]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/extent-tree.c
Btrfs: fix race between device replace and chunk allocation
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
1e144fb8 36#include "free-space-tree.h"
3fed40cc 37#include "math.h"
6ab0a202 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
fec577fb 40
709c0486
AJ
41#undef SCRAMBLE_DELAYED_REFS
42
9e622d6b
MX
43/*
44 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
0e4f8f88
CM
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
9e622d6b
MX
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
0e4f8f88
CM
56 */
57enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
61};
62
fb25e914
JB
63/*
64 * Control how reservations are dealt with.
65 *
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * ENOSPC accounting
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 */
72enum {
73 RESERVE_FREE = 0,
74 RESERVE_ALLOC = 1,
75 RESERVE_ALLOC_NO_ACCOUNT = 2,
76};
77
ce93ec54
JB
78static int update_block_group(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root, u64 bytenr,
80 u64 num_bytes, int alloc);
5d4f98a2
YZ
81static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root,
c682f9b3 83 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
84 u64 root_objectid, u64 owner_objectid,
85 u64 owner_offset, int refs_to_drop,
c682f9b3 86 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 99 int level, struct btrfs_key *ins);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
758f2dfc 128void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
ceeb0ae7 234 start, end, EXTENT_UPTODATE);
11833d66 235 set_extent_bits(&root->fs_info->freed_extents[1],
ceeb0ae7 236 start, end, EXTENT_UPTODATE);
11833d66
YZ
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
91166212 249 start, end, EXTENT_UPTODATE);
11833d66 250 clear_extent_bits(&root->fs_info->freed_extents[1],
91166212 251 start, end, EXTENT_UPTODATE);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
d0bd4560
JB
335#ifdef CONFIG_BTRFS_DEBUG
336static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
338{
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
344
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
347 start += step;
348 if (len < step)
349 len = 0;
350 else
351 len -= step;
352 }
353}
354#endif
355
0f9dd46c
JB
356/*
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
360 */
a5ed9182
OS
361u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 363{
817d52f8 364 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
365 int ret;
366
367 while (start < end) {
11833d66 368 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 369 &extent_start, &extent_end,
e6138876
JB
370 EXTENT_DIRTY | EXTENT_UPTODATE,
371 NULL);
0f9dd46c
JB
372 if (ret)
373 break;
374
06b2331f 375 if (extent_start <= start) {
0f9dd46c
JB
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
817d52f8 379 total_added += size;
ea6a478e
JB
380 ret = btrfs_add_free_space(block_group, start,
381 size);
79787eaa 382 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
383 start = extent_end + 1;
384 } else {
385 break;
386 }
387 }
388
389 if (start < end) {
390 size = end - start;
817d52f8 391 total_added += size;
ea6a478e 392 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 393 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
394 }
395
817d52f8 396 return total_added;
0f9dd46c
JB
397}
398
73fa48b6 399static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 400{
bab39bf9
JB
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
bab39bf9 403 struct btrfs_root *extent_root;
e37c9e69 404 struct btrfs_path *path;
5f39d397 405 struct extent_buffer *leaf;
11833d66 406 struct btrfs_key key;
817d52f8 407 u64 total_found = 0;
11833d66
YZ
408 u64 last = 0;
409 u32 nritems;
73fa48b6 410 int ret;
d0bd4560 411 bool wakeup = true;
f510cfec 412
bab39bf9
JB
413 block_group = caching_ctl->block_group;
414 fs_info = block_group->fs_info;
415 extent_root = fs_info->extent_root;
416
e37c9e69
CM
417 path = btrfs_alloc_path();
418 if (!path)
73fa48b6 419 return -ENOMEM;
7d7d6068 420
817d52f8 421 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 422
d0bd4560
JB
423#ifdef CONFIG_BTRFS_DEBUG
424 /*
425 * If we're fragmenting we don't want to make anybody think we can
426 * allocate from this block group until we've had a chance to fragment
427 * the free space.
428 */
429 if (btrfs_should_fragment_free_space(extent_root, block_group))
430 wakeup = false;
431#endif
5cd57b2c 432 /*
817d52f8
JB
433 * We don't want to deadlock with somebody trying to allocate a new
434 * extent for the extent root while also trying to search the extent
435 * root to add free space. So we skip locking and search the commit
436 * root, since its read-only
5cd57b2c
CM
437 */
438 path->skip_locking = 1;
817d52f8 439 path->search_commit_root = 1;
e4058b54 440 path->reada = READA_FORWARD;
817d52f8 441
e4404d6e 442 key.objectid = last;
e37c9e69 443 key.offset = 0;
11833d66 444 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 445
52ee28d2 446next:
11833d66 447 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 448 if (ret < 0)
73fa48b6 449 goto out;
a512bbf8 450
11833d66
YZ
451 leaf = path->nodes[0];
452 nritems = btrfs_header_nritems(leaf);
453
d397712b 454 while (1) {
7841cb28 455 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 456 last = (u64)-1;
817d52f8 457 break;
f25784b3 458 }
817d52f8 459
11833d66
YZ
460 if (path->slots[0] < nritems) {
461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
462 } else {
463 ret = find_next_key(path, 0, &key);
464 if (ret)
e37c9e69 465 break;
817d52f8 466
c9ea7b24 467 if (need_resched() ||
9e351cc8 468 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
469 if (wakeup)
470 caching_ctl->progress = last;
ff5714cc 471 btrfs_release_path(path);
9e351cc8 472 up_read(&fs_info->commit_root_sem);
589d8ade 473 mutex_unlock(&caching_ctl->mutex);
11833d66 474 cond_resched();
73fa48b6
OS
475 mutex_lock(&caching_ctl->mutex);
476 down_read(&fs_info->commit_root_sem);
477 goto next;
589d8ade 478 }
0a3896d0
JB
479
480 ret = btrfs_next_leaf(extent_root, path);
481 if (ret < 0)
73fa48b6 482 goto out;
0a3896d0
JB
483 if (ret)
484 break;
589d8ade
JB
485 leaf = path->nodes[0];
486 nritems = btrfs_header_nritems(leaf);
487 continue;
11833d66 488 }
817d52f8 489
52ee28d2
LB
490 if (key.objectid < last) {
491 key.objectid = last;
492 key.offset = 0;
493 key.type = BTRFS_EXTENT_ITEM_KEY;
494
d0bd4560
JB
495 if (wakeup)
496 caching_ctl->progress = last;
52ee28d2
LB
497 btrfs_release_path(path);
498 goto next;
499 }
500
11833d66
YZ
501 if (key.objectid < block_group->key.objectid) {
502 path->slots[0]++;
817d52f8 503 continue;
e37c9e69 504 }
0f9dd46c 505
e37c9e69 506 if (key.objectid >= block_group->key.objectid +
0f9dd46c 507 block_group->key.offset)
e37c9e69 508 break;
7d7d6068 509
3173a18f
JB
510 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
511 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
512 total_found += add_new_free_space(block_group,
513 fs_info, last,
514 key.objectid);
3173a18f
JB
515 if (key.type == BTRFS_METADATA_ITEM_KEY)
516 last = key.objectid +
707e8a07 517 fs_info->tree_root->nodesize;
3173a18f
JB
518 else
519 last = key.objectid + key.offset;
817d52f8 520
73fa48b6 521 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 522 total_found = 0;
d0bd4560
JB
523 if (wakeup)
524 wake_up(&caching_ctl->wait);
11833d66 525 }
817d52f8 526 }
e37c9e69
CM
527 path->slots[0]++;
528 }
817d52f8 529 ret = 0;
e37c9e69 530
817d52f8
JB
531 total_found += add_new_free_space(block_group, fs_info, last,
532 block_group->key.objectid +
533 block_group->key.offset);
11833d66 534 caching_ctl->progress = (u64)-1;
817d52f8 535
73fa48b6
OS
536out:
537 btrfs_free_path(path);
538 return ret;
539}
540
541static noinline void caching_thread(struct btrfs_work *work)
542{
543 struct btrfs_block_group_cache *block_group;
544 struct btrfs_fs_info *fs_info;
545 struct btrfs_caching_control *caching_ctl;
b4570aa9 546 struct btrfs_root *extent_root;
73fa48b6
OS
547 int ret;
548
549 caching_ctl = container_of(work, struct btrfs_caching_control, work);
550 block_group = caching_ctl->block_group;
551 fs_info = block_group->fs_info;
b4570aa9 552 extent_root = fs_info->extent_root;
73fa48b6
OS
553
554 mutex_lock(&caching_ctl->mutex);
555 down_read(&fs_info->commit_root_sem);
556
1e144fb8
OS
557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
558 ret = load_free_space_tree(caching_ctl);
559 else
560 ret = load_extent_tree_free(caching_ctl);
73fa48b6 561
817d52f8 562 spin_lock(&block_group->lock);
11833d66 563 block_group->caching_ctl = NULL;
73fa48b6 564 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 565 spin_unlock(&block_group->lock);
0f9dd46c 566
d0bd4560
JB
567#ifdef CONFIG_BTRFS_DEBUG
568 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
569 u64 bytes_used;
570
571 spin_lock(&block_group->space_info->lock);
572 spin_lock(&block_group->lock);
573 bytes_used = block_group->key.offset -
574 btrfs_block_group_used(&block_group->item);
575 block_group->space_info->bytes_used += bytes_used >> 1;
576 spin_unlock(&block_group->lock);
577 spin_unlock(&block_group->space_info->lock);
578 fragment_free_space(extent_root, block_group);
579 }
580#endif
581
582 caching_ctl->progress = (u64)-1;
11833d66 583
9e351cc8 584 up_read(&fs_info->commit_root_sem);
73fa48b6 585 free_excluded_extents(fs_info->extent_root, block_group);
11833d66 586 mutex_unlock(&caching_ctl->mutex);
73fa48b6 587
11833d66
YZ
588 wake_up(&caching_ctl->wait);
589
590 put_caching_control(caching_ctl);
11dfe35a 591 btrfs_put_block_group(block_group);
817d52f8
JB
592}
593
9d66e233 594static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 595 int load_cache_only)
817d52f8 596{
291c7d2f 597 DEFINE_WAIT(wait);
11833d66
YZ
598 struct btrfs_fs_info *fs_info = cache->fs_info;
599 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
600 int ret = 0;
601
291c7d2f 602 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
603 if (!caching_ctl)
604 return -ENOMEM;
291c7d2f
JB
605
606 INIT_LIST_HEAD(&caching_ctl->list);
607 mutex_init(&caching_ctl->mutex);
608 init_waitqueue_head(&caching_ctl->wait);
609 caching_ctl->block_group = cache;
610 caching_ctl->progress = cache->key.objectid;
611 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
612 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
613 caching_thread, NULL, NULL);
291c7d2f
JB
614
615 spin_lock(&cache->lock);
616 /*
617 * This should be a rare occasion, but this could happen I think in the
618 * case where one thread starts to load the space cache info, and then
619 * some other thread starts a transaction commit which tries to do an
620 * allocation while the other thread is still loading the space cache
621 * info. The previous loop should have kept us from choosing this block
622 * group, but if we've moved to the state where we will wait on caching
623 * block groups we need to first check if we're doing a fast load here,
624 * so we can wait for it to finish, otherwise we could end up allocating
625 * from a block group who's cache gets evicted for one reason or
626 * another.
627 */
628 while (cache->cached == BTRFS_CACHE_FAST) {
629 struct btrfs_caching_control *ctl;
630
631 ctl = cache->caching_ctl;
632 atomic_inc(&ctl->count);
633 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
634 spin_unlock(&cache->lock);
635
636 schedule();
637
638 finish_wait(&ctl->wait, &wait);
639 put_caching_control(ctl);
640 spin_lock(&cache->lock);
641 }
642
643 if (cache->cached != BTRFS_CACHE_NO) {
644 spin_unlock(&cache->lock);
645 kfree(caching_ctl);
11833d66 646 return 0;
291c7d2f
JB
647 }
648 WARN_ON(cache->caching_ctl);
649 cache->caching_ctl = caching_ctl;
650 cache->cached = BTRFS_CACHE_FAST;
651 spin_unlock(&cache->lock);
11833d66 652
d53ba474 653 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 654 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
655 ret = load_free_space_cache(fs_info, cache);
656
657 spin_lock(&cache->lock);
658 if (ret == 1) {
291c7d2f 659 cache->caching_ctl = NULL;
9d66e233
JB
660 cache->cached = BTRFS_CACHE_FINISHED;
661 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 662 caching_ctl->progress = (u64)-1;
9d66e233 663 } else {
291c7d2f
JB
664 if (load_cache_only) {
665 cache->caching_ctl = NULL;
666 cache->cached = BTRFS_CACHE_NO;
667 } else {
668 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 669 cache->has_caching_ctl = 1;
291c7d2f 670 }
9d66e233
JB
671 }
672 spin_unlock(&cache->lock);
d0bd4560
JB
673#ifdef CONFIG_BTRFS_DEBUG
674 if (ret == 1 &&
675 btrfs_should_fragment_free_space(fs_info->extent_root,
676 cache)) {
677 u64 bytes_used;
678
679 spin_lock(&cache->space_info->lock);
680 spin_lock(&cache->lock);
681 bytes_used = cache->key.offset -
682 btrfs_block_group_used(&cache->item);
683 cache->space_info->bytes_used += bytes_used >> 1;
684 spin_unlock(&cache->lock);
685 spin_unlock(&cache->space_info->lock);
686 fragment_free_space(fs_info->extent_root, cache);
687 }
688#endif
cb83b7b8
JB
689 mutex_unlock(&caching_ctl->mutex);
690
291c7d2f 691 wake_up(&caching_ctl->wait);
3c14874a 692 if (ret == 1) {
291c7d2f 693 put_caching_control(caching_ctl);
3c14874a 694 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 695 return 0;
3c14874a 696 }
291c7d2f
JB
697 } else {
698 /*
1e144fb8
OS
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
701 */
702 spin_lock(&cache->lock);
703 if (load_cache_only) {
704 cache->caching_ctl = NULL;
705 cache->cached = BTRFS_CACHE_NO;
706 } else {
707 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 708 cache->has_caching_ctl = 1;
291c7d2f
JB
709 }
710 spin_unlock(&cache->lock);
711 wake_up(&caching_ctl->wait);
9d66e233
JB
712 }
713
291c7d2f
JB
714 if (load_cache_only) {
715 put_caching_control(caching_ctl);
11833d66 716 return 0;
817d52f8 717 }
817d52f8 718
9e351cc8 719 down_write(&fs_info->commit_root_sem);
291c7d2f 720 atomic_inc(&caching_ctl->count);
11833d66 721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 722 up_write(&fs_info->commit_root_sem);
11833d66 723
11dfe35a 724 btrfs_get_block_group(cache);
11833d66 725
e66f0bb1 726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 727
ef8bbdfe 728 return ret;
e37c9e69
CM
729}
730
0f9dd46c
JB
731/*
732 * return the block group that starts at or after bytenr
733 */
d397712b
CM
734static struct btrfs_block_group_cache *
735btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 736{
0f9dd46c 737 struct btrfs_block_group_cache *cache;
0ef3e66b 738
0f9dd46c 739 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 740
0f9dd46c 741 return cache;
0ef3e66b
CM
742}
743
0f9dd46c 744/*
9f55684c 745 * return the block group that contains the given bytenr
0f9dd46c 746 */
d397712b
CM
747struct btrfs_block_group_cache *btrfs_lookup_block_group(
748 struct btrfs_fs_info *info,
749 u64 bytenr)
be744175 750{
0f9dd46c 751 struct btrfs_block_group_cache *cache;
be744175 752
0f9dd46c 753 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 754
0f9dd46c 755 return cache;
be744175 756}
0b86a832 757
0f9dd46c
JB
758static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
759 u64 flags)
6324fbf3 760{
0f9dd46c 761 struct list_head *head = &info->space_info;
0f9dd46c 762 struct btrfs_space_info *found;
4184ea7f 763
52ba6929 764 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 765
4184ea7f
CM
766 rcu_read_lock();
767 list_for_each_entry_rcu(found, head, list) {
67377734 768 if (found->flags & flags) {
4184ea7f 769 rcu_read_unlock();
0f9dd46c 770 return found;
4184ea7f 771 }
0f9dd46c 772 }
4184ea7f 773 rcu_read_unlock();
0f9dd46c 774 return NULL;
6324fbf3
CM
775}
776
4184ea7f
CM
777/*
778 * after adding space to the filesystem, we need to clear the full flags
779 * on all the space infos.
780 */
781void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
782{
783 struct list_head *head = &info->space_info;
784 struct btrfs_space_info *found;
785
786 rcu_read_lock();
787 list_for_each_entry_rcu(found, head, list)
788 found->full = 0;
789 rcu_read_unlock();
790}
791
1a4ed8fd
FM
792/* simple helper to search for an existing data extent at a given offset */
793int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
794{
795 int ret;
796 struct btrfs_key key;
31840ae1 797 struct btrfs_path *path;
e02119d5 798
31840ae1 799 path = btrfs_alloc_path();
d8926bb3
MF
800 if (!path)
801 return -ENOMEM;
802
e02119d5
CM
803 key.objectid = start;
804 key.offset = len;
3173a18f 805 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
806 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
807 0, 0);
31840ae1 808 btrfs_free_path(path);
7bb86316
CM
809 return ret;
810}
811
a22285a6 812/*
3173a18f 813 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
814 *
815 * the head node for delayed ref is used to store the sum of all the
816 * reference count modifications queued up in the rbtree. the head
817 * node may also store the extent flags to set. This way you can check
818 * to see what the reference count and extent flags would be if all of
819 * the delayed refs are not processed.
820 */
821int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822 struct btrfs_root *root, u64 bytenr,
3173a18f 823 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
824{
825 struct btrfs_delayed_ref_head *head;
826 struct btrfs_delayed_ref_root *delayed_refs;
827 struct btrfs_path *path;
828 struct btrfs_extent_item *ei;
829 struct extent_buffer *leaf;
830 struct btrfs_key key;
831 u32 item_size;
832 u64 num_refs;
833 u64 extent_flags;
834 int ret;
835
3173a18f
JB
836 /*
837 * If we don't have skinny metadata, don't bother doing anything
838 * different
839 */
840 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 841 offset = root->nodesize;
3173a18f
JB
842 metadata = 0;
843 }
844
a22285a6
YZ
845 path = btrfs_alloc_path();
846 if (!path)
847 return -ENOMEM;
848
a22285a6
YZ
849 if (!trans) {
850 path->skip_locking = 1;
851 path->search_commit_root = 1;
852 }
639eefc8
FDBM
853
854search_again:
855 key.objectid = bytenr;
856 key.offset = offset;
857 if (metadata)
858 key.type = BTRFS_METADATA_ITEM_KEY;
859 else
860 key.type = BTRFS_EXTENT_ITEM_KEY;
861
a22285a6
YZ
862 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
863 &key, path, 0, 0);
864 if (ret < 0)
865 goto out_free;
866
3173a18f 867 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
868 if (path->slots[0]) {
869 path->slots[0]--;
870 btrfs_item_key_to_cpu(path->nodes[0], &key,
871 path->slots[0]);
872 if (key.objectid == bytenr &&
873 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 874 key.offset == root->nodesize)
74be9510
FDBM
875 ret = 0;
876 }
3173a18f
JB
877 }
878
a22285a6
YZ
879 if (ret == 0) {
880 leaf = path->nodes[0];
881 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
882 if (item_size >= sizeof(*ei)) {
883 ei = btrfs_item_ptr(leaf, path->slots[0],
884 struct btrfs_extent_item);
885 num_refs = btrfs_extent_refs(leaf, ei);
886 extent_flags = btrfs_extent_flags(leaf, ei);
887 } else {
888#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889 struct btrfs_extent_item_v0 *ei0;
890 BUG_ON(item_size != sizeof(*ei0));
891 ei0 = btrfs_item_ptr(leaf, path->slots[0],
892 struct btrfs_extent_item_v0);
893 num_refs = btrfs_extent_refs_v0(leaf, ei0);
894 /* FIXME: this isn't correct for data */
895 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
896#else
897 BUG();
898#endif
899 }
900 BUG_ON(num_refs == 0);
901 } else {
902 num_refs = 0;
903 extent_flags = 0;
904 ret = 0;
905 }
906
907 if (!trans)
908 goto out;
909
910 delayed_refs = &trans->transaction->delayed_refs;
911 spin_lock(&delayed_refs->lock);
912 head = btrfs_find_delayed_ref_head(trans, bytenr);
913 if (head) {
914 if (!mutex_trylock(&head->mutex)) {
915 atomic_inc(&head->node.refs);
916 spin_unlock(&delayed_refs->lock);
917
b3b4aa74 918 btrfs_release_path(path);
a22285a6 919
8cc33e5c
DS
920 /*
921 * Mutex was contended, block until it's released and try
922 * again
923 */
a22285a6
YZ
924 mutex_lock(&head->mutex);
925 mutex_unlock(&head->mutex);
926 btrfs_put_delayed_ref(&head->node);
639eefc8 927 goto search_again;
a22285a6 928 }
d7df2c79 929 spin_lock(&head->lock);
a22285a6
YZ
930 if (head->extent_op && head->extent_op->update_flags)
931 extent_flags |= head->extent_op->flags_to_set;
932 else
933 BUG_ON(num_refs == 0);
934
935 num_refs += head->node.ref_mod;
d7df2c79 936 spin_unlock(&head->lock);
a22285a6
YZ
937 mutex_unlock(&head->mutex);
938 }
939 spin_unlock(&delayed_refs->lock);
940out:
941 WARN_ON(num_refs == 0);
942 if (refs)
943 *refs = num_refs;
944 if (flags)
945 *flags = extent_flags;
946out_free:
947 btrfs_free_path(path);
948 return ret;
949}
950
d8d5f3e1
CM
951/*
952 * Back reference rules. Back refs have three main goals:
953 *
954 * 1) differentiate between all holders of references to an extent so that
955 * when a reference is dropped we can make sure it was a valid reference
956 * before freeing the extent.
957 *
958 * 2) Provide enough information to quickly find the holders of an extent
959 * if we notice a given block is corrupted or bad.
960 *
961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962 * maintenance. This is actually the same as #2, but with a slightly
963 * different use case.
964 *
5d4f98a2
YZ
965 * There are two kinds of back refs. The implicit back refs is optimized
966 * for pointers in non-shared tree blocks. For a given pointer in a block,
967 * back refs of this kind provide information about the block's owner tree
968 * and the pointer's key. These information allow us to find the block by
969 * b-tree searching. The full back refs is for pointers in tree blocks not
970 * referenced by their owner trees. The location of tree block is recorded
971 * in the back refs. Actually the full back refs is generic, and can be
972 * used in all cases the implicit back refs is used. The major shortcoming
973 * of the full back refs is its overhead. Every time a tree block gets
974 * COWed, we have to update back refs entry for all pointers in it.
975 *
976 * For a newly allocated tree block, we use implicit back refs for
977 * pointers in it. This means most tree related operations only involve
978 * implicit back refs. For a tree block created in old transaction, the
979 * only way to drop a reference to it is COW it. So we can detect the
980 * event that tree block loses its owner tree's reference and do the
981 * back refs conversion.
982 *
01327610 983 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
984 *
985 * The reference count of the block is one and the tree is the block's
986 * owner tree. Nothing to do in this case.
987 *
988 * The reference count of the block is one and the tree is not the
989 * block's owner tree. In this case, full back refs is used for pointers
990 * in the block. Remove these full back refs, add implicit back refs for
991 * every pointers in the new block.
992 *
993 * The reference count of the block is greater than one and the tree is
994 * the block's owner tree. In this case, implicit back refs is used for
995 * pointers in the block. Add full back refs for every pointers in the
996 * block, increase lower level extents' reference counts. The original
997 * implicit back refs are entailed to the new block.
998 *
999 * The reference count of the block is greater than one and the tree is
1000 * not the block's owner tree. Add implicit back refs for every pointer in
1001 * the new block, increase lower level extents' reference count.
1002 *
1003 * Back Reference Key composing:
1004 *
1005 * The key objectid corresponds to the first byte in the extent,
1006 * The key type is used to differentiate between types of back refs.
1007 * There are different meanings of the key offset for different types
1008 * of back refs.
1009 *
d8d5f3e1
CM
1010 * File extents can be referenced by:
1011 *
1012 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1013 * - different files inside a single subvolume
d8d5f3e1
CM
1014 * - different offsets inside a file (bookend extents in file.c)
1015 *
5d4f98a2 1016 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1017 *
1018 * - Objectid of the subvolume root
d8d5f3e1 1019 * - objectid of the file holding the reference
5d4f98a2
YZ
1020 * - original offset in the file
1021 * - how many bookend extents
d8d5f3e1 1022 *
5d4f98a2
YZ
1023 * The key offset for the implicit back refs is hash of the first
1024 * three fields.
d8d5f3e1 1025 *
5d4f98a2 1026 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1027 *
5d4f98a2 1028 * - number of pointers in the tree leaf
d8d5f3e1 1029 *
5d4f98a2
YZ
1030 * The key offset for the implicit back refs is the first byte of
1031 * the tree leaf
d8d5f3e1 1032 *
5d4f98a2
YZ
1033 * When a file extent is allocated, The implicit back refs is used.
1034 * the fields are filled in:
d8d5f3e1 1035 *
5d4f98a2 1036 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1037 *
5d4f98a2
YZ
1038 * When a file extent is removed file truncation, we find the
1039 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1040 *
5d4f98a2 1041 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1042 *
5d4f98a2 1043 * Btree extents can be referenced by:
d8d5f3e1 1044 *
5d4f98a2 1045 * - Different subvolumes
d8d5f3e1 1046 *
5d4f98a2
YZ
1047 * Both the implicit back refs and the full back refs for tree blocks
1048 * only consist of key. The key offset for the implicit back refs is
1049 * objectid of block's owner tree. The key offset for the full back refs
1050 * is the first byte of parent block.
d8d5f3e1 1051 *
5d4f98a2
YZ
1052 * When implicit back refs is used, information about the lowest key and
1053 * level of the tree block are required. These information are stored in
1054 * tree block info structure.
d8d5f3e1 1055 */
31840ae1 1056
5d4f98a2
YZ
1057#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059 struct btrfs_root *root,
1060 struct btrfs_path *path,
1061 u64 owner, u32 extra_size)
7bb86316 1062{
5d4f98a2
YZ
1063 struct btrfs_extent_item *item;
1064 struct btrfs_extent_item_v0 *ei0;
1065 struct btrfs_extent_ref_v0 *ref0;
1066 struct btrfs_tree_block_info *bi;
1067 struct extent_buffer *leaf;
7bb86316 1068 struct btrfs_key key;
5d4f98a2
YZ
1069 struct btrfs_key found_key;
1070 u32 new_size = sizeof(*item);
1071 u64 refs;
1072 int ret;
1073
1074 leaf = path->nodes[0];
1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076
1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 struct btrfs_extent_item_v0);
1080 refs = btrfs_extent_refs_v0(leaf, ei0);
1081
1082 if (owner == (u64)-1) {
1083 while (1) {
1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 ret = btrfs_next_leaf(root, path);
1086 if (ret < 0)
1087 return ret;
79787eaa 1088 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1089 leaf = path->nodes[0];
1090 }
1091 btrfs_item_key_to_cpu(leaf, &found_key,
1092 path->slots[0]);
1093 BUG_ON(key.objectid != found_key.objectid);
1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095 path->slots[0]++;
1096 continue;
1097 }
1098 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 struct btrfs_extent_ref_v0);
1100 owner = btrfs_ref_objectid_v0(leaf, ref0);
1101 break;
1102 }
1103 }
b3b4aa74 1104 btrfs_release_path(path);
5d4f98a2
YZ
1105
1106 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 new_size += sizeof(*bi);
1108
1109 new_size -= sizeof(*ei0);
1110 ret = btrfs_search_slot(trans, root, &key, path,
1111 new_size + extra_size, 1);
1112 if (ret < 0)
1113 return ret;
79787eaa 1114 BUG_ON(ret); /* Corruption */
5d4f98a2 1115
4b90c680 1116 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1117
1118 leaf = path->nodes[0];
1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 btrfs_set_extent_refs(leaf, item, refs);
1121 /* FIXME: get real generation */
1122 btrfs_set_extent_generation(leaf, item, 0);
1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 btrfs_set_extent_flags(leaf, item,
1125 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 bi = (struct btrfs_tree_block_info *)(item + 1);
1128 /* FIXME: get first key of the block */
1129 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131 } else {
1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133 }
1134 btrfs_mark_buffer_dirty(leaf);
1135 return 0;
1136}
1137#endif
1138
1139static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1140{
1141 u32 high_crc = ~(u32)0;
1142 u32 low_crc = ~(u32)0;
1143 __le64 lenum;
1144
1145 lenum = cpu_to_le64(root_objectid);
14a958e6 1146 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1147 lenum = cpu_to_le64(owner);
14a958e6 1148 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1149 lenum = cpu_to_le64(offset);
14a958e6 1150 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1151
1152 return ((u64)high_crc << 31) ^ (u64)low_crc;
1153}
1154
1155static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156 struct btrfs_extent_data_ref *ref)
1157{
1158 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159 btrfs_extent_data_ref_objectid(leaf, ref),
1160 btrfs_extent_data_ref_offset(leaf, ref));
1161}
1162
1163static int match_extent_data_ref(struct extent_buffer *leaf,
1164 struct btrfs_extent_data_ref *ref,
1165 u64 root_objectid, u64 owner, u64 offset)
1166{
1167 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170 return 0;
1171 return 1;
1172}
1173
1174static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 struct btrfs_path *path,
1177 u64 bytenr, u64 parent,
1178 u64 root_objectid,
1179 u64 owner, u64 offset)
1180{
1181 struct btrfs_key key;
1182 struct btrfs_extent_data_ref *ref;
31840ae1 1183 struct extent_buffer *leaf;
5d4f98a2 1184 u32 nritems;
74493f7a 1185 int ret;
5d4f98a2
YZ
1186 int recow;
1187 int err = -ENOENT;
74493f7a 1188
31840ae1 1189 key.objectid = bytenr;
5d4f98a2
YZ
1190 if (parent) {
1191 key.type = BTRFS_SHARED_DATA_REF_KEY;
1192 key.offset = parent;
1193 } else {
1194 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195 key.offset = hash_extent_data_ref(root_objectid,
1196 owner, offset);
1197 }
1198again:
1199 recow = 0;
1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 if (ret < 0) {
1202 err = ret;
1203 goto fail;
1204 }
31840ae1 1205
5d4f98a2
YZ
1206 if (parent) {
1207 if (!ret)
1208 return 0;
1209#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1211 btrfs_release_path(path);
5d4f98a2
YZ
1212 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1213 if (ret < 0) {
1214 err = ret;
1215 goto fail;
1216 }
1217 if (!ret)
1218 return 0;
1219#endif
1220 goto fail;
31840ae1
ZY
1221 }
1222
1223 leaf = path->nodes[0];
5d4f98a2
YZ
1224 nritems = btrfs_header_nritems(leaf);
1225 while (1) {
1226 if (path->slots[0] >= nritems) {
1227 ret = btrfs_next_leaf(root, path);
1228 if (ret < 0)
1229 err = ret;
1230 if (ret)
1231 goto fail;
1232
1233 leaf = path->nodes[0];
1234 nritems = btrfs_header_nritems(leaf);
1235 recow = 1;
1236 }
1237
1238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239 if (key.objectid != bytenr ||
1240 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1241 goto fail;
1242
1243 ref = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_extent_data_ref);
1245
1246 if (match_extent_data_ref(leaf, ref, root_objectid,
1247 owner, offset)) {
1248 if (recow) {
b3b4aa74 1249 btrfs_release_path(path);
5d4f98a2
YZ
1250 goto again;
1251 }
1252 err = 0;
1253 break;
1254 }
1255 path->slots[0]++;
31840ae1 1256 }
5d4f98a2
YZ
1257fail:
1258 return err;
31840ae1
ZY
1259}
1260
5d4f98a2
YZ
1261static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 u64 bytenr, u64 parent,
1265 u64 root_objectid, u64 owner,
1266 u64 offset, int refs_to_add)
31840ae1
ZY
1267{
1268 struct btrfs_key key;
1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 size;
31840ae1
ZY
1271 u32 num_refs;
1272 int ret;
74493f7a 1273
74493f7a 1274 key.objectid = bytenr;
5d4f98a2
YZ
1275 if (parent) {
1276 key.type = BTRFS_SHARED_DATA_REF_KEY;
1277 key.offset = parent;
1278 size = sizeof(struct btrfs_shared_data_ref);
1279 } else {
1280 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281 key.offset = hash_extent_data_ref(root_objectid,
1282 owner, offset);
1283 size = sizeof(struct btrfs_extent_data_ref);
1284 }
74493f7a 1285
5d4f98a2
YZ
1286 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287 if (ret && ret != -EEXIST)
1288 goto fail;
1289
1290 leaf = path->nodes[0];
1291 if (parent) {
1292 struct btrfs_shared_data_ref *ref;
31840ae1 1293 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1294 struct btrfs_shared_data_ref);
1295 if (ret == 0) {
1296 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1297 } else {
1298 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299 num_refs += refs_to_add;
1300 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1301 }
5d4f98a2
YZ
1302 } else {
1303 struct btrfs_extent_data_ref *ref;
1304 while (ret == -EEXIST) {
1305 ref = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_extent_data_ref);
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset))
1309 break;
b3b4aa74 1310 btrfs_release_path(path);
5d4f98a2
YZ
1311 key.offset++;
1312 ret = btrfs_insert_empty_item(trans, root, path, &key,
1313 size);
1314 if (ret && ret != -EEXIST)
1315 goto fail;
31840ae1 1316
5d4f98a2
YZ
1317 leaf = path->nodes[0];
1318 }
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 if (ret == 0) {
1322 btrfs_set_extent_data_ref_root(leaf, ref,
1323 root_objectid);
1324 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1327 } else {
1328 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329 num_refs += refs_to_add;
1330 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1331 }
31840ae1 1332 }
5d4f98a2
YZ
1333 btrfs_mark_buffer_dirty(leaf);
1334 ret = 0;
1335fail:
b3b4aa74 1336 btrfs_release_path(path);
7bb86316 1337 return ret;
74493f7a
CM
1338}
1339
5d4f98a2
YZ
1340static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341 struct btrfs_root *root,
1342 struct btrfs_path *path,
fcebe456 1343 int refs_to_drop, int *last_ref)
31840ae1 1344{
5d4f98a2
YZ
1345 struct btrfs_key key;
1346 struct btrfs_extent_data_ref *ref1 = NULL;
1347 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1348 struct extent_buffer *leaf;
5d4f98a2 1349 u32 num_refs = 0;
31840ae1
ZY
1350 int ret = 0;
1351
1352 leaf = path->nodes[0];
5d4f98a2
YZ
1353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1354
1355 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_extent_data_ref);
1358 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_shared_data_ref);
1362 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365 struct btrfs_extent_ref_v0 *ref0;
1366 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_extent_ref_v0);
1368 num_refs = btrfs_ref_count_v0(leaf, ref0);
1369#endif
1370 } else {
1371 BUG();
1372 }
1373
56bec294
CM
1374 BUG_ON(num_refs < refs_to_drop);
1375 num_refs -= refs_to_drop;
5d4f98a2 1376
31840ae1
ZY
1377 if (num_refs == 0) {
1378 ret = btrfs_del_item(trans, root, path);
fcebe456 1379 *last_ref = 1;
31840ae1 1380 } else {
5d4f98a2
YZ
1381 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1386 else {
1387 struct btrfs_extent_ref_v0 *ref0;
1388 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389 struct btrfs_extent_ref_v0);
1390 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1391 }
1392#endif
31840ae1
ZY
1393 btrfs_mark_buffer_dirty(leaf);
1394 }
31840ae1
ZY
1395 return ret;
1396}
1397
9ed0dea0 1398static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1399 struct btrfs_extent_inline_ref *iref)
15916de8 1400{
5d4f98a2
YZ
1401 struct btrfs_key key;
1402 struct extent_buffer *leaf;
1403 struct btrfs_extent_data_ref *ref1;
1404 struct btrfs_shared_data_ref *ref2;
1405 u32 num_refs = 0;
1406
1407 leaf = path->nodes[0];
1408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1409 if (iref) {
1410 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411 BTRFS_EXTENT_DATA_REF_KEY) {
1412 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1414 } else {
1415 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1417 }
1418 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_extent_data_ref);
1421 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424 struct btrfs_shared_data_ref);
1425 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428 struct btrfs_extent_ref_v0 *ref0;
1429 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430 struct btrfs_extent_ref_v0);
1431 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1432#endif
5d4f98a2
YZ
1433 } else {
1434 WARN_ON(1);
1435 }
1436 return num_refs;
1437}
15916de8 1438
5d4f98a2
YZ
1439static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440 struct btrfs_root *root,
1441 struct btrfs_path *path,
1442 u64 bytenr, u64 parent,
1443 u64 root_objectid)
1f3c79a2 1444{
5d4f98a2 1445 struct btrfs_key key;
1f3c79a2 1446 int ret;
1f3c79a2 1447
5d4f98a2
YZ
1448 key.objectid = bytenr;
1449 if (parent) {
1450 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451 key.offset = parent;
1452 } else {
1453 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454 key.offset = root_objectid;
1f3c79a2
LH
1455 }
1456
5d4f98a2
YZ
1457 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1458 if (ret > 0)
1459 ret = -ENOENT;
1460#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461 if (ret == -ENOENT && parent) {
b3b4aa74 1462 btrfs_release_path(path);
5d4f98a2
YZ
1463 key.type = BTRFS_EXTENT_REF_V0_KEY;
1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465 if (ret > 0)
1466 ret = -ENOENT;
1467 }
1f3c79a2 1468#endif
5d4f98a2 1469 return ret;
1f3c79a2
LH
1470}
1471
5d4f98a2
YZ
1472static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473 struct btrfs_root *root,
1474 struct btrfs_path *path,
1475 u64 bytenr, u64 parent,
1476 u64 root_objectid)
31840ae1 1477{
5d4f98a2 1478 struct btrfs_key key;
31840ae1 1479 int ret;
31840ae1 1480
5d4f98a2
YZ
1481 key.objectid = bytenr;
1482 if (parent) {
1483 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484 key.offset = parent;
1485 } else {
1486 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487 key.offset = root_objectid;
1488 }
1489
1490 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1491 btrfs_release_path(path);
31840ae1
ZY
1492 return ret;
1493}
1494
5d4f98a2 1495static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1496{
5d4f98a2
YZ
1497 int type;
1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1499 if (parent > 0)
1500 type = BTRFS_SHARED_BLOCK_REF_KEY;
1501 else
1502 type = BTRFS_TREE_BLOCK_REF_KEY;
1503 } else {
1504 if (parent > 0)
1505 type = BTRFS_SHARED_DATA_REF_KEY;
1506 else
1507 type = BTRFS_EXTENT_DATA_REF_KEY;
1508 }
1509 return type;
31840ae1 1510}
56bec294 1511
2c47e605
YZ
1512static int find_next_key(struct btrfs_path *path, int level,
1513 struct btrfs_key *key)
56bec294 1514
02217ed2 1515{
2c47e605 1516 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1517 if (!path->nodes[level])
1518 break;
5d4f98a2
YZ
1519 if (path->slots[level] + 1 >=
1520 btrfs_header_nritems(path->nodes[level]))
1521 continue;
1522 if (level == 0)
1523 btrfs_item_key_to_cpu(path->nodes[level], key,
1524 path->slots[level] + 1);
1525 else
1526 btrfs_node_key_to_cpu(path->nodes[level], key,
1527 path->slots[level] + 1);
1528 return 0;
1529 }
1530 return 1;
1531}
037e6390 1532
5d4f98a2
YZ
1533/*
1534 * look for inline back ref. if back ref is found, *ref_ret is set
1535 * to the address of inline back ref, and 0 is returned.
