c79 3048 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3049
c3e69d58 3050again:
709c0486
AJ
3051#ifdef SCRAMBLE_DELAYED_REFS
3052 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3053#endif
d9a0540a 3054 trans->can_flush_pending_bgs = false;
0a1e458a 3055 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 3056 if (ret < 0) {
66642832 3057 btrfs_abort_transaction(trans, ret);
d7df2c79 3058 return ret;
eb099670 3059 }
c3e69d58 3060
56bec294 3061 if (run_all) {
d7df2c79 3062 if (!list_empty(&trans->new_bgs))
6c686b35 3063 btrfs_create_pending_block_groups(trans);
ea658bad 3064
d7df2c79 3065 spin_lock(&delayed_refs->lock);
c46effa6 3066 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
3067 if (!node) {
3068 spin_unlock(&delayed_refs->lock);
56bec294 3069 goto out;
d7df2c79 3070 }
d278850e
JB
3071 head = rb_entry(node, struct btrfs_delayed_ref_head,
3072 href_node);
3073 refcount_inc(&head->refs);
3074 spin_unlock(&delayed_refs->lock);
e9d0b13b 3075
d278850e
JB
3076 /* Mutex was contended, block until it's released and retry. */
3077 mutex_lock(&head->mutex);
3078 mutex_unlock(&head->mutex);
56bec294 3079
d278850e 3080 btrfs_put_delayed_ref_head(head);
d7df2c79 3081 cond_resched();
56bec294 3082 goto again;
5f39d397 3083 }
54aa1f4d 3084out:
d9a0540a 3085 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3086 return 0;
3087}
3088
5d4f98a2 3089int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3090 struct btrfs_fs_info *fs_info,
5d4f98a2 3091 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3092 int level, int is_data)
5d4f98a2
YZ
3093{
3094 struct btrfs_delayed_extent_op *extent_op;
3095 int ret;
3096
78a6184a 3097 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3098 if (!extent_op)
3099 return -ENOMEM;
3100
3101 extent_op->flags_to_set = flags;
35b3ad50
DS
3102 extent_op->update_flags = true;
3103 extent_op->update_key = false;
3104 extent_op->is_data = is_data ? true : false;
b1c79e09 3105 extent_op->level = level;
5d4f98a2 3106
0b246afa 3107 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3108 num_bytes, extent_op);
5d4f98a2 3109 if (ret)
78a6184a 3110 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3111 return ret;
3112}
3113
e4c3b2dc 3114static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3115 struct btrfs_path *path,
3116 u64 objectid, u64 offset, u64 bytenr)
3117{
3118 struct btrfs_delayed_ref_head *head;
3119 struct btrfs_delayed_ref_node *ref;
3120 struct btrfs_delayed_data_ref *data_ref;
3121 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3122 struct btrfs_transaction *cur_trans;
0e0adbcf 3123 struct rb_node *node;
5d4f98a2
YZ
3124 int ret = 0;
3125
998ac6d2 3126 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 3127 cur_trans = root->fs_info->running_transaction;
998ac6d2 3128 if (cur_trans)
3129 refcount_inc(&cur_trans->use_count);
3130 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
3131 if (!cur_trans)
3132 return 0;
3133
3134 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3135 spin_lock(&delayed_refs->lock);
f72ad18e 3136 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3137 if (!head) {
3138 spin_unlock(&delayed_refs->lock);
998ac6d2 3139 btrfs_put_transaction(cur_trans);
d7df2c79
JB
3140 return 0;
3141 }
5d4f98a2
YZ
3142
3143 if (!mutex_trylock(&head->mutex)) {
d278850e 3144 refcount_inc(&head->refs);
5d4f98a2
YZ
3145 spin_unlock(&delayed_refs->lock);
3146
b3b4aa74 3147 btrfs_release_path(path);
5d4f98a2 3148
8cc33e5c
DS
3149 /*
3150 * Mutex was contended, block until it's released and let
3151 * caller try again
3152 */
5d4f98a2
YZ
3153 mutex_lock(&head->mutex);
3154 mutex_unlock(&head->mutex);
d278850e 3155 btrfs_put_delayed_ref_head(head);
998ac6d2 3156 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3157 return -EAGAIN;
3158 }
d7df2c79 3159 spin_unlock(&delayed_refs->lock);
5d4f98a2 3160
d7df2c79 3161 spin_lock(&head->lock);
0e0adbcf
JB
3162 /*
3163 * XXX: We should replace this with a proper search function in the
3164 * future.
3165 */
3166 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3167 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3168 /* If it's a shared ref we know a cross reference exists */
3169 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3170 ret = 1;
3171 break;
3172 }
5d4f98a2 3173
d7df2c79 3174 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3175
d7df2c79
JB
3176 /*
3177 * If our ref doesn't match the one we're currently looking at
3178 * then we have a cross reference.
3179 */
3180 if (data_ref->root != root->root_key.objectid ||
3181 data_ref->objectid != objectid ||
3182 data_ref->offset != offset) {
3183 ret = 1;
3184 break;
3185 }
5d4f98a2 3186 }
d7df2c79 3187 spin_unlock(&head->lock);
5d4f98a2 3188 mutex_unlock(&head->mutex);
998ac6d2 3189 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3190 return ret;
3191}
3192
e4c3b2dc 3193static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3194 struct btrfs_path *path,
3195 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3196{
0b246afa
JM
3197 struct btrfs_fs_info *fs_info = root->fs_info;
3198 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3199 struct extent_buffer *leaf;
5d4f98a2
YZ
3200 struct btrfs_extent_data_ref *ref;
3201 struct btrfs_extent_inline_ref *iref;
3202 struct btrfs_extent_item *ei;
f321e491 3203 struct btrfs_key key;
5d4f98a2 3204 u32 item_size;
3de28d57 3205 int type;
be20aa9d 3206 int ret;
925baedd 3207
be20aa9d 3208 key.objectid = bytenr;
31840ae1 3209 key.offset = (u64)-1;
f321e491 3210 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3211
be20aa9d
CM
3212 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3213 if (ret < 0)
3214 goto out;
79787eaa 3215 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3216
3217 ret = -ENOENT;
3218 if (path->slots[0] == 0)
31840ae1 3219 goto out;
be20aa9d 3220
31840ae1 3221 path->slots[0]--;
f321e491 3222 leaf = path->nodes[0];
5d4f98a2 3223 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3224
5d4f98a2 3225 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3226 goto out;
f321e491 3227
5d4f98a2
YZ
3228 ret = 1;
3229 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3230#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3231 if (item_size < sizeof(*ei)) {
3232 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3233 goto out;
3234 }
3235#endif
3236 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3237
5d4f98a2
YZ
3238 if (item_size != sizeof(*ei) +
3239 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3240 goto out;
be20aa9d 3241
5d4f98a2
YZ
3242 if (btrfs_extent_generation(leaf, ei) <=
3243 btrfs_root_last_snapshot(&root->root_item))
3244 goto out;
3245
3246 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3247
3248 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3249 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3250 goto out;
3251
3252 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3253 if (btrfs_extent_refs(leaf, ei) !=
3254 btrfs_extent_data_ref_count(leaf, ref) ||
3255 btrfs_extent_data_ref_root(leaf, ref) !=
3256 root->root_key.objectid ||
3257 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3258 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3259 goto out;
3260
3261 ret = 0;
3262out:
3263 return ret;
3264}
3265
e4c3b2dc
LB
3266int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3267 u64 bytenr)
5d4f98a2
YZ
3268{
3269 struct btrfs_path *path;
3270 int ret;
3271 int ret2;
3272
3273 path = btrfs_alloc_path();
3274 if (!path)
3275 return -ENOENT;
3276
3277 do {
e4c3b2dc 3278 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3279 offset, bytenr);
3280 if (ret && ret != -ENOENT)
f321e491 3281 goto out;
80ff3856 3282
e4c3b2dc 3283 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3284 offset, bytenr);
3285 } while (ret2 == -EAGAIN);
3286
3287 if (ret2 && ret2 != -ENOENT) {
3288 ret = ret2;
3289 goto out;
f321e491 3290 }
5d4f98a2
YZ
3291
3292 if (ret != -ENOENT || ret2 != -ENOENT)
3293 ret = 0;
be20aa9d 3294out:
80ff3856 3295 btrfs_free_path(path);
f0486c68
YZ
3296 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3297 WARN_ON(ret > 0);
f321e491 3298 return ret;
be20aa9d 3299}
c5739bba 3300
5d4f98a2 3301static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3302 struct btrfs_root *root,
5d4f98a2 3303 struct extent_buffer *buf,
e339a6b0 3304 int full_backref, int inc)
31840ae1 3305{
0b246afa 3306 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3307 u64 bytenr;
5d4f98a2
YZ
3308 u64 num_bytes;
3309 u64 parent;
31840ae1 3310 u64 ref_root;
31840ae1 3311 u32 nritems;
31840ae1
ZY
3312 struct btrfs_key key;
3313 struct btrfs_file_extent_item *fi;
3314 int i;
3315 int level;
3316 int ret = 0;
2ff7e61e 3317 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3318 struct btrfs_root *,
b06c4bf5 3319 u64, u64, u64, u64, u64, u64);
31840ae1 3320
fccb84c9 3321
0b246afa 3322 if (btrfs_is_testing(fs_info))
faa2dbf0 3323 return 0;
fccb84c9 3324
31840ae1 3325 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3326 nritems = btrfs_header_nritems(buf);
3327 level = btrfs_header_level(buf);
3328
27cdeb70 3329 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3330 return 0;
31840ae1 3331
5d4f98a2
YZ
3332 if (inc)
3333 process_func = btrfs_inc_extent_ref;
3334 else
3335 process_func = btrfs_free_extent;
31840ae1 3336
5d4f98a2
YZ
3337 if (full_backref)
3338 parent = buf->start;
3339 else
3340 parent = 0;
3341
3342 for (i = 0; i < nritems; i++) {
31840ae1 3343 if (level == 0) {
5d4f98a2 3344 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3345 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3346 continue;
5d4f98a2 3347 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3348 struct btrfs_file_extent_item);
3349 if (btrfs_file_extent_type(buf, fi) ==
3350 BTRFS_FILE_EXTENT_INLINE)
3351 continue;
3352 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3353 if (bytenr == 0)
3354 continue;
5d4f98a2
YZ
3355
3356 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3357 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3358 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3359 parent, ref_root, key.objectid,
b06c4bf5 3360 key.offset);
31840ae1
ZY
3361 if (ret)
3362 goto fail;
3363 } else {
5d4f98a2 3364 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3365 num_bytes = fs_info->nodesize;
84f7d8e6 3366 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3367 parent, ref_root, level - 1, 0);
31840ae1
ZY
3368 if (ret)
3369 goto fail;
3370 }
3371 }
3372 return 0;
3373fail:
5d4f98a2
YZ
3374 return ret;
3375}
3376
3377int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3378 struct extent_buffer *buf, int full_backref)
5d4f98a2 3379{
e339a6b0 3380 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3381}
3382
3383int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3384 struct extent_buffer *buf, int full_backref)
5d4f98a2 3385{
e339a6b0 3386 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3387}
3388
9078a3e1 3389static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3390 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3391 struct btrfs_path *path,
3392 struct btrfs_block_group_cache *cache)
3393{
3394 int ret;
0b246afa 3395 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3396 unsigned long bi;
3397 struct extent_buffer *leaf;
9078a3e1 3398
9078a3e1 3399 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3400 if (ret) {
3401 if (ret > 0)
3402 ret = -ENOENT;
54aa1f4d 3403 goto fail;
df95e7f0 3404 }
5f39d397
CM
3405
3406 leaf = path->nodes[0];
3407 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3408 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3409 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3410fail:
24b89d08 3411 btrfs_release_path(path);
df95e7f0 3412 return ret;
9078a3e1
CM
3413
3414}
3415
4a8c9a62 3416static struct btrfs_block_group_cache *
2ff7e61e 3417next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3418 struct btrfs_block_group_cache *cache)
3419{
3420 struct rb_node *node;
292cbd51 3421
0b246afa 3422 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3423
3424 /* If our block group was removed, we need a full search. */
3425 if (RB_EMPTY_NODE(&cache->cache_node)) {
3426 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3427
0b246afa 3428 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3429 btrfs_put_block_group(cache);
0b246afa 3430 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3431 }
4a8c9a62
YZ
3432 node = rb_next(&cache->cache_node);
3433 btrfs_put_block_group(cache);
3434 if (node) {
3435 cache = rb_entry(node, struct btrfs_block_group_cache,
3436 cache_node);
11dfe35a 3437 btrfs_get_block_group(cache);
4a8c9a62
YZ
3438 } else
3439 cache = NULL;
0b246afa 3440 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3441 return cache;
3442}
3443
0af3d00b
JB
3444static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3445 struct btrfs_trans_handle *trans,
3446 struct btrfs_path *path)
3447{
0b246afa
JM
3448 struct btrfs_fs_info *fs_info = block_group->fs_info;
3449 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3450 struct inode *inode = NULL;
364ecf36 3451 struct extent_changeset *data_reserved = NULL;
0af3d00b 3452 u64 alloc_hint = 0;
2b20982e 3453 int dcs = BTRFS_DC_ERROR;
f8c269d7 3454 u64 num_pages = 0;
0af3d00b
JB
3455 int retries = 0;
3456 int ret = 0;
3457
3458 /*
3459 * If this block group is smaller than 100 megs don't bother caching the
3460 * block group.
3461 */
ee22184b 3462 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3463 spin_lock(&block_group->lock);
3464 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3465 spin_unlock(&block_group->lock);
3466 return 0;
3467 }
3468
0c0ef4bc
JB
3469 if (trans->aborted)
3470 return 0;
0af3d00b 3471again:
77ab86bf 3472 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3473 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3474 ret = PTR_ERR(inode);
b3b4aa74 3475 btrfs_release_path(path);
0af3d00b
JB
3476 goto out;
3477 }
3478
3479 if (IS_ERR(inode)) {
3480 BUG_ON(retries);
3481 retries++;
3482
3483 if (block_group->ro)
3484 goto out_free;
3485
77ab86bf
JM
3486 ret = create_free_space_inode(fs_info, trans, block_group,
3487 path);
0af3d00b
JB
3488 if (ret)
3489 goto out_free;
3490 goto again;
3491 }
3492
3493 /*
3494 * We want to set the generation to 0, that way if anything goes wrong
3495 * from here on out we know not to trust this cache when we load up next
3496 * time.
3497 */
3498 BTRFS_I(inode)->generation = 0;
3499 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3500 if (ret) {
3501 /*
3502 * So theoretically we could recover from this, simply set the
3503 * super cache generation to 0 so we know to invalidate the
3504 * cache, but then we'd have to keep track of the block groups
3505 * that fail this way so we know we _have_ to reset this cache
3506 * before the next commit or risk reading stale cache. So to
3507 * limit our exposure to horrible edge cases lets just abort the
3508 * transaction, this only happens in really bad situations
3509 * anyway.
3510 */
66642832 3511 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3512 goto out_put;
3513 }
0af3d00b
JB
3514 WARN_ON(ret);
3515
8e138e0d
JB
3516 /* We've already setup this transaction, go ahead and exit */
3517 if (block_group->cache_generation == trans->transid &&
3518 i_size_read(inode)) {
3519 dcs = BTRFS_DC_SETUP;
3520 goto out_put;
3521 }
3522
0af3d00b 3523 if (i_size_read(inode) > 0) {
2ff7e61e 3524 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3525 &fs_info->global_block_rsv);
7b61cd92
MX
3526 if (ret)
3527 goto out_put;
3528
77ab86bf 3529 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3530 if (ret)
3531 goto out_put;
3532 }
3533
3534 spin_lock(&block_group->lock);
cf7c1ef6 3535 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3536 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3537 /*
3538 * don't bother trying to write stuff out _if_
3539 * a) we're not cached,
1a79c1f2
LB
3540 * b) we're with nospace_cache mount option,
3541 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3542 */
2b20982e 3543 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3544 spin_unlock(&block_group->lock);
3545 goto out_put;
3546 }
3547 spin_unlock(&block_group->lock);
3548
2968b1f4
JB
3549 /*
3550 * We hit an ENOSPC when setting up the cache in this transaction, just
3551 * skip doing the setup, we've already cleared the cache so we're safe.
3552 */
3553 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3554 ret = -ENOSPC;
3555 goto out_put;
3556 }
3557
6fc823b1
JB
3558 /*
3559 * Try to preallocate enough space based on how big the block group is.
3560 * Keep in mind this has to include any pinned space which could end up
3561 * taking up quite a bit since it's not folded into the other space
3562 * cache.
3563 */
ee22184b 3564 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3565 if (!num_pages)
3566 num_pages = 1;
3567
0af3d00b 3568 num_pages *= 16;
09cbfeaf 3569 num_pages *= PAGE_SIZE;
0af3d00b 3570
364ecf36 3571 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3572 if (ret)
3573 goto out_put;
3574
3575 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3576 num_pages, num_pages,
3577 &alloc_hint);
2968b1f4
JB
3578 /*
3579 * Our cache requires contiguous chunks so that we don't modify a bunch
3580 * of metadata or split extents when writing the cache out, which means
3581 * we can enospc if we are heavily fragmented in addition to just normal
3582 * out of space conditions. So if we hit this just skip setting up any
3583 * other block groups for this transaction, maybe we'll unpin enough
3584 * space the next time around.
3585 */
2b20982e
JB
3586 if (!ret)
3587 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3588 else if (ret == -ENOSPC)
3589 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3590
0af3d00b
JB
3591out_put:
3592 iput(inode);
3593out_free:
b3b4aa74 3594 btrfs_release_path(path);
0af3d00b
JB
3595out:
3596 spin_lock(&block_group->lock);
e65cbb94 3597 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3598 block_group->cache_generation = trans->transid;
2b20982e 3599 block_group->disk_cache_state = dcs;
0af3d00b
JB
3600 spin_unlock(&block_group->lock);
3601
364ecf36 3602 extent_changeset_free(data_reserved);
0af3d00b
JB
3603 return ret;
3604}
3605
dcdf7f6d 3606int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3607 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3608{
3609 struct btrfs_block_group_cache *cache, *tmp;
3610 struct btrfs_transaction *cur_trans = trans->transaction;
3611 struct btrfs_path *path;
3612
3613 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3614 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3615 return 0;
3616
3617 path = btrfs_alloc_path();
3618 if (!path)
3619 return -ENOMEM;
3620
3621 /* Could add new block groups, use _safe just in case */
3622 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3623 dirty_list) {
3624 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3625 cache_save_setup(cache, trans, path);
3626 }
3627
3628 btrfs_free_path(path);
3629 return 0;
3630}
3631
1bbc621e
CM
3632/*
3633 * transaction commit does final block group cache writeback during a
3634 * critical section where nothing is allowed to change the FS. This is
3635 * required in order for the cache to actually match the block group,
3636 * but can introduce a lot of latency into the commit.
3637 *
3638 * So, btrfs_start_dirty_block_groups is here to kick off block group
3639 * cache IO. There's a chance we'll have to redo some of it if the
3640 * block group changes again during the commit, but it greatly reduces
3641 * the commit latency by getting rid of the easy block groups while
3642 * we're still allowing others to join the commit.
3643 */
21217054 3644int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3645{
21217054 3646 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3647 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3648 struct btrfs_transaction *cur_trans = trans->transaction;
3649 int ret = 0;
c9dc4c65 3650 int should_put;
1bbc621e
CM
3651 struct btrfs_path *path = NULL;
3652 LIST_HEAD(dirty);
3653 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3654 int num_started = 0;
1bbc621e
CM
3655 int loops = 0;
3656
3657 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3658 if (list_empty(&cur_trans->dirty_bgs)) {
3659 spin_unlock(&cur_trans->dirty_bgs_lock);
3660 return 0;
1bbc621e 3661 }
b58d1a9e 3662 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3663 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3664
1bbc621e 3665again:
1bbc621e
CM
3666 /*
3667 * make sure all the block groups on our dirty list actually
3668 * exist
3669 */
6c686b35 3670 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3671
3672 if (!path) {
3673 path = btrfs_alloc_path();
3674 if (!path)
3675 return -ENOMEM;
3676 }
3677
b58d1a9e
FM
3678 /*
3679 * cache_write_mutex is here only to save us from balance or automatic
3680 * removal of empty block groups deleting this block group while we are
3681 * writing out the cache
3682 */
3683 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3684 while (!list_empty(&dirty)) {
3685 cache = list_first_entry(&dirty,
3686 struct btrfs_block_group_cache,
3687 dirty_list);
1bbc621e
CM
3688 /*
3689 * this can happen if something re-dirties a block
3690 * group that is already under IO. Just wait for it to
3691 * finish and then do it all again
3692 */
3693 if (!list_empty(&cache->io_list)) {
3694 list_del_init(&cache->io_list);
afdb5718 3695 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3696 btrfs_put_block_group(cache);
3697 }
3698
3699
3700 /*
3701 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3702 * if it should update the cache_state. Don't delete
3703 * until after we wait.
3704 *
3705 * Since we're not running in the commit critical section
3706 * we need the dirty_bgs_lock to protect from update_block_group
3707 */
3708 spin_lock(&cur_trans->dirty_bgs_lock);
3709 list_del_init(&cache->dirty_list);
3710 spin_unlock(&cur_trans->dirty_bgs_lock);
3711
3712 should_put = 1;
3713
3714 cache_save_setup(cache, trans, path);
3715
3716 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3717 cache->io_ctl.inode = NULL;
0b246afa 3718 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3719 cache, path);
1bbc621e
CM
3720 if (ret == 0 && cache->io_ctl.inode) {
3721 num_started++;
3722 should_put = 0;
3723
3724 /*
45ae2c18
NB
3725 * The cache_write_mutex is protecting the
3726 * io_list, also refer to the definition of
3727 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3728 */
3729 list_add_tail(&cache->io_list, io);
3730 } else {
3731 /*
3732 * if we failed to write the cache, the
3733 * generation will be bad and life goes on
3734 */
3735 ret = 0;
3736 }
3737 }
ff1f8250 3738 if (!ret) {
2ff7e61e
JM
3739 ret = write_one_cache_group(trans, fs_info,
3740 path, cache);
ff1f8250
FM
3741 /*
3742 * Our block group might still be attached to the list
3743 * of new block groups in the transaction handle of some
3744 * other task (struct btrfs_trans_handle->new_bgs). This
3745 * means its block group item isn't yet in the extent
3746 * tree. If this happens ignore the error, as we will
3747 * try again later in the critical section of the
3748 * transaction commit.
3749 */
3750 if (ret == -ENOENT) {
3751 ret = 0;
3752 spin_lock(&cur_trans->dirty_bgs_lock);
3753 if (list_empty(&cache->dirty_list)) {
3754 list_add_tail(&cache->dirty_list,
3755 &cur_trans->dirty_bgs);
3756 btrfs_get_block_group(cache);
3757 }
3758 spin_unlock(&cur_trans->dirty_bgs_lock);
3759 } else if (ret) {
66642832 3760 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3761 }
3762 }
1bbc621e
CM
3763
3764 /* if its not on the io list, we need to put the block group */
3765 if (should_put)
3766 btrfs_put_block_group(cache);
3767
3768 if (ret)
3769 break;
b58d1a9e
FM
3770
3771 /*
3772 * Avoid blocking other tasks for too long. It might even save
3773 * us from writing caches for block groups that are going to be
3774 * removed.
3775 */
3776 mutex_unlock(&trans->transaction->cache_write_mutex);
3777 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3778 }
b58d1a9e 3779 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3780
3781 /*
3782 * go through delayed refs for all the stuff we've just kicked off
3783 * and then loop back (just once)
3784 */
c79a70b1 3785 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3786 if (!ret && loops == 0) {
3787 loops++;
3788 spin_lock(&cur_trans->dirty_bgs_lock);
3789 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3790 /*
3791 * dirty_bgs_lock protects us from concurrent block group
3792 * deletes too (not just cache_write_mutex).
3793 */
3794 if (!list_empty(&dirty)) {
3795 spin_unlock(&cur_trans->dirty_bgs_lock);
3796 goto again;
3797 }
1bbc621e 3798 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3799 } else if (ret < 0) {
2ff7e61e 3800 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3801 }
3802
3803 btrfs_free_path(path);
3804 return ret;
3805}
3806
3807int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3808 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3809{
3810 struct btrfs_block_group_cache *cache;
3811 struct btrfs_transaction *cur_trans = trans->transaction;
3812 int ret = 0;
3813 int should_put;
3814 struct btrfs_path *path;
3815 struct list_head *io = &cur_trans->io_bgs;
3816 int num_started = 0;
9078a3e1
CM
3817
3818 path = btrfs_alloc_path();
3819 if (!path)
3820 return -ENOMEM;
3821
ce93ec54 3822 /*
e44081ef
FM
3823 * Even though we are in the critical section of the transaction commit,
3824 * we can still have concurrent tasks adding elements to this
3825 * transaction's list of dirty block groups. These tasks correspond to
3826 * endio free space workers started when writeback finishes for a
3827 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3828 * allocate new block groups as a result of COWing nodes of the root
3829 * tree when updating the free space inode. The writeback for the space
3830 * caches is triggered by an earlier call to
3831 * btrfs_start_dirty_block_groups() and iterations of the following
3832 * loop.
3833 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3834 * delayed refs to make sure we have the best chance at doing this all
3835 * in one shot.
3836 */
e44081ef 3837 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3838 while (!list_empty(&cur_trans->dirty_bgs)) {
3839 cache = list_first_entry(&cur_trans->dirty_bgs,
3840 struct btrfs_block_group_cache,
3841 dirty_list);
c9dc4c65
CM
3842
3843 /*
3844 * this can happen if cache_save_setup re-dirties a block
3845 * group that is already under IO. Just wait for it to
3846 * finish and then do it all again
3847 */
3848 if (!list_empty(&cache->io_list)) {
e44081ef 3849 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3850 list_del_init(&cache->io_list);
afdb5718 3851 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3852 btrfs_put_block_group(cache);
e44081ef 3853 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3854 }
3855
1bbc621e
CM
3856 /*
3857 * don't remove from the dirty list until after we've waited
3858 * on any pending IO
3859 */
ce93ec54 3860 list_del_init(&cache->dirty_list);
e44081ef 3861 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3862 should_put = 1;
3863
1bbc621e 3864 cache_save_setup(cache, trans, path);
c9dc4c65 3865
ce93ec54 3866 if (!ret)
c79a70b1 3867 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3868 (unsigned long) -1);
c9dc4c65
CM
3869
3870 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3871 cache->io_ctl.inode = NULL;
0b246afa 3872 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3873 cache, path);
c9dc4c65
CM
3874 if (ret == 0 && cache->io_ctl.inode) {
3875 num_started++;
3876 should_put = 0;
1bbc621e 3877 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3878 } else {
3879 /*
3880 * if we failed to write the cache, the
3881 * generation will be bad and life goes on
3882 */
3883 ret = 0;
3884 }
3885 }
ff1f8250 3886 if (!ret) {
2ff7e61e
JM
3887 ret = write_one_cache_group(trans, fs_info,
3888 path, cache);
2bc0bb5f
FM
3889 /*
3890 * One of the free space endio workers might have
3891 * created a new block group while updating a free space
3892 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3893 * and hasn't released its transaction handle yet, in
3894 * which case the new block group is still attached to
3895 * its transaction handle and its creation has not
3896 * finished yet (no block group item in the extent tree
3897 * yet, etc). If this is the case, wait for all free
3898 * space endio workers to finish and retry. This is a
3899 * a very rare case so no need for a more efficient and
3900 * complex approach.
3901 */
3902 if (ret == -ENOENT) {
3903 wait_event(cur_trans->writer_wait,
3904 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3905 ret = write_one_cache_group(trans, fs_info,
3906 path, cache);
2bc0bb5f 3907 }
ff1f8250 3908 if (ret)
66642832 3909 btrfs_abort_transaction(trans, ret);
ff1f8250 3910 }
c9dc4c65
CM
3911
3912 /* if its not on the io list, we need to put the block group */
3913 if (should_put)
3914 btrfs_put_block_group(cache);
e44081ef 3915 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3916 }
e44081ef 3917 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3918
45ae2c18
NB
3919 /*
3920 * Refer to the definition of io_bgs member for details why it's safe
3921 * to use it without any locking
3922 */
1bbc621e
CM
3923 while (!list_empty(io)) {
3924 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3925 io_list);
3926 list_del_init(&cache->io_list);
afdb5718 3927 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3928 btrfs_put_block_group(cache);
3929 }
3930
9078a3e1 3931 btrfs_free_path(path);
ce93ec54 3932 return ret;
9078a3e1
CM
3933}
3934
2ff7e61e 3935int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3936{
3937 struct btrfs_block_group_cache *block_group;
3938 int readonly = 0;
3939
0b246afa 3940 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3941 if (!block_group || block_group->ro)
3942 readonly = 1;
3943 if (block_group)
fa9c0d79 3944 btrfs_put_block_group(block_group);
d2fb3437
YZ
3945 return readonly;
3946}
3947
f78c436c
FM
3948bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3949{
3950 struct btrfs_block_group_cache *bg;
3951 bool ret = true;
3952
3953 bg = btrfs_lookup_block_group(fs_info, bytenr);
3954 if (!bg)
3955 return false;
3956
3957 spin_lock(&bg->lock);
3958 if (bg->ro)
3959 ret = false;
3960 else
3961 atomic_inc(&bg->nocow_writers);
3962 spin_unlock(&bg->lock);
3963
3964 /* no put on block group, done by btrfs_dec_nocow_writers */
3965 if (!ret)
3966 btrfs_put_block_group(bg);
3967
3968 return ret;
3969
3970}
3971
3972void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3973{
3974 struct btrfs_block_group_cache *bg;
3975
3976 bg = btrfs_lookup_block_group(fs_info, bytenr);
3977 ASSERT(bg);
3978 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 3979 wake_up_var(&bg->nocow_writers);
f78c436c
FM
3980 /*
3981 * Once for our lookup and once for the lookup done by a previous call
3982 * to btrfs_inc_nocow_writers()
3983 */
3984 btrfs_put_block_group(bg);
3985 btrfs_put_block_group(bg);
3986}
3987
f78c436c
FM
3988void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3989{
4625956a 3990 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
3991}
3992
6ab0a202
JM
3993static const char *alloc_name(u64 flags)
3994{
3995 switch (flags) {
3996 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3997 return "mixed";
3998 case BTRFS_BLOCK_GROUP_METADATA:
3999 return "metadata";
4000 case BTRFS_BLOCK_GROUP_DATA:
4001 return "data";
4002 case BTRFS_BLOCK_GROUP_SYSTEM:
4003 return "system";
4004 default:
4005 WARN_ON(1);
4006 return "invalid-combination";
4007 };
4008}
4009
4ca61683 4010static int create_space_info(struct btrfs_fs_info *info, u64 flags)
2be12ef7
NB
4011{
4012
4013 struct btrfs_space_info *space_info;
4014 int i;
4015 int ret;
4016
4017 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4018 if (!space_info)
4019 return -ENOMEM;
4020
4021 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4022 GFP_KERNEL);
4023 if (ret) {
4024 kfree(space_info);
4025 return ret;
4026 }
4027
4028 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4029 INIT_LIST_HEAD(&space_info->block_groups[i]);
4030 init_rwsem(&space_info->groups_sem);
4031 spin_lock_init(&space_info->lock);
4032 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4033 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4034 init_waitqueue_head(&space_info->wait);
4035 INIT_LIST_HEAD(&space_info->ro_bgs);
4036 INIT_LIST_HEAD(&space_info->tickets);
4037 INIT_LIST_HEAD(&space_info->priority_tickets);
4038
4039 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4040 info->space_info_kobj, "%s",
4041 alloc_name(space_info->flags));
4042 if (ret) {
4043 percpu_counter_destroy(&space_info->total_bytes_pinned);
4044 kfree(space_info);
4045 return ret;
4046 }
4047
2be12ef7
NB
4048 list_add_rcu(&space_info->list, &info->space_info);
4049 if (flags & BTRFS_BLOCK_GROUP_DATA)
4050 info->data_sinfo = space_info;
4051
4052 return ret;
4053}
4054
d2006e6d 4055static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4056 u64 total_bytes, u64 bytes_used,
e40edf2d 4057 u64 bytes_readonly,
593060d7
CM
4058 struct btrfs_space_info **space_info)
4059{
4060 struct btrfs_space_info *found;
b742bb82
YZ
4061 int factor;
4062
4063 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4064 BTRFS_BLOCK_GROUP_RAID10))
4065 factor = 2;
4066 else
4067 factor = 1;
593060d7
CM
4068
4069 found = __find_space_info(info, flags);
d2006e6d
NB
4070 ASSERT(found);
4071 spin_lock(&found->lock);
4072 found->total_bytes += total_bytes;
4073 found->disk_total += total_bytes * factor;
4074 found->bytes_used += bytes_used;
4075 found->disk_used += bytes_used * factor;
4076 found->bytes_readonly += bytes_readonly;
4077 if (total_bytes > 0)
4078 found->full = 0;
4079 space_info_add_new_bytes(info, found, total_bytes -
4080 bytes_used - bytes_readonly);
4081 spin_unlock(&found->lock);
4082 *space_info = found;
593060d7
CM
4083}
4084
8790d502
CM
4085static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4086{
899c81ea
ID
4087 u64 extra_flags = chunk_to_extended(flags) &
4088 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4089
de98ced9 4090 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4091 if (flags & BTRFS_BLOCK_GROUP_DATA)
4092 fs_info->avail_data_alloc_bits |= extra_flags;
4093 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4094 fs_info->avail_metadata_alloc_bits |= extra_flags;
4095 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4096 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4097 write_sequnlock(&fs_info->profiles_lock);
8790d502 4098}
593060d7 4099
fc67c450
ID
4100/*
4101 * returns target flags in extended format or 0 if restripe for this
4102 * chunk_type is not in progress
c6664b42 4103 *
dccdb07b 4104 * should be called with balance_lock held
fc67c450
ID
4105 */
4106static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4107{
4108 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4109 u64 target = 0;
4110
fc67c450
ID
4111 if (!bctl)
4112 return 0;
4113
4114 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4115 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4116 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4117 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4118 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4119 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4120 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4121 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4122 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4123 }
4124
4125 return target;
4126}
4127
a46d11a8
ID
4128/*
4129 * @flags: available profiles in extended format (see ctree.h)
4130 *
e4d8ec0f
ID
4131 * Returns reduced profile in chunk format. If profile changing is in
4132 * progress (either running or paused) picks the target profile (if it's
4133 * already available), otherwise falls back to plain reducing.
a46d11a8 4134 */
2ff7e61e 4135static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4136{
0b246afa 4137 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4138 u64 target;
9c170b26
ZL
4139 u64 raid_type;
4140 u64 allowed = 0;
a061fc8d 4141
fc67c450
ID
4142 /*
4143 * see if restripe for this chunk_type is in progress, if so
4144 * try to reduce to the target profile
4145 */
0b246afa
JM
4146 spin_lock(&fs_info->balance_lock);
4147 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4148 if (target) {
4149 /* pick target profile only if it's already available */
4150 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4151 spin_unlock(&fs_info->balance_lock);
fc67c450 4152 return extended_to_chunk(target);
e4d8ec0f
ID
4153 }
4154 }
0b246afa 4155 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4156
53b381b3 4157 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4158 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4159 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
41a6e891 4160 allowed |= btrfs_raid_array[raid_type].bg_flag;
9c170b26
ZL
4161 }
4162 allowed &= flags;
4163
4164 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4165 allowed = BTRFS_BLOCK_GROUP_RAID6;
4166 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4167 allowed = BTRFS_BLOCK_GROUP_RAID5;
4168 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4169 allowed = BTRFS_BLOCK_GROUP_RAID10;
4170 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4171 allowed = BTRFS_BLOCK_GROUP_RAID1;
4172 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4173 allowed = BTRFS_BLOCK_GROUP_RAID0;
4174
4175 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4176
4177 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4178}
4179
2ff7e61e 4180static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4181{
de98ced9 4182 unsigned seq;
f8213bdc 4183 u64 flags;
de98ced9
MX
4184
4185 do {
f8213bdc 4186 flags = orig_flags;
0b246afa 4187 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4188
4189 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4190 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4191 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4192 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4193 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4194 flags |= fs_info->avail_metadata_alloc_bits;
4195 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4196
2ff7e61e 4197 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4198}
4199
1b86826d 4200static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4201{
0b246afa 4202 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4203 u64 flags;
53b381b3 4204 u64 ret;
9ed74f2d 4205
b742bb82
YZ
4206 if (data)
4207 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4208 else if (root == fs_info->chunk_root)
b742bb82 4209 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4210 else
b742bb82 4211 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4212
2ff7e61e 4213 ret = get_alloc_profile(fs_info, flags);
53b381b3 4214 return ret;
6a63209f 4215}
9ed74f2d 4216
1b86826d
JM
4217u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4218{
4219 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4220}
4221
4222u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4223{
4224 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4225}
4226
4227u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4228{
4229 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4230}
4231
4136135b
LB
4232static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4233 bool may_use_included)
4234{
4235 ASSERT(s_info);
4236 return s_info->bytes_used + s_info->bytes_reserved +
4237 s_info->bytes_pinned + s_info->bytes_readonly +
4238 (may_use_included ? s_info->bytes_may_use : 0);
4239}
4240
04f4f916 4241int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4242{
04f4f916 4243 struct btrfs_root *root = inode->root;
b4d7c3c9 4244 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4245 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4246 u64 used;
94b947b2 4247 int ret = 0;
c99f1b0c
ZL
4248 int need_commit = 2;
4249 int have_pinned_space;
6a63209f 4250
6a63209f 4251 /* make sure bytes are sectorsize aligned */
0b246afa 4252 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4253
9dced186 4254 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4255 need_commit = 0;
9dced186 4256 ASSERT(current->journal_info);
0af3d00b
JB
4257 }
4258
6a63209f
JB
4259again:
4260 /* make sure we have enough space to handle the data first */
4261 spin_lock(&data_sinfo->lock);
4136135b 4262 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4263
4264 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4265 struct btrfs_trans_handle *trans;
9ed74f2d 4266
6a63209f
JB
4267 /*
4268 * if we don't have enough free bytes in this space then we need
4269 * to alloc a new chunk.
