]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: fallocate: Add support to accurate qgroup reserve
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
c682f9b3 82 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
c682f9b3 85 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
86static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
98 int level, struct btrfs_key *ins,
99 int no_quota);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
62a45b60 128static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
0f9dd46c
JB
335/*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
817d52f8 340static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
341 struct btrfs_fs_info *info, u64 start, u64 end)
342{
817d52f8 343 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
344 int ret;
345
346 while (start < end) {
11833d66 347 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 348 &extent_start, &extent_end,
e6138876
JB
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
0f9dd46c
JB
351 if (ret)
352 break;
353
06b2331f 354 if (extent_start <= start) {
0f9dd46c
JB
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
817d52f8 358 total_added += size;
ea6a478e
JB
359 ret = btrfs_add_free_space(block_group, start,
360 size);
79787eaa 361 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
817d52f8 370 total_added += size;
ea6a478e 371 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 372 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
373 }
374
817d52f8 375 return total_added;
0f9dd46c
JB
376}
377
d458b054 378static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 379{
bab39bf9
JB
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
e37c9e69 384 struct btrfs_path *path;
5f39d397 385 struct extent_buffer *leaf;
11833d66 386 struct btrfs_key key;
817d52f8 387 u64 total_found = 0;
11833d66
YZ
388 u64 last = 0;
389 u32 nritems;
36cce922 390 int ret = -ENOMEM;
f510cfec 391
bab39bf9
JB
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
e37c9e69
CM
397 path = btrfs_alloc_path();
398 if (!path)
bab39bf9 399 goto out;
7d7d6068 400
817d52f8 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 402
5cd57b2c 403 /*
817d52f8
JB
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
5cd57b2c
CM
408 */
409 path->skip_locking = 1;
817d52f8 410 path->search_commit_root = 1;
026fd317 411 path->reada = 1;
817d52f8 412
e4404d6e 413 key.objectid = last;
e37c9e69 414 key.offset = 0;
11833d66 415 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 416again:
11833d66 417 mutex_lock(&caching_ctl->mutex);
013f1b12 418 /* need to make sure the commit_root doesn't disappear */
9e351cc8 419 down_read(&fs_info->commit_root_sem);
013f1b12 420
52ee28d2 421next:
11833d66 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 423 if (ret < 0)
ef8bbdfe 424 goto err;
a512bbf8 425
11833d66
YZ
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
d397712b 429 while (1) {
7841cb28 430 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 431 last = (u64)-1;
817d52f8 432 break;
f25784b3 433 }
817d52f8 434
11833d66
YZ
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
e37c9e69 440 break;
817d52f8 441
c9ea7b24 442 if (need_resched() ||
9e351cc8 443 rwsem_is_contended(&fs_info->commit_root_sem)) {
589d8ade 444 caching_ctl->progress = last;
ff5714cc 445 btrfs_release_path(path);
9e351cc8 446 up_read(&fs_info->commit_root_sem);
589d8ade 447 mutex_unlock(&caching_ctl->mutex);
11833d66 448 cond_resched();
589d8ade
JB
449 goto again;
450 }
0a3896d0
JB
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
589d8ade
JB
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
11833d66 460 }
817d52f8 461
52ee28d2
LB
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
11833d66
YZ
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
817d52f8 474 continue;
e37c9e69 475 }
0f9dd46c 476
e37c9e69 477 if (key.objectid >= block_group->key.objectid +
0f9dd46c 478 block_group->key.offset)
e37c9e69 479 break;
7d7d6068 480
3173a18f
JB
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
3173a18f
JB
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
707e8a07 488 fs_info->tree_root->nodesize;
3173a18f
JB
489 else
490 last = key.objectid + key.offset;
817d52f8 491
11833d66
YZ
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
817d52f8 496 }
e37c9e69
CM
497 path->slots[0]++;
498 }
817d52f8 499 ret = 0;
e37c9e69 500
817d52f8
JB
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
11833d66 504 caching_ctl->progress = (u64)-1;
817d52f8
JB
505
506 spin_lock(&block_group->lock);
11833d66 507 block_group->caching_ctl = NULL;
817d52f8
JB
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
0f9dd46c 510
54aa1f4d 511err:
e37c9e69 512 btrfs_free_path(path);
9e351cc8 513 up_read(&fs_info->commit_root_sem);
817d52f8 514
11833d66
YZ
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
bab39bf9 518out:
36cce922
JB
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
11833d66
YZ
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
11dfe35a 528 btrfs_put_block_group(block_group);
817d52f8
JB
529}
530
9d66e233 531static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 532 int load_cache_only)
817d52f8 533{
291c7d2f 534 DEFINE_WAIT(wait);
11833d66
YZ
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
537 int ret = 0;
538
291c7d2f 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
540 if (!caching_ctl)
541 return -ENOMEM;
291c7d2f
JB
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
291c7d2f
JB
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
11833d66 583 return 0;
291c7d2f
JB
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
11833d66 589
d53ba474 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 591 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
291c7d2f 596 cache->caching_ctl = NULL;
9d66e233
JB
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 599 caching_ctl->progress = (u64)-1;
9d66e233 600 } else {
291c7d2f
JB
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 606 cache->has_caching_ctl = 1;
291c7d2f 607 }
9d66e233
JB
608 }
609 spin_unlock(&cache->lock);
cb83b7b8
JB
610 mutex_unlock(&caching_ctl->mutex);
611
291c7d2f 612 wake_up(&caching_ctl->wait);
3c14874a 613 if (ret == 1) {
291c7d2f 614 put_caching_control(caching_ctl);
3c14874a 615 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 616 return 0;
3c14874a 617 }
291c7d2f
JB
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 629 cache->has_caching_ctl = 1;
291c7d2f
JB
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
9d66e233
JB
633 }
634
291c7d2f
JB
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
11833d66 637 return 0;
817d52f8 638 }
817d52f8 639
9e351cc8 640 down_write(&fs_info->commit_root_sem);
291c7d2f 641 atomic_inc(&caching_ctl->count);
11833d66 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 643 up_write(&fs_info->commit_root_sem);
11833d66 644
11dfe35a 645 btrfs_get_block_group(cache);
11833d66 646
e66f0bb1 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 648
ef8bbdfe 649 return ret;
e37c9e69
CM
650}
651
0f9dd46c
JB
652/*
653 * return the block group that starts at or after bytenr
654 */
d397712b
CM
655static struct btrfs_block_group_cache *
656btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 657{
0f9dd46c 658 struct btrfs_block_group_cache *cache;
0ef3e66b 659
0f9dd46c 660 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 661
0f9dd46c 662 return cache;
0ef3e66b
CM
663}
664
0f9dd46c 665/*
9f55684c 666 * return the block group that contains the given bytenr
0f9dd46c 667 */
d397712b
CM
668struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
be744175 671{
0f9dd46c 672 struct btrfs_block_group_cache *cache;
be744175 673
0f9dd46c 674 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 675
0f9dd46c 676 return cache;
be744175 677}
0b86a832 678
0f9dd46c
JB
679static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
6324fbf3 681{
0f9dd46c 682 struct list_head *head = &info->space_info;
0f9dd46c 683 struct btrfs_space_info *found;
4184ea7f 684
52ba6929 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 686
4184ea7f
CM
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
67377734 689 if (found->flags & flags) {
4184ea7f 690 rcu_read_unlock();
0f9dd46c 691 return found;
4184ea7f 692 }
0f9dd46c 693 }
4184ea7f 694 rcu_read_unlock();
0f9dd46c 695 return NULL;
6324fbf3
CM
696}
697
4184ea7f
CM
698/*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703{
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711}
712
1a4ed8fd
FM
713/* simple helper to search for an existing data extent at a given offset */
714int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
715{
716 int ret;
717 struct btrfs_key key;
31840ae1 718 struct btrfs_path *path;
e02119d5 719
31840ae1 720 path = btrfs_alloc_path();
d8926bb3
MF
721 if (!path)
722 return -ENOMEM;
723
e02119d5
CM
724 key.objectid = start;
725 key.offset = len;
3173a18f 726 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
31840ae1 729 btrfs_free_path(path);
7bb86316
CM
730 return ret;
731}
732
a22285a6 733/*
3173a18f 734 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
3173a18f 744 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
745{
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
3173a18f
JB
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 762 offset = root->nodesize;
3173a18f
JB
763 metadata = 0;
764 }
765
a22285a6
YZ
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
a22285a6
YZ
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
639eefc8
FDBM
774
775search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
a22285a6
YZ
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
3173a18f 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 795 key.offset == root->nodesize)
74be9510
FDBM
796 ret = 0;
797 }
3173a18f
JB
798 }
799
a22285a6
YZ
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817#else
818 BUG();
819#endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
b3b4aa74 839 btrfs_release_path(path);
a22285a6 840
8cc33e5c
DS
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
a22285a6
YZ
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
639eefc8 848 goto search_again;
a22285a6 849 }
d7df2c79 850 spin_lock(&head->lock);
a22285a6
YZ
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
d7df2c79 857 spin_unlock(&head->lock);
a22285a6
YZ
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867out_free:
868 btrfs_free_path(path);
869 return ret;
870}
871
d8d5f3e1
CM
872/*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
5d4f98a2
YZ
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
d8d5f3e1
CM
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 934 * - different files inside a single subvolume
d8d5f3e1
CM
935 * - different offsets inside a file (bookend extents in file.c)
936 *
5d4f98a2 937 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
938 *
939 * - Objectid of the subvolume root
d8d5f3e1 940 * - objectid of the file holding the reference
5d4f98a2
YZ
941 * - original offset in the file
942 * - how many bookend extents
d8d5f3e1 943 *
5d4f98a2
YZ
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
d8d5f3e1 946 *
5d4f98a2 947 * The extent ref structure for the full back refs has field for:
d8d5f3e1 948 *
5d4f98a2 949 * - number of pointers in the tree leaf
d8d5f3e1 950 *
5d4f98a2
YZ
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
d8d5f3e1 953 *
5d4f98a2
YZ
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
d8d5f3e1 956 *
5d4f98a2 957 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 958 *
5d4f98a2
YZ
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
d8d5f3e1 961 *
5d4f98a2 962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 963 *
5d4f98a2 964 * Btree extents can be referenced by:
d8d5f3e1 965 *
5d4f98a2 966 * - Different subvolumes
d8d5f3e1 967 *
5d4f98a2
YZ
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
d8d5f3e1 972 *
5d4f98a2
YZ
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
d8d5f3e1 976 */
31840ae1 977
5d4f98a2
YZ
978#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
7bb86316 983{
5d4f98a2
YZ
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
7bb86316 989 struct btrfs_key key;
5d4f98a2
YZ
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
79787eaa 1009 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
b3b4aa74 1025 btrfs_release_path(path);
5d4f98a2
YZ
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
79787eaa 1035 BUG_ON(ret); /* Corruption */
5d4f98a2 1036
4b90c680 1037 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057}
1058#endif
1059
1060static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061{
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
14a958e6 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1068 lenum = cpu_to_le64(owner);
14a958e6 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1070 lenum = cpu_to_le64(offset);
14a958e6 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074}
1075
1076static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078{
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082}
1083
1084static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087{
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093}
1094
1095static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101{
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
31840ae1 1104 struct extent_buffer *leaf;
5d4f98a2 1105 u32 nritems;
74493f7a 1106 int ret;
5d4f98a2
YZ
1107 int recow;
1108 int err = -ENOENT;
74493f7a 1109
31840ae1 1110 key.objectid = bytenr;
5d4f98a2
YZ
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
31840ae1 1126
5d4f98a2
YZ
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1132 btrfs_release_path(path);
5d4f98a2
YZ
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140#endif
1141 goto fail;
31840ae1
ZY
1142 }
1143
1144 leaf = path->nodes[0];
5d4f98a2
YZ
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
b3b4aa74 1170 btrfs_release_path(path);
5d4f98a2
YZ
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
31840ae1 1177 }
5d4f98a2
YZ
1178fail:
1179 return err;
31840ae1
ZY
1180}
1181
5d4f98a2
YZ
1182static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
31840ae1
ZY
1188{
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
5d4f98a2 1191 u32 size;
31840ae1
ZY
1192 u32 num_refs;
1193 int ret;
74493f7a 1194
74493f7a 1195 key.objectid = bytenr;
5d4f98a2
YZ
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
74493f7a 1206
5d4f98a2
YZ
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
31840ae1 1214 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1222 }
5d4f98a2
YZ
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
b3b4aa74 1231 btrfs_release_path(path);
5d4f98a2
YZ
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
31840ae1 1237
5d4f98a2
YZ
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1252 }
31840ae1 1253 }
5d4f98a2
YZ
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256fail:
b3b4aa74 1257 btrfs_release_path(path);
7bb86316 1258 return ret;
74493f7a
CM
1259}
1260
5d4f98a2
YZ
1261static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
fcebe456 1264 int refs_to_drop, int *last_ref)
31840ae1 1265{
5d4f98a2
YZ
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 num_refs = 0;
31840ae1
ZY
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
5d4f98a2
YZ
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290#endif
1291 } else {
1292 BUG();
1293 }
1294
56bec294
CM
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
5d4f98a2 1297
31840ae1
ZY
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
fcebe456 1300 *last_ref = 1;
31840ae1 1301 } else {
5d4f98a2
YZ
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313#endif
31840ae1
ZY
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
31840ae1
ZY
1316 return ret;
1317}
1318
9ed0dea0 1319static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1320 struct btrfs_extent_inline_ref *iref)
15916de8 1321{
5d4f98a2
YZ
1322 struct btrfs_key key;
1323 struct extent_buffer *leaf;
1324 struct btrfs_extent_data_ref *ref1;
1325 struct btrfs_shared_data_ref *ref2;
1326 u32 num_refs = 0;
1327
1328 leaf = path->nodes[0];
1329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1330 if (iref) {
1331 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1332 BTRFS_EXTENT_DATA_REF_KEY) {
1333 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1334 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1335 } else {
1336 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1337 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1338 }
1339 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 struct btrfs_extent_data_ref);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_shared_data_ref);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 struct btrfs_extent_ref_v0 *ref0;
1350 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_ref_v0);
1352 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1353#endif
5d4f98a2
YZ
1354 } else {
1355 WARN_ON(1);
1356 }
1357 return num_refs;
1358}
15916de8 1359
5d4f98a2
YZ
1360static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root,
1362 struct btrfs_path *path,
1363 u64 bytenr, u64 parent,
1364 u64 root_objectid)
1f3c79a2 1365{
5d4f98a2 1366 struct btrfs_key key;
1f3c79a2 1367 int ret;
1f3c79a2 1368
5d4f98a2
YZ
1369 key.objectid = bytenr;
1370 if (parent) {
1371 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1372 key.offset = parent;
1373 } else {
1374 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1375 key.offset = root_objectid;
1f3c79a2
LH
1376 }
1377
5d4f98a2
YZ
1378 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1379 if (ret > 0)
1380 ret = -ENOENT;
1381#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 if (ret == -ENOENT && parent) {
b3b4aa74 1383 btrfs_release_path(path);
5d4f98a2
YZ
1384 key.type = BTRFS_EXTENT_REF_V0_KEY;
1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 if (ret > 0)
1387 ret = -ENOENT;
1388 }
1f3c79a2 1389#endif
5d4f98a2 1390 return ret;
1f3c79a2
LH
1391}
1392
5d4f98a2
YZ
1393static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root,
1395 struct btrfs_path *path,
1396 u64 bytenr, u64 parent,
1397 u64 root_objectid)
31840ae1 1398{
5d4f98a2 1399 struct btrfs_key key;
31840ae1 1400 int ret;
31840ae1 1401
5d4f98a2
YZ
1402 key.objectid = bytenr;
1403 if (parent) {
1404 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1405 key.offset = parent;
1406 } else {
1407 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1408 key.offset = root_objectid;
1409 }
1410
1411 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1412 btrfs_release_path(path);
31840ae1
ZY
1413 return ret;
1414}
1415
5d4f98a2 1416static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1417{
5d4f98a2
YZ
1418 int type;
1419 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1420 if (parent > 0)
1421 type = BTRFS_SHARED_BLOCK_REF_KEY;
1422 else
1423 type = BTRFS_TREE_BLOCK_REF_KEY;
1424 } else {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_DATA_REF_KEY;
1427 else
1428 type = BTRFS_EXTENT_DATA_REF_KEY;
1429 }
1430 return type;
31840ae1 1431}
56bec294 1432
2c47e605
YZ
1433static int find_next_key(struct btrfs_path *path, int level,
1434 struct btrfs_key *key)
56bec294 1435
02217ed2 1436{
2c47e605 1437 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1438 if (!path->nodes[level])
1439 break;
5d4f98a2
YZ
1440 if (path->slots[level] + 1 >=
1441 btrfs_header_nritems(path->nodes[level]))
1442 continue;
1443 if (level == 0)
1444 btrfs_item_key_to_cpu(path->nodes[level], key,
1445 path->slots[level] + 1);
1446 else
1447 btrfs_node_key_to_cpu(path->nodes[level], key,
1448 path->slots[level] + 1);
1449 return 0;
1450 }
1451 return 1;
1452}
037e6390 1453
5d4f98a2
YZ
1454/*
1455 * look for inline back ref. if back ref is found, *ref_ret is set
1456 * to the address of inline back ref, and 0 is returned.
1457 *
1458 * if back ref isn't found, *ref_ret is set to the address where it
1459 * should be inserted, and -ENOENT is returned.
1460 *
1461 * if insert is true and there are too many inline back refs, the path
1462 * points to the extent item, and -EAGAIN is returned.
1463 *
1464 * NOTE: inline back refs are ordered in the same way that back ref
1465 * items in the tree are ordered.
1466 */
1467static noinline_for_stack
1468int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 struct btrfs_extent_inline_ref **ref_ret,
1472 u64 bytenr, u64 num_bytes,
1473 u64 parent, u64 root_objectid,
1474 u64 owner, u64 offset, int insert)
1475{
1476 struct btrfs_key key;
1477 struct extent_buffer *leaf;
1478 struct btrfs_extent_item *ei;
1479 struct btrfs_extent_inline_ref *iref;
1480 u64 flags;
1481 u64 item_size;
1482 unsigned long ptr;
1483 unsigned long end;
1484 int extra_size;
1485 int type;
1486 int want;
1487 int ret;
1488 int err = 0;
3173a18f
JB
1489 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1490 SKINNY_METADATA);
26b8003f 1491
db94535d 1492 key.objectid = bytenr;
31840ae1 1493 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1494 key.offset = num_bytes;
31840ae1 1495
5d4f98a2
YZ
1496 want = extent_ref_type(parent, owner);
1497 if (insert) {
1498 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1499 path->keep_locks = 1;
5d4f98a2
YZ
1500 } else
1501 extra_size = -1;
3173a18f
JB
1502
1503 /*
1504 * Owner is our parent level, so we can just add one to get the level
1505 * for the block we are interested in.
1506 */
1507 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1508 key.type = BTRFS_METADATA_ITEM_KEY;
1509 key.offset = owner;
1510 }
1511
1512again:
5d4f98a2 1513 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1514 if (ret < 0) {
5d4f98a2
YZ
1515 err = ret;
1516 goto out;
1517 }
3173a18f
JB
1518
1519 /*
1520 * We may be a newly converted file system which still has the old fat
1521 * extent entries for metadata, so try and see if we have one of those.
1522 */
1523 if (ret > 0 && skinny_metadata) {
1524 skinny_metadata = false;
1525 if (path->slots[0]) {
1526 path->slots[0]--;
1527 btrfs_item_key_to_cpu(path->nodes[0], &key,
1528 path->slots[0]);
1529 if (key.objectid == bytenr &&
1530 key.type == BTRFS_EXTENT_ITEM_KEY &&
1531 key.offset == num_bytes)
1532 ret = 0;
1533 }
1534 if (ret) {
9ce49a0b 1535 key.objectid = bytenr;
3173a18f
JB
1536 key.type = BTRFS_EXTENT_ITEM_KEY;
1537 key.offset = num_bytes;
1538 btrfs_release_path(path);
1539 goto again;
1540 }
1541 }
1542
79787eaa
JM
1543 if (ret && !insert) {
1544 err = -ENOENT;
1545 goto out;
fae7f21c 1546 } else if (WARN_ON(ret)) {
492104c8 1547 err = -EIO;
492104c8 1548 goto out;
79787eaa 1549 }
5d4f98a2
YZ
1550
1551 leaf = path->nodes[0];
1552 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1553#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1554 if (item_size < sizeof(*ei)) {
1555 if (!insert) {
1556 err = -ENOENT;
1557 goto out;
1558 }
1559 ret = convert_extent_item_v0(trans, root, path, owner,
1560 extra_size);
1561 if (ret < 0) {
1562 err = ret;
1563 goto out;
1564 }
1565 leaf = path->nodes[0];
1566 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1567 }
1568#endif
1569 BUG_ON(item_size < sizeof(*ei));
1570
5d4f98a2
YZ
1571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1572 flags = btrfs_extent_flags(leaf, ei);
1573
1574 ptr = (unsigned long)(ei + 1);
1575 end = (unsigned long)ei + item_size;
1576
3173a18f 1577 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1578 ptr += sizeof(struct btrfs_tree_block_info);
1579 BUG_ON(ptr > end);
5d4f98a2
YZ
1580 }
1581
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_extent_inline_ref_type(leaf, iref);
1590 if (want < type)
1591 break;
1592 if (want > type) {
1593 ptr += btrfs_extent_inline_ref_size(type);
1594 continue;
1595 }
1596
1597 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1598 struct btrfs_extent_data_ref *dref;
1599 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1600 if (match_extent_data_ref(leaf, dref, root_objectid,
1601 owner, offset)) {
1602 err = 0;
1603 break;
1604 }
1605 if (hash_extent_data_ref_item(leaf, dref) <
1606 hash_extent_data_ref(root_objectid, owner, offset))
1607 break;
1608 } else {
1609 u64 ref_offset;
1610 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1611 if (parent > 0) {
1612 if (parent == ref_offset) {
1613 err = 0;
1614 break;
1615 }
1616 if (ref_offset < parent)
1617 break;
1618 } else {
1619 if (root_objectid == ref_offset) {
1620 err = 0;
1621 break;
1622 }
1623 if (ref_offset < root_objectid)
1624 break;
1625 }
1626 }
1627 ptr += btrfs_extent_inline_ref_size(type);
1628 }
1629 if (err == -ENOENT && insert) {
1630 if (item_size + extra_size >=
1631 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1632 err = -EAGAIN;
1633 goto out;
1634 }
1635 /*
1636 * To add new inline back ref, we have to make sure
1637 * there is no corresponding back ref item.
1638 * For simplicity, we just do not add new inline back
1639 * ref if there is any kind of item for this block
1640 */
2c47e605
YZ
1641 if (find_next_key(path, 0, &key) == 0 &&
1642 key.objectid == bytenr &&
85d4198e 1643 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1644 err = -EAGAIN;
1645 goto out;
1646 }
1647 }
1648 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1649out:
85d4198e 1650 if (insert) {
5d4f98a2
YZ
1651 path->keep_locks = 0;
1652 btrfs_unlock_up_safe(path, 1);
1653 }
1654 return err;
1655}
1656
1657/*
1658 * helper to add new inline back ref
1659 */
1660static noinline_for_stack
fd279fae 1661void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1662 struct btrfs_path *path,
1663 struct btrfs_extent_inline_ref *iref,
1664 u64 parent, u64 root_objectid,
1665 u64 owner, u64 offset, int refs_to_add,
1666 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1667{
1668 struct extent_buffer *leaf;
1669 struct btrfs_extent_item *ei;
1670 unsigned long ptr;
1671 unsigned long end;
1672 unsigned long item_offset;
1673 u64 refs;
1674 int size;
1675 int type;
5d4f98a2
YZ
1676
1677 leaf = path->nodes[0];
1678 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1679 item_offset = (unsigned long)iref - (unsigned long)ei;
1680
1681 type = extent_ref_type(parent, owner);
1682 size = btrfs_extent_inline_ref_size(type);
1683
4b90c680 1684 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1685
1686 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1687 refs = btrfs_extent_refs(leaf, ei);
1688 refs += refs_to_add;
1689 btrfs_set_extent_refs(leaf, ei, refs);
1690 if (extent_op)
1691 __run_delayed_extent_op(extent_op, leaf, ei);
1692
1693 ptr = (unsigned long)ei + item_offset;
1694 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1695 if (ptr < end - size)
1696 memmove_extent_buffer(leaf, ptr + size, ptr,
1697 end - size - ptr);
1698
1699 iref = (struct btrfs_extent_inline_ref *)ptr;
1700 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1701 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1702 struct btrfs_extent_data_ref *dref;
1703 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1704 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1705 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1706 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1707 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1708 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1709 struct btrfs_shared_data_ref *sref;
1710 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1712 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1713 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1717 }
1718 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1719}
1720
1721static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1722 struct btrfs_root *root,
1723 struct btrfs_path *path,
1724 struct btrfs_extent_inline_ref **ref_ret,
1725 u64 bytenr, u64 num_bytes, u64 parent,
1726 u64 root_objectid, u64 owner, u64 offset)
1727{
1728 int ret;
1729
1730 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1731 bytenr, num_bytes, parent,
1732 root_objectid, owner, offset, 0);
1733 if (ret != -ENOENT)
54aa1f4d 1734 return ret;
5d4f98a2 1735
b3b4aa74 1736 btrfs_release_path(path);
5d4f98a2
YZ
1737 *ref_ret = NULL;
1738
1739 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1740 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1741 root_objectid);
1742 } else {
1743 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1744 root_objectid, owner, offset);
b9473439 1745 }
5d4f98a2
YZ
1746 return ret;
1747}
31840ae1 1748
5d4f98a2
YZ
1749/*
1750 * helper to update/remove inline back ref
1751 */
1752static noinline_for_stack
afe5fea7 1753void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1754 struct btrfs_path *path,
1755 struct btrfs_extent_inline_ref *iref,
1756 int refs_to_mod,
fcebe456
JB
1757 struct btrfs_delayed_extent_op *extent_op,
1758 int *last_ref)
5d4f98a2
YZ
1759{
1760 struct extent_buffer *leaf;
1761 struct btrfs_extent_item *ei;
1762 struct btrfs_extent_data_ref *dref = NULL;
1763 struct btrfs_shared_data_ref *sref = NULL;
1764 unsigned long ptr;
1765 unsigned long end;
1766 u32 item_size;
1767 int size;
1768 int type;
5d4f98a2
YZ
1769 u64 refs;
1770
1771 leaf = path->nodes[0];
1772 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1773 refs = btrfs_extent_refs(leaf, ei);
1774 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1775 refs += refs_to_mod;
1776 btrfs_set_extent_refs(leaf, ei, refs);
1777 if (extent_op)
1778 __run_delayed_extent_op(extent_op, leaf, ei);
1779
1780 type = btrfs_extent_inline_ref_type(leaf, iref);
1781
1782 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1783 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1784 refs = btrfs_extent_data_ref_count(leaf, dref);
1785 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1786 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1787 refs = btrfs_shared_data_ref_count(leaf, sref);
1788 } else {
1789 refs = 1;
1790 BUG_ON(refs_to_mod != -1);
56bec294 1791 }
31840ae1 1792
5d4f98a2
YZ
1793 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1794 refs += refs_to_mod;
1795
1796 if (refs > 0) {
1797 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1798 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1799 else
1800 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1801 } else {
fcebe456 1802 *last_ref = 1;
5d4f98a2
YZ
1803 size = btrfs_extent_inline_ref_size(type);
1804 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1805 ptr = (unsigned long)iref;
1806 end = (unsigned long)ei + item_size;
1807 if (ptr + size < end)
1808 memmove_extent_buffer(leaf, ptr, ptr + size,
1809 end - ptr - size);
1810 item_size -= size;
afe5fea7 1811 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1814}
1815
1816static noinline_for_stack
1817int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1818 struct btrfs_root *root,
1819 struct btrfs_path *path,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner,
1822 u64 offset, int refs_to_add,
1823 struct btrfs_delayed_extent_op *extent_op)
1824{
1825 struct btrfs_extent_inline_ref *iref;
1826 int ret;
1827
1828 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1829 bytenr, num_bytes, parent,
1830 root_objectid, owner, offset, 1);
1831 if (ret == 0) {
1832 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1833 update_inline_extent_backref(root, path, iref,
fcebe456 1834 refs_to_add, extent_op, NULL);
5d4f98a2 1835 } else if (ret == -ENOENT) {
fd279fae 1836 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1837 root_objectid, owner, offset,
1838 refs_to_add, extent_op);
1839 ret = 0;
771ed689 1840 }
5d4f98a2
YZ
1841 return ret;
1842}
31840ae1 1843
5d4f98a2
YZ
1844static int insert_extent_backref(struct btrfs_trans_handle *trans,
1845 struct btrfs_root *root,
1846 struct btrfs_path *path,
1847 u64 bytenr, u64 parent, u64 root_objectid,
1848 u64 owner, u64 offset, int refs_to_add)
1849{
1850 int ret;
1851 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1852 BUG_ON(refs_to_add != 1);
1853 ret = insert_tree_block_ref(trans, root, path, bytenr,
1854 parent, root_objectid);
1855 } else {
1856 ret = insert_extent_data_ref(trans, root, path, bytenr,
1857 parent, root_objectid,
1858 owner, offset, refs_to_add);
1859 }
1860 return ret;
1861}
56bec294 1862
5d4f98a2
YZ
1863static int remove_extent_backref(struct btrfs_trans_handle *trans,
1864 struct btrfs_root *root,
1865 struct btrfs_path *path,
1866 struct btrfs_extent_inline_ref *iref,
fcebe456 1867 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1868{
143bede5 1869 int ret = 0;
b9473439 1870
5d4f98a2
YZ
1871 BUG_ON(!is_data && refs_to_drop != 1);
1872 if (iref) {
afe5fea7 1873 update_inline_extent_backref(root, path, iref,
fcebe456 1874 -refs_to_drop, NULL, last_ref);
5d4f98a2 1875 } else if (is_data) {
fcebe456
JB
1876 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1877 last_ref);
5d4f98a2 1878 } else {
fcebe456 1879 *last_ref = 1;
5d4f98a2
YZ
1880 ret = btrfs_del_item(trans, root, path);
1881 }
1882 return ret;
1883}
1884
86557861 1885#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1886static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1887 u64 *discarded_bytes)
5d4f98a2 1888{
86557861
JM
1889 int j, ret = 0;
1890 u64 bytes_left, end;
4d89d377 1891 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1892
4d89d377
JM
1893 if (WARN_ON(start != aligned_start)) {
1894 len -= aligned_start - start;
1895 len = round_down(len, 1 << 9);
1896 start = aligned_start;
1897 }
d04c6b88 1898
4d89d377 1899 *discarded_bytes = 0;
86557861
JM
1900
1901 if (!len)
1902 return 0;
1903
1904 end = start + len;
1905 bytes_left = len;
1906
1907 /* Skip any superblocks on this device. */
1908 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1909 u64 sb_start = btrfs_sb_offset(j);
1910 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1911 u64 size = sb_start - start;
1912
1913 if (!in_range(sb_start, start, bytes_left) &&
1914 !in_range(sb_end, start, bytes_left) &&
1915 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1916 continue;
1917
1918 /*
1919 * Superblock spans beginning of range. Adjust start and
1920 * try again.
1921 */
1922 if (sb_start <= start) {
1923 start += sb_end - start;
1924 if (start > end) {
1925 bytes_left = 0;
1926 break;
1927 }
1928 bytes_left = end - start;
1929 continue;
1930 }
1931
1932 if (size) {
1933 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1934 GFP_NOFS, 0);
1935 if (!ret)
1936 *discarded_bytes += size;
1937 else if (ret != -EOPNOTSUPP)
1938 return ret;
1939 }
1940
1941 start = sb_end;
1942 if (start > end) {
1943 bytes_left = 0;
1944 break;
1945 }
1946 bytes_left = end - start;
1947 }
1948
1949 if (bytes_left) {
1950 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1951 GFP_NOFS, 0);
1952 if (!ret)
86557861 1953 *discarded_bytes += bytes_left;
4d89d377 1954 }
d04c6b88 1955 return ret;
5d4f98a2 1956}
5d4f98a2 1957
1edb647b
FM
1958int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1959 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1960{
5d4f98a2 1961 int ret;
5378e607 1962 u64 discarded_bytes = 0;
a1d3c478 1963 struct btrfs_bio *bbio = NULL;
5d4f98a2 1964
e244a0ae 1965
5d4f98a2 1966 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 1967 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 1968 bytenr, &num_bytes, &bbio, 0);
79787eaa 1969 /* Error condition is -ENOMEM */
5d4f98a2 1970 if (!ret) {
a1d3c478 1971 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1972 int i;
1973
5d4f98a2 1974
a1d3c478 1975 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 1976 u64 bytes;
d5e2003c
JB
1977 if (!stripe->dev->can_discard)
1978 continue;
1979
5378e607
LD
1980 ret = btrfs_issue_discard(stripe->dev->bdev,
1981 stripe->physical,
d04c6b88
JM
1982 stripe->length,
1983 &bytes);
5378e607 1984 if (!ret)
d04c6b88 1985 discarded_bytes += bytes;
5378e607 1986 else if (ret != -EOPNOTSUPP)
79787eaa 1987 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
1988
1989 /*
1990 * Just in case we get back EOPNOTSUPP for some reason,
1991 * just ignore the return value so we don't screw up
1992 * people calling discard_extent.
1993 */
1994 ret = 0;
5d4f98a2 1995 }
6e9606d2 1996 btrfs_put_bbio(bbio);
5d4f98a2 1997 }
5378e607
LD
1998
1999 if (actual_bytes)
2000 *actual_bytes = discarded_bytes;
2001
5d4f98a2 2002
53b381b3
DW
2003 if (ret == -EOPNOTSUPP)
2004 ret = 0;
5d4f98a2 2005 return ret;
5d4f98a2
YZ
2006}
2007
79787eaa 2008/* Can return -ENOMEM */
5d4f98a2
YZ
2009int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2010 struct btrfs_root *root,
2011 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
2012 u64 root_objectid, u64 owner, u64 offset,
2013 int no_quota)
5d4f98a2
YZ
2014{
2015 int ret;
66d7e7f0
AJ
2016 struct btrfs_fs_info *fs_info = root->fs_info;
2017
5d4f98a2
YZ
2018 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2019 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2020
2021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2022 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2023 num_bytes,
5d4f98a2 2024 parent, root_objectid, (int)owner,
fcebe456 2025 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 2026 } else {
66d7e7f0
AJ
2027 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2028 num_bytes,
5d4f98a2 2029 parent, root_objectid, owner, offset,
fcebe456 2030 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
2031 }
2032 return ret;
2033}
2034
2035static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2036 struct btrfs_root *root,
c682f9b3 2037 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2038 u64 parent, u64 root_objectid,
2039 u64 owner, u64 offset, int refs_to_add,
2040 struct btrfs_delayed_extent_op *extent_op)
2041{
fcebe456 2042 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2043 struct btrfs_path *path;
2044 struct extent_buffer *leaf;
2045 struct btrfs_extent_item *item;
fcebe456 2046 struct btrfs_key key;
c682f9b3
QW
2047 u64 bytenr = node->bytenr;
2048 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2049 u64 refs;
2050 int ret;
c682f9b3 2051 int no_quota = node->no_quota;
5d4f98a2
YZ
2052
2053 path = btrfs_alloc_path();
2054 if (!path)
2055 return -ENOMEM;
2056
fcebe456
JB
2057 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2058 no_quota = 1;
2059
5d4f98a2
YZ
2060 path->reada = 1;
2061 path->leave_spinning = 1;
2062 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2063 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2064 bytenr, num_bytes, parent,
5d4f98a2
YZ
2065 root_objectid, owner, offset,
2066 refs_to_add, extent_op);
0ed4792a 2067 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2068 goto out;
fcebe456
JB
2069
2070 /*
2071 * Ok we had -EAGAIN which means we didn't have space to insert and
2072 * inline extent ref, so just update the reference count and add a
2073 * normal backref.
