]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: replace pending/pinned chunks lists with io tree
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
9f9b8e8d
QW
54/*
55 * Declare a helper function to detect underflow of various space info members
56 */
57#define DECLARE_SPACE_INFO_UPDATE(name) \
58static inline void update_##name(struct btrfs_space_info *sinfo, \
59 s64 bytes) \
60{ \
61 if (bytes < 0 && sinfo->name < -bytes) { \
62 WARN_ON(1); \
63 sinfo->name = 0; \
64 return; \
65 } \
66 sinfo->name += bytes; \
67}
68
69DECLARE_SPACE_INFO_UPDATE(bytes_may_use);
e2907c1a 70DECLARE_SPACE_INFO_UPDATE(bytes_pinned);
9f9b8e8d 71
5d4f98a2 72static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
73 struct btrfs_delayed_ref_node *node, u64 parent,
74 u64 root_objectid, u64 owner_objectid,
75 u64 owner_offset, int refs_to_drop,
76 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
77static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
78 struct extent_buffer *leaf,
79 struct btrfs_extent_item *ei);
80static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
81 u64 parent, u64 root_objectid,
82 u64 flags, u64 owner, u64 offset,
83 struct btrfs_key *ins, int ref_mod);
84static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 85 struct btrfs_delayed_ref_node *node,
21ebfbe7 86 struct btrfs_delayed_extent_op *extent_op);
01458828 87static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
698d0082 88 int force);
11833d66
YZ
89static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
ab8d0fc4
JM
91static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 93 int dump_block_groups);
5d80366e
JB
94static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
95 u64 num_bytes);
957780eb
JB
96static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
97 struct btrfs_space_info *space_info,
98 u64 num_bytes);
99static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
100 struct btrfs_space_info *space_info,
101 u64 num_bytes);
6a63209f 102
817d52f8
JB
103static noinline int
104block_group_cache_done(struct btrfs_block_group_cache *cache)
105{
106 smp_mb();
36cce922
JB
107 return cache->cached == BTRFS_CACHE_FINISHED ||
108 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
109}
110
0f9dd46c
JB
111static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112{
113 return (cache->flags & bits) == bits;
114}
115
758f2dfc 116void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
117{
118 atomic_inc(&cache->count);
119}
120
121void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122{
f0486c68
YZ
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
0966a7b1
QW
126
127 /*
128 * If not empty, someone is still holding mutex of
129 * full_stripe_lock, which can only be released by caller.
130 * And it will definitely cause use-after-free when caller
131 * tries to release full stripe lock.
132 *
133 * No better way to resolve, but only to warn.
134 */
135 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 136 kfree(cache->free_space_ctl);
11dfe35a 137 kfree(cache);
f0486c68 138 }
11dfe35a
JB
139}
140
0f9dd46c
JB
141/*
142 * this adds the block group to the fs_info rb tree for the block group
143 * cache
144 */
b2950863 145static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
146 struct btrfs_block_group_cache *block_group)
147{
148 struct rb_node **p;
149 struct rb_node *parent = NULL;
150 struct btrfs_block_group_cache *cache;
151
152 spin_lock(&info->block_group_cache_lock);
153 p = &info->block_group_cache_tree.rb_node;
154
155 while (*p) {
156 parent = *p;
157 cache = rb_entry(parent, struct btrfs_block_group_cache,
158 cache_node);
159 if (block_group->key.objectid < cache->key.objectid) {
160 p = &(*p)->rb_left;
161 } else if (block_group->key.objectid > cache->key.objectid) {
162 p = &(*p)->rb_right;
163 } else {
164 spin_unlock(&info->block_group_cache_lock);
165 return -EEXIST;
166 }
167 }
168
169 rb_link_node(&block_group->cache_node, parent, p);
170 rb_insert_color(&block_group->cache_node,
171 &info->block_group_cache_tree);
a1897fdd
LB
172
173 if (info->first_logical_byte > block_group->key.objectid)
174 info->first_logical_byte = block_group->key.objectid;
175
0f9dd46c
JB
176 spin_unlock(&info->block_group_cache_lock);
177
178 return 0;
179}
180
181/*
182 * This will return the block group at or after bytenr if contains is 0, else
183 * it will return the block group that contains the bytenr
184 */
185static struct btrfs_block_group_cache *
186block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
187 int contains)
188{
189 struct btrfs_block_group_cache *cache, *ret = NULL;
190 struct rb_node *n;
191 u64 end, start;
192
193 spin_lock(&info->block_group_cache_lock);
194 n = info->block_group_cache_tree.rb_node;
195
196 while (n) {
197 cache = rb_entry(n, struct btrfs_block_group_cache,
198 cache_node);
199 end = cache->key.objectid + cache->key.offset - 1;
200 start = cache->key.objectid;
201
202 if (bytenr < start) {
203 if (!contains && (!ret || start < ret->key.objectid))
204 ret = cache;
205 n = n->rb_left;
206 } else if (bytenr > start) {
207 if (contains && bytenr <= end) {
208 ret = cache;
209 break;
210 }
211 n = n->rb_right;
212 } else {
213 ret = cache;
214 break;
215 }
216 }
a1897fdd 217 if (ret) {
11dfe35a 218 btrfs_get_block_group(ret);
a1897fdd
LB
219 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
220 info->first_logical_byte = ret->key.objectid;
221 }
0f9dd46c
JB
222 spin_unlock(&info->block_group_cache_lock);
223
224 return ret;
225}
226
2ff7e61e 227static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 228 u64 start, u64 num_bytes)
817d52f8 229{
11833d66 230 u64 end = start + num_bytes - 1;
0b246afa 231 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 232 start, end, EXTENT_UPTODATE);
0b246afa 233 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 234 start, end, EXTENT_UPTODATE);
11833d66
YZ
235 return 0;
236}
817d52f8 237
9e715da8 238static void free_excluded_extents(struct btrfs_block_group_cache *cache)
11833d66 239{
9e715da8 240 struct btrfs_fs_info *fs_info = cache->fs_info;
11833d66 241 u64 start, end;
817d52f8 242
11833d66
YZ
243 start = cache->key.objectid;
244 end = start + cache->key.offset - 1;
245
0b246afa 246 clear_extent_bits(&fs_info->freed_extents[0],
91166212 247 start, end, EXTENT_UPTODATE);
0b246afa 248 clear_extent_bits(&fs_info->freed_extents[1],
91166212 249 start, end, EXTENT_UPTODATE);
817d52f8
JB
250}
251
3c4da657 252static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
817d52f8 253{
3c4da657 254 struct btrfs_fs_info *fs_info = cache->fs_info;
817d52f8
JB
255 u64 bytenr;
256 u64 *logical;
257 int stripe_len;
258 int i, nr, ret;
259
06b2331f
YZ
260 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
261 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
262 cache->bytes_super += stripe_len;
2ff7e61e 263 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 264 stripe_len);
835d974f
JB
265 if (ret)
266 return ret;
06b2331f
YZ
267 }
268
817d52f8
JB
269 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
270 bytenr = btrfs_sb_offset(i);
0b246afa 271 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
63a9c7b9 272 bytenr, &logical, &nr, &stripe_len);
835d974f
JB
273 if (ret)
274 return ret;
11833d66 275
817d52f8 276 while (nr--) {
51bf5f0b
JB
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
2ff7e61e 297 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
817d52f8 302 }
11833d66 303
817d52f8
JB
304 kfree(logical);
305 }
817d52f8
JB
306 return 0;
307}
308
11833d66
YZ
309static struct btrfs_caching_control *
310get_caching_control(struct btrfs_block_group_cache *cache)
311{
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
dde5abee
JB
315 if (!cache->caching_ctl) {
316 spin_unlock(&cache->lock);
11833d66
YZ
317 return NULL;
318 }
319
320 ctl = cache->caching_ctl;
1e4f4714 321 refcount_inc(&ctl->count);
11833d66
YZ
322 spin_unlock(&cache->lock);
323 return ctl;
324}
325
326static void put_caching_control(struct btrfs_caching_control *ctl)
327{
1e4f4714 328 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
329 kfree(ctl);
330}
331
d0bd4560 332#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 333static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 334{
2ff7e61e 335 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
336 u64 start = block_group->key.objectid;
337 u64 len = block_group->key.offset;
338 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 339 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
340 u64 step = chunk << 1;
341
342 while (len > chunk) {
343 btrfs_remove_free_space(block_group, start, chunk);
344 start += step;
345 if (len < step)
346 len = 0;
347 else
348 len -= step;
349 }
350}
351#endif
352
0f9dd46c
JB
353/*
354 * this is only called by cache_block_group, since we could have freed extents
355 * we need to check the pinned_extents for any extents that can't be used yet
356 * since their free space will be released as soon as the transaction commits.
357 */
a5ed9182 358u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
4457c1c7 359 u64 start, u64 end)
0f9dd46c 360{
4457c1c7 361 struct btrfs_fs_info *info = block_group->fs_info;
817d52f8 362 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
363 int ret;
364
365 while (start < end) {
11833d66 366 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 367 &extent_start, &extent_end,
e6138876
JB
368 EXTENT_DIRTY | EXTENT_UPTODATE,
369 NULL);
0f9dd46c
JB
370 if (ret)
371 break;
372
06b2331f 373 if (extent_start <= start) {
0f9dd46c
JB
374 start = extent_end + 1;
375 } else if (extent_start > start && extent_start < end) {
376 size = extent_start - start;
817d52f8 377 total_added += size;
ea6a478e
JB
378 ret = btrfs_add_free_space(block_group, start,
379 size);
79787eaa 380 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
381 start = extent_end + 1;
382 } else {
383 break;
384 }
385 }
386
387 if (start < end) {
388 size = end - start;
817d52f8 389 total_added += size;
ea6a478e 390 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 391 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
392 }
393
817d52f8 394 return total_added;
0f9dd46c
JB
395}
396
73fa48b6 397static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 398{
0b246afa
JM
399 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
400 struct btrfs_fs_info *fs_info = block_group->fs_info;
401 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 402 struct btrfs_path *path;
5f39d397 403 struct extent_buffer *leaf;
11833d66 404 struct btrfs_key key;
817d52f8 405 u64 total_found = 0;
11833d66
YZ
406 u64 last = 0;
407 u32 nritems;
73fa48b6 408 int ret;
d0bd4560 409 bool wakeup = true;
f510cfec 410
e37c9e69
CM
411 path = btrfs_alloc_path();
412 if (!path)
73fa48b6 413 return -ENOMEM;
7d7d6068 414
817d52f8 415 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 416
d0bd4560
JB
417#ifdef CONFIG_BTRFS_DEBUG
418 /*
419 * If we're fragmenting we don't want to make anybody think we can
420 * allocate from this block group until we've had a chance to fragment
421 * the free space.
422 */
2ff7e61e 423 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
424 wakeup = false;
425#endif
5cd57b2c 426 /*
817d52f8
JB
427 * We don't want to deadlock with somebody trying to allocate a new
428 * extent for the extent root while also trying to search the extent
429 * root to add free space. So we skip locking and search the commit
430 * root, since its read-only
5cd57b2c
CM
431 */
432 path->skip_locking = 1;
817d52f8 433 path->search_commit_root = 1;
e4058b54 434 path->reada = READA_FORWARD;
817d52f8 435
e4404d6e 436 key.objectid = last;
e37c9e69 437 key.offset = 0;
11833d66 438 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 439
52ee28d2 440next:
11833d66 441 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 442 if (ret < 0)
73fa48b6 443 goto out;
a512bbf8 444
11833d66
YZ
445 leaf = path->nodes[0];
446 nritems = btrfs_header_nritems(leaf);
447
d397712b 448 while (1) {
7841cb28 449 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 450 last = (u64)-1;
817d52f8 451 break;
f25784b3 452 }
817d52f8 453
11833d66
YZ
454 if (path->slots[0] < nritems) {
455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
456 } else {
457 ret = find_next_key(path, 0, &key);
458 if (ret)
e37c9e69 459 break;
817d52f8 460
c9ea7b24 461 if (need_resched() ||
9e351cc8 462 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
463 if (wakeup)
464 caching_ctl->progress = last;
ff5714cc 465 btrfs_release_path(path);
9e351cc8 466 up_read(&fs_info->commit_root_sem);
589d8ade 467 mutex_unlock(&caching_ctl->mutex);
11833d66 468 cond_resched();
73fa48b6
OS
469 mutex_lock(&caching_ctl->mutex);
470 down_read(&fs_info->commit_root_sem);
471 goto next;
589d8ade 472 }
0a3896d0
JB
473
474 ret = btrfs_next_leaf(extent_root, path);
475 if (ret < 0)
73fa48b6 476 goto out;
0a3896d0
JB
477 if (ret)
478 break;
589d8ade
JB
479 leaf = path->nodes[0];
480 nritems = btrfs_header_nritems(leaf);
481 continue;
11833d66 482 }
817d52f8 483
52ee28d2
LB
484 if (key.objectid < last) {
485 key.objectid = last;
486 key.offset = 0;
487 key.type = BTRFS_EXTENT_ITEM_KEY;
488
d0bd4560
JB
489 if (wakeup)
490 caching_ctl->progress = last;
52ee28d2
LB
491 btrfs_release_path(path);
492 goto next;
493 }
494
11833d66
YZ
495 if (key.objectid < block_group->key.objectid) {
496 path->slots[0]++;
817d52f8 497 continue;
e37c9e69 498 }
0f9dd46c 499
e37c9e69 500 if (key.objectid >= block_group->key.objectid +
0f9dd46c 501 block_group->key.offset)
e37c9e69 502 break;
7d7d6068 503
3173a18f
JB
504 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
505 key.type == BTRFS_METADATA_ITEM_KEY) {
4457c1c7 506 total_found += add_new_free_space(block_group, last,
817d52f8 507 key.objectid);
3173a18f
JB
508 if (key.type == BTRFS_METADATA_ITEM_KEY)
509 last = key.objectid +
da17066c 510 fs_info->nodesize;
3173a18f
JB
511 else
512 last = key.objectid + key.offset;
817d52f8 513
73fa48b6 514 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 515 total_found = 0;
d0bd4560
JB
516 if (wakeup)
517 wake_up(&caching_ctl->wait);
11833d66 518 }
817d52f8 519 }
e37c9e69
CM
520 path->slots[0]++;
521 }
817d52f8 522 ret = 0;
e37c9e69 523
4457c1c7 524 total_found += add_new_free_space(block_group, last,
817d52f8
JB
525 block_group->key.objectid +
526 block_group->key.offset);
11833d66 527 caching_ctl->progress = (u64)-1;
817d52f8 528
73fa48b6
OS
529out:
530 btrfs_free_path(path);
531 return ret;
532}
533
534static noinline void caching_thread(struct btrfs_work *work)
535{
536 struct btrfs_block_group_cache *block_group;
537 struct btrfs_fs_info *fs_info;
538 struct btrfs_caching_control *caching_ctl;
539 int ret;
540
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
544
545 mutex_lock(&caching_ctl->mutex);
546 down_read(&fs_info->commit_root_sem);
547
1e144fb8
OS
548 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549 ret = load_free_space_tree(caching_ctl);
550 else
551 ret = load_extent_tree_free(caching_ctl);
73fa48b6 552
817d52f8 553 spin_lock(&block_group->lock);
11833d66 554 block_group->caching_ctl = NULL;
73fa48b6 555 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 556 spin_unlock(&block_group->lock);
0f9dd46c 557
d0bd4560 558#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 559 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
560 u64 bytes_used;
561
562 spin_lock(&block_group->space_info->lock);
563 spin_lock(&block_group->lock);
564 bytes_used = block_group->key.offset -
565 btrfs_block_group_used(&block_group->item);
566 block_group->space_info->bytes_used += bytes_used >> 1;
567 spin_unlock(&block_group->lock);
568 spin_unlock(&block_group->space_info->lock);
2ff7e61e 569 fragment_free_space(block_group);
d0bd4560
JB
570 }
571#endif
572
573 caching_ctl->progress = (u64)-1;
11833d66 574
9e351cc8 575 up_read(&fs_info->commit_root_sem);
9e715da8 576 free_excluded_extents(block_group);
11833d66 577 mutex_unlock(&caching_ctl->mutex);
73fa48b6 578
11833d66
YZ
579 wake_up(&caching_ctl->wait);
580
581 put_caching_control(caching_ctl);
11dfe35a 582 btrfs_put_block_group(block_group);
817d52f8
JB
583}
584
9d66e233 585static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 586 int load_cache_only)
817d52f8 587{
291c7d2f 588 DEFINE_WAIT(wait);
11833d66
YZ
589 struct btrfs_fs_info *fs_info = cache->fs_info;
590 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
591 int ret = 0;
592
291c7d2f 593 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
594 if (!caching_ctl)
595 return -ENOMEM;
291c7d2f
JB
596
597 INIT_LIST_HEAD(&caching_ctl->list);
598 mutex_init(&caching_ctl->mutex);
599 init_waitqueue_head(&caching_ctl->wait);
600 caching_ctl->block_group = cache;
601 caching_ctl->progress = cache->key.objectid;
1e4f4714 602 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
603 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604 caching_thread, NULL, NULL);
291c7d2f
JB
605
606 spin_lock(&cache->lock);
607 /*
608 * This should be a rare occasion, but this could happen I think in the
609 * case where one thread starts to load the space cache info, and then
610 * some other thread starts a transaction commit which tries to do an
611 * allocation while the other thread is still loading the space cache
612 * info. The previous loop should have kept us from choosing this block
613 * group, but if we've moved to the state where we will wait on caching
614 * block groups we need to first check if we're doing a fast load here,
615 * so we can wait for it to finish, otherwise we could end up allocating
616 * from a block group who's cache gets evicted for one reason or
617 * another.
618 */
619 while (cache->cached == BTRFS_CACHE_FAST) {
620 struct btrfs_caching_control *ctl;
621
622 ctl = cache->caching_ctl;
1e4f4714 623 refcount_inc(&ctl->count);
291c7d2f
JB
624 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625 spin_unlock(&cache->lock);
626
627 schedule();
628
629 finish_wait(&ctl->wait, &wait);
630 put_caching_control(ctl);
631 spin_lock(&cache->lock);
632 }
633
634 if (cache->cached != BTRFS_CACHE_NO) {
635 spin_unlock(&cache->lock);
636 kfree(caching_ctl);
11833d66 637 return 0;
291c7d2f
JB
638 }
639 WARN_ON(cache->caching_ctl);
640 cache->caching_ctl = caching_ctl;
641 cache->cached = BTRFS_CACHE_FAST;
642 spin_unlock(&cache->lock);
11833d66 643
d8953d69 644 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 645 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
646 ret = load_free_space_cache(fs_info, cache);
647
648 spin_lock(&cache->lock);
649 if (ret == 1) {
291c7d2f 650 cache->caching_ctl = NULL;
9d66e233
JB
651 cache->cached = BTRFS_CACHE_FINISHED;
652 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 653 caching_ctl->progress = (u64)-1;
9d66e233 654 } else {
291c7d2f
JB
655 if (load_cache_only) {
656 cache->caching_ctl = NULL;
657 cache->cached = BTRFS_CACHE_NO;
658 } else {
659 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 660 cache->has_caching_ctl = 1;
291c7d2f 661 }
9d66e233
JB
662 }
663 spin_unlock(&cache->lock);
d0bd4560
JB
664#ifdef CONFIG_BTRFS_DEBUG
665 if (ret == 1 &&
2ff7e61e 666 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
667 u64 bytes_used;
668
669 spin_lock(&cache->space_info->lock);
670 spin_lock(&cache->lock);
671 bytes_used = cache->key.offset -
672 btrfs_block_group_used(&cache->item);
673 cache->space_info->bytes_used += bytes_used >> 1;
674 spin_unlock(&cache->lock);
675 spin_unlock(&cache->space_info->lock);
2ff7e61e 676 fragment_free_space(cache);
d0bd4560
JB
677 }
678#endif
cb83b7b8
JB
679 mutex_unlock(&caching_ctl->mutex);
680
291c7d2f 681 wake_up(&caching_ctl->wait);
3c14874a 682 if (ret == 1) {
291c7d2f 683 put_caching_control(caching_ctl);
9e715da8 684 free_excluded_extents(cache);
9d66e233 685 return 0;
3c14874a 686 }
291c7d2f
JB
687 } else {
688 /*
1e144fb8
OS
689 * We're either using the free space tree or no caching at all.
690 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
691 */
692 spin_lock(&cache->lock);
693 if (load_cache_only) {
694 cache->caching_ctl = NULL;
695 cache->cached = BTRFS_CACHE_NO;
696 } else {
697 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 698 cache->has_caching_ctl = 1;
291c7d2f
JB
699 }
700 spin_unlock(&cache->lock);
701 wake_up(&caching_ctl->wait);
9d66e233
JB
702 }
703
291c7d2f
JB
704 if (load_cache_only) {
705 put_caching_control(caching_ctl);
11833d66 706 return 0;
817d52f8 707 }
817d52f8 708
9e351cc8 709 down_write(&fs_info->commit_root_sem);
1e4f4714 710 refcount_inc(&caching_ctl->count);
11833d66 711 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 712 up_write(&fs_info->commit_root_sem);
11833d66 713
11dfe35a 714 btrfs_get_block_group(cache);
11833d66 715
e66f0bb1 716 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 717
ef8bbdfe 718 return ret;
e37c9e69
CM
719}
720
0f9dd46c
JB
721/*
722 * return the block group that starts at or after bytenr
723 */
d397712b
CM
724static struct btrfs_block_group_cache *
725btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 726{
e2c89907 727 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
728}
729
0f9dd46c 730/*
9f55684c 731 * return the block group that contains the given bytenr
0f9dd46c 732 */
d397712b
CM
733struct btrfs_block_group_cache *btrfs_lookup_block_group(
734 struct btrfs_fs_info *info,
735 u64 bytenr)
be744175 736{
e2c89907 737 return block_group_cache_tree_search(info, bytenr, 1);
be744175 738}
0b86a832 739
0f9dd46c
JB
740static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
741 u64 flags)
6324fbf3 742{
0f9dd46c 743 struct list_head *head = &info->space_info;
0f9dd46c 744 struct btrfs_space_info *found;
4184ea7f 745
52ba6929 746 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 747
4184ea7f
CM
748 rcu_read_lock();
749 list_for_each_entry_rcu(found, head, list) {
67377734 750 if (found->flags & flags) {
4184ea7f 751 rcu_read_unlock();
0f9dd46c 752 return found;
4184ea7f 753 }
0f9dd46c 754 }
4184ea7f 755 rcu_read_unlock();
0f9dd46c 756 return NULL;
6324fbf3
CM
757}
758
0d9f824d 759static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
29d2b84c 760 bool metadata, u64 root_objectid)
0d9f824d
OS
761{
762 struct btrfs_space_info *space_info;
763 u64 flags;
764
29d2b84c 765 if (metadata) {
0d9f824d
OS
766 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
767 flags = BTRFS_BLOCK_GROUP_SYSTEM;
768 else
769 flags = BTRFS_BLOCK_GROUP_METADATA;
770 } else {
771 flags = BTRFS_BLOCK_GROUP_DATA;
772 }
773
774 space_info = __find_space_info(fs_info, flags);
55e8196a 775 ASSERT(space_info);
dec59fa3
EL
776 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
777 BTRFS_TOTAL_BYTES_PINNED_BATCH);
0d9f824d
OS
778}
779
4184ea7f
CM
780/*
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
783 */
784void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785{
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
788
789 rcu_read_lock();
790 list_for_each_entry_rcu(found, head, list)
791 found->full = 0;
792 rcu_read_unlock();
793}
794
1a4ed8fd 795/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 796int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
797{
798 int ret;
799 struct btrfs_key key;
31840ae1 800 struct btrfs_path *path;
e02119d5 801
31840ae1 802 path = btrfs_alloc_path();
d8926bb3
MF
803 if (!path)
804 return -ENOMEM;
805
e02119d5
CM
806 key.objectid = start;
807 key.offset = len;
3173a18f 808 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 810 btrfs_free_path(path);
7bb86316
CM
811 return ret;
812}
813
a22285a6 814/*
3173a18f 815 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
816 *
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
822 */
823int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 824 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 825 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
826{
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
833 u32 item_size;
834 u64 num_refs;
835 u64 extent_flags;
836 int ret;
837
3173a18f
JB
838 /*
839 * If we don't have skinny metadata, don't bother doing anything
840 * different
841 */
0b246afa
JM
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
3173a18f
JB
844 metadata = 0;
845 }
846
a22285a6
YZ
847 path = btrfs_alloc_path();
848 if (!path)
849 return -ENOMEM;
850
a22285a6
YZ
851 if (!trans) {
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
854 }
639eefc8
FDBM
855
856search_again:
857 key.objectid = bytenr;
858 key.offset = offset;
859 if (metadata)
860 key.type = BTRFS_METADATA_ITEM_KEY;
861 else
862 key.type = BTRFS_EXTENT_ITEM_KEY;
863
0b246afa 864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
865 if (ret < 0)
866 goto out_free;
867
3173a18f 868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
869 if (path->slots[0]) {
870 path->slots[0]--;
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 path->slots[0]);
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 875 key.offset == fs_info->nodesize)
74be9510
FDBM
876 ret = 0;
877 }
3173a18f
JB
878 }
879
a22285a6
YZ
880 if (ret == 0) {
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
888 } else {
ba3c2b19
NB
889 ret = -EINVAL;
890 btrfs_print_v0_err(fs_info);
891 if (trans)
892 btrfs_abort_transaction(trans, ret);
893 else
894 btrfs_handle_fs_error(fs_info, ret, NULL);
895
896 goto out_free;
a22285a6 897 }
ba3c2b19 898
a22285a6
YZ
899 BUG_ON(num_refs == 0);
900 } else {
901 num_refs = 0;
902 extent_flags = 0;
903 ret = 0;
904 }
905
906 if (!trans)
907 goto out;
908
909 delayed_refs = &trans->transaction->delayed_refs;
910 spin_lock(&delayed_refs->lock);
f72ad18e 911 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
912 if (head) {
913 if (!mutex_trylock(&head->mutex)) {
d278850e 914 refcount_inc(&head->refs);
a22285a6
YZ
915 spin_unlock(&delayed_refs->lock);
916
b3b4aa74 917 btrfs_release_path(path);
a22285a6 918
8cc33e5c
DS
919 /*
920 * Mutex was contended, block until it's released and try
921 * again
922 */
a22285a6
YZ
923 mutex_lock(&head->mutex);
924 mutex_unlock(&head->mutex);
d278850e 925 btrfs_put_delayed_ref_head(head);
639eefc8 926 goto search_again;
a22285a6 927 }
d7df2c79 928 spin_lock(&head->lock);
a22285a6
YZ
929 if (head->extent_op && head->extent_op->update_flags)
930 extent_flags |= head->extent_op->flags_to_set;
931 else
932 BUG_ON(num_refs == 0);
933
d278850e 934 num_refs += head->ref_mod;
d7df2c79 935 spin_unlock(&head->lock);
a22285a6
YZ
936 mutex_unlock(&head->mutex);
937 }
938 spin_unlock(&delayed_refs->lock);
939out:
940 WARN_ON(num_refs == 0);
941 if (refs)
942 *refs = num_refs;
943 if (flags)
944 *flags = extent_flags;
945out_free:
946 btrfs_free_path(path);
947 return ret;
948}
949
d8d5f3e1
CM
950/*
951 * Back reference rules. Back refs have three main goals:
952 *
953 * 1) differentiate between all holders of references to an extent so that
954 * when a reference is dropped we can make sure it was a valid reference
955 * before freeing the extent.
956 *
957 * 2) Provide enough information to quickly find the holders of an extent
958 * if we notice a given block is corrupted or bad.
959 *
960 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
961 * maintenance. This is actually the same as #2, but with a slightly
962 * different use case.
963 *
5d4f98a2
YZ
964 * There are two kinds of back refs. The implicit back refs is optimized
965 * for pointers in non-shared tree blocks. For a given pointer in a block,
966 * back refs of this kind provide information about the block's owner tree
967 * and the pointer's key. These information allow us to find the block by
968 * b-tree searching. The full back refs is for pointers in tree blocks not
969 * referenced by their owner trees. The location of tree block is recorded
970 * in the back refs. Actually the full back refs is generic, and can be
971 * used in all cases the implicit back refs is used. The major shortcoming
972 * of the full back refs is its overhead. Every time a tree block gets
973 * COWed, we have to update back refs entry for all pointers in it.
974 *
975 * For a newly allocated tree block, we use implicit back refs for
976 * pointers in it. This means most tree related operations only involve
977 * implicit back refs. For a tree block created in old transaction, the
978 * only way to drop a reference to it is COW it. So we can detect the
979 * event that tree block loses its owner tree's reference and do the
980 * back refs conversion.
981 *
01327610 982 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
983 *
984 * The reference count of the block is one and the tree is the block's
985 * owner tree. Nothing to do in this case.
986 *
987 * The reference count of the block is one and the tree is not the
988 * block's owner tree. In this case, full back refs is used for pointers
989 * in the block. Remove these full back refs, add implicit back refs for
990 * every pointers in the new block.
991 *
992 * The reference count of the block is greater than one and the tree is
993 * the block's owner tree. In this case, implicit back refs is used for
994 * pointers in the block. Add full back refs for every pointers in the
995 * block, increase lower level extents' reference counts. The original
996 * implicit back refs are entailed to the new block.
997 *
998 * The reference count of the block is greater than one and the tree is
999 * not the block's owner tree. Add implicit back refs for every pointer in
1000 * the new block, increase lower level extents' reference count.
1001 *
1002 * Back Reference Key composing:
1003 *
1004 * The key objectid corresponds to the first byte in the extent,
1005 * The key type is used to differentiate between types of back refs.
1006 * There are different meanings of the key offset for different types
1007 * of back refs.
1008 *
d8d5f3e1
CM
1009 * File extents can be referenced by:
1010 *
1011 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1012 * - different files inside a single subvolume
d8d5f3e1
CM
1013 * - different offsets inside a file (bookend extents in file.c)
1014 *
5d4f98a2 1015 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1016 *
1017 * - Objectid of the subvolume root
d8d5f3e1 1018 * - objectid of the file holding the reference
5d4f98a2
YZ
1019 * - original offset in the file
1020 * - how many bookend extents
d8d5f3e1 1021 *
5d4f98a2
YZ
1022 * The key offset for the implicit back refs is hash of the first
1023 * three fields.
d8d5f3e1 1024 *
5d4f98a2 1025 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1026 *
5d4f98a2 1027 * - number of pointers in the tree leaf
d8d5f3e1 1028 *
5d4f98a2
YZ
1029 * The key offset for the implicit back refs is the first byte of
1030 * the tree leaf
d8d5f3e1 1031 *
5d4f98a2
YZ
1032 * When a file extent is allocated, The implicit back refs is used.
1033 * the fields are filled in:
d8d5f3e1 1034 *
5d4f98a2 1035 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1036 *
5d4f98a2
YZ
1037 * When a file extent is removed file truncation, we find the
1038 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1039 *
5d4f98a2 1040 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1041 *
5d4f98a2 1042 * Btree extents can be referenced by:
d8d5f3e1 1043 *
5d4f98a2 1044 * - Different subvolumes
d8d5f3e1 1045 *
5d4f98a2
YZ
1046 * Both the implicit back refs and the full back refs for tree blocks
1047 * only consist of key. The key offset for the implicit back refs is
1048 * objectid of block's owner tree. The key offset for the full back refs
1049 * is the first byte of parent block.
d8d5f3e1 1050 *
5d4f98a2
YZ
1051 * When implicit back refs is used, information about the lowest key and
1052 * level of the tree block are required. These information are stored in
1053 * tree block info structure.
d8d5f3e1 1054 */
31840ae1 1055
167ce953
LB
1056/*
1057 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
52042d8e 1058 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
167ce953
LB
1059 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1060 */
1061int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1062 struct btrfs_extent_inline_ref *iref,
1063 enum btrfs_inline_ref_type is_data)
1064{
1065 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1066 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1067
1068 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1069 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1070 type == BTRFS_SHARED_DATA_REF_KEY ||
1071 type == BTRFS_EXTENT_DATA_REF_KEY) {
1072 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1073 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1074 return type;
64ecdb64
LB
1075 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1076 ASSERT(eb->fs_info);
1077 /*
1078 * Every shared one has parent tree
1079 * block, which must be aligned to
1080 * nodesize.
1081 */
1082 if (offset &&
1083 IS_ALIGNED(offset, eb->fs_info->nodesize))
1084 return type;
1085 }
167ce953 1086 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1087 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1088 return type;
64ecdb64
LB
1089 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1090 ASSERT(eb->fs_info);
1091 /*
1092 * Every shared one has parent tree
1093 * block, which must be aligned to
1094 * nodesize.
1095 */
1096 if (offset &&
1097 IS_ALIGNED(offset, eb->fs_info->nodesize))
1098 return type;
1099 }
167ce953
LB
1100 } else {
1101 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1102 return type;
1103 }
1104 }
1105
1106 btrfs_print_leaf((struct extent_buffer *)eb);
1107 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1108 eb->start, type);
1109 WARN_ON(1);
1110
1111 return BTRFS_REF_TYPE_INVALID;
1112}
1113
5d4f98a2
YZ
1114static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1115{
1116 u32 high_crc = ~(u32)0;
1117 u32 low_crc = ~(u32)0;
1118 __le64 lenum;
1119
1120 lenum = cpu_to_le64(root_objectid);
9678c543 1121 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1122 lenum = cpu_to_le64(owner);
9678c543 1123 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1124 lenum = cpu_to_le64(offset);
9678c543 1125 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1126
1127 return ((u64)high_crc << 31) ^ (u64)low_crc;
1128}
1129
1130static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1131 struct btrfs_extent_data_ref *ref)
1132{
1133 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1134 btrfs_extent_data_ref_objectid(leaf, ref),
1135 btrfs_extent_data_ref_offset(leaf, ref));
1136}
1137
1138static int match_extent_data_ref(struct extent_buffer *leaf,
1139 struct btrfs_extent_data_ref *ref,
1140 u64 root_objectid, u64 owner, u64 offset)
1141{
1142 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1143 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1144 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1145 return 0;
1146 return 1;
1147}
1148
1149static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1150 struct btrfs_path *path,
1151 u64 bytenr, u64 parent,
1152 u64 root_objectid,
1153 u64 owner, u64 offset)
1154{
bd1d53ef 1155 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2
YZ
1156 struct btrfs_key key;
1157 struct btrfs_extent_data_ref *ref;
31840ae1 1158 struct extent_buffer *leaf;
5d4f98a2 1159 u32 nritems;
74493f7a 1160 int ret;
5d4f98a2
YZ
1161 int recow;
1162 int err = -ENOENT;
74493f7a 1163
31840ae1 1164 key.objectid = bytenr;
5d4f98a2
YZ
1165 if (parent) {
1166 key.type = BTRFS_SHARED_DATA_REF_KEY;
1167 key.offset = parent;
1168 } else {
1169 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1170 key.offset = hash_extent_data_ref(root_objectid,
1171 owner, offset);
1172 }
1173again:
1174 recow = 0;
1175 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1176 if (ret < 0) {
1177 err = ret;
1178 goto fail;
1179 }
31840ae1 1180
5d4f98a2
YZ
1181 if (parent) {
1182 if (!ret)
1183 return 0;
5d4f98a2 1184 goto fail;
31840ae1
ZY
1185 }
1186
1187 leaf = path->nodes[0];
5d4f98a2
YZ
1188 nritems = btrfs_header_nritems(leaf);
1189 while (1) {
1190 if (path->slots[0] >= nritems) {
1191 ret = btrfs_next_leaf(root, path);
1192 if (ret < 0)
1193 err = ret;
1194 if (ret)
1195 goto fail;
1196
1197 leaf = path->nodes[0];
1198 nritems = btrfs_header_nritems(leaf);
1199 recow = 1;
1200 }
1201
1202 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1203 if (key.objectid != bytenr ||
1204 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1205 goto fail;
1206
1207 ref = btrfs_item_ptr(leaf, path->slots[0],
1208 struct btrfs_extent_data_ref);
1209
1210 if (match_extent_data_ref(leaf, ref, root_objectid,
1211 owner, offset)) {
1212 if (recow) {
b3b4aa74 1213 btrfs_release_path(path);
5d4f98a2
YZ
1214 goto again;
1215 }
1216 err = 0;
1217 break;
1218 }
1219 path->slots[0]++;
31840ae1 1220 }
5d4f98a2
YZ
1221fail:
1222 return err;
31840ae1
ZY
1223}
1224
5d4f98a2 1225static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1226 struct btrfs_path *path,
1227 u64 bytenr, u64 parent,
1228 u64 root_objectid, u64 owner,
1229 u64 offset, int refs_to_add)
31840ae1 1230{
62b895af 1231 struct btrfs_root *root = trans->fs_info->extent_root;
31840ae1
ZY
1232 struct btrfs_key key;
1233 struct extent_buffer *leaf;
5d4f98a2 1234 u32 size;
31840ae1
ZY
1235 u32 num_refs;
1236 int ret;
74493f7a 1237
74493f7a 1238 key.objectid = bytenr;
5d4f98a2
YZ
1239 if (parent) {
1240 key.type = BTRFS_SHARED_DATA_REF_KEY;
1241 key.offset = parent;
1242 size = sizeof(struct btrfs_shared_data_ref);
1243 } else {
1244 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1245 key.offset = hash_extent_data_ref(root_objectid,
1246 owner, offset);
1247 size = sizeof(struct btrfs_extent_data_ref);
1248 }
74493f7a 1249
5d4f98a2
YZ
1250 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1251 if (ret && ret != -EEXIST)
1252 goto fail;
1253
1254 leaf = path->nodes[0];
1255 if (parent) {
1256 struct btrfs_shared_data_ref *ref;
31840ae1 1257 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1258 struct btrfs_shared_data_ref);
1259 if (ret == 0) {
1260 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1261 } else {
1262 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1263 num_refs += refs_to_add;
1264 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1265 }
5d4f98a2
YZ
1266 } else {
1267 struct btrfs_extent_data_ref *ref;
1268 while (ret == -EEXIST) {
1269 ref = btrfs_item_ptr(leaf, path->slots[0],
1270 struct btrfs_extent_data_ref);
1271 if (match_extent_data_ref(leaf, ref, root_objectid,
1272 owner, offset))
1273 break;
b3b4aa74 1274 btrfs_release_path(path);
5d4f98a2
YZ
1275 key.offset++;
1276 ret = btrfs_insert_empty_item(trans, root, path, &key,
1277 size);
1278 if (ret && ret != -EEXIST)
1279 goto fail;
31840ae1 1280
5d4f98a2
YZ
1281 leaf = path->nodes[0];
1282 }
1283 ref = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_data_ref);
1285 if (ret == 0) {
1286 btrfs_set_extent_data_ref_root(leaf, ref,
1287 root_objectid);
1288 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1289 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1290 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1291 } else {
1292 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1293 num_refs += refs_to_add;
1294 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1295 }
31840ae1 1296 }
5d4f98a2
YZ
1297 btrfs_mark_buffer_dirty(leaf);
1298 ret = 0;
1299fail:
b3b4aa74 1300 btrfs_release_path(path);
7bb86316 1301 return ret;
74493f7a
CM
1302}
1303
5d4f98a2 1304static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2 1305 struct btrfs_path *path,
fcebe456 1306 int refs_to_drop, int *last_ref)
31840ae1 1307{
5d4f98a2
YZ
1308 struct btrfs_key key;
1309 struct btrfs_extent_data_ref *ref1 = NULL;
1310 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1311 struct extent_buffer *leaf;
5d4f98a2 1312 u32 num_refs = 0;
31840ae1
ZY
1313 int ret = 0;
1314
1315 leaf = path->nodes[0];
5d4f98a2
YZ
1316 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1317
1318 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1319 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1322 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1323 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1324 struct btrfs_shared_data_ref);
1325 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
6d8ff4e4 1326 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
ba3c2b19
NB
1327 btrfs_print_v0_err(trans->fs_info);
1328 btrfs_abort_transaction(trans, -EINVAL);
1329 return -EINVAL;
5d4f98a2
YZ
1330 } else {
1331 BUG();
1332 }
1333
56bec294
CM
1334 BUG_ON(num_refs < refs_to_drop);
1335 num_refs -= refs_to_drop;
5d4f98a2 1336
31840ae1 1337 if (num_refs == 0) {
e9f6290d 1338 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
fcebe456 1339 *last_ref = 1;
31840ae1 1340 } else {
5d4f98a2
YZ
1341 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1342 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1343 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1344 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
31840ae1
ZY
1345 btrfs_mark_buffer_dirty(leaf);
1346 }
31840ae1
ZY
1347 return ret;
1348}
1349
9ed0dea0 1350static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1351 struct btrfs_extent_inline_ref *iref)
15916de8 1352{
5d4f98a2
YZ
1353 struct btrfs_key key;
1354 struct extent_buffer *leaf;
1355 struct btrfs_extent_data_ref *ref1;
1356 struct btrfs_shared_data_ref *ref2;
1357 u32 num_refs = 0;
3de28d57 1358 int type;
5d4f98a2
YZ
1359
1360 leaf = path->nodes[0];
1361 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
ba3c2b19
NB
1362
1363 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
5d4f98a2 1364 if (iref) {
3de28d57
LB
1365 /*
1366 * If type is invalid, we should have bailed out earlier than
1367 * this call.
1368 */
1369 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1370 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1371 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1372 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1373 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1374 } else {
1375 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1376 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1377 }
1378 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1379 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1380 struct btrfs_extent_data_ref);
1381 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1382 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1383 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1384 struct btrfs_shared_data_ref);
1385 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
5d4f98a2
YZ
1386 } else {
1387 WARN_ON(1);
1388 }
1389 return num_refs;
1390}
15916de8 1391
5d4f98a2 1392static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1393 struct btrfs_path *path,
1394 u64 bytenr, u64 parent,
1395 u64 root_objectid)
1f3c79a2 1396{
b8582eea 1397 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2 1398 struct btrfs_key key;
1f3c79a2 1399 int ret;
1f3c79a2 1400
5d4f98a2
YZ
1401 key.objectid = bytenr;
1402 if (parent) {
1403 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1404 key.offset = parent;
1405 } else {
1406 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1407 key.offset = root_objectid;
1f3c79a2
LH
1408 }
1409
5d4f98a2
YZ
1410 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1411 if (ret > 0)
1412 ret = -ENOENT;
5d4f98a2 1413 return ret;
1f3c79a2
LH
1414}
1415
5d4f98a2 1416static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1417 struct btrfs_path *path,
1418 u64 bytenr, u64 parent,
1419 u64 root_objectid)
31840ae1 1420{
5d4f98a2 1421 struct btrfs_key key;
31840ae1 1422 int ret;
31840ae1 1423
5d4f98a2
YZ
1424 key.objectid = bytenr;
1425 if (parent) {
1426 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 key.offset = parent;
1428 } else {
1429 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1430 key.offset = root_objectid;
1431 }
1432
10728404 1433 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
87bde3cd 1434 path, &key, 0);
b3b4aa74 1435 btrfs_release_path(path);
31840ae1
ZY
1436 return ret;
1437}
1438
5d4f98a2 1439static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1440{
5d4f98a2
YZ
1441 int type;
1442 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1443 if (parent > 0)
1444 type = BTRFS_SHARED_BLOCK_REF_KEY;
1445 else
1446 type = BTRFS_TREE_BLOCK_REF_KEY;
1447 } else {
1448 if (parent > 0)
1449 type = BTRFS_SHARED_DATA_REF_KEY;
1450 else
1451 type = BTRFS_EXTENT_DATA_REF_KEY;
1452 }
1453 return type;
31840ae1 1454}
56bec294 1455
2c47e605
YZ
1456static int find_next_key(struct btrfs_path *path, int level,
1457 struct btrfs_key *key)
56bec294 1458
02217ed2 1459{
2c47e605 1460 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1461 if (!path->nodes[level])
1462 break;
5d4f98a2
YZ
1463 if (path->slots[level] + 1 >=
1464 btrfs_header_nritems(path->nodes[level]))
1465 continue;
1466 if (level == 0)
1467 btrfs_item_key_to_cpu(path->nodes[level], key,
1468 path->slots[level] + 1);
1469 else
1470 btrfs_node_key_to_cpu(path->nodes[level], key,
1471 path->slots[level] + 1);
1472 return 0;
1473 }
1474 return 1;
1475}
037e6390 1476
5d4f98a2
YZ
1477/*
1478 * look for inline back ref. if back ref is found, *ref_ret is set
1479 * to the address of inline back ref, and 0 is returned.
1480 *
1481 * if back ref isn't found, *ref_ret is set to the address where it
1482 * should be inserted, and -ENOENT is returned.
1483 *
1484 * if insert is true and there are too many inline back refs, the path
1485 * points to the extent item, and -EAGAIN is returned.
1486 *
1487 * NOTE: inline back refs are ordered in the same way that back ref
1488 * items in the tree are ordered.
1489 */
1490static noinline_for_stack
1491int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1492 struct btrfs_path *path,
1493 struct btrfs_extent_inline_ref **ref_ret,
1494 u64 bytenr, u64 num_bytes,
1495 u64 parent, u64 root_objectid,
1496 u64 owner, u64 offset, int insert)
1497{
867cc1fb 1498 struct btrfs_fs_info *fs_info = trans->fs_info;
87bde3cd 1499 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1500 struct btrfs_key key;
1501 struct extent_buffer *leaf;
1502 struct btrfs_extent_item *ei;
1503 struct btrfs_extent_inline_ref *iref;
1504 u64 flags;
1505 u64 item_size;
1506 unsigned long ptr;
1507 unsigned long end;
1508 int extra_size;
1509 int type;
1510 int want;
1511 int ret;
1512 int err = 0;
0b246afa 1513 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1514 int needed;
26b8003f 1515
db94535d 1516 key.objectid = bytenr;
31840ae1 1517 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1518 key.offset = num_bytes;
31840ae1 1519
5d4f98a2
YZ
1520 want = extent_ref_type(parent, owner);
1521 if (insert) {
1522 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1523 path->keep_locks = 1;
5d4f98a2
YZ
1524 } else
1525 extra_size = -1;
3173a18f
JB
1526
1527 /*
16d1c062
NB
1528 * Owner is our level, so we can just add one to get the level for the
1529 * block we are interested in.
3173a18f
JB
1530 */
1531 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1532 key.type = BTRFS_METADATA_ITEM_KEY;
1533 key.offset = owner;
1534 }
1535
1536again:
5d4f98a2 1537 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1538 if (ret < 0) {
5d4f98a2
YZ
1539 err = ret;
1540 goto out;
1541 }
3173a18f
JB
1542
1543 /*
1544 * We may be a newly converted file system which still has the old fat
1545 * extent entries for metadata, so try and see if we have one of those.
1546 */
1547 if (ret > 0 && skinny_metadata) {
1548 skinny_metadata = false;
1549 if (path->slots[0]) {
1550 path->slots[0]--;
1551 btrfs_item_key_to_cpu(path->nodes[0], &key,
1552 path->slots[0]);
1553 if (key.objectid == bytenr &&
1554 key.type == BTRFS_EXTENT_ITEM_KEY &&
1555 key.offset == num_bytes)
1556 ret = 0;
1557 }
1558 if (ret) {
9ce49a0b 1559 key.objectid = bytenr;
3173a18f
JB
1560 key.type = BTRFS_EXTENT_ITEM_KEY;
1561 key.offset = num_bytes;
1562 btrfs_release_path(path);
1563 goto again;
1564 }
1565 }
1566
79787eaa
JM
1567 if (ret && !insert) {
1568 err = -ENOENT;
1569 goto out;
fae7f21c 1570 } else if (WARN_ON(ret)) {
492104c8 1571 err = -EIO;
492104c8 1572 goto out;
79787eaa 1573 }
5d4f98a2
YZ
1574
1575 leaf = path->nodes[0];
1576 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6d8ff4e4 1577 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
1578 err = -EINVAL;
1579 btrfs_print_v0_err(fs_info);
1580 btrfs_abort_transaction(trans, err);
1581 goto out;
1582 }
5d4f98a2 1583
5d4f98a2
YZ
1584 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1585 flags = btrfs_extent_flags(leaf, ei);
1586
1587 ptr = (unsigned long)(ei + 1);
1588 end = (unsigned long)ei + item_size;
1589
3173a18f 1590 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1591 ptr += sizeof(struct btrfs_tree_block_info);
1592 BUG_ON(ptr > end);
5d4f98a2
YZ
1593 }
1594
3de28d57
LB
1595 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1596 needed = BTRFS_REF_TYPE_DATA;
1597 else
1598 needed = BTRFS_REF_TYPE_BLOCK;
1599
5d4f98a2
YZ
1600 err = -ENOENT;
1601 while (1) {
1602 if (ptr >= end) {
1603 WARN_ON(ptr > end);
1604 break;
1605 }
1606 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1607 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1608 if (type == BTRFS_REF_TYPE_INVALID) {
af431dcb 1609 err = -EUCLEAN;
3de28d57
LB
1610 goto out;
1611 }
1612
5d4f98a2
YZ
1613 if (want < type)
1614 break;
1615 if (want > type) {
1616 ptr += btrfs_extent_inline_ref_size(type);
1617 continue;
1618 }
1619
1620 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1621 struct btrfs_extent_data_ref *dref;
1622 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1623 if (match_extent_data_ref(leaf, dref, root_objectid,
1624 owner, offset)) {
1625 err = 0;
1626 break;
1627 }
1628 if (hash_extent_data_ref_item(leaf, dref) <
1629 hash_extent_data_ref(root_objectid, owner, offset))
1630 break;
1631 } else {
1632 u64 ref_offset;
1633 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1634 if (parent > 0) {
1635 if (parent == ref_offset) {
1636 err = 0;
1637 break;
1638 }
1639 if (ref_offset < parent)
1640 break;
1641 } else {
1642 if (root_objectid == ref_offset) {
1643 err = 0;
1644 break;
1645 }
1646 if (ref_offset < root_objectid)
1647 break;
1648 }
1649 }
1650 ptr += btrfs_extent_inline_ref_size(type);
1651 }
1652 if (err == -ENOENT && insert) {
1653 if (item_size + extra_size >=
1654 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1655 err = -EAGAIN;
1656 goto out;
1657 }
1658 /*
1659 * To add new inline back ref, we have to make sure
1660 * there is no corresponding back ref item.