4270 */
b9fd47cd 4271 if (!data_sinfo->full) {
6a63209f 4272 u64 alloc_target;
9ed74f2d 4273
0e4f8f88 4274 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4275 spin_unlock(&data_sinfo->lock);
1174cade 4276
1b86826d 4277 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4278 /*
4279 * It is ugly that we don't call nolock join
4280 * transaction for the free space inode case here.
4281 * But it is safe because we only do the data space
4282 * reservation for the free space cache in the
4283 * transaction context, the common join transaction
4284 * just increase the counter of the current transaction
4285 * handler, doesn't try to acquire the trans_lock of
4286 * the fs.
4287 */
7a7eaa40 4288 trans = btrfs_join_transaction(root);
a22285a6
YZ
4289 if (IS_ERR(trans))
4290 return PTR_ERR(trans);
9ed74f2d 4291
2ff7e61e 4292 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4293 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4294 btrfs_end_transaction(trans);
d52a5b5f
MX
4295 if (ret < 0) {
4296 if (ret != -ENOSPC)
4297 return ret;
c99f1b0c
ZL
4298 else {
4299 have_pinned_space = 1;
d52a5b5f 4300 goto commit_trans;
c99f1b0c 4301 }
d52a5b5f 4302 }
9ed74f2d 4303
6a63209f
JB
4304 goto again;
4305 }
f2bb8f5c
JB
4306
4307 /*
b150a4f1 4308 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4309 * allocation, and no removed chunk in current transaction,
4310 * don't bother committing the transaction.
f2bb8f5c 4311 */
c99f1b0c
ZL
4312 have_pinned_space = percpu_counter_compare(
4313 &data_sinfo->total_bytes_pinned,
4314 used + bytes - data_sinfo->total_bytes);
6a63209f 4315 spin_unlock(&data_sinfo->lock);
6a63209f 4316
4e06bdd6 4317 /* commit the current transaction and try again */
d52a5b5f 4318commit_trans:
92e2f7e3 4319 if (need_commit) {
c99f1b0c 4320 need_commit--;
b150a4f1 4321
e1746e83 4322 if (need_commit > 0) {
82b3e53b 4323 btrfs_start_delalloc_roots(fs_info, -1);
6374e57a 4324 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4325 (u64)-1);
e1746e83 4326 }
9a4e7276 4327
7a7eaa40 4328 trans = btrfs_join_transaction(root);
a22285a6
YZ
4329 if (IS_ERR(trans))
4330 return PTR_ERR(trans);
c99f1b0c 4331 if (have_pinned_space >= 0 ||
3204d33c
JB
4332 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4333 &trans->transaction->flags) ||
c99f1b0c 4334 need_commit > 0) {
3a45bb20 4335 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4336 if (ret)
4337 return ret;
d7c15171 4338 /*
c2d6cb16
FM
4339 * The cleaner kthread might still be doing iput
4340 * operations. Wait for it to finish so that
4341 * more space is released.
d7c15171 4342 */
0b246afa
JM
4343 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4344 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4345 goto again;
4346 } else {
3a45bb20 4347 btrfs_end_transaction(trans);
94b947b2 4348 }
4e06bdd6 4349 }
9ed74f2d 4350
0b246afa 4351 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4352 "space_info:enospc",
4353 data_sinfo->flags, bytes, 1);
6a63209f
JB
4354 return -ENOSPC;
4355 }
4356 data_sinfo->bytes_may_use += bytes;
0b246afa 4357 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4358 data_sinfo->flags, bytes, 1);
6a63209f 4359 spin_unlock(&data_sinfo->lock);
6a63209f 4360
237c0e9f 4361 return ret;
9ed74f2d 4362}
6a63209f 4363
364ecf36
QW
4364int btrfs_check_data_free_space(struct inode *inode,
4365 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4366{
0b246afa 4367 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4368 int ret;
4369
4370 /* align the range */
0b246afa
JM
4371 len = round_up(start + len, fs_info->sectorsize) -
4372 round_down(start, fs_info->sectorsize);
4373 start = round_down(start, fs_info->sectorsize);
4ceff079 4374
04f4f916 4375 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4376 if (ret < 0)
4377 return ret;
4378
1e5ec2e7 4379 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4380 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4381 if (ret < 0)
1e5ec2e7 4382 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4383 else
4384 ret = 0;
4ceff079
QW
4385 return ret;
4386}
4387
4ceff079
QW
4388/*
4389 * Called if we need to clear a data reservation for this inode
4390 * Normally in a error case.
4391 *
51773bec
QW
4392 * This one will *NOT* use accurate qgroup reserved space API, just for case
4393 * which we can't sleep and is sure it won't affect qgroup reserved space.
4394 * Like clear_bit_hook().
4ceff079 4395 */
51773bec
QW
4396void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4397 u64 len)
4ceff079 4398{
0b246afa 4399 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4400 struct btrfs_space_info *data_sinfo;
4401
4402 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4403 len = round_up(start + len, fs_info->sectorsize) -
4404 round_down(start, fs_info->sectorsize);
4405 start = round_down(start, fs_info->sectorsize);
4ceff079 4406
0b246afa 4407 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4408 spin_lock(&data_sinfo->lock);
4409 if (WARN_ON(data_sinfo->bytes_may_use < len))
4410 data_sinfo->bytes_may_use = 0;
4411 else
4412 data_sinfo->bytes_may_use -= len;
0b246afa 4413 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4414 data_sinfo->flags, len, 0);
4415 spin_unlock(&data_sinfo->lock);
4416}
4417
51773bec
QW
4418/*
4419 * Called if we need to clear a data reservation for this inode
4420 * Normally in a error case.
4421 *
01327610 4422 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4423 * space framework.
4424 */
bc42bda2
QW
4425void btrfs_free_reserved_data_space(struct inode *inode,
4426 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4427{
0c476a5d
JM
4428 struct btrfs_root *root = BTRFS_I(inode)->root;
4429
4430 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4431 len = round_up(start + len, root->fs_info->sectorsize) -
4432 round_down(start, root->fs_info->sectorsize);
4433 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4434
51773bec 4435 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4436 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4437}
4438
97e728d4 4439static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4440{
97e728d4
JB
4441 struct list_head *head = &info->space_info;
4442 struct btrfs_space_info *found;
e3ccfa98 4443
97e728d4
JB
4444 rcu_read_lock();
4445 list_for_each_entry_rcu(found, head, list) {
4446 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4447 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4448 }
97e728d4 4449 rcu_read_unlock();
e3ccfa98
JB
4450}
4451
3c76cd84
MX
4452static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4453{
4454 return (global->size << 1);
4455}
4456
2ff7e61e 4457static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4458 struct btrfs_space_info *sinfo, int force)
32c00aff 4459{
0b246afa 4460 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4461 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4462 u64 thresh;
e3ccfa98 4463
0e4f8f88
CM
4464 if (force == CHUNK_ALLOC_FORCE)
4465 return 1;
4466
fb25e914
JB
4467 /*
4468 * We need to take into account the global rsv because for all intents
4469 * and purposes it's used space. Don't worry about locking the
4470 * global_rsv, it doesn't change except when the transaction commits.
4471 */
54338b5c 4472 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4473 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4474
0e4f8f88
CM
4475 /*
4476 * in limited mode, we want to have some free space up to
4477 * about 1% of the FS size.
4478 */
4479 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4480 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4481 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4482
8d8aafee 4483 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4484 return 1;
4485 }
0e4f8f88 4486
8d8aafee 4487 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4488 return 0;
424499db 4489 return 1;
32c00aff
JB
4490}
4491
2ff7e61e 4492static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4493{
4494 u64 num_dev;
4495
53b381b3
DW
4496 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4497 BTRFS_BLOCK_GROUP_RAID0 |
4498 BTRFS_BLOCK_GROUP_RAID5 |
4499 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4500 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4501 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4502 num_dev = 2;
4503 else
4504 num_dev = 1; /* DUP or single */
4505
39c2d7fa 4506 return num_dev;
15d1ff81
LB
4507}
4508
39c2d7fa
FM
4509/*
4510 * If @is_allocation is true, reserve space in the system space info necessary
4511 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4512 * removing a chunk.
4513 */
4514void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4515 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4516{
4517 struct btrfs_space_info *info;
4518 u64 left;
4519 u64 thresh;
4fbcdf66 4520 int ret = 0;
39c2d7fa 4521 u64 num_devs;
4fbcdf66
FM
4522
4523 /*
4524 * Needed because we can end up allocating a system chunk and for an
4525 * atomic and race free space reservation in the chunk block reserve.
4526 */
a32bf9a3 4527 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4528
0b246afa 4529 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4530 spin_lock(&info->lock);
4136135b 4531 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4532 spin_unlock(&info->lock);
4533
2ff7e61e 4534 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4535
4536 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4537 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4538 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4539
0b246afa
JM
4540 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4541 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4542 left, thresh, type);
4543 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4544 }
4545
4546 if (left < thresh) {
1b86826d 4547 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4548
4fbcdf66
FM
4549 /*
4550 * Ignore failure to create system chunk. We might end up not
4551 * needing it, as we might not need to COW all nodes/leafs from
4552 * the paths we visit in the chunk tree (they were already COWed
4553 * or created in the current transaction for example).
4554 */
2ff7e61e 4555 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4556 }
4557
4558 if (!ret) {
0b246afa
JM
4559 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4560 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4561 thresh, BTRFS_RESERVE_NO_FLUSH);
4562 if (!ret)
4563 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4564 }
4565}
4566
28b737f6
LB
4567/*
4568 * If force is CHUNK_ALLOC_FORCE:
4569 * - return 1 if it successfully allocates a chunk,
4570 * - return errors including -ENOSPC otherwise.
4571 * If force is NOT CHUNK_ALLOC_FORCE:
4572 * - return 0 if it doesn't need to allocate a new chunk,
4573 * - return 1 if it successfully allocates a chunk,
4574 * - return errors including -ENOSPC otherwise.
4575 */
6324fbf3 4576static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4577 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4578{
6324fbf3 4579 struct btrfs_space_info *space_info;
6d74119f 4580 int wait_for_alloc = 0;
9ed74f2d 4581 int ret = 0;
9ed74f2d 4582
c6b305a8
JB
4583 /* Don't re-enter if we're already allocating a chunk */
4584 if (trans->allocating_chunk)
4585 return -ENOSPC;
4586
0b246afa 4587 space_info = __find_space_info(fs_info, flags);
dc2d3005 4588 ASSERT(space_info);
9ed74f2d 4589
6d74119f 4590again:
25179201 4591 spin_lock(&space_info->lock);
9e622d6b 4592 if (force < space_info->force_alloc)
0e4f8f88 4593 force = space_info->force_alloc;
25179201 4594 if (space_info->full) {
2ff7e61e 4595 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4596 ret = -ENOSPC;
4597 else
4598 ret = 0;
25179201 4599 spin_unlock(&space_info->lock);
09fb99a6 4600 return ret;
9ed74f2d
JB
4601 }
4602
2ff7e61e 4603 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4604 spin_unlock(&space_info->lock);
6d74119f
JB
4605 return 0;
4606 } else if (space_info->chunk_alloc) {
4607 wait_for_alloc = 1;
4608 } else {
4609 space_info->chunk_alloc = 1;
9ed74f2d 4610 }
0e4f8f88 4611
25179201 4612 spin_unlock(&space_info->lock);
9ed74f2d 4613
6d74119f
JB
4614 mutex_lock(&fs_info->chunk_mutex);
4615
4616 /*
4617 * The chunk_mutex is held throughout the entirety of a chunk
4618 * allocation, so once we've acquired the chunk_mutex we know that the
4619 * other guy is done and we need to recheck and see if we should
4620 * allocate.
4621 */
4622 if (wait_for_alloc) {
4623 mutex_unlock(&fs_info->chunk_mutex);
4624 wait_for_alloc = 0;
1e1c50a9 4625 cond_resched();
6d74119f
JB
4626 goto again;
4627 }
4628
c6b305a8
JB
4629 trans->allocating_chunk = true;
4630
67377734
JB
4631 /*
4632 * If we have mixed data/metadata chunks we want to make sure we keep
4633 * allocating mixed chunks instead of individual chunks.
4634 */
4635 if (btrfs_mixed_space_info(space_info))
4636 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4637
97e728d4
JB
4638 /*
4639 * if we're doing a data chunk, go ahead and make sure that
4640 * we keep a reasonable number of metadata chunks allocated in the
4641 * FS as well.
4642 */
9ed74f2d 4643 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4644 fs_info->data_chunk_allocations++;
4645 if (!(fs_info->data_chunk_allocations %
4646 fs_info->metadata_ratio))
4647 force_metadata_allocation(fs_info);
9ed74f2d
JB
4648 }
4649
15d1ff81
LB
4650 /*
4651 * Check if we have enough space in SYSTEM chunk because we may need
4652 * to update devices.
4653 */
2ff7e61e 4654 check_system_chunk(trans, fs_info, flags);
15d1ff81 4655
2ff7e61e 4656 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4657 trans->allocating_chunk = false;
92b8e897 4658
9ed74f2d 4659 spin_lock(&space_info->lock);
57f1642e
NB
4660 if (ret < 0) {
4661 if (ret == -ENOSPC)
4662 space_info->full = 1;
4663 else
4664 goto out;
4665 } else {
424499db 4666 ret = 1;
57f1642e 4667 }
6d74119f 4668
0e4f8f88 4669 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4670out:
6d74119f 4671 space_info->chunk_alloc = 0;
9ed74f2d 4672 spin_unlock(&space_info->lock);
a25c75d5 4673 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4674 /*
4675 * When we allocate a new chunk we reserve space in the chunk block
4676 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4677 * add new nodes/leafs to it if we end up needing to do it when
4678 * inserting the chunk item and updating device items as part of the
4679 * second phase of chunk allocation, performed by
4680 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4681 * large number of new block groups to create in our transaction
4682 * handle's new_bgs list to avoid exhausting the chunk block reserve
4683 * in extreme cases - like having a single transaction create many new
4684 * block groups when starting to write out the free space caches of all
4685 * the block groups that were made dirty during the lifetime of the
4686 * transaction.
4687 */
d9a0540a 4688 if (trans->can_flush_pending_bgs &&
ee22184b 4689 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
6c686b35 4690 btrfs_create_pending_block_groups(trans);
00d80e34
FM
4691 btrfs_trans_release_chunk_metadata(trans);
4692 }
0f9dd46c 4693 return ret;
6324fbf3 4694}
9ed74f2d 4695
c1c4919b 4696static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4697 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4698 enum btrfs_reserve_flush_enum flush,
4699 bool system_chunk)
a80c8dcf 4700{
0b246afa 4701 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4702 u64 profile;
3c76cd84 4703 u64 space_size;
a80c8dcf
JB
4704 u64 avail;
4705 u64 used;
4706
957780eb
JB
4707 /* Don't overcommit when in mixed mode. */
4708 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4709 return 0;
4710
c1c4919b
JM
4711 if (system_chunk)
4712 profile = btrfs_system_alloc_profile(fs_info);
4713 else
4714 profile = btrfs_metadata_alloc_profile(fs_info);
4715
4136135b 4716 used = btrfs_space_info_used(space_info, false);
96f1bb57 4717
96f1bb57
JB
4718 /*
4719 * We only want to allow over committing if we have lots of actual space
4720 * free, but if we don't have enough space to handle the global reserve
4721 * space then we could end up having a real enospc problem when trying
4722 * to allocate a chunk or some other such important allocation.
4723 */
3c76cd84
MX
4724 spin_lock(&global_rsv->lock);
4725 space_size = calc_global_rsv_need_space(global_rsv);
4726 spin_unlock(&global_rsv->lock);
4727 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4728 return 0;
4729
4730 used += space_info->bytes_may_use;
a80c8dcf 4731
a5ed45f8 4732 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4733
4734 /*
4735 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4736 * space is actually useable. For raid56, the space info used
4737 * doesn't include the parity drive, so we don't have to
4738 * change the math
a80c8dcf
JB
4739 */
4740 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4741 BTRFS_BLOCK_GROUP_RAID1 |
4742 BTRFS_BLOCK_GROUP_RAID10))
4743 avail >>= 1;
4744
4745 /*
561c294d
MX
4746 * If we aren't flushing all things, let us overcommit up to
4747 * 1/2th of the space. If we can flush, don't let us overcommit
4748 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4749 */
08e007d2 4750 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4751 avail >>= 3;
a80c8dcf 4752 else
14575aef 4753 avail >>= 1;
a80c8dcf 4754
14575aef 4755 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4756 return 1;
4757 return 0;
4758}
4759
2ff7e61e 4760static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4761 unsigned long nr_pages, int nr_items)
da633a42 4762{
0b246afa 4763 struct super_block *sb = fs_info->sb;
da633a42 4764
925a6efb
JB
4765 if (down_read_trylock(&sb->s_umount)) {
4766 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4767 up_read(&sb->s_umount);
4768 } else {
da633a42
MX
4769 /*
4770 * We needn't worry the filesystem going from r/w to r/o though
4771 * we don't acquire ->s_umount mutex, because the filesystem
4772 * should guarantee the delalloc inodes list be empty after
4773 * the filesystem is readonly(all dirty pages are written to
4774 * the disk).
4775 */
82b3e53b 4776 btrfs_start_delalloc_roots(fs_info, nr_items);
98ad69cf 4777 if (!current->journal_info)
0b246afa 4778 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4779 }
4780}
4781
6374e57a 4782static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4783 u64 to_reclaim)
18cd8ea6
MX
4784{
4785 u64 bytes;
6374e57a 4786 u64 nr;
18cd8ea6 4787
2ff7e61e 4788 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4789 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4790 if (!nr)
4791 nr = 1;
4792 return nr;
4793}
4794
ee22184b 4795#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4796
9ed74f2d 4797/*
5da9d01b 4798 * shrink metadata reservation for delalloc
9ed74f2d 4799 */
c1c4919b
JM
4800static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4801 u64 orig, bool wait_ordered)
5da9d01b 4802{
0019f10d 4803 struct btrfs_space_info *space_info;
663350ac 4804 struct btrfs_trans_handle *trans;
f4c738c2 4805 u64 delalloc_bytes;
5da9d01b 4806 u64 max_reclaim;
6374e57a 4807 u64 items;
b1953bce 4808 long time_left;
d3ee29e3
MX
4809 unsigned long nr_pages;
4810 int loops;
5da9d01b 4811
c61a16a7 4812 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4813 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4814 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4815
663350ac 4816 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4817 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4818
963d678b 4819 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4820 &fs_info->delalloc_bytes);
f4c738c2 4821 if (delalloc_bytes == 0) {
fdb5effd 4822 if (trans)
f4c738c2 4823 return;
38c135af 4824 if (wait_ordered)
0b246afa 4825 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4826 return;
fdb5effd
JB
4827 }
4828
d3ee29e3 4829 loops = 0;
f4c738c2
JB
4830 while (delalloc_bytes && loops < 3) {
4831 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4832 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4833 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4834 /*
4835 * We need to wait for the async pages to actually start before
4836 * we do anything.
4837 */
0b246afa 4838 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4839 if (!max_reclaim)
4840 goto skip_async;
4841
4842 if (max_reclaim <= nr_pages)
4843 max_reclaim = 0;
4844 else
4845 max_reclaim -= nr_pages;
dea31f52 4846
0b246afa
JM
4847 wait_event(fs_info->async_submit_wait,
4848 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4849 (int)max_reclaim);
4850skip_async:
0019f10d 4851 spin_lock(&space_info->lock);
957780eb
JB
4852 if (list_empty(&space_info->tickets) &&
4853 list_empty(&space_info->priority_tickets)) {
4854 spin_unlock(&space_info->lock);
4855 break;
4856 }
0019f10d 4857 spin_unlock(&space_info->lock);
5da9d01b 4858
36e39c40 4859 loops++;
f104d044 4860 if (wait_ordered && !trans) {
0b246afa 4861 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4862 } else {
f4c738c2 4863 time_left = schedule_timeout_killable(1);
f104d044
JB
4864 if (time_left)
4865 break;
4866 }
963d678b 4867 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4868 &fs_info->delalloc_bytes);
5da9d01b 4869 }
5da9d01b
YZ
4870}
4871
996478ca
JB
4872struct reserve_ticket {
4873 u64 bytes;
4874 int error;
4875 struct list_head list;
4876 wait_queue_head_t wait;
4877};
4878
663350ac
JB
4879/**
4880 * maybe_commit_transaction - possibly commit the transaction if its ok to
4881 * @root - the root we're allocating for
4882 * @bytes - the number of bytes we want to reserve
4883 * @force - force the commit
8bb8ab2e 4884 *
663350ac
JB
4885 * This will check to make sure that committing the transaction will actually
4886 * get us somewhere and then commit the transaction if it does. Otherwise it
4887 * will return -ENOSPC.
8bb8ab2e 4888 */
0c9ab349 4889static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4890 struct btrfs_space_info *space_info)
663350ac 4891{
996478ca 4892 struct reserve_ticket *ticket = NULL;
0b246afa 4893 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac 4894 struct btrfs_trans_handle *trans;
996478ca 4895 u64 bytes;
663350ac
JB
4896
4897 trans = (struct btrfs_trans_handle *)current->journal_info;
4898 if (trans)
4899 return -EAGAIN;
4900
996478ca
JB
4901 spin_lock(&space_info->lock);
4902 if (!list_empty(&space_info->priority_tickets))
4903 ticket = list_first_entry(&space_info->priority_tickets,
4904 struct reserve_ticket, list);
4905 else if (!list_empty(&space_info->tickets))
4906 ticket = list_first_entry(&space_info->tickets,
4907 struct reserve_ticket, list);
4908 bytes = (ticket) ? ticket->bytes : 0;
4909 spin_unlock(&space_info->lock);
4910
4911 if (!bytes)
4912 return 0;
663350ac
JB
4913
4914 /* See if there is enough pinned space to make this reservation */
b150a4f1 4915 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4916 bytes) >= 0)
663350ac 4917 goto commit;
663350ac
JB
4918
4919 /*
4920 * See if there is some space in the delayed insertion reservation for
4921 * this reservation.
4922 */
4923 if (space_info != delayed_rsv->space_info)
4924 return -ENOSPC;
4925
4926 spin_lock(&delayed_rsv->lock);
996478ca
JB
4927 if (delayed_rsv->size > bytes)
4928 bytes = 0;
4929 else
4930 bytes -= delayed_rsv->size;
057aac3e
NB
4931 spin_unlock(&delayed_rsv->lock);
4932
b150a4f1 4933 if (percpu_counter_compare(&space_info->total_bytes_pinned,
996478ca 4934 bytes) < 0) {
663350ac
JB
4935 return -ENOSPC;
4936 }
663350ac
JB
4937
4938commit:
a9b3311e 4939 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4940 if (IS_ERR(trans))
4941 return -ENOSPC;
4942
3a45bb20 4943 return btrfs_commit_transaction(trans);
663350ac
JB
4944}
4945
e38ae7a0
NB
4946/*
4947 * Try to flush some data based on policy set by @state. This is only advisory
4948 * and may fail for various reasons. The caller is supposed to examine the
4949 * state of @space_info to detect the outcome.
4950 */
4951static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4952 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4953 int state)
96c3f433 4954{
a9b3311e 4955 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4956 struct btrfs_trans_handle *trans;
4957 int nr;
f4c738c2 4958 int ret = 0;
96c3f433
JB
4959
4960 switch (state) {
96c3f433
JB
4961 case FLUSH_DELAYED_ITEMS_NR:
4962 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4963 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4964 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4965 else
96c3f433 4966 nr = -1;
18cd8ea6 4967
96c3f433
JB
4968 trans = btrfs_join_transaction(root);
4969 if (IS_ERR(trans)) {
4970 ret = PTR_ERR(trans);
4971 break;
4972 }
e5c304e6 4973 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4974 btrfs_end_transaction(trans);
96c3f433 4975 break;
67b0fd63
JB
4976 case FLUSH_DELALLOC:
4977 case FLUSH_DELALLOC_WAIT:
7bdd6277 4978 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4979 state == FLUSH_DELALLOC_WAIT);
4980 break;
ea658bad
JB
4981 case ALLOC_CHUNK:
4982 trans = btrfs_join_transaction(root);
4983 if (IS_ERR(trans)) {
4984 ret = PTR_ERR(trans);
4985 break;
4986 }
2ff7e61e 4987 ret = do_chunk_alloc(trans, fs_info,
1b86826d 4988 btrfs_metadata_alloc_profile(fs_info),
ea658bad 4989 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4990 btrfs_end_transaction(trans);
eecba891 4991 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4992 ret = 0;
4993 break;
96c3f433 4994 case COMMIT_TRANS:
996478ca 4995 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
4996 break;
4997 default:
4998 ret = -ENOSPC;
4999 break;
5000 }
5001
7bdd6277
NB
5002 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5003 ret);
e38ae7a0 5004 return;
96c3f433 5005}
21c7e756
MX
5006
5007static inline u64
c1c4919b
JM
5008btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5009 struct btrfs_space_info *space_info,
5010 bool system_chunk)
21c7e756 5011{
957780eb 5012 struct reserve_ticket *ticket;
21c7e756
MX
5013 u64 used;
5014 u64 expected;
957780eb 5015 u64 to_reclaim = 0;
21c7e756 5016
957780eb
JB
5017 list_for_each_entry(ticket, &space_info->tickets, list)
5018 to_reclaim += ticket->bytes;
5019 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5020 to_reclaim += ticket->bytes;
5021 if (to_reclaim)
5022 return to_reclaim;
21c7e756 5023
e0af2484 5024 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
5025 if (can_overcommit(fs_info, space_info, to_reclaim,
5026 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
5027 return 0;
5028
0eee8a49
NB
5029 used = btrfs_space_info_used(space_info, true);
5030
c1c4919b
JM
5031 if (can_overcommit(fs_info, space_info, SZ_1M,
5032 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
5033 expected = div_factor_fine(space_info->total_bytes, 95);
5034 else
5035 expected = div_factor_fine(space_info->total_bytes, 90);
5036
5037 if (used > expected)
5038 to_reclaim = used - expected;
5039 else
5040 to_reclaim = 0;
5041 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5042 space_info->bytes_reserved);
21c7e756
MX
5043 return to_reclaim;
5044}
5045
c1c4919b
JM
5046static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5047 struct btrfs_space_info *space_info,
5048 u64 used, bool system_chunk)
21c7e756 5049{
365c5313
JB
5050 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5051
5052 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5053 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5054 return 0;
5055
c1c4919b
JM
5056 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5057 system_chunk))
d38b349c
JB
5058 return 0;
5059
0b246afa
JM
5060 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5061 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5062}
5063
957780eb 5064static void wake_all_tickets(struct list_head *head)
21c7e756 5065{
957780eb 5066 struct reserve_ticket *ticket;
25ce459c 5067
957780eb
JB
5068 while (!list_empty(head)) {
5069 ticket = list_first_entry(head, struct reserve_ticket, list);
5070 list_del_init(&ticket->list);
5071 ticket->error = -ENOSPC;
5072 wake_up(&ticket->wait);
21c7e756 5073 }
21c7e756
MX
5074}
5075
957780eb
JB
5076/*
5077 * This is for normal flushers, we can wait all goddamned day if we want to. We
5078 * will loop and continuously try to flush as long as we are making progress.
5079 * We count progress as clearing off tickets each time we have to loop.
5080 */
21c7e756
MX
5081static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5082{
5083 struct btrfs_fs_info *fs_info;
5084 struct btrfs_space_info *space_info;
5085 u64 to_reclaim;
5086 int flush_state;
957780eb 5087 int commit_cycles = 0;
ce129655 5088 u64 last_tickets_id;
21c7e756
MX
5089
5090 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5091 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5092
957780eb 5093 spin_lock(&space_info->lock);
c1c4919b
JM
5094 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5095 false);
957780eb
JB
5096 if (!to_reclaim) {
5097 space_info->flush = 0;
5098 spin_unlock(&space_info->lock);
21c7e756 5099 return;
957780eb 5100 }
ce129655 5101 last_tickets_id = space_info->tickets_id;
957780eb 5102 spin_unlock(&space_info->lock);
21c7e756
MX
5103
5104 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5105 do {
e38ae7a0 5106 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5107 spin_lock(&space_info->lock);
5108 if (list_empty(&space_info->tickets)) {
5109 space_info->flush = 0;
5110 spin_unlock(&space_info->lock);
5111 return;
5112 }
c1c4919b
JM
5113 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5114 space_info,
5115 false);
ce129655 5116 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5117 flush_state++;
5118 } else {
ce129655 5119 last_tickets_id = space_info->tickets_id;
957780eb
JB
5120 flush_state = FLUSH_DELAYED_ITEMS_NR;
5121 if (commit_cycles)
5122 commit_cycles--;
5123 }
5124
5125 if (flush_state > COMMIT_TRANS) {
5126 commit_cycles++;
5127 if (commit_cycles > 2) {
5128 wake_all_tickets(&space_info->tickets);
5129 space_info->flush = 0;
5130 } else {
5131 flush_state = FLUSH_DELAYED_ITEMS_NR;
5132 }
5133 }
5134 spin_unlock(&space_info->lock);
5135 } while (flush_state <= COMMIT_TRANS);
5136}
5137
5138void btrfs_init_async_reclaim_work(struct work_struct *work)
5139{
5140 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5141}
5142
5143static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5144 struct btrfs_space_info *space_info,
5145 struct reserve_ticket *ticket)
5146{
5147 u64 to_reclaim;
5148 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5149
5150 spin_lock(&space_info->lock);
c1c4919b
JM
5151 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5152 false);
957780eb
JB
5153 if (!to_reclaim) {
5154 spin_unlock(&space_info->lock);
5155 return;
5156 }
5157 spin_unlock(&space_info->lock);
5158
21c7e756 5159 do {
7bdd6277 5160 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5161 flush_state++;
957780eb
JB
5162 spin_lock(&space_info->lock);
5163 if (ticket->bytes == 0) {
5164 spin_unlock(&space_info->lock);
21c7e756 5165 return;
957780eb
JB
5166 }
5167 spin_unlock(&space_info->lock);
5168
5169 /*
5170 * Priority flushers can't wait on delalloc without
5171 * deadlocking.