2074 */
5d4f98a2 2075 leaf = path->nodes[0];
fcebe456 2076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2077 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 refs = btrfs_extent_refs(leaf, item);
2079 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2080 if (extent_op)
2081 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2082
5d4f98a2 2083 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2084 btrfs_release_path(path);
56bec294
CM
2085
2086 path->reada = 1;
b9473439 2087 path->leave_spinning = 1;
56bec294
CM
2088 /* now insert the actual backref */
2089 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2090 path, bytenr, parent, root_objectid,
2091 owner, offset, refs_to_add);
79787eaa
JM
2092 if (ret)
2093 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2094out:
56bec294 2095 btrfs_free_path(path);
30d133fc 2096 return ret;
56bec294
CM
2097}
2098
5d4f98a2
YZ
2099static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_delayed_ref_node *node,
2102 struct btrfs_delayed_extent_op *extent_op,
2103 int insert_reserved)
56bec294 2104{
5d4f98a2
YZ
2105 int ret = 0;
2106 struct btrfs_delayed_data_ref *ref;
2107 struct btrfs_key ins;
2108 u64 parent = 0;
2109 u64 ref_root = 0;
2110 u64 flags = 0;
2111
2112 ins.objectid = node->bytenr;
2113 ins.offset = node->num_bytes;
2114 ins.type = BTRFS_EXTENT_ITEM_KEY;
2115
2116 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2117 trace_run_delayed_data_ref(node, ref, node->action);
2118
5d4f98a2
YZ
2119 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2120 parent = ref->parent;
fcebe456 2121 ref_root = ref->root;
5d4f98a2
YZ
2122
2123 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2124 if (extent_op)
5d4f98a2 2125 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2126 ret = alloc_reserved_file_extent(trans, root,
2127 parent, ref_root, flags,
2128 ref->objectid, ref->offset,
2129 &ins, node->ref_mod);
5d4f98a2 2130 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2131 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2132 ref_root, ref->objectid,
2133 ref->offset, node->ref_mod,
c682f9b3 2134 extent_op);
5d4f98a2 2135 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2136 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2137 ref_root, ref->objectid,
2138 ref->offset, node->ref_mod,
c682f9b3 2139 extent_op);
5d4f98a2
YZ
2140 } else {
2141 BUG();
2142 }
2143 return ret;
2144}
2145
2146static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2147 struct extent_buffer *leaf,
2148 struct btrfs_extent_item *ei)
2149{
2150 u64 flags = btrfs_extent_flags(leaf, ei);
2151 if (extent_op->update_flags) {
2152 flags |= extent_op->flags_to_set;
2153 btrfs_set_extent_flags(leaf, ei, flags);
2154 }
2155
2156 if (extent_op->update_key) {
2157 struct btrfs_tree_block_info *bi;
2158 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2159 bi = (struct btrfs_tree_block_info *)(ei + 1);
2160 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2161 }
2162}
2163
2164static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2165 struct btrfs_root *root,
2166 struct btrfs_delayed_ref_node *node,
2167 struct btrfs_delayed_extent_op *extent_op)
2168{
2169 struct btrfs_key key;
2170 struct btrfs_path *path;
2171 struct btrfs_extent_item *ei;
2172 struct extent_buffer *leaf;
2173 u32 item_size;
56bec294 2174 int ret;
5d4f98a2 2175 int err = 0;
b1c79e09 2176 int metadata = !extent_op->is_data;
5d4f98a2 2177
79787eaa
JM
2178 if (trans->aborted)
2179 return 0;
2180
3173a18f
JB
2181 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2182 metadata = 0;
2183
5d4f98a2
YZ
2184 path = btrfs_alloc_path();
2185 if (!path)
2186 return -ENOMEM;
2187
2188 key.objectid = node->bytenr;
5d4f98a2 2189
3173a18f 2190 if (metadata) {
3173a18f 2191 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2192 key.offset = extent_op->level;
3173a18f
JB
2193 } else {
2194 key.type = BTRFS_EXTENT_ITEM_KEY;
2195 key.offset = node->num_bytes;
2196 }
2197
2198again:
5d4f98a2
YZ
2199 path->reada = 1;
2200 path->leave_spinning = 1;
2201 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2202 path, 0, 1);
2203 if (ret < 0) {
2204 err = ret;
2205 goto out;
2206 }
2207 if (ret > 0) {
3173a18f 2208 if (metadata) {
55994887
FDBM
2209 if (path->slots[0] > 0) {
2210 path->slots[0]--;
2211 btrfs_item_key_to_cpu(path->nodes[0], &key,
2212 path->slots[0]);
2213 if (key.objectid == node->bytenr &&
2214 key.type == BTRFS_EXTENT_ITEM_KEY &&
2215 key.offset == node->num_bytes)
2216 ret = 0;
2217 }
2218 if (ret > 0) {
2219 btrfs_release_path(path);
2220 metadata = 0;
3173a18f 2221
55994887
FDBM
2222 key.objectid = node->bytenr;
2223 key.offset = node->num_bytes;
2224 key.type = BTRFS_EXTENT_ITEM_KEY;
2225 goto again;
2226 }
2227 } else {
2228 err = -EIO;
2229 goto out;
3173a18f 2230 }
5d4f98a2
YZ
2231 }
2232
2233 leaf = path->nodes[0];
2234 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2235#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2236 if (item_size < sizeof(*ei)) {
2237 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2238 path, (u64)-1, 0);
2239 if (ret < 0) {
2240 err = ret;
2241 goto out;
2242 }
2243 leaf = path->nodes[0];
2244 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2245 }
2246#endif
2247 BUG_ON(item_size < sizeof(*ei));
2248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2249 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2250
5d4f98a2
YZ
2251 btrfs_mark_buffer_dirty(leaf);
2252out:
2253 btrfs_free_path(path);
2254 return err;
56bec294
CM
2255}
2256
5d4f98a2
YZ
2257static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2258 struct btrfs_root *root,
2259 struct btrfs_delayed_ref_node *node,
2260 struct btrfs_delayed_extent_op *extent_op,
2261 int insert_reserved)
56bec294
CM
2262{
2263 int ret = 0;
5d4f98a2
YZ
2264 struct btrfs_delayed_tree_ref *ref;
2265 struct btrfs_key ins;
2266 u64 parent = 0;
2267 u64 ref_root = 0;
3173a18f
JB
2268 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2269 SKINNY_METADATA);
56bec294 2270
5d4f98a2 2271 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2272 trace_run_delayed_tree_ref(node, ref, node->action);
2273
5d4f98a2
YZ
2274 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2275 parent = ref->parent;
fcebe456 2276 ref_root = ref->root;
5d4f98a2 2277
3173a18f
JB
2278 ins.objectid = node->bytenr;
2279 if (skinny_metadata) {
2280 ins.offset = ref->level;
2281 ins.type = BTRFS_METADATA_ITEM_KEY;
2282 } else {
2283 ins.offset = node->num_bytes;
2284 ins.type = BTRFS_EXTENT_ITEM_KEY;
2285 }
2286
5d4f98a2
YZ
2287 BUG_ON(node->ref_mod != 1);
2288 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2289 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2290 ret = alloc_reserved_tree_block(trans, root,
2291 parent, ref_root,
2292 extent_op->flags_to_set,
2293 &extent_op->key,
fcebe456
JB
2294 ref->level, &ins,
2295 node->no_quota);
5d4f98a2 2296 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2297 ret = __btrfs_inc_extent_ref(trans, root, node,
2298 parent, ref_root,
2299 ref->level, 0, 1,
fcebe456 2300 extent_op);
5d4f98a2 2301 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2302 ret = __btrfs_free_extent(trans, root, node,
2303 parent, ref_root,
2304 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2305 } else {
2306 BUG();
2307 }
56bec294
CM
2308 return ret;
2309}
2310
2311/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2312static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root,
2314 struct btrfs_delayed_ref_node *node,
2315 struct btrfs_delayed_extent_op *extent_op,
2316 int insert_reserved)
56bec294 2317{
79787eaa
JM
2318 int ret = 0;
2319
857cc2fc
JB
2320 if (trans->aborted) {
2321 if (insert_reserved)
2322 btrfs_pin_extent(root, node->bytenr,
2323 node->num_bytes, 1);
79787eaa 2324 return 0;
857cc2fc 2325 }
79787eaa 2326
5d4f98a2 2327 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2328 struct btrfs_delayed_ref_head *head;
2329 /*
2330 * we've hit the end of the chain and we were supposed
2331 * to insert this extent into the tree. But, it got
2332 * deleted before we ever needed to insert it, so all
2333 * we have to do is clean up the accounting
2334 */
5d4f98a2
YZ
2335 BUG_ON(extent_op);
2336 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2337 trace_run_delayed_ref_head(node, head, node->action);
2338
56bec294 2339 if (insert_reserved) {
f0486c68
YZ
2340 btrfs_pin_extent(root, node->bytenr,
2341 node->num_bytes, 1);
5d4f98a2
YZ
2342 if (head->is_data) {
2343 ret = btrfs_del_csums(trans, root,
2344 node->bytenr,
2345 node->num_bytes);
5d4f98a2 2346 }
56bec294 2347 }
297d750b
QW
2348
2349 /* Also free its reserved qgroup space */
2350 btrfs_qgroup_free_delayed_ref(root->fs_info,
2351 head->qgroup_ref_root,
2352 head->qgroup_reserved);
79787eaa 2353 return ret;
56bec294
CM
2354 }
2355
5d4f98a2
YZ
2356 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2357 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2358 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2359 insert_reserved);
2360 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2361 node->type == BTRFS_SHARED_DATA_REF_KEY)
2362 ret = run_delayed_data_ref(trans, root, node, extent_op,
2363 insert_reserved);
2364 else
2365 BUG();
2366 return ret;
56bec294
CM
2367}
2368
c6fc2454 2369static inline struct btrfs_delayed_ref_node *
56bec294
CM
2370select_delayed_ref(struct btrfs_delayed_ref_head *head)
2371{
cffc3374
FM
2372 struct btrfs_delayed_ref_node *ref;
2373
c6fc2454
QW
2374 if (list_empty(&head->ref_list))
2375 return NULL;
d7df2c79 2376
cffc3374
FM
2377 /*
2378 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2379 * This is to prevent a ref count from going down to zero, which deletes
2380 * the extent item from the extent tree, when there still are references
2381 * to add, which would fail because they would not find the extent item.
2382 */
2383 list_for_each_entry(ref, &head->ref_list, list) {
2384 if (ref->action == BTRFS_ADD_DELAYED_REF)
2385 return ref;
2386 }
2387
c6fc2454
QW
2388 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2389 list);
56bec294
CM
2390}
2391
79787eaa
JM
2392/*
2393 * Returns 0 on success or if called with an already aborted transaction.
2394 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2395 */
d7df2c79
JB
2396static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2397 struct btrfs_root *root,
2398 unsigned long nr)
56bec294 2399{
56bec294
CM
2400 struct btrfs_delayed_ref_root *delayed_refs;
2401 struct btrfs_delayed_ref_node *ref;
2402 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2403 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2404 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2405 ktime_t start = ktime_get();
56bec294 2406 int ret;
d7df2c79 2407 unsigned long count = 0;
0a2b2a84 2408 unsigned long actual_count = 0;
56bec294 2409 int must_insert_reserved = 0;
56bec294
CM
2410
2411 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2412 while (1) {
2413 if (!locked_ref) {
d7df2c79 2414 if (count >= nr)
56bec294 2415 break;
56bec294 2416
d7df2c79
JB
2417 spin_lock(&delayed_refs->lock);
2418 locked_ref = btrfs_select_ref_head(trans);
2419 if (!locked_ref) {
2420 spin_unlock(&delayed_refs->lock);
2421 break;
2422 }
c3e69d58
CM
2423
2424 /* grab the lock that says we are going to process
2425 * all the refs for this head */
2426 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2427 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2428 /*
2429 * we may have dropped the spin lock to get the head
2430 * mutex lock, and that might have given someone else
2431 * time to free the head. If that's true, it has been
2432 * removed from our list and we can move on.
2433 */
2434 if (ret == -EAGAIN) {
2435 locked_ref = NULL;
2436 count++;
2437 continue;
56bec294
CM
2438 }
2439 }
a28ec197 2440
d7df2c79 2441 spin_lock(&locked_ref->lock);
ae1e206b 2442
d1270cd9
AJ
2443 /*
2444 * locked_ref is the head node, so we have to go one
2445 * node back for any delayed ref updates
2446 */
2447 ref = select_delayed_ref(locked_ref);
2448
2449 if (ref && ref->seq &&
097b8a7c 2450 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2451 spin_unlock(&locked_ref->lock);
093486c4 2452 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2453 spin_lock(&delayed_refs->lock);
2454 locked_ref->processing = 0;
d1270cd9
AJ
2455 delayed_refs->num_heads_ready++;
2456 spin_unlock(&delayed_refs->lock);
d7df2c79 2457 locked_ref = NULL;
d1270cd9 2458 cond_resched();
27a377db 2459 count++;
d1270cd9
AJ
2460 continue;
2461 }
2462
56bec294
CM
2463 /*
2464 * record the must insert reserved flag before we
2465 * drop the spin lock.
2466 */
2467 must_insert_reserved = locked_ref->must_insert_reserved;
2468 locked_ref->must_insert_reserved = 0;
7bb86316 2469
5d4f98a2
YZ
2470 extent_op = locked_ref->extent_op;
2471 locked_ref->extent_op = NULL;
2472
56bec294 2473 if (!ref) {
d7df2c79
JB
2474
2475
56bec294
CM
2476 /* All delayed refs have been processed, Go ahead
2477 * and send the head node to run_one_delayed_ref,
2478 * so that any accounting fixes can happen
2479 */
2480 ref = &locked_ref->node;
5d4f98a2
YZ
2481
2482 if (extent_op && must_insert_reserved) {
78a6184a 2483 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2484 extent_op = NULL;
2485 }
2486
2487 if (extent_op) {
d7df2c79 2488 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2489 ret = run_delayed_extent_op(trans, root,
2490 ref, extent_op);
78a6184a 2491 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2492
79787eaa 2493 if (ret) {
857cc2fc
JB
2494 /*
2495 * Need to reset must_insert_reserved if
2496 * there was an error so the abort stuff
2497 * can cleanup the reserved space
2498 * properly.
2499 */
2500 if (must_insert_reserved)
2501 locked_ref->must_insert_reserved = 1;
d7df2c79 2502 locked_ref->processing = 0;
c2cf52eb 2503 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2504 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2505 return ret;
2506 }
d7df2c79 2507 continue;
5d4f98a2 2508 }
02217ed2 2509
d7df2c79
JB
2510 /*
2511 * Need to drop our head ref lock and re-aqcuire the
2512 * delayed ref lock and then re-check to make sure
2513 * nobody got added.
2514 */
2515 spin_unlock(&locked_ref->lock);
2516 spin_lock(&delayed_refs->lock);
2517 spin_lock(&locked_ref->lock);
c6fc2454 2518 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2519 locked_ref->extent_op) {
d7df2c79
JB
2520 spin_unlock(&locked_ref->lock);
2521 spin_unlock(&delayed_refs->lock);
2522 continue;
2523 }
2524 ref->in_tree = 0;
2525 delayed_refs->num_heads--;
c46effa6
LB
2526 rb_erase(&locked_ref->href_node,
2527 &delayed_refs->href_root);
d7df2c79
JB
2528 spin_unlock(&delayed_refs->lock);
2529 } else {
0a2b2a84 2530 actual_count++;
d7df2c79 2531 ref->in_tree = 0;
c6fc2454 2532 list_del(&ref->list);
c46effa6 2533 }
d7df2c79
JB
2534 atomic_dec(&delayed_refs->num_entries);
2535
093486c4 2536 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2537 /*
2538 * when we play the delayed ref, also correct the
2539 * ref_mod on head
2540 */
2541 switch (ref->action) {
2542 case BTRFS_ADD_DELAYED_REF:
2543 case BTRFS_ADD_DELAYED_EXTENT:
2544 locked_ref->node.ref_mod -= ref->ref_mod;
2545 break;
2546 case BTRFS_DROP_DELAYED_REF:
2547 locked_ref->node.ref_mod += ref->ref_mod;
2548 break;
2549 default:
2550 WARN_ON(1);
2551 }
2552 }
d7df2c79 2553 spin_unlock(&locked_ref->lock);
925baedd 2554
5d4f98a2 2555 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2556 must_insert_reserved);
eb099670 2557
78a6184a 2558 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2559 if (ret) {
d7df2c79 2560 locked_ref->processing = 0;
093486c4
MX
2561 btrfs_delayed_ref_unlock(locked_ref);
2562 btrfs_put_delayed_ref(ref);
c2cf52eb 2563 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2564 return ret;
2565 }
2566
093486c4
MX
2567 /*
2568 * If this node is a head, that means all the refs in this head
2569 * have been dealt with, and we will pick the next head to deal
2570 * with, so we must unlock the head and drop it from the cluster
2571 * list before we release it.
2572 */
2573 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2574 if (locked_ref->is_data &&
2575 locked_ref->total_ref_mod < 0) {
2576 spin_lock(&delayed_refs->lock);
2577 delayed_refs->pending_csums -= ref->num_bytes;
2578 spin_unlock(&delayed_refs->lock);
2579 }
093486c4
MX
2580 btrfs_delayed_ref_unlock(locked_ref);
2581 locked_ref = NULL;
2582 }
2583 btrfs_put_delayed_ref(ref);
2584 count++;
c3e69d58 2585 cond_resched();
c3e69d58 2586 }
0a2b2a84
JB
2587
2588 /*
2589 * We don't want to include ref heads since we can have empty ref heads
2590 * and those will drastically skew our runtime down since we just do
2591 * accounting, no actual extent tree updates.
2592 */
2593 if (actual_count > 0) {
2594 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2595 u64 avg;
2596
2597 /*
2598 * We weigh the current average higher than our current runtime
2599 * to avoid large swings in the average.
2600 */
2601 spin_lock(&delayed_refs->lock);
2602 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2603 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2604 spin_unlock(&delayed_refs->lock);
2605 }
d7df2c79 2606 return 0;
c3e69d58
CM
2607}
2608
709c0486
AJ
2609#ifdef SCRAMBLE_DELAYED_REFS
2610/*
2611 * Normally delayed refs get processed in ascending bytenr order. This
2612 * correlates in most cases to the order added. To expose dependencies on this
2613 * order, we start to process the tree in the middle instead of the beginning
2614 */
2615static u64 find_middle(struct rb_root *root)
2616{
2617 struct rb_node *n = root->rb_node;
2618 struct btrfs_delayed_ref_node *entry;
2619 int alt = 1;
2620 u64 middle;
2621 u64 first = 0, last = 0;
2622
2623 n = rb_first(root);
2624 if (n) {
2625 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2626 first = entry->bytenr;
2627 }
2628 n = rb_last(root);
2629 if (n) {
2630 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2631 last = entry->bytenr;
2632 }
2633 n = root->rb_node;
2634
2635 while (n) {
2636 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2637 WARN_ON(!entry->in_tree);
2638
2639 middle = entry->bytenr;
2640
2641 if (alt)
2642 n = n->rb_left;
2643 else
2644 n = n->rb_right;
2645
2646 alt = 1 - alt;
2647 }
2648 return middle;
2649}
2650#endif
2651
1be41b78
JB
2652static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2653{
2654 u64 num_bytes;
2655
2656 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2657 sizeof(struct btrfs_extent_inline_ref));
2658 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2659 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2660
2661 /*
2662 * We don't ever fill up leaves all the way so multiply by 2 just to be
2663 * closer to what we're really going to want to ouse.
2664 */
f8c269d7 2665 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2666}
2667
1262133b
JB
2668/*
2669 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2670 * would require to store the csums for that many bytes.
2671 */
28f75a0e 2672u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2673{
2674 u64 csum_size;
2675 u64 num_csums_per_leaf;
2676 u64 num_csums;
2677
2678 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2679 num_csums_per_leaf = div64_u64(csum_size,
2680 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2681 num_csums = div64_u64(csum_bytes, root->sectorsize);
2682 num_csums += num_csums_per_leaf - 1;
2683 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2684 return num_csums;
2685}
2686
0a2b2a84 2687int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2688 struct btrfs_root *root)
2689{
2690 struct btrfs_block_rsv *global_rsv;
2691 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2692 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2693 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2694 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2695 int ret = 0;
2696
2697 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2698 num_heads = heads_to_leaves(root, num_heads);
2699 if (num_heads > 1)
707e8a07 2700 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2701 num_bytes <<= 1;
28f75a0e 2702 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2703 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2704 num_dirty_bgs);
1be41b78
JB
2705 global_rsv = &root->fs_info->global_block_rsv;
2706
2707 /*
2708 * If we can't allocate any more chunks lets make sure we have _lots_ of
2709 * wiggle room since running delayed refs can create more delayed refs.
2710 */
cb723e49
JB
2711 if (global_rsv->space_info->full) {
2712 num_dirty_bgs_bytes <<= 1;
1be41b78 2713 num_bytes <<= 1;
cb723e49 2714 }
1be41b78
JB
2715
2716 spin_lock(&global_rsv->lock);
cb723e49 2717 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2718 ret = 1;
2719 spin_unlock(&global_rsv->lock);
2720 return ret;
2721}
2722
0a2b2a84
JB
2723int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2724 struct btrfs_root *root)
2725{
2726 struct btrfs_fs_info *fs_info = root->fs_info;
2727 u64 num_entries =
2728 atomic_read(&trans->transaction->delayed_refs.num_entries);
2729 u64 avg_runtime;
a79b7d4b 2730 u64 val;
0a2b2a84
JB
2731
2732 smp_mb();
2733 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2734 val = num_entries * avg_runtime;
0a2b2a84
JB
2735 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2736 return 1;
a79b7d4b
CM
2737 if (val >= NSEC_PER_SEC / 2)
2738 return 2;
0a2b2a84
JB
2739
2740 return btrfs_check_space_for_delayed_refs(trans, root);
2741}
2742
a79b7d4b
CM
2743struct async_delayed_refs {
2744 struct btrfs_root *root;
2745 int count;
2746 int error;
2747 int sync;
2748 struct completion wait;
2749 struct btrfs_work work;
2750};
2751
2752static void delayed_ref_async_start(struct btrfs_work *work)
2753{
2754 struct async_delayed_refs *async;
2755 struct btrfs_trans_handle *trans;
2756 int ret;
2757
2758 async = container_of(work, struct async_delayed_refs, work);
2759
2760 trans = btrfs_join_transaction(async->root);
2761 if (IS_ERR(trans)) {
2762 async->error = PTR_ERR(trans);
2763 goto done;
2764 }
2765
2766 /*
2767 * trans->sync means that when we call end_transaciton, we won't
2768 * wait on delayed refs
2769 */
2770 trans->sync = true;
2771 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2772 if (ret)
2773 async->error = ret;
2774
2775 ret = btrfs_end_transaction(trans, async->root);
2776 if (ret && !async->error)
2777 async->error = ret;
2778done:
2779 if (async->sync)
2780 complete(&async->wait);
2781 else
2782 kfree(async);
2783}
2784
2785int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2786 unsigned long count, int wait)
2787{
2788 struct async_delayed_refs *async;
2789 int ret;
2790
2791 async = kmalloc(sizeof(*async), GFP_NOFS);
2792 if (!async)
2793 return -ENOMEM;
2794
2795 async->root = root->fs_info->tree_root;
2796 async->count = count;
2797 async->error = 0;
2798 if (wait)
2799 async->sync = 1;
2800 else
2801 async->sync = 0;
2802 init_completion(&async->wait);
2803
9e0af237
LB
2804 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2805 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2806
2807 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2808
2809 if (wait) {
2810 wait_for_completion(&async->wait);
2811 ret = async->error;
2812 kfree(async);
2813 return ret;
2814 }
2815 return 0;
2816}
2817
c3e69d58
CM
2818/*
2819 * this starts processing the delayed reference count updates and
2820 * extent insertions we have queued up so far. count can be
2821 * 0, which means to process everything in the tree at the start
2822 * of the run (but not newly added entries), or it can be some target
2823 * number you'd like to process.
79787eaa
JM
2824 *
2825 * Returns 0 on success or if called with an aborted transaction
2826 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2827 */
2828int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2829 struct btrfs_root *root, unsigned long count)
2830{
2831 struct rb_node *node;
2832 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2833 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2834 int ret;
2835 int run_all = count == (unsigned long)-1;
d9a0540a 2836 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2837
79787eaa
JM
2838 /* We'll clean this up in btrfs_cleanup_transaction */
2839 if (trans->aborted)
2840 return 0;
2841
c3e69d58
CM
2842 if (root == root->fs_info->extent_root)
2843 root = root->fs_info->tree_root;
2844
2845 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2846 if (count == 0)
d7df2c79 2847 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2848
c3e69d58 2849again:
709c0486
AJ
2850#ifdef SCRAMBLE_DELAYED_REFS
2851 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2852#endif
d9a0540a 2853 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2854 ret = __btrfs_run_delayed_refs(trans, root, count);
2855 if (ret < 0) {
2856 btrfs_abort_transaction(trans, root, ret);
2857 return ret;
eb099670 2858 }
c3e69d58 2859
56bec294 2860 if (run_all) {
d7df2c79 2861 if (!list_empty(&trans->new_bgs))
ea658bad 2862 btrfs_create_pending_block_groups(trans, root);
ea658bad 2863
d7df2c79 2864 spin_lock(&delayed_refs->lock);
c46effa6 2865 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2866 if (!node) {
2867 spin_unlock(&delayed_refs->lock);
56bec294 2868 goto out;
d7df2c79 2869 }
c3e69d58 2870 count = (unsigned long)-1;
e9d0b13b 2871
56bec294 2872 while (node) {
c46effa6
LB
2873 head = rb_entry(node, struct btrfs_delayed_ref_head,
2874 href_node);
2875 if (btrfs_delayed_ref_is_head(&head->node)) {
2876 struct btrfs_delayed_ref_node *ref;
5caf2a00 2877
c46effa6 2878 ref = &head->node;
56bec294
CM
2879 atomic_inc(&ref->refs);
2880
2881 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2882 /*
2883 * Mutex was contended, block until it's
2884 * released and try again
2885 */
56bec294
CM
2886 mutex_lock(&head->mutex);
2887 mutex_unlock(&head->mutex);
2888
2889 btrfs_put_delayed_ref(ref);
1887be66 2890 cond_resched();
56bec294 2891 goto again;
c46effa6
LB
2892 } else {
2893 WARN_ON(1);
56bec294
CM
2894 }
2895 node = rb_next(node);
2896 }
2897 spin_unlock(&delayed_refs->lock);
d7df2c79 2898 cond_resched();
56bec294 2899 goto again;
5f39d397 2900 }
54aa1f4d 2901out:
edf39272 2902 assert_qgroups_uptodate(trans);
d9a0540a 2903 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
2904 return 0;
2905}
2906
5d4f98a2
YZ
2907int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2908 struct btrfs_root *root,
2909 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2910 int level, int is_data)
5d4f98a2
YZ
2911{
2912 struct btrfs_delayed_extent_op *extent_op;
2913 int ret;
2914
78a6184a 2915 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2916 if (!extent_op)
2917 return -ENOMEM;
2918
2919 extent_op->flags_to_set = flags;
2920 extent_op->update_flags = 1;
2921 extent_op->update_key = 0;
2922 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2923 extent_op->level = level;
5d4f98a2 2924
66d7e7f0
AJ
2925 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2926 num_bytes, extent_op);
5d4f98a2 2927 if (ret)
78a6184a 2928 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2929 return ret;
2930}
2931
2932static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *root,
2934 struct btrfs_path *path,
2935 u64 objectid, u64 offset, u64 bytenr)
2936{
2937 struct btrfs_delayed_ref_head *head;
2938 struct btrfs_delayed_ref_node *ref;
2939 struct btrfs_delayed_data_ref *data_ref;
2940 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
2941 int ret = 0;
2942
5d4f98a2
YZ
2943 delayed_refs = &trans->transaction->delayed_refs;
2944 spin_lock(&delayed_refs->lock);
2945 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
2946 if (!head) {
2947 spin_unlock(&delayed_refs->lock);
2948 return 0;
2949 }
5d4f98a2
YZ
2950
2951 if (!mutex_trylock(&head->mutex)) {
2952 atomic_inc(&head->node.refs);
2953 spin_unlock(&delayed_refs->lock);
2954
b3b4aa74 2955 btrfs_release_path(path);
5d4f98a2 2956
8cc33e5c
DS
2957 /*
2958 * Mutex was contended, block until it's released and let
2959 * caller try again
2960 */
5d4f98a2
YZ
2961 mutex_lock(&head->mutex);
2962 mutex_unlock(&head->mutex);
2963 btrfs_put_delayed_ref(&head->node);
2964 return -EAGAIN;
2965 }
d7df2c79 2966 spin_unlock(&delayed_refs->lock);
5d4f98a2 2967
d7df2c79 2968 spin_lock(&head->lock);
c6fc2454 2969 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
2970 /* If it's a shared ref we know a cross reference exists */
2971 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2972 ret = 1;
2973 break;
2974 }
5d4f98a2 2975
d7df2c79 2976 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 2977
d7df2c79
JB
2978 /*
2979 * If our ref doesn't match the one we're currently looking at
2980 * then we have a cross reference.
2981 */
2982 if (data_ref->root != root->root_key.objectid ||
2983 data_ref->objectid != objectid ||
2984 data_ref->offset != offset) {
2985 ret = 1;
2986 break;
2987 }
5d4f98a2 2988 }
d7df2c79 2989 spin_unlock(&head->lock);
5d4f98a2 2990 mutex_unlock(&head->mutex);
5d4f98a2
YZ
2991 return ret;
2992}
2993
2994static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2995 struct btrfs_root *root,
2996 struct btrfs_path *path,
2997 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
2998{
2999 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3000 struct extent_buffer *leaf;
5d4f98a2
YZ
3001 struct btrfs_extent_data_ref *ref;
3002 struct btrfs_extent_inline_ref *iref;
3003 struct btrfs_extent_item *ei;
f321e491 3004 struct btrfs_key key;
5d4f98a2 3005 u32 item_size;
be20aa9d 3006 int ret;
925baedd 3007
be20aa9d 3008 key.objectid = bytenr;
31840ae1 3009 key.offset = (u64)-1;
f321e491 3010 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3011
be20aa9d
CM
3012 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3013 if (ret < 0)
3014 goto out;
79787eaa 3015 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3016
3017 ret = -ENOENT;
3018 if (path->slots[0] == 0)
31840ae1 3019 goto out;
be20aa9d 3020
31840ae1 3021 path->slots[0]--;
f321e491 3022 leaf = path->nodes[0];
5d4f98a2 3023 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3024
5d4f98a2 3025 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3026 goto out;
f321e491 3027
5d4f98a2
YZ
3028 ret = 1;
3029 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3030#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3031 if (item_size < sizeof(*ei)) {
3032 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3033 goto out;
3034 }
3035#endif
3036 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3037
5d4f98a2
YZ
3038 if (item_size != sizeof(*ei) +
3039 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3040 goto out;
be20aa9d 3041
5d4f98a2
YZ
3042 if (btrfs_extent_generation(leaf, ei) <=
3043 btrfs_root_last_snapshot(&root->root_item))
3044 goto out;
3045
3046 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3047 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3048 BTRFS_EXTENT_DATA_REF_KEY)
3049 goto out;
3050
3051 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3052 if (btrfs_extent_refs(leaf, ei) !=
3053 btrfs_extent_data_ref_count(leaf, ref) ||
3054 btrfs_extent_data_ref_root(leaf, ref) !=
3055 root->root_key.objectid ||
3056 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3057 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3058 goto out;
3059
3060 ret = 0;
3061out:
3062 return ret;
3063}
3064
3065int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3066 struct btrfs_root *root,
3067 u64 objectid, u64 offset, u64 bytenr)
3068{
3069 struct btrfs_path *path;
3070 int ret;
3071 int ret2;
3072
3073 path = btrfs_alloc_path();
3074 if (!path)
3075 return -ENOENT;
3076
3077 do {
3078 ret = check_committed_ref(trans, root, path, objectid,
3079 offset, bytenr);
3080 if (ret && ret != -ENOENT)
f321e491 3081 goto out;
80ff3856 3082
5d4f98a2
YZ
3083 ret2 = check_delayed_ref(trans, root, path, objectid,
3084 offset, bytenr);
3085 } while (ret2 == -EAGAIN);
3086
3087 if (ret2 && ret2 != -ENOENT) {
3088 ret = ret2;
3089 goto out;
f321e491 3090 }
5d4f98a2
YZ
3091
3092 if (ret != -ENOENT || ret2 != -ENOENT)
3093 ret = 0;
be20aa9d 3094out:
80ff3856 3095 btrfs_free_path(path);
f0486c68
YZ
3096 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3097 WARN_ON(ret > 0);
f321e491 3098 return ret;
be20aa9d 3099}
c5739bba 3100
5d4f98a2 3101static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3102 struct btrfs_root *root,
5d4f98a2 3103 struct extent_buffer *buf,
e339a6b0 3104 int full_backref, int inc)
31840ae1
ZY
3105{
3106 u64 bytenr;
5d4f98a2
YZ
3107 u64 num_bytes;
3108 u64 parent;
31840ae1 3109 u64 ref_root;
31840ae1 3110 u32 nritems;
31840ae1
ZY
3111 struct btrfs_key key;
3112 struct btrfs_file_extent_item *fi;
3113 int i;
3114 int level;
3115 int ret = 0;
31840ae1 3116 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3117 u64, u64, u64, u64, u64, u64, int);
31840ae1 3118
fccb84c9
DS
3119
3120 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3121 return 0;
fccb84c9 3122
31840ae1 3123 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3124 nritems = btrfs_header_nritems(buf);
3125 level = btrfs_header_level(buf);
3126
27cdeb70 3127 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3128 return 0;
31840ae1 3129
5d4f98a2
YZ
3130 if (inc)
3131 process_func = btrfs_inc_extent_ref;
3132 else
3133 process_func = btrfs_free_extent;
31840ae1 3134
5d4f98a2
YZ
3135 if (full_backref)
3136 parent = buf->start;
3137 else
3138 parent = 0;
3139
3140 for (i = 0; i < nritems; i++) {
31840ae1 3141 if (level == 0) {
5d4f98a2 3142 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3143 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3144 continue;
5d4f98a2 3145 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3146 struct btrfs_file_extent_item);
3147 if (btrfs_file_extent_type(buf, fi) ==
3148 BTRFS_FILE_EXTENT_INLINE)
3149 continue;
3150 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3151 if (bytenr == 0)
3152 continue;
5d4f98a2
YZ
3153
3154 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3155 key.offset -= btrfs_file_extent_offset(buf, fi);
3156 ret = process_func(trans, root, bytenr, num_bytes,
3157 parent, ref_root, key.objectid,
e339a6b0 3158 key.offset, 1);
31840ae1
ZY
3159 if (ret)
3160 goto fail;
3161 } else {
5d4f98a2 3162 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3163 num_bytes = root->nodesize;
5d4f98a2 3164 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3165 parent, ref_root, level - 1, 0,
e339a6b0 3166 1);
31840ae1
ZY
3167 if (ret)
3168 goto fail;
3169 }
3170 }
3171 return 0;
3172fail:
5d4f98a2
YZ
3173 return ret;
3174}
3175
3176int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3177 struct extent_buffer *buf, int full_backref)
5d4f98a2 3178{
e339a6b0 3179 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3180}
3181
3182int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3183 struct extent_buffer *buf, int full_backref)
5d4f98a2 3184{
e339a6b0 3185 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3186}
3187
9078a3e1
CM
3188static int write_one_cache_group(struct btrfs_trans_handle *trans,
3189 struct btrfs_root *root,
3190 struct btrfs_path *path,
3191 struct btrfs_block_group_cache *cache)
3192{
3193 int ret;
9078a3e1 3194 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3195 unsigned long bi;
3196 struct extent_buffer *leaf;
9078a3e1 3197
9078a3e1 3198 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3199 if (ret) {
3200 if (ret > 0)
3201 ret = -ENOENT;
54aa1f4d 3202 goto fail;
df95e7f0 3203 }
5f39d397
CM
3204
3205 leaf = path->nodes[0];
3206 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3207 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3208 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3209fail:
24b89d08 3210 btrfs_release_path(path);
df95e7f0 3211 return ret;
9078a3e1
CM
3212
3213}
3214
4a8c9a62
YZ
3215static struct btrfs_block_group_cache *
3216next_block_group(struct btrfs_root *root,
3217 struct btrfs_block_group_cache *cache)
3218{
3219 struct rb_node *node;
292cbd51 3220
4a8c9a62 3221 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3222
3223 /* If our block group was removed, we need a full search. */
3224 if (RB_EMPTY_NODE(&cache->cache_node)) {
3225 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3226
3227 spin_unlock(&root->fs_info->block_group_cache_lock);
3228 btrfs_put_block_group(cache);
3229 cache = btrfs_lookup_first_block_group(root->fs_info,
3230 next_bytenr);
3231 return cache;
3232 }
4a8c9a62
YZ
3233 node = rb_next(&cache->cache_node);
3234 btrfs_put_block_group(cache);
3235 if (node) {
3236 cache = rb_entry(node, struct btrfs_block_group_cache,
3237 cache_node);
11dfe35a 3238 btrfs_get_block_group(cache);
4a8c9a62
YZ
3239 } else
3240 cache = NULL;
3241 spin_unlock(&root->fs_info->block_group_cache_lock);
3242 return cache;
3243}
3244
0af3d00b
JB
3245static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3246 struct btrfs_trans_handle *trans,
3247 struct btrfs_path *path)
3248{
3249 struct btrfs_root *root = block_group->fs_info->tree_root;
3250 struct inode *inode = NULL;
3251 u64 alloc_hint = 0;
2b20982e 3252 int dcs = BTRFS_DC_ERROR;
f8c269d7 3253 u64 num_pages = 0;
0af3d00b
JB
3254 int retries = 0;
3255 int ret = 0;
3256
3257 /*
3258 * If this block group is smaller than 100 megs don't bother caching the
3259 * block group.
3260 */
3261 if (block_group->key.offset < (100 * 1024 * 1024)) {
3262 spin_lock(&block_group->lock);
3263 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3264 spin_unlock(&block_group->lock);
3265 return 0;
3266 }
3267
0c0ef4bc
JB
3268 if (trans->aborted)
3269 return 0;
0af3d00b
JB
3270again:
3271 inode = lookup_free_space_inode(root, block_group, path);
3272 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3273 ret = PTR_ERR(inode);
b3b4aa74 3274 btrfs_release_path(path);
0af3d00b
JB
3275 goto out;
3276 }
3277
3278 if (IS_ERR(inode)) {
3279 BUG_ON(retries);
3280 retries++;
3281
3282 if (block_group->ro)
3283 goto out_free;
3284
3285 ret = create_free_space_inode(root, trans, block_group, path);
3286 if (ret)
3287 goto out_free;
3288 goto again;
3289 }
3290
5b0e95bf
JB
3291 /* We've already setup this transaction, go ahead and exit */
3292 if (block_group->cache_generation == trans->transid &&
3293 i_size_read(inode)) {
3294 dcs = BTRFS_DC_SETUP;
3295 goto out_put;
3296 }
3297
0af3d00b
JB
3298 /*
3299 * We want to set the generation to 0, that way if anything goes wrong
3300 * from here on out we know not to trust this cache when we load up next
3301 * time.
3302 */
3303 BTRFS_I(inode)->generation = 0;
3304 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3305 if (ret) {
3306 /*
3307 * So theoretically we could recover from this, simply set the
3308 * super cache generation to 0 so we know to invalidate the
3309 * cache, but then we'd have to keep track of the block groups
3310 * that fail this way so we know we _have_ to reset this cache
3311 * before the next commit or risk reading stale cache. So to
3312 * limit our exposure to horrible edge cases lets just abort the
3313 * transaction, this only happens in really bad situations
3314 * anyway.
3315 */
3316 btrfs_abort_transaction(trans, root, ret);
3317 goto out_put;
3318 }
0af3d00b
JB
3319 WARN_ON(ret);
3320
3321 if (i_size_read(inode) > 0) {
7b61cd92
MX
3322 ret = btrfs_check_trunc_cache_free_space(root,
3323 &root->fs_info->global_block_rsv);
3324 if (ret)
3325 goto out_put;
3326
1bbc621e 3327 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3328 if (ret)
3329 goto out_put;
3330 }
3331
3332 spin_lock(&block_group->lock);
cf7c1ef6 3333 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3334 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3335 /*
3336 * don't bother trying to write stuff out _if_
3337 * a) we're not cached,
3338 * b) we're with nospace_cache mount option.
3339 */
2b20982e 3340 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3341 spin_unlock(&block_group->lock);
3342 goto out_put;
3343 }
3344 spin_unlock(&block_group->lock);
3345
6fc823b1
JB
3346 /*
3347 * Try to preallocate enough space based on how big the block group is.
3348 * Keep in mind this has to include any pinned space which could end up
3349 * taking up quite a bit since it's not folded into the other space
3350 * cache.