1536 *
1537 * if back ref isn't found, *ref_ret is set to the address where it
1538 * should be inserted, and -ENOENT is returned.
1539 *
1540 * if insert is true and there are too many inline back refs, the path
1541 * points to the extent item, and -EAGAIN is returned.
1542 *
1543 * NOTE: inline back refs are ordered in the same way that back ref
1544 * items in the tree are ordered.
1545 */
1546static noinline_for_stack
1547int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548 struct btrfs_root *root,
1549 struct btrfs_path *path,
1550 struct btrfs_extent_inline_ref **ref_ret,
1551 u64 bytenr, u64 num_bytes,
1552 u64 parent, u64 root_objectid,
1553 u64 owner, u64 offset, int insert)
1554{
1555 struct btrfs_key key;
1556 struct extent_buffer *leaf;
1557 struct btrfs_extent_item *ei;
1558 struct btrfs_extent_inline_ref *iref;
1559 u64 flags;
1560 u64 item_size;
1561 unsigned long ptr;
1562 unsigned long end;
1563 int extra_size;
1564 int type;
1565 int want;
1566 int ret;
1567 int err = 0;
3173a18f
JB
1568 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1569 SKINNY_METADATA);
26b8003f 1570
db94535d 1571 key.objectid = bytenr;
31840ae1 1572 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1573 key.offset = num_bytes;
31840ae1 1574
5d4f98a2
YZ
1575 want = extent_ref_type(parent, owner);
1576 if (insert) {
1577 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1578 path->keep_locks = 1;
5d4f98a2
YZ
1579 } else
1580 extra_size = -1;
3173a18f
JB
1581
1582 /*
1583 * Owner is our parent level, so we can just add one to get the level
1584 * for the block we are interested in.
1585 */
1586 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587 key.type = BTRFS_METADATA_ITEM_KEY;
1588 key.offset = owner;
1589 }
1590
1591again:
5d4f98a2 1592 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1593 if (ret < 0) {
5d4f98a2
YZ
1594 err = ret;
1595 goto out;
1596 }
3173a18f
JB
1597
1598 /*
1599 * We may be a newly converted file system which still has the old fat
1600 * extent entries for metadata, so try and see if we have one of those.
1601 */
1602 if (ret > 0 && skinny_metadata) {
1603 skinny_metadata = false;
1604 if (path->slots[0]) {
1605 path->slots[0]--;
1606 btrfs_item_key_to_cpu(path->nodes[0], &key,
1607 path->slots[0]);
1608 if (key.objectid == bytenr &&
1609 key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 key.offset == num_bytes)
1611 ret = 0;
1612 }
1613 if (ret) {
9ce49a0b 1614 key.objectid = bytenr;
3173a18f
JB
1615 key.type = BTRFS_EXTENT_ITEM_KEY;
1616 key.offset = num_bytes;
1617 btrfs_release_path(path);
1618 goto again;
1619 }
1620 }
1621
79787eaa
JM
1622 if (ret && !insert) {
1623 err = -ENOENT;
1624 goto out;
fae7f21c 1625 } else if (WARN_ON(ret)) {
492104c8 1626 err = -EIO;
492104c8 1627 goto out;
79787eaa 1628 }
5d4f98a2
YZ
1629
1630 leaf = path->nodes[0];
1631 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633 if (item_size < sizeof(*ei)) {
1634 if (!insert) {
1635 err = -ENOENT;
1636 goto out;
1637 }
1638 ret = convert_extent_item_v0(trans, root, path, owner,
1639 extra_size);
1640 if (ret < 0) {
1641 err = ret;
1642 goto out;
1643 }
1644 leaf = path->nodes[0];
1645 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1646 }
1647#endif
1648 BUG_ON(item_size < sizeof(*ei));
1649
5d4f98a2
YZ
1650 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651 flags = btrfs_extent_flags(leaf, ei);
1652
1653 ptr = (unsigned long)(ei + 1);
1654 end = (unsigned long)ei + item_size;
1655
3173a18f 1656 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1657 ptr += sizeof(struct btrfs_tree_block_info);
1658 BUG_ON(ptr > end);
5d4f98a2
YZ
1659 }
1660
1661 err = -ENOENT;
1662 while (1) {
1663 if (ptr >= end) {
1664 WARN_ON(ptr > end);
1665 break;
1666 }
1667 iref = (struct btrfs_extent_inline_ref *)ptr;
1668 type = btrfs_extent_inline_ref_type(leaf, iref);
1669 if (want < type)
1670 break;
1671 if (want > type) {
1672 ptr += btrfs_extent_inline_ref_size(type);
1673 continue;
1674 }
1675
1676 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677 struct btrfs_extent_data_ref *dref;
1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 if (match_extent_data_ref(leaf, dref, root_objectid,
1680 owner, offset)) {
1681 err = 0;
1682 break;
1683 }
1684 if (hash_extent_data_ref_item(leaf, dref) <
1685 hash_extent_data_ref(root_objectid, owner, offset))
1686 break;
1687 } else {
1688 u64 ref_offset;
1689 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1690 if (parent > 0) {
1691 if (parent == ref_offset) {
1692 err = 0;
1693 break;
1694 }
1695 if (ref_offset < parent)
1696 break;
1697 } else {
1698 if (root_objectid == ref_offset) {
1699 err = 0;
1700 break;
1701 }
1702 if (ref_offset < root_objectid)
1703 break;
1704 }
1705 }
1706 ptr += btrfs_extent_inline_ref_size(type);
1707 }
1708 if (err == -ENOENT && insert) {
1709 if (item_size + extra_size >=
1710 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711 err = -EAGAIN;
1712 goto out;
1713 }
1714 /*
1715 * To add new inline back ref, we have to make sure
1716 * there is no corresponding back ref item.
1717 * For simplicity, we just do not add new inline back
1718 * ref if there is any kind of item for this block
1719 */
2c47e605
YZ
1720 if (find_next_key(path, 0, &key) == 0 &&
1721 key.objectid == bytenr &&
85d4198e 1722 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1723 err = -EAGAIN;
1724 goto out;
1725 }
1726 }
1727 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1728out:
85d4198e 1729 if (insert) {
5d4f98a2
YZ
1730 path->keep_locks = 0;
1731 btrfs_unlock_up_safe(path, 1);
1732 }
1733 return err;
1734}
1735
1736/*
1737 * helper to add new inline back ref
1738 */
1739static noinline_for_stack
fd279fae 1740void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1741 struct btrfs_path *path,
1742 struct btrfs_extent_inline_ref *iref,
1743 u64 parent, u64 root_objectid,
1744 u64 owner, u64 offset, int refs_to_add,
1745 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1746{
1747 struct extent_buffer *leaf;
1748 struct btrfs_extent_item *ei;
1749 unsigned long ptr;
1750 unsigned long end;
1751 unsigned long item_offset;
1752 u64 refs;
1753 int size;
1754 int type;
5d4f98a2
YZ
1755
1756 leaf = path->nodes[0];
1757 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758 item_offset = (unsigned long)iref - (unsigned long)ei;
1759
1760 type = extent_ref_type(parent, owner);
1761 size = btrfs_extent_inline_ref_size(type);
1762
4b90c680 1763 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1764
1765 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766 refs = btrfs_extent_refs(leaf, ei);
1767 refs += refs_to_add;
1768 btrfs_set_extent_refs(leaf, ei, refs);
1769 if (extent_op)
1770 __run_delayed_extent_op(extent_op, leaf, ei);
1771
1772 ptr = (unsigned long)ei + item_offset;
1773 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774 if (ptr < end - size)
1775 memmove_extent_buffer(leaf, ptr + size, ptr,
1776 end - size - ptr);
1777
1778 iref = (struct btrfs_extent_inline_ref *)ptr;
1779 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781 struct btrfs_extent_data_ref *dref;
1782 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 struct btrfs_shared_data_ref *sref;
1789 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1794 } else {
1795 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1796 }
1797 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1798}
1799
1800static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref **ref_ret,
1804 u64 bytenr, u64 num_bytes, u64 parent,
1805 u64 root_objectid, u64 owner, u64 offset)
1806{
1807 int ret;
1808
1809 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810 bytenr, num_bytes, parent,
1811 root_objectid, owner, offset, 0);
1812 if (ret != -ENOENT)
54aa1f4d 1813 return ret;
5d4f98a2 1814
b3b4aa74 1815 btrfs_release_path(path);
5d4f98a2
YZ
1816 *ref_ret = NULL;
1817
1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1820 root_objectid);
1821 } else {
1822 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823 root_objectid, owner, offset);
b9473439 1824 }
5d4f98a2
YZ
1825 return ret;
1826}
31840ae1 1827
5d4f98a2
YZ
1828/*
1829 * helper to update/remove inline back ref
1830 */
1831static noinline_for_stack
afe5fea7 1832void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1833 struct btrfs_path *path,
1834 struct btrfs_extent_inline_ref *iref,
1835 int refs_to_mod,
fcebe456
JB
1836 struct btrfs_delayed_extent_op *extent_op,
1837 int *last_ref)
5d4f98a2
YZ
1838{
1839 struct extent_buffer *leaf;
1840 struct btrfs_extent_item *ei;
1841 struct btrfs_extent_data_ref *dref = NULL;
1842 struct btrfs_shared_data_ref *sref = NULL;
1843 unsigned long ptr;
1844 unsigned long end;
1845 u32 item_size;
1846 int size;
1847 int type;
5d4f98a2
YZ
1848 u64 refs;
1849
1850 leaf = path->nodes[0];
1851 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852 refs = btrfs_extent_refs(leaf, ei);
1853 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854 refs += refs_to_mod;
1855 btrfs_set_extent_refs(leaf, ei, refs);
1856 if (extent_op)
1857 __run_delayed_extent_op(extent_op, leaf, ei);
1858
1859 type = btrfs_extent_inline_ref_type(leaf, iref);
1860
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863 refs = btrfs_extent_data_ref_count(leaf, dref);
1864 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866 refs = btrfs_shared_data_ref_count(leaf, sref);
1867 } else {
1868 refs = 1;
1869 BUG_ON(refs_to_mod != -1);
56bec294 1870 }
31840ae1 1871
5d4f98a2
YZ
1872 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873 refs += refs_to_mod;
1874
1875 if (refs > 0) {
1876 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1878 else
1879 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1880 } else {
fcebe456 1881 *last_ref = 1;
5d4f98a2
YZ
1882 size = btrfs_extent_inline_ref_size(type);
1883 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884 ptr = (unsigned long)iref;
1885 end = (unsigned long)ei + item_size;
1886 if (ptr + size < end)
1887 memmove_extent_buffer(leaf, ptr, ptr + size,
1888 end - ptr - size);
1889 item_size -= size;
afe5fea7 1890 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1891 }
1892 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1893}
1894
1895static noinline_for_stack
1896int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897 struct btrfs_root *root,
1898 struct btrfs_path *path,
1899 u64 bytenr, u64 num_bytes, u64 parent,
1900 u64 root_objectid, u64 owner,
1901 u64 offset, int refs_to_add,
1902 struct btrfs_delayed_extent_op *extent_op)
1903{
1904 struct btrfs_extent_inline_ref *iref;
1905 int ret;
1906
1907 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908 bytenr, num_bytes, parent,
1909 root_objectid, owner, offset, 1);
1910 if (ret == 0) {
1911 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1912 update_inline_extent_backref(root, path, iref,
fcebe456 1913 refs_to_add, extent_op, NULL);
5d4f98a2 1914 } else if (ret == -ENOENT) {
fd279fae 1915 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1916 root_objectid, owner, offset,
1917 refs_to_add, extent_op);
1918 ret = 0;
771ed689 1919 }
5d4f98a2
YZ
1920 return ret;
1921}
31840ae1 1922
5d4f98a2
YZ
1923static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924 struct btrfs_root *root,
1925 struct btrfs_path *path,
1926 u64 bytenr, u64 parent, u64 root_objectid,
1927 u64 owner, u64 offset, int refs_to_add)
1928{
1929 int ret;
1930 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931 BUG_ON(refs_to_add != 1);
1932 ret = insert_tree_block_ref(trans, root, path, bytenr,
1933 parent, root_objectid);
1934 } else {
1935 ret = insert_extent_data_ref(trans, root, path, bytenr,
1936 parent, root_objectid,
1937 owner, offset, refs_to_add);
1938 }
1939 return ret;
1940}
56bec294 1941
5d4f98a2
YZ
1942static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 struct btrfs_path *path,
1945 struct btrfs_extent_inline_ref *iref,
fcebe456 1946 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1947{
143bede5 1948 int ret = 0;
b9473439 1949
5d4f98a2
YZ
1950 BUG_ON(!is_data && refs_to_drop != 1);
1951 if (iref) {
afe5fea7 1952 update_inline_extent_backref(root, path, iref,
fcebe456 1953 -refs_to_drop, NULL, last_ref);
5d4f98a2 1954 } else if (is_data) {
fcebe456
JB
1955 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1956 last_ref);
5d4f98a2 1957 } else {
fcebe456 1958 *last_ref = 1;
5d4f98a2
YZ
1959 ret = btrfs_del_item(trans, root, path);
1960 }
1961 return ret;
1962}
1963
86557861 1964#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1965static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966 u64 *discarded_bytes)
5d4f98a2 1967{
86557861
JM
1968 int j, ret = 0;
1969 u64 bytes_left, end;
4d89d377 1970 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1971
4d89d377
JM
1972 if (WARN_ON(start != aligned_start)) {
1973 len -= aligned_start - start;
1974 len = round_down(len, 1 << 9);
1975 start = aligned_start;
1976 }
d04c6b88 1977
4d89d377 1978 *discarded_bytes = 0;
86557861
JM
1979
1980 if (!len)
1981 return 0;
1982
1983 end = start + len;
1984 bytes_left = len;
1985
1986 /* Skip any superblocks on this device. */
1987 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988 u64 sb_start = btrfs_sb_offset(j);
1989 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990 u64 size = sb_start - start;
1991
1992 if (!in_range(sb_start, start, bytes_left) &&
1993 !in_range(sb_end, start, bytes_left) &&
1994 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1995 continue;
1996
1997 /*
1998 * Superblock spans beginning of range. Adjust start and
1999 * try again.
2000 */
2001 if (sb_start <= start) {
2002 start += sb_end - start;
2003 if (start > end) {
2004 bytes_left = 0;
2005 break;
2006 }
2007 bytes_left = end - start;
2008 continue;
2009 }
2010
2011 if (size) {
2012 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2013 GFP_NOFS, 0);
2014 if (!ret)
2015 *discarded_bytes += size;
2016 else if (ret != -EOPNOTSUPP)
2017 return ret;
2018 }
2019
2020 start = sb_end;
2021 if (start > end) {
2022 bytes_left = 0;
2023 break;
2024 }
2025 bytes_left = end - start;
2026 }
2027
2028 if (bytes_left) {
2029 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2030 GFP_NOFS, 0);
2031 if (!ret)
86557861 2032 *discarded_bytes += bytes_left;
4d89d377 2033 }
d04c6b88 2034 return ret;
5d4f98a2 2035}
5d4f98a2 2036
1edb647b
FM
2037int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2039{
5d4f98a2 2040 int ret;
5378e607 2041 u64 discarded_bytes = 0;
a1d3c478 2042 struct btrfs_bio *bbio = NULL;
5d4f98a2 2043
e244a0ae 2044
5d4f98a2 2045 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 2046 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 2047 bytenr, &num_bytes, &bbio, 0);
79787eaa 2048 /* Error condition is -ENOMEM */
5d4f98a2 2049 if (!ret) {
a1d3c478 2050 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2051 int i;
2052
5d4f98a2 2053
a1d3c478 2054 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2055 u64 bytes;
d5e2003c
JB
2056 if (!stripe->dev->can_discard)
2057 continue;
2058
5378e607
LD
2059 ret = btrfs_issue_discard(stripe->dev->bdev,
2060 stripe->physical,
d04c6b88
JM
2061 stripe->length,
2062 &bytes);
5378e607 2063 if (!ret)
d04c6b88 2064 discarded_bytes += bytes;
5378e607 2065 else if (ret != -EOPNOTSUPP)
79787eaa 2066 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2067
2068 /*
2069 * Just in case we get back EOPNOTSUPP for some reason,
2070 * just ignore the return value so we don't screw up
2071 * people calling discard_extent.
2072 */
2073 ret = 0;
5d4f98a2 2074 }
6e9606d2 2075 btrfs_put_bbio(bbio);
5d4f98a2 2076 }
5378e607
LD
2077
2078 if (actual_bytes)
2079 *actual_bytes = discarded_bytes;
2080
5d4f98a2 2081
53b381b3
DW
2082 if (ret == -EOPNOTSUPP)
2083 ret = 0;
5d4f98a2 2084 return ret;
5d4f98a2
YZ
2085}
2086
79787eaa 2087/* Can return -ENOMEM */
5d4f98a2
YZ
2088int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2089 struct btrfs_root *root,
2090 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2091 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2092{
2093 int ret;
66d7e7f0
AJ
2094 struct btrfs_fs_info *fs_info = root->fs_info;
2095
5d4f98a2
YZ
2096 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2097 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2098
2099 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2100 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2101 num_bytes,
5d4f98a2 2102 parent, root_objectid, (int)owner,
b06c4bf5 2103 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2 2104 } else {
66d7e7f0 2105 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5846a3c2
QW
2106 num_bytes, parent, root_objectid,
2107 owner, offset, 0,
b06c4bf5 2108 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2
YZ
2109 }
2110 return ret;
2111}
2112
2113static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2114 struct btrfs_root *root,
c682f9b3 2115 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2116 u64 parent, u64 root_objectid,
2117 u64 owner, u64 offset, int refs_to_add,
2118 struct btrfs_delayed_extent_op *extent_op)
2119{
fcebe456 2120 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2121 struct btrfs_path *path;
2122 struct extent_buffer *leaf;
2123 struct btrfs_extent_item *item;
fcebe456 2124 struct btrfs_key key;
c682f9b3
QW
2125 u64 bytenr = node->bytenr;
2126 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2127 u64 refs;
2128 int ret;
5d4f98a2
YZ
2129
2130 path = btrfs_alloc_path();
2131 if (!path)
2132 return -ENOMEM;
2133
e4058b54 2134 path->reada = READA_FORWARD;
5d4f98a2
YZ
2135 path->leave_spinning = 1;
2136 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2137 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2138 bytenr, num_bytes, parent,
5d4f98a2
YZ
2139 root_objectid, owner, offset,
2140 refs_to_add, extent_op);
0ed4792a 2141 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2142 goto out;
fcebe456
JB
2143
2144 /*
2145 * Ok we had -EAGAIN which means we didn't have space to insert and
2146 * inline extent ref, so just update the reference count and add a
2147 * normal backref.
2148 */
5d4f98a2 2149 leaf = path->nodes[0];
fcebe456 2150 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2151 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2152 refs = btrfs_extent_refs(leaf, item);
2153 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2154 if (extent_op)
2155 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2156
5d4f98a2 2157 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2158 btrfs_release_path(path);
56bec294 2159
e4058b54 2160 path->reada = READA_FORWARD;
b9473439 2161 path->leave_spinning = 1;
56bec294
CM
2162 /* now insert the actual backref */
2163 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2164 path, bytenr, parent, root_objectid,
2165 owner, offset, refs_to_add);
79787eaa
JM
2166 if (ret)
2167 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2168out:
56bec294 2169 btrfs_free_path(path);
30d133fc 2170 return ret;
56bec294
CM
2171}
2172
5d4f98a2
YZ
2173static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2174 struct btrfs_root *root,
2175 struct btrfs_delayed_ref_node *node,
2176 struct btrfs_delayed_extent_op *extent_op,
2177 int insert_reserved)
56bec294 2178{
5d4f98a2
YZ
2179 int ret = 0;
2180 struct btrfs_delayed_data_ref *ref;
2181 struct btrfs_key ins;
2182 u64 parent = 0;
2183 u64 ref_root = 0;
2184 u64 flags = 0;
2185
2186 ins.objectid = node->bytenr;
2187 ins.offset = node->num_bytes;
2188 ins.type = BTRFS_EXTENT_ITEM_KEY;
2189
2190 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2191 trace_run_delayed_data_ref(node, ref, node->action);
2192
5d4f98a2
YZ
2193 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2194 parent = ref->parent;
fcebe456 2195 ref_root = ref->root;
5d4f98a2
YZ
2196
2197 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2198 if (extent_op)
5d4f98a2 2199 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2200 ret = alloc_reserved_file_extent(trans, root,
2201 parent, ref_root, flags,
2202 ref->objectid, ref->offset,
2203 &ins, node->ref_mod);
5d4f98a2 2204 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2205 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2206 ref_root, ref->objectid,
2207 ref->offset, node->ref_mod,
c682f9b3 2208 extent_op);
5d4f98a2 2209 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2210 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2211 ref_root, ref->objectid,
2212 ref->offset, node->ref_mod,
c682f9b3 2213 extent_op);
5d4f98a2
YZ
2214 } else {
2215 BUG();
2216 }
2217 return ret;
2218}
2219
2220static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2221 struct extent_buffer *leaf,
2222 struct btrfs_extent_item *ei)
2223{
2224 u64 flags = btrfs_extent_flags(leaf, ei);
2225 if (extent_op->update_flags) {
2226 flags |= extent_op->flags_to_set;
2227 btrfs_set_extent_flags(leaf, ei, flags);
2228 }
2229
2230 if (extent_op->update_key) {
2231 struct btrfs_tree_block_info *bi;
2232 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2233 bi = (struct btrfs_tree_block_info *)(ei + 1);
2234 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2235 }
2236}
2237
2238static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2239 struct btrfs_root *root,
2240 struct btrfs_delayed_ref_node *node,
2241 struct btrfs_delayed_extent_op *extent_op)
2242{
2243 struct btrfs_key key;
2244 struct btrfs_path *path;
2245 struct btrfs_extent_item *ei;
2246 struct extent_buffer *leaf;
2247 u32 item_size;
56bec294 2248 int ret;
5d4f98a2 2249 int err = 0;
b1c79e09 2250 int metadata = !extent_op->is_data;
5d4f98a2 2251
79787eaa
JM
2252 if (trans->aborted)
2253 return 0;
2254
3173a18f
JB
2255 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2256 metadata = 0;
2257
5d4f98a2
YZ
2258 path = btrfs_alloc_path();
2259 if (!path)
2260 return -ENOMEM;
2261
2262 key.objectid = node->bytenr;
5d4f98a2 2263
3173a18f 2264 if (metadata) {
3173a18f 2265 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2266 key.offset = extent_op->level;
3173a18f
JB
2267 } else {
2268 key.type = BTRFS_EXTENT_ITEM_KEY;
2269 key.offset = node->num_bytes;
2270 }
2271
2272again:
e4058b54 2273 path->reada = READA_FORWARD;
5d4f98a2
YZ
2274 path->leave_spinning = 1;
2275 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2276 path, 0, 1);
2277 if (ret < 0) {
2278 err = ret;
2279 goto out;
2280 }
2281 if (ret > 0) {
3173a18f 2282 if (metadata) {
55994887
FDBM
2283 if (path->slots[0] > 0) {
2284 path->slots[0]--;
2285 btrfs_item_key_to_cpu(path->nodes[0], &key,
2286 path->slots[0]);
2287 if (key.objectid == node->bytenr &&
2288 key.type == BTRFS_EXTENT_ITEM_KEY &&
2289 key.offset == node->num_bytes)
2290 ret = 0;
2291 }
2292 if (ret > 0) {
2293 btrfs_release_path(path);
2294 metadata = 0;
3173a18f 2295
55994887
FDBM
2296 key.objectid = node->bytenr;
2297 key.offset = node->num_bytes;
2298 key.type = BTRFS_EXTENT_ITEM_KEY;
2299 goto again;
2300 }
2301 } else {
2302 err = -EIO;
2303 goto out;
3173a18f 2304 }
5d4f98a2
YZ
2305 }
2306
2307 leaf = path->nodes[0];
2308 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2309#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2310 if (item_size < sizeof(*ei)) {
2311 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2312 path, (u64)-1, 0);
2313 if (ret < 0) {
2314 err = ret;
2315 goto out;
2316 }
2317 leaf = path->nodes[0];
2318 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2319 }
2320#endif
2321 BUG_ON(item_size < sizeof(*ei));
2322 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2323 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2324
5d4f98a2
YZ
2325 btrfs_mark_buffer_dirty(leaf);
2326out:
2327 btrfs_free_path(path);
2328 return err;
56bec294
CM
2329}
2330
5d4f98a2
YZ
2331static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2332 struct btrfs_root *root,
2333 struct btrfs_delayed_ref_node *node,
2334 struct btrfs_delayed_extent_op *extent_op,
2335 int insert_reserved)
56bec294
CM
2336{
2337 int ret = 0;
5d4f98a2
YZ
2338 struct btrfs_delayed_tree_ref *ref;
2339 struct btrfs_key ins;
2340 u64 parent = 0;
2341 u64 ref_root = 0;
3173a18f
JB
2342 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2343 SKINNY_METADATA);
56bec294 2344
5d4f98a2 2345 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2346 trace_run_delayed_tree_ref(node, ref, node->action);
2347
5d4f98a2
YZ
2348 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2349 parent = ref->parent;
fcebe456 2350 ref_root = ref->root;
5d4f98a2 2351
3173a18f
JB
2352 ins.objectid = node->bytenr;
2353 if (skinny_metadata) {
2354 ins.offset = ref->level;
2355 ins.type = BTRFS_METADATA_ITEM_KEY;
2356 } else {
2357 ins.offset = node->num_bytes;
2358 ins.type = BTRFS_EXTENT_ITEM_KEY;
2359 }
2360
5d4f98a2
YZ
2361 BUG_ON(node->ref_mod != 1);
2362 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2363 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2364 ret = alloc_reserved_tree_block(trans, root,
2365 parent, ref_root,
2366 extent_op->flags_to_set,
2367 &extent_op->key,
b06c4bf5 2368 ref->level, &ins);
5d4f98a2 2369 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2370 ret = __btrfs_inc_extent_ref(trans, root, node,
2371 parent, ref_root,
2372 ref->level, 0, 1,
fcebe456 2373 extent_op);
5d4f98a2 2374 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2375 ret = __btrfs_free_extent(trans, root, node,
2376 parent, ref_root,
2377 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2378 } else {
2379 BUG();
2380 }
56bec294
CM
2381 return ret;
2382}
2383
2384/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2385static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2386 struct btrfs_root *root,
2387 struct btrfs_delayed_ref_node *node,
2388 struct btrfs_delayed_extent_op *extent_op,
2389 int insert_reserved)
56bec294 2390{
79787eaa
JM
2391 int ret = 0;
2392
857cc2fc
JB
2393 if (trans->aborted) {
2394 if (insert_reserved)
2395 btrfs_pin_extent(root, node->bytenr,
2396 node->num_bytes, 1);
79787eaa 2397 return 0;
857cc2fc 2398 }
79787eaa 2399
5d4f98a2 2400 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2401 struct btrfs_delayed_ref_head *head;
2402 /*
2403 * we've hit the end of the chain and we were supposed
2404 * to insert this extent into the tree. But, it got
2405 * deleted before we ever needed to insert it, so all
2406 * we have to do is clean up the accounting
2407 */
5d4f98a2
YZ
2408 BUG_ON(extent_op);
2409 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2410 trace_run_delayed_ref_head(node, head, node->action);
2411
56bec294 2412 if (insert_reserved) {
f0486c68
YZ
2413 btrfs_pin_extent(root, node->bytenr,
2414 node->num_bytes, 1);
5d4f98a2
YZ
2415 if (head->is_data) {
2416 ret = btrfs_del_csums(trans, root,
2417 node->bytenr,
2418 node->num_bytes);
5d4f98a2 2419 }
56bec294 2420 }
297d750b
QW
2421
2422 /* Also free its reserved qgroup space */
2423 btrfs_qgroup_free_delayed_ref(root->fs_info,
2424 head->qgroup_ref_root,
2425 head->qgroup_reserved);
79787eaa 2426 return ret;
56bec294
CM
2427 }
2428
5d4f98a2
YZ
2429 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2430 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2431 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2432 insert_reserved);
2433 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2434 node->type == BTRFS_SHARED_DATA_REF_KEY)
2435 ret = run_delayed_data_ref(trans, root, node, extent_op,
2436 insert_reserved);
2437 else
2438 BUG();
2439 return ret;
56bec294
CM
2440}
2441
c6fc2454 2442static inline struct btrfs_delayed_ref_node *
56bec294
CM
2443select_delayed_ref(struct btrfs_delayed_ref_head *head)
2444{
cffc3374
FM
2445 struct btrfs_delayed_ref_node *ref;
2446
c6fc2454
QW
2447 if (list_empty(&head->ref_list))
2448 return NULL;
d7df2c79 2449
cffc3374
FM
2450 /*
2451 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2452 * This is to prevent a ref count from going down to zero, which deletes
2453 * the extent item from the extent tree, when there still are references
2454 * to add, which would fail because they would not find the extent item.
2455 */
2456 list_for_each_entry(ref, &head->ref_list, list) {
2457 if (ref->action == BTRFS_ADD_DELAYED_REF)
2458 return ref;
2459 }
2460
c6fc2454
QW
2461 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2462 list);
56bec294
CM
2463}
2464
79787eaa
JM
2465/*
2466 * Returns 0 on success or if called with an already aborted transaction.
2467 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2468 */
d7df2c79
JB
2469static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2470 struct btrfs_root *root,
2471 unsigned long nr)
56bec294 2472{
56bec294
CM
2473 struct btrfs_delayed_ref_root *delayed_refs;
2474 struct btrfs_delayed_ref_node *ref;
2475 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2476 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2477 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2478 ktime_t start = ktime_get();
56bec294 2479 int ret;
d7df2c79 2480 unsigned long count = 0;
0a2b2a84 2481 unsigned long actual_count = 0;
56bec294 2482 int must_insert_reserved = 0;
56bec294
CM
2483
2484 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2485 while (1) {
2486 if (!locked_ref) {
d7df2c79 2487 if (count >= nr)
56bec294 2488 break;
56bec294 2489
d7df2c79
JB
2490 spin_lock(&delayed_refs->lock);
2491 locked_ref = btrfs_select_ref_head(trans);
2492 if (!locked_ref) {
2493 spin_unlock(&delayed_refs->lock);
2494 break;
2495 }
c3e69d58
CM
2496
2497 /* grab the lock that says we are going to process
2498 * all the refs for this head */
2499 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2500 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2501 /*
2502 * we may have dropped the spin lock to get the head
2503 * mutex lock, and that might have given someone else
2504 * time to free the head. If that's true, it has been
2505 * removed from our list and we can move on.
2506 */
2507 if (ret == -EAGAIN) {
2508 locked_ref = NULL;
2509 count++;
2510 continue;
56bec294
CM
2511 }
2512 }
a28ec197 2513
2c3cf7d5
FM
2514 /*
2515 * We need to try and merge add/drops of the same ref since we
2516 * can run into issues with relocate dropping the implicit ref
2517 * and then it being added back again before the drop can
2518 * finish. If we merged anything we need to re-loop so we can
2519 * get a good ref.
2520 * Or we can get node references of the same type that weren't
2521 * merged when created due to bumps in the tree mod seq, and
2522 * we need to merge them to prevent adding an inline extent
2523 * backref before dropping it (triggering a BUG_ON at
2524 * insert_inline_extent_backref()).
2525 */
d7df2c79 2526 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2527 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2528 locked_ref);
ae1e206b 2529
d1270cd9
AJ
2530 /*
2531 * locked_ref is the head node, so we have to go one
2532 * node back for any delayed ref updates
2533 */
2534 ref = select_delayed_ref(locked_ref);
2535
2536 if (ref && ref->seq &&
097b8a7c 2537 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2538 spin_unlock(&locked_ref->lock);
093486c4 2539 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2540 spin_lock(&delayed_refs->lock);
2541 locked_ref->processing = 0;
d1270cd9
AJ
2542 delayed_refs->num_heads_ready++;
2543 spin_unlock(&delayed_refs->lock);
d7df2c79 2544 locked_ref = NULL;
d1270cd9 2545 cond_resched();
27a377db 2546 count++;
d1270cd9
AJ
2547 continue;
2548 }
2549
56bec294
CM
2550 /*
2551 * record the must insert reserved flag before we
2552 * drop the spin lock.
2553 */
2554 must_insert_reserved = locked_ref->must_insert_reserved;
2555 locked_ref->must_insert_reserved = 0;
7bb86316 2556
5d4f98a2
YZ
2557 extent_op = locked_ref->extent_op;
2558 locked_ref->extent_op = NULL;
2559
56bec294 2560 if (!ref) {
d7df2c79
JB
2561
2562
56bec294
CM
2563 /* All delayed refs have been processed, Go ahead
2564 * and send the head node to run_one_delayed_ref,
2565 * so that any accounting fixes can happen
2566 */
2567 ref = &locked_ref->node;
5d4f98a2
YZ
2568
2569 if (extent_op && must_insert_reserved) {
78a6184a 2570 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2571 extent_op = NULL;
2572 }
2573
2574 if (extent_op) {
d7df2c79 2575 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2576 ret = run_delayed_extent_op(trans, root,
2577 ref, extent_op);
78a6184a 2578 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2579
79787eaa 2580 if (ret) {
857cc2fc
JB
2581 /*
2582 * Need to reset must_insert_reserved if
2583 * there was an error so the abort stuff
2584 * can cleanup the reserved space
2585 * properly.
2586 */
2587 if (must_insert_reserved)
2588 locked_ref->must_insert_reserved = 1;
d7df2c79 2589 locked_ref->processing = 0;
c2cf52eb 2590 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2591 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2592 return ret;
2593 }
d7df2c79 2594 continue;
5d4f98a2 2595 }
02217ed2 2596
d7df2c79 2597 /*
01327610 2598 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2599 * delayed ref lock and then re-check to make sure
2600 * nobody got added.