5172 */
5173 if (flush_state == FLUSH_DELALLOC ||
5174 flush_state == FLUSH_DELALLOC_WAIT)
5175 flush_state = ALLOC_CHUNK;
365c5313 5176 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5177}
5178
957780eb
JB
5179static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5180 struct btrfs_space_info *space_info,
5181 struct reserve_ticket *ticket, u64 orig_bytes)
5182
21c7e756 5183{
957780eb
JB
5184 DEFINE_WAIT(wait);
5185 int ret = 0;
5186
5187 spin_lock(&space_info->lock);
5188 while (ticket->bytes > 0 && ticket->error == 0) {
5189 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5190 if (ret) {
5191 ret = -EINTR;
5192 break;
5193 }
5194 spin_unlock(&space_info->lock);
5195
5196 schedule();
5197
5198 finish_wait(&ticket->wait, &wait);
5199 spin_lock(&space_info->lock);
5200 }
5201 if (!ret)
5202 ret = ticket->error;
5203 if (!list_empty(&ticket->list))
5204 list_del_init(&ticket->list);
5205 if (ticket->bytes && ticket->bytes < orig_bytes) {
5206 u64 num_bytes = orig_bytes - ticket->bytes;
5207 space_info->bytes_may_use -= num_bytes;
5208 trace_btrfs_space_reservation(fs_info, "space_info",
5209 space_info->flags, num_bytes, 0);
5210 }
5211 spin_unlock(&space_info->lock);
5212
5213 return ret;
21c7e756
MX
5214}
5215
4a92b1b8
JB
5216/**
5217 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5218 * @root - the root we're allocating for
957780eb 5219 * @space_info - the space info we want to allocate from
4a92b1b8 5220 * @orig_bytes - the number of bytes we want
48fc7f7e 5221 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5222 *
01327610 5223 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5224 * with the block_rsv. If there is not enough space it will make an attempt to
5225 * flush out space to make room. It will do this by flushing delalloc if
5226 * possible or committing the transaction. If flush is 0 then no attempts to
5227 * regain reservations will be made and this will fail if there is not enough
5228 * space already.
8bb8ab2e 5229 */
c1c4919b 5230static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5231 struct btrfs_space_info *space_info,
5232 u64 orig_bytes,
c1c4919b
JM
5233 enum btrfs_reserve_flush_enum flush,
5234 bool system_chunk)
9ed74f2d 5235{
957780eb 5236 struct reserve_ticket ticket;
2bf64758 5237 u64 used;
8bb8ab2e 5238 int ret = 0;
9ed74f2d 5239
957780eb 5240 ASSERT(orig_bytes);
8ca17f0f 5241 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5242
8bb8ab2e 5243 spin_lock(&space_info->lock);
fdb5effd 5244 ret = -ENOSPC;
4136135b 5245 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5246
8bb8ab2e 5247 /*
957780eb
JB
5248 * If we have enough space then hooray, make our reservation and carry
5249 * on. If not see if we can overcommit, and if we can, hooray carry on.
5250 * If not things get more complicated.
8bb8ab2e 5251 */
957780eb
JB
5252 if (used + orig_bytes <= space_info->total_bytes) {
5253 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5254 trace_btrfs_space_reservation(fs_info, "space_info",
5255 space_info->flags, orig_bytes, 1);
957780eb 5256 ret = 0;
c1c4919b
JM
5257 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5258 system_chunk)) {
44734ed1 5259 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5260 trace_btrfs_space_reservation(fs_info, "space_info",
5261 space_info->flags, orig_bytes, 1);
44734ed1 5262 ret = 0;
2bf64758
JB
5263 }
5264
8bb8ab2e 5265 /*
957780eb
JB
5266 * If we couldn't make a reservation then setup our reservation ticket
5267 * and kick the async worker if it's not already running.
08e007d2 5268 *
957780eb
JB
5269 * If we are a priority flusher then we just need to add our ticket to
5270 * the list and we will do our own flushing further down.
8bb8ab2e 5271 */
72bcd99d 5272 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5273 ticket.bytes = orig_bytes;
5274 ticket.error = 0;
5275 init_waitqueue_head(&ticket.wait);
5276 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5277 list_add_tail(&ticket.list, &space_info->tickets);
5278 if (!space_info->flush) {
5279 space_info->flush = 1;
0b246afa 5280 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5281 space_info->flags,
5282 orig_bytes, flush,
5283 "enospc");
957780eb 5284 queue_work(system_unbound_wq,
c1c4919b 5285 &fs_info->async_reclaim_work);
957780eb
JB
5286 }
5287 } else {
5288 list_add_tail(&ticket.list,
5289 &space_info->priority_tickets);
5290 }
21c7e756
MX
5291 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5292 used += orig_bytes;
f6acfd50
JB
5293 /*
5294 * We will do the space reservation dance during log replay,
5295 * which means we won't have fs_info->fs_root set, so don't do
5296 * the async reclaim as we will panic.
5297 */
0b246afa 5298 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5299 need_do_async_reclaim(fs_info, space_info,
5300 used, system_chunk) &&
0b246afa
JM
5301 !work_busy(&fs_info->async_reclaim_work)) {
5302 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5303 orig_bytes, flush, "preempt");
21c7e756 5304 queue_work(system_unbound_wq,
0b246afa 5305 &fs_info->async_reclaim_work);
f376df2b 5306 }
8bb8ab2e 5307 }
f0486c68 5308 spin_unlock(&space_info->lock);
08e007d2 5309 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5310 return ret;
f0486c68 5311
957780eb 5312 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5313 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5314 orig_bytes);
08e007d2 5315
957780eb 5316 ret = 0;
0b246afa 5317 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5318 spin_lock(&space_info->lock);
5319 if (ticket.bytes) {
5320 if (ticket.bytes < orig_bytes) {
5321 u64 num_bytes = orig_bytes - ticket.bytes;
5322 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5323 trace_btrfs_space_reservation(fs_info, "space_info",
5324 space_info->flags,
5325 num_bytes, 0);
08e007d2 5326
957780eb
JB
5327 }
5328 list_del_init(&ticket.list);
5329 ret = -ENOSPC;
5330 }
5331 spin_unlock(&space_info->lock);
5332 ASSERT(list_empty(&ticket.list));
5333 return ret;
5334}
8bb8ab2e 5335
957780eb
JB
5336/**
5337 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5338 * @root - the root we're allocating for
5339 * @block_rsv - the block_rsv we're allocating for
5340 * @orig_bytes - the number of bytes we want
5341 * @flush - whether or not we can flush to make our reservation
5342 *
5343 * This will reserve orgi_bytes number of bytes from the space info associated
5344 * with the block_rsv. If there is not enough space it will make an attempt to
5345 * flush out space to make room. It will do this by flushing delalloc if
5346 * possible or committing the transaction. If flush is 0 then no attempts to
5347 * regain reservations will be made and this will fail if there is not enough
5348 * space already.
5349 */
5350static int reserve_metadata_bytes(struct btrfs_root *root,
5351 struct btrfs_block_rsv *block_rsv,
5352 u64 orig_bytes,
5353 enum btrfs_reserve_flush_enum flush)
5354{
0b246afa
JM
5355 struct btrfs_fs_info *fs_info = root->fs_info;
5356 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5357 int ret;
c1c4919b 5358 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5359
c1c4919b
JM
5360 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5361 orig_bytes, flush, system_chunk);
5d80366e
JB
5362 if (ret == -ENOSPC &&
5363 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5364 if (block_rsv != global_rsv &&
5365 !block_rsv_use_bytes(global_rsv, orig_bytes))
5366 ret = 0;
5367 }
9a3daff3 5368 if (ret == -ENOSPC) {
0b246afa 5369 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5370 block_rsv->space_info->flags,
5371 orig_bytes, 1);
9a3daff3
NB
5372
5373 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5374 dump_space_info(fs_info, block_rsv->space_info,
5375 orig_bytes, 0);
5376 }
f0486c68
YZ
5377 return ret;
5378}
5379
79787eaa
JM
5380static struct btrfs_block_rsv *get_block_rsv(
5381 const struct btrfs_trans_handle *trans,
5382 const struct btrfs_root *root)
f0486c68 5383{
0b246afa 5384 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5385 struct btrfs_block_rsv *block_rsv = NULL;
5386
e9cf439f 5387 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5388 (root == fs_info->csum_root && trans->adding_csums) ||
5389 (root == fs_info->uuid_root))
f7a81ea4
SB
5390 block_rsv = trans->block_rsv;
5391
4c13d758 5392 if (!block_rsv)
f0486c68
YZ
5393 block_rsv = root->block_rsv;
5394
5395 if (!block_rsv)
0b246afa 5396 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5397
5398 return block_rsv;
5399}
5400
5401static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5402 u64 num_bytes)
5403{
5404 int ret = -ENOSPC;
5405 spin_lock(&block_rsv->lock);
5406 if (block_rsv->reserved >= num_bytes) {
5407 block_rsv->reserved -= num_bytes;
5408 if (block_rsv->reserved < block_rsv->size)
5409 block_rsv->full = 0;
5410 ret = 0;
5411 }
5412 spin_unlock(&block_rsv->lock);
5413 return ret;
5414}
5415
5416static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5417 u64 num_bytes, int update_size)
5418{
5419 spin_lock(&block_rsv->lock);
5420 block_rsv->reserved += num_bytes;
5421 if (update_size)
5422 block_rsv->size += num_bytes;
5423 else if (block_rsv->reserved >= block_rsv->size)
5424 block_rsv->full = 1;
5425 spin_unlock(&block_rsv->lock);
5426}
5427
d52be818
JB
5428int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5429 struct btrfs_block_rsv *dest, u64 num_bytes,
5430 int min_factor)
5431{
5432 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5433 u64 min_bytes;
5434
5435 if (global_rsv->space_info != dest->space_info)
5436 return -ENOSPC;
5437
5438 spin_lock(&global_rsv->lock);
5439 min_bytes = div_factor(global_rsv->size, min_factor);
5440 if (global_rsv->reserved < min_bytes + num_bytes) {
5441 spin_unlock(&global_rsv->lock);
5442 return -ENOSPC;
5443 }
5444 global_rsv->reserved -= num_bytes;
5445 if (global_rsv->reserved < global_rsv->size)
5446 global_rsv->full = 0;
5447 spin_unlock(&global_rsv->lock);
5448
5449 block_rsv_add_bytes(dest, num_bytes, 1);
5450 return 0;
5451}
5452
957780eb
JB
5453/*
5454 * This is for space we already have accounted in space_info->bytes_may_use, so
5455 * basically when we're returning space from block_rsv's.
5456 */
5457static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5458 struct btrfs_space_info *space_info,
5459 u64 num_bytes)
5460{
5461 struct reserve_ticket *ticket;
5462 struct list_head *head;
5463 u64 used;
5464 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5465 bool check_overcommit = false;
5466
5467 spin_lock(&space_info->lock);
5468 head = &space_info->priority_tickets;
5469
5470 /*
5471 * If we are over our limit then we need to check and see if we can
5472 * overcommit, and if we can't then we just need to free up our space
5473 * and not satisfy any requests.
5474 */
0eee8a49 5475 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5476 if (used - num_bytes >= space_info->total_bytes)
5477 check_overcommit = true;
5478again:
5479 while (!list_empty(head) && num_bytes) {
5480 ticket = list_first_entry(head, struct reserve_ticket,
5481 list);
5482 /*
5483 * We use 0 bytes because this space is already reserved, so
5484 * adding the ticket space would be a double count.
5485 */
5486 if (check_overcommit &&
c1c4919b 5487 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5488 break;
5489 if (num_bytes >= ticket->bytes) {
5490 list_del_init(&ticket->list);
5491 num_bytes -= ticket->bytes;
5492 ticket->bytes = 0;
ce129655 5493 space_info->tickets_id++;
957780eb
JB
5494 wake_up(&ticket->wait);
5495 } else {
5496 ticket->bytes -= num_bytes;
5497 num_bytes = 0;
5498 }
5499 }
5500
5501 if (num_bytes && head == &space_info->priority_tickets) {
5502 head = &space_info->tickets;
5503 flush = BTRFS_RESERVE_FLUSH_ALL;
5504 goto again;
5505 }
5506 space_info->bytes_may_use -= num_bytes;
5507 trace_btrfs_space_reservation(fs_info, "space_info",
5508 space_info->flags, num_bytes, 0);
5509 spin_unlock(&space_info->lock);
5510}
5511
5512/*
5513 * This is for newly allocated space that isn't accounted in
5514 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5515 * we use this helper.
5516 */
5517static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5518 struct btrfs_space_info *space_info,
5519 u64 num_bytes)
5520{
5521 struct reserve_ticket *ticket;
5522 struct list_head *head = &space_info->priority_tickets;
5523
5524again:
5525 while (!list_empty(head) && num_bytes) {
5526 ticket = list_first_entry(head, struct reserve_ticket,
5527 list);
5528 if (num_bytes >= ticket->bytes) {
5529 trace_btrfs_space_reservation(fs_info, "space_info",
5530 space_info->flags,
5531 ticket->bytes, 1);
5532 list_del_init(&ticket->list);
5533 num_bytes -= ticket->bytes;
5534 space_info->bytes_may_use += ticket->bytes;
5535 ticket->bytes = 0;
ce129655 5536 space_info->tickets_id++;
957780eb
JB
5537 wake_up(&ticket->wait);
5538 } else {
5539 trace_btrfs_space_reservation(fs_info, "space_info",
5540 space_info->flags,
5541 num_bytes, 1);
5542 space_info->bytes_may_use += num_bytes;
5543 ticket->bytes -= num_bytes;
5544 num_bytes = 0;
5545 }
5546 }
5547
5548 if (num_bytes && head == &space_info->priority_tickets) {
5549 head = &space_info->tickets;
5550 goto again;
5551 }
5552}
5553
69fe2d75 5554static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5555 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5556 struct btrfs_block_rsv *dest, u64 num_bytes,
5557 u64 *qgroup_to_release_ret)
f0486c68
YZ
5558{
5559 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5560 u64 qgroup_to_release = 0;
69fe2d75 5561 u64 ret;
f0486c68
YZ
5562
5563 spin_lock(&block_rsv->lock);
ff6bc37e 5564 if (num_bytes == (u64)-1) {
f0486c68 5565 num_bytes = block_rsv->size;
ff6bc37e
QW
5566 qgroup_to_release = block_rsv->qgroup_rsv_size;
5567 }
f0486c68
YZ
5568 block_rsv->size -= num_bytes;
5569 if (block_rsv->reserved >= block_rsv->size) {
5570 num_bytes = block_rsv->reserved - block_rsv->size;
5571 block_rsv->reserved = block_rsv->size;
5572 block_rsv->full = 1;
5573 } else {
5574 num_bytes = 0;
5575 }
ff6bc37e
QW
5576 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5577 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5578 block_rsv->qgroup_rsv_size;
5579 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5580 } else {
5581 qgroup_to_release = 0;
5582 }
f0486c68
YZ
5583 spin_unlock(&block_rsv->lock);
5584
69fe2d75 5585 ret = num_bytes;
f0486c68
YZ
5586 if (num_bytes > 0) {
5587 if (dest) {
e9e22899
JB
5588 spin_lock(&dest->lock);
5589 if (!dest->full) {
5590 u64 bytes_to_add;
5591
5592 bytes_to_add = dest->size - dest->reserved;
5593 bytes_to_add = min(num_bytes, bytes_to_add);
5594 dest->reserved += bytes_to_add;
5595 if (dest->reserved >= dest->size)
5596 dest->full = 1;
5597 num_bytes -= bytes_to_add;
5598 }
5599 spin_unlock(&dest->lock);
5600 }
957780eb
JB
5601 if (num_bytes)
5602 space_info_add_old_bytes(fs_info, space_info,
5603 num_bytes);
9ed74f2d 5604 }
ff6bc37e
QW
5605 if (qgroup_to_release_ret)
5606 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5607 return ret;
f0486c68 5608}
4e06bdd6 5609
25d609f8
JB
5610int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5611 struct btrfs_block_rsv *dst, u64 num_bytes,
5612 int update_size)
f0486c68
YZ
5613{
5614 int ret;
9ed74f2d 5615
f0486c68
YZ
5616 ret = block_rsv_use_bytes(src, num_bytes);
5617 if (ret)
5618 return ret;
9ed74f2d 5619
25d609f8 5620 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5621 return 0;
5622}
5623
66d8f3dd 5624void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5625{
f0486c68
YZ
5626 memset(rsv, 0, sizeof(*rsv));
5627 spin_lock_init(&rsv->lock);
66d8f3dd 5628 rsv->type = type;
f0486c68
YZ
5629}
5630
69fe2d75
JB
5631void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5632 struct btrfs_block_rsv *rsv,
5633 unsigned short type)
5634{
5635 btrfs_init_block_rsv(rsv, type);
5636 rsv->space_info = __find_space_info(fs_info,
5637 BTRFS_BLOCK_GROUP_METADATA);
5638}
5639
2ff7e61e 5640struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5641 unsigned short type)
f0486c68
YZ
5642{
5643 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5644
f0486c68
YZ
5645 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5646 if (!block_rsv)
5647 return NULL;
9ed74f2d 5648
69fe2d75 5649 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5650 return block_rsv;
5651}
9ed74f2d 5652
2ff7e61e 5653void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5654 struct btrfs_block_rsv *rsv)
5655{
2aaa6655
JB
5656 if (!rsv)
5657 return;
2ff7e61e 5658 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5659 kfree(rsv);
9ed74f2d
JB
5660}
5661
cdfb080e
CM
5662void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5663{
5664 kfree(rsv);
5665}
5666
08e007d2
MX
5667int btrfs_block_rsv_add(struct btrfs_root *root,
5668 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5669 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5670{
f0486c68 5671 int ret;
9ed74f2d 5672
f0486c68
YZ
5673 if (num_bytes == 0)
5674 return 0;
8bb8ab2e 5675
61b520a9 5676 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5677 if (!ret) {
5678 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5679 return 0;
5680 }
9ed74f2d 5681
f0486c68 5682 return ret;
f0486c68 5683}
9ed74f2d 5684
2ff7e61e 5685int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5686{
5687 u64 num_bytes = 0;
f0486c68 5688 int ret = -ENOSPC;
9ed74f2d 5689
f0486c68
YZ
5690 if (!block_rsv)
5691 return 0;
9ed74f2d 5692
f0486c68 5693 spin_lock(&block_rsv->lock);
36ba022a
JB
5694 num_bytes = div_factor(block_rsv->size, min_factor);
5695 if (block_rsv->reserved >= num_bytes)
5696 ret = 0;
5697 spin_unlock(&block_rsv->lock);
9ed74f2d 5698
36ba022a
JB
5699 return ret;
5700}
5701
08e007d2
MX
5702int btrfs_block_rsv_refill(struct btrfs_root *root,
5703 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5704 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5705{
5706 u64 num_bytes = 0;
5707 int ret = -ENOSPC;
5708
5709 if (!block_rsv)
5710 return 0;
5711
5712 spin_lock(&block_rsv->lock);
5713 num_bytes = min_reserved;
13553e52 5714 if (block_rsv->reserved >= num_bytes)
f0486c68 5715 ret = 0;
13553e52 5716 else
f0486c68 5717 num_bytes -= block_rsv->reserved;
f0486c68 5718 spin_unlock(&block_rsv->lock);
13553e52 5719
f0486c68
YZ
5720 if (!ret)
5721 return 0;
5722
aa38a711 5723 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5724 if (!ret) {
5725 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5726 return 0;
6a63209f 5727 }
9ed74f2d 5728
13553e52 5729 return ret;
f0486c68
YZ
5730}
5731
69fe2d75
JB
5732/**
5733 * btrfs_inode_rsv_refill - refill the inode block rsv.
5734 * @inode - the inode we are refilling.
5735 * @flush - the flusing restriction.
5736 *
5737 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5738 * block_rsv->size as the minimum size. We'll either refill the missing amount
5739 * or return if we already have enough space. This will also handle the resreve
5740 * tracepoint for the reserved amount.
5741 */
3f2dd7a0
QW
5742static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5743 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5744{
5745 struct btrfs_root *root = inode->root;
5746 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5747 u64 num_bytes = 0;
ff6bc37e 5748 u64 qgroup_num_bytes = 0;
69fe2d75
JB
5749 int ret = -ENOSPC;
5750
5751 spin_lock(&block_rsv->lock);
5752 if (block_rsv->reserved < block_rsv->size)
5753 num_bytes = block_rsv->size - block_rsv->reserved;
ff6bc37e
QW
5754 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5755 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5756 block_rsv->qgroup_rsv_reserved;
69fe2d75
JB
5757 spin_unlock(&block_rsv->lock);
5758
5759 if (num_bytes == 0)
5760 return 0;
5761
ff6bc37e 5762 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
43b18595
QW
5763 if (ret)
5764 return ret;
69fe2d75
JB
5765 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5766 if (!ret) {
5767 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5768 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5769 btrfs_ino(inode), num_bytes, 1);
ff6bc37e
QW
5770
5771 /* Don't forget to increase qgroup_rsv_reserved */
5772 spin_lock(&block_rsv->lock);
5773 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5774 spin_unlock(&block_rsv->lock);
5775 } else
5776 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
69fe2d75
JB
5777 return ret;
5778}
5779
5780/**
5781 * btrfs_inode_rsv_release - release any excessive reservation.
5782 * @inode - the inode we need to release from.
43b18595
QW
5783 * @qgroup_free - free or convert qgroup meta.
5784 * Unlike normal operation, qgroup meta reservation needs to know if we are
5785 * freeing qgroup reservation or just converting it into per-trans. Normally
5786 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5787 *
5788 * This is the same as btrfs_block_rsv_release, except that it handles the
5789 * tracepoint for the reservation.
5790 */
43b18595 5791static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5792{
5793 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5794 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5795 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5796 u64 released = 0;
ff6bc37e 5797 u64 qgroup_to_release = 0;
69fe2d75
JB
5798
5799 /*
5800 * Since we statically set the block_rsv->size we just want to say we
5801 * are releasing 0 bytes, and then we'll just get the reservation over
5802 * the size free'd.
5803 */
ff6bc37e
QW
5804 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5805 &qgroup_to_release);
69fe2d75
JB
5806 if (released > 0)
5807 trace_btrfs_space_reservation(fs_info, "delalloc",
5808 btrfs_ino(inode), released, 0);
43b18595 5809 if (qgroup_free)
ff6bc37e 5810 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5811 else
ff6bc37e
QW
5812 btrfs_qgroup_convert_reserved_meta(inode->root,
5813 qgroup_to_release);
69fe2d75
JB
5814}
5815
2ff7e61e 5816void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5817 struct btrfs_block_rsv *block_rsv,
5818 u64 num_bytes)
5819{
0b246afa
JM
5820 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5821
17504584 5822 if (global_rsv == block_rsv ||
f0486c68
YZ
5823 block_rsv->space_info != global_rsv->space_info)
5824 global_rsv = NULL;
ff6bc37e 5825 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
6a63209f
JB
5826}
5827
8929ecfa
YZ
5828static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5829{
5830 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5831 struct btrfs_space_info *sinfo = block_rsv->space_info;
5832 u64 num_bytes;
6a63209f 5833
ae2e4728
JB
5834 /*
5835 * The global block rsv is based on the size of the extent tree, the
5836 * checksum tree and the root tree. If the fs is empty we want to set
5837 * it to a minimal amount for safety.
5838 */
5839 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5840 btrfs_root_used(&fs_info->csum_root->root_item) +
5841 btrfs_root_used(&fs_info->tree_root->root_item);
5842 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5843
8929ecfa 5844 spin_lock(&sinfo->lock);
1f699d38 5845 spin_lock(&block_rsv->lock);
4e06bdd6 5846
ee22184b 5847 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5848
fb4b10e5 5849 if (block_rsv->reserved < block_rsv->size) {
4136135b 5850 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5851 if (sinfo->total_bytes > num_bytes) {
5852 num_bytes = sinfo->total_bytes - num_bytes;
5853 num_bytes = min(num_bytes,
5854 block_rsv->size - block_rsv->reserved);
5855 block_rsv->reserved += num_bytes;
5856 sinfo->bytes_may_use += num_bytes;
5857 trace_btrfs_space_reservation(fs_info, "space_info",
5858 sinfo->flags, num_bytes,
5859 1);
5860 }
5861 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5862 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5863 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5864 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5865 sinfo->flags, num_bytes, 0);
8929ecfa 5866 block_rsv->reserved = block_rsv->size;
8929ecfa 5867 }
182608c8 5868
fb4b10e5
JB
5869 if (block_rsv->reserved == block_rsv->size)
5870 block_rsv->full = 1;
5871 else
5872 block_rsv->full = 0;
5873
8929ecfa 5874 spin_unlock(&block_rsv->lock);
1f699d38 5875 spin_unlock(&sinfo->lock);
6a63209f
JB
5876}
5877
f0486c68 5878static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5879{
f0486c68 5880 struct btrfs_space_info *space_info;
6a63209f 5881
f0486c68
YZ
5882 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5883 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5884
f0486c68 5885 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5886 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5887 fs_info->trans_block_rsv.space_info = space_info;
5888 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5889 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5890
8929ecfa
YZ
5891 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5892 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5893 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5894 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5895 if (fs_info->quota_root)
5896 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5897 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5898
8929ecfa 5899 update_global_block_rsv(fs_info);
6a63209f
JB
5900}
5901
8929ecfa 5902static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5903{
8c2a3ca2 5904 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 5905 (u64)-1, NULL);
8929ecfa
YZ
5906 WARN_ON(fs_info->trans_block_rsv.size > 0);
5907 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5908 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5909 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5910 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5911 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5912}
5913
6a63209f 5914
4fbcdf66
FM
5915/*
5916 * To be called after all the new block groups attached to the transaction
5917 * handle have been created (btrfs_create_pending_block_groups()).
5918 */
5919void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5920{
64b63580 5921 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5922
5923 if (!trans->chunk_bytes_reserved)
5924 return;
5925
5926 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5927
5928 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 5929 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
5930 trans->chunk_bytes_reserved = 0;
5931}
5932
d5c12070
MX
5933/*
5934 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5935 * root: the root of the parent directory
5936 * rsv: block reservation
5937 * items: the number of items that we need do reservation
5938 * qgroup_reserved: used to return the reserved size in qgroup
5939 *
5940 * This function is used to reserve the space for snapshot/subvolume
5941 * creation and deletion. Those operations are different with the
5942 * common file/directory operations, they change two fs/file trees
5943 * and root tree, the number of items that the qgroup reserves is
5944 * different with the free space reservation. So we can not use
01327610 5945 * the space reservation mechanism in start_transaction().
d5c12070
MX
5946 */
5947int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5948 struct btrfs_block_rsv *rsv,
5949 int items,
ee3441b4 5950 bool use_global_rsv)
a22285a6 5951{
d5c12070
MX
5952 u64 num_bytes;
5953 int ret;
0b246afa
JM
5954 struct btrfs_fs_info *fs_info = root->fs_info;
5955 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5956
0b246afa 5957 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5958 /* One for parent inode, two for dir entries */
0b246afa 5959 num_bytes = 3 * fs_info->nodesize;
733e03a0 5960 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
d5c12070
MX
5961 if (ret)
5962 return ret;
5963 } else {
5964 num_bytes = 0;
5965 }
5966
0b246afa
JM
5967 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5968 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
5969 BTRFS_BLOCK_GROUP_METADATA);
5970 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5971 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5972
5973 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5974 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5975
c4c129db
GJ
5976 if (ret && num_bytes)
5977 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
d5c12070
MX
5978
5979 return ret;
5980}
5981
2ff7e61e 5982void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 5983 struct btrfs_block_rsv *rsv)
d5c12070 5984{
2ff7e61e 5985 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
5986}
5987
69fe2d75
JB
5988static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5989 struct btrfs_inode *inode)
9e0baf60 5990{
69fe2d75
JB
5991 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5992 u64 reserve_size = 0;
ff6bc37e 5993 u64 qgroup_rsv_size = 0;
69fe2d75
JB
5994 u64 csum_leaves;
5995 unsigned outstanding_extents;
9e0baf60 5996
69fe2d75
JB
5997 lockdep_assert_held(&inode->lock);
5998 outstanding_extents = inode->outstanding_extents;
5999 if (outstanding_extents)
6000 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6001 outstanding_extents + 1);
6002 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6003 inode->csum_bytes);
6004 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6005 csum_leaves);
ff6bc37e
QW
6006 /*
6007 * For qgroup rsv, the calculation is very simple:
6008 * account one nodesize for each outstanding extent
6009 *
6010 * This is overestimating in most cases.
6011 */
6012 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
9e0baf60 6013
69fe2d75
JB
6014 spin_lock(&block_rsv->lock);
6015 block_rsv->size = reserve_size;
ff6bc37e 6016 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 6017 spin_unlock(&block_rsv->lock);
0ca1f7ce 6018}
c146afad 6019
9f3db423 6020int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6021{
9f3db423 6022 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
69fe2d75 6023 unsigned nr_extents;
08e007d2 6024 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6025 int ret = 0;
c64c2bd8 6026 bool delalloc_lock = true;
6324fbf3 6027
c64c2bd8
JB
6028 /* If we are a free space inode we need to not flush since we will be in
6029 * the middle of a transaction commit. We also don't need the delalloc
6030 * mutex since we won't race with anybody. We need this mostly to make
6031 * lockdep shut its filthy mouth.
bac357dc
JB
6032 *
6033 * If we have a transaction open (can happen if we call truncate_block
6034 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6035 */
6036 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6037 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6038 delalloc_lock = false;
da07d4ab
NB
6039 } else {
6040 if (current->journal_info)
6041 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 6042
da07d4ab
NB
6043 if (btrfs_transaction_in_commit(fs_info))
6044 schedule_timeout(1);
6045 }
ec44a35c 6046
c64c2bd8 6047 if (delalloc_lock)
9f3db423 6048 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6049
0b246afa 6050 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6051
6052 /* Add our new extents and calculate the new rsv size. */
9f3db423 6053 spin_lock(&inode->lock);
69fe2d75 6054 nr_extents = count_max_extents(num_bytes);
8b62f87b 6055 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6056 inode->csum_bytes += num_bytes;
6057 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6058 spin_unlock(&inode->lock);
57a45ced 6059
69fe2d75 6060 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 6061 if (unlikely(ret))
88e081bf 6062 goto out_fail;
25179201 6063
c64c2bd8 6064 if (delalloc_lock)
9f3db423 6065 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6066 return 0;
88e081bf
WS
6067
6068out_fail:
9f3db423 6069 spin_lock(&inode->lock);
8b62f87b
JB
6070 nr_extents = count_max_extents(num_bytes);
6071 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6072 inode->csum_bytes -= num_bytes;
6073 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6074 spin_unlock(&inode->lock);
88e081bf 6075
43b18595 6076 btrfs_inode_rsv_release(inode, true);
88e081bf 6077 if (delalloc_lock)
9f3db423 6078 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6079 return ret;
0ca1f7ce
YZ
6080}
6081
7709cde3
JB
6082/**
6083 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6084 * @inode: the inode to release the reservation for.
6085 * @num_bytes: the number of bytes we are releasing.
43b18595 6086 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
6087 *
6088 * This will release the metadata reservation for an inode. This can be called
6089 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6090 * reservations, or on error for the same reason.
7709cde3 6091 */
43b18595
QW
6092void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6093 bool qgroup_free)
0ca1f7ce 6094{
691fa059 6095 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0ca1f7ce 6096
0b246afa 6097 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6098 spin_lock(&inode->lock);
69fe2d75
JB
6099 inode->csum_bytes -= num_bytes;
6100 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6101 spin_unlock(&inode->lock);
0ca1f7ce 6102
0b246afa 6103 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6104 return;
6105
43b18595 6106 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
6107}
6108
8b62f87b
JB
6109/**
6110 * btrfs_delalloc_release_extents - release our outstanding_extents
6111 * @inode: the inode to balance the reservation for.
6112 * @num_bytes: the number of bytes we originally reserved with
43b18595 6113 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
6114 *
6115 * When we reserve space we increase outstanding_extents for the extents we may
6116 * add. Once we've set the range as delalloc or created our ordered extents we
6117 * have outstanding_extents to track the real usage, so we use this to free our
6118 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6119 * with btrfs_delalloc_reserve_metadata.