3351 */
f8c269d7 3352 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3353 if (!num_pages)
3354 num_pages = 1;
3355
0af3d00b
JB
3356 num_pages *= 16;
3357 num_pages *= PAGE_CACHE_SIZE;
3358
7cf5b976 3359 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3360 if (ret)
3361 goto out_put;
3362
3363 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3364 num_pages, num_pages,
3365 &alloc_hint);
2b20982e
JB
3366 if (!ret)
3367 dcs = BTRFS_DC_SETUP;
7cf5b976 3368 btrfs_free_reserved_data_space(inode, 0, num_pages);
c09544e0 3369
0af3d00b
JB
3370out_put:
3371 iput(inode);
3372out_free:
b3b4aa74 3373 btrfs_release_path(path);
0af3d00b
JB
3374out:
3375 spin_lock(&block_group->lock);
e65cbb94 3376 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3377 block_group->cache_generation = trans->transid;
2b20982e 3378 block_group->disk_cache_state = dcs;
0af3d00b
JB
3379 spin_unlock(&block_group->lock);
3380
3381 return ret;
3382}
3383
dcdf7f6d
JB
3384int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3385 struct btrfs_root *root)
3386{
3387 struct btrfs_block_group_cache *cache, *tmp;
3388 struct btrfs_transaction *cur_trans = trans->transaction;
3389 struct btrfs_path *path;
3390
3391 if (list_empty(&cur_trans->dirty_bgs) ||
3392 !btrfs_test_opt(root, SPACE_CACHE))
3393 return 0;
3394
3395 path = btrfs_alloc_path();
3396 if (!path)
3397 return -ENOMEM;
3398
3399 /* Could add new block groups, use _safe just in case */
3400 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3401 dirty_list) {
3402 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3403 cache_save_setup(cache, trans, path);
3404 }
3405
3406 btrfs_free_path(path);
3407 return 0;
3408}
3409
1bbc621e
CM
3410/*
3411 * transaction commit does final block group cache writeback during a
3412 * critical section where nothing is allowed to change the FS. This is
3413 * required in order for the cache to actually match the block group,
3414 * but can introduce a lot of latency into the commit.
3415 *
3416 * So, btrfs_start_dirty_block_groups is here to kick off block group
3417 * cache IO. There's a chance we'll have to redo some of it if the
3418 * block group changes again during the commit, but it greatly reduces
3419 * the commit latency by getting rid of the easy block groups while
3420 * we're still allowing others to join the commit.
3421 */
3422int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3423 struct btrfs_root *root)
9078a3e1 3424{
4a8c9a62 3425 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3426 struct btrfs_transaction *cur_trans = trans->transaction;
3427 int ret = 0;
c9dc4c65 3428 int should_put;
1bbc621e
CM
3429 struct btrfs_path *path = NULL;
3430 LIST_HEAD(dirty);
3431 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3432 int num_started = 0;
1bbc621e
CM
3433 int loops = 0;
3434
3435 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3436 if (list_empty(&cur_trans->dirty_bgs)) {
3437 spin_unlock(&cur_trans->dirty_bgs_lock);
3438 return 0;
1bbc621e 3439 }
b58d1a9e 3440 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3441 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3442
1bbc621e 3443again:
1bbc621e
CM
3444 /*
3445 * make sure all the block groups on our dirty list actually
3446 * exist
3447 */
3448 btrfs_create_pending_block_groups(trans, root);
3449
3450 if (!path) {
3451 path = btrfs_alloc_path();
3452 if (!path)
3453 return -ENOMEM;
3454 }
3455
b58d1a9e
FM
3456 /*
3457 * cache_write_mutex is here only to save us from balance or automatic
3458 * removal of empty block groups deleting this block group while we are
3459 * writing out the cache
3460 */
3461 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3462 while (!list_empty(&dirty)) {
3463 cache = list_first_entry(&dirty,
3464 struct btrfs_block_group_cache,
3465 dirty_list);
1bbc621e
CM
3466 /*
3467 * this can happen if something re-dirties a block
3468 * group that is already under IO. Just wait for it to
3469 * finish and then do it all again
3470 */
3471 if (!list_empty(&cache->io_list)) {
3472 list_del_init(&cache->io_list);
3473 btrfs_wait_cache_io(root, trans, cache,
3474 &cache->io_ctl, path,
3475 cache->key.objectid);
3476 btrfs_put_block_group(cache);
3477 }
3478
3479
3480 /*
3481 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3482 * if it should update the cache_state. Don't delete
3483 * until after we wait.
3484 *
3485 * Since we're not running in the commit critical section
3486 * we need the dirty_bgs_lock to protect from update_block_group
3487 */
3488 spin_lock(&cur_trans->dirty_bgs_lock);
3489 list_del_init(&cache->dirty_list);
3490 spin_unlock(&cur_trans->dirty_bgs_lock);
3491
3492 should_put = 1;
3493
3494 cache_save_setup(cache, trans, path);
3495
3496 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3497 cache->io_ctl.inode = NULL;
3498 ret = btrfs_write_out_cache(root, trans, cache, path);
3499 if (ret == 0 && cache->io_ctl.inode) {
3500 num_started++;
3501 should_put = 0;
3502
3503 /*
3504 * the cache_write_mutex is protecting
3505 * the io_list
3506 */
3507 list_add_tail(&cache->io_list, io);
3508 } else {
3509 /*
3510 * if we failed to write the cache, the
3511 * generation will be bad and life goes on
3512 */
3513 ret = 0;
3514 }
3515 }
ff1f8250 3516 if (!ret) {
1bbc621e 3517 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3518 /*
3519 * Our block group might still be attached to the list
3520 * of new block groups in the transaction handle of some
3521 * other task (struct btrfs_trans_handle->new_bgs). This
3522 * means its block group item isn't yet in the extent
3523 * tree. If this happens ignore the error, as we will
3524 * try again later in the critical section of the
3525 * transaction commit.
3526 */
3527 if (ret == -ENOENT) {
3528 ret = 0;
3529 spin_lock(&cur_trans->dirty_bgs_lock);
3530 if (list_empty(&cache->dirty_list)) {
3531 list_add_tail(&cache->dirty_list,
3532 &cur_trans->dirty_bgs);
3533 btrfs_get_block_group(cache);
3534 }
3535 spin_unlock(&cur_trans->dirty_bgs_lock);
3536 } else if (ret) {
3537 btrfs_abort_transaction(trans, root, ret);
3538 }
3539 }
1bbc621e
CM
3540
3541 /* if its not on the io list, we need to put the block group */
3542 if (should_put)
3543 btrfs_put_block_group(cache);
3544
3545 if (ret)
3546 break;
b58d1a9e
FM
3547
3548 /*
3549 * Avoid blocking other tasks for too long. It might even save
3550 * us from writing caches for block groups that are going to be
3551 * removed.
3552 */
3553 mutex_unlock(&trans->transaction->cache_write_mutex);
3554 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3555 }
b58d1a9e 3556 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3557
3558 /*
3559 * go through delayed refs for all the stuff we've just kicked off
3560 * and then loop back (just once)
3561 */
3562 ret = btrfs_run_delayed_refs(trans, root, 0);
3563 if (!ret && loops == 0) {
3564 loops++;
3565 spin_lock(&cur_trans->dirty_bgs_lock);
3566 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3567 /*
3568 * dirty_bgs_lock protects us from concurrent block group
3569 * deletes too (not just cache_write_mutex).
3570 */
3571 if (!list_empty(&dirty)) {
3572 spin_unlock(&cur_trans->dirty_bgs_lock);
3573 goto again;
3574 }
1bbc621e 3575 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3576 }
3577
3578 btrfs_free_path(path);
3579 return ret;
3580}
3581
3582int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3583 struct btrfs_root *root)
3584{
3585 struct btrfs_block_group_cache *cache;
3586 struct btrfs_transaction *cur_trans = trans->transaction;
3587 int ret = 0;
3588 int should_put;
3589 struct btrfs_path *path;
3590 struct list_head *io = &cur_trans->io_bgs;
3591 int num_started = 0;
9078a3e1
CM
3592
3593 path = btrfs_alloc_path();
3594 if (!path)
3595 return -ENOMEM;
3596
ce93ec54
JB
3597 /*
3598 * We don't need the lock here since we are protected by the transaction
3599 * commit. We want to do the cache_save_setup first and then run the
3600 * delayed refs to make sure we have the best chance at doing this all
3601 * in one shot.
3602 */
3603 while (!list_empty(&cur_trans->dirty_bgs)) {
3604 cache = list_first_entry(&cur_trans->dirty_bgs,
3605 struct btrfs_block_group_cache,
3606 dirty_list);
c9dc4c65
CM
3607
3608 /*
3609 * this can happen if cache_save_setup re-dirties a block
3610 * group that is already under IO. Just wait for it to
3611 * finish and then do it all again
3612 */
3613 if (!list_empty(&cache->io_list)) {
3614 list_del_init(&cache->io_list);
3615 btrfs_wait_cache_io(root, trans, cache,
3616 &cache->io_ctl, path,
3617 cache->key.objectid);
3618 btrfs_put_block_group(cache);
c9dc4c65
CM
3619 }
3620
1bbc621e
CM
3621 /*
3622 * don't remove from the dirty list until after we've waited
3623 * on any pending IO
3624 */
ce93ec54 3625 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3626 should_put = 1;
3627
1bbc621e 3628 cache_save_setup(cache, trans, path);
c9dc4c65 3629
ce93ec54 3630 if (!ret)
c9dc4c65
CM
3631 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3632
3633 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3634 cache->io_ctl.inode = NULL;
3635 ret = btrfs_write_out_cache(root, trans, cache, path);
3636 if (ret == 0 && cache->io_ctl.inode) {
3637 num_started++;
3638 should_put = 0;
1bbc621e 3639 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3640 } else {
3641 /*
3642 * if we failed to write the cache, the
3643 * generation will be bad and life goes on
3644 */
3645 ret = 0;
3646 }
3647 }
ff1f8250 3648 if (!ret) {
ce93ec54 3649 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3650 if (ret)
3651 btrfs_abort_transaction(trans, root, ret);
3652 }
c9dc4c65
CM
3653
3654 /* if its not on the io list, we need to put the block group */
3655 if (should_put)
3656 btrfs_put_block_group(cache);
3657 }
3658
1bbc621e
CM
3659 while (!list_empty(io)) {
3660 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3661 io_list);
3662 list_del_init(&cache->io_list);
c9dc4c65
CM
3663 btrfs_wait_cache_io(root, trans, cache,
3664 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3665 btrfs_put_block_group(cache);
3666 }
3667
9078a3e1 3668 btrfs_free_path(path);
ce93ec54 3669 return ret;
9078a3e1
CM
3670}
3671
d2fb3437
YZ
3672int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3673{
3674 struct btrfs_block_group_cache *block_group;
3675 int readonly = 0;
3676
3677 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3678 if (!block_group || block_group->ro)
3679 readonly = 1;
3680 if (block_group)
fa9c0d79 3681 btrfs_put_block_group(block_group);
d2fb3437
YZ
3682 return readonly;
3683}
3684
6ab0a202
JM
3685static const char *alloc_name(u64 flags)
3686{
3687 switch (flags) {
3688 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3689 return "mixed";
3690 case BTRFS_BLOCK_GROUP_METADATA:
3691 return "metadata";
3692 case BTRFS_BLOCK_GROUP_DATA:
3693 return "data";
3694 case BTRFS_BLOCK_GROUP_SYSTEM:
3695 return "system";
3696 default:
3697 WARN_ON(1);
3698 return "invalid-combination";
3699 };
3700}
3701
593060d7
CM
3702static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3703 u64 total_bytes, u64 bytes_used,
3704 struct btrfs_space_info **space_info)
3705{
3706 struct btrfs_space_info *found;
b742bb82
YZ
3707 int i;
3708 int factor;
b150a4f1 3709 int ret;
b742bb82
YZ
3710
3711 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3712 BTRFS_BLOCK_GROUP_RAID10))
3713 factor = 2;
3714 else
3715 factor = 1;
593060d7
CM
3716
3717 found = __find_space_info(info, flags);
3718 if (found) {
25179201 3719 spin_lock(&found->lock);
593060d7 3720 found->total_bytes += total_bytes;
89a55897 3721 found->disk_total += total_bytes * factor;
593060d7 3722 found->bytes_used += bytes_used;
b742bb82 3723 found->disk_used += bytes_used * factor;
2e6e5183
FM
3724 if (total_bytes > 0)
3725 found->full = 0;
25179201 3726 spin_unlock(&found->lock);
593060d7
CM
3727 *space_info = found;
3728 return 0;
3729 }
c146afad 3730 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3731 if (!found)
3732 return -ENOMEM;
3733
908c7f19 3734 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3735 if (ret) {
3736 kfree(found);
3737 return ret;
3738 }
3739
c1895442 3740 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3741 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3742 init_rwsem(&found->groups_sem);
0f9dd46c 3743 spin_lock_init(&found->lock);
52ba6929 3744 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3745 found->total_bytes = total_bytes;
89a55897 3746 found->disk_total = total_bytes * factor;
593060d7 3747 found->bytes_used = bytes_used;
b742bb82 3748 found->disk_used = bytes_used * factor;
593060d7 3749 found->bytes_pinned = 0;
e8569813 3750 found->bytes_reserved = 0;
c146afad 3751 found->bytes_readonly = 0;
f0486c68 3752 found->bytes_may_use = 0;
6af3e3ad 3753 found->full = 0;
0e4f8f88 3754 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3755 found->chunk_alloc = 0;
fdb5effd
JB
3756 found->flush = 0;
3757 init_waitqueue_head(&found->wait);
633c0aad 3758 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3759
3760 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3761 info->space_info_kobj, "%s",
3762 alloc_name(found->flags));
3763 if (ret) {
3764 kfree(found);
3765 return ret;
3766 }
3767
593060d7 3768 *space_info = found;
4184ea7f 3769 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3770 if (flags & BTRFS_BLOCK_GROUP_DATA)
3771 info->data_sinfo = found;
6ab0a202
JM
3772
3773 return ret;
593060d7
CM
3774}
3775
8790d502
CM
3776static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3777{
899c81ea
ID
3778 u64 extra_flags = chunk_to_extended(flags) &
3779 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3780
de98ced9 3781 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3782 if (flags & BTRFS_BLOCK_GROUP_DATA)
3783 fs_info->avail_data_alloc_bits |= extra_flags;
3784 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3785 fs_info->avail_metadata_alloc_bits |= extra_flags;
3786 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3787 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3788 write_sequnlock(&fs_info->profiles_lock);
8790d502 3789}
593060d7 3790
fc67c450
ID
3791/*
3792 * returns target flags in extended format or 0 if restripe for this
3793 * chunk_type is not in progress
c6664b42
ID
3794 *
3795 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3796 */
3797static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3798{
3799 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3800 u64 target = 0;
3801
fc67c450
ID
3802 if (!bctl)
3803 return 0;
3804
3805 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3806 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3807 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3808 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3809 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3810 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3811 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3812 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3813 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3814 }
3815
3816 return target;
3817}
3818
a46d11a8
ID
3819/*
3820 * @flags: available profiles in extended format (see ctree.h)
3821 *
e4d8ec0f
ID
3822 * Returns reduced profile in chunk format. If profile changing is in
3823 * progress (either running or paused) picks the target profile (if it's
3824 * already available), otherwise falls back to plain reducing.
a46d11a8 3825 */
48a3b636 3826static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3827{
95669976 3828 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3829 u64 target;
9c170b26
ZL
3830 u64 raid_type;
3831 u64 allowed = 0;
a061fc8d 3832
fc67c450
ID
3833 /*
3834 * see if restripe for this chunk_type is in progress, if so
3835 * try to reduce to the target profile
3836 */
e4d8ec0f 3837 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3838 target = get_restripe_target(root->fs_info, flags);
3839 if (target) {
3840 /* pick target profile only if it's already available */
3841 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3842 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3843 return extended_to_chunk(target);
e4d8ec0f
ID
3844 }
3845 }
3846 spin_unlock(&root->fs_info->balance_lock);
3847
53b381b3 3848 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
3849 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3850 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3851 allowed |= btrfs_raid_group[raid_type];
3852 }
3853 allowed &= flags;
3854
3855 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3856 allowed = BTRFS_BLOCK_GROUP_RAID6;
3857 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3858 allowed = BTRFS_BLOCK_GROUP_RAID5;
3859 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3860 allowed = BTRFS_BLOCK_GROUP_RAID10;
3861 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3862 allowed = BTRFS_BLOCK_GROUP_RAID1;
3863 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3864 allowed = BTRFS_BLOCK_GROUP_RAID0;
3865
3866 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3867
3868 return extended_to_chunk(flags | allowed);
ec44a35c
CM
3869}
3870
f8213bdc 3871static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3872{
de98ced9 3873 unsigned seq;
f8213bdc 3874 u64 flags;
de98ced9
MX
3875
3876 do {
f8213bdc 3877 flags = orig_flags;
de98ced9
MX
3878 seq = read_seqbegin(&root->fs_info->profiles_lock);
3879
3880 if (flags & BTRFS_BLOCK_GROUP_DATA)
3881 flags |= root->fs_info->avail_data_alloc_bits;
3882 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3883 flags |= root->fs_info->avail_system_alloc_bits;
3884 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3885 flags |= root->fs_info->avail_metadata_alloc_bits;
3886 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3887
b742bb82 3888 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3889}
3890
6d07bcec 3891u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3892{
b742bb82 3893 u64 flags;
53b381b3 3894 u64 ret;
9ed74f2d 3895
b742bb82
YZ
3896 if (data)
3897 flags = BTRFS_BLOCK_GROUP_DATA;
3898 else if (root == root->fs_info->chunk_root)
3899 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3900 else
b742bb82 3901 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3902
53b381b3
DW
3903 ret = get_alloc_profile(root, flags);
3904 return ret;
6a63209f 3905}
9ed74f2d 3906
4ceff079 3907int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 3908{
6a63209f 3909 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3910 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3911 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3912 u64 used;
94b947b2 3913 int ret = 0;
c99f1b0c
ZL
3914 int need_commit = 2;
3915 int have_pinned_space;
6a63209f 3916
6a63209f 3917 /* make sure bytes are sectorsize aligned */
fda2832f 3918 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3919
9dced186 3920 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 3921 need_commit = 0;
9dced186 3922 ASSERT(current->journal_info);
0af3d00b
JB
3923 }
3924
b4d7c3c9 3925 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3926 if (!data_sinfo)
3927 goto alloc;
9ed74f2d 3928
6a63209f
JB
3929again:
3930 /* make sure we have enough space to handle the data first */
3931 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3932 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3933 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3934 data_sinfo->bytes_may_use;
ab6e2410
JB
3935
3936 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 3937 struct btrfs_trans_handle *trans;
9ed74f2d 3938
6a63209f
JB
3939 /*
3940 * if we don't have enough free bytes in this space then we need
3941 * to alloc a new chunk.
3942 */
b9fd47cd 3943 if (!data_sinfo->full) {
6a63209f 3944 u64 alloc_target;
9ed74f2d 3945
0e4f8f88 3946 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 3947 spin_unlock(&data_sinfo->lock);
33b4d47f 3948alloc:
6a63209f 3949 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
3950 /*
3951 * It is ugly that we don't call nolock join
3952 * transaction for the free space inode case here.
3953 * But it is safe because we only do the data space
3954 * reservation for the free space cache in the
3955 * transaction context, the common join transaction
3956 * just increase the counter of the current transaction
3957 * handler, doesn't try to acquire the trans_lock of
3958 * the fs.
3959 */
7a7eaa40 3960 trans = btrfs_join_transaction(root);
a22285a6
YZ
3961 if (IS_ERR(trans))
3962 return PTR_ERR(trans);
9ed74f2d 3963
6a63209f 3964 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
3965 alloc_target,
3966 CHUNK_ALLOC_NO_FORCE);
6a63209f 3967 btrfs_end_transaction(trans, root);
d52a5b5f
MX
3968 if (ret < 0) {
3969 if (ret != -ENOSPC)
3970 return ret;
c99f1b0c
ZL
3971 else {
3972 have_pinned_space = 1;
d52a5b5f 3973 goto commit_trans;
c99f1b0c 3974 }
d52a5b5f 3975 }
9ed74f2d 3976
b4d7c3c9
LZ
3977 if (!data_sinfo)
3978 data_sinfo = fs_info->data_sinfo;
3979
6a63209f
JB
3980 goto again;
3981 }
f2bb8f5c
JB
3982
3983 /*
b150a4f1 3984 * If we don't have enough pinned space to deal with this
94b947b2
ZL
3985 * allocation, and no removed chunk in current transaction,
3986 * don't bother committing the transaction.
f2bb8f5c 3987 */
c99f1b0c
ZL
3988 have_pinned_space = percpu_counter_compare(
3989 &data_sinfo->total_bytes_pinned,
3990 used + bytes - data_sinfo->total_bytes);
6a63209f 3991 spin_unlock(&data_sinfo->lock);
6a63209f 3992
4e06bdd6 3993 /* commit the current transaction and try again */
d52a5b5f 3994commit_trans:
c99f1b0c 3995 if (need_commit &&
a4abeea4 3996 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 3997 need_commit--;
b150a4f1 3998
9a4e7276
ZL
3999 if (need_commit > 0)
4000 btrfs_wait_ordered_roots(fs_info, -1);
4001
7a7eaa40 4002 trans = btrfs_join_transaction(root);
a22285a6
YZ
4003 if (IS_ERR(trans))
4004 return PTR_ERR(trans);
c99f1b0c
ZL
4005 if (have_pinned_space >= 0 ||
4006 trans->transaction->have_free_bgs ||
4007 need_commit > 0) {
94b947b2
ZL
4008 ret = btrfs_commit_transaction(trans, root);
4009 if (ret)
4010 return ret;
d7c15171
ZL
4011 /*
4012 * make sure that all running delayed iput are
4013 * done
4014 */
4015 down_write(&root->fs_info->delayed_iput_sem);
4016 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
4017 goto again;
4018 } else {
4019 btrfs_end_transaction(trans, root);
4020 }
4e06bdd6 4021 }
9ed74f2d 4022
cab45e22
JM
4023 trace_btrfs_space_reservation(root->fs_info,
4024 "space_info:enospc",
4025 data_sinfo->flags, bytes, 1);
6a63209f
JB
4026 return -ENOSPC;
4027 }
4028 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4029 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4030 data_sinfo->flags, bytes, 1);
6a63209f 4031 spin_unlock(&data_sinfo->lock);
6a63209f 4032
237c0e9f 4033 return ret;
9ed74f2d 4034}
6a63209f 4035
4ceff079
QW
4036/*
4037 * New check_data_free_space() with ability for precious data reservation
4038 * Will replace old btrfs_check_data_free_space(), but for patch split,
4039 * add a new function first and then replace it.
4040 */
7cf5b976 4041int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079
QW
4042{
4043 struct btrfs_root *root = BTRFS_I(inode)->root;
4044 int ret;
4045
4046 /* align the range */
4047 len = round_up(start + len, root->sectorsize) -
4048 round_down(start, root->sectorsize);
4049 start = round_down(start, root->sectorsize);
4050
4051 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4052 if (ret < 0)
4053 return ret;
4054
94ed938a
QW
4055 /*
4056 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4057 *
4058 * TODO: Find a good method to avoid reserve data space for NOCOW
4059 * range, but don't impact performance on quota disable case.
4060 */
4ceff079
QW
4061 ret = btrfs_qgroup_reserve_data(inode, start, len);
4062 return ret;
4063}
4064
4ceff079
QW
4065/*
4066 * Called if we need to clear a data reservation for this inode
4067 * Normally in a error case.
4068 *
4069 * This one will handle the per-indoe data rsv map for accurate reserved
4070 * space framework.
4071 */
7cf5b976 4072void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4ceff079
QW
4073{
4074 struct btrfs_root *root = BTRFS_I(inode)->root;
4075 struct btrfs_space_info *data_sinfo;
4076
4077 /* Make sure the range is aligned to sectorsize */
4078 len = round_up(start + len, root->sectorsize) -
4079 round_down(start, root->sectorsize);
4080 start = round_down(start, root->sectorsize);
4081
4082 /*
4083 * Free any reserved qgroup data space first
4084 * As it will alloc memory, we can't do it with data sinfo
4085 * spinlock hold.
4086 */
4087 btrfs_qgroup_free_data(inode, start, len);
4088
4089 data_sinfo = root->fs_info->data_sinfo;
4090 spin_lock(&data_sinfo->lock);
4091 if (WARN_ON(data_sinfo->bytes_may_use < len))
4092 data_sinfo->bytes_may_use = 0;
4093 else
4094 data_sinfo->bytes_may_use -= len;
4095 trace_btrfs_space_reservation(root->fs_info, "space_info",
4096 data_sinfo->flags, len, 0);
4097 spin_unlock(&data_sinfo->lock);
4098}
4099
97e728d4 4100static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4101{
97e728d4
JB
4102 struct list_head *head = &info->space_info;
4103 struct btrfs_space_info *found;
e3ccfa98 4104
97e728d4
JB
4105 rcu_read_lock();
4106 list_for_each_entry_rcu(found, head, list) {
4107 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4108 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4109 }
97e728d4 4110 rcu_read_unlock();
e3ccfa98
JB
4111}
4112
3c76cd84
MX
4113static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4114{
4115 return (global->size << 1);
4116}
4117
e5bc2458 4118static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4119 struct btrfs_space_info *sinfo, int force)
32c00aff 4120{
fb25e914 4121 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4122 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4123 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4124 u64 thresh;
e3ccfa98 4125
0e4f8f88
CM
4126 if (force == CHUNK_ALLOC_FORCE)
4127 return 1;
4128
fb25e914
JB
4129 /*
4130 * We need to take into account the global rsv because for all intents
4131 * and purposes it's used space. Don't worry about locking the
4132 * global_rsv, it doesn't change except when the transaction commits.
4133 */
54338b5c 4134 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4135 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4136
0e4f8f88
CM
4137 /*
4138 * in limited mode, we want to have some free space up to
4139 * about 1% of the FS size.
4140 */
4141 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4142 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4143 thresh = max_t(u64, 64 * 1024 * 1024,
4144 div_factor_fine(thresh, 1));
4145
4146 if (num_bytes - num_allocated < thresh)
4147 return 1;
4148 }
0e4f8f88 4149
698d0082 4150 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4151 return 0;
424499db 4152 return 1;
32c00aff
JB
4153}
4154
39c2d7fa 4155static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4156{
4157 u64 num_dev;
4158
53b381b3
DW
4159 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4160 BTRFS_BLOCK_GROUP_RAID0 |
4161 BTRFS_BLOCK_GROUP_RAID5 |
4162 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4163 num_dev = root->fs_info->fs_devices->rw_devices;
4164 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4165 num_dev = 2;
4166 else
4167 num_dev = 1; /* DUP or single */
4168
39c2d7fa 4169 return num_dev;
15d1ff81
LB
4170}
4171
39c2d7fa
FM
4172/*
4173 * If @is_allocation is true, reserve space in the system space info necessary
4174 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4175 * removing a chunk.
4176 */
4177void check_system_chunk(struct btrfs_trans_handle *trans,
4178 struct btrfs_root *root,
4617ea3a 4179 u64 type)
15d1ff81
LB
4180{
4181 struct btrfs_space_info *info;
4182 u64 left;
4183 u64 thresh;
4fbcdf66 4184 int ret = 0;
39c2d7fa 4185 u64 num_devs;
4fbcdf66
FM
4186
4187 /*
4188 * Needed because we can end up allocating a system chunk and for an
4189 * atomic and race free space reservation in the chunk block reserve.
4190 */
4191 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4192
4193 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4194 spin_lock(&info->lock);
4195 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4196 info->bytes_reserved - info->bytes_readonly -
4197 info->bytes_may_use;
15d1ff81
LB
4198 spin_unlock(&info->lock);
4199
39c2d7fa
FM
4200 num_devs = get_profile_num_devs(root, type);
4201
4202 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4203 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4204 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4205
15d1ff81 4206 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4207 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4208 left, thresh, type);
15d1ff81
LB
4209 dump_space_info(info, 0, 0);
4210 }
4211
4212 if (left < thresh) {
4213 u64 flags;
4214
4215 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4216 /*
4217 * Ignore failure to create system chunk. We might end up not
4218 * needing it, as we might not need to COW all nodes/leafs from
4219 * the paths we visit in the chunk tree (they were already COWed
4220 * or created in the current transaction for example).
4221 */
4222 ret = btrfs_alloc_chunk(trans, root, flags);
4223 }
4224
4225 if (!ret) {
4226 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4227 &root->fs_info->chunk_block_rsv,
4228 thresh, BTRFS_RESERVE_NO_FLUSH);
4229 if (!ret)
4230 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4231 }
4232}
4233
6324fbf3 4234static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4235 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4236{
6324fbf3 4237 struct btrfs_space_info *space_info;
97e728d4 4238 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4239 int wait_for_alloc = 0;
9ed74f2d 4240 int ret = 0;
9ed74f2d 4241
c6b305a8
JB
4242 /* Don't re-enter if we're already allocating a chunk */
4243 if (trans->allocating_chunk)
4244 return -ENOSPC;
4245
6324fbf3 4246 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4247 if (!space_info) {
4248 ret = update_space_info(extent_root->fs_info, flags,
4249 0, 0, &space_info);
79787eaa 4250 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4251 }
79787eaa 4252 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4253
6d74119f 4254again:
25179201 4255 spin_lock(&space_info->lock);
9e622d6b 4256 if (force < space_info->force_alloc)
0e4f8f88 4257 force = space_info->force_alloc;
25179201 4258 if (space_info->full) {
09fb99a6
FDBM
4259 if (should_alloc_chunk(extent_root, space_info, force))
4260 ret = -ENOSPC;
4261 else
4262 ret = 0;
25179201 4263 spin_unlock(&space_info->lock);
09fb99a6 4264 return ret;
9ed74f2d
JB
4265 }
4266
698d0082 4267 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4268 spin_unlock(&space_info->lock);
6d74119f
JB
4269 return 0;
4270 } else if (space_info->chunk_alloc) {
4271 wait_for_alloc = 1;
4272 } else {
4273 space_info->chunk_alloc = 1;
9ed74f2d 4274 }
0e4f8f88 4275
25179201 4276 spin_unlock(&space_info->lock);
9ed74f2d 4277
6d74119f
JB
4278 mutex_lock(&fs_info->chunk_mutex);
4279
4280 /*
4281 * The chunk_mutex is held throughout the entirety of a chunk
4282 * allocation, so once we've acquired the chunk_mutex we know that the
4283 * other guy is done and we need to recheck and see if we should
4284 * allocate.
4285 */
4286 if (wait_for_alloc) {
4287 mutex_unlock(&fs_info->chunk_mutex);
4288 wait_for_alloc = 0;
4289 goto again;
4290 }
4291
c6b305a8
JB
4292 trans->allocating_chunk = true;
4293
67377734
JB
4294 /*
4295 * If we have mixed data/metadata chunks we want to make sure we keep
4296 * allocating mixed chunks instead of individual chunks.
4297 */
4298 if (btrfs_mixed_space_info(space_info))
4299 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4300
97e728d4
JB
4301 /*
4302 * if we're doing a data chunk, go ahead and make sure that
4303 * we keep a reasonable number of metadata chunks allocated in the
4304 * FS as well.
4305 */
9ed74f2d 4306 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4307 fs_info->data_chunk_allocations++;
4308 if (!(fs_info->data_chunk_allocations %
4309 fs_info->metadata_ratio))
4310 force_metadata_allocation(fs_info);
9ed74f2d
JB
4311 }
4312
15d1ff81
LB
4313 /*
4314 * Check if we have enough space in SYSTEM chunk because we may need
4315 * to update devices.
4316 */
4617ea3a 4317 check_system_chunk(trans, extent_root, flags);
15d1ff81 4318
2b82032c 4319 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4320 trans->allocating_chunk = false;
92b8e897 4321
9ed74f2d 4322 spin_lock(&space_info->lock);
a81cb9a2
AO
4323 if (ret < 0 && ret != -ENOSPC)
4324 goto out;
9ed74f2d 4325 if (ret)
6324fbf3 4326 space_info->full = 1;
424499db
YZ
4327 else
4328 ret = 1;
6d74119f 4329
0e4f8f88 4330 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4331out:
6d74119f 4332 space_info->chunk_alloc = 0;
9ed74f2d 4333 spin_unlock(&space_info->lock);
a25c75d5 4334 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4335 /*
4336 * When we allocate a new chunk we reserve space in the chunk block
4337 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4338 * add new nodes/leafs to it if we end up needing to do it when
4339 * inserting the chunk item and updating device items as part of the
4340 * second phase of chunk allocation, performed by
4341 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4342 * large number of new block groups to create in our transaction
4343 * handle's new_bgs list to avoid exhausting the chunk block reserve
4344 * in extreme cases - like having a single transaction create many new
4345 * block groups when starting to write out the free space caches of all
4346 * the block groups that were made dirty during the lifetime of the
4347 * transaction.
4348 */
d9a0540a
FM
4349 if (trans->can_flush_pending_bgs &&
4350 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
00d80e34
FM
4351 btrfs_create_pending_block_groups(trans, trans->root);
4352 btrfs_trans_release_chunk_metadata(trans);
4353 }
0f9dd46c 4354 return ret;
6324fbf3 4355}
9ed74f2d 4356
a80c8dcf
JB
4357static int can_overcommit(struct btrfs_root *root,
4358 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4359 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4360{
96f1bb57 4361 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4362 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4363 u64 space_size;
a80c8dcf
JB
4364 u64 avail;
4365 u64 used;
4366
4367 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4368 space_info->bytes_pinned + space_info->bytes_readonly;
4369
96f1bb57
JB
4370 /*
4371 * We only want to allow over committing if we have lots of actual space
4372 * free, but if we don't have enough space to handle the global reserve
4373 * space then we could end up having a real enospc problem when trying
4374 * to allocate a chunk or some other such important allocation.
4375 */
3c76cd84
MX
4376 spin_lock(&global_rsv->lock);
4377 space_size = calc_global_rsv_need_space(global_rsv);
4378 spin_unlock(&global_rsv->lock);
4379 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4380 return 0;
4381
4382 used += space_info->bytes_may_use;
a80c8dcf
JB
4383
4384 spin_lock(&root->fs_info->free_chunk_lock);
4385 avail = root->fs_info->free_chunk_space;
4386 spin_unlock(&root->fs_info->free_chunk_lock);
4387
4388 /*
4389 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4390 * space is actually useable. For raid56, the space info used
4391 * doesn't include the parity drive, so we don't have to
4392 * change the math
a80c8dcf
JB
4393 */
4394 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4395 BTRFS_BLOCK_GROUP_RAID1 |
4396 BTRFS_BLOCK_GROUP_RAID10))
4397 avail >>= 1;
4398
4399 /*
561c294d
MX
4400 * If we aren't flushing all things, let us overcommit up to
4401 * 1/2th of the space. If we can flush, don't let us overcommit
4402 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4403 */
08e007d2 4404 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4405 avail >>= 3;
a80c8dcf 4406 else
14575aef 4407 avail >>= 1;
a80c8dcf 4408
14575aef 4409 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4410 return 1;
4411 return 0;
4412}
4413
48a3b636 4414static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4415 unsigned long nr_pages, int nr_items)
da633a42
MX
4416{
4417 struct super_block *sb = root->fs_info->sb;
da633a42 4418
925a6efb
JB
4419 if (down_read_trylock(&sb->s_umount)) {
4420 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4421 up_read(&sb->s_umount);
4422 } else {
da633a42
MX
4423 /*
4424 * We needn't worry the filesystem going from r/w to r/o though
4425 * we don't acquire ->s_umount mutex, because the filesystem
4426 * should guarantee the delalloc inodes list be empty after
4427 * the filesystem is readonly(all dirty pages are written to
4428 * the disk).
4429 */
6c255e67 4430 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4431 if (!current->journal_info)
6c255e67 4432 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4433 }
4434}
4435
18cd8ea6
MX
4436static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4437{
4438 u64 bytes;
4439 int nr;
4440
4441 bytes = btrfs_calc_trans_metadata_size(root, 1);
4442 nr = (int)div64_u64(to_reclaim, bytes);
4443 if (!nr)
4444 nr = 1;
4445 return nr;
4446}
4447
c61a16a7
MX
4448#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4449
9ed74f2d 4450/*
5da9d01b 4451 * shrink metadata reservation for delalloc
9ed74f2d 4452 */
f4c738c2
JB
4453static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4454 bool wait_ordered)
5da9d01b 4455{
0ca1f7ce 4456 struct btrfs_block_rsv *block_rsv;
0019f10d 4457 struct btrfs_space_info *space_info;
663350ac 4458 struct btrfs_trans_handle *trans;
f4c738c2 4459 u64 delalloc_bytes;
5da9d01b 4460 u64 max_reclaim;
b1953bce 4461 long time_left;
d3ee29e3
MX
4462 unsigned long nr_pages;
4463 int loops;
b0244199 4464 int items;
08e007d2 4465 enum btrfs_reserve_flush_enum flush;
5da9d01b 4466
c61a16a7 4467 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4468 items = calc_reclaim_items_nr(root, to_reclaim);
4469 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4470
663350ac 4471 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4472 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4473 space_info = block_rsv->space_info;
bf9022e0 4474
963d678b
MX
4475 delalloc_bytes = percpu_counter_sum_positive(
4476 &root->fs_info->delalloc_bytes);
f4c738c2 4477 if (delalloc_bytes == 0) {
fdb5effd 4478 if (trans)
f4c738c2 4479 return;
38c135af 4480 if (wait_ordered)
b0244199 4481 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4482 return;
fdb5effd
JB
4483 }
4484
d3ee29e3 4485 loops = 0;
f4c738c2
JB
4486 while (delalloc_bytes && loops < 3) {
4487 max_reclaim = min(delalloc_bytes, to_reclaim);
4488 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4489 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4490 /*
4491 * We need to wait for the async pages to actually start before
4492 * we do anything.
4493 */
9f3a074d
MX
4494 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4495 if (!max_reclaim)
4496 goto skip_async;
4497
4498 if (max_reclaim <= nr_pages)
4499 max_reclaim = 0;
4500 else
4501 max_reclaim -= nr_pages;
dea31f52 4502
9f3a074d
MX
4503 wait_event(root->fs_info->async_submit_wait,
4504 atomic_read(&root->fs_info->async_delalloc_pages) <=
4505 (int)max_reclaim);
4506skip_async:
08e007d2
MX
4507 if (!trans)
4508 flush = BTRFS_RESERVE_FLUSH_ALL;
4509 else
4510 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4511 spin_lock(&space_info->lock);
08e007d2 4512 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4513 spin_unlock(&space_info->lock);
4514 break;
4515 }
0019f10d 4516 spin_unlock(&space_info->lock);
5da9d01b 4517
36e39c40 4518 loops++;
f104d044 4519 if (wait_ordered && !trans) {
b0244199 4520 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4521 } else {
f4c738c2 4522 time_left = schedule_timeout_killable(1);
f104d044
JB
4523 if (time_left)
4524 break;
4525 }
963d678b
MX
4526 delalloc_bytes = percpu_counter_sum_positive(
4527 &root->fs_info->delalloc_bytes);
5da9d01b 4528 }
5da9d01b
YZ
4529}
4530
663350ac
JB
4531/**
4532 * maybe_commit_transaction - possibly commit the transaction if its ok to
4533 * @root - the root we're allocating for
4534 * @bytes - the number of bytes we want to reserve
4535 * @force - force the commit
8bb8ab2e 4536 *
663350ac
JB
4537 * This will check to make sure that committing the transaction will actually
4538 * get us somewhere and then commit the transaction if it does. Otherwise it
4539 * will return -ENOSPC.