1661 * For simplicity, we just do not add new inline back
1662 * ref if there is any kind of item for this block
1663 */
2c47e605
YZ
1664 if (find_next_key(path, 0, &key) == 0 &&
1665 key.objectid == bytenr &&
85d4198e 1666 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1667 err = -EAGAIN;
1668 goto out;
1669 }
1670 }
1671 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1672out:
85d4198e 1673 if (insert) {
5d4f98a2
YZ
1674 path->keep_locks = 0;
1675 btrfs_unlock_up_safe(path, 1);
1676 }
1677 return err;
1678}
1679
1680/*
1681 * helper to add new inline back ref
1682 */
1683static noinline_for_stack
87bde3cd 1684void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1685 struct btrfs_path *path,
1686 struct btrfs_extent_inline_ref *iref,
1687 u64 parent, u64 root_objectid,
1688 u64 owner, u64 offset, int refs_to_add,
1689 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1690{
1691 struct extent_buffer *leaf;
1692 struct btrfs_extent_item *ei;
1693 unsigned long ptr;
1694 unsigned long end;
1695 unsigned long item_offset;
1696 u64 refs;
1697 int size;
1698 int type;
5d4f98a2
YZ
1699
1700 leaf = path->nodes[0];
1701 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1702 item_offset = (unsigned long)iref - (unsigned long)ei;
1703
1704 type = extent_ref_type(parent, owner);
1705 size = btrfs_extent_inline_ref_size(type);
1706
87bde3cd 1707 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1708
1709 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1710 refs = btrfs_extent_refs(leaf, ei);
1711 refs += refs_to_add;
1712 btrfs_set_extent_refs(leaf, ei, refs);
1713 if (extent_op)
1714 __run_delayed_extent_op(extent_op, leaf, ei);
1715
1716 ptr = (unsigned long)ei + item_offset;
1717 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1718 if (ptr < end - size)
1719 memmove_extent_buffer(leaf, ptr + size, ptr,
1720 end - size - ptr);
1721
1722 iref = (struct btrfs_extent_inline_ref *)ptr;
1723 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1724 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1725 struct btrfs_extent_data_ref *dref;
1726 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1727 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1728 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1729 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1730 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1731 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1732 struct btrfs_shared_data_ref *sref;
1733 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1734 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1735 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1736 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1737 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1738 } else {
1739 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1740 }
1741 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1742}
1743
1744static int lookup_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1745 struct btrfs_path *path,
1746 struct btrfs_extent_inline_ref **ref_ret,
1747 u64 bytenr, u64 num_bytes, u64 parent,
1748 u64 root_objectid, u64 owner, u64 offset)
1749{
1750 int ret;
1751
867cc1fb
NB
1752 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1753 num_bytes, parent, root_objectid,
1754 owner, offset, 0);
5d4f98a2 1755 if (ret != -ENOENT)
54aa1f4d 1756 return ret;
5d4f98a2 1757
b3b4aa74 1758 btrfs_release_path(path);
5d4f98a2
YZ
1759 *ref_ret = NULL;
1760
1761 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
b8582eea
NB
1762 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1763 root_objectid);
5d4f98a2 1764 } else {
bd1d53ef
NB
1765 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1766 root_objectid, owner, offset);
b9473439 1767 }
5d4f98a2
YZ
1768 return ret;
1769}
31840ae1 1770
5d4f98a2
YZ
1771/*
1772 * helper to update/remove inline back ref
1773 */
1774static noinline_for_stack
61a18f1c 1775void update_inline_extent_backref(struct btrfs_path *path,
143bede5
JM
1776 struct btrfs_extent_inline_ref *iref,
1777 int refs_to_mod,
fcebe456
JB
1778 struct btrfs_delayed_extent_op *extent_op,
1779 int *last_ref)
5d4f98a2 1780{
61a18f1c
NB
1781 struct extent_buffer *leaf = path->nodes[0];
1782 struct btrfs_fs_info *fs_info = leaf->fs_info;
5d4f98a2
YZ
1783 struct btrfs_extent_item *ei;
1784 struct btrfs_extent_data_ref *dref = NULL;
1785 struct btrfs_shared_data_ref *sref = NULL;
1786 unsigned long ptr;
1787 unsigned long end;
1788 u32 item_size;
1789 int size;
1790 int type;
5d4f98a2
YZ
1791 u64 refs;
1792
5d4f98a2
YZ
1793 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1794 refs = btrfs_extent_refs(leaf, ei);
1795 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1796 refs += refs_to_mod;
1797 btrfs_set_extent_refs(leaf, ei, refs);
1798 if (extent_op)
1799 __run_delayed_extent_op(extent_op, leaf, ei);
1800
3de28d57
LB
1801 /*
1802 * If type is invalid, we should have bailed out after
1803 * lookup_inline_extent_backref().
1804 */
1805 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1806 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1807
1808 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1809 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1810 refs = btrfs_extent_data_ref_count(leaf, dref);
1811 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1812 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1813 refs = btrfs_shared_data_ref_count(leaf, sref);
1814 } else {
1815 refs = 1;
1816 BUG_ON(refs_to_mod != -1);
56bec294 1817 }
31840ae1 1818
5d4f98a2
YZ
1819 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1820 refs += refs_to_mod;
1821
1822 if (refs > 0) {
1823 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1824 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1825 else
1826 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1827 } else {
fcebe456 1828 *last_ref = 1;
5d4f98a2
YZ
1829 size = btrfs_extent_inline_ref_size(type);
1830 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1831 ptr = (unsigned long)iref;
1832 end = (unsigned long)ei + item_size;
1833 if (ptr + size < end)
1834 memmove_extent_buffer(leaf, ptr, ptr + size,
1835 end - ptr - size);
1836 item_size -= size;
87bde3cd 1837 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1838 }
1839 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1840}
1841
1842static noinline_for_stack
1843int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1844 struct btrfs_path *path,
1845 u64 bytenr, u64 num_bytes, u64 parent,
1846 u64 root_objectid, u64 owner,
1847 u64 offset, int refs_to_add,
1848 struct btrfs_delayed_extent_op *extent_op)
1849{
1850 struct btrfs_extent_inline_ref *iref;
1851 int ret;
1852
867cc1fb
NB
1853 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1854 num_bytes, parent, root_objectid,
1855 owner, offset, 1);
5d4f98a2
YZ
1856 if (ret == 0) {
1857 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
61a18f1c
NB
1858 update_inline_extent_backref(path, iref, refs_to_add,
1859 extent_op, NULL);
5d4f98a2 1860 } else if (ret == -ENOENT) {
a639cdeb 1861 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
143bede5
JM
1862 root_objectid, owner, offset,
1863 refs_to_add, extent_op);
1864 ret = 0;
771ed689 1865 }
5d4f98a2
YZ
1866 return ret;
1867}
31840ae1 1868
5d4f98a2 1869static int insert_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1870 struct btrfs_path *path,
1871 u64 bytenr, u64 parent, u64 root_objectid,
1872 u64 owner, u64 offset, int refs_to_add)
1873{
1874 int ret;
1875 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1876 BUG_ON(refs_to_add != 1);
10728404
NB
1877 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1878 root_objectid);
5d4f98a2 1879 } else {
62b895af
NB
1880 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1881 root_objectid, owner, offset,
1882 refs_to_add);
5d4f98a2
YZ
1883 }
1884 return ret;
1885}
56bec294 1886
5d4f98a2 1887static int remove_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1888 struct btrfs_path *path,
1889 struct btrfs_extent_inline_ref *iref,
fcebe456 1890 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1891{
143bede5 1892 int ret = 0;
b9473439 1893
5d4f98a2
YZ
1894 BUG_ON(!is_data && refs_to_drop != 1);
1895 if (iref) {
61a18f1c
NB
1896 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1897 last_ref);
5d4f98a2 1898 } else if (is_data) {
e9f6290d 1899 ret = remove_extent_data_ref(trans, path, refs_to_drop,
fcebe456 1900 last_ref);
5d4f98a2 1901 } else {
fcebe456 1902 *last_ref = 1;
87cc7a8a 1903 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
5d4f98a2
YZ
1904 }
1905 return ret;
1906}
1907
86557861 1908#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1909static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1910 u64 *discarded_bytes)
5d4f98a2 1911{
86557861
JM
1912 int j, ret = 0;
1913 u64 bytes_left, end;
4d89d377 1914 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1915
4d89d377
JM
1916 if (WARN_ON(start != aligned_start)) {
1917 len -= aligned_start - start;
1918 len = round_down(len, 1 << 9);
1919 start = aligned_start;
1920 }
d04c6b88 1921
4d89d377 1922 *discarded_bytes = 0;
86557861
JM
1923
1924 if (!len)
1925 return 0;
1926
1927 end = start + len;
1928 bytes_left = len;
1929
1930 /* Skip any superblocks on this device. */
1931 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1932 u64 sb_start = btrfs_sb_offset(j);
1933 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1934 u64 size = sb_start - start;
1935
1936 if (!in_range(sb_start, start, bytes_left) &&
1937 !in_range(sb_end, start, bytes_left) &&
1938 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1939 continue;
1940
1941 /*
1942 * Superblock spans beginning of range. Adjust start and
1943 * try again.
1944 */
1945 if (sb_start <= start) {
1946 start += sb_end - start;
1947 if (start > end) {
1948 bytes_left = 0;
1949 break;
1950 }
1951 bytes_left = end - start;
1952 continue;
1953 }
1954
1955 if (size) {
1956 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1957 GFP_NOFS, 0);
1958 if (!ret)
1959 *discarded_bytes += size;
1960 else if (ret != -EOPNOTSUPP)
1961 return ret;
1962 }
1963
1964 start = sb_end;
1965 if (start > end) {
1966 bytes_left = 0;
1967 break;
1968 }
1969 bytes_left = end - start;
1970 }
1971
1972 if (bytes_left) {
1973 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1974 GFP_NOFS, 0);
1975 if (!ret)
86557861 1976 *discarded_bytes += bytes_left;
4d89d377 1977 }
d04c6b88 1978 return ret;
5d4f98a2 1979}
5d4f98a2 1980
2ff7e61e 1981int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 1982 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1983{
5d4f98a2 1984 int ret;
5378e607 1985 u64 discarded_bytes = 0;
a1d3c478 1986 struct btrfs_bio *bbio = NULL;
5d4f98a2 1987
e244a0ae 1988
2999241d
FM
1989 /*
1990 * Avoid races with device replace and make sure our bbio has devices
1991 * associated to its stripes that don't go away while we are discarding.
1992 */
0b246afa 1993 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 1994 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
1995 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1996 &bbio, 0);
79787eaa 1997 /* Error condition is -ENOMEM */
5d4f98a2 1998 if (!ret) {
a1d3c478 1999 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2000 int i;
2001
5d4f98a2 2002
a1d3c478 2003 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2004 u64 bytes;
38b5f68e
AJ
2005 struct request_queue *req_q;
2006
627e0873
FM
2007 if (!stripe->dev->bdev) {
2008 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2009 continue;
2010 }
38b5f68e
AJ
2011 req_q = bdev_get_queue(stripe->dev->bdev);
2012 if (!blk_queue_discard(req_q))
d5e2003c
JB
2013 continue;
2014
5378e607
LD
2015 ret = btrfs_issue_discard(stripe->dev->bdev,
2016 stripe->physical,
d04c6b88
JM
2017 stripe->length,
2018 &bytes);
5378e607 2019 if (!ret)
d04c6b88 2020 discarded_bytes += bytes;
5378e607 2021 else if (ret != -EOPNOTSUPP)
79787eaa 2022 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2023
2024 /*
2025 * Just in case we get back EOPNOTSUPP for some reason,
2026 * just ignore the return value so we don't screw up
2027 * people calling discard_extent.
2028 */
2029 ret = 0;
5d4f98a2 2030 }
6e9606d2 2031 btrfs_put_bbio(bbio);
5d4f98a2 2032 }
0b246afa 2033 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2034
2035 if (actual_bytes)
2036 *actual_bytes = discarded_bytes;
2037
5d4f98a2 2038
53b381b3
DW
2039 if (ret == -EOPNOTSUPP)
2040 ret = 0;
5d4f98a2 2041 return ret;
5d4f98a2
YZ
2042}
2043
79787eaa 2044/* Can return -ENOMEM */
5d4f98a2 2045int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2046 struct btrfs_root *root,
5d4f98a2 2047 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2048 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2049{
84f7d8e6 2050 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2051 int old_ref_mod, new_ref_mod;
5d4f98a2 2052 int ret;
66d7e7f0 2053
5d4f98a2
YZ
2054 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2055 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2056
fd708b81
JB
2057 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2058 owner, offset, BTRFS_ADD_DELAYED_REF);
2059
5d4f98a2 2060 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
44e1c47d 2061 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7be07912
OS
2062 num_bytes, parent,
2063 root_objectid, (int)owner,
2064 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2065 &old_ref_mod, &new_ref_mod);
5d4f98a2 2066 } else {
88a979c6 2067 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7be07912
OS
2068 num_bytes, parent,
2069 root_objectid, owner, offset,
d7eae340
OS
2070 0, BTRFS_ADD_DELAYED_REF,
2071 &old_ref_mod, &new_ref_mod);
5d4f98a2 2072 }
d7eae340 2073
29d2b84c
NB
2074 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2075 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2076
2077 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2078 }
d7eae340 2079
5d4f98a2
YZ
2080 return ret;
2081}
2082
bd3c685e
NB
2083/*
2084 * __btrfs_inc_extent_ref - insert backreference for a given extent
2085 *
2086 * @trans: Handle of transaction
2087 *
2088 * @node: The delayed ref node used to get the bytenr/length for
2089 * extent whose references are incremented.
2090 *
2091 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2092 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2093 * bytenr of the parent block. Since new extents are always
2094 * created with indirect references, this will only be the case
2095 * when relocating a shared extent. In that case, root_objectid
2096 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2097 * be 0
2098 *
2099 * @root_objectid: The id of the root where this modification has originated,
2100 * this can be either one of the well-known metadata trees or
2101 * the subvolume id which references this extent.
2102 *
2103 * @owner: For data extents it is the inode number of the owning file.
2104 * For metadata extents this parameter holds the level in the
2105 * tree of the extent.
2106 *
2107 * @offset: For metadata extents the offset is ignored and is currently
2108 * always passed as 0. For data extents it is the fileoffset
2109 * this extent belongs to.
2110 *
2111 * @refs_to_add Number of references to add
2112 *
2113 * @extent_op Pointer to a structure, holding information necessary when
2114 * updating a tree block's flags
2115 *
2116 */
5d4f98a2 2117static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
c682f9b3 2118 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2119 u64 parent, u64 root_objectid,
2120 u64 owner, u64 offset, int refs_to_add,
2121 struct btrfs_delayed_extent_op *extent_op)
2122{
2123 struct btrfs_path *path;
2124 struct extent_buffer *leaf;
2125 struct btrfs_extent_item *item;
fcebe456 2126 struct btrfs_key key;
c682f9b3
QW
2127 u64 bytenr = node->bytenr;
2128 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2129 u64 refs;
2130 int ret;
5d4f98a2
YZ
2131
2132 path = btrfs_alloc_path();
2133 if (!path)
2134 return -ENOMEM;
2135
e4058b54 2136 path->reada = READA_FORWARD;
5d4f98a2
YZ
2137 path->leave_spinning = 1;
2138 /* this will setup the path even if it fails to insert the back ref */
a639cdeb
NB
2139 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2140 parent, root_objectid, owner,
2141 offset, refs_to_add, extent_op);
0ed4792a 2142 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2143 goto out;
fcebe456
JB
2144
2145 /*
2146 * Ok we had -EAGAIN which means we didn't have space to insert and
2147 * inline extent ref, so just update the reference count and add a
2148 * normal backref.
2149 */
5d4f98a2 2150 leaf = path->nodes[0];
fcebe456 2151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2152 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2153 refs = btrfs_extent_refs(leaf, item);
2154 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2155 if (extent_op)
2156 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2157
5d4f98a2 2158 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2159 btrfs_release_path(path);
56bec294 2160
e4058b54 2161 path->reada = READA_FORWARD;
b9473439 2162 path->leave_spinning = 1;
56bec294 2163 /* now insert the actual backref */
37593410
NB
2164 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2165 owner, offset, refs_to_add);
79787eaa 2166 if (ret)
66642832 2167 btrfs_abort_transaction(trans, ret);
5d4f98a2 2168out:
56bec294 2169 btrfs_free_path(path);
30d133fc 2170 return ret;
56bec294
CM
2171}
2172
5d4f98a2 2173static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2174 struct btrfs_delayed_ref_node *node,
2175 struct btrfs_delayed_extent_op *extent_op,
2176 int insert_reserved)
56bec294 2177{
5d4f98a2
YZ
2178 int ret = 0;
2179 struct btrfs_delayed_data_ref *ref;
2180 struct btrfs_key ins;
2181 u64 parent = 0;
2182 u64 ref_root = 0;
2183 u64 flags = 0;
2184
2185 ins.objectid = node->bytenr;
2186 ins.offset = node->num_bytes;
2187 ins.type = BTRFS_EXTENT_ITEM_KEY;
2188
2189 ref = btrfs_delayed_node_to_data_ref(node);
2bf98ef3 2190 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
599c75ec 2191
5d4f98a2
YZ
2192 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2193 parent = ref->parent;
fcebe456 2194 ref_root = ref->root;
5d4f98a2
YZ
2195
2196 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2197 if (extent_op)
5d4f98a2 2198 flags |= extent_op->flags_to_set;
ef89b824
NB
2199 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2200 flags, ref->objectid,
2201 ref->offset, &ins,
2202 node->ref_mod);
5d4f98a2 2203 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2204 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2205 ref->objectid, ref->offset,
2206 node->ref_mod, extent_op);
5d4f98a2 2207 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2208 ret = __btrfs_free_extent(trans, node, parent,
5d4f98a2
YZ
2209 ref_root, ref->objectid,
2210 ref->offset, node->ref_mod,
c682f9b3 2211 extent_op);
5d4f98a2
YZ
2212 } else {
2213 BUG();
2214 }
2215 return ret;
2216}
2217
2218static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2219 struct extent_buffer *leaf,
2220 struct btrfs_extent_item *ei)
2221{
2222 u64 flags = btrfs_extent_flags(leaf, ei);
2223 if (extent_op->update_flags) {
2224 flags |= extent_op->flags_to_set;
2225 btrfs_set_extent_flags(leaf, ei, flags);
2226 }
2227
2228 if (extent_op->update_key) {
2229 struct btrfs_tree_block_info *bi;
2230 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2231 bi = (struct btrfs_tree_block_info *)(ei + 1);
2232 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2233 }
2234}
2235
2236static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
d278850e 2237 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2238 struct btrfs_delayed_extent_op *extent_op)
2239{
20b9a2d6 2240 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
2241 struct btrfs_key key;
2242 struct btrfs_path *path;
2243 struct btrfs_extent_item *ei;
2244 struct extent_buffer *leaf;
2245 u32 item_size;
56bec294 2246 int ret;
5d4f98a2 2247 int err = 0;
b1c79e09 2248 int metadata = !extent_op->is_data;
5d4f98a2 2249
79787eaa
JM
2250 if (trans->aborted)
2251 return 0;
2252
0b246afa 2253 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2254 metadata = 0;
2255
5d4f98a2
YZ
2256 path = btrfs_alloc_path();
2257 if (!path)
2258 return -ENOMEM;
2259
d278850e 2260 key.objectid = head->bytenr;
5d4f98a2 2261
3173a18f 2262 if (metadata) {
3173a18f 2263 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2264 key.offset = extent_op->level;
3173a18f
JB
2265 } else {
2266 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2267 key.offset = head->num_bytes;
3173a18f
JB
2268 }
2269
2270again:
e4058b54 2271 path->reada = READA_FORWARD;
5d4f98a2 2272 path->leave_spinning = 1;
0b246afa 2273 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2274 if (ret < 0) {
2275 err = ret;
2276 goto out;
2277 }
2278 if (ret > 0) {
3173a18f 2279 if (metadata) {
55994887
FDBM
2280 if (path->slots[0] > 0) {
2281 path->slots[0]--;
2282 btrfs_item_key_to_cpu(path->nodes[0], &key,
2283 path->slots[0]);
d278850e 2284 if (key.objectid == head->bytenr &&
55994887 2285 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2286 key.offset == head->num_bytes)
55994887
FDBM
2287 ret = 0;
2288 }
2289 if (ret > 0) {
2290 btrfs_release_path(path);
2291 metadata = 0;
3173a18f 2292
d278850e
JB
2293 key.objectid = head->bytenr;
2294 key.offset = head->num_bytes;
55994887
FDBM
2295 key.type = BTRFS_EXTENT_ITEM_KEY;
2296 goto again;
2297 }
2298 } else {
2299 err = -EIO;
2300 goto out;
3173a18f 2301 }
5d4f98a2
YZ
2302 }
2303
2304 leaf = path->nodes[0];
2305 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ba3c2b19 2306
6d8ff4e4 2307 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
2308 err = -EINVAL;
2309 btrfs_print_v0_err(fs_info);
2310 btrfs_abort_transaction(trans, err);
2311 goto out;
2312 }
2313
5d4f98a2
YZ
2314 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2315 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2316
5d4f98a2
YZ
2317 btrfs_mark_buffer_dirty(leaf);
2318out:
2319 btrfs_free_path(path);
2320 return err;
56bec294
CM
2321}
2322
5d4f98a2 2323static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2324 struct btrfs_delayed_ref_node *node,
2325 struct btrfs_delayed_extent_op *extent_op,
2326 int insert_reserved)
56bec294
CM
2327{
2328 int ret = 0;
5d4f98a2 2329 struct btrfs_delayed_tree_ref *ref;
5d4f98a2
YZ
2330 u64 parent = 0;
2331 u64 ref_root = 0;
56bec294 2332
5d4f98a2 2333 ref = btrfs_delayed_node_to_tree_ref(node);
f97806f2 2334 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
599c75ec 2335
5d4f98a2
YZ
2336 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2337 parent = ref->parent;
fcebe456 2338 ref_root = ref->root;
5d4f98a2 2339
02794222 2340 if (node->ref_mod != 1) {
f97806f2 2341 btrfs_err(trans->fs_info,
02794222
LB
2342 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2343 node->bytenr, node->ref_mod, node->action, ref_root,
2344 parent);
2345 return -EIO;
2346 }
5d4f98a2 2347 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2348 BUG_ON(!extent_op || !extent_op->update_flags);
21ebfbe7 2349 ret = alloc_reserved_tree_block(trans, node, extent_op);
5d4f98a2 2350 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2351 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2352 ref->level, 0, 1, extent_op);
5d4f98a2 2353 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2354 ret = __btrfs_free_extent(trans, node, parent, ref_root,
c682f9b3 2355 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2356 } else {
2357 BUG();
2358 }
56bec294
CM
2359 return ret;
2360}
2361
2362/* helper function to actually process a single delayed ref entry */
5d4f98a2 2363static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2364 struct btrfs_delayed_ref_node *node,
2365 struct btrfs_delayed_extent_op *extent_op,
2366 int insert_reserved)
56bec294 2367{
79787eaa
JM
2368 int ret = 0;
2369
857cc2fc
JB
2370 if (trans->aborted) {
2371 if (insert_reserved)
5fac7f9e 2372 btrfs_pin_extent(trans->fs_info, node->bytenr,
857cc2fc 2373 node->num_bytes, 1);
79787eaa 2374 return 0;
857cc2fc 2375 }
79787eaa 2376
5d4f98a2
YZ
2377 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2378 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
f97806f2 2379 ret = run_delayed_tree_ref(trans, node, extent_op,
5d4f98a2
YZ
2380 insert_reserved);
2381 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2382 node->type == BTRFS_SHARED_DATA_REF_KEY)
2bf98ef3 2383 ret = run_delayed_data_ref(trans, node, extent_op,
5d4f98a2
YZ
2384 insert_reserved);
2385 else
2386 BUG();
80ee54bf
JB
2387 if (ret && insert_reserved)
2388 btrfs_pin_extent(trans->fs_info, node->bytenr,
2389 node->num_bytes, 1);
5d4f98a2 2390 return ret;
56bec294
CM
2391}
2392
c6fc2454 2393static inline struct btrfs_delayed_ref_node *
56bec294
CM
2394select_delayed_ref(struct btrfs_delayed_ref_head *head)
2395{
cffc3374
FM
2396 struct btrfs_delayed_ref_node *ref;
2397
e3d03965 2398 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
c6fc2454 2399 return NULL;
d7df2c79 2400
cffc3374
FM
2401 /*
2402 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2403 * This is to prevent a ref count from going down to zero, which deletes
2404 * the extent item from the extent tree, when there still are references
2405 * to add, which would fail because they would not find the extent item.
2406 */
1d57ee94
WX
2407 if (!list_empty(&head->ref_add_list))
2408 return list_first_entry(&head->ref_add_list,
2409 struct btrfs_delayed_ref_node, add_list);
2410
e3d03965 2411 ref = rb_entry(rb_first_cached(&head->ref_tree),
0e0adbcf 2412 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2413 ASSERT(list_empty(&ref->add_list));
2414 return ref;
56bec294
CM
2415}
2416
2eadaa22
JB
2417static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2418 struct btrfs_delayed_ref_head *head)
2419{
2420 spin_lock(&delayed_refs->lock);
2421 head->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 btrfs_delayed_ref_unlock(head);
2425}
2426
bedc6617
JB
2427static struct btrfs_delayed_extent_op *cleanup_extent_op(
2428 struct btrfs_delayed_ref_head *head)
b00e6250
JB
2429{
2430 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
b00e6250
JB
2431
2432 if (!extent_op)
bedc6617
JB
2433 return NULL;
2434
b00e6250 2435 if (head->must_insert_reserved) {
bedc6617 2436 head->extent_op = NULL;
b00e6250 2437 btrfs_free_delayed_extent_op(extent_op);
bedc6617 2438 return NULL;
b00e6250 2439 }
bedc6617
JB
2440 return extent_op;
2441}
2442
2443static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
2444 struct btrfs_delayed_ref_head *head)
2445{
2446 struct btrfs_delayed_extent_op *extent_op;
2447 int ret;
2448
2449 extent_op = cleanup_extent_op(head);
2450 if (!extent_op)
2451 return 0;
2452 head->extent_op = NULL;
b00e6250 2453 spin_unlock(&head->lock);
20b9a2d6 2454 ret = run_delayed_extent_op(trans, head, extent_op);
b00e6250
JB
2455 btrfs_free_delayed_extent_op(extent_op);
2456 return ret ? ret : 1;
2457}
2458
31890da0
JB
2459void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2460 struct btrfs_delayed_ref_root *delayed_refs,
2461 struct btrfs_delayed_ref_head *head)
07c47775 2462{
ba2c4d4e 2463 int nr_items = 1; /* Dropping this ref head update. */
07c47775
JB
2464
2465 if (head->total_ref_mod < 0) {
2466 struct btrfs_space_info *space_info;
2467 u64 flags;
2468
2469 if (head->is_data)
2470 flags = BTRFS_BLOCK_GROUP_DATA;
2471 else if (head->is_system)
2472 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2473 else
2474 flags = BTRFS_BLOCK_GROUP_METADATA;
2475 space_info = __find_space_info(fs_info, flags);
2476 ASSERT(space_info);
2477 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2478 -head->num_bytes,
2479 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2480
ba2c4d4e
JB
2481 /*
2482 * We had csum deletions accounted for in our delayed refs rsv,
2483 * we need to drop the csum leaves for this update from our
2484 * delayed_refs_rsv.
2485 */
07c47775
JB
2486 if (head->is_data) {
2487 spin_lock(&delayed_refs->lock);
2488 delayed_refs->pending_csums -= head->num_bytes;
2489 spin_unlock(&delayed_refs->lock);
ba2c4d4e
JB
2490 nr_items += btrfs_csum_bytes_to_leaves(fs_info,
2491 head->num_bytes);
07c47775
JB
2492 }
2493 }
2494
ba2c4d4e 2495 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
07c47775
JB
2496}
2497
194ab0bc 2498static int cleanup_ref_head(struct btrfs_trans_handle *trans,
194ab0bc
JB
2499 struct btrfs_delayed_ref_head *head)
2500{
f9871edd
NB
2501
2502 struct btrfs_fs_info *fs_info = trans->fs_info;
194ab0bc
JB
2503 struct btrfs_delayed_ref_root *delayed_refs;
2504 int ret;
2505
2506 delayed_refs = &trans->transaction->delayed_refs;
2507
bedc6617 2508 ret = run_and_cleanup_extent_op(trans, head);
194ab0bc
JB
2509 if (ret < 0) {
2510 unselect_delayed_ref_head(delayed_refs, head);
2511 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2512 return ret;
2513 } else if (ret) {
2514 return ret;
2515 }
2516
2517 /*
2518 * Need to drop our head ref lock and re-acquire the delayed ref lock
2519 * and then re-check to make sure nobody got added.
2520 */
2521 spin_unlock(&head->lock);
2522 spin_lock(&delayed_refs->lock);
2523 spin_lock(&head->lock);
e3d03965 2524 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
194ab0bc
JB
2525 spin_unlock(&head->lock);
2526 spin_unlock(&delayed_refs->lock);
2527 return 1;
2528 }
d7baffda 2529 btrfs_delete_ref_head(delayed_refs, head);
c1103f7a 2530 spin_unlock(&head->lock);
1e7a1421 2531 spin_unlock(&delayed_refs->lock);
c1103f7a 2532
c1103f7a 2533 if (head->must_insert_reserved) {
d278850e
JB
2534 btrfs_pin_extent(fs_info, head->bytenr,
2535 head->num_bytes, 1);
c1103f7a 2536 if (head->is_data) {
d278850e
JB
2537 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2538 head->num_bytes);
c1103f7a
JB
2539 }
2540 }
2541
31890da0 2542 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
07c47775
JB
2543
2544 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a 2545 btrfs_delayed_ref_unlock(head);
d278850e 2546 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2547 return 0;
2548}
2549
b1cdbcb5
NB
2550static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2551 struct btrfs_trans_handle *trans)
2552{
2553 struct btrfs_delayed_ref_root *delayed_refs =
2554 &trans->transaction->delayed_refs;
2555 struct btrfs_delayed_ref_head *head = NULL;
2556 int ret;
2557
2558 spin_lock(&delayed_refs->lock);
5637c74b 2559 head = btrfs_select_ref_head(delayed_refs);
b1cdbcb5
NB
2560 if (!head) {
2561 spin_unlock(&delayed_refs->lock);
2562 return head;
2563 }
2564
2565 /*
2566 * Grab the lock that says we are going to process all the refs for
2567 * this head
2568 */
9e920a6f 2569 ret = btrfs_delayed_ref_lock(delayed_refs, head);
b1cdbcb5
NB
2570 spin_unlock(&delayed_refs->lock);
2571
2572 /*
2573 * We may have dropped the spin lock to get the head mutex lock, and
2574 * that might have given someone else time to free the head. If that's
2575 * true, it has been removed from our list and we can move on.
2576 */
2577 if (ret == -EAGAIN)
2578 head = ERR_PTR(-EAGAIN);
2579
2580 return head;
2581}
2582
e7261386
NB
2583static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2584 struct btrfs_delayed_ref_head *locked_ref,
2585 unsigned long *run_refs)
2586{
2587 struct btrfs_fs_info *fs_info = trans->fs_info;
2588 struct btrfs_delayed_ref_root *delayed_refs;
2589 struct btrfs_delayed_extent_op *extent_op;
2590 struct btrfs_delayed_ref_node *ref;
2591 int must_insert_reserved = 0;
2592 int ret;
2593
2594 delayed_refs = &trans->transaction->delayed_refs;
2595
0110a4c4
NB
2596 lockdep_assert_held(&locked_ref->mutex);
2597 lockdep_assert_held(&locked_ref->lock);
2598
e7261386
NB
2599 while ((ref = select_delayed_ref(locked_ref))) {
2600 if (ref->seq &&
2601 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2602 spin_unlock(&locked_ref->lock);
2603 unselect_delayed_ref_head(delayed_refs, locked_ref);
2604 return -EAGAIN;
2605 }
2606
2607 (*run_refs)++;
2608 ref->in_tree = 0;
2609 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2610 RB_CLEAR_NODE(&ref->ref_node);
2611 if (!list_empty(&ref->add_list))
2612 list_del(&ref->add_list);
2613 /*
2614 * When we play the delayed ref, also correct the ref_mod on
2615 * head
2616 */
2617 switch (ref->action) {
2618 case BTRFS_ADD_DELAYED_REF:
2619 case BTRFS_ADD_DELAYED_EXTENT:
2620 locked_ref->ref_mod -= ref->ref_mod;
2621 break;
2622 case BTRFS_DROP_DELAYED_REF:
2623 locked_ref->ref_mod += ref->ref_mod;
2624 break;
2625 default:
2626 WARN_ON(1);
2627 }
2628 atomic_dec(&delayed_refs->num_entries);
2629
2630 /*
2631 * Record the must_insert_reserved flag before we drop the
2632 * spin lock.
2633 */
2634 must_insert_reserved = locked_ref->must_insert_reserved;
2635 locked_ref->must_insert_reserved = 0;
2636
2637 extent_op = locked_ref->extent_op;
2638 locked_ref->extent_op = NULL;
2639 spin_unlock(&locked_ref->lock);
2640
2641 ret = run_one_delayed_ref(trans, ref, extent_op,
2642 must_insert_reserved);
2643
2644 btrfs_free_delayed_extent_op(extent_op);
2645 if (ret) {
2646 unselect_delayed_ref_head(delayed_refs, locked_ref);
2647 btrfs_put_delayed_ref(ref);
2648 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2649 ret);
2650 return ret;
2651 }
2652
2653 btrfs_put_delayed_ref(ref);
2654 cond_resched();
2655
2656 spin_lock(&locked_ref->lock);
2657 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2658 }
2659
2660 return 0;
2661}
2662
79787eaa
JM
2663/*
2664 * Returns 0 on success or if called with an already aborted transaction.
2665 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2666 */
d7df2c79 2667static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2668 unsigned long nr)
56bec294 2669{
0a1e458a 2670 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294 2671 struct btrfs_delayed_ref_root *delayed_refs;
56bec294 2672 struct btrfs_delayed_ref_head *locked_ref = NULL;
0a2b2a84 2673 ktime_t start = ktime_get();
56bec294 2674 int ret;
d7df2c79 2675 unsigned long count = 0;
0a2b2a84 2676 unsigned long actual_count = 0;
56bec294
CM
2677
2678 delayed_refs = &trans->transaction->delayed_refs;
0110a4c4 2679 do {
56bec294 2680 if (!locked_ref) {
b1cdbcb5 2681 locked_ref = btrfs_obtain_ref_head(trans);
0110a4c4
NB
2682 if (IS_ERR_OR_NULL(locked_ref)) {
2683 if (PTR_ERR(locked_ref) == -EAGAIN) {
2684 continue;
2685 } else {
2686 break;
2687 }
56bec294 2688 }
0110a4c4 2689 count++;
56bec294 2690 }
2c3cf7d5
FM
2691 /*
2692 * We need to try and merge add/drops of the same ref since we
2693 * can run into issues with relocate dropping the implicit ref
2694 * and then it being added back again before the drop can
2695 * finish. If we merged anything we need to re-loop so we can
2696 * get a good ref.
2697 * Or we can get node references of the same type that weren't
2698 * merged when created due to bumps in the tree mod seq, and
2699 * we need to merge them to prevent adding an inline extent
2700 * backref before dropping it (triggering a BUG_ON at
2701 * insert_inline_extent_backref()).
2702 */
d7df2c79 2703 spin_lock(&locked_ref->lock);
be97f133 2704 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
ae1e206b 2705
0110a4c4
NB
2706 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2707 &actual_count);
2708 if (ret < 0 && ret != -EAGAIN) {
2709 /*
2710 * Error, btrfs_run_delayed_refs_for_head already
2711 * unlocked everything so just bail out
2712 */
2713 return ret;
2714 } else if (!ret) {
2715 /*
2716 * Success, perform the usual cleanup of a processed
2717 * head
2718 */
f9871edd 2719 ret = cleanup_ref_head(trans, locked_ref);
194ab0bc 2720 if (ret > 0 ) {
b00e6250
JB
2721 /* We dropped our lock, we need to loop. */
2722 ret = 0;
d7df2c79 2723 continue;
194ab0bc
JB
2724 } else if (ret) {
2725 return ret;
5d4f98a2 2726 }
22cd2e7d 2727 }
1ce7a5ec 2728
b00e6250 2729 /*
0110a4c4
NB
2730 * Either success case or btrfs_run_delayed_refs_for_head
2731 * returned -EAGAIN, meaning we need to select another head
b00e6250 2732 */
b00e6250 2733
0110a4c4 2734 locked_ref = NULL;
c3e69d58 2735 cond_resched();
0110a4c4 2736 } while ((nr != -1 && count < nr) || locked_ref);
0a2b2a84
JB
2737
2738 /*
2739 * We don't want to include ref heads since we can have empty ref heads
2740 * and those will drastically skew our runtime down since we just do
2741 * accounting, no actual extent tree updates.
2742 */
2743 if (actual_count > 0) {
2744 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2745 u64 avg;
2746
2747 /*
2748 * We weigh the current average higher than our current runtime
2749 * to avoid large swings in the average.
2750 */
2751 spin_lock(&delayed_refs->lock);
2752 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2753 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2754 spin_unlock(&delayed_refs->lock);
2755 }
d7df2c79 2756 return 0;
c3e69d58
CM
2757}
2758
709c0486
AJ
2759#ifdef SCRAMBLE_DELAYED_REFS
2760/*
2761 * Normally delayed refs get processed in ascending bytenr order. This
2762 * correlates in most cases to the order added. To expose dependencies on this
2763 * order, we start to process the tree in the middle instead of the beginning
2764 */
2765static u64 find_middle(struct rb_root *root)
2766{
2767 struct rb_node *n = root->rb_node;
2768 struct btrfs_delayed_ref_node *entry;
2769 int alt = 1;
2770 u64 middle;
2771 u64 first = 0, last = 0;
2772
2773 n = rb_first(root);
2774 if (n) {
2775 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2776 first = entry->bytenr;
2777 }
2778 n = rb_last(root);
2779 if (n) {
2780 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2781 last = entry->bytenr;
2782 }
2783 n = root->rb_node;
2784
2785 while (n) {
2786 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2787 WARN_ON(!entry->in_tree);
2788
2789 middle = entry->bytenr;
2790
2791 if (alt)
2792 n = n->rb_left;
2793 else
2794 n = n->rb_right;
2795
2796 alt = 1 - alt;
2797 }
2798 return middle;
2799}
2800#endif
2801
2ff7e61e 2802static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2803{
2804 u64 num_bytes;
2805
2806 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2807 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2808 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2809 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2810
2811 /*
2812 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2813 * closer to what we're really going to want to use.
1be41b78 2814 */
0b246afa 2815 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2816}
2817
1262133b
JB
2818/*
2819 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2820 * would require to store the csums for that many bytes.
2821 */
2ff7e61e 2822u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2823{
2824 u64 csum_size;
2825 u64 num_csums_per_leaf;
2826 u64 num_csums;
2827
0b246afa 2828 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2829 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2830 (u64)btrfs_super_csum_size(fs_info->super_copy));
2831 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2832 num_csums += num_csums_per_leaf - 1;
2833 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2834 return num_csums;
2835}
2836
64403612 2837bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
1be41b78 2838{
64403612
JB
2839 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
2840 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2841 bool ret = false;
2842 u64 reserved;
1be41b78 2843
64403612
JB
2844 spin_lock(&global_rsv->lock);
2845 reserved = global_rsv->reserved;
2846 spin_unlock(&global_rsv->lock);
1be41b78
JB
2847
2848 /*
64403612
JB
2849 * Since the global reserve is just kind of magic we don't really want
2850 * to rely on it to save our bacon, so if our size is more than the
2851 * delayed_refs_rsv and the global rsv then it's time to think about
2852 * bailing.
1be41b78 2853 */
64403612
JB
2854 spin_lock(&delayed_refs_rsv->lock);
2855 reserved += delayed_refs_rsv->reserved;
2856 if (delayed_refs_rsv->size >= reserved)
2857 ret = true;
2858 spin_unlock(&delayed_refs_rsv->lock);
1be41b78
JB
2859 return ret;
2860}
2861
7c861627 2862int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
0a2b2a84 2863{
0a2b2a84
JB
2864 u64 num_entries =
2865 atomic_read(&trans->transaction->delayed_refs.num_entries);
2866 u64 avg_runtime;
a79b7d4b 2867 u64 val;
0a2b2a84
JB
2868
2869 smp_mb();
7c861627 2870 avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
a79b7d4b 2871 val = num_entries * avg_runtime;
dc1a90c6 2872 if (val >= NSEC_PER_SEC)
0a2b2a84 2873 return 1;
a79b7d4b
CM
2874 if (val >= NSEC_PER_SEC / 2)
2875 return 2;
0a2b2a84 2876
64403612 2877 return btrfs_check_space_for_delayed_refs(trans->fs_info);
0a2b2a84
JB
2878}
2879
a79b7d4b
CM
2880struct async_delayed_refs {
2881 struct btrfs_root *root;
31b9655f 2882 u64 transid;
a79b7d4b
CM
2883 int count;
2884 int error;
2885 int sync;
2886 struct completion wait;
2887 struct btrfs_work work;
2888};
2889
2ff7e61e
JM
2890static inline struct async_delayed_refs *
2891to_async_delayed_refs(struct btrfs_work *work)
2892{
2893 return container_of(work, struct async_delayed_refs, work);
2894}
2895
a79b7d4b
CM
2896static void delayed_ref_async_start(struct btrfs_work *work)
2897{
2ff7e61e 2898 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2899 struct btrfs_trans_handle *trans;
2ff7e61e 2900 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2901 int ret;
2902
0f873eca 2903 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2904 if (btrfs_transaction_blocked(fs_info))
31b9655f 2905 goto done;
31b9655f 2906
0f873eca
CM
2907 trans = btrfs_join_transaction(async->root);
2908 if (IS_ERR(trans)) {
2909 async->error = PTR_ERR(trans);
a79b7d4b
CM
2910 goto done;
2911 }
2912
0f873eca
CM
2913 /* Don't bother flushing if we got into a different transaction */
2914 if (trans->transid > async->transid)
2915 goto end;
2916
c79a70b1 2917 ret = btrfs_run_delayed_refs(trans, async->count);
a79b7d4b
CM
2918 if (ret)
2919 async->error = ret;
0f873eca 2920end:
3a45bb20 2921 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2922 if (ret && !async->error)
2923 async->error = ret;
2924done:
2925 if (async->sync)
2926 complete(&async->wait);
2927 else
2928 kfree(async);
2929}
2930
2ff7e61e 2931int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2932 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2933{
2934 struct async_delayed_refs *async;
2935 int ret;
2936
2937 async = kmalloc(sizeof(*async), GFP_NOFS);
2938 if (!async)
2939 return -ENOMEM;
2940
0b246afa 2941 async->root = fs_info->tree_root;
a79b7d4b
CM
2942 async->count = count;
2943 async->error = 0;
31b9655f 2944 async->transid = transid;
a79b7d4b
CM
2945 if (wait)
2946 async->sync = 1;
2947 else
2948 async->sync = 0;
2949 init_completion(&async->wait);
2950
9e0af237
LB
2951 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2952 delayed_ref_async_start, NULL, NULL);
a79b7d4b 2953
0b246afa 2954 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
2955
2956 if (wait) {
2957 wait_for_completion(&async->wait);
2958 ret = async->error;
2959 kfree(async);
2960 return ret;
2961 }
2962 return 0;
2963}
2964
c3e69d58
CM
2965/*
2966 * this starts processing the delayed reference count updates and
2967 * extent insertions we have queued up so far. count can be
2968 * 0, which means to process everything in the tree at the start
2969 * of the run (but not newly added entries), or it can be some target
2970 * number you'd like to process.
79787eaa
JM
2971 *
2972 * Returns 0 on success or if called with an aborted transaction
2973 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2974 */
2975int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 2976 unsigned long count)
c3e69d58 2977{
c79a70b1 2978 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
2979 struct rb_node *node;
2980 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2981 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2982 int ret;
2983 int run_all = count == (unsigned long)-1;
c3e69d58 2984
79787eaa
JM
2985 /* We'll clean this up in btrfs_cleanup_transaction */
2986 if (trans->aborted)
2987 return 0;
2988
0b246afa 2989 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2990 return 0;
2991
c3e69d58 2992 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2993 if (count == 0)
d7df2c79 2994 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2995
c3e69d58 2996again:
709c0486
AJ
2997#ifdef SCRAMBLE_DELAYED_REFS
2998 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2999#endif
0a1e458a 3000 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 3001 if (ret < 0) {
66642832 3002 btrfs_abort_transaction(trans, ret);
d7df2c79 3003 return ret;
eb099670 3004 }
c3e69d58 3005
56bec294 3006 if (run_all) {
119e80df 3007 btrfs_create_pending_block_groups(trans);
ea658bad 3008
d7df2c79 3009 spin_lock(&delayed_refs->lock);
5c9d028b 3010 node = rb_first_cached(&delayed_refs->href_root);
d7df2c79
JB
3011 if (!node) {
3012 spin_unlock(&delayed_refs->lock);
56bec294 3013 goto out;
d7df2c79 3014 }
d278850e
JB
3015 head = rb_entry(node, struct btrfs_delayed_ref_head,
3016 href_node);
3017 refcount_inc(&head->refs);
3018 spin_unlock(&delayed_refs->lock);
e9d0b13b 3019
d278850e
JB
3020 /* Mutex was contended, block until it's released and retry. */
3021 mutex_lock(&head->mutex);
3022 mutex_unlock(&head->mutex);
56bec294 3023
d278850e 3024 btrfs_put_delayed_ref_head(head);
d7df2c79 3025 cond_resched();
56bec294 3026 goto again;
5f39d397 3027 }
54aa1f4d 3028out:
a28ec197
CM
3029 return 0;
3030}
3031
5d4f98a2 3032int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3033 struct btrfs_fs_info *fs_info,
5d4f98a2 3034 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3035 int level, int is_data)
5d4f98a2
YZ
3036{
3037 struct btrfs_delayed_extent_op *extent_op;
3038 int ret;
3039
78a6184a 3040 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3041 if (!extent_op)
3042 return -ENOMEM;
3043
3044 extent_op->flags_to_set = flags;
35b3ad50
DS
3045 extent_op->update_flags = true;
3046 extent_op->update_key = false;
3047 extent_op->is_data = is_data ? true : false;
b1c79e09 3048 extent_op->level = level;
5d4f98a2 3049
0b246afa 3050 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3051 num_bytes, extent_op);
5d4f98a2 3052 if (ret)
78a6184a 3053 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3054 return ret;
3055}
3056
e4c3b2dc 3057static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3058 struct btrfs_path *path,
3059 u64 objectid, u64 offset, u64 bytenr)
3060{
3061 struct btrfs_delayed_ref_head *head;
3062 struct btrfs_delayed_ref_node *ref;
3063 struct btrfs_delayed_data_ref *data_ref;
3064 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3065 struct btrfs_transaction *cur_trans;
0e0adbcf 3066 struct rb_node *node;
5d4f98a2
YZ
3067 int ret = 0;
3068
998ac6d2 3069 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 3070 cur_trans = root->fs_info->running_transaction;
998ac6d2 3071 if (cur_trans)
3072 refcount_inc(&cur_trans->use_count);
3073 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
3074 if (!cur_trans)
3075 return 0;
3076
3077 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3078 spin_lock(&delayed_refs->lock);
f72ad18e 3079 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3080 if (!head) {
3081 spin_unlock(&delayed_refs->lock);
998ac6d2 3082 btrfs_put_transaction(cur_trans);
d7df2c79
JB
3083 return 0;
3084 }
5d4f98a2
YZ
3085
3086 if (!mutex_trylock(&head->mutex)) {
d278850e 3087 refcount_inc(&head->refs);
5d4f98a2
YZ
3088 spin_unlock(&delayed_refs->lock);
3089
b3b4aa74 3090 btrfs_release_path(path);
5d4f98a2 3091
8cc33e5c
DS
3092 /*
3093 * Mutex was contended, block until it's released and let
3094 * caller try again
3095 */
5d4f98a2
YZ
3096 mutex_lock(&head->mutex);
3097 mutex_unlock(&head->mutex);
d278850e 3098 btrfs_put_delayed_ref_head(head);
998ac6d2 3099 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3100 return -EAGAIN;
3101 }
d7df2c79 3102 spin_unlock(&delayed_refs->lock);
5d4f98a2 3103
d7df2c79 3104 spin_lock(&head->lock);
0e0adbcf
JB
3105 /*
3106 * XXX: We should replace this with a proper search function in the
3107 * future.