2601 */
2602 spin_unlock(&locked_ref->lock);
2603 spin_lock(&delayed_refs->lock);
2604 spin_lock(&locked_ref->lock);
c6fc2454 2605 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2606 locked_ref->extent_op) {
d7df2c79
JB
2607 spin_unlock(&locked_ref->lock);
2608 spin_unlock(&delayed_refs->lock);
2609 continue;
2610 }
2611 ref->in_tree = 0;
2612 delayed_refs->num_heads--;
c46effa6
LB
2613 rb_erase(&locked_ref->href_node,
2614 &delayed_refs->href_root);
d7df2c79
JB
2615 spin_unlock(&delayed_refs->lock);
2616 } else {
0a2b2a84 2617 actual_count++;
d7df2c79 2618 ref->in_tree = 0;
c6fc2454 2619 list_del(&ref->list);
c46effa6 2620 }
d7df2c79
JB
2621 atomic_dec(&delayed_refs->num_entries);
2622
093486c4 2623 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2624 /*
2625 * when we play the delayed ref, also correct the
2626 * ref_mod on head
2627 */
2628 switch (ref->action) {
2629 case BTRFS_ADD_DELAYED_REF:
2630 case BTRFS_ADD_DELAYED_EXTENT:
2631 locked_ref->node.ref_mod -= ref->ref_mod;
2632 break;
2633 case BTRFS_DROP_DELAYED_REF:
2634 locked_ref->node.ref_mod += ref->ref_mod;
2635 break;
2636 default:
2637 WARN_ON(1);
2638 }
2639 }
d7df2c79 2640 spin_unlock(&locked_ref->lock);
925baedd 2641
5d4f98a2 2642 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2643 must_insert_reserved);
eb099670 2644
78a6184a 2645 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2646 if (ret) {
d7df2c79 2647 locked_ref->processing = 0;
093486c4
MX
2648 btrfs_delayed_ref_unlock(locked_ref);
2649 btrfs_put_delayed_ref(ref);
c2cf52eb 2650 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2651 return ret;
2652 }
2653
093486c4
MX
2654 /*
2655 * If this node is a head, that means all the refs in this head
2656 * have been dealt with, and we will pick the next head to deal
2657 * with, so we must unlock the head and drop it from the cluster
2658 * list before we release it.
2659 */
2660 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2661 if (locked_ref->is_data &&
2662 locked_ref->total_ref_mod < 0) {
2663 spin_lock(&delayed_refs->lock);
2664 delayed_refs->pending_csums -= ref->num_bytes;
2665 spin_unlock(&delayed_refs->lock);
2666 }
093486c4
MX
2667 btrfs_delayed_ref_unlock(locked_ref);
2668 locked_ref = NULL;
2669 }
2670 btrfs_put_delayed_ref(ref);
2671 count++;
c3e69d58 2672 cond_resched();
c3e69d58 2673 }
0a2b2a84
JB
2674
2675 /*
2676 * We don't want to include ref heads since we can have empty ref heads
2677 * and those will drastically skew our runtime down since we just do
2678 * accounting, no actual extent tree updates.
2679 */
2680 if (actual_count > 0) {
2681 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2682 u64 avg;
2683
2684 /*
2685 * We weigh the current average higher than our current runtime
2686 * to avoid large swings in the average.
2687 */
2688 spin_lock(&delayed_refs->lock);
2689 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2690 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2691 spin_unlock(&delayed_refs->lock);
2692 }
d7df2c79 2693 return 0;
c3e69d58
CM
2694}
2695
709c0486
AJ
2696#ifdef SCRAMBLE_DELAYED_REFS
2697/*
2698 * Normally delayed refs get processed in ascending bytenr order. This
2699 * correlates in most cases to the order added. To expose dependencies on this
2700 * order, we start to process the tree in the middle instead of the beginning
2701 */
2702static u64 find_middle(struct rb_root *root)
2703{
2704 struct rb_node *n = root->rb_node;
2705 struct btrfs_delayed_ref_node *entry;
2706 int alt = 1;
2707 u64 middle;
2708 u64 first = 0, last = 0;
2709
2710 n = rb_first(root);
2711 if (n) {
2712 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2713 first = entry->bytenr;
2714 }
2715 n = rb_last(root);
2716 if (n) {
2717 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2718 last = entry->bytenr;
2719 }
2720 n = root->rb_node;
2721
2722 while (n) {
2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 WARN_ON(!entry->in_tree);
2725
2726 middle = entry->bytenr;
2727
2728 if (alt)
2729 n = n->rb_left;
2730 else
2731 n = n->rb_right;
2732
2733 alt = 1 - alt;
2734 }
2735 return middle;
2736}
2737#endif
2738
1be41b78
JB
2739static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2740{
2741 u64 num_bytes;
2742
2743 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2744 sizeof(struct btrfs_extent_inline_ref));
2745 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2746 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2747
2748 /*
2749 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2750 * closer to what we're really going to want to use.
1be41b78 2751 */
f8c269d7 2752 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2753}
2754
1262133b
JB
2755/*
2756 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2757 * would require to store the csums for that many bytes.
2758 */
28f75a0e 2759u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2760{
2761 u64 csum_size;
2762 u64 num_csums_per_leaf;
2763 u64 num_csums;
2764
2765 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2766 num_csums_per_leaf = div64_u64(csum_size,
2767 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2768 num_csums = div64_u64(csum_bytes, root->sectorsize);
2769 num_csums += num_csums_per_leaf - 1;
2770 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2771 return num_csums;
2772}
2773
0a2b2a84 2774int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2775 struct btrfs_root *root)
2776{
2777 struct btrfs_block_rsv *global_rsv;
2778 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2779 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2780 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2781 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2782 int ret = 0;
2783
2784 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2785 num_heads = heads_to_leaves(root, num_heads);
2786 if (num_heads > 1)
707e8a07 2787 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2788 num_bytes <<= 1;
28f75a0e 2789 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2790 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2791 num_dirty_bgs);
1be41b78
JB
2792 global_rsv = &root->fs_info->global_block_rsv;
2793
2794 /*
2795 * If we can't allocate any more chunks lets make sure we have _lots_ of
2796 * wiggle room since running delayed refs can create more delayed refs.
2797 */
cb723e49
JB
2798 if (global_rsv->space_info->full) {
2799 num_dirty_bgs_bytes <<= 1;
1be41b78 2800 num_bytes <<= 1;
cb723e49 2801 }
1be41b78
JB
2802
2803 spin_lock(&global_rsv->lock);
cb723e49 2804 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2805 ret = 1;
2806 spin_unlock(&global_rsv->lock);
2807 return ret;
2808}
2809
0a2b2a84
JB
2810int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2811 struct btrfs_root *root)
2812{
2813 struct btrfs_fs_info *fs_info = root->fs_info;
2814 u64 num_entries =
2815 atomic_read(&trans->transaction->delayed_refs.num_entries);
2816 u64 avg_runtime;
a79b7d4b 2817 u64 val;
0a2b2a84
JB
2818
2819 smp_mb();
2820 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2821 val = num_entries * avg_runtime;
0a2b2a84
JB
2822 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2823 return 1;
a79b7d4b
CM
2824 if (val >= NSEC_PER_SEC / 2)
2825 return 2;
0a2b2a84
JB
2826
2827 return btrfs_check_space_for_delayed_refs(trans, root);
2828}
2829
a79b7d4b
CM
2830struct async_delayed_refs {
2831 struct btrfs_root *root;
2832 int count;
2833 int error;
2834 int sync;
2835 struct completion wait;
2836 struct btrfs_work work;
2837};
2838
2839static void delayed_ref_async_start(struct btrfs_work *work)
2840{
2841 struct async_delayed_refs *async;
2842 struct btrfs_trans_handle *trans;
2843 int ret;
2844
2845 async = container_of(work, struct async_delayed_refs, work);
2846
2847 trans = btrfs_join_transaction(async->root);
2848 if (IS_ERR(trans)) {
2849 async->error = PTR_ERR(trans);
2850 goto done;
2851 }
2852
2853 /*
01327610 2854 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2855 * wait on delayed refs
2856 */
2857 trans->sync = true;
2858 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2859 if (ret)
2860 async->error = ret;
2861
2862 ret = btrfs_end_transaction(trans, async->root);
2863 if (ret && !async->error)
2864 async->error = ret;
2865done:
2866 if (async->sync)
2867 complete(&async->wait);
2868 else
2869 kfree(async);
2870}
2871
2872int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2873 unsigned long count, int wait)
2874{
2875 struct async_delayed_refs *async;
2876 int ret;
2877
2878 async = kmalloc(sizeof(*async), GFP_NOFS);
2879 if (!async)
2880 return -ENOMEM;
2881
2882 async->root = root->fs_info->tree_root;
2883 async->count = count;
2884 async->error = 0;
2885 if (wait)
2886 async->sync = 1;
2887 else
2888 async->sync = 0;
2889 init_completion(&async->wait);
2890
9e0af237
LB
2891 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2892 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2893
2894 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2895
2896 if (wait) {
2897 wait_for_completion(&async->wait);
2898 ret = async->error;
2899 kfree(async);
2900 return ret;
2901 }
2902 return 0;
2903}
2904
c3e69d58
CM
2905/*
2906 * this starts processing the delayed reference count updates and
2907 * extent insertions we have queued up so far. count can be
2908 * 0, which means to process everything in the tree at the start
2909 * of the run (but not newly added entries), or it can be some target
2910 * number you'd like to process.
79787eaa
JM
2911 *
2912 * Returns 0 on success or if called with an aborted transaction
2913 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2914 */
2915int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2916 struct btrfs_root *root, unsigned long count)
2917{
2918 struct rb_node *node;
2919 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2920 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2921 int ret;
2922 int run_all = count == (unsigned long)-1;
d9a0540a 2923 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2924
79787eaa
JM
2925 /* We'll clean this up in btrfs_cleanup_transaction */
2926 if (trans->aborted)
2927 return 0;
2928
511711af
CM
2929 if (root->fs_info->creating_free_space_tree)
2930 return 0;
2931
c3e69d58
CM
2932 if (root == root->fs_info->extent_root)
2933 root = root->fs_info->tree_root;
2934
2935 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2936 if (count == 0)
d7df2c79 2937 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2938
c3e69d58 2939again:
709c0486
AJ
2940#ifdef SCRAMBLE_DELAYED_REFS
2941 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2942#endif
d9a0540a 2943 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2944 ret = __btrfs_run_delayed_refs(trans, root, count);
2945 if (ret < 0) {
2946 btrfs_abort_transaction(trans, root, ret);
2947 return ret;
eb099670 2948 }
c3e69d58 2949
56bec294 2950 if (run_all) {
d7df2c79 2951 if (!list_empty(&trans->new_bgs))
ea658bad 2952 btrfs_create_pending_block_groups(trans, root);
ea658bad 2953
d7df2c79 2954 spin_lock(&delayed_refs->lock);
c46effa6 2955 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2956 if (!node) {
2957 spin_unlock(&delayed_refs->lock);
56bec294 2958 goto out;
d7df2c79 2959 }
c3e69d58 2960 count = (unsigned long)-1;
e9d0b13b 2961
56bec294 2962 while (node) {
c46effa6
LB
2963 head = rb_entry(node, struct btrfs_delayed_ref_head,
2964 href_node);
2965 if (btrfs_delayed_ref_is_head(&head->node)) {
2966 struct btrfs_delayed_ref_node *ref;
5caf2a00 2967
c46effa6 2968 ref = &head->node;
56bec294
CM
2969 atomic_inc(&ref->refs);
2970
2971 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2972 /*
2973 * Mutex was contended, block until it's
2974 * released and try again
2975 */
56bec294
CM
2976 mutex_lock(&head->mutex);
2977 mutex_unlock(&head->mutex);
2978
2979 btrfs_put_delayed_ref(ref);
1887be66 2980 cond_resched();
56bec294 2981 goto again;
c46effa6
LB
2982 } else {
2983 WARN_ON(1);
56bec294
CM
2984 }
2985 node = rb_next(node);
2986 }
2987 spin_unlock(&delayed_refs->lock);
d7df2c79 2988 cond_resched();
56bec294 2989 goto again;
5f39d397 2990 }
54aa1f4d 2991out:
edf39272 2992 assert_qgroups_uptodate(trans);
d9a0540a 2993 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
2994 return 0;
2995}
2996
5d4f98a2
YZ
2997int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2998 struct btrfs_root *root,
2999 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3000 int level, int is_data)
5d4f98a2
YZ
3001{
3002 struct btrfs_delayed_extent_op *extent_op;
3003 int ret;
3004
78a6184a 3005 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3006 if (!extent_op)
3007 return -ENOMEM;
3008
3009 extent_op->flags_to_set = flags;
35b3ad50
DS
3010 extent_op->update_flags = true;
3011 extent_op->update_key = false;
3012 extent_op->is_data = is_data ? true : false;
b1c79e09 3013 extent_op->level = level;
5d4f98a2 3014
66d7e7f0
AJ
3015 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3016 num_bytes, extent_op);
5d4f98a2 3017 if (ret)
78a6184a 3018 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3019 return ret;
3020}
3021
3022static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3023 struct btrfs_root *root,
3024 struct btrfs_path *path,
3025 u64 objectid, u64 offset, u64 bytenr)
3026{
3027 struct btrfs_delayed_ref_head *head;
3028 struct btrfs_delayed_ref_node *ref;
3029 struct btrfs_delayed_data_ref *data_ref;
3030 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
3031 int ret = 0;
3032
5d4f98a2
YZ
3033 delayed_refs = &trans->transaction->delayed_refs;
3034 spin_lock(&delayed_refs->lock);
3035 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
3036 if (!head) {
3037 spin_unlock(&delayed_refs->lock);
3038 return 0;
3039 }
5d4f98a2
YZ
3040
3041 if (!mutex_trylock(&head->mutex)) {
3042 atomic_inc(&head->node.refs);
3043 spin_unlock(&delayed_refs->lock);
3044
b3b4aa74 3045 btrfs_release_path(path);
5d4f98a2 3046
8cc33e5c
DS
3047 /*
3048 * Mutex was contended, block until it's released and let
3049 * caller try again
3050 */
5d4f98a2
YZ
3051 mutex_lock(&head->mutex);
3052 mutex_unlock(&head->mutex);
3053 btrfs_put_delayed_ref(&head->node);
3054 return -EAGAIN;
3055 }
d7df2c79 3056 spin_unlock(&delayed_refs->lock);
5d4f98a2 3057
d7df2c79 3058 spin_lock(&head->lock);
c6fc2454 3059 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3060 /* If it's a shared ref we know a cross reference exists */
3061 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3062 ret = 1;
3063 break;
3064 }
5d4f98a2 3065
d7df2c79 3066 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3067
d7df2c79
JB
3068 /*
3069 * If our ref doesn't match the one we're currently looking at
3070 * then we have a cross reference.
3071 */
3072 if (data_ref->root != root->root_key.objectid ||
3073 data_ref->objectid != objectid ||
3074 data_ref->offset != offset) {
3075 ret = 1;
3076 break;
3077 }
5d4f98a2 3078 }
d7df2c79 3079 spin_unlock(&head->lock);
5d4f98a2 3080 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3081 return ret;
3082}
3083
3084static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3085 struct btrfs_root *root,
3086 struct btrfs_path *path,
3087 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
3088{
3089 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3090 struct extent_buffer *leaf;
5d4f98a2
YZ
3091 struct btrfs_extent_data_ref *ref;
3092 struct btrfs_extent_inline_ref *iref;
3093 struct btrfs_extent_item *ei;
f321e491 3094 struct btrfs_key key;
5d4f98a2 3095 u32 item_size;
be20aa9d 3096 int ret;
925baedd 3097
be20aa9d 3098 key.objectid = bytenr;
31840ae1 3099 key.offset = (u64)-1;
f321e491 3100 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3101
be20aa9d
CM
3102 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3103 if (ret < 0)
3104 goto out;
79787eaa 3105 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3106
3107 ret = -ENOENT;
3108 if (path->slots[0] == 0)
31840ae1 3109 goto out;
be20aa9d 3110
31840ae1 3111 path->slots[0]--;
f321e491 3112 leaf = path->nodes[0];
5d4f98a2 3113 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3114
5d4f98a2 3115 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3116 goto out;
f321e491 3117
5d4f98a2
YZ
3118 ret = 1;
3119 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3120#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3121 if (item_size < sizeof(*ei)) {
3122 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3123 goto out;
3124 }
3125#endif
3126 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3127
5d4f98a2
YZ
3128 if (item_size != sizeof(*ei) +
3129 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3130 goto out;
be20aa9d 3131
5d4f98a2
YZ
3132 if (btrfs_extent_generation(leaf, ei) <=
3133 btrfs_root_last_snapshot(&root->root_item))
3134 goto out;
3135
3136 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3137 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3138 BTRFS_EXTENT_DATA_REF_KEY)
3139 goto out;
3140
3141 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3142 if (btrfs_extent_refs(leaf, ei) !=
3143 btrfs_extent_data_ref_count(leaf, ref) ||
3144 btrfs_extent_data_ref_root(leaf, ref) !=
3145 root->root_key.objectid ||
3146 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3147 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3148 goto out;
3149
3150 ret = 0;
3151out:
3152 return ret;
3153}
3154
3155int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3156 struct btrfs_root *root,
3157 u64 objectid, u64 offset, u64 bytenr)
3158{
3159 struct btrfs_path *path;
3160 int ret;
3161 int ret2;
3162
3163 path = btrfs_alloc_path();
3164 if (!path)
3165 return -ENOENT;
3166
3167 do {
3168 ret = check_committed_ref(trans, root, path, objectid,
3169 offset, bytenr);
3170 if (ret && ret != -ENOENT)
f321e491 3171 goto out;
80ff3856 3172
5d4f98a2
YZ
3173 ret2 = check_delayed_ref(trans, root, path, objectid,
3174 offset, bytenr);
3175 } while (ret2 == -EAGAIN);
3176
3177 if (ret2 && ret2 != -ENOENT) {
3178 ret = ret2;
3179 goto out;
f321e491 3180 }
5d4f98a2
YZ
3181
3182 if (ret != -ENOENT || ret2 != -ENOENT)
3183 ret = 0;
be20aa9d 3184out:
80ff3856 3185 btrfs_free_path(path);
f0486c68
YZ
3186 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3187 WARN_ON(ret > 0);
f321e491 3188 return ret;
be20aa9d 3189}
c5739bba 3190
5d4f98a2 3191static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3192 struct btrfs_root *root,
5d4f98a2 3193 struct extent_buffer *buf,
e339a6b0 3194 int full_backref, int inc)
31840ae1
ZY
3195{
3196 u64 bytenr;
5d4f98a2
YZ
3197 u64 num_bytes;
3198 u64 parent;
31840ae1 3199 u64 ref_root;
31840ae1 3200 u32 nritems;
31840ae1
ZY
3201 struct btrfs_key key;
3202 struct btrfs_file_extent_item *fi;
3203 int i;
3204 int level;
3205 int ret = 0;
31840ae1 3206 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
b06c4bf5 3207 u64, u64, u64, u64, u64, u64);
31840ae1 3208
fccb84c9
DS
3209
3210 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3211 return 0;
fccb84c9 3212
31840ae1 3213 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3214 nritems = btrfs_header_nritems(buf);
3215 level = btrfs_header_level(buf);
3216
27cdeb70 3217 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3218 return 0;
31840ae1 3219
5d4f98a2
YZ
3220 if (inc)
3221 process_func = btrfs_inc_extent_ref;
3222 else
3223 process_func = btrfs_free_extent;
31840ae1 3224
5d4f98a2
YZ
3225 if (full_backref)
3226 parent = buf->start;
3227 else
3228 parent = 0;
3229
3230 for (i = 0; i < nritems; i++) {
31840ae1 3231 if (level == 0) {
5d4f98a2 3232 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3233 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3234 continue;
5d4f98a2 3235 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3236 struct btrfs_file_extent_item);
3237 if (btrfs_file_extent_type(buf, fi) ==
3238 BTRFS_FILE_EXTENT_INLINE)
3239 continue;
3240 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3241 if (bytenr == 0)
3242 continue;
5d4f98a2
YZ
3243
3244 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3245 key.offset -= btrfs_file_extent_offset(buf, fi);
3246 ret = process_func(trans, root, bytenr, num_bytes,
3247 parent, ref_root, key.objectid,
b06c4bf5 3248 key.offset);
31840ae1
ZY
3249 if (ret)
3250 goto fail;
3251 } else {
5d4f98a2 3252 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3253 num_bytes = root->nodesize;
5d4f98a2 3254 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3255 parent, ref_root, level - 1, 0);
31840ae1
ZY
3256 if (ret)
3257 goto fail;
3258 }
3259 }
3260 return 0;
3261fail:
5d4f98a2
YZ
3262 return ret;
3263}
3264
3265int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3266 struct extent_buffer *buf, int full_backref)
5d4f98a2 3267{
e339a6b0 3268 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3269}
3270
3271int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3272 struct extent_buffer *buf, int full_backref)
5d4f98a2 3273{
e339a6b0 3274 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3275}
3276
9078a3e1
CM
3277static int write_one_cache_group(struct btrfs_trans_handle *trans,
3278 struct btrfs_root *root,
3279 struct btrfs_path *path,
3280 struct btrfs_block_group_cache *cache)
3281{
3282 int ret;
9078a3e1 3283 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3284 unsigned long bi;
3285 struct extent_buffer *leaf;
9078a3e1 3286
9078a3e1 3287 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3288 if (ret) {
3289 if (ret > 0)
3290 ret = -ENOENT;
54aa1f4d 3291 goto fail;
df95e7f0 3292 }
5f39d397
CM
3293
3294 leaf = path->nodes[0];
3295 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3296 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3297 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3298fail:
24b89d08 3299 btrfs_release_path(path);
df95e7f0 3300 return ret;
9078a3e1
CM
3301
3302}
3303
4a8c9a62
YZ
3304static struct btrfs_block_group_cache *
3305next_block_group(struct btrfs_root *root,
3306 struct btrfs_block_group_cache *cache)
3307{
3308 struct rb_node *node;
292cbd51 3309
4a8c9a62 3310 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3311
3312 /* If our block group was removed, we need a full search. */
3313 if (RB_EMPTY_NODE(&cache->cache_node)) {
3314 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3315
3316 spin_unlock(&root->fs_info->block_group_cache_lock);
3317 btrfs_put_block_group(cache);
3318 cache = btrfs_lookup_first_block_group(root->fs_info,
3319 next_bytenr);
3320 return cache;
3321 }
4a8c9a62
YZ
3322 node = rb_next(&cache->cache_node);
3323 btrfs_put_block_group(cache);
3324 if (node) {
3325 cache = rb_entry(node, struct btrfs_block_group_cache,
3326 cache_node);
11dfe35a 3327 btrfs_get_block_group(cache);
4a8c9a62
YZ
3328 } else
3329 cache = NULL;
3330 spin_unlock(&root->fs_info->block_group_cache_lock);
3331 return cache;
3332}
3333
0af3d00b
JB
3334static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3335 struct btrfs_trans_handle *trans,
3336 struct btrfs_path *path)
3337{
3338 struct btrfs_root *root = block_group->fs_info->tree_root;
3339 struct inode *inode = NULL;
3340 u64 alloc_hint = 0;
2b20982e 3341 int dcs = BTRFS_DC_ERROR;
f8c269d7 3342 u64 num_pages = 0;
0af3d00b
JB
3343 int retries = 0;
3344 int ret = 0;
3345
3346 /*
3347 * If this block group is smaller than 100 megs don't bother caching the
3348 * block group.
3349 */
ee22184b 3350 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3351 spin_lock(&block_group->lock);
3352 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3353 spin_unlock(&block_group->lock);
3354 return 0;
3355 }
3356
0c0ef4bc
JB
3357 if (trans->aborted)
3358 return 0;
0af3d00b
JB
3359again:
3360 inode = lookup_free_space_inode(root, block_group, path);
3361 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3362 ret = PTR_ERR(inode);
b3b4aa74 3363 btrfs_release_path(path);
0af3d00b
JB
3364 goto out;
3365 }
3366
3367 if (IS_ERR(inode)) {
3368 BUG_ON(retries);
3369 retries++;
3370
3371 if (block_group->ro)
3372 goto out_free;
3373
3374 ret = create_free_space_inode(root, trans, block_group, path);
3375 if (ret)
3376 goto out_free;
3377 goto again;
3378 }
3379
5b0e95bf
JB
3380 /* We've already setup this transaction, go ahead and exit */
3381 if (block_group->cache_generation == trans->transid &&
3382 i_size_read(inode)) {
3383 dcs = BTRFS_DC_SETUP;
3384 goto out_put;
3385 }
3386
0af3d00b
JB
3387 /*
3388 * We want to set the generation to 0, that way if anything goes wrong
3389 * from here on out we know not to trust this cache when we load up next
3390 * time.
3391 */
3392 BTRFS_I(inode)->generation = 0;
3393 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3394 if (ret) {
3395 /*
3396 * So theoretically we could recover from this, simply set the
3397 * super cache generation to 0 so we know to invalidate the
3398 * cache, but then we'd have to keep track of the block groups
3399 * that fail this way so we know we _have_ to reset this cache
3400 * before the next commit or risk reading stale cache. So to
3401 * limit our exposure to horrible edge cases lets just abort the
3402 * transaction, this only happens in really bad situations
3403 * anyway.
3404 */
3405 btrfs_abort_transaction(trans, root, ret);
3406 goto out_put;
3407 }
0af3d00b
JB
3408 WARN_ON(ret);
3409
3410 if (i_size_read(inode) > 0) {
7b61cd92
MX
3411 ret = btrfs_check_trunc_cache_free_space(root,
3412 &root->fs_info->global_block_rsv);
3413 if (ret)
3414 goto out_put;
3415
1bbc621e 3416 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3417 if (ret)
3418 goto out_put;
3419 }
3420
3421 spin_lock(&block_group->lock);
cf7c1ef6 3422 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3423 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3424 /*
3425 * don't bother trying to write stuff out _if_
3426 * a) we're not cached,
3427 * b) we're with nospace_cache mount option.
3428 */
2b20982e 3429 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3430 spin_unlock(&block_group->lock);
3431 goto out_put;
3432 }
3433 spin_unlock(&block_group->lock);
3434
2968b1f4
JB
3435 /*
3436 * We hit an ENOSPC when setting up the cache in this transaction, just
3437 * skip doing the setup, we've already cleared the cache so we're safe.
3438 */
3439 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3440 ret = -ENOSPC;
3441 goto out_put;
3442 }
3443
6fc823b1
JB
3444 /*
3445 * Try to preallocate enough space based on how big the block group is.
3446 * Keep in mind this has to include any pinned space which could end up
3447 * taking up quite a bit since it's not folded into the other space
3448 * cache.
3449 */
ee22184b 3450 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3451 if (!num_pages)
3452 num_pages = 1;
3453
0af3d00b 3454 num_pages *= 16;
09cbfeaf 3455 num_pages *= PAGE_SIZE;
0af3d00b 3456
7cf5b976 3457 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3458 if (ret)
3459 goto out_put;
3460
3461 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3462 num_pages, num_pages,
3463 &alloc_hint);
2968b1f4
JB
3464 /*
3465 * Our cache requires contiguous chunks so that we don't modify a bunch
3466 * of metadata or split extents when writing the cache out, which means
3467 * we can enospc if we are heavily fragmented in addition to just normal
3468 * out of space conditions. So if we hit this just skip setting up any
3469 * other block groups for this transaction, maybe we'll unpin enough
3470 * space the next time around.
3471 */
2b20982e
JB
3472 if (!ret)
3473 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3474 else if (ret == -ENOSPC)
3475 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
7cf5b976 3476 btrfs_free_reserved_data_space(inode, 0, num_pages);
c09544e0 3477
0af3d00b
JB
3478out_put:
3479 iput(inode);
3480out_free:
b3b4aa74 3481 btrfs_release_path(path);
0af3d00b
JB
3482out:
3483 spin_lock(&block_group->lock);
e65cbb94 3484 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3485 block_group->cache_generation = trans->transid;
2b20982e 3486 block_group->disk_cache_state = dcs;
0af3d00b
JB
3487 spin_unlock(&block_group->lock);
3488
3489 return ret;
3490}
3491
dcdf7f6d
JB
3492int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3493 struct btrfs_root *root)
3494{
3495 struct btrfs_block_group_cache *cache, *tmp;
3496 struct btrfs_transaction *cur_trans = trans->transaction;
3497 struct btrfs_path *path;
3498
3499 if (list_empty(&cur_trans->dirty_bgs) ||
3500 !btrfs_test_opt(root, SPACE_CACHE))
3501 return 0;
3502
3503 path = btrfs_alloc_path();
3504 if (!path)
3505 return -ENOMEM;
3506
3507 /* Could add new block groups, use _safe just in case */
3508 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3509 dirty_list) {
3510 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3511 cache_save_setup(cache, trans, path);
3512 }
3513
3514 btrfs_free_path(path);
3515 return 0;
3516}
3517
1bbc621e
CM
3518/*
3519 * transaction commit does final block group cache writeback during a
3520 * critical section where nothing is allowed to change the FS. This is
3521 * required in order for the cache to actually match the block group,
3522 * but can introduce a lot of latency into the commit.
3523 *
3524 * So, btrfs_start_dirty_block_groups is here to kick off block group
3525 * cache IO. There's a chance we'll have to redo some of it if the
3526 * block group changes again during the commit, but it greatly reduces
3527 * the commit latency by getting rid of the easy block groups while
3528 * we're still allowing others to join the commit.
3529 */
3530int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3531 struct btrfs_root *root)
9078a3e1 3532{
4a8c9a62 3533 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3534 struct btrfs_transaction *cur_trans = trans->transaction;
3535 int ret = 0;
c9dc4c65 3536 int should_put;
1bbc621e
CM
3537 struct btrfs_path *path = NULL;
3538 LIST_HEAD(dirty);
3539 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3540 int num_started = 0;
1bbc621e
CM
3541 int loops = 0;
3542
3543 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3544 if (list_empty(&cur_trans->dirty_bgs)) {
3545 spin_unlock(&cur_trans->dirty_bgs_lock);
3546 return 0;
1bbc621e 3547 }
b58d1a9e 3548 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3549 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3550
1bbc621e 3551again:
1bbc621e
CM
3552 /*
3553 * make sure all the block groups on our dirty list actually
3554 * exist
3555 */
3556 btrfs_create_pending_block_groups(trans, root);
3557
3558 if (!path) {
3559 path = btrfs_alloc_path();
3560 if (!path)
3561 return -ENOMEM;
3562 }
3563
b58d1a9e
FM
3564 /*
3565 * cache_write_mutex is here only to save us from balance or automatic
3566 * removal of empty block groups deleting this block group while we are
3567 * writing out the cache
3568 */
3569 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3570 while (!list_empty(&dirty)) {
3571 cache = list_first_entry(&dirty,
3572 struct btrfs_block_group_cache,
3573 dirty_list);
1bbc621e
CM
3574 /*
3575 * this can happen if something re-dirties a block
3576 * group that is already under IO. Just wait for it to
3577 * finish and then do it all again
3578 */
3579 if (!list_empty(&cache->io_list)) {
3580 list_del_init(&cache->io_list);
3581 btrfs_wait_cache_io(root, trans, cache,
3582 &cache->io_ctl, path,
3583 cache->key.objectid);
3584 btrfs_put_block_group(cache);
3585 }
3586
3587
3588 /*
3589 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3590 * if it should update the cache_state. Don't delete
3591 * until after we wait.
3592 *
3593 * Since we're not running in the commit critical section
3594 * we need the dirty_bgs_lock to protect from update_block_group
3595 */
3596 spin_lock(&cur_trans->dirty_bgs_lock);
3597 list_del_init(&cache->dirty_list);
3598 spin_unlock(&cur_trans->dirty_bgs_lock);
3599
3600 should_put = 1;
3601
3602 cache_save_setup(cache, trans, path);
3603
3604 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3605 cache->io_ctl.inode = NULL;
3606 ret = btrfs_write_out_cache(root, trans, cache, path);
3607 if (ret == 0 && cache->io_ctl.inode) {
3608 num_started++;
3609 should_put = 0;
3610
3611 /*
3612 * the cache_write_mutex is protecting
3613 * the io_list
3614 */
3615 list_add_tail(&cache->io_list, io);
3616 } else {
3617 /*
3618 * if we failed to write the cache, the
3619 * generation will be bad and life goes on
3620 */
3621 ret = 0;
3622 }
3623 }
ff1f8250 3624 if (!ret) {
1bbc621e 3625 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3626 /*
3627 * Our block group might still be attached to the list
3628 * of new block groups in the transaction handle of some
3629 * other task (struct btrfs_trans_handle->new_bgs). This
3630 * means its block group item isn't yet in the extent
3631 * tree. If this happens ignore the error, as we will
3632 * try again later in the critical section of the
3633 * transaction commit.
3634 */
3635 if (ret == -ENOENT) {
3636 ret = 0;
3637 spin_lock(&cur_trans->dirty_bgs_lock);
3638 if (list_empty(&cache->dirty_list)) {
3639 list_add_tail(&cache->dirty_list,
3640 &cur_trans->dirty_bgs);
3641 btrfs_get_block_group(cache);
3642 }
3643 spin_unlock(&cur_trans->dirty_bgs_lock);
3644 } else if (ret) {
3645 btrfs_abort_transaction(trans, root, ret);
3646 }
3647 }
1bbc621e
CM
3648
3649 /* if its not on the io list, we need to put the block group */
3650 if (should_put)
3651 btrfs_put_block_group(cache);
3652
3653 if (ret)
3654 break;
b58d1a9e
FM
3655
3656 /*
3657 * Avoid blocking other tasks for too long. It might even save
3658 * us from writing caches for block groups that are going to be
3659 * removed.
3660 */
3661 mutex_unlock(&trans->transaction->cache_write_mutex);
3662 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3663 }
b58d1a9e 3664 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3665
3666 /*
3667 * go through delayed refs for all the stuff we've just kicked off
3668 * and then loop back (just once)
3669 */
3670 ret = btrfs_run_delayed_refs(trans, root, 0);
3671 if (!ret && loops == 0) {
3672 loops++;
3673 spin_lock(&cur_trans->dirty_bgs_lock);
3674 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3675 /*
3676 * dirty_bgs_lock protects us from concurrent block group
3677 * deletes too (not just cache_write_mutex).
3678 */
3679 if (!list_empty(&dirty)) {
3680 spin_unlock(&cur_trans->dirty_bgs_lock);
3681 goto again;
3682 }
1bbc621e 3683 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3684 }
3685
3686 btrfs_free_path(path);
3687 return ret;
3688}
3689
3690int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3691 struct btrfs_root *root)
3692{
3693 struct btrfs_block_group_cache *cache;
3694 struct btrfs_transaction *cur_trans = trans->transaction;
3695 int ret = 0;
3696 int should_put;
3697 struct btrfs_path *path;
3698 struct list_head *io = &cur_trans->io_bgs;
3699 int num_started = 0;
9078a3e1
CM
3700
3701 path = btrfs_alloc_path();
3702 if (!path)
3703 return -ENOMEM;
3704
ce93ec54 3705 /*
e44081ef
FM
3706 * Even though we are in the critical section of the transaction commit,
3707 * we can still have concurrent tasks adding elements to this
3708 * transaction's list of dirty block groups. These tasks correspond to
3709 * endio free space workers started when writeback finishes for a
3710 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3711 * allocate new block groups as a result of COWing nodes of the root
3712 * tree when updating the free space inode. The writeback for the space
3713 * caches is triggered by an earlier call to
3714 * btrfs_start_dirty_block_groups() and iterations of the following
3715 * loop.
3716 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3717 * delayed refs to make sure we have the best chance at doing this all
3718 * in one shot.
3719 */
e44081ef 3720 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3721 while (!list_empty(&cur_trans->dirty_bgs)) {
3722 cache = list_first_entry(&cur_trans->dirty_bgs,
3723 struct btrfs_block_group_cache,
3724 dirty_list);
c9dc4c65
CM
3725
3726 /*
3727 * this can happen if cache_save_setup re-dirties a block
3728 * group that is already under IO. Just wait for it to
3729 * finish and then do it all again
3730 */
3731 if (!list_empty(&cache->io_list)) {
e44081ef 3732 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3733 list_del_init(&cache->io_list);
3734 btrfs_wait_cache_io(root, trans, cache,
3735 &cache->io_ctl, path,
3736 cache->key.objectid);
3737 btrfs_put_block_group(cache);
e44081ef 3738 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3739 }
3740
1bbc621e
CM
3741 /*
3742 * don't remove from the dirty list until after we've waited
3743 * on any pending IO
3744 */
ce93ec54 3745 list_del_init(&cache->dirty_list);
e44081ef 3746 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3747 should_put = 1;
3748
1bbc621e 3749 cache_save_setup(cache, trans, path);
c9dc4c65 3750
ce93ec54 3751 if (!ret)
c9dc4c65
CM
3752 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3753
3754 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3755 cache->io_ctl.inode = NULL;
3756 ret = btrfs_write_out_cache(root, trans, cache, path);
3757 if (ret == 0 && cache->io_ctl.inode) {
3758 num_started++;
3759 should_put = 0;
1bbc621e 3760 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3761 } else {
3762 /*
3763 * if we failed to write the cache, the
3764 * generation will be bad and life goes on
3765 */
3766 ret = 0;
3767 }
3768 }
ff1f8250 3769 if (!ret) {
ce93ec54 3770 ret = write_one_cache_group(trans, root, path, cache);
2bc0bb5f
FM
3771 /*
3772 * One of the free space endio workers might have
3773 * created a new block group while updating a free space
3774 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3775 * and hasn't released its transaction handle yet, in
3776 * which case the new block group is still attached to
3777 * its transaction handle and its creation has not
3778 * finished yet (no block group item in the extent tree
3779 * yet, etc). If this is the case, wait for all free
3780 * space endio workers to finish and retry. This is a
3781 * a very rare case so no need for a more efficient and
3782 * complex approach.