8bb8ab2e 4540 */
663350ac
JB
4541static int may_commit_transaction(struct btrfs_root *root,
4542 struct btrfs_space_info *space_info,
4543 u64 bytes, int force)
4544{
4545 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4546 struct btrfs_trans_handle *trans;
4547
4548 trans = (struct btrfs_trans_handle *)current->journal_info;
4549 if (trans)
4550 return -EAGAIN;
4551
4552 if (force)
4553 goto commit;
4554
4555 /* See if there is enough pinned space to make this reservation */
b150a4f1 4556 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4557 bytes) >= 0)
663350ac 4558 goto commit;
663350ac
JB
4559
4560 /*
4561 * See if there is some space in the delayed insertion reservation for
4562 * this reservation.
4563 */
4564 if (space_info != delayed_rsv->space_info)
4565 return -ENOSPC;
4566
4567 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4568 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4569 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4570 spin_unlock(&delayed_rsv->lock);
4571 return -ENOSPC;
4572 }
4573 spin_unlock(&delayed_rsv->lock);
4574
4575commit:
4576 trans = btrfs_join_transaction(root);
4577 if (IS_ERR(trans))
4578 return -ENOSPC;
4579
4580 return btrfs_commit_transaction(trans, root);
4581}
4582
96c3f433 4583enum flush_state {
67b0fd63
JB
4584 FLUSH_DELAYED_ITEMS_NR = 1,
4585 FLUSH_DELAYED_ITEMS = 2,
4586 FLUSH_DELALLOC = 3,
4587 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4588 ALLOC_CHUNK = 5,
4589 COMMIT_TRANS = 6,
96c3f433
JB
4590};
4591
4592static int flush_space(struct btrfs_root *root,
4593 struct btrfs_space_info *space_info, u64 num_bytes,
4594 u64 orig_bytes, int state)
4595{
4596 struct btrfs_trans_handle *trans;
4597 int nr;
f4c738c2 4598 int ret = 0;
96c3f433
JB
4599
4600 switch (state) {
96c3f433
JB
4601 case FLUSH_DELAYED_ITEMS_NR:
4602 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4603 if (state == FLUSH_DELAYED_ITEMS_NR)
4604 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4605 else
96c3f433 4606 nr = -1;
18cd8ea6 4607
96c3f433
JB
4608 trans = btrfs_join_transaction(root);
4609 if (IS_ERR(trans)) {
4610 ret = PTR_ERR(trans);
4611 break;
4612 }
4613 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4614 btrfs_end_transaction(trans, root);
4615 break;
67b0fd63
JB
4616 case FLUSH_DELALLOC:
4617 case FLUSH_DELALLOC_WAIT:
24af7dd1 4618 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4619 state == FLUSH_DELALLOC_WAIT);
4620 break;
ea658bad
JB
4621 case ALLOC_CHUNK:
4622 trans = btrfs_join_transaction(root);
4623 if (IS_ERR(trans)) {
4624 ret = PTR_ERR(trans);
4625 break;
4626 }
4627 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4628 btrfs_get_alloc_profile(root, 0),
4629 CHUNK_ALLOC_NO_FORCE);
4630 btrfs_end_transaction(trans, root);
4631 if (ret == -ENOSPC)
4632 ret = 0;
4633 break;
96c3f433
JB
4634 case COMMIT_TRANS:
4635 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4636 break;
4637 default:
4638 ret = -ENOSPC;
4639 break;
4640 }
4641
4642 return ret;
4643}
21c7e756
MX
4644
4645static inline u64
4646btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4647 struct btrfs_space_info *space_info)
4648{
4649 u64 used;
4650 u64 expected;
4651 u64 to_reclaim;
4652
4653 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4654 16 * 1024 * 1024);
4655 spin_lock(&space_info->lock);
4656 if (can_overcommit(root, space_info, to_reclaim,
4657 BTRFS_RESERVE_FLUSH_ALL)) {
4658 to_reclaim = 0;
4659 goto out;
4660 }
4661
4662 used = space_info->bytes_used + space_info->bytes_reserved +
4663 space_info->bytes_pinned + space_info->bytes_readonly +
4664 space_info->bytes_may_use;
4665 if (can_overcommit(root, space_info, 1024 * 1024,
4666 BTRFS_RESERVE_FLUSH_ALL))
4667 expected = div_factor_fine(space_info->total_bytes, 95);
4668 else
4669 expected = div_factor_fine(space_info->total_bytes, 90);
4670
4671 if (used > expected)
4672 to_reclaim = used - expected;
4673 else
4674 to_reclaim = 0;
4675 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4676 space_info->bytes_reserved);
4677out:
4678 spin_unlock(&space_info->lock);
4679
4680 return to_reclaim;
4681}
4682
4683static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4684 struct btrfs_fs_info *fs_info, u64 used)
4685{
365c5313
JB
4686 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4687
4688 /* If we're just plain full then async reclaim just slows us down. */
4689 if (space_info->bytes_used >= thresh)
4690 return 0;
4691
4692 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4693 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4694}
4695
4696static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4697 struct btrfs_fs_info *fs_info,
4698 int flush_state)
21c7e756
MX
4699{
4700 u64 used;
4701
4702 spin_lock(&space_info->lock);
25ce459c
LB
4703 /*
4704 * We run out of space and have not got any free space via flush_space,
4705 * so don't bother doing async reclaim.
4706 */
4707 if (flush_state > COMMIT_TRANS && space_info->full) {
4708 spin_unlock(&space_info->lock);
4709 return 0;
4710 }
4711
21c7e756
MX
4712 used = space_info->bytes_used + space_info->bytes_reserved +
4713 space_info->bytes_pinned + space_info->bytes_readonly +
4714 space_info->bytes_may_use;
4715 if (need_do_async_reclaim(space_info, fs_info, used)) {
4716 spin_unlock(&space_info->lock);
4717 return 1;
4718 }
4719 spin_unlock(&space_info->lock);
4720
4721 return 0;
4722}
4723
4724static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4725{
4726 struct btrfs_fs_info *fs_info;
4727 struct btrfs_space_info *space_info;
4728 u64 to_reclaim;
4729 int flush_state;
4730
4731 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4732 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4733
4734 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4735 space_info);
4736 if (!to_reclaim)
4737 return;
4738
4739 flush_state = FLUSH_DELAYED_ITEMS_NR;
4740 do {
4741 flush_space(fs_info->fs_root, space_info, to_reclaim,
4742 to_reclaim, flush_state);
4743 flush_state++;
25ce459c
LB
4744 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4745 flush_state))
21c7e756 4746 return;
365c5313 4747 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4748}
4749
4750void btrfs_init_async_reclaim_work(struct work_struct *work)
4751{
4752 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4753}
4754
4a92b1b8
JB
4755/**
4756 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4757 * @root - the root we're allocating for
4758 * @block_rsv - the block_rsv we're allocating for
4759 * @orig_bytes - the number of bytes we want
48fc7f7e 4760 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4761 *
4a92b1b8
JB
4762 * This will reserve orgi_bytes number of bytes from the space info associated
4763 * with the block_rsv. If there is not enough space it will make an attempt to
4764 * flush out space to make room. It will do this by flushing delalloc if
4765 * possible or committing the transaction. If flush is 0 then no attempts to
4766 * regain reservations will be made and this will fail if there is not enough
4767 * space already.
8bb8ab2e 4768 */
4a92b1b8 4769static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4770 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4771 u64 orig_bytes,
4772 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4773{
f0486c68 4774 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4775 u64 used;
8bb8ab2e 4776 u64 num_bytes = orig_bytes;
67b0fd63 4777 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4778 int ret = 0;
fdb5effd 4779 bool flushing = false;
9ed74f2d 4780
8bb8ab2e 4781again:
fdb5effd 4782 ret = 0;
8bb8ab2e 4783 spin_lock(&space_info->lock);
fdb5effd 4784 /*
08e007d2
MX
4785 * We only want to wait if somebody other than us is flushing and we
4786 * are actually allowed to flush all things.
fdb5effd 4787 */
08e007d2
MX
4788 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4789 space_info->flush) {
fdb5effd
JB
4790 spin_unlock(&space_info->lock);
4791 /*
4792 * If we have a trans handle we can't wait because the flusher
4793 * may have to commit the transaction, which would mean we would
4794 * deadlock since we are waiting for the flusher to finish, but
4795 * hold the current transaction open.
4796 */
663350ac 4797 if (current->journal_info)
fdb5effd 4798 return -EAGAIN;
b9688bb8
AJ
4799 ret = wait_event_killable(space_info->wait, !space_info->flush);
4800 /* Must have been killed, return */
4801 if (ret)
fdb5effd
JB
4802 return -EINTR;
4803
4804 spin_lock(&space_info->lock);
4805 }
4806
4807 ret = -ENOSPC;
2bf64758
JB
4808 used = space_info->bytes_used + space_info->bytes_reserved +
4809 space_info->bytes_pinned + space_info->bytes_readonly +
4810 space_info->bytes_may_use;
9ed74f2d 4811
8bb8ab2e
JB
4812 /*
4813 * The idea here is that we've not already over-reserved the block group
4814 * then we can go ahead and save our reservation first and then start
4815 * flushing if we need to. Otherwise if we've already overcommitted
4816 * lets start flushing stuff first and then come back and try to make
4817 * our reservation.
4818 */
2bf64758
JB
4819 if (used <= space_info->total_bytes) {
4820 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4821 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4822 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4823 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4824 ret = 0;
4825 } else {
4826 /*
4827 * Ok set num_bytes to orig_bytes since we aren't
4828 * overocmmitted, this way we only try and reclaim what
4829 * we need.
4830 */
4831 num_bytes = orig_bytes;
4832 }
4833 } else {
4834 /*
4835 * Ok we're over committed, set num_bytes to the overcommitted
4836 * amount plus the amount of bytes that we need for this
4837 * reservation.
4838 */
2bf64758 4839 num_bytes = used - space_info->total_bytes +
96c3f433 4840 (orig_bytes * 2);
8bb8ab2e 4841 }
9ed74f2d 4842
44734ed1
JB
4843 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4844 space_info->bytes_may_use += orig_bytes;
4845 trace_btrfs_space_reservation(root->fs_info, "space_info",
4846 space_info->flags, orig_bytes,
4847 1);
4848 ret = 0;
2bf64758
JB
4849 }
4850
8bb8ab2e
JB
4851 /*
4852 * Couldn't make our reservation, save our place so while we're trying
4853 * to reclaim space we can actually use it instead of somebody else
4854 * stealing it from us.
08e007d2
MX
4855 *
4856 * We make the other tasks wait for the flush only when we can flush
4857 * all things.
8bb8ab2e 4858 */
72bcd99d 4859 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4860 flushing = true;
4861 space_info->flush = 1;
21c7e756
MX
4862 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4863 used += orig_bytes;
f6acfd50
JB
4864 /*
4865 * We will do the space reservation dance during log replay,
4866 * which means we won't have fs_info->fs_root set, so don't do
4867 * the async reclaim as we will panic.
4868 */
4869 if (!root->fs_info->log_root_recovering &&
4870 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4871 !work_busy(&root->fs_info->async_reclaim_work))
4872 queue_work(system_unbound_wq,
4873 &root->fs_info->async_reclaim_work);
8bb8ab2e 4874 }
f0486c68 4875 spin_unlock(&space_info->lock);
9ed74f2d 4876
08e007d2 4877 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4878 goto out;
f0486c68 4879
96c3f433
JB
4880 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4881 flush_state);
4882 flush_state++;
08e007d2
MX
4883
4884 /*
4885 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4886 * would happen. So skip delalloc flush.
4887 */
4888 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4889 (flush_state == FLUSH_DELALLOC ||
4890 flush_state == FLUSH_DELALLOC_WAIT))
4891 flush_state = ALLOC_CHUNK;
4892
96c3f433 4893 if (!ret)
8bb8ab2e 4894 goto again;
08e007d2
MX
4895 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4896 flush_state < COMMIT_TRANS)
4897 goto again;
4898 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4899 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4900 goto again;
4901
4902out:
5d80366e
JB
4903 if (ret == -ENOSPC &&
4904 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4905 struct btrfs_block_rsv *global_rsv =
4906 &root->fs_info->global_block_rsv;
4907
4908 if (block_rsv != global_rsv &&
4909 !block_rsv_use_bytes(global_rsv, orig_bytes))
4910 ret = 0;
4911 }
cab45e22
JM
4912 if (ret == -ENOSPC)
4913 trace_btrfs_space_reservation(root->fs_info,
4914 "space_info:enospc",
4915 space_info->flags, orig_bytes, 1);
fdb5effd 4916 if (flushing) {
8bb8ab2e 4917 spin_lock(&space_info->lock);
fdb5effd
JB
4918 space_info->flush = 0;
4919 wake_up_all(&space_info->wait);
8bb8ab2e 4920 spin_unlock(&space_info->lock);
f0486c68 4921 }
f0486c68
YZ
4922 return ret;
4923}
4924
79787eaa
JM
4925static struct btrfs_block_rsv *get_block_rsv(
4926 const struct btrfs_trans_handle *trans,
4927 const struct btrfs_root *root)
f0486c68 4928{
4c13d758
JB
4929 struct btrfs_block_rsv *block_rsv = NULL;
4930
e9cf439f
AM
4931 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4932 (root == root->fs_info->csum_root && trans->adding_csums) ||
4933 (root == root->fs_info->uuid_root))
f7a81ea4
SB
4934 block_rsv = trans->block_rsv;
4935
4c13d758 4936 if (!block_rsv)
f0486c68
YZ
4937 block_rsv = root->block_rsv;
4938
4939 if (!block_rsv)
4940 block_rsv = &root->fs_info->empty_block_rsv;
4941
4942 return block_rsv;
4943}
4944
4945static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4946 u64 num_bytes)
4947{
4948 int ret = -ENOSPC;
4949 spin_lock(&block_rsv->lock);
4950 if (block_rsv->reserved >= num_bytes) {
4951 block_rsv->reserved -= num_bytes;
4952 if (block_rsv->reserved < block_rsv->size)
4953 block_rsv->full = 0;
4954 ret = 0;
4955 }
4956 spin_unlock(&block_rsv->lock);
4957 return ret;
4958}
4959
4960static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4961 u64 num_bytes, int update_size)
4962{
4963 spin_lock(&block_rsv->lock);
4964 block_rsv->reserved += num_bytes;
4965 if (update_size)
4966 block_rsv->size += num_bytes;
4967 else if (block_rsv->reserved >= block_rsv->size)
4968 block_rsv->full = 1;
4969 spin_unlock(&block_rsv->lock);
4970}
4971
d52be818
JB
4972int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4973 struct btrfs_block_rsv *dest, u64 num_bytes,
4974 int min_factor)
4975{
4976 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4977 u64 min_bytes;
4978
4979 if (global_rsv->space_info != dest->space_info)
4980 return -ENOSPC;
4981
4982 spin_lock(&global_rsv->lock);
4983 min_bytes = div_factor(global_rsv->size, min_factor);
4984 if (global_rsv->reserved < min_bytes + num_bytes) {
4985 spin_unlock(&global_rsv->lock);
4986 return -ENOSPC;
4987 }
4988 global_rsv->reserved -= num_bytes;
4989 if (global_rsv->reserved < global_rsv->size)
4990 global_rsv->full = 0;
4991 spin_unlock(&global_rsv->lock);
4992
4993 block_rsv_add_bytes(dest, num_bytes, 1);
4994 return 0;
4995}
4996
8c2a3ca2
JB
4997static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4998 struct btrfs_block_rsv *block_rsv,
62a45b60 4999 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5000{
5001 struct btrfs_space_info *space_info = block_rsv->space_info;
5002
5003 spin_lock(&block_rsv->lock);
5004 if (num_bytes == (u64)-1)
5005 num_bytes = block_rsv->size;
5006 block_rsv->size -= num_bytes;
5007 if (block_rsv->reserved >= block_rsv->size) {
5008 num_bytes = block_rsv->reserved - block_rsv->size;
5009 block_rsv->reserved = block_rsv->size;
5010 block_rsv->full = 1;
5011 } else {
5012 num_bytes = 0;
5013 }
5014 spin_unlock(&block_rsv->lock);
5015
5016 if (num_bytes > 0) {
5017 if (dest) {
e9e22899
JB
5018 spin_lock(&dest->lock);
5019 if (!dest->full) {
5020 u64 bytes_to_add;
5021
5022 bytes_to_add = dest->size - dest->reserved;
5023 bytes_to_add = min(num_bytes, bytes_to_add);
5024 dest->reserved += bytes_to_add;
5025 if (dest->reserved >= dest->size)
5026 dest->full = 1;
5027 num_bytes -= bytes_to_add;
5028 }
5029 spin_unlock(&dest->lock);
5030 }
5031 if (num_bytes) {
f0486c68 5032 spin_lock(&space_info->lock);
fb25e914 5033 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 5034 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5035 space_info->flags, num_bytes, 0);
f0486c68 5036 spin_unlock(&space_info->lock);
4e06bdd6 5037 }
9ed74f2d 5038 }
f0486c68 5039}
4e06bdd6 5040
f0486c68
YZ
5041static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5042 struct btrfs_block_rsv *dst, u64 num_bytes)
5043{
5044 int ret;
9ed74f2d 5045
f0486c68
YZ
5046 ret = block_rsv_use_bytes(src, num_bytes);
5047 if (ret)
5048 return ret;
9ed74f2d 5049
f0486c68 5050 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5051 return 0;
5052}
5053
66d8f3dd 5054void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5055{
f0486c68
YZ
5056 memset(rsv, 0, sizeof(*rsv));
5057 spin_lock_init(&rsv->lock);
66d8f3dd 5058 rsv->type = type;
f0486c68
YZ
5059}
5060
66d8f3dd
MX
5061struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5062 unsigned short type)
f0486c68
YZ
5063{
5064 struct btrfs_block_rsv *block_rsv;
5065 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5066
f0486c68
YZ
5067 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5068 if (!block_rsv)
5069 return NULL;
9ed74f2d 5070
66d8f3dd 5071 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5072 block_rsv->space_info = __find_space_info(fs_info,
5073 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5074 return block_rsv;
5075}
9ed74f2d 5076
f0486c68
YZ
5077void btrfs_free_block_rsv(struct btrfs_root *root,
5078 struct btrfs_block_rsv *rsv)
5079{
2aaa6655
JB
5080 if (!rsv)
5081 return;
dabdb640
JB
5082 btrfs_block_rsv_release(root, rsv, (u64)-1);
5083 kfree(rsv);
9ed74f2d
JB
5084}
5085
cdfb080e
CM
5086void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5087{
5088 kfree(rsv);
5089}
5090
08e007d2
MX
5091int btrfs_block_rsv_add(struct btrfs_root *root,
5092 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5093 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5094{
f0486c68 5095 int ret;
9ed74f2d 5096
f0486c68
YZ
5097 if (num_bytes == 0)
5098 return 0;
8bb8ab2e 5099
61b520a9 5100 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5101 if (!ret) {
5102 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5103 return 0;
5104 }
9ed74f2d 5105
f0486c68 5106 return ret;
f0486c68 5107}
9ed74f2d 5108
4a92b1b8 5109int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5110 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5111{
5112 u64 num_bytes = 0;
f0486c68 5113 int ret = -ENOSPC;
9ed74f2d 5114
f0486c68
YZ
5115 if (!block_rsv)
5116 return 0;
9ed74f2d 5117
f0486c68 5118 spin_lock(&block_rsv->lock);
36ba022a
JB
5119 num_bytes = div_factor(block_rsv->size, min_factor);
5120 if (block_rsv->reserved >= num_bytes)
5121 ret = 0;
5122 spin_unlock(&block_rsv->lock);
9ed74f2d 5123
36ba022a
JB
5124 return ret;
5125}
5126
08e007d2
MX
5127int btrfs_block_rsv_refill(struct btrfs_root *root,
5128 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5129 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5130{
5131 u64 num_bytes = 0;
5132 int ret = -ENOSPC;
5133
5134 if (!block_rsv)
5135 return 0;
5136
5137 spin_lock(&block_rsv->lock);
5138 num_bytes = min_reserved;
13553e52 5139 if (block_rsv->reserved >= num_bytes)
f0486c68 5140 ret = 0;
13553e52 5141 else
f0486c68 5142 num_bytes -= block_rsv->reserved;
f0486c68 5143 spin_unlock(&block_rsv->lock);
13553e52 5144
f0486c68
YZ
5145 if (!ret)
5146 return 0;
5147
aa38a711 5148 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5149 if (!ret) {
5150 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5151 return 0;
6a63209f 5152 }
9ed74f2d 5153
13553e52 5154 return ret;
f0486c68
YZ
5155}
5156
5157int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5158 struct btrfs_block_rsv *dst_rsv,
5159 u64 num_bytes)
5160{
5161 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5162}
5163
5164void btrfs_block_rsv_release(struct btrfs_root *root,
5165 struct btrfs_block_rsv *block_rsv,
5166 u64 num_bytes)
5167{
5168 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5169 if (global_rsv == block_rsv ||
f0486c68
YZ
5170 block_rsv->space_info != global_rsv->space_info)
5171 global_rsv = NULL;
8c2a3ca2
JB
5172 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5173 num_bytes);
6a63209f
JB
5174}
5175
5176/*
8929ecfa
YZ
5177 * helper to calculate size of global block reservation.
5178 * the desired value is sum of space used by extent tree,
5179 * checksum tree and root tree
6a63209f 5180 */
8929ecfa 5181static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5182{
8929ecfa
YZ
5183 struct btrfs_space_info *sinfo;
5184 u64 num_bytes;
5185 u64 meta_used;
5186 u64 data_used;
6c41761f 5187 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5188
8929ecfa
YZ
5189 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5190 spin_lock(&sinfo->lock);
5191 data_used = sinfo->bytes_used;
5192 spin_unlock(&sinfo->lock);
33b4d47f 5193
8929ecfa
YZ
5194 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5195 spin_lock(&sinfo->lock);
6d48755d
JB
5196 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5197 data_used = 0;
8929ecfa
YZ
5198 meta_used = sinfo->bytes_used;
5199 spin_unlock(&sinfo->lock);
ab6e2410 5200
8929ecfa
YZ
5201 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5202 csum_size * 2;
f8c269d7 5203 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5204
8929ecfa 5205 if (num_bytes * 3 > meta_used)
f8c269d7 5206 num_bytes = div_u64(meta_used, 3);
ab6e2410 5207
707e8a07 5208 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5209}
6a63209f 5210
8929ecfa
YZ
5211static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5212{
5213 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5214 struct btrfs_space_info *sinfo = block_rsv->space_info;
5215 u64 num_bytes;
6a63209f 5216
8929ecfa 5217 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5218
8929ecfa 5219 spin_lock(&sinfo->lock);
1f699d38 5220 spin_lock(&block_rsv->lock);
4e06bdd6 5221
fdf30d1c 5222 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5223
8929ecfa 5224 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5225 sinfo->bytes_reserved + sinfo->bytes_readonly +
5226 sinfo->bytes_may_use;
8929ecfa
YZ
5227
5228 if (sinfo->total_bytes > num_bytes) {
5229 num_bytes = sinfo->total_bytes - num_bytes;
5230 block_rsv->reserved += num_bytes;
fb25e914 5231 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5232 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5233 sinfo->flags, num_bytes, 1);
6a63209f 5234 }
6a63209f 5235
8929ecfa
YZ
5236 if (block_rsv->reserved >= block_rsv->size) {
5237 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5238 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5239 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5240 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5241 block_rsv->reserved = block_rsv->size;
5242 block_rsv->full = 1;
5243 }
182608c8 5244
8929ecfa 5245 spin_unlock(&block_rsv->lock);
1f699d38 5246 spin_unlock(&sinfo->lock);
6a63209f
JB
5247}
5248
f0486c68 5249static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5250{
f0486c68 5251 struct btrfs_space_info *space_info;
6a63209f 5252
f0486c68
YZ
5253 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5254 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5255
f0486c68 5256 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5257 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5258 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5259 fs_info->trans_block_rsv.space_info = space_info;
5260 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5261 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5262
8929ecfa
YZ
5263 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5264 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5265 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5266 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5267 if (fs_info->quota_root)
5268 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5269 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5270
8929ecfa 5271 update_global_block_rsv(fs_info);
6a63209f
JB
5272}
5273
8929ecfa 5274static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5275{
8c2a3ca2
JB
5276 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5277 (u64)-1);
8929ecfa
YZ
5278 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5279 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5280 WARN_ON(fs_info->trans_block_rsv.size > 0);
5281 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5282 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5283 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5284 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5285 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5286}
5287
a22285a6
YZ
5288void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5289 struct btrfs_root *root)
6a63209f 5290{
0e721106
JB
5291 if (!trans->block_rsv)
5292 return;
5293
a22285a6
YZ
5294 if (!trans->bytes_reserved)
5295 return;
6a63209f 5296
e77266e4 5297 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5298 trans->transid, trans->bytes_reserved, 0);
b24e03db 5299 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5300 trans->bytes_reserved = 0;
5301}
6a63209f 5302
4fbcdf66
FM
5303/*
5304 * To be called after all the new block groups attached to the transaction
5305 * handle have been created (btrfs_create_pending_block_groups()).
5306 */
5307void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5308{
5309 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5310
5311 if (!trans->chunk_bytes_reserved)
5312 return;
5313
5314 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5315
5316 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5317 trans->chunk_bytes_reserved);
5318 trans->chunk_bytes_reserved = 0;
5319}
5320
79787eaa 5321/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5322int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5323 struct inode *inode)
5324{
5325 struct btrfs_root *root = BTRFS_I(inode)->root;
5326 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5327 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5328
5329 /*
fcb80c2a
JB
5330 * We need to hold space in order to delete our orphan item once we've
5331 * added it, so this takes the reservation so we can release it later
5332 * when we are truly done with the orphan item.
d68fc57b 5333 */
ff5714cc 5334 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5335 trace_btrfs_space_reservation(root->fs_info, "orphan",
5336 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5337 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5338}
5339
d68fc57b 5340void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5341{
d68fc57b 5342 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5343 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5344 trace_btrfs_space_reservation(root->fs_info, "orphan",
5345 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5346 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5347}
97e728d4 5348
d5c12070
MX
5349/*
5350 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5351 * root: the root of the parent directory
5352 * rsv: block reservation
5353 * items: the number of items that we need do reservation
5354 * qgroup_reserved: used to return the reserved size in qgroup
5355 *
5356 * This function is used to reserve the space for snapshot/subvolume
5357 * creation and deletion. Those operations are different with the
5358 * common file/directory operations, they change two fs/file trees
5359 * and root tree, the number of items that the qgroup reserves is
5360 * different with the free space reservation. So we can not use
5361 * the space reseravtion mechanism in start_transaction().
5362 */
5363int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5364 struct btrfs_block_rsv *rsv,
5365 int items,
ee3441b4
JM
5366 u64 *qgroup_reserved,
5367 bool use_global_rsv)
a22285a6 5368{
d5c12070
MX
5369 u64 num_bytes;
5370 int ret;
ee3441b4 5371 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5372
5373 if (root->fs_info->quota_enabled) {
5374 /* One for parent inode, two for dir entries */
707e8a07 5375 num_bytes = 3 * root->nodesize;
7174109c 5376 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5377 if (ret)
5378 return ret;
5379 } else {
5380 num_bytes = 0;
5381 }
5382
5383 *qgroup_reserved = num_bytes;
5384
5385 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5386 rsv->space_info = __find_space_info(root->fs_info,
5387 BTRFS_BLOCK_GROUP_METADATA);
5388 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5389 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5390
5391 if (ret == -ENOSPC && use_global_rsv)
5392 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5393
7174109c
QW
5394 if (ret && *qgroup_reserved)
5395 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5396
5397 return ret;
5398}
5399
5400void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5401 struct btrfs_block_rsv *rsv,
5402 u64 qgroup_reserved)
5403{
5404 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5405}
5406
7709cde3
JB
5407/**
5408 * drop_outstanding_extent - drop an outstanding extent
5409 * @inode: the inode we're dropping the extent for
dcab6a3b 5410 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5411 *
5412 * This is called when we are freeing up an outstanding extent, either called
5413 * after an error or after an extent is written. This will return the number of
5414 * reserved extents that need to be freed. This must be called with
5415 * BTRFS_I(inode)->lock held.
5416 */
dcab6a3b 5417static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5418{
7fd2ae21 5419 unsigned drop_inode_space = 0;
9e0baf60 5420 unsigned dropped_extents = 0;
dcab6a3b 5421 unsigned num_extents = 0;
9e0baf60 5422
dcab6a3b
JB
5423 num_extents = (unsigned)div64_u64(num_bytes +
5424 BTRFS_MAX_EXTENT_SIZE - 1,
5425 BTRFS_MAX_EXTENT_SIZE);
5426 ASSERT(num_extents);
5427 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5428 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5429
7fd2ae21 5430 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5431 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5432 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5433 drop_inode_space = 1;
7fd2ae21 5434
9e0baf60
JB
5435 /*
5436 * If we have more or the same amount of outsanding extents than we have
5437 * reserved then we need to leave the reserved extents count alone.
5438 */
5439 if (BTRFS_I(inode)->outstanding_extents >=
5440 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5441 return drop_inode_space;
9e0baf60
JB
5442
5443 dropped_extents = BTRFS_I(inode)->reserved_extents -
5444 BTRFS_I(inode)->outstanding_extents;
5445 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5446 return dropped_extents + drop_inode_space;
9e0baf60
JB
5447}
5448
7709cde3
JB
5449/**
5450 * calc_csum_metadata_size - return the amount of metada space that must be
5451 * reserved/free'd for the given bytes.
5452 * @inode: the inode we're manipulating
5453 * @num_bytes: the number of bytes in question
5454 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5455 *
5456 * This adjusts the number of csum_bytes in the inode and then returns the
5457 * correct amount of metadata that must either be reserved or freed. We
5458 * calculate how many checksums we can fit into one leaf and then divide the
5459 * number of bytes that will need to be checksumed by this value to figure out
5460 * how many checksums will be required. If we are adding bytes then the number
5461 * may go up and we will return the number of additional bytes that must be
5462 * reserved. If it is going down we will return the number of bytes that must
5463 * be freed.
5464 *
5465 * This must be called with BTRFS_I(inode)->lock held.
5466 */
5467static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5468 int reserve)
6324fbf3 5469{
7709cde3 5470 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5471 u64 old_csums, num_csums;
7709cde3
JB
5472
5473 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5474 BTRFS_I(inode)->csum_bytes == 0)
5475 return 0;
5476
28f75a0e 5477 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5478 if (reserve)
5479 BTRFS_I(inode)->csum_bytes += num_bytes;
5480 else
5481 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5482 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5483
5484 /* No change, no need to reserve more */
5485 if (old_csums == num_csums)
5486 return 0;
5487
5488 if (reserve)
5489 return btrfs_calc_trans_metadata_size(root,
5490 num_csums - old_csums);
5491
5492 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5493}
c146afad 5494
0ca1f7ce
YZ
5495int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5496{
5497 struct btrfs_root *root = BTRFS_I(inode)->root;
5498 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5499 u64 to_reserve = 0;
660d3f6c 5500 u64 csum_bytes;
9e0baf60 5501 unsigned nr_extents = 0;
660d3f6c 5502 int extra_reserve = 0;
08e007d2 5503 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5504 int ret = 0;
c64c2bd8 5505 bool delalloc_lock = true;
88e081bf
WS
5506 u64 to_free = 0;
5507 unsigned dropped;
6324fbf3 5508
c64c2bd8
JB
5509 /* If we are a free space inode we need to not flush since we will be in
5510 * the middle of a transaction commit. We also don't need the delalloc
5511 * mutex since we won't race with anybody. We need this mostly to make
5512 * lockdep shut its filthy mouth.
5513 */
5514 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5515 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5516 delalloc_lock = false;
5517 }
c09544e0 5518
08e007d2
MX
5519 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5520 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5521 schedule_timeout(1);
ec44a35c 5522
c64c2bd8
JB
5523 if (delalloc_lock)
5524 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5525
0ca1f7ce 5526 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5527
9e0baf60 5528 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5529 nr_extents = (unsigned)div64_u64(num_bytes +
5530 BTRFS_MAX_EXTENT_SIZE - 1,
5531 BTRFS_MAX_EXTENT_SIZE);
5532 BTRFS_I(inode)->outstanding_extents += nr_extents;
5533 nr_extents = 0;
9e0baf60
JB
5534
5535 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5536 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5537 nr_extents = BTRFS_I(inode)->outstanding_extents -
5538 BTRFS_I(inode)->reserved_extents;
57a45ced 5539
7fd2ae21
JB
5540 /*
5541 * Add an item to reserve for updating the inode when we complete the
5542 * delalloc io.
5543 */
72ac3c0d
JB
5544 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5545 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5546 nr_extents++;
660d3f6c 5547 extra_reserve = 1;
593060d7 5548 }
7fd2ae21
JB
5549
5550 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5551 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5552 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5553 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5554
88e081bf 5555 if (root->fs_info->quota_enabled) {
7174109c
QW
5556 ret = btrfs_qgroup_reserve_meta(root,
5557 nr_extents * root->nodesize);
88e081bf
WS
5558 if (ret)
5559 goto out_fail;
5560 }
c5567237 5561
88e081bf
WS
5562 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5563 if (unlikely(ret)) {
7174109c 5564 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
88e081bf 5565 goto out_fail;
9e0baf60 5566 }
25179201 5567
660d3f6c
JB
5568 spin_lock(&BTRFS_I(inode)->lock);
5569 if (extra_reserve) {
72ac3c0d
JB
5570 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5571 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5572 nr_extents--;
5573 }
5574 BTRFS_I(inode)->reserved_extents += nr_extents;
5575 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5576
5577 if (delalloc_lock)
5578 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5579
8c2a3ca2 5580 if (to_reserve)
67871254 5581 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5582 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5583 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5584
0ca1f7ce 5585 return 0;
88e081bf
WS
5586
5587out_fail:
5588 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5589 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5590 /*
5591 * If the inodes csum_bytes is the same as the original
5592 * csum_bytes then we know we haven't raced with any free()ers
5593 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5594 */
f4881bc7 5595 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5596 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5597 } else {
5598 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5599 u64 bytes;
5600
5601 /*
5602 * This is tricky, but first we need to figure out how much we
5603 * free'd from any free-ers that occured during this
5604 * reservation, so we reset ->csum_bytes to the csum_bytes
5605 * before we dropped our lock, and then call the free for the
5606 * number of bytes that were freed while we were trying our
5607 * reservation.
5608 */
5609 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5610 BTRFS_I(inode)->csum_bytes = csum_bytes;
5611 to_free = calc_csum_metadata_size(inode, bytes, 0);
5612
5613
5614 /*
5615 * Now we need to see how much we would have freed had we not
5616 * been making this reservation and our ->csum_bytes were not
5617 * artificially inflated.
5618 */
5619 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5620 bytes = csum_bytes - orig_csum_bytes;
5621 bytes = calc_csum_metadata_size(inode, bytes, 0);
5622
5623 /*
5624 * Now reset ->csum_bytes to what it should be. If bytes is
5625 * more than to_free then we would have free'd more space had we
5626 * not had an artificially high ->csum_bytes, so we need to free
5627 * the remainder. If bytes is the same or less then we don't
5628 * need to do anything, the other free-ers did the correct
5629 * thing.
5630 */
5631 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5632 if (bytes > to_free)
5633 to_free = bytes - to_free;
5634 else
5635 to_free = 0;
5636 }
88e081bf 5637 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5638 if (dropped)
88e081bf
WS
5639 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5640
5641 if (to_free) {
5642 btrfs_block_rsv_release(root, block_rsv, to_free);
5643 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5644 btrfs_ino(inode), to_free, 0);
5645 }
5646 if (delalloc_lock)
5647 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5648 return ret;
0ca1f7ce
YZ
5649}
5650
7709cde3
JB
5651/**
5652 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5653 * @inode: the inode to release the reservation for
5654 * @num_bytes: the number of bytes we're releasing
5655 *
5656 * This will release the metadata reservation for an inode. This can be called
5657 * once we complete IO for a given set of bytes to release their metadata
5658 * reservations.
5659 */
0ca1f7ce
YZ
5660void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5661{
5662 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5663 u64 to_free = 0;
5664 unsigned dropped;
0ca1f7ce
YZ
5665
5666 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5667 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5668 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5669
0934856d
MX
5670 if (num_bytes)
5671 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5672 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5673 if (dropped > 0)
5674 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5675
6a3891c5
JB
5676 if (btrfs_test_is_dummy_root(root))
5677 return;
5678
8c2a3ca2
JB
5679 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5680 btrfs_ino(inode), to_free, 0);
c5567237 5681
0ca1f7ce
YZ
5682 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5683 to_free);
5684}
5685
1ada3a62 5686/**
7cf5b976 5687 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
5688 * delalloc
5689 * @inode: inode we're writing to
5690 * @start: start range we are writing to
5691 * @len: how long the range we are writing to
5692 *
5693 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5694 *
5695 * This will do the following things
5696 *
5697 * o reserve space in data space info for num bytes
5698 * and reserve precious corresponding qgroup space
5699 * (Done in check_data_free_space)
5700 *
5701 * o reserve space for metadata space, based on the number of outstanding
5702 * extents and how much csums will be needed
5703 * also reserve metadata space in a per root over-reserve method.
5704 * o add to the inodes->delalloc_bytes
5705 * o add it to the fs_info's delalloc inodes list.
5706 * (Above 3 all done in delalloc_reserve_metadata)
5707 *
5708 * Return 0 for success
5709 * Return <0 for error(-ENOSPC or -EQUOT)
5710 */
7cf5b976 5711int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5712{
5713 int ret;
5714
7cf5b976 5715 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
5716 if (ret < 0)
5717 return ret;
5718 ret = btrfs_delalloc_reserve_metadata(inode, len);
5719 if (ret < 0)
7cf5b976 5720 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
5721 return ret;
5722}
5723
7709cde3 5724/**
7cf5b976 5725 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
5726 * @inode: inode we're releasing space for
5727 * @start: start position of the space already reserved
5728 * @len: the len of the space already reserved
5729 *
5730 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5731 * called in the case that we don't need the metadata AND data reservations
5732 * anymore. So if there is an error or we insert an inline extent.
5733 *
5734 * This function will release the metadata space that was not used and will
5735 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5736 * list if there are no delalloc bytes left.
5737 * Also it will handle the qgroup reserved space.