3108 */
e3d03965
LB
3109 for (node = rb_first_cached(&head->ref_tree); node;
3110 node = rb_next(node)) {
0e0adbcf 3111 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3112 /* If it's a shared ref we know a cross reference exists */
3113 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3114 ret = 1;
3115 break;
3116 }
5d4f98a2 3117
d7df2c79 3118 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3119
d7df2c79
JB
3120 /*
3121 * If our ref doesn't match the one we're currently looking at
3122 * then we have a cross reference.
3123 */
3124 if (data_ref->root != root->root_key.objectid ||
3125 data_ref->objectid != objectid ||
3126 data_ref->offset != offset) {
3127 ret = 1;
3128 break;
3129 }
5d4f98a2 3130 }
d7df2c79 3131 spin_unlock(&head->lock);
5d4f98a2 3132 mutex_unlock(&head->mutex);
998ac6d2 3133 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3134 return ret;
3135}
3136
e4c3b2dc 3137static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3138 struct btrfs_path *path,
3139 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3140{
0b246afa
JM
3141 struct btrfs_fs_info *fs_info = root->fs_info;
3142 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3143 struct extent_buffer *leaf;
5d4f98a2
YZ
3144 struct btrfs_extent_data_ref *ref;
3145 struct btrfs_extent_inline_ref *iref;
3146 struct btrfs_extent_item *ei;
f321e491 3147 struct btrfs_key key;
5d4f98a2 3148 u32 item_size;
3de28d57 3149 int type;
be20aa9d 3150 int ret;
925baedd 3151
be20aa9d 3152 key.objectid = bytenr;
31840ae1 3153 key.offset = (u64)-1;
f321e491 3154 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3155
be20aa9d
CM
3156 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3157 if (ret < 0)
3158 goto out;
79787eaa 3159 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3160
3161 ret = -ENOENT;
3162 if (path->slots[0] == 0)
31840ae1 3163 goto out;
be20aa9d 3164
31840ae1 3165 path->slots[0]--;
f321e491 3166 leaf = path->nodes[0];
5d4f98a2 3167 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3168
5d4f98a2 3169 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3170 goto out;
f321e491 3171
5d4f98a2
YZ
3172 ret = 1;
3173 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5d4f98a2 3174 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3175
5d4f98a2
YZ
3176 if (item_size != sizeof(*ei) +
3177 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3178 goto out;
be20aa9d 3179
5d4f98a2
YZ
3180 if (btrfs_extent_generation(leaf, ei) <=
3181 btrfs_root_last_snapshot(&root->root_item))
3182 goto out;
3183
3184 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3185
3186 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3187 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3188 goto out;
3189
3190 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3191 if (btrfs_extent_refs(leaf, ei) !=
3192 btrfs_extent_data_ref_count(leaf, ref) ||
3193 btrfs_extent_data_ref_root(leaf, ref) !=
3194 root->root_key.objectid ||
3195 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3196 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3197 goto out;
3198
3199 ret = 0;
3200out:
3201 return ret;
3202}
3203
e4c3b2dc
LB
3204int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3205 u64 bytenr)
5d4f98a2
YZ
3206{
3207 struct btrfs_path *path;
3208 int ret;
5d4f98a2
YZ
3209
3210 path = btrfs_alloc_path();
3211 if (!path)
9132c4ff 3212 return -ENOMEM;
5d4f98a2
YZ
3213
3214 do {
e4c3b2dc 3215 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3216 offset, bytenr);
3217 if (ret && ret != -ENOENT)
f321e491 3218 goto out;
80ff3856 3219
380fd066
MT
3220 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3221 } while (ret == -EAGAIN);
5d4f98a2 3222
be20aa9d 3223out:
80ff3856 3224 btrfs_free_path(path);
f0486c68
YZ
3225 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3226 WARN_ON(ret > 0);
f321e491 3227 return ret;
be20aa9d 3228}
c5739bba 3229
5d4f98a2 3230static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3231 struct btrfs_root *root,
5d4f98a2 3232 struct extent_buffer *buf,
e339a6b0 3233 int full_backref, int inc)
31840ae1 3234{
0b246afa 3235 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3236 u64 bytenr;
5d4f98a2
YZ
3237 u64 num_bytes;
3238 u64 parent;
31840ae1 3239 u64 ref_root;
31840ae1 3240 u32 nritems;
31840ae1
ZY
3241 struct btrfs_key key;
3242 struct btrfs_file_extent_item *fi;
3243 int i;
3244 int level;
3245 int ret = 0;
2ff7e61e 3246 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3247 struct btrfs_root *,
b06c4bf5 3248 u64, u64, u64, u64, u64, u64);
31840ae1 3249
fccb84c9 3250
0b246afa 3251 if (btrfs_is_testing(fs_info))
faa2dbf0 3252 return 0;
fccb84c9 3253
31840ae1 3254 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3255 nritems = btrfs_header_nritems(buf);
3256 level = btrfs_header_level(buf);
3257
27cdeb70 3258 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3259 return 0;
31840ae1 3260
5d4f98a2
YZ
3261 if (inc)
3262 process_func = btrfs_inc_extent_ref;
3263 else
3264 process_func = btrfs_free_extent;
31840ae1 3265
5d4f98a2
YZ
3266 if (full_backref)
3267 parent = buf->start;
3268 else
3269 parent = 0;
3270
3271 for (i = 0; i < nritems; i++) {
31840ae1 3272 if (level == 0) {
5d4f98a2 3273 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3274 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3275 continue;
5d4f98a2 3276 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3277 struct btrfs_file_extent_item);
3278 if (btrfs_file_extent_type(buf, fi) ==
3279 BTRFS_FILE_EXTENT_INLINE)
3280 continue;
3281 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3282 if (bytenr == 0)
3283 continue;
5d4f98a2
YZ
3284
3285 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3286 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3287 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3288 parent, ref_root, key.objectid,
b06c4bf5 3289 key.offset);
31840ae1
ZY
3290 if (ret)
3291 goto fail;
3292 } else {
5d4f98a2 3293 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3294 num_bytes = fs_info->nodesize;
84f7d8e6 3295 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3296 parent, ref_root, level - 1, 0);
31840ae1
ZY
3297 if (ret)
3298 goto fail;
3299 }
3300 }
3301 return 0;
3302fail:
5d4f98a2
YZ
3303 return ret;
3304}
3305
3306int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3307 struct extent_buffer *buf, int full_backref)
5d4f98a2 3308{
e339a6b0 3309 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3310}
3311
3312int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3313 struct extent_buffer *buf, int full_backref)
5d4f98a2 3314{
e339a6b0 3315 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3316}
3317
9078a3e1 3318static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3319 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3320 struct btrfs_path *path,
3321 struct btrfs_block_group_cache *cache)
3322{
3323 int ret;
0b246afa 3324 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3325 unsigned long bi;
3326 struct extent_buffer *leaf;
9078a3e1 3327
9078a3e1 3328 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3329 if (ret) {
3330 if (ret > 0)
3331 ret = -ENOENT;
54aa1f4d 3332 goto fail;
df95e7f0 3333 }
5f39d397
CM
3334
3335 leaf = path->nodes[0];
3336 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3337 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3338 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3339fail:
24b89d08 3340 btrfs_release_path(path);
df95e7f0 3341 return ret;
9078a3e1
CM
3342
3343}
3344
4a8c9a62 3345static struct btrfs_block_group_cache *
2ff7e61e 3346next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3347 struct btrfs_block_group_cache *cache)
3348{
3349 struct rb_node *node;
292cbd51 3350
0b246afa 3351 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3352
3353 /* If our block group was removed, we need a full search. */
3354 if (RB_EMPTY_NODE(&cache->cache_node)) {
3355 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3356
0b246afa 3357 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3358 btrfs_put_block_group(cache);
0b246afa 3359 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3360 }
4a8c9a62
YZ
3361 node = rb_next(&cache->cache_node);
3362 btrfs_put_block_group(cache);
3363 if (node) {
3364 cache = rb_entry(node, struct btrfs_block_group_cache,
3365 cache_node);
11dfe35a 3366 btrfs_get_block_group(cache);
4a8c9a62
YZ
3367 } else
3368 cache = NULL;
0b246afa 3369 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3370 return cache;
3371}
3372
0af3d00b
JB
3373static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3374 struct btrfs_trans_handle *trans,
3375 struct btrfs_path *path)
3376{
0b246afa
JM
3377 struct btrfs_fs_info *fs_info = block_group->fs_info;
3378 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3379 struct inode *inode = NULL;
364ecf36 3380 struct extent_changeset *data_reserved = NULL;
0af3d00b 3381 u64 alloc_hint = 0;
2b20982e 3382 int dcs = BTRFS_DC_ERROR;
f8c269d7 3383 u64 num_pages = 0;
0af3d00b
JB
3384 int retries = 0;
3385 int ret = 0;
3386
3387 /*
3388 * If this block group is smaller than 100 megs don't bother caching the
3389 * block group.
3390 */
ee22184b 3391 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3392 spin_lock(&block_group->lock);
3393 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3394 spin_unlock(&block_group->lock);
3395 return 0;
3396 }
3397
0c0ef4bc
JB
3398 if (trans->aborted)
3399 return 0;
0af3d00b 3400again:
77ab86bf 3401 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3402 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3403 ret = PTR_ERR(inode);
b3b4aa74 3404 btrfs_release_path(path);
0af3d00b
JB
3405 goto out;
3406 }
3407
3408 if (IS_ERR(inode)) {
3409 BUG_ON(retries);
3410 retries++;
3411
3412 if (block_group->ro)
3413 goto out_free;
3414
77ab86bf
JM
3415 ret = create_free_space_inode(fs_info, trans, block_group,
3416 path);
0af3d00b
JB
3417 if (ret)
3418 goto out_free;
3419 goto again;
3420 }
3421
3422 /*
3423 * We want to set the generation to 0, that way if anything goes wrong
3424 * from here on out we know not to trust this cache when we load up next
3425 * time.
3426 */
3427 BTRFS_I(inode)->generation = 0;
3428 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3429 if (ret) {
3430 /*
3431 * So theoretically we could recover from this, simply set the
3432 * super cache generation to 0 so we know to invalidate the
3433 * cache, but then we'd have to keep track of the block groups
3434 * that fail this way so we know we _have_ to reset this cache
3435 * before the next commit or risk reading stale cache. So to
3436 * limit our exposure to horrible edge cases lets just abort the
3437 * transaction, this only happens in really bad situations
3438 * anyway.
3439 */
66642832 3440 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3441 goto out_put;
3442 }
0af3d00b
JB
3443 WARN_ON(ret);
3444
8e138e0d
JB
3445 /* We've already setup this transaction, go ahead and exit */
3446 if (block_group->cache_generation == trans->transid &&
3447 i_size_read(inode)) {
3448 dcs = BTRFS_DC_SETUP;
3449 goto out_put;
3450 }
3451
0af3d00b 3452 if (i_size_read(inode) > 0) {
2ff7e61e 3453 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3454 &fs_info->global_block_rsv);
7b61cd92
MX
3455 if (ret)
3456 goto out_put;
3457
77ab86bf 3458 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3459 if (ret)
3460 goto out_put;
3461 }
3462
3463 spin_lock(&block_group->lock);
cf7c1ef6 3464 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3465 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3466 /*
3467 * don't bother trying to write stuff out _if_
3468 * a) we're not cached,
1a79c1f2
LB
3469 * b) we're with nospace_cache mount option,
3470 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3471 */
2b20982e 3472 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3473 spin_unlock(&block_group->lock);
3474 goto out_put;
3475 }
3476 spin_unlock(&block_group->lock);
3477
2968b1f4
JB
3478 /*
3479 * We hit an ENOSPC when setting up the cache in this transaction, just
3480 * skip doing the setup, we've already cleared the cache so we're safe.
3481 */
3482 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3483 ret = -ENOSPC;
3484 goto out_put;
3485 }
3486
6fc823b1
JB
3487 /*
3488 * Try to preallocate enough space based on how big the block group is.
3489 * Keep in mind this has to include any pinned space which could end up
3490 * taking up quite a bit since it's not folded into the other space
3491 * cache.
3492 */
ee22184b 3493 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3494 if (!num_pages)
3495 num_pages = 1;
3496
0af3d00b 3497 num_pages *= 16;
09cbfeaf 3498 num_pages *= PAGE_SIZE;
0af3d00b 3499
364ecf36 3500 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3501 if (ret)
3502 goto out_put;
3503
3504 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3505 num_pages, num_pages,
3506 &alloc_hint);
2968b1f4
JB
3507 /*
3508 * Our cache requires contiguous chunks so that we don't modify a bunch
3509 * of metadata or split extents when writing the cache out, which means
3510 * we can enospc if we are heavily fragmented in addition to just normal
3511 * out of space conditions. So if we hit this just skip setting up any
3512 * other block groups for this transaction, maybe we'll unpin enough
3513 * space the next time around.
3514 */
2b20982e
JB
3515 if (!ret)
3516 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3517 else if (ret == -ENOSPC)
3518 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3519
0af3d00b
JB
3520out_put:
3521 iput(inode);
3522out_free:
b3b4aa74 3523 btrfs_release_path(path);
0af3d00b
JB
3524out:
3525 spin_lock(&block_group->lock);
e65cbb94 3526 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3527 block_group->cache_generation = trans->transid;
2b20982e 3528 block_group->disk_cache_state = dcs;
0af3d00b
JB
3529 spin_unlock(&block_group->lock);
3530
364ecf36 3531 extent_changeset_free(data_reserved);
0af3d00b
JB
3532 return ret;
3533}
3534
dcdf7f6d 3535int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3536 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3537{
3538 struct btrfs_block_group_cache *cache, *tmp;
3539 struct btrfs_transaction *cur_trans = trans->transaction;
3540 struct btrfs_path *path;
3541
3542 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3543 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3544 return 0;
3545
3546 path = btrfs_alloc_path();
3547 if (!path)
3548 return -ENOMEM;
3549
3550 /* Could add new block groups, use _safe just in case */
3551 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3552 dirty_list) {
3553 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3554 cache_save_setup(cache, trans, path);
3555 }
3556
3557 btrfs_free_path(path);
3558 return 0;
3559}
3560
1bbc621e
CM
3561/*
3562 * transaction commit does final block group cache writeback during a
3563 * critical section where nothing is allowed to change the FS. This is
3564 * required in order for the cache to actually match the block group,
3565 * but can introduce a lot of latency into the commit.
3566 *
3567 * So, btrfs_start_dirty_block_groups is here to kick off block group
3568 * cache IO. There's a chance we'll have to redo some of it if the
3569 * block group changes again during the commit, but it greatly reduces
3570 * the commit latency by getting rid of the easy block groups while
3571 * we're still allowing others to join the commit.
3572 */
21217054 3573int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3574{
21217054 3575 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3576 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3577 struct btrfs_transaction *cur_trans = trans->transaction;
3578 int ret = 0;
c9dc4c65 3579 int should_put;
1bbc621e
CM
3580 struct btrfs_path *path = NULL;
3581 LIST_HEAD(dirty);
3582 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3583 int num_started = 0;
1bbc621e
CM
3584 int loops = 0;
3585
3586 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3587 if (list_empty(&cur_trans->dirty_bgs)) {
3588 spin_unlock(&cur_trans->dirty_bgs_lock);
3589 return 0;
1bbc621e 3590 }
b58d1a9e 3591 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3592 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3593
1bbc621e 3594again:
1bbc621e
CM
3595 /*
3596 * make sure all the block groups on our dirty list actually
3597 * exist
3598 */
6c686b35 3599 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3600
3601 if (!path) {
3602 path = btrfs_alloc_path();
3603 if (!path)
3604 return -ENOMEM;
3605 }
3606
b58d1a9e
FM
3607 /*
3608 * cache_write_mutex is here only to save us from balance or automatic
3609 * removal of empty block groups deleting this block group while we are
3610 * writing out the cache
3611 */
3612 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3613 while (!list_empty(&dirty)) {
ba2c4d4e
JB
3614 bool drop_reserve = true;
3615
1bbc621e
CM
3616 cache = list_first_entry(&dirty,
3617 struct btrfs_block_group_cache,
3618 dirty_list);
1bbc621e
CM
3619 /*
3620 * this can happen if something re-dirties a block
3621 * group that is already under IO. Just wait for it to
3622 * finish and then do it all again
3623 */
3624 if (!list_empty(&cache->io_list)) {
3625 list_del_init(&cache->io_list);
afdb5718 3626 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3627 btrfs_put_block_group(cache);
3628 }
3629
3630
3631 /*
3632 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3633 * if it should update the cache_state. Don't delete
3634 * until after we wait.
3635 *
3636 * Since we're not running in the commit critical section
3637 * we need the dirty_bgs_lock to protect from update_block_group
3638 */
3639 spin_lock(&cur_trans->dirty_bgs_lock);
3640 list_del_init(&cache->dirty_list);
3641 spin_unlock(&cur_trans->dirty_bgs_lock);
3642
3643 should_put = 1;
3644
3645 cache_save_setup(cache, trans, path);
3646
3647 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3648 cache->io_ctl.inode = NULL;
0b246afa 3649 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3650 cache, path);
1bbc621e
CM
3651 if (ret == 0 && cache->io_ctl.inode) {
3652 num_started++;
3653 should_put = 0;
3654
3655 /*
45ae2c18
NB
3656 * The cache_write_mutex is protecting the
3657 * io_list, also refer to the definition of
3658 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3659 */
3660 list_add_tail(&cache->io_list, io);
3661 } else {
3662 /*
3663 * if we failed to write the cache, the
3664 * generation will be bad and life goes on
3665 */
3666 ret = 0;
3667 }
3668 }
ff1f8250 3669 if (!ret) {
2ff7e61e
JM
3670 ret = write_one_cache_group(trans, fs_info,
3671 path, cache);
ff1f8250
FM
3672 /*
3673 * Our block group might still be attached to the list
3674 * of new block groups in the transaction handle of some
3675 * other task (struct btrfs_trans_handle->new_bgs). This
3676 * means its block group item isn't yet in the extent
3677 * tree. If this happens ignore the error, as we will
3678 * try again later in the critical section of the
3679 * transaction commit.
3680 */
3681 if (ret == -ENOENT) {
3682 ret = 0;
3683 spin_lock(&cur_trans->dirty_bgs_lock);
3684 if (list_empty(&cache->dirty_list)) {
3685 list_add_tail(&cache->dirty_list,
3686 &cur_trans->dirty_bgs);
3687 btrfs_get_block_group(cache);
ba2c4d4e 3688 drop_reserve = false;
ff1f8250
FM
3689 }
3690 spin_unlock(&cur_trans->dirty_bgs_lock);
3691 } else if (ret) {
66642832 3692 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3693 }
3694 }
1bbc621e 3695
52042d8e 3696 /* if it's not on the io list, we need to put the block group */
1bbc621e
CM
3697 if (should_put)
3698 btrfs_put_block_group(cache);
ba2c4d4e
JB
3699 if (drop_reserve)
3700 btrfs_delayed_refs_rsv_release(fs_info, 1);
1bbc621e
CM
3701
3702 if (ret)
3703 break;
b58d1a9e
FM
3704
3705 /*
3706 * Avoid blocking other tasks for too long. It might even save
3707 * us from writing caches for block groups that are going to be
3708 * removed.
3709 */
3710 mutex_unlock(&trans->transaction->cache_write_mutex);
3711 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3712 }
b58d1a9e 3713 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3714
3715 /*
3716 * go through delayed refs for all the stuff we've just kicked off
3717 * and then loop back (just once)
3718 */
c79a70b1 3719 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3720 if (!ret && loops == 0) {
3721 loops++;
3722 spin_lock(&cur_trans->dirty_bgs_lock);
3723 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3724 /*
3725 * dirty_bgs_lock protects us from concurrent block group
3726 * deletes too (not just cache_write_mutex).
3727 */
3728 if (!list_empty(&dirty)) {
3729 spin_unlock(&cur_trans->dirty_bgs_lock);
3730 goto again;
3731 }
1bbc621e 3732 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3733 } else if (ret < 0) {
2ff7e61e 3734 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3735 }
3736
3737 btrfs_free_path(path);
3738 return ret;
3739}
3740
3741int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3742 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3743{
3744 struct btrfs_block_group_cache *cache;
3745 struct btrfs_transaction *cur_trans = trans->transaction;
3746 int ret = 0;
3747 int should_put;
3748 struct btrfs_path *path;
3749 struct list_head *io = &cur_trans->io_bgs;
3750 int num_started = 0;
9078a3e1
CM
3751
3752 path = btrfs_alloc_path();
3753 if (!path)
3754 return -ENOMEM;
3755
ce93ec54 3756 /*
e44081ef
FM
3757 * Even though we are in the critical section of the transaction commit,
3758 * we can still have concurrent tasks adding elements to this
3759 * transaction's list of dirty block groups. These tasks correspond to
3760 * endio free space workers started when writeback finishes for a
3761 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3762 * allocate new block groups as a result of COWing nodes of the root
3763 * tree when updating the free space inode. The writeback for the space
3764 * caches is triggered by an earlier call to
3765 * btrfs_start_dirty_block_groups() and iterations of the following
3766 * loop.
3767 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3768 * delayed refs to make sure we have the best chance at doing this all
3769 * in one shot.
3770 */
e44081ef 3771 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3772 while (!list_empty(&cur_trans->dirty_bgs)) {
3773 cache = list_first_entry(&cur_trans->dirty_bgs,
3774 struct btrfs_block_group_cache,
3775 dirty_list);
c9dc4c65
CM
3776
3777 /*
3778 * this can happen if cache_save_setup re-dirties a block
3779 * group that is already under IO. Just wait for it to
3780 * finish and then do it all again
3781 */
3782 if (!list_empty(&cache->io_list)) {
e44081ef 3783 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3784 list_del_init(&cache->io_list);
afdb5718 3785 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3786 btrfs_put_block_group(cache);
e44081ef 3787 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3788 }
3789
1bbc621e
CM
3790 /*
3791 * don't remove from the dirty list until after we've waited
3792 * on any pending IO
3793 */
ce93ec54 3794 list_del_init(&cache->dirty_list);
e44081ef 3795 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3796 should_put = 1;
3797
1bbc621e 3798 cache_save_setup(cache, trans, path);
c9dc4c65 3799
ce93ec54 3800 if (!ret)
c79a70b1 3801 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3802 (unsigned long) -1);
c9dc4c65
CM
3803
3804 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3805 cache->io_ctl.inode = NULL;
0b246afa 3806 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3807 cache, path);
c9dc4c65
CM
3808 if (ret == 0 && cache->io_ctl.inode) {
3809 num_started++;
3810 should_put = 0;
1bbc621e 3811 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3812 } else {
3813 /*
3814 * if we failed to write the cache, the
3815 * generation will be bad and life goes on
3816 */
3817 ret = 0;
3818 }
3819 }
ff1f8250 3820 if (!ret) {
2ff7e61e
JM
3821 ret = write_one_cache_group(trans, fs_info,
3822 path, cache);
2bc0bb5f
FM
3823 /*
3824 * One of the free space endio workers might have
3825 * created a new block group while updating a free space
3826 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3827 * and hasn't released its transaction handle yet, in
3828 * which case the new block group is still attached to
3829 * its transaction handle and its creation has not
3830 * finished yet (no block group item in the extent tree
3831 * yet, etc). If this is the case, wait for all free
3832 * space endio workers to finish and retry. This is a
3833 * a very rare case so no need for a more efficient and
3834 * complex approach.
3835 */
3836 if (ret == -ENOENT) {
3837 wait_event(cur_trans->writer_wait,
3838 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3839 ret = write_one_cache_group(trans, fs_info,
3840 path, cache);
2bc0bb5f 3841 }
ff1f8250 3842 if (ret)
66642832 3843 btrfs_abort_transaction(trans, ret);
ff1f8250 3844 }
c9dc4c65
CM
3845
3846 /* if its not on the io list, we need to put the block group */
3847 if (should_put)
3848 btrfs_put_block_group(cache);
ba2c4d4e 3849 btrfs_delayed_refs_rsv_release(fs_info, 1);
e44081ef 3850 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3851 }
e44081ef 3852 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3853
45ae2c18
NB
3854 /*
3855 * Refer to the definition of io_bgs member for details why it's safe
3856 * to use it without any locking
3857 */
1bbc621e
CM
3858 while (!list_empty(io)) {
3859 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3860 io_list);
3861 list_del_init(&cache->io_list);
afdb5718 3862 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3863 btrfs_put_block_group(cache);
3864 }
3865
9078a3e1 3866 btrfs_free_path(path);
ce93ec54 3867 return ret;
9078a3e1
CM
3868}
3869
2ff7e61e 3870int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3871{
3872 struct btrfs_block_group_cache *block_group;
3873 int readonly = 0;
3874
0b246afa 3875 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3876 if (!block_group || block_group->ro)
3877 readonly = 1;
3878 if (block_group)
fa9c0d79 3879 btrfs_put_block_group(block_group);
d2fb3437
YZ
3880 return readonly;
3881}
3882
f78c436c
FM
3883bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3884{
3885 struct btrfs_block_group_cache *bg;
3886 bool ret = true;
3887
3888 bg = btrfs_lookup_block_group(fs_info, bytenr);
3889 if (!bg)
3890 return false;
3891
3892 spin_lock(&bg->lock);
3893 if (bg->ro)
3894 ret = false;
3895 else
3896 atomic_inc(&bg->nocow_writers);
3897 spin_unlock(&bg->lock);
3898
3899 /* no put on block group, done by btrfs_dec_nocow_writers */
3900 if (!ret)
3901 btrfs_put_block_group(bg);
3902
3903 return ret;
3904
3905}
3906
3907void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3908{
3909 struct btrfs_block_group_cache *bg;
3910
3911 bg = btrfs_lookup_block_group(fs_info, bytenr);
3912 ASSERT(bg);
3913 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 3914 wake_up_var(&bg->nocow_writers);
f78c436c
FM
3915 /*
3916 * Once for our lookup and once for the lookup done by a previous call
3917 * to btrfs_inc_nocow_writers()
3918 */
3919 btrfs_put_block_group(bg);
3920 btrfs_put_block_group(bg);
3921}
3922
f78c436c
FM
3923void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3924{
4625956a 3925 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
3926}
3927
6ab0a202
JM
3928static const char *alloc_name(u64 flags)
3929{
3930 switch (flags) {
3931 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3932 return "mixed";
3933 case BTRFS_BLOCK_GROUP_METADATA:
3934 return "metadata";
3935 case BTRFS_BLOCK_GROUP_DATA:
3936 return "data";
3937 case BTRFS_BLOCK_GROUP_SYSTEM:
3938 return "system";
3939 default:
3940 WARN_ON(1);
3941 return "invalid-combination";
3942 };
3943}
3944
4ca61683 3945static int create_space_info(struct btrfs_fs_info *info, u64 flags)
2be12ef7
NB
3946{
3947
3948 struct btrfs_space_info *space_info;
3949 int i;
3950 int ret;
3951
3952 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3953 if (!space_info)
3954 return -ENOMEM;
3955
3956 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3957 GFP_KERNEL);
3958 if (ret) {
3959 kfree(space_info);
3960 return ret;
3961 }
3962
3963 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3964 INIT_LIST_HEAD(&space_info->block_groups[i]);
3965 init_rwsem(&space_info->groups_sem);
3966 spin_lock_init(&space_info->lock);
3967 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3968 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3969 init_waitqueue_head(&space_info->wait);
3970 INIT_LIST_HEAD(&space_info->ro_bgs);
3971 INIT_LIST_HEAD(&space_info->tickets);
3972 INIT_LIST_HEAD(&space_info->priority_tickets);
3973
3974 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3975 info->space_info_kobj, "%s",
3976 alloc_name(space_info->flags));
3977 if (ret) {
3978 percpu_counter_destroy(&space_info->total_bytes_pinned);
3979 kfree(space_info);
3980 return ret;
3981 }
3982
2be12ef7
NB
3983 list_add_rcu(&space_info->list, &info->space_info);
3984 if (flags & BTRFS_BLOCK_GROUP_DATA)
3985 info->data_sinfo = space_info;
3986
3987 return ret;
3988}
3989
d2006e6d 3990static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 3991 u64 total_bytes, u64 bytes_used,
e40edf2d 3992 u64 bytes_readonly,
593060d7
CM
3993 struct btrfs_space_info **space_info)
3994{
3995 struct btrfs_space_info *found;
b742bb82
YZ
3996 int factor;
3997
46df06b8 3998 factor = btrfs_bg_type_to_factor(flags);
593060d7
CM
3999
4000 found = __find_space_info(info, flags);
d2006e6d
NB
4001 ASSERT(found);
4002 spin_lock(&found->lock);
4003 found->total_bytes += total_bytes;
4004 found->disk_total += total_bytes * factor;
4005 found->bytes_used += bytes_used;
4006 found->disk_used += bytes_used * factor;
4007 found->bytes_readonly += bytes_readonly;
4008 if (total_bytes > 0)
4009 found->full = 0;
4010 space_info_add_new_bytes(info, found, total_bytes -
4011 bytes_used - bytes_readonly);
4012 spin_unlock(&found->lock);
4013 *space_info = found;
593060d7
CM
4014}
4015
8790d502
CM
4016static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4017{
899c81ea
ID
4018 u64 extra_flags = chunk_to_extended(flags) &
4019 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4020
de98ced9 4021 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4022 if (flags & BTRFS_BLOCK_GROUP_DATA)
4023 fs_info->avail_data_alloc_bits |= extra_flags;
4024 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4025 fs_info->avail_metadata_alloc_bits |= extra_flags;
4026 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4027 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4028 write_sequnlock(&fs_info->profiles_lock);
8790d502 4029}
593060d7 4030
fc67c450
ID
4031/*
4032 * returns target flags in extended format or 0 if restripe for this
4033 * chunk_type is not in progress
c6664b42 4034 *
dccdb07b 4035 * should be called with balance_lock held
fc67c450
ID
4036 */
4037static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4038{
4039 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4040 u64 target = 0;
4041
fc67c450
ID
4042 if (!bctl)
4043 return 0;
4044
4045 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4046 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4047 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4048 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4049 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4050 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4051 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4052 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4053 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4054 }
4055
4056 return target;
4057}
4058
a46d11a8
ID
4059/*
4060 * @flags: available profiles in extended format (see ctree.h)
4061 *
e4d8ec0f
ID
4062 * Returns reduced profile in chunk format. If profile changing is in
4063 * progress (either running or paused) picks the target profile (if it's
4064 * already available), otherwise falls back to plain reducing.
a46d11a8 4065 */
2ff7e61e 4066static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4067{
0b246afa 4068 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4069 u64 target;
9c170b26
ZL
4070 u64 raid_type;
4071 u64 allowed = 0;
a061fc8d 4072
fc67c450
ID
4073 /*
4074 * see if restripe for this chunk_type is in progress, if so
4075 * try to reduce to the target profile
4076 */
0b246afa
JM
4077 spin_lock(&fs_info->balance_lock);
4078 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4079 if (target) {
4080 /* pick target profile only if it's already available */
4081 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4082 spin_unlock(&fs_info->balance_lock);
fc67c450 4083 return extended_to_chunk(target);
e4d8ec0f
ID
4084 }
4085 }
0b246afa 4086 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4087
53b381b3 4088 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4089 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4090 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
41a6e891 4091 allowed |= btrfs_raid_array[raid_type].bg_flag;
9c170b26
ZL
4092 }
4093 allowed &= flags;
4094
4095 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4096 allowed = BTRFS_BLOCK_GROUP_RAID6;
4097 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4098 allowed = BTRFS_BLOCK_GROUP_RAID5;
4099 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4100 allowed = BTRFS_BLOCK_GROUP_RAID10;
4101 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4102 allowed = BTRFS_BLOCK_GROUP_RAID1;
4103 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4104 allowed = BTRFS_BLOCK_GROUP_RAID0;
4105
4106 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4107
4108 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4109}
4110
2ff7e61e 4111static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4112{
de98ced9 4113 unsigned seq;
f8213bdc 4114 u64 flags;
de98ced9
MX
4115
4116 do {
f8213bdc 4117 flags = orig_flags;
0b246afa 4118 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4119
4120 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4121 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4122 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4123 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4124 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4125 flags |= fs_info->avail_metadata_alloc_bits;
4126 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4127
2ff7e61e 4128 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4129}
4130
1b86826d 4131static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4132{
0b246afa 4133 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4134 u64 flags;
53b381b3 4135 u64 ret;
9ed74f2d 4136
b742bb82
YZ
4137 if (data)
4138 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4139 else if (root == fs_info->chunk_root)
b742bb82 4140 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4141 else
b742bb82 4142 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4143
2ff7e61e 4144 ret = get_alloc_profile(fs_info, flags);
53b381b3 4145 return ret;
6a63209f 4146}
9ed74f2d 4147
1b86826d
JM
4148u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4149{
4150 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4151}
4152
4153u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4154{
4155 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4156}
4157
4158u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4159{
4160 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4161}
4162
4136135b
LB
4163static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4164 bool may_use_included)
4165{
4166 ASSERT(s_info);
4167 return s_info->bytes_used + s_info->bytes_reserved +
4168 s_info->bytes_pinned + s_info->bytes_readonly +
4169 (may_use_included ? s_info->bytes_may_use : 0);
4170}
4171
04f4f916 4172int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4173{
04f4f916 4174 struct btrfs_root *root = inode->root;
b4d7c3c9 4175 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4176 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4177 u64 used;
94b947b2 4178 int ret = 0;
c99f1b0c
ZL
4179 int need_commit = 2;
4180 int have_pinned_space;
6a63209f 4181
6a63209f 4182 /* make sure bytes are sectorsize aligned */
0b246afa 4183 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4184
9dced186 4185 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4186 need_commit = 0;
9dced186 4187 ASSERT(current->journal_info);
0af3d00b
JB
4188 }
4189
6a63209f
JB
4190again:
4191 /* make sure we have enough space to handle the data first */
4192 spin_lock(&data_sinfo->lock);
4136135b 4193 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4194
4195 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4196 struct btrfs_trans_handle *trans;
9ed74f2d 4197
6a63209f
JB
4198 /*
4199 * if we don't have enough free bytes in this space then we need
4200 * to alloc a new chunk.
4201 */
b9fd47cd 4202 if (!data_sinfo->full) {
6a63209f 4203 u64 alloc_target;
9ed74f2d 4204
0e4f8f88 4205 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4206 spin_unlock(&data_sinfo->lock);
1174cade 4207
1b86826d 4208 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4209 /*
4210 * It is ugly that we don't call nolock join
4211 * transaction for the free space inode case here.
4212 * But it is safe because we only do the data space
4213 * reservation for the free space cache in the
4214 * transaction context, the common join transaction
4215 * just increase the counter of the current transaction
4216 * handler, doesn't try to acquire the trans_lock of
4217 * the fs.
4218 */
7a7eaa40 4219 trans = btrfs_join_transaction(root);
a22285a6
YZ
4220 if (IS_ERR(trans))
4221 return PTR_ERR(trans);
9ed74f2d 4222
01458828 4223 ret = do_chunk_alloc(trans, alloc_target,
0e4f8f88 4224 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4225 btrfs_end_transaction(trans);
d52a5b5f
MX
4226 if (ret < 0) {
4227 if (ret != -ENOSPC)
4228 return ret;
c99f1b0c
ZL
4229 else {
4230 have_pinned_space = 1;
d52a5b5f 4231 goto commit_trans;
c99f1b0c 4232 }
d52a5b5f 4233 }
9ed74f2d 4234
6a63209f
JB
4235 goto again;
4236 }
f2bb8f5c
JB
4237
4238 /*
b150a4f1 4239 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4240 * allocation, and no removed chunk in current transaction,
4241 * don't bother committing the transaction.
f2bb8f5c 4242 */
dec59fa3 4243 have_pinned_space = __percpu_counter_compare(
c99f1b0c 4244 &data_sinfo->total_bytes_pinned,
dec59fa3
EL
4245 used + bytes - data_sinfo->total_bytes,
4246 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6a63209f 4247 spin_unlock(&data_sinfo->lock);
6a63209f 4248
4e06bdd6 4249 /* commit the current transaction and try again */
d52a5b5f 4250commit_trans:
92e2f7e3 4251 if (need_commit) {
c99f1b0c 4252 need_commit--;
b150a4f1 4253
e1746e83 4254 if (need_commit > 0) {
82b3e53b 4255 btrfs_start_delalloc_roots(fs_info, -1);
6374e57a 4256 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4257 (u64)-1);
e1746e83 4258 }
9a4e7276 4259
7a7eaa40 4260 trans = btrfs_join_transaction(root);
a22285a6
YZ
4261 if (IS_ERR(trans))
4262 return PTR_ERR(trans);
c99f1b0c 4263 if (have_pinned_space >= 0 ||
3204d33c
JB
4264 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4265 &trans->transaction->flags) ||
c99f1b0c 4266 need_commit > 0) {
3a45bb20 4267 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4268 if (ret)
4269 return ret;
d7c15171 4270 /*
c2d6cb16
FM
4271 * The cleaner kthread might still be doing iput
4272 * operations. Wait for it to finish so that
034f784d
JB
4273 * more space is released. We don't need to
4274 * explicitly run the delayed iputs here because
4275 * the commit_transaction would have woken up
4276 * the cleaner.
d7c15171 4277 */
034f784d
JB
4278 ret = btrfs_wait_on_delayed_iputs(fs_info);
4279 if (ret)
4280 return ret;
94b947b2
ZL
4281 goto again;
4282 } else {
3a45bb20 4283 btrfs_end_transaction(trans);
94b947b2 4284 }
4e06bdd6 4285 }
9ed74f2d 4286
0b246afa 4287 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4288 "space_info:enospc",
4289 data_sinfo->flags, bytes, 1);
6a63209f
JB
4290 return -ENOSPC;
4291 }
9f9b8e8d 4292 update_bytes_may_use(data_sinfo, bytes);
0b246afa 4293 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4294 data_sinfo->flags, bytes, 1);
6a63209f 4295 spin_unlock(&data_sinfo->lock);
6a63209f 4296
4559b0a7 4297 return 0;
9ed74f2d 4298}
6a63209f 4299
364ecf36
QW
4300int btrfs_check_data_free_space(struct inode *inode,
4301 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4302{
0b246afa 4303 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4304 int ret;
4305
4306 /* align the range */
0b246afa
JM
4307 len = round_up(start + len, fs_info->sectorsize) -
4308 round_down(start, fs_info->sectorsize);
4309 start = round_down(start, fs_info->sectorsize);
4ceff079 4310
04f4f916 4311 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4312 if (ret < 0)
4313 return ret;
4314
1e5ec2e7 4315 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4316 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4317 if (ret < 0)
1e5ec2e7 4318 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4319 else
4320 ret = 0;
4ceff079
QW
4321 return ret;
4322}
4323
4ceff079
QW
4324/*
4325 * Called if we need to clear a data reservation for this inode
4326 * Normally in a error case.
4327 *
51773bec
QW
4328 * This one will *NOT* use accurate qgroup reserved space API, just for case
4329 * which we can't sleep and is sure it won't affect qgroup reserved space.
4330 * Like clear_bit_hook().
4ceff079 4331 */
51773bec
QW
4332void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4333 u64 len)
4ceff079 4334{
0b246afa 4335 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4336 struct btrfs_space_info *data_sinfo;
4337
4338 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4339 len = round_up(start + len, fs_info->sectorsize) -
4340 round_down(start, fs_info->sectorsize);
4341 start = round_down(start, fs_info->sectorsize);
4ceff079 4342
0b246afa 4343 data_sinfo = fs_info->data_sinfo;
4ceff079 4344 spin_lock(&data_sinfo->lock);
9f9b8e8d 4345 update_bytes_may_use(data_sinfo, -len);
0b246afa 4346 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4347 data_sinfo->flags, len, 0);
4348 spin_unlock(&data_sinfo->lock);
4349}
4350
51773bec
QW
4351/*
4352 * Called if we need to clear a data reservation for this inode
4353 * Normally in a error case.
4354 *
01327610 4355 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4356 * space framework.
4357 */
bc42bda2
QW
4358void btrfs_free_reserved_data_space(struct inode *inode,
4359 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4360{
0c476a5d
JM
4361 struct btrfs_root *root = BTRFS_I(inode)->root;
4362
4363 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4364 len = round_up(start + len, root->fs_info->sectorsize) -
4365 round_down(start, root->fs_info->sectorsize);
4366 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4367
51773bec 4368 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4369 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4370}
4371
97e728d4 4372static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4373{
97e728d4
JB
4374 struct list_head *head = &info->space_info;
4375 struct btrfs_space_info *found;
e3ccfa98 4376
97e728d4
JB
4377 rcu_read_lock();
4378 list_for_each_entry_rcu(found, head, list) {
4379 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4380 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4381 }
97e728d4 4382 rcu_read_unlock();
e3ccfa98
JB
4383}
4384
3c76cd84
MX
4385static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4386{
4387 return (global->size << 1);
4388}
4389
2ff7e61e 4390static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4391 struct btrfs_space_info *sinfo, int force)
32c00aff 4392{
8d8aafee 4393 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4394 u64 thresh;
e3ccfa98 4395
0e4f8f88
CM
4396 if (force == CHUNK_ALLOC_FORCE)
4397 return 1;
4398
4399 /*
4400 * in limited mode, we want to have some free space up to
4401 * about 1% of the FS size.
4402 */
4403 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4404 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4405 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4406
8d8aafee 4407 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4408 return 1;
4409 }
0e4f8f88 4410
8d8aafee 4411 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4412 return 0;
424499db 4413 return 1;
32c00aff
JB
4414}
4415
2ff7e61e 4416static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4417{
4418 u64 num_dev;
4419
53b381b3
DW
4420 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4421 BTRFS_BLOCK_GROUP_RAID0 |
4422 BTRFS_BLOCK_GROUP_RAID5 |
4423 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4424 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4425 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4426 num_dev = 2;
4427 else
4428 num_dev = 1; /* DUP or single */
4429
39c2d7fa 4430 return num_dev;
15d1ff81
LB
4431}
4432
39c2d7fa
FM
4433/*
4434 * If @is_allocation is true, reserve space in the system space info necessary
4435 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4436 * removing a chunk.
4437 */
451a2c13 4438void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
15d1ff81 4439{
451a2c13 4440 struct btrfs_fs_info *fs_info = trans->fs_info;
15d1ff81
LB
4441 struct btrfs_space_info *info;
4442 u64 left;
4443 u64 thresh;
4fbcdf66 4444 int ret = 0;
39c2d7fa 4445 u64 num_devs;
4fbcdf66
FM
4446
4447 /*
4448 * Needed because we can end up allocating a system chunk and for an
4449 * atomic and race free space reservation in the chunk block reserve.
4450 */
a32bf9a3 4451 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4452
0b246afa 4453 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4454 spin_lock(&info->lock);
4136135b 4455 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4456 spin_unlock(&info->lock);
4457
2ff7e61e 4458 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4459
4460 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4461 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4462 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4463
0b246afa
JM
4464 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4465 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4466 left, thresh, type);
4467 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4468 }
4469
4470 if (left < thresh) {
1b86826d 4471 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4472
4fbcdf66
FM
4473 /*
4474 * Ignore failure to create system chunk. We might end up not
4475 * needing it, as we might not need to COW all nodes/leafs from
4476 * the paths we visit in the chunk tree (they were already COWed
4477 * or created in the current transaction for example).
4478 */
c216b203 4479 ret = btrfs_alloc_chunk(trans, flags);
4fbcdf66
FM
4480 }
4481
4482 if (!ret) {
0b246afa
JM
4483 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4484 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4485 thresh, BTRFS_RESERVE_NO_FLUSH);
4486 if (!ret)
4487 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4488 }
4489}
4490
28b737f6
LB
4491/*
4492 * If force is CHUNK_ALLOC_FORCE:
4493 * - return 1 if it successfully allocates a chunk,
4494 * - return errors including -ENOSPC otherwise.
4495 * If force is NOT CHUNK_ALLOC_FORCE:
4496 * - return 0 if it doesn't need to allocate a new chunk,
4497 * - return 1 if it successfully allocates a chunk,
4498 * - return errors including -ENOSPC otherwise.
4499 */
01458828
NB
4500static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4501 int force)
9ed74f2d 4502{
01458828 4503 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 4504 struct btrfs_space_info *space_info;
2556fbb0
NB
4505 bool wait_for_alloc = false;
4506 bool should_alloc = false;
9ed74f2d 4507 int ret = 0;
9ed74f2d 4508
c6b305a8
JB
4509 /* Don't re-enter if we're already allocating a chunk */
4510 if (trans->allocating_chunk)
4511 return -ENOSPC;
4512
0b246afa 4513 space_info = __find_space_info(fs_info, flags);
dc2d3005 4514 ASSERT(space_info);
9ed74f2d 4515
2556fbb0
NB
4516 do {
4517 spin_lock(&space_info->lock);
4518 if (force < space_info->force_alloc)
4519 force = space_info->force_alloc;
4520 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4521 if (space_info->full) {
4522 /* No more free physical space */
4523 if (should_alloc)
4524 ret = -ENOSPC;
4525 else
4526 ret = 0;
4527 spin_unlock(&space_info->lock);
4528 return ret;
4529 } else if (!should_alloc) {
4530 spin_unlock(&space_info->lock);
4531 return 0;
4532 } else if (space_info->chunk_alloc) {
4533 /*
4534 * Someone is already allocating, so we need to block
4535 * until this someone is finished and then loop to
4536 * recheck if we should continue with our allocation
4537 * attempt.
4538 */
4539 wait_for_alloc = true;
4540 spin_unlock(&space_info->lock);
4541 mutex_lock(&fs_info->chunk_mutex);
4542 mutex_unlock(&fs_info->chunk_mutex);
4543 } else {
4544 /* Proceed with allocation */
4545 space_info->chunk_alloc = 1;
4546 wait_for_alloc = false;
4547 spin_unlock(&space_info->lock);
4548 }
6d74119f 4549
1e1c50a9 4550 cond_resched();
2556fbb0 4551 } while (wait_for_alloc);
6d74119f 4552
2556fbb0 4553 mutex_lock(&fs_info->chunk_mutex);
c6b305a8
JB
4554 trans->allocating_chunk = true;
4555
67377734
JB
4556 /*
4557 * If we have mixed data/metadata chunks we want to make sure we keep
4558 * allocating mixed chunks instead of individual chunks.
4559 */
4560 if (btrfs_mixed_space_info(space_info))
4561 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4562
97e728d4
JB
4563 /*
4564 * if we're doing a data chunk, go ahead and make sure that
4565 * we keep a reasonable number of metadata chunks allocated in the
4566 * FS as well.
4567 */
9ed74f2d 4568 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4569 fs_info->data_chunk_allocations++;
4570 if (!(fs_info->data_chunk_allocations %
4571 fs_info->metadata_ratio))
4572 force_metadata_allocation(fs_info);
9ed74f2d
JB
4573 }
4574
15d1ff81
LB
4575 /*
4576 * Check if we have enough space in SYSTEM chunk because we may need
4577 * to update devices.