3783 */
3784 if (ret == -ENOENT) {
3785 wait_event(cur_trans->writer_wait,
3786 atomic_read(&cur_trans->num_writers) == 1);
3787 ret = write_one_cache_group(trans, root, path,
3788 cache);
3789 }
ff1f8250
FM
3790 if (ret)
3791 btrfs_abort_transaction(trans, root, ret);
3792 }
c9dc4c65
CM
3793
3794 /* if its not on the io list, we need to put the block group */
3795 if (should_put)
3796 btrfs_put_block_group(cache);
e44081ef 3797 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3798 }
e44081ef 3799 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3800
1bbc621e
CM
3801 while (!list_empty(io)) {
3802 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3803 io_list);
3804 list_del_init(&cache->io_list);
c9dc4c65
CM
3805 btrfs_wait_cache_io(root, trans, cache,
3806 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3807 btrfs_put_block_group(cache);
3808 }
3809
9078a3e1 3810 btrfs_free_path(path);
ce93ec54 3811 return ret;
9078a3e1
CM
3812}
3813
d2fb3437
YZ
3814int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3815{
3816 struct btrfs_block_group_cache *block_group;
3817 int readonly = 0;
3818
3819 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3820 if (!block_group || block_group->ro)
3821 readonly = 1;
3822 if (block_group)
fa9c0d79 3823 btrfs_put_block_group(block_group);
d2fb3437
YZ
3824 return readonly;
3825}
3826
f78c436c
FM
3827bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3828{
3829 struct btrfs_block_group_cache *bg;
3830 bool ret = true;
3831
3832 bg = btrfs_lookup_block_group(fs_info, bytenr);
3833 if (!bg)
3834 return false;
3835
3836 spin_lock(&bg->lock);
3837 if (bg->ro)
3838 ret = false;
3839 else
3840 atomic_inc(&bg->nocow_writers);
3841 spin_unlock(&bg->lock);
3842
3843 /* no put on block group, done by btrfs_dec_nocow_writers */
3844 if (!ret)
3845 btrfs_put_block_group(bg);
3846
3847 return ret;
3848
3849}
3850
3851void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3852{
3853 struct btrfs_block_group_cache *bg;
3854
3855 bg = btrfs_lookup_block_group(fs_info, bytenr);
3856 ASSERT(bg);
3857 if (atomic_dec_and_test(&bg->nocow_writers))
3858 wake_up_atomic_t(&bg->nocow_writers);
3859 /*
3860 * Once for our lookup and once for the lookup done by a previous call
3861 * to btrfs_inc_nocow_writers()
3862 */
3863 btrfs_put_block_group(bg);
3864 btrfs_put_block_group(bg);
3865}
3866
3867static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3868{
3869 schedule();
3870 return 0;
3871}
3872
3873void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3874{
3875 wait_on_atomic_t(&bg->nocow_writers,
3876 btrfs_wait_nocow_writers_atomic_t,
3877 TASK_UNINTERRUPTIBLE);
3878}
3879
6ab0a202
JM
3880static const char *alloc_name(u64 flags)
3881{
3882 switch (flags) {
3883 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3884 return "mixed";
3885 case BTRFS_BLOCK_GROUP_METADATA:
3886 return "metadata";
3887 case BTRFS_BLOCK_GROUP_DATA:
3888 return "data";
3889 case BTRFS_BLOCK_GROUP_SYSTEM:
3890 return "system";
3891 default:
3892 WARN_ON(1);
3893 return "invalid-combination";
3894 };
3895}
3896
593060d7
CM
3897static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3898 u64 total_bytes, u64 bytes_used,
3899 struct btrfs_space_info **space_info)
3900{
3901 struct btrfs_space_info *found;
b742bb82
YZ
3902 int i;
3903 int factor;
b150a4f1 3904 int ret;
b742bb82
YZ
3905
3906 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3907 BTRFS_BLOCK_GROUP_RAID10))
3908 factor = 2;
3909 else
3910 factor = 1;
593060d7
CM
3911
3912 found = __find_space_info(info, flags);
3913 if (found) {
25179201 3914 spin_lock(&found->lock);
593060d7 3915 found->total_bytes += total_bytes;
89a55897 3916 found->disk_total += total_bytes * factor;
593060d7 3917 found->bytes_used += bytes_used;
b742bb82 3918 found->disk_used += bytes_used * factor;
2e6e5183
FM
3919 if (total_bytes > 0)
3920 found->full = 0;
25179201 3921 spin_unlock(&found->lock);
593060d7
CM
3922 *space_info = found;
3923 return 0;
3924 }
c146afad 3925 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3926 if (!found)
3927 return -ENOMEM;
3928
908c7f19 3929 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3930 if (ret) {
3931 kfree(found);
3932 return ret;
3933 }
3934
c1895442 3935 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3936 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3937 init_rwsem(&found->groups_sem);
0f9dd46c 3938 spin_lock_init(&found->lock);
52ba6929 3939 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3940 found->total_bytes = total_bytes;
89a55897 3941 found->disk_total = total_bytes * factor;
593060d7 3942 found->bytes_used = bytes_used;
b742bb82 3943 found->disk_used = bytes_used * factor;
593060d7 3944 found->bytes_pinned = 0;
e8569813 3945 found->bytes_reserved = 0;
c146afad 3946 found->bytes_readonly = 0;
f0486c68 3947 found->bytes_may_use = 0;
6af3e3ad 3948 found->full = 0;
4f4db217 3949 found->max_extent_size = 0;
0e4f8f88 3950 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3951 found->chunk_alloc = 0;
fdb5effd
JB
3952 found->flush = 0;
3953 init_waitqueue_head(&found->wait);
633c0aad 3954 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3955
3956 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3957 info->space_info_kobj, "%s",
3958 alloc_name(found->flags));
3959 if (ret) {
3960 kfree(found);
3961 return ret;
3962 }
3963
593060d7 3964 *space_info = found;
4184ea7f 3965 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3966 if (flags & BTRFS_BLOCK_GROUP_DATA)
3967 info->data_sinfo = found;
6ab0a202
JM
3968
3969 return ret;
593060d7
CM
3970}
3971
8790d502
CM
3972static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3973{
899c81ea
ID
3974 u64 extra_flags = chunk_to_extended(flags) &
3975 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3976
de98ced9 3977 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3978 if (flags & BTRFS_BLOCK_GROUP_DATA)
3979 fs_info->avail_data_alloc_bits |= extra_flags;
3980 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3981 fs_info->avail_metadata_alloc_bits |= extra_flags;
3982 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3983 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3984 write_sequnlock(&fs_info->profiles_lock);
8790d502 3985}
593060d7 3986
fc67c450
ID
3987/*
3988 * returns target flags in extended format or 0 if restripe for this
3989 * chunk_type is not in progress
c6664b42
ID
3990 *
3991 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3992 */
3993static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3994{
3995 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3996 u64 target = 0;
3997
fc67c450
ID
3998 if (!bctl)
3999 return 0;
4000
4001 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4002 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4003 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4004 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4005 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4006 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4007 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4008 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4009 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4010 }
4011
4012 return target;
4013}
4014
a46d11a8
ID
4015/*
4016 * @flags: available profiles in extended format (see ctree.h)
4017 *
e4d8ec0f
ID
4018 * Returns reduced profile in chunk format. If profile changing is in
4019 * progress (either running or paused) picks the target profile (if it's
4020 * already available), otherwise falls back to plain reducing.
a46d11a8 4021 */
48a3b636 4022static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 4023{
95669976 4024 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 4025 u64 target;
9c170b26
ZL
4026 u64 raid_type;
4027 u64 allowed = 0;
a061fc8d 4028
fc67c450
ID
4029 /*
4030 * see if restripe for this chunk_type is in progress, if so
4031 * try to reduce to the target profile
4032 */
e4d8ec0f 4033 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
4034 target = get_restripe_target(root->fs_info, flags);
4035 if (target) {
4036 /* pick target profile only if it's already available */
4037 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 4038 spin_unlock(&root->fs_info->balance_lock);
fc67c450 4039 return extended_to_chunk(target);
e4d8ec0f
ID
4040 }
4041 }
4042 spin_unlock(&root->fs_info->balance_lock);
4043
53b381b3 4044 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4045 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4046 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4047 allowed |= btrfs_raid_group[raid_type];
4048 }
4049 allowed &= flags;
4050
4051 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4052 allowed = BTRFS_BLOCK_GROUP_RAID6;
4053 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4054 allowed = BTRFS_BLOCK_GROUP_RAID5;
4055 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4056 allowed = BTRFS_BLOCK_GROUP_RAID10;
4057 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4058 allowed = BTRFS_BLOCK_GROUP_RAID1;
4059 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4060 allowed = BTRFS_BLOCK_GROUP_RAID0;
4061
4062 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4063
4064 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4065}
4066
f8213bdc 4067static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 4068{
de98ced9 4069 unsigned seq;
f8213bdc 4070 u64 flags;
de98ced9
MX
4071
4072 do {
f8213bdc 4073 flags = orig_flags;
de98ced9
MX
4074 seq = read_seqbegin(&root->fs_info->profiles_lock);
4075
4076 if (flags & BTRFS_BLOCK_GROUP_DATA)
4077 flags |= root->fs_info->avail_data_alloc_bits;
4078 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4079 flags |= root->fs_info->avail_system_alloc_bits;
4080 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4081 flags |= root->fs_info->avail_metadata_alloc_bits;
4082 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 4083
b742bb82 4084 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
4085}
4086
6d07bcec 4087u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 4088{
b742bb82 4089 u64 flags;
53b381b3 4090 u64 ret;
9ed74f2d 4091
b742bb82
YZ
4092 if (data)
4093 flags = BTRFS_BLOCK_GROUP_DATA;
4094 else if (root == root->fs_info->chunk_root)
4095 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4096 else
b742bb82 4097 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4098
53b381b3
DW
4099 ret = get_alloc_profile(root, flags);
4100 return ret;
6a63209f 4101}
9ed74f2d 4102
4ceff079 4103int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 4104{
6a63209f 4105 struct btrfs_space_info *data_sinfo;
0ca1f7ce 4106 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 4107 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4108 u64 used;
94b947b2 4109 int ret = 0;
c99f1b0c
ZL
4110 int need_commit = 2;
4111 int have_pinned_space;
6a63209f 4112
6a63209f 4113 /* make sure bytes are sectorsize aligned */
fda2832f 4114 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 4115
9dced186 4116 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4117 need_commit = 0;
9dced186 4118 ASSERT(current->journal_info);
0af3d00b
JB
4119 }
4120
b4d7c3c9 4121 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4122 if (!data_sinfo)
4123 goto alloc;
9ed74f2d 4124
6a63209f
JB
4125again:
4126 /* make sure we have enough space to handle the data first */
4127 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
4128 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4129 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4130 data_sinfo->bytes_may_use;
ab6e2410
JB
4131
4132 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4133 struct btrfs_trans_handle *trans;
9ed74f2d 4134
6a63209f
JB
4135 /*
4136 * if we don't have enough free bytes in this space then we need
4137 * to alloc a new chunk.
4138 */
b9fd47cd 4139 if (!data_sinfo->full) {
6a63209f 4140 u64 alloc_target;
9ed74f2d 4141
0e4f8f88 4142 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4143 spin_unlock(&data_sinfo->lock);
33b4d47f 4144alloc:
6a63209f 4145 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4146 /*
4147 * It is ugly that we don't call nolock join
4148 * transaction for the free space inode case here.
4149 * But it is safe because we only do the data space
4150 * reservation for the free space cache in the
4151 * transaction context, the common join transaction
4152 * just increase the counter of the current transaction
4153 * handler, doesn't try to acquire the trans_lock of
4154 * the fs.
4155 */
7a7eaa40 4156 trans = btrfs_join_transaction(root);
a22285a6
YZ
4157 if (IS_ERR(trans))
4158 return PTR_ERR(trans);
9ed74f2d 4159
6a63209f 4160 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
4161 alloc_target,
4162 CHUNK_ALLOC_NO_FORCE);
6a63209f 4163 btrfs_end_transaction(trans, root);
d52a5b5f
MX
4164 if (ret < 0) {
4165 if (ret != -ENOSPC)
4166 return ret;
c99f1b0c
ZL
4167 else {
4168 have_pinned_space = 1;
d52a5b5f 4169 goto commit_trans;
c99f1b0c 4170 }
d52a5b5f 4171 }
9ed74f2d 4172
b4d7c3c9
LZ
4173 if (!data_sinfo)
4174 data_sinfo = fs_info->data_sinfo;
4175
6a63209f
JB
4176 goto again;
4177 }
f2bb8f5c
JB
4178
4179 /*
b150a4f1 4180 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4181 * allocation, and no removed chunk in current transaction,
4182 * don't bother committing the transaction.
f2bb8f5c 4183 */
c99f1b0c
ZL
4184 have_pinned_space = percpu_counter_compare(
4185 &data_sinfo->total_bytes_pinned,
4186 used + bytes - data_sinfo->total_bytes);
6a63209f 4187 spin_unlock(&data_sinfo->lock);
6a63209f 4188
4e06bdd6 4189 /* commit the current transaction and try again */
d52a5b5f 4190commit_trans:
c99f1b0c 4191 if (need_commit &&
a4abeea4 4192 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4193 need_commit--;
b150a4f1 4194
e1746e83
ZL
4195 if (need_commit > 0) {
4196 btrfs_start_delalloc_roots(fs_info, 0, -1);
578def7c 4197 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
e1746e83 4198 }
9a4e7276 4199
7a7eaa40 4200 trans = btrfs_join_transaction(root);
a22285a6
YZ
4201 if (IS_ERR(trans))
4202 return PTR_ERR(trans);
c99f1b0c 4203 if (have_pinned_space >= 0 ||
3204d33c
JB
4204 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4205 &trans->transaction->flags) ||
c99f1b0c 4206 need_commit > 0) {
94b947b2
ZL
4207 ret = btrfs_commit_transaction(trans, root);
4208 if (ret)
4209 return ret;
d7c15171 4210 /*
c2d6cb16
FM
4211 * The cleaner kthread might still be doing iput
4212 * operations. Wait for it to finish so that
4213 * more space is released.
d7c15171 4214 */
c2d6cb16
FM
4215 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4216 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4217 goto again;
4218 } else {
4219 btrfs_end_transaction(trans, root);
4220 }
4e06bdd6 4221 }
9ed74f2d 4222
cab45e22
JM
4223 trace_btrfs_space_reservation(root->fs_info,
4224 "space_info:enospc",
4225 data_sinfo->flags, bytes, 1);
6a63209f
JB
4226 return -ENOSPC;
4227 }
4228 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4229 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4230 data_sinfo->flags, bytes, 1);
6a63209f 4231 spin_unlock(&data_sinfo->lock);
6a63209f 4232
237c0e9f 4233 return ret;
9ed74f2d 4234}
6a63209f 4235
4ceff079
QW
4236/*
4237 * New check_data_free_space() with ability for precious data reservation
4238 * Will replace old btrfs_check_data_free_space(), but for patch split,
4239 * add a new function first and then replace it.
4240 */
7cf5b976 4241int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079
QW
4242{
4243 struct btrfs_root *root = BTRFS_I(inode)->root;
4244 int ret;
4245
4246 /* align the range */
4247 len = round_up(start + len, root->sectorsize) -
4248 round_down(start, root->sectorsize);
4249 start = round_down(start, root->sectorsize);
4250
4251 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4252 if (ret < 0)
4253 return ret;
4254
94ed938a
QW
4255 /*
4256 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4257 *
4258 * TODO: Find a good method to avoid reserve data space for NOCOW
4259 * range, but don't impact performance on quota disable case.
4260 */
4ceff079
QW
4261 ret = btrfs_qgroup_reserve_data(inode, start, len);
4262 return ret;
4263}
4264
4ceff079
QW
4265/*
4266 * Called if we need to clear a data reservation for this inode
4267 * Normally in a error case.
4268 *
51773bec
QW
4269 * This one will *NOT* use accurate qgroup reserved space API, just for case
4270 * which we can't sleep and is sure it won't affect qgroup reserved space.
4271 * Like clear_bit_hook().
4ceff079 4272 */
51773bec
QW
4273void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4274 u64 len)
4ceff079
QW
4275{
4276 struct btrfs_root *root = BTRFS_I(inode)->root;
4277 struct btrfs_space_info *data_sinfo;
4278
4279 /* Make sure the range is aligned to sectorsize */
4280 len = round_up(start + len, root->sectorsize) -
4281 round_down(start, root->sectorsize);
4282 start = round_down(start, root->sectorsize);
4283
4ceff079
QW
4284 data_sinfo = root->fs_info->data_sinfo;
4285 spin_lock(&data_sinfo->lock);
4286 if (WARN_ON(data_sinfo->bytes_may_use < len))
4287 data_sinfo->bytes_may_use = 0;
4288 else
4289 data_sinfo->bytes_may_use -= len;
4290 trace_btrfs_space_reservation(root->fs_info, "space_info",
4291 data_sinfo->flags, len, 0);
4292 spin_unlock(&data_sinfo->lock);
4293}
4294
51773bec
QW
4295/*
4296 * Called if we need to clear a data reservation for this inode
4297 * Normally in a error case.
4298 *
01327610 4299 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4300 * space framework.
4301 */
4302void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4303{
4304 btrfs_free_reserved_data_space_noquota(inode, start, len);
4305 btrfs_qgroup_free_data(inode, start, len);
4306}
4307
97e728d4 4308static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4309{
97e728d4
JB
4310 struct list_head *head = &info->space_info;
4311 struct btrfs_space_info *found;
e3ccfa98 4312
97e728d4
JB
4313 rcu_read_lock();
4314 list_for_each_entry_rcu(found, head, list) {
4315 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4316 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4317 }
97e728d4 4318 rcu_read_unlock();
e3ccfa98
JB
4319}
4320
3c76cd84
MX
4321static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4322{
4323 return (global->size << 1);
4324}
4325
e5bc2458 4326static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4327 struct btrfs_space_info *sinfo, int force)
32c00aff 4328{
fb25e914 4329 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4330 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4331 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4332 u64 thresh;
e3ccfa98 4333
0e4f8f88
CM
4334 if (force == CHUNK_ALLOC_FORCE)
4335 return 1;
4336
fb25e914
JB
4337 /*
4338 * We need to take into account the global rsv because for all intents
4339 * and purposes it's used space. Don't worry about locking the
4340 * global_rsv, it doesn't change except when the transaction commits.
4341 */
54338b5c 4342 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4343 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4344
0e4f8f88
CM
4345 /*
4346 * in limited mode, we want to have some free space up to
4347 * about 1% of the FS size.
4348 */
4349 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4350 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
ee22184b 4351 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4352
4353 if (num_bytes - num_allocated < thresh)
4354 return 1;
4355 }
0e4f8f88 4356
ee22184b 4357 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4358 return 0;
424499db 4359 return 1;
32c00aff
JB
4360}
4361
39c2d7fa 4362static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4363{
4364 u64 num_dev;
4365
53b381b3
DW
4366 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4367 BTRFS_BLOCK_GROUP_RAID0 |
4368 BTRFS_BLOCK_GROUP_RAID5 |
4369 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4370 num_dev = root->fs_info->fs_devices->rw_devices;
4371 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4372 num_dev = 2;
4373 else
4374 num_dev = 1; /* DUP or single */
4375
39c2d7fa 4376 return num_dev;
15d1ff81
LB
4377}
4378
39c2d7fa
FM
4379/*
4380 * If @is_allocation is true, reserve space in the system space info necessary
4381 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4382 * removing a chunk.
4383 */
4384void check_system_chunk(struct btrfs_trans_handle *trans,
4385 struct btrfs_root *root,
4617ea3a 4386 u64 type)
15d1ff81
LB
4387{
4388 struct btrfs_space_info *info;
4389 u64 left;
4390 u64 thresh;
4fbcdf66 4391 int ret = 0;
39c2d7fa 4392 u64 num_devs;
4fbcdf66
FM
4393
4394 /*
4395 * Needed because we can end up allocating a system chunk and for an
4396 * atomic and race free space reservation in the chunk block reserve.
4397 */
4398 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4399
4400 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4401 spin_lock(&info->lock);
4402 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4403 info->bytes_reserved - info->bytes_readonly -
4404 info->bytes_may_use;
15d1ff81
LB
4405 spin_unlock(&info->lock);
4406
39c2d7fa
FM
4407 num_devs = get_profile_num_devs(root, type);
4408
4409 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4410 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4411 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4412
15d1ff81 4413 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4414 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4415 left, thresh, type);
15d1ff81
LB
4416 dump_space_info(info, 0, 0);
4417 }
4418
4419 if (left < thresh) {
4420 u64 flags;
4421
4422 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4423 /*
4424 * Ignore failure to create system chunk. We might end up not
4425 * needing it, as we might not need to COW all nodes/leafs from
4426 * the paths we visit in the chunk tree (they were already COWed
4427 * or created in the current transaction for example).
4428 */
4429 ret = btrfs_alloc_chunk(trans, root, flags);
4430 }
4431
4432 if (!ret) {
4433 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4434 &root->fs_info->chunk_block_rsv,
4435 thresh, BTRFS_RESERVE_NO_FLUSH);
4436 if (!ret)
4437 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4438 }
4439}
4440
6324fbf3 4441static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4442 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4443{
6324fbf3 4444 struct btrfs_space_info *space_info;
97e728d4 4445 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4446 int wait_for_alloc = 0;
9ed74f2d 4447 int ret = 0;
9ed74f2d 4448
c6b305a8
JB
4449 /* Don't re-enter if we're already allocating a chunk */
4450 if (trans->allocating_chunk)
4451 return -ENOSPC;
4452
6324fbf3 4453 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4454 if (!space_info) {
4455 ret = update_space_info(extent_root->fs_info, flags,
4456 0, 0, &space_info);
79787eaa 4457 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4458 }
79787eaa 4459 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4460
6d74119f 4461again:
25179201 4462 spin_lock(&space_info->lock);
9e622d6b 4463 if (force < space_info->force_alloc)
0e4f8f88 4464 force = space_info->force_alloc;
25179201 4465 if (space_info->full) {
09fb99a6
FDBM
4466 if (should_alloc_chunk(extent_root, space_info, force))
4467 ret = -ENOSPC;
4468 else
4469 ret = 0;
25179201 4470 spin_unlock(&space_info->lock);
09fb99a6 4471 return ret;
9ed74f2d
JB
4472 }
4473
698d0082 4474 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4475 spin_unlock(&space_info->lock);
6d74119f
JB
4476 return 0;
4477 } else if (space_info->chunk_alloc) {
4478 wait_for_alloc = 1;
4479 } else {
4480 space_info->chunk_alloc = 1;
9ed74f2d 4481 }
0e4f8f88 4482
25179201 4483 spin_unlock(&space_info->lock);
9ed74f2d 4484
6d74119f
JB
4485 mutex_lock(&fs_info->chunk_mutex);
4486
4487 /*
4488 * The chunk_mutex is held throughout the entirety of a chunk
4489 * allocation, so once we've acquired the chunk_mutex we know that the
4490 * other guy is done and we need to recheck and see if we should
4491 * allocate.
4492 */
4493 if (wait_for_alloc) {
4494 mutex_unlock(&fs_info->chunk_mutex);
4495 wait_for_alloc = 0;
4496 goto again;
4497 }
4498
c6b305a8
JB
4499 trans->allocating_chunk = true;
4500
67377734
JB
4501 /*
4502 * If we have mixed data/metadata chunks we want to make sure we keep
4503 * allocating mixed chunks instead of individual chunks.
4504 */
4505 if (btrfs_mixed_space_info(space_info))
4506 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4507
97e728d4
JB
4508 /*
4509 * if we're doing a data chunk, go ahead and make sure that
4510 * we keep a reasonable number of metadata chunks allocated in the
4511 * FS as well.
4512 */
9ed74f2d 4513 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4514 fs_info->data_chunk_allocations++;
4515 if (!(fs_info->data_chunk_allocations %
4516 fs_info->metadata_ratio))
4517 force_metadata_allocation(fs_info);
9ed74f2d
JB
4518 }
4519
15d1ff81
LB
4520 /*
4521 * Check if we have enough space in SYSTEM chunk because we may need
4522 * to update devices.
4523 */
4617ea3a 4524 check_system_chunk(trans, extent_root, flags);
15d1ff81 4525
2b82032c 4526 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4527 trans->allocating_chunk = false;
92b8e897 4528
9ed74f2d 4529 spin_lock(&space_info->lock);
a81cb9a2
AO
4530 if (ret < 0 && ret != -ENOSPC)
4531 goto out;
9ed74f2d 4532 if (ret)
6324fbf3 4533 space_info->full = 1;
424499db
YZ
4534 else
4535 ret = 1;
6d74119f 4536
0e4f8f88 4537 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4538out:
6d74119f 4539 space_info->chunk_alloc = 0;
9ed74f2d 4540 spin_unlock(&space_info->lock);
a25c75d5 4541 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4542 /*
4543 * When we allocate a new chunk we reserve space in the chunk block
4544 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4545 * add new nodes/leafs to it if we end up needing to do it when
4546 * inserting the chunk item and updating device items as part of the
4547 * second phase of chunk allocation, performed by
4548 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4549 * large number of new block groups to create in our transaction
4550 * handle's new_bgs list to avoid exhausting the chunk block reserve
4551 * in extreme cases - like having a single transaction create many new
4552 * block groups when starting to write out the free space caches of all
4553 * the block groups that were made dirty during the lifetime of the
4554 * transaction.
4555 */
d9a0540a 4556 if (trans->can_flush_pending_bgs &&
ee22184b 4557 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
00d80e34
FM
4558 btrfs_create_pending_block_groups(trans, trans->root);
4559 btrfs_trans_release_chunk_metadata(trans);
4560 }
0f9dd46c 4561 return ret;
6324fbf3 4562}
9ed74f2d 4563
a80c8dcf
JB
4564static int can_overcommit(struct btrfs_root *root,
4565 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4566 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4567{
96f1bb57 4568 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4569 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4570 u64 space_size;
a80c8dcf
JB
4571 u64 avail;
4572 u64 used;
4573
4574 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4575 space_info->bytes_pinned + space_info->bytes_readonly;
4576
96f1bb57
JB
4577 /*
4578 * We only want to allow over committing if we have lots of actual space
4579 * free, but if we don't have enough space to handle the global reserve
4580 * space then we could end up having a real enospc problem when trying
4581 * to allocate a chunk or some other such important allocation.
4582 */
3c76cd84
MX
4583 spin_lock(&global_rsv->lock);
4584 space_size = calc_global_rsv_need_space(global_rsv);
4585 spin_unlock(&global_rsv->lock);
4586 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4587 return 0;
4588
4589 used += space_info->bytes_may_use;
a80c8dcf
JB
4590
4591 spin_lock(&root->fs_info->free_chunk_lock);
4592 avail = root->fs_info->free_chunk_space;
4593 spin_unlock(&root->fs_info->free_chunk_lock);
4594
4595 /*
4596 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4597 * space is actually useable. For raid56, the space info used
4598 * doesn't include the parity drive, so we don't have to
4599 * change the math
a80c8dcf
JB
4600 */
4601 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4602 BTRFS_BLOCK_GROUP_RAID1 |
4603 BTRFS_BLOCK_GROUP_RAID10))
4604 avail >>= 1;
4605
4606 /*
561c294d
MX
4607 * If we aren't flushing all things, let us overcommit up to
4608 * 1/2th of the space. If we can flush, don't let us overcommit
4609 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4610 */
08e007d2 4611 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4612 avail >>= 3;
a80c8dcf 4613 else
14575aef 4614 avail >>= 1;
a80c8dcf 4615
14575aef 4616 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4617 return 1;
4618 return 0;
4619}
4620
48a3b636 4621static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4622 unsigned long nr_pages, int nr_items)
da633a42
MX
4623{
4624 struct super_block *sb = root->fs_info->sb;
da633a42 4625
925a6efb
JB
4626 if (down_read_trylock(&sb->s_umount)) {
4627 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4628 up_read(&sb->s_umount);
4629 } else {
da633a42
MX
4630 /*
4631 * We needn't worry the filesystem going from r/w to r/o though
4632 * we don't acquire ->s_umount mutex, because the filesystem
4633 * should guarantee the delalloc inodes list be empty after
4634 * the filesystem is readonly(all dirty pages are written to
4635 * the disk).
4636 */
6c255e67 4637 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4638 if (!current->journal_info)
578def7c
FM
4639 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4640 0, (u64)-1);
da633a42
MX
4641 }
4642}
4643
18cd8ea6
MX
4644static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4645{
4646 u64 bytes;
4647 int nr;
4648
4649 bytes = btrfs_calc_trans_metadata_size(root, 1);
4650 nr = (int)div64_u64(to_reclaim, bytes);
4651 if (!nr)
4652 nr = 1;
4653 return nr;
4654}
4655
ee22184b 4656#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4657
9ed74f2d 4658/*
5da9d01b 4659 * shrink metadata reservation for delalloc
9ed74f2d 4660 */
f4c738c2
JB
4661static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4662 bool wait_ordered)
5da9d01b 4663{
0ca1f7ce 4664 struct btrfs_block_rsv *block_rsv;
0019f10d 4665 struct btrfs_space_info *space_info;
663350ac 4666 struct btrfs_trans_handle *trans;
f4c738c2 4667 u64 delalloc_bytes;
5da9d01b 4668 u64 max_reclaim;
b1953bce 4669 long time_left;
d3ee29e3
MX
4670 unsigned long nr_pages;
4671 int loops;
b0244199 4672 int items;
08e007d2 4673 enum btrfs_reserve_flush_enum flush;
5da9d01b 4674
c61a16a7 4675 /* Calc the number of the pages we need flush for space reservation */
b0244199 4676 items = calc_reclaim_items_nr(root, to_reclaim);
8eb0dfdb 4677 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4678
663350ac 4679 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4680 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4681 space_info = block_rsv->space_info;
bf9022e0 4682
963d678b
MX
4683 delalloc_bytes = percpu_counter_sum_positive(
4684 &root->fs_info->delalloc_bytes);
f4c738c2 4685 if (delalloc_bytes == 0) {
fdb5effd 4686 if (trans)
f4c738c2 4687 return;
38c135af 4688 if (wait_ordered)
578def7c
FM
4689 btrfs_wait_ordered_roots(root->fs_info, items,
4690 0, (u64)-1);
f4c738c2 4691 return;
fdb5effd
JB
4692 }
4693
d3ee29e3 4694 loops = 0;
f4c738c2
JB
4695 while (delalloc_bytes && loops < 3) {
4696 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4697 nr_pages = max_reclaim >> PAGE_SHIFT;
6c255e67 4698 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4699 /*
4700 * We need to wait for the async pages to actually start before
4701 * we do anything.
4702 */
9f3a074d
MX
4703 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4704 if (!max_reclaim)
4705 goto skip_async;
4706
4707 if (max_reclaim <= nr_pages)
4708 max_reclaim = 0;
4709 else
4710 max_reclaim -= nr_pages;
dea31f52 4711
9f3a074d
MX
4712 wait_event(root->fs_info->async_submit_wait,
4713 atomic_read(&root->fs_info->async_delalloc_pages) <=
4714 (int)max_reclaim);
4715skip_async:
08e007d2
MX
4716 if (!trans)
4717 flush = BTRFS_RESERVE_FLUSH_ALL;
4718 else
4719 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4720 spin_lock(&space_info->lock);
08e007d2 4721 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4722 spin_unlock(&space_info->lock);
4723 break;
4724 }
0019f10d 4725 spin_unlock(&space_info->lock);
5da9d01b 4726
36e39c40 4727 loops++;
f104d044 4728 if (wait_ordered && !trans) {
578def7c
FM
4729 btrfs_wait_ordered_roots(root->fs_info, items,
4730 0, (u64)-1);
f104d044 4731 } else {
f4c738c2 4732 time_left = schedule_timeout_killable(1);
f104d044
JB
4733 if (time_left)
4734 break;
4735 }
963d678b
MX
4736 delalloc_bytes = percpu_counter_sum_positive(
4737 &root->fs_info->delalloc_bytes);
5da9d01b 4738 }
5da9d01b
YZ
4739}
4740
663350ac
JB
4741/**
4742 * maybe_commit_transaction - possibly commit the transaction if its ok to
4743 * @root - the root we're allocating for
4744 * @bytes - the number of bytes we want to reserve
4745 * @force - force the commit
8bb8ab2e 4746 *
663350ac
JB
4747 * This will check to make sure that committing the transaction will actually
4748 * get us somewhere and then commit the transaction if it does. Otherwise it
4749 * will return -ENOSPC.
8bb8ab2e 4750 */
663350ac
JB
4751static int may_commit_transaction(struct btrfs_root *root,
4752 struct btrfs_space_info *space_info,
4753 u64 bytes, int force)
4754{
4755 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4756 struct btrfs_trans_handle *trans;
4757
4758 trans = (struct btrfs_trans_handle *)current->journal_info;
4759 if (trans)
4760 return -EAGAIN;
4761
4762 if (force)
4763 goto commit;
4764
4765 /* See if there is enough pinned space to make this reservation */
b150a4f1 4766 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4767 bytes) >= 0)
663350ac 4768 goto commit;
663350ac
JB
4769
4770 /*
4771 * See if there is some space in the delayed insertion reservation for
4772 * this reservation.
4773 */
4774 if (space_info != delayed_rsv->space_info)
4775 return -ENOSPC;
4776
4777 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4778 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4779 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4780 spin_unlock(&delayed_rsv->lock);
4781 return -ENOSPC;
4782 }
4783 spin_unlock(&delayed_rsv->lock);
4784
4785commit:
4786 trans = btrfs_join_transaction(root);
4787 if (IS_ERR(trans))
4788 return -ENOSPC;
4789
4790 return btrfs_commit_transaction(trans, root);
4791}
4792
96c3f433 4793enum flush_state {
67b0fd63
JB
4794 FLUSH_DELAYED_ITEMS_NR = 1,
4795 FLUSH_DELAYED_ITEMS = 2,
4796 FLUSH_DELALLOC = 3,
4797 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4798 ALLOC_CHUNK = 5,
4799 COMMIT_TRANS = 6,
96c3f433
JB
4800};
4801
4802static int flush_space(struct btrfs_root *root,
4803 struct btrfs_space_info *space_info, u64 num_bytes,
4804 u64 orig_bytes, int state)
4805{
4806 struct btrfs_trans_handle *trans;
4807 int nr;
f4c738c2 4808 int ret = 0;
96c3f433
JB
4809
4810 switch (state) {
96c3f433
JB
4811 case FLUSH_DELAYED_ITEMS_NR:
4812 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4813 if (state == FLUSH_DELAYED_ITEMS_NR)
4814 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4815 else
96c3f433 4816 nr = -1;
18cd8ea6 4817
96c3f433
JB
4818 trans = btrfs_join_transaction(root);
4819 if (IS_ERR(trans)) {
4820 ret = PTR_ERR(trans);
4821 break;
4822 }
4823 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4824 btrfs_end_transaction(trans, root);
4825 break;
67b0fd63
JB
4826 case FLUSH_DELALLOC:
4827 case FLUSH_DELALLOC_WAIT:
24af7dd1 4828 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4829 state == FLUSH_DELALLOC_WAIT);
4830 break;
ea658bad
JB
4831 case ALLOC_CHUNK:
4832 trans = btrfs_join_transaction(root);
4833 if (IS_ERR(trans)) {
4834 ret = PTR_ERR(trans);
4835 break;
4836 }
4837 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4838 btrfs_get_alloc_profile(root, 0),
4839 CHUNK_ALLOC_NO_FORCE);
4840 btrfs_end_transaction(trans, root);
4841 if (ret == -ENOSPC)
4842 ret = 0;
4843 break;
96c3f433
JB
4844 case COMMIT_TRANS:
4845 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4846 break;
4847 default:
4848 ret = -ENOSPC;
4849 break;
4850 }
4851
4852 return ret;
4853}
21c7e756
MX
4854
4855static inline u64
4856btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4857 struct btrfs_space_info *space_info)
4858{
4859 u64 used;
4860 u64 expected;
4861 u64 to_reclaim;
4862
ee22184b 4863 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
21c7e756
MX
4864 spin_lock(&space_info->lock);
4865 if (can_overcommit(root, space_info, to_reclaim,
4866 BTRFS_RESERVE_FLUSH_ALL)) {
4867 to_reclaim = 0;
4868 goto out;
4869 }
4870
4871 used = space_info->bytes_used + space_info->bytes_reserved +
4872 space_info->bytes_pinned + space_info->bytes_readonly +
4873 space_info->bytes_may_use;
ee22184b 4874 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
21c7e756
MX
4875 expected = div_factor_fine(space_info->total_bytes, 95);
4876 else
4877 expected = div_factor_fine(space_info->total_bytes, 90);
4878
4879 if (used > expected)
4880 to_reclaim = used - expected;
4881 else
4882 to_reclaim = 0;
4883 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4884 space_info->bytes_reserved);
4885out:
4886 spin_unlock(&space_info->lock);
4887
4888 return to_reclaim;
4889}
4890
4891static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4892 struct btrfs_fs_info *fs_info, u64 used)
4893{
365c5313
JB
4894 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4895
4896 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4897 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4898 return 0;
4899
4900 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4901 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4902}
4903
4904static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4905 struct btrfs_fs_info *fs_info,
4906 int flush_state)
21c7e756
MX
4907{
4908 u64 used;
4909
4910 spin_lock(&space_info->lock);
25ce459c
LB
4911 /*
4912 * We run out of space and have not got any free space via flush_space,
4913 * so don't bother doing async reclaim.