6120 */
43b18595
QW
6121void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6122 bool qgroup_free)
8b62f87b
JB
6123{
6124 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6125 unsigned num_extents;
8b62f87b
JB
6126
6127 spin_lock(&inode->lock);
6128 num_extents = count_max_extents(num_bytes);
6129 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6130 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6131 spin_unlock(&inode->lock);
6132
8b62f87b
JB
6133 if (btrfs_is_testing(fs_info))
6134 return;
6135
43b18595 6136 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
6137}
6138
1ada3a62 6139/**
7cf5b976 6140 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6141 * delalloc
6142 * @inode: inode we're writing to
6143 * @start: start range we are writing to
6144 * @len: how long the range we are writing to
364ecf36
QW
6145 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6146 * current reservation.
1ada3a62 6147 *
1ada3a62
QW
6148 * This will do the following things
6149 *
6150 * o reserve space in data space info for num bytes
6151 * and reserve precious corresponding qgroup space
6152 * (Done in check_data_free_space)
6153 *
6154 * o reserve space for metadata space, based on the number of outstanding
6155 * extents and how much csums will be needed
6156 * also reserve metadata space in a per root over-reserve method.
6157 * o add to the inodes->delalloc_bytes
6158 * o add it to the fs_info's delalloc inodes list.
6159 * (Above 3 all done in delalloc_reserve_metadata)
6160 *
6161 * Return 0 for success
6162 * Return <0 for error(-ENOSPC or -EQUOT)
6163 */
364ecf36
QW
6164int btrfs_delalloc_reserve_space(struct inode *inode,
6165 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6166{
6167 int ret;
6168
364ecf36 6169 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6170 if (ret < 0)
6171 return ret;
9f3db423 6172 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6173 if (ret < 0)
bc42bda2 6174 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6175 return ret;
6176}
6177
7709cde3 6178/**
7cf5b976 6179 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6180 * @inode: inode we're releasing space for
6181 * @start: start position of the space already reserved
6182 * @len: the len of the space already reserved
8b62f87b 6183 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6184 *
6185 * This function will release the metadata space that was not used and will
6186 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6187 * list if there are no delalloc bytes left.
6188 * Also it will handle the qgroup reserved space.
6189 */
bc42bda2 6190void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6191 struct extent_changeset *reserved,
43b18595 6192 u64 start, u64 len, bool qgroup_free)
1ada3a62 6193{
43b18595 6194 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6195 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6196}
6197
ce93ec54 6198static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6199 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6200 u64 num_bytes, int alloc)
9078a3e1 6201{
0af3d00b 6202 struct btrfs_block_group_cache *cache = NULL;
db94535d 6203 u64 total = num_bytes;
9078a3e1 6204 u64 old_val;
db94535d 6205 u64 byte_in_group;
0af3d00b 6206 int factor;
3e1ad54f 6207
5d4f98a2 6208 /* block accounting for super block */
eb73c1b7 6209 spin_lock(&info->delalloc_root_lock);
6c41761f 6210 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6211 if (alloc)
6212 old_val += num_bytes;
6213 else
6214 old_val -= num_bytes;
6c41761f 6215 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6216 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6217
d397712b 6218 while (total) {
db94535d 6219 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6220 if (!cache)
79787eaa 6221 return -ENOENT;
b742bb82
YZ
6222 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6223 BTRFS_BLOCK_GROUP_RAID1 |
6224 BTRFS_BLOCK_GROUP_RAID10))
6225 factor = 2;
6226 else
6227 factor = 1;
9d66e233
JB
6228 /*
6229 * If this block group has free space cache written out, we
6230 * need to make sure to load it if we are removing space. This
6231 * is because we need the unpinning stage to actually add the
6232 * space back to the block group, otherwise we will leak space.
6233 */
6234 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6235 cache_block_group(cache, 1);
0af3d00b 6236
db94535d
CM
6237 byte_in_group = bytenr - cache->key.objectid;
6238 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6239
25179201 6240 spin_lock(&cache->space_info->lock);
c286ac48 6241 spin_lock(&cache->lock);
0af3d00b 6242
6202df69 6243 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6244 cache->disk_cache_state < BTRFS_DC_CLEAR)
6245 cache->disk_cache_state = BTRFS_DC_CLEAR;
6246
9078a3e1 6247 old_val = btrfs_block_group_used(&cache->item);
db94535d 6248 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6249 if (alloc) {
db94535d 6250 old_val += num_bytes;
11833d66
YZ
6251 btrfs_set_block_group_used(&cache->item, old_val);
6252 cache->reserved -= num_bytes;
11833d66 6253 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6254 cache->space_info->bytes_used += num_bytes;
6255 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6256 spin_unlock(&cache->lock);
25179201 6257 spin_unlock(&cache->space_info->lock);
cd1bc465 6258 } else {
db94535d 6259 old_val -= num_bytes;
ae0ab003
FM
6260 btrfs_set_block_group_used(&cache->item, old_val);
6261 cache->pinned += num_bytes;
6262 cache->space_info->bytes_pinned += num_bytes;
6263 cache->space_info->bytes_used -= num_bytes;
6264 cache->space_info->disk_used -= num_bytes * factor;
6265 spin_unlock(&cache->lock);
6266 spin_unlock(&cache->space_info->lock);
47ab2a6c 6267
0b246afa 6268 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6269 cache->space_info->flags,
6270 num_bytes, 1);
d7eae340
OS
6271 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6272 num_bytes);
ae0ab003
FM
6273 set_extent_dirty(info->pinned_extents,
6274 bytenr, bytenr + num_bytes - 1,
6275 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6276 }
1bbc621e
CM
6277
6278 spin_lock(&trans->transaction->dirty_bgs_lock);
6279 if (list_empty(&cache->dirty_list)) {
6280 list_add_tail(&cache->dirty_list,
6281 &trans->transaction->dirty_bgs);
6282 trans->transaction->num_dirty_bgs++;
6283 btrfs_get_block_group(cache);
6284 }
6285 spin_unlock(&trans->transaction->dirty_bgs_lock);
6286
036a9348
FM
6287 /*
6288 * No longer have used bytes in this block group, queue it for
6289 * deletion. We do this after adding the block group to the
6290 * dirty list to avoid races between cleaner kthread and space
6291 * cache writeout.
6292 */
6293 if (!alloc && old_val == 0) {
6294 spin_lock(&info->unused_bgs_lock);
6295 if (list_empty(&cache->bg_list)) {
6296 btrfs_get_block_group(cache);
4ed0a7a3 6297 trace_btrfs_add_unused_block_group(cache);
036a9348
FM
6298 list_add_tail(&cache->bg_list,
6299 &info->unused_bgs);
6300 }
6301 spin_unlock(&info->unused_bgs_lock);
6302 }
6303
fa9c0d79 6304 btrfs_put_block_group(cache);
db94535d
CM
6305 total -= num_bytes;
6306 bytenr += num_bytes;
9078a3e1
CM
6307 }
6308 return 0;
6309}
6324fbf3 6310
2ff7e61e 6311static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6312{
0f9dd46c 6313 struct btrfs_block_group_cache *cache;
d2fb3437 6314 u64 bytenr;
0f9dd46c 6315
0b246afa
JM
6316 spin_lock(&fs_info->block_group_cache_lock);
6317 bytenr = fs_info->first_logical_byte;
6318 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6319
6320 if (bytenr < (u64)-1)
6321 return bytenr;
6322
0b246afa 6323 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6324 if (!cache)
a061fc8d 6325 return 0;
0f9dd46c 6326
d2fb3437 6327 bytenr = cache->key.objectid;
fa9c0d79 6328 btrfs_put_block_group(cache);
d2fb3437
YZ
6329
6330 return bytenr;
a061fc8d
CM
6331}
6332
2ff7e61e 6333static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6334 struct btrfs_block_group_cache *cache,
6335 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6336{
11833d66
YZ
6337 spin_lock(&cache->space_info->lock);
6338 spin_lock(&cache->lock);
6339 cache->pinned += num_bytes;
6340 cache->space_info->bytes_pinned += num_bytes;
6341 if (reserved) {
6342 cache->reserved -= num_bytes;
6343 cache->space_info->bytes_reserved -= num_bytes;
6344 }
6345 spin_unlock(&cache->lock);
6346 spin_unlock(&cache->space_info->lock);
68b38550 6347
0b246afa 6348 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6349 cache->space_info->flags, num_bytes, 1);
4da8b76d 6350 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
0b246afa 6351 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6352 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6353 return 0;
6354}
68b38550 6355
f0486c68
YZ
6356/*
6357 * this function must be called within transaction
6358 */
2ff7e61e 6359int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6360 u64 bytenr, u64 num_bytes, int reserved)
6361{
6362 struct btrfs_block_group_cache *cache;
68b38550 6363
0b246afa 6364 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6365 BUG_ON(!cache); /* Logic error */
f0486c68 6366
2ff7e61e 6367 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6368
6369 btrfs_put_block_group(cache);
11833d66
YZ
6370 return 0;
6371}
6372
f0486c68 6373/*
e688b725
CM
6374 * this function must be called within transaction
6375 */
2ff7e61e 6376int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6377 u64 bytenr, u64 num_bytes)
6378{
6379 struct btrfs_block_group_cache *cache;
b50c6e25 6380 int ret;
e688b725 6381
0b246afa 6382 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6383 if (!cache)
6384 return -EINVAL;
e688b725
CM
6385
6386 /*
6387 * pull in the free space cache (if any) so that our pin
6388 * removes the free space from the cache. We have load_only set
6389 * to one because the slow code to read in the free extents does check
6390 * the pinned extents.
6391 */
f6373bf3 6392 cache_block_group(cache, 1);
e688b725 6393
2ff7e61e 6394 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6395
6396 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6397 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6398 btrfs_put_block_group(cache);
b50c6e25 6399 return ret;
e688b725
CM
6400}
6401
2ff7e61e
JM
6402static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6403 u64 start, u64 num_bytes)
8c2a1a30
JB
6404{
6405 int ret;
6406 struct btrfs_block_group_cache *block_group;
6407 struct btrfs_caching_control *caching_ctl;
6408
0b246afa 6409 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6410 if (!block_group)
6411 return -EINVAL;
6412
6413 cache_block_group(block_group, 0);
6414 caching_ctl = get_caching_control(block_group);
6415
6416 if (!caching_ctl) {
6417 /* Logic error */
6418 BUG_ON(!block_group_cache_done(block_group));
6419 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6420 } else {
6421 mutex_lock(&caching_ctl->mutex);
6422
6423 if (start >= caching_ctl->progress) {
2ff7e61e 6424 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6425 } else if (start + num_bytes <= caching_ctl->progress) {
6426 ret = btrfs_remove_free_space(block_group,
6427 start, num_bytes);
6428 } else {
6429 num_bytes = caching_ctl->progress - start;
6430 ret = btrfs_remove_free_space(block_group,
6431 start, num_bytes);
6432 if (ret)
6433 goto out_lock;
6434
6435 num_bytes = (start + num_bytes) -
6436 caching_ctl->progress;
6437 start = caching_ctl->progress;
2ff7e61e 6438 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6439 }
6440out_lock:
6441 mutex_unlock(&caching_ctl->mutex);
6442 put_caching_control(caching_ctl);
6443 }
6444 btrfs_put_block_group(block_group);
6445 return ret;
6446}
6447
2ff7e61e 6448int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6449 struct extent_buffer *eb)
6450{
6451 struct btrfs_file_extent_item *item;
6452 struct btrfs_key key;
6453 int found_type;
6454 int i;
b89311ef 6455 int ret = 0;
8c2a1a30 6456
2ff7e61e 6457 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6458 return 0;
6459
6460 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6461 btrfs_item_key_to_cpu(eb, &key, i);
6462 if (key.type != BTRFS_EXTENT_DATA_KEY)
6463 continue;
6464 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6465 found_type = btrfs_file_extent_type(eb, item);
6466 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6467 continue;
6468 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6469 continue;
6470 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6471 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
b89311ef
GJ
6472 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6473 if (ret)
6474 break;
8c2a1a30
JB
6475 }
6476
b89311ef 6477 return ret;
8c2a1a30
JB
6478}
6479
9cfa3e34
FM
6480static void
6481btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6482{
6483 atomic_inc(&bg->reservations);
6484}
6485
6486void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6487 const u64 start)
6488{
6489 struct btrfs_block_group_cache *bg;
6490
6491 bg = btrfs_lookup_block_group(fs_info, start);
6492 ASSERT(bg);
6493 if (atomic_dec_and_test(&bg->reservations))
4625956a 6494 wake_up_var(&bg->reservations);
9cfa3e34
FM
6495 btrfs_put_block_group(bg);
6496}
6497
9cfa3e34
FM
6498void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6499{
6500 struct btrfs_space_info *space_info = bg->space_info;
6501
6502 ASSERT(bg->ro);
6503
6504 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6505 return;
6506
6507 /*
6508 * Our block group is read only but before we set it to read only,
6509 * some task might have had allocated an extent from it already, but it
6510 * has not yet created a respective ordered extent (and added it to a
6511 * root's list of ordered extents).
6512 * Therefore wait for any task currently allocating extents, since the
6513 * block group's reservations counter is incremented while a read lock
6514 * on the groups' semaphore is held and decremented after releasing
6515 * the read access on that semaphore and creating the ordered extent.
6516 */
6517 down_write(&space_info->groups_sem);
6518 up_write(&space_info->groups_sem);
6519
4625956a 6520 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6521}
6522
fb25e914 6523/**
4824f1f4 6524 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6525 * @cache: The cache we are manipulating
18513091
WX
6526 * @ram_bytes: The number of bytes of file content, and will be same to
6527 * @num_bytes except for the compress path.
fb25e914 6528 * @num_bytes: The number of bytes in question
e570fd27 6529 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6530 *
745699ef
XW
6531 * This is called by the allocator when it reserves space. If this is a
6532 * reservation and the block group has become read only we cannot make the
6533 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6534 */
4824f1f4 6535static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6536 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6537{
fb25e914 6538 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6539 int ret = 0;
79787eaa 6540
fb25e914
JB
6541 spin_lock(&space_info->lock);
6542 spin_lock(&cache->lock);
4824f1f4
WX
6543 if (cache->ro) {
6544 ret = -EAGAIN;
fb25e914 6545 } else {
4824f1f4
WX
6546 cache->reserved += num_bytes;
6547 space_info->bytes_reserved += num_bytes;
e570fd27 6548
18513091
WX
6549 trace_btrfs_space_reservation(cache->fs_info,
6550 "space_info", space_info->flags,
6551 ram_bytes, 0);
6552 space_info->bytes_may_use -= ram_bytes;
e570fd27 6553 if (delalloc)
4824f1f4 6554 cache->delalloc_bytes += num_bytes;
324ae4df 6555 }
fb25e914
JB
6556 spin_unlock(&cache->lock);
6557 spin_unlock(&space_info->lock);
f0486c68 6558 return ret;
324ae4df 6559}
9078a3e1 6560
4824f1f4
WX
6561/**
6562 * btrfs_free_reserved_bytes - update the block_group and space info counters
6563 * @cache: The cache we are manipulating
6564 * @num_bytes: The number of bytes in question
6565 * @delalloc: The blocks are allocated for the delalloc write
6566 *
6567 * This is called by somebody who is freeing space that was never actually used
6568 * on disk. For example if you reserve some space for a new leaf in transaction
6569 * A and before transaction A commits you free that leaf, you call this with
6570 * reserve set to 0 in order to clear the reservation.
6571 */
6572
6573static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6574 u64 num_bytes, int delalloc)
6575{
6576 struct btrfs_space_info *space_info = cache->space_info;
6577 int ret = 0;
6578
6579 spin_lock(&space_info->lock);
6580 spin_lock(&cache->lock);
6581 if (cache->ro)
6582 space_info->bytes_readonly += num_bytes;
6583 cache->reserved -= num_bytes;
6584 space_info->bytes_reserved -= num_bytes;
6585
6586 if (delalloc)
6587 cache->delalloc_bytes -= num_bytes;
6588 spin_unlock(&cache->lock);
6589 spin_unlock(&space_info->lock);
6590 return ret;
6591}
8b74c03e 6592void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6593{
11833d66
YZ
6594 struct btrfs_caching_control *next;
6595 struct btrfs_caching_control *caching_ctl;
6596 struct btrfs_block_group_cache *cache;
e8569813 6597
9e351cc8 6598 down_write(&fs_info->commit_root_sem);
25179201 6599
11833d66
YZ
6600 list_for_each_entry_safe(caching_ctl, next,
6601 &fs_info->caching_block_groups, list) {
6602 cache = caching_ctl->block_group;
6603 if (block_group_cache_done(cache)) {
6604 cache->last_byte_to_unpin = (u64)-1;
6605 list_del_init(&caching_ctl->list);
6606 put_caching_control(caching_ctl);
e8569813 6607 } else {
11833d66 6608 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6609 }
e8569813 6610 }
11833d66
YZ
6611
6612 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6613 fs_info->pinned_extents = &fs_info->freed_extents[1];
6614 else
6615 fs_info->pinned_extents = &fs_info->freed_extents[0];
6616
9e351cc8 6617 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6618
6619 update_global_block_rsv(fs_info);
e8569813
ZY
6620}
6621
c759c4e1
JB
6622/*
6623 * Returns the free cluster for the given space info and sets empty_cluster to
6624 * what it should be based on the mount options.
6625 */
6626static struct btrfs_free_cluster *
2ff7e61e
JM
6627fetch_cluster_info(struct btrfs_fs_info *fs_info,
6628 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6629{
6630 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6631
6632 *empty_cluster = 0;
6633 if (btrfs_mixed_space_info(space_info))
6634 return ret;
6635
c759c4e1 6636 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6637 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6638 if (btrfs_test_opt(fs_info, SSD))
6639 *empty_cluster = SZ_2M;
6640 else
ee22184b 6641 *empty_cluster = SZ_64K;
583b7231
HK
6642 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6643 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6644 *empty_cluster = SZ_2M;
0b246afa 6645 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6646 }
6647
6648 return ret;
6649}
6650
2ff7e61e
JM
6651static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6652 u64 start, u64 end,
678886bd 6653 const bool return_free_space)
ccd467d6 6654{
11833d66 6655 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6656 struct btrfs_space_info *space_info;
6657 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6658 struct btrfs_free_cluster *cluster = NULL;
11833d66 6659 u64 len;
c759c4e1
JB
6660 u64 total_unpinned = 0;
6661 u64 empty_cluster = 0;
7b398f8e 6662 bool readonly;
ccd467d6 6663
11833d66 6664 while (start <= end) {
7b398f8e 6665 readonly = false;
11833d66
YZ
6666 if (!cache ||
6667 start >= cache->key.objectid + cache->key.offset) {
6668 if (cache)
6669 btrfs_put_block_group(cache);
c759c4e1 6670 total_unpinned = 0;
11833d66 6671 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6672 BUG_ON(!cache); /* Logic error */
c759c4e1 6673
2ff7e61e 6674 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6675 cache->space_info,
6676 &empty_cluster);
6677 empty_cluster <<= 1;
11833d66
YZ
6678 }
6679
6680 len = cache->key.objectid + cache->key.offset - start;
6681 len = min(len, end + 1 - start);
6682
6683 if (start < cache->last_byte_to_unpin) {
6684 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6685 if (return_free_space)
6686 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6687 }
6688
f0486c68 6689 start += len;
c759c4e1 6690 total_unpinned += len;
7b398f8e 6691 space_info = cache->space_info;
f0486c68 6692
c759c4e1
JB
6693 /*
6694 * If this space cluster has been marked as fragmented and we've
6695 * unpinned enough in this block group to potentially allow a
6696 * cluster to be created inside of it go ahead and clear the
6697 * fragmented check.
6698 */
6699 if (cluster && cluster->fragmented &&
6700 total_unpinned > empty_cluster) {
6701 spin_lock(&cluster->lock);
6702 cluster->fragmented = 0;
6703 spin_unlock(&cluster->lock);
6704 }
6705
7b398f8e 6706 spin_lock(&space_info->lock);
11833d66
YZ
6707 spin_lock(&cache->lock);
6708 cache->pinned -= len;
7b398f8e 6709 space_info->bytes_pinned -= len;
c51e7bb1
JB
6710
6711 trace_btrfs_space_reservation(fs_info, "pinned",
6712 space_info->flags, len, 0);
4f4db217 6713 space_info->max_extent_size = 0;
d288db5d 6714 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6715 if (cache->ro) {
6716 space_info->bytes_readonly += len;
6717 readonly = true;
6718 }
11833d66 6719 spin_unlock(&cache->lock);
957780eb
JB
6720 if (!readonly && return_free_space &&
6721 global_rsv->space_info == space_info) {
6722 u64 to_add = len;
92ac58ec 6723
7b398f8e
JB
6724 spin_lock(&global_rsv->lock);
6725 if (!global_rsv->full) {
957780eb
JB
6726 to_add = min(len, global_rsv->size -
6727 global_rsv->reserved);
6728 global_rsv->reserved += to_add;
6729 space_info->bytes_may_use += to_add;
7b398f8e
JB
6730 if (global_rsv->reserved >= global_rsv->size)
6731 global_rsv->full = 1;
957780eb
JB
6732 trace_btrfs_space_reservation(fs_info,
6733 "space_info",
6734 space_info->flags,
6735 to_add, 1);
6736 len -= to_add;
7b398f8e
JB
6737 }
6738 spin_unlock(&global_rsv->lock);
957780eb
JB
6739 /* Add to any tickets we may have */
6740 if (len)
6741 space_info_add_new_bytes(fs_info, space_info,
6742 len);
7b398f8e
JB
6743 }
6744 spin_unlock(&space_info->lock);
ccd467d6 6745 }
11833d66
YZ
6746
6747 if (cache)
6748 btrfs_put_block_group(cache);
ccd467d6
CM
6749 return 0;
6750}
6751
5ead2dd0 6752int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6753{
5ead2dd0 6754 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6755 struct btrfs_block_group_cache *block_group, *tmp;
6756 struct list_head *deleted_bgs;
11833d66 6757 struct extent_io_tree *unpin;
1a5bc167
CM
6758 u64 start;
6759 u64 end;
a28ec197 6760 int ret;
a28ec197 6761
11833d66
YZ
6762 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6763 unpin = &fs_info->freed_extents[1];
6764 else
6765 unpin = &fs_info->freed_extents[0];
6766
e33e17ee 6767 while (!trans->aborted) {
d4b450cd 6768 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6769 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6770 EXTENT_DIRTY, NULL);
d4b450cd
FM
6771 if (ret) {
6772 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6773 break;
d4b450cd 6774 }
1f3c79a2 6775
0b246afa 6776 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6777 ret = btrfs_discard_extent(fs_info, start,
5378e607 6778 end + 1 - start, NULL);
1f3c79a2 6779
af6f8f60 6780 clear_extent_dirty(unpin, start, end);
2ff7e61e 6781 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6782 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6783 cond_resched();
a28ec197 6784 }
817d52f8 6785
e33e17ee
JM
6786 /*
6787 * Transaction is finished. We don't need the lock anymore. We
6788 * do need to clean up the block groups in case of a transaction
6789 * abort.
6790 */
6791 deleted_bgs = &trans->transaction->deleted_bgs;
6792 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6793 u64 trimmed = 0;
6794
6795 ret = -EROFS;
6796 if (!trans->aborted)
2ff7e61e 6797 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6798 block_group->key.objectid,
6799 block_group->key.offset,
6800 &trimmed);
6801
6802 list_del_init(&block_group->bg_list);
6803 btrfs_put_block_group_trimming(block_group);
6804 btrfs_put_block_group(block_group);
6805
6806 if (ret) {
6807 const char *errstr = btrfs_decode_error(ret);
6808 btrfs_warn(fs_info,
913e1535 6809 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6810 ret, errstr);
6811 }
6812 }
6813
e20d96d6
CM
6814 return 0;
6815}
6816
5d4f98a2 6817static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6818 struct btrfs_fs_info *info,
c682f9b3 6819 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6820 u64 root_objectid, u64 owner_objectid,
6821 u64 owner_offset, int refs_to_drop,
c682f9b3 6822 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6823{
e2fa7227 6824 struct btrfs_key key;
5d4f98a2 6825 struct btrfs_path *path;
1261ec42 6826 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6827 struct extent_buffer *leaf;
5d4f98a2
YZ
6828 struct btrfs_extent_item *ei;
6829 struct btrfs_extent_inline_ref *iref;
a28ec197 6830 int ret;
5d4f98a2 6831 int is_data;
952fccac
CM
6832 int extent_slot = 0;
6833 int found_extent = 0;
6834 int num_to_del = 1;
5d4f98a2
YZ
6835 u32 item_size;
6836 u64 refs;
c682f9b3
QW
6837 u64 bytenr = node->bytenr;
6838 u64 num_bytes = node->num_bytes;
fcebe456 6839 int last_ref = 0;
0b246afa 6840 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6841
5caf2a00 6842 path = btrfs_alloc_path();
54aa1f4d
CM
6843 if (!path)
6844 return -ENOMEM;
5f26f772 6845
e4058b54 6846 path->reada = READA_FORWARD;
b9473439 6847 path->leave_spinning = 1;
5d4f98a2
YZ
6848
6849 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6850 BUG_ON(!is_data && refs_to_drop != 1);
6851
3173a18f 6852 if (is_data)
897ca819 6853 skinny_metadata = false;
3173a18f 6854
87bde3cd 6855 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6856 bytenr, num_bytes, parent,
6857 root_objectid, owner_objectid,
6858 owner_offset);
7bb86316 6859 if (ret == 0) {
952fccac 6860 extent_slot = path->slots[0];
5d4f98a2
YZ
6861 while (extent_slot >= 0) {
6862 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6863 extent_slot);
5d4f98a2 6864 if (key.objectid != bytenr)
952fccac 6865 break;
5d4f98a2
YZ
6866 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6867 key.offset == num_bytes) {
952fccac
CM
6868 found_extent = 1;
6869 break;
6870 }
3173a18f
JB
6871 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6872 key.offset == owner_objectid) {
6873 found_extent = 1;
6874 break;
6875 }
952fccac
CM
6876 if (path->slots[0] - extent_slot > 5)
6877 break;
5d4f98a2 6878 extent_slot--;
952fccac 6879 }
5d4f98a2
YZ
6880#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6881 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6882 if (found_extent && item_size < sizeof(*ei))
6883 found_extent = 0;
6884#endif
31840ae1 6885 if (!found_extent) {
5d4f98a2 6886 BUG_ON(iref);
87bde3cd
JM
6887 ret = remove_extent_backref(trans, info, path, NULL,
6888 refs_to_drop,
fcebe456 6889 is_data, &last_ref);
005d6427 6890 if (ret) {
66642832 6891 btrfs_abort_transaction(trans, ret);
005d6427
DS
6892 goto out;
6893 }
b3b4aa74 6894 btrfs_release_path(path);
b9473439 6895 path->leave_spinning = 1;
5d4f98a2
YZ
6896
6897 key.objectid = bytenr;
6898 key.type = BTRFS_EXTENT_ITEM_KEY;
6899 key.offset = num_bytes;
6900
3173a18f
JB
6901 if (!is_data && skinny_metadata) {
6902 key.type = BTRFS_METADATA_ITEM_KEY;
6903 key.offset = owner_objectid;
6904 }
6905
31840ae1
ZY
6906 ret = btrfs_search_slot(trans, extent_root,
6907 &key, path, -1, 1);
3173a18f
JB
6908 if (ret > 0 && skinny_metadata && path->slots[0]) {
6909 /*
6910 * Couldn't find our skinny metadata item,
6911 * see if we have ye olde extent item.
6912 */
6913 path->slots[0]--;
6914 btrfs_item_key_to_cpu(path->nodes[0], &key,
6915 path->slots[0]);
6916 if (key.objectid == bytenr &&
6917 key.type == BTRFS_EXTENT_ITEM_KEY &&
6918 key.offset == num_bytes)
6919 ret = 0;
6920 }
6921
6922 if (ret > 0 && skinny_metadata) {
6923 skinny_metadata = false;
9ce49a0b 6924 key.objectid = bytenr;
3173a18f
JB
6925 key.type = BTRFS_EXTENT_ITEM_KEY;
6926 key.offset = num_bytes;
6927 btrfs_release_path(path);
6928 ret = btrfs_search_slot(trans, extent_root,
6929 &key, path, -1, 1);
6930 }
6931
f3465ca4 6932 if (ret) {
5d163e0e
JM
6933 btrfs_err(info,
6934 "umm, got %d back from search, was looking for %llu",
6935 ret, bytenr);
b783e62d 6936 if (ret > 0)
a4f78750 6937 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6938 }
005d6427 6939 if (ret < 0) {
66642832 6940 btrfs_abort_transaction(trans, ret);
005d6427
DS
6941 goto out;
6942 }
31840ae1
ZY
6943 extent_slot = path->slots[0];
6944 }
fae7f21c 6945 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 6946 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
6947 btrfs_err(info,
6948 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6949 bytenr, parent, root_objectid, owner_objectid,
6950 owner_offset);
66642832 6951 btrfs_abort_transaction(trans, ret);
c4a050bb 6952 goto out;
79787eaa 6953 } else {
66642832 6954 btrfs_abort_transaction(trans, ret);
005d6427 6955 goto out;
7bb86316 6956 }
5f39d397
CM
6957
6958 leaf = path->nodes[0];
5d4f98a2
YZ
6959 item_size = btrfs_item_size_nr(leaf, extent_slot);
6960#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6961 if (item_size < sizeof(*ei)) {
6962 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
6963 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6964 0);
005d6427 6965 if (ret < 0) {
66642832 6966 btrfs_abort_transaction(trans, ret);
005d6427
DS
6967 goto out;
6968 }
5d4f98a2 6969
b3b4aa74 6970 btrfs_release_path(path);
5d4f98a2
YZ
6971 path->leave_spinning = 1;
6972
6973 key.objectid = bytenr;
6974 key.type = BTRFS_EXTENT_ITEM_KEY;
6975 key.offset = num_bytes;
6976
6977 ret = btrfs_search_slot(trans, extent_root, &key, path,
6978 -1, 1);
6979 if (ret) {
5d163e0e
JM
6980 btrfs_err(info,
6981 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6982 ret, bytenr);
a4f78750 6983 btrfs_print_leaf(path->nodes[0]);
5d4f98a2 6984 }
005d6427 6985 if (ret < 0) {
66642832 6986 btrfs_abort_transaction(trans, ret);
005d6427
DS
6987 goto out;
6988 }
6989
5d4f98a2
YZ
6990 extent_slot = path->slots[0];
6991 leaf = path->nodes[0];
6992 item_size = btrfs_item_size_nr(leaf, extent_slot);
6993 }
6994#endif
6995 BUG_ON(item_size < sizeof(*ei));
952fccac 6996 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6997 struct btrfs_extent_item);
3173a18f
JB
6998 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6999 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7000 struct btrfs_tree_block_info *bi;
7001 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7002 bi = (struct btrfs_tree_block_info *)(ei + 1);
7003 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7004 }
56bec294 7005
5d4f98a2 7006 refs = btrfs_extent_refs(leaf, ei);
32b02538 7007 if (refs < refs_to_drop) {
5d163e0e
JM
7008 btrfs_err(info,
7009 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7010 refs_to_drop, refs, bytenr);
32b02538 7011 ret = -EINVAL;
66642832 7012 btrfs_abort_transaction(trans, ret);
32b02538
JB
7013 goto out;
7014 }
56bec294 7015 refs -= refs_to_drop;
5f39d397 7016
5d4f98a2
YZ
7017 if (refs > 0) {
7018 if (extent_op)
7019 __run_delayed_extent_op(extent_op, leaf, ei);
7020 /*
7021 * In the case of inline back ref, reference count will
7022 * be updated by remove_extent_backref
952fccac 7023 */
5d4f98a2
YZ
7024 if (iref) {
7025 BUG_ON(!found_extent);
7026 } else {
7027 btrfs_set_extent_refs(leaf, ei, refs);
7028 btrfs_mark_buffer_dirty(leaf);
7029 }
7030 if (found_extent) {
87bde3cd 7031 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7032 iref, refs_to_drop,
fcebe456 7033 is_data, &last_ref);
005d6427 7034 if (ret) {
66642832 7035 btrfs_abort_transaction(trans, ret);
005d6427
DS
7036 goto out;
7037 }
952fccac 7038 }
5d4f98a2 7039 } else {
5d4f98a2
YZ
7040 if (found_extent) {
7041 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7042 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7043 if (iref) {
7044 BUG_ON(path->slots[0] != extent_slot);
7045 } else {
7046 BUG_ON(path->slots[0] != extent_slot + 1);
7047 path->slots[0] = extent_slot;
7048 num_to_del = 2;
7049 }
78fae27e 7050 }
b9473439 7051
fcebe456 7052 last_ref = 1;
952fccac
CM
7053 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7054 num_to_del);
005d6427 7055 if (ret) {
66642832 7056 btrfs_abort_transaction(trans, ret);
005d6427
DS
7057 goto out;
7058 }
b3b4aa74 7059 btrfs_release_path(path);
21af804c 7060
5d4f98a2 7061 if (is_data) {
5b4aacef 7062 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7063 if (ret) {
66642832 7064 btrfs_abort_transaction(trans, ret);
005d6427
DS
7065 goto out;
7066 }
459931ec
CM
7067 }
7068
e7355e50 7069 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
1e144fb8 7070 if (ret) {
66642832 7071 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7072 goto out;
7073 }
7074
0b246afa 7075 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7076 if (ret) {
66642832 7077 btrfs_abort_transaction(trans, ret);
005d6427
DS
7078 goto out;
7079 }
a28ec197 7080 }
fcebe456
JB
7081 btrfs_release_path(path);
7082
79787eaa 7083out:
5caf2a00 7084 btrfs_free_path(path);
a28ec197
CM
7085 return ret;
7086}
7087
1887be66 7088/*
f0486c68 7089 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7090 * delayed ref for that extent as well. This searches the delayed ref tree for
7091 * a given extent, and if there are no other delayed refs to be processed, it
7092 * removes it from the tree.