4578 */
451a2c13 4579 check_system_chunk(trans, flags);
15d1ff81 4580
c216b203 4581 ret = btrfs_alloc_chunk(trans, flags);
c6b305a8 4582 trans->allocating_chunk = false;
92b8e897 4583
9ed74f2d 4584 spin_lock(&space_info->lock);
57f1642e
NB
4585 if (ret < 0) {
4586 if (ret == -ENOSPC)
4587 space_info->full = 1;
4588 else
4589 goto out;
4590 } else {
424499db 4591 ret = 1;
21a94f7a 4592 space_info->max_extent_size = 0;
57f1642e 4593 }
6d74119f 4594
0e4f8f88 4595 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4596out:
6d74119f 4597 space_info->chunk_alloc = 0;
9ed74f2d 4598 spin_unlock(&space_info->lock);
a25c75d5 4599 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4600 /*
4601 * When we allocate a new chunk we reserve space in the chunk block
4602 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4603 * add new nodes/leafs to it if we end up needing to do it when
4604 * inserting the chunk item and updating device items as part of the
4605 * second phase of chunk allocation, performed by
4606 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4607 * large number of new block groups to create in our transaction
4608 * handle's new_bgs list to avoid exhausting the chunk block reserve
4609 * in extreme cases - like having a single transaction create many new
4610 * block groups when starting to write out the free space caches of all
4611 * the block groups that were made dirty during the lifetime of the
4612 * transaction.
4613 */
5ce55557 4614 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
6c686b35 4615 btrfs_create_pending_block_groups(trans);
5ce55557 4616
0f9dd46c 4617 return ret;
6324fbf3 4618}
9ed74f2d 4619
c1c4919b 4620static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4621 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4622 enum btrfs_reserve_flush_enum flush,
4623 bool system_chunk)
a80c8dcf 4624{
0b246afa 4625 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4626 u64 profile;
3c76cd84 4627 u64 space_size;
a80c8dcf
JB
4628 u64 avail;
4629 u64 used;
46df06b8 4630 int factor;
a80c8dcf 4631
957780eb
JB
4632 /* Don't overcommit when in mixed mode. */
4633 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4634 return 0;
4635
c1c4919b
JM
4636 if (system_chunk)
4637 profile = btrfs_system_alloc_profile(fs_info);
4638 else
4639 profile = btrfs_metadata_alloc_profile(fs_info);
4640
4136135b 4641 used = btrfs_space_info_used(space_info, false);
96f1bb57 4642
96f1bb57
JB
4643 /*
4644 * We only want to allow over committing if we have lots of actual space
4645 * free, but if we don't have enough space to handle the global reserve
4646 * space then we could end up having a real enospc problem when trying
4647 * to allocate a chunk or some other such important allocation.
4648 */
3c76cd84
MX
4649 spin_lock(&global_rsv->lock);
4650 space_size = calc_global_rsv_need_space(global_rsv);
4651 spin_unlock(&global_rsv->lock);
4652 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4653 return 0;
4654
4655 used += space_info->bytes_may_use;
a80c8dcf 4656
a5ed45f8 4657 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4658
4659 /*
4660 * If we have dup, raid1 or raid10 then only half of the free
52042d8e 4661 * space is actually usable. For raid56, the space info used
53b381b3
DW
4662 * doesn't include the parity drive, so we don't have to
4663 * change the math
a80c8dcf 4664 */
46df06b8
DS
4665 factor = btrfs_bg_type_to_factor(profile);
4666 avail = div_u64(avail, factor);
a80c8dcf
JB
4667
4668 /*
561c294d
MX
4669 * If we aren't flushing all things, let us overcommit up to
4670 * 1/2th of the space. If we can flush, don't let us overcommit
4671 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4672 */
08e007d2 4673 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4674 avail >>= 3;
a80c8dcf 4675 else
14575aef 4676 avail >>= 1;
a80c8dcf 4677
14575aef 4678 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4679 return 1;
4680 return 0;
4681}
4682
2ff7e61e 4683static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4684 unsigned long nr_pages, int nr_items)
da633a42 4685{
0b246afa 4686 struct super_block *sb = fs_info->sb;
da633a42 4687
925a6efb
JB
4688 if (down_read_trylock(&sb->s_umount)) {
4689 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4690 up_read(&sb->s_umount);
4691 } else {
da633a42
MX
4692 /*
4693 * We needn't worry the filesystem going from r/w to r/o though
4694 * we don't acquire ->s_umount mutex, because the filesystem
4695 * should guarantee the delalloc inodes list be empty after
4696 * the filesystem is readonly(all dirty pages are written to
4697 * the disk).
4698 */
82b3e53b 4699 btrfs_start_delalloc_roots(fs_info, nr_items);
98ad69cf 4700 if (!current->journal_info)
0b246afa 4701 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4702 }
4703}
4704
6374e57a 4705static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4706 u64 to_reclaim)
18cd8ea6
MX
4707{
4708 u64 bytes;
6374e57a 4709 u64 nr;
18cd8ea6 4710
2ff7e61e 4711 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4712 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4713 if (!nr)
4714 nr = 1;
4715 return nr;
4716}
4717
ee22184b 4718#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4719
9ed74f2d 4720/*
5da9d01b 4721 * shrink metadata reservation for delalloc
9ed74f2d 4722 */
c1c4919b
JM
4723static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4724 u64 orig, bool wait_ordered)
5da9d01b 4725{
0019f10d 4726 struct btrfs_space_info *space_info;
663350ac 4727 struct btrfs_trans_handle *trans;
f4c738c2 4728 u64 delalloc_bytes;
420829d8 4729 u64 async_pages;
6374e57a 4730 u64 items;
b1953bce 4731 long time_left;
d3ee29e3
MX
4732 unsigned long nr_pages;
4733 int loops;
5da9d01b 4734
c61a16a7 4735 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4736 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4737 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4738
663350ac 4739 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4740 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4741
963d678b 4742 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4743 &fs_info->delalloc_bytes);
f4c738c2 4744 if (delalloc_bytes == 0) {
fdb5effd 4745 if (trans)
f4c738c2 4746 return;
38c135af 4747 if (wait_ordered)
0b246afa 4748 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4749 return;
fdb5effd
JB
4750 }
4751
d3ee29e3 4752 loops = 0;
f4c738c2 4753 while (delalloc_bytes && loops < 3) {
420829d8
NB
4754 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
4755
4756 /*
4757 * Triggers inode writeback for up to nr_pages. This will invoke
4758 * ->writepages callback and trigger delalloc filling
4759 * (btrfs_run_delalloc_range()).
4760 */
2ff7e61e 4761 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
420829d8 4762
dea31f52 4763 /*
420829d8
NB
4764 * We need to wait for the compressed pages to start before
4765 * we continue.
dea31f52 4766 */
420829d8
NB
4767 async_pages = atomic_read(&fs_info->async_delalloc_pages);
4768 if (!async_pages)
9f3a074d
MX
4769 goto skip_async;
4770
420829d8
NB
4771 /*
4772 * Calculate how many compressed pages we want to be written
4773 * before we continue. I.e if there are more async pages than we
4774 * require wait_event will wait until nr_pages are written.
4775 */
4776 if (async_pages <= nr_pages)
4777 async_pages = 0;
9f3a074d 4778 else
420829d8 4779 async_pages -= nr_pages;
dea31f52 4780
0b246afa
JM
4781 wait_event(fs_info->async_submit_wait,
4782 atomic_read(&fs_info->async_delalloc_pages) <=
420829d8 4783 (int)async_pages);
9f3a074d 4784skip_async:
0019f10d 4785 spin_lock(&space_info->lock);
957780eb
JB
4786 if (list_empty(&space_info->tickets) &&
4787 list_empty(&space_info->priority_tickets)) {
4788 spin_unlock(&space_info->lock);
4789 break;
4790 }
0019f10d 4791 spin_unlock(&space_info->lock);
5da9d01b 4792
36e39c40 4793 loops++;
f104d044 4794 if (wait_ordered && !trans) {
0b246afa 4795 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4796 } else {
f4c738c2 4797 time_left = schedule_timeout_killable(1);
f104d044
JB
4798 if (time_left)
4799 break;
4800 }
963d678b 4801 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4802 &fs_info->delalloc_bytes);
5da9d01b 4803 }
5da9d01b
YZ
4804}
4805
996478ca 4806struct reserve_ticket {
f91587e4 4807 u64 orig_bytes;
996478ca
JB
4808 u64 bytes;
4809 int error;
4810 struct list_head list;
4811 wait_queue_head_t wait;
4812};
4813
663350ac
JB
4814/**
4815 * maybe_commit_transaction - possibly commit the transaction if its ok to
4816 * @root - the root we're allocating for
4817 * @bytes - the number of bytes we want to reserve
4818 * @force - force the commit
8bb8ab2e 4819 *
663350ac
JB
4820 * This will check to make sure that committing the transaction will actually
4821 * get us somewhere and then commit the transaction if it does. Otherwise it
4822 * will return -ENOSPC.
8bb8ab2e 4823 */
0c9ab349 4824static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4825 struct btrfs_space_info *space_info)
663350ac 4826{
996478ca 4827 struct reserve_ticket *ticket = NULL;
0b246afa 4828 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4c8edbc7 4829 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
663350ac 4830 struct btrfs_trans_handle *trans;
4c8edbc7
JB
4831 u64 bytes_needed;
4832 u64 reclaim_bytes = 0;
663350ac
JB
4833
4834 trans = (struct btrfs_trans_handle *)current->journal_info;
4835 if (trans)
4836 return -EAGAIN;
4837
996478ca
JB
4838 spin_lock(&space_info->lock);
4839 if (!list_empty(&space_info->priority_tickets))
4840 ticket = list_first_entry(&space_info->priority_tickets,
4841 struct reserve_ticket, list);
4842 else if (!list_empty(&space_info->tickets))
4843 ticket = list_first_entry(&space_info->tickets,
4844 struct reserve_ticket, list);
4c8edbc7 4845 bytes_needed = (ticket) ? ticket->bytes : 0;
996478ca
JB
4846 spin_unlock(&space_info->lock);
4847
4c8edbc7 4848 if (!bytes_needed)
996478ca 4849 return 0;
663350ac 4850
d89dbefb
JB
4851 trans = btrfs_join_transaction(fs_info->extent_root);
4852 if (IS_ERR(trans))
4853 return PTR_ERR(trans);
4854
4855 /*
4856 * See if there is enough pinned space to make this reservation, or if
4857 * we have block groups that are going to be freed, allowing us to
4858 * possibly do a chunk allocation the next loop through.
4859 */
4860 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
4861 __percpu_counter_compare(&space_info->total_bytes_pinned,
4862 bytes_needed,
4863 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
663350ac 4864 goto commit;
663350ac
JB
4865
4866 /*
4867 * See if there is some space in the delayed insertion reservation for
4868 * this reservation.
4869 */
4870 if (space_info != delayed_rsv->space_info)
d89dbefb 4871 goto enospc;
663350ac
JB
4872
4873 spin_lock(&delayed_rsv->lock);
4c8edbc7 4874 reclaim_bytes += delayed_rsv->reserved;
057aac3e
NB
4875 spin_unlock(&delayed_rsv->lock);
4876
4c8edbc7
JB
4877 spin_lock(&delayed_refs_rsv->lock);
4878 reclaim_bytes += delayed_refs_rsv->reserved;
4879 spin_unlock(&delayed_refs_rsv->lock);
4880 if (reclaim_bytes >= bytes_needed)
4881 goto commit;
4882 bytes_needed -= reclaim_bytes;
4883
dec59fa3 4884 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4c8edbc7 4885 bytes_needed,
d89dbefb
JB
4886 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
4887 goto enospc;
663350ac
JB
4888
4889commit:
3a45bb20 4890 return btrfs_commit_transaction(trans);
d89dbefb
JB
4891enospc:
4892 btrfs_end_transaction(trans);
4893 return -ENOSPC;
663350ac
JB
4894}
4895
e38ae7a0
NB
4896/*
4897 * Try to flush some data based on policy set by @state. This is only advisory
4898 * and may fail for various reasons. The caller is supposed to examine the
4899 * state of @space_info to detect the outcome.
4900 */
4901static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4902 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4903 int state)
96c3f433 4904{
a9b3311e 4905 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4906 struct btrfs_trans_handle *trans;
4907 int nr;
f4c738c2 4908 int ret = 0;
96c3f433
JB
4909
4910 switch (state) {
96c3f433
JB
4911 case FLUSH_DELAYED_ITEMS_NR:
4912 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4913 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4914 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4915 else
96c3f433 4916 nr = -1;
18cd8ea6 4917
96c3f433
JB
4918 trans = btrfs_join_transaction(root);
4919 if (IS_ERR(trans)) {
4920 ret = PTR_ERR(trans);
4921 break;
4922 }
e5c304e6 4923 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4924 btrfs_end_transaction(trans);
96c3f433 4925 break;
67b0fd63
JB
4926 case FLUSH_DELALLOC:
4927 case FLUSH_DELALLOC_WAIT:
7bdd6277 4928 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4929 state == FLUSH_DELALLOC_WAIT);
4930 break;
413df725
JB
4931 case FLUSH_DELAYED_REFS_NR:
4932 case FLUSH_DELAYED_REFS:
4933 trans = btrfs_join_transaction(root);
4934 if (IS_ERR(trans)) {
4935 ret = PTR_ERR(trans);
4936 break;
4937 }
4938 if (state == FLUSH_DELAYED_REFS_NR)
4939 nr = calc_reclaim_items_nr(fs_info, num_bytes);
4940 else
4941 nr = 0;
4942 btrfs_run_delayed_refs(trans, nr);
4943 btrfs_end_transaction(trans);
4944 break;
ea658bad 4945 case ALLOC_CHUNK:
450114fc 4946 case ALLOC_CHUNK_FORCE:
ea658bad
JB
4947 trans = btrfs_join_transaction(root);
4948 if (IS_ERR(trans)) {
4949 ret = PTR_ERR(trans);
4950 break;
4951 }
01458828 4952 ret = do_chunk_alloc(trans,
1b86826d 4953 btrfs_metadata_alloc_profile(fs_info),
450114fc
JB
4954 (state == ALLOC_CHUNK) ?
4955 CHUNK_ALLOC_NO_FORCE : CHUNK_ALLOC_FORCE);
3a45bb20 4956 btrfs_end_transaction(trans);
eecba891 4957 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4958 ret = 0;
4959 break;
96c3f433 4960 case COMMIT_TRANS:
3ec9a4c8
JB
4961 /*
4962 * If we have pending delayed iputs then we could free up a
4963 * bunch of pinned space, so make sure we run the iputs before
4964 * we do our pinned bytes check below.
4965 */
3ec9a4c8 4966 btrfs_run_delayed_iputs(fs_info);
034f784d 4967 btrfs_wait_on_delayed_iputs(fs_info);
3ec9a4c8 4968
996478ca 4969 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
4970 break;
4971 default:
4972 ret = -ENOSPC;
4973 break;
4974 }
4975
7bdd6277
NB
4976 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4977 ret);
e38ae7a0 4978 return;
96c3f433 4979}
21c7e756
MX
4980
4981static inline u64
c1c4919b
JM
4982btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4983 struct btrfs_space_info *space_info,
4984 bool system_chunk)
21c7e756 4985{
957780eb 4986 struct reserve_ticket *ticket;
21c7e756
MX
4987 u64 used;
4988 u64 expected;
957780eb 4989 u64 to_reclaim = 0;
21c7e756 4990
957780eb
JB
4991 list_for_each_entry(ticket, &space_info->tickets, list)
4992 to_reclaim += ticket->bytes;
4993 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4994 to_reclaim += ticket->bytes;
4995 if (to_reclaim)
4996 return to_reclaim;
21c7e756 4997
e0af2484 4998 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
4999 if (can_overcommit(fs_info, space_info, to_reclaim,
5000 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
5001 return 0;
5002
0eee8a49
NB
5003 used = btrfs_space_info_used(space_info, true);
5004
c1c4919b
JM
5005 if (can_overcommit(fs_info, space_info, SZ_1M,
5006 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
5007 expected = div_factor_fine(space_info->total_bytes, 95);
5008 else
5009 expected = div_factor_fine(space_info->total_bytes, 90);
5010
5011 if (used > expected)
5012 to_reclaim = used - expected;
5013 else
5014 to_reclaim = 0;
5015 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5016 space_info->bytes_reserved);
21c7e756
MX
5017 return to_reclaim;
5018}
5019
c1c4919b
JM
5020static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5021 struct btrfs_space_info *space_info,
5022 u64 used, bool system_chunk)
21c7e756 5023{
365c5313
JB
5024 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5025
5026 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5027 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5028 return 0;
5029
c1c4919b
JM
5030 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5031 system_chunk))
d38b349c
JB
5032 return 0;
5033
0b246afa
JM
5034 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5035 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5036}
5037
f91587e4 5038static bool wake_all_tickets(struct list_head *head)
21c7e756 5039{
957780eb 5040 struct reserve_ticket *ticket;
25ce459c 5041
957780eb
JB
5042 while (!list_empty(head)) {
5043 ticket = list_first_entry(head, struct reserve_ticket, list);
5044 list_del_init(&ticket->list);
5045 ticket->error = -ENOSPC;
5046 wake_up(&ticket->wait);
f91587e4
JB
5047 if (ticket->bytes != ticket->orig_bytes)
5048 return true;
21c7e756 5049 }
f91587e4 5050 return false;
21c7e756
MX
5051}
5052
957780eb
JB
5053/*
5054 * This is for normal flushers, we can wait all goddamned day if we want to. We
5055 * will loop and continuously try to flush as long as we are making progress.
5056 * We count progress as clearing off tickets each time we have to loop.
5057 */
21c7e756
MX
5058static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5059{
5060 struct btrfs_fs_info *fs_info;
5061 struct btrfs_space_info *space_info;
5062 u64 to_reclaim;
5063 int flush_state;
957780eb 5064 int commit_cycles = 0;
ce129655 5065 u64 last_tickets_id;
21c7e756
MX
5066
5067 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5068 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5069
957780eb 5070 spin_lock(&space_info->lock);
c1c4919b
JM
5071 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5072 false);
957780eb
JB
5073 if (!to_reclaim) {
5074 space_info->flush = 0;
5075 spin_unlock(&space_info->lock);
21c7e756 5076 return;
957780eb 5077 }
ce129655 5078 last_tickets_id = space_info->tickets_id;
957780eb 5079 spin_unlock(&space_info->lock);
21c7e756
MX
5080
5081 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5082 do {
e38ae7a0 5083 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5084 spin_lock(&space_info->lock);
5085 if (list_empty(&space_info->tickets)) {
5086 space_info->flush = 0;
5087 spin_unlock(&space_info->lock);
5088 return;
5089 }
c1c4919b
JM
5090 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5091 space_info,
5092 false);
ce129655 5093 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5094 flush_state++;
5095 } else {
ce129655 5096 last_tickets_id = space_info->tickets_id;
957780eb
JB
5097 flush_state = FLUSH_DELAYED_ITEMS_NR;
5098 if (commit_cycles)
5099 commit_cycles--;
5100 }
5101
450114fc
JB
5102 /*
5103 * We don't want to force a chunk allocation until we've tried
5104 * pretty hard to reclaim space. Think of the case where we
5105 * freed up a bunch of space and so have a lot of pinned space
5106 * to reclaim. We would rather use that than possibly create a
5107 * underutilized metadata chunk. So if this is our first run
5108 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
5109 * commit the transaction. If nothing has changed the next go
5110 * around then we can force a chunk allocation.
5111 */
5112 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
5113 flush_state++;
5114
957780eb
JB
5115 if (flush_state > COMMIT_TRANS) {
5116 commit_cycles++;
5117 if (commit_cycles > 2) {
f91587e4
JB
5118 if (wake_all_tickets(&space_info->tickets)) {
5119 flush_state = FLUSH_DELAYED_ITEMS_NR;
5120 commit_cycles--;
5121 } else {
5122 space_info->flush = 0;
5123 }
957780eb
JB
5124 } else {
5125 flush_state = FLUSH_DELAYED_ITEMS_NR;
5126 }
5127 }
5128 spin_unlock(&space_info->lock);
5129 } while (flush_state <= COMMIT_TRANS);
5130}
5131
5132void btrfs_init_async_reclaim_work(struct work_struct *work)
5133{
5134 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5135}
5136
8a1bbe1d
JB
5137static const enum btrfs_flush_state priority_flush_states[] = {
5138 FLUSH_DELAYED_ITEMS_NR,
5139 FLUSH_DELAYED_ITEMS,
5140 ALLOC_CHUNK,
5141};
5142
957780eb
JB
5143static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5144 struct btrfs_space_info *space_info,
5145 struct reserve_ticket *ticket)
5146{
5147 u64 to_reclaim;
8a1bbe1d 5148 int flush_state;
957780eb
JB
5149
5150 spin_lock(&space_info->lock);
c1c4919b
JM
5151 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5152 false);
957780eb
JB
5153 if (!to_reclaim) {
5154 spin_unlock(&space_info->lock);
5155 return;
5156 }
5157 spin_unlock(&space_info->lock);
5158
8a1bbe1d 5159 flush_state = 0;
21c7e756 5160 do {
8a1bbe1d
JB
5161 flush_space(fs_info, space_info, to_reclaim,
5162 priority_flush_states[flush_state]);
21c7e756 5163 flush_state++;
957780eb
JB
5164 spin_lock(&space_info->lock);
5165 if (ticket->bytes == 0) {
5166 spin_unlock(&space_info->lock);
21c7e756 5167 return;
957780eb
JB
5168 }
5169 spin_unlock(&space_info->lock);
8a1bbe1d 5170 } while (flush_state < ARRAY_SIZE(priority_flush_states));
21c7e756
MX
5171}
5172
957780eb
JB
5173static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5174 struct btrfs_space_info *space_info,
f91587e4 5175 struct reserve_ticket *ticket)
957780eb 5176
21c7e756 5177{
957780eb 5178 DEFINE_WAIT(wait);
f91587e4 5179 u64 reclaim_bytes = 0;
957780eb
JB
5180 int ret = 0;
5181
5182 spin_lock(&space_info->lock);
5183 while (ticket->bytes > 0 && ticket->error == 0) {
5184 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5185 if (ret) {
5186 ret = -EINTR;
5187 break;
5188 }
5189 spin_unlock(&space_info->lock);
5190
5191 schedule();
5192
5193 finish_wait(&ticket->wait, &wait);
5194 spin_lock(&space_info->lock);
5195 }
5196 if (!ret)
5197 ret = ticket->error;
5198 if (!list_empty(&ticket->list))
5199 list_del_init(&ticket->list);
f91587e4
JB
5200 if (ticket->bytes && ticket->bytes < ticket->orig_bytes)
5201 reclaim_bytes = ticket->orig_bytes - ticket->bytes;
957780eb
JB
5202 spin_unlock(&space_info->lock);
5203
f91587e4
JB
5204 if (reclaim_bytes)
5205 space_info_add_old_bytes(fs_info, space_info, reclaim_bytes);
957780eb 5206 return ret;
21c7e756
MX
5207}
5208
4a92b1b8
JB
5209/**
5210 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5211 * @root - the root we're allocating for
957780eb 5212 * @space_info - the space info we want to allocate from
4a92b1b8 5213 * @orig_bytes - the number of bytes we want
48fc7f7e 5214 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5215 *
01327610 5216 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5217 * with the block_rsv. If there is not enough space it will make an attempt to
5218 * flush out space to make room. It will do this by flushing delalloc if
5219 * possible or committing the transaction. If flush is 0 then no attempts to
5220 * regain reservations will be made and this will fail if there is not enough
5221 * space already.
8bb8ab2e 5222 */
c1c4919b 5223static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5224 struct btrfs_space_info *space_info,
5225 u64 orig_bytes,
c1c4919b
JM
5226 enum btrfs_reserve_flush_enum flush,
5227 bool system_chunk)
9ed74f2d 5228{
957780eb 5229 struct reserve_ticket ticket;
2bf64758 5230 u64 used;
f91587e4 5231 u64 reclaim_bytes = 0;
8bb8ab2e 5232 int ret = 0;
9ed74f2d 5233
957780eb 5234 ASSERT(orig_bytes);
8ca17f0f 5235 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5236
8bb8ab2e 5237 spin_lock(&space_info->lock);
fdb5effd 5238 ret = -ENOSPC;
4136135b 5239 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5240
8bb8ab2e 5241 /*
957780eb
JB
5242 * If we have enough space then hooray, make our reservation and carry
5243 * on. If not see if we can overcommit, and if we can, hooray carry on.
5244 * If not things get more complicated.
8bb8ab2e 5245 */
957780eb 5246 if (used + orig_bytes <= space_info->total_bytes) {
9f9b8e8d 5247 update_bytes_may_use(space_info, orig_bytes);
0b246afa
JM
5248 trace_btrfs_space_reservation(fs_info, "space_info",
5249 space_info->flags, orig_bytes, 1);
957780eb 5250 ret = 0;
c1c4919b
JM
5251 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5252 system_chunk)) {
9f9b8e8d 5253 update_bytes_may_use(space_info, orig_bytes);
0b246afa
JM
5254 trace_btrfs_space_reservation(fs_info, "space_info",
5255 space_info->flags, orig_bytes, 1);
44734ed1 5256 ret = 0;
2bf64758
JB
5257 }
5258
8bb8ab2e 5259 /*
957780eb
JB
5260 * If we couldn't make a reservation then setup our reservation ticket
5261 * and kick the async worker if it's not already running.
08e007d2 5262 *
957780eb
JB
5263 * If we are a priority flusher then we just need to add our ticket to
5264 * the list and we will do our own flushing further down.
8bb8ab2e 5265 */
72bcd99d 5266 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
f91587e4 5267 ticket.orig_bytes = orig_bytes;
957780eb
JB
5268 ticket.bytes = orig_bytes;
5269 ticket.error = 0;
5270 init_waitqueue_head(&ticket.wait);
5271 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5272 list_add_tail(&ticket.list, &space_info->tickets);
5273 if (!space_info->flush) {
5274 space_info->flush = 1;
0b246afa 5275 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5276 space_info->flags,
5277 orig_bytes, flush,
5278 "enospc");
957780eb 5279 queue_work(system_unbound_wq,
c1c4919b 5280 &fs_info->async_reclaim_work);
957780eb
JB
5281 }
5282 } else {
5283 list_add_tail(&ticket.list,
5284 &space_info->priority_tickets);
5285 }
21c7e756
MX
5286 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5287 used += orig_bytes;
f6acfd50
JB
5288 /*
5289 * We will do the space reservation dance during log replay,
5290 * which means we won't have fs_info->fs_root set, so don't do
5291 * the async reclaim as we will panic.
5292 */
0b246afa 5293 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5294 need_do_async_reclaim(fs_info, space_info,
5295 used, system_chunk) &&
0b246afa
JM
5296 !work_busy(&fs_info->async_reclaim_work)) {
5297 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5298 orig_bytes, flush, "preempt");
21c7e756 5299 queue_work(system_unbound_wq,
0b246afa 5300 &fs_info->async_reclaim_work);
f376df2b 5301 }
8bb8ab2e 5302 }
f0486c68 5303 spin_unlock(&space_info->lock);
08e007d2 5304 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5305 return ret;
f0486c68 5306
957780eb 5307 if (flush == BTRFS_RESERVE_FLUSH_ALL)
f91587e4 5308 return wait_reserve_ticket(fs_info, space_info, &ticket);
08e007d2 5309
957780eb 5310 ret = 0;
0b246afa 5311 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5312 spin_lock(&space_info->lock);
5313 if (ticket.bytes) {
f91587e4
JB
5314 if (ticket.bytes < orig_bytes)
5315 reclaim_bytes = orig_bytes - ticket.bytes;
957780eb
JB
5316 list_del_init(&ticket.list);
5317 ret = -ENOSPC;
5318 }
5319 spin_unlock(&space_info->lock);
f91587e4
JB
5320
5321 if (reclaim_bytes)
5322 space_info_add_old_bytes(fs_info, space_info, reclaim_bytes);
957780eb
JB
5323 ASSERT(list_empty(&ticket.list));
5324 return ret;
5325}
8bb8ab2e 5326
957780eb
JB
5327/**
5328 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5329 * @root - the root we're allocating for
5330 * @block_rsv - the block_rsv we're allocating for
5331 * @orig_bytes - the number of bytes we want
5332 * @flush - whether or not we can flush to make our reservation
5333 *
52042d8e 5334 * This will reserve orig_bytes number of bytes from the space info associated
957780eb
JB
5335 * with the block_rsv. If there is not enough space it will make an attempt to
5336 * flush out space to make room. It will do this by flushing delalloc if
5337 * possible or committing the transaction. If flush is 0 then no attempts to
5338 * regain reservations will be made and this will fail if there is not enough
5339 * space already.
5340 */
5341static int reserve_metadata_bytes(struct btrfs_root *root,
5342 struct btrfs_block_rsv *block_rsv,
5343 u64 orig_bytes,
5344 enum btrfs_reserve_flush_enum flush)
5345{
0b246afa
JM
5346 struct btrfs_fs_info *fs_info = root->fs_info;
5347 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5348 int ret;
c1c4919b 5349 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5350
c1c4919b
JM
5351 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5352 orig_bytes, flush, system_chunk);
5d80366e
JB
5353 if (ret == -ENOSPC &&
5354 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5355 if (block_rsv != global_rsv &&
5356 !block_rsv_use_bytes(global_rsv, orig_bytes))
5357 ret = 0;
5358 }
9a3daff3 5359 if (ret == -ENOSPC) {
0b246afa 5360 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5361 block_rsv->space_info->flags,
5362 orig_bytes, 1);
9a3daff3
NB
5363
5364 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5365 dump_space_info(fs_info, block_rsv->space_info,
5366 orig_bytes, 0);
5367 }
f0486c68
YZ
5368 return ret;
5369}
5370
79787eaa
JM
5371static struct btrfs_block_rsv *get_block_rsv(
5372 const struct btrfs_trans_handle *trans,
5373 const struct btrfs_root *root)
f0486c68 5374{
0b246afa 5375 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5376 struct btrfs_block_rsv *block_rsv = NULL;
5377
e9cf439f 5378 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5379 (root == fs_info->csum_root && trans->adding_csums) ||
5380 (root == fs_info->uuid_root))
f7a81ea4
SB
5381 block_rsv = trans->block_rsv;
5382
4c13d758 5383 if (!block_rsv)
f0486c68
YZ
5384 block_rsv = root->block_rsv;
5385
5386 if (!block_rsv)
0b246afa 5387 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5388
5389 return block_rsv;
5390}
5391
5392static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5393 u64 num_bytes)
5394{
5395 int ret = -ENOSPC;
5396 spin_lock(&block_rsv->lock);
5397 if (block_rsv->reserved >= num_bytes) {
5398 block_rsv->reserved -= num_bytes;
5399 if (block_rsv->reserved < block_rsv->size)
5400 block_rsv->full = 0;
5401 ret = 0;
5402 }
5403 spin_unlock(&block_rsv->lock);
5404 return ret;
5405}
5406
5407static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3a584174 5408 u64 num_bytes, bool update_size)
f0486c68
YZ
5409{
5410 spin_lock(&block_rsv->lock);
5411 block_rsv->reserved += num_bytes;
5412 if (update_size)
5413 block_rsv->size += num_bytes;
5414 else if (block_rsv->reserved >= block_rsv->size)
5415 block_rsv->full = 1;
5416 spin_unlock(&block_rsv->lock);
5417}
5418
d52be818
JB
5419int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5420 struct btrfs_block_rsv *dest, u64 num_bytes,
5421 int min_factor)
5422{
5423 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5424 u64 min_bytes;
5425
5426 if (global_rsv->space_info != dest->space_info)
5427 return -ENOSPC;
5428
5429 spin_lock(&global_rsv->lock);
5430 min_bytes = div_factor(global_rsv->size, min_factor);
5431 if (global_rsv->reserved < min_bytes + num_bytes) {
5432 spin_unlock(&global_rsv->lock);
5433 return -ENOSPC;
5434 }
5435 global_rsv->reserved -= num_bytes;
5436 if (global_rsv->reserved < global_rsv->size)
5437 global_rsv->full = 0;
5438 spin_unlock(&global_rsv->lock);
5439
3a584174 5440 block_rsv_add_bytes(dest, num_bytes, true);
d52be818
JB
5441 return 0;
5442}
5443
ba2c4d4e
JB
5444/**
5445 * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
5446 * @fs_info - the fs info for our fs.
5447 * @src - the source block rsv to transfer from.
5448 * @num_bytes - the number of bytes to transfer.
5449 *
5450 * This transfers up to the num_bytes amount from the src rsv to the
5451 * delayed_refs_rsv. Any extra bytes are returned to the space info.
5452 */
5453void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
5454 struct btrfs_block_rsv *src,
5455 u64 num_bytes)
5456{
5457 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
5458 u64 to_free = 0;
5459
5460 spin_lock(&src->lock);
5461 src->reserved -= num_bytes;
5462 src->size -= num_bytes;
5463 spin_unlock(&src->lock);
5464
5465 spin_lock(&delayed_refs_rsv->lock);
5466 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
5467 u64 delta = delayed_refs_rsv->size -
5468 delayed_refs_rsv->reserved;
5469 if (num_bytes > delta) {
5470 to_free = num_bytes - delta;
5471 num_bytes = delta;
5472 }
5473 } else {
5474 to_free = num_bytes;
5475 num_bytes = 0;
5476 }
5477
5478 if (num_bytes)
5479 delayed_refs_rsv->reserved += num_bytes;
5480 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
5481 delayed_refs_rsv->full = 1;
5482 spin_unlock(&delayed_refs_rsv->lock);
5483
5484 if (num_bytes)
5485 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5486 0, num_bytes, 1);
5487 if (to_free)
5488 space_info_add_old_bytes(fs_info, delayed_refs_rsv->space_info,
5489 to_free);
5490}
5491
5492/**
5493 * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
5494 * @fs_info - the fs_info for our fs.
5495 * @flush - control how we can flush for this reservation.
5496 *
5497 * This will refill the delayed block_rsv up to 1 items size worth of space and
5498 * will return -ENOSPC if we can't make the reservation.
5499 */
5500int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
5501 enum btrfs_reserve_flush_enum flush)
5502{
5503 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5504 u64 limit = btrfs_calc_trans_metadata_size(fs_info, 1);
5505 u64 num_bytes = 0;
5506 int ret = -ENOSPC;
5507
5508 spin_lock(&block_rsv->lock);
5509 if (block_rsv->reserved < block_rsv->size) {
5510 num_bytes = block_rsv->size - block_rsv->reserved;
5511 num_bytes = min(num_bytes, limit);
5512 }
5513 spin_unlock(&block_rsv->lock);
5514
5515 if (!num_bytes)
5516 return 0;
5517
5518 ret = reserve_metadata_bytes(fs_info->extent_root, block_rsv,
5519 num_bytes, flush);
5520 if (ret)
5521 return ret;
5522 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5523 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5524 0, num_bytes, 1);
5525 return 0;
5526}
5527
957780eb
JB
5528/*
5529 * This is for space we already have accounted in space_info->bytes_may_use, so
5530 * basically when we're returning space from block_rsv's.
5531 */
5532static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5533 struct btrfs_space_info *space_info,
5534 u64 num_bytes)
5535{
5536 struct reserve_ticket *ticket;
5537 struct list_head *head;
5538 u64 used;
5539 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5540 bool check_overcommit = false;
5541
5542 spin_lock(&space_info->lock);
5543 head = &space_info->priority_tickets;
5544
5545 /*
5546 * If we are over our limit then we need to check and see if we can
5547 * overcommit, and if we can't then we just need to free up our space
5548 * and not satisfy any requests.
5549 */
0eee8a49 5550 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5551 if (used - num_bytes >= space_info->total_bytes)
5552 check_overcommit = true;
5553again:
5554 while (!list_empty(head) && num_bytes) {
5555 ticket = list_first_entry(head, struct reserve_ticket,
5556 list);
5557 /*
5558 * We use 0 bytes because this space is already reserved, so
5559 * adding the ticket space would be a double count.
5560 */
5561 if (check_overcommit &&
c1c4919b 5562 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5563 break;
5564 if (num_bytes >= ticket->bytes) {
5565 list_del_init(&ticket->list);
5566 num_bytes -= ticket->bytes;
5567 ticket->bytes = 0;
ce129655 5568 space_info->tickets_id++;
957780eb
JB
5569 wake_up(&ticket->wait);
5570 } else {
5571 ticket->bytes -= num_bytes;
5572 num_bytes = 0;
5573 }
5574 }
5575
5576 if (num_bytes && head == &space_info->priority_tickets) {
5577 head = &space_info->tickets;
5578 flush = BTRFS_RESERVE_FLUSH_ALL;
5579 goto again;
5580 }
9f9b8e8d 5581 update_bytes_may_use(space_info, -num_bytes);
957780eb
JB
5582 trace_btrfs_space_reservation(fs_info, "space_info",
5583 space_info->flags, num_bytes, 0);
5584 spin_unlock(&space_info->lock);
5585}
5586
5587/*
5588 * This is for newly allocated space that isn't accounted in
5589 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5590 * we use this helper.
5591 */
5592static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5593 struct btrfs_space_info *space_info,
5594 u64 num_bytes)
5595{
5596 struct reserve_ticket *ticket;
5597 struct list_head *head = &space_info->priority_tickets;
5598
5599again:
5600 while (!list_empty(head) && num_bytes) {
5601 ticket = list_first_entry(head, struct reserve_ticket,
5602 list);
5603 if (num_bytes >= ticket->bytes) {
5604 trace_btrfs_space_reservation(fs_info, "space_info",
5605 space_info->flags,
5606 ticket->bytes, 1);
5607 list_del_init(&ticket->list);
5608 num_bytes -= ticket->bytes;
9f9b8e8d 5609 update_bytes_may_use(space_info, ticket->bytes);
957780eb 5610 ticket->bytes = 0;
ce129655 5611 space_info->tickets_id++;
957780eb
JB
5612 wake_up(&ticket->wait);
5613 } else {
5614 trace_btrfs_space_reservation(fs_info, "space_info",
5615 space_info->flags,
5616 num_bytes, 1);
9f9b8e8d 5617 update_bytes_may_use(space_info, num_bytes);
957780eb
JB
5618 ticket->bytes -= num_bytes;
5619 num_bytes = 0;
5620 }
5621 }
5622
5623 if (num_bytes && head == &space_info->priority_tickets) {
5624 head = &space_info->tickets;
5625 goto again;
5626 }
5627}
5628
69fe2d75 5629static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5630 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5631 struct btrfs_block_rsv *dest, u64 num_bytes,
5632 u64 *qgroup_to_release_ret)
f0486c68
YZ
5633{
5634 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5635 u64 qgroup_to_release = 0;
69fe2d75 5636 u64 ret;
f0486c68
YZ
5637
5638 spin_lock(&block_rsv->lock);
ff6bc37e 5639 if (num_bytes == (u64)-1) {
f0486c68 5640 num_bytes = block_rsv->size;
ff6bc37e
QW
5641 qgroup_to_release = block_rsv->qgroup_rsv_size;
5642 }
f0486c68
YZ
5643 block_rsv->size -= num_bytes;
5644 if (block_rsv->reserved >= block_rsv->size) {
5645 num_bytes = block_rsv->reserved - block_rsv->size;
5646 block_rsv->reserved = block_rsv->size;
5647 block_rsv->full = 1;
5648 } else {
5649 num_bytes = 0;
5650 }
ff6bc37e
QW
5651 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5652 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5653 block_rsv->qgroup_rsv_size;
5654 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5655 } else {
5656 qgroup_to_release = 0;
5657 }
f0486c68
YZ
5658 spin_unlock(&block_rsv->lock);
5659
69fe2d75 5660 ret = num_bytes;
f0486c68
YZ
5661 if (num_bytes > 0) {
5662 if (dest) {
e9e22899
JB
5663 spin_lock(&dest->lock);
5664 if (!dest->full) {
5665 u64 bytes_to_add;
5666
5667 bytes_to_add = dest->size - dest->reserved;
5668 bytes_to_add = min(num_bytes, bytes_to_add);
5669 dest->reserved += bytes_to_add;
5670 if (dest->reserved >= dest->size)
5671 dest->full = 1;
5672 num_bytes -= bytes_to_add;
5673 }
5674 spin_unlock(&dest->lock);
5675 }
957780eb
JB
5676 if (num_bytes)
5677 space_info_add_old_bytes(fs_info, space_info,
5678 num_bytes);
9ed74f2d 5679 }
ff6bc37e
QW
5680 if (qgroup_to_release_ret)
5681 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5682 return ret;
f0486c68 5683}
4e06bdd6 5684
25d609f8
JB
5685int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5686 struct btrfs_block_rsv *dst, u64 num_bytes,
3a584174 5687 bool update_size)
f0486c68
YZ
5688{
5689 int ret;
9ed74f2d 5690
f0486c68
YZ
5691 ret = block_rsv_use_bytes(src, num_bytes);
5692 if (ret)
5693 return ret;
9ed74f2d 5694
25d609f8 5695 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5696 return 0;
5697}
5698
66d8f3dd 5699void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5700{
f0486c68
YZ
5701 memset(rsv, 0, sizeof(*rsv));
5702 spin_lock_init(&rsv->lock);
66d8f3dd 5703 rsv->type = type;
f0486c68
YZ
5704}
5705
69fe2d75
JB
5706void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5707 struct btrfs_block_rsv *rsv,
5708 unsigned short type)
5709{
5710 btrfs_init_block_rsv(rsv, type);
5711 rsv->space_info = __find_space_info(fs_info,
5712 BTRFS_BLOCK_GROUP_METADATA);
5713}
5714
2ff7e61e 5715struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5716 unsigned short type)
f0486c68
YZ
5717{
5718 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5719
f0486c68
YZ
5720 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5721 if (!block_rsv)
5722 return NULL;
9ed74f2d 5723
69fe2d75 5724 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5725 return block_rsv;
5726}
9ed74f2d 5727
2ff7e61e 5728void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5729 struct btrfs_block_rsv *rsv)
5730{
2aaa6655
JB
5731 if (!rsv)
5732 return;
2ff7e61e 5733 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5734 kfree(rsv);
9ed74f2d
JB
5735}
5736
08e007d2
MX
5737int btrfs_block_rsv_add(struct btrfs_root *root,
5738 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5739 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5740{
f0486c68 5741 int ret;
9ed74f2d 5742
f0486c68
YZ
5743 if (num_bytes == 0)
5744 return 0;
8bb8ab2e 5745
61b520a9 5746 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5a2cb25a 5747 if (!ret)
3a584174 5748 block_rsv_add_bytes(block_rsv, num_bytes, true);
9ed74f2d 5749
f0486c68 5750 return ret;
f0486c68 5751}
9ed74f2d 5752
2ff7e61e 5753int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5754{
5755 u64 num_bytes = 0;
f0486c68 5756 int ret = -ENOSPC;
9ed74f2d 5757
f0486c68
YZ
5758 if (!block_rsv)
5759 return 0;
9ed74f2d 5760
f0486c68 5761 spin_lock(&block_rsv->lock);
36ba022a
JB
5762 num_bytes = div_factor(block_rsv->size, min_factor);
5763 if (block_rsv->reserved >= num_bytes)
5764 ret = 0;
5765 spin_unlock(&block_rsv->lock);
9ed74f2d 5766
36ba022a
JB
5767 return ret;
5768}
5769
08e007d2
MX
5770int btrfs_block_rsv_refill(struct btrfs_root *root,
5771 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5772 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5773{
5774 u64 num_bytes = 0;
5775 int ret = -ENOSPC;
5776
5777 if (!block_rsv)
5778 return 0;
5779
5780 spin_lock(&block_rsv->lock);
5781 num_bytes = min_reserved;
13553e52 5782 if (block_rsv->reserved >= num_bytes)
f0486c68 5783 ret = 0;
13553e52 5784 else
f0486c68 5785 num_bytes -= block_rsv->reserved;
f0486c68 5786 spin_unlock(&block_rsv->lock);
13553e52 5787
f0486c68
YZ
5788 if (!ret)
5789 return 0;
5790
aa38a711 5791 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640 5792 if (!ret) {
3a584174 5793 block_rsv_add_bytes(block_rsv, num_bytes, false);
f0486c68 5794 return 0;
6a63209f 5795 }
9ed74f2d 5796
13553e52 5797 return ret;
f0486c68
YZ
5798}
5799
5df11363
JB
5800static void calc_refill_bytes(struct btrfs_block_rsv *block_rsv,
5801 u64 *metadata_bytes, u64 *qgroup_bytes)
5802{
5803 *metadata_bytes = 0;
5804 *qgroup_bytes = 0;
5805
5806 spin_lock(&block_rsv->lock);
5807 if (block_rsv->reserved < block_rsv->size)
5808 *metadata_bytes = block_rsv->size - block_rsv->reserved;
5809 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5810 *qgroup_bytes = block_rsv->qgroup_rsv_size -
5811 block_rsv->qgroup_rsv_reserved;
5812 spin_unlock(&block_rsv->lock);
5813}
5814
69fe2d75
JB
5815/**
5816 * btrfs_inode_rsv_refill - refill the inode block rsv.
5817 * @inode - the inode we are refilling.
52042d8e 5818 * @flush - the flushing restriction.
69fe2d75
JB
5819 *
5820 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5821 * block_rsv->size as the minimum size. We'll either refill the missing amount
52042d8e 5822 * or return if we already have enough space. This will also handle the reserve
69fe2d75
JB
5823 * tracepoint for the reserved amount.
5824 */
3f2dd7a0
QW
5825static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5826 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5827{
5828 struct btrfs_root *root = inode->root;
5829 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5df11363
JB
5830 u64 num_bytes, last = 0;
5831 u64 qgroup_num_bytes;
69fe2d75
JB
5832 int ret = -ENOSPC;
5833
5df11363 5834 calc_refill_bytes(block_rsv, &num_bytes, &qgroup_num_bytes);
69fe2d75
JB
5835 if (num_bytes == 0)
5836 return 0;
5837
5df11363
JB
5838 do {
5839 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes,
5840 true);
5841 if (ret)
5842 return ret;
5843 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5844 if (ret) {
5845 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5846 last = num_bytes;
5847 /*
5848 * If we are fragmented we can end up with a lot of
5849 * outstanding extents which will make our size be much
5850 * larger than our reserved amount.
5851 *
5852 * If the reservation happens here, it might be very
5853 * big though not needed in the end, if the delalloc
5854 * flushing happens.
5855 *
5856 * If this is the case try and do the reserve again.
5857 */
5858 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5859 calc_refill_bytes(block_rsv, &num_bytes,
5860 &qgroup_num_bytes);
5861 if (num_bytes == 0)
5862 return 0;
5863 }
5864 } while (ret && last != num_bytes);
5865
69fe2d75 5866 if (!ret) {
3a584174 5867 block_rsv_add_bytes(block_rsv, num_bytes, false);
69fe2d75
JB
5868 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5869 btrfs_ino(inode), num_bytes, 1);
ff6bc37e
QW
5870
5871 /* Don't forget to increase qgroup_rsv_reserved */
5872 spin_lock(&block_rsv->lock);
5873 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5874 spin_unlock(&block_rsv->lock);
5df11363 5875 }
69fe2d75
JB
5876 return ret;
5877}
5878
ba2c4d4e
JB
5879static u64 __btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5880 struct btrfs_block_rsv *block_rsv,
5881 u64 num_bytes, u64 *qgroup_to_release)
5882{
5883 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5884 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5885 struct btrfs_block_rsv *target = delayed_rsv;
5886
5887 if (target->full || target == block_rsv)
5888 target = global_rsv;
5889
5890 if (block_rsv->space_info != target->space_info)
5891 target = NULL;
5892
5893 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
5894 qgroup_to_release);
5895}
5896
5897void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5898 struct btrfs_block_rsv *block_rsv,
5899 u64 num_bytes)
5900{
5901 __btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
5902}
5903
69fe2d75
JB
5904/**
5905 * btrfs_inode_rsv_release - release any excessive reservation.
5906 * @inode - the inode we need to release from.
43b18595
QW
5907 * @qgroup_free - free or convert qgroup meta.
5908 * Unlike normal operation, qgroup meta reservation needs to know if we are
5909 * freeing qgroup reservation or just converting it into per-trans. Normally
5910 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5911 *
5912 * This is the same as btrfs_block_rsv_release, except that it handles the
5913 * tracepoint for the reservation.
5914 */
43b18595 5915static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5916{
5917 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75
JB
5918 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5919 u64 released = 0;
ff6bc37e 5920 u64 qgroup_to_release = 0;
69fe2d75
JB
5921
5922 /*
5923 * Since we statically set the block_rsv->size we just want to say we
5924 * are releasing 0 bytes, and then we'll just get the reservation over
5925 * the size free'd.
5926 */
ba2c4d4e
JB
5927 released = __btrfs_block_rsv_release(fs_info, block_rsv, 0,
5928 &qgroup_to_release);
69fe2d75
JB
5929 if (released > 0)
5930 trace_btrfs_space_reservation(fs_info, "delalloc",
5931 btrfs_ino(inode), released, 0);
43b18595 5932 if (qgroup_free)
ff6bc37e 5933 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5934 else
ff6bc37e
QW
5935 btrfs_qgroup_convert_reserved_meta(inode->root,
5936 qgroup_to_release);
69fe2d75
JB
5937}
5938
ba2c4d4e
JB
5939/**
5940 * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
5941 * @fs_info - the fs_info for our fs.
5942 * @nr - the number of items to drop.