4914 */
4915 if (flush_state > COMMIT_TRANS && space_info->full) {
4916 spin_unlock(&space_info->lock);
4917 return 0;
4918 }
4919
21c7e756
MX
4920 used = space_info->bytes_used + space_info->bytes_reserved +
4921 space_info->bytes_pinned + space_info->bytes_readonly +
4922 space_info->bytes_may_use;
4923 if (need_do_async_reclaim(space_info, fs_info, used)) {
4924 spin_unlock(&space_info->lock);
4925 return 1;
4926 }
4927 spin_unlock(&space_info->lock);
4928
4929 return 0;
4930}
4931
4932static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4933{
4934 struct btrfs_fs_info *fs_info;
4935 struct btrfs_space_info *space_info;
4936 u64 to_reclaim;
4937 int flush_state;
4938
4939 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4940 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4941
4942 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4943 space_info);
4944 if (!to_reclaim)
4945 return;
4946
4947 flush_state = FLUSH_DELAYED_ITEMS_NR;
4948 do {
4949 flush_space(fs_info->fs_root, space_info, to_reclaim,
4950 to_reclaim, flush_state);
4951 flush_state++;
25ce459c
LB
4952 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4953 flush_state))
21c7e756 4954 return;
365c5313 4955 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4956}
4957
4958void btrfs_init_async_reclaim_work(struct work_struct *work)
4959{
4960 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4961}
4962
4a92b1b8
JB
4963/**
4964 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4965 * @root - the root we're allocating for
4966 * @block_rsv - the block_rsv we're allocating for
4967 * @orig_bytes - the number of bytes we want
48fc7f7e 4968 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4969 *
01327610 4970 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
4971 * with the block_rsv. If there is not enough space it will make an attempt to
4972 * flush out space to make room. It will do this by flushing delalloc if
4973 * possible or committing the transaction. If flush is 0 then no attempts to
4974 * regain reservations will be made and this will fail if there is not enough
4975 * space already.
8bb8ab2e 4976 */
4a92b1b8 4977static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4978 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4979 u64 orig_bytes,
4980 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4981{
f0486c68 4982 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4983 u64 used;
8bb8ab2e 4984 u64 num_bytes = orig_bytes;
67b0fd63 4985 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4986 int ret = 0;
fdb5effd 4987 bool flushing = false;
9ed74f2d 4988
8bb8ab2e 4989again:
fdb5effd 4990 ret = 0;
8bb8ab2e 4991 spin_lock(&space_info->lock);
fdb5effd 4992 /*
08e007d2
MX
4993 * We only want to wait if somebody other than us is flushing and we
4994 * are actually allowed to flush all things.
fdb5effd 4995 */
08e007d2
MX
4996 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4997 space_info->flush) {
fdb5effd
JB
4998 spin_unlock(&space_info->lock);
4999 /*
5000 * If we have a trans handle we can't wait because the flusher
5001 * may have to commit the transaction, which would mean we would
5002 * deadlock since we are waiting for the flusher to finish, but
5003 * hold the current transaction open.
5004 */
663350ac 5005 if (current->journal_info)
fdb5effd 5006 return -EAGAIN;
b9688bb8
AJ
5007 ret = wait_event_killable(space_info->wait, !space_info->flush);
5008 /* Must have been killed, return */
5009 if (ret)
fdb5effd
JB
5010 return -EINTR;
5011
5012 spin_lock(&space_info->lock);
5013 }
5014
5015 ret = -ENOSPC;
2bf64758
JB
5016 used = space_info->bytes_used + space_info->bytes_reserved +
5017 space_info->bytes_pinned + space_info->bytes_readonly +
5018 space_info->bytes_may_use;
9ed74f2d 5019
8bb8ab2e
JB
5020 /*
5021 * The idea here is that we've not already over-reserved the block group
5022 * then we can go ahead and save our reservation first and then start
5023 * flushing if we need to. Otherwise if we've already overcommitted
5024 * lets start flushing stuff first and then come back and try to make
5025 * our reservation.
5026 */
2bf64758
JB
5027 if (used <= space_info->total_bytes) {
5028 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 5029 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 5030 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 5031 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
5032 ret = 0;
5033 } else {
5034 /*
5035 * Ok set num_bytes to orig_bytes since we aren't
5036 * overocmmitted, this way we only try and reclaim what
5037 * we need.
5038 */
5039 num_bytes = orig_bytes;
5040 }
5041 } else {
5042 /*
5043 * Ok we're over committed, set num_bytes to the overcommitted
5044 * amount plus the amount of bytes that we need for this
5045 * reservation.
5046 */
2bf64758 5047 num_bytes = used - space_info->total_bytes +
96c3f433 5048 (orig_bytes * 2);
8bb8ab2e 5049 }
9ed74f2d 5050
44734ed1
JB
5051 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
5052 space_info->bytes_may_use += orig_bytes;
5053 trace_btrfs_space_reservation(root->fs_info, "space_info",
5054 space_info->flags, orig_bytes,
5055 1);
5056 ret = 0;
2bf64758
JB
5057 }
5058
8bb8ab2e
JB
5059 /*
5060 * Couldn't make our reservation, save our place so while we're trying
5061 * to reclaim space we can actually use it instead of somebody else
5062 * stealing it from us.
08e007d2
MX
5063 *
5064 * We make the other tasks wait for the flush only when we can flush
5065 * all things.
8bb8ab2e 5066 */
72bcd99d 5067 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
5068 flushing = true;
5069 space_info->flush = 1;
21c7e756
MX
5070 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5071 used += orig_bytes;
f6acfd50
JB
5072 /*
5073 * We will do the space reservation dance during log replay,
5074 * which means we won't have fs_info->fs_root set, so don't do
5075 * the async reclaim as we will panic.
5076 */
5077 if (!root->fs_info->log_root_recovering &&
5078 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
5079 !work_busy(&root->fs_info->async_reclaim_work))
5080 queue_work(system_unbound_wq,
5081 &root->fs_info->async_reclaim_work);
8bb8ab2e 5082 }
f0486c68 5083 spin_unlock(&space_info->lock);
9ed74f2d 5084
08e007d2 5085 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 5086 goto out;
f0486c68 5087
96c3f433
JB
5088 ret = flush_space(root, space_info, num_bytes, orig_bytes,
5089 flush_state);
5090 flush_state++;
08e007d2
MX
5091
5092 /*
5093 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5094 * would happen. So skip delalloc flush.
5095 */
5096 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5097 (flush_state == FLUSH_DELALLOC ||
5098 flush_state == FLUSH_DELALLOC_WAIT))
5099 flush_state = ALLOC_CHUNK;
5100
96c3f433 5101 if (!ret)
8bb8ab2e 5102 goto again;
08e007d2
MX
5103 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5104 flush_state < COMMIT_TRANS)
5105 goto again;
5106 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5107 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
5108 goto again;
5109
5110out:
5d80366e
JB
5111 if (ret == -ENOSPC &&
5112 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5113 struct btrfs_block_rsv *global_rsv =
5114 &root->fs_info->global_block_rsv;
5115
5116 if (block_rsv != global_rsv &&
5117 !block_rsv_use_bytes(global_rsv, orig_bytes))
5118 ret = 0;
5119 }
cab45e22
JM
5120 if (ret == -ENOSPC)
5121 trace_btrfs_space_reservation(root->fs_info,
5122 "space_info:enospc",
5123 space_info->flags, orig_bytes, 1);
fdb5effd 5124 if (flushing) {
8bb8ab2e 5125 spin_lock(&space_info->lock);
fdb5effd
JB
5126 space_info->flush = 0;
5127 wake_up_all(&space_info->wait);
8bb8ab2e 5128 spin_unlock(&space_info->lock);
f0486c68 5129 }
f0486c68
YZ
5130 return ret;
5131}
5132
79787eaa
JM
5133static struct btrfs_block_rsv *get_block_rsv(
5134 const struct btrfs_trans_handle *trans,
5135 const struct btrfs_root *root)
f0486c68 5136{
4c13d758
JB
5137 struct btrfs_block_rsv *block_rsv = NULL;
5138
e9cf439f
AM
5139 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5140 (root == root->fs_info->csum_root && trans->adding_csums) ||
5141 (root == root->fs_info->uuid_root))
f7a81ea4
SB
5142 block_rsv = trans->block_rsv;
5143
4c13d758 5144 if (!block_rsv)
f0486c68
YZ
5145 block_rsv = root->block_rsv;
5146
5147 if (!block_rsv)
5148 block_rsv = &root->fs_info->empty_block_rsv;
5149
5150 return block_rsv;
5151}
5152
5153static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5154 u64 num_bytes)
5155{
5156 int ret = -ENOSPC;
5157 spin_lock(&block_rsv->lock);
5158 if (block_rsv->reserved >= num_bytes) {
5159 block_rsv->reserved -= num_bytes;
5160 if (block_rsv->reserved < block_rsv->size)
5161 block_rsv->full = 0;
5162 ret = 0;
5163 }
5164 spin_unlock(&block_rsv->lock);
5165 return ret;
5166}
5167
5168static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5169 u64 num_bytes, int update_size)
5170{
5171 spin_lock(&block_rsv->lock);
5172 block_rsv->reserved += num_bytes;
5173 if (update_size)
5174 block_rsv->size += num_bytes;
5175 else if (block_rsv->reserved >= block_rsv->size)
5176 block_rsv->full = 1;
5177 spin_unlock(&block_rsv->lock);
5178}
5179
d52be818
JB
5180int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5181 struct btrfs_block_rsv *dest, u64 num_bytes,
5182 int min_factor)
5183{
5184 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5185 u64 min_bytes;
5186
5187 if (global_rsv->space_info != dest->space_info)
5188 return -ENOSPC;
5189
5190 spin_lock(&global_rsv->lock);
5191 min_bytes = div_factor(global_rsv->size, min_factor);
5192 if (global_rsv->reserved < min_bytes + num_bytes) {
5193 spin_unlock(&global_rsv->lock);
5194 return -ENOSPC;
5195 }
5196 global_rsv->reserved -= num_bytes;
5197 if (global_rsv->reserved < global_rsv->size)
5198 global_rsv->full = 0;
5199 spin_unlock(&global_rsv->lock);
5200
5201 block_rsv_add_bytes(dest, num_bytes, 1);
5202 return 0;
5203}
5204
8c2a3ca2
JB
5205static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5206 struct btrfs_block_rsv *block_rsv,
62a45b60 5207 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5208{
5209 struct btrfs_space_info *space_info = block_rsv->space_info;
5210
5211 spin_lock(&block_rsv->lock);
5212 if (num_bytes == (u64)-1)
5213 num_bytes = block_rsv->size;
5214 block_rsv->size -= num_bytes;
5215 if (block_rsv->reserved >= block_rsv->size) {
5216 num_bytes = block_rsv->reserved - block_rsv->size;
5217 block_rsv->reserved = block_rsv->size;
5218 block_rsv->full = 1;
5219 } else {
5220 num_bytes = 0;
5221 }
5222 spin_unlock(&block_rsv->lock);
5223
5224 if (num_bytes > 0) {
5225 if (dest) {
e9e22899
JB
5226 spin_lock(&dest->lock);
5227 if (!dest->full) {
5228 u64 bytes_to_add;
5229
5230 bytes_to_add = dest->size - dest->reserved;
5231 bytes_to_add = min(num_bytes, bytes_to_add);
5232 dest->reserved += bytes_to_add;
5233 if (dest->reserved >= dest->size)
5234 dest->full = 1;
5235 num_bytes -= bytes_to_add;
5236 }
5237 spin_unlock(&dest->lock);
5238 }
5239 if (num_bytes) {
f0486c68 5240 spin_lock(&space_info->lock);
fb25e914 5241 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 5242 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5243 space_info->flags, num_bytes, 0);
f0486c68 5244 spin_unlock(&space_info->lock);
4e06bdd6 5245 }
9ed74f2d 5246 }
f0486c68 5247}
4e06bdd6 5248
f0486c68
YZ
5249static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5250 struct btrfs_block_rsv *dst, u64 num_bytes)
5251{
5252 int ret;
9ed74f2d 5253
f0486c68
YZ
5254 ret = block_rsv_use_bytes(src, num_bytes);
5255 if (ret)
5256 return ret;
9ed74f2d 5257
f0486c68 5258 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5259 return 0;
5260}
5261
66d8f3dd 5262void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5263{
f0486c68
YZ
5264 memset(rsv, 0, sizeof(*rsv));
5265 spin_lock_init(&rsv->lock);
66d8f3dd 5266 rsv->type = type;
f0486c68
YZ
5267}
5268
66d8f3dd
MX
5269struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5270 unsigned short type)
f0486c68
YZ
5271{
5272 struct btrfs_block_rsv *block_rsv;
5273 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5274
f0486c68
YZ
5275 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5276 if (!block_rsv)
5277 return NULL;
9ed74f2d 5278
66d8f3dd 5279 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5280 block_rsv->space_info = __find_space_info(fs_info,
5281 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5282 return block_rsv;
5283}
9ed74f2d 5284
f0486c68
YZ
5285void btrfs_free_block_rsv(struct btrfs_root *root,
5286 struct btrfs_block_rsv *rsv)
5287{
2aaa6655
JB
5288 if (!rsv)
5289 return;
dabdb640
JB
5290 btrfs_block_rsv_release(root, rsv, (u64)-1);
5291 kfree(rsv);
9ed74f2d
JB
5292}
5293
cdfb080e
CM
5294void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5295{
5296 kfree(rsv);
5297}
5298
08e007d2
MX
5299int btrfs_block_rsv_add(struct btrfs_root *root,
5300 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5301 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5302{
f0486c68 5303 int ret;
9ed74f2d 5304
f0486c68
YZ
5305 if (num_bytes == 0)
5306 return 0;
8bb8ab2e 5307
61b520a9 5308 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5309 if (!ret) {
5310 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5311 return 0;
5312 }
9ed74f2d 5313
f0486c68 5314 return ret;
f0486c68 5315}
9ed74f2d 5316
4a92b1b8 5317int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5318 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5319{
5320 u64 num_bytes = 0;
f0486c68 5321 int ret = -ENOSPC;
9ed74f2d 5322
f0486c68
YZ
5323 if (!block_rsv)
5324 return 0;
9ed74f2d 5325
f0486c68 5326 spin_lock(&block_rsv->lock);
36ba022a
JB
5327 num_bytes = div_factor(block_rsv->size, min_factor);
5328 if (block_rsv->reserved >= num_bytes)
5329 ret = 0;
5330 spin_unlock(&block_rsv->lock);
9ed74f2d 5331
36ba022a
JB
5332 return ret;
5333}
5334
08e007d2
MX
5335int btrfs_block_rsv_refill(struct btrfs_root *root,
5336 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5337 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5338{
5339 u64 num_bytes = 0;
5340 int ret = -ENOSPC;
5341
5342 if (!block_rsv)
5343 return 0;
5344
5345 spin_lock(&block_rsv->lock);
5346 num_bytes = min_reserved;
13553e52 5347 if (block_rsv->reserved >= num_bytes)
f0486c68 5348 ret = 0;
13553e52 5349 else
f0486c68 5350 num_bytes -= block_rsv->reserved;
f0486c68 5351 spin_unlock(&block_rsv->lock);
13553e52 5352
f0486c68
YZ
5353 if (!ret)
5354 return 0;
5355
aa38a711 5356 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5357 if (!ret) {
5358 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5359 return 0;
6a63209f 5360 }
9ed74f2d 5361
13553e52 5362 return ret;
f0486c68
YZ
5363}
5364
5365int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5366 struct btrfs_block_rsv *dst_rsv,
5367 u64 num_bytes)
5368{
5369 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5370}
5371
5372void btrfs_block_rsv_release(struct btrfs_root *root,
5373 struct btrfs_block_rsv *block_rsv,
5374 u64 num_bytes)
5375{
5376 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5377 if (global_rsv == block_rsv ||
f0486c68
YZ
5378 block_rsv->space_info != global_rsv->space_info)
5379 global_rsv = NULL;
8c2a3ca2
JB
5380 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5381 num_bytes);
6a63209f
JB
5382}
5383
5384/*
8929ecfa
YZ
5385 * helper to calculate size of global block reservation.
5386 * the desired value is sum of space used by extent tree,
5387 * checksum tree and root tree
6a63209f 5388 */
8929ecfa 5389static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5390{
8929ecfa
YZ
5391 struct btrfs_space_info *sinfo;
5392 u64 num_bytes;
5393 u64 meta_used;
5394 u64 data_used;
6c41761f 5395 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5396
8929ecfa
YZ
5397 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5398 spin_lock(&sinfo->lock);
5399 data_used = sinfo->bytes_used;
5400 spin_unlock(&sinfo->lock);
33b4d47f 5401
8929ecfa
YZ
5402 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5403 spin_lock(&sinfo->lock);
6d48755d
JB
5404 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5405 data_used = 0;
8929ecfa
YZ
5406 meta_used = sinfo->bytes_used;
5407 spin_unlock(&sinfo->lock);
ab6e2410 5408
8929ecfa
YZ
5409 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5410 csum_size * 2;
f8c269d7 5411 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5412
8929ecfa 5413 if (num_bytes * 3 > meta_used)
f8c269d7 5414 num_bytes = div_u64(meta_used, 3);
ab6e2410 5415
707e8a07 5416 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5417}
6a63209f 5418
8929ecfa
YZ
5419static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5420{
5421 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5422 struct btrfs_space_info *sinfo = block_rsv->space_info;
5423 u64 num_bytes;
6a63209f 5424
8929ecfa 5425 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5426
8929ecfa 5427 spin_lock(&sinfo->lock);
1f699d38 5428 spin_lock(&block_rsv->lock);
4e06bdd6 5429
ee22184b 5430 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5431
fb4b10e5
JB
5432 if (block_rsv->reserved < block_rsv->size) {
5433 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5434 sinfo->bytes_reserved + sinfo->bytes_readonly +
5435 sinfo->bytes_may_use;
5436 if (sinfo->total_bytes > num_bytes) {
5437 num_bytes = sinfo->total_bytes - num_bytes;
5438 num_bytes = min(num_bytes,
5439 block_rsv->size - block_rsv->reserved);
5440 block_rsv->reserved += num_bytes;
5441 sinfo->bytes_may_use += num_bytes;
5442 trace_btrfs_space_reservation(fs_info, "space_info",
5443 sinfo->flags, num_bytes,
5444 1);
5445 }
5446 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5447 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5448 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5449 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5450 sinfo->flags, num_bytes, 0);
8929ecfa 5451 block_rsv->reserved = block_rsv->size;
8929ecfa 5452 }
182608c8 5453
fb4b10e5
JB
5454 if (block_rsv->reserved == block_rsv->size)
5455 block_rsv->full = 1;
5456 else
5457 block_rsv->full = 0;
5458
8929ecfa 5459 spin_unlock(&block_rsv->lock);
1f699d38 5460 spin_unlock(&sinfo->lock);
6a63209f
JB
5461}
5462
f0486c68 5463static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5464{
f0486c68 5465 struct btrfs_space_info *space_info;
6a63209f 5466
f0486c68
YZ
5467 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5468 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5469
f0486c68 5470 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5471 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5472 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5473 fs_info->trans_block_rsv.space_info = space_info;
5474 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5475 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5476
8929ecfa
YZ
5477 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5478 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5479 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5480 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5481 if (fs_info->quota_root)
5482 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5483 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5484
8929ecfa 5485 update_global_block_rsv(fs_info);
6a63209f
JB
5486}
5487
8929ecfa 5488static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5489{
8c2a3ca2
JB
5490 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5491 (u64)-1);
8929ecfa
YZ
5492 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5493 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5494 WARN_ON(fs_info->trans_block_rsv.size > 0);
5495 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5496 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5497 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5498 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5499 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5500}
5501
a22285a6
YZ
5502void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5503 struct btrfs_root *root)
6a63209f 5504{
0e721106
JB
5505 if (!trans->block_rsv)
5506 return;
5507
a22285a6
YZ
5508 if (!trans->bytes_reserved)
5509 return;
6a63209f 5510
e77266e4 5511 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5512 trans->transid, trans->bytes_reserved, 0);
b24e03db 5513 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5514 trans->bytes_reserved = 0;
5515}
6a63209f 5516
4fbcdf66
FM
5517/*
5518 * To be called after all the new block groups attached to the transaction
5519 * handle have been created (btrfs_create_pending_block_groups()).
5520 */
5521void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5522{
5523 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5524
5525 if (!trans->chunk_bytes_reserved)
5526 return;
5527
5528 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5529
5530 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5531 trans->chunk_bytes_reserved);
5532 trans->chunk_bytes_reserved = 0;
5533}
5534
79787eaa 5535/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5536int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5537 struct inode *inode)
5538{
5539 struct btrfs_root *root = BTRFS_I(inode)->root;
5540 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5541 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5542
5543 /*
fcb80c2a
JB
5544 * We need to hold space in order to delete our orphan item once we've
5545 * added it, so this takes the reservation so we can release it later
5546 * when we are truly done with the orphan item.
d68fc57b 5547 */
ff5714cc 5548 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5549 trace_btrfs_space_reservation(root->fs_info, "orphan",
5550 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5551 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5552}
5553
d68fc57b 5554void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5555{
d68fc57b 5556 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5557 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5558 trace_btrfs_space_reservation(root->fs_info, "orphan",
5559 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5560 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5561}
97e728d4 5562
d5c12070
MX
5563/*
5564 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5565 * root: the root of the parent directory
5566 * rsv: block reservation
5567 * items: the number of items that we need do reservation
5568 * qgroup_reserved: used to return the reserved size in qgroup
5569 *
5570 * This function is used to reserve the space for snapshot/subvolume
5571 * creation and deletion. Those operations are different with the
5572 * common file/directory operations, they change two fs/file trees
5573 * and root tree, the number of items that the qgroup reserves is
5574 * different with the free space reservation. So we can not use
01327610 5575 * the space reservation mechanism in start_transaction().
d5c12070
MX
5576 */
5577int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5578 struct btrfs_block_rsv *rsv,
5579 int items,
ee3441b4
JM
5580 u64 *qgroup_reserved,
5581 bool use_global_rsv)
a22285a6 5582{
d5c12070
MX
5583 u64 num_bytes;
5584 int ret;
ee3441b4 5585 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5586
5587 if (root->fs_info->quota_enabled) {
5588 /* One for parent inode, two for dir entries */
707e8a07 5589 num_bytes = 3 * root->nodesize;
7174109c 5590 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5591 if (ret)
5592 return ret;
5593 } else {
5594 num_bytes = 0;
5595 }
5596
5597 *qgroup_reserved = num_bytes;
5598
5599 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5600 rsv->space_info = __find_space_info(root->fs_info,
5601 BTRFS_BLOCK_GROUP_METADATA);
5602 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5603 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5604
5605 if (ret == -ENOSPC && use_global_rsv)
5606 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5607
7174109c
QW
5608 if (ret && *qgroup_reserved)
5609 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5610
5611 return ret;
5612}
5613
5614void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5615 struct btrfs_block_rsv *rsv,
5616 u64 qgroup_reserved)
5617{
5618 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5619}
5620
7709cde3
JB
5621/**
5622 * drop_outstanding_extent - drop an outstanding extent
5623 * @inode: the inode we're dropping the extent for
01327610 5624 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5625 *
5626 * This is called when we are freeing up an outstanding extent, either called
5627 * after an error or after an extent is written. This will return the number of
5628 * reserved extents that need to be freed. This must be called with
5629 * BTRFS_I(inode)->lock held.
5630 */
dcab6a3b 5631static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5632{
7fd2ae21 5633 unsigned drop_inode_space = 0;
9e0baf60 5634 unsigned dropped_extents = 0;
dcab6a3b 5635 unsigned num_extents = 0;
9e0baf60 5636
dcab6a3b
JB
5637 num_extents = (unsigned)div64_u64(num_bytes +
5638 BTRFS_MAX_EXTENT_SIZE - 1,
5639 BTRFS_MAX_EXTENT_SIZE);
5640 ASSERT(num_extents);
5641 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5642 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5643
7fd2ae21 5644 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5645 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5646 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5647 drop_inode_space = 1;
7fd2ae21 5648
9e0baf60 5649 /*
01327610 5650 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5651 * reserved then we need to leave the reserved extents count alone.
5652 */
5653 if (BTRFS_I(inode)->outstanding_extents >=
5654 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5655 return drop_inode_space;
9e0baf60
JB
5656
5657 dropped_extents = BTRFS_I(inode)->reserved_extents -
5658 BTRFS_I(inode)->outstanding_extents;
5659 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5660 return dropped_extents + drop_inode_space;
9e0baf60
JB
5661}
5662
7709cde3 5663/**
01327610
NS
5664 * calc_csum_metadata_size - return the amount of metadata space that must be
5665 * reserved/freed for the given bytes.
7709cde3
JB
5666 * @inode: the inode we're manipulating
5667 * @num_bytes: the number of bytes in question
5668 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5669 *
5670 * This adjusts the number of csum_bytes in the inode and then returns the
5671 * correct amount of metadata that must either be reserved or freed. We
5672 * calculate how many checksums we can fit into one leaf and then divide the
5673 * number of bytes that will need to be checksumed by this value to figure out
5674 * how many checksums will be required. If we are adding bytes then the number
5675 * may go up and we will return the number of additional bytes that must be
5676 * reserved. If it is going down we will return the number of bytes that must
5677 * be freed.
5678 *
5679 * This must be called with BTRFS_I(inode)->lock held.
5680 */
5681static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5682 int reserve)
6324fbf3 5683{
7709cde3 5684 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5685 u64 old_csums, num_csums;
7709cde3
JB
5686
5687 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5688 BTRFS_I(inode)->csum_bytes == 0)
5689 return 0;
5690
28f75a0e 5691 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5692 if (reserve)
5693 BTRFS_I(inode)->csum_bytes += num_bytes;
5694 else
5695 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5696 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5697
5698 /* No change, no need to reserve more */
5699 if (old_csums == num_csums)
5700 return 0;
5701
5702 if (reserve)
5703 return btrfs_calc_trans_metadata_size(root,
5704 num_csums - old_csums);
5705
5706 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5707}
c146afad 5708
0ca1f7ce
YZ
5709int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5710{
5711 struct btrfs_root *root = BTRFS_I(inode)->root;
5712 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5713 u64 to_reserve = 0;
660d3f6c 5714 u64 csum_bytes;
9e0baf60 5715 unsigned nr_extents = 0;
660d3f6c 5716 int extra_reserve = 0;
08e007d2 5717 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5718 int ret = 0;
c64c2bd8 5719 bool delalloc_lock = true;
88e081bf
WS
5720 u64 to_free = 0;
5721 unsigned dropped;
6324fbf3 5722
c64c2bd8
JB
5723 /* If we are a free space inode we need to not flush since we will be in
5724 * the middle of a transaction commit. We also don't need the delalloc
5725 * mutex since we won't race with anybody. We need this mostly to make
5726 * lockdep shut its filthy mouth.
5727 */
5728 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5729 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5730 delalloc_lock = false;
5731 }
c09544e0 5732
08e007d2
MX
5733 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5734 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5735 schedule_timeout(1);
ec44a35c 5736
c64c2bd8
JB
5737 if (delalloc_lock)
5738 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5739
0ca1f7ce 5740 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5741
9e0baf60 5742 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5743 nr_extents = (unsigned)div64_u64(num_bytes +
5744 BTRFS_MAX_EXTENT_SIZE - 1,
5745 BTRFS_MAX_EXTENT_SIZE);
5746 BTRFS_I(inode)->outstanding_extents += nr_extents;
5747 nr_extents = 0;
9e0baf60
JB
5748
5749 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5750 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5751 nr_extents = BTRFS_I(inode)->outstanding_extents -
5752 BTRFS_I(inode)->reserved_extents;
57a45ced 5753
7fd2ae21
JB
5754 /*
5755 * Add an item to reserve for updating the inode when we complete the
5756 * delalloc io.
5757 */
72ac3c0d
JB
5758 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5759 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5760 nr_extents++;
660d3f6c 5761 extra_reserve = 1;
593060d7 5762 }
7fd2ae21
JB
5763
5764 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5765 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5766 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5767 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5768
88e081bf 5769 if (root->fs_info->quota_enabled) {
7174109c
QW
5770 ret = btrfs_qgroup_reserve_meta(root,
5771 nr_extents * root->nodesize);
88e081bf
WS
5772 if (ret)
5773 goto out_fail;
5774 }
c5567237 5775
88e081bf
WS
5776 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5777 if (unlikely(ret)) {
7174109c 5778 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
88e081bf 5779 goto out_fail;
9e0baf60 5780 }
25179201 5781
660d3f6c
JB
5782 spin_lock(&BTRFS_I(inode)->lock);
5783 if (extra_reserve) {
72ac3c0d
JB
5784 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5785 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5786 nr_extents--;
5787 }
5788 BTRFS_I(inode)->reserved_extents += nr_extents;
5789 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5790
5791 if (delalloc_lock)
5792 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5793
8c2a3ca2 5794 if (to_reserve)
67871254 5795 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5796 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5797 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5798
0ca1f7ce 5799 return 0;
88e081bf
WS
5800
5801out_fail:
5802 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5803 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5804 /*
5805 * If the inodes csum_bytes is the same as the original
5806 * csum_bytes then we know we haven't raced with any free()ers
5807 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5808 */
f4881bc7 5809 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5810 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5811 } else {
5812 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5813 u64 bytes;
5814
5815 /*
5816 * This is tricky, but first we need to figure out how much we
01327610 5817 * freed from any free-ers that occurred during this
f4881bc7
JB
5818 * reservation, so we reset ->csum_bytes to the csum_bytes
5819 * before we dropped our lock, and then call the free for the
5820 * number of bytes that were freed while we were trying our
5821 * reservation.
5822 */
5823 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5824 BTRFS_I(inode)->csum_bytes = csum_bytes;
5825 to_free = calc_csum_metadata_size(inode, bytes, 0);
5826
5827
5828 /*
5829 * Now we need to see how much we would have freed had we not
5830 * been making this reservation and our ->csum_bytes were not
5831 * artificially inflated.
5832 */
5833 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5834 bytes = csum_bytes - orig_csum_bytes;
5835 bytes = calc_csum_metadata_size(inode, bytes, 0);
5836
5837 /*
5838 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 5839 * more than to_free then we would have freed more space had we
f4881bc7
JB
5840 * not had an artificially high ->csum_bytes, so we need to free
5841 * the remainder. If bytes is the same or less then we don't
5842 * need to do anything, the other free-ers did the correct
5843 * thing.
5844 */
5845 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5846 if (bytes > to_free)
5847 to_free = bytes - to_free;
5848 else
5849 to_free = 0;
5850 }
88e081bf 5851 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5852 if (dropped)
88e081bf
WS
5853 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5854
5855 if (to_free) {
5856 btrfs_block_rsv_release(root, block_rsv, to_free);
5857 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5858 btrfs_ino(inode), to_free, 0);
5859 }
5860 if (delalloc_lock)
5861 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5862 return ret;
0ca1f7ce
YZ
5863}
5864
7709cde3
JB
5865/**
5866 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5867 * @inode: the inode to release the reservation for
5868 * @num_bytes: the number of bytes we're releasing
5869 *
5870 * This will release the metadata reservation for an inode. This can be called
5871 * once we complete IO for a given set of bytes to release their metadata
5872 * reservations.
5873 */
0ca1f7ce
YZ
5874void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5875{
5876 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5877 u64 to_free = 0;
5878 unsigned dropped;
0ca1f7ce
YZ
5879
5880 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5881 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5882 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5883
0934856d
MX
5884 if (num_bytes)
5885 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5886 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5887 if (dropped > 0)
5888 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5889
6a3891c5
JB
5890 if (btrfs_test_is_dummy_root(root))
5891 return;
5892
8c2a3ca2
JB
5893 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5894 btrfs_ino(inode), to_free, 0);
c5567237 5895
0ca1f7ce
YZ
5896 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5897 to_free);
5898}
5899
1ada3a62 5900/**
7cf5b976 5901 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
5902 * delalloc
5903 * @inode: inode we're writing to
5904 * @start: start range we are writing to
5905 * @len: how long the range we are writing to
5906 *
5907 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5908 *
5909 * This will do the following things
5910 *
5911 * o reserve space in data space info for num bytes
5912 * and reserve precious corresponding qgroup space
5913 * (Done in check_data_free_space)
5914 *
5915 * o reserve space for metadata space, based on the number of outstanding
5916 * extents and how much csums will be needed
5917 * also reserve metadata space in a per root over-reserve method.
5918 * o add to the inodes->delalloc_bytes
5919 * o add it to the fs_info's delalloc inodes list.
5920 * (Above 3 all done in delalloc_reserve_metadata)
5921 *
5922 * Return 0 for success
5923 * Return <0 for error(-ENOSPC or -EQUOT)
5924 */
7cf5b976 5925int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5926{
5927 int ret;
5928
7cf5b976 5929 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
5930 if (ret < 0)
5931 return ret;
5932 ret = btrfs_delalloc_reserve_metadata(inode, len);
5933 if (ret < 0)
7cf5b976 5934 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
5935 return ret;
5936}
5937
7709cde3 5938/**
7cf5b976 5939 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
5940 * @inode: inode we're releasing space for
5941 * @start: start position of the space already reserved
5942 * @len: the len of the space already reserved
5943 *
5944 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5945 * called in the case that we don't need the metadata AND data reservations
5946 * anymore. So if there is an error or we insert an inline extent.
5947 *
5948 * This function will release the metadata space that was not used and will
5949 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5950 * list if there are no delalloc bytes left.
5951 * Also it will handle the qgroup reserved space.
5952 */
7cf5b976 5953void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5954{
5955 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 5956 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
5957}
5958
ce93ec54
JB
5959static int update_block_group(struct btrfs_trans_handle *trans,
5960 struct btrfs_root *root, u64 bytenr,
5961 u64 num_bytes, int alloc)
9078a3e1 5962{
0af3d00b 5963 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5964 struct btrfs_fs_info *info = root->fs_info;
db94535d 5965 u64 total = num_bytes;
9078a3e1 5966 u64 old_val;
db94535d 5967 u64 byte_in_group;
0af3d00b 5968 int factor;
3e1ad54f 5969
5d4f98a2 5970 /* block accounting for super block */
eb73c1b7 5971 spin_lock(&info->delalloc_root_lock);
6c41761f 5972 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5973 if (alloc)
5974 old_val += num_bytes;
5975 else
5976 old_val -= num_bytes;
6c41761f 5977 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5978 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5979
d397712b 5980 while (total) {
db94535d 5981 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5982 if (!cache)
79787eaa 5983 return -ENOENT;
b742bb82
YZ
5984 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5985 BTRFS_BLOCK_GROUP_RAID1 |
5986 BTRFS_BLOCK_GROUP_RAID10))
5987 factor = 2;
5988 else
5989 factor = 1;
9d66e233
JB
5990 /*
5991 * If this block group has free space cache written out, we
5992 * need to make sure to load it if we are removing space. This
5993 * is because we need the unpinning stage to actually add the
5994 * space back to the block group, otherwise we will leak space.
5995 */
5996 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5997 cache_block_group(cache, 1);
0af3d00b 5998
db94535d
CM
5999 byte_in_group = bytenr - cache->key.objectid;
6000 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6001
25179201 6002 spin_lock(&cache->space_info->lock);
c286ac48 6003 spin_lock(&cache->lock);
0af3d00b 6004
73bc1876 6005 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
6006 cache->disk_cache_state < BTRFS_DC_CLEAR)
6007 cache->disk_cache_state = BTRFS_DC_CLEAR;
6008
9078a3e1 6009 old_val = btrfs_block_group_used(&cache->item);
db94535d 6010 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6011 if (alloc) {
db94535d 6012 old_val += num_bytes;
11833d66
YZ
6013 btrfs_set_block_group_used(&cache->item, old_val);
6014 cache->reserved -= num_bytes;
11833d66 6015 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6016 cache->space_info->bytes_used += num_bytes;
6017 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6018 spin_unlock(&cache->lock);
25179201 6019 spin_unlock(&cache->space_info->lock);
cd1bc465 6020 } else {
db94535d 6021 old_val -= num_bytes;
ae0ab003
FM
6022 btrfs_set_block_group_used(&cache->item, old_val);
6023 cache->pinned += num_bytes;
6024 cache->space_info->bytes_pinned += num_bytes;
6025 cache->space_info->bytes_used -= num_bytes;
6026 cache->space_info->disk_used -= num_bytes * factor;
6027 spin_unlock(&cache->lock);
6028 spin_unlock(&cache->space_info->lock);
47ab2a6c 6029
ae0ab003
FM
6030 set_extent_dirty(info->pinned_extents,
6031 bytenr, bytenr + num_bytes - 1,
6032 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6033 }
1bbc621e
CM
6034
6035 spin_lock(&trans->transaction->dirty_bgs_lock);
6036 if (list_empty(&cache->dirty_list)) {
6037 list_add_tail(&cache->dirty_list,
6038 &trans->transaction->dirty_bgs);
6039 trans->transaction->num_dirty_bgs++;
6040 btrfs_get_block_group(cache);
6041 }
6042 spin_unlock(&trans->transaction->dirty_bgs_lock);
6043
036a9348
FM
6044 /*
6045 * No longer have used bytes in this block group, queue it for
6046 * deletion. We do this after adding the block group to the
6047 * dirty list to avoid races between cleaner kthread and space
6048 * cache writeout.