7093 */
7094static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7095 u64 bytenr)
1887be66
CM
7096{
7097 struct btrfs_delayed_ref_head *head;
7098 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7099 int ret = 0;
1887be66
CM
7100
7101 delayed_refs = &trans->transaction->delayed_refs;
7102 spin_lock(&delayed_refs->lock);
f72ad18e 7103 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7104 if (!head)
cf93da7b 7105 goto out_delayed_unlock;
1887be66 7106
d7df2c79 7107 spin_lock(&head->lock);
0e0adbcf 7108 if (!RB_EMPTY_ROOT(&head->ref_tree))
1887be66
CM
7109 goto out;
7110
5d4f98a2
YZ
7111 if (head->extent_op) {
7112 if (!head->must_insert_reserved)
7113 goto out;
78a6184a 7114 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7115 head->extent_op = NULL;
7116 }
7117
1887be66
CM
7118 /*
7119 * waiting for the lock here would deadlock. If someone else has it
7120 * locked they are already in the process of dropping it anyway
7121 */
7122 if (!mutex_trylock(&head->mutex))
7123 goto out;
7124
7125 /*
7126 * at this point we have a head with no other entries. Go
7127 * ahead and process it.
7128 */
c46effa6 7129 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 7130 RB_CLEAR_NODE(&head->href_node);
d7df2c79 7131 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7132
7133 /*
7134 * we don't take a ref on the node because we're removing it from the
7135 * tree, so we just steal the ref the tree was holding.
7136 */
c3e69d58 7137 delayed_refs->num_heads--;
d7df2c79 7138 if (head->processing == 0)
c3e69d58 7139 delayed_refs->num_heads_ready--;
d7df2c79
JB
7140 head->processing = 0;
7141 spin_unlock(&head->lock);
1887be66
CM
7142 spin_unlock(&delayed_refs->lock);
7143
f0486c68
YZ
7144 BUG_ON(head->extent_op);
7145 if (head->must_insert_reserved)
7146 ret = 1;
7147
7148 mutex_unlock(&head->mutex);
d278850e 7149 btrfs_put_delayed_ref_head(head);
f0486c68 7150 return ret;
1887be66 7151out:
d7df2c79 7152 spin_unlock(&head->lock);
cf93da7b
CM
7153
7154out_delayed_unlock:
1887be66
CM
7155 spin_unlock(&delayed_refs->lock);
7156 return 0;
7157}
7158
f0486c68
YZ
7159void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7160 struct btrfs_root *root,
7161 struct extent_buffer *buf,
5581a51a 7162 u64 parent, int last_ref)
f0486c68 7163{
0b246afa 7164 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7165 int pin = 1;
f0486c68
YZ
7166 int ret;
7167
7168 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7169 int old_ref_mod, new_ref_mod;
7170
fd708b81
JB
7171 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7172 root->root_key.objectid,
7173 btrfs_header_level(buf), 0,
7174 BTRFS_DROP_DELAYED_REF);
7be07912
OS
7175 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7176 buf->len, parent,
0b246afa
JM
7177 root->root_key.objectid,
7178 btrfs_header_level(buf),
7be07912 7179 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7180 &old_ref_mod, &new_ref_mod);
79787eaa 7181 BUG_ON(ret); /* -ENOMEM */
d7eae340 7182 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7183 }
7184
0a16c7d7 7185 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7186 struct btrfs_block_group_cache *cache;
7187
f0486c68 7188 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7189 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7190 if (!ret)
37be25bc 7191 goto out;
f0486c68
YZ
7192 }
7193
4da8b76d 7194 pin = 0;
0b246afa 7195 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7196
f0486c68 7197 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7198 pin_down_extent(fs_info, cache, buf->start,
7199 buf->len, 1);
6219872d 7200 btrfs_put_block_group(cache);
37be25bc 7201 goto out;
f0486c68
YZ
7202 }
7203
7204 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7205
7206 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7207 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7208 btrfs_put_block_group(cache);
71ff6437 7209 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7210 }
7211out:
b150a4f1 7212 if (pin)
29d2b84c 7213 add_pinned_bytes(fs_info, buf->len, true,
b150a4f1
JB
7214 root->root_key.objectid);
7215
0a16c7d7
OS
7216 if (last_ref) {
7217 /*
7218 * Deleting the buffer, clear the corrupt flag since it doesn't
7219 * matter anymore.
7220 */
7221 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7222 }
f0486c68
YZ
7223}
7224
79787eaa 7225/* Can return -ENOMEM */
2ff7e61e 7226int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7227 struct btrfs_root *root,
66d7e7f0 7228 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7229 u64 owner, u64 offset)
925baedd 7230{
84f7d8e6 7231 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7232 int old_ref_mod, new_ref_mod;
925baedd
CM
7233 int ret;
7234
f5ee5c9a 7235 if (btrfs_is_testing(fs_info))
faa2dbf0 7236 return 0;
fccb84c9 7237
fd708b81
JB
7238 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7239 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7240 root_objectid, owner, offset,
7241 BTRFS_DROP_DELAYED_REF);
7242
56bec294
CM
7243 /*
7244 * tree log blocks never actually go into the extent allocation
7245 * tree, just update pinning info and exit early.
56bec294 7246 */
5d4f98a2
YZ
7247 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7248 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7249 /* unlocks the pinned mutex */
2ff7e61e 7250 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7251 old_ref_mod = new_ref_mod = 0;
56bec294 7252 ret = 0;
5d4f98a2 7253 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 7254 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
7255 num_bytes, parent,
7256 root_objectid, (int)owner,
7257 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7258 &old_ref_mod, &new_ref_mod);
5d4f98a2 7259 } else {
66d7e7f0 7260 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
7261 num_bytes, parent,
7262 root_objectid, owner, offset,
7263 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7264 &old_ref_mod, &new_ref_mod);
56bec294 7265 }
d7eae340 7266
29d2b84c
NB
7267 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7268 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7269
7270 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7271 }
d7eae340 7272
925baedd
CM
7273 return ret;
7274}
7275
817d52f8
JB
7276/*
7277 * when we wait for progress in the block group caching, its because
7278 * our allocation attempt failed at least once. So, we must sleep
7279 * and let some progress happen before we try again.
7280 *
7281 * This function will sleep at least once waiting for new free space to
7282 * show up, and then it will check the block group free space numbers
7283 * for our min num_bytes. Another option is to have it go ahead
7284 * and look in the rbtree for a free extent of a given size, but this
7285 * is a good start.
36cce922
JB
7286 *
7287 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7288 * any of the information in this block group.
817d52f8 7289 */
36cce922 7290static noinline void
817d52f8
JB
7291wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7292 u64 num_bytes)
7293{
11833d66 7294 struct btrfs_caching_control *caching_ctl;
817d52f8 7295
11833d66
YZ
7296 caching_ctl = get_caching_control(cache);
7297 if (!caching_ctl)
36cce922 7298 return;
817d52f8 7299
11833d66 7300 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7301 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7302
7303 put_caching_control(caching_ctl);
11833d66
YZ
7304}
7305
7306static noinline int
7307wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7308{
7309 struct btrfs_caching_control *caching_ctl;
36cce922 7310 int ret = 0;
11833d66
YZ
7311
7312 caching_ctl = get_caching_control(cache);
7313 if (!caching_ctl)
36cce922 7314 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7315
7316 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7317 if (cache->cached == BTRFS_CACHE_ERROR)
7318 ret = -EIO;
11833d66 7319 put_caching_control(caching_ctl);
36cce922 7320 return ret;
817d52f8
JB
7321}
7322
7323enum btrfs_loop_type {
285ff5af
JB
7324 LOOP_CACHING_NOWAIT = 0,
7325 LOOP_CACHING_WAIT = 1,
7326 LOOP_ALLOC_CHUNK = 2,
7327 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7328};
7329
e570fd27
MX
7330static inline void
7331btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7332 int delalloc)
7333{
7334 if (delalloc)
7335 down_read(&cache->data_rwsem);
7336}
7337
7338static inline void
7339btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7340 int delalloc)
7341{
7342 btrfs_get_block_group(cache);
7343 if (delalloc)
7344 down_read(&cache->data_rwsem);
7345}
7346
7347static struct btrfs_block_group_cache *
7348btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7349 struct btrfs_free_cluster *cluster,
7350 int delalloc)
7351{
89771cc9 7352 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7353
e570fd27 7354 spin_lock(&cluster->refill_lock);
6719afdc
GU
7355 while (1) {
7356 used_bg = cluster->block_group;
7357 if (!used_bg)
7358 return NULL;
7359
7360 if (used_bg == block_group)
e570fd27
MX
7361 return used_bg;
7362
6719afdc 7363 btrfs_get_block_group(used_bg);
e570fd27 7364
6719afdc
GU
7365 if (!delalloc)
7366 return used_bg;
e570fd27 7367
6719afdc
GU
7368 if (down_read_trylock(&used_bg->data_rwsem))
7369 return used_bg;
e570fd27 7370
6719afdc 7371 spin_unlock(&cluster->refill_lock);
e570fd27 7372
e321f8a8
LB
7373 /* We should only have one-level nested. */
7374 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7375
6719afdc
GU
7376 spin_lock(&cluster->refill_lock);
7377 if (used_bg == cluster->block_group)
7378 return used_bg;
e570fd27 7379
6719afdc
GU
7380 up_read(&used_bg->data_rwsem);
7381 btrfs_put_block_group(used_bg);
7382 }
e570fd27
MX
7383}
7384
7385static inline void
7386btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7387 int delalloc)
7388{
7389 if (delalloc)
7390 up_read(&cache->data_rwsem);
7391 btrfs_put_block_group(cache);
7392}
7393
fec577fb
CM
7394/*
7395 * walks the btree of allocated extents and find a hole of a given size.
7396 * The key ins is changed to record the hole:
a4820398 7397 * ins->objectid == start position
62e2749e 7398 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7399 * ins->offset == the size of the hole.
fec577fb 7400 * Any available blocks before search_start are skipped.
a4820398
MX
7401 *
7402 * If there is no suitable free space, we will record the max size of
7403 * the free space extent currently.
fec577fb 7404 */
87bde3cd 7405static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7406 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7407 u64 hint_byte, struct btrfs_key *ins,
7408 u64 flags, int delalloc)
fec577fb 7409{
80eb234a 7410 int ret = 0;
0b246afa 7411 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7412 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7413 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7414 u64 search_start = 0;
a4820398 7415 u64 max_extent_size = 0;
c759c4e1 7416 u64 empty_cluster = 0;
80eb234a 7417 struct btrfs_space_info *space_info;
fa9c0d79 7418 int loop = 0;
3e72ee88 7419 int index = btrfs_bg_flags_to_raid_index(flags);
0a24325e 7420 bool failed_cluster_refill = false;
1cdda9b8 7421 bool failed_alloc = false;
67377734 7422 bool use_cluster = true;
60d2adbb 7423 bool have_caching_bg = false;
13a0db5a 7424 bool orig_have_caching_bg = false;
a5e681d9 7425 bool full_search = false;
fec577fb 7426
0b246afa 7427 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7428 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7429 ins->objectid = 0;
7430 ins->offset = 0;
b1a4d965 7431
71ff6437 7432 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7433
0b246afa 7434 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7435 if (!space_info) {
0b246afa 7436 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7437 return -ENOSPC;
7438 }
2552d17e 7439
67377734 7440 /*
4f4db217
JB
7441 * If our free space is heavily fragmented we may not be able to make
7442 * big contiguous allocations, so instead of doing the expensive search
7443 * for free space, simply return ENOSPC with our max_extent_size so we
7444 * can go ahead and search for a more manageable chunk.
7445 *
7446 * If our max_extent_size is large enough for our allocation simply
7447 * disable clustering since we will likely not be able to find enough
7448 * space to create a cluster and induce latency trying.
67377734 7449 */
4f4db217
JB
7450 if (unlikely(space_info->max_extent_size)) {
7451 spin_lock(&space_info->lock);
7452 if (space_info->max_extent_size &&
7453 num_bytes > space_info->max_extent_size) {
7454 ins->offset = space_info->max_extent_size;
7455 spin_unlock(&space_info->lock);
7456 return -ENOSPC;
7457 } else if (space_info->max_extent_size) {
7458 use_cluster = false;
7459 }
7460 spin_unlock(&space_info->lock);
fa9c0d79 7461 }
0f9dd46c 7462
2ff7e61e 7463 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7464 if (last_ptr) {
fa9c0d79
CM
7465 spin_lock(&last_ptr->lock);
7466 if (last_ptr->block_group)
7467 hint_byte = last_ptr->window_start;
c759c4e1
JB
7468 if (last_ptr->fragmented) {
7469 /*
7470 * We still set window_start so we can keep track of the
7471 * last place we found an allocation to try and save
7472 * some time.
7473 */
7474 hint_byte = last_ptr->window_start;
7475 use_cluster = false;
7476 }
fa9c0d79 7477 spin_unlock(&last_ptr->lock);
239b14b3 7478 }
fa9c0d79 7479
2ff7e61e 7480 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7481 search_start = max(search_start, hint_byte);
2552d17e 7482 if (search_start == hint_byte) {
0b246afa 7483 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7484 /*
7485 * we don't want to use the block group if it doesn't match our
7486 * allocation bits, or if its not cached.
ccf0e725
JB
7487 *
7488 * However if we are re-searching with an ideal block group
7489 * picked out then we don't care that the block group is cached.
817d52f8 7490 */
b6919a58 7491 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7492 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7493 down_read(&space_info->groups_sem);
44fb5511
CM
7494 if (list_empty(&block_group->list) ||
7495 block_group->ro) {
7496 /*
7497 * someone is removing this block group,
7498 * we can't jump into the have_block_group
7499 * target because our list pointers are not
7500 * valid
7501 */
7502 btrfs_put_block_group(block_group);
7503 up_read(&space_info->groups_sem);
ccf0e725 7504 } else {
3e72ee88
QW
7505 index = btrfs_bg_flags_to_raid_index(
7506 block_group->flags);
e570fd27 7507 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7508 goto have_block_group;
ccf0e725 7509 }
2552d17e 7510 } else if (block_group) {
fa9c0d79 7511 btrfs_put_block_group(block_group);
2552d17e 7512 }
42e70e7a 7513 }
2552d17e 7514search:
60d2adbb 7515 have_caching_bg = false;
3e72ee88 7516 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
a5e681d9 7517 full_search = true;
80eb234a 7518 down_read(&space_info->groups_sem);
b742bb82
YZ
7519 list_for_each_entry(block_group, &space_info->block_groups[index],
7520 list) {
6226cb0a 7521 u64 offset;
817d52f8 7522 int cached;
8a1413a2 7523
14443937
JM
7524 /* If the block group is read-only, we can skip it entirely. */
7525 if (unlikely(block_group->ro))
7526 continue;
7527
e570fd27 7528 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7529 search_start = block_group->key.objectid;
42e70e7a 7530
83a50de9
CM
7531 /*
7532 * this can happen if we end up cycling through all the
7533 * raid types, but we want to make sure we only allocate
7534 * for the proper type.
7535 */
b6919a58 7536 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7537 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7538 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7539 BTRFS_BLOCK_GROUP_RAID5 |
7540 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7541 BTRFS_BLOCK_GROUP_RAID10;
7542
7543 /*
7544 * if they asked for extra copies and this block group
7545 * doesn't provide them, bail. This does allow us to
7546 * fill raid0 from raid1.
7547 */
b6919a58 7548 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7549 goto loop;
7550 }
7551
2552d17e 7552have_block_group:
291c7d2f
JB
7553 cached = block_group_cache_done(block_group);
7554 if (unlikely(!cached)) {
a5e681d9 7555 have_caching_bg = true;
f6373bf3 7556 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7557 BUG_ON(ret < 0);
7558 ret = 0;
817d52f8
JB
7559 }
7560
36cce922
JB
7561 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7562 goto loop;
0f9dd46c 7563
0a24325e 7564 /*
062c05c4
AO
7565 * Ok we want to try and use the cluster allocator, so
7566 * lets look there
0a24325e 7567 */
c759c4e1 7568 if (last_ptr && use_cluster) {
215a63d1 7569 struct btrfs_block_group_cache *used_block_group;
8de972b4 7570 unsigned long aligned_cluster;
fa9c0d79
CM
7571 /*
7572 * the refill lock keeps out other
7573 * people trying to start a new cluster
7574 */
e570fd27
MX
7575 used_block_group = btrfs_lock_cluster(block_group,
7576 last_ptr,
7577 delalloc);
7578 if (!used_block_group)
44fb5511 7579 goto refill_cluster;
274bd4fb 7580
e570fd27
MX
7581 if (used_block_group != block_group &&
7582 (used_block_group->ro ||
7583 !block_group_bits(used_block_group, flags)))
7584 goto release_cluster;
44fb5511 7585
274bd4fb 7586 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7587 last_ptr,
7588 num_bytes,
7589 used_block_group->key.objectid,
7590 &max_extent_size);
fa9c0d79
CM
7591 if (offset) {
7592 /* we have a block, we're done */
7593 spin_unlock(&last_ptr->refill_lock);
3dca5c94 7594 trace_btrfs_reserve_extent_cluster(
89d4346a
MX
7595 used_block_group,
7596 search_start, num_bytes);
215a63d1 7597 if (used_block_group != block_group) {
e570fd27
MX
7598 btrfs_release_block_group(block_group,
7599 delalloc);
215a63d1
MX
7600 block_group = used_block_group;
7601 }
fa9c0d79
CM
7602 goto checks;
7603 }
7604
274bd4fb 7605 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7606release_cluster:
062c05c4
AO
7607 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7608 * set up a new clusters, so lets just skip it
7609 * and let the allocator find whatever block
7610 * it can find. If we reach this point, we
7611 * will have tried the cluster allocator
7612 * plenty of times and not have found
7613 * anything, so we are likely way too
7614 * fragmented for the clustering stuff to find
a5f6f719
AO
7615 * anything.
7616 *
7617 * However, if the cluster is taken from the
7618 * current block group, release the cluster
7619 * first, so that we stand a better chance of
7620 * succeeding in the unclustered
7621 * allocation. */
7622 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7623 used_block_group != block_group) {
062c05c4 7624 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7625 btrfs_release_block_group(used_block_group,
7626 delalloc);
062c05c4
AO
7627 goto unclustered_alloc;
7628 }
7629
fa9c0d79
CM
7630 /*
7631 * this cluster didn't work out, free it and
7632 * start over
7633 */
7634 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7635
e570fd27
MX
7636 if (used_block_group != block_group)
7637 btrfs_release_block_group(used_block_group,
7638 delalloc);
7639refill_cluster:
a5f6f719
AO
7640 if (loop >= LOOP_NO_EMPTY_SIZE) {
7641 spin_unlock(&last_ptr->refill_lock);
7642 goto unclustered_alloc;
7643 }
7644
8de972b4
CM
7645 aligned_cluster = max_t(unsigned long,
7646 empty_cluster + empty_size,
7647 block_group->full_stripe_len);
7648
fa9c0d79 7649 /* allocate a cluster in this block group */
2ff7e61e 7650 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7651 last_ptr, search_start,
7652 num_bytes,
7653 aligned_cluster);
fa9c0d79
CM
7654 if (ret == 0) {
7655 /*
7656 * now pull our allocation out of this
7657 * cluster
7658 */
7659 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7660 last_ptr,
7661 num_bytes,
7662 search_start,
7663 &max_extent_size);
fa9c0d79
CM
7664 if (offset) {
7665 /* we found one, proceed */
7666 spin_unlock(&last_ptr->refill_lock);
3dca5c94 7667 trace_btrfs_reserve_extent_cluster(
3f7de037
JB
7668 block_group, search_start,
7669 num_bytes);
fa9c0d79
CM
7670 goto checks;
7671 }
0a24325e
JB
7672 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7673 && !failed_cluster_refill) {
817d52f8
JB
7674 spin_unlock(&last_ptr->refill_lock);
7675
0a24325e 7676 failed_cluster_refill = true;
817d52f8
JB
7677 wait_block_group_cache_progress(block_group,
7678 num_bytes + empty_cluster + empty_size);
7679 goto have_block_group;
fa9c0d79 7680 }
817d52f8 7681
fa9c0d79
CM
7682 /*
7683 * at this point we either didn't find a cluster
7684 * or we weren't able to allocate a block from our
7685 * cluster. Free the cluster we've been trying
7686 * to use, and go to the next block group
7687 */
0a24325e 7688 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7689 spin_unlock(&last_ptr->refill_lock);
0a24325e 7690 goto loop;
fa9c0d79
CM
7691 }
7692
062c05c4 7693unclustered_alloc:
c759c4e1
JB
7694 /*
7695 * We are doing an unclustered alloc, set the fragmented flag so
7696 * we don't bother trying to setup a cluster again until we get
7697 * more space.
7698 */
7699 if (unlikely(last_ptr)) {
7700 spin_lock(&last_ptr->lock);
7701 last_ptr->fragmented = 1;
7702 spin_unlock(&last_ptr->lock);
7703 }
0c9b36e0
LB
7704 if (cached) {
7705 struct btrfs_free_space_ctl *ctl =
7706 block_group->free_space_ctl;
7707
7708 spin_lock(&ctl->tree_lock);
7709 if (ctl->free_space <
7710 num_bytes + empty_cluster + empty_size) {
7711 if (ctl->free_space > max_extent_size)
7712 max_extent_size = ctl->free_space;
7713 spin_unlock(&ctl->tree_lock);
7714 goto loop;
7715 }
7716 spin_unlock(&ctl->tree_lock);
a5f6f719 7717 }
a5f6f719 7718
6226cb0a 7719 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7720 num_bytes, empty_size,
7721 &max_extent_size);
1cdda9b8
JB
7722 /*
7723 * If we didn't find a chunk, and we haven't failed on this
7724 * block group before, and this block group is in the middle of
7725 * caching and we are ok with waiting, then go ahead and wait
7726 * for progress to be made, and set failed_alloc to true.
7727 *
7728 * If failed_alloc is true then we've already waited on this
7729 * block group once and should move on to the next block group.
7730 */
7731 if (!offset && !failed_alloc && !cached &&
7732 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7733 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7734 num_bytes + empty_size);
7735 failed_alloc = true;
817d52f8 7736 goto have_block_group;
1cdda9b8
JB
7737 } else if (!offset) {
7738 goto loop;
817d52f8 7739 }
fa9c0d79 7740checks:
0b246afa 7741 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7742
2552d17e
JB
7743 /* move on to the next group */
7744 if (search_start + num_bytes >
215a63d1
MX
7745 block_group->key.objectid + block_group->key.offset) {
7746 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7747 goto loop;
6226cb0a 7748 }
f5a31e16 7749
f0486c68 7750 if (offset < search_start)
215a63d1 7751 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7752 search_start - offset);
7753 BUG_ON(offset > search_start);
2552d17e 7754
18513091
WX
7755 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7756 num_bytes, delalloc);
f0486c68 7757 if (ret == -EAGAIN) {
215a63d1 7758 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7759 goto loop;
0f9dd46c 7760 }
9cfa3e34 7761 btrfs_inc_block_group_reservations(block_group);
0b86a832 7762
f0486c68 7763 /* we are all good, lets return */
2552d17e
JB
7764 ins->objectid = search_start;
7765 ins->offset = num_bytes;
d2fb3437 7766
3dca5c94 7767 trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
e570fd27 7768 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7769 break;
7770loop:
0a24325e 7771 failed_cluster_refill = false;
1cdda9b8 7772 failed_alloc = false;
3e72ee88
QW
7773 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7774 index);
e570fd27 7775 btrfs_release_block_group(block_group, delalloc);
14443937 7776 cond_resched();
2552d17e
JB
7777 }
7778 up_read(&space_info->groups_sem);
7779
13a0db5a 7780 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7781 && !orig_have_caching_bg)
7782 orig_have_caching_bg = true;
7783
60d2adbb
MX
7784 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7785 goto search;
7786
b742bb82
YZ
7787 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7788 goto search;
7789
285ff5af 7790 /*
ccf0e725
JB
7791 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7792 * caching kthreads as we move along
817d52f8
JB
7793 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7794 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7795 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7796 * again
fa9c0d79 7797 */
723bda20 7798 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7799 index = 0;
a5e681d9
JB
7800 if (loop == LOOP_CACHING_NOWAIT) {
7801 /*
7802 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7803 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7804 * full search through.
7805 */
13a0db5a 7806 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7807 loop = LOOP_CACHING_WAIT;
7808 else
7809 loop = LOOP_ALLOC_CHUNK;
7810 } else {
7811 loop++;
7812 }
7813
817d52f8 7814 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7815 struct btrfs_trans_handle *trans;
f017f15f
WS
7816 int exist = 0;
7817
7818 trans = current->journal_info;
7819 if (trans)
7820 exist = 1;
7821 else
7822 trans = btrfs_join_transaction(root);
00361589 7823
00361589
JB
7824 if (IS_ERR(trans)) {
7825 ret = PTR_ERR(trans);
7826 goto out;
7827 }
7828
2ff7e61e 7829 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7830 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7831
7832 /*
7833 * If we can't allocate a new chunk we've already looped
7834 * through at least once, move on to the NO_EMPTY_SIZE
7835 * case.
7836 */
7837 if (ret == -ENOSPC)
7838 loop = LOOP_NO_EMPTY_SIZE;
7839
ea658bad
JB
7840 /*
7841 * Do not bail out on ENOSPC since we
7842 * can do more things.
7843 */
00361589 7844 if (ret < 0 && ret != -ENOSPC)
66642832 7845 btrfs_abort_transaction(trans, ret);
00361589
JB
7846 else
7847 ret = 0;
f017f15f 7848 if (!exist)
3a45bb20 7849 btrfs_end_transaction(trans);
00361589 7850 if (ret)
ea658bad 7851 goto out;
2552d17e
JB
7852 }
7853
723bda20 7854 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7855 /*
7856 * Don't loop again if we already have no empty_size and
7857 * no empty_cluster.
7858 */
7859 if (empty_size == 0 &&
7860 empty_cluster == 0) {
7861 ret = -ENOSPC;
7862 goto out;
7863 }
723bda20
JB
7864 empty_size = 0;
7865 empty_cluster = 0;
fa9c0d79 7866 }
723bda20
JB
7867
7868 goto search;
2552d17e
JB
7869 } else if (!ins->objectid) {
7870 ret = -ENOSPC;
d82a6f1d 7871 } else if (ins->objectid) {
c759c4e1
JB
7872 if (!use_cluster && last_ptr) {
7873 spin_lock(&last_ptr->lock);
7874 last_ptr->window_start = ins->objectid;
7875 spin_unlock(&last_ptr->lock);
7876 }
80eb234a 7877 ret = 0;
be744175 7878 }
79787eaa 7879out:
4f4db217
JB
7880 if (ret == -ENOSPC) {
7881 spin_lock(&space_info->lock);
7882 space_info->max_extent_size = max_extent_size;
7883 spin_unlock(&space_info->lock);
a4820398 7884 ins->offset = max_extent_size;
4f4db217 7885 }
0f70abe2 7886 return ret;
fec577fb 7887}
ec44a35c 7888
ab8d0fc4
JM
7889static void dump_space_info(struct btrfs_fs_info *fs_info,
7890 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7891 int dump_block_groups)
0f9dd46c
JB
7892{
7893 struct btrfs_block_group_cache *cache;
b742bb82 7894 int index = 0;
0f9dd46c 7895
9ed74f2d 7896 spin_lock(&info->lock);
ab8d0fc4
JM
7897 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7898 info->flags,
4136135b
LB
7899 info->total_bytes - btrfs_space_info_used(info, true),
7900 info->full ? "" : "not ");
ab8d0fc4
JM
7901 btrfs_info(fs_info,
7902 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7903 info->total_bytes, info->bytes_used, info->bytes_pinned,
7904 info->bytes_reserved, info->bytes_may_use,
7905 info->bytes_readonly);
9ed74f2d
JB
7906 spin_unlock(&info->lock);
7907
7908 if (!dump_block_groups)
7909 return;
0f9dd46c 7910
80eb234a 7911 down_read(&info->groups_sem);
b742bb82
YZ
7912again:
7913 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7914 spin_lock(&cache->lock);
ab8d0fc4
JM
7915 btrfs_info(fs_info,
7916 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7917 cache->key.objectid, cache->key.offset,
7918 btrfs_block_group_used(&cache->item), cache->pinned,
7919 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7920 btrfs_dump_free_space(cache, bytes);
7921 spin_unlock(&cache->lock);
7922 }
b742bb82
YZ
7923 if (++index < BTRFS_NR_RAID_TYPES)
7924 goto again;
80eb234a 7925 up_read(&info->groups_sem);
0f9dd46c 7926}
e8569813 7927
6f47c706
NB
7928/*
7929 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7930 * hole that is at least as big as @num_bytes.
7931 *
7932 * @root - The root that will contain this extent
7933 *
7934 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7935 * is used for accounting purposes. This value differs
7936 * from @num_bytes only in the case of compressed extents.
7937 *
7938 * @num_bytes - Number of bytes to allocate on-disk.
7939 *
7940 * @min_alloc_size - Indicates the minimum amount of space that the
7941 * allocator should try to satisfy. In some cases
7942 * @num_bytes may be larger than what is required and if
7943 * the filesystem is fragmented then allocation fails.
7944 * However, the presence of @min_alloc_size gives a
7945 * chance to try and satisfy the smaller allocation.
7946 *
7947 * @empty_size - A hint that you plan on doing more COW. This is the
7948 * size in bytes the allocator should try to find free
7949 * next to the block it returns. This is just a hint and
7950 * may be ignored by the allocator.
7951 *
7952 * @hint_byte - Hint to the allocator to start searching above the byte
7953 * address passed. It might be ignored.
7954 *
7955 * @ins - This key is modified to record the found hole. It will
7956 * have the following values:
7957 * ins->objectid == start position
7958 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7959 * ins->offset == the size of the hole.
7960 *
7961 * @is_data - Boolean flag indicating whether an extent is
7962 * allocated for data (true) or metadata (false)
7963 *
7964 * @delalloc - Boolean flag indicating whether this allocation is for
7965 * delalloc or not. If 'true' data_rwsem of block groups
7966 * is going to be acquired.
7967 *
7968 *
7969 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7970 * case -ENOSPC is returned then @ins->offset will contain the size of the
7971 * largest available hole the allocator managed to find.