5943 *
5944 * This drops the delayed ref head's count from the delayed refs rsv and frees
5945 * any excess reservation we had.
5946 */
5947void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
f0486c68 5948{
ba2c4d4e 5949 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
0b246afa 5950 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
ba2c4d4e
JB
5951 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, nr);
5952 u64 released = 0;
0b246afa 5953
ba2c4d4e
JB
5954 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv,
5955 num_bytes, NULL);
5956 if (released)
5957 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5958 0, released, 0);
6a63209f
JB
5959}
5960
8929ecfa
YZ
5961static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5962{
5963 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5964 struct btrfs_space_info *sinfo = block_rsv->space_info;
5965 u64 num_bytes;
6a63209f 5966
ae2e4728
JB
5967 /*
5968 * The global block rsv is based on the size of the extent tree, the
5969 * checksum tree and the root tree. If the fs is empty we want to set
5970 * it to a minimal amount for safety.
5971 */
5972 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5973 btrfs_root_used(&fs_info->csum_root->root_item) +
5974 btrfs_root_used(&fs_info->tree_root->root_item);
5975 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5976
8929ecfa 5977 spin_lock(&sinfo->lock);
1f699d38 5978 spin_lock(&block_rsv->lock);
4e06bdd6 5979
ee22184b 5980 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5981
fb4b10e5 5982 if (block_rsv->reserved < block_rsv->size) {
4136135b 5983 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5984 if (sinfo->total_bytes > num_bytes) {
5985 num_bytes = sinfo->total_bytes - num_bytes;
5986 num_bytes = min(num_bytes,
5987 block_rsv->size - block_rsv->reserved);
5988 block_rsv->reserved += num_bytes;
9f9b8e8d 5989 update_bytes_may_use(sinfo, num_bytes);
fb4b10e5
JB
5990 trace_btrfs_space_reservation(fs_info, "space_info",
5991 sinfo->flags, num_bytes,
5992 1);
5993 }
5994 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5995 num_bytes = block_rsv->reserved - block_rsv->size;
9f9b8e8d 5996 update_bytes_may_use(sinfo, -num_bytes);
8c2a3ca2 5997 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5998 sinfo->flags, num_bytes, 0);
8929ecfa 5999 block_rsv->reserved = block_rsv->size;
8929ecfa 6000 }
182608c8 6001
fb4b10e5
JB
6002 if (block_rsv->reserved == block_rsv->size)
6003 block_rsv->full = 1;
6004 else
6005 block_rsv->full = 0;
6006
8929ecfa 6007 spin_unlock(&block_rsv->lock);
1f699d38 6008 spin_unlock(&sinfo->lock);
6a63209f
JB
6009}
6010
f0486c68 6011static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 6012{
f0486c68 6013 struct btrfs_space_info *space_info;
6a63209f 6014
f0486c68
YZ
6015 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
6016 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 6017
f0486c68 6018 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 6019 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
6020 fs_info->trans_block_rsv.space_info = space_info;
6021 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 6022 fs_info->delayed_block_rsv.space_info = space_info;
ba2c4d4e 6023 fs_info->delayed_refs_rsv.space_info = space_info;
f0486c68 6024
ba2c4d4e
JB
6025 fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
6026 fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
8929ecfa
YZ
6027 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
6028 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
6029 if (fs_info->quota_root)
6030 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 6031 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 6032
8929ecfa 6033 update_global_block_rsv(fs_info);
6a63209f
JB
6034}
6035
8929ecfa 6036static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 6037{
8c2a3ca2 6038 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 6039 (u64)-1, NULL);
8929ecfa
YZ
6040 WARN_ON(fs_info->trans_block_rsv.size > 0);
6041 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
6042 WARN_ON(fs_info->chunk_block_rsv.size > 0);
6043 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
6044 WARN_ON(fs_info->delayed_block_rsv.size > 0);
6045 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
ba2c4d4e
JB
6046 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
6047 WARN_ON(fs_info->delayed_refs_rsv.size > 0);
fcb80c2a
JB
6048}
6049
ba2c4d4e
JB
6050/*
6051 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
6052 * @trans - the trans that may have generated delayed refs
6053 *
6054 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
6055 * it'll calculate the additional size and add it to the delayed_refs_rsv.
6056 */
6057void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
6058{
6059 struct btrfs_fs_info *fs_info = trans->fs_info;
6060 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
6061 u64 num_bytes;
6062
6063 if (!trans->delayed_ref_updates)
6064 return;
6065
6066 num_bytes = btrfs_calc_trans_metadata_size(fs_info,
6067 trans->delayed_ref_updates);
6068 spin_lock(&delayed_rsv->lock);
6069 delayed_rsv->size += num_bytes;
6070 delayed_rsv->full = 0;
6071 spin_unlock(&delayed_rsv->lock);
6072 trans->delayed_ref_updates = 0;
6073}
6a63209f 6074
4fbcdf66
FM
6075/*
6076 * To be called after all the new block groups attached to the transaction
6077 * handle have been created (btrfs_create_pending_block_groups()).
6078 */
6079void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
6080{
64b63580 6081 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
6082
6083 if (!trans->chunk_bytes_reserved)
6084 return;
6085
6086 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
6087
6088 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 6089 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
6090 trans->chunk_bytes_reserved = 0;
6091}
6092
d5c12070
MX
6093/*
6094 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
6095 * root: the root of the parent directory
6096 * rsv: block reservation
6097 * items: the number of items that we need do reservation
a5b7f429 6098 * use_global_rsv: allow fallback to the global block reservation
d5c12070
MX
6099 *
6100 * This function is used to reserve the space for snapshot/subvolume
6101 * creation and deletion. Those operations are different with the
6102 * common file/directory operations, they change two fs/file trees
6103 * and root tree, the number of items that the qgroup reserves is
6104 * different with the free space reservation. So we can not use
01327610 6105 * the space reservation mechanism in start_transaction().
d5c12070
MX
6106 */
6107int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
a5b7f429 6108 struct btrfs_block_rsv *rsv, int items,
ee3441b4 6109 bool use_global_rsv)
a22285a6 6110{
a5b7f429 6111 u64 qgroup_num_bytes = 0;
d5c12070
MX
6112 u64 num_bytes;
6113 int ret;
0b246afa
JM
6114 struct btrfs_fs_info *fs_info = root->fs_info;
6115 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 6116
0b246afa 6117 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 6118 /* One for parent inode, two for dir entries */
a5b7f429
LF
6119 qgroup_num_bytes = 3 * fs_info->nodesize;
6120 ret = btrfs_qgroup_reserve_meta_prealloc(root,
6121 qgroup_num_bytes, true);
d5c12070
MX
6122 if (ret)
6123 return ret;
d5c12070
MX
6124 }
6125
0b246afa
JM
6126 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6127 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
6128 BTRFS_BLOCK_GROUP_METADATA);
6129 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6130 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
6131
6132 if (ret == -ENOSPC && use_global_rsv)
3a584174 6133 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
ee3441b4 6134
a5b7f429
LF
6135 if (ret && qgroup_num_bytes)
6136 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
d5c12070
MX
6137
6138 return ret;
6139}
6140
2ff7e61e 6141void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 6142 struct btrfs_block_rsv *rsv)
d5c12070 6143{
2ff7e61e 6144 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
6145}
6146
69fe2d75
JB
6147static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6148 struct btrfs_inode *inode)
9e0baf60 6149{
69fe2d75
JB
6150 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6151 u64 reserve_size = 0;
ff6bc37e 6152 u64 qgroup_rsv_size = 0;
69fe2d75
JB
6153 u64 csum_leaves;
6154 unsigned outstanding_extents;
9e0baf60 6155
69fe2d75
JB
6156 lockdep_assert_held(&inode->lock);
6157 outstanding_extents = inode->outstanding_extents;
6158 if (outstanding_extents)
6159 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6160 outstanding_extents + 1);
6161 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6162 inode->csum_bytes);
6163 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6164 csum_leaves);
ff6bc37e
QW
6165 /*
6166 * For qgroup rsv, the calculation is very simple:
6167 * account one nodesize for each outstanding extent
6168 *
6169 * This is overestimating in most cases.
6170 */
139a5617 6171 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
9e0baf60 6172
69fe2d75
JB
6173 spin_lock(&block_rsv->lock);
6174 block_rsv->size = reserve_size;
ff6bc37e 6175 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 6176 spin_unlock(&block_rsv->lock);
0ca1f7ce 6177}
c146afad 6178
9f3db423 6179int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6180{
3ffbd68c 6181 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75 6182 unsigned nr_extents;
08e007d2 6183 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6184 int ret = 0;
c64c2bd8 6185 bool delalloc_lock = true;
6324fbf3 6186
c64c2bd8
JB
6187 /* If we are a free space inode we need to not flush since we will be in
6188 * the middle of a transaction commit. We also don't need the delalloc
6189 * mutex since we won't race with anybody. We need this mostly to make
6190 * lockdep shut its filthy mouth.
bac357dc
JB
6191 *
6192 * If we have a transaction open (can happen if we call truncate_block
6193 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6194 */
6195 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6196 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6197 delalloc_lock = false;
da07d4ab
NB
6198 } else {
6199 if (current->journal_info)
6200 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 6201
da07d4ab
NB
6202 if (btrfs_transaction_in_commit(fs_info))
6203 schedule_timeout(1);
6204 }
ec44a35c 6205
c64c2bd8 6206 if (delalloc_lock)
9f3db423 6207 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6208
0b246afa 6209 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6210
6211 /* Add our new extents and calculate the new rsv size. */
9f3db423 6212 spin_lock(&inode->lock);
69fe2d75 6213 nr_extents = count_max_extents(num_bytes);
8b62f87b 6214 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6215 inode->csum_bytes += num_bytes;
6216 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6217 spin_unlock(&inode->lock);
57a45ced 6218
69fe2d75 6219 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 6220 if (unlikely(ret))
88e081bf 6221 goto out_fail;
25179201 6222
c64c2bd8 6223 if (delalloc_lock)
9f3db423 6224 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6225 return 0;
88e081bf
WS
6226
6227out_fail:
9f3db423 6228 spin_lock(&inode->lock);
8b62f87b
JB
6229 nr_extents = count_max_extents(num_bytes);
6230 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6231 inode->csum_bytes -= num_bytes;
6232 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6233 spin_unlock(&inode->lock);
88e081bf 6234
43b18595 6235 btrfs_inode_rsv_release(inode, true);
88e081bf 6236 if (delalloc_lock)
9f3db423 6237 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6238 return ret;
0ca1f7ce
YZ
6239}
6240
7709cde3
JB
6241/**
6242 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6243 * @inode: the inode to release the reservation for.
6244 * @num_bytes: the number of bytes we are releasing.
43b18595 6245 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
6246 *
6247 * This will release the metadata reservation for an inode. This can be called
6248 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6249 * reservations, or on error for the same reason.
7709cde3 6250 */
43b18595
QW
6251void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6252 bool qgroup_free)
0ca1f7ce 6253{
3ffbd68c 6254 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0ca1f7ce 6255
0b246afa 6256 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6257 spin_lock(&inode->lock);
69fe2d75
JB
6258 inode->csum_bytes -= num_bytes;
6259 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6260 spin_unlock(&inode->lock);
0ca1f7ce 6261
0b246afa 6262 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6263 return;
6264
43b18595 6265 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
6266}
6267
8b62f87b
JB
6268/**
6269 * btrfs_delalloc_release_extents - release our outstanding_extents
6270 * @inode: the inode to balance the reservation for.
6271 * @num_bytes: the number of bytes we originally reserved with
43b18595 6272 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
6273 *
6274 * When we reserve space we increase outstanding_extents for the extents we may
6275 * add. Once we've set the range as delalloc or created our ordered extents we
6276 * have outstanding_extents to track the real usage, so we use this to free our
6277 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6278 * with btrfs_delalloc_reserve_metadata.
6279 */
43b18595
QW
6280void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6281 bool qgroup_free)
8b62f87b 6282{
3ffbd68c 6283 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8b62f87b 6284 unsigned num_extents;
8b62f87b
JB
6285
6286 spin_lock(&inode->lock);
6287 num_extents = count_max_extents(num_bytes);
6288 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6289 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6290 spin_unlock(&inode->lock);
6291
8b62f87b
JB
6292 if (btrfs_is_testing(fs_info))
6293 return;
6294
43b18595 6295 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
6296}
6297
1ada3a62 6298/**
7cf5b976 6299 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6300 * delalloc
6301 * @inode: inode we're writing to
6302 * @start: start range we are writing to
6303 * @len: how long the range we are writing to
364ecf36
QW
6304 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6305 * current reservation.
1ada3a62 6306 *
1ada3a62
QW
6307 * This will do the following things
6308 *
6309 * o reserve space in data space info for num bytes
6310 * and reserve precious corresponding qgroup space
6311 * (Done in check_data_free_space)
6312 *
6313 * o reserve space for metadata space, based on the number of outstanding
6314 * extents and how much csums will be needed
6315 * also reserve metadata space in a per root over-reserve method.
6316 * o add to the inodes->delalloc_bytes
6317 * o add it to the fs_info's delalloc inodes list.
6318 * (Above 3 all done in delalloc_reserve_metadata)
6319 *
6320 * Return 0 for success
6321 * Return <0 for error(-ENOSPC or -EQUOT)
6322 */
364ecf36
QW
6323int btrfs_delalloc_reserve_space(struct inode *inode,
6324 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6325{
6326 int ret;
6327
364ecf36 6328 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6329 if (ret < 0)
6330 return ret;
9f3db423 6331 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6332 if (ret < 0)
bc42bda2 6333 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6334 return ret;
6335}
6336
7709cde3 6337/**
7cf5b976 6338 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6339 * @inode: inode we're releasing space for
6340 * @start: start position of the space already reserved
6341 * @len: the len of the space already reserved
8b62f87b 6342 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6343 *
6344 * This function will release the metadata space that was not used and will
6345 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6346 * list if there are no delalloc bytes left.
6347 * Also it will handle the qgroup reserved space.
6348 */
bc42bda2 6349void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6350 struct extent_changeset *reserved,
43b18595 6351 u64 start, u64 len, bool qgroup_free)
1ada3a62 6352{
43b18595 6353 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6354 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6355}
6356
ce93ec54 6357static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6358 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6359 u64 num_bytes, int alloc)
9078a3e1 6360{
0af3d00b 6361 struct btrfs_block_group_cache *cache = NULL;
db94535d 6362 u64 total = num_bytes;
9078a3e1 6363 u64 old_val;
db94535d 6364 u64 byte_in_group;
0af3d00b 6365 int factor;
ba2c4d4e 6366 int ret = 0;
3e1ad54f 6367
5d4f98a2 6368 /* block accounting for super block */
eb73c1b7 6369 spin_lock(&info->delalloc_root_lock);
6c41761f 6370 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6371 if (alloc)
6372 old_val += num_bytes;
6373 else
6374 old_val -= num_bytes;
6c41761f 6375 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6376 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6377
d397712b 6378 while (total) {
db94535d 6379 cache = btrfs_lookup_block_group(info, bytenr);
ba2c4d4e
JB
6380 if (!cache) {
6381 ret = -ENOENT;
6382 break;
6383 }
46df06b8
DS
6384 factor = btrfs_bg_type_to_factor(cache->flags);
6385
9d66e233
JB
6386 /*
6387 * If this block group has free space cache written out, we
6388 * need to make sure to load it if we are removing space. This
6389 * is because we need the unpinning stage to actually add the
6390 * space back to the block group, otherwise we will leak space.
6391 */
6392 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6393 cache_block_group(cache, 1);
0af3d00b 6394
db94535d
CM
6395 byte_in_group = bytenr - cache->key.objectid;
6396 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6397
25179201 6398 spin_lock(&cache->space_info->lock);
c286ac48 6399 spin_lock(&cache->lock);
0af3d00b 6400
6202df69 6401 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6402 cache->disk_cache_state < BTRFS_DC_CLEAR)
6403 cache->disk_cache_state = BTRFS_DC_CLEAR;
6404
9078a3e1 6405 old_val = btrfs_block_group_used(&cache->item);
db94535d 6406 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6407 if (alloc) {
db94535d 6408 old_val += num_bytes;
11833d66
YZ
6409 btrfs_set_block_group_used(&cache->item, old_val);
6410 cache->reserved -= num_bytes;
11833d66 6411 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6412 cache->space_info->bytes_used += num_bytes;
6413 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6414 spin_unlock(&cache->lock);
25179201 6415 spin_unlock(&cache->space_info->lock);
cd1bc465 6416 } else {
db94535d 6417 old_val -= num_bytes;
ae0ab003
FM
6418 btrfs_set_block_group_used(&cache->item, old_val);
6419 cache->pinned += num_bytes;
e2907c1a 6420 update_bytes_pinned(cache->space_info, num_bytes);
ae0ab003
FM
6421 cache->space_info->bytes_used -= num_bytes;
6422 cache->space_info->disk_used -= num_bytes * factor;
6423 spin_unlock(&cache->lock);
6424 spin_unlock(&cache->space_info->lock);
47ab2a6c 6425
0b246afa 6426 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6427 cache->space_info->flags,
6428 num_bytes, 1);
dec59fa3
EL
6429 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6430 num_bytes,
6431 BTRFS_TOTAL_BYTES_PINNED_BATCH);
ae0ab003
FM
6432 set_extent_dirty(info->pinned_extents,
6433 bytenr, bytenr + num_bytes - 1,
6434 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6435 }
1bbc621e
CM
6436
6437 spin_lock(&trans->transaction->dirty_bgs_lock);
6438 if (list_empty(&cache->dirty_list)) {
6439 list_add_tail(&cache->dirty_list,
6440 &trans->transaction->dirty_bgs);
bece2e82 6441 trans->transaction->num_dirty_bgs++;
ba2c4d4e 6442 trans->delayed_ref_updates++;
1bbc621e
CM
6443 btrfs_get_block_group(cache);
6444 }
6445 spin_unlock(&trans->transaction->dirty_bgs_lock);
6446
036a9348
FM
6447 /*
6448 * No longer have used bytes in this block group, queue it for
6449 * deletion. We do this after adding the block group to the
6450 * dirty list to avoid races between cleaner kthread and space
6451 * cache writeout.
6452 */
031f24da
QW
6453 if (!alloc && old_val == 0)
6454 btrfs_mark_bg_unused(cache);
036a9348 6455
fa9c0d79 6456 btrfs_put_block_group(cache);
db94535d
CM
6457 total -= num_bytes;
6458 bytenr += num_bytes;
9078a3e1 6459 }
ba2c4d4e
JB
6460
6461 /* Modified block groups are accounted for in the delayed_refs_rsv. */
6462 btrfs_update_delayed_refs_rsv(trans);
6463 return ret;
9078a3e1 6464}
6324fbf3 6465
2ff7e61e 6466static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6467{
0f9dd46c 6468 struct btrfs_block_group_cache *cache;
d2fb3437 6469 u64 bytenr;
0f9dd46c 6470
0b246afa
JM
6471 spin_lock(&fs_info->block_group_cache_lock);
6472 bytenr = fs_info->first_logical_byte;
6473 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6474
6475 if (bytenr < (u64)-1)
6476 return bytenr;
6477
0b246afa 6478 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6479 if (!cache)
a061fc8d 6480 return 0;
0f9dd46c 6481
d2fb3437 6482 bytenr = cache->key.objectid;
fa9c0d79 6483 btrfs_put_block_group(cache);
d2fb3437
YZ
6484
6485 return bytenr;
a061fc8d
CM
6486}
6487
2ff7e61e 6488static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6489 struct btrfs_block_group_cache *cache,
6490 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6491{
11833d66
YZ
6492 spin_lock(&cache->space_info->lock);
6493 spin_lock(&cache->lock);
6494 cache->pinned += num_bytes;
e2907c1a 6495 update_bytes_pinned(cache->space_info, num_bytes);
11833d66
YZ
6496 if (reserved) {
6497 cache->reserved -= num_bytes;
6498 cache->space_info->bytes_reserved -= num_bytes;
6499 }
6500 spin_unlock(&cache->lock);
6501 spin_unlock(&cache->space_info->lock);
68b38550 6502
0b246afa 6503 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6504 cache->space_info->flags, num_bytes, 1);
dec59fa3
EL
6505 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6506 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
0b246afa 6507 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6508 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6509 return 0;
6510}
68b38550 6511
f0486c68
YZ
6512/*
6513 * this function must be called within transaction
6514 */
2ff7e61e 6515int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6516 u64 bytenr, u64 num_bytes, int reserved)
6517{
6518 struct btrfs_block_group_cache *cache;
68b38550 6519
0b246afa 6520 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6521 BUG_ON(!cache); /* Logic error */
f0486c68 6522
2ff7e61e 6523 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6524
6525 btrfs_put_block_group(cache);
11833d66
YZ
6526 return 0;
6527}
6528
f0486c68 6529/*
e688b725
CM
6530 * this function must be called within transaction
6531 */
2ff7e61e 6532int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6533 u64 bytenr, u64 num_bytes)
6534{
6535 struct btrfs_block_group_cache *cache;
b50c6e25 6536 int ret;
e688b725 6537
0b246afa 6538 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6539 if (!cache)
6540 return -EINVAL;
e688b725
CM
6541
6542 /*
6543 * pull in the free space cache (if any) so that our pin
6544 * removes the free space from the cache. We have load_only set
6545 * to one because the slow code to read in the free extents does check
6546 * the pinned extents.
6547 */
f6373bf3 6548 cache_block_group(cache, 1);
e688b725 6549
2ff7e61e 6550 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6551
6552 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6553 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6554 btrfs_put_block_group(cache);
b50c6e25 6555 return ret;
e688b725
CM
6556}
6557
2ff7e61e
JM
6558static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6559 u64 start, u64 num_bytes)
8c2a1a30
JB
6560{
6561 int ret;
6562 struct btrfs_block_group_cache *block_group;
6563 struct btrfs_caching_control *caching_ctl;
6564
0b246afa 6565 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6566 if (!block_group)
6567 return -EINVAL;
6568
6569 cache_block_group(block_group, 0);
6570 caching_ctl = get_caching_control(block_group);
6571
6572 if (!caching_ctl) {
6573 /* Logic error */
6574 BUG_ON(!block_group_cache_done(block_group));
6575 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6576 } else {
6577 mutex_lock(&caching_ctl->mutex);
6578
6579 if (start >= caching_ctl->progress) {
2ff7e61e 6580 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6581 } else if (start + num_bytes <= caching_ctl->progress) {
6582 ret = btrfs_remove_free_space(block_group,
6583 start, num_bytes);
6584 } else {
6585 num_bytes = caching_ctl->progress - start;
6586 ret = btrfs_remove_free_space(block_group,
6587 start, num_bytes);
6588 if (ret)
6589 goto out_lock;
6590
6591 num_bytes = (start + num_bytes) -
6592 caching_ctl->progress;
6593 start = caching_ctl->progress;
2ff7e61e 6594 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6595 }
6596out_lock:
6597 mutex_unlock(&caching_ctl->mutex);
6598 put_caching_control(caching_ctl);
6599 }
6600 btrfs_put_block_group(block_group);
6601 return ret;
6602}
6603
bcdc428c 6604int btrfs_exclude_logged_extents(struct extent_buffer *eb)
8c2a1a30 6605{
bcdc428c 6606 struct btrfs_fs_info *fs_info = eb->fs_info;
8c2a1a30
JB
6607 struct btrfs_file_extent_item *item;
6608 struct btrfs_key key;
6609 int found_type;
6610 int i;
b89311ef 6611 int ret = 0;
8c2a1a30 6612
2ff7e61e 6613 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6614 return 0;
6615
6616 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6617 btrfs_item_key_to_cpu(eb, &key, i);
6618 if (key.type != BTRFS_EXTENT_DATA_KEY)
6619 continue;
6620 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6621 found_type = btrfs_file_extent_type(eb, item);
6622 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6623 continue;
6624 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6625 continue;
6626 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6627 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
b89311ef
GJ
6628 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6629 if (ret)
6630 break;
8c2a1a30
JB
6631 }
6632
b89311ef 6633 return ret;
8c2a1a30
JB
6634}
6635
9cfa3e34
FM
6636static void
6637btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6638{
6639 atomic_inc(&bg->reservations);
6640}
6641
6642void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6643 const u64 start)
6644{
6645 struct btrfs_block_group_cache *bg;
6646
6647 bg = btrfs_lookup_block_group(fs_info, start);
6648 ASSERT(bg);
6649 if (atomic_dec_and_test(&bg->reservations))
4625956a 6650 wake_up_var(&bg->reservations);
9cfa3e34
FM
6651 btrfs_put_block_group(bg);
6652}
6653
9cfa3e34
FM
6654void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6655{
6656 struct btrfs_space_info *space_info = bg->space_info;
6657
6658 ASSERT(bg->ro);
6659
6660 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6661 return;
6662
6663 /*
6664 * Our block group is read only but before we set it to read only,
6665 * some task might have had allocated an extent from it already, but it
6666 * has not yet created a respective ordered extent (and added it to a
6667 * root's list of ordered extents).
6668 * Therefore wait for any task currently allocating extents, since the
6669 * block group's reservations counter is incremented while a read lock
6670 * on the groups' semaphore is held and decremented after releasing
6671 * the read access on that semaphore and creating the ordered extent.
6672 */
6673 down_write(&space_info->groups_sem);
6674 up_write(&space_info->groups_sem);
6675
4625956a 6676 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6677}
6678
fb25e914 6679/**
4824f1f4 6680 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6681 * @cache: The cache we are manipulating
18513091
WX
6682 * @ram_bytes: The number of bytes of file content, and will be same to
6683 * @num_bytes except for the compress path.
fb25e914 6684 * @num_bytes: The number of bytes in question
e570fd27 6685 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6686 *
745699ef
XW
6687 * This is called by the allocator when it reserves space. If this is a
6688 * reservation and the block group has become read only we cannot make the
6689 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6690 */
4824f1f4 6691static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6692 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6693{
fb25e914 6694 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6695 int ret = 0;
79787eaa 6696
fb25e914
JB
6697 spin_lock(&space_info->lock);
6698 spin_lock(&cache->lock);
4824f1f4
WX
6699 if (cache->ro) {
6700 ret = -EAGAIN;
fb25e914 6701 } else {
4824f1f4
WX
6702 cache->reserved += num_bytes;
6703 space_info->bytes_reserved += num_bytes;
9f9b8e8d 6704 update_bytes_may_use(space_info, -ram_bytes);
e570fd27 6705 if (delalloc)
4824f1f4 6706 cache->delalloc_bytes += num_bytes;
324ae4df 6707 }
fb25e914
JB
6708 spin_unlock(&cache->lock);
6709 spin_unlock(&space_info->lock);
f0486c68 6710 return ret;
324ae4df 6711}
9078a3e1 6712
4824f1f4
WX
6713/**
6714 * btrfs_free_reserved_bytes - update the block_group and space info counters
6715 * @cache: The cache we are manipulating
6716 * @num_bytes: The number of bytes in question
6717 * @delalloc: The blocks are allocated for the delalloc write
6718 *
6719 * This is called by somebody who is freeing space that was never actually used
6720 * on disk. For example if you reserve some space for a new leaf in transaction
6721 * A and before transaction A commits you free that leaf, you call this with
6722 * reserve set to 0 in order to clear the reservation.
6723 */
6724
556f3ca8 6725static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6726 u64 num_bytes, int delalloc)
4824f1f4
WX
6727{
6728 struct btrfs_space_info *space_info = cache->space_info;
4824f1f4
WX
6729
6730 spin_lock(&space_info->lock);
6731 spin_lock(&cache->lock);
6732 if (cache->ro)
6733 space_info->bytes_readonly += num_bytes;
6734 cache->reserved -= num_bytes;
6735 space_info->bytes_reserved -= num_bytes;
21a94f7a 6736 space_info->max_extent_size = 0;
4824f1f4
WX
6737
6738 if (delalloc)
6739 cache->delalloc_bytes -= num_bytes;
6740 spin_unlock(&cache->lock);
6741 spin_unlock(&space_info->lock);
4824f1f4 6742}
8b74c03e 6743void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6744{
11833d66
YZ
6745 struct btrfs_caching_control *next;
6746 struct btrfs_caching_control *caching_ctl;
6747 struct btrfs_block_group_cache *cache;
e8569813 6748
9e351cc8 6749 down_write(&fs_info->commit_root_sem);
25179201 6750
11833d66
YZ
6751 list_for_each_entry_safe(caching_ctl, next,
6752 &fs_info->caching_block_groups, list) {
6753 cache = caching_ctl->block_group;
6754 if (block_group_cache_done(cache)) {
6755 cache->last_byte_to_unpin = (u64)-1;
6756 list_del_init(&caching_ctl->list);
6757 put_caching_control(caching_ctl);
e8569813 6758 } else {
11833d66 6759 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6760 }
e8569813 6761 }
11833d66
YZ
6762
6763 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6764 fs_info->pinned_extents = &fs_info->freed_extents[1];
6765 else
6766 fs_info->pinned_extents = &fs_info->freed_extents[0];
6767
9e351cc8 6768 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6769
6770 update_global_block_rsv(fs_info);
e8569813
ZY
6771}
6772
c759c4e1
JB
6773/*
6774 * Returns the free cluster for the given space info and sets empty_cluster to
6775 * what it should be based on the mount options.
6776 */
6777static struct btrfs_free_cluster *
2ff7e61e
JM
6778fetch_cluster_info(struct btrfs_fs_info *fs_info,
6779 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6780{
6781 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6782
6783 *empty_cluster = 0;
6784 if (btrfs_mixed_space_info(space_info))
6785 return ret;
6786
c759c4e1 6787 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6788 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6789 if (btrfs_test_opt(fs_info, SSD))
6790 *empty_cluster = SZ_2M;
6791 else
ee22184b 6792 *empty_cluster = SZ_64K;
583b7231
HK
6793 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6794 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6795 *empty_cluster = SZ_2M;
0b246afa 6796 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6797 }
6798
6799 return ret;
6800}
6801
2ff7e61e
JM
6802static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6803 u64 start, u64 end,
678886bd 6804 const bool return_free_space)
ccd467d6 6805{
11833d66 6806 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6807 struct btrfs_space_info *space_info;
6808 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6809 struct btrfs_free_cluster *cluster = NULL;
11833d66 6810 u64 len;
c759c4e1
JB
6811 u64 total_unpinned = 0;
6812 u64 empty_cluster = 0;
7b398f8e 6813 bool readonly;
ccd467d6 6814
11833d66 6815 while (start <= end) {
7b398f8e 6816 readonly = false;
11833d66
YZ
6817 if (!cache ||
6818 start >= cache->key.objectid + cache->key.offset) {
6819 if (cache)
6820 btrfs_put_block_group(cache);
c759c4e1 6821 total_unpinned = 0;
11833d66 6822 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6823 BUG_ON(!cache); /* Logic error */
c759c4e1 6824
2ff7e61e 6825 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6826 cache->space_info,
6827 &empty_cluster);
6828 empty_cluster <<= 1;
11833d66
YZ
6829 }
6830
6831 len = cache->key.objectid + cache->key.offset - start;
6832 len = min(len, end + 1 - start);
6833
6834 if (start < cache->last_byte_to_unpin) {
6835 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6836 if (return_free_space)
6837 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6838 }
6839
f0486c68 6840 start += len;
c759c4e1 6841 total_unpinned += len;
7b398f8e 6842 space_info = cache->space_info;
f0486c68 6843
c759c4e1
JB
6844 /*
6845 * If this space cluster has been marked as fragmented and we've
6846 * unpinned enough in this block group to potentially allow a
6847 * cluster to be created inside of it go ahead and clear the
6848 * fragmented check.
6849 */
6850 if (cluster && cluster->fragmented &&
6851 total_unpinned > empty_cluster) {
6852 spin_lock(&cluster->lock);
6853 cluster->fragmented = 0;
6854 spin_unlock(&cluster->lock);
6855 }
6856
7b398f8e 6857 spin_lock(&space_info->lock);
11833d66
YZ
6858 spin_lock(&cache->lock);
6859 cache->pinned -= len;
e2907c1a 6860 update_bytes_pinned(space_info, -len);
c51e7bb1
JB
6861
6862 trace_btrfs_space_reservation(fs_info, "pinned",
6863 space_info->flags, len, 0);
4f4db217 6864 space_info->max_extent_size = 0;
dec59fa3
EL
6865 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6866 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
7b398f8e
JB
6867 if (cache->ro) {
6868 space_info->bytes_readonly += len;
6869 readonly = true;
6870 }
11833d66 6871 spin_unlock(&cache->lock);
957780eb
JB
6872 if (!readonly && return_free_space &&
6873 global_rsv->space_info == space_info) {
6874 u64 to_add = len;
92ac58ec 6875
7b398f8e
JB
6876 spin_lock(&global_rsv->lock);
6877 if (!global_rsv->full) {
957780eb
JB
6878 to_add = min(len, global_rsv->size -
6879 global_rsv->reserved);
6880 global_rsv->reserved += to_add;
9f9b8e8d 6881 update_bytes_may_use(space_info, to_add);
7b398f8e
JB
6882 if (global_rsv->reserved >= global_rsv->size)
6883 global_rsv->full = 1;
957780eb
JB
6884 trace_btrfs_space_reservation(fs_info,
6885 "space_info",
6886 space_info->flags,
6887 to_add, 1);
6888 len -= to_add;
7b398f8e
JB
6889 }
6890 spin_unlock(&global_rsv->lock);
957780eb
JB
6891 /* Add to any tickets we may have */
6892 if (len)
6893 space_info_add_new_bytes(fs_info, space_info,
6894 len);
7b398f8e
JB
6895 }
6896 spin_unlock(&space_info->lock);
ccd467d6 6897 }
11833d66
YZ
6898
6899 if (cache)
6900 btrfs_put_block_group(cache);
ccd467d6
CM
6901 return 0;
6902}
6903
5ead2dd0 6904int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6905{
5ead2dd0 6906 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6907 struct btrfs_block_group_cache *block_group, *tmp;
6908 struct list_head *deleted_bgs;
11833d66 6909 struct extent_io_tree *unpin;
1a5bc167
CM
6910 u64 start;
6911 u64 end;
a28ec197 6912 int ret;
a28ec197 6913
11833d66
YZ
6914 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6915 unpin = &fs_info->freed_extents[1];
6916 else
6917 unpin = &fs_info->freed_extents[0];
6918
e33e17ee 6919 while (!trans->aborted) {
0e6ec385
FM
6920 struct extent_state *cached_state = NULL;
6921
d4b450cd 6922 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6923 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 6924 EXTENT_DIRTY, &cached_state);
d4b450cd
FM
6925 if (ret) {
6926 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6927 break;
d4b450cd 6928 }
1f3c79a2 6929
0b246afa 6930 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6931 ret = btrfs_discard_extent(fs_info, start,
5378e607 6932 end + 1 - start, NULL);
1f3c79a2 6933
0e6ec385 6934 clear_extent_dirty(unpin, start, end, &cached_state);
2ff7e61e 6935 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6936 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
0e6ec385 6937 free_extent_state(cached_state);
b9473439 6938 cond_resched();
a28ec197 6939 }
817d52f8 6940
e33e17ee
JM
6941 /*
6942 * Transaction is finished. We don't need the lock anymore. We
6943 * do need to clean up the block groups in case of a transaction
6944 * abort.
6945 */
6946 deleted_bgs = &trans->transaction->deleted_bgs;
6947 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6948 u64 trimmed = 0;
6949
6950 ret = -EROFS;
6951 if (!trans->aborted)
2ff7e61e 6952 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6953 block_group->key.objectid,
6954 block_group->key.offset,
6955 &trimmed);
6956
6957 list_del_init(&block_group->bg_list);
6958 btrfs_put_block_group_trimming(block_group);
6959 btrfs_put_block_group(block_group);
6960
6961 if (ret) {
6962 const char *errstr = btrfs_decode_error(ret);
6963 btrfs_warn(fs_info,
913e1535 6964 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6965 ret, errstr);
6966 }
6967 }
6968
e20d96d6
CM
6969 return 0;
6970}
6971
5d4f98a2 6972static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
6973 struct btrfs_delayed_ref_node *node, u64 parent,
6974 u64 root_objectid, u64 owner_objectid,
6975 u64 owner_offset, int refs_to_drop,
6976 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6977{
e72cb923 6978 struct btrfs_fs_info *info = trans->fs_info;
e2fa7227 6979 struct btrfs_key key;
5d4f98a2 6980 struct btrfs_path *path;
1261ec42 6981 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6982 struct extent_buffer *leaf;
5d4f98a2
YZ
6983 struct btrfs_extent_item *ei;
6984 struct btrfs_extent_inline_ref *iref;
a28ec197 6985 int ret;
5d4f98a2 6986 int is_data;
952fccac
CM
6987 int extent_slot = 0;
6988 int found_extent = 0;
6989 int num_to_del = 1;
5d4f98a2
YZ
6990 u32 item_size;
6991 u64 refs;
c682f9b3
QW
6992 u64 bytenr = node->bytenr;
6993 u64 num_bytes = node->num_bytes;
fcebe456 6994 int last_ref = 0;
0b246afa 6995 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6996
5caf2a00 6997 path = btrfs_alloc_path();
54aa1f4d
CM
6998 if (!path)
6999 return -ENOMEM;
5f26f772 7000
e4058b54 7001 path->reada = READA_FORWARD;
b9473439 7002 path->leave_spinning = 1;
5d4f98a2
YZ
7003
7004 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
7005 BUG_ON(!is_data && refs_to_drop != 1);
7006
3173a18f 7007 if (is_data)
897ca819 7008 skinny_metadata = false;
3173a18f 7009
fbe4801b
NB
7010 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
7011 parent, root_objectid, owner_objectid,
5d4f98a2 7012 owner_offset);
7bb86316 7013 if (ret == 0) {
952fccac 7014 extent_slot = path->slots[0];
5d4f98a2
YZ
7015 while (extent_slot >= 0) {
7016 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 7017 extent_slot);
5d4f98a2 7018 if (key.objectid != bytenr)
952fccac 7019 break;
5d4f98a2
YZ
7020 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
7021 key.offset == num_bytes) {
952fccac
CM
7022 found_extent = 1;
7023 break;
7024 }
3173a18f
JB
7025 if (key.type == BTRFS_METADATA_ITEM_KEY &&
7026 key.offset == owner_objectid) {
7027 found_extent = 1;
7028 break;
7029 }
952fccac
CM
7030 if (path->slots[0] - extent_slot > 5)
7031 break;
5d4f98a2 7032 extent_slot--;
952fccac 7033 }
a79865c6 7034
31840ae1 7035 if (!found_extent) {
5d4f98a2 7036 BUG_ON(iref);
87cc7a8a 7037 ret = remove_extent_backref(trans, path, NULL,
87bde3cd 7038 refs_to_drop,
fcebe456 7039 is_data, &last_ref);
005d6427 7040 if (ret) {
66642832 7041 btrfs_abort_transaction(trans, ret);
005d6427
DS
7042 goto out;
7043 }
b3b4aa74 7044 btrfs_release_path(path);
b9473439 7045 path->leave_spinning = 1;
5d4f98a2
YZ
7046
7047 key.objectid = bytenr;
7048 key.type = BTRFS_EXTENT_ITEM_KEY;
7049 key.offset = num_bytes;
7050
3173a18f
JB
7051 if (!is_data && skinny_metadata) {
7052 key.type = BTRFS_METADATA_ITEM_KEY;
7053 key.offset = owner_objectid;
7054 }
7055
31840ae1
ZY
7056 ret = btrfs_search_slot(trans, extent_root,
7057 &key, path, -1, 1);
3173a18f
JB
7058 if (ret > 0 && skinny_metadata && path->slots[0]) {
7059 /*
7060 * Couldn't find our skinny metadata item,
7061 * see if we have ye olde extent item.
7062 */
7063 path->slots[0]--;
7064 btrfs_item_key_to_cpu(path->nodes[0], &key,
7065 path->slots[0]);
7066 if (key.objectid == bytenr &&
7067 key.type == BTRFS_EXTENT_ITEM_KEY &&
7068 key.offset == num_bytes)
7069 ret = 0;
7070 }
7071
7072 if (ret > 0 && skinny_metadata) {
7073 skinny_metadata = false;
9ce49a0b 7074 key.objectid = bytenr;
3173a18f
JB
7075 key.type = BTRFS_EXTENT_ITEM_KEY;
7076 key.offset = num_bytes;
7077 btrfs_release_path(path);
7078 ret = btrfs_search_slot(trans, extent_root,
7079 &key, path, -1, 1);
7080 }
7081
f3465ca4 7082 if (ret) {
5d163e0e
JM
7083 btrfs_err(info,
7084 "umm, got %d back from search, was looking for %llu",
7085 ret, bytenr);
b783e62d 7086 if (ret > 0)
a4f78750 7087 btrfs_print_leaf(path->nodes[0]);
f3465ca4 7088 }
005d6427 7089 if (ret < 0) {
66642832 7090 btrfs_abort_transaction(trans, ret);
005d6427
DS
7091 goto out;
7092 }
31840ae1
ZY
7093 extent_slot = path->slots[0];
7094 }
fae7f21c 7095 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 7096 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
7097 btrfs_err(info,
7098 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
7099 bytenr, parent, root_objectid, owner_objectid,
7100 owner_offset);
66642832 7101 btrfs_abort_transaction(trans, ret);
c4a050bb 7102 goto out;
79787eaa 7103 } else {
66642832 7104 btrfs_abort_transaction(trans, ret);
005d6427 7105 goto out;
7bb86316 7106 }
5f39d397
CM
7107
7108 leaf = path->nodes[0];
5d4f98a2 7109 item_size = btrfs_item_size_nr(leaf, extent_slot);
6d8ff4e4 7110 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
7111 ret = -EINVAL;
7112 btrfs_print_v0_err(info);
7113 btrfs_abort_transaction(trans, ret);
7114 goto out;
7115 }
952fccac 7116 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7117 struct btrfs_extent_item);
3173a18f
JB
7118 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7119 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7120 struct btrfs_tree_block_info *bi;
7121 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7122 bi = (struct btrfs_tree_block_info *)(ei + 1);
7123 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7124 }
56bec294 7125
5d4f98a2 7126 refs = btrfs_extent_refs(leaf, ei);
32b02538 7127 if (refs < refs_to_drop) {
5d163e0e
JM
7128 btrfs_err(info,
7129 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7130 refs_to_drop, refs, bytenr);
32b02538 7131 ret = -EINVAL;
66642832 7132 btrfs_abort_transaction(trans, ret);
32b02538
JB
7133 goto out;
7134 }
56bec294 7135 refs -= refs_to_drop;
5f39d397 7136
5d4f98a2
YZ
7137 if (refs > 0) {
7138 if (extent_op)
7139 __run_delayed_extent_op(extent_op, leaf, ei);
7140 /*
7141 * In the case of inline back ref, reference count will
7142 * be updated by remove_extent_backref
952fccac 7143 */
5d4f98a2
YZ
7144 if (iref) {
7145 BUG_ON(!found_extent);
7146 } else {
7147 btrfs_set_extent_refs(leaf, ei, refs);
7148 btrfs_mark_buffer_dirty(leaf);
7149 }
7150 if (found_extent) {
87cc7a8a
NB
7151 ret = remove_extent_backref(trans, path, iref,
7152 refs_to_drop, is_data,
7153 &last_ref);
005d6427 7154 if (ret) {
66642832 7155 btrfs_abort_transaction(trans, ret);
005d6427
DS
7156 goto out;
7157 }
952fccac 7158 }
5d4f98a2 7159 } else {
5d4f98a2
YZ
7160 if (found_extent) {
7161 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7162 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7163 if (iref) {
7164 BUG_ON(path->slots[0] != extent_slot);
7165 } else {
7166 BUG_ON(path->slots[0] != extent_slot + 1);
7167 path->slots[0] = extent_slot;
7168 num_to_del = 2;
7169 }
78fae27e 7170 }
b9473439 7171
fcebe456 7172 last_ref = 1;
952fccac
CM
7173 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7174 num_to_del);
005d6427 7175 if (ret) {
66642832 7176 btrfs_abort_transaction(trans, ret);
005d6427
DS
7177 goto out;
7178 }
b3b4aa74 7179 btrfs_release_path(path);
21af804c 7180
5d4f98a2 7181 if (is_data) {
5b4aacef 7182 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7183 if (ret) {
66642832 7184 btrfs_abort_transaction(trans, ret);
005d6427
DS
7185 goto out;
7186 }
459931ec
CM
7187 }
7188
e7355e50 7189 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
1e144fb8 7190 if (ret) {
66642832 7191 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7192 goto out;
7193 }
7194
0b246afa 7195 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7196 if (ret) {
66642832 7197 btrfs_abort_transaction(trans, ret);
005d6427
DS
7198 goto out;
7199 }
a28ec197 7200 }
fcebe456
JB
7201 btrfs_release_path(path);
7202
79787eaa 7203out:
5caf2a00 7204 btrfs_free_path(path);
a28ec197
CM
7205 return ret;
7206}
7207
1887be66 7208/*
f0486c68 7209 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7210 * delayed ref for that extent as well. This searches the delayed ref tree for
7211 * a given extent, and if there are no other delayed refs to be processed, it
7212 * removes it from the tree.
7213 */
7214static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7215 u64 bytenr)
1887be66
CM
7216{
7217 struct btrfs_delayed_ref_head *head;
7218 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7219 int ret = 0;
1887be66
CM
7220
7221 delayed_refs = &trans->transaction->delayed_refs;
7222 spin_lock(&delayed_refs->lock);
f72ad18e 7223 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7224 if (!head)
cf93da7b 7225 goto out_delayed_unlock;
1887be66 7226
d7df2c79 7227 spin_lock(&head->lock);
e3d03965 7228 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1887be66
CM
7229 goto out;
7230
bedc6617
JB
7231 if (cleanup_extent_op(head) != NULL)
7232 goto out;
5d4f98a2 7233
1887be66
CM
7234 /*
7235 * waiting for the lock here would deadlock. If someone else has it
7236 * locked they are already in the process of dropping it anyway
7237 */
7238 if (!mutex_trylock(&head->mutex))
7239 goto out;
7240
d7baffda 7241 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79 7242 head->processing = 0;
d7baffda 7243
d7df2c79 7244 spin_unlock(&head->lock);
1887be66
CM
7245 spin_unlock(&delayed_refs->lock);
7246
f0486c68
YZ
7247 BUG_ON(head->extent_op);
7248 if (head->must_insert_reserved)
7249 ret = 1;
7250
31890da0 7251 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
f0486c68 7252 mutex_unlock(&head->mutex);
d278850e 7253 btrfs_put_delayed_ref_head(head);
f0486c68 7254 return ret;
1887be66 7255out:
d7df2c79 7256 spin_unlock(&head->lock);
cf93da7b
CM
7257
7258out_delayed_unlock:
1887be66
CM
7259 spin_unlock(&delayed_refs->lock);
7260 return 0;
7261}
7262
f0486c68
YZ
7263void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7264 struct btrfs_root *root,
7265 struct extent_buffer *buf,
5581a51a 7266 u64 parent, int last_ref)
f0486c68 7267{
0b246afa 7268 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7269 int pin = 1;
f0486c68
YZ
7270 int ret;
7271
7272 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7273 int old_ref_mod, new_ref_mod;
7274
fd708b81
JB
7275 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7276 root->root_key.objectid,
7277 btrfs_header_level(buf), 0,
7278 BTRFS_DROP_DELAYED_REF);
44e1c47d 7279 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7be07912 7280 buf->len, parent,
0b246afa
JM
7281 root->root_key.objectid,
7282 btrfs_header_level(buf),
7be07912 7283 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7284 &old_ref_mod, &new_ref_mod);
79787eaa 7285 BUG_ON(ret); /* -ENOMEM */
d7eae340 7286 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7287 }
7288
0a16c7d7 7289 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7290 struct btrfs_block_group_cache *cache;
7291
f0486c68 7292 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7293 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7294 if (!ret)
37be25bc 7295 goto out;
f0486c68
YZ
7296 }
7297
4da8b76d 7298 pin = 0;
0b246afa 7299 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7300
f0486c68 7301 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7302 pin_down_extent(fs_info, cache, buf->start,
7303 buf->len, 1);
6219872d 7304 btrfs_put_block_group(cache);
37be25bc 7305 goto out;
f0486c68
YZ
7306 }
7307
7308 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7309
7310 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7311 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7312 btrfs_put_block_group(cache);
71ff6437 7313 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7314 }
7315out:
b150a4f1 7316 if (pin)
29d2b84c 7317 add_pinned_bytes(fs_info, buf->len, true,
b150a4f1
JB
7318 root->root_key.objectid);
7319
0a16c7d7
OS
7320 if (last_ref) {
7321 /*
7322 * Deleting the buffer, clear the corrupt flag since it doesn't
7323 * matter anymore.