6049 */
6050 if (!alloc && old_val == 0) {
6051 spin_lock(&info->unused_bgs_lock);
6052 if (list_empty(&cache->bg_list)) {
6053 btrfs_get_block_group(cache);
6054 list_add_tail(&cache->bg_list,
6055 &info->unused_bgs);
6056 }
6057 spin_unlock(&info->unused_bgs_lock);
6058 }
6059
fa9c0d79 6060 btrfs_put_block_group(cache);
db94535d
CM
6061 total -= num_bytes;
6062 bytenr += num_bytes;
9078a3e1
CM
6063 }
6064 return 0;
6065}
6324fbf3 6066
a061fc8d
CM
6067static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6068{
0f9dd46c 6069 struct btrfs_block_group_cache *cache;
d2fb3437 6070 u64 bytenr;
0f9dd46c 6071
a1897fdd
LB
6072 spin_lock(&root->fs_info->block_group_cache_lock);
6073 bytenr = root->fs_info->first_logical_byte;
6074 spin_unlock(&root->fs_info->block_group_cache_lock);
6075
6076 if (bytenr < (u64)-1)
6077 return bytenr;
6078
0f9dd46c
JB
6079 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6080 if (!cache)
a061fc8d 6081 return 0;
0f9dd46c 6082
d2fb3437 6083 bytenr = cache->key.objectid;
fa9c0d79 6084 btrfs_put_block_group(cache);
d2fb3437
YZ
6085
6086 return bytenr;
a061fc8d
CM
6087}
6088
f0486c68
YZ
6089static int pin_down_extent(struct btrfs_root *root,
6090 struct btrfs_block_group_cache *cache,
6091 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6092{
11833d66
YZ
6093 spin_lock(&cache->space_info->lock);
6094 spin_lock(&cache->lock);
6095 cache->pinned += num_bytes;
6096 cache->space_info->bytes_pinned += num_bytes;
6097 if (reserved) {
6098 cache->reserved -= num_bytes;
6099 cache->space_info->bytes_reserved -= num_bytes;
6100 }
6101 spin_unlock(&cache->lock);
6102 spin_unlock(&cache->space_info->lock);
68b38550 6103
f0486c68
YZ
6104 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6105 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 6106 if (reserved)
0be5dc67 6107 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
6108 return 0;
6109}
68b38550 6110
f0486c68
YZ
6111/*
6112 * this function must be called within transaction
6113 */
6114int btrfs_pin_extent(struct btrfs_root *root,
6115 u64 bytenr, u64 num_bytes, int reserved)
6116{
6117 struct btrfs_block_group_cache *cache;
68b38550 6118
f0486c68 6119 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 6120 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
6121
6122 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6123
6124 btrfs_put_block_group(cache);
11833d66
YZ
6125 return 0;
6126}
6127
f0486c68 6128/*
e688b725
CM
6129 * this function must be called within transaction
6130 */
dcfac415 6131int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
6132 u64 bytenr, u64 num_bytes)
6133{
6134 struct btrfs_block_group_cache *cache;
b50c6e25 6135 int ret;
e688b725
CM
6136
6137 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
6138 if (!cache)
6139 return -EINVAL;
e688b725
CM
6140
6141 /*
6142 * pull in the free space cache (if any) so that our pin
6143 * removes the free space from the cache. We have load_only set
6144 * to one because the slow code to read in the free extents does check
6145 * the pinned extents.
6146 */
f6373bf3 6147 cache_block_group(cache, 1);
e688b725
CM
6148
6149 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6150
6151 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6152 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6153 btrfs_put_block_group(cache);
b50c6e25 6154 return ret;
e688b725
CM
6155}
6156
8c2a1a30
JB
6157static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6158{
6159 int ret;
6160 struct btrfs_block_group_cache *block_group;
6161 struct btrfs_caching_control *caching_ctl;
6162
6163 block_group = btrfs_lookup_block_group(root->fs_info, start);
6164 if (!block_group)
6165 return -EINVAL;
6166
6167 cache_block_group(block_group, 0);
6168 caching_ctl = get_caching_control(block_group);
6169
6170 if (!caching_ctl) {
6171 /* Logic error */
6172 BUG_ON(!block_group_cache_done(block_group));
6173 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6174 } else {
6175 mutex_lock(&caching_ctl->mutex);
6176
6177 if (start >= caching_ctl->progress) {
6178 ret = add_excluded_extent(root, start, num_bytes);
6179 } else if (start + num_bytes <= caching_ctl->progress) {
6180 ret = btrfs_remove_free_space(block_group,
6181 start, num_bytes);
6182 } else {
6183 num_bytes = caching_ctl->progress - start;
6184 ret = btrfs_remove_free_space(block_group,
6185 start, num_bytes);
6186 if (ret)
6187 goto out_lock;
6188
6189 num_bytes = (start + num_bytes) -
6190 caching_ctl->progress;
6191 start = caching_ctl->progress;
6192 ret = add_excluded_extent(root, start, num_bytes);
6193 }
6194out_lock:
6195 mutex_unlock(&caching_ctl->mutex);
6196 put_caching_control(caching_ctl);
6197 }
6198 btrfs_put_block_group(block_group);
6199 return ret;
6200}
6201
6202int btrfs_exclude_logged_extents(struct btrfs_root *log,
6203 struct extent_buffer *eb)
6204{
6205 struct btrfs_file_extent_item *item;
6206 struct btrfs_key key;
6207 int found_type;
6208 int i;
6209
6210 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6211 return 0;
6212
6213 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6214 btrfs_item_key_to_cpu(eb, &key, i);
6215 if (key.type != BTRFS_EXTENT_DATA_KEY)
6216 continue;
6217 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6218 found_type = btrfs_file_extent_type(eb, item);
6219 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6220 continue;
6221 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6222 continue;
6223 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6224 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6225 __exclude_logged_extent(log, key.objectid, key.offset);
6226 }
6227
6228 return 0;
6229}
6230
9cfa3e34
FM
6231static void
6232btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6233{
6234 atomic_inc(&bg->reservations);
6235}
6236
6237void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6238 const u64 start)
6239{
6240 struct btrfs_block_group_cache *bg;
6241
6242 bg = btrfs_lookup_block_group(fs_info, start);
6243 ASSERT(bg);
6244 if (atomic_dec_and_test(&bg->reservations))
6245 wake_up_atomic_t(&bg->reservations);
6246 btrfs_put_block_group(bg);
6247}
6248
6249static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6250{
6251 schedule();
6252 return 0;
6253}
6254
6255void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6256{
6257 struct btrfs_space_info *space_info = bg->space_info;
6258
6259 ASSERT(bg->ro);
6260
6261 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6262 return;
6263
6264 /*
6265 * Our block group is read only but before we set it to read only,
6266 * some task might have had allocated an extent from it already, but it
6267 * has not yet created a respective ordered extent (and added it to a
6268 * root's list of ordered extents).
6269 * Therefore wait for any task currently allocating extents, since the
6270 * block group's reservations counter is incremented while a read lock
6271 * on the groups' semaphore is held and decremented after releasing
6272 * the read access on that semaphore and creating the ordered extent.
6273 */
6274 down_write(&space_info->groups_sem);
6275 up_write(&space_info->groups_sem);
6276
6277 wait_on_atomic_t(&bg->reservations,
6278 btrfs_wait_bg_reservations_atomic_t,
6279 TASK_UNINTERRUPTIBLE);
6280}
6281
fb25e914
JB
6282/**
6283 * btrfs_update_reserved_bytes - update the block_group and space info counters
6284 * @cache: The cache we are manipulating
6285 * @num_bytes: The number of bytes in question
6286 * @reserve: One of the reservation enums
e570fd27 6287 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
6288 *
6289 * This is called by the allocator when it reserves space, or by somebody who is
6290 * freeing space that was never actually used on disk. For example if you
6291 * reserve some space for a new leaf in transaction A and before transaction A
6292 * commits you free that leaf, you call this with reserve set to 0 in order to
6293 * clear the reservation.
6294 *
6295 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6296 * ENOSPC accounting. For data we handle the reservation through clearing the
6297 * delalloc bits in the io_tree. We have to do this since we could end up
6298 * allocating less disk space for the amount of data we have reserved in the
6299 * case of compression.
6300 *
6301 * If this is a reservation and the block group has become read only we cannot
6302 * make the reservation and return -EAGAIN, otherwise this function always
6303 * succeeds.
f0486c68 6304 */
fb25e914 6305static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 6306 u64 num_bytes, int reserve, int delalloc)
11833d66 6307{
fb25e914 6308 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6309 int ret = 0;
79787eaa 6310
fb25e914
JB
6311 spin_lock(&space_info->lock);
6312 spin_lock(&cache->lock);
6313 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6314 if (cache->ro) {
6315 ret = -EAGAIN;
6316 } else {
fb25e914
JB
6317 cache->reserved += num_bytes;
6318 space_info->bytes_reserved += num_bytes;
6319 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6320 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6321 "space_info", space_info->flags,
6322 num_bytes, 0);
fb25e914
JB
6323 space_info->bytes_may_use -= num_bytes;
6324 }
e570fd27
MX
6325
6326 if (delalloc)
6327 cache->delalloc_bytes += num_bytes;
f0486c68 6328 }
fb25e914
JB
6329 } else {
6330 if (cache->ro)
6331 space_info->bytes_readonly += num_bytes;
6332 cache->reserved -= num_bytes;
6333 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6334
6335 if (delalloc)
6336 cache->delalloc_bytes -= num_bytes;
324ae4df 6337 }
fb25e914
JB
6338 spin_unlock(&cache->lock);
6339 spin_unlock(&space_info->lock);
f0486c68 6340 return ret;
324ae4df 6341}
9078a3e1 6342
143bede5 6343void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6344 struct btrfs_root *root)
e8569813 6345{
e8569813 6346 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6347 struct btrfs_caching_control *next;
6348 struct btrfs_caching_control *caching_ctl;
6349 struct btrfs_block_group_cache *cache;
e8569813 6350
9e351cc8 6351 down_write(&fs_info->commit_root_sem);
25179201 6352
11833d66
YZ
6353 list_for_each_entry_safe(caching_ctl, next,
6354 &fs_info->caching_block_groups, list) {
6355 cache = caching_ctl->block_group;
6356 if (block_group_cache_done(cache)) {
6357 cache->last_byte_to_unpin = (u64)-1;
6358 list_del_init(&caching_ctl->list);
6359 put_caching_control(caching_ctl);
e8569813 6360 } else {
11833d66 6361 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6362 }
e8569813 6363 }
11833d66
YZ
6364
6365 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6366 fs_info->pinned_extents = &fs_info->freed_extents[1];
6367 else
6368 fs_info->pinned_extents = &fs_info->freed_extents[0];
6369
9e351cc8 6370 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6371
6372 update_global_block_rsv(fs_info);
e8569813
ZY
6373}
6374
c759c4e1
JB
6375/*
6376 * Returns the free cluster for the given space info and sets empty_cluster to
6377 * what it should be based on the mount options.
6378 */
6379static struct btrfs_free_cluster *
6380fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6381 u64 *empty_cluster)
6382{
6383 struct btrfs_free_cluster *ret = NULL;
6384 bool ssd = btrfs_test_opt(root, SSD);
6385
6386 *empty_cluster = 0;
6387 if (btrfs_mixed_space_info(space_info))
6388 return ret;
6389
6390 if (ssd)
ee22184b 6391 *empty_cluster = SZ_2M;
c759c4e1
JB
6392 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6393 ret = &root->fs_info->meta_alloc_cluster;
6394 if (!ssd)
ee22184b 6395 *empty_cluster = SZ_64K;
c759c4e1
JB
6396 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6397 ret = &root->fs_info->data_alloc_cluster;
6398 }
6399
6400 return ret;
6401}
6402
678886bd
FM
6403static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6404 const bool return_free_space)
ccd467d6 6405{
11833d66
YZ
6406 struct btrfs_fs_info *fs_info = root->fs_info;
6407 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6408 struct btrfs_space_info *space_info;
6409 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6410 struct btrfs_free_cluster *cluster = NULL;
11833d66 6411 u64 len;
c759c4e1
JB
6412 u64 total_unpinned = 0;
6413 u64 empty_cluster = 0;
7b398f8e 6414 bool readonly;
ccd467d6 6415
11833d66 6416 while (start <= end) {
7b398f8e 6417 readonly = false;
11833d66
YZ
6418 if (!cache ||
6419 start >= cache->key.objectid + cache->key.offset) {
6420 if (cache)
6421 btrfs_put_block_group(cache);
c759c4e1 6422 total_unpinned = 0;
11833d66 6423 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6424 BUG_ON(!cache); /* Logic error */
c759c4e1
JB
6425
6426 cluster = fetch_cluster_info(root,
6427 cache->space_info,
6428 &empty_cluster);
6429 empty_cluster <<= 1;
11833d66
YZ
6430 }
6431
6432 len = cache->key.objectid + cache->key.offset - start;
6433 len = min(len, end + 1 - start);
6434
6435 if (start < cache->last_byte_to_unpin) {
6436 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6437 if (return_free_space)
6438 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6439 }
6440
f0486c68 6441 start += len;
c759c4e1 6442 total_unpinned += len;
7b398f8e 6443 space_info = cache->space_info;
f0486c68 6444
c759c4e1
JB
6445 /*
6446 * If this space cluster has been marked as fragmented and we've
6447 * unpinned enough in this block group to potentially allow a
6448 * cluster to be created inside of it go ahead and clear the
6449 * fragmented check.
6450 */
6451 if (cluster && cluster->fragmented &&
6452 total_unpinned > empty_cluster) {
6453 spin_lock(&cluster->lock);
6454 cluster->fragmented = 0;
6455 spin_unlock(&cluster->lock);
6456 }
6457
7b398f8e 6458 spin_lock(&space_info->lock);
11833d66
YZ
6459 spin_lock(&cache->lock);
6460 cache->pinned -= len;
7b398f8e 6461 space_info->bytes_pinned -= len;
4f4db217 6462 space_info->max_extent_size = 0;
d288db5d 6463 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6464 if (cache->ro) {
6465 space_info->bytes_readonly += len;
6466 readonly = true;
6467 }
11833d66 6468 spin_unlock(&cache->lock);
7b398f8e
JB
6469 if (!readonly && global_rsv->space_info == space_info) {
6470 spin_lock(&global_rsv->lock);
6471 if (!global_rsv->full) {
6472 len = min(len, global_rsv->size -
6473 global_rsv->reserved);
6474 global_rsv->reserved += len;
6475 space_info->bytes_may_use += len;
6476 if (global_rsv->reserved >= global_rsv->size)
6477 global_rsv->full = 1;
6478 }
6479 spin_unlock(&global_rsv->lock);
6480 }
6481 spin_unlock(&space_info->lock);
ccd467d6 6482 }
11833d66
YZ
6483
6484 if (cache)
6485 btrfs_put_block_group(cache);
ccd467d6
CM
6486 return 0;
6487}
6488
6489int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6490 struct btrfs_root *root)
a28ec197 6491{
11833d66 6492 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6493 struct btrfs_block_group_cache *block_group, *tmp;
6494 struct list_head *deleted_bgs;
11833d66 6495 struct extent_io_tree *unpin;
1a5bc167
CM
6496 u64 start;
6497 u64 end;
a28ec197 6498 int ret;
a28ec197 6499
11833d66
YZ
6500 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6501 unpin = &fs_info->freed_extents[1];
6502 else
6503 unpin = &fs_info->freed_extents[0];
6504
e33e17ee 6505 while (!trans->aborted) {
d4b450cd 6506 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6507 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6508 EXTENT_DIRTY, NULL);
d4b450cd
FM
6509 if (ret) {
6510 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6511 break;
d4b450cd 6512 }
1f3c79a2 6513
5378e607
LD
6514 if (btrfs_test_opt(root, DISCARD))
6515 ret = btrfs_discard_extent(root, start,
6516 end + 1 - start, NULL);
1f3c79a2 6517
af6f8f60 6518 clear_extent_dirty(unpin, start, end);
678886bd 6519 unpin_extent_range(root, start, end, true);
d4b450cd 6520 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6521 cond_resched();
a28ec197 6522 }
817d52f8 6523
e33e17ee
JM
6524 /*
6525 * Transaction is finished. We don't need the lock anymore. We
6526 * do need to clean up the block groups in case of a transaction
6527 * abort.
6528 */
6529 deleted_bgs = &trans->transaction->deleted_bgs;
6530 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6531 u64 trimmed = 0;
6532
6533 ret = -EROFS;
6534 if (!trans->aborted)
6535 ret = btrfs_discard_extent(root,
6536 block_group->key.objectid,
6537 block_group->key.offset,
6538 &trimmed);
6539
6540 list_del_init(&block_group->bg_list);
6541 btrfs_put_block_group_trimming(block_group);
6542 btrfs_put_block_group(block_group);
6543
6544 if (ret) {
6545 const char *errstr = btrfs_decode_error(ret);
6546 btrfs_warn(fs_info,
6547 "Discard failed while removing blockgroup: errno=%d %s\n",
6548 ret, errstr);
6549 }
6550 }
6551
e20d96d6
CM
6552 return 0;
6553}
6554
b150a4f1
JB
6555static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6556 u64 owner, u64 root_objectid)
6557{
6558 struct btrfs_space_info *space_info;
6559 u64 flags;
6560
6561 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6562 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6563 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6564 else
6565 flags = BTRFS_BLOCK_GROUP_METADATA;
6566 } else {
6567 flags = BTRFS_BLOCK_GROUP_DATA;
6568 }
6569
6570 space_info = __find_space_info(fs_info, flags);
6571 BUG_ON(!space_info); /* Logic bug */
6572 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6573}
6574
6575
5d4f98a2
YZ
6576static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6577 struct btrfs_root *root,
c682f9b3 6578 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6579 u64 root_objectid, u64 owner_objectid,
6580 u64 owner_offset, int refs_to_drop,
c682f9b3 6581 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6582{
e2fa7227 6583 struct btrfs_key key;
5d4f98a2 6584 struct btrfs_path *path;
1261ec42
CM
6585 struct btrfs_fs_info *info = root->fs_info;
6586 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6587 struct extent_buffer *leaf;
5d4f98a2
YZ
6588 struct btrfs_extent_item *ei;
6589 struct btrfs_extent_inline_ref *iref;
a28ec197 6590 int ret;
5d4f98a2 6591 int is_data;
952fccac
CM
6592 int extent_slot = 0;
6593 int found_extent = 0;
6594 int num_to_del = 1;
5d4f98a2
YZ
6595 u32 item_size;
6596 u64 refs;
c682f9b3
QW
6597 u64 bytenr = node->bytenr;
6598 u64 num_bytes = node->num_bytes;
fcebe456 6599 int last_ref = 0;
3173a18f
JB
6600 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6601 SKINNY_METADATA);
037e6390 6602
5caf2a00 6603 path = btrfs_alloc_path();
54aa1f4d
CM
6604 if (!path)
6605 return -ENOMEM;
5f26f772 6606
e4058b54 6607 path->reada = READA_FORWARD;
b9473439 6608 path->leave_spinning = 1;
5d4f98a2
YZ
6609
6610 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6611 BUG_ON(!is_data && refs_to_drop != 1);
6612
3173a18f
JB
6613 if (is_data)
6614 skinny_metadata = 0;
6615
5d4f98a2
YZ
6616 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6617 bytenr, num_bytes, parent,
6618 root_objectid, owner_objectid,
6619 owner_offset);
7bb86316 6620 if (ret == 0) {
952fccac 6621 extent_slot = path->slots[0];
5d4f98a2
YZ
6622 while (extent_slot >= 0) {
6623 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6624 extent_slot);
5d4f98a2 6625 if (key.objectid != bytenr)
952fccac 6626 break;
5d4f98a2
YZ
6627 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6628 key.offset == num_bytes) {
952fccac
CM
6629 found_extent = 1;
6630 break;
6631 }
3173a18f
JB
6632 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6633 key.offset == owner_objectid) {
6634 found_extent = 1;
6635 break;
6636 }
952fccac
CM
6637 if (path->slots[0] - extent_slot > 5)
6638 break;
5d4f98a2 6639 extent_slot--;
952fccac 6640 }
5d4f98a2
YZ
6641#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6642 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6643 if (found_extent && item_size < sizeof(*ei))
6644 found_extent = 0;
6645#endif
31840ae1 6646 if (!found_extent) {
5d4f98a2 6647 BUG_ON(iref);
56bec294 6648 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6649 NULL, refs_to_drop,
fcebe456 6650 is_data, &last_ref);
005d6427
DS
6651 if (ret) {
6652 btrfs_abort_transaction(trans, extent_root, ret);
6653 goto out;
6654 }
b3b4aa74 6655 btrfs_release_path(path);
b9473439 6656 path->leave_spinning = 1;
5d4f98a2
YZ
6657
6658 key.objectid = bytenr;
6659 key.type = BTRFS_EXTENT_ITEM_KEY;
6660 key.offset = num_bytes;
6661
3173a18f
JB
6662 if (!is_data && skinny_metadata) {
6663 key.type = BTRFS_METADATA_ITEM_KEY;
6664 key.offset = owner_objectid;
6665 }
6666
31840ae1
ZY
6667 ret = btrfs_search_slot(trans, extent_root,
6668 &key, path, -1, 1);
3173a18f
JB
6669 if (ret > 0 && skinny_metadata && path->slots[0]) {
6670 /*
6671 * Couldn't find our skinny metadata item,
6672 * see if we have ye olde extent item.
6673 */
6674 path->slots[0]--;
6675 btrfs_item_key_to_cpu(path->nodes[0], &key,
6676 path->slots[0]);
6677 if (key.objectid == bytenr &&
6678 key.type == BTRFS_EXTENT_ITEM_KEY &&
6679 key.offset == num_bytes)
6680 ret = 0;
6681 }
6682
6683 if (ret > 0 && skinny_metadata) {
6684 skinny_metadata = false;
9ce49a0b 6685 key.objectid = bytenr;
3173a18f
JB
6686 key.type = BTRFS_EXTENT_ITEM_KEY;
6687 key.offset = num_bytes;
6688 btrfs_release_path(path);
6689 ret = btrfs_search_slot(trans, extent_root,
6690 &key, path, -1, 1);
6691 }
6692
f3465ca4 6693 if (ret) {
c2cf52eb 6694 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6695 ret, bytenr);
b783e62d
JB
6696 if (ret > 0)
6697 btrfs_print_leaf(extent_root,
6698 path->nodes[0]);
f3465ca4 6699 }
005d6427
DS
6700 if (ret < 0) {
6701 btrfs_abort_transaction(trans, extent_root, ret);
6702 goto out;
6703 }
31840ae1
ZY
6704 extent_slot = path->slots[0];
6705 }
fae7f21c 6706 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6707 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6708 btrfs_err(info,
6709 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6710 bytenr, parent, root_objectid, owner_objectid,
6711 owner_offset);
c4a050bb
JB
6712 btrfs_abort_transaction(trans, extent_root, ret);
6713 goto out;
79787eaa 6714 } else {
005d6427
DS
6715 btrfs_abort_transaction(trans, extent_root, ret);
6716 goto out;
7bb86316 6717 }
5f39d397
CM
6718
6719 leaf = path->nodes[0];
5d4f98a2
YZ
6720 item_size = btrfs_item_size_nr(leaf, extent_slot);
6721#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6722 if (item_size < sizeof(*ei)) {
6723 BUG_ON(found_extent || extent_slot != path->slots[0]);
6724 ret = convert_extent_item_v0(trans, extent_root, path,
6725 owner_objectid, 0);
005d6427
DS
6726 if (ret < 0) {
6727 btrfs_abort_transaction(trans, extent_root, ret);
6728 goto out;
6729 }
5d4f98a2 6730
b3b4aa74 6731 btrfs_release_path(path);
5d4f98a2
YZ
6732 path->leave_spinning = 1;
6733
6734 key.objectid = bytenr;
6735 key.type = BTRFS_EXTENT_ITEM_KEY;
6736 key.offset = num_bytes;
6737
6738 ret = btrfs_search_slot(trans, extent_root, &key, path,
6739 -1, 1);
6740 if (ret) {
c2cf52eb 6741 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6742 ret, bytenr);
5d4f98a2
YZ
6743 btrfs_print_leaf(extent_root, path->nodes[0]);
6744 }
005d6427
DS
6745 if (ret < 0) {
6746 btrfs_abort_transaction(trans, extent_root, ret);
6747 goto out;
6748 }
6749
5d4f98a2
YZ
6750 extent_slot = path->slots[0];
6751 leaf = path->nodes[0];
6752 item_size = btrfs_item_size_nr(leaf, extent_slot);
6753 }
6754#endif
6755 BUG_ON(item_size < sizeof(*ei));
952fccac 6756 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6757 struct btrfs_extent_item);
3173a18f
JB
6758 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6759 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6760 struct btrfs_tree_block_info *bi;
6761 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6762 bi = (struct btrfs_tree_block_info *)(ei + 1);
6763 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6764 }
56bec294 6765
5d4f98a2 6766 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6767 if (refs < refs_to_drop) {
6768 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6769 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6770 ret = -EINVAL;
6771 btrfs_abort_transaction(trans, extent_root, ret);
6772 goto out;
6773 }
56bec294 6774 refs -= refs_to_drop;
5f39d397 6775
5d4f98a2
YZ
6776 if (refs > 0) {
6777 if (extent_op)
6778 __run_delayed_extent_op(extent_op, leaf, ei);
6779 /*
6780 * In the case of inline back ref, reference count will
6781 * be updated by remove_extent_backref
952fccac 6782 */
5d4f98a2
YZ
6783 if (iref) {
6784 BUG_ON(!found_extent);
6785 } else {
6786 btrfs_set_extent_refs(leaf, ei, refs);
6787 btrfs_mark_buffer_dirty(leaf);
6788 }
6789 if (found_extent) {
6790 ret = remove_extent_backref(trans, extent_root, path,
6791 iref, refs_to_drop,
fcebe456 6792 is_data, &last_ref);
005d6427
DS
6793 if (ret) {
6794 btrfs_abort_transaction(trans, extent_root, ret);
6795 goto out;
6796 }
952fccac 6797 }
b150a4f1
JB
6798 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6799 root_objectid);
5d4f98a2 6800 } else {
5d4f98a2
YZ
6801 if (found_extent) {
6802 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6803 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6804 if (iref) {
6805 BUG_ON(path->slots[0] != extent_slot);
6806 } else {
6807 BUG_ON(path->slots[0] != extent_slot + 1);
6808 path->slots[0] = extent_slot;
6809 num_to_del = 2;
6810 }
78fae27e 6811 }
b9473439 6812
fcebe456 6813 last_ref = 1;
952fccac
CM
6814 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6815 num_to_del);
005d6427
DS
6816 if (ret) {
6817 btrfs_abort_transaction(trans, extent_root, ret);
6818 goto out;
6819 }
b3b4aa74 6820 btrfs_release_path(path);
21af804c 6821
5d4f98a2 6822 if (is_data) {
459931ec 6823 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6824 if (ret) {
6825 btrfs_abort_transaction(trans, extent_root, ret);
6826 goto out;
6827 }
459931ec
CM
6828 }
6829
1e144fb8
OS
6830 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6831 num_bytes);
6832 if (ret) {
6833 btrfs_abort_transaction(trans, extent_root, ret);
6834 goto out;
6835 }
6836
ce93ec54 6837 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6838 if (ret) {
6839 btrfs_abort_transaction(trans, extent_root, ret);
6840 goto out;
6841 }
a28ec197 6842 }
fcebe456
JB
6843 btrfs_release_path(path);
6844
79787eaa 6845out:
5caf2a00 6846 btrfs_free_path(path);
a28ec197
CM
6847 return ret;
6848}
6849
1887be66 6850/*
f0486c68 6851 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6852 * delayed ref for that extent as well. This searches the delayed ref tree for
6853 * a given extent, and if there are no other delayed refs to be processed, it
6854 * removes it from the tree.
6855 */
6856static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6857 struct btrfs_root *root, u64 bytenr)
6858{
6859 struct btrfs_delayed_ref_head *head;
6860 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6861 int ret = 0;
1887be66
CM
6862
6863 delayed_refs = &trans->transaction->delayed_refs;
6864 spin_lock(&delayed_refs->lock);
6865 head = btrfs_find_delayed_ref_head(trans, bytenr);
6866 if (!head)
cf93da7b 6867 goto out_delayed_unlock;
1887be66 6868
d7df2c79 6869 spin_lock(&head->lock);
c6fc2454 6870 if (!list_empty(&head->ref_list))
1887be66
CM
6871 goto out;
6872
5d4f98a2
YZ
6873 if (head->extent_op) {
6874 if (!head->must_insert_reserved)
6875 goto out;
78a6184a 6876 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6877 head->extent_op = NULL;
6878 }
6879
1887be66
CM
6880 /*
6881 * waiting for the lock here would deadlock. If someone else has it
6882 * locked they are already in the process of dropping it anyway
6883 */
6884 if (!mutex_trylock(&head->mutex))
6885 goto out;
6886
6887 /*
6888 * at this point we have a head with no other entries. Go
6889 * ahead and process it.
6890 */
6891 head->node.in_tree = 0;
c46effa6 6892 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6893
d7df2c79 6894 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6895
6896 /*
6897 * we don't take a ref on the node because we're removing it from the
6898 * tree, so we just steal the ref the tree was holding.
6899 */
c3e69d58 6900 delayed_refs->num_heads--;
d7df2c79 6901 if (head->processing == 0)
c3e69d58 6902 delayed_refs->num_heads_ready--;
d7df2c79
JB
6903 head->processing = 0;
6904 spin_unlock(&head->lock);
1887be66
CM
6905 spin_unlock(&delayed_refs->lock);
6906
f0486c68
YZ
6907 BUG_ON(head->extent_op);
6908 if (head->must_insert_reserved)
6909 ret = 1;
6910
6911 mutex_unlock(&head->mutex);
1887be66 6912 btrfs_put_delayed_ref(&head->node);
f0486c68 6913 return ret;
1887be66 6914out:
d7df2c79 6915 spin_unlock(&head->lock);
cf93da7b
CM
6916
6917out_delayed_unlock:
1887be66
CM
6918 spin_unlock(&delayed_refs->lock);
6919 return 0;
6920}
6921
f0486c68
YZ
6922void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6923 struct btrfs_root *root,
6924 struct extent_buffer *buf,
5581a51a 6925 u64 parent, int last_ref)
f0486c68 6926{
b150a4f1 6927 int pin = 1;
f0486c68
YZ
6928 int ret;
6929
6930 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6931 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6932 buf->start, buf->len,
6933 parent, root->root_key.objectid,
6934 btrfs_header_level(buf),
b06c4bf5 6935 BTRFS_DROP_DELAYED_REF, NULL);
79787eaa 6936 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6937 }
6938
6939 if (!last_ref)
6940 return;
6941
f0486c68 6942 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6943 struct btrfs_block_group_cache *cache;
6944
f0486c68
YZ
6945 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6946 ret = check_ref_cleanup(trans, root, buf->start);
6947 if (!ret)
37be25bc 6948 goto out;
f0486c68
YZ
6949 }
6950
6219872d
FM
6951 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6952
f0486c68
YZ
6953 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6954 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6955 btrfs_put_block_group(cache);
37be25bc 6956 goto out;
f0486c68
YZ
6957 }
6958
6959 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6960
6961 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6962 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6963 btrfs_put_block_group(cache);
0be5dc67 6964 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6965 pin = 0;
f0486c68
YZ
6966 }
6967out:
b150a4f1
JB
6968 if (pin)
6969 add_pinned_bytes(root->fs_info, buf->len,
6970 btrfs_header_level(buf),
6971 root->root_key.objectid);
6972
a826d6dc
JB
6973 /*
6974 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6975 * anymore.
6976 */
6977 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6978}
6979
79787eaa 6980/* Can return -ENOMEM */
66d7e7f0
AJ
6981int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6982 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 6983 u64 owner, u64 offset)
925baedd
CM
6984{
6985 int ret;
66d7e7f0 6986 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6987
fccb84c9 6988 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6989 return 0;
fccb84c9 6990
b150a4f1
JB
6991 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6992
56bec294
CM
6993 /*
6994 * tree log blocks never actually go into the extent allocation
6995 * tree, just update pinning info and exit early.
56bec294 6996 */
5d4f98a2
YZ
6997 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6998 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6999 /* unlocks the pinned mutex */
11833d66 7000 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 7001 ret = 0;
5d4f98a2 7002 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
7003 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7004 num_bytes,
5d4f98a2 7005 parent, root_objectid, (int)owner,
b06c4bf5 7006 BTRFS_DROP_DELAYED_REF, NULL);
5d4f98a2 7007 } else {
66d7e7f0
AJ
7008 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7009 num_bytes,
7010 parent, root_objectid, owner,
5846a3c2
QW
7011 offset, 0,
7012 BTRFS_DROP_DELAYED_REF, NULL);
56bec294 7013 }
925baedd
CM
7014 return ret;
7015}
7016
817d52f8
JB
7017/*
7018 * when we wait for progress in the block group caching, its because
7019 * our allocation attempt failed at least once. So, we must sleep
7020 * and let some progress happen before we try again.
7021 *
7022 * This function will sleep at least once waiting for new free space to
7023 * show up, and then it will check the block group free space numbers
7024 * for our min num_bytes. Another option is to have it go ahead
7025 * and look in the rbtree for a free extent of a given size, but this
7026 * is a good start.
36cce922
JB
7027 *
7028 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7029 * any of the information in this block group.
817d52f8 7030 */
36cce922 7031static noinline void
817d52f8
JB
7032wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7033 u64 num_bytes)
7034{
11833d66 7035 struct btrfs_caching_control *caching_ctl;
817d52f8 7036
11833d66
YZ
7037 caching_ctl = get_caching_control(cache);
7038 if (!caching_ctl)
36cce922 7039 return;
817d52f8 7040
11833d66 7041 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7042 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7043
7044 put_caching_control(caching_ctl);
11833d66
YZ
7045}
7046
7047static noinline int
7048wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7049{
7050 struct btrfs_caching_control *caching_ctl;
36cce922 7051 int ret = 0;
11833d66
YZ
7052
7053 caching_ctl = get_caching_control(cache);
7054 if (!caching_ctl)
36cce922 7055 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7056
7057 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7058 if (cache->cached == BTRFS_CACHE_ERROR)
7059 ret = -EIO;
11833d66 7060 put_caching_control(caching_ctl);
36cce922 7061 return ret;
817d52f8
JB
7062}
7063
31e50229 7064int __get_raid_index(u64 flags)
b742bb82 7065{
7738a53a 7066 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7067 return BTRFS_RAID_RAID10;
7738a53a 7068 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7069 return BTRFS_RAID_RAID1;
7738a53a 7070 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7071 return BTRFS_RAID_DUP;
7738a53a 7072 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7073 return BTRFS_RAID_RAID0;
53b381b3 7074 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7075 return BTRFS_RAID_RAID5;
53b381b3 7076 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7077 return BTRFS_RAID_RAID6;
7738a53a 7078
e942f883 7079 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7080}
7081
6ab0a202 7082int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7083{
31e50229 7084 return __get_raid_index(cache->flags);
7738a53a
ID
7085}
7086
6ab0a202
JM
7087static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7088 [BTRFS_RAID_RAID10] = "raid10",
7089 [BTRFS_RAID_RAID1] = "raid1",
7090 [BTRFS_RAID_DUP] = "dup",
7091 [BTRFS_RAID_RAID0] = "raid0",
7092 [BTRFS_RAID_SINGLE] = "single",
7093 [BTRFS_RAID_RAID5] = "raid5",
7094 [BTRFS_RAID_RAID6] = "raid6",
7095};
7096
1b8e5df6 7097static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7098{
7099 if (type >= BTRFS_NR_RAID_TYPES)
7100 return NULL;
7101
7102 return btrfs_raid_type_names[type];
7103}
7104
817d52f8 7105enum btrfs_loop_type {
285ff5af
JB
7106 LOOP_CACHING_NOWAIT = 0,
7107 LOOP_CACHING_WAIT = 1,
7108 LOOP_ALLOC_CHUNK = 2,
7109 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7110};
7111
e570fd27
MX
7112static inline void
7113btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7114 int delalloc)
7115{
7116 if (delalloc)
7117 down_read(&cache->data_rwsem);
7118}
7119
7120static inline void
7121btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7122 int delalloc)
7123{
7124 btrfs_get_block_group(cache);
7125 if (delalloc)
7126 down_read(&cache->data_rwsem);
7127}
7128
7129static struct btrfs_block_group_cache *
7130btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7131 struct btrfs_free_cluster *cluster,
7132 int delalloc)
7133{
89771cc9 7134 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7135
e570fd27 7136 spin_lock(&cluster->refill_lock);
6719afdc
GU
7137 while (1) {
7138 used_bg = cluster->block_group;
7139 if (!used_bg)
7140 return NULL;
7141
7142 if (used_bg == block_group)
e570fd27
MX
7143 return used_bg;
7144
6719afdc 7145 btrfs_get_block_group(used_bg);
e570fd27 7146
6719afdc
GU
7147 if (!delalloc)
7148 return used_bg;
e570fd27 7149
6719afdc
GU
7150 if (down_read_trylock(&used_bg->data_rwsem))
7151 return used_bg;
e570fd27 7152
6719afdc 7153 spin_unlock(&cluster->refill_lock);
e570fd27 7154
6719afdc 7155 down_read(&used_bg->data_rwsem);
e570fd27 7156
6719afdc
GU
7157 spin_lock(&cluster->refill_lock);
7158 if (used_bg == cluster->block_group)
7159 return used_bg;
e570fd27 7160
6719afdc
GU
7161 up_read(&used_bg->data_rwsem);
7162 btrfs_put_block_group(used_bg);
7163 }
e570fd27
MX
7164}
7165
7166static inline void
7167btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7168 int delalloc)
7169{
7170 if (delalloc)
7171 up_read(&cache->data_rwsem);
7172 btrfs_put_block_group(cache);
7173}
7174
fec577fb
CM
7175/*
7176 * walks the btree of allocated extents and find a hole of a given size.