5738 */
7cf5b976 5739void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5740{
5741 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 5742 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
5743}
5744
ce93ec54
JB
5745static int update_block_group(struct btrfs_trans_handle *trans,
5746 struct btrfs_root *root, u64 bytenr,
5747 u64 num_bytes, int alloc)
9078a3e1 5748{
0af3d00b 5749 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5750 struct btrfs_fs_info *info = root->fs_info;
db94535d 5751 u64 total = num_bytes;
9078a3e1 5752 u64 old_val;
db94535d 5753 u64 byte_in_group;
0af3d00b 5754 int factor;
3e1ad54f 5755
5d4f98a2 5756 /* block accounting for super block */
eb73c1b7 5757 spin_lock(&info->delalloc_root_lock);
6c41761f 5758 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5759 if (alloc)
5760 old_val += num_bytes;
5761 else
5762 old_val -= num_bytes;
6c41761f 5763 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5764 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5765
d397712b 5766 while (total) {
db94535d 5767 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5768 if (!cache)
79787eaa 5769 return -ENOENT;
b742bb82
YZ
5770 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5771 BTRFS_BLOCK_GROUP_RAID1 |
5772 BTRFS_BLOCK_GROUP_RAID10))
5773 factor = 2;
5774 else
5775 factor = 1;
9d66e233
JB
5776 /*
5777 * If this block group has free space cache written out, we
5778 * need to make sure to load it if we are removing space. This
5779 * is because we need the unpinning stage to actually add the
5780 * space back to the block group, otherwise we will leak space.
5781 */
5782 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5783 cache_block_group(cache, 1);
0af3d00b 5784
db94535d
CM
5785 byte_in_group = bytenr - cache->key.objectid;
5786 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5787
25179201 5788 spin_lock(&cache->space_info->lock);
c286ac48 5789 spin_lock(&cache->lock);
0af3d00b 5790
73bc1876 5791 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5792 cache->disk_cache_state < BTRFS_DC_CLEAR)
5793 cache->disk_cache_state = BTRFS_DC_CLEAR;
5794
9078a3e1 5795 old_val = btrfs_block_group_used(&cache->item);
db94535d 5796 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5797 if (alloc) {
db94535d 5798 old_val += num_bytes;
11833d66
YZ
5799 btrfs_set_block_group_used(&cache->item, old_val);
5800 cache->reserved -= num_bytes;
11833d66 5801 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5802 cache->space_info->bytes_used += num_bytes;
5803 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5804 spin_unlock(&cache->lock);
25179201 5805 spin_unlock(&cache->space_info->lock);
cd1bc465 5806 } else {
db94535d 5807 old_val -= num_bytes;
ae0ab003
FM
5808 btrfs_set_block_group_used(&cache->item, old_val);
5809 cache->pinned += num_bytes;
5810 cache->space_info->bytes_pinned += num_bytes;
5811 cache->space_info->bytes_used -= num_bytes;
5812 cache->space_info->disk_used -= num_bytes * factor;
5813 spin_unlock(&cache->lock);
5814 spin_unlock(&cache->space_info->lock);
47ab2a6c 5815
ae0ab003
FM
5816 set_extent_dirty(info->pinned_extents,
5817 bytenr, bytenr + num_bytes - 1,
5818 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5819 /*
5820 * No longer have used bytes in this block group, queue
5821 * it for deletion.
5822 */
5823 if (old_val == 0) {
5824 spin_lock(&info->unused_bgs_lock);
5825 if (list_empty(&cache->bg_list)) {
5826 btrfs_get_block_group(cache);
5827 list_add_tail(&cache->bg_list,
5828 &info->unused_bgs);
5829 }
5830 spin_unlock(&info->unused_bgs_lock);
5831 }
cd1bc465 5832 }
1bbc621e
CM
5833
5834 spin_lock(&trans->transaction->dirty_bgs_lock);
5835 if (list_empty(&cache->dirty_list)) {
5836 list_add_tail(&cache->dirty_list,
5837 &trans->transaction->dirty_bgs);
5838 trans->transaction->num_dirty_bgs++;
5839 btrfs_get_block_group(cache);
5840 }
5841 spin_unlock(&trans->transaction->dirty_bgs_lock);
5842
fa9c0d79 5843 btrfs_put_block_group(cache);
db94535d
CM
5844 total -= num_bytes;
5845 bytenr += num_bytes;
9078a3e1
CM
5846 }
5847 return 0;
5848}
6324fbf3 5849
a061fc8d
CM
5850static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5851{
0f9dd46c 5852 struct btrfs_block_group_cache *cache;
d2fb3437 5853 u64 bytenr;
0f9dd46c 5854
a1897fdd
LB
5855 spin_lock(&root->fs_info->block_group_cache_lock);
5856 bytenr = root->fs_info->first_logical_byte;
5857 spin_unlock(&root->fs_info->block_group_cache_lock);
5858
5859 if (bytenr < (u64)-1)
5860 return bytenr;
5861
0f9dd46c
JB
5862 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5863 if (!cache)
a061fc8d 5864 return 0;
0f9dd46c 5865
d2fb3437 5866 bytenr = cache->key.objectid;
fa9c0d79 5867 btrfs_put_block_group(cache);
d2fb3437
YZ
5868
5869 return bytenr;
a061fc8d
CM
5870}
5871
f0486c68
YZ
5872static int pin_down_extent(struct btrfs_root *root,
5873 struct btrfs_block_group_cache *cache,
5874 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5875{
11833d66
YZ
5876 spin_lock(&cache->space_info->lock);
5877 spin_lock(&cache->lock);
5878 cache->pinned += num_bytes;
5879 cache->space_info->bytes_pinned += num_bytes;
5880 if (reserved) {
5881 cache->reserved -= num_bytes;
5882 cache->space_info->bytes_reserved -= num_bytes;
5883 }
5884 spin_unlock(&cache->lock);
5885 spin_unlock(&cache->space_info->lock);
68b38550 5886
f0486c68
YZ
5887 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5888 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5889 if (reserved)
0be5dc67 5890 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5891 return 0;
5892}
68b38550 5893
f0486c68
YZ
5894/*
5895 * this function must be called within transaction
5896 */
5897int btrfs_pin_extent(struct btrfs_root *root,
5898 u64 bytenr, u64 num_bytes, int reserved)
5899{
5900 struct btrfs_block_group_cache *cache;
68b38550 5901
f0486c68 5902 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5903 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5904
5905 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5906
5907 btrfs_put_block_group(cache);
11833d66
YZ
5908 return 0;
5909}
5910
f0486c68 5911/*
e688b725
CM
5912 * this function must be called within transaction
5913 */
dcfac415 5914int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5915 u64 bytenr, u64 num_bytes)
5916{
5917 struct btrfs_block_group_cache *cache;
b50c6e25 5918 int ret;
e688b725
CM
5919
5920 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5921 if (!cache)
5922 return -EINVAL;
e688b725
CM
5923
5924 /*
5925 * pull in the free space cache (if any) so that our pin
5926 * removes the free space from the cache. We have load_only set
5927 * to one because the slow code to read in the free extents does check
5928 * the pinned extents.
5929 */
f6373bf3 5930 cache_block_group(cache, 1);
e688b725
CM
5931
5932 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5933
5934 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5935 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5936 btrfs_put_block_group(cache);
b50c6e25 5937 return ret;
e688b725
CM
5938}
5939
8c2a1a30
JB
5940static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5941{
5942 int ret;
5943 struct btrfs_block_group_cache *block_group;
5944 struct btrfs_caching_control *caching_ctl;
5945
5946 block_group = btrfs_lookup_block_group(root->fs_info, start);
5947 if (!block_group)
5948 return -EINVAL;
5949
5950 cache_block_group(block_group, 0);
5951 caching_ctl = get_caching_control(block_group);
5952
5953 if (!caching_ctl) {
5954 /* Logic error */
5955 BUG_ON(!block_group_cache_done(block_group));
5956 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5957 } else {
5958 mutex_lock(&caching_ctl->mutex);
5959
5960 if (start >= caching_ctl->progress) {
5961 ret = add_excluded_extent(root, start, num_bytes);
5962 } else if (start + num_bytes <= caching_ctl->progress) {
5963 ret = btrfs_remove_free_space(block_group,
5964 start, num_bytes);
5965 } else {
5966 num_bytes = caching_ctl->progress - start;
5967 ret = btrfs_remove_free_space(block_group,
5968 start, num_bytes);
5969 if (ret)
5970 goto out_lock;
5971
5972 num_bytes = (start + num_bytes) -
5973 caching_ctl->progress;
5974 start = caching_ctl->progress;
5975 ret = add_excluded_extent(root, start, num_bytes);
5976 }
5977out_lock:
5978 mutex_unlock(&caching_ctl->mutex);
5979 put_caching_control(caching_ctl);
5980 }
5981 btrfs_put_block_group(block_group);
5982 return ret;
5983}
5984
5985int btrfs_exclude_logged_extents(struct btrfs_root *log,
5986 struct extent_buffer *eb)
5987{
5988 struct btrfs_file_extent_item *item;
5989 struct btrfs_key key;
5990 int found_type;
5991 int i;
5992
5993 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5994 return 0;
5995
5996 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5997 btrfs_item_key_to_cpu(eb, &key, i);
5998 if (key.type != BTRFS_EXTENT_DATA_KEY)
5999 continue;
6000 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6001 found_type = btrfs_file_extent_type(eb, item);
6002 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6003 continue;
6004 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6005 continue;
6006 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6007 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6008 __exclude_logged_extent(log, key.objectid, key.offset);
6009 }
6010
6011 return 0;
6012}
6013
fb25e914
JB
6014/**
6015 * btrfs_update_reserved_bytes - update the block_group and space info counters
6016 * @cache: The cache we are manipulating
6017 * @num_bytes: The number of bytes in question
6018 * @reserve: One of the reservation enums
e570fd27 6019 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
6020 *
6021 * This is called by the allocator when it reserves space, or by somebody who is
6022 * freeing space that was never actually used on disk. For example if you
6023 * reserve some space for a new leaf in transaction A and before transaction A
6024 * commits you free that leaf, you call this with reserve set to 0 in order to
6025 * clear the reservation.
6026 *
6027 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6028 * ENOSPC accounting. For data we handle the reservation through clearing the
6029 * delalloc bits in the io_tree. We have to do this since we could end up
6030 * allocating less disk space for the amount of data we have reserved in the
6031 * case of compression.
6032 *
6033 * If this is a reservation and the block group has become read only we cannot
6034 * make the reservation and return -EAGAIN, otherwise this function always
6035 * succeeds.
f0486c68 6036 */
fb25e914 6037static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 6038 u64 num_bytes, int reserve, int delalloc)
11833d66 6039{
fb25e914 6040 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6041 int ret = 0;
79787eaa 6042
fb25e914
JB
6043 spin_lock(&space_info->lock);
6044 spin_lock(&cache->lock);
6045 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6046 if (cache->ro) {
6047 ret = -EAGAIN;
6048 } else {
fb25e914
JB
6049 cache->reserved += num_bytes;
6050 space_info->bytes_reserved += num_bytes;
6051 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6052 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6053 "space_info", space_info->flags,
6054 num_bytes, 0);
fb25e914
JB
6055 space_info->bytes_may_use -= num_bytes;
6056 }
e570fd27
MX
6057
6058 if (delalloc)
6059 cache->delalloc_bytes += num_bytes;
f0486c68 6060 }
fb25e914
JB
6061 } else {
6062 if (cache->ro)
6063 space_info->bytes_readonly += num_bytes;
6064 cache->reserved -= num_bytes;
6065 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6066
6067 if (delalloc)
6068 cache->delalloc_bytes -= num_bytes;
324ae4df 6069 }
fb25e914
JB
6070 spin_unlock(&cache->lock);
6071 spin_unlock(&space_info->lock);
f0486c68 6072 return ret;
324ae4df 6073}
9078a3e1 6074
143bede5 6075void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6076 struct btrfs_root *root)
e8569813 6077{
e8569813 6078 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6079 struct btrfs_caching_control *next;
6080 struct btrfs_caching_control *caching_ctl;
6081 struct btrfs_block_group_cache *cache;
e8569813 6082
9e351cc8 6083 down_write(&fs_info->commit_root_sem);
25179201 6084
11833d66
YZ
6085 list_for_each_entry_safe(caching_ctl, next,
6086 &fs_info->caching_block_groups, list) {
6087 cache = caching_ctl->block_group;
6088 if (block_group_cache_done(cache)) {
6089 cache->last_byte_to_unpin = (u64)-1;
6090 list_del_init(&caching_ctl->list);
6091 put_caching_control(caching_ctl);
e8569813 6092 } else {
11833d66 6093 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6094 }
e8569813 6095 }
11833d66
YZ
6096
6097 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6098 fs_info->pinned_extents = &fs_info->freed_extents[1];
6099 else
6100 fs_info->pinned_extents = &fs_info->freed_extents[0];
6101
9e351cc8 6102 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6103
6104 update_global_block_rsv(fs_info);
e8569813
ZY
6105}
6106
678886bd
FM
6107static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6108 const bool return_free_space)
ccd467d6 6109{
11833d66
YZ
6110 struct btrfs_fs_info *fs_info = root->fs_info;
6111 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6112 struct btrfs_space_info *space_info;
6113 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 6114 u64 len;
7b398f8e 6115 bool readonly;
ccd467d6 6116
11833d66 6117 while (start <= end) {
7b398f8e 6118 readonly = false;
11833d66
YZ
6119 if (!cache ||
6120 start >= cache->key.objectid + cache->key.offset) {
6121 if (cache)
6122 btrfs_put_block_group(cache);
6123 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6124 BUG_ON(!cache); /* Logic error */
11833d66
YZ
6125 }
6126
6127 len = cache->key.objectid + cache->key.offset - start;
6128 len = min(len, end + 1 - start);
6129
6130 if (start < cache->last_byte_to_unpin) {
6131 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6132 if (return_free_space)
6133 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6134 }
6135
f0486c68 6136 start += len;
7b398f8e 6137 space_info = cache->space_info;
f0486c68 6138
7b398f8e 6139 spin_lock(&space_info->lock);
11833d66
YZ
6140 spin_lock(&cache->lock);
6141 cache->pinned -= len;
7b398f8e 6142 space_info->bytes_pinned -= len;
d288db5d 6143 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6144 if (cache->ro) {
6145 space_info->bytes_readonly += len;
6146 readonly = true;
6147 }
11833d66 6148 spin_unlock(&cache->lock);
7b398f8e
JB
6149 if (!readonly && global_rsv->space_info == space_info) {
6150 spin_lock(&global_rsv->lock);
6151 if (!global_rsv->full) {
6152 len = min(len, global_rsv->size -
6153 global_rsv->reserved);
6154 global_rsv->reserved += len;
6155 space_info->bytes_may_use += len;
6156 if (global_rsv->reserved >= global_rsv->size)
6157 global_rsv->full = 1;
6158 }
6159 spin_unlock(&global_rsv->lock);
6160 }
6161 spin_unlock(&space_info->lock);
ccd467d6 6162 }
11833d66
YZ
6163
6164 if (cache)
6165 btrfs_put_block_group(cache);
ccd467d6
CM
6166 return 0;
6167}
6168
6169int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6170 struct btrfs_root *root)
a28ec197 6171{
11833d66 6172 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6173 struct btrfs_block_group_cache *block_group, *tmp;
6174 struct list_head *deleted_bgs;
11833d66 6175 struct extent_io_tree *unpin;
1a5bc167
CM
6176 u64 start;
6177 u64 end;
a28ec197 6178 int ret;
a28ec197 6179
11833d66
YZ
6180 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6181 unpin = &fs_info->freed_extents[1];
6182 else
6183 unpin = &fs_info->freed_extents[0];
6184
e33e17ee 6185 while (!trans->aborted) {
d4b450cd 6186 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6187 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6188 EXTENT_DIRTY, NULL);
d4b450cd
FM
6189 if (ret) {
6190 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6191 break;
d4b450cd 6192 }
1f3c79a2 6193
5378e607
LD
6194 if (btrfs_test_opt(root, DISCARD))
6195 ret = btrfs_discard_extent(root, start,
6196 end + 1 - start, NULL);
1f3c79a2 6197
1a5bc167 6198 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6199 unpin_extent_range(root, start, end, true);
d4b450cd 6200 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6201 cond_resched();
a28ec197 6202 }
817d52f8 6203
e33e17ee
JM
6204 /*
6205 * Transaction is finished. We don't need the lock anymore. We
6206 * do need to clean up the block groups in case of a transaction
6207 * abort.
6208 */
6209 deleted_bgs = &trans->transaction->deleted_bgs;
6210 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6211 u64 trimmed = 0;
6212
6213 ret = -EROFS;
6214 if (!trans->aborted)
6215 ret = btrfs_discard_extent(root,
6216 block_group->key.objectid,
6217 block_group->key.offset,
6218 &trimmed);
6219
6220 list_del_init(&block_group->bg_list);
6221 btrfs_put_block_group_trimming(block_group);
6222 btrfs_put_block_group(block_group);
6223
6224 if (ret) {
6225 const char *errstr = btrfs_decode_error(ret);
6226 btrfs_warn(fs_info,
6227 "Discard failed while removing blockgroup: errno=%d %s\n",
6228 ret, errstr);
6229 }
6230 }
6231
e20d96d6
CM
6232 return 0;
6233}
6234
b150a4f1
JB
6235static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6236 u64 owner, u64 root_objectid)
6237{
6238 struct btrfs_space_info *space_info;
6239 u64 flags;
6240
6241 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6242 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6243 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6244 else
6245 flags = BTRFS_BLOCK_GROUP_METADATA;
6246 } else {
6247 flags = BTRFS_BLOCK_GROUP_DATA;
6248 }
6249
6250 space_info = __find_space_info(fs_info, flags);
6251 BUG_ON(!space_info); /* Logic bug */
6252 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6253}
6254
6255
5d4f98a2
YZ
6256static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6257 struct btrfs_root *root,
c682f9b3 6258 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6259 u64 root_objectid, u64 owner_objectid,
6260 u64 owner_offset, int refs_to_drop,
c682f9b3 6261 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6262{
e2fa7227 6263 struct btrfs_key key;
5d4f98a2 6264 struct btrfs_path *path;
1261ec42
CM
6265 struct btrfs_fs_info *info = root->fs_info;
6266 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6267 struct extent_buffer *leaf;
5d4f98a2
YZ
6268 struct btrfs_extent_item *ei;
6269 struct btrfs_extent_inline_ref *iref;
a28ec197 6270 int ret;
5d4f98a2 6271 int is_data;
952fccac
CM
6272 int extent_slot = 0;
6273 int found_extent = 0;
6274 int num_to_del = 1;
c682f9b3 6275 int no_quota = node->no_quota;
5d4f98a2
YZ
6276 u32 item_size;
6277 u64 refs;
c682f9b3
QW
6278 u64 bytenr = node->bytenr;
6279 u64 num_bytes = node->num_bytes;
fcebe456 6280 int last_ref = 0;
3173a18f
JB
6281 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6282 SKINNY_METADATA);
037e6390 6283
fcebe456
JB
6284 if (!info->quota_enabled || !is_fstree(root_objectid))
6285 no_quota = 1;
6286
5caf2a00 6287 path = btrfs_alloc_path();
54aa1f4d
CM
6288 if (!path)
6289 return -ENOMEM;
5f26f772 6290
3c12ac72 6291 path->reada = 1;
b9473439 6292 path->leave_spinning = 1;
5d4f98a2
YZ
6293
6294 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6295 BUG_ON(!is_data && refs_to_drop != 1);
6296
3173a18f
JB
6297 if (is_data)
6298 skinny_metadata = 0;
6299
5d4f98a2
YZ
6300 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6301 bytenr, num_bytes, parent,
6302 root_objectid, owner_objectid,
6303 owner_offset);
7bb86316 6304 if (ret == 0) {
952fccac 6305 extent_slot = path->slots[0];
5d4f98a2
YZ
6306 while (extent_slot >= 0) {
6307 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6308 extent_slot);
5d4f98a2 6309 if (key.objectid != bytenr)
952fccac 6310 break;
5d4f98a2
YZ
6311 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6312 key.offset == num_bytes) {
952fccac
CM
6313 found_extent = 1;
6314 break;
6315 }
3173a18f
JB
6316 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6317 key.offset == owner_objectid) {
6318 found_extent = 1;
6319 break;
6320 }
952fccac
CM
6321 if (path->slots[0] - extent_slot > 5)
6322 break;
5d4f98a2 6323 extent_slot--;
952fccac 6324 }
5d4f98a2
YZ
6325#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6326 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6327 if (found_extent && item_size < sizeof(*ei))
6328 found_extent = 0;
6329#endif
31840ae1 6330 if (!found_extent) {
5d4f98a2 6331 BUG_ON(iref);
56bec294 6332 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6333 NULL, refs_to_drop,
fcebe456 6334 is_data, &last_ref);
005d6427
DS
6335 if (ret) {
6336 btrfs_abort_transaction(trans, extent_root, ret);
6337 goto out;
6338 }
b3b4aa74 6339 btrfs_release_path(path);
b9473439 6340 path->leave_spinning = 1;
5d4f98a2
YZ
6341
6342 key.objectid = bytenr;
6343 key.type = BTRFS_EXTENT_ITEM_KEY;
6344 key.offset = num_bytes;
6345
3173a18f
JB
6346 if (!is_data && skinny_metadata) {
6347 key.type = BTRFS_METADATA_ITEM_KEY;
6348 key.offset = owner_objectid;
6349 }
6350
31840ae1
ZY
6351 ret = btrfs_search_slot(trans, extent_root,
6352 &key, path, -1, 1);
3173a18f
JB
6353 if (ret > 0 && skinny_metadata && path->slots[0]) {
6354 /*
6355 * Couldn't find our skinny metadata item,
6356 * see if we have ye olde extent item.
6357 */
6358 path->slots[0]--;
6359 btrfs_item_key_to_cpu(path->nodes[0], &key,
6360 path->slots[0]);
6361 if (key.objectid == bytenr &&
6362 key.type == BTRFS_EXTENT_ITEM_KEY &&
6363 key.offset == num_bytes)
6364 ret = 0;
6365 }
6366
6367 if (ret > 0 && skinny_metadata) {
6368 skinny_metadata = false;
9ce49a0b 6369 key.objectid = bytenr;
3173a18f
JB
6370 key.type = BTRFS_EXTENT_ITEM_KEY;
6371 key.offset = num_bytes;
6372 btrfs_release_path(path);
6373 ret = btrfs_search_slot(trans, extent_root,
6374 &key, path, -1, 1);
6375 }
6376
f3465ca4 6377 if (ret) {
c2cf52eb 6378 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6379 ret, bytenr);
b783e62d
JB
6380 if (ret > 0)
6381 btrfs_print_leaf(extent_root,
6382 path->nodes[0]);
f3465ca4 6383 }
005d6427
DS
6384 if (ret < 0) {
6385 btrfs_abort_transaction(trans, extent_root, ret);
6386 goto out;
6387 }
31840ae1
ZY
6388 extent_slot = path->slots[0];
6389 }
fae7f21c 6390 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6391 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6392 btrfs_err(info,
6393 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6394 bytenr, parent, root_objectid, owner_objectid,
6395 owner_offset);
c4a050bb
JB
6396 btrfs_abort_transaction(trans, extent_root, ret);
6397 goto out;
79787eaa 6398 } else {
005d6427
DS
6399 btrfs_abort_transaction(trans, extent_root, ret);
6400 goto out;
7bb86316 6401 }
5f39d397
CM
6402
6403 leaf = path->nodes[0];
5d4f98a2
YZ
6404 item_size = btrfs_item_size_nr(leaf, extent_slot);
6405#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6406 if (item_size < sizeof(*ei)) {
6407 BUG_ON(found_extent || extent_slot != path->slots[0]);
6408 ret = convert_extent_item_v0(trans, extent_root, path,
6409 owner_objectid, 0);
005d6427
DS
6410 if (ret < 0) {
6411 btrfs_abort_transaction(trans, extent_root, ret);
6412 goto out;
6413 }
5d4f98a2 6414
b3b4aa74 6415 btrfs_release_path(path);
5d4f98a2
YZ
6416 path->leave_spinning = 1;
6417
6418 key.objectid = bytenr;
6419 key.type = BTRFS_EXTENT_ITEM_KEY;
6420 key.offset = num_bytes;
6421
6422 ret = btrfs_search_slot(trans, extent_root, &key, path,
6423 -1, 1);
6424 if (ret) {
c2cf52eb 6425 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6426 ret, bytenr);
5d4f98a2
YZ
6427 btrfs_print_leaf(extent_root, path->nodes[0]);
6428 }
005d6427
DS
6429 if (ret < 0) {
6430 btrfs_abort_transaction(trans, extent_root, ret);
6431 goto out;
6432 }
6433
5d4f98a2
YZ
6434 extent_slot = path->slots[0];
6435 leaf = path->nodes[0];
6436 item_size = btrfs_item_size_nr(leaf, extent_slot);
6437 }
6438#endif
6439 BUG_ON(item_size < sizeof(*ei));
952fccac 6440 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6441 struct btrfs_extent_item);
3173a18f
JB
6442 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6443 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6444 struct btrfs_tree_block_info *bi;
6445 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6446 bi = (struct btrfs_tree_block_info *)(ei + 1);
6447 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6448 }
56bec294 6449
5d4f98a2 6450 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6451 if (refs < refs_to_drop) {
6452 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6453 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6454 ret = -EINVAL;
6455 btrfs_abort_transaction(trans, extent_root, ret);
6456 goto out;
6457 }
56bec294 6458 refs -= refs_to_drop;
5f39d397 6459
5d4f98a2
YZ
6460 if (refs > 0) {
6461 if (extent_op)
6462 __run_delayed_extent_op(extent_op, leaf, ei);
6463 /*
6464 * In the case of inline back ref, reference count will
6465 * be updated by remove_extent_backref
952fccac 6466 */
5d4f98a2
YZ
6467 if (iref) {
6468 BUG_ON(!found_extent);
6469 } else {
6470 btrfs_set_extent_refs(leaf, ei, refs);
6471 btrfs_mark_buffer_dirty(leaf);
6472 }
6473 if (found_extent) {
6474 ret = remove_extent_backref(trans, extent_root, path,
6475 iref, refs_to_drop,
fcebe456 6476 is_data, &last_ref);
005d6427
DS
6477 if (ret) {
6478 btrfs_abort_transaction(trans, extent_root, ret);
6479 goto out;
6480 }
952fccac 6481 }
b150a4f1
JB
6482 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6483 root_objectid);
5d4f98a2 6484 } else {
5d4f98a2
YZ
6485 if (found_extent) {
6486 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6487 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6488 if (iref) {
6489 BUG_ON(path->slots[0] != extent_slot);
6490 } else {
6491 BUG_ON(path->slots[0] != extent_slot + 1);
6492 path->slots[0] = extent_slot;
6493 num_to_del = 2;
6494 }
78fae27e 6495 }
b9473439 6496
fcebe456 6497 last_ref = 1;
952fccac
CM
6498 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6499 num_to_del);
005d6427
DS
6500 if (ret) {
6501 btrfs_abort_transaction(trans, extent_root, ret);
6502 goto out;
6503 }
b3b4aa74 6504 btrfs_release_path(path);
21af804c 6505
5d4f98a2 6506 if (is_data) {
459931ec 6507 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6508 if (ret) {
6509 btrfs_abort_transaction(trans, extent_root, ret);
6510 goto out;
6511 }
459931ec
CM
6512 }
6513
ce93ec54 6514 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6515 if (ret) {
6516 btrfs_abort_transaction(trans, extent_root, ret);
6517 goto out;
6518 }
a28ec197 6519 }
fcebe456
JB
6520 btrfs_release_path(path);
6521
79787eaa 6522out:
5caf2a00 6523 btrfs_free_path(path);
a28ec197
CM
6524 return ret;
6525}
6526
1887be66 6527/*
f0486c68 6528 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6529 * delayed ref for that extent as well. This searches the delayed ref tree for
6530 * a given extent, and if there are no other delayed refs to be processed, it
6531 * removes it from the tree.
6532 */
6533static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6534 struct btrfs_root *root, u64 bytenr)
6535{
6536 struct btrfs_delayed_ref_head *head;
6537 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6538 int ret = 0;
1887be66
CM
6539
6540 delayed_refs = &trans->transaction->delayed_refs;
6541 spin_lock(&delayed_refs->lock);
6542 head = btrfs_find_delayed_ref_head(trans, bytenr);
6543 if (!head)
cf93da7b 6544 goto out_delayed_unlock;
1887be66 6545
d7df2c79 6546 spin_lock(&head->lock);
c6fc2454 6547 if (!list_empty(&head->ref_list))
1887be66
CM
6548 goto out;
6549
5d4f98a2
YZ
6550 if (head->extent_op) {
6551 if (!head->must_insert_reserved)
6552 goto out;
78a6184a 6553 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6554 head->extent_op = NULL;
6555 }
6556
1887be66
CM
6557 /*
6558 * waiting for the lock here would deadlock. If someone else has it
6559 * locked they are already in the process of dropping it anyway
6560 */
6561 if (!mutex_trylock(&head->mutex))
6562 goto out;
6563
6564 /*
6565 * at this point we have a head with no other entries. Go
6566 * ahead and process it.
6567 */
6568 head->node.in_tree = 0;
c46effa6 6569 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6570
d7df2c79 6571 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6572
6573 /*
6574 * we don't take a ref on the node because we're removing it from the
6575 * tree, so we just steal the ref the tree was holding.
6576 */
c3e69d58 6577 delayed_refs->num_heads--;
d7df2c79 6578 if (head->processing == 0)
c3e69d58 6579 delayed_refs->num_heads_ready--;
d7df2c79
JB
6580 head->processing = 0;
6581 spin_unlock(&head->lock);
1887be66
CM
6582 spin_unlock(&delayed_refs->lock);
6583
f0486c68
YZ
6584 BUG_ON(head->extent_op);
6585 if (head->must_insert_reserved)
6586 ret = 1;
6587
6588 mutex_unlock(&head->mutex);
1887be66 6589 btrfs_put_delayed_ref(&head->node);
f0486c68 6590 return ret;
1887be66 6591out:
d7df2c79 6592 spin_unlock(&head->lock);
cf93da7b
CM
6593
6594out_delayed_unlock:
1887be66
CM
6595 spin_unlock(&delayed_refs->lock);
6596 return 0;
6597}
6598
f0486c68
YZ
6599void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6600 struct btrfs_root *root,
6601 struct extent_buffer *buf,
5581a51a 6602 u64 parent, int last_ref)
f0486c68 6603{
b150a4f1 6604 int pin = 1;
f0486c68
YZ
6605 int ret;
6606
6607 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6608 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6609 buf->start, buf->len,
6610 parent, root->root_key.objectid,
6611 btrfs_header_level(buf),
5581a51a 6612 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6613 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6614 }
6615
6616 if (!last_ref)
6617 return;
6618
f0486c68 6619 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6620 struct btrfs_block_group_cache *cache;
6621
f0486c68
YZ
6622 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6623 ret = check_ref_cleanup(trans, root, buf->start);
6624 if (!ret)
37be25bc 6625 goto out;
f0486c68
YZ
6626 }
6627
6219872d
FM
6628 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6629
f0486c68
YZ
6630 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6631 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6632 btrfs_put_block_group(cache);
37be25bc 6633 goto out;
f0486c68
YZ
6634 }
6635
6636 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6637
6638 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6639 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6640 btrfs_put_block_group(cache);
0be5dc67 6641 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6642 pin = 0;
f0486c68
YZ
6643 }
6644out:
b150a4f1
JB
6645 if (pin)
6646 add_pinned_bytes(root->fs_info, buf->len,
6647 btrfs_header_level(buf),
6648 root->root_key.objectid);
6649
a826d6dc
JB
6650 /*
6651 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6652 * anymore.
6653 */
6654 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6655}
6656
79787eaa 6657/* Can return -ENOMEM */
66d7e7f0
AJ
6658int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6659 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6660 u64 owner, u64 offset, int no_quota)
925baedd
CM
6661{
6662 int ret;
66d7e7f0 6663 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6664
fccb84c9 6665 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6666 return 0;
fccb84c9 6667
b150a4f1
JB
6668 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6669
56bec294
CM
6670 /*
6671 * tree log blocks never actually go into the extent allocation
6672 * tree, just update pinning info and exit early.
56bec294 6673 */
5d4f98a2
YZ
6674 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6675 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6676 /* unlocks the pinned mutex */
11833d66 6677 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6678 ret = 0;
5d4f98a2 6679 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6680 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6681 num_bytes,
5d4f98a2 6682 parent, root_objectid, (int)owner,
fcebe456 6683 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6684 } else {
66d7e7f0
AJ
6685 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6686 num_bytes,
6687 parent, root_objectid, owner,
6688 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6689 NULL, no_quota);
56bec294 6690 }
925baedd
CM
6691 return ret;
6692}
6693
817d52f8
JB
6694/*
6695 * when we wait for progress in the block group caching, its because
6696 * our allocation attempt failed at least once. So, we must sleep
6697 * and let some progress happen before we try again.
6698 *
6699 * This function will sleep at least once waiting for new free space to
6700 * show up, and then it will check the block group free space numbers
6701 * for our min num_bytes. Another option is to have it go ahead
6702 * and look in the rbtree for a free extent of a given size, but this
6703 * is a good start.
36cce922
JB
6704 *
6705 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6706 * any of the information in this block group.
817d52f8 6707 */
36cce922 6708static noinline void
817d52f8
JB
6709wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6710 u64 num_bytes)
6711{
11833d66 6712 struct btrfs_caching_control *caching_ctl;
817d52f8 6713
11833d66
YZ
6714 caching_ctl = get_caching_control(cache);
6715 if (!caching_ctl)
36cce922 6716 return;
817d52f8 6717
11833d66 6718 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6719 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6720
6721 put_caching_control(caching_ctl);
11833d66
YZ
6722}
6723
6724static noinline int
6725wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6726{
6727 struct btrfs_caching_control *caching_ctl;
36cce922 6728 int ret = 0;
11833d66
YZ
6729
6730 caching_ctl = get_caching_control(cache);
6731 if (!caching_ctl)
36cce922 6732 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6733
6734 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6735 if (cache->cached == BTRFS_CACHE_ERROR)
6736 ret = -EIO;
11833d66 6737 put_caching_control(caching_ctl);
36cce922 6738 return ret;
817d52f8
JB
6739}
6740
31e50229 6741int __get_raid_index(u64 flags)
b742bb82 6742{
7738a53a 6743 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6744 return BTRFS_RAID_RAID10;
7738a53a 6745 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6746 return BTRFS_RAID_RAID1;
7738a53a 6747 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6748 return BTRFS_RAID_DUP;
7738a53a 6749 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6750 return BTRFS_RAID_RAID0;
53b381b3 6751 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6752 return BTRFS_RAID_RAID5;
53b381b3 6753 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6754 return BTRFS_RAID_RAID6;
7738a53a 6755
e942f883 6756 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6757}
6758
6ab0a202 6759int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6760{
31e50229 6761 return __get_raid_index(cache->flags);
7738a53a
ID
6762}
6763
6ab0a202
JM
6764static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6765 [BTRFS_RAID_RAID10] = "raid10",
6766 [BTRFS_RAID_RAID1] = "raid1",
6767 [BTRFS_RAID_DUP] = "dup",
6768 [BTRFS_RAID_RAID0] = "raid0",
6769 [BTRFS_RAID_SINGLE] = "single",
6770 [BTRFS_RAID_RAID5] = "raid5",
6771 [BTRFS_RAID_RAID6] = "raid6",
6772};
6773
1b8e5df6 6774static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6775{
6776 if (type >= BTRFS_NR_RAID_TYPES)
6777 return NULL;
6778
6779 return btrfs_raid_type_names[type];
6780}
6781
817d52f8 6782enum btrfs_loop_type {
285ff5af
JB
6783 LOOP_CACHING_NOWAIT = 0,
6784 LOOP_CACHING_WAIT = 1,
6785 LOOP_ALLOC_CHUNK = 2,
6786 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6787};
6788
e570fd27
MX
6789static inline void
6790btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6791 int delalloc)
6792{
6793 if (delalloc)
6794 down_read(&cache->data_rwsem);
6795}
6796
6797static inline void
6798btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6799 int delalloc)
6800{
6801 btrfs_get_block_group(cache);
6802 if (delalloc)
6803 down_read(&cache->data_rwsem);
6804}
6805
6806static struct btrfs_block_group_cache *
6807btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6808 struct btrfs_free_cluster *cluster,
6809 int delalloc)
6810{
6811 struct btrfs_block_group_cache *used_bg;
6812 bool locked = false;
6813again:
6814 spin_lock(&cluster->refill_lock);
6815 if (locked) {
6816 if (used_bg == cluster->block_group)
6817 return used_bg;
6818
6819 up_read(&used_bg->data_rwsem);
6820 btrfs_put_block_group(used_bg);
6821 }
6822
6823 used_bg = cluster->block_group;
6824 if (!used_bg)
6825 return NULL;
6826
6827 if (used_bg == block_group)
6828 return used_bg;
6829
6830 btrfs_get_block_group(used_bg);
6831
6832 if (!delalloc)
6833 return used_bg;
6834
6835 if (down_read_trylock(&used_bg->data_rwsem))
6836 return used_bg;
6837
6838 spin_unlock(&cluster->refill_lock);
6839 down_read(&used_bg->data_rwsem);
6840 locked = true;
6841 goto again;
6842}
6843
6844static inline void
6845btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6846 int delalloc)
6847{
6848 if (delalloc)
6849 up_read(&cache->data_rwsem);
6850 btrfs_put_block_group(cache);
6851}
6852
fec577fb
CM
6853/*
6854 * walks the btree of allocated extents and find a hole of a given size.
6855 * The key ins is changed to record the hole:
a4820398 6856 * ins->objectid == start position
62e2749e 6857 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6858 * ins->offset == the size of the hole.
fec577fb 6859 * Any available blocks before search_start are skipped.
a4820398
MX
6860 *
6861 * If there is no suitable free space, we will record the max size of
6862 * the free space extent currently.
fec577fb 6863 */
00361589 6864static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6865 u64 num_bytes, u64 empty_size,
98ed5174 6866 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6867 u64 flags, int delalloc)
fec577fb 6868{
80eb234a 6869 int ret = 0;
d397712b 6870 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6871 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6872 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6873 u64 search_start = 0;
a4820398 6874 u64 max_extent_size = 0;
239b14b3 6875 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6876 struct btrfs_space_info *space_info;
fa9c0d79 6877 int loop = 0;
b6919a58
DS
6878 int index = __get_raid_index(flags);
6879 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6880 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6881 bool failed_cluster_refill = false;
1cdda9b8 6882 bool failed_alloc = false;
67377734 6883 bool use_cluster = true;
60d2adbb 6884 bool have_caching_bg = false;
fec577fb 6885
db94535d 6886 WARN_ON(num_bytes < root->sectorsize);
962a298f 6887 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6888 ins->objectid = 0;
6889 ins->offset = 0;
b1a4d965 6890
b6919a58 6891 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6892
b6919a58 6893 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6894 if (!space_info) {
b6919a58 6895 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6896 return -ENOSPC;
6897 }
2552d17e 6898
67377734
JB
6899 /*
6900 * If the space info is for both data and metadata it means we have a
6901 * small filesystem and we can't use the clustering stuff.