7324 */
7325 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7326 }
f0486c68
YZ
7327}
7328
79787eaa 7329/* Can return -ENOMEM */
2ff7e61e 7330int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7331 struct btrfs_root *root,
66d7e7f0 7332 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7333 u64 owner, u64 offset)
925baedd 7334{
84f7d8e6 7335 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7336 int old_ref_mod, new_ref_mod;
925baedd
CM
7337 int ret;
7338
f5ee5c9a 7339 if (btrfs_is_testing(fs_info))
faa2dbf0 7340 return 0;
fccb84c9 7341
fd708b81
JB
7342 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7343 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7344 root_objectid, owner, offset,
7345 BTRFS_DROP_DELAYED_REF);
7346
56bec294
CM
7347 /*
7348 * tree log blocks never actually go into the extent allocation
7349 * tree, just update pinning info and exit early.
56bec294 7350 */
5d4f98a2
YZ
7351 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7352 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7353 /* unlocks the pinned mutex */
2ff7e61e 7354 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7355 old_ref_mod = new_ref_mod = 0;
56bec294 7356 ret = 0;
5d4f98a2 7357 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
44e1c47d 7358 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7be07912
OS
7359 num_bytes, parent,
7360 root_objectid, (int)owner,
7361 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7362 &old_ref_mod, &new_ref_mod);
5d4f98a2 7363 } else {
88a979c6 7364 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7be07912
OS
7365 num_bytes, parent,
7366 root_objectid, owner, offset,
7367 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7368 &old_ref_mod, &new_ref_mod);
56bec294 7369 }
d7eae340 7370
29d2b84c
NB
7371 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7372 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7373
7374 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7375 }
d7eae340 7376
925baedd
CM
7377 return ret;
7378}
7379
817d52f8
JB
7380/*
7381 * when we wait for progress in the block group caching, its because
7382 * our allocation attempt failed at least once. So, we must sleep
7383 * and let some progress happen before we try again.
7384 *
7385 * This function will sleep at least once waiting for new free space to
7386 * show up, and then it will check the block group free space numbers
7387 * for our min num_bytes. Another option is to have it go ahead
7388 * and look in the rbtree for a free extent of a given size, but this
7389 * is a good start.
36cce922
JB
7390 *
7391 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7392 * any of the information in this block group.
817d52f8 7393 */
36cce922 7394static noinline void
817d52f8
JB
7395wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7396 u64 num_bytes)
7397{
11833d66 7398 struct btrfs_caching_control *caching_ctl;
817d52f8 7399
11833d66
YZ
7400 caching_ctl = get_caching_control(cache);
7401 if (!caching_ctl)
36cce922 7402 return;
817d52f8 7403
11833d66 7404 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7405 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7406
7407 put_caching_control(caching_ctl);
11833d66
YZ
7408}
7409
7410static noinline int
7411wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7412{
7413 struct btrfs_caching_control *caching_ctl;
36cce922 7414 int ret = 0;
11833d66
YZ
7415
7416 caching_ctl = get_caching_control(cache);
7417 if (!caching_ctl)
36cce922 7418 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7419
7420 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7421 if (cache->cached == BTRFS_CACHE_ERROR)
7422 ret = -EIO;
11833d66 7423 put_caching_control(caching_ctl);
36cce922 7424 return ret;
817d52f8
JB
7425}
7426
7427enum btrfs_loop_type {
285ff5af
JB
7428 LOOP_CACHING_NOWAIT = 0,
7429 LOOP_CACHING_WAIT = 1,
7430 LOOP_ALLOC_CHUNK = 2,
7431 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7432};
7433
e570fd27
MX
7434static inline void
7435btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7436 int delalloc)
7437{
7438 if (delalloc)
7439 down_read(&cache->data_rwsem);
7440}
7441
7442static inline void
7443btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7444 int delalloc)
7445{
7446 btrfs_get_block_group(cache);
7447 if (delalloc)
7448 down_read(&cache->data_rwsem);
7449}
7450
7451static struct btrfs_block_group_cache *
7452btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7453 struct btrfs_free_cluster *cluster,
7454 int delalloc)
7455{
89771cc9 7456 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7457
e570fd27 7458 spin_lock(&cluster->refill_lock);
6719afdc
GU
7459 while (1) {
7460 used_bg = cluster->block_group;
7461 if (!used_bg)
7462 return NULL;
7463
7464 if (used_bg == block_group)
e570fd27
MX
7465 return used_bg;
7466
6719afdc 7467 btrfs_get_block_group(used_bg);
e570fd27 7468
6719afdc
GU
7469 if (!delalloc)
7470 return used_bg;
e570fd27 7471
6719afdc
GU
7472 if (down_read_trylock(&used_bg->data_rwsem))
7473 return used_bg;
e570fd27 7474
6719afdc 7475 spin_unlock(&cluster->refill_lock);
e570fd27 7476
e321f8a8
LB
7477 /* We should only have one-level nested. */
7478 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7479
6719afdc
GU
7480 spin_lock(&cluster->refill_lock);
7481 if (used_bg == cluster->block_group)
7482 return used_bg;
e570fd27 7483
6719afdc
GU
7484 up_read(&used_bg->data_rwsem);
7485 btrfs_put_block_group(used_bg);
7486 }
e570fd27
MX
7487}
7488
7489static inline void
7490btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7491 int delalloc)
7492{
7493 if (delalloc)
7494 up_read(&cache->data_rwsem);
7495 btrfs_put_block_group(cache);
7496}
7497
b4bd745d
QW
7498/*
7499 * Structure used internally for find_free_extent() function. Wraps needed
7500 * parameters.
7501 */
7502struct find_free_extent_ctl {
7503 /* Basic allocation info */
7504 u64 ram_bytes;
7505 u64 num_bytes;
7506 u64 empty_size;
7507 u64 flags;
7508 int delalloc;
7509
7510 /* Where to start the search inside the bg */
7511 u64 search_start;
7512
7513 /* For clustered allocation */
7514 u64 empty_cluster;
7515
7516 bool have_caching_bg;
7517 bool orig_have_caching_bg;
7518
7519 /* RAID index, converted from flags */
7520 int index;
7521
e72d79d6
QW
7522 /*
7523 * Current loop number, check find_free_extent_update_loop() for details
7524 */
b4bd745d
QW
7525 int loop;
7526
7527 /*
7528 * Whether we're refilling a cluster, if true we need to re-search
7529 * current block group but don't try to refill the cluster again.
7530 */
7531 bool retry_clustered;
7532
7533 /*
7534 * Whether we're updating free space cache, if true we need to re-search
7535 * current block group but don't try updating free space cache again.
7536 */
7537 bool retry_unclustered;
7538
7539 /* If current block group is cached */
7540 int cached;
7541
7542 /* Max contiguous hole found */
7543 u64 max_extent_size;
7544
7545 /* Total free space from free space cache, not always contiguous */
7546 u64 total_free_space;
7547
7548 /* Found result */
7549 u64 found_offset;
7550};
7551
d06e3bb6
QW
7552
7553/*
7554 * Helper function for find_free_extent().
7555 *
7556 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
7557 * Return -EAGAIN to inform caller that we need to re-search this block group
7558 * Return >0 to inform caller that we find nothing
7559 * Return 0 means we have found a location and set ffe_ctl->found_offset.
7560 */
7561static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
7562 struct btrfs_free_cluster *last_ptr,
7563 struct find_free_extent_ctl *ffe_ctl,
7564 struct btrfs_block_group_cache **cluster_bg_ret)
7565{
7566 struct btrfs_fs_info *fs_info = bg->fs_info;
7567 struct btrfs_block_group_cache *cluster_bg;
7568 u64 aligned_cluster;
7569 u64 offset;
7570 int ret;
7571
7572 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
7573 if (!cluster_bg)
7574 goto refill_cluster;
7575 if (cluster_bg != bg && (cluster_bg->ro ||
7576 !block_group_bits(cluster_bg, ffe_ctl->flags)))
7577 goto release_cluster;
7578
7579 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
7580 ffe_ctl->num_bytes, cluster_bg->key.objectid,
7581 &ffe_ctl->max_extent_size);
7582 if (offset) {
7583 /* We have a block, we're done */
7584 spin_unlock(&last_ptr->refill_lock);
7585 trace_btrfs_reserve_extent_cluster(cluster_bg,
7586 ffe_ctl->search_start, ffe_ctl->num_bytes);
7587 *cluster_bg_ret = cluster_bg;
7588 ffe_ctl->found_offset = offset;
7589 return 0;
7590 }
7591 WARN_ON(last_ptr->block_group != cluster_bg);
7592
7593release_cluster:
7594 /*
7595 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
7596 * lets just skip it and let the allocator find whatever block it can
7597 * find. If we reach this point, we will have tried the cluster
7598 * allocator plenty of times and not have found anything, so we are
7599 * likely way too fragmented for the clustering stuff to find anything.
7600 *
7601 * However, if the cluster is taken from the current block group,
7602 * release the cluster first, so that we stand a better chance of
7603 * succeeding in the unclustered allocation.
7604 */
7605 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
7606 spin_unlock(&last_ptr->refill_lock);
7607 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7608 return -ENOENT;
7609 }
7610
7611 /* This cluster didn't work out, free it and start over */
7612 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7613
7614 if (cluster_bg != bg)
7615 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7616
7617refill_cluster:
7618 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
7619 spin_unlock(&last_ptr->refill_lock);
7620 return -ENOENT;
7621 }
7622
7623 aligned_cluster = max_t(u64,
7624 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
7625 bg->full_stripe_len);
7626 ret = btrfs_find_space_cluster(fs_info, bg, last_ptr,
7627 ffe_ctl->search_start, ffe_ctl->num_bytes,
7628 aligned_cluster);
7629 if (ret == 0) {
7630 /* Now pull our allocation out of this cluster */
7631 offset = btrfs_alloc_from_cluster(bg, last_ptr,
7632 ffe_ctl->num_bytes, ffe_ctl->search_start,
7633 &ffe_ctl->max_extent_size);
7634 if (offset) {
7635 /* We found one, proceed */
7636 spin_unlock(&last_ptr->refill_lock);
7637 trace_btrfs_reserve_extent_cluster(bg,
7638 ffe_ctl->search_start,
7639 ffe_ctl->num_bytes);
7640 ffe_ctl->found_offset = offset;
7641 return 0;
7642 }
7643 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
7644 !ffe_ctl->retry_clustered) {
7645 spin_unlock(&last_ptr->refill_lock);
7646
7647 ffe_ctl->retry_clustered = true;
7648 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7649 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
7650 return -EAGAIN;
7651 }
7652 /*
7653 * At this point we either didn't find a cluster or we weren't able to
7654 * allocate a block from our cluster. Free the cluster we've been
7655 * trying to use, and go to the next block group.
7656 */
7657 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7658 spin_unlock(&last_ptr->refill_lock);
7659 return 1;
7660}
7661
e1a41848
QW
7662/*
7663 * Return >0 to inform caller that we find nothing
7664 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
7665 * Return -EAGAIN to inform caller that we need to re-search this block group
7666 */
7667static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
7668 struct btrfs_free_cluster *last_ptr,
7669 struct find_free_extent_ctl *ffe_ctl)
7670{
7671 u64 offset;
7672
7673 /*
7674 * We are doing an unclustered allocation, set the fragmented flag so
7675 * we don't bother trying to setup a cluster again until we get more
7676 * space.
7677 */
7678 if (unlikely(last_ptr)) {
7679 spin_lock(&last_ptr->lock);
7680 last_ptr->fragmented = 1;
7681 spin_unlock(&last_ptr->lock);
7682 }
7683 if (ffe_ctl->cached) {
7684 struct btrfs_free_space_ctl *free_space_ctl;
7685
7686 free_space_ctl = bg->free_space_ctl;
7687 spin_lock(&free_space_ctl->tree_lock);
7688 if (free_space_ctl->free_space <
7689 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
7690 ffe_ctl->empty_size) {
7691 ffe_ctl->total_free_space = max_t(u64,
7692 ffe_ctl->total_free_space,
7693 free_space_ctl->free_space);
7694 spin_unlock(&free_space_ctl->tree_lock);
7695 return 1;
7696 }
7697 spin_unlock(&free_space_ctl->tree_lock);
7698 }
7699
7700 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
7701 ffe_ctl->num_bytes, ffe_ctl->empty_size,
7702 &ffe_ctl->max_extent_size);
7703
7704 /*
7705 * If we didn't find a chunk, and we haven't failed on this block group
7706 * before, and this block group is in the middle of caching and we are
7707 * ok with waiting, then go ahead and wait for progress to be made, and
7708 * set @retry_unclustered to true.
7709 *
7710 * If @retry_unclustered is true then we've already waited on this
7711 * block group once and should move on to the next block group.
7712 */
7713 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
7714 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
7715 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7716 ffe_ctl->empty_size);
7717 ffe_ctl->retry_unclustered = true;
7718 return -EAGAIN;
7719 } else if (!offset) {
7720 return 1;
7721 }
7722 ffe_ctl->found_offset = offset;
7723 return 0;
7724}
7725
e72d79d6
QW
7726/*
7727 * Return >0 means caller needs to re-search for free extent
7728 * Return 0 means we have the needed free extent.
7729 * Return <0 means we failed to locate any free extent.
7730 */
7731static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
7732 struct btrfs_free_cluster *last_ptr,
7733 struct btrfs_key *ins,
7734 struct find_free_extent_ctl *ffe_ctl,
7735 int full_search, bool use_cluster)
7736{
7737 struct btrfs_root *root = fs_info->extent_root;
7738 int ret;
7739
7740 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
7741 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
7742 ffe_ctl->orig_have_caching_bg = true;
7743
7744 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
7745 ffe_ctl->have_caching_bg)
7746 return 1;
7747
7748 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
7749 return 1;
7750
7751 if (ins->objectid) {
7752 if (!use_cluster && last_ptr) {
7753 spin_lock(&last_ptr->lock);
7754 last_ptr->window_start = ins->objectid;
7755 spin_unlock(&last_ptr->lock);
7756 }
7757 return 0;
7758 }
7759
7760 /*
7761 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7762 * caching kthreads as we move along
7763 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7764 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7765 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7766 * again
7767 */
7768 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
7769 ffe_ctl->index = 0;
7770 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
7771 /*
7772 * We want to skip the LOOP_CACHING_WAIT step if we
7773 * don't have any uncached bgs and we've already done a
7774 * full search through.
7775 */
7776 if (ffe_ctl->orig_have_caching_bg || !full_search)
7777 ffe_ctl->loop = LOOP_CACHING_WAIT;
7778 else
7779 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
7780 } else {
7781 ffe_ctl->loop++;
7782 }
7783
7784 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
7785 struct btrfs_trans_handle *trans;
7786 int exist = 0;
7787
7788 trans = current->journal_info;
7789 if (trans)
7790 exist = 1;
7791 else
7792 trans = btrfs_join_transaction(root);
7793
7794 if (IS_ERR(trans)) {
7795 ret = PTR_ERR(trans);
7796 return ret;
7797 }
7798
7799 ret = do_chunk_alloc(trans, ffe_ctl->flags,
7800 CHUNK_ALLOC_FORCE);
7801
7802 /*
7803 * If we can't allocate a new chunk we've already looped
7804 * through at least once, move on to the NO_EMPTY_SIZE
7805 * case.
7806 */
7807 if (ret == -ENOSPC)
7808 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
7809
7810 /* Do not bail out on ENOSPC since we can do more. */
7811 if (ret < 0 && ret != -ENOSPC)
7812 btrfs_abort_transaction(trans, ret);
7813 else
7814 ret = 0;
7815 if (!exist)
7816 btrfs_end_transaction(trans);
7817 if (ret)
7818 return ret;
7819 }
7820
7821 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
7822 /*
7823 * Don't loop again if we already have no empty_size and
7824 * no empty_cluster.
7825 */
7826 if (ffe_ctl->empty_size == 0 &&
7827 ffe_ctl->empty_cluster == 0)
7828 return -ENOSPC;
7829 ffe_ctl->empty_size = 0;
7830 ffe_ctl->empty_cluster = 0;
7831 }
7832 return 1;
7833 }
7834 return -ENOSPC;
7835}
7836
fec577fb
CM
7837/*
7838 * walks the btree of allocated extents and find a hole of a given size.
7839 * The key ins is changed to record the hole:
a4820398 7840 * ins->objectid == start position
62e2749e 7841 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7842 * ins->offset == the size of the hole.
fec577fb 7843 * Any available blocks before search_start are skipped.
a4820398
MX
7844 *
7845 * If there is no suitable free space, we will record the max size of
7846 * the free space extent currently.
e72d79d6
QW
7847 *
7848 * The overall logic and call chain:
7849 *
7850 * find_free_extent()
7851 * |- Iterate through all block groups
7852 * | |- Get a valid block group
7853 * | |- Try to do clustered allocation in that block group
7854 * | |- Try to do unclustered allocation in that block group
7855 * | |- Check if the result is valid
7856 * | | |- If valid, then exit
7857 * | |- Jump to next block group
7858 * |
7859 * |- Push harder to find free extents
7860 * |- If not found, re-iterate all block groups
fec577fb 7861 */
87bde3cd 7862static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7863 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7864 u64 hint_byte, struct btrfs_key *ins,
7865 u64 flags, int delalloc)
fec577fb 7866{
80eb234a 7867 int ret = 0;
fa9c0d79 7868 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7869 struct btrfs_block_group_cache *block_group = NULL;
b4bd745d 7870 struct find_free_extent_ctl ffe_ctl = {0};
80eb234a 7871 struct btrfs_space_info *space_info;
67377734 7872 bool use_cluster = true;
a5e681d9 7873 bool full_search = false;
fec577fb 7874
0b246afa 7875 WARN_ON(num_bytes < fs_info->sectorsize);
b4bd745d
QW
7876
7877 ffe_ctl.ram_bytes = ram_bytes;
7878 ffe_ctl.num_bytes = num_bytes;
7879 ffe_ctl.empty_size = empty_size;
7880 ffe_ctl.flags = flags;
7881 ffe_ctl.search_start = 0;
7882 ffe_ctl.retry_clustered = false;
7883 ffe_ctl.retry_unclustered = false;
7884 ffe_ctl.delalloc = delalloc;
7885 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
7886 ffe_ctl.have_caching_bg = false;
7887 ffe_ctl.orig_have_caching_bg = false;
7888 ffe_ctl.found_offset = 0;
7889
962a298f 7890 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7891 ins->objectid = 0;
7892 ins->offset = 0;
b1a4d965 7893
71ff6437 7894 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7895
0b246afa 7896 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7897 if (!space_info) {
0b246afa 7898 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7899 return -ENOSPC;
7900 }
2552d17e 7901
67377734 7902 /*
4f4db217
JB
7903 * If our free space is heavily fragmented we may not be able to make
7904 * big contiguous allocations, so instead of doing the expensive search
7905 * for free space, simply return ENOSPC with our max_extent_size so we
7906 * can go ahead and search for a more manageable chunk.
7907 *
7908 * If our max_extent_size is large enough for our allocation simply
7909 * disable clustering since we will likely not be able to find enough
7910 * space to create a cluster and induce latency trying.
67377734 7911 */
4f4db217
JB
7912 if (unlikely(space_info->max_extent_size)) {
7913 spin_lock(&space_info->lock);
7914 if (space_info->max_extent_size &&
7915 num_bytes > space_info->max_extent_size) {
7916 ins->offset = space_info->max_extent_size;
7917 spin_unlock(&space_info->lock);
7918 return -ENOSPC;
7919 } else if (space_info->max_extent_size) {
7920 use_cluster = false;
7921 }
7922 spin_unlock(&space_info->lock);
fa9c0d79 7923 }
0f9dd46c 7924
b4bd745d
QW
7925 last_ptr = fetch_cluster_info(fs_info, space_info,
7926 &ffe_ctl.empty_cluster);
239b14b3 7927 if (last_ptr) {
fa9c0d79
CM
7928 spin_lock(&last_ptr->lock);
7929 if (last_ptr->block_group)
7930 hint_byte = last_ptr->window_start;
c759c4e1
JB
7931 if (last_ptr->fragmented) {
7932 /*
7933 * We still set window_start so we can keep track of the
7934 * last place we found an allocation to try and save
7935 * some time.
7936 */
7937 hint_byte = last_ptr->window_start;
7938 use_cluster = false;
7939 }
fa9c0d79 7940 spin_unlock(&last_ptr->lock);
239b14b3 7941 }
fa9c0d79 7942
b4bd745d
QW
7943 ffe_ctl.search_start = max(ffe_ctl.search_start,
7944 first_logical_byte(fs_info, 0));
7945 ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
7946 if (ffe_ctl.search_start == hint_byte) {
7947 block_group = btrfs_lookup_block_group(fs_info,
7948 ffe_ctl.search_start);
817d52f8
JB
7949 /*
7950 * we don't want to use the block group if it doesn't match our
7951 * allocation bits, or if its not cached.
ccf0e725
JB
7952 *
7953 * However if we are re-searching with an ideal block group
7954 * picked out then we don't care that the block group is cached.
817d52f8 7955 */
b6919a58 7956 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7957 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7958 down_read(&space_info->groups_sem);
44fb5511
CM
7959 if (list_empty(&block_group->list) ||
7960 block_group->ro) {
7961 /*
7962 * someone is removing this block group,
7963 * we can't jump into the have_block_group
7964 * target because our list pointers are not
7965 * valid
7966 */
7967 btrfs_put_block_group(block_group);
7968 up_read(&space_info->groups_sem);
ccf0e725 7969 } else {
b4bd745d 7970 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3e72ee88 7971 block_group->flags);
e570fd27 7972 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7973 goto have_block_group;
ccf0e725 7974 }
2552d17e 7975 } else if (block_group) {
fa9c0d79 7976 btrfs_put_block_group(block_group);
2552d17e 7977 }
42e70e7a 7978 }
2552d17e 7979search:
b4bd745d
QW
7980 ffe_ctl.have_caching_bg = false;
7981 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
7982 ffe_ctl.index == 0)
a5e681d9 7983 full_search = true;
80eb234a 7984 down_read(&space_info->groups_sem);
b4bd745d
QW
7985 list_for_each_entry(block_group,
7986 &space_info->block_groups[ffe_ctl.index], list) {
14443937
JM
7987 /* If the block group is read-only, we can skip it entirely. */
7988 if (unlikely(block_group->ro))
7989 continue;
7990
e570fd27 7991 btrfs_grab_block_group(block_group, delalloc);
b4bd745d 7992 ffe_ctl.search_start = block_group->key.objectid;
42e70e7a 7993
83a50de9
CM
7994 /*
7995 * this can happen if we end up cycling through all the
7996 * raid types, but we want to make sure we only allocate
7997 * for the proper type.
7998 */
b6919a58 7999 if (!block_group_bits(block_group, flags)) {
bece2e82 8000 u64 extra = BTRFS_BLOCK_GROUP_DUP |
83a50de9 8001 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
8002 BTRFS_BLOCK_GROUP_RAID5 |
8003 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
8004 BTRFS_BLOCK_GROUP_RAID10;
8005
8006 /*
8007 * if they asked for extra copies and this block group
8008 * doesn't provide them, bail. This does allow us to
8009 * fill raid0 from raid1.
8010 */
b6919a58 8011 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
8012 goto loop;
8013 }
8014
2552d17e 8015have_block_group:
b4bd745d
QW
8016 ffe_ctl.cached = block_group_cache_done(block_group);
8017 if (unlikely(!ffe_ctl.cached)) {
8018 ffe_ctl.have_caching_bg = true;
f6373bf3 8019 ret = cache_block_group(block_group, 0);
1d4284bd
CM
8020 BUG_ON(ret < 0);
8021 ret = 0;
817d52f8
JB
8022 }
8023
36cce922
JB
8024 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
8025 goto loop;
0f9dd46c 8026
0a24325e 8027 /*
062c05c4
AO
8028 * Ok we want to try and use the cluster allocator, so
8029 * lets look there
0a24325e 8030 */
c759c4e1 8031 if (last_ptr && use_cluster) {
d06e3bb6 8032 struct btrfs_block_group_cache *cluster_bg = NULL;
fa9c0d79 8033
d06e3bb6
QW
8034 ret = find_free_extent_clustered(block_group, last_ptr,
8035 &ffe_ctl, &cluster_bg);
062c05c4 8036
fa9c0d79 8037 if (ret == 0) {
d06e3bb6
QW
8038 if (cluster_bg && cluster_bg != block_group) {
8039 btrfs_release_block_group(block_group,
8040 delalloc);
8041 block_group = cluster_bg;
fa9c0d79 8042 }
d06e3bb6
QW
8043 goto checks;
8044 } else if (ret == -EAGAIN) {
817d52f8 8045 goto have_block_group;
d06e3bb6
QW
8046 } else if (ret > 0) {
8047 goto loop;
fa9c0d79 8048 }
d06e3bb6 8049 /* ret == -ENOENT case falls through */
fa9c0d79
CM
8050 }
8051
e1a41848
QW
8052 ret = find_free_extent_unclustered(block_group, last_ptr,
8053 &ffe_ctl);
8054 if (ret == -EAGAIN)
817d52f8 8055 goto have_block_group;
e1a41848 8056 else if (ret > 0)
1cdda9b8 8057 goto loop;
e1a41848 8058 /* ret == 0 case falls through */
fa9c0d79 8059checks:
b4bd745d
QW
8060 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
8061 fs_info->stripesize);
25179201 8062
2552d17e 8063 /* move on to the next group */
b4bd745d 8064 if (ffe_ctl.search_start + num_bytes >
215a63d1 8065 block_group->key.objectid + block_group->key.offset) {
b4bd745d
QW
8066 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8067 num_bytes);
2552d17e 8068 goto loop;
6226cb0a 8069 }
f5a31e16 8070
b4bd745d
QW
8071 if (ffe_ctl.found_offset < ffe_ctl.search_start)
8072 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8073 ffe_ctl.search_start - ffe_ctl.found_offset);
2552d17e 8074
18513091
WX
8075 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
8076 num_bytes, delalloc);
f0486c68 8077 if (ret == -EAGAIN) {
b4bd745d
QW
8078 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8079 num_bytes);
2552d17e 8080 goto loop;
0f9dd46c 8081 }
9cfa3e34 8082 btrfs_inc_block_group_reservations(block_group);
0b86a832 8083
f0486c68 8084 /* we are all good, lets return */
b4bd745d 8085 ins->objectid = ffe_ctl.search_start;
2552d17e 8086 ins->offset = num_bytes;
d2fb3437 8087
b4bd745d
QW
8088 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
8089 num_bytes);
e570fd27 8090 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
8091 break;
8092loop:
b4bd745d
QW
8093 ffe_ctl.retry_clustered = false;
8094 ffe_ctl.retry_unclustered = false;
3e72ee88 8095 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
b4bd745d 8096 ffe_ctl.index);
e570fd27 8097 btrfs_release_block_group(block_group, delalloc);
14443937 8098 cond_resched();
2552d17e
JB
8099 }
8100 up_read(&space_info->groups_sem);
8101
e72d79d6
QW
8102 ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
8103 full_search, use_cluster);
8104 if (ret > 0)
b742bb82
YZ
8105 goto search;
8106
4f4db217 8107 if (ret == -ENOSPC) {
b4bd745d
QW
8108 /*
8109 * Use ffe_ctl->total_free_space as fallback if we can't find
8110 * any contiguous hole.
8111 */
8112 if (!ffe_ctl.max_extent_size)
8113 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4f4db217 8114 spin_lock(&space_info->lock);
b4bd745d 8115 space_info->max_extent_size = ffe_ctl.max_extent_size;
4f4db217 8116 spin_unlock(&space_info->lock);
b4bd745d 8117 ins->offset = ffe_ctl.max_extent_size;
4f4db217 8118 }
0f70abe2 8119 return ret;
fec577fb 8120}
ec44a35c 8121
b78e5616
JB
8122#define DUMP_BLOCK_RSV(fs_info, rsv_name) \
8123do { \
8124 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
8125 spin_lock(&__rsv->lock); \
8126 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
8127 __rsv->size, __rsv->reserved); \
8128 spin_unlock(&__rsv->lock); \
8129} while (0)
8130
ab8d0fc4
JM
8131static void dump_space_info(struct btrfs_fs_info *fs_info,
8132 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 8133 int dump_block_groups)
0f9dd46c
JB
8134{
8135 struct btrfs_block_group_cache *cache;
b742bb82 8136 int index = 0;
0f9dd46c 8137
9ed74f2d 8138 spin_lock(&info->lock);
ab8d0fc4
JM
8139 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
8140 info->flags,
4136135b
LB
8141 info->total_bytes - btrfs_space_info_used(info, true),
8142 info->full ? "" : "not ");
ab8d0fc4
JM
8143 btrfs_info(fs_info,
8144 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
8145 info->total_bytes, info->bytes_used, info->bytes_pinned,
8146 info->bytes_reserved, info->bytes_may_use,
8147 info->bytes_readonly);
9ed74f2d
JB
8148 spin_unlock(&info->lock);
8149
b78e5616
JB
8150 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
8151 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
8152 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
8153 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
8154 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
8155
9ed74f2d
JB
8156 if (!dump_block_groups)
8157 return;
0f9dd46c 8158
80eb234a 8159 down_read(&info->groups_sem);
b742bb82
YZ
8160again:
8161 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 8162 spin_lock(&cache->lock);
ab8d0fc4
JM
8163 btrfs_info(fs_info,
8164 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8165 cache->key.objectid, cache->key.offset,
8166 btrfs_block_group_used(&cache->item), cache->pinned,
8167 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
8168 btrfs_dump_free_space(cache, bytes);
8169 spin_unlock(&cache->lock);
8170 }
b742bb82
YZ
8171 if (++index < BTRFS_NR_RAID_TYPES)
8172 goto again;
80eb234a 8173 up_read(&info->groups_sem);
0f9dd46c 8174}
e8569813 8175
6f47c706
NB
8176/*
8177 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8178 * hole that is at least as big as @num_bytes.
8179 *
8180 * @root - The root that will contain this extent
8181 *
8182 * @ram_bytes - The amount of space in ram that @num_bytes take. This
8183 * is used for accounting purposes. This value differs
8184 * from @num_bytes only in the case of compressed extents.
8185 *
8186 * @num_bytes - Number of bytes to allocate on-disk.
8187 *
8188 * @min_alloc_size - Indicates the minimum amount of space that the
8189 * allocator should try to satisfy. In some cases
8190 * @num_bytes may be larger than what is required and if
8191 * the filesystem is fragmented then allocation fails.
8192 * However, the presence of @min_alloc_size gives a
8193 * chance to try and satisfy the smaller allocation.
8194 *
8195 * @empty_size - A hint that you plan on doing more COW. This is the
8196 * size in bytes the allocator should try to find free
8197 * next to the block it returns. This is just a hint and
8198 * may be ignored by the allocator.
8199 *
8200 * @hint_byte - Hint to the allocator to start searching above the byte
8201 * address passed. It might be ignored.
8202 *
8203 * @ins - This key is modified to record the found hole. It will
8204 * have the following values:
8205 * ins->objectid == start position
8206 * ins->flags = BTRFS_EXTENT_ITEM_KEY
8207 * ins->offset == the size of the hole.
8208 *
8209 * @is_data - Boolean flag indicating whether an extent is
8210 * allocated for data (true) or metadata (false)
8211 *
8212 * @delalloc - Boolean flag indicating whether this allocation is for
8213 * delalloc or not. If 'true' data_rwsem of block groups
8214 * is going to be acquired.
8215 *
8216 *
8217 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8218 * case -ENOSPC is returned then @ins->offset will contain the size of the
8219 * largest available hole the allocator managed to find.
8220 */
18513091 8221int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
8222 u64 num_bytes, u64 min_alloc_size,
8223 u64 empty_size, u64 hint_byte,
e570fd27 8224 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 8225{
ab8d0fc4 8226 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 8227 bool final_tried = num_bytes == min_alloc_size;
b6919a58 8228 u64 flags;
fec577fb 8229 int ret;
925baedd 8230
1b86826d 8231 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 8232again:
0b246afa 8233 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8234 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8235 hint_byte, ins, flags, delalloc);
9cfa3e34 8236 if (!ret && !is_data) {
ab8d0fc4 8237 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8238 } else if (ret == -ENOSPC) {
a4820398
MX
8239 if (!final_tried && ins->offset) {
8240 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8241 num_bytes = round_down(num_bytes,
0b246afa 8242 fs_info->sectorsize);
9e622d6b 8243 num_bytes = max(num_bytes, min_alloc_size);
18513091 8244 ram_bytes = num_bytes;
9e622d6b
MX
8245 if (num_bytes == min_alloc_size)
8246 final_tried = true;
8247 goto again;
ab8d0fc4 8248 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8249 struct btrfs_space_info *sinfo;
8250
ab8d0fc4 8251 sinfo = __find_space_info(fs_info, flags);
0b246afa 8252 btrfs_err(fs_info,
5d163e0e
JM
8253 "allocation failed flags %llu, wanted %llu",
8254 flags, num_bytes);
53804280 8255 if (sinfo)
ab8d0fc4 8256 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8257 }
925baedd 8258 }
0f9dd46c
JB
8259
8260 return ret;
e6dcd2dc
CM
8261}
8262
2ff7e61e 8263static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8264 u64 start, u64 len,
8265 int pin, int delalloc)
65b51a00 8266{
0f9dd46c 8267 struct btrfs_block_group_cache *cache;
1f3c79a2 8268 int ret = 0;
0f9dd46c 8269
0b246afa 8270 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8271 if (!cache) {
0b246afa
JM
8272 btrfs_err(fs_info, "Unable to find block group for %llu",
8273 start);
0f9dd46c
JB
8274 return -ENOSPC;
8275 }
1f3c79a2 8276
e688b725 8277 if (pin)
2ff7e61e 8278 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8279 else {
0b246afa 8280 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8281 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8282 btrfs_add_free_space(cache, start, len);
4824f1f4 8283 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8284 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8285 }
31193213 8286
fa9c0d79 8287 btrfs_put_block_group(cache);
e6dcd2dc
CM
8288 return ret;
8289}
8290
2ff7e61e 8291int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8292 u64 start, u64 len, int delalloc)
e688b725 8293{
2ff7e61e 8294 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8295}
8296
2ff7e61e 8297int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8298 u64 start, u64 len)
8299{
2ff7e61e 8300 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8301}
8302
5d4f98a2 8303static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8304 u64 parent, u64 root_objectid,
8305 u64 flags, u64 owner, u64 offset,
8306 struct btrfs_key *ins, int ref_mod)
e6dcd2dc 8307{
ef89b824 8308 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8309 int ret;
e6dcd2dc 8310 struct btrfs_extent_item *extent_item;
5d4f98a2 8311 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8312 struct btrfs_path *path;
5d4f98a2
YZ
8313 struct extent_buffer *leaf;
8314 int type;
8315 u32 size;
26b8003f 8316
5d4f98a2
YZ
8317 if (parent > 0)
8318 type = BTRFS_SHARED_DATA_REF_KEY;
8319 else
8320 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8321
5d4f98a2 8322 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8323
8324 path = btrfs_alloc_path();
db5b493a
TI
8325 if (!path)
8326 return -ENOMEM;
47e4bb98 8327
b9473439 8328 path->leave_spinning = 1;
5d4f98a2
YZ
8329 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8330 ins, size);
79787eaa
JM
8331 if (ret) {
8332 btrfs_free_path(path);
8333 return ret;
8334 }
0f9dd46c 8335
5d4f98a2
YZ
8336 leaf = path->nodes[0];
8337 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8338 struct btrfs_extent_item);
5d4f98a2
YZ
8339 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8340 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8341 btrfs_set_extent_flags(leaf, extent_item,
8342 flags | BTRFS_EXTENT_FLAG_DATA);
8343
8344 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8345 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8346 if (parent > 0) {
8347 struct btrfs_shared_data_ref *ref;
8348 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8349 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8350 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8351 } else {
8352 struct btrfs_extent_data_ref *ref;
8353 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8354 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8355 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8356 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8357 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8358 }
47e4bb98
CM
8359
8360 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8361 btrfs_free_path(path);
f510cfec 8362
25a356d3 8363 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
1e144fb8
OS
8364 if (ret)
8365 return ret;
8366
6202df69 8367 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8368 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8369 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8370 ins->objectid, ins->offset);
f5947066
CM
8371 BUG();
8372 }
71ff6437 8373 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8374 return ret;
8375}
8376
5d4f98a2 8377static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 8378 struct btrfs_delayed_ref_node *node,
21ebfbe7 8379 struct btrfs_delayed_extent_op *extent_op)
e6dcd2dc 8380{
9dcdbe01 8381 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8382 int ret;
5d4f98a2 8383 struct btrfs_extent_item *extent_item;
4e6bd4e0 8384 struct btrfs_key extent_key;
5d4f98a2
YZ
8385 struct btrfs_tree_block_info *block_info;
8386 struct btrfs_extent_inline_ref *iref;
8387 struct btrfs_path *path;
8388 struct extent_buffer *leaf;
4e6bd4e0 8389 struct btrfs_delayed_tree_ref *ref;
3173a18f 8390 u32 size = sizeof(*extent_item) + sizeof(*iref);
4e6bd4e0 8391 u64 num_bytes;
21ebfbe7 8392 u64 flags = extent_op->flags_to_set;
0b246afa 8393 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f 8394
4e6bd4e0
NB
8395 ref = btrfs_delayed_node_to_tree_ref(node);
8396
4e6bd4e0
NB
8397 extent_key.objectid = node->bytenr;
8398 if (skinny_metadata) {
8399 extent_key.offset = ref->level;
8400 extent_key.type = BTRFS_METADATA_ITEM_KEY;
8401 num_bytes = fs_info->nodesize;
8402 } else {
8403 extent_key.offset = node->num_bytes;
8404 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
3173a18f 8405 size += sizeof(*block_info);
4e6bd4e0
NB
8406 num_bytes = node->num_bytes;
8407 }
1c2308f8 8408
5d4f98a2 8409 path = btrfs_alloc_path();
80ee54bf 8410 if (!path)
d8926bb3 8411 return -ENOMEM;
56bec294 8412
5d4f98a2
YZ
8413 path->leave_spinning = 1;
8414 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4e6bd4e0 8415 &extent_key, size);
79787eaa 8416 if (ret) {
dd825259 8417 btrfs_free_path(path);
79787eaa
JM
8418 return ret;
8419 }
5d4f98a2
YZ
8420
8421 leaf = path->nodes[0];
8422 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8423 struct btrfs_extent_item);
8424 btrfs_set_extent_refs(leaf, extent_item, 1);
8425 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8426 btrfs_set_extent_flags(leaf, extent_item,
8427 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8428
3173a18f
JB
8429 if (skinny_metadata) {
8430 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8431 } else {
8432 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
21ebfbe7 8433 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4e6bd4e0 8434 btrfs_set_tree_block_level(leaf, block_info, ref->level);
3173a18f
JB
8435 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8436 }
5d4f98a2 8437
d4b20733 8438 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
5d4f98a2
YZ
8439 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8440 btrfs_set_extent_inline_ref_type(leaf, iref,
8441 BTRFS_SHARED_BLOCK_REF_KEY);
d4b20733 8442 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
5d4f98a2
YZ
8443 } else {
8444 btrfs_set_extent_inline_ref_type(leaf, iref,
8445 BTRFS_TREE_BLOCK_REF_KEY);
4e6bd4e0 8446 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
5d4f98a2
YZ
8447 }
8448
8449 btrfs_mark_buffer_dirty(leaf);
8450 btrfs_free_path(path);
8451
4e6bd4e0
NB
8452 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8453 num_bytes);
1e144fb8
OS
8454 if (ret)
8455 return ret;
8456
4e6bd4e0 8457 ret = update_block_group(trans, fs_info, extent_key.objectid,
6202df69 8458 fs_info->nodesize, 1);
79787eaa 8459 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8460 btrfs_err(fs_info, "update block group failed for %llu %llu",
4e6bd4e0 8461 extent_key.objectid, extent_key.offset);
5d4f98a2
YZ
8462 BUG();
8463 }
0be5dc67 8464
4e6bd4e0 8465 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
0b246afa 8466 fs_info->nodesize);
5d4f98a2
YZ
8467 return ret;
8468}
8469
8470int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8471 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8472 u64 offset, u64 ram_bytes,
8473 struct btrfs_key *ins)
5d4f98a2
YZ
8474{
8475 int ret;
8476
84f7d8e6 8477 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8478
fd708b81
JB
8479 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8480 root->root_key.objectid, owner, offset,
8481 BTRFS_ADD_DELAYED_EXTENT);
8482
88a979c6 8483 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
84f7d8e6
JB
8484 ins->offset, 0,
8485 root->root_key.objectid, owner,
7be07912
OS
8486 offset, ram_bytes,
8487 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8488 return ret;
8489}
e02119d5
CM
8490
8491/*
8492 * this is used by the tree logging recovery code. It records that
8493 * an extent has been allocated and makes sure to clear the free
8494 * space cache bits as well
8495 */
5d4f98a2 8496int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8497 u64 root_objectid, u64 owner, u64 offset,
8498 struct btrfs_key *ins)
e02119d5 8499{
61da2abf 8500 struct btrfs_fs_info *fs_info = trans->fs_info;
e02119d5
CM
8501 int ret;
8502 struct btrfs_block_group_cache *block_group;
ed7a6948 8503 struct btrfs_space_info *space_info;
11833d66 8504
8c2a1a30
JB
8505 /*
8506 * Mixed block groups will exclude before processing the log so we only
01327610 8507 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8508 */
0b246afa 8509 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8510 ret = __exclude_logged_extent(fs_info, ins->objectid,
8511 ins->offset);
b50c6e25 8512 if (ret)
8c2a1a30 8513 return ret;
11833d66
YZ
8514 }
8515
0b246afa 8516 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8517 if (!block_group)
8518 return -EINVAL;
8519
ed7a6948
WX
8520 space_info = block_group->space_info;
8521 spin_lock(&space_info->lock);
8522 spin_lock(&block_group->lock);
8523 space_info->bytes_reserved += ins->offset;
8524 block_group->reserved += ins->offset;
8525 spin_unlock(&block_group->lock);
8526 spin_unlock(&space_info->lock);
8527
ef89b824
NB
8528 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8529 offset, ins, 1);
b50c6e25 8530 btrfs_put_block_group(block_group);
e02119d5
CM
8531 return ret;
8532}
8533
48a3b636
ES
8534static struct extent_buffer *
8535btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
bc877d28 8536 u64 bytenr, int level, u64 owner)
65b51a00 8537{
0b246afa 8538 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8539 struct extent_buffer *buf;
8540
2ff7e61e 8541 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8542 if (IS_ERR(buf))
8543 return buf;
8544
b72c3aba
QW
8545 /*
8546 * Extra safety check in case the extent tree is corrupted and extent
8547 * allocator chooses to use a tree block which is already used and
8548 * locked.
8549 */
8550 if (buf->lock_owner == current->pid) {
8551 btrfs_err_rl(fs_info,
8552"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8553 buf->start, btrfs_header_owner(buf), current->pid);
8554 free_extent_buffer(buf);
8555 return ERR_PTR(-EUCLEAN);
8556 }
8557
85d4e461 8558 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8559 btrfs_tree_lock(buf);
6a884d7d 8560 btrfs_clean_tree_block(buf);
3083ee2e 8561 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de 8562
8bead258 8563 btrfs_set_lock_blocking_write(buf);
4db8c528 8564 set_extent_buffer_uptodate(buf);
b4ce94de 8565
bc877d28
NB
8566 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8567 btrfs_set_header_level(buf, level);
8568 btrfs_set_header_bytenr(buf, buf->start);
8569 btrfs_set_header_generation(buf, trans->transid);
8570 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8571 btrfs_set_header_owner(buf, owner);
de37aa51 8572 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
bc877d28 8573 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
d0c803c4 8574 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8575 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8576 /*
8577 * we allow two log transactions at a time, use different
52042d8e 8578 * EXTENT bit to differentiate dirty pages.
8cef4e16 8579 */
656f30db 8580 if (buf->log_index == 0)
8cef4e16
YZ
8581 set_extent_dirty(&root->dirty_log_pages, buf->start,
8582 buf->start + buf->len - 1, GFP_NOFS);
8583 else
8584 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8585 buf->start + buf->len - 1);
d0c803c4 8586 } else {
656f30db 8587 buf->log_index = -1;
d0c803c4 8588 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8589 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8590 }
64c12921 8591 trans->dirty = true;
b4ce94de 8592 /* this returns a buffer locked for blocking */
65b51a00
CM
8593 return buf;
8594}
8595
f0486c68
YZ
8596static struct btrfs_block_rsv *
8597use_block_rsv(struct btrfs_trans_handle *trans,
8598 struct btrfs_root *root, u32 blocksize)
8599{
0b246afa 8600 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8601 struct btrfs_block_rsv *block_rsv;
0b246afa 8602 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8603 int ret;
d88033db 8604 bool global_updated = false;
f0486c68
YZ
8605
8606 block_rsv = get_block_rsv(trans, root);
8607
b586b323
MX
8608 if (unlikely(block_rsv->size == 0))
8609 goto try_reserve;
d88033db 8610again:
f0486c68
YZ
8611 ret = block_rsv_use_bytes(block_rsv, blocksize);
8612 if (!ret)
8613 return block_rsv;
8614
b586b323
MX
8615 if (block_rsv->failfast)
8616 return ERR_PTR(ret);
8617
d88033db
MX
8618 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8619 global_updated = true;
0b246afa 8620 update_global_block_rsv(fs_info);
d88033db
MX
8621 goto again;
8622 }
8623
ba2c4d4e
JB
8624 /*
8625 * The global reserve still exists to save us from ourselves, so don't
8626 * warn_on if we are short on our delayed refs reserve.