7177 * The key ins is changed to record the hole:
a4820398 7178 * ins->objectid == start position
62e2749e 7179 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7180 * ins->offset == the size of the hole.
fec577fb 7181 * Any available blocks before search_start are skipped.
a4820398
MX
7182 *
7183 * If there is no suitable free space, we will record the max size of
7184 * the free space extent currently.
fec577fb 7185 */
00361589 7186static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 7187 u64 num_bytes, u64 empty_size,
98ed5174 7188 u64 hint_byte, struct btrfs_key *ins,
e570fd27 7189 u64 flags, int delalloc)
fec577fb 7190{
80eb234a 7191 int ret = 0;
d397712b 7192 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 7193 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7194 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7195 u64 search_start = 0;
a4820398 7196 u64 max_extent_size = 0;
c759c4e1 7197 u64 empty_cluster = 0;
80eb234a 7198 struct btrfs_space_info *space_info;
fa9c0d79 7199 int loop = 0;
b6919a58
DS
7200 int index = __get_raid_index(flags);
7201 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 7202 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 7203 bool failed_cluster_refill = false;
1cdda9b8 7204 bool failed_alloc = false;
67377734 7205 bool use_cluster = true;
60d2adbb 7206 bool have_caching_bg = false;
13a0db5a 7207 bool orig_have_caching_bg = false;
a5e681d9 7208 bool full_search = false;
fec577fb 7209
db94535d 7210 WARN_ON(num_bytes < root->sectorsize);
962a298f 7211 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7212 ins->objectid = 0;
7213 ins->offset = 0;
b1a4d965 7214
b6919a58 7215 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 7216
b6919a58 7217 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 7218 if (!space_info) {
b6919a58 7219 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7220 return -ENOSPC;
7221 }
2552d17e 7222
67377734 7223 /*
4f4db217
JB
7224 * If our free space is heavily fragmented we may not be able to make
7225 * big contiguous allocations, so instead of doing the expensive search
7226 * for free space, simply return ENOSPC with our max_extent_size so we
7227 * can go ahead and search for a more manageable chunk.
7228 *
7229 * If our max_extent_size is large enough for our allocation simply
7230 * disable clustering since we will likely not be able to find enough
7231 * space to create a cluster and induce latency trying.
67377734 7232 */
4f4db217
JB
7233 if (unlikely(space_info->max_extent_size)) {
7234 spin_lock(&space_info->lock);
7235 if (space_info->max_extent_size &&
7236 num_bytes > space_info->max_extent_size) {
7237 ins->offset = space_info->max_extent_size;
7238 spin_unlock(&space_info->lock);
7239 return -ENOSPC;
7240 } else if (space_info->max_extent_size) {
7241 use_cluster = false;
7242 }
7243 spin_unlock(&space_info->lock);
fa9c0d79 7244 }
0f9dd46c 7245
c759c4e1 7246 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
239b14b3 7247 if (last_ptr) {
fa9c0d79
CM
7248 spin_lock(&last_ptr->lock);
7249 if (last_ptr->block_group)
7250 hint_byte = last_ptr->window_start;
c759c4e1
JB
7251 if (last_ptr->fragmented) {
7252 /*
7253 * We still set window_start so we can keep track of the
7254 * last place we found an allocation to try and save
7255 * some time.
7256 */
7257 hint_byte = last_ptr->window_start;
7258 use_cluster = false;
7259 }
fa9c0d79 7260 spin_unlock(&last_ptr->lock);
239b14b3 7261 }
fa9c0d79 7262
a061fc8d 7263 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 7264 search_start = max(search_start, hint_byte);
2552d17e 7265 if (search_start == hint_byte) {
2552d17e
JB
7266 block_group = btrfs_lookup_block_group(root->fs_info,
7267 search_start);
817d52f8
JB
7268 /*
7269 * we don't want to use the block group if it doesn't match our
7270 * allocation bits, or if its not cached.
ccf0e725
JB
7271 *
7272 * However if we are re-searching with an ideal block group
7273 * picked out then we don't care that the block group is cached.
817d52f8 7274 */
b6919a58 7275 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7276 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7277 down_read(&space_info->groups_sem);
44fb5511
CM
7278 if (list_empty(&block_group->list) ||
7279 block_group->ro) {
7280 /*
7281 * someone is removing this block group,
7282 * we can't jump into the have_block_group
7283 * target because our list pointers are not
7284 * valid
7285 */
7286 btrfs_put_block_group(block_group);
7287 up_read(&space_info->groups_sem);
ccf0e725 7288 } else {
b742bb82 7289 index = get_block_group_index(block_group);
e570fd27 7290 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7291 goto have_block_group;
ccf0e725 7292 }
2552d17e 7293 } else if (block_group) {
fa9c0d79 7294 btrfs_put_block_group(block_group);
2552d17e 7295 }
42e70e7a 7296 }
2552d17e 7297search:
60d2adbb 7298 have_caching_bg = false;
a5e681d9
JB
7299 if (index == 0 || index == __get_raid_index(flags))
7300 full_search = true;
80eb234a 7301 down_read(&space_info->groups_sem);
b742bb82
YZ
7302 list_for_each_entry(block_group, &space_info->block_groups[index],
7303 list) {
6226cb0a 7304 u64 offset;
817d52f8 7305 int cached;
8a1413a2 7306
e570fd27 7307 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7308 search_start = block_group->key.objectid;
42e70e7a 7309
83a50de9
CM
7310 /*
7311 * this can happen if we end up cycling through all the
7312 * raid types, but we want to make sure we only allocate
7313 * for the proper type.
7314 */
b6919a58 7315 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7316 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7317 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7318 BTRFS_BLOCK_GROUP_RAID5 |
7319 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7320 BTRFS_BLOCK_GROUP_RAID10;
7321
7322 /*
7323 * if they asked for extra copies and this block group
7324 * doesn't provide them, bail. This does allow us to
7325 * fill raid0 from raid1.
7326 */
b6919a58 7327 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7328 goto loop;
7329 }
7330
2552d17e 7331have_block_group:
291c7d2f
JB
7332 cached = block_group_cache_done(block_group);
7333 if (unlikely(!cached)) {
a5e681d9 7334 have_caching_bg = true;
f6373bf3 7335 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7336 BUG_ON(ret < 0);
7337 ret = 0;
817d52f8
JB
7338 }
7339
36cce922
JB
7340 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7341 goto loop;
ea6a478e 7342 if (unlikely(block_group->ro))
2552d17e 7343 goto loop;
0f9dd46c 7344
0a24325e 7345 /*
062c05c4
AO
7346 * Ok we want to try and use the cluster allocator, so
7347 * lets look there
0a24325e 7348 */
c759c4e1 7349 if (last_ptr && use_cluster) {
215a63d1 7350 struct btrfs_block_group_cache *used_block_group;
8de972b4 7351 unsigned long aligned_cluster;
fa9c0d79
CM
7352 /*
7353 * the refill lock keeps out other
7354 * people trying to start a new cluster
7355 */
e570fd27
MX
7356 used_block_group = btrfs_lock_cluster(block_group,
7357 last_ptr,
7358 delalloc);
7359 if (!used_block_group)
44fb5511 7360 goto refill_cluster;
274bd4fb 7361
e570fd27
MX
7362 if (used_block_group != block_group &&
7363 (used_block_group->ro ||
7364 !block_group_bits(used_block_group, flags)))
7365 goto release_cluster;
44fb5511 7366
274bd4fb 7367 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7368 last_ptr,
7369 num_bytes,
7370 used_block_group->key.objectid,
7371 &max_extent_size);
fa9c0d79
CM
7372 if (offset) {
7373 /* we have a block, we're done */
7374 spin_unlock(&last_ptr->refill_lock);
3f7de037 7375 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7376 used_block_group,
7377 search_start, num_bytes);
215a63d1 7378 if (used_block_group != block_group) {
e570fd27
MX
7379 btrfs_release_block_group(block_group,
7380 delalloc);
215a63d1
MX
7381 block_group = used_block_group;
7382 }
fa9c0d79
CM
7383 goto checks;
7384 }
7385
274bd4fb 7386 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7387release_cluster:
062c05c4
AO
7388 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7389 * set up a new clusters, so lets just skip it
7390 * and let the allocator find whatever block
7391 * it can find. If we reach this point, we
7392 * will have tried the cluster allocator
7393 * plenty of times and not have found
7394 * anything, so we are likely way too
7395 * fragmented for the clustering stuff to find
a5f6f719
AO
7396 * anything.
7397 *
7398 * However, if the cluster is taken from the
7399 * current block group, release the cluster
7400 * first, so that we stand a better chance of
7401 * succeeding in the unclustered
7402 * allocation. */
7403 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7404 used_block_group != block_group) {
062c05c4 7405 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7406 btrfs_release_block_group(used_block_group,
7407 delalloc);
062c05c4
AO
7408 goto unclustered_alloc;
7409 }
7410
fa9c0d79
CM
7411 /*
7412 * this cluster didn't work out, free it and
7413 * start over
7414 */
7415 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7416
e570fd27
MX
7417 if (used_block_group != block_group)
7418 btrfs_release_block_group(used_block_group,
7419 delalloc);
7420refill_cluster:
a5f6f719
AO
7421 if (loop >= LOOP_NO_EMPTY_SIZE) {
7422 spin_unlock(&last_ptr->refill_lock);
7423 goto unclustered_alloc;
7424 }
7425
8de972b4
CM
7426 aligned_cluster = max_t(unsigned long,
7427 empty_cluster + empty_size,
7428 block_group->full_stripe_len);
7429
fa9c0d79 7430 /* allocate a cluster in this block group */
00361589
JB
7431 ret = btrfs_find_space_cluster(root, block_group,
7432 last_ptr, search_start,
7433 num_bytes,
7434 aligned_cluster);
fa9c0d79
CM
7435 if (ret == 0) {
7436 /*
7437 * now pull our allocation out of this
7438 * cluster
7439 */
7440 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7441 last_ptr,
7442 num_bytes,
7443 search_start,
7444 &max_extent_size);
fa9c0d79
CM
7445 if (offset) {
7446 /* we found one, proceed */
7447 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7448 trace_btrfs_reserve_extent_cluster(root,
7449 block_group, search_start,
7450 num_bytes);
fa9c0d79
CM
7451 goto checks;
7452 }
0a24325e
JB
7453 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7454 && !failed_cluster_refill) {
817d52f8
JB
7455 spin_unlock(&last_ptr->refill_lock);
7456
0a24325e 7457 failed_cluster_refill = true;
817d52f8
JB
7458 wait_block_group_cache_progress(block_group,
7459 num_bytes + empty_cluster + empty_size);
7460 goto have_block_group;
fa9c0d79 7461 }
817d52f8 7462
fa9c0d79
CM
7463 /*
7464 * at this point we either didn't find a cluster
7465 * or we weren't able to allocate a block from our
7466 * cluster. Free the cluster we've been trying
7467 * to use, and go to the next block group
7468 */
0a24325e 7469 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7470 spin_unlock(&last_ptr->refill_lock);
0a24325e 7471 goto loop;
fa9c0d79
CM
7472 }
7473
062c05c4 7474unclustered_alloc:
c759c4e1
JB
7475 /*
7476 * We are doing an unclustered alloc, set the fragmented flag so
7477 * we don't bother trying to setup a cluster again until we get
7478 * more space.
7479 */
7480 if (unlikely(last_ptr)) {
7481 spin_lock(&last_ptr->lock);
7482 last_ptr->fragmented = 1;
7483 spin_unlock(&last_ptr->lock);
7484 }
a5f6f719
AO
7485 spin_lock(&block_group->free_space_ctl->tree_lock);
7486 if (cached &&
7487 block_group->free_space_ctl->free_space <
7488 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7489 if (block_group->free_space_ctl->free_space >
7490 max_extent_size)
7491 max_extent_size =
7492 block_group->free_space_ctl->free_space;
a5f6f719
AO
7493 spin_unlock(&block_group->free_space_ctl->tree_lock);
7494 goto loop;
7495 }
7496 spin_unlock(&block_group->free_space_ctl->tree_lock);
7497
6226cb0a 7498 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7499 num_bytes, empty_size,
7500 &max_extent_size);
1cdda9b8
JB
7501 /*
7502 * If we didn't find a chunk, and we haven't failed on this
7503 * block group before, and this block group is in the middle of
7504 * caching and we are ok with waiting, then go ahead and wait
7505 * for progress to be made, and set failed_alloc to true.
7506 *
7507 * If failed_alloc is true then we've already waited on this
7508 * block group once and should move on to the next block group.
7509 */
7510 if (!offset && !failed_alloc && !cached &&
7511 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7512 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7513 num_bytes + empty_size);
7514 failed_alloc = true;
817d52f8 7515 goto have_block_group;
1cdda9b8
JB
7516 } else if (!offset) {
7517 goto loop;
817d52f8 7518 }
fa9c0d79 7519checks:
4e54b17a 7520 search_start = ALIGN(offset, root->stripesize);
25179201 7521
2552d17e
JB
7522 /* move on to the next group */
7523 if (search_start + num_bytes >
215a63d1
MX
7524 block_group->key.objectid + block_group->key.offset) {
7525 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7526 goto loop;
6226cb0a 7527 }
f5a31e16 7528
f0486c68 7529 if (offset < search_start)
215a63d1 7530 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7531 search_start - offset);
7532 BUG_ON(offset > search_start);
2552d17e 7533
215a63d1 7534 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7535 alloc_type, delalloc);
f0486c68 7536 if (ret == -EAGAIN) {
215a63d1 7537 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7538 goto loop;
0f9dd46c 7539 }
9cfa3e34 7540 btrfs_inc_block_group_reservations(block_group);
0b86a832 7541
f0486c68 7542 /* we are all good, lets return */
2552d17e
JB
7543 ins->objectid = search_start;
7544 ins->offset = num_bytes;
d2fb3437 7545
3f7de037
JB
7546 trace_btrfs_reserve_extent(orig_root, block_group,
7547 search_start, num_bytes);
e570fd27 7548 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7549 break;
7550loop:
0a24325e 7551 failed_cluster_refill = false;
1cdda9b8 7552 failed_alloc = false;
b742bb82 7553 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7554 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7555 }
7556 up_read(&space_info->groups_sem);
7557
13a0db5a 7558 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7559 && !orig_have_caching_bg)
7560 orig_have_caching_bg = true;
7561
60d2adbb
MX
7562 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7563 goto search;
7564
b742bb82
YZ
7565 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7566 goto search;
7567
285ff5af 7568 /*
ccf0e725
JB
7569 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7570 * caching kthreads as we move along
817d52f8
JB
7571 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7572 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7573 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7574 * again
fa9c0d79 7575 */
723bda20 7576 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7577 index = 0;
a5e681d9
JB
7578 if (loop == LOOP_CACHING_NOWAIT) {
7579 /*
7580 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7581 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7582 * full search through.
7583 */
13a0db5a 7584 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7585 loop = LOOP_CACHING_WAIT;
7586 else
7587 loop = LOOP_ALLOC_CHUNK;
7588 } else {
7589 loop++;
7590 }
7591
817d52f8 7592 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7593 struct btrfs_trans_handle *trans;
f017f15f
WS
7594 int exist = 0;
7595
7596 trans = current->journal_info;
7597 if (trans)
7598 exist = 1;
7599 else
7600 trans = btrfs_join_transaction(root);
00361589 7601
00361589
JB
7602 if (IS_ERR(trans)) {
7603 ret = PTR_ERR(trans);
7604 goto out;
7605 }
7606
b6919a58 7607 ret = do_chunk_alloc(trans, root, flags,
ea658bad 7608 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7609
7610 /*
7611 * If we can't allocate a new chunk we've already looped
7612 * through at least once, move on to the NO_EMPTY_SIZE
7613 * case.
7614 */
7615 if (ret == -ENOSPC)
7616 loop = LOOP_NO_EMPTY_SIZE;
7617
ea658bad
JB
7618 /*
7619 * Do not bail out on ENOSPC since we
7620 * can do more things.
7621 */
00361589 7622 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7623 btrfs_abort_transaction(trans,
7624 root, ret);
00361589
JB
7625 else
7626 ret = 0;
f017f15f
WS
7627 if (!exist)
7628 btrfs_end_transaction(trans, root);
00361589 7629 if (ret)
ea658bad 7630 goto out;
2552d17e
JB
7631 }
7632
723bda20 7633 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7634 /*
7635 * Don't loop again if we already have no empty_size and
7636 * no empty_cluster.
7637 */
7638 if (empty_size == 0 &&
7639 empty_cluster == 0) {
7640 ret = -ENOSPC;
7641 goto out;
7642 }
723bda20
JB
7643 empty_size = 0;
7644 empty_cluster = 0;
fa9c0d79 7645 }
723bda20
JB
7646
7647 goto search;
2552d17e
JB
7648 } else if (!ins->objectid) {
7649 ret = -ENOSPC;
d82a6f1d 7650 } else if (ins->objectid) {
c759c4e1
JB
7651 if (!use_cluster && last_ptr) {
7652 spin_lock(&last_ptr->lock);
7653 last_ptr->window_start = ins->objectid;
7654 spin_unlock(&last_ptr->lock);
7655 }
80eb234a 7656 ret = 0;
be744175 7657 }
79787eaa 7658out:
4f4db217
JB
7659 if (ret == -ENOSPC) {
7660 spin_lock(&space_info->lock);
7661 space_info->max_extent_size = max_extent_size;
7662 spin_unlock(&space_info->lock);
a4820398 7663 ins->offset = max_extent_size;
4f4db217 7664 }
0f70abe2 7665 return ret;
fec577fb 7666}
ec44a35c 7667
9ed74f2d
JB
7668static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7669 int dump_block_groups)
0f9dd46c
JB
7670{
7671 struct btrfs_block_group_cache *cache;
b742bb82 7672 int index = 0;
0f9dd46c 7673
9ed74f2d 7674 spin_lock(&info->lock);
efe120a0 7675 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7676 info->flags,
7677 info->total_bytes - info->bytes_used - info->bytes_pinned -
7678 info->bytes_reserved - info->bytes_readonly,
d397712b 7679 (info->full) ? "" : "not ");
efe120a0 7680 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7681 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7682 info->total_bytes, info->bytes_used, info->bytes_pinned,
7683 info->bytes_reserved, info->bytes_may_use,
7684 info->bytes_readonly);
9ed74f2d
JB
7685 spin_unlock(&info->lock);
7686
7687 if (!dump_block_groups)
7688 return;
0f9dd46c 7689
80eb234a 7690 down_read(&info->groups_sem);
b742bb82
YZ
7691again:
7692 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7693 spin_lock(&cache->lock);
efe120a0
FH
7694 printk(KERN_INFO "BTRFS: "
7695 "block group %llu has %llu bytes, "
7696 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7697 cache->key.objectid, cache->key.offset,
7698 btrfs_block_group_used(&cache->item), cache->pinned,
7699 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7700 btrfs_dump_free_space(cache, bytes);
7701 spin_unlock(&cache->lock);
7702 }
b742bb82
YZ
7703 if (++index < BTRFS_NR_RAID_TYPES)
7704 goto again;
80eb234a 7705 up_read(&info->groups_sem);
0f9dd46c 7706}
e8569813 7707
00361589 7708int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7709 u64 num_bytes, u64 min_alloc_size,
7710 u64 empty_size, u64 hint_byte,
e570fd27 7711 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7712{
36af4e07 7713 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7714 u64 flags;
fec577fb 7715 int ret;
925baedd 7716
b6919a58 7717 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7718again:
db94535d 7719 WARN_ON(num_bytes < root->sectorsize);
00361589 7720 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7721 flags, delalloc);
9cfa3e34
FM
7722 if (!ret && !is_data) {
7723 btrfs_dec_block_group_reservations(root->fs_info,
7724 ins->objectid);
7725 } else if (ret == -ENOSPC) {
a4820398
MX
7726 if (!final_tried && ins->offset) {
7727 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7728 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7729 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7730 if (num_bytes == min_alloc_size)
7731 final_tried = true;
7732 goto again;
7733 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7734 struct btrfs_space_info *sinfo;
7735
b6919a58 7736 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7737 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7738 flags, num_bytes);
53804280
JM
7739 if (sinfo)
7740 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7741 }
925baedd 7742 }
0f9dd46c
JB
7743
7744 return ret;
e6dcd2dc
CM
7745}
7746
e688b725 7747static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7748 u64 start, u64 len,
7749 int pin, int delalloc)
65b51a00 7750{
0f9dd46c 7751 struct btrfs_block_group_cache *cache;
1f3c79a2 7752 int ret = 0;
0f9dd46c 7753
0f9dd46c
JB
7754 cache = btrfs_lookup_block_group(root->fs_info, start);
7755 if (!cache) {
c2cf52eb 7756 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7757 start);
0f9dd46c
JB
7758 return -ENOSPC;
7759 }
1f3c79a2 7760
e688b725
CM
7761 if (pin)
7762 pin_down_extent(root, cache, start, len, 1);
7763 else {
dcc82f47
FM
7764 if (btrfs_test_opt(root, DISCARD))
7765 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7766 btrfs_add_free_space(cache, start, len);
e570fd27 7767 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7768 }
31193213 7769
fa9c0d79 7770 btrfs_put_block_group(cache);
817d52f8 7771
1abe9b8a 7772 trace_btrfs_reserved_extent_free(root, start, len);
7773
e6dcd2dc
CM
7774 return ret;
7775}
7776
e688b725 7777int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7778 u64 start, u64 len, int delalloc)
e688b725 7779{
e570fd27 7780 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7781}
7782
7783int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7784 u64 start, u64 len)
7785{
e570fd27 7786 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7787}
7788
5d4f98a2
YZ
7789static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7790 struct btrfs_root *root,
7791 u64 parent, u64 root_objectid,
7792 u64 flags, u64 owner, u64 offset,
7793 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7794{
7795 int ret;
5d4f98a2 7796 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7797 struct btrfs_extent_item *extent_item;
5d4f98a2 7798 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7799 struct btrfs_path *path;
5d4f98a2
YZ
7800 struct extent_buffer *leaf;
7801 int type;
7802 u32 size;
26b8003f 7803
5d4f98a2
YZ
7804 if (parent > 0)
7805 type = BTRFS_SHARED_DATA_REF_KEY;
7806 else
7807 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7808
5d4f98a2 7809 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7810
7811 path = btrfs_alloc_path();
db5b493a
TI
7812 if (!path)
7813 return -ENOMEM;
47e4bb98 7814
b9473439 7815 path->leave_spinning = 1;
5d4f98a2
YZ
7816 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7817 ins, size);
79787eaa
JM
7818 if (ret) {
7819 btrfs_free_path(path);
7820 return ret;
7821 }
0f9dd46c 7822
5d4f98a2
YZ
7823 leaf = path->nodes[0];
7824 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7825 struct btrfs_extent_item);
5d4f98a2
YZ
7826 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7827 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7828 btrfs_set_extent_flags(leaf, extent_item,
7829 flags | BTRFS_EXTENT_FLAG_DATA);
7830
7831 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7832 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7833 if (parent > 0) {
7834 struct btrfs_shared_data_ref *ref;
7835 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7836 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7837 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7838 } else {
7839 struct btrfs_extent_data_ref *ref;
7840 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7841 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7842 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7843 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7844 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7845 }
47e4bb98
CM
7846
7847 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7848 btrfs_free_path(path);
f510cfec 7849
1e144fb8
OS
7850 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7851 ins->offset);
7852 if (ret)
7853 return ret;
7854
ce93ec54 7855 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7856 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7857 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7858 ins->objectid, ins->offset);
f5947066
CM
7859 BUG();
7860 }
0be5dc67 7861 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7862 return ret;
7863}
7864
5d4f98a2
YZ
7865static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7866 struct btrfs_root *root,
7867 u64 parent, u64 root_objectid,
7868 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 7869 int level, struct btrfs_key *ins)
e6dcd2dc
CM
7870{
7871 int ret;
5d4f98a2
YZ
7872 struct btrfs_fs_info *fs_info = root->fs_info;
7873 struct btrfs_extent_item *extent_item;
7874 struct btrfs_tree_block_info *block_info;
7875 struct btrfs_extent_inline_ref *iref;
7876 struct btrfs_path *path;
7877 struct extent_buffer *leaf;
3173a18f 7878 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7879 u64 num_bytes = ins->offset;
3173a18f
JB
7880 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7881 SKINNY_METADATA);
7882
7883 if (!skinny_metadata)
7884 size += sizeof(*block_info);
1c2308f8 7885
5d4f98a2 7886 path = btrfs_alloc_path();
857cc2fc
JB
7887 if (!path) {
7888 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7889 root->nodesize);
d8926bb3 7890 return -ENOMEM;
857cc2fc 7891 }
56bec294 7892
5d4f98a2
YZ
7893 path->leave_spinning = 1;
7894 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7895 ins, size);
79787eaa 7896 if (ret) {
dd825259 7897 btrfs_free_path(path);
857cc2fc 7898 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7899 root->nodesize);
79787eaa
JM
7900 return ret;
7901 }
5d4f98a2
YZ
7902
7903 leaf = path->nodes[0];
7904 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7905 struct btrfs_extent_item);
7906 btrfs_set_extent_refs(leaf, extent_item, 1);
7907 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7908 btrfs_set_extent_flags(leaf, extent_item,
7909 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7910
3173a18f
JB
7911 if (skinny_metadata) {
7912 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7913 num_bytes = root->nodesize;
3173a18f
JB
7914 } else {
7915 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7916 btrfs_set_tree_block_key(leaf, block_info, key);
7917 btrfs_set_tree_block_level(leaf, block_info, level);
7918 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7919 }
5d4f98a2 7920
5d4f98a2
YZ
7921 if (parent > 0) {
7922 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7923 btrfs_set_extent_inline_ref_type(leaf, iref,
7924 BTRFS_SHARED_BLOCK_REF_KEY);
7925 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7926 } else {
7927 btrfs_set_extent_inline_ref_type(leaf, iref,
7928 BTRFS_TREE_BLOCK_REF_KEY);
7929 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7930 }
7931
7932 btrfs_mark_buffer_dirty(leaf);
7933 btrfs_free_path(path);
7934
1e144fb8
OS
7935 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7936 num_bytes);
7937 if (ret)
7938 return ret;
7939
ce93ec54
JB
7940 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7941 1);
79787eaa 7942 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7943 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7944 ins->objectid, ins->offset);
5d4f98a2
YZ
7945 BUG();
7946 }
0be5dc67 7947
707e8a07 7948 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7949 return ret;
7950}
7951
7952int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7953 struct btrfs_root *root,
7954 u64 root_objectid, u64 owner,
5846a3c2
QW
7955 u64 offset, u64 ram_bytes,
7956 struct btrfs_key *ins)
5d4f98a2
YZ
7957{
7958 int ret;
7959
7960 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7961
66d7e7f0
AJ
7962 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7963 ins->offset, 0,
7964 root_objectid, owner, offset,
5846a3c2
QW
7965 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7966 NULL);
e6dcd2dc
CM
7967 return ret;
7968}
e02119d5
CM
7969
7970/*
7971 * this is used by the tree logging recovery code. It records that
7972 * an extent has been allocated and makes sure to clear the free
7973 * space cache bits as well
7974 */
5d4f98a2
YZ
7975int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7976 struct btrfs_root *root,
7977 u64 root_objectid, u64 owner, u64 offset,
7978 struct btrfs_key *ins)
e02119d5
CM
7979{
7980 int ret;
7981 struct btrfs_block_group_cache *block_group;
11833d66 7982
8c2a1a30
JB
7983 /*
7984 * Mixed block groups will exclude before processing the log so we only
01327610 7985 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30
JB
7986 */
7987 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7988 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7989 if (ret)
8c2a1a30 7990 return ret;
11833d66
YZ
7991 }
7992
8c2a1a30
JB
7993 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7994 if (!block_group)
7995 return -EINVAL;
7996
fb25e914 7997 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7998 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7999 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
8000 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8001 0, owner, offset, ins, 1);
b50c6e25 8002 btrfs_put_block_group(block_group);
e02119d5
CM
8003 return ret;
8004}
8005
48a3b636
ES
8006static struct extent_buffer *
8007btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8008 u64 bytenr, int level)
65b51a00
CM
8009{
8010 struct extent_buffer *buf;
8011
a83fffb7 8012 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
8013 if (!buf)
8014 return ERR_PTR(-ENOMEM);
8015 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8016 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8017 btrfs_tree_lock(buf);
01d58472 8018 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 8019 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8020
8021 btrfs_set_lock_blocking(buf);
4db8c528 8022 set_extent_buffer_uptodate(buf);
b4ce94de 8023
d0c803c4 8024 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8025 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8026 /*
8027 * we allow two log transactions at a time, use different
8028 * EXENT bit to differentiate dirty pages.
8029 */
656f30db 8030 if (buf->log_index == 0)
8cef4e16
YZ
8031 set_extent_dirty(&root->dirty_log_pages, buf->start,
8032 buf->start + buf->len - 1, GFP_NOFS);
8033 else
8034 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8035 buf->start + buf->len - 1);
d0c803c4 8036 } else {
656f30db 8037 buf->log_index = -1;
d0c803c4 8038 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8039 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8040 }
65b51a00 8041 trans->blocks_used++;
b4ce94de 8042 /* this returns a buffer locked for blocking */
65b51a00
CM
8043 return buf;
8044}
8045
f0486c68
YZ
8046static struct btrfs_block_rsv *
8047use_block_rsv(struct btrfs_trans_handle *trans,
8048 struct btrfs_root *root, u32 blocksize)
8049{
8050 struct btrfs_block_rsv *block_rsv;
68a82277 8051 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 8052 int ret;
d88033db 8053 bool global_updated = false;
f0486c68
YZ
8054
8055 block_rsv = get_block_rsv(trans, root);
8056
b586b323
MX
8057 if (unlikely(block_rsv->size == 0))
8058 goto try_reserve;
d88033db 8059again:
f0486c68
YZ
8060 ret = block_rsv_use_bytes(block_rsv, blocksize);
8061 if (!ret)
8062 return block_rsv;
8063
b586b323
MX
8064 if (block_rsv->failfast)
8065 return ERR_PTR(ret);
8066
d88033db
MX
8067 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8068 global_updated = true;
8069 update_global_block_rsv(root->fs_info);
8070 goto again;
8071 }
8072
b586b323
MX
8073 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
8074 static DEFINE_RATELIMIT_STATE(_rs,
8075 DEFAULT_RATELIMIT_INTERVAL * 10,
8076 /*DEFAULT_RATELIMIT_BURST*/ 1);
8077 if (__ratelimit(&_rs))
8078 WARN(1, KERN_DEBUG
efe120a0 8079 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8080 }
8081try_reserve:
8082 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8083 BTRFS_RESERVE_NO_FLUSH);
8084 if (!ret)
8085 return block_rsv;
8086 /*
8087 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8088 * the global reserve if its space type is the same as the global
8089 * reservation.
b586b323 8090 */
5881cfc9
MX
8091 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8092 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8093 ret = block_rsv_use_bytes(global_rsv, blocksize);
8094 if (!ret)
8095 return global_rsv;
8096 }
8097 return ERR_PTR(ret);
f0486c68
YZ
8098}
8099
8c2a3ca2
JB
8100static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8101 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8102{
8103 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8104 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8105}
8106
fec577fb 8107/*
f0486c68 8108 * finds a free extent and does all the dirty work required for allocation
67b7859e 8109 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8110 */
4d75f8a9
DS
8111struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8112 struct btrfs_root *root,
5d4f98a2
YZ
8113 u64 parent, u64 root_objectid,
8114 struct btrfs_disk_key *key, int level,
5581a51a 8115 u64 hint, u64 empty_size)
fec577fb 8116{
e2fa7227 8117 struct btrfs_key ins;
f0486c68 8118 struct btrfs_block_rsv *block_rsv;
5f39d397 8119 struct extent_buffer *buf;
67b7859e 8120 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8121 u64 flags = 0;
8122 int ret;
4d75f8a9 8123 u32 blocksize = root->nodesize;
3173a18f
JB
8124 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8125 SKINNY_METADATA);
fec577fb 8126
fccb84c9 8127 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 8128 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8129 level);
faa2dbf0
JB
8130 if (!IS_ERR(buf))
8131 root->alloc_bytenr += blocksize;
8132 return buf;
8133 }
fccb84c9 8134
f0486c68
YZ
8135 block_rsv = use_block_rsv(trans, root, blocksize);
8136 if (IS_ERR(block_rsv))
8137 return ERR_CAST(block_rsv);
8138
00361589 8139 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 8140 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8141 if (ret)
8142 goto out_unuse;
55c69072 8143
fe864576 8144 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8145 if (IS_ERR(buf)) {
8146 ret = PTR_ERR(buf);
8147 goto out_free_reserved;
8148 }
f0486c68
YZ
8149
8150 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8151 if (parent == 0)
8152 parent = ins.objectid;
8153 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8154 } else
8155 BUG_ON(parent > 0);
8156
8157 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8158 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8159 if (!extent_op) {
8160 ret = -ENOMEM;
8161 goto out_free_buf;
8162 }
f0486c68
YZ
8163 if (key)
8164 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8165 else
8166 memset(&extent_op->key, 0, sizeof(extent_op->key));
8167 extent_op->flags_to_set = flags;
35b3ad50
DS
8168 extent_op->update_key = skinny_metadata ? false : true;
8169 extent_op->update_flags = true;
8170 extent_op->is_data = false;
b1c79e09 8171 extent_op->level = level;
f0486c68 8172
66d7e7f0 8173 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
8174 ins.objectid, ins.offset,
8175 parent, root_objectid, level,
8176 BTRFS_ADD_DELAYED_EXTENT,
b06c4bf5 8177 extent_op);
67b7859e
OS
8178 if (ret)
8179 goto out_free_delayed;
f0486c68 8180 }
fec577fb 8181 return buf;
67b7859e
OS
8182
8183out_free_delayed:
8184 btrfs_free_delayed_extent_op(extent_op);
8185out_free_buf:
8186 free_extent_buffer(buf);
8187out_free_reserved:
8188 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8189out_unuse:
8190 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8191 return ERR_PTR(ret);
fec577fb 8192}
a28ec197 8193
2c47e605
YZ
8194struct walk_control {
8195 u64 refs[BTRFS_MAX_LEVEL];
8196 u64 flags[BTRFS_MAX_LEVEL];
8197 struct btrfs_key update_progress;
8198 int stage;
8199 int level;
8200 int shared_level;
8201 int update_ref;
8202 int keep_locks;
1c4850e2
YZ
8203 int reada_slot;
8204 int reada_count;
66d7e7f0 8205 int for_reloc;
2c47e605
YZ
8206};
8207
8208#define DROP_REFERENCE 1
8209#define UPDATE_BACKREF 2
8210
1c4850e2
YZ
8211static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8212 struct btrfs_root *root,
8213 struct walk_control *wc,
8214 struct btrfs_path *path)
6407bf6d 8215{
1c4850e2
YZ
8216 u64 bytenr;
8217 u64 generation;
8218 u64 refs;
94fcca9f 8219 u64 flags;
5d4f98a2 8220 u32 nritems;
1c4850e2
YZ
8221 u32 blocksize;
8222 struct btrfs_key key;
8223 struct extent_buffer *eb;
6407bf6d 8224 int ret;
1c4850e2
YZ
8225 int slot;
8226 int nread = 0;
6407bf6d 8227
1c4850e2
YZ
8228 if (path->slots[wc->level] < wc->reada_slot) {
8229 wc->reada_count = wc->reada_count * 2 / 3;
8230 wc->reada_count = max(wc->reada_count, 2);
8231 } else {
8232 wc->reada_count = wc->reada_count * 3 / 2;
8233 wc->reada_count = min_t(int, wc->reada_count,
8234 BTRFS_NODEPTRS_PER_BLOCK(root));
8235 }
7bb86316 8236
1c4850e2
YZ
8237 eb = path->nodes[wc->level];
8238 nritems = btrfs_header_nritems(eb);
707e8a07 8239 blocksize = root->nodesize;
bd56b302 8240
1c4850e2
YZ
8241 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8242 if (nread >= wc->reada_count)
8243 break;
bd56b302 8244
2dd3e67b 8245 cond_resched();
1c4850e2
YZ
8246 bytenr = btrfs_node_blockptr(eb, slot);
8247 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8248
1c4850e2
YZ
8249 if (slot == path->slots[wc->level])
8250 goto reada;
5d4f98a2 8251
1c4850e2
YZ
8252 if (wc->stage == UPDATE_BACKREF &&
8253 generation <= root->root_key.offset)
bd56b302
CM
8254 continue;
8255
94fcca9f 8256 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
8257 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8258 wc->level - 1, 1, &refs,
8259 &flags);
79787eaa
JM
8260 /* We don't care about errors in readahead. */
8261 if (ret < 0)
8262 continue;
94fcca9f
YZ
8263 BUG_ON(refs == 0);
8264
1c4850e2 8265 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8266 if (refs == 1)
8267 goto reada;
bd56b302 8268
94fcca9f
YZ
8269 if (wc->level == 1 &&
8270 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8271 continue;
1c4850e2
YZ
8272 if (!wc->update_ref ||
8273 generation <= root->root_key.offset)
8274 continue;
8275 btrfs_node_key_to_cpu(eb, &key, slot);
8276 ret = btrfs_comp_cpu_keys(&key,
8277 &wc->update_progress);
8278 if (ret < 0)
8279 continue;
94fcca9f
YZ
8280 } else {
8281 if (wc->level == 1 &&
8282 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8283 continue;
6407bf6d 8284 }
1c4850e2 8285reada:
d3e46fea 8286 readahead_tree_block(root, bytenr);
1c4850e2 8287 nread++;
20524f02 8288 }
1c4850e2 8289 wc->reada_slot = slot;
20524f02 8290}
2c47e605 8291
0ed4792a 8292/*
82bd101b
MF
8293 * These may not be seen by the usual inc/dec ref code so we have to
8294 * add them here.