7972 */
18513091 7973int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7974 u64 num_bytes, u64 min_alloc_size,
7975 u64 empty_size, u64 hint_byte,
e570fd27 7976 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7977{
ab8d0fc4 7978 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7979 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7980 u64 flags;
fec577fb 7981 int ret;
925baedd 7982
1b86826d 7983 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 7984again:
0b246afa 7985 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 7986 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 7987 hint_byte, ins, flags, delalloc);
9cfa3e34 7988 if (!ret && !is_data) {
ab8d0fc4 7989 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 7990 } else if (ret == -ENOSPC) {
a4820398
MX
7991 if (!final_tried && ins->offset) {
7992 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 7993 num_bytes = round_down(num_bytes,
0b246afa 7994 fs_info->sectorsize);
9e622d6b 7995 num_bytes = max(num_bytes, min_alloc_size);
18513091 7996 ram_bytes = num_bytes;
9e622d6b
MX
7997 if (num_bytes == min_alloc_size)
7998 final_tried = true;
7999 goto again;
ab8d0fc4 8000 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8001 struct btrfs_space_info *sinfo;
8002
ab8d0fc4 8003 sinfo = __find_space_info(fs_info, flags);
0b246afa 8004 btrfs_err(fs_info,
5d163e0e
JM
8005 "allocation failed flags %llu, wanted %llu",
8006 flags, num_bytes);
53804280 8007 if (sinfo)
ab8d0fc4 8008 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8009 }
925baedd 8010 }
0f9dd46c
JB
8011
8012 return ret;
e6dcd2dc
CM
8013}
8014
2ff7e61e 8015static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8016 u64 start, u64 len,
8017 int pin, int delalloc)
65b51a00 8018{
0f9dd46c 8019 struct btrfs_block_group_cache *cache;
1f3c79a2 8020 int ret = 0;
0f9dd46c 8021
0b246afa 8022 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8023 if (!cache) {
0b246afa
JM
8024 btrfs_err(fs_info, "Unable to find block group for %llu",
8025 start);
0f9dd46c
JB
8026 return -ENOSPC;
8027 }
1f3c79a2 8028
e688b725 8029 if (pin)
2ff7e61e 8030 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8031 else {
0b246afa 8032 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8033 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8034 btrfs_add_free_space(cache, start, len);
4824f1f4 8035 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8036 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8037 }
31193213 8038
fa9c0d79 8039 btrfs_put_block_group(cache);
e6dcd2dc
CM
8040 return ret;
8041}
8042
2ff7e61e 8043int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8044 u64 start, u64 len, int delalloc)
e688b725 8045{
2ff7e61e 8046 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8047}
8048
2ff7e61e 8049int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8050 u64 start, u64 len)
8051{
2ff7e61e 8052 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8053}
8054
5d4f98a2 8055static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8056 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8057 u64 parent, u64 root_objectid,
8058 u64 flags, u64 owner, u64 offset,
8059 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8060{
8061 int ret;
e6dcd2dc 8062 struct btrfs_extent_item *extent_item;
5d4f98a2 8063 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8064 struct btrfs_path *path;
5d4f98a2
YZ
8065 struct extent_buffer *leaf;
8066 int type;
8067 u32 size;
26b8003f 8068
5d4f98a2
YZ
8069 if (parent > 0)
8070 type = BTRFS_SHARED_DATA_REF_KEY;
8071 else
8072 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8073
5d4f98a2 8074 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8075
8076 path = btrfs_alloc_path();
db5b493a
TI
8077 if (!path)
8078 return -ENOMEM;
47e4bb98 8079
b9473439 8080 path->leave_spinning = 1;
5d4f98a2
YZ
8081 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8082 ins, size);
79787eaa
JM
8083 if (ret) {
8084 btrfs_free_path(path);
8085 return ret;
8086 }
0f9dd46c 8087
5d4f98a2
YZ
8088 leaf = path->nodes[0];
8089 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8090 struct btrfs_extent_item);
5d4f98a2
YZ
8091 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8092 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8093 btrfs_set_extent_flags(leaf, extent_item,
8094 flags | BTRFS_EXTENT_FLAG_DATA);
8095
8096 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8097 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8098 if (parent > 0) {
8099 struct btrfs_shared_data_ref *ref;
8100 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8101 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8102 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8103 } else {
8104 struct btrfs_extent_data_ref *ref;
8105 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8106 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8107 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8108 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8109 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8110 }
47e4bb98
CM
8111
8112 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8113 btrfs_free_path(path);
f510cfec 8114
25a356d3 8115 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
1e144fb8
OS
8116 if (ret)
8117 return ret;
8118
6202df69 8119 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8120 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8121 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8122 ins->objectid, ins->offset);
f5947066
CM
8123 BUG();
8124 }
71ff6437 8125 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8126 return ret;
8127}
8128
5d4f98a2 8129static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 8130 struct btrfs_delayed_ref_node *node,
21ebfbe7 8131 struct btrfs_delayed_extent_op *extent_op)
e6dcd2dc 8132{
9dcdbe01 8133 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8134 int ret;
5d4f98a2 8135 struct btrfs_extent_item *extent_item;
4e6bd4e0 8136 struct btrfs_key extent_key;
5d4f98a2
YZ
8137 struct btrfs_tree_block_info *block_info;
8138 struct btrfs_extent_inline_ref *iref;
8139 struct btrfs_path *path;
8140 struct extent_buffer *leaf;
4e6bd4e0 8141 struct btrfs_delayed_tree_ref *ref;
3173a18f 8142 u32 size = sizeof(*extent_item) + sizeof(*iref);
4e6bd4e0 8143 u64 num_bytes;
21ebfbe7 8144 u64 flags = extent_op->flags_to_set;
0b246afa 8145 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f 8146
4e6bd4e0
NB
8147 ref = btrfs_delayed_node_to_tree_ref(node);
8148
4e6bd4e0
NB
8149 extent_key.objectid = node->bytenr;
8150 if (skinny_metadata) {
8151 extent_key.offset = ref->level;
8152 extent_key.type = BTRFS_METADATA_ITEM_KEY;
8153 num_bytes = fs_info->nodesize;
8154 } else {
8155 extent_key.offset = node->num_bytes;
8156 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
3173a18f 8157 size += sizeof(*block_info);
4e6bd4e0
NB
8158 num_bytes = node->num_bytes;
8159 }
1c2308f8 8160
5d4f98a2 8161 path = btrfs_alloc_path();
857cc2fc 8162 if (!path) {
4e6bd4e0
NB
8163 btrfs_free_and_pin_reserved_extent(fs_info,
8164 extent_key.objectid,
0b246afa 8165 fs_info->nodesize);
d8926bb3 8166 return -ENOMEM;
857cc2fc 8167 }
56bec294 8168
5d4f98a2
YZ
8169 path->leave_spinning = 1;
8170 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4e6bd4e0 8171 &extent_key, size);
79787eaa 8172 if (ret) {
dd825259 8173 btrfs_free_path(path);
4e6bd4e0
NB
8174 btrfs_free_and_pin_reserved_extent(fs_info,
8175 extent_key.objectid,
0b246afa 8176 fs_info->nodesize);
79787eaa
JM
8177 return ret;
8178 }
5d4f98a2
YZ
8179
8180 leaf = path->nodes[0];
8181 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8182 struct btrfs_extent_item);
8183 btrfs_set_extent_refs(leaf, extent_item, 1);
8184 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8185 btrfs_set_extent_flags(leaf, extent_item,
8186 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8187
3173a18f
JB
8188 if (skinny_metadata) {
8189 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8190 } else {
8191 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
21ebfbe7 8192 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4e6bd4e0 8193 btrfs_set_tree_block_level(leaf, block_info, ref->level);
3173a18f
JB
8194 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8195 }
5d4f98a2 8196
d4b20733 8197 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
5d4f98a2
YZ
8198 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8199 btrfs_set_extent_inline_ref_type(leaf, iref,
8200 BTRFS_SHARED_BLOCK_REF_KEY);
d4b20733 8201 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
5d4f98a2
YZ
8202 } else {
8203 btrfs_set_extent_inline_ref_type(leaf, iref,
8204 BTRFS_TREE_BLOCK_REF_KEY);
4e6bd4e0 8205 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
5d4f98a2
YZ
8206 }
8207
8208 btrfs_mark_buffer_dirty(leaf);
8209 btrfs_free_path(path);
8210
4e6bd4e0
NB
8211 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8212 num_bytes);
1e144fb8
OS
8213 if (ret)
8214 return ret;
8215
4e6bd4e0 8216 ret = update_block_group(trans, fs_info, extent_key.objectid,
6202df69 8217 fs_info->nodesize, 1);
79787eaa 8218 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8219 btrfs_err(fs_info, "update block group failed for %llu %llu",
4e6bd4e0 8220 extent_key.objectid, extent_key.offset);
5d4f98a2
YZ
8221 BUG();
8222 }
0be5dc67 8223
4e6bd4e0 8224 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
0b246afa 8225 fs_info->nodesize);
5d4f98a2
YZ
8226 return ret;
8227}
8228
8229int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8230 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8231 u64 offset, u64 ram_bytes,
8232 struct btrfs_key *ins)
5d4f98a2 8233{
84f7d8e6 8234 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
8235 int ret;
8236
84f7d8e6 8237 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8238
fd708b81
JB
8239 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8240 root->root_key.objectid, owner, offset,
8241 BTRFS_ADD_DELAYED_EXTENT);
8242
0b246afa 8243 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
84f7d8e6
JB
8244 ins->offset, 0,
8245 root->root_key.objectid, owner,
7be07912
OS
8246 offset, ram_bytes,
8247 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8248 return ret;
8249}
e02119d5
CM
8250
8251/*
8252 * this is used by the tree logging recovery code. It records that
8253 * an extent has been allocated and makes sure to clear the free
8254 * space cache bits as well
8255 */
5d4f98a2 8256int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8257 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8258 u64 root_objectid, u64 owner, u64 offset,
8259 struct btrfs_key *ins)
e02119d5
CM
8260{
8261 int ret;
8262 struct btrfs_block_group_cache *block_group;
ed7a6948 8263 struct btrfs_space_info *space_info;
11833d66 8264
8c2a1a30
JB
8265 /*
8266 * Mixed block groups will exclude before processing the log so we only
01327610 8267 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8268 */
0b246afa 8269 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8270 ret = __exclude_logged_extent(fs_info, ins->objectid,
8271 ins->offset);
b50c6e25 8272 if (ret)
8c2a1a30 8273 return ret;
11833d66
YZ
8274 }
8275
0b246afa 8276 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8277 if (!block_group)
8278 return -EINVAL;
8279
ed7a6948
WX
8280 space_info = block_group->space_info;
8281 spin_lock(&space_info->lock);
8282 spin_lock(&block_group->lock);
8283 space_info->bytes_reserved += ins->offset;
8284 block_group->reserved += ins->offset;
8285 spin_unlock(&block_group->lock);
8286 spin_unlock(&space_info->lock);
8287
2ff7e61e 8288 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8289 0, owner, offset, ins, 1);
b50c6e25 8290 btrfs_put_block_group(block_group);
e02119d5
CM
8291 return ret;
8292}
8293
48a3b636
ES
8294static struct extent_buffer *
8295btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8296 u64 bytenr, int level)
65b51a00 8297{
0b246afa 8298 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8299 struct extent_buffer *buf;
8300
2ff7e61e 8301 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8302 if (IS_ERR(buf))
8303 return buf;
8304
65b51a00 8305 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8306 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8307 btrfs_tree_lock(buf);
7c302b49 8308 clean_tree_block(fs_info, buf);
3083ee2e 8309 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8310
8311 btrfs_set_lock_blocking(buf);
4db8c528 8312 set_extent_buffer_uptodate(buf);
b4ce94de 8313
d0c803c4 8314 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8315 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8316 /*
8317 * we allow two log transactions at a time, use different
8318 * EXENT bit to differentiate dirty pages.
8319 */
656f30db 8320 if (buf->log_index == 0)
8cef4e16
YZ
8321 set_extent_dirty(&root->dirty_log_pages, buf->start,
8322 buf->start + buf->len - 1, GFP_NOFS);
8323 else
8324 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8325 buf->start + buf->len - 1);
d0c803c4 8326 } else {
656f30db 8327 buf->log_index = -1;
d0c803c4 8328 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8329 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8330 }
64c12921 8331 trans->dirty = true;
b4ce94de 8332 /* this returns a buffer locked for blocking */
65b51a00
CM
8333 return buf;
8334}
8335
f0486c68
YZ
8336static struct btrfs_block_rsv *
8337use_block_rsv(struct btrfs_trans_handle *trans,
8338 struct btrfs_root *root, u32 blocksize)
8339{
0b246afa 8340 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8341 struct btrfs_block_rsv *block_rsv;
0b246afa 8342 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8343 int ret;
d88033db 8344 bool global_updated = false;
f0486c68
YZ
8345
8346 block_rsv = get_block_rsv(trans, root);
8347
b586b323
MX
8348 if (unlikely(block_rsv->size == 0))
8349 goto try_reserve;
d88033db 8350again:
f0486c68
YZ
8351 ret = block_rsv_use_bytes(block_rsv, blocksize);
8352 if (!ret)
8353 return block_rsv;
8354
b586b323
MX
8355 if (block_rsv->failfast)
8356 return ERR_PTR(ret);
8357
d88033db
MX
8358 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8359 global_updated = true;
0b246afa 8360 update_global_block_rsv(fs_info);
d88033db
MX
8361 goto again;
8362 }
8363
0b246afa 8364 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8365 static DEFINE_RATELIMIT_STATE(_rs,
8366 DEFAULT_RATELIMIT_INTERVAL * 10,
8367 /*DEFAULT_RATELIMIT_BURST*/ 1);
8368 if (__ratelimit(&_rs))
8369 WARN(1, KERN_DEBUG
efe120a0 8370 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8371 }
8372try_reserve:
8373 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8374 BTRFS_RESERVE_NO_FLUSH);
8375 if (!ret)
8376 return block_rsv;
8377 /*
8378 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8379 * the global reserve if its space type is the same as the global
8380 * reservation.
b586b323 8381 */
5881cfc9
MX
8382 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8383 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8384 ret = block_rsv_use_bytes(global_rsv, blocksize);
8385 if (!ret)
8386 return global_rsv;
8387 }
8388 return ERR_PTR(ret);
f0486c68
YZ
8389}
8390
8c2a3ca2
JB
8391static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8392 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8393{
8394 block_rsv_add_bytes(block_rsv, blocksize, 0);
ff6bc37e 8395 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8396}
8397
fec577fb 8398/*
f0486c68 8399 * finds a free extent and does all the dirty work required for allocation
67b7859e 8400 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8401 */
4d75f8a9 8402struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8403 struct btrfs_root *root,
8404 u64 parent, u64 root_objectid,
8405 const struct btrfs_disk_key *key,
8406 int level, u64 hint,
8407 u64 empty_size)
fec577fb 8408{
0b246afa 8409 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8410 struct btrfs_key ins;
f0486c68 8411 struct btrfs_block_rsv *block_rsv;
5f39d397 8412 struct extent_buffer *buf;
67b7859e 8413 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8414 u64 flags = 0;
8415 int ret;
0b246afa
JM
8416 u32 blocksize = fs_info->nodesize;
8417 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8418
05653ef3 8419#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8420 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8421 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8422 level);
faa2dbf0
JB
8423 if (!IS_ERR(buf))
8424 root->alloc_bytenr += blocksize;
8425 return buf;
8426 }
05653ef3 8427#endif
fccb84c9 8428
f0486c68
YZ
8429 block_rsv = use_block_rsv(trans, root, blocksize);
8430 if (IS_ERR(block_rsv))
8431 return ERR_CAST(block_rsv);
8432
18513091 8433 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8434 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8435 if (ret)
8436 goto out_unuse;
55c69072 8437
fe864576 8438 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8439 if (IS_ERR(buf)) {
8440 ret = PTR_ERR(buf);
8441 goto out_free_reserved;
8442 }
f0486c68
YZ
8443
8444 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8445 if (parent == 0)
8446 parent = ins.objectid;
8447 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8448 } else
8449 BUG_ON(parent > 0);
8450
8451 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8452 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8453 if (!extent_op) {
8454 ret = -ENOMEM;
8455 goto out_free_buf;
8456 }
f0486c68
YZ
8457 if (key)
8458 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8459 else
8460 memset(&extent_op->key, 0, sizeof(extent_op->key));
8461 extent_op->flags_to_set = flags;
35b3ad50
DS
8462 extent_op->update_key = skinny_metadata ? false : true;
8463 extent_op->update_flags = true;
8464 extent_op->is_data = false;
b1c79e09 8465 extent_op->level = level;
f0486c68 8466
fd708b81
JB
8467 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8468 root_objectid, level, 0,
8469 BTRFS_ADD_DELAYED_EXTENT);
7be07912
OS
8470 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8471 ins.offset, parent,
8472 root_objectid, level,
67b7859e 8473 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8474 extent_op, NULL, NULL);
67b7859e
OS
8475 if (ret)
8476 goto out_free_delayed;
f0486c68 8477 }
fec577fb 8478 return buf;
67b7859e
OS
8479
8480out_free_delayed:
8481 btrfs_free_delayed_extent_op(extent_op);
8482out_free_buf:
8483 free_extent_buffer(buf);
8484out_free_reserved:
2ff7e61e 8485 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8486out_unuse:
0b246afa 8487 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8488 return ERR_PTR(ret);
fec577fb 8489}
a28ec197 8490
2c47e605
YZ
8491struct walk_control {
8492 u64 refs[BTRFS_MAX_LEVEL];
8493 u64 flags[BTRFS_MAX_LEVEL];
8494 struct btrfs_key update_progress;
8495 int stage;
8496 int level;
8497 int shared_level;
8498 int update_ref;
8499 int keep_locks;
1c4850e2
YZ
8500 int reada_slot;
8501 int reada_count;
66d7e7f0 8502 int for_reloc;
2c47e605
YZ
8503};
8504
8505#define DROP_REFERENCE 1
8506#define UPDATE_BACKREF 2
8507
1c4850e2
YZ
8508static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8509 struct btrfs_root *root,
8510 struct walk_control *wc,
8511 struct btrfs_path *path)
6407bf6d 8512{
0b246afa 8513 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8514 u64 bytenr;
8515 u64 generation;
8516 u64 refs;
94fcca9f 8517 u64 flags;
5d4f98a2 8518 u32 nritems;
1c4850e2
YZ
8519 struct btrfs_key key;
8520 struct extent_buffer *eb;
6407bf6d 8521 int ret;
1c4850e2
YZ
8522 int slot;
8523 int nread = 0;
6407bf6d 8524
1c4850e2
YZ
8525 if (path->slots[wc->level] < wc->reada_slot) {
8526 wc->reada_count = wc->reada_count * 2 / 3;
8527 wc->reada_count = max(wc->reada_count, 2);
8528 } else {
8529 wc->reada_count = wc->reada_count * 3 / 2;
8530 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8531 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8532 }
7bb86316 8533
1c4850e2
YZ
8534 eb = path->nodes[wc->level];
8535 nritems = btrfs_header_nritems(eb);
bd56b302 8536
1c4850e2
YZ
8537 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8538 if (nread >= wc->reada_count)
8539 break;
bd56b302 8540
2dd3e67b 8541 cond_resched();
1c4850e2
YZ
8542 bytenr = btrfs_node_blockptr(eb, slot);
8543 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8544
1c4850e2
YZ
8545 if (slot == path->slots[wc->level])
8546 goto reada;
5d4f98a2 8547
1c4850e2
YZ
8548 if (wc->stage == UPDATE_BACKREF &&
8549 generation <= root->root_key.offset)
bd56b302
CM
8550 continue;
8551
94fcca9f 8552 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8553 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8554 wc->level - 1, 1, &refs,
8555 &flags);
79787eaa
JM
8556 /* We don't care about errors in readahead. */
8557 if (ret < 0)
8558 continue;
94fcca9f
YZ
8559 BUG_ON(refs == 0);
8560
1c4850e2 8561 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8562 if (refs == 1)
8563 goto reada;
bd56b302 8564
94fcca9f
YZ
8565 if (wc->level == 1 &&
8566 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8567 continue;
1c4850e2
YZ
8568 if (!wc->update_ref ||
8569 generation <= root->root_key.offset)
8570 continue;
8571 btrfs_node_key_to_cpu(eb, &key, slot);
8572 ret = btrfs_comp_cpu_keys(&key,
8573 &wc->update_progress);
8574 if (ret < 0)
8575 continue;
94fcca9f
YZ
8576 } else {
8577 if (wc->level == 1 &&
8578 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8579 continue;
6407bf6d 8580 }
1c4850e2 8581reada:
2ff7e61e 8582 readahead_tree_block(fs_info, bytenr);
1c4850e2 8583 nread++;
20524f02 8584 }
1c4850e2 8585 wc->reada_slot = slot;
20524f02 8586}
2c47e605 8587
f82d02d9 8588/*
2c016dc2 8589 * helper to process tree block while walking down the tree.
2c47e605 8590 *
2c47e605
YZ
8591 * when wc->stage == UPDATE_BACKREF, this function updates
8592 * back refs for pointers in the block.
8593 *
8594 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8595 */
2c47e605 8596static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8597 struct btrfs_root *root,
2c47e605 8598 struct btrfs_path *path,
94fcca9f 8599 struct walk_control *wc, int lookup_info)
f82d02d9 8600{
2ff7e61e 8601 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8602 int level = wc->level;
8603 struct extent_buffer *eb = path->nodes[level];
2c47e605 8604 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8605 int ret;
8606
2c47e605
YZ
8607 if (wc->stage == UPDATE_BACKREF &&
8608 btrfs_header_owner(eb) != root->root_key.objectid)
8609 return 1;
f82d02d9 8610
2c47e605
YZ
8611 /*
8612 * when reference count of tree block is 1, it won't increase
8613 * again. once full backref flag is set, we never clear it.
8614 */
94fcca9f
YZ
8615 if (lookup_info &&
8616 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8617 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8618 BUG_ON(!path->locks[level]);
2ff7e61e 8619 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8620 eb->start, level, 1,
2c47e605
YZ
8621 &wc->refs[level],
8622 &wc->flags[level]);
79787eaa
JM
8623 BUG_ON(ret == -ENOMEM);
8624 if (ret)
8625 return ret;
2c47e605
YZ
8626 BUG_ON(wc->refs[level] == 0);
8627 }
5d4f98a2 8628
2c47e605
YZ
8629 if (wc->stage == DROP_REFERENCE) {
8630 if (wc->refs[level] > 1)
8631 return 1;
f82d02d9 8632
2c47e605 8633 if (path->locks[level] && !wc->keep_locks) {
bd681513 8634 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8635 path->locks[level] = 0;
8636 }
8637 return 0;
8638 }
f82d02d9 8639
2c47e605
YZ
8640 /* wc->stage == UPDATE_BACKREF */
8641 if (!(wc->flags[level] & flag)) {
8642 BUG_ON(!path->locks[level]);
e339a6b0 8643 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8644 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8645 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8646 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8647 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8648 eb->len, flag,
8649 btrfs_header_level(eb), 0);
79787eaa 8650 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8651 wc->flags[level] |= flag;
8652 }
8653
8654 /*
8655 * the block is shared by multiple trees, so it's not good to
8656 * keep the tree lock
8657 */
8658 if (path->locks[level] && level > 0) {
bd681513 8659 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8660 path->locks[level] = 0;
8661 }
8662 return 0;
8663}
8664
1c4850e2 8665/*
2c016dc2 8666 * helper to process tree block pointer.
1c4850e2
YZ
8667 *
8668 * when wc->stage == DROP_REFERENCE, this function checks
8669 * reference count of the block pointed to. if the block
8670 * is shared and we need update back refs for the subtree
8671 * rooted at the block, this function changes wc->stage to
8672 * UPDATE_BACKREF. if the block is shared and there is no
8673 * need to update back, this function drops the reference
8674 * to the block.
8675 *
8676 * NOTE: return value 1 means we should stop walking down.
8677 */
8678static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8679 struct btrfs_root *root,
8680 struct btrfs_path *path,
94fcca9f 8681 struct walk_control *wc, int *lookup_info)
1c4850e2 8682{
0b246afa 8683 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8684 u64 bytenr;
8685 u64 generation;
8686 u64 parent;
8687 u32 blocksize;
8688 struct btrfs_key key;
581c1760 8689 struct btrfs_key first_key;
1c4850e2
YZ
8690 struct extent_buffer *next;
8691 int level = wc->level;
8692 int reada = 0;
8693 int ret = 0;
1152651a 8694 bool need_account = false;
1c4850e2
YZ
8695
8696 generation = btrfs_node_ptr_generation(path->nodes[level],
8697 path->slots[level]);
8698 /*
8699 * if the lower level block was created before the snapshot
8700 * was created, we know there is no need to update back refs
8701 * for the subtree
8702 */
8703 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8704 generation <= root->root_key.offset) {
8705 *lookup_info = 1;
1c4850e2 8706 return 1;
94fcca9f 8707 }
1c4850e2
YZ
8708
8709 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8710 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8711 path->slots[level]);
0b246afa 8712 blocksize = fs_info->nodesize;
1c4850e2 8713
0b246afa 8714 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8715 if (!next) {
2ff7e61e 8716 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8717 if (IS_ERR(next))
8718 return PTR_ERR(next);
8719
b2aaaa3b
JB
8720 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8721 level - 1);
1c4850e2
YZ
8722 reada = 1;
8723 }
8724 btrfs_tree_lock(next);
8725 btrfs_set_lock_blocking(next);
8726
2ff7e61e 8727 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8728 &wc->refs[level - 1],
8729 &wc->flags[level - 1]);
4867268c
JB
8730 if (ret < 0)
8731 goto out_unlock;
79787eaa 8732
c2cf52eb 8733 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8734 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8735 ret = -EIO;
8736 goto out_unlock;
c2cf52eb 8737 }
94fcca9f 8738 *lookup_info = 0;
1c4850e2 8739
94fcca9f 8740 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8741 if (wc->refs[level - 1] > 1) {
1152651a 8742 need_account = true;
94fcca9f
YZ
8743 if (level == 1 &&
8744 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8745 goto skip;
8746
1c4850e2
YZ
8747 if (!wc->update_ref ||
8748 generation <= root->root_key.offset)
8749 goto skip;
8750
8751 btrfs_node_key_to_cpu(path->nodes[level], &key,
8752 path->slots[level]);
8753 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8754 if (ret < 0)
8755 goto skip;
8756
8757 wc->stage = UPDATE_BACKREF;
8758 wc->shared_level = level - 1;
8759 }
94fcca9f
YZ
8760 } else {
8761 if (level == 1 &&
8762 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8763 goto skip;
1c4850e2
YZ
8764 }
8765
b9fab919 8766 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8767 btrfs_tree_unlock(next);
8768 free_extent_buffer(next);
8769 next = NULL;
94fcca9f 8770 *lookup_info = 1;
1c4850e2
YZ
8771 }
8772
8773 if (!next) {
8774 if (reada && level == 1)
8775 reada_walk_down(trans, root, wc, path);
581c1760
QW
8776 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8777 &first_key);
64c043de
LB
8778 if (IS_ERR(next)) {
8779 return PTR_ERR(next);
8780 } else if (!extent_buffer_uptodate(next)) {
416bc658 8781 free_extent_buffer(next);
97d9a8a4 8782 return -EIO;
416bc658 8783 }
1c4850e2
YZ
8784 btrfs_tree_lock(next);
8785 btrfs_set_lock_blocking(next);
8786 }
8787
8788 level--;
4867268c
JB
8789 ASSERT(level == btrfs_header_level(next));
8790 if (level != btrfs_header_level(next)) {
8791 btrfs_err(root->fs_info, "mismatched level");
8792 ret = -EIO;
8793 goto out_unlock;
8794 }
1c4850e2
YZ
8795 path->nodes[level] = next;
8796 path->slots[level] = 0;
bd681513 8797 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8798 wc->level = level;
8799 if (wc->level == 1)
8800 wc->reada_slot = 0;
8801 return 0;
8802skip:
8803 wc->refs[level - 1] = 0;
8804 wc->flags[level - 1] = 0;
94fcca9f
YZ
8805 if (wc->stage == DROP_REFERENCE) {
8806 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8807 parent = path->nodes[level]->start;
8808 } else {
4867268c 8809 ASSERT(root->root_key.objectid ==
94fcca9f 8810 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8811 if (root->root_key.objectid !=
8812 btrfs_header_owner(path->nodes[level])) {
8813 btrfs_err(root->fs_info,
8814 "mismatched block owner");
8815 ret = -EIO;
8816 goto out_unlock;
8817 }
94fcca9f
YZ
8818 parent = 0;
8819 }
1c4850e2 8820
1152651a 8821 if (need_account) {
33d1f05c
QW
8822 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8823 generation, level - 1);
1152651a 8824 if (ret) {
0b246afa 8825 btrfs_err_rl(fs_info,
5d163e0e
JM
8826 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8827 ret);
1152651a
MF
8828 }
8829 }
84f7d8e6 8830 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
2ff7e61e
JM
8831 parent, root->root_key.objectid,
8832 level - 1, 0);
4867268c
JB
8833 if (ret)
8834 goto out_unlock;
1c4850e2 8835 }
4867268c
JB
8836
8837 *lookup_info = 1;
8838 ret = 1;
8839
8840out_unlock:
1c4850e2
YZ
8841 btrfs_tree_unlock(next);
8842 free_extent_buffer(next);
4867268c
JB
8843
8844 return ret;
1c4850e2
YZ
8845}
8846
2c47e605 8847/*
2c016dc2 8848 * helper to process tree block while walking up the tree.
2c47e605
YZ
8849 *
8850 * when wc->stage == DROP_REFERENCE, this function drops
8851 * reference count on the block.
8852 *
8853 * when wc->stage == UPDATE_BACKREF, this function changes
8854 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8855 * to UPDATE_BACKREF previously while processing the block.
8856 *
8857 * NOTE: return value 1 means we should stop walking up.
8858 */
8859static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8860 struct btrfs_root *root,
8861 struct btrfs_path *path,
8862 struct walk_control *wc)
8863{
0b246afa 8864 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8865 int ret;
2c47e605
YZ
8866 int level = wc->level;
8867 struct extent_buffer *eb = path->nodes[level];
8868 u64 parent = 0;
8869
8870 if (wc->stage == UPDATE_BACKREF) {
8871 BUG_ON(wc->shared_level < level);
8872 if (level < wc->shared_level)
8873 goto out;
8874
2c47e605
YZ
8875 ret = find_next_key(path, level + 1, &wc->update_progress);
8876 if (ret > 0)
8877 wc->update_ref = 0;
8878
8879 wc->stage = DROP_REFERENCE;
8880 wc->shared_level = -1;
8881 path->slots[level] = 0;
8882
8883 /*
8884 * check reference count again if the block isn't locked.
8885 * we should start walking down the tree again if reference
8886 * count is one.
8887 */
8888 if (!path->locks[level]) {
8889 BUG_ON(level == 0);
8890 btrfs_tree_lock(eb);
8891 btrfs_set_lock_blocking(eb);
bd681513 8892 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8893
2ff7e61e 8894 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8895 eb->start, level, 1,
2c47e605
YZ
8896 &wc->refs[level],
8897 &wc->flags[level]);
79787eaa
JM
8898 if (ret < 0) {
8899 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8900 path->locks[level] = 0;
79787eaa
JM
8901 return ret;
8902 }
2c47e605
YZ
8903 BUG_ON(wc->refs[level] == 0);
8904 if (wc->refs[level] == 1) {
bd681513 8905 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8906 path->locks[level] = 0;
2c47e605
YZ
8907 return 1;
8908 }
f82d02d9 8909 }
2c47e605 8910 }
f82d02d9 8911
2c47e605
YZ
8912 /* wc->stage == DROP_REFERENCE */
8913 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8914
2c47e605
YZ
8915 if (wc->refs[level] == 1) {
8916 if (level == 0) {
8917 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8918 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8919 else
e339a6b0 8920 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8921 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8922 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8923 if (ret) {
0b246afa 8924 btrfs_err_rl(fs_info,
5d163e0e
JM
8925 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8926 ret);
1152651a 8927 }
2c47e605
YZ
8928 }
8929 /* make block locked assertion in clean_tree_block happy */
8930 if (!path->locks[level] &&
8931 btrfs_header_generation(eb) == trans->transid) {
8932 btrfs_tree_lock(eb);
8933 btrfs_set_lock_blocking(eb);
bd681513 8934 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8935 }
7c302b49 8936 clean_tree_block(fs_info, eb);
2c47e605
YZ
8937 }
8938
8939 if (eb == root->node) {
8940 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8941 parent = eb->start;
8942 else
8943 BUG_ON(root->root_key.objectid !=
8944 btrfs_header_owner(eb));
8945 } else {
8946 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8947 parent = path->nodes[level + 1]->start;
8948 else
8949 BUG_ON(root->root_key.objectid !=
8950 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8951 }
f82d02d9 8952
5581a51a 8953 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8954out:
8955 wc->refs[level] = 0;
8956 wc->flags[level] = 0;
f0486c68 8957 return 0;
2c47e605
YZ
8958}
8959
8960static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8961 struct btrfs_root *root,
8962 struct btrfs_path *path,
8963 struct walk_control *wc)
8964{
2c47e605 8965 int level = wc->level;
94fcca9f 8966 int lookup_info = 1;
2c47e605
YZ
8967 int ret;
8968
8969 while (level >= 0) {
94fcca9f 8970 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8971 if (ret > 0)
8972 break;
8973
8974 if (level == 0)
8975 break;
8976
7a7965f8
YZ
8977 if (path->slots[level] >=
8978 btrfs_header_nritems(path->nodes[level]))
8979 break;
8980
94fcca9f 8981 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8982 if (ret > 0) {
8983 path->slots[level]++;
8984 continue;
90d2c51d
MX
8985 } else if (ret < 0)
8986 return ret;
1c4850e2 8987 level = wc->level;
f82d02d9 8988 }
f82d02d9
YZ
8989 return 0;
8990}
8991
d397712b 8992static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8993 struct btrfs_root *root,
f82d02d9 8994 struct btrfs_path *path,
2c47e605 8995 struct walk_control *wc, int max_level)
20524f02 8996{
2c47e605 8997 int level = wc->level;
20524f02 8998 int ret;
9f3a7427 8999
2c47e605
YZ
9000 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9001 while (level < max_level && path->nodes[level]) {
9002 wc->level = level;
9003 if (path->slots[level] + 1 <
9004 btrfs_header_nritems(path->nodes[level])) {
9005 path->slots[level]++;
20524f02
CM
9006 return 0;
9007 } else {
2c47e605
YZ
9008 ret = walk_up_proc(trans, root, path, wc);
9009 if (ret > 0)
9010 return 0;
bd56b302 9011
2c47e605 9012 if (path->locks[level]) {
bd681513
CM
9013 btrfs_tree_unlock_rw(path->nodes[level],
9014 path->locks[level]);
2c47e605 9015 path->locks[level] = 0;
f82d02d9 9016 }
2c47e605
YZ
9017 free_extent_buffer(path->nodes[level]);
9018 path->nodes[level] = NULL;
9019 level++;
20524f02
CM
9020 }
9021 }
9022 return 1;
9023}
9024
9aca1d51 9025/*
2c47e605
YZ
9026 * drop a subvolume tree.
9027 *
9028 * this function traverses the tree freeing any blocks that only
9029 * referenced by the tree.
9030 *
9031 * when a shared tree block is found. this function decreases its
9032 * reference count by one. if update_ref is true, this function
9033 * also make sure backrefs for the shared block and all lower level
9034 * blocks are properly updated.