8627 */
8628 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
8629 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8630 static DEFINE_RATELIMIT_STATE(_rs,
8631 DEFAULT_RATELIMIT_INTERVAL * 10,
8632 /*DEFAULT_RATELIMIT_BURST*/ 1);
8633 if (__ratelimit(&_rs))
8634 WARN(1, KERN_DEBUG
efe120a0 8635 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8636 }
8637try_reserve:
8638 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8639 BTRFS_RESERVE_NO_FLUSH);
8640 if (!ret)
8641 return block_rsv;
8642 /*
8643 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8644 * the global reserve if its space type is the same as the global
8645 * reservation.
b586b323 8646 */
5881cfc9
MX
8647 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8648 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8649 ret = block_rsv_use_bytes(global_rsv, blocksize);
8650 if (!ret)
8651 return global_rsv;
8652 }
8653 return ERR_PTR(ret);
f0486c68
YZ
8654}
8655
8c2a3ca2
JB
8656static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8657 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68 8658{
3a584174 8659 block_rsv_add_bytes(block_rsv, blocksize, false);
ff6bc37e 8660 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8661}
8662
fec577fb 8663/*
f0486c68 8664 * finds a free extent and does all the dirty work required for allocation
67b7859e 8665 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8666 */
4d75f8a9 8667struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8668 struct btrfs_root *root,
8669 u64 parent, u64 root_objectid,
8670 const struct btrfs_disk_key *key,
8671 int level, u64 hint,
8672 u64 empty_size)
fec577fb 8673{
0b246afa 8674 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8675 struct btrfs_key ins;
f0486c68 8676 struct btrfs_block_rsv *block_rsv;
5f39d397 8677 struct extent_buffer *buf;
67b7859e 8678 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8679 u64 flags = 0;
8680 int ret;
0b246afa
JM
8681 u32 blocksize = fs_info->nodesize;
8682 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8683
05653ef3 8684#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8685 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8686 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
bc877d28 8687 level, root_objectid);
faa2dbf0
JB
8688 if (!IS_ERR(buf))
8689 root->alloc_bytenr += blocksize;
8690 return buf;
8691 }
05653ef3 8692#endif
fccb84c9 8693
f0486c68
YZ
8694 block_rsv = use_block_rsv(trans, root, blocksize);
8695 if (IS_ERR(block_rsv))
8696 return ERR_CAST(block_rsv);
8697
18513091 8698 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8699 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8700 if (ret)
8701 goto out_unuse;
55c69072 8702
bc877d28
NB
8703 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8704 root_objectid);
67b7859e
OS
8705 if (IS_ERR(buf)) {
8706 ret = PTR_ERR(buf);
8707 goto out_free_reserved;
8708 }
f0486c68
YZ
8709
8710 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8711 if (parent == 0)
8712 parent = ins.objectid;
8713 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8714 } else
8715 BUG_ON(parent > 0);
8716
8717 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8718 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8719 if (!extent_op) {
8720 ret = -ENOMEM;
8721 goto out_free_buf;
8722 }
f0486c68
YZ
8723 if (key)
8724 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8725 else
8726 memset(&extent_op->key, 0, sizeof(extent_op->key));
8727 extent_op->flags_to_set = flags;
35b3ad50
DS
8728 extent_op->update_key = skinny_metadata ? false : true;
8729 extent_op->update_flags = true;
8730 extent_op->is_data = false;
b1c79e09 8731 extent_op->level = level;
f0486c68 8732
fd708b81
JB
8733 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8734 root_objectid, level, 0,
8735 BTRFS_ADD_DELAYED_EXTENT);
44e1c47d 8736 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
7be07912
OS
8737 ins.offset, parent,
8738 root_objectid, level,
67b7859e 8739 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8740 extent_op, NULL, NULL);
67b7859e
OS
8741 if (ret)
8742 goto out_free_delayed;
f0486c68 8743 }
fec577fb 8744 return buf;
67b7859e
OS
8745
8746out_free_delayed:
8747 btrfs_free_delayed_extent_op(extent_op);
8748out_free_buf:
8749 free_extent_buffer(buf);
8750out_free_reserved:
2ff7e61e 8751 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8752out_unuse:
0b246afa 8753 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8754 return ERR_PTR(ret);
fec577fb 8755}
a28ec197 8756
2c47e605
YZ
8757struct walk_control {
8758 u64 refs[BTRFS_MAX_LEVEL];
8759 u64 flags[BTRFS_MAX_LEVEL];
8760 struct btrfs_key update_progress;
aea6f028
JB
8761 struct btrfs_key drop_progress;
8762 int drop_level;
2c47e605
YZ
8763 int stage;
8764 int level;
8765 int shared_level;
8766 int update_ref;
8767 int keep_locks;
1c4850e2
YZ
8768 int reada_slot;
8769 int reada_count;
78c52d9e 8770 int restarted;
2c47e605
YZ
8771};
8772
8773#define DROP_REFERENCE 1
8774#define UPDATE_BACKREF 2
8775
1c4850e2
YZ
8776static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8777 struct btrfs_root *root,
8778 struct walk_control *wc,
8779 struct btrfs_path *path)
6407bf6d 8780{
0b246afa 8781 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8782 u64 bytenr;
8783 u64 generation;
8784 u64 refs;
94fcca9f 8785 u64 flags;
5d4f98a2 8786 u32 nritems;
1c4850e2
YZ
8787 struct btrfs_key key;
8788 struct extent_buffer *eb;
6407bf6d 8789 int ret;
1c4850e2
YZ
8790 int slot;
8791 int nread = 0;
6407bf6d 8792
1c4850e2
YZ
8793 if (path->slots[wc->level] < wc->reada_slot) {
8794 wc->reada_count = wc->reada_count * 2 / 3;
8795 wc->reada_count = max(wc->reada_count, 2);
8796 } else {
8797 wc->reada_count = wc->reada_count * 3 / 2;
8798 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8799 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8800 }
7bb86316 8801
1c4850e2
YZ
8802 eb = path->nodes[wc->level];
8803 nritems = btrfs_header_nritems(eb);
bd56b302 8804
1c4850e2
YZ
8805 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8806 if (nread >= wc->reada_count)
8807 break;
bd56b302 8808
2dd3e67b 8809 cond_resched();
1c4850e2
YZ
8810 bytenr = btrfs_node_blockptr(eb, slot);
8811 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8812
1c4850e2
YZ
8813 if (slot == path->slots[wc->level])
8814 goto reada;
5d4f98a2 8815
1c4850e2
YZ
8816 if (wc->stage == UPDATE_BACKREF &&
8817 generation <= root->root_key.offset)
bd56b302
CM
8818 continue;
8819
94fcca9f 8820 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8821 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8822 wc->level - 1, 1, &refs,
8823 &flags);
79787eaa
JM
8824 /* We don't care about errors in readahead. */
8825 if (ret < 0)
8826 continue;
94fcca9f
YZ
8827 BUG_ON(refs == 0);
8828
1c4850e2 8829 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8830 if (refs == 1)
8831 goto reada;
bd56b302 8832
94fcca9f
YZ
8833 if (wc->level == 1 &&
8834 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8835 continue;
1c4850e2
YZ
8836 if (!wc->update_ref ||
8837 generation <= root->root_key.offset)
8838 continue;
8839 btrfs_node_key_to_cpu(eb, &key, slot);
8840 ret = btrfs_comp_cpu_keys(&key,
8841 &wc->update_progress);
8842 if (ret < 0)
8843 continue;
94fcca9f
YZ
8844 } else {
8845 if (wc->level == 1 &&
8846 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8847 continue;
6407bf6d 8848 }
1c4850e2 8849reada:
2ff7e61e 8850 readahead_tree_block(fs_info, bytenr);
1c4850e2 8851 nread++;
20524f02 8852 }
1c4850e2 8853 wc->reada_slot = slot;
20524f02 8854}
2c47e605 8855
f82d02d9 8856/*
2c016dc2 8857 * helper to process tree block while walking down the tree.
2c47e605 8858 *
2c47e605
YZ
8859 * when wc->stage == UPDATE_BACKREF, this function updates
8860 * back refs for pointers in the block.
8861 *
8862 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8863 */
2c47e605 8864static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8865 struct btrfs_root *root,
2c47e605 8866 struct btrfs_path *path,
94fcca9f 8867 struct walk_control *wc, int lookup_info)
f82d02d9 8868{
2ff7e61e 8869 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8870 int level = wc->level;
8871 struct extent_buffer *eb = path->nodes[level];
2c47e605 8872 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8873 int ret;
8874
2c47e605
YZ
8875 if (wc->stage == UPDATE_BACKREF &&
8876 btrfs_header_owner(eb) != root->root_key.objectid)
8877 return 1;
f82d02d9 8878
2c47e605
YZ
8879 /*
8880 * when reference count of tree block is 1, it won't increase
8881 * again. once full backref flag is set, we never clear it.
8882 */
94fcca9f
YZ
8883 if (lookup_info &&
8884 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8885 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8886 BUG_ON(!path->locks[level]);
2ff7e61e 8887 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8888 eb->start, level, 1,
2c47e605
YZ
8889 &wc->refs[level],
8890 &wc->flags[level]);
79787eaa
JM
8891 BUG_ON(ret == -ENOMEM);
8892 if (ret)
8893 return ret;
2c47e605
YZ
8894 BUG_ON(wc->refs[level] == 0);
8895 }
5d4f98a2 8896
2c47e605
YZ
8897 if (wc->stage == DROP_REFERENCE) {
8898 if (wc->refs[level] > 1)
8899 return 1;
f82d02d9 8900
2c47e605 8901 if (path->locks[level] && !wc->keep_locks) {
bd681513 8902 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8903 path->locks[level] = 0;
8904 }
8905 return 0;
8906 }
f82d02d9 8907
2c47e605
YZ
8908 /* wc->stage == UPDATE_BACKREF */
8909 if (!(wc->flags[level] & flag)) {
8910 BUG_ON(!path->locks[level]);
e339a6b0 8911 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8912 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8913 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8914 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8915 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8916 eb->len, flag,
8917 btrfs_header_level(eb), 0);
79787eaa 8918 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8919 wc->flags[level] |= flag;
8920 }
8921
8922 /*
8923 * the block is shared by multiple trees, so it's not good to
8924 * keep the tree lock
8925 */
8926 if (path->locks[level] && level > 0) {
bd681513 8927 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8928 path->locks[level] = 0;
8929 }
8930 return 0;
8931}
8932
78c52d9e
JB
8933/*
8934 * This is used to verify a ref exists for this root to deal with a bug where we
8935 * would have a drop_progress key that hadn't been updated properly.
8936 */
8937static int check_ref_exists(struct btrfs_trans_handle *trans,
8938 struct btrfs_root *root, u64 bytenr, u64 parent,
8939 int level)
8940{
8941 struct btrfs_path *path;
8942 struct btrfs_extent_inline_ref *iref;
8943 int ret;
8944
8945 path = btrfs_alloc_path();
8946 if (!path)
8947 return -ENOMEM;
8948
8949 ret = lookup_extent_backref(trans, path, &iref, bytenr,
8950 root->fs_info->nodesize, parent,
8951 root->root_key.objectid, level, 0);
8952 btrfs_free_path(path);
8953 if (ret == -ENOENT)
8954 return 0;
8955 if (ret < 0)
8956 return ret;
8957 return 1;
8958}
8959
1c4850e2 8960/*
2c016dc2 8961 * helper to process tree block pointer.
1c4850e2
YZ
8962 *
8963 * when wc->stage == DROP_REFERENCE, this function checks
8964 * reference count of the block pointed to. if the block
8965 * is shared and we need update back refs for the subtree
8966 * rooted at the block, this function changes wc->stage to
8967 * UPDATE_BACKREF. if the block is shared and there is no
8968 * need to update back, this function drops the reference
8969 * to the block.
8970 *
8971 * NOTE: return value 1 means we should stop walking down.
8972 */
8973static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8974 struct btrfs_root *root,
8975 struct btrfs_path *path,
94fcca9f 8976 struct walk_control *wc, int *lookup_info)
1c4850e2 8977{
0b246afa 8978 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8979 u64 bytenr;
8980 u64 generation;
8981 u64 parent;
1c4850e2 8982 struct btrfs_key key;
581c1760 8983 struct btrfs_key first_key;
1c4850e2
YZ
8984 struct extent_buffer *next;
8985 int level = wc->level;
8986 int reada = 0;
8987 int ret = 0;
1152651a 8988 bool need_account = false;
1c4850e2
YZ
8989
8990 generation = btrfs_node_ptr_generation(path->nodes[level],
8991 path->slots[level]);
8992 /*
8993 * if the lower level block was created before the snapshot
8994 * was created, we know there is no need to update back refs
8995 * for the subtree
8996 */
8997 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8998 generation <= root->root_key.offset) {
8999 *lookup_info = 1;
1c4850e2 9000 return 1;
94fcca9f 9001 }
1c4850e2
YZ
9002
9003 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
9004 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
9005 path->slots[level]);
1c4850e2 9006
0b246afa 9007 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 9008 if (!next) {
2ff7e61e 9009 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
9010 if (IS_ERR(next))
9011 return PTR_ERR(next);
9012
b2aaaa3b
JB
9013 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
9014 level - 1);
1c4850e2
YZ
9015 reada = 1;
9016 }
9017 btrfs_tree_lock(next);
8bead258 9018 btrfs_set_lock_blocking_write(next);
1c4850e2 9019
2ff7e61e 9020 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
9021 &wc->refs[level - 1],
9022 &wc->flags[level - 1]);
4867268c
JB
9023 if (ret < 0)
9024 goto out_unlock;
79787eaa 9025
c2cf52eb 9026 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 9027 btrfs_err(fs_info, "Missing references.");
4867268c
JB
9028 ret = -EIO;
9029 goto out_unlock;
c2cf52eb 9030 }
94fcca9f 9031 *lookup_info = 0;
1c4850e2 9032
94fcca9f 9033 if (wc->stage == DROP_REFERENCE) {
1c4850e2 9034 if (wc->refs[level - 1] > 1) {
1152651a 9035 need_account = true;
94fcca9f
YZ
9036 if (level == 1 &&
9037 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
9038 goto skip;
9039
1c4850e2
YZ
9040 if (!wc->update_ref ||
9041 generation <= root->root_key.offset)
9042 goto skip;
9043
9044 btrfs_node_key_to_cpu(path->nodes[level], &key,
9045 path->slots[level]);
9046 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
9047 if (ret < 0)
9048 goto skip;
9049
9050 wc->stage = UPDATE_BACKREF;
9051 wc->shared_level = level - 1;
9052 }
94fcca9f
YZ
9053 } else {
9054 if (level == 1 &&
9055 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
9056 goto skip;
1c4850e2
YZ
9057 }
9058
b9fab919 9059 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
9060 btrfs_tree_unlock(next);
9061 free_extent_buffer(next);
9062 next = NULL;
94fcca9f 9063 *lookup_info = 1;
1c4850e2
YZ
9064 }
9065
9066 if (!next) {
9067 if (reada && level == 1)
9068 reada_walk_down(trans, root, wc, path);
581c1760
QW
9069 next = read_tree_block(fs_info, bytenr, generation, level - 1,
9070 &first_key);
64c043de
LB
9071 if (IS_ERR(next)) {
9072 return PTR_ERR(next);
9073 } else if (!extent_buffer_uptodate(next)) {
416bc658 9074 free_extent_buffer(next);
97d9a8a4 9075 return -EIO;
416bc658 9076 }
1c4850e2 9077 btrfs_tree_lock(next);
8bead258 9078 btrfs_set_lock_blocking_write(next);
1c4850e2
YZ
9079 }
9080
9081 level--;
4867268c
JB
9082 ASSERT(level == btrfs_header_level(next));
9083 if (level != btrfs_header_level(next)) {
9084 btrfs_err(root->fs_info, "mismatched level");
9085 ret = -EIO;
9086 goto out_unlock;
9087 }
1c4850e2
YZ
9088 path->nodes[level] = next;
9089 path->slots[level] = 0;
bd681513 9090 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
9091 wc->level = level;
9092 if (wc->level == 1)
9093 wc->reada_slot = 0;
9094 return 0;
9095skip:
9096 wc->refs[level - 1] = 0;
9097 wc->flags[level - 1] = 0;
94fcca9f
YZ
9098 if (wc->stage == DROP_REFERENCE) {
9099 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
9100 parent = path->nodes[level]->start;
9101 } else {
4867268c 9102 ASSERT(root->root_key.objectid ==
94fcca9f 9103 btrfs_header_owner(path->nodes[level]));
4867268c
JB
9104 if (root->root_key.objectid !=
9105 btrfs_header_owner(path->nodes[level])) {
9106 btrfs_err(root->fs_info,
9107 "mismatched block owner");
9108 ret = -EIO;
9109 goto out_unlock;
9110 }
94fcca9f
YZ
9111 parent = 0;
9112 }
1c4850e2 9113
78c52d9e
JB
9114 /*
9115 * If we had a drop_progress we need to verify the refs are set
9116 * as expected. If we find our ref then we know that from here
9117 * on out everything should be correct, and we can clear the
9118 * ->restarted flag.
9119 */
9120 if (wc->restarted) {
9121 ret = check_ref_exists(trans, root, bytenr, parent,
9122 level - 1);
9123 if (ret < 0)
9124 goto out_unlock;
9125 if (ret == 0)
9126 goto no_delete;
9127 ret = 0;
9128 wc->restarted = 0;
9129 }
9130
2cd86d30
QW
9131 /*
9132 * Reloc tree doesn't contribute to qgroup numbers, and we have
9133 * already accounted them at merge time (replace_path),
9134 * thus we could skip expensive subtree trace here.
9135 */
9136 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
9137 need_account) {
deb40627 9138 ret = btrfs_qgroup_trace_subtree(trans, next,
33d1f05c 9139 generation, level - 1);
1152651a 9140 if (ret) {
0b246afa 9141 btrfs_err_rl(fs_info,
5d163e0e
JM
9142 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
9143 ret);
1152651a
MF
9144 }
9145 }
aea6f028
JB
9146
9147 /*
9148 * We need to update the next key in our walk control so we can
9149 * update the drop_progress key accordingly. We don't care if
9150 * find_next_key doesn't find a key because that means we're at
9151 * the end and are going to clean up now.
9152 */
9153 wc->drop_level = level;
9154 find_next_key(path, level, &wc->drop_progress);
9155
01e0da48 9156 ret = btrfs_free_extent(trans, root, bytenr, fs_info->nodesize,
2ff7e61e
JM
9157 parent, root->root_key.objectid,
9158 level - 1, 0);
4867268c
JB
9159 if (ret)
9160 goto out_unlock;
1c4850e2 9161 }
78c52d9e 9162no_delete:
4867268c
JB
9163 *lookup_info = 1;
9164 ret = 1;
9165
9166out_unlock:
1c4850e2
YZ
9167 btrfs_tree_unlock(next);
9168 free_extent_buffer(next);
4867268c
JB
9169
9170 return ret;
1c4850e2
YZ
9171}
9172
2c47e605 9173/*
2c016dc2 9174 * helper to process tree block while walking up the tree.
2c47e605
YZ
9175 *
9176 * when wc->stage == DROP_REFERENCE, this function drops
9177 * reference count on the block.
9178 *
9179 * when wc->stage == UPDATE_BACKREF, this function changes
9180 * wc->stage back to DROP_REFERENCE if we changed wc->stage
9181 * to UPDATE_BACKREF previously while processing the block.
9182 *
9183 * NOTE: return value 1 means we should stop walking up.
9184 */
9185static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9186 struct btrfs_root *root,
9187 struct btrfs_path *path,
9188 struct walk_control *wc)
9189{
0b246afa 9190 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 9191 int ret;
2c47e605
YZ
9192 int level = wc->level;
9193 struct extent_buffer *eb = path->nodes[level];
9194 u64 parent = 0;
9195
9196 if (wc->stage == UPDATE_BACKREF) {
9197 BUG_ON(wc->shared_level < level);
9198 if (level < wc->shared_level)
9199 goto out;
9200
2c47e605
YZ
9201 ret = find_next_key(path, level + 1, &wc->update_progress);
9202 if (ret > 0)
9203 wc->update_ref = 0;
9204
9205 wc->stage = DROP_REFERENCE;
9206 wc->shared_level = -1;
9207 path->slots[level] = 0;
9208
9209 /*
9210 * check reference count again if the block isn't locked.
9211 * we should start walking down the tree again if reference
9212 * count is one.
9213 */
9214 if (!path->locks[level]) {
9215 BUG_ON(level == 0);
9216 btrfs_tree_lock(eb);
8bead258 9217 btrfs_set_lock_blocking_write(eb);
bd681513 9218 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9219
2ff7e61e 9220 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 9221 eb->start, level, 1,
2c47e605
YZ
9222 &wc->refs[level],
9223 &wc->flags[level]);
79787eaa
JM
9224 if (ret < 0) {
9225 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9226 path->locks[level] = 0;
79787eaa
JM
9227 return ret;
9228 }
2c47e605
YZ
9229 BUG_ON(wc->refs[level] == 0);
9230 if (wc->refs[level] == 1) {
bd681513 9231 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9232 path->locks[level] = 0;
2c47e605
YZ
9233 return 1;
9234 }
f82d02d9 9235 }
2c47e605 9236 }
f82d02d9 9237
2c47e605
YZ
9238 /* wc->stage == DROP_REFERENCE */
9239 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 9240
2c47e605
YZ
9241 if (wc->refs[level] == 1) {
9242 if (level == 0) {
9243 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 9244 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 9245 else
e339a6b0 9246 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 9247 BUG_ON(ret); /* -ENOMEM */
8d38d7eb 9248 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
1152651a 9249 if (ret) {
0b246afa 9250 btrfs_err_rl(fs_info,
5d163e0e
JM
9251 "error %d accounting leaf items. Quota is out of sync, rescan required.",
9252 ret);
1152651a 9253 }
2c47e605 9254 }
6a884d7d 9255 /* make block locked assertion in btrfs_clean_tree_block happy */
2c47e605
YZ
9256 if (!path->locks[level] &&
9257 btrfs_header_generation(eb) == trans->transid) {
9258 btrfs_tree_lock(eb);
8bead258 9259 btrfs_set_lock_blocking_write(eb);
bd681513 9260 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9261 }
6a884d7d 9262 btrfs_clean_tree_block(eb);
2c47e605
YZ
9263 }
9264
9265 if (eb == root->node) {
9266 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9267 parent = eb->start;
65c6e82b
QW
9268 else if (root->root_key.objectid != btrfs_header_owner(eb))
9269 goto owner_mismatch;
2c47e605
YZ
9270 } else {
9271 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9272 parent = path->nodes[level + 1]->start;
65c6e82b
QW
9273 else if (root->root_key.objectid !=
9274 btrfs_header_owner(path->nodes[level + 1]))
9275 goto owner_mismatch;
f82d02d9 9276 }
f82d02d9 9277
5581a51a 9278 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
9279out:
9280 wc->refs[level] = 0;
9281 wc->flags[level] = 0;
f0486c68 9282 return 0;
65c6e82b
QW
9283
9284owner_mismatch:
9285 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
9286 btrfs_header_owner(eb), root->root_key.objectid);
9287 return -EUCLEAN;
2c47e605
YZ
9288}
9289
9290static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9291 struct btrfs_root *root,
9292 struct btrfs_path *path,
9293 struct walk_control *wc)
9294{
2c47e605 9295 int level = wc->level;
94fcca9f 9296 int lookup_info = 1;
2c47e605
YZ
9297 int ret;
9298
9299 while (level >= 0) {
94fcca9f 9300 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
9301 if (ret > 0)
9302 break;
9303
9304 if (level == 0)
9305 break;
9306
7a7965f8
YZ
9307 if (path->slots[level] >=
9308 btrfs_header_nritems(path->nodes[level]))
9309 break;
9310
94fcca9f 9311 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9312 if (ret > 0) {
9313 path->slots[level]++;
9314 continue;
90d2c51d
MX
9315 } else if (ret < 0)
9316 return ret;
1c4850e2 9317 level = wc->level;
f82d02d9 9318 }
f82d02d9
YZ
9319 return 0;
9320}
9321
d397712b 9322static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9323 struct btrfs_root *root,
f82d02d9 9324 struct btrfs_path *path,
2c47e605 9325 struct walk_control *wc, int max_level)
20524f02 9326{
2c47e605 9327 int level = wc->level;
20524f02 9328 int ret;
9f3a7427 9329
2c47e605
YZ
9330 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9331 while (level < max_level && path->nodes[level]) {
9332 wc->level = level;
9333 if (path->slots[level] + 1 <
9334 btrfs_header_nritems(path->nodes[level])) {
9335 path->slots[level]++;
20524f02
CM
9336 return 0;
9337 } else {
2c47e605
YZ
9338 ret = walk_up_proc(trans, root, path, wc);
9339 if (ret > 0)
9340 return 0;
65c6e82b
QW
9341 if (ret < 0)
9342 return ret;
bd56b302 9343
2c47e605 9344 if (path->locks[level]) {
bd681513
CM
9345 btrfs_tree_unlock_rw(path->nodes[level],
9346 path->locks[level]);
2c47e605 9347 path->locks[level] = 0;
f82d02d9 9348 }
2c47e605
YZ
9349 free_extent_buffer(path->nodes[level]);
9350 path->nodes[level] = NULL;
9351 level++;
20524f02
CM
9352 }
9353 }
9354 return 1;
9355}
9356
9aca1d51 9357/*
2c47e605
YZ
9358 * drop a subvolume tree.
9359 *
9360 * this function traverses the tree freeing any blocks that only
9361 * referenced by the tree.
9362 *
9363 * when a shared tree block is found. this function decreases its
9364 * reference count by one. if update_ref is true, this function
9365 * also make sure backrefs for the shared block and all lower level
9366 * blocks are properly updated.
9d1a2a3a
DS
9367 *
9368 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9369 */
2c536799 9370int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9371 struct btrfs_block_rsv *block_rsv, int update_ref,
9372 int for_reloc)
20524f02 9373{
ab8d0fc4 9374 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9375 struct btrfs_path *path;
2c47e605 9376 struct btrfs_trans_handle *trans;
ab8d0fc4 9377 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9378 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9379 struct walk_control *wc;
9380 struct btrfs_key key;
9381 int err = 0;
9382 int ret;
9383 int level;
d29a9f62 9384 bool root_dropped = false;
20524f02 9385
4fd786e6 9386 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
1152651a 9387
5caf2a00 9388 path = btrfs_alloc_path();
cb1b69f4
TI
9389 if (!path) {
9390 err = -ENOMEM;
9391 goto out;
9392 }
20524f02 9393
2c47e605 9394 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9395 if (!wc) {
9396 btrfs_free_path(path);
cb1b69f4
TI
9397 err = -ENOMEM;
9398 goto out;
38a1a919 9399 }
2c47e605 9400
a22285a6 9401 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9402 if (IS_ERR(trans)) {
9403 err = PTR_ERR(trans);
9404 goto out_free;
9405 }
98d5dc13 9406
0568e82d
JB
9407 err = btrfs_run_delayed_items(trans);
9408 if (err)
9409 goto out_end_trans;
9410
3fd0a558
YZ
9411 if (block_rsv)
9412 trans->block_rsv = block_rsv;
2c47e605 9413
83354f07
JB
9414 /*
9415 * This will help us catch people modifying the fs tree while we're
9416 * dropping it. It is unsafe to mess with the fs tree while it's being
9417 * dropped as we unlock the root node and parent nodes as we walk down
9418 * the tree, assuming nothing will change. If something does change
9419 * then we'll have stale information and drop references to blocks we've
9420 * already dropped.
9421 */
9422 set_bit(BTRFS_ROOT_DELETING, &root->state);
9f3a7427 9423 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9424 level = btrfs_header_level(root->node);
5d4f98a2 9425 path->nodes[level] = btrfs_lock_root_node(root);
8bead258 9426 btrfs_set_lock_blocking_write(path->nodes[level]);
9f3a7427 9427 path->slots[level] = 0;
bd681513 9428 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9429 memset(&wc->update_progress, 0,
9430 sizeof(wc->update_progress));
9f3a7427 9431 } else {
9f3a7427 9432 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9433 memcpy(&wc->update_progress, &key,
9434 sizeof(wc->update_progress));
9435
6702ed49 9436 level = root_item->drop_level;
2c47e605 9437 BUG_ON(level == 0);
6702ed49 9438 path->lowest_level = level;
2c47e605
YZ
9439 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9440 path->lowest_level = 0;
9441 if (ret < 0) {
9442 err = ret;
79787eaa 9443 goto out_end_trans;
9f3a7427 9444 }
1c4850e2 9445 WARN_ON(ret > 0);
2c47e605 9446
7d9eb12c
CM
9447 /*
9448 * unlock our path, this is safe because only this
9449 * function is allowed to delete this snapshot
9450 */
5d4f98a2 9451 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9452
9453 level = btrfs_header_level(root->node);
9454 while (1) {
9455 btrfs_tree_lock(path->nodes[level]);
8bead258 9456 btrfs_set_lock_blocking_write(path->nodes[level]);
fec386ac 9457 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9458
2ff7e61e 9459 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9460 path->nodes[level]->start,
3173a18f 9461 level, 1, &wc->refs[level],
2c47e605 9462 &wc->flags[level]);
79787eaa
JM
9463 if (ret < 0) {
9464 err = ret;
9465 goto out_end_trans;
9466 }
2c47e605
YZ
9467 BUG_ON(wc->refs[level] == 0);
9468
9469 if (level == root_item->drop_level)
9470 break;
9471
9472 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9473 path->locks[level] = 0;
2c47e605
YZ
9474 WARN_ON(wc->refs[level] != 1);
9475 level--;
9476 }
9f3a7427 9477 }
2c47e605 9478
78c52d9e 9479 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
2c47e605
YZ
9480 wc->level = level;
9481 wc->shared_level = -1;
9482 wc->stage = DROP_REFERENCE;
9483 wc->update_ref = update_ref;
9484 wc->keep_locks = 0;
0b246afa 9485 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9486
d397712b 9487 while (1) {
9d1a2a3a 9488
2c47e605
YZ
9489 ret = walk_down_tree(trans, root, path, wc);
9490 if (ret < 0) {
9491 err = ret;
20524f02 9492 break;
2c47e605 9493 }
9aca1d51 9494
2c47e605
YZ
9495 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9496 if (ret < 0) {
9497 err = ret;
20524f02 9498 break;
2c47e605
YZ
9499 }
9500
9501 if (ret > 0) {
9502 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9503 break;
9504 }
2c47e605
YZ
9505
9506 if (wc->stage == DROP_REFERENCE) {
aea6f028
JB
9507 wc->drop_level = wc->level;
9508 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
9509 &wc->drop_progress,
9510 path->slots[wc->drop_level]);
9511 }
9512 btrfs_cpu_key_to_disk(&root_item->drop_progress,
9513 &wc->drop_progress);
9514 root_item->drop_level = wc->drop_level;
2c47e605
YZ
9515
9516 BUG_ON(wc->level == 0);
3a45bb20 9517 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9518 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9519 ret = btrfs_update_root(trans, tree_root,
9520 &root->root_key,
9521 root_item);
79787eaa 9522 if (ret) {
66642832 9523 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9524 err = ret;
9525 goto out_end_trans;
9526 }
2c47e605 9527
3a45bb20 9528 btrfs_end_transaction_throttle(trans);
2ff7e61e 9529 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9530 btrfs_debug(fs_info,
9531 "drop snapshot early exit");
3c8f2422
JB
9532 err = -EAGAIN;
9533 goto out_free;
9534 }
9535
a22285a6 9536 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9537 if (IS_ERR(trans)) {
9538 err = PTR_ERR(trans);
9539 goto out_free;
9540 }
3fd0a558
YZ
9541 if (block_rsv)
9542 trans->block_rsv = block_rsv;
c3e69d58 9543 }
20524f02 9544 }
b3b4aa74 9545 btrfs_release_path(path);
79787eaa
JM
9546 if (err)
9547 goto out_end_trans;
2c47e605 9548
ab9ce7d4 9549 ret = btrfs_del_root(trans, &root->root_key);
79787eaa 9550 if (ret) {
66642832 9551 btrfs_abort_transaction(trans, ret);
e19182c0 9552 err = ret;
79787eaa
JM
9553 goto out_end_trans;
9554 }
2c47e605 9555
76dda93c 9556 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9557 ret = btrfs_find_root(tree_root, &root->root_key, path,
9558 NULL, NULL);
79787eaa 9559 if (ret < 0) {
66642832 9560 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9561 err = ret;
9562 goto out_end_trans;
9563 } else if (ret > 0) {
84cd948c
JB
9564 /* if we fail to delete the orphan item this time
9565 * around, it'll get picked up the next time.
9566 *
9567 * The most common failure here is just -ENOENT.
9568 */
9569 btrfs_del_orphan_item(trans, tree_root,
9570 root->root_key.objectid);
76dda93c
YZ
9571 }
9572 }
9573
27cdeb70 9574 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9575 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9576 } else {
9577 free_extent_buffer(root->node);
9578 free_extent_buffer(root->commit_root);
b0feb9d9 9579 btrfs_put_fs_root(root);
76dda93c 9580 }
d29a9f62 9581 root_dropped = true;
79787eaa 9582out_end_trans:
3a45bb20 9583 btrfs_end_transaction_throttle(trans);
79787eaa 9584out_free:
2c47e605 9585 kfree(wc);
5caf2a00 9586 btrfs_free_path(path);
cb1b69f4 9587out:
d29a9f62
JB
9588 /*
9589 * So if we need to stop dropping the snapshot for whatever reason we
9590 * need to make sure to add it back to the dead root list so that we
9591 * keep trying to do the work later. This also cleans up roots if we
9592 * don't have it in the radix (like when we recover after a power fail
9593 * or unmount) so we don't leak memory.
9594 */
897ca819 9595 if (!for_reloc && !root_dropped)
d29a9f62 9596 btrfs_add_dead_root(root);
90515e7f 9597 if (err && err != -EAGAIN)
ab8d0fc4 9598 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9599 return err;
20524f02 9600}
9078a3e1 9601
2c47e605
YZ
9602/*
9603 * drop subtree rooted at tree block 'node'.
9604 *
9605 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9606 * only used by relocation code
2c47e605 9607 */
f82d02d9
YZ
9608int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9609 struct btrfs_root *root,
9610 struct extent_buffer *node,
9611 struct extent_buffer *parent)
9612{
0b246afa 9613 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9614 struct btrfs_path *path;
2c47e605 9615 struct walk_control *wc;
f82d02d9
YZ
9616 int level;
9617 int parent_level;
9618 int ret = 0;
9619 int wret;
9620
2c47e605
YZ
9621 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9622
f82d02d9 9623 path = btrfs_alloc_path();
db5b493a
TI
9624 if (!path)
9625 return -ENOMEM;
f82d02d9 9626
2c47e605 9627 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9628 if (!wc) {
9629 btrfs_free_path(path);
9630 return -ENOMEM;
9631 }
2c47e605 9632
b9447ef8 9633 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9634 parent_level = btrfs_header_level(parent);
9635 extent_buffer_get(parent);
9636 path->nodes[parent_level] = parent;
9637 path->slots[parent_level] = btrfs_header_nritems(parent);
9638
b9447ef8 9639 btrfs_assert_tree_locked(node);
f82d02d9 9640 level = btrfs_header_level(node);
f82d02d9
YZ
9641 path->nodes[level] = node;
9642 path->slots[level] = 0;
bd681513 9643 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9644
9645 wc->refs[parent_level] = 1;
9646 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9647 wc->level = level;
9648 wc->shared_level = -1;
9649 wc->stage = DROP_REFERENCE;
9650 wc->update_ref = 0;
9651 wc->keep_locks = 1;
0b246afa 9652 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9653
9654 while (1) {
2c47e605
YZ
9655 wret = walk_down_tree(trans, root, path, wc);
9656 if (wret < 0) {
f82d02d9 9657 ret = wret;
f82d02d9 9658 break;
2c47e605 9659 }
f82d02d9 9660
2c47e605 9661 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9662 if (wret < 0)
9663 ret = wret;
9664 if (wret != 0)
9665 break;
9666 }
9667
2c47e605 9668 kfree(wc);
f82d02d9
YZ
9669 btrfs_free_path(path);
9670 return ret;
9671}
9672
6202df69 9673static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9674{
9675 u64 num_devices;
fc67c450 9676 u64 stripped;
e4d8ec0f 9677
fc67c450
ID
9678 /*
9679 * if restripe for this chunk_type is on pick target profile and
9680 * return, otherwise do the usual balance
9681 */
6202df69 9682 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9683 if (stripped)
9684 return extended_to_chunk(stripped);
e4d8ec0f 9685
6202df69 9686 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9687
fc67c450 9688 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9689 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9690 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9691
ec44a35c
CM
9692 if (num_devices == 1) {
9693 stripped |= BTRFS_BLOCK_GROUP_DUP;
9694 stripped = flags & ~stripped;
9695
9696 /* turn raid0 into single device chunks */
9697 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9698 return stripped;
9699
9700 /* turn mirroring into duplication */
9701 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9702 BTRFS_BLOCK_GROUP_RAID10))
9703 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9704 } else {
9705 /* they already had raid on here, just return */
ec44a35c
CM
9706 if (flags & stripped)
9707 return flags;
9708
9709 stripped |= BTRFS_BLOCK_GROUP_DUP;
9710 stripped = flags & ~stripped;
9711
9712 /* switch duplicated blocks with raid1 */
9713 if (flags & BTRFS_BLOCK_GROUP_DUP)
9714 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9715
e3176ca2 9716 /* this is drive concat, leave it alone */
ec44a35c 9717 }
e3176ca2 9718
ec44a35c
CM
9719 return flags;
9720}
9721
868f401a 9722static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9723{
f0486c68
YZ
9724 struct btrfs_space_info *sinfo = cache->space_info;
9725 u64 num_bytes;
3ece54e5 9726 u64 sinfo_used;
199c36ea 9727 u64 min_allocable_bytes;
f0486c68 9728 int ret = -ENOSPC;
0ef3e66b 9729
199c36ea
MX
9730 /*
9731 * We need some metadata space and system metadata space for
9732 * allocating chunks in some corner cases until we force to set
9733 * it to be readonly.
9734 */
9735 if ((sinfo->flags &
9736 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9737 !force)
ee22184b 9738 min_allocable_bytes = SZ_1M;
199c36ea
MX
9739 else
9740 min_allocable_bytes = 0;
9741
f0486c68
YZ
9742 spin_lock(&sinfo->lock);
9743 spin_lock(&cache->lock);
61cfea9b
W
9744
9745 if (cache->ro) {
868f401a 9746 cache->ro++;
61cfea9b
W
9747 ret = 0;
9748 goto out;
9749 }
9750
f0486c68
YZ
9751 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9752 cache->bytes_super - btrfs_block_group_used(&cache->item);
3ece54e5 9753 sinfo_used = btrfs_space_info_used(sinfo, true);
f0486c68 9754
3ece54e5
QW
9755 if (sinfo_used + num_bytes + min_allocable_bytes <=
9756 sinfo->total_bytes) {
f0486c68 9757 sinfo->bytes_readonly += num_bytes;
868f401a 9758 cache->ro++;
633c0aad 9759 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9760 ret = 0;
9761 }
61cfea9b 9762out:
f0486c68
YZ
9763 spin_unlock(&cache->lock);
9764 spin_unlock(&sinfo->lock);
3ece54e5
QW
9765 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
9766 btrfs_info(cache->fs_info,
9767 "unable to make block group %llu ro",
9768 cache->key.objectid);
9769 btrfs_info(cache->fs_info,
9770 "sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
9771 sinfo_used, num_bytes, min_allocable_bytes);
9772 dump_space_info(cache->fs_info, cache->space_info, 0, 0);
9773 }
f0486c68
YZ
9774 return ret;
9775}
7d9eb12c 9776
c83488af 9777int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
c286ac48 9778
f0486c68 9779{
c83488af 9780 struct btrfs_fs_info *fs_info = cache->fs_info;
f0486c68
YZ
9781 struct btrfs_trans_handle *trans;
9782 u64 alloc_flags;
9783 int ret;
7d9eb12c 9784
1bbc621e 9785again:
5e00f193 9786 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9787 if (IS_ERR(trans))
9788 return PTR_ERR(trans);
5d4f98a2 9789
1bbc621e
CM
9790 /*
9791 * we're not allowed to set block groups readonly after the dirty
9792 * block groups cache has started writing. If it already started,
9793 * back off and let this transaction commit
9794 */
0b246afa 9795 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9796 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9797 u64 transid = trans->transid;
9798
0b246afa 9799 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9800 btrfs_end_transaction(trans);
1bbc621e 9801
2ff7e61e 9802 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9803 if (ret)
9804 return ret;
9805 goto again;
9806 }
9807
153c35b6
CM
9808 /*
9809 * if we are changing raid levels, try to allocate a corresponding
9810 * block group with the new raid level.
9811 */
0b246afa 9812 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9813 if (alloc_flags != cache->flags) {
01458828 9814 ret = do_chunk_alloc(trans, alloc_flags,
153c35b6
CM
9815 CHUNK_ALLOC_FORCE);
9816 /*
9817 * ENOSPC is allowed here, we may have enough space
9818 * already allocated at the new raid level to
9819 * carry on
9820 */
9821 if (ret == -ENOSPC)
9822 ret = 0;
9823 if (ret < 0)
9824 goto out;
9825 }
1bbc621e 9826
868f401a 9827 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9828 if (!ret)
9829 goto out;
2ff7e61e 9830 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
01458828 9831 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
f0486c68
YZ
9832 if (ret < 0)
9833 goto out;
868f401a 9834 ret = inc_block_group_ro(cache, 0);
f0486c68 9835out:
2f081088 9836 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9837 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9838 mutex_lock(&fs_info->chunk_mutex);
451a2c13 9839 check_system_chunk(trans, alloc_flags);
34441361 9840 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9841 }
0b246afa 9842 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9843
3a45bb20 9844 btrfs_end_transaction(trans);
f0486c68
YZ
9845 return ret;
9846}
5d4f98a2 9847
43a7e99d 9848int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
c87f08ca 9849{
43a7e99d 9850 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
2ff7e61e 9851
01458828 9852 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9853}
9854
6d07bcec
MX
9855/*
9856 * helper to account the unused space of all the readonly block group in the
633c0aad 9857 * space_info. takes mirrors into account.
6d07bcec 9858 */
633c0aad 9859u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9860{
9861 struct btrfs_block_group_cache *block_group;
9862 u64 free_bytes = 0;
9863 int factor;
9864
01327610 9865 /* It's df, we don't care if it's racy */
633c0aad
JB
9866 if (list_empty(&sinfo->ro_bgs))
9867 return 0;
9868
9869 spin_lock(&sinfo->lock);
9870 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9871 spin_lock(&block_group->lock);
9872
9873 if (!block_group->ro) {
9874 spin_unlock(&block_group->lock);
9875 continue;
9876 }
9877
46df06b8 9878 factor = btrfs_bg_type_to_factor(block_group->flags);
6d07bcec
MX
9879 free_bytes += (block_group->key.offset -
9880 btrfs_block_group_used(&block_group->item)) *
9881 factor;
9882
9883 spin_unlock(&block_group->lock);
9884 }
6d07bcec
MX
9885 spin_unlock(&sinfo->lock);
9886
9887 return free_bytes;
9888}
9889
2ff7e61e 9890void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9891{
f0486c68
YZ
9892 struct btrfs_space_info *sinfo = cache->space_info;
9893 u64 num_bytes;
9894
9895 BUG_ON(!cache->ro);
9896
9897 spin_lock(&sinfo->lock);
9898 spin_lock(&cache->lock);
868f401a
Z
9899 if (!--cache->ro) {
9900 num_bytes = cache->key.offset - cache->reserved -
9901 cache->pinned - cache->bytes_super -
9902 btrfs_block_group_used(&cache->item);
9903 sinfo->bytes_readonly -= num_bytes;
9904 list_del_init(&cache->ro_list);
9905 }
f0486c68
YZ
9906 spin_unlock(&cache->lock);
9907 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9908}
9909
ba1bf481 9910/*
52042d8e 9911 * Checks to see if it's even possible to relocate this block group.
ba1bf481
JB
9912 *
9913 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9914 * ok to go ahead and try.
9915 */
6bccf3ab 9916int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9917{
6bccf3ab 9918 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9919 struct btrfs_block_group_cache *block_group;
9920 struct btrfs_space_info *space_info;
0b246afa 9921 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9922 struct btrfs_device *device;
6df9a95e 9923 struct btrfs_trans_handle *trans;
cdcb725c 9924 u64 min_free;
6719db6a
JB
9925 u64 dev_min = 1;
9926 u64 dev_nr = 0;
4a5e98f5 9927 u64 target;
0305bc27 9928 int debug;
cdcb725c 9929 int index;
ba1bf481
JB
9930 int full = 0;
9931 int ret = 0;
1a40e23b 9932
0b246afa 9933 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9934
0b246afa 9935 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9936
ba1bf481 9937 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9938 if (!block_group) {
9939 if (debug)
0b246afa 9940 btrfs_warn(fs_info,
0305bc27
QW
9941 "can't find block group for bytenr %llu",
9942 bytenr);
ba1bf481 9943 return -1;
0305bc27 9944 }
1a40e23b 9945
cdcb725c 9946 min_free = btrfs_block_group_used(&block_group->item);
9947
ba1bf481 9948 /* no bytes used, we're good */
cdcb725c 9949 if (!min_free)
1a40e23b
ZY
9950 goto out;
9951
ba1bf481
JB
9952 space_info = block_group->space_info;
9953 spin_lock(&space_info->lock);
17d217fe 9954
ba1bf481 9955 full = space_info->full;
17d217fe 9956
ba1bf481
JB
9957 /*
9958 * if this is the last block group we have in this space, we can't
7ce618db
CM
9959 * relocate it unless we're able to allocate a new chunk below.
9960 *
9961 * Otherwise, we need to make sure we have room in the space to handle
9962 * all of the extents from this block group. If we can, we're good
ba1bf481 9963 */
7ce618db 9964 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9965 (btrfs_space_info_used(space_info, false) + min_free <
9966 space_info->total_bytes)) {
ba1bf481
JB
9967 spin_unlock(&space_info->lock);
9968 goto out;
17d217fe 9969 }
ba1bf481 9970 spin_unlock(&space_info->lock);
ea8c2819 9971
ba1bf481
JB
9972 /*
9973 * ok we don't have enough space, but maybe we have free space on our
9974 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9975 * alloc devices and guess if we have enough space. if this block
9976 * group is going to be restriped, run checks against the target
9977 * profile instead of the current one.
ba1bf481
JB
9978 */
9979 ret = -1;
ea8c2819 9980
cdcb725c 9981 /*
9982 * index:
9983 * 0: raid10
9984 * 1: raid1
9985 * 2: dup
9986 * 3: raid0
9987 * 4: single
9988 */
0b246afa 9989 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9990 if (target) {
3e72ee88 9991 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9992 } else {
9993 /*
9994 * this is just a balance, so if we were marked as full
9995 * we know there is no space for a new chunk
9996 */
0305bc27
QW
9997 if (full) {
9998 if (debug)
0b246afa
JM
9999 btrfs_warn(fs_info,
10000 "no space to alloc new chunk for block group %llu",
10001 block_group->key.objectid);
4a5e98f5 10002 goto out;
0305bc27 10003 }
4a5e98f5 10004
3e72ee88 10005 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
10006 }
10007
e6ec716f 10008 if (index == BTRFS_RAID_RAID10) {
cdcb725c 10009 dev_min = 4;
6719db6a
JB
10010 /* Divide by 2 */
10011 min_free >>= 1;
e6ec716f 10012 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 10013 dev_min = 2;
e6ec716f 10014 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
10015 /* Multiply by 2 */
10016 min_free <<= 1;
e6ec716f 10017 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 10018 dev_min = fs_devices->rw_devices;
47c5713f 10019 min_free = div64_u64(min_free, dev_min);
cdcb725c 10020 }
10021
6df9a95e
JB
10022 /* We need to do this so that we can look at pending chunks */
10023 trans = btrfs_join_transaction(root);
10024 if (IS_ERR(trans)) {
10025 ret = PTR_ERR(trans);
10026 goto out;
10027 }
10028
0b246afa 10029 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 10030 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 10031 u64 dev_offset;
56bec294 10032
ba1bf481
JB
10033 /*
10034 * check to make sure we can actually find a chunk with enough
10035 * space to fit our block group in.
10036 */
63a212ab 10037 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 10038 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 10039 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 10040 &dev_offset, NULL);
ba1bf481 10041 if (!ret)
cdcb725c 10042 dev_nr++;
10043
10044 if (dev_nr >= dev_min)
73e48b27 10045 break;
cdcb725c 10046
ba1bf481 10047 ret = -1;
725c8463 10048 }
edbd8d4e 10049 }
0305bc27 10050 if (debug && ret == -1)
0b246afa
JM
10051 btrfs_warn(fs_info,
10052 "no space to allocate a new chunk for block group %llu",
10053 block_group->key.objectid);
10054 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 10055 btrfs_end_transaction(trans);
edbd8d4e 10056out:
ba1bf481 10057 btrfs_put_block_group(block_group);
edbd8d4e
CM
10058 return ret;
10059}
10060
6bccf3ab
JM
10061static int find_first_block_group(struct btrfs_fs_info *fs_info,
10062 struct btrfs_path *path,
10063 struct btrfs_key *key)
0b86a832 10064{
6bccf3ab 10065 struct btrfs_root *root = fs_info->extent_root;
925baedd 10066 int ret = 0;
0b86a832
CM
10067 struct btrfs_key found_key;
10068 struct extent_buffer *leaf;
514c7dca
QW
10069 struct btrfs_block_group_item bg;
10070 u64 flags;
0b86a832 10071 int slot;
edbd8d4e 10072
0b86a832
CM
10073 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
10074 if (ret < 0)
925baedd
CM
10075 goto out;
10076
d397712b 10077 while (1) {
0b86a832 10078 slot = path->slots[0];
edbd8d4e 10079 leaf = path->nodes[0];
0b86a832
CM
10080 if (slot >= btrfs_header_nritems(leaf)) {
10081 ret = btrfs_next_leaf(root, path);
10082 if (ret == 0)
10083 continue;
10084 if (ret < 0)
925baedd 10085 goto out;
0b86a832 10086 break;
edbd8d4e 10087 }
0b86a832 10088 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 10089
0b86a832 10090 if (found_key.objectid >= key->objectid &&
925baedd 10091 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
10092 struct extent_map_tree *em_tree;
10093 struct extent_map *em;
10094
10095 em_tree = &root->fs_info->mapping_tree.map_tree;
10096 read_lock(&em_tree->lock);
10097 em = lookup_extent_mapping(em_tree, found_key.objectid,
10098 found_key.offset);
10099 read_unlock(&em_tree->lock);
10100 if (!em) {
0b246afa 10101 btrfs_err(fs_info,
6fb37b75
LB
10102 "logical %llu len %llu found bg but no related chunk",
10103 found_key.objectid, found_key.offset);
10104 ret = -ENOENT;
514c7dca
QW
10105 } else if (em->start != found_key.objectid ||
10106 em->len != found_key.offset) {
10107 btrfs_err(fs_info,
10108 "block group %llu len %llu mismatch with chunk %llu len %llu",
10109 found_key.objectid, found_key.offset,
10110 em->start, em->len);
10111 ret = -EUCLEAN;
6fb37b75 10112 } else {
514c7dca
QW
10113 read_extent_buffer(leaf, &bg,
10114 btrfs_item_ptr_offset(leaf, slot),
10115 sizeof(bg));
10116 flags = btrfs_block_group_flags(&bg) &
10117 BTRFS_BLOCK_GROUP_TYPE_MASK;
10118
10119 if (flags != (em->map_lookup->type &
10120 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10121 btrfs_err(fs_info,
10122"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
10123 found_key.objectid,
10124 found_key.offset, flags,
10125 (BTRFS_BLOCK_GROUP_TYPE_MASK &
10126 em->map_lookup->type));
10127 ret = -EUCLEAN;
10128 } else {
10129 ret = 0;
10130 }
6fb37b75 10131 }
187ee58c 10132 free_extent_map(em);
925baedd
CM
10133 goto out;
10134 }
0b86a832 10135 path->slots[0]++;
edbd8d4e 10136 }
925baedd 10137out:
0b86a832 10138 return ret;
edbd8d4e
CM
10139}
10140
0af3d00b
JB
10141void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
10142{
10143 struct btrfs_block_group_cache *block_group;
10144 u64 last = 0;
10145
10146 while (1) {
10147 struct inode *inode;
10148
10149 block_group = btrfs_lookup_first_block_group(info, last);
10150 while (block_group) {
3aa7c7a3 10151 wait_block_group_cache_done(block_group);
0af3d00b
JB
10152 spin_lock(&block_group->lock);
10153 if (block_group->iref)
10154 break;
10155 spin_unlock(&block_group->lock);
2ff7e61e 10156 block_group = next_block_group(info, block_group);
0af3d00b
JB
10157 }
10158 if (!block_group) {
10159 if (last == 0)
10160 break;
10161 last = 0;
10162 continue;
10163 }
10164
10165 inode = block_group->inode;
10166 block_group->iref = 0;
10167 block_group->inode = NULL;
10168 spin_unlock(&block_group->lock);
f3bca802 10169 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
10170 iput(inode);
10171 last = block_group->key.objectid + block_group->key.offset;
10172 btrfs_put_block_group(block_group);
10173 }
10174}
10175
5cdd7db6
FM
10176/*
10177 * Must be called only after stopping all workers, since we could have block
10178 * group caching kthreads running, and therefore they could race with us if we
10179 * freed the block groups before stopping them.