6902 */
6903 if (btrfs_mixed_space_info(space_info))
6904 use_cluster = false;
6905
b6919a58 6906 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6907 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6908 if (!btrfs_test_opt(root, SSD))
6909 empty_cluster = 64 * 1024;
239b14b3
CM
6910 }
6911
b6919a58 6912 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6913 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6914 last_ptr = &root->fs_info->data_alloc_cluster;
6915 }
0f9dd46c 6916
239b14b3 6917 if (last_ptr) {
fa9c0d79
CM
6918 spin_lock(&last_ptr->lock);
6919 if (last_ptr->block_group)
6920 hint_byte = last_ptr->window_start;
6921 spin_unlock(&last_ptr->lock);
239b14b3 6922 }
fa9c0d79 6923
a061fc8d 6924 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6925 search_start = max(search_start, hint_byte);
0b86a832 6926
817d52f8 6927 if (!last_ptr)
fa9c0d79 6928 empty_cluster = 0;
fa9c0d79 6929
2552d17e 6930 if (search_start == hint_byte) {
2552d17e
JB
6931 block_group = btrfs_lookup_block_group(root->fs_info,
6932 search_start);
817d52f8
JB
6933 /*
6934 * we don't want to use the block group if it doesn't match our
6935 * allocation bits, or if its not cached.
ccf0e725
JB
6936 *
6937 * However if we are re-searching with an ideal block group
6938 * picked out then we don't care that the block group is cached.
817d52f8 6939 */
b6919a58 6940 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 6941 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 6942 down_read(&space_info->groups_sem);
44fb5511
CM
6943 if (list_empty(&block_group->list) ||
6944 block_group->ro) {
6945 /*
6946 * someone is removing this block group,
6947 * we can't jump into the have_block_group
6948 * target because our list pointers are not
6949 * valid
6950 */
6951 btrfs_put_block_group(block_group);
6952 up_read(&space_info->groups_sem);
ccf0e725 6953 } else {
b742bb82 6954 index = get_block_group_index(block_group);
e570fd27 6955 btrfs_lock_block_group(block_group, delalloc);
44fb5511 6956 goto have_block_group;
ccf0e725 6957 }
2552d17e 6958 } else if (block_group) {
fa9c0d79 6959 btrfs_put_block_group(block_group);
2552d17e 6960 }
42e70e7a 6961 }
2552d17e 6962search:
60d2adbb 6963 have_caching_bg = false;
80eb234a 6964 down_read(&space_info->groups_sem);
b742bb82
YZ
6965 list_for_each_entry(block_group, &space_info->block_groups[index],
6966 list) {
6226cb0a 6967 u64 offset;
817d52f8 6968 int cached;
8a1413a2 6969
e570fd27 6970 btrfs_grab_block_group(block_group, delalloc);
2552d17e 6971 search_start = block_group->key.objectid;
42e70e7a 6972
83a50de9
CM
6973 /*
6974 * this can happen if we end up cycling through all the
6975 * raid types, but we want to make sure we only allocate
6976 * for the proper type.
6977 */
b6919a58 6978 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
6979 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6980 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
6981 BTRFS_BLOCK_GROUP_RAID5 |
6982 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
6983 BTRFS_BLOCK_GROUP_RAID10;
6984
6985 /*
6986 * if they asked for extra copies and this block group
6987 * doesn't provide them, bail. This does allow us to
6988 * fill raid0 from raid1.
6989 */
b6919a58 6990 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
6991 goto loop;
6992 }
6993
2552d17e 6994have_block_group:
291c7d2f
JB
6995 cached = block_group_cache_done(block_group);
6996 if (unlikely(!cached)) {
f6373bf3 6997 ret = cache_block_group(block_group, 0);
1d4284bd
CM
6998 BUG_ON(ret < 0);
6999 ret = 0;
817d52f8
JB
7000 }
7001
36cce922
JB
7002 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7003 goto loop;
ea6a478e 7004 if (unlikely(block_group->ro))
2552d17e 7005 goto loop;
0f9dd46c 7006
0a24325e 7007 /*
062c05c4
AO
7008 * Ok we want to try and use the cluster allocator, so
7009 * lets look there
0a24325e 7010 */
062c05c4 7011 if (last_ptr) {
215a63d1 7012 struct btrfs_block_group_cache *used_block_group;
8de972b4 7013 unsigned long aligned_cluster;
fa9c0d79
CM
7014 /*
7015 * the refill lock keeps out other
7016 * people trying to start a new cluster
7017 */
e570fd27
MX
7018 used_block_group = btrfs_lock_cluster(block_group,
7019 last_ptr,
7020 delalloc);
7021 if (!used_block_group)
44fb5511 7022 goto refill_cluster;
274bd4fb 7023
e570fd27
MX
7024 if (used_block_group != block_group &&
7025 (used_block_group->ro ||
7026 !block_group_bits(used_block_group, flags)))
7027 goto release_cluster;
44fb5511 7028
274bd4fb 7029 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7030 last_ptr,
7031 num_bytes,
7032 used_block_group->key.objectid,
7033 &max_extent_size);
fa9c0d79
CM
7034 if (offset) {
7035 /* we have a block, we're done */
7036 spin_unlock(&last_ptr->refill_lock);
3f7de037 7037 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7038 used_block_group,
7039 search_start, num_bytes);
215a63d1 7040 if (used_block_group != block_group) {
e570fd27
MX
7041 btrfs_release_block_group(block_group,
7042 delalloc);
215a63d1
MX
7043 block_group = used_block_group;
7044 }
fa9c0d79
CM
7045 goto checks;
7046 }
7047
274bd4fb 7048 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7049release_cluster:
062c05c4
AO
7050 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7051 * set up a new clusters, so lets just skip it
7052 * and let the allocator find whatever block
7053 * it can find. If we reach this point, we
7054 * will have tried the cluster allocator
7055 * plenty of times and not have found
7056 * anything, so we are likely way too
7057 * fragmented for the clustering stuff to find
a5f6f719
AO
7058 * anything.
7059 *
7060 * However, if the cluster is taken from the
7061 * current block group, release the cluster
7062 * first, so that we stand a better chance of
7063 * succeeding in the unclustered
7064 * allocation. */
7065 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7066 used_block_group != block_group) {
062c05c4 7067 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7068 btrfs_release_block_group(used_block_group,
7069 delalloc);
062c05c4
AO
7070 goto unclustered_alloc;
7071 }
7072
fa9c0d79
CM
7073 /*
7074 * this cluster didn't work out, free it and
7075 * start over
7076 */
7077 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7078
e570fd27
MX
7079 if (used_block_group != block_group)
7080 btrfs_release_block_group(used_block_group,
7081 delalloc);
7082refill_cluster:
a5f6f719
AO
7083 if (loop >= LOOP_NO_EMPTY_SIZE) {
7084 spin_unlock(&last_ptr->refill_lock);
7085 goto unclustered_alloc;
7086 }
7087
8de972b4
CM
7088 aligned_cluster = max_t(unsigned long,
7089 empty_cluster + empty_size,
7090 block_group->full_stripe_len);
7091
fa9c0d79 7092 /* allocate a cluster in this block group */
00361589
JB
7093 ret = btrfs_find_space_cluster(root, block_group,
7094 last_ptr, search_start,
7095 num_bytes,
7096 aligned_cluster);
fa9c0d79
CM
7097 if (ret == 0) {
7098 /*
7099 * now pull our allocation out of this
7100 * cluster
7101 */
7102 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7103 last_ptr,
7104 num_bytes,
7105 search_start,
7106 &max_extent_size);
fa9c0d79
CM
7107 if (offset) {
7108 /* we found one, proceed */
7109 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7110 trace_btrfs_reserve_extent_cluster(root,
7111 block_group, search_start,
7112 num_bytes);
fa9c0d79
CM
7113 goto checks;
7114 }
0a24325e
JB
7115 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7116 && !failed_cluster_refill) {
817d52f8
JB
7117 spin_unlock(&last_ptr->refill_lock);
7118
0a24325e 7119 failed_cluster_refill = true;
817d52f8
JB
7120 wait_block_group_cache_progress(block_group,
7121 num_bytes + empty_cluster + empty_size);
7122 goto have_block_group;
fa9c0d79 7123 }
817d52f8 7124
fa9c0d79
CM
7125 /*
7126 * at this point we either didn't find a cluster
7127 * or we weren't able to allocate a block from our
7128 * cluster. Free the cluster we've been trying
7129 * to use, and go to the next block group
7130 */
0a24325e 7131 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7132 spin_unlock(&last_ptr->refill_lock);
0a24325e 7133 goto loop;
fa9c0d79
CM
7134 }
7135
062c05c4 7136unclustered_alloc:
a5f6f719
AO
7137 spin_lock(&block_group->free_space_ctl->tree_lock);
7138 if (cached &&
7139 block_group->free_space_ctl->free_space <
7140 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7141 if (block_group->free_space_ctl->free_space >
7142 max_extent_size)
7143 max_extent_size =
7144 block_group->free_space_ctl->free_space;
a5f6f719
AO
7145 spin_unlock(&block_group->free_space_ctl->tree_lock);
7146 goto loop;
7147 }
7148 spin_unlock(&block_group->free_space_ctl->tree_lock);
7149
6226cb0a 7150 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7151 num_bytes, empty_size,
7152 &max_extent_size);
1cdda9b8
JB
7153 /*
7154 * If we didn't find a chunk, and we haven't failed on this
7155 * block group before, and this block group is in the middle of
7156 * caching and we are ok with waiting, then go ahead and wait
7157 * for progress to be made, and set failed_alloc to true.
7158 *
7159 * If failed_alloc is true then we've already waited on this
7160 * block group once and should move on to the next block group.
7161 */
7162 if (!offset && !failed_alloc && !cached &&
7163 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7164 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7165 num_bytes + empty_size);
7166 failed_alloc = true;
817d52f8 7167 goto have_block_group;
1cdda9b8 7168 } else if (!offset) {
60d2adbb
MX
7169 if (!cached)
7170 have_caching_bg = true;
1cdda9b8 7171 goto loop;
817d52f8 7172 }
fa9c0d79 7173checks:
4e54b17a 7174 search_start = ALIGN(offset, root->stripesize);
25179201 7175
2552d17e
JB
7176 /* move on to the next group */
7177 if (search_start + num_bytes >
215a63d1
MX
7178 block_group->key.objectid + block_group->key.offset) {
7179 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7180 goto loop;
6226cb0a 7181 }
f5a31e16 7182
f0486c68 7183 if (offset < search_start)
215a63d1 7184 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7185 search_start - offset);
7186 BUG_ON(offset > search_start);
2552d17e 7187
215a63d1 7188 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7189 alloc_type, delalloc);
f0486c68 7190 if (ret == -EAGAIN) {
215a63d1 7191 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7192 goto loop;
0f9dd46c 7193 }
0b86a832 7194
f0486c68 7195 /* we are all good, lets return */
2552d17e
JB
7196 ins->objectid = search_start;
7197 ins->offset = num_bytes;
d2fb3437 7198
3f7de037
JB
7199 trace_btrfs_reserve_extent(orig_root, block_group,
7200 search_start, num_bytes);
e570fd27 7201 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7202 break;
7203loop:
0a24325e 7204 failed_cluster_refill = false;
1cdda9b8 7205 failed_alloc = false;
b742bb82 7206 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7207 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7208 }
7209 up_read(&space_info->groups_sem);
7210
60d2adbb
MX
7211 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7212 goto search;
7213
b742bb82
YZ
7214 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7215 goto search;
7216
285ff5af 7217 /*
ccf0e725
JB
7218 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7219 * caching kthreads as we move along
817d52f8
JB
7220 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7221 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7222 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7223 * again
fa9c0d79 7224 */
723bda20 7225 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7226 index = 0;
723bda20 7227 loop++;
817d52f8 7228 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7229 struct btrfs_trans_handle *trans;
f017f15f
WS
7230 int exist = 0;
7231
7232 trans = current->journal_info;
7233 if (trans)
7234 exist = 1;
7235 else
7236 trans = btrfs_join_transaction(root);
00361589 7237
00361589
JB
7238 if (IS_ERR(trans)) {
7239 ret = PTR_ERR(trans);
7240 goto out;
7241 }
7242
b6919a58 7243 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7244 CHUNK_ALLOC_FORCE);
7245 /*
7246 * Do not bail out on ENOSPC since we
7247 * can do more things.
7248 */
00361589 7249 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7250 btrfs_abort_transaction(trans,
7251 root, ret);
00361589
JB
7252 else
7253 ret = 0;
f017f15f
WS
7254 if (!exist)
7255 btrfs_end_transaction(trans, root);
00361589 7256 if (ret)
ea658bad 7257 goto out;
2552d17e
JB
7258 }
7259
723bda20
JB
7260 if (loop == LOOP_NO_EMPTY_SIZE) {
7261 empty_size = 0;
7262 empty_cluster = 0;
fa9c0d79 7263 }
723bda20
JB
7264
7265 goto search;
2552d17e
JB
7266 } else if (!ins->objectid) {
7267 ret = -ENOSPC;
d82a6f1d 7268 } else if (ins->objectid) {
80eb234a 7269 ret = 0;
be744175 7270 }
79787eaa 7271out:
a4820398
MX
7272 if (ret == -ENOSPC)
7273 ins->offset = max_extent_size;
0f70abe2 7274 return ret;
fec577fb 7275}
ec44a35c 7276
9ed74f2d
JB
7277static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7278 int dump_block_groups)
0f9dd46c
JB
7279{
7280 struct btrfs_block_group_cache *cache;
b742bb82 7281 int index = 0;
0f9dd46c 7282
9ed74f2d 7283 spin_lock(&info->lock);
efe120a0 7284 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7285 info->flags,
7286 info->total_bytes - info->bytes_used - info->bytes_pinned -
7287 info->bytes_reserved - info->bytes_readonly,
d397712b 7288 (info->full) ? "" : "not ");
efe120a0 7289 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7290 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7291 info->total_bytes, info->bytes_used, info->bytes_pinned,
7292 info->bytes_reserved, info->bytes_may_use,
7293 info->bytes_readonly);
9ed74f2d
JB
7294 spin_unlock(&info->lock);
7295
7296 if (!dump_block_groups)
7297 return;
0f9dd46c 7298
80eb234a 7299 down_read(&info->groups_sem);
b742bb82
YZ
7300again:
7301 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7302 spin_lock(&cache->lock);
efe120a0
FH
7303 printk(KERN_INFO "BTRFS: "
7304 "block group %llu has %llu bytes, "
7305 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7306 cache->key.objectid, cache->key.offset,
7307 btrfs_block_group_used(&cache->item), cache->pinned,
7308 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7309 btrfs_dump_free_space(cache, bytes);
7310 spin_unlock(&cache->lock);
7311 }
b742bb82
YZ
7312 if (++index < BTRFS_NR_RAID_TYPES)
7313 goto again;
80eb234a 7314 up_read(&info->groups_sem);
0f9dd46c 7315}
e8569813 7316
00361589 7317int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7318 u64 num_bytes, u64 min_alloc_size,
7319 u64 empty_size, u64 hint_byte,
e570fd27 7320 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7321{
9e622d6b 7322 bool final_tried = false;
b6919a58 7323 u64 flags;
fec577fb 7324 int ret;
925baedd 7325
b6919a58 7326 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7327again:
db94535d 7328 WARN_ON(num_bytes < root->sectorsize);
00361589 7329 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7330 flags, delalloc);
3b951516 7331
9e622d6b 7332 if (ret == -ENOSPC) {
a4820398
MX
7333 if (!final_tried && ins->offset) {
7334 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7335 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7336 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7337 if (num_bytes == min_alloc_size)
7338 final_tried = true;
7339 goto again;
7340 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7341 struct btrfs_space_info *sinfo;
7342
b6919a58 7343 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7344 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7345 flags, num_bytes);
53804280
JM
7346 if (sinfo)
7347 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7348 }
925baedd 7349 }
0f9dd46c
JB
7350
7351 return ret;
e6dcd2dc
CM
7352}
7353
e688b725 7354static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7355 u64 start, u64 len,
7356 int pin, int delalloc)
65b51a00 7357{
0f9dd46c 7358 struct btrfs_block_group_cache *cache;
1f3c79a2 7359 int ret = 0;
0f9dd46c 7360
0f9dd46c
JB
7361 cache = btrfs_lookup_block_group(root->fs_info, start);
7362 if (!cache) {
c2cf52eb 7363 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7364 start);
0f9dd46c
JB
7365 return -ENOSPC;
7366 }
1f3c79a2 7367
e688b725
CM
7368 if (pin)
7369 pin_down_extent(root, cache, start, len, 1);
7370 else {
dcc82f47
FM
7371 if (btrfs_test_opt(root, DISCARD))
7372 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7373 btrfs_add_free_space(cache, start, len);
e570fd27 7374 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7375 }
31193213 7376
fa9c0d79 7377 btrfs_put_block_group(cache);
817d52f8 7378
1abe9b8a 7379 trace_btrfs_reserved_extent_free(root, start, len);
7380
e6dcd2dc
CM
7381 return ret;
7382}
7383
e688b725 7384int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7385 u64 start, u64 len, int delalloc)
e688b725 7386{
e570fd27 7387 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7388}
7389
7390int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7391 u64 start, u64 len)
7392{
e570fd27 7393 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7394}
7395
5d4f98a2
YZ
7396static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7397 struct btrfs_root *root,
7398 u64 parent, u64 root_objectid,
7399 u64 flags, u64 owner, u64 offset,
7400 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7401{
7402 int ret;
5d4f98a2 7403 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7404 struct btrfs_extent_item *extent_item;
5d4f98a2 7405 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7406 struct btrfs_path *path;
5d4f98a2
YZ
7407 struct extent_buffer *leaf;
7408 int type;
7409 u32 size;
26b8003f 7410
5d4f98a2
YZ
7411 if (parent > 0)
7412 type = BTRFS_SHARED_DATA_REF_KEY;
7413 else
7414 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7415
5d4f98a2 7416 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7417
7418 path = btrfs_alloc_path();
db5b493a
TI
7419 if (!path)
7420 return -ENOMEM;
47e4bb98 7421
b9473439 7422 path->leave_spinning = 1;
5d4f98a2
YZ
7423 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7424 ins, size);
79787eaa
JM
7425 if (ret) {
7426 btrfs_free_path(path);
7427 return ret;
7428 }
0f9dd46c 7429
5d4f98a2
YZ
7430 leaf = path->nodes[0];
7431 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7432 struct btrfs_extent_item);
5d4f98a2
YZ
7433 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7434 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7435 btrfs_set_extent_flags(leaf, extent_item,
7436 flags | BTRFS_EXTENT_FLAG_DATA);
7437
7438 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7439 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7440 if (parent > 0) {
7441 struct btrfs_shared_data_ref *ref;
7442 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7443 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7444 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7445 } else {
7446 struct btrfs_extent_data_ref *ref;
7447 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7448 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7449 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7450 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7451 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7452 }
47e4bb98
CM
7453
7454 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7455 btrfs_free_path(path);
f510cfec 7456
ce93ec54 7457 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7458 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7459 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7460 ins->objectid, ins->offset);
f5947066
CM
7461 BUG();
7462 }
0be5dc67 7463 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7464 return ret;
7465}
7466
5d4f98a2
YZ
7467static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7468 struct btrfs_root *root,
7469 u64 parent, u64 root_objectid,
7470 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7471 int level, struct btrfs_key *ins,
7472 int no_quota)
e6dcd2dc
CM
7473{
7474 int ret;
5d4f98a2
YZ
7475 struct btrfs_fs_info *fs_info = root->fs_info;
7476 struct btrfs_extent_item *extent_item;
7477 struct btrfs_tree_block_info *block_info;
7478 struct btrfs_extent_inline_ref *iref;
7479 struct btrfs_path *path;
7480 struct extent_buffer *leaf;
3173a18f 7481 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7482 u64 num_bytes = ins->offset;
3173a18f
JB
7483 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7484 SKINNY_METADATA);
7485
7486 if (!skinny_metadata)
7487 size += sizeof(*block_info);
1c2308f8 7488
5d4f98a2 7489 path = btrfs_alloc_path();
857cc2fc
JB
7490 if (!path) {
7491 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7492 root->nodesize);
d8926bb3 7493 return -ENOMEM;
857cc2fc 7494 }
56bec294 7495
5d4f98a2
YZ
7496 path->leave_spinning = 1;
7497 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7498 ins, size);
79787eaa 7499 if (ret) {
dd825259 7500 btrfs_free_path(path);
857cc2fc 7501 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7502 root->nodesize);
79787eaa
JM
7503 return ret;
7504 }
5d4f98a2
YZ
7505
7506 leaf = path->nodes[0];
7507 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7508 struct btrfs_extent_item);
7509 btrfs_set_extent_refs(leaf, extent_item, 1);
7510 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7511 btrfs_set_extent_flags(leaf, extent_item,
7512 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7513
3173a18f
JB
7514 if (skinny_metadata) {
7515 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7516 num_bytes = root->nodesize;
3173a18f
JB
7517 } else {
7518 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7519 btrfs_set_tree_block_key(leaf, block_info, key);
7520 btrfs_set_tree_block_level(leaf, block_info, level);
7521 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7522 }
5d4f98a2 7523
5d4f98a2
YZ
7524 if (parent > 0) {
7525 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7526 btrfs_set_extent_inline_ref_type(leaf, iref,
7527 BTRFS_SHARED_BLOCK_REF_KEY);
7528 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7529 } else {
7530 btrfs_set_extent_inline_ref_type(leaf, iref,
7531 BTRFS_TREE_BLOCK_REF_KEY);
7532 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7533 }
7534
7535 btrfs_mark_buffer_dirty(leaf);
7536 btrfs_free_path(path);
7537
ce93ec54
JB
7538 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7539 1);
79787eaa 7540 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7541 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7542 ins->objectid, ins->offset);
5d4f98a2
YZ
7543 BUG();
7544 }
0be5dc67 7545
707e8a07 7546 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7547 return ret;
7548}
7549
7550int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7551 struct btrfs_root *root,
7552 u64 root_objectid, u64 owner,
7553 u64 offset, struct btrfs_key *ins)
7554{
7555 int ret;
7556
7557 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7558
66d7e7f0
AJ
7559 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7560 ins->offset, 0,
7561 root_objectid, owner, offset,
7562 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7563 return ret;
7564}
e02119d5
CM
7565
7566/*
7567 * this is used by the tree logging recovery code. It records that
7568 * an extent has been allocated and makes sure to clear the free
7569 * space cache bits as well
7570 */
5d4f98a2
YZ
7571int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7572 struct btrfs_root *root,
7573 u64 root_objectid, u64 owner, u64 offset,
7574 struct btrfs_key *ins)
e02119d5
CM
7575{
7576 int ret;
7577 struct btrfs_block_group_cache *block_group;
11833d66 7578
8c2a1a30
JB
7579 /*
7580 * Mixed block groups will exclude before processing the log so we only
7581 * need to do the exlude dance if this fs isn't mixed.
7582 */
7583 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7584 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7585 if (ret)
8c2a1a30 7586 return ret;
11833d66
YZ
7587 }
7588
8c2a1a30
JB
7589 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7590 if (!block_group)
7591 return -EINVAL;
7592
fb25e914 7593 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7594 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7595 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7596 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7597 0, owner, offset, ins, 1);
b50c6e25 7598 btrfs_put_block_group(block_group);
e02119d5
CM
7599 return ret;
7600}
7601
48a3b636
ES
7602static struct extent_buffer *
7603btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7604 u64 bytenr, int level)
65b51a00
CM
7605{
7606 struct extent_buffer *buf;
7607
a83fffb7 7608 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7609 if (!buf)
7610 return ERR_PTR(-ENOMEM);
7611 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7612 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7613 btrfs_tree_lock(buf);
01d58472 7614 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7615 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7616
7617 btrfs_set_lock_blocking(buf);
65b51a00 7618 btrfs_set_buffer_uptodate(buf);
b4ce94de 7619
d0c803c4 7620 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7621 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7622 /*
7623 * we allow two log transactions at a time, use different
7624 * EXENT bit to differentiate dirty pages.
7625 */
656f30db 7626 if (buf->log_index == 0)
8cef4e16
YZ
7627 set_extent_dirty(&root->dirty_log_pages, buf->start,
7628 buf->start + buf->len - 1, GFP_NOFS);
7629 else
7630 set_extent_new(&root->dirty_log_pages, buf->start,
7631 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7632 } else {
656f30db 7633 buf->log_index = -1;
d0c803c4 7634 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7635 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7636 }
65b51a00 7637 trans->blocks_used++;
b4ce94de 7638 /* this returns a buffer locked for blocking */
65b51a00
CM
7639 return buf;
7640}
7641
f0486c68
YZ
7642static struct btrfs_block_rsv *
7643use_block_rsv(struct btrfs_trans_handle *trans,
7644 struct btrfs_root *root, u32 blocksize)
7645{
7646 struct btrfs_block_rsv *block_rsv;
68a82277 7647 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7648 int ret;
d88033db 7649 bool global_updated = false;
f0486c68
YZ
7650
7651 block_rsv = get_block_rsv(trans, root);
7652
b586b323
MX
7653 if (unlikely(block_rsv->size == 0))
7654 goto try_reserve;
d88033db 7655again:
f0486c68
YZ
7656 ret = block_rsv_use_bytes(block_rsv, blocksize);
7657 if (!ret)
7658 return block_rsv;
7659
b586b323
MX
7660 if (block_rsv->failfast)
7661 return ERR_PTR(ret);
7662
d88033db
MX
7663 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7664 global_updated = true;
7665 update_global_block_rsv(root->fs_info);
7666 goto again;
7667 }
7668
b586b323
MX
7669 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7670 static DEFINE_RATELIMIT_STATE(_rs,
7671 DEFAULT_RATELIMIT_INTERVAL * 10,
7672 /*DEFAULT_RATELIMIT_BURST*/ 1);
7673 if (__ratelimit(&_rs))
7674 WARN(1, KERN_DEBUG
efe120a0 7675 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7676 }
7677try_reserve:
7678 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7679 BTRFS_RESERVE_NO_FLUSH);
7680 if (!ret)
7681 return block_rsv;
7682 /*
7683 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7684 * the global reserve if its space type is the same as the global
7685 * reservation.
b586b323 7686 */
5881cfc9
MX
7687 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7688 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7689 ret = block_rsv_use_bytes(global_rsv, blocksize);
7690 if (!ret)
7691 return global_rsv;
7692 }
7693 return ERR_PTR(ret);
f0486c68
YZ
7694}
7695
8c2a3ca2
JB
7696static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7697 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7698{
7699 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7700 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7701}
7702
fec577fb 7703/*
f0486c68 7704 * finds a free extent and does all the dirty work required for allocation
67b7859e 7705 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7706 */
4d75f8a9
DS
7707struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7708 struct btrfs_root *root,
5d4f98a2
YZ
7709 u64 parent, u64 root_objectid,
7710 struct btrfs_disk_key *key, int level,
5581a51a 7711 u64 hint, u64 empty_size)
fec577fb 7712{
e2fa7227 7713 struct btrfs_key ins;
f0486c68 7714 struct btrfs_block_rsv *block_rsv;
5f39d397 7715 struct extent_buffer *buf;
67b7859e 7716 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7717 u64 flags = 0;
7718 int ret;
4d75f8a9 7719 u32 blocksize = root->nodesize;
3173a18f
JB
7720 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7721 SKINNY_METADATA);
fec577fb 7722
fccb84c9 7723 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7724 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7725 level);
faa2dbf0
JB
7726 if (!IS_ERR(buf))
7727 root->alloc_bytenr += blocksize;
7728 return buf;
7729 }
fccb84c9 7730
f0486c68
YZ
7731 block_rsv = use_block_rsv(trans, root, blocksize);
7732 if (IS_ERR(block_rsv))
7733 return ERR_CAST(block_rsv);
7734
00361589 7735 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7736 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7737 if (ret)
7738 goto out_unuse;
55c69072 7739
fe864576 7740 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7741 if (IS_ERR(buf)) {
7742 ret = PTR_ERR(buf);
7743 goto out_free_reserved;
7744 }
f0486c68
YZ
7745
7746 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7747 if (parent == 0)
7748 parent = ins.objectid;
7749 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7750 } else
7751 BUG_ON(parent > 0);
7752
7753 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7754 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7755 if (!extent_op) {
7756 ret = -ENOMEM;
7757 goto out_free_buf;
7758 }
f0486c68
YZ
7759 if (key)
7760 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7761 else
7762 memset(&extent_op->key, 0, sizeof(extent_op->key));
7763 extent_op->flags_to_set = flags;
3173a18f
JB
7764 if (skinny_metadata)
7765 extent_op->update_key = 0;
7766 else
7767 extent_op->update_key = 1;
f0486c68
YZ
7768 extent_op->update_flags = 1;
7769 extent_op->is_data = 0;
b1c79e09 7770 extent_op->level = level;
f0486c68 7771
66d7e7f0 7772 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7773 ins.objectid, ins.offset,
7774 parent, root_objectid, level,
7775 BTRFS_ADD_DELAYED_EXTENT,
7776 extent_op, 0);
7777 if (ret)
7778 goto out_free_delayed;
f0486c68 7779 }
fec577fb 7780 return buf;
67b7859e
OS
7781
7782out_free_delayed:
7783 btrfs_free_delayed_extent_op(extent_op);
7784out_free_buf:
7785 free_extent_buffer(buf);
7786out_free_reserved:
7787 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7788out_unuse:
7789 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7790 return ERR_PTR(ret);
fec577fb 7791}
a28ec197 7792
2c47e605
YZ
7793struct walk_control {
7794 u64 refs[BTRFS_MAX_LEVEL];
7795 u64 flags[BTRFS_MAX_LEVEL];
7796 struct btrfs_key update_progress;
7797 int stage;
7798 int level;
7799 int shared_level;
7800 int update_ref;
7801 int keep_locks;
1c4850e2
YZ
7802 int reada_slot;
7803 int reada_count;
66d7e7f0 7804 int for_reloc;
2c47e605
YZ
7805};
7806
7807#define DROP_REFERENCE 1
7808#define UPDATE_BACKREF 2
7809
1c4850e2
YZ
7810static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7811 struct btrfs_root *root,
7812 struct walk_control *wc,
7813 struct btrfs_path *path)
6407bf6d 7814{
1c4850e2
YZ
7815 u64 bytenr;
7816 u64 generation;
7817 u64 refs;
94fcca9f 7818 u64 flags;
5d4f98a2 7819 u32 nritems;
1c4850e2
YZ
7820 u32 blocksize;
7821 struct btrfs_key key;
7822 struct extent_buffer *eb;
6407bf6d 7823 int ret;
1c4850e2
YZ
7824 int slot;
7825 int nread = 0;
6407bf6d 7826
1c4850e2
YZ
7827 if (path->slots[wc->level] < wc->reada_slot) {
7828 wc->reada_count = wc->reada_count * 2 / 3;
7829 wc->reada_count = max(wc->reada_count, 2);
7830 } else {
7831 wc->reada_count = wc->reada_count * 3 / 2;
7832 wc->reada_count = min_t(int, wc->reada_count,
7833 BTRFS_NODEPTRS_PER_BLOCK(root));
7834 }
7bb86316 7835
1c4850e2
YZ
7836 eb = path->nodes[wc->level];
7837 nritems = btrfs_header_nritems(eb);
707e8a07 7838 blocksize = root->nodesize;
bd56b302 7839
1c4850e2
YZ
7840 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7841 if (nread >= wc->reada_count)
7842 break;
bd56b302 7843
2dd3e67b 7844 cond_resched();
1c4850e2
YZ
7845 bytenr = btrfs_node_blockptr(eb, slot);
7846 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7847
1c4850e2
YZ
7848 if (slot == path->slots[wc->level])
7849 goto reada;
5d4f98a2 7850
1c4850e2
YZ
7851 if (wc->stage == UPDATE_BACKREF &&
7852 generation <= root->root_key.offset)
bd56b302
CM
7853 continue;
7854
94fcca9f 7855 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7856 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7857 wc->level - 1, 1, &refs,
7858 &flags);
79787eaa
JM
7859 /* We don't care about errors in readahead. */
7860 if (ret < 0)
7861 continue;
94fcca9f
YZ
7862 BUG_ON(refs == 0);
7863
1c4850e2 7864 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7865 if (refs == 1)
7866 goto reada;
bd56b302 7867
94fcca9f
YZ
7868 if (wc->level == 1 &&
7869 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7870 continue;
1c4850e2
YZ
7871 if (!wc->update_ref ||
7872 generation <= root->root_key.offset)
7873 continue;
7874 btrfs_node_key_to_cpu(eb, &key, slot);
7875 ret = btrfs_comp_cpu_keys(&key,
7876 &wc->update_progress);
7877 if (ret < 0)
7878 continue;
94fcca9f
YZ
7879 } else {
7880 if (wc->level == 1 &&
7881 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7882 continue;
6407bf6d 7883 }
1c4850e2 7884reada:
d3e46fea 7885 readahead_tree_block(root, bytenr);
1c4850e2 7886 nread++;
20524f02 7887 }
1c4850e2 7888 wc->reada_slot = slot;
20524f02 7889}
2c47e605 7890
0ed4792a
QW
7891/*
7892 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7893 * for later qgroup accounting.
7894 *
7895 * Current, this function does nothing.
7896 */
1152651a
MF
7897static int account_leaf_items(struct btrfs_trans_handle *trans,
7898 struct btrfs_root *root,
7899 struct extent_buffer *eb)
7900{
7901 int nr = btrfs_header_nritems(eb);
0ed4792a 7902 int i, extent_type;
1152651a
MF
7903 struct btrfs_key key;
7904 struct btrfs_file_extent_item *fi;
7905 u64 bytenr, num_bytes;
7906
7907 for (i = 0; i < nr; i++) {
7908 btrfs_item_key_to_cpu(eb, &key, i);
7909
7910 if (key.type != BTRFS_EXTENT_DATA_KEY)
7911 continue;
7912
7913 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7914 /* filter out non qgroup-accountable extents */
7915 extent_type = btrfs_file_extent_type(eb, fi);
7916
7917 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7918 continue;
7919
7920 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7921 if (!bytenr)
7922 continue;
7923
7924 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
1152651a
MF
7925 }
7926 return 0;
7927}
7928
7929/*
7930 * Walk up the tree from the bottom, freeing leaves and any interior
7931 * nodes which have had all slots visited. If a node (leaf or
7932 * interior) is freed, the node above it will have it's slot
7933 * incremented. The root node will never be freed.
7934 *
7935 * At the end of this function, we should have a path which has all
7936 * slots incremented to the next position for a search. If we need to
7937 * read a new node it will be NULL and the node above it will have the
7938 * correct slot selected for a later read.
7939 *
7940 * If we increment the root nodes slot counter past the number of
7941 * elements, 1 is returned to signal completion of the search.
7942 */
7943static int adjust_slots_upwards(struct btrfs_root *root,
7944 struct btrfs_path *path, int root_level)
7945{
7946 int level = 0;
7947 int nr, slot;
7948 struct extent_buffer *eb;
7949
7950 if (root_level == 0)
7951 return 1;
7952
7953 while (level <= root_level) {
7954 eb = path->nodes[level];
7955 nr = btrfs_header_nritems(eb);
7956 path->slots[level]++;
7957 slot = path->slots[level];
7958 if (slot >= nr || level == 0) {
7959 /*
7960 * Don't free the root - we will detect this
7961 * condition after our loop and return a
7962 * positive value for caller to stop walking the tree.
7963 */
7964 if (level != root_level) {
7965 btrfs_tree_unlock_rw(eb, path->locks[level]);
7966 path->locks[level] = 0;
7967
7968 free_extent_buffer(eb);
7969 path->nodes[level] = NULL;
7970 path->slots[level] = 0;
7971 }
7972 } else {
7973 /*
7974 * We have a valid slot to walk back down
7975 * from. Stop here so caller can process these
7976 * new nodes.
7977 */
7978 break;
7979 }
7980
7981 level++;
7982 }
7983
7984 eb = path->nodes[root_level];
7985 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7986 return 1;
7987
7988 return 0;
7989}
7990
7991/*
7992 * root_eb is the subtree root and is locked before this function is called.
0ed4792a
QW
7993 * TODO: Modify this function to mark all (including complete shared node)
7994 * to dirty_extent_root to allow it get accounted in qgroup.
1152651a
MF
7995 */
7996static int account_shared_subtree(struct btrfs_trans_handle *trans,
7997 struct btrfs_root *root,
7998 struct extent_buffer *root_eb,
7999 u64 root_gen,
8000 int root_level)
8001{
8002 int ret = 0;
8003 int level;
8004 struct extent_buffer *eb = root_eb;
8005 struct btrfs_path *path = NULL;
8006
8007 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8008 BUG_ON(root_eb == NULL);
8009
8010 if (!root->fs_info->quota_enabled)
8011 return 0;
8012
8013 if (!extent_buffer_uptodate(root_eb)) {
8014 ret = btrfs_read_buffer(root_eb, root_gen);
8015 if (ret)
8016 goto out;
8017 }
8018
8019 if (root_level == 0) {
8020 ret = account_leaf_items(trans, root, root_eb);
8021 goto out;
8022 }
8023
8024 path = btrfs_alloc_path();
8025 if (!path)
8026 return -ENOMEM;
8027
8028 /*
8029 * Walk down the tree. Missing extent blocks are filled in as
8030 * we go. Metadata is accounted every time we read a new
8031 * extent block.
8032 *
8033 * When we reach a leaf, we account for file extent items in it,
8034 * walk back up the tree (adjusting slot pointers as we go)
8035 * and restart the search process.
8036 */
8037 extent_buffer_get(root_eb); /* For path */
8038 path->nodes[root_level] = root_eb;
8039 path->slots[root_level] = 0;
8040 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8041walk_down:
8042 level = root_level;
8043 while (level >= 0) {
8044 if (path->nodes[level] == NULL) {
1152651a
MF
8045 int parent_slot;
8046 u64 child_gen;
8047 u64 child_bytenr;
8048
8049 /* We need to get child blockptr/gen from
8050 * parent before we can read it. */
8051 eb = path->nodes[level + 1];
8052 parent_slot = path->slots[level + 1];
8053 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8054 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8055
ce86cd59 8056 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8057 if (IS_ERR(eb)) {
8058 ret = PTR_ERR(eb);
8059 goto out;
8060 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8061 free_extent_buffer(eb);
64c043de 8062 ret = -EIO;
1152651a
MF
8063 goto out;
8064 }
8065
8066 path->nodes[level] = eb;
8067 path->slots[level] = 0;
8068
8069 btrfs_tree_read_lock(eb);
8070 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8071 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1152651a
MF
8072 }
8073
8074 if (level == 0) {
8075 ret = account_leaf_items(trans, root, path->nodes[level]);
8076 if (ret)
8077 goto out;
8078
8079 /* Nonzero return here means we completed our search */
8080 ret = adjust_slots_upwards(root, path, root_level);
8081 if (ret)
8082 break;
8083
8084 /* Restart search with new slots */
8085 goto walk_down;
8086 }
8087
8088 level--;
8089 }
8090
8091 ret = 0;
8092out:
8093 btrfs_free_path(path);
8094
8095 return ret;
8096}
8097
f82d02d9 8098/*
2c016dc2 8099 * helper to process tree block while walking down the tree.