9d1a2a3a
DS
9035 *
9036 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9037 */
2c536799 9038int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9039 struct btrfs_block_rsv *block_rsv, int update_ref,
9040 int for_reloc)
20524f02 9041{
ab8d0fc4 9042 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9043 struct btrfs_path *path;
2c47e605 9044 struct btrfs_trans_handle *trans;
ab8d0fc4 9045 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9046 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9047 struct walk_control *wc;
9048 struct btrfs_key key;
9049 int err = 0;
9050 int ret;
9051 int level;
d29a9f62 9052 bool root_dropped = false;
20524f02 9053
ab8d0fc4 9054 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9055
5caf2a00 9056 path = btrfs_alloc_path();
cb1b69f4
TI
9057 if (!path) {
9058 err = -ENOMEM;
9059 goto out;
9060 }
20524f02 9061
2c47e605 9062 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9063 if (!wc) {
9064 btrfs_free_path(path);
cb1b69f4
TI
9065 err = -ENOMEM;
9066 goto out;
38a1a919 9067 }
2c47e605 9068
a22285a6 9069 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9070 if (IS_ERR(trans)) {
9071 err = PTR_ERR(trans);
9072 goto out_free;
9073 }
98d5dc13 9074
3fd0a558
YZ
9075 if (block_rsv)
9076 trans->block_rsv = block_rsv;
2c47e605 9077
9f3a7427 9078 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9079 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9080 path->nodes[level] = btrfs_lock_root_node(root);
9081 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9082 path->slots[level] = 0;
bd681513 9083 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9084 memset(&wc->update_progress, 0,
9085 sizeof(wc->update_progress));
9f3a7427 9086 } else {
9f3a7427 9087 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9088 memcpy(&wc->update_progress, &key,
9089 sizeof(wc->update_progress));
9090
6702ed49 9091 level = root_item->drop_level;
2c47e605 9092 BUG_ON(level == 0);
6702ed49 9093 path->lowest_level = level;
2c47e605
YZ
9094 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9095 path->lowest_level = 0;
9096 if (ret < 0) {
9097 err = ret;
79787eaa 9098 goto out_end_trans;
9f3a7427 9099 }
1c4850e2 9100 WARN_ON(ret > 0);
2c47e605 9101
7d9eb12c
CM
9102 /*
9103 * unlock our path, this is safe because only this
9104 * function is allowed to delete this snapshot
9105 */
5d4f98a2 9106 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9107
9108 level = btrfs_header_level(root->node);
9109 while (1) {
9110 btrfs_tree_lock(path->nodes[level]);
9111 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9112 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9113
2ff7e61e 9114 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9115 path->nodes[level]->start,
3173a18f 9116 level, 1, &wc->refs[level],
2c47e605 9117 &wc->flags[level]);
79787eaa
JM
9118 if (ret < 0) {
9119 err = ret;
9120 goto out_end_trans;
9121 }
2c47e605
YZ
9122 BUG_ON(wc->refs[level] == 0);
9123
9124 if (level == root_item->drop_level)
9125 break;
9126
9127 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9128 path->locks[level] = 0;
2c47e605
YZ
9129 WARN_ON(wc->refs[level] != 1);
9130 level--;
9131 }
9f3a7427 9132 }
2c47e605
YZ
9133
9134 wc->level = level;
9135 wc->shared_level = -1;
9136 wc->stage = DROP_REFERENCE;
9137 wc->update_ref = update_ref;
9138 wc->keep_locks = 0;
66d7e7f0 9139 wc->for_reloc = for_reloc;
0b246afa 9140 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9141
d397712b 9142 while (1) {
9d1a2a3a 9143
2c47e605
YZ
9144 ret = walk_down_tree(trans, root, path, wc);
9145 if (ret < 0) {
9146 err = ret;
20524f02 9147 break;
2c47e605 9148 }
9aca1d51 9149
2c47e605
YZ
9150 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9151 if (ret < 0) {
9152 err = ret;
20524f02 9153 break;
2c47e605
YZ
9154 }
9155
9156 if (ret > 0) {
9157 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9158 break;
9159 }
2c47e605
YZ
9160
9161 if (wc->stage == DROP_REFERENCE) {
9162 level = wc->level;
9163 btrfs_node_key(path->nodes[level],
9164 &root_item->drop_progress,
9165 path->slots[level]);
9166 root_item->drop_level = level;
9167 }
9168
9169 BUG_ON(wc->level == 0);
3a45bb20 9170 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9171 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9172 ret = btrfs_update_root(trans, tree_root,
9173 &root->root_key,
9174 root_item);
79787eaa 9175 if (ret) {
66642832 9176 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9177 err = ret;
9178 goto out_end_trans;
9179 }
2c47e605 9180
3a45bb20 9181 btrfs_end_transaction_throttle(trans);
2ff7e61e 9182 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9183 btrfs_debug(fs_info,
9184 "drop snapshot early exit");
3c8f2422
JB
9185 err = -EAGAIN;
9186 goto out_free;
9187 }
9188
a22285a6 9189 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9190 if (IS_ERR(trans)) {
9191 err = PTR_ERR(trans);
9192 goto out_free;
9193 }
3fd0a558
YZ
9194 if (block_rsv)
9195 trans->block_rsv = block_rsv;
c3e69d58 9196 }
20524f02 9197 }
b3b4aa74 9198 btrfs_release_path(path);
79787eaa
JM
9199 if (err)
9200 goto out_end_trans;
2c47e605 9201
1cd5447e 9202 ret = btrfs_del_root(trans, fs_info, &root->root_key);
79787eaa 9203 if (ret) {
66642832 9204 btrfs_abort_transaction(trans, ret);
e19182c0 9205 err = ret;
79787eaa
JM
9206 goto out_end_trans;
9207 }
2c47e605 9208
76dda93c 9209 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9210 ret = btrfs_find_root(tree_root, &root->root_key, path,
9211 NULL, NULL);
79787eaa 9212 if (ret < 0) {
66642832 9213 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9214 err = ret;
9215 goto out_end_trans;
9216 } else if (ret > 0) {
84cd948c
JB
9217 /* if we fail to delete the orphan item this time
9218 * around, it'll get picked up the next time.
9219 *
9220 * The most common failure here is just -ENOENT.
9221 */
9222 btrfs_del_orphan_item(trans, tree_root,
9223 root->root_key.objectid);
76dda93c
YZ
9224 }
9225 }
9226
27cdeb70 9227 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9228 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9229 } else {
9230 free_extent_buffer(root->node);
9231 free_extent_buffer(root->commit_root);
b0feb9d9 9232 btrfs_put_fs_root(root);
76dda93c 9233 }
d29a9f62 9234 root_dropped = true;
79787eaa 9235out_end_trans:
3a45bb20 9236 btrfs_end_transaction_throttle(trans);
79787eaa 9237out_free:
2c47e605 9238 kfree(wc);
5caf2a00 9239 btrfs_free_path(path);
cb1b69f4 9240out:
d29a9f62
JB
9241 /*
9242 * So if we need to stop dropping the snapshot for whatever reason we
9243 * need to make sure to add it back to the dead root list so that we
9244 * keep trying to do the work later. This also cleans up roots if we
9245 * don't have it in the radix (like when we recover after a power fail
9246 * or unmount) so we don't leak memory.
9247 */
897ca819 9248 if (!for_reloc && !root_dropped)
d29a9f62 9249 btrfs_add_dead_root(root);
90515e7f 9250 if (err && err != -EAGAIN)
ab8d0fc4 9251 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9252 return err;
20524f02 9253}
9078a3e1 9254
2c47e605
YZ
9255/*
9256 * drop subtree rooted at tree block 'node'.
9257 *
9258 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9259 * only used by relocation code
2c47e605 9260 */
f82d02d9
YZ
9261int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9262 struct btrfs_root *root,
9263 struct extent_buffer *node,
9264 struct extent_buffer *parent)
9265{
0b246afa 9266 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9267 struct btrfs_path *path;
2c47e605 9268 struct walk_control *wc;
f82d02d9
YZ
9269 int level;
9270 int parent_level;
9271 int ret = 0;
9272 int wret;
9273
2c47e605
YZ
9274 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9275
f82d02d9 9276 path = btrfs_alloc_path();
db5b493a
TI
9277 if (!path)
9278 return -ENOMEM;
f82d02d9 9279
2c47e605 9280 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9281 if (!wc) {
9282 btrfs_free_path(path);
9283 return -ENOMEM;
9284 }
2c47e605 9285
b9447ef8 9286 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9287 parent_level = btrfs_header_level(parent);
9288 extent_buffer_get(parent);
9289 path->nodes[parent_level] = parent;
9290 path->slots[parent_level] = btrfs_header_nritems(parent);
9291
b9447ef8 9292 btrfs_assert_tree_locked(node);
f82d02d9 9293 level = btrfs_header_level(node);
f82d02d9
YZ
9294 path->nodes[level] = node;
9295 path->slots[level] = 0;
bd681513 9296 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9297
9298 wc->refs[parent_level] = 1;
9299 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9300 wc->level = level;
9301 wc->shared_level = -1;
9302 wc->stage = DROP_REFERENCE;
9303 wc->update_ref = 0;
9304 wc->keep_locks = 1;
66d7e7f0 9305 wc->for_reloc = 1;
0b246afa 9306 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9307
9308 while (1) {
2c47e605
YZ
9309 wret = walk_down_tree(trans, root, path, wc);
9310 if (wret < 0) {
f82d02d9 9311 ret = wret;
f82d02d9 9312 break;
2c47e605 9313 }
f82d02d9 9314
2c47e605 9315 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9316 if (wret < 0)
9317 ret = wret;
9318 if (wret != 0)
9319 break;
9320 }
9321
2c47e605 9322 kfree(wc);
f82d02d9
YZ
9323 btrfs_free_path(path);
9324 return ret;
9325}
9326
6202df69 9327static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9328{
9329 u64 num_devices;
fc67c450 9330 u64 stripped;
e4d8ec0f 9331
fc67c450
ID
9332 /*
9333 * if restripe for this chunk_type is on pick target profile and
9334 * return, otherwise do the usual balance
9335 */
6202df69 9336 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9337 if (stripped)
9338 return extended_to_chunk(stripped);
e4d8ec0f 9339
6202df69 9340 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9341
fc67c450 9342 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9343 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9344 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9345
ec44a35c
CM
9346 if (num_devices == 1) {
9347 stripped |= BTRFS_BLOCK_GROUP_DUP;
9348 stripped = flags & ~stripped;
9349
9350 /* turn raid0 into single device chunks */
9351 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9352 return stripped;
9353
9354 /* turn mirroring into duplication */
9355 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9356 BTRFS_BLOCK_GROUP_RAID10))
9357 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9358 } else {
9359 /* they already had raid on here, just return */
ec44a35c
CM
9360 if (flags & stripped)
9361 return flags;
9362
9363 stripped |= BTRFS_BLOCK_GROUP_DUP;
9364 stripped = flags & ~stripped;
9365
9366 /* switch duplicated blocks with raid1 */
9367 if (flags & BTRFS_BLOCK_GROUP_DUP)
9368 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9369
e3176ca2 9370 /* this is drive concat, leave it alone */
ec44a35c 9371 }
e3176ca2 9372
ec44a35c
CM
9373 return flags;
9374}
9375
868f401a 9376static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9377{
f0486c68
YZ
9378 struct btrfs_space_info *sinfo = cache->space_info;
9379 u64 num_bytes;
199c36ea 9380 u64 min_allocable_bytes;
f0486c68 9381 int ret = -ENOSPC;
0ef3e66b 9382
199c36ea
MX
9383 /*
9384 * We need some metadata space and system metadata space for
9385 * allocating chunks in some corner cases until we force to set
9386 * it to be readonly.
9387 */
9388 if ((sinfo->flags &
9389 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9390 !force)
ee22184b 9391 min_allocable_bytes = SZ_1M;
199c36ea
MX
9392 else
9393 min_allocable_bytes = 0;
9394
f0486c68
YZ
9395 spin_lock(&sinfo->lock);
9396 spin_lock(&cache->lock);
61cfea9b
W
9397
9398 if (cache->ro) {
868f401a 9399 cache->ro++;
61cfea9b
W
9400 ret = 0;
9401 goto out;
9402 }
9403
f0486c68
YZ
9404 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9405 cache->bytes_super - btrfs_block_group_used(&cache->item);
9406
4136135b 9407 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9408 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9409 sinfo->bytes_readonly += num_bytes;
868f401a 9410 cache->ro++;
633c0aad 9411 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9412 ret = 0;
9413 }
61cfea9b 9414out:
f0486c68
YZ
9415 spin_unlock(&cache->lock);
9416 spin_unlock(&sinfo->lock);
9417 return ret;
9418}
7d9eb12c 9419
5e00f193 9420int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9421 struct btrfs_block_group_cache *cache)
c286ac48 9422
f0486c68
YZ
9423{
9424 struct btrfs_trans_handle *trans;
9425 u64 alloc_flags;
9426 int ret;
7d9eb12c 9427
1bbc621e 9428again:
5e00f193 9429 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9430 if (IS_ERR(trans))
9431 return PTR_ERR(trans);
5d4f98a2 9432
1bbc621e
CM
9433 /*
9434 * we're not allowed to set block groups readonly after the dirty
9435 * block groups cache has started writing. If it already started,
9436 * back off and let this transaction commit
9437 */
0b246afa 9438 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9439 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9440 u64 transid = trans->transid;
9441
0b246afa 9442 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9443 btrfs_end_transaction(trans);
1bbc621e 9444
2ff7e61e 9445 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9446 if (ret)
9447 return ret;
9448 goto again;
9449 }
9450
153c35b6
CM
9451 /*
9452 * if we are changing raid levels, try to allocate a corresponding
9453 * block group with the new raid level.
9454 */
0b246afa 9455 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9456 if (alloc_flags != cache->flags) {
2ff7e61e 9457 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9458 CHUNK_ALLOC_FORCE);
9459 /*
9460 * ENOSPC is allowed here, we may have enough space
9461 * already allocated at the new raid level to
9462 * carry on
9463 */
9464 if (ret == -ENOSPC)
9465 ret = 0;
9466 if (ret < 0)
9467 goto out;
9468 }
1bbc621e 9469
868f401a 9470 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9471 if (!ret)
9472 goto out;
2ff7e61e
JM
9473 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9474 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9475 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9476 if (ret < 0)
9477 goto out;
868f401a 9478 ret = inc_block_group_ro(cache, 0);
f0486c68 9479out:
2f081088 9480 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9481 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9482 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9483 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9484 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9485 }
0b246afa 9486 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9487
3a45bb20 9488 btrfs_end_transaction(trans);
f0486c68
YZ
9489 return ret;
9490}
5d4f98a2 9491
c87f08ca 9492int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9493 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9494{
2ff7e61e
JM
9495 u64 alloc_flags = get_alloc_profile(fs_info, type);
9496
9497 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9498}
9499
6d07bcec
MX
9500/*
9501 * helper to account the unused space of all the readonly block group in the
633c0aad 9502 * space_info. takes mirrors into account.
6d07bcec 9503 */
633c0aad 9504u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9505{
9506 struct btrfs_block_group_cache *block_group;
9507 u64 free_bytes = 0;
9508 int factor;
9509
01327610 9510 /* It's df, we don't care if it's racy */
633c0aad
JB
9511 if (list_empty(&sinfo->ro_bgs))
9512 return 0;
9513
9514 spin_lock(&sinfo->lock);
9515 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9516 spin_lock(&block_group->lock);
9517
9518 if (!block_group->ro) {
9519 spin_unlock(&block_group->lock);
9520 continue;
9521 }
9522
9523 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9524 BTRFS_BLOCK_GROUP_RAID10 |
9525 BTRFS_BLOCK_GROUP_DUP))
9526 factor = 2;
9527 else
9528 factor = 1;
9529
9530 free_bytes += (block_group->key.offset -
9531 btrfs_block_group_used(&block_group->item)) *
9532 factor;
9533
9534 spin_unlock(&block_group->lock);
9535 }
6d07bcec
MX
9536 spin_unlock(&sinfo->lock);
9537
9538 return free_bytes;
9539}
9540
2ff7e61e 9541void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9542{
f0486c68
YZ
9543 struct btrfs_space_info *sinfo = cache->space_info;
9544 u64 num_bytes;
9545
9546 BUG_ON(!cache->ro);
9547
9548 spin_lock(&sinfo->lock);
9549 spin_lock(&cache->lock);
868f401a
Z
9550 if (!--cache->ro) {
9551 num_bytes = cache->key.offset - cache->reserved -
9552 cache->pinned - cache->bytes_super -
9553 btrfs_block_group_used(&cache->item);
9554 sinfo->bytes_readonly -= num_bytes;
9555 list_del_init(&cache->ro_list);
9556 }
f0486c68
YZ
9557 spin_unlock(&cache->lock);
9558 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9559}
9560
ba1bf481
JB
9561/*
9562 * checks to see if its even possible to relocate this block group.
9563 *
9564 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9565 * ok to go ahead and try.
9566 */
6bccf3ab 9567int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9568{
6bccf3ab 9569 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9570 struct btrfs_block_group_cache *block_group;
9571 struct btrfs_space_info *space_info;
0b246afa 9572 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9573 struct btrfs_device *device;
6df9a95e 9574 struct btrfs_trans_handle *trans;
cdcb725c 9575 u64 min_free;
6719db6a
JB
9576 u64 dev_min = 1;
9577 u64 dev_nr = 0;
4a5e98f5 9578 u64 target;
0305bc27 9579 int debug;
cdcb725c 9580 int index;
ba1bf481
JB
9581 int full = 0;
9582 int ret = 0;
1a40e23b 9583
0b246afa 9584 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9585
0b246afa 9586 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9587
ba1bf481 9588 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9589 if (!block_group) {
9590 if (debug)
0b246afa 9591 btrfs_warn(fs_info,
0305bc27
QW
9592 "can't find block group for bytenr %llu",
9593 bytenr);
ba1bf481 9594 return -1;
0305bc27 9595 }
1a40e23b 9596
cdcb725c 9597 min_free = btrfs_block_group_used(&block_group->item);
9598
ba1bf481 9599 /* no bytes used, we're good */
cdcb725c 9600 if (!min_free)
1a40e23b
ZY
9601 goto out;
9602
ba1bf481
JB
9603 space_info = block_group->space_info;
9604 spin_lock(&space_info->lock);
17d217fe 9605
ba1bf481 9606 full = space_info->full;
17d217fe 9607
ba1bf481
JB
9608 /*
9609 * if this is the last block group we have in this space, we can't
7ce618db
CM
9610 * relocate it unless we're able to allocate a new chunk below.
9611 *
9612 * Otherwise, we need to make sure we have room in the space to handle
9613 * all of the extents from this block group. If we can, we're good
ba1bf481 9614 */
7ce618db 9615 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9616 (btrfs_space_info_used(space_info, false) + min_free <
9617 space_info->total_bytes)) {
ba1bf481
JB
9618 spin_unlock(&space_info->lock);
9619 goto out;
17d217fe 9620 }
ba1bf481 9621 spin_unlock(&space_info->lock);
ea8c2819 9622
ba1bf481
JB
9623 /*
9624 * ok we don't have enough space, but maybe we have free space on our
9625 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9626 * alloc devices and guess if we have enough space. if this block
9627 * group is going to be restriped, run checks against the target
9628 * profile instead of the current one.
ba1bf481
JB
9629 */
9630 ret = -1;
ea8c2819 9631
cdcb725c 9632 /*
9633 * index:
9634 * 0: raid10
9635 * 1: raid1
9636 * 2: dup
9637 * 3: raid0
9638 * 4: single
9639 */
0b246afa 9640 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9641 if (target) {
3e72ee88 9642 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9643 } else {
9644 /*
9645 * this is just a balance, so if we were marked as full
9646 * we know there is no space for a new chunk
9647 */
0305bc27
QW
9648 if (full) {
9649 if (debug)
0b246afa
JM
9650 btrfs_warn(fs_info,
9651 "no space to alloc new chunk for block group %llu",
9652 block_group->key.objectid);
4a5e98f5 9653 goto out;
0305bc27 9654 }
4a5e98f5 9655
3e72ee88 9656 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9657 }
9658
e6ec716f 9659 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9660 dev_min = 4;
6719db6a
JB
9661 /* Divide by 2 */
9662 min_free >>= 1;
e6ec716f 9663 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9664 dev_min = 2;
e6ec716f 9665 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9666 /* Multiply by 2 */
9667 min_free <<= 1;
e6ec716f 9668 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9669 dev_min = fs_devices->rw_devices;
47c5713f 9670 min_free = div64_u64(min_free, dev_min);
cdcb725c 9671 }
9672
6df9a95e
JB
9673 /* We need to do this so that we can look at pending chunks */
9674 trans = btrfs_join_transaction(root);
9675 if (IS_ERR(trans)) {
9676 ret = PTR_ERR(trans);
9677 goto out;
9678 }
9679
0b246afa 9680 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9681 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9682 u64 dev_offset;
56bec294 9683
ba1bf481
JB
9684 /*
9685 * check to make sure we can actually find a chunk with enough
9686 * space to fit our block group in.
9687 */
63a212ab 9688 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9689 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9690 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9691 &dev_offset, NULL);
ba1bf481 9692 if (!ret)
cdcb725c 9693 dev_nr++;
9694
9695 if (dev_nr >= dev_min)
73e48b27 9696 break;
cdcb725c 9697
ba1bf481 9698 ret = -1;
725c8463 9699 }
edbd8d4e 9700 }
0305bc27 9701 if (debug && ret == -1)
0b246afa
JM
9702 btrfs_warn(fs_info,
9703 "no space to allocate a new chunk for block group %llu",
9704 block_group->key.objectid);
9705 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9706 btrfs_end_transaction(trans);
edbd8d4e 9707out:
ba1bf481 9708 btrfs_put_block_group(block_group);
edbd8d4e
CM
9709 return ret;
9710}
9711
6bccf3ab
JM
9712static int find_first_block_group(struct btrfs_fs_info *fs_info,
9713 struct btrfs_path *path,
9714 struct btrfs_key *key)
0b86a832 9715{
6bccf3ab 9716 struct btrfs_root *root = fs_info->extent_root;
925baedd 9717 int ret = 0;
0b86a832
CM
9718 struct btrfs_key found_key;
9719 struct extent_buffer *leaf;
9720 int slot;
edbd8d4e 9721
0b86a832
CM
9722 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9723 if (ret < 0)
925baedd
CM
9724 goto out;
9725
d397712b 9726 while (1) {
0b86a832 9727 slot = path->slots[0];
edbd8d4e 9728 leaf = path->nodes[0];
0b86a832
CM
9729 if (slot >= btrfs_header_nritems(leaf)) {
9730 ret = btrfs_next_leaf(root, path);
9731 if (ret == 0)
9732 continue;
9733 if (ret < 0)
925baedd 9734 goto out;
0b86a832 9735 break;
edbd8d4e 9736 }
0b86a832 9737 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9738
0b86a832 9739 if (found_key.objectid >= key->objectid &&
925baedd 9740 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9741 struct extent_map_tree *em_tree;
9742 struct extent_map *em;
9743
9744 em_tree = &root->fs_info->mapping_tree.map_tree;
9745 read_lock(&em_tree->lock);
9746 em = lookup_extent_mapping(em_tree, found_key.objectid,
9747 found_key.offset);
9748 read_unlock(&em_tree->lock);
9749 if (!em) {
0b246afa 9750 btrfs_err(fs_info,
6fb37b75
LB
9751 "logical %llu len %llu found bg but no related chunk",
9752 found_key.objectid, found_key.offset);
9753 ret = -ENOENT;
9754 } else {
9755 ret = 0;
9756 }
187ee58c 9757 free_extent_map(em);
925baedd
CM
9758 goto out;
9759 }
0b86a832 9760 path->slots[0]++;
edbd8d4e 9761 }
925baedd 9762out:
0b86a832 9763 return ret;
edbd8d4e
CM
9764}
9765
0af3d00b
JB
9766void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9767{
9768 struct btrfs_block_group_cache *block_group;
9769 u64 last = 0;
9770
9771 while (1) {
9772 struct inode *inode;
9773
9774 block_group = btrfs_lookup_first_block_group(info, last);
9775 while (block_group) {
9776 spin_lock(&block_group->lock);
9777 if (block_group->iref)
9778 break;
9779 spin_unlock(&block_group->lock);
2ff7e61e 9780 block_group = next_block_group(info, block_group);
0af3d00b
JB
9781 }
9782 if (!block_group) {
9783 if (last == 0)
9784 break;
9785 last = 0;
9786 continue;
9787 }
9788
9789 inode = block_group->inode;
9790 block_group->iref = 0;
9791 block_group->inode = NULL;
9792 spin_unlock(&block_group->lock);
f3bca802 9793 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9794 iput(inode);
9795 last = block_group->key.objectid + block_group->key.offset;
9796 btrfs_put_block_group(block_group);
9797 }
9798}
9799
5cdd7db6
FM
9800/*
9801 * Must be called only after stopping all workers, since we could have block
9802 * group caching kthreads running, and therefore they could race with us if we
9803 * freed the block groups before stopping them.
9804 */
1a40e23b
ZY
9805int btrfs_free_block_groups(struct btrfs_fs_info *info)
9806{
9807 struct btrfs_block_group_cache *block_group;
4184ea7f 9808 struct btrfs_space_info *space_info;
11833d66 9809 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9810 struct rb_node *n;
9811
9e351cc8 9812 down_write(&info->commit_root_sem);
11833d66
YZ
9813 while (!list_empty(&info->caching_block_groups)) {
9814 caching_ctl = list_entry(info->caching_block_groups.next,
9815 struct btrfs_caching_control, list);
9816 list_del(&caching_ctl->list);
9817 put_caching_control(caching_ctl);
9818 }
9e351cc8 9819 up_write(&info->commit_root_sem);
11833d66 9820
47ab2a6c
JB
9821 spin_lock(&info->unused_bgs_lock);
9822 while (!list_empty(&info->unused_bgs)) {
9823 block_group = list_first_entry(&info->unused_bgs,
9824 struct btrfs_block_group_cache,
9825 bg_list);
9826 list_del_init(&block_group->bg_list);
9827 btrfs_put_block_group(block_group);
9828 }
9829 spin_unlock(&info->unused_bgs_lock);
9830
1a40e23b
ZY
9831 spin_lock(&info->block_group_cache_lock);
9832 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9833 block_group = rb_entry(n, struct btrfs_block_group_cache,
9834 cache_node);
1a40e23b
ZY
9835 rb_erase(&block_group->cache_node,
9836 &info->block_group_cache_tree);
01eacb27 9837 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9838 spin_unlock(&info->block_group_cache_lock);
9839
80eb234a 9840 down_write(&block_group->space_info->groups_sem);
1a40e23b 9841 list_del(&block_group->list);
80eb234a 9842 up_write(&block_group->space_info->groups_sem);
d2fb3437 9843
3c14874a
JB
9844 /*
9845 * We haven't cached this block group, which means we could
9846 * possibly have excluded extents on this block group.
9847 */
36cce922
JB
9848 if (block_group->cached == BTRFS_CACHE_NO ||
9849 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9850 free_excluded_extents(info, block_group);
3c14874a 9851
817d52f8 9852 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9853 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9854 ASSERT(list_empty(&block_group->dirty_list));
9855 ASSERT(list_empty(&block_group->io_list));
9856 ASSERT(list_empty(&block_group->bg_list));
9857 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9858 btrfs_put_block_group(block_group);
d899e052
YZ
9859
9860 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9861 }
9862 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9863
9864 /* now that all the block groups are freed, go through and
9865 * free all the space_info structs. This is only called during
9866 * the final stages of unmount, and so we know nobody is
9867 * using them. We call synchronize_rcu() once before we start,
9868 * just to be on the safe side.
9869 */
9870 synchronize_rcu();
9871
8929ecfa
YZ
9872 release_global_block_rsv(info);
9873
67871254 9874 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9875 int i;
9876
4184ea7f
CM
9877 space_info = list_entry(info->space_info.next,
9878 struct btrfs_space_info,
9879 list);
d555b6c3
JB
9880
9881 /*
9882 * Do not hide this behind enospc_debug, this is actually
9883 * important and indicates a real bug if this happens.
9884 */
9885 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9886 space_info->bytes_reserved > 0 ||
d555b6c3 9887 space_info->bytes_may_use > 0))
ab8d0fc4 9888 dump_space_info(info, space_info, 0, 0);
4184ea7f 9889 list_del(&space_info->list);
6ab0a202
JM
9890 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9891 struct kobject *kobj;
c1895442
JM
9892 kobj = space_info->block_group_kobjs[i];
9893 space_info->block_group_kobjs[i] = NULL;
9894 if (kobj) {
6ab0a202
JM
9895 kobject_del(kobj);
9896 kobject_put(kobj);
9897 }
9898 }
9899 kobject_del(&space_info->kobj);
9900 kobject_put(&space_info->kobj);
4184ea7f 9901 }
1a40e23b
ZY
9902 return 0;
9903}
9904
75cb379d
JM
9905/* link_block_group will queue up kobjects to add when we're reclaim-safe */
9906void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9907{
9908 struct btrfs_space_info *space_info;
9909 struct raid_kobject *rkobj;
9910 LIST_HEAD(list);
9911 int index;
9912 int ret = 0;
9913
9914 spin_lock(&fs_info->pending_raid_kobjs_lock);
9915 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9916 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9917
9918 list_for_each_entry(rkobj, &list, list) {
9919 space_info = __find_space_info(fs_info, rkobj->flags);
9920 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9921
9922 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9923 "%s", get_raid_name(index));
9924 if (ret) {
9925 kobject_put(&rkobj->kobj);
9926 break;
9927 }
9928 }
9929 if (ret)
9930 btrfs_warn(fs_info,
9931 "failed to add kobject for block cache, ignoring");
9932}
9933
c434d21c 9934static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 9935{
c434d21c 9936 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 9937 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 9938 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 9939 bool first = false;
b742bb82
YZ
9940
9941 down_write(&space_info->groups_sem);
ed55b6ac
JM
9942 if (list_empty(&space_info->block_groups[index]))
9943 first = true;
9944 list_add_tail(&cache->list, &space_info->block_groups[index]);
9945 up_write(&space_info->groups_sem);
9946
9947 if (first) {
75cb379d
JM
9948 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9949 if (!rkobj) {
9950 btrfs_warn(cache->fs_info,
9951 "couldn't alloc memory for raid level kobject");
9952 return;
6ab0a202 9953 }
75cb379d
JM
9954 rkobj->flags = cache->flags;
9955 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9956
9957 spin_lock(&fs_info->pending_raid_kobjs_lock);
9958 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9959 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 9960 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9961 }
b742bb82
YZ
9962}
9963
920e4a58 9964static struct btrfs_block_group_cache *
2ff7e61e
JM
9965btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9966 u64 start, u64 size)
920e4a58
MX
9967{
9968 struct btrfs_block_group_cache *cache;
9969
9970 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9971 if (!cache)
9972 return NULL;
9973
9974 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9975 GFP_NOFS);
9976 if (!cache->free_space_ctl) {
9977 kfree(cache);
9978 return NULL;
9979 }
9980
9981 cache->key.objectid = start;
9982 cache->key.offset = size;
9983 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9984
0b246afa 9985 cache->fs_info = fs_info;
e4ff5fb5 9986 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
9987 set_free_space_tree_thresholds(cache);
9988
920e4a58
MX
9989 atomic_set(&cache->count, 1);
9990 spin_lock_init(&cache->lock);
e570fd27 9991 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9992 INIT_LIST_HEAD(&cache->list);
9993 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9994 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9995 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9996 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9997 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9998 btrfs_init_free_space_ctl(cache);
04216820 9999 atomic_set(&cache->trimming, 0);
a5ed9182 10000 mutex_init(&cache->free_space_lock);
0966a7b1 10001 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
10002
10003 return cache;
10004}
10005
5b4aacef 10006int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10007{
10008 struct btrfs_path *path;
10009 int ret;
9078a3e1 10010 struct btrfs_block_group_cache *cache;
6324fbf3 10011 struct btrfs_space_info *space_info;
9078a3e1
CM
10012 struct btrfs_key key;
10013 struct btrfs_key found_key;
5f39d397 10014 struct extent_buffer *leaf;
0af3d00b
JB
10015 int need_clear = 0;
10016 u64 cache_gen;
49303381
LB
10017 u64 feature;
10018 int mixed;
10019
10020 feature = btrfs_super_incompat_flags(info->super_copy);
10021 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10022
9078a3e1 10023 key.objectid = 0;
0b86a832 10024 key.offset = 0;
962a298f 10025 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10026 path = btrfs_alloc_path();
10027 if (!path)
10028 return -ENOMEM;
e4058b54 10029 path->reada = READA_FORWARD;
9078a3e1 10030
0b246afa
JM
10031 cache_gen = btrfs_super_cache_generation(info->super_copy);
10032 if (btrfs_test_opt(info, SPACE_CACHE) &&
10033 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10034 need_clear = 1;
0b246afa 10035 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10036 need_clear = 1;
0af3d00b 10037
d397712b 10038 while (1) {
6bccf3ab 10039 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10040 if (ret > 0)
10041 break;
0b86a832
CM
10042 if (ret != 0)
10043 goto error;
920e4a58 10044
5f39d397
CM
10045 leaf = path->nodes[0];
10046 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10047
2ff7e61e 10048 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10049 found_key.offset);
9078a3e1 10050 if (!cache) {
0b86a832 10051 ret = -ENOMEM;
f0486c68 10052 goto error;
9078a3e1 10053 }
96303081 10054
cf7c1ef6
LB
10055 if (need_clear) {
10056 /*
10057 * When we mount with old space cache, we need to
10058 * set BTRFS_DC_CLEAR and set dirty flag.
10059 *
10060 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10061 * truncate the old free space cache inode and
10062 * setup a new one.
10063 * b) Setting 'dirty flag' makes sure that we flush
10064 * the new space cache info onto disk.