10180 */
1a40e23b
ZY
10181int btrfs_free_block_groups(struct btrfs_fs_info *info)
10182{
10183 struct btrfs_block_group_cache *block_group;
4184ea7f 10184 struct btrfs_space_info *space_info;
11833d66 10185 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
10186 struct rb_node *n;
10187
9e351cc8 10188 down_write(&info->commit_root_sem);
11833d66
YZ
10189 while (!list_empty(&info->caching_block_groups)) {
10190 caching_ctl = list_entry(info->caching_block_groups.next,
10191 struct btrfs_caching_control, list);
10192 list_del(&caching_ctl->list);
10193 put_caching_control(caching_ctl);
10194 }
9e351cc8 10195 up_write(&info->commit_root_sem);
11833d66 10196
47ab2a6c
JB
10197 spin_lock(&info->unused_bgs_lock);
10198 while (!list_empty(&info->unused_bgs)) {
10199 block_group = list_first_entry(&info->unused_bgs,
10200 struct btrfs_block_group_cache,
10201 bg_list);
10202 list_del_init(&block_group->bg_list);
10203 btrfs_put_block_group(block_group);
10204 }
10205 spin_unlock(&info->unused_bgs_lock);
10206
1a40e23b
ZY
10207 spin_lock(&info->block_group_cache_lock);
10208 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
10209 block_group = rb_entry(n, struct btrfs_block_group_cache,
10210 cache_node);
1a40e23b
ZY
10211 rb_erase(&block_group->cache_node,
10212 &info->block_group_cache_tree);
01eacb27 10213 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
10214 spin_unlock(&info->block_group_cache_lock);
10215
80eb234a 10216 down_write(&block_group->space_info->groups_sem);
1a40e23b 10217 list_del(&block_group->list);
80eb234a 10218 up_write(&block_group->space_info->groups_sem);
d2fb3437 10219
3c14874a
JB
10220 /*
10221 * We haven't cached this block group, which means we could
10222 * possibly have excluded extents on this block group.
10223 */
36cce922
JB
10224 if (block_group->cached == BTRFS_CACHE_NO ||
10225 block_group->cached == BTRFS_CACHE_ERROR)
9e715da8 10226 free_excluded_extents(block_group);
3c14874a 10227
817d52f8 10228 btrfs_remove_free_space_cache(block_group);
5cdd7db6 10229 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
10230 ASSERT(list_empty(&block_group->dirty_list));
10231 ASSERT(list_empty(&block_group->io_list));
10232 ASSERT(list_empty(&block_group->bg_list));
10233 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 10234 btrfs_put_block_group(block_group);
d899e052
YZ
10235
10236 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
10237 }
10238 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
10239
10240 /* now that all the block groups are freed, go through and
10241 * free all the space_info structs. This is only called during
10242 * the final stages of unmount, and so we know nobody is
10243 * using them. We call synchronize_rcu() once before we start,
10244 * just to be on the safe side.
10245 */
10246 synchronize_rcu();
10247
8929ecfa
YZ
10248 release_global_block_rsv(info);
10249
67871254 10250 while (!list_empty(&info->space_info)) {
6ab0a202
JM
10251 int i;
10252
4184ea7f
CM
10253 space_info = list_entry(info->space_info.next,
10254 struct btrfs_space_info,
10255 list);
d555b6c3
JB
10256
10257 /*
10258 * Do not hide this behind enospc_debug, this is actually
10259 * important and indicates a real bug if this happens.
10260 */
10261 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 10262 space_info->bytes_reserved > 0 ||
d555b6c3 10263 space_info->bytes_may_use > 0))
ab8d0fc4 10264 dump_space_info(info, space_info, 0, 0);
4184ea7f 10265 list_del(&space_info->list);
6ab0a202
JM
10266 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10267 struct kobject *kobj;
c1895442
JM
10268 kobj = space_info->block_group_kobjs[i];
10269 space_info->block_group_kobjs[i] = NULL;
10270 if (kobj) {
6ab0a202
JM
10271 kobject_del(kobj);
10272 kobject_put(kobj);
10273 }
10274 }
10275 kobject_del(&space_info->kobj);
10276 kobject_put(&space_info->kobj);
4184ea7f 10277 }
1a40e23b
ZY
10278 return 0;
10279}
10280
75cb379d
JM
10281/* link_block_group will queue up kobjects to add when we're reclaim-safe */
10282void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
10283{
10284 struct btrfs_space_info *space_info;
10285 struct raid_kobject *rkobj;
10286 LIST_HEAD(list);
10287 int index;
10288 int ret = 0;
10289
10290 spin_lock(&fs_info->pending_raid_kobjs_lock);
10291 list_splice_init(&fs_info->pending_raid_kobjs, &list);
10292 spin_unlock(&fs_info->pending_raid_kobjs_lock);
10293
10294 list_for_each_entry(rkobj, &list, list) {
10295 space_info = __find_space_info(fs_info, rkobj->flags);
10296 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
10297
10298 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10299 "%s", get_raid_name(index));
10300 if (ret) {
10301 kobject_put(&rkobj->kobj);
10302 break;
10303 }
10304 }
10305 if (ret)
10306 btrfs_warn(fs_info,
10307 "failed to add kobject for block cache, ignoring");
10308}
10309
c434d21c 10310static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 10311{
c434d21c 10312 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 10313 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 10314 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 10315 bool first = false;
b742bb82
YZ
10316
10317 down_write(&space_info->groups_sem);
ed55b6ac
JM
10318 if (list_empty(&space_info->block_groups[index]))
10319 first = true;
10320 list_add_tail(&cache->list, &space_info->block_groups[index]);
10321 up_write(&space_info->groups_sem);
10322
10323 if (first) {
75cb379d
JM
10324 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10325 if (!rkobj) {
10326 btrfs_warn(cache->fs_info,
10327 "couldn't alloc memory for raid level kobject");
10328 return;
6ab0a202 10329 }
75cb379d
JM
10330 rkobj->flags = cache->flags;
10331 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10332
10333 spin_lock(&fs_info->pending_raid_kobjs_lock);
10334 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10335 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 10336 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 10337 }
b742bb82
YZ
10338}
10339
920e4a58 10340static struct btrfs_block_group_cache *
2ff7e61e
JM
10341btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10342 u64 start, u64 size)
920e4a58
MX
10343{
10344 struct btrfs_block_group_cache *cache;
10345
10346 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10347 if (!cache)
10348 return NULL;
10349
10350 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10351 GFP_NOFS);
10352 if (!cache->free_space_ctl) {
10353 kfree(cache);
10354 return NULL;
10355 }
10356
10357 cache->key.objectid = start;
10358 cache->key.offset = size;
10359 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10360
0b246afa 10361 cache->fs_info = fs_info;
e4ff5fb5 10362 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
10363 set_free_space_tree_thresholds(cache);
10364
920e4a58
MX
10365 atomic_set(&cache->count, 1);
10366 spin_lock_init(&cache->lock);
e570fd27 10367 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10368 INIT_LIST_HEAD(&cache->list);
10369 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10370 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10371 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10372 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10373 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10374 btrfs_init_free_space_ctl(cache);
04216820 10375 atomic_set(&cache->trimming, 0);
a5ed9182 10376 mutex_init(&cache->free_space_lock);
0966a7b1 10377 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
10378
10379 return cache;
10380}
10381
7ef49515
QW
10382
10383/*
10384 * Iterate all chunks and verify that each of them has the corresponding block
10385 * group
10386 */
10387static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10388{
10389 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
10390 struct extent_map *em;
10391 struct btrfs_block_group_cache *bg;
10392 u64 start = 0;
10393 int ret = 0;
10394
10395 while (1) {
10396 read_lock(&map_tree->map_tree.lock);
10397 /*
10398 * lookup_extent_mapping will return the first extent map
10399 * intersecting the range, so setting @len to 1 is enough to
10400 * get the first chunk.
10401 */
10402 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10403 read_unlock(&map_tree->map_tree.lock);
10404 if (!em)
10405 break;
10406
10407 bg = btrfs_lookup_block_group(fs_info, em->start);
10408 if (!bg) {
10409 btrfs_err(fs_info,
10410 "chunk start=%llu len=%llu doesn't have corresponding block group",
10411 em->start, em->len);
10412 ret = -EUCLEAN;
10413 free_extent_map(em);
10414 break;
10415 }
10416 if (bg->key.objectid != em->start ||
10417 bg->key.offset != em->len ||
10418 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10419 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10420 btrfs_err(fs_info,
10421"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10422 em->start, em->len,
10423 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10424 bg->key.objectid, bg->key.offset,
10425 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10426 ret = -EUCLEAN;
10427 free_extent_map(em);
10428 btrfs_put_block_group(bg);
10429 break;
10430 }
10431 start = em->start + em->len;
10432 free_extent_map(em);
10433 btrfs_put_block_group(bg);
10434 }
10435 return ret;
10436}
10437
5b4aacef 10438int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10439{
10440 struct btrfs_path *path;
10441 int ret;
9078a3e1 10442 struct btrfs_block_group_cache *cache;
6324fbf3 10443 struct btrfs_space_info *space_info;
9078a3e1
CM
10444 struct btrfs_key key;
10445 struct btrfs_key found_key;
5f39d397 10446 struct extent_buffer *leaf;
0af3d00b
JB
10447 int need_clear = 0;
10448 u64 cache_gen;
49303381
LB
10449 u64 feature;
10450 int mixed;
10451
10452 feature = btrfs_super_incompat_flags(info->super_copy);
10453 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10454
9078a3e1 10455 key.objectid = 0;
0b86a832 10456 key.offset = 0;
962a298f 10457 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10458 path = btrfs_alloc_path();
10459 if (!path)
10460 return -ENOMEM;
e4058b54 10461 path->reada = READA_FORWARD;
9078a3e1 10462
0b246afa
JM
10463 cache_gen = btrfs_super_cache_generation(info->super_copy);
10464 if (btrfs_test_opt(info, SPACE_CACHE) &&
10465 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10466 need_clear = 1;
0b246afa 10467 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10468 need_clear = 1;
0af3d00b 10469
d397712b 10470 while (1) {
6bccf3ab 10471 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10472 if (ret > 0)
10473 break;
0b86a832
CM
10474 if (ret != 0)
10475 goto error;
920e4a58 10476
5f39d397
CM
10477 leaf = path->nodes[0];
10478 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10479
2ff7e61e 10480 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10481 found_key.offset);
9078a3e1 10482 if (!cache) {
0b86a832 10483 ret = -ENOMEM;
f0486c68 10484 goto error;
9078a3e1 10485 }
96303081 10486
cf7c1ef6
LB
10487 if (need_clear) {
10488 /*
10489 * When we mount with old space cache, we need to
10490 * set BTRFS_DC_CLEAR and set dirty flag.
10491 *
10492 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10493 * truncate the old free space cache inode and
10494 * setup a new one.
10495 * b) Setting 'dirty flag' makes sure that we flush
10496 * the new space cache info onto disk.
10497 */
0b246afa 10498 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10499 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10500 }
0af3d00b 10501
5f39d397
CM
10502 read_extent_buffer(leaf, &cache->item,
10503 btrfs_item_ptr_offset(leaf, path->slots[0]),
10504 sizeof(cache->item));
920e4a58 10505 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10506 if (!mixed &&
10507 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10508 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10509 btrfs_err(info,
10510"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10511 cache->key.objectid);
10512 ret = -EINVAL;
10513 goto error;
10514 }
0b86a832 10515
9078a3e1 10516 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10517 btrfs_release_path(path);
34d52cb6 10518
3c14874a
JB
10519 /*
10520 * We need to exclude the super stripes now so that the space
10521 * info has super bytes accounted for, otherwise we'll think
10522 * we have more space than we actually do.
10523 */
3c4da657 10524 ret = exclude_super_stripes(cache);
835d974f
JB
10525 if (ret) {
10526 /*
10527 * We may have excluded something, so call this just in
10528 * case.
10529 */
9e715da8 10530 free_excluded_extents(cache);
920e4a58 10531 btrfs_put_block_group(cache);
835d974f
JB
10532 goto error;
10533 }
3c14874a 10534
817d52f8
JB
10535 /*
10536 * check for two cases, either we are full, and therefore
10537 * don't need to bother with the caching work since we won't
10538 * find any space, or we are empty, and we can just add all
52042d8e 10539 * the space in and be done with it. This saves us _a_lot_ of
817d52f8
JB
10540 * time, particularly in the full case.
10541 */
10542 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10543 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10544 cache->cached = BTRFS_CACHE_FINISHED;
9e715da8 10545 free_excluded_extents(cache);
817d52f8 10546 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10547 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10548 cache->cached = BTRFS_CACHE_FINISHED;
4457c1c7 10549 add_new_free_space(cache, found_key.objectid,
817d52f8
JB
10550 found_key.objectid +
10551 found_key.offset);
9e715da8 10552 free_excluded_extents(cache);
817d52f8 10553 }
96b5179d 10554
0b246afa 10555 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10556 if (ret) {
10557 btrfs_remove_free_space_cache(cache);
10558 btrfs_put_block_group(cache);
10559 goto error;
10560 }
10561
0b246afa 10562 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10563 update_space_info(info, cache->flags, found_key.offset,
10564 btrfs_block_group_used(&cache->item),
10565 cache->bytes_super, &space_info);
8c579fe7 10566
6324fbf3 10567 cache->space_info = space_info;
1b2da372 10568
c434d21c 10569 link_block_group(cache);
0f9dd46c 10570
0b246afa 10571 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10572 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10573 inc_block_group_ro(cache, 1);
47ab2a6c 10574 } else if (btrfs_block_group_used(&cache->item) == 0) {
031f24da
QW
10575 ASSERT(list_empty(&cache->bg_list));
10576 btrfs_mark_bg_unused(cache);
47ab2a6c 10577 }
9078a3e1 10578 }
b742bb82 10579
0b246afa 10580 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10581 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10582 (BTRFS_BLOCK_GROUP_RAID10 |
10583 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10584 BTRFS_BLOCK_GROUP_RAID5 |
10585 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10586 BTRFS_BLOCK_GROUP_DUP)))
10587 continue;
10588 /*
10589 * avoid allocating from un-mirrored block group if there are
10590 * mirrored block groups.
10591 */
1095cc0d 10592 list_for_each_entry(cache,
10593 &space_info->block_groups[BTRFS_RAID_RAID0],
10594 list)
868f401a 10595 inc_block_group_ro(cache, 1);
1095cc0d 10596 list_for_each_entry(cache,
10597 &space_info->block_groups[BTRFS_RAID_SINGLE],
10598 list)
868f401a 10599 inc_block_group_ro(cache, 1);
9078a3e1 10600 }
f0486c68 10601
75cb379d 10602 btrfs_add_raid_kobjects(info);
f0486c68 10603 init_global_block_rsv(info);
7ef49515 10604 ret = check_chunk_block_group_mappings(info);
0b86a832 10605error:
9078a3e1 10606 btrfs_free_path(path);
0b86a832 10607 return ret;
9078a3e1 10608}
6324fbf3 10609
6c686b35 10610void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10611{
6c686b35 10612 struct btrfs_fs_info *fs_info = trans->fs_info;
545e3366 10613 struct btrfs_block_group_cache *block_group;
0b246afa 10614 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10615 struct btrfs_block_group_item item;
10616 struct btrfs_key key;
10617 int ret = 0;
10618
5ce55557
FM
10619 if (!trans->can_flush_pending_bgs)
10620 return;
10621
545e3366
JB
10622 while (!list_empty(&trans->new_bgs)) {
10623 block_group = list_first_entry(&trans->new_bgs,
10624 struct btrfs_block_group_cache,
10625 bg_list);
ea658bad 10626 if (ret)
c92f6be3 10627 goto next;
ea658bad
JB
10628
10629 spin_lock(&block_group->lock);
10630 memcpy(&item, &block_group->item, sizeof(item));
10631 memcpy(&key, &block_group->key, sizeof(key));
10632 spin_unlock(&block_group->lock);
10633
10634 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10635 sizeof(item));
10636 if (ret)
66642832 10637 btrfs_abort_transaction(trans, ret);
97aff912 10638 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
6df9a95e 10639 if (ret)
66642832 10640 btrfs_abort_transaction(trans, ret);
e4e0711c 10641 add_block_group_free_space(trans, block_group);
1e144fb8 10642 /* already aborted the transaction if it failed. */
c92f6be3 10643next:
ba2c4d4e 10644 btrfs_delayed_refs_rsv_release(fs_info, 1);
c92f6be3 10645 list_del_init(&block_group->bg_list);
ea658bad 10646 }
5ce55557 10647 btrfs_trans_release_chunk_metadata(trans);
ea658bad
JB
10648}
10649
e7e02096 10650int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
0174484d 10651 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10652{
e7e02096 10653 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 10654 struct btrfs_block_group_cache *cache;
0b246afa 10655 int ret;
6324fbf3 10656
0b246afa 10657 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10658
2ff7e61e 10659 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10660 if (!cache)
10661 return -ENOMEM;
34d52cb6 10662
6324fbf3 10663 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10664 btrfs_set_block_group_chunk_objectid(&cache->item,
10665 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10666 btrfs_set_block_group_flags(&cache->item, type);
10667
920e4a58 10668 cache->flags = type;
11833d66 10669 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10670 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10671 cache->needs_free_space = 1;
3c4da657 10672 ret = exclude_super_stripes(cache);
835d974f
JB
10673 if (ret) {
10674 /*
10675 * We may have excluded something, so call this just in
10676 * case.
10677 */
9e715da8 10678 free_excluded_extents(cache);
920e4a58 10679 btrfs_put_block_group(cache);
835d974f
JB
10680 return ret;
10681 }
96303081 10682
4457c1c7 10683 add_new_free_space(cache, chunk_offset, chunk_offset + size);
817d52f8 10684
9e715da8 10685 free_excluded_extents(cache);
11833d66 10686
d0bd4560 10687#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10688 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10689 u64 new_bytes_used = size - bytes_used;
10690
10691 bytes_used += new_bytes_used >> 1;
2ff7e61e 10692 fragment_free_space(cache);
d0bd4560
JB
10693 }
10694#endif
2e6e5183 10695 /*
2be12ef7
NB
10696 * Ensure the corresponding space_info object is created and
10697 * assigned to our block group. We want our bg to be added to the rbtree
10698 * with its ->space_info set.
2e6e5183 10699 */
2be12ef7 10700 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10701 ASSERT(cache->space_info);
2e6e5183 10702
0b246afa 10703 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10704 if (ret) {
10705 btrfs_remove_free_space_cache(cache);
10706 btrfs_put_block_group(cache);
10707 return ret;
10708 }
10709
2e6e5183
FM
10710 /*
10711 * Now that our block group has its ->space_info set and is inserted in
10712 * the rbtree, update the space info's counters.
10713 */
0b246afa 10714 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10715 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10716 cache->bytes_super, &cache->space_info);
0b246afa 10717 update_global_block_rsv(fs_info);
1b2da372 10718
c434d21c 10719 link_block_group(cache);
6324fbf3 10720
47ab2a6c 10721 list_add_tail(&cache->bg_list, &trans->new_bgs);
ba2c4d4e
JB
10722 trans->delayed_ref_updates++;
10723 btrfs_update_delayed_refs_rsv(trans);
6324fbf3 10724
0b246afa 10725 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10726 return 0;
10727}
1a40e23b 10728
10ea00f5
ID
10729static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10730{
899c81ea
ID
10731 u64 extra_flags = chunk_to_extended(flags) &
10732 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10733
de98ced9 10734 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10735 if (flags & BTRFS_BLOCK_GROUP_DATA)
10736 fs_info->avail_data_alloc_bits &= ~extra_flags;
10737 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10738 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10739 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10740 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10741 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10742}
10743
1a40e23b 10744int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
5a98ec01 10745 u64 group_start, struct extent_map *em)
1a40e23b 10746{
5a98ec01 10747 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 10748 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10749 struct btrfs_path *path;
10750 struct btrfs_block_group_cache *block_group;
44fb5511 10751 struct btrfs_free_cluster *cluster;
0b246afa 10752 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10753 struct btrfs_key key;
0af3d00b 10754 struct inode *inode;
c1895442 10755 struct kobject *kobj = NULL;
1a40e23b 10756 int ret;
10ea00f5 10757 int index;
89a55897 10758 int factor;
4f69cb98 10759 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10760 bool remove_em;
ba2c4d4e 10761 bool remove_rsv = false;
1a40e23b 10762
6bccf3ab 10763 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10764 BUG_ON(!block_group);
c146afad 10765 BUG_ON(!block_group->ro);
1a40e23b 10766
4ed0a7a3 10767 trace_btrfs_remove_block_group(block_group);
9f7c43c9 10768 /*
10769 * Free the reserved super bytes from this block group before
10770 * remove it.
10771 */
9e715da8 10772 free_excluded_extents(block_group);
fd708b81
JB
10773 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10774 block_group->key.offset);
9f7c43c9 10775
1a40e23b 10776 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10777 index = btrfs_bg_flags_to_raid_index(block_group->flags);
46df06b8 10778 factor = btrfs_bg_type_to_factor(block_group->flags);
1a40e23b 10779
44fb5511 10780 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10781 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10782 spin_lock(&cluster->refill_lock);
10783 btrfs_return_cluster_to_free_space(block_group, cluster);
10784 spin_unlock(&cluster->refill_lock);
10785
10786 /*
10787 * make sure this block group isn't part of a metadata
10788 * allocation cluster
10789 */
0b246afa 10790 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10791 spin_lock(&cluster->refill_lock);
10792 btrfs_return_cluster_to_free_space(block_group, cluster);
10793 spin_unlock(&cluster->refill_lock);
10794
1a40e23b 10795 path = btrfs_alloc_path();
d8926bb3
MF
10796 if (!path) {
10797 ret = -ENOMEM;
10798 goto out;
10799 }
1a40e23b 10800
1bbc621e
CM
10801 /*
10802 * get the inode first so any iput calls done for the io_list
10803 * aren't the final iput (no unlinks allowed now)
10804 */
77ab86bf 10805 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10806
10807 mutex_lock(&trans->transaction->cache_write_mutex);
10808 /*
52042d8e 10809 * Make sure our free space cache IO is done before removing the
1bbc621e
CM
10810 * free space inode
10811 */
10812 spin_lock(&trans->transaction->dirty_bgs_lock);
10813 if (!list_empty(&block_group->io_list)) {
10814 list_del_init(&block_group->io_list);
10815
10816 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10817
10818 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10819 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10820 btrfs_put_block_group(block_group);
10821 spin_lock(&trans->transaction->dirty_bgs_lock);
10822 }
10823
10824 if (!list_empty(&block_group->dirty_list)) {
10825 list_del_init(&block_group->dirty_list);
ba2c4d4e 10826 remove_rsv = true;
1bbc621e
CM
10827 btrfs_put_block_group(block_group);
10828 }
10829 spin_unlock(&trans->transaction->dirty_bgs_lock);
10830 mutex_unlock(&trans->transaction->cache_write_mutex);
10831
0af3d00b 10832 if (!IS_ERR(inode)) {
73f2e545 10833 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10834 if (ret) {
10835 btrfs_add_delayed_iput(inode);
10836 goto out;
10837 }
0af3d00b
JB
10838 clear_nlink(inode);
10839 /* One for the block groups ref */
10840 spin_lock(&block_group->lock);
10841 if (block_group->iref) {
10842 block_group->iref = 0;
10843 block_group->inode = NULL;
10844 spin_unlock(&block_group->lock);
10845 iput(inode);
10846 } else {
10847 spin_unlock(&block_group->lock);
10848 }
10849 /* One for our lookup ref */
455757c3 10850 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10851 }
10852
10853 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10854 key.offset = block_group->key.objectid;
10855 key.type = 0;
10856
10857 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10858 if (ret < 0)
10859 goto out;
10860 if (ret > 0)
b3b4aa74 10861 btrfs_release_path(path);
0af3d00b
JB
10862 if (ret == 0) {
10863 ret = btrfs_del_item(trans, tree_root, path);
10864 if (ret)
10865 goto out;
b3b4aa74 10866 btrfs_release_path(path);
0af3d00b
JB
10867 }
10868
0b246afa 10869 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10870 rb_erase(&block_group->cache_node,
0b246afa 10871 &fs_info->block_group_cache_tree);
292cbd51 10872 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10873
0b246afa
JM
10874 if (fs_info->first_logical_byte == block_group->key.objectid)
10875 fs_info->first_logical_byte = (u64)-1;
10876 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10877
80eb234a 10878 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10879 /*
10880 * we must use list_del_init so people can check to see if they
10881 * are still on the list after taking the semaphore
10882 */
10883 list_del_init(&block_group->list);
6ab0a202 10884 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10885 kobj = block_group->space_info->block_group_kobjs[index];
10886 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10887 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10888 }
80eb234a 10889 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10890 if (kobj) {
10891 kobject_del(kobj);
10892 kobject_put(kobj);
10893 }
1a40e23b 10894
4f69cb98
FM
10895 if (block_group->has_caching_ctl)
10896 caching_ctl = get_caching_control(block_group);
817d52f8 10897 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10898 wait_block_group_cache_done(block_group);
4f69cb98 10899 if (block_group->has_caching_ctl) {
0b246afa 10900 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10901 if (!caching_ctl) {
10902 struct btrfs_caching_control *ctl;
10903
10904 list_for_each_entry(ctl,
0b246afa 10905 &fs_info->caching_block_groups, list)
4f69cb98
FM
10906 if (ctl->block_group == block_group) {
10907 caching_ctl = ctl;
1e4f4714 10908 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10909 break;
10910 }
10911 }
10912 if (caching_ctl)
10913 list_del_init(&caching_ctl->list);
0b246afa 10914 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10915 if (caching_ctl) {
10916 /* Once for the caching bgs list and once for us. */
10917 put_caching_control(caching_ctl);
10918 put_caching_control(caching_ctl);
10919 }
10920 }
817d52f8 10921
ce93ec54 10922 spin_lock(&trans->transaction->dirty_bgs_lock);
9a0ec83d
NB
10923 WARN_ON(!list_empty(&block_group->dirty_list));
10924 WARN_ON(!list_empty(&block_group->io_list));
ce93ec54 10925 spin_unlock(&trans->transaction->dirty_bgs_lock);
9a0ec83d 10926
817d52f8
JB
10927 btrfs_remove_free_space_cache(block_group);
10928
c146afad 10929 spin_lock(&block_group->space_info->lock);
75c68e9f 10930 list_del_init(&block_group->ro_list);
18d018ad 10931
0b246afa 10932 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10933 WARN_ON(block_group->space_info->total_bytes
10934 < block_group->key.offset);
10935 WARN_ON(block_group->space_info->bytes_readonly
10936 < block_group->key.offset);
10937 WARN_ON(block_group->space_info->disk_total
10938 < block_group->key.offset * factor);
10939 }
c146afad
YZ
10940 block_group->space_info->total_bytes -= block_group->key.offset;
10941 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10942 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10943
c146afad 10944 spin_unlock(&block_group->space_info->lock);
283bb197 10945
0af3d00b
JB
10946 memcpy(&key, &block_group->key, sizeof(key));
10947
34441361 10948 mutex_lock(&fs_info->chunk_mutex);
04216820
FM
10949 spin_lock(&block_group->lock);
10950 block_group->removed = 1;
10951 /*
10952 * At this point trimming can't start on this block group, because we
10953 * removed the block group from the tree fs_info->block_group_cache_tree
10954 * so no one can't find it anymore and even if someone already got this
10955 * block group before we removed it from the rbtree, they have already
10956 * incremented block_group->trimming - if they didn't, they won't find
10957 * any free space entries because we already removed them all when we
10958 * called btrfs_remove_free_space_cache().
10959 *
10960 * And we must not remove the extent map from the fs_info->mapping_tree
10961 * to prevent the same logical address range and physical device space
10962 * ranges from being reused for a new block group. This is because our
10963 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10964 * completely transactionless, so while it is trimming a range the
10965 * currently running transaction might finish and a new one start,
10966 * allowing for new block groups to be created that can reuse the same
10967 * physical device locations unless we take this special care.
e33e17ee
JM
10968 *
10969 * There may also be an implicit trim operation if the file system
10970 * is mounted with -odiscard. The same protections must remain
10971 * in place until the extents have been discarded completely when
10972 * the transaction commit has completed.
04216820
FM
10973 */
10974 remove_em = (atomic_read(&block_group->trimming) == 0);
04216820 10975 spin_unlock(&block_group->lock);
04216820
FM
10976
10977 if (remove_em) {
10978 struct extent_map_tree *em_tree;
10979
0b246afa 10980 em_tree = &fs_info->mapping_tree.map_tree;
04216820
FM
10981 write_lock(&em_tree->lock);
10982 remove_extent_mapping(em_tree, em);
10983 write_unlock(&em_tree->lock);
10984 /* once for the tree */
10985 free_extent_map(em);
10986 }
10987
34441361 10988 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10989
f3f72779 10990 ret = remove_block_group_free_space(trans, block_group);
1e144fb8
OS
10991 if (ret)
10992 goto out;
10993
fa9c0d79
CM
10994 btrfs_put_block_group(block_group);
10995 btrfs_put_block_group(block_group);
1a40e23b
ZY
10996
10997 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10998 if (ret > 0)
10999 ret = -EIO;
11000 if (ret < 0)
11001 goto out;
11002
11003 ret = btrfs_del_item(trans, root, path);
11004out:
ba2c4d4e
JB
11005 if (remove_rsv)
11006 btrfs_delayed_refs_rsv_release(fs_info, 1);
1a40e23b
ZY
11007 btrfs_free_path(path);
11008 return ret;
11009}
acce952b 11010
8eab77ff 11011struct btrfs_trans_handle *
7fd01182
FM
11012btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
11013 const u64 chunk_offset)
8eab77ff 11014{
7fd01182
FM
11015 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
11016 struct extent_map *em;
11017 struct map_lookup *map;
11018 unsigned int num_items;
11019
11020 read_lock(&em_tree->lock);
11021 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
11022 read_unlock(&em_tree->lock);
11023 ASSERT(em && em->start == chunk_offset);
11024
8eab77ff 11025 /*
7fd01182
FM
11026 * We need to reserve 3 + N units from the metadata space info in order
11027 * to remove a block group (done at btrfs_remove_chunk() and at
11028 * btrfs_remove_block_group()), which are used for:
11029 *
8eab77ff
FM
11030 * 1 unit for adding the free space inode's orphan (located in the tree
11031 * of tree roots).
7fd01182
FM
11032 * 1 unit for deleting the block group item (located in the extent
11033 * tree).
11034 * 1 unit for deleting the free space item (located in tree of tree
11035 * roots).
11036 * N units for deleting N device extent items corresponding to each
11037 * stripe (located in the device tree).
11038 *
11039 * In order to remove a block group we also need to reserve units in the
11040 * system space info in order to update the chunk tree (update one or
11041 * more device items and remove one chunk item), but this is done at
11042 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 11043 */
95617d69 11044 map = em->map_lookup;
7fd01182
FM
11045 num_items = 3 + map->num_stripes;
11046 free_extent_map(em);
11047
8eab77ff 11048 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 11049 num_items, 1);
8eab77ff
FM
11050}
11051
47ab2a6c
JB
11052/*
11053 * Process the unused_bgs list and remove any that don't have any allocated
11054 * space inside of them.
11055 */
11056void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
11057{
11058 struct btrfs_block_group_cache *block_group;
11059 struct btrfs_space_info *space_info;
47ab2a6c
JB
11060 struct btrfs_trans_handle *trans;
11061 int ret = 0;
11062
afcdd129 11063 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
11064 return;
11065
11066 spin_lock(&fs_info->unused_bgs_lock);
11067 while (!list_empty(&fs_info->unused_bgs)) {
11068 u64 start, end;
e33e17ee 11069 int trimming;
47ab2a6c
JB
11070
11071 block_group = list_first_entry(&fs_info->unused_bgs,
11072 struct btrfs_block_group_cache,
11073 bg_list);
47ab2a6c 11074 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
11075
11076 space_info = block_group->space_info;
11077
47ab2a6c
JB
11078 if (ret || btrfs_mixed_space_info(space_info)) {
11079 btrfs_put_block_group(block_group);
11080 continue;
11081 }
11082 spin_unlock(&fs_info->unused_bgs_lock);
11083
d5f2e33b 11084 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 11085
47ab2a6c
JB
11086 /* Don't want to race with allocators so take the groups_sem */
11087 down_write(&space_info->groups_sem);
11088 spin_lock(&block_group->lock);
43794446 11089 if (block_group->reserved || block_group->pinned ||
47ab2a6c 11090 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 11091 block_group->ro ||
aefbe9a6 11092 list_is_singular(&block_group->list)) {
47ab2a6c
JB
11093 /*
11094 * We want to bail if we made new allocations or have
11095 * outstanding allocations in this block group. We do
11096 * the ro check in case balance is currently acting on
11097 * this block group.
11098 */
4ed0a7a3 11099 trace_btrfs_skip_unused_block_group(block_group);
47ab2a6c
JB
11100 spin_unlock(&block_group->lock);
11101 up_write(&space_info->groups_sem);
11102 goto next;
11103 }
11104 spin_unlock(&block_group->lock);
11105
11106 /* We don't want to force the issue, only flip if it's ok. */
868f401a 11107 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
11108 up_write(&space_info->groups_sem);
11109 if (ret < 0) {
11110 ret = 0;
11111 goto next;
11112 }
11113
11114 /*
11115 * Want to do this before we do anything else so we can recover
11116 * properly if we fail to join the transaction.
11117 */
7fd01182
FM
11118 trans = btrfs_start_trans_remove_block_group(fs_info,
11119 block_group->key.objectid);
47ab2a6c 11120 if (IS_ERR(trans)) {
2ff7e61e 11121 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
11122 ret = PTR_ERR(trans);
11123 goto next;
11124 }
11125
11126 /*
11127 * We could have pending pinned extents for this block group,
11128 * just delete them, we don't care about them anymore.
11129 */
11130 start = block_group->key.objectid;
11131 end = start + block_group->key.offset - 1;
d4b450cd
FM
11132 /*
11133 * Hold the unused_bg_unpin_mutex lock to avoid racing with
11134 * btrfs_finish_extent_commit(). If we are at transaction N,
11135 * another task might be running finish_extent_commit() for the
11136 * previous transaction N - 1, and have seen a range belonging
11137 * to the block group in freed_extents[] before we were able to
11138 * clear the whole block group range from freed_extents[]. This
11139 * means that task can lookup for the block group after we
11140 * unpinned it from freed_extents[] and removed it, leading to
11141 * a BUG_ON() at btrfs_unpin_extent_range().
11142 */
11143 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 11144 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 11145 EXTENT_DIRTY);
758eb51e 11146 if (ret) {
d4b450cd 11147 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 11148 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
11149 goto end_trans;
11150 }
11151 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 11152 EXTENT_DIRTY);
758eb51e 11153 if (ret) {
d4b450cd 11154 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 11155 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
11156 goto end_trans;
11157 }
d4b450cd 11158 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
11159
11160 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
11161 spin_lock(&space_info->lock);
11162 spin_lock(&block_group->lock);
11163
e2907c1a 11164 update_bytes_pinned(space_info, -block_group->pinned);
c30666d4 11165 space_info->bytes_readonly += block_group->pinned;
dec59fa3
EL
11166 percpu_counter_add_batch(&space_info->total_bytes_pinned,
11167 -block_group->pinned,
11168 BTRFS_TOTAL_BYTES_PINNED_BATCH);
47ab2a6c
JB
11169 block_group->pinned = 0;
11170
c30666d4
ZL
11171 spin_unlock(&block_group->lock);
11172 spin_unlock(&space_info->lock);
11173
e33e17ee 11174 /* DISCARD can flip during remount */
0b246afa 11175 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
11176
11177 /* Implicit trim during transaction commit. */
11178 if (trimming)
11179 btrfs_get_block_group_trimming(block_group);
11180
47ab2a6c
JB
11181 /*
11182 * Btrfs_remove_chunk will abort the transaction if things go
11183 * horribly wrong.
11184 */
97aff912 11185 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
e33e17ee
JM
11186
11187 if (ret) {
11188 if (trimming)
11189 btrfs_put_block_group_trimming(block_group);
11190 goto end_trans;
11191 }
11192
11193 /*
11194 * If we're not mounted with -odiscard, we can just forget
11195 * about this block group. Otherwise we'll need to wait
11196 * until transaction commit to do the actual discard.
11197 */
11198 if (trimming) {
348a0013
FM
11199 spin_lock(&fs_info->unused_bgs_lock);
11200 /*
11201 * A concurrent scrub might have added us to the list
11202 * fs_info->unused_bgs, so use a list_move operation
11203 * to add the block group to the deleted_bgs list.
11204 */
e33e17ee
JM
11205 list_move(&block_group->bg_list,
11206 &trans->transaction->deleted_bgs);
348a0013 11207 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
11208 btrfs_get_block_group(block_group);
11209 }
758eb51e 11210end_trans:
3a45bb20 11211 btrfs_end_transaction(trans);
47ab2a6c 11212next:
d5f2e33b 11213 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
11214 btrfs_put_block_group(block_group);
11215 spin_lock(&fs_info->unused_bgs_lock);
11216 }
11217 spin_unlock(&fs_info->unused_bgs_lock);
11218}
11219
c59021f8 11220int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
11221{
1aba86d6 11222 struct btrfs_super_block *disk_super;
11223 u64 features;
11224 u64 flags;
11225 int mixed = 0;
c59021f8 11226 int ret;
11227
6c41761f 11228 disk_super = fs_info->super_copy;
1aba86d6 11229 if (!btrfs_super_root(disk_super))
0dc924c5 11230 return -EINVAL;
c59021f8 11231
1aba86d6 11232 features = btrfs_super_incompat_flags(disk_super);
11233 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11234 mixed = 1;
c59021f8 11235
1aba86d6 11236 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4ca61683 11237 ret = create_space_info(fs_info, flags);
c59021f8 11238 if (ret)
1aba86d6 11239 goto out;
c59021f8 11240
1aba86d6 11241 if (mixed) {
11242 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
4ca61683 11243 ret = create_space_info(fs_info, flags);
1aba86d6 11244 } else {
11245 flags = BTRFS_BLOCK_GROUP_METADATA;
4ca61683 11246 ret = create_space_info(fs_info, flags);
1aba86d6 11247 if (ret)
11248 goto out;
11249
11250 flags = BTRFS_BLOCK_GROUP_DATA;
4ca61683 11251 ret = create_space_info(fs_info, flags);
1aba86d6 11252 }
11253out:
c59021f8 11254 return ret;
11255}
11256
2ff7e61e
JM
11257int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
11258 u64 start, u64 end)
acce952b 11259{
2ff7e61e 11260 return unpin_extent_range(fs_info, start, end, false);
acce952b 11261}
11262
499f377f
JM
11263/*
11264 * It used to be that old block groups would be left around forever.
11265 * Iterating over them would be enough to trim unused space. Since we
11266 * now automatically remove them, we also need to iterate over unallocated
11267 * space.
11268 *
11269 * We don't want a transaction for this since the discard may take a
11270 * substantial amount of time. We don't require that a transaction be
11271 * running, but we do need to take a running transaction into account
fee7acc3
JM
11272 * to ensure that we're not discarding chunks that were released or
11273 * allocated in the current transaction.
499f377f
JM
11274 *
11275 * Holding the chunks lock will prevent other threads from allocating
11276 * or releasing chunks, but it won't prevent a running transaction
11277 * from committing and releasing the memory that the pending chunks
11278 * list head uses. For that, we need to take a reference to the
fee7acc3
JM
11279 * transaction and hold the commit root sem. We only need to hold
11280 * it while performing the free space search since we have already
11281 * held back allocations.
499f377f
JM
11282 */
11283static int btrfs_trim_free_extents(struct btrfs_device *device,
c2d1b3aa 11284 struct fstrim_range *range, u64 *trimmed)
499f377f 11285{
c2d1b3aa 11286 u64 start = range->start, len = 0;
499f377f
JM
11287 int ret;
11288
11289 *trimmed = 0;
11290
0be88e36
JM
11291 /* Discard not supported = nothing to do. */
11292 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
11293 return 0;
11294
52042d8e 11295 /* Not writable = nothing to do. */
ebbede42 11296 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
11297 return 0;
11298
11299 /* No free space = nothing to do. */
11300 if (device->total_bytes <= device->bytes_used)
11301 return 0;
11302
11303 ret = 0;
11304
11305 while (1) {
fb456252 11306 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
11307 struct btrfs_transaction *trans;
11308 u64 bytes;
11309
11310 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11311 if (ret)
fee7acc3 11312 break;
499f377f 11313
fee7acc3
JM
11314 ret = down_read_killable(&fs_info->commit_root_sem);
11315 if (ret) {
11316 mutex_unlock(&fs_info->chunk_mutex);
11317 break;
11318 }
499f377f
JM
11319
11320 spin_lock(&fs_info->trans_lock);
11321 trans = fs_info->running_transaction;
11322 if (trans)
9b64f57d 11323 refcount_inc(&trans->use_count);
499f377f
JM
11324 spin_unlock(&fs_info->trans_lock);
11325
fee7acc3
JM
11326 if (!trans)
11327 up_read(&fs_info->commit_root_sem);
11328
c2d1b3aa
NB
11329 ret = find_free_dev_extent_start(trans, device, range->minlen,
11330 start, &start, &len);
fee7acc3
JM
11331 if (trans) {
11332 up_read(&fs_info->commit_root_sem);
499f377f 11333 btrfs_put_transaction(trans);
fee7acc3 11334 }
499f377f
JM
11335
11336 if (ret) {
499f377f
JM
11337 mutex_unlock(&fs_info->chunk_mutex);
11338 if (ret == -ENOSPC)
11339 ret = 0;
11340 break;
11341 }
11342
c2d1b3aa
NB
11343 /* If we are out of the passed range break */
11344 if (start > range->start + range->len - 1) {
11345 mutex_unlock(&fs_info->chunk_mutex);
11346 ret = 0;
11347 break;
11348 }
11349
11350 start = max(range->start, start);
11351 len = min(range->len, len);
11352
499f377f 11353 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
499f377f
JM
11354 mutex_unlock(&fs_info->chunk_mutex);
11355
11356 if (ret)
11357 break;
11358
11359 start += len;
11360 *trimmed += bytes;
11361
c2d1b3aa
NB
11362 /* We've trimmed enough */
11363 if (*trimmed >= range->len)
11364 break;
11365
499f377f
JM
11366 if (fatal_signal_pending(current)) {
11367 ret = -ERESTARTSYS;
11368 break;
11369 }
11370
11371 cond_resched();
11372 }
11373
11374 return ret;
11375}
11376
93bba24d
QW
11377/*
11378 * Trim the whole filesystem by:
11379 * 1) trimming the free space in each block group
11380 * 2) trimming the unallocated space on each device
11381 *
11382 * This will also continue trimming even if a block group or device encounters
11383 * an error. The return value will be the last error, or 0 if nothing bad
11384 * happens.
11385 */
2ff7e61e 11386int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 11387{
f7039b1d 11388 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
11389 struct btrfs_device *device;
11390 struct list_head *devices;
f7039b1d
LD
11391 u64 group_trimmed;
11392 u64 start;
11393 u64 end;
11394 u64 trimmed = 0;
93bba24d
QW
11395 u64 bg_failed = 0;
11396 u64 dev_failed = 0;
11397 int bg_ret = 0;
11398 int dev_ret = 0;
f7039b1d
LD
11399 int ret = 0;
11400
6ba9fc8e 11401 cache = btrfs_lookup_first_block_group(fs_info, range->start);
93bba24d 11402 for (; cache; cache = next_block_group(fs_info, cache)) {
f7039b1d
LD
11403 if (cache->key.objectid >= (range->start + range->len)) {
11404 btrfs_put_block_group(cache);
11405 break;
11406 }
11407
11408 start = max(range->start, cache->key.objectid);
11409 end = min(range->start + range->len,
11410 cache->key.objectid + cache->key.offset);
11411
11412 if (end - start >= range->minlen) {
11413 if (!block_group_cache_done(cache)) {
f6373bf3 11414 ret = cache_block_group(cache, 0);
1be41b78 11415 if (ret) {
93bba24d
QW
11416 bg_failed++;
11417 bg_ret = ret;
11418 continue;
1be41b78
JB
11419 }
11420 ret = wait_block_group_cache_done(cache);
11421 if (ret) {
93bba24d
QW
11422 bg_failed++;
11423 bg_ret = ret;
11424 continue;
1be41b78 11425 }
f7039b1d
LD
11426 }
11427 ret = btrfs_trim_block_group(cache,
11428 &group_trimmed,
11429 start,
11430 end,
11431 range->minlen);
11432
11433 trimmed += group_trimmed;
11434 if (ret) {
93bba24d
QW
11435 bg_failed++;
11436 bg_ret = ret;
11437 continue;
f7039b1d
LD
11438 }
11439 }
f7039b1d
LD
11440 }
11441
93bba24d
QW
11442 if (bg_failed)
11443 btrfs_warn(fs_info,
11444 "failed to trim %llu block group(s), last error %d",
11445 bg_failed, bg_ret);
0b246afa 11446 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d4e329de
JM
11447 devices = &fs_info->fs_devices->devices;
11448 list_for_each_entry(device, devices, dev_list) {
c2d1b3aa 11449 ret = btrfs_trim_free_extents(device, range, &group_trimmed);
93bba24d
QW
11450 if (ret) {
11451 dev_failed++;
11452 dev_ret = ret;
499f377f 11453 break;
93bba24d 11454 }
499f377f
JM
11455
11456 trimmed += group_trimmed;
11457 }
0b246afa 11458 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11459
93bba24d
QW
11460 if (dev_failed)
11461 btrfs_warn(fs_info,
11462 "failed to trim %llu device(s), last error %d",
11463 dev_failed, dev_ret);
f7039b1d 11464 range->len = trimmed;
93bba24d
QW
11465 if (bg_ret)
11466 return bg_ret;
11467 return dev_ret;
f7039b1d 11468}
8257b2dc
MX
11469
11470/*
ea14b57f 11471 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11472 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11473 * data into the page cache through nocow before the subvolume is snapshoted,
11474 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11475 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11476 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11477 */
ea14b57f 11478void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11479{
11480 percpu_counter_dec(&root->subv_writers->counter);
093258e6 11481 cond_wake_up(&root->subv_writers->wait);
8257b2dc
MX
11482}
11483
ea14b57f 11484int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11485{
ea14b57f 11486 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11487 return 0;
11488
11489 percpu_counter_inc(&root->subv_writers->counter);
11490 /*
11491 * Make sure counter is updated before we check for snapshot creation.
11492 */
11493 smp_mb();
ea14b57f
DS
11494 if (atomic_read(&root->will_be_snapshotted)) {
11495 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11496 return 0;
11497 }
11498 return 1;
11499}
0bc19f90 11500
0bc19f90
ZL
11501void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11502{
11503 while (true) {
11504 int ret;
11505
ea14b57f 11506 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11507 if (ret)
11508 break;
4625956a
PZ
11509 wait_var_event(&root->will_be_snapshotted,
11510 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
11511 }
11512}
031f24da
QW
11513
11514void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11515{
11516 struct btrfs_fs_info *fs_info = bg->fs_info;
11517
11518 spin_lock(&fs_info->unused_bgs_lock);
11519 if (list_empty(&bg->bg_list)) {
11520 btrfs_get_block_group(bg);
11521 trace_btrfs_add_unused_block_group(bg);
11522 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11523 }
11524 spin_unlock(&fs_info->unused_bgs_lock);
11525}