2c47e605 8100 *
2c47e605
YZ
8101 * when wc->stage == UPDATE_BACKREF, this function updates
8102 * back refs for pointers in the block.
8103 *
8104 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8105 */
2c47e605 8106static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8107 struct btrfs_root *root,
2c47e605 8108 struct btrfs_path *path,
94fcca9f 8109 struct walk_control *wc, int lookup_info)
f82d02d9 8110{
2c47e605
YZ
8111 int level = wc->level;
8112 struct extent_buffer *eb = path->nodes[level];
2c47e605 8113 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8114 int ret;
8115
2c47e605
YZ
8116 if (wc->stage == UPDATE_BACKREF &&
8117 btrfs_header_owner(eb) != root->root_key.objectid)
8118 return 1;
f82d02d9 8119
2c47e605
YZ
8120 /*
8121 * when reference count of tree block is 1, it won't increase
8122 * again. once full backref flag is set, we never clear it.
8123 */
94fcca9f
YZ
8124 if (lookup_info &&
8125 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8126 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8127 BUG_ON(!path->locks[level]);
8128 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8129 eb->start, level, 1,
2c47e605
YZ
8130 &wc->refs[level],
8131 &wc->flags[level]);
79787eaa
JM
8132 BUG_ON(ret == -ENOMEM);
8133 if (ret)
8134 return ret;
2c47e605
YZ
8135 BUG_ON(wc->refs[level] == 0);
8136 }
5d4f98a2 8137
2c47e605
YZ
8138 if (wc->stage == DROP_REFERENCE) {
8139 if (wc->refs[level] > 1)
8140 return 1;
f82d02d9 8141
2c47e605 8142 if (path->locks[level] && !wc->keep_locks) {
bd681513 8143 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8144 path->locks[level] = 0;
8145 }
8146 return 0;
8147 }
f82d02d9 8148
2c47e605
YZ
8149 /* wc->stage == UPDATE_BACKREF */
8150 if (!(wc->flags[level] & flag)) {
8151 BUG_ON(!path->locks[level]);
e339a6b0 8152 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8153 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8154 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8155 BUG_ON(ret); /* -ENOMEM */
2c47e605 8156 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8157 eb->len, flag,
8158 btrfs_header_level(eb), 0);
79787eaa 8159 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8160 wc->flags[level] |= flag;
8161 }
8162
8163 /*
8164 * the block is shared by multiple trees, so it's not good to
8165 * keep the tree lock
8166 */
8167 if (path->locks[level] && level > 0) {
bd681513 8168 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8169 path->locks[level] = 0;
8170 }
8171 return 0;
8172}
8173
1c4850e2 8174/*
2c016dc2 8175 * helper to process tree block pointer.
1c4850e2
YZ
8176 *
8177 * when wc->stage == DROP_REFERENCE, this function checks
8178 * reference count of the block pointed to. if the block
8179 * is shared and we need update back refs for the subtree
8180 * rooted at the block, this function changes wc->stage to
8181 * UPDATE_BACKREF. if the block is shared and there is no
8182 * need to update back, this function drops the reference
8183 * to the block.
8184 *
8185 * NOTE: return value 1 means we should stop walking down.
8186 */
8187static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8188 struct btrfs_root *root,
8189 struct btrfs_path *path,
94fcca9f 8190 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8191{
8192 u64 bytenr;
8193 u64 generation;
8194 u64 parent;
8195 u32 blocksize;
8196 struct btrfs_key key;
8197 struct extent_buffer *next;
8198 int level = wc->level;
8199 int reada = 0;
8200 int ret = 0;
1152651a 8201 bool need_account = false;
1c4850e2
YZ
8202
8203 generation = btrfs_node_ptr_generation(path->nodes[level],
8204 path->slots[level]);
8205 /*
8206 * if the lower level block was created before the snapshot
8207 * was created, we know there is no need to update back refs
8208 * for the subtree
8209 */
8210 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8211 generation <= root->root_key.offset) {
8212 *lookup_info = 1;
1c4850e2 8213 return 1;
94fcca9f 8214 }
1c4850e2
YZ
8215
8216 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8217 blocksize = root->nodesize;
1c4850e2 8218
01d58472 8219 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8220 if (!next) {
a83fffb7 8221 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8222 if (!next)
8223 return -ENOMEM;
b2aaaa3b
JB
8224 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8225 level - 1);
1c4850e2
YZ
8226 reada = 1;
8227 }
8228 btrfs_tree_lock(next);
8229 btrfs_set_lock_blocking(next);
8230
3173a18f 8231 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8232 &wc->refs[level - 1],
8233 &wc->flags[level - 1]);
79787eaa
JM
8234 if (ret < 0) {
8235 btrfs_tree_unlock(next);
8236 return ret;
8237 }
8238
c2cf52eb
SK
8239 if (unlikely(wc->refs[level - 1] == 0)) {
8240 btrfs_err(root->fs_info, "Missing references.");
8241 BUG();
8242 }
94fcca9f 8243 *lookup_info = 0;
1c4850e2 8244
94fcca9f 8245 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8246 if (wc->refs[level - 1] > 1) {
1152651a 8247 need_account = true;
94fcca9f
YZ
8248 if (level == 1 &&
8249 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8250 goto skip;
8251
1c4850e2
YZ
8252 if (!wc->update_ref ||
8253 generation <= root->root_key.offset)
8254 goto skip;
8255
8256 btrfs_node_key_to_cpu(path->nodes[level], &key,
8257 path->slots[level]);
8258 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8259 if (ret < 0)
8260 goto skip;
8261
8262 wc->stage = UPDATE_BACKREF;
8263 wc->shared_level = level - 1;
8264 }
94fcca9f
YZ
8265 } else {
8266 if (level == 1 &&
8267 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8268 goto skip;
1c4850e2
YZ
8269 }
8270
b9fab919 8271 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8272 btrfs_tree_unlock(next);
8273 free_extent_buffer(next);
8274 next = NULL;
94fcca9f 8275 *lookup_info = 1;
1c4850e2
YZ
8276 }
8277
8278 if (!next) {
8279 if (reada && level == 1)
8280 reada_walk_down(trans, root, wc, path);
ce86cd59 8281 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8282 if (IS_ERR(next)) {
8283 return PTR_ERR(next);
8284 } else if (!extent_buffer_uptodate(next)) {
416bc658 8285 free_extent_buffer(next);
97d9a8a4 8286 return -EIO;
416bc658 8287 }
1c4850e2
YZ
8288 btrfs_tree_lock(next);
8289 btrfs_set_lock_blocking(next);
8290 }
8291
8292 level--;
8293 BUG_ON(level != btrfs_header_level(next));
8294 path->nodes[level] = next;
8295 path->slots[level] = 0;
bd681513 8296 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8297 wc->level = level;
8298 if (wc->level == 1)
8299 wc->reada_slot = 0;
8300 return 0;
8301skip:
8302 wc->refs[level - 1] = 0;
8303 wc->flags[level - 1] = 0;
94fcca9f
YZ
8304 if (wc->stage == DROP_REFERENCE) {
8305 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8306 parent = path->nodes[level]->start;
8307 } else {
8308 BUG_ON(root->root_key.objectid !=
8309 btrfs_header_owner(path->nodes[level]));
8310 parent = 0;
8311 }
1c4850e2 8312
1152651a
MF
8313 if (need_account) {
8314 ret = account_shared_subtree(trans, root, next,
8315 generation, level - 1);
8316 if (ret) {
94647322
DS
8317 btrfs_err_rl(root->fs_info,
8318 "Error "
1152651a 8319 "%d accounting shared subtree. Quota "
94647322
DS
8320 "is out of sync, rescan required.",
8321 ret);
1152651a
MF
8322 }
8323 }
94fcca9f 8324 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8325 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8326 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8327 }
1c4850e2
YZ
8328 btrfs_tree_unlock(next);
8329 free_extent_buffer(next);
94fcca9f 8330 *lookup_info = 1;
1c4850e2
YZ
8331 return 1;
8332}
8333
2c47e605 8334/*
2c016dc2 8335 * helper to process tree block while walking up the tree.
2c47e605
YZ
8336 *
8337 * when wc->stage == DROP_REFERENCE, this function drops
8338 * reference count on the block.
8339 *
8340 * when wc->stage == UPDATE_BACKREF, this function changes
8341 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8342 * to UPDATE_BACKREF previously while processing the block.
8343 *
8344 * NOTE: return value 1 means we should stop walking up.
8345 */
8346static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8347 struct btrfs_root *root,
8348 struct btrfs_path *path,
8349 struct walk_control *wc)
8350{
f0486c68 8351 int ret;
2c47e605
YZ
8352 int level = wc->level;
8353 struct extent_buffer *eb = path->nodes[level];
8354 u64 parent = 0;
8355
8356 if (wc->stage == UPDATE_BACKREF) {
8357 BUG_ON(wc->shared_level < level);
8358 if (level < wc->shared_level)
8359 goto out;
8360
2c47e605
YZ
8361 ret = find_next_key(path, level + 1, &wc->update_progress);
8362 if (ret > 0)
8363 wc->update_ref = 0;
8364
8365 wc->stage = DROP_REFERENCE;
8366 wc->shared_level = -1;
8367 path->slots[level] = 0;
8368
8369 /*
8370 * check reference count again if the block isn't locked.
8371 * we should start walking down the tree again if reference
8372 * count is one.
8373 */
8374 if (!path->locks[level]) {
8375 BUG_ON(level == 0);
8376 btrfs_tree_lock(eb);
8377 btrfs_set_lock_blocking(eb);
bd681513 8378 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8379
8380 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8381 eb->start, level, 1,
2c47e605
YZ
8382 &wc->refs[level],
8383 &wc->flags[level]);
79787eaa
JM
8384 if (ret < 0) {
8385 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8386 path->locks[level] = 0;
79787eaa
JM
8387 return ret;
8388 }
2c47e605
YZ
8389 BUG_ON(wc->refs[level] == 0);
8390 if (wc->refs[level] == 1) {
bd681513 8391 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8392 path->locks[level] = 0;
2c47e605
YZ
8393 return 1;
8394 }
f82d02d9 8395 }
2c47e605 8396 }
f82d02d9 8397
2c47e605
YZ
8398 /* wc->stage == DROP_REFERENCE */
8399 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8400
2c47e605
YZ
8401 if (wc->refs[level] == 1) {
8402 if (level == 0) {
8403 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8404 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8405 else
e339a6b0 8406 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8407 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8408 ret = account_leaf_items(trans, root, eb);
8409 if (ret) {
94647322
DS
8410 btrfs_err_rl(root->fs_info,
8411 "error "
1152651a 8412 "%d accounting leaf items. Quota "
94647322
DS
8413 "is out of sync, rescan required.",
8414 ret);
1152651a 8415 }
2c47e605
YZ
8416 }
8417 /* make block locked assertion in clean_tree_block happy */
8418 if (!path->locks[level] &&
8419 btrfs_header_generation(eb) == trans->transid) {
8420 btrfs_tree_lock(eb);
8421 btrfs_set_lock_blocking(eb);
bd681513 8422 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8423 }
01d58472 8424 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8425 }
8426
8427 if (eb == root->node) {
8428 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8429 parent = eb->start;
8430 else
8431 BUG_ON(root->root_key.objectid !=
8432 btrfs_header_owner(eb));
8433 } else {
8434 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8435 parent = path->nodes[level + 1]->start;
8436 else
8437 BUG_ON(root->root_key.objectid !=
8438 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8439 }
f82d02d9 8440
5581a51a 8441 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8442out:
8443 wc->refs[level] = 0;
8444 wc->flags[level] = 0;
f0486c68 8445 return 0;
2c47e605
YZ
8446}
8447
8448static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8449 struct btrfs_root *root,
8450 struct btrfs_path *path,
8451 struct walk_control *wc)
8452{
2c47e605 8453 int level = wc->level;
94fcca9f 8454 int lookup_info = 1;
2c47e605
YZ
8455 int ret;
8456
8457 while (level >= 0) {
94fcca9f 8458 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8459 if (ret > 0)
8460 break;
8461
8462 if (level == 0)
8463 break;
8464
7a7965f8
YZ
8465 if (path->slots[level] >=
8466 btrfs_header_nritems(path->nodes[level]))
8467 break;
8468
94fcca9f 8469 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8470 if (ret > 0) {
8471 path->slots[level]++;
8472 continue;
90d2c51d
MX
8473 } else if (ret < 0)
8474 return ret;
1c4850e2 8475 level = wc->level;
f82d02d9 8476 }
f82d02d9
YZ
8477 return 0;
8478}
8479
d397712b 8480static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8481 struct btrfs_root *root,
f82d02d9 8482 struct btrfs_path *path,
2c47e605 8483 struct walk_control *wc, int max_level)
20524f02 8484{
2c47e605 8485 int level = wc->level;
20524f02 8486 int ret;
9f3a7427 8487
2c47e605
YZ
8488 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8489 while (level < max_level && path->nodes[level]) {
8490 wc->level = level;
8491 if (path->slots[level] + 1 <
8492 btrfs_header_nritems(path->nodes[level])) {
8493 path->slots[level]++;
20524f02
CM
8494 return 0;
8495 } else {
2c47e605
YZ
8496 ret = walk_up_proc(trans, root, path, wc);
8497 if (ret > 0)
8498 return 0;
bd56b302 8499
2c47e605 8500 if (path->locks[level]) {
bd681513
CM
8501 btrfs_tree_unlock_rw(path->nodes[level],
8502 path->locks[level]);
2c47e605 8503 path->locks[level] = 0;
f82d02d9 8504 }
2c47e605
YZ
8505 free_extent_buffer(path->nodes[level]);
8506 path->nodes[level] = NULL;
8507 level++;
20524f02
CM
8508 }
8509 }
8510 return 1;
8511}
8512
9aca1d51 8513/*
2c47e605
YZ
8514 * drop a subvolume tree.
8515 *
8516 * this function traverses the tree freeing any blocks that only
8517 * referenced by the tree.
8518 *
8519 * when a shared tree block is found. this function decreases its
8520 * reference count by one. if update_ref is true, this function
8521 * also make sure backrefs for the shared block and all lower level
8522 * blocks are properly updated.
9d1a2a3a
DS
8523 *
8524 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8525 */
2c536799 8526int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8527 struct btrfs_block_rsv *block_rsv, int update_ref,
8528 int for_reloc)
20524f02 8529{
5caf2a00 8530 struct btrfs_path *path;
2c47e605
YZ
8531 struct btrfs_trans_handle *trans;
8532 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8533 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8534 struct walk_control *wc;
8535 struct btrfs_key key;
8536 int err = 0;
8537 int ret;
8538 int level;
d29a9f62 8539 bool root_dropped = false;
20524f02 8540
1152651a
MF
8541 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8542
5caf2a00 8543 path = btrfs_alloc_path();
cb1b69f4
TI
8544 if (!path) {
8545 err = -ENOMEM;
8546 goto out;
8547 }
20524f02 8548
2c47e605 8549 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8550 if (!wc) {
8551 btrfs_free_path(path);
cb1b69f4
TI
8552 err = -ENOMEM;
8553 goto out;
38a1a919 8554 }
2c47e605 8555
a22285a6 8556 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8557 if (IS_ERR(trans)) {
8558 err = PTR_ERR(trans);
8559 goto out_free;
8560 }
98d5dc13 8561
3fd0a558
YZ
8562 if (block_rsv)
8563 trans->block_rsv = block_rsv;
2c47e605 8564
9f3a7427 8565 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8566 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8567 path->nodes[level] = btrfs_lock_root_node(root);
8568 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8569 path->slots[level] = 0;
bd681513 8570 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8571 memset(&wc->update_progress, 0,
8572 sizeof(wc->update_progress));
9f3a7427 8573 } else {
9f3a7427 8574 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8575 memcpy(&wc->update_progress, &key,
8576 sizeof(wc->update_progress));
8577
6702ed49 8578 level = root_item->drop_level;
2c47e605 8579 BUG_ON(level == 0);
6702ed49 8580 path->lowest_level = level;
2c47e605
YZ
8581 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8582 path->lowest_level = 0;
8583 if (ret < 0) {
8584 err = ret;
79787eaa 8585 goto out_end_trans;
9f3a7427 8586 }
1c4850e2 8587 WARN_ON(ret > 0);
2c47e605 8588
7d9eb12c
CM
8589 /*
8590 * unlock our path, this is safe because only this
8591 * function is allowed to delete this snapshot
8592 */
5d4f98a2 8593 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8594
8595 level = btrfs_header_level(root->node);
8596 while (1) {
8597 btrfs_tree_lock(path->nodes[level]);
8598 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8599 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8600
8601 ret = btrfs_lookup_extent_info(trans, root,
8602 path->nodes[level]->start,
3173a18f 8603 level, 1, &wc->refs[level],
2c47e605 8604 &wc->flags[level]);
79787eaa
JM
8605 if (ret < 0) {
8606 err = ret;
8607 goto out_end_trans;
8608 }
2c47e605
YZ
8609 BUG_ON(wc->refs[level] == 0);
8610
8611 if (level == root_item->drop_level)
8612 break;
8613
8614 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8615 path->locks[level] = 0;
2c47e605
YZ
8616 WARN_ON(wc->refs[level] != 1);
8617 level--;
8618 }
9f3a7427 8619 }
2c47e605
YZ
8620
8621 wc->level = level;
8622 wc->shared_level = -1;
8623 wc->stage = DROP_REFERENCE;
8624 wc->update_ref = update_ref;
8625 wc->keep_locks = 0;
66d7e7f0 8626 wc->for_reloc = for_reloc;
1c4850e2 8627 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8628
d397712b 8629 while (1) {
9d1a2a3a 8630
2c47e605
YZ
8631 ret = walk_down_tree(trans, root, path, wc);
8632 if (ret < 0) {
8633 err = ret;
20524f02 8634 break;
2c47e605 8635 }
9aca1d51 8636
2c47e605
YZ
8637 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8638 if (ret < 0) {
8639 err = ret;
20524f02 8640 break;
2c47e605
YZ
8641 }
8642
8643 if (ret > 0) {
8644 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8645 break;
8646 }
2c47e605
YZ
8647
8648 if (wc->stage == DROP_REFERENCE) {
8649 level = wc->level;
8650 btrfs_node_key(path->nodes[level],
8651 &root_item->drop_progress,
8652 path->slots[level]);
8653 root_item->drop_level = level;
8654 }
8655
8656 BUG_ON(wc->level == 0);
3c8f2422
JB
8657 if (btrfs_should_end_transaction(trans, tree_root) ||
8658 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8659 ret = btrfs_update_root(trans, tree_root,
8660 &root->root_key,
8661 root_item);
79787eaa
JM
8662 if (ret) {
8663 btrfs_abort_transaction(trans, tree_root, ret);
8664 err = ret;
8665 goto out_end_trans;
8666 }
2c47e605 8667
3fd0a558 8668 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8669 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8670 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8671 err = -EAGAIN;
8672 goto out_free;
8673 }
8674
a22285a6 8675 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8676 if (IS_ERR(trans)) {
8677 err = PTR_ERR(trans);
8678 goto out_free;
8679 }
3fd0a558
YZ
8680 if (block_rsv)
8681 trans->block_rsv = block_rsv;
c3e69d58 8682 }
20524f02 8683 }
b3b4aa74 8684 btrfs_release_path(path);
79787eaa
JM
8685 if (err)
8686 goto out_end_trans;
2c47e605
YZ
8687
8688 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8689 if (ret) {
8690 btrfs_abort_transaction(trans, tree_root, ret);
8691 goto out_end_trans;
8692 }
2c47e605 8693
76dda93c 8694 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8695 ret = btrfs_find_root(tree_root, &root->root_key, path,
8696 NULL, NULL);
79787eaa
JM
8697 if (ret < 0) {
8698 btrfs_abort_transaction(trans, tree_root, ret);
8699 err = ret;
8700 goto out_end_trans;
8701 } else if (ret > 0) {
84cd948c
JB
8702 /* if we fail to delete the orphan item this time
8703 * around, it'll get picked up the next time.
8704 *
8705 * The most common failure here is just -ENOENT.
8706 */
8707 btrfs_del_orphan_item(trans, tree_root,
8708 root->root_key.objectid);
76dda93c
YZ
8709 }
8710 }
8711
27cdeb70 8712 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 8713 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
8714 } else {
8715 free_extent_buffer(root->node);
8716 free_extent_buffer(root->commit_root);
b0feb9d9 8717 btrfs_put_fs_root(root);
76dda93c 8718 }
d29a9f62 8719 root_dropped = true;
79787eaa 8720out_end_trans:
3fd0a558 8721 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8722out_free:
2c47e605 8723 kfree(wc);
5caf2a00 8724 btrfs_free_path(path);
cb1b69f4 8725out:
d29a9f62
JB
8726 /*
8727 * So if we need to stop dropping the snapshot for whatever reason we
8728 * need to make sure to add it back to the dead root list so that we
8729 * keep trying to do the work later. This also cleans up roots if we
8730 * don't have it in the radix (like when we recover after a power fail
8731 * or unmount) so we don't leak memory.
8732 */
b37b39cd 8733 if (!for_reloc && root_dropped == false)
d29a9f62 8734 btrfs_add_dead_root(root);
90515e7f 8735 if (err && err != -EAGAIN)
a4553fef 8736 btrfs_std_error(root->fs_info, err, NULL);
2c536799 8737 return err;
20524f02 8738}
9078a3e1 8739
2c47e605
YZ
8740/*
8741 * drop subtree rooted at tree block 'node'.
8742 *
8743 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8744 * only used by relocation code
2c47e605 8745 */
f82d02d9
YZ
8746int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8747 struct btrfs_root *root,
8748 struct extent_buffer *node,
8749 struct extent_buffer *parent)
8750{
8751 struct btrfs_path *path;
2c47e605 8752 struct walk_control *wc;
f82d02d9
YZ
8753 int level;
8754 int parent_level;
8755 int ret = 0;
8756 int wret;
8757
2c47e605
YZ
8758 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8759
f82d02d9 8760 path = btrfs_alloc_path();
db5b493a
TI
8761 if (!path)
8762 return -ENOMEM;
f82d02d9 8763
2c47e605 8764 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8765 if (!wc) {
8766 btrfs_free_path(path);
8767 return -ENOMEM;
8768 }
2c47e605 8769
b9447ef8 8770 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8771 parent_level = btrfs_header_level(parent);
8772 extent_buffer_get(parent);
8773 path->nodes[parent_level] = parent;
8774 path->slots[parent_level] = btrfs_header_nritems(parent);
8775
b9447ef8 8776 btrfs_assert_tree_locked(node);
f82d02d9 8777 level = btrfs_header_level(node);
f82d02d9
YZ
8778 path->nodes[level] = node;
8779 path->slots[level] = 0;
bd681513 8780 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8781
8782 wc->refs[parent_level] = 1;
8783 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8784 wc->level = level;
8785 wc->shared_level = -1;
8786 wc->stage = DROP_REFERENCE;
8787 wc->update_ref = 0;
8788 wc->keep_locks = 1;
66d7e7f0 8789 wc->for_reloc = 1;
1c4850e2 8790 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8791
8792 while (1) {
2c47e605
YZ
8793 wret = walk_down_tree(trans, root, path, wc);
8794 if (wret < 0) {
f82d02d9 8795 ret = wret;
f82d02d9 8796 break;
2c47e605 8797 }
f82d02d9 8798
2c47e605 8799 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8800 if (wret < 0)
8801 ret = wret;
8802 if (wret != 0)
8803 break;
8804 }
8805
2c47e605 8806 kfree(wc);
f82d02d9
YZ
8807 btrfs_free_path(path);
8808 return ret;
8809}
8810
ec44a35c
CM
8811static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8812{
8813 u64 num_devices;
fc67c450 8814 u64 stripped;
e4d8ec0f 8815
fc67c450
ID
8816 /*
8817 * if restripe for this chunk_type is on pick target profile and
8818 * return, otherwise do the usual balance
8819 */
8820 stripped = get_restripe_target(root->fs_info, flags);
8821 if (stripped)
8822 return extended_to_chunk(stripped);
e4d8ec0f 8823
95669976 8824 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8825
fc67c450 8826 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8827 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8828 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8829
ec44a35c
CM
8830 if (num_devices == 1) {
8831 stripped |= BTRFS_BLOCK_GROUP_DUP;
8832 stripped = flags & ~stripped;
8833
8834 /* turn raid0 into single device chunks */
8835 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8836 return stripped;
8837
8838 /* turn mirroring into duplication */
8839 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8840 BTRFS_BLOCK_GROUP_RAID10))
8841 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8842 } else {
8843 /* they already had raid on here, just return */
ec44a35c
CM
8844 if (flags & stripped)
8845 return flags;
8846
8847 stripped |= BTRFS_BLOCK_GROUP_DUP;
8848 stripped = flags & ~stripped;
8849
8850 /* switch duplicated blocks with raid1 */
8851 if (flags & BTRFS_BLOCK_GROUP_DUP)
8852 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8853
e3176ca2 8854 /* this is drive concat, leave it alone */
ec44a35c 8855 }
e3176ca2 8856
ec44a35c
CM
8857 return flags;
8858}
8859
868f401a 8860static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8861{
f0486c68
YZ
8862 struct btrfs_space_info *sinfo = cache->space_info;
8863 u64 num_bytes;
199c36ea 8864 u64 min_allocable_bytes;
f0486c68 8865 int ret = -ENOSPC;
0ef3e66b 8866
199c36ea
MX
8867 /*
8868 * We need some metadata space and system metadata space for
8869 * allocating chunks in some corner cases until we force to set
8870 * it to be readonly.
8871 */
8872 if ((sinfo->flags &
8873 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8874 !force)
8875 min_allocable_bytes = 1 * 1024 * 1024;
8876 else
8877 min_allocable_bytes = 0;
8878
f0486c68
YZ
8879 spin_lock(&sinfo->lock);
8880 spin_lock(&cache->lock);
61cfea9b
W
8881
8882 if (cache->ro) {
868f401a 8883 cache->ro++;
61cfea9b
W
8884 ret = 0;
8885 goto out;
8886 }
8887
f0486c68
YZ
8888 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8889 cache->bytes_super - btrfs_block_group_used(&cache->item);
8890
8891 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8892 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8893 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8894 sinfo->bytes_readonly += num_bytes;
868f401a 8895 cache->ro++;
633c0aad 8896 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8897 ret = 0;
8898 }
61cfea9b 8899out:
f0486c68
YZ
8900 spin_unlock(&cache->lock);
8901 spin_unlock(&sinfo->lock);
8902 return ret;
8903}
7d9eb12c 8904
868f401a 8905int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 8906 struct btrfs_block_group_cache *cache)
c286ac48 8907
f0486c68
YZ
8908{
8909 struct btrfs_trans_handle *trans;
8910 u64 alloc_flags;
8911 int ret;
7d9eb12c 8912
1bbc621e 8913again:
ff5714cc 8914 trans = btrfs_join_transaction(root);
79787eaa
JM
8915 if (IS_ERR(trans))
8916 return PTR_ERR(trans);
5d4f98a2 8917
1bbc621e
CM
8918 /*
8919 * we're not allowed to set block groups readonly after the dirty
8920 * block groups cache has started writing. If it already started,
8921 * back off and let this transaction commit
8922 */
8923 mutex_lock(&root->fs_info->ro_block_group_mutex);
8924 if (trans->transaction->dirty_bg_run) {
8925 u64 transid = trans->transid;
8926
8927 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8928 btrfs_end_transaction(trans, root);
8929
8930 ret = btrfs_wait_for_commit(root, transid);
8931 if (ret)
8932 return ret;
8933 goto again;
8934 }
8935
153c35b6
CM
8936 /*
8937 * if we are changing raid levels, try to allocate a corresponding
8938 * block group with the new raid level.
8939 */
8940 alloc_flags = update_block_group_flags(root, cache->flags);
8941 if (alloc_flags != cache->flags) {
8942 ret = do_chunk_alloc(trans, root, alloc_flags,
8943 CHUNK_ALLOC_FORCE);
8944 /*
8945 * ENOSPC is allowed here, we may have enough space
8946 * already allocated at the new raid level to
8947 * carry on
8948 */
8949 if (ret == -ENOSPC)
8950 ret = 0;
8951 if (ret < 0)
8952 goto out;
8953 }
1bbc621e 8954
868f401a 8955 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
8956 if (!ret)
8957 goto out;
8958 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 8959 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8960 CHUNK_ALLOC_FORCE);
f0486c68
YZ
8961 if (ret < 0)
8962 goto out;
868f401a 8963 ret = inc_block_group_ro(cache, 0);
f0486c68 8964out:
2f081088
SL
8965 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8966 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 8967 lock_chunks(root->fs_info->chunk_root);
4617ea3a 8968 check_system_chunk(trans, root, alloc_flags);
a9629596 8969 unlock_chunks(root->fs_info->chunk_root);
2f081088 8970 }
1bbc621e 8971 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 8972
f0486c68
YZ
8973 btrfs_end_transaction(trans, root);
8974 return ret;
8975}
5d4f98a2 8976
c87f08ca
CM
8977int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8978 struct btrfs_root *root, u64 type)
8979{
8980 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 8981 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8982 CHUNK_ALLOC_FORCE);
c87f08ca
CM
8983}
8984
6d07bcec
MX
8985/*
8986 * helper to account the unused space of all the readonly block group in the
633c0aad 8987 * space_info. takes mirrors into account.
6d07bcec 8988 */
633c0aad 8989u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
8990{
8991 struct btrfs_block_group_cache *block_group;
8992 u64 free_bytes = 0;
8993 int factor;
8994
633c0aad
JB
8995 /* It's df, we don't care if it's racey */
8996 if (list_empty(&sinfo->ro_bgs))
8997 return 0;
8998
8999 spin_lock(&sinfo->lock);
9000 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9001 spin_lock(&block_group->lock);
9002
9003 if (!block_group->ro) {
9004 spin_unlock(&block_group->lock);
9005 continue;
9006 }
9007
9008 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9009 BTRFS_BLOCK_GROUP_RAID10 |
9010 BTRFS_BLOCK_GROUP_DUP))
9011 factor = 2;
9012 else
9013 factor = 1;
9014
9015 free_bytes += (block_group->key.offset -
9016 btrfs_block_group_used(&block_group->item)) *
9017 factor;
9018
9019 spin_unlock(&block_group->lock);
9020 }
6d07bcec
MX
9021 spin_unlock(&sinfo->lock);
9022
9023 return free_bytes;
9024}
9025
868f401a 9026void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9027 struct btrfs_block_group_cache *cache)
5d4f98a2 9028{
f0486c68
YZ
9029 struct btrfs_space_info *sinfo = cache->space_info;
9030 u64 num_bytes;
9031
9032 BUG_ON(!cache->ro);
9033
9034 spin_lock(&sinfo->lock);
9035 spin_lock(&cache->lock);
868f401a
Z
9036 if (!--cache->ro) {
9037 num_bytes = cache->key.offset - cache->reserved -
9038 cache->pinned - cache->bytes_super -
9039 btrfs_block_group_used(&cache->item);
9040 sinfo->bytes_readonly -= num_bytes;
9041 list_del_init(&cache->ro_list);
9042 }
f0486c68
YZ
9043 spin_unlock(&cache->lock);
9044 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9045}
9046
ba1bf481
JB
9047/*
9048 * checks to see if its even possible to relocate this block group.
9049 *
9050 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9051 * ok to go ahead and try.
9052 */
9053int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9054{
ba1bf481
JB
9055 struct btrfs_block_group_cache *block_group;
9056 struct btrfs_space_info *space_info;
9057 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9058 struct btrfs_device *device;
6df9a95e 9059 struct btrfs_trans_handle *trans;
cdcb725c 9060 u64 min_free;
6719db6a
JB
9061 u64 dev_min = 1;
9062 u64 dev_nr = 0;
4a5e98f5 9063 u64 target;
cdcb725c 9064 int index;
ba1bf481
JB
9065 int full = 0;
9066 int ret = 0;
1a40e23b 9067
ba1bf481 9068 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9069
ba1bf481
JB
9070 /* odd, couldn't find the block group, leave it alone */
9071 if (!block_group)
9072 return -1;
1a40e23b 9073
cdcb725c 9074 min_free = btrfs_block_group_used(&block_group->item);
9075
ba1bf481 9076 /* no bytes used, we're good */
cdcb725c 9077 if (!min_free)
1a40e23b
ZY
9078 goto out;
9079
ba1bf481
JB
9080 space_info = block_group->space_info;
9081 spin_lock(&space_info->lock);
17d217fe 9082
ba1bf481 9083 full = space_info->full;
17d217fe 9084
ba1bf481
JB
9085 /*
9086 * if this is the last block group we have in this space, we can't
7ce618db
CM
9087 * relocate it unless we're able to allocate a new chunk below.
9088 *
9089 * Otherwise, we need to make sure we have room in the space to handle
9090 * all of the extents from this block group. If we can, we're good
ba1bf481 9091 */
7ce618db 9092 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9093 (space_info->bytes_used + space_info->bytes_reserved +
9094 space_info->bytes_pinned + space_info->bytes_readonly +
9095 min_free < space_info->total_bytes)) {
ba1bf481
JB
9096 spin_unlock(&space_info->lock);
9097 goto out;
17d217fe 9098 }
ba1bf481 9099 spin_unlock(&space_info->lock);
ea8c2819 9100
ba1bf481
JB
9101 /*
9102 * ok we don't have enough space, but maybe we have free space on our
9103 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9104 * alloc devices and guess if we have enough space. if this block
9105 * group is going to be restriped, run checks against the target
9106 * profile instead of the current one.
ba1bf481
JB
9107 */
9108 ret = -1;
ea8c2819 9109
cdcb725c 9110 /*
9111 * index:
9112 * 0: raid10
9113 * 1: raid1
9114 * 2: dup
9115 * 3: raid0
9116 * 4: single
9117 */
4a5e98f5
ID
9118 target = get_restripe_target(root->fs_info, block_group->flags);
9119 if (target) {
31e50229 9120 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9121 } else {
9122 /*
9123 * this is just a balance, so if we were marked as full
9124 * we know there is no space for a new chunk
9125 */
9126 if (full)
9127 goto out;
9128
9129 index = get_block_group_index(block_group);
9130 }
9131
e6ec716f 9132 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9133 dev_min = 4;
6719db6a
JB
9134 /* Divide by 2 */
9135 min_free >>= 1;
e6ec716f 9136 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9137 dev_min = 2;
e6ec716f 9138 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9139 /* Multiply by 2 */
9140 min_free <<= 1;
e6ec716f 9141 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9142 dev_min = fs_devices->rw_devices;
47c5713f 9143 min_free = div64_u64(min_free, dev_min);
cdcb725c 9144 }
9145
6df9a95e
JB
9146 /* We need to do this so that we can look at pending chunks */
9147 trans = btrfs_join_transaction(root);
9148 if (IS_ERR(trans)) {
9149 ret = PTR_ERR(trans);
9150 goto out;
9151 }
9152
ba1bf481
JB
9153 mutex_lock(&root->fs_info->chunk_mutex);
9154 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9155 u64 dev_offset;
56bec294 9156
ba1bf481
JB
9157 /*
9158 * check to make sure we can actually find a chunk with enough
9159 * space to fit our block group in.
9160 */
63a212ab
SB
9161 if (device->total_bytes > device->bytes_used + min_free &&
9162 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9163 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9164 &dev_offset, NULL);
ba1bf481 9165 if (!ret)
cdcb725c 9166 dev_nr++;
9167
9168 if (dev_nr >= dev_min)
73e48b27 9169 break;
cdcb725c 9170
ba1bf481 9171 ret = -1;
725c8463 9172 }
edbd8d4e 9173 }
ba1bf481 9174 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9175 btrfs_end_transaction(trans, root);
edbd8d4e 9176out:
ba1bf481 9177 btrfs_put_block_group(block_group);
edbd8d4e
CM
9178 return ret;
9179}
9180
b2950863
CH
9181static int find_first_block_group(struct btrfs_root *root,
9182 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9183{
925baedd 9184 int ret = 0;
0b86a832
CM
9185 struct btrfs_key found_key;
9186 struct extent_buffer *leaf;
9187 int slot;
edbd8d4e 9188
0b86a832
CM
9189 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9190 if (ret < 0)
925baedd
CM
9191 goto out;
9192
d397712b 9193 while (1) {
0b86a832 9194 slot = path->slots[0];
edbd8d4e 9195 leaf = path->nodes[0];
0b86a832
CM
9196 if (slot >= btrfs_header_nritems(leaf)) {
9197 ret = btrfs_next_leaf(root, path);
9198 if (ret == 0)
9199 continue;
9200 if (ret < 0)
925baedd 9201 goto out;
0b86a832 9202 break;
edbd8d4e 9203 }
0b86a832 9204 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9205
0b86a832 9206 if (found_key.objectid >= key->objectid &&
925baedd
CM
9207 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9208 ret = 0;
9209 goto out;
9210 }
0b86a832 9211 path->slots[0]++;
edbd8d4e 9212 }
925baedd 9213out:
0b86a832 9214 return ret;
edbd8d4e
CM
9215}
9216
0af3d00b
JB
9217void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9218{
9219 struct btrfs_block_group_cache *block_group;
9220 u64 last = 0;
9221
9222 while (1) {
9223 struct inode *inode;
9224
9225 block_group = btrfs_lookup_first_block_group(info, last);
9226 while (block_group) {
9227 spin_lock(&block_group->lock);
9228 if (block_group->iref)
9229 break;
9230 spin_unlock(&block_group->lock);
9231 block_group = next_block_group(info->tree_root,
9232 block_group);
9233 }
9234 if (!block_group) {
9235 if (last == 0)
9236 break;
9237 last = 0;
9238 continue;
9239 }
9240
9241 inode = block_group->inode;
9242 block_group->iref = 0;
9243 block_group->inode = NULL;
9244 spin_unlock(&block_group->lock);
9245 iput(inode);
9246 last = block_group->key.objectid + block_group->key.offset;
9247 btrfs_put_block_group(block_group);
9248 }
9249}
9250
1a40e23b
ZY
9251int btrfs_free_block_groups(struct btrfs_fs_info *info)
9252{
9253 struct btrfs_block_group_cache *block_group;
4184ea7f 9254 struct btrfs_space_info *space_info;
11833d66 9255 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9256 struct rb_node *n;
9257
9e351cc8 9258 down_write(&info->commit_root_sem);
11833d66
YZ
9259 while (!list_empty(&info->caching_block_groups)) {
9260 caching_ctl = list_entry(info->caching_block_groups.next,
9261 struct btrfs_caching_control, list);
9262 list_del(&caching_ctl->list);
9263 put_caching_control(caching_ctl);
9264 }
9e351cc8 9265 up_write(&info->commit_root_sem);
11833d66 9266
47ab2a6c
JB
9267 spin_lock(&info->unused_bgs_lock);
9268 while (!list_empty(&info->unused_bgs)) {
9269 block_group = list_first_entry(&info->unused_bgs,
9270 struct btrfs_block_group_cache,
9271 bg_list);
9272 list_del_init(&block_group->bg_list);
9273 btrfs_put_block_group(block_group);
9274 }
9275 spin_unlock(&info->unused_bgs_lock);
9276
1a40e23b
ZY
9277 spin_lock(&info->block_group_cache_lock);
9278 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9279 block_group = rb_entry(n, struct btrfs_block_group_cache,
9280 cache_node);
1a40e23b
ZY
9281 rb_erase(&block_group->cache_node,
9282 &info->block_group_cache_tree);
01eacb27 9283 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9284 spin_unlock(&info->block_group_cache_lock);
9285
80eb234a 9286 down_write(&block_group->space_info->groups_sem);
1a40e23b 9287 list_del(&block_group->list);
80eb234a 9288 up_write(&block_group->space_info->groups_sem);
d2fb3437 9289
817d52f8 9290 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9291 wait_block_group_cache_done(block_group);
817d52f8 9292
3c14874a
JB
9293 /*
9294 * We haven't cached this block group, which means we could
9295 * possibly have excluded extents on this block group.