10065 */
0b246afa 10066 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10067 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10068 }
0af3d00b 10069
5f39d397
CM
10070 read_extent_buffer(leaf, &cache->item,
10071 btrfs_item_ptr_offset(leaf, path->slots[0]),
10072 sizeof(cache->item));
920e4a58 10073 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10074 if (!mixed &&
10075 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10076 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10077 btrfs_err(info,
10078"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10079 cache->key.objectid);
10080 ret = -EINVAL;
10081 goto error;
10082 }
0b86a832 10083
9078a3e1 10084 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10085 btrfs_release_path(path);
34d52cb6 10086
3c14874a
JB
10087 /*
10088 * We need to exclude the super stripes now so that the space
10089 * info has super bytes accounted for, otherwise we'll think
10090 * we have more space than we actually do.
10091 */
2ff7e61e 10092 ret = exclude_super_stripes(info, cache);
835d974f
JB
10093 if (ret) {
10094 /*
10095 * We may have excluded something, so call this just in
10096 * case.
10097 */
2ff7e61e 10098 free_excluded_extents(info, cache);
920e4a58 10099 btrfs_put_block_group(cache);
835d974f
JB
10100 goto error;
10101 }
3c14874a 10102
817d52f8
JB
10103 /*
10104 * check for two cases, either we are full, and therefore
10105 * don't need to bother with the caching work since we won't
10106 * find any space, or we are empty, and we can just add all
10107 * the space in and be done with it. This saves us _alot_ of
10108 * time, particularly in the full case.
10109 */
10110 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10111 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10112 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10113 free_excluded_extents(info, cache);
817d52f8 10114 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10115 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10116 cache->cached = BTRFS_CACHE_FINISHED;
4457c1c7 10117 add_new_free_space(cache, found_key.objectid,
817d52f8
JB
10118 found_key.objectid +
10119 found_key.offset);
2ff7e61e 10120 free_excluded_extents(info, cache);
817d52f8 10121 }
96b5179d 10122
0b246afa 10123 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10124 if (ret) {
10125 btrfs_remove_free_space_cache(cache);
10126 btrfs_put_block_group(cache);
10127 goto error;
10128 }
10129
0b246afa 10130 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10131 update_space_info(info, cache->flags, found_key.offset,
10132 btrfs_block_group_used(&cache->item),
10133 cache->bytes_super, &space_info);
8c579fe7 10134
6324fbf3 10135 cache->space_info = space_info;
1b2da372 10136
c434d21c 10137 link_block_group(cache);
0f9dd46c 10138
0b246afa 10139 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10140 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10141 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10142 } else if (btrfs_block_group_used(&cache->item) == 0) {
10143 spin_lock(&info->unused_bgs_lock);
10144 /* Should always be true but just in case. */
10145 if (list_empty(&cache->bg_list)) {
10146 btrfs_get_block_group(cache);
4ed0a7a3 10147 trace_btrfs_add_unused_block_group(cache);
47ab2a6c
JB
10148 list_add_tail(&cache->bg_list,
10149 &info->unused_bgs);
10150 }
10151 spin_unlock(&info->unused_bgs_lock);
10152 }
9078a3e1 10153 }
b742bb82 10154
0b246afa 10155 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10156 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10157 (BTRFS_BLOCK_GROUP_RAID10 |
10158 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10159 BTRFS_BLOCK_GROUP_RAID5 |
10160 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10161 BTRFS_BLOCK_GROUP_DUP)))
10162 continue;
10163 /*
10164 * avoid allocating from un-mirrored block group if there are
10165 * mirrored block groups.
10166 */
1095cc0d 10167 list_for_each_entry(cache,
10168 &space_info->block_groups[BTRFS_RAID_RAID0],
10169 list)
868f401a 10170 inc_block_group_ro(cache, 1);
1095cc0d 10171 list_for_each_entry(cache,
10172 &space_info->block_groups[BTRFS_RAID_SINGLE],
10173 list)
868f401a 10174 inc_block_group_ro(cache, 1);
9078a3e1 10175 }
f0486c68 10176
75cb379d 10177 btrfs_add_raid_kobjects(info);
f0486c68 10178 init_global_block_rsv(info);
0b86a832
CM
10179 ret = 0;
10180error:
9078a3e1 10181 btrfs_free_path(path);
0b86a832 10182 return ret;
9078a3e1 10183}
6324fbf3 10184
6c686b35 10185void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10186{
6c686b35 10187 struct btrfs_fs_info *fs_info = trans->fs_info;
ea658bad 10188 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10189 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10190 struct btrfs_block_group_item item;
10191 struct btrfs_key key;
10192 int ret = 0;
d9a0540a 10193 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10194
d9a0540a 10195 trans->can_flush_pending_bgs = false;
47ab2a6c 10196 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10197 if (ret)
c92f6be3 10198 goto next;
ea658bad
JB
10199
10200 spin_lock(&block_group->lock);
10201 memcpy(&item, &block_group->item, sizeof(item));
10202 memcpy(&key, &block_group->key, sizeof(key));
10203 spin_unlock(&block_group->lock);
10204
10205 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10206 sizeof(item));
10207 if (ret)
66642832 10208 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10209 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10210 key.offset);
6df9a95e 10211 if (ret)
66642832 10212 btrfs_abort_transaction(trans, ret);
e4e0711c 10213 add_block_group_free_space(trans, block_group);
1e144fb8 10214 /* already aborted the transaction if it failed. */
c92f6be3
FM
10215next:
10216 list_del_init(&block_group->bg_list);
ea658bad 10217 }
d9a0540a 10218 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10219}
10220
6324fbf3 10221int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10222 struct btrfs_fs_info *fs_info, u64 bytes_used,
0174484d 10223 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10224{
6324fbf3 10225 struct btrfs_block_group_cache *cache;
0b246afa 10226 int ret;
6324fbf3 10227
0b246afa 10228 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10229
2ff7e61e 10230 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10231 if (!cache)
10232 return -ENOMEM;
34d52cb6 10233
6324fbf3 10234 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10235 btrfs_set_block_group_chunk_objectid(&cache->item,
10236 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10237 btrfs_set_block_group_flags(&cache->item, type);
10238
920e4a58 10239 cache->flags = type;
11833d66 10240 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10241 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10242 cache->needs_free_space = 1;
2ff7e61e 10243 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10244 if (ret) {
10245 /*
10246 * We may have excluded something, so call this just in
10247 * case.
10248 */
2ff7e61e 10249 free_excluded_extents(fs_info, cache);
920e4a58 10250 btrfs_put_block_group(cache);
835d974f
JB
10251 return ret;
10252 }
96303081 10253
4457c1c7 10254 add_new_free_space(cache, chunk_offset, chunk_offset + size);
817d52f8 10255
2ff7e61e 10256 free_excluded_extents(fs_info, cache);
11833d66 10257
d0bd4560 10258#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10259 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10260 u64 new_bytes_used = size - bytes_used;
10261
10262 bytes_used += new_bytes_used >> 1;
2ff7e61e 10263 fragment_free_space(cache);
d0bd4560
JB
10264 }
10265#endif
2e6e5183 10266 /*
2be12ef7
NB
10267 * Ensure the corresponding space_info object is created and
10268 * assigned to our block group. We want our bg to be added to the rbtree
10269 * with its ->space_info set.
2e6e5183 10270 */
2be12ef7 10271 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10272 ASSERT(cache->space_info);
2e6e5183 10273
0b246afa 10274 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10275 if (ret) {
10276 btrfs_remove_free_space_cache(cache);
10277 btrfs_put_block_group(cache);
10278 return ret;
10279 }
10280
2e6e5183
FM
10281 /*
10282 * Now that our block group has its ->space_info set and is inserted in
10283 * the rbtree, update the space info's counters.
10284 */
0b246afa 10285 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10286 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10287 cache->bytes_super, &cache->space_info);
0b246afa 10288 update_global_block_rsv(fs_info);
1b2da372 10289
c434d21c 10290 link_block_group(cache);
6324fbf3 10291
47ab2a6c 10292 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10293
0b246afa 10294 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10295 return 0;
10296}
1a40e23b 10297
10ea00f5
ID
10298static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10299{
899c81ea
ID
10300 u64 extra_flags = chunk_to_extended(flags) &
10301 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10302
de98ced9 10303 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10304 if (flags & BTRFS_BLOCK_GROUP_DATA)
10305 fs_info->avail_data_alloc_bits &= ~extra_flags;
10306 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10307 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10308 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10309 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10310 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10311}
10312
1a40e23b 10313int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10314 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10315 struct extent_map *em)
1a40e23b 10316{
6bccf3ab 10317 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10318 struct btrfs_path *path;
10319 struct btrfs_block_group_cache *block_group;
44fb5511 10320 struct btrfs_free_cluster *cluster;
0b246afa 10321 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10322 struct btrfs_key key;
0af3d00b 10323 struct inode *inode;
c1895442 10324 struct kobject *kobj = NULL;
1a40e23b 10325 int ret;
10ea00f5 10326 int index;
89a55897 10327 int factor;
4f69cb98 10328 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10329 bool remove_em;
1a40e23b 10330
6bccf3ab 10331 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10332 BUG_ON(!block_group);
c146afad 10333 BUG_ON(!block_group->ro);
1a40e23b 10334
4ed0a7a3 10335 trace_btrfs_remove_block_group(block_group);
9f7c43c9 10336 /*
10337 * Free the reserved super bytes from this block group before
10338 * remove it.
10339 */
2ff7e61e 10340 free_excluded_extents(fs_info, block_group);
fd708b81
JB
10341 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10342 block_group->key.offset);
9f7c43c9 10343
1a40e23b 10344 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10345 index = btrfs_bg_flags_to_raid_index(block_group->flags);
89a55897
JB
10346 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10347 BTRFS_BLOCK_GROUP_RAID1 |
10348 BTRFS_BLOCK_GROUP_RAID10))
10349 factor = 2;
10350 else
10351 factor = 1;
1a40e23b 10352
44fb5511 10353 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10354 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10355 spin_lock(&cluster->refill_lock);
10356 btrfs_return_cluster_to_free_space(block_group, cluster);
10357 spin_unlock(&cluster->refill_lock);
10358
10359 /*
10360 * make sure this block group isn't part of a metadata
10361 * allocation cluster
10362 */
0b246afa 10363 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10364 spin_lock(&cluster->refill_lock);
10365 btrfs_return_cluster_to_free_space(block_group, cluster);
10366 spin_unlock(&cluster->refill_lock);
10367
1a40e23b 10368 path = btrfs_alloc_path();
d8926bb3
MF
10369 if (!path) {
10370 ret = -ENOMEM;
10371 goto out;
10372 }
1a40e23b 10373
1bbc621e
CM
10374 /*
10375 * get the inode first so any iput calls done for the io_list
10376 * aren't the final iput (no unlinks allowed now)
10377 */
77ab86bf 10378 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10379
10380 mutex_lock(&trans->transaction->cache_write_mutex);
10381 /*
10382 * make sure our free spache cache IO is done before remove the
10383 * free space inode
10384 */
10385 spin_lock(&trans->transaction->dirty_bgs_lock);
10386 if (!list_empty(&block_group->io_list)) {
10387 list_del_init(&block_group->io_list);
10388
10389 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10390
10391 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10392 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10393 btrfs_put_block_group(block_group);
10394 spin_lock(&trans->transaction->dirty_bgs_lock);
10395 }
10396
10397 if (!list_empty(&block_group->dirty_list)) {
10398 list_del_init(&block_group->dirty_list);
10399 btrfs_put_block_group(block_group);
10400 }
10401 spin_unlock(&trans->transaction->dirty_bgs_lock);
10402 mutex_unlock(&trans->transaction->cache_write_mutex);
10403
0af3d00b 10404 if (!IS_ERR(inode)) {
73f2e545 10405 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10406 if (ret) {
10407 btrfs_add_delayed_iput(inode);
10408 goto out;
10409 }
0af3d00b
JB
10410 clear_nlink(inode);
10411 /* One for the block groups ref */
10412 spin_lock(&block_group->lock);
10413 if (block_group->iref) {
10414 block_group->iref = 0;
10415 block_group->inode = NULL;
10416 spin_unlock(&block_group->lock);
10417 iput(inode);
10418 } else {
10419 spin_unlock(&block_group->lock);
10420 }
10421 /* One for our lookup ref */
455757c3 10422 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10423 }
10424
10425 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10426 key.offset = block_group->key.objectid;
10427 key.type = 0;
10428
10429 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10430 if (ret < 0)
10431 goto out;
10432 if (ret > 0)
b3b4aa74 10433 btrfs_release_path(path);
0af3d00b
JB
10434 if (ret == 0) {
10435 ret = btrfs_del_item(trans, tree_root, path);
10436 if (ret)
10437 goto out;
b3b4aa74 10438 btrfs_release_path(path);
0af3d00b
JB
10439 }
10440
0b246afa 10441 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10442 rb_erase(&block_group->cache_node,
0b246afa 10443 &fs_info->block_group_cache_tree);
292cbd51 10444 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10445
0b246afa
JM
10446 if (fs_info->first_logical_byte == block_group->key.objectid)
10447 fs_info->first_logical_byte = (u64)-1;
10448 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10449
80eb234a 10450 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10451 /*
10452 * we must use list_del_init so people can check to see if they
10453 * are still on the list after taking the semaphore
10454 */
10455 list_del_init(&block_group->list);
6ab0a202 10456 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10457 kobj = block_group->space_info->block_group_kobjs[index];
10458 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10459 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10460 }
80eb234a 10461 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10462 if (kobj) {
10463 kobject_del(kobj);
10464 kobject_put(kobj);
10465 }
1a40e23b 10466
4f69cb98
FM
10467 if (block_group->has_caching_ctl)
10468 caching_ctl = get_caching_control(block_group);
817d52f8 10469 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10470 wait_block_group_cache_done(block_group);
4f69cb98 10471 if (block_group->has_caching_ctl) {
0b246afa 10472 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10473 if (!caching_ctl) {
10474 struct btrfs_caching_control *ctl;
10475
10476 list_for_each_entry(ctl,
0b246afa 10477 &fs_info->caching_block_groups, list)
4f69cb98
FM
10478 if (ctl->block_group == block_group) {
10479 caching_ctl = ctl;
1e4f4714 10480 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10481 break;
10482 }
10483 }
10484 if (caching_ctl)
10485 list_del_init(&caching_ctl->list);
0b246afa 10486 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10487 if (caching_ctl) {
10488 /* Once for the caching bgs list and once for us. */
10489 put_caching_control(caching_ctl);
10490 put_caching_control(caching_ctl);
10491 }
10492 }
817d52f8 10493
ce93ec54
JB
10494 spin_lock(&trans->transaction->dirty_bgs_lock);
10495 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10496 WARN_ON(1);
10497 }
10498 if (!list_empty(&block_group->io_list)) {
10499 WARN_ON(1);
ce93ec54
JB
10500 }
10501 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10502 btrfs_remove_free_space_cache(block_group);
10503
c146afad 10504 spin_lock(&block_group->space_info->lock);
75c68e9f 10505 list_del_init(&block_group->ro_list);
18d018ad 10506
0b246afa 10507 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10508 WARN_ON(block_group->space_info->total_bytes
10509 < block_group->key.offset);
10510 WARN_ON(block_group->space_info->bytes_readonly
10511 < block_group->key.offset);
10512 WARN_ON(block_group->space_info->disk_total
10513 < block_group->key.offset * factor);
10514 }
c146afad
YZ
10515 block_group->space_info->total_bytes -= block_group->key.offset;
10516 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10517 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10518
c146afad 10519 spin_unlock(&block_group->space_info->lock);
283bb197 10520
0af3d00b
JB
10521 memcpy(&key, &block_group->key, sizeof(key));
10522
34441361 10523 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10524 if (!list_empty(&em->list)) {
10525 /* We're in the transaction->pending_chunks list. */
10526 free_extent_map(em);
10527 }
04216820
FM
10528 spin_lock(&block_group->lock);
10529 block_group->removed = 1;
10530 /*
10531 * At this point trimming can't start on this block group, because we
10532 * removed the block group from the tree fs_info->block_group_cache_tree
10533 * so no one can't find it anymore and even if someone already got this
10534 * block group before we removed it from the rbtree, they have already
10535 * incremented block_group->trimming - if they didn't, they won't find
10536 * any free space entries because we already removed them all when we
10537 * called btrfs_remove_free_space_cache().
10538 *
10539 * And we must not remove the extent map from the fs_info->mapping_tree
10540 * to prevent the same logical address range and physical device space
10541 * ranges from being reused for a new block group. This is because our
10542 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10543 * completely transactionless, so while it is trimming a range the
10544 * currently running transaction might finish and a new one start,
10545 * allowing for new block groups to be created that can reuse the same
10546 * physical device locations unless we take this special care.
e33e17ee
JM
10547 *
10548 * There may also be an implicit trim operation if the file system
10549 * is mounted with -odiscard. The same protections must remain
10550 * in place until the extents have been discarded completely when
10551 * the transaction commit has completed.
04216820
FM
10552 */
10553 remove_em = (atomic_read(&block_group->trimming) == 0);
10554 /*
10555 * Make sure a trimmer task always sees the em in the pinned_chunks list
10556 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10557 * before checking block_group->removed).
10558 */
10559 if (!remove_em) {
10560 /*
10561 * Our em might be in trans->transaction->pending_chunks which
10562 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10563 * and so is the fs_info->pinned_chunks list.
10564 *
10565 * So at this point we must be holding the chunk_mutex to avoid
10566 * any races with chunk allocation (more specifically at
10567 * volumes.c:contains_pending_extent()), to ensure it always
10568 * sees the em, either in the pending_chunks list or in the
10569 * pinned_chunks list.
10570 */
0b246afa 10571 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10572 }
10573 spin_unlock(&block_group->lock);
04216820
FM
10574
10575 if (remove_em) {
10576 struct extent_map_tree *em_tree;
10577
0b246afa 10578 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10579 write_lock(&em_tree->lock);
8dbcd10f
FM
10580 /*
10581 * The em might be in the pending_chunks list, so make sure the
10582 * chunk mutex is locked, since remove_extent_mapping() will
10583 * delete us from that list.
10584 */
04216820
FM
10585 remove_extent_mapping(em_tree, em);
10586 write_unlock(&em_tree->lock);
10587 /* once for the tree */
10588 free_extent_map(em);
10589 }
10590
34441361 10591 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10592
f3f72779 10593 ret = remove_block_group_free_space(trans, block_group);
1e144fb8
OS
10594 if (ret)
10595 goto out;
10596
fa9c0d79
CM
10597 btrfs_put_block_group(block_group);
10598 btrfs_put_block_group(block_group);
1a40e23b
ZY
10599
10600 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10601 if (ret > 0)
10602 ret = -EIO;
10603 if (ret < 0)
10604 goto out;
10605
10606 ret = btrfs_del_item(trans, root, path);
10607out:
10608 btrfs_free_path(path);
10609 return ret;
10610}
acce952b 10611
8eab77ff 10612struct btrfs_trans_handle *
7fd01182
FM
10613btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10614 const u64 chunk_offset)
8eab77ff 10615{
7fd01182
FM
10616 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10617 struct extent_map *em;
10618 struct map_lookup *map;
10619 unsigned int num_items;
10620
10621 read_lock(&em_tree->lock);
10622 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10623 read_unlock(&em_tree->lock);
10624 ASSERT(em && em->start == chunk_offset);
10625
8eab77ff 10626 /*
7fd01182
FM
10627 * We need to reserve 3 + N units from the metadata space info in order
10628 * to remove a block group (done at btrfs_remove_chunk() and at
10629 * btrfs_remove_block_group()), which are used for:
10630 *
8eab77ff
FM
10631 * 1 unit for adding the free space inode's orphan (located in the tree
10632 * of tree roots).
7fd01182
FM
10633 * 1 unit for deleting the block group item (located in the extent
10634 * tree).
10635 * 1 unit for deleting the free space item (located in tree of tree
10636 * roots).
10637 * N units for deleting N device extent items corresponding to each
10638 * stripe (located in the device tree).
10639 *
10640 * In order to remove a block group we also need to reserve units in the
10641 * system space info in order to update the chunk tree (update one or
10642 * more device items and remove one chunk item), but this is done at
10643 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10644 */
95617d69 10645 map = em->map_lookup;
7fd01182
FM
10646 num_items = 3 + map->num_stripes;
10647 free_extent_map(em);
10648
8eab77ff 10649 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10650 num_items, 1);
8eab77ff
FM
10651}
10652
47ab2a6c
JB
10653/*
10654 * Process the unused_bgs list and remove any that don't have any allocated
10655 * space inside of them.
10656 */
10657void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10658{
10659 struct btrfs_block_group_cache *block_group;
10660 struct btrfs_space_info *space_info;
47ab2a6c
JB
10661 struct btrfs_trans_handle *trans;
10662 int ret = 0;
10663
afcdd129 10664 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10665 return;
10666
10667 spin_lock(&fs_info->unused_bgs_lock);
10668 while (!list_empty(&fs_info->unused_bgs)) {
10669 u64 start, end;
e33e17ee 10670 int trimming;
47ab2a6c
JB
10671
10672 block_group = list_first_entry(&fs_info->unused_bgs,
10673 struct btrfs_block_group_cache,
10674 bg_list);
47ab2a6c 10675 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10676
10677 space_info = block_group->space_info;
10678
47ab2a6c
JB
10679 if (ret || btrfs_mixed_space_info(space_info)) {
10680 btrfs_put_block_group(block_group);
10681 continue;
10682 }
10683 spin_unlock(&fs_info->unused_bgs_lock);
10684
d5f2e33b 10685 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10686
47ab2a6c
JB
10687 /* Don't want to race with allocators so take the groups_sem */
10688 down_write(&space_info->groups_sem);
10689 spin_lock(&block_group->lock);
10690 if (block_group->reserved ||
10691 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10692 block_group->ro ||
aefbe9a6 10693 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10694 /*
10695 * We want to bail if we made new allocations or have
10696 * outstanding allocations in this block group. We do
10697 * the ro check in case balance is currently acting on
10698 * this block group.
10699 */
4ed0a7a3 10700 trace_btrfs_skip_unused_block_group(block_group);
47ab2a6c
JB
10701 spin_unlock(&block_group->lock);
10702 up_write(&space_info->groups_sem);
10703 goto next;
10704 }
10705 spin_unlock(&block_group->lock);
10706
10707 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10708 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10709 up_write(&space_info->groups_sem);
10710 if (ret < 0) {
10711 ret = 0;
10712 goto next;
10713 }
10714
10715 /*
10716 * Want to do this before we do anything else so we can recover
10717 * properly if we fail to join the transaction.
10718 */
7fd01182
FM
10719 trans = btrfs_start_trans_remove_block_group(fs_info,
10720 block_group->key.objectid);
47ab2a6c 10721 if (IS_ERR(trans)) {
2ff7e61e 10722 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10723 ret = PTR_ERR(trans);
10724 goto next;
10725 }
10726
10727 /*
10728 * We could have pending pinned extents for this block group,
10729 * just delete them, we don't care about them anymore.
10730 */
10731 start = block_group->key.objectid;
10732 end = start + block_group->key.offset - 1;
d4b450cd
FM
10733 /*
10734 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10735 * btrfs_finish_extent_commit(). If we are at transaction N,
10736 * another task might be running finish_extent_commit() for the
10737 * previous transaction N - 1, and have seen a range belonging
10738 * to the block group in freed_extents[] before we were able to
10739 * clear the whole block group range from freed_extents[]. This
10740 * means that task can lookup for the block group after we
10741 * unpinned it from freed_extents[] and removed it, leading to
10742 * a BUG_ON() at btrfs_unpin_extent_range().
10743 */
10744 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10745 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10746 EXTENT_DIRTY);
758eb51e 10747 if (ret) {
d4b450cd 10748 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10749 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10750 goto end_trans;
10751 }
10752 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10753 EXTENT_DIRTY);
758eb51e 10754 if (ret) {
d4b450cd 10755 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10756 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10757 goto end_trans;
10758 }
d4b450cd 10759 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10760
10761 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10762 spin_lock(&space_info->lock);
10763 spin_lock(&block_group->lock);
10764
10765 space_info->bytes_pinned -= block_group->pinned;
10766 space_info->bytes_readonly += block_group->pinned;
10767 percpu_counter_add(&space_info->total_bytes_pinned,
10768 -block_group->pinned);
47ab2a6c
JB
10769 block_group->pinned = 0;
10770
c30666d4
ZL
10771 spin_unlock(&block_group->lock);
10772 spin_unlock(&space_info->lock);
10773
e33e17ee 10774 /* DISCARD can flip during remount */
0b246afa 10775 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10776
10777 /* Implicit trim during transaction commit. */
10778 if (trimming)
10779 btrfs_get_block_group_trimming(block_group);
10780
47ab2a6c
JB
10781 /*
10782 * Btrfs_remove_chunk will abort the transaction if things go
10783 * horribly wrong.
10784 */
5b4aacef 10785 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10786 block_group->key.objectid);
e33e17ee
JM
10787
10788 if (ret) {
10789 if (trimming)
10790 btrfs_put_block_group_trimming(block_group);
10791 goto end_trans;
10792 }
10793
10794 /*
10795 * If we're not mounted with -odiscard, we can just forget
10796 * about this block group. Otherwise we'll need to wait
10797 * until transaction commit to do the actual discard.
10798 */
10799 if (trimming) {
348a0013
FM
10800 spin_lock(&fs_info->unused_bgs_lock);
10801 /*
10802 * A concurrent scrub might have added us to the list
10803 * fs_info->unused_bgs, so use a list_move operation
10804 * to add the block group to the deleted_bgs list.
10805 */
e33e17ee
JM
10806 list_move(&block_group->bg_list,
10807 &trans->transaction->deleted_bgs);
348a0013 10808 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10809 btrfs_get_block_group(block_group);
10810 }
758eb51e 10811end_trans:
3a45bb20 10812 btrfs_end_transaction(trans);
47ab2a6c 10813next:
d5f2e33b 10814 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10815 btrfs_put_block_group(block_group);
10816 spin_lock(&fs_info->unused_bgs_lock);
10817 }
10818 spin_unlock(&fs_info->unused_bgs_lock);
10819}
10820
c59021f8 10821int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10822{
1aba86d6 10823 struct btrfs_super_block *disk_super;
10824 u64 features;
10825 u64 flags;
10826 int mixed = 0;
c59021f8 10827 int ret;
10828
6c41761f 10829 disk_super = fs_info->super_copy;
1aba86d6 10830 if (!btrfs_super_root(disk_super))
0dc924c5 10831 return -EINVAL;
c59021f8 10832
1aba86d6 10833 features = btrfs_super_incompat_flags(disk_super);
10834 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10835 mixed = 1;
c59021f8 10836
1aba86d6 10837 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4ca61683 10838 ret = create_space_info(fs_info, flags);
c59021f8 10839 if (ret)
1aba86d6 10840 goto out;
c59021f8 10841
1aba86d6 10842 if (mixed) {
10843 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
4ca61683 10844 ret = create_space_info(fs_info, flags);
1aba86d6 10845 } else {
10846 flags = BTRFS_BLOCK_GROUP_METADATA;
4ca61683 10847 ret = create_space_info(fs_info, flags);
1aba86d6 10848 if (ret)
10849 goto out;
10850
10851 flags = BTRFS_BLOCK_GROUP_DATA;
4ca61683 10852 ret = create_space_info(fs_info, flags);
1aba86d6 10853 }
10854out:
c59021f8 10855 return ret;
10856}
10857
2ff7e61e
JM
10858int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10859 u64 start, u64 end)
acce952b 10860{
2ff7e61e 10861 return unpin_extent_range(fs_info, start, end, false);
acce952b 10862}
10863
499f377f
JM
10864/*
10865 * It used to be that old block groups would be left around forever.
10866 * Iterating over them would be enough to trim unused space. Since we
10867 * now automatically remove them, we also need to iterate over unallocated
10868 * space.
10869 *
10870 * We don't want a transaction for this since the discard may take a
10871 * substantial amount of time. We don't require that a transaction be
10872 * running, but we do need to take a running transaction into account
10873 * to ensure that we're not discarding chunks that were released in
10874 * the current transaction.
10875 *
10876 * Holding the chunks lock will prevent other threads from allocating
10877 * or releasing chunks, but it won't prevent a running transaction
10878 * from committing and releasing the memory that the pending chunks
10879 * list head uses. For that, we need to take a reference to the
10880 * transaction.
10881 */
10882static int btrfs_trim_free_extents(struct btrfs_device *device,
10883 u64 minlen, u64 *trimmed)
10884{
10885 u64 start = 0, len = 0;
10886 int ret;
10887
10888 *trimmed = 0;
10889
10890 /* Not writeable = nothing to do. */
ebbede42 10891 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
10892 return 0;
10893
10894 /* No free space = nothing to do. */
10895 if (device->total_bytes <= device->bytes_used)
10896 return 0;
10897
10898 ret = 0;
10899
10900 while (1) {
fb456252 10901 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10902 struct btrfs_transaction *trans;
10903 u64 bytes;
10904
10905 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10906 if (ret)
10907 return ret;
10908
10909 down_read(&fs_info->commit_root_sem);
10910
10911 spin_lock(&fs_info->trans_lock);
10912 trans = fs_info->running_transaction;
10913 if (trans)
9b64f57d 10914 refcount_inc(&trans->use_count);
499f377f
JM
10915 spin_unlock(&fs_info->trans_lock);
10916
10917 ret = find_free_dev_extent_start(trans, device, minlen, start,
10918 &start, &len);
10919 if (trans)
10920 btrfs_put_transaction(trans);
10921
10922 if (ret) {
10923 up_read(&fs_info->commit_root_sem);
10924 mutex_unlock(&fs_info->chunk_mutex);
10925 if (ret == -ENOSPC)
10926 ret = 0;
10927 break;
10928 }
10929
10930 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10931 up_read(&fs_info->commit_root_sem);
10932 mutex_unlock(&fs_info->chunk_mutex);
10933
10934 if (ret)
10935 break;
10936
10937 start += len;
10938 *trimmed += bytes;
10939
10940 if (fatal_signal_pending(current)) {
10941 ret = -ERESTARTSYS;
10942 break;
10943 }
10944
10945 cond_resched();
10946 }
10947
10948 return ret;
10949}
10950
2ff7e61e 10951int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10952{
f7039b1d 10953 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10954 struct btrfs_device *device;
10955 struct list_head *devices;
f7039b1d
LD
10956 u64 group_trimmed;
10957 u64 start;
10958 u64 end;
10959 u64 trimmed = 0;
2cac13e4 10960 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10961 int ret = 0;
10962
2cac13e4
LB
10963 /*
10964 * try to trim all FS space, our block group may start from non-zero.
10965 */
10966 if (range->len == total_bytes)
10967 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10968 else
10969 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10970
10971 while (cache) {
10972 if (cache->key.objectid >= (range->start + range->len)) {
10973 btrfs_put_block_group(cache);
10974 break;
10975 }
10976
10977 start = max(range->start, cache->key.objectid);
10978 end = min(range->start + range->len,
10979 cache->key.objectid + cache->key.offset);
10980
10981 if (end - start >= range->minlen) {
10982 if (!block_group_cache_done(cache)) {
f6373bf3 10983 ret = cache_block_group(cache, 0);
1be41b78
JB
10984 if (ret) {
10985 btrfs_put_block_group(cache);
10986 break;
10987 }
10988 ret = wait_block_group_cache_done(cache);
10989 if (ret) {
10990 btrfs_put_block_group(cache);
10991 break;
10992 }
f7039b1d
LD
10993 }
10994 ret = btrfs_trim_block_group(cache,
10995 &group_trimmed,
10996 start,
10997 end,
10998 range->minlen);
10999
11000 trimmed += group_trimmed;
11001 if (ret) {
11002 btrfs_put_block_group(cache);
11003 break;
11004 }
11005 }
11006
2ff7e61e 11007 cache = next_block_group(fs_info, cache);
f7039b1d
LD
11008 }
11009
0b246afa
JM
11010 mutex_lock(&fs_info->fs_devices->device_list_mutex);
11011 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
11012 list_for_each_entry(device, devices, dev_alloc_list) {
11013 ret = btrfs_trim_free_extents(device, range->minlen,
11014 &group_trimmed);
11015 if (ret)
11016 break;
11017
11018 trimmed += group_trimmed;
11019 }
0b246afa 11020 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11021
f7039b1d
LD
11022 range->len = trimmed;
11023 return ret;
11024}
8257b2dc
MX
11025
11026/*
ea14b57f 11027 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11028 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11029 * data into the page cache through nocow before the subvolume is snapshoted,
11030 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11031 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11032 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11033 */
ea14b57f 11034void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11035{
11036 percpu_counter_dec(&root->subv_writers->counter);
093258e6 11037 cond_wake_up(&root->subv_writers->wait);
8257b2dc
MX
11038}
11039
ea14b57f 11040int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11041{
ea14b57f 11042 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11043 return 0;
11044
11045 percpu_counter_inc(&root->subv_writers->counter);
11046 /*
11047 * Make sure counter is updated before we check for snapshot creation.
11048 */
11049 smp_mb();
ea14b57f
DS
11050 if (atomic_read(&root->will_be_snapshotted)) {
11051 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11052 return 0;
11053 }
11054 return 1;
11055}
0bc19f90 11056
0bc19f90
ZL
11057void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11058{
11059 while (true) {
11060 int ret;
11061
ea14b57f 11062 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11063 if (ret)
11064 break;
4625956a
PZ
11065 wait_var_event(&root->will_be_snapshotted,
11066 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
11067 }
11068}