9296 */
36cce922
JB
9297 if (block_group->cached == BTRFS_CACHE_NO ||
9298 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9299 free_excluded_extents(info->extent_root, block_group);
9300
817d52f8 9301 btrfs_remove_free_space_cache(block_group);
11dfe35a 9302 btrfs_put_block_group(block_group);
d899e052
YZ
9303
9304 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9305 }
9306 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9307
9308 /* now that all the block groups are freed, go through and
9309 * free all the space_info structs. This is only called during
9310 * the final stages of unmount, and so we know nobody is
9311 * using them. We call synchronize_rcu() once before we start,
9312 * just to be on the safe side.
9313 */
9314 synchronize_rcu();
9315
8929ecfa
YZ
9316 release_global_block_rsv(info);
9317
67871254 9318 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9319 int i;
9320
4184ea7f
CM
9321 space_info = list_entry(info->space_info.next,
9322 struct btrfs_space_info,
9323 list);
b069e0c3 9324 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9325 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9326 space_info->bytes_reserved > 0 ||
fae7f21c 9327 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9328 dump_space_info(space_info, 0, 0);
9329 }
f0486c68 9330 }
4184ea7f 9331 list_del(&space_info->list);
6ab0a202
JM
9332 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9333 struct kobject *kobj;
c1895442
JM
9334 kobj = space_info->block_group_kobjs[i];
9335 space_info->block_group_kobjs[i] = NULL;
9336 if (kobj) {
6ab0a202
JM
9337 kobject_del(kobj);
9338 kobject_put(kobj);
9339 }
9340 }
9341 kobject_del(&space_info->kobj);
9342 kobject_put(&space_info->kobj);
4184ea7f 9343 }
1a40e23b
ZY
9344 return 0;
9345}
9346
b742bb82
YZ
9347static void __link_block_group(struct btrfs_space_info *space_info,
9348 struct btrfs_block_group_cache *cache)
9349{
9350 int index = get_block_group_index(cache);
ed55b6ac 9351 bool first = false;
b742bb82
YZ
9352
9353 down_write(&space_info->groups_sem);
ed55b6ac
JM
9354 if (list_empty(&space_info->block_groups[index]))
9355 first = true;
9356 list_add_tail(&cache->list, &space_info->block_groups[index]);
9357 up_write(&space_info->groups_sem);
9358
9359 if (first) {
c1895442 9360 struct raid_kobject *rkobj;
6ab0a202
JM
9361 int ret;
9362
c1895442
JM
9363 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9364 if (!rkobj)
9365 goto out_err;
9366 rkobj->raid_type = index;
9367 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9368 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9369 "%s", get_raid_name(index));
6ab0a202 9370 if (ret) {
c1895442
JM
9371 kobject_put(&rkobj->kobj);
9372 goto out_err;
6ab0a202 9373 }
c1895442 9374 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9375 }
c1895442
JM
9376
9377 return;
9378out_err:
9379 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9380}
9381
920e4a58
MX
9382static struct btrfs_block_group_cache *
9383btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9384{
9385 struct btrfs_block_group_cache *cache;
9386
9387 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9388 if (!cache)
9389 return NULL;
9390
9391 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9392 GFP_NOFS);
9393 if (!cache->free_space_ctl) {
9394 kfree(cache);
9395 return NULL;
9396 }
9397
9398 cache->key.objectid = start;
9399 cache->key.offset = size;
9400 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9401
9402 cache->sectorsize = root->sectorsize;
9403 cache->fs_info = root->fs_info;
9404 cache->full_stripe_len = btrfs_full_stripe_len(root,
9405 &root->fs_info->mapping_tree,
9406 start);
9407 atomic_set(&cache->count, 1);
9408 spin_lock_init(&cache->lock);
e570fd27 9409 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9410 INIT_LIST_HEAD(&cache->list);
9411 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9412 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9413 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9414 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9415 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9416 btrfs_init_free_space_ctl(cache);
04216820 9417 atomic_set(&cache->trimming, 0);
920e4a58
MX
9418
9419 return cache;
9420}
9421
9078a3e1
CM
9422int btrfs_read_block_groups(struct btrfs_root *root)
9423{
9424 struct btrfs_path *path;
9425 int ret;
9078a3e1 9426 struct btrfs_block_group_cache *cache;
be744175 9427 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9428 struct btrfs_space_info *space_info;
9078a3e1
CM
9429 struct btrfs_key key;
9430 struct btrfs_key found_key;
5f39d397 9431 struct extent_buffer *leaf;
0af3d00b
JB
9432 int need_clear = 0;
9433 u64 cache_gen;
96b5179d 9434
be744175 9435 root = info->extent_root;
9078a3e1 9436 key.objectid = 0;
0b86a832 9437 key.offset = 0;
962a298f 9438 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9439 path = btrfs_alloc_path();
9440 if (!path)
9441 return -ENOMEM;
026fd317 9442 path->reada = 1;
9078a3e1 9443
6c41761f 9444 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9445 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9446 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9447 need_clear = 1;
88c2ba3b
JB
9448 if (btrfs_test_opt(root, CLEAR_CACHE))
9449 need_clear = 1;
0af3d00b 9450
d397712b 9451 while (1) {
0b86a832 9452 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9453 if (ret > 0)
9454 break;
0b86a832
CM
9455 if (ret != 0)
9456 goto error;
920e4a58 9457
5f39d397
CM
9458 leaf = path->nodes[0];
9459 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9460
9461 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9462 found_key.offset);
9078a3e1 9463 if (!cache) {
0b86a832 9464 ret = -ENOMEM;
f0486c68 9465 goto error;
9078a3e1 9466 }
96303081 9467
cf7c1ef6
LB
9468 if (need_clear) {
9469 /*
9470 * When we mount with old space cache, we need to
9471 * set BTRFS_DC_CLEAR and set dirty flag.
9472 *
9473 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9474 * truncate the old free space cache inode and
9475 * setup a new one.
9476 * b) Setting 'dirty flag' makes sure that we flush
9477 * the new space cache info onto disk.
9478 */
cf7c1ef6 9479 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9480 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9481 }
0af3d00b 9482
5f39d397
CM
9483 read_extent_buffer(leaf, &cache->item,
9484 btrfs_item_ptr_offset(leaf, path->slots[0]),
9485 sizeof(cache->item));
920e4a58 9486 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9487
9078a3e1 9488 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9489 btrfs_release_path(path);
34d52cb6 9490
3c14874a
JB
9491 /*
9492 * We need to exclude the super stripes now so that the space
9493 * info has super bytes accounted for, otherwise we'll think
9494 * we have more space than we actually do.
9495 */
835d974f
JB
9496 ret = exclude_super_stripes(root, cache);
9497 if (ret) {
9498 /*
9499 * We may have excluded something, so call this just in
9500 * case.
9501 */
9502 free_excluded_extents(root, cache);
920e4a58 9503 btrfs_put_block_group(cache);
835d974f
JB
9504 goto error;
9505 }
3c14874a 9506
817d52f8
JB
9507 /*
9508 * check for two cases, either we are full, and therefore
9509 * don't need to bother with the caching work since we won't
9510 * find any space, or we are empty, and we can just add all
9511 * the space in and be done with it. This saves us _alot_ of
9512 * time, particularly in the full case.
9513 */
9514 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9515 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9516 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9517 free_excluded_extents(root, cache);
817d52f8 9518 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9519 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9520 cache->cached = BTRFS_CACHE_FINISHED;
9521 add_new_free_space(cache, root->fs_info,
9522 found_key.objectid,
9523 found_key.objectid +
9524 found_key.offset);
11833d66 9525 free_excluded_extents(root, cache);
817d52f8 9526 }
96b5179d 9527
8c579fe7
JB
9528 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9529 if (ret) {
9530 btrfs_remove_free_space_cache(cache);
9531 btrfs_put_block_group(cache);
9532 goto error;
9533 }
9534
6324fbf3
CM
9535 ret = update_space_info(info, cache->flags, found_key.offset,
9536 btrfs_block_group_used(&cache->item),
9537 &space_info);
8c579fe7
JB
9538 if (ret) {
9539 btrfs_remove_free_space_cache(cache);
9540 spin_lock(&info->block_group_cache_lock);
9541 rb_erase(&cache->cache_node,
9542 &info->block_group_cache_tree);
01eacb27 9543 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9544 spin_unlock(&info->block_group_cache_lock);
9545 btrfs_put_block_group(cache);
9546 goto error;
9547 }
9548
6324fbf3 9549 cache->space_info = space_info;
1b2da372 9550 spin_lock(&cache->space_info->lock);
f0486c68 9551 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9552 spin_unlock(&cache->space_info->lock);
9553
b742bb82 9554 __link_block_group(space_info, cache);
0f9dd46c 9555
75ccf47d 9556 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9557 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 9558 inc_block_group_ro(cache, 1);
47ab2a6c
JB
9559 } else if (btrfs_block_group_used(&cache->item) == 0) {
9560 spin_lock(&info->unused_bgs_lock);
9561 /* Should always be true but just in case. */
9562 if (list_empty(&cache->bg_list)) {
9563 btrfs_get_block_group(cache);
9564 list_add_tail(&cache->bg_list,
9565 &info->unused_bgs);
9566 }
9567 spin_unlock(&info->unused_bgs_lock);
9568 }
9078a3e1 9569 }
b742bb82
YZ
9570
9571 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9572 if (!(get_alloc_profile(root, space_info->flags) &
9573 (BTRFS_BLOCK_GROUP_RAID10 |
9574 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9575 BTRFS_BLOCK_GROUP_RAID5 |
9576 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9577 BTRFS_BLOCK_GROUP_DUP)))
9578 continue;
9579 /*
9580 * avoid allocating from un-mirrored block group if there are
9581 * mirrored block groups.
9582 */
1095cc0d 9583 list_for_each_entry(cache,
9584 &space_info->block_groups[BTRFS_RAID_RAID0],
9585 list)
868f401a 9586 inc_block_group_ro(cache, 1);
1095cc0d 9587 list_for_each_entry(cache,
9588 &space_info->block_groups[BTRFS_RAID_SINGLE],
9589 list)
868f401a 9590 inc_block_group_ro(cache, 1);
9078a3e1 9591 }
f0486c68
YZ
9592
9593 init_global_block_rsv(info);
0b86a832
CM
9594 ret = 0;
9595error:
9078a3e1 9596 btrfs_free_path(path);
0b86a832 9597 return ret;
9078a3e1 9598}
6324fbf3 9599
ea658bad
JB
9600void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9601 struct btrfs_root *root)
9602{
9603 struct btrfs_block_group_cache *block_group, *tmp;
9604 struct btrfs_root *extent_root = root->fs_info->extent_root;
9605 struct btrfs_block_group_item item;
9606 struct btrfs_key key;
9607 int ret = 0;
d9a0540a 9608 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 9609
d9a0540a 9610 trans->can_flush_pending_bgs = false;
47ab2a6c 9611 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9612 if (ret)
c92f6be3 9613 goto next;
ea658bad
JB
9614
9615 spin_lock(&block_group->lock);
9616 memcpy(&item, &block_group->item, sizeof(item));
9617 memcpy(&key, &block_group->key, sizeof(key));
9618 spin_unlock(&block_group->lock);
9619
9620 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9621 sizeof(item));
9622 if (ret)
9623 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9624 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9625 key.objectid, key.offset);
9626 if (ret)
9627 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9628next:
9629 list_del_init(&block_group->bg_list);
ea658bad 9630 }
d9a0540a 9631 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
9632}
9633
6324fbf3
CM
9634int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9635 struct btrfs_root *root, u64 bytes_used,
e17cade2 9636 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9637 u64 size)
9638{
9639 int ret;
6324fbf3
CM
9640 struct btrfs_root *extent_root;
9641 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9642
9643 extent_root = root->fs_info->extent_root;
6324fbf3 9644
995946dd 9645 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9646
920e4a58 9647 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9648 if (!cache)
9649 return -ENOMEM;
34d52cb6 9650
6324fbf3 9651 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9652 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9653 btrfs_set_block_group_flags(&cache->item, type);
9654
920e4a58 9655 cache->flags = type;
11833d66 9656 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9657 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9658 ret = exclude_super_stripes(root, cache);
9659 if (ret) {
9660 /*
9661 * We may have excluded something, so call this just in
9662 * case.
9663 */
9664 free_excluded_extents(root, cache);
920e4a58 9665 btrfs_put_block_group(cache);
835d974f
JB
9666 return ret;
9667 }
96303081 9668
817d52f8
JB
9669 add_new_free_space(cache, root->fs_info, chunk_offset,
9670 chunk_offset + size);
9671
11833d66
YZ
9672 free_excluded_extents(root, cache);
9673
2e6e5183
FM
9674 /*
9675 * Call to ensure the corresponding space_info object is created and
9676 * assigned to our block group, but don't update its counters just yet.
9677 * We want our bg to be added to the rbtree with its ->space_info set.
9678 */
9679 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9680 &cache->space_info);
9681 if (ret) {
9682 btrfs_remove_free_space_cache(cache);
9683 btrfs_put_block_group(cache);
9684 return ret;
9685 }
9686
8c579fe7
JB
9687 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9688 if (ret) {
9689 btrfs_remove_free_space_cache(cache);
9690 btrfs_put_block_group(cache);
9691 return ret;
9692 }
9693
2e6e5183
FM
9694 /*
9695 * Now that our block group has its ->space_info set and is inserted in
9696 * the rbtree, update the space info's counters.
9697 */
6324fbf3
CM
9698 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9699 &cache->space_info);
8c579fe7
JB
9700 if (ret) {
9701 btrfs_remove_free_space_cache(cache);
9702 spin_lock(&root->fs_info->block_group_cache_lock);
9703 rb_erase(&cache->cache_node,
9704 &root->fs_info->block_group_cache_tree);
01eacb27 9705 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9706 spin_unlock(&root->fs_info->block_group_cache_lock);
9707 btrfs_put_block_group(cache);
9708 return ret;
9709 }
c7c144db 9710 update_global_block_rsv(root->fs_info);
1b2da372
JB
9711
9712 spin_lock(&cache->space_info->lock);
f0486c68 9713 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9714 spin_unlock(&cache->space_info->lock);
9715
b742bb82 9716 __link_block_group(cache->space_info, cache);
6324fbf3 9717
47ab2a6c 9718 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9719
d18a2c44 9720 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9721
6324fbf3
CM
9722 return 0;
9723}
1a40e23b 9724
10ea00f5
ID
9725static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9726{
899c81ea
ID
9727 u64 extra_flags = chunk_to_extended(flags) &
9728 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9729
de98ced9 9730 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9731 if (flags & BTRFS_BLOCK_GROUP_DATA)
9732 fs_info->avail_data_alloc_bits &= ~extra_flags;
9733 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9734 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9735 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9736 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9737 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9738}
9739
1a40e23b 9740int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9741 struct btrfs_root *root, u64 group_start,
9742 struct extent_map *em)
1a40e23b
ZY
9743{
9744 struct btrfs_path *path;
9745 struct btrfs_block_group_cache *block_group;
44fb5511 9746 struct btrfs_free_cluster *cluster;
0af3d00b 9747 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9748 struct btrfs_key key;
0af3d00b 9749 struct inode *inode;
c1895442 9750 struct kobject *kobj = NULL;
1a40e23b 9751 int ret;
10ea00f5 9752 int index;
89a55897 9753 int factor;
4f69cb98 9754 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9755 bool remove_em;
1a40e23b 9756
1a40e23b
ZY
9757 root = root->fs_info->extent_root;
9758
9759 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9760 BUG_ON(!block_group);
c146afad 9761 BUG_ON(!block_group->ro);
1a40e23b 9762
9f7c43c9 9763 /*
9764 * Free the reserved super bytes from this block group before
9765 * remove it.
9766 */
9767 free_excluded_extents(root, block_group);
9768
1a40e23b 9769 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9770 index = get_block_group_index(block_group);
89a55897
JB
9771 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9772 BTRFS_BLOCK_GROUP_RAID1 |
9773 BTRFS_BLOCK_GROUP_RAID10))
9774 factor = 2;
9775 else
9776 factor = 1;
1a40e23b 9777
44fb5511
CM
9778 /* make sure this block group isn't part of an allocation cluster */
9779 cluster = &root->fs_info->data_alloc_cluster;
9780 spin_lock(&cluster->refill_lock);
9781 btrfs_return_cluster_to_free_space(block_group, cluster);
9782 spin_unlock(&cluster->refill_lock);
9783
9784 /*
9785 * make sure this block group isn't part of a metadata
9786 * allocation cluster
9787 */
9788 cluster = &root->fs_info->meta_alloc_cluster;
9789 spin_lock(&cluster->refill_lock);
9790 btrfs_return_cluster_to_free_space(block_group, cluster);
9791 spin_unlock(&cluster->refill_lock);
9792
1a40e23b 9793 path = btrfs_alloc_path();
d8926bb3
MF
9794 if (!path) {
9795 ret = -ENOMEM;
9796 goto out;
9797 }
1a40e23b 9798
1bbc621e
CM
9799 /*
9800 * get the inode first so any iput calls done for the io_list
9801 * aren't the final iput (no unlinks allowed now)
9802 */
10b2f34d 9803 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9804
9805 mutex_lock(&trans->transaction->cache_write_mutex);
9806 /*
9807 * make sure our free spache cache IO is done before remove the
9808 * free space inode
9809 */
9810 spin_lock(&trans->transaction->dirty_bgs_lock);
9811 if (!list_empty(&block_group->io_list)) {
9812 list_del_init(&block_group->io_list);
9813
9814 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9815
9816 spin_unlock(&trans->transaction->dirty_bgs_lock);
9817 btrfs_wait_cache_io(root, trans, block_group,
9818 &block_group->io_ctl, path,
9819 block_group->key.objectid);
9820 btrfs_put_block_group(block_group);
9821 spin_lock(&trans->transaction->dirty_bgs_lock);
9822 }
9823
9824 if (!list_empty(&block_group->dirty_list)) {
9825 list_del_init(&block_group->dirty_list);
9826 btrfs_put_block_group(block_group);
9827 }
9828 spin_unlock(&trans->transaction->dirty_bgs_lock);
9829 mutex_unlock(&trans->transaction->cache_write_mutex);
9830
0af3d00b 9831 if (!IS_ERR(inode)) {
b532402e 9832 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9833 if (ret) {
9834 btrfs_add_delayed_iput(inode);
9835 goto out;
9836 }
0af3d00b
JB
9837 clear_nlink(inode);
9838 /* One for the block groups ref */
9839 spin_lock(&block_group->lock);
9840 if (block_group->iref) {
9841 block_group->iref = 0;
9842 block_group->inode = NULL;
9843 spin_unlock(&block_group->lock);
9844 iput(inode);
9845 } else {
9846 spin_unlock(&block_group->lock);
9847 }
9848 /* One for our lookup ref */
455757c3 9849 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9850 }
9851
9852 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9853 key.offset = block_group->key.objectid;
9854 key.type = 0;
9855
9856 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9857 if (ret < 0)
9858 goto out;
9859 if (ret > 0)
b3b4aa74 9860 btrfs_release_path(path);
0af3d00b
JB
9861 if (ret == 0) {
9862 ret = btrfs_del_item(trans, tree_root, path);
9863 if (ret)
9864 goto out;
b3b4aa74 9865 btrfs_release_path(path);
0af3d00b
JB
9866 }
9867
3dfdb934 9868 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9869 rb_erase(&block_group->cache_node,
9870 &root->fs_info->block_group_cache_tree);
292cbd51 9871 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9872
9873 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9874 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9875 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9876
80eb234a 9877 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9878 /*
9879 * we must use list_del_init so people can check to see if they
9880 * are still on the list after taking the semaphore
9881 */
9882 list_del_init(&block_group->list);
6ab0a202 9883 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9884 kobj = block_group->space_info->block_group_kobjs[index];
9885 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9886 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9887 }
80eb234a 9888 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9889 if (kobj) {
9890 kobject_del(kobj);
9891 kobject_put(kobj);
9892 }
1a40e23b 9893
4f69cb98
FM
9894 if (block_group->has_caching_ctl)
9895 caching_ctl = get_caching_control(block_group);
817d52f8 9896 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9897 wait_block_group_cache_done(block_group);
4f69cb98
FM
9898 if (block_group->has_caching_ctl) {
9899 down_write(&root->fs_info->commit_root_sem);
9900 if (!caching_ctl) {
9901 struct btrfs_caching_control *ctl;
9902
9903 list_for_each_entry(ctl,
9904 &root->fs_info->caching_block_groups, list)
9905 if (ctl->block_group == block_group) {
9906 caching_ctl = ctl;
9907 atomic_inc(&caching_ctl->count);
9908 break;
9909 }
9910 }
9911 if (caching_ctl)
9912 list_del_init(&caching_ctl->list);
9913 up_write(&root->fs_info->commit_root_sem);
9914 if (caching_ctl) {
9915 /* Once for the caching bgs list and once for us. */
9916 put_caching_control(caching_ctl);
9917 put_caching_control(caching_ctl);
9918 }
9919 }
817d52f8 9920
ce93ec54
JB
9921 spin_lock(&trans->transaction->dirty_bgs_lock);
9922 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9923 WARN_ON(1);
9924 }
9925 if (!list_empty(&block_group->io_list)) {
9926 WARN_ON(1);
ce93ec54
JB
9927 }
9928 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
9929 btrfs_remove_free_space_cache(block_group);
9930
c146afad 9931 spin_lock(&block_group->space_info->lock);
75c68e9f 9932 list_del_init(&block_group->ro_list);
18d018ad
ZL
9933
9934 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9935 WARN_ON(block_group->space_info->total_bytes
9936 < block_group->key.offset);
9937 WARN_ON(block_group->space_info->bytes_readonly
9938 < block_group->key.offset);
9939 WARN_ON(block_group->space_info->disk_total
9940 < block_group->key.offset * factor);
9941 }
c146afad
YZ
9942 block_group->space_info->total_bytes -= block_group->key.offset;
9943 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 9944 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 9945
c146afad 9946 spin_unlock(&block_group->space_info->lock);
283bb197 9947
0af3d00b
JB
9948 memcpy(&key, &block_group->key, sizeof(key));
9949
04216820 9950 lock_chunks(root);
495e64f4
FM
9951 if (!list_empty(&em->list)) {
9952 /* We're in the transaction->pending_chunks list. */
9953 free_extent_map(em);
9954 }
04216820
FM
9955 spin_lock(&block_group->lock);
9956 block_group->removed = 1;
9957 /*
9958 * At this point trimming can't start on this block group, because we
9959 * removed the block group from the tree fs_info->block_group_cache_tree
9960 * so no one can't find it anymore and even if someone already got this
9961 * block group before we removed it from the rbtree, they have already
9962 * incremented block_group->trimming - if they didn't, they won't find
9963 * any free space entries because we already removed them all when we
9964 * called btrfs_remove_free_space_cache().
9965 *
9966 * And we must not remove the extent map from the fs_info->mapping_tree
9967 * to prevent the same logical address range and physical device space
9968 * ranges from being reused for a new block group. This is because our
9969 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9970 * completely transactionless, so while it is trimming a range the
9971 * currently running transaction might finish and a new one start,
9972 * allowing for new block groups to be created that can reuse the same
9973 * physical device locations unless we take this special care.
e33e17ee
JM
9974 *
9975 * There may also be an implicit trim operation if the file system
9976 * is mounted with -odiscard. The same protections must remain
9977 * in place until the extents have been discarded completely when
9978 * the transaction commit has completed.
04216820
FM
9979 */
9980 remove_em = (atomic_read(&block_group->trimming) == 0);
9981 /*
9982 * Make sure a trimmer task always sees the em in the pinned_chunks list
9983 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9984 * before checking block_group->removed).
9985 */
9986 if (!remove_em) {
9987 /*
9988 * Our em might be in trans->transaction->pending_chunks which
9989 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9990 * and so is the fs_info->pinned_chunks list.
9991 *
9992 * So at this point we must be holding the chunk_mutex to avoid
9993 * any races with chunk allocation (more specifically at
9994 * volumes.c:contains_pending_extent()), to ensure it always
9995 * sees the em, either in the pending_chunks list or in the
9996 * pinned_chunks list.
9997 */
9998 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9999 }
10000 spin_unlock(&block_group->lock);
04216820
FM
10001
10002 if (remove_em) {
10003 struct extent_map_tree *em_tree;
10004
10005 em_tree = &root->fs_info->mapping_tree.map_tree;
10006 write_lock(&em_tree->lock);
8dbcd10f
FM
10007 /*
10008 * The em might be in the pending_chunks list, so make sure the
10009 * chunk mutex is locked, since remove_extent_mapping() will
10010 * delete us from that list.
10011 */
04216820
FM
10012 remove_extent_mapping(em_tree, em);
10013 write_unlock(&em_tree->lock);
10014 /* once for the tree */
10015 free_extent_map(em);
10016 }
10017
8dbcd10f
FM
10018 unlock_chunks(root);
10019
fa9c0d79
CM
10020 btrfs_put_block_group(block_group);
10021 btrfs_put_block_group(block_group);
1a40e23b
ZY
10022
10023 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10024 if (ret > 0)
10025 ret = -EIO;
10026 if (ret < 0)
10027 goto out;
10028
10029 ret = btrfs_del_item(trans, root, path);
10030out:
10031 btrfs_free_path(path);
10032 return ret;
10033}
acce952b 10034
47ab2a6c
JB
10035/*
10036 * Process the unused_bgs list and remove any that don't have any allocated
10037 * space inside of them.
10038 */
10039void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10040{
10041 struct btrfs_block_group_cache *block_group;
10042 struct btrfs_space_info *space_info;
10043 struct btrfs_root *root = fs_info->extent_root;
10044 struct btrfs_trans_handle *trans;
10045 int ret = 0;
10046
10047 if (!fs_info->open)
10048 return;
10049
10050 spin_lock(&fs_info->unused_bgs_lock);
10051 while (!list_empty(&fs_info->unused_bgs)) {
10052 u64 start, end;
e33e17ee 10053 int trimming;
47ab2a6c
JB
10054
10055 block_group = list_first_entry(&fs_info->unused_bgs,
10056 struct btrfs_block_group_cache,
10057 bg_list);
10058 space_info = block_group->space_info;
10059 list_del_init(&block_group->bg_list);
10060 if (ret || btrfs_mixed_space_info(space_info)) {
10061 btrfs_put_block_group(block_group);
10062 continue;
10063 }
10064 spin_unlock(&fs_info->unused_bgs_lock);
10065
67c5e7d4
FM
10066 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10067
47ab2a6c
JB
10068 /* Don't want to race with allocators so take the groups_sem */
10069 down_write(&space_info->groups_sem);
10070 spin_lock(&block_group->lock);
10071 if (block_group->reserved ||
10072 btrfs_block_group_used(&block_group->item) ||
10073 block_group->ro) {
10074 /*
10075 * We want to bail if we made new allocations or have
10076 * outstanding allocations in this block group. We do
10077 * the ro check in case balance is currently acting on
10078 * this block group.
10079 */
10080 spin_unlock(&block_group->lock);
10081 up_write(&space_info->groups_sem);
10082 goto next;
10083 }
10084 spin_unlock(&block_group->lock);
10085
10086 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10087 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10088 up_write(&space_info->groups_sem);
10089 if (ret < 0) {
10090 ret = 0;
10091 goto next;
10092 }
10093
10094 /*
10095 * Want to do this before we do anything else so we can recover
10096 * properly if we fail to join the transaction.
10097 */
3d84be79
FL
10098 /* 1 for btrfs_orphan_reserve_metadata() */
10099 trans = btrfs_start_transaction(root, 1);
47ab2a6c 10100 if (IS_ERR(trans)) {
868f401a 10101 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10102 ret = PTR_ERR(trans);
10103 goto next;
10104 }
10105
10106 /*
10107 * We could have pending pinned extents for this block group,
10108 * just delete them, we don't care about them anymore.
10109 */
10110 start = block_group->key.objectid;
10111 end = start + block_group->key.offset - 1;
d4b450cd
FM
10112 /*
10113 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10114 * btrfs_finish_extent_commit(). If we are at transaction N,
10115 * another task might be running finish_extent_commit() for the
10116 * previous transaction N - 1, and have seen a range belonging
10117 * to the block group in freed_extents[] before we were able to
10118 * clear the whole block group range from freed_extents[]. This
10119 * means that task can lookup for the block group after we
10120 * unpinned it from freed_extents[] and removed it, leading to
10121 * a BUG_ON() at btrfs_unpin_extent_range().
10122 */
10123 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10124 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 10125 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10126 if (ret) {
d4b450cd 10127 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10128 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10129 goto end_trans;
10130 }
10131 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 10132 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10133 if (ret) {
d4b450cd 10134 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10135 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10136 goto end_trans;
10137 }
d4b450cd 10138 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10139
10140 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10141 spin_lock(&space_info->lock);
10142 spin_lock(&block_group->lock);
10143
10144 space_info->bytes_pinned -= block_group->pinned;
10145 space_info->bytes_readonly += block_group->pinned;
10146 percpu_counter_add(&space_info->total_bytes_pinned,
10147 -block_group->pinned);
47ab2a6c
JB
10148 block_group->pinned = 0;
10149
c30666d4
ZL
10150 spin_unlock(&block_group->lock);
10151 spin_unlock(&space_info->lock);
10152
e33e17ee
JM
10153 /* DISCARD can flip during remount */
10154 trimming = btrfs_test_opt(root, DISCARD);
10155
10156 /* Implicit trim during transaction commit. */
10157 if (trimming)
10158 btrfs_get_block_group_trimming(block_group);
10159
47ab2a6c
JB
10160 /*
10161 * Btrfs_remove_chunk will abort the transaction if things go
10162 * horribly wrong.
10163 */
10164 ret = btrfs_remove_chunk(trans, root,
10165 block_group->key.objectid);
e33e17ee
JM
10166
10167 if (ret) {
10168 if (trimming)
10169 btrfs_put_block_group_trimming(block_group);
10170 goto end_trans;
10171 }
10172
10173 /*
10174 * If we're not mounted with -odiscard, we can just forget
10175 * about this block group. Otherwise we'll need to wait
10176 * until transaction commit to do the actual discard.
10177 */
10178 if (trimming) {
10179 WARN_ON(!list_empty(&block_group->bg_list));
10180 spin_lock(&trans->transaction->deleted_bgs_lock);
10181 list_move(&block_group->bg_list,
10182 &trans->transaction->deleted_bgs);
10183 spin_unlock(&trans->transaction->deleted_bgs_lock);
10184 btrfs_get_block_group(block_group);
10185 }
758eb51e 10186end_trans:
47ab2a6c
JB
10187 btrfs_end_transaction(trans, root);
10188next:
67c5e7d4 10189 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10190 btrfs_put_block_group(block_group);
10191 spin_lock(&fs_info->unused_bgs_lock);
10192 }
10193 spin_unlock(&fs_info->unused_bgs_lock);
10194}
10195
c59021f8 10196int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10197{
10198 struct btrfs_space_info *space_info;
1aba86d6 10199 struct btrfs_super_block *disk_super;
10200 u64 features;
10201 u64 flags;
10202 int mixed = 0;
c59021f8 10203 int ret;
10204
6c41761f 10205 disk_super = fs_info->super_copy;
1aba86d6 10206 if (!btrfs_super_root(disk_super))
10207 return 1;
c59021f8 10208
1aba86d6 10209 features = btrfs_super_incompat_flags(disk_super);
10210 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10211 mixed = 1;
c59021f8 10212
1aba86d6 10213 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10214 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10215 if (ret)
1aba86d6 10216 goto out;
c59021f8 10217
1aba86d6 10218 if (mixed) {
10219 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10220 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10221 } else {
10222 flags = BTRFS_BLOCK_GROUP_METADATA;
10223 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10224 if (ret)
10225 goto out;
10226
10227 flags = BTRFS_BLOCK_GROUP_DATA;
10228 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10229 }
10230out:
c59021f8 10231 return ret;
10232}
10233
acce952b 10234int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10235{
678886bd 10236 return unpin_extent_range(root, start, end, false);
acce952b 10237}
10238
499f377f
JM
10239/*
10240 * It used to be that old block groups would be left around forever.
10241 * Iterating over them would be enough to trim unused space. Since we
10242 * now automatically remove them, we also need to iterate over unallocated
10243 * space.
10244 *
10245 * We don't want a transaction for this since the discard may take a
10246 * substantial amount of time. We don't require that a transaction be
10247 * running, but we do need to take a running transaction into account
10248 * to ensure that we're not discarding chunks that were released in
10249 * the current transaction.
10250 *
10251 * Holding the chunks lock will prevent other threads from allocating
10252 * or releasing chunks, but it won't prevent a running transaction
10253 * from committing and releasing the memory that the pending chunks
10254 * list head uses. For that, we need to take a reference to the
10255 * transaction.
10256 */
10257static int btrfs_trim_free_extents(struct btrfs_device *device,
10258 u64 minlen, u64 *trimmed)
10259{
10260 u64 start = 0, len = 0;
10261 int ret;
10262
10263 *trimmed = 0;
10264
10265 /* Not writeable = nothing to do. */
10266 if (!device->writeable)
10267 return 0;
10268
10269 /* No free space = nothing to do. */
10270 if (device->total_bytes <= device->bytes_used)
10271 return 0;
10272
10273 ret = 0;
10274
10275 while (1) {
10276 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10277 struct btrfs_transaction *trans;
10278 u64 bytes;
10279
10280 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10281 if (ret)
10282 return ret;
10283
10284 down_read(&fs_info->commit_root_sem);
10285
10286 spin_lock(&fs_info->trans_lock);
10287 trans = fs_info->running_transaction;
10288 if (trans)
10289 atomic_inc(&trans->use_count);
10290 spin_unlock(&fs_info->trans_lock);
10291
10292 ret = find_free_dev_extent_start(trans, device, minlen, start,
10293 &start, &len);
10294 if (trans)
10295 btrfs_put_transaction(trans);
10296
10297 if (ret) {
10298 up_read(&fs_info->commit_root_sem);
10299 mutex_unlock(&fs_info->chunk_mutex);
10300 if (ret == -ENOSPC)
10301 ret = 0;
10302 break;
10303 }
10304
10305 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10306 up_read(&fs_info->commit_root_sem);
10307 mutex_unlock(&fs_info->chunk_mutex);
10308
10309 if (ret)
10310 break;
10311
10312 start += len;
10313 *trimmed += bytes;
10314
10315 if (fatal_signal_pending(current)) {
10316 ret = -ERESTARTSYS;
10317 break;
10318 }
10319
10320 cond_resched();
10321 }
10322
10323 return ret;
10324}
10325
f7039b1d
LD
10326int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10327{
10328 struct btrfs_fs_info *fs_info = root->fs_info;
10329 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10330 struct btrfs_device *device;
10331 struct list_head *devices;
f7039b1d
LD
10332 u64 group_trimmed;
10333 u64 start;
10334 u64 end;
10335 u64 trimmed = 0;
2cac13e4 10336 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10337 int ret = 0;
10338
2cac13e4
LB
10339 /*
10340 * try to trim all FS space, our block group may start from non-zero.
10341 */
10342 if (range->len == total_bytes)
10343 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10344 else
10345 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10346
10347 while (cache) {
10348 if (cache->key.objectid >= (range->start + range->len)) {
10349 btrfs_put_block_group(cache);
10350 break;
10351 }
10352
10353 start = max(range->start, cache->key.objectid);
10354 end = min(range->start + range->len,
10355 cache->key.objectid + cache->key.offset);
10356
10357 if (end - start >= range->minlen) {
10358 if (!block_group_cache_done(cache)) {
f6373bf3 10359 ret = cache_block_group(cache, 0);
1be41b78
JB
10360 if (ret) {
10361 btrfs_put_block_group(cache);
10362 break;
10363 }
10364 ret = wait_block_group_cache_done(cache);
10365 if (ret) {
10366 btrfs_put_block_group(cache);
10367 break;
10368 }
f7039b1d
LD
10369 }
10370 ret = btrfs_trim_block_group(cache,
10371 &group_trimmed,
10372 start,
10373 end,
10374 range->minlen);
10375
10376 trimmed += group_trimmed;
10377 if (ret) {
10378 btrfs_put_block_group(cache);
10379 break;
10380 }
10381 }
10382
10383 cache = next_block_group(fs_info->tree_root, cache);
10384 }
10385
499f377f
JM
10386 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10387 devices = &root->fs_info->fs_devices->alloc_list;
10388 list_for_each_entry(device, devices, dev_alloc_list) {
10389 ret = btrfs_trim_free_extents(device, range->minlen,
10390 &group_trimmed);
10391 if (ret)
10392 break;
10393
10394 trimmed += group_trimmed;
10395 }
10396 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10397
f7039b1d
LD
10398 range->len = trimmed;
10399 return ret;
10400}
8257b2dc
MX
10401
10402/*
9ea24bbe
FM
10403 * btrfs_{start,end}_write_no_snapshoting() are similar to
10404 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10405 * data into the page cache through nocow before the subvolume is snapshoted,
10406 * but flush the data into disk after the snapshot creation, or to prevent
10407 * operations while snapshoting is ongoing and that cause the snapshot to be
10408 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10409 */
9ea24bbe 10410void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10411{
10412 percpu_counter_dec(&root->subv_writers->counter);
10413 /*
a83342aa 10414 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10415 */
10416 smp_mb();
10417 if (waitqueue_active(&root->subv_writers->wait))
10418 wake_up(&root->subv_writers->wait);
10419}
10420
9ea24bbe 10421int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10422{
ee39b432 10423 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10424 return 0;
10425
10426 percpu_counter_inc(&root->subv_writers->counter);
10427 /*
10428 * Make sure counter is updated before we check for snapshot creation.
10429 */
10430 smp_mb();
ee39b432 10431 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10432 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10433 return 0;
10434 }
10435 return 1;
10436}