0ed4792a 8295 */
82bd101b
MF
8296static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8297 struct btrfs_root *root, u64 bytenr,
8298 u64 num_bytes)
8299{
8300 struct btrfs_qgroup_extent_record *qrecord;
8301 struct btrfs_delayed_ref_root *delayed_refs;
8302
8303 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8304 if (!qrecord)
8305 return -ENOMEM;
8306
8307 qrecord->bytenr = bytenr;
8308 qrecord->num_bytes = num_bytes;
8309 qrecord->old_roots = NULL;
8310
8311 delayed_refs = &trans->transaction->delayed_refs;
8312 spin_lock(&delayed_refs->lock);
8313 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8314 kfree(qrecord);
8315 spin_unlock(&delayed_refs->lock);
8316
8317 return 0;
8318}
8319
1152651a
MF
8320static int account_leaf_items(struct btrfs_trans_handle *trans,
8321 struct btrfs_root *root,
8322 struct extent_buffer *eb)
8323{
8324 int nr = btrfs_header_nritems(eb);
82bd101b 8325 int i, extent_type, ret;
1152651a
MF
8326 struct btrfs_key key;
8327 struct btrfs_file_extent_item *fi;
8328 u64 bytenr, num_bytes;
8329
82bd101b
MF
8330 /* We can be called directly from walk_up_proc() */
8331 if (!root->fs_info->quota_enabled)
8332 return 0;
8333
1152651a
MF
8334 for (i = 0; i < nr; i++) {
8335 btrfs_item_key_to_cpu(eb, &key, i);
8336
8337 if (key.type != BTRFS_EXTENT_DATA_KEY)
8338 continue;
8339
8340 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8341 /* filter out non qgroup-accountable extents */
8342 extent_type = btrfs_file_extent_type(eb, fi);
8343
8344 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8345 continue;
8346
8347 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8348 if (!bytenr)
8349 continue;
8350
8351 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
82bd101b
MF
8352
8353 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8354 if (ret)
8355 return ret;
1152651a
MF
8356 }
8357 return 0;
8358}
8359
8360/*
8361 * Walk up the tree from the bottom, freeing leaves and any interior
8362 * nodes which have had all slots visited. If a node (leaf or
8363 * interior) is freed, the node above it will have it's slot
8364 * incremented. The root node will never be freed.
8365 *
8366 * At the end of this function, we should have a path which has all
8367 * slots incremented to the next position for a search. If we need to
8368 * read a new node it will be NULL and the node above it will have the
8369 * correct slot selected for a later read.
8370 *
8371 * If we increment the root nodes slot counter past the number of
8372 * elements, 1 is returned to signal completion of the search.
8373 */
8374static int adjust_slots_upwards(struct btrfs_root *root,
8375 struct btrfs_path *path, int root_level)
8376{
8377 int level = 0;
8378 int nr, slot;
8379 struct extent_buffer *eb;
8380
8381 if (root_level == 0)
8382 return 1;
8383
8384 while (level <= root_level) {
8385 eb = path->nodes[level];
8386 nr = btrfs_header_nritems(eb);
8387 path->slots[level]++;
8388 slot = path->slots[level];
8389 if (slot >= nr || level == 0) {
8390 /*
8391 * Don't free the root - we will detect this
8392 * condition after our loop and return a
8393 * positive value for caller to stop walking the tree.
8394 */
8395 if (level != root_level) {
8396 btrfs_tree_unlock_rw(eb, path->locks[level]);
8397 path->locks[level] = 0;
8398
8399 free_extent_buffer(eb);
8400 path->nodes[level] = NULL;
8401 path->slots[level] = 0;
8402 }
8403 } else {
8404 /*
8405 * We have a valid slot to walk back down
8406 * from. Stop here so caller can process these
8407 * new nodes.
8408 */
8409 break;
8410 }
8411
8412 level++;
8413 }
8414
8415 eb = path->nodes[root_level];
8416 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8417 return 1;
8418
8419 return 0;
8420}
8421
8422/*
8423 * root_eb is the subtree root and is locked before this function is called.
8424 */
8425static int account_shared_subtree(struct btrfs_trans_handle *trans,
8426 struct btrfs_root *root,
8427 struct extent_buffer *root_eb,
8428 u64 root_gen,
8429 int root_level)
8430{
8431 int ret = 0;
8432 int level;
8433 struct extent_buffer *eb = root_eb;
8434 struct btrfs_path *path = NULL;
8435
8436 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8437 BUG_ON(root_eb == NULL);
8438
8439 if (!root->fs_info->quota_enabled)
8440 return 0;
8441
8442 if (!extent_buffer_uptodate(root_eb)) {
8443 ret = btrfs_read_buffer(root_eb, root_gen);
8444 if (ret)
8445 goto out;
8446 }
8447
8448 if (root_level == 0) {
8449 ret = account_leaf_items(trans, root, root_eb);
8450 goto out;
8451 }
8452
8453 path = btrfs_alloc_path();
8454 if (!path)
8455 return -ENOMEM;
8456
8457 /*
8458 * Walk down the tree. Missing extent blocks are filled in as
8459 * we go. Metadata is accounted every time we read a new
8460 * extent block.
8461 *
8462 * When we reach a leaf, we account for file extent items in it,
8463 * walk back up the tree (adjusting slot pointers as we go)
8464 * and restart the search process.
8465 */
8466 extent_buffer_get(root_eb); /* For path */
8467 path->nodes[root_level] = root_eb;
8468 path->slots[root_level] = 0;
8469 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8470walk_down:
8471 level = root_level;
8472 while (level >= 0) {
8473 if (path->nodes[level] == NULL) {
1152651a
MF
8474 int parent_slot;
8475 u64 child_gen;
8476 u64 child_bytenr;
8477
8478 /* We need to get child blockptr/gen from
8479 * parent before we can read it. */
8480 eb = path->nodes[level + 1];
8481 parent_slot = path->slots[level + 1];
8482 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8483 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8484
ce86cd59 8485 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8486 if (IS_ERR(eb)) {
8487 ret = PTR_ERR(eb);
8488 goto out;
8489 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8490 free_extent_buffer(eb);
64c043de 8491 ret = -EIO;
1152651a
MF
8492 goto out;
8493 }
8494
8495 path->nodes[level] = eb;
8496 path->slots[level] = 0;
8497
8498 btrfs_tree_read_lock(eb);
8499 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8500 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
82bd101b
MF
8501
8502 ret = record_one_subtree_extent(trans, root, child_bytenr,
8503 root->nodesize);
8504 if (ret)
8505 goto out;
1152651a
MF
8506 }
8507
8508 if (level == 0) {
8509 ret = account_leaf_items(trans, root, path->nodes[level]);
8510 if (ret)
8511 goto out;
8512
8513 /* Nonzero return here means we completed our search */
8514 ret = adjust_slots_upwards(root, path, root_level);
8515 if (ret)
8516 break;
8517
8518 /* Restart search with new slots */
8519 goto walk_down;
8520 }
8521
8522 level--;
8523 }
8524
8525 ret = 0;
8526out:
8527 btrfs_free_path(path);
8528
8529 return ret;
8530}
8531
f82d02d9 8532/*
2c016dc2 8533 * helper to process tree block while walking down the tree.
2c47e605 8534 *
2c47e605
YZ
8535 * when wc->stage == UPDATE_BACKREF, this function updates
8536 * back refs for pointers in the block.
8537 *
8538 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8539 */
2c47e605 8540static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8541 struct btrfs_root *root,
2c47e605 8542 struct btrfs_path *path,
94fcca9f 8543 struct walk_control *wc, int lookup_info)
f82d02d9 8544{
2c47e605
YZ
8545 int level = wc->level;
8546 struct extent_buffer *eb = path->nodes[level];
2c47e605 8547 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8548 int ret;
8549
2c47e605
YZ
8550 if (wc->stage == UPDATE_BACKREF &&
8551 btrfs_header_owner(eb) != root->root_key.objectid)
8552 return 1;
f82d02d9 8553
2c47e605
YZ
8554 /*
8555 * when reference count of tree block is 1, it won't increase
8556 * again. once full backref flag is set, we never clear it.
8557 */
94fcca9f
YZ
8558 if (lookup_info &&
8559 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8560 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8561 BUG_ON(!path->locks[level]);
8562 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8563 eb->start, level, 1,
2c47e605
YZ
8564 &wc->refs[level],
8565 &wc->flags[level]);
79787eaa
JM
8566 BUG_ON(ret == -ENOMEM);
8567 if (ret)
8568 return ret;
2c47e605
YZ
8569 BUG_ON(wc->refs[level] == 0);
8570 }
5d4f98a2 8571
2c47e605
YZ
8572 if (wc->stage == DROP_REFERENCE) {
8573 if (wc->refs[level] > 1)
8574 return 1;
f82d02d9 8575
2c47e605 8576 if (path->locks[level] && !wc->keep_locks) {
bd681513 8577 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8578 path->locks[level] = 0;
8579 }
8580 return 0;
8581 }
f82d02d9 8582
2c47e605
YZ
8583 /* wc->stage == UPDATE_BACKREF */
8584 if (!(wc->flags[level] & flag)) {
8585 BUG_ON(!path->locks[level]);
e339a6b0 8586 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8587 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8588 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8589 BUG_ON(ret); /* -ENOMEM */
2c47e605 8590 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8591 eb->len, flag,
8592 btrfs_header_level(eb), 0);
79787eaa 8593 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8594 wc->flags[level] |= flag;
8595 }
8596
8597 /*
8598 * the block is shared by multiple trees, so it's not good to
8599 * keep the tree lock
8600 */
8601 if (path->locks[level] && level > 0) {
bd681513 8602 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8603 path->locks[level] = 0;
8604 }
8605 return 0;
8606}
8607
1c4850e2 8608/*
2c016dc2 8609 * helper to process tree block pointer.
1c4850e2
YZ
8610 *
8611 * when wc->stage == DROP_REFERENCE, this function checks
8612 * reference count of the block pointed to. if the block
8613 * is shared and we need update back refs for the subtree
8614 * rooted at the block, this function changes wc->stage to
8615 * UPDATE_BACKREF. if the block is shared and there is no
8616 * need to update back, this function drops the reference
8617 * to the block.
8618 *
8619 * NOTE: return value 1 means we should stop walking down.
8620 */
8621static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8622 struct btrfs_root *root,
8623 struct btrfs_path *path,
94fcca9f 8624 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8625{
8626 u64 bytenr;
8627 u64 generation;
8628 u64 parent;
8629 u32 blocksize;
8630 struct btrfs_key key;
8631 struct extent_buffer *next;
8632 int level = wc->level;
8633 int reada = 0;
8634 int ret = 0;
1152651a 8635 bool need_account = false;
1c4850e2
YZ
8636
8637 generation = btrfs_node_ptr_generation(path->nodes[level],
8638 path->slots[level]);
8639 /*
8640 * if the lower level block was created before the snapshot
8641 * was created, we know there is no need to update back refs
8642 * for the subtree
8643 */
8644 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8645 generation <= root->root_key.offset) {
8646 *lookup_info = 1;
1c4850e2 8647 return 1;
94fcca9f 8648 }
1c4850e2
YZ
8649
8650 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8651 blocksize = root->nodesize;
1c4850e2 8652
01d58472 8653 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8654 if (!next) {
a83fffb7 8655 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8656 if (!next)
8657 return -ENOMEM;
b2aaaa3b
JB
8658 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8659 level - 1);
1c4850e2
YZ
8660 reada = 1;
8661 }
8662 btrfs_tree_lock(next);
8663 btrfs_set_lock_blocking(next);
8664
3173a18f 8665 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8666 &wc->refs[level - 1],
8667 &wc->flags[level - 1]);
79787eaa
JM
8668 if (ret < 0) {
8669 btrfs_tree_unlock(next);
8670 return ret;
8671 }
8672
c2cf52eb
SK
8673 if (unlikely(wc->refs[level - 1] == 0)) {
8674 btrfs_err(root->fs_info, "Missing references.");
8675 BUG();
8676 }
94fcca9f 8677 *lookup_info = 0;
1c4850e2 8678
94fcca9f 8679 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8680 if (wc->refs[level - 1] > 1) {
1152651a 8681 need_account = true;
94fcca9f
YZ
8682 if (level == 1 &&
8683 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8684 goto skip;
8685
1c4850e2
YZ
8686 if (!wc->update_ref ||
8687 generation <= root->root_key.offset)
8688 goto skip;
8689
8690 btrfs_node_key_to_cpu(path->nodes[level], &key,
8691 path->slots[level]);
8692 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8693 if (ret < 0)
8694 goto skip;
8695
8696 wc->stage = UPDATE_BACKREF;
8697 wc->shared_level = level - 1;
8698 }
94fcca9f
YZ
8699 } else {
8700 if (level == 1 &&
8701 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8702 goto skip;
1c4850e2
YZ
8703 }
8704
b9fab919 8705 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8706 btrfs_tree_unlock(next);
8707 free_extent_buffer(next);
8708 next = NULL;
94fcca9f 8709 *lookup_info = 1;
1c4850e2
YZ
8710 }
8711
8712 if (!next) {
8713 if (reada && level == 1)
8714 reada_walk_down(trans, root, wc, path);
ce86cd59 8715 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8716 if (IS_ERR(next)) {
8717 return PTR_ERR(next);
8718 } else if (!extent_buffer_uptodate(next)) {
416bc658 8719 free_extent_buffer(next);
97d9a8a4 8720 return -EIO;
416bc658 8721 }
1c4850e2
YZ
8722 btrfs_tree_lock(next);
8723 btrfs_set_lock_blocking(next);
8724 }
8725
8726 level--;
8727 BUG_ON(level != btrfs_header_level(next));
8728 path->nodes[level] = next;
8729 path->slots[level] = 0;
bd681513 8730 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8731 wc->level = level;
8732 if (wc->level == 1)
8733 wc->reada_slot = 0;
8734 return 0;
8735skip:
8736 wc->refs[level - 1] = 0;
8737 wc->flags[level - 1] = 0;
94fcca9f
YZ
8738 if (wc->stage == DROP_REFERENCE) {
8739 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8740 parent = path->nodes[level]->start;
8741 } else {
8742 BUG_ON(root->root_key.objectid !=
8743 btrfs_header_owner(path->nodes[level]));
8744 parent = 0;
8745 }
1c4850e2 8746
1152651a
MF
8747 if (need_account) {
8748 ret = account_shared_subtree(trans, root, next,
8749 generation, level - 1);
8750 if (ret) {
94647322
DS
8751 btrfs_err_rl(root->fs_info,
8752 "Error "
1152651a 8753 "%d accounting shared subtree. Quota "
94647322
DS
8754 "is out of sync, rescan required.",
8755 ret);
1152651a
MF
8756 }
8757 }
94fcca9f 8758 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
b06c4bf5 8759 root->root_key.objectid, level - 1, 0);
79787eaa 8760 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8761 }
1c4850e2
YZ
8762 btrfs_tree_unlock(next);
8763 free_extent_buffer(next);
94fcca9f 8764 *lookup_info = 1;
1c4850e2
YZ
8765 return 1;
8766}
8767
2c47e605 8768/*
2c016dc2 8769 * helper to process tree block while walking up the tree.
2c47e605
YZ
8770 *
8771 * when wc->stage == DROP_REFERENCE, this function drops
8772 * reference count on the block.
8773 *
8774 * when wc->stage == UPDATE_BACKREF, this function changes
8775 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8776 * to UPDATE_BACKREF previously while processing the block.
8777 *
8778 * NOTE: return value 1 means we should stop walking up.
8779 */
8780static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8781 struct btrfs_root *root,
8782 struct btrfs_path *path,
8783 struct walk_control *wc)
8784{
f0486c68 8785 int ret;
2c47e605
YZ
8786 int level = wc->level;
8787 struct extent_buffer *eb = path->nodes[level];
8788 u64 parent = 0;
8789
8790 if (wc->stage == UPDATE_BACKREF) {
8791 BUG_ON(wc->shared_level < level);
8792 if (level < wc->shared_level)
8793 goto out;
8794
2c47e605
YZ
8795 ret = find_next_key(path, level + 1, &wc->update_progress);
8796 if (ret > 0)
8797 wc->update_ref = 0;
8798
8799 wc->stage = DROP_REFERENCE;
8800 wc->shared_level = -1;
8801 path->slots[level] = 0;
8802
8803 /*
8804 * check reference count again if the block isn't locked.
8805 * we should start walking down the tree again if reference
8806 * count is one.
8807 */
8808 if (!path->locks[level]) {
8809 BUG_ON(level == 0);
8810 btrfs_tree_lock(eb);
8811 btrfs_set_lock_blocking(eb);
bd681513 8812 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8813
8814 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8815 eb->start, level, 1,
2c47e605
YZ
8816 &wc->refs[level],
8817 &wc->flags[level]);
79787eaa
JM
8818 if (ret < 0) {
8819 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8820 path->locks[level] = 0;
79787eaa
JM
8821 return ret;
8822 }
2c47e605
YZ
8823 BUG_ON(wc->refs[level] == 0);
8824 if (wc->refs[level] == 1) {
bd681513 8825 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8826 path->locks[level] = 0;
2c47e605
YZ
8827 return 1;
8828 }
f82d02d9 8829 }
2c47e605 8830 }
f82d02d9 8831
2c47e605
YZ
8832 /* wc->stage == DROP_REFERENCE */
8833 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8834
2c47e605
YZ
8835 if (wc->refs[level] == 1) {
8836 if (level == 0) {
8837 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8838 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8839 else
e339a6b0 8840 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8841 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8842 ret = account_leaf_items(trans, root, eb);
8843 if (ret) {
94647322
DS
8844 btrfs_err_rl(root->fs_info,
8845 "error "
1152651a 8846 "%d accounting leaf items. Quota "
94647322
DS
8847 "is out of sync, rescan required.",
8848 ret);
1152651a 8849 }
2c47e605
YZ
8850 }
8851 /* make block locked assertion in clean_tree_block happy */
8852 if (!path->locks[level] &&
8853 btrfs_header_generation(eb) == trans->transid) {
8854 btrfs_tree_lock(eb);
8855 btrfs_set_lock_blocking(eb);
bd681513 8856 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8857 }
01d58472 8858 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8859 }
8860
8861 if (eb == root->node) {
8862 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8863 parent = eb->start;
8864 else
8865 BUG_ON(root->root_key.objectid !=
8866 btrfs_header_owner(eb));
8867 } else {
8868 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8869 parent = path->nodes[level + 1]->start;
8870 else
8871 BUG_ON(root->root_key.objectid !=
8872 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8873 }
f82d02d9 8874
5581a51a 8875 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8876out:
8877 wc->refs[level] = 0;
8878 wc->flags[level] = 0;
f0486c68 8879 return 0;
2c47e605
YZ
8880}
8881
8882static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8883 struct btrfs_root *root,
8884 struct btrfs_path *path,
8885 struct walk_control *wc)
8886{
2c47e605 8887 int level = wc->level;
94fcca9f 8888 int lookup_info = 1;
2c47e605
YZ
8889 int ret;
8890
8891 while (level >= 0) {
94fcca9f 8892 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8893 if (ret > 0)
8894 break;
8895
8896 if (level == 0)
8897 break;
8898
7a7965f8
YZ
8899 if (path->slots[level] >=
8900 btrfs_header_nritems(path->nodes[level]))
8901 break;
8902
94fcca9f 8903 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8904 if (ret > 0) {
8905 path->slots[level]++;
8906 continue;
90d2c51d
MX
8907 } else if (ret < 0)
8908 return ret;
1c4850e2 8909 level = wc->level;
f82d02d9 8910 }
f82d02d9
YZ
8911 return 0;
8912}
8913
d397712b 8914static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8915 struct btrfs_root *root,
f82d02d9 8916 struct btrfs_path *path,
2c47e605 8917 struct walk_control *wc, int max_level)
20524f02 8918{
2c47e605 8919 int level = wc->level;
20524f02 8920 int ret;
9f3a7427 8921
2c47e605
YZ
8922 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8923 while (level < max_level && path->nodes[level]) {
8924 wc->level = level;
8925 if (path->slots[level] + 1 <
8926 btrfs_header_nritems(path->nodes[level])) {
8927 path->slots[level]++;
20524f02
CM
8928 return 0;
8929 } else {
2c47e605
YZ
8930 ret = walk_up_proc(trans, root, path, wc);
8931 if (ret > 0)
8932 return 0;
bd56b302 8933
2c47e605 8934 if (path->locks[level]) {
bd681513
CM
8935 btrfs_tree_unlock_rw(path->nodes[level],
8936 path->locks[level]);
2c47e605 8937 path->locks[level] = 0;
f82d02d9 8938 }
2c47e605
YZ
8939 free_extent_buffer(path->nodes[level]);
8940 path->nodes[level] = NULL;
8941 level++;
20524f02
CM
8942 }
8943 }
8944 return 1;
8945}
8946
9aca1d51 8947/*
2c47e605
YZ
8948 * drop a subvolume tree.
8949 *
8950 * this function traverses the tree freeing any blocks that only
8951 * referenced by the tree.
8952 *
8953 * when a shared tree block is found. this function decreases its
8954 * reference count by one. if update_ref is true, this function
8955 * also make sure backrefs for the shared block and all lower level
8956 * blocks are properly updated.
9d1a2a3a
DS
8957 *
8958 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8959 */
2c536799 8960int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8961 struct btrfs_block_rsv *block_rsv, int update_ref,
8962 int for_reloc)
20524f02 8963{
5caf2a00 8964 struct btrfs_path *path;
2c47e605
YZ
8965 struct btrfs_trans_handle *trans;
8966 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8967 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8968 struct walk_control *wc;
8969 struct btrfs_key key;
8970 int err = 0;
8971 int ret;
8972 int level;
d29a9f62 8973 bool root_dropped = false;
20524f02 8974
1152651a
MF
8975 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8976
5caf2a00 8977 path = btrfs_alloc_path();
cb1b69f4
TI
8978 if (!path) {
8979 err = -ENOMEM;
8980 goto out;
8981 }
20524f02 8982
2c47e605 8983 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8984 if (!wc) {
8985 btrfs_free_path(path);
cb1b69f4
TI
8986 err = -ENOMEM;
8987 goto out;
38a1a919 8988 }
2c47e605 8989
a22285a6 8990 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8991 if (IS_ERR(trans)) {
8992 err = PTR_ERR(trans);
8993 goto out_free;
8994 }
98d5dc13 8995
3fd0a558
YZ
8996 if (block_rsv)
8997 trans->block_rsv = block_rsv;
2c47e605 8998
9f3a7427 8999 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9000 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9001 path->nodes[level] = btrfs_lock_root_node(root);
9002 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9003 path->slots[level] = 0;
bd681513 9004 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9005 memset(&wc->update_progress, 0,
9006 sizeof(wc->update_progress));
9f3a7427 9007 } else {
9f3a7427 9008 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9009 memcpy(&wc->update_progress, &key,
9010 sizeof(wc->update_progress));
9011
6702ed49 9012 level = root_item->drop_level;
2c47e605 9013 BUG_ON(level == 0);
6702ed49 9014 path->lowest_level = level;
2c47e605
YZ
9015 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9016 path->lowest_level = 0;
9017 if (ret < 0) {
9018 err = ret;
79787eaa 9019 goto out_end_trans;
9f3a7427 9020 }
1c4850e2 9021 WARN_ON(ret > 0);
2c47e605 9022
7d9eb12c
CM
9023 /*
9024 * unlock our path, this is safe because only this
9025 * function is allowed to delete this snapshot
9026 */
5d4f98a2 9027 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9028
9029 level = btrfs_header_level(root->node);
9030 while (1) {
9031 btrfs_tree_lock(path->nodes[level]);
9032 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9033 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9034
9035 ret = btrfs_lookup_extent_info(trans, root,
9036 path->nodes[level]->start,
3173a18f 9037 level, 1, &wc->refs[level],
2c47e605 9038 &wc->flags[level]);
79787eaa
JM
9039 if (ret < 0) {
9040 err = ret;
9041 goto out_end_trans;
9042 }
2c47e605
YZ
9043 BUG_ON(wc->refs[level] == 0);
9044
9045 if (level == root_item->drop_level)
9046 break;
9047
9048 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9049 path->locks[level] = 0;
2c47e605
YZ
9050 WARN_ON(wc->refs[level] != 1);
9051 level--;
9052 }
9f3a7427 9053 }
2c47e605
YZ
9054
9055 wc->level = level;
9056 wc->shared_level = -1;
9057 wc->stage = DROP_REFERENCE;
9058 wc->update_ref = update_ref;
9059 wc->keep_locks = 0;
66d7e7f0 9060 wc->for_reloc = for_reloc;
1c4850e2 9061 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 9062
d397712b 9063 while (1) {
9d1a2a3a 9064
2c47e605
YZ
9065 ret = walk_down_tree(trans, root, path, wc);
9066 if (ret < 0) {
9067 err = ret;
20524f02 9068 break;
2c47e605 9069 }
9aca1d51 9070
2c47e605
YZ
9071 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9072 if (ret < 0) {
9073 err = ret;
20524f02 9074 break;
2c47e605
YZ
9075 }
9076
9077 if (ret > 0) {
9078 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9079 break;
9080 }
2c47e605
YZ
9081
9082 if (wc->stage == DROP_REFERENCE) {
9083 level = wc->level;
9084 btrfs_node_key(path->nodes[level],
9085 &root_item->drop_progress,
9086 path->slots[level]);
9087 root_item->drop_level = level;
9088 }
9089
9090 BUG_ON(wc->level == 0);
3c8f2422
JB
9091 if (btrfs_should_end_transaction(trans, tree_root) ||
9092 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
9093 ret = btrfs_update_root(trans, tree_root,
9094 &root->root_key,
9095 root_item);
79787eaa
JM
9096 if (ret) {
9097 btrfs_abort_transaction(trans, tree_root, ret);
9098 err = ret;
9099 goto out_end_trans;
9100 }
2c47e605 9101
3fd0a558 9102 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 9103 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 9104 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
9105 err = -EAGAIN;
9106 goto out_free;
9107 }
9108
a22285a6 9109 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9110 if (IS_ERR(trans)) {
9111 err = PTR_ERR(trans);
9112 goto out_free;
9113 }
3fd0a558
YZ
9114 if (block_rsv)
9115 trans->block_rsv = block_rsv;
c3e69d58 9116 }
20524f02 9117 }
b3b4aa74 9118 btrfs_release_path(path);
79787eaa
JM
9119 if (err)
9120 goto out_end_trans;
2c47e605
YZ
9121
9122 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
9123 if (ret) {
9124 btrfs_abort_transaction(trans, tree_root, ret);
9125 goto out_end_trans;
9126 }
2c47e605 9127
76dda93c 9128 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9129 ret = btrfs_find_root(tree_root, &root->root_key, path,
9130 NULL, NULL);
79787eaa
JM
9131 if (ret < 0) {
9132 btrfs_abort_transaction(trans, tree_root, ret);
9133 err = ret;
9134 goto out_end_trans;
9135 } else if (ret > 0) {
84cd948c
JB
9136 /* if we fail to delete the orphan item this time
9137 * around, it'll get picked up the next time.
9138 *
9139 * The most common failure here is just -ENOENT.
9140 */
9141 btrfs_del_orphan_item(trans, tree_root,
9142 root->root_key.objectid);
76dda93c
YZ
9143 }
9144 }
9145
27cdeb70 9146 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9147 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9148 } else {
9149 free_extent_buffer(root->node);
9150 free_extent_buffer(root->commit_root);
b0feb9d9 9151 btrfs_put_fs_root(root);
76dda93c 9152 }
d29a9f62 9153 root_dropped = true;
79787eaa 9154out_end_trans:
3fd0a558 9155 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 9156out_free:
2c47e605 9157 kfree(wc);
5caf2a00 9158 btrfs_free_path(path);
cb1b69f4 9159out:
d29a9f62
JB
9160 /*
9161 * So if we need to stop dropping the snapshot for whatever reason we
9162 * need to make sure to add it back to the dead root list so that we
9163 * keep trying to do the work later. This also cleans up roots if we
9164 * don't have it in the radix (like when we recover after a power fail
9165 * or unmount) so we don't leak memory.
9166 */
b37b39cd 9167 if (!for_reloc && root_dropped == false)
d29a9f62 9168 btrfs_add_dead_root(root);
90515e7f 9169 if (err && err != -EAGAIN)
34d97007 9170 btrfs_handle_fs_error(root->fs_info, err, NULL);
2c536799 9171 return err;
20524f02 9172}
9078a3e1 9173
2c47e605
YZ
9174/*
9175 * drop subtree rooted at tree block 'node'.
9176 *
9177 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9178 * only used by relocation code
2c47e605 9179 */
f82d02d9
YZ
9180int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9181 struct btrfs_root *root,
9182 struct extent_buffer *node,
9183 struct extent_buffer *parent)
9184{
9185 struct btrfs_path *path;
2c47e605 9186 struct walk_control *wc;
f82d02d9
YZ
9187 int level;
9188 int parent_level;
9189 int ret = 0;
9190 int wret;
9191
2c47e605
YZ
9192 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9193
f82d02d9 9194 path = btrfs_alloc_path();
db5b493a
TI
9195 if (!path)
9196 return -ENOMEM;
f82d02d9 9197
2c47e605 9198 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9199 if (!wc) {
9200 btrfs_free_path(path);
9201 return -ENOMEM;
9202 }
2c47e605 9203
b9447ef8 9204 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9205 parent_level = btrfs_header_level(parent);
9206 extent_buffer_get(parent);
9207 path->nodes[parent_level] = parent;
9208 path->slots[parent_level] = btrfs_header_nritems(parent);
9209
b9447ef8 9210 btrfs_assert_tree_locked(node);
f82d02d9 9211 level = btrfs_header_level(node);
f82d02d9
YZ
9212 path->nodes[level] = node;
9213 path->slots[level] = 0;
bd681513 9214 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9215
9216 wc->refs[parent_level] = 1;
9217 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9218 wc->level = level;
9219 wc->shared_level = -1;
9220 wc->stage = DROP_REFERENCE;
9221 wc->update_ref = 0;
9222 wc->keep_locks = 1;
66d7e7f0 9223 wc->for_reloc = 1;
1c4850e2 9224 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
9225
9226 while (1) {
2c47e605
YZ
9227 wret = walk_down_tree(trans, root, path, wc);
9228 if (wret < 0) {
f82d02d9 9229 ret = wret;
f82d02d9 9230 break;
2c47e605 9231 }
f82d02d9 9232
2c47e605 9233 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9234 if (wret < 0)
9235 ret = wret;
9236 if (wret != 0)
9237 break;
9238 }
9239
2c47e605 9240 kfree(wc);
f82d02d9
YZ
9241 btrfs_free_path(path);
9242 return ret;
9243}
9244
ec44a35c
CM
9245static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9246{
9247 u64 num_devices;
fc67c450 9248 u64 stripped;
e4d8ec0f 9249
fc67c450
ID
9250 /*
9251 * if restripe for this chunk_type is on pick target profile and
9252 * return, otherwise do the usual balance
9253 */
9254 stripped = get_restripe_target(root->fs_info, flags);
9255 if (stripped)
9256 return extended_to_chunk(stripped);
e4d8ec0f 9257
95669976 9258 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 9259
fc67c450 9260 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9261 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9262 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9263
ec44a35c
CM
9264 if (num_devices == 1) {
9265 stripped |= BTRFS_BLOCK_GROUP_DUP;
9266 stripped = flags & ~stripped;
9267
9268 /* turn raid0 into single device chunks */
9269 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9270 return stripped;
9271
9272 /* turn mirroring into duplication */
9273 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9274 BTRFS_BLOCK_GROUP_RAID10))
9275 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9276 } else {
9277 /* they already had raid on here, just return */
ec44a35c
CM
9278 if (flags & stripped)
9279 return flags;
9280
9281 stripped |= BTRFS_BLOCK_GROUP_DUP;
9282 stripped = flags & ~stripped;
9283
9284 /* switch duplicated blocks with raid1 */
9285 if (flags & BTRFS_BLOCK_GROUP_DUP)
9286 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9287
e3176ca2 9288 /* this is drive concat, leave it alone */
ec44a35c 9289 }
e3176ca2 9290
ec44a35c
CM
9291 return flags;
9292}
9293
868f401a 9294static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9295{
f0486c68
YZ
9296 struct btrfs_space_info *sinfo = cache->space_info;
9297 u64 num_bytes;
199c36ea 9298 u64 min_allocable_bytes;
f0486c68 9299 int ret = -ENOSPC;
0ef3e66b 9300
199c36ea
MX
9301 /*
9302 * We need some metadata space and system metadata space for
9303 * allocating chunks in some corner cases until we force to set
9304 * it to be readonly.
9305 */
9306 if ((sinfo->flags &
9307 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9308 !force)
ee22184b 9309 min_allocable_bytes = SZ_1M;
199c36ea
MX
9310 else
9311 min_allocable_bytes = 0;
9312
f0486c68
YZ
9313 spin_lock(&sinfo->lock);
9314 spin_lock(&cache->lock);
61cfea9b
W
9315
9316 if (cache->ro) {
868f401a 9317 cache->ro++;
61cfea9b
W
9318 ret = 0;
9319 goto out;
9320 }
9321
f0486c68
YZ
9322 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9323 cache->bytes_super - btrfs_block_group_used(&cache->item);
9324
9325 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
9326 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9327 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9328 sinfo->bytes_readonly += num_bytes;
868f401a 9329 cache->ro++;
633c0aad 9330 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9331 ret = 0;
9332 }
61cfea9b 9333out:
f0486c68
YZ
9334 spin_unlock(&cache->lock);
9335 spin_unlock(&sinfo->lock);
9336 return ret;
9337}
7d9eb12c 9338
868f401a 9339int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 9340 struct btrfs_block_group_cache *cache)
c286ac48 9341
f0486c68
YZ
9342{
9343 struct btrfs_trans_handle *trans;
9344 u64 alloc_flags;
9345 int ret;
7d9eb12c 9346
1bbc621e 9347again:
ff5714cc 9348 trans = btrfs_join_transaction(root);
79787eaa
JM
9349 if (IS_ERR(trans))
9350 return PTR_ERR(trans);
5d4f98a2 9351
1bbc621e
CM
9352 /*
9353 * we're not allowed to set block groups readonly after the dirty
9354 * block groups cache has started writing. If it already started,
9355 * back off and let this transaction commit
9356 */
9357 mutex_lock(&root->fs_info->ro_block_group_mutex);
3204d33c 9358 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9359 u64 transid = trans->transid;
9360
9361 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9362 btrfs_end_transaction(trans, root);
9363
9364 ret = btrfs_wait_for_commit(root, transid);
9365 if (ret)
9366 return ret;
9367 goto again;
9368 }
9369
153c35b6
CM
9370 /*
9371 * if we are changing raid levels, try to allocate a corresponding
9372 * block group with the new raid level.
9373 */
9374 alloc_flags = update_block_group_flags(root, cache->flags);
9375 if (alloc_flags != cache->flags) {
9376 ret = do_chunk_alloc(trans, root, alloc_flags,
9377 CHUNK_ALLOC_FORCE);
9378 /*
9379 * ENOSPC is allowed here, we may have enough space
9380 * already allocated at the new raid level to
9381 * carry on
9382 */
9383 if (ret == -ENOSPC)
9384 ret = 0;
9385 if (ret < 0)
9386 goto out;
9387 }
1bbc621e 9388
868f401a 9389 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9390 if (!ret)
9391 goto out;
9392 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9393 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9394 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9395 if (ret < 0)
9396 goto out;
868f401a 9397 ret = inc_block_group_ro(cache, 0);
f0486c68 9398out:
2f081088
SL
9399 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9400 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 9401 lock_chunks(root->fs_info->chunk_root);
4617ea3a 9402 check_system_chunk(trans, root, alloc_flags);
a9629596 9403 unlock_chunks(root->fs_info->chunk_root);
2f081088 9404 }
1bbc621e 9405 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9406
f0486c68
YZ
9407 btrfs_end_transaction(trans, root);
9408 return ret;
9409}
5d4f98a2 9410
c87f08ca
CM
9411int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9412 struct btrfs_root *root, u64 type)
9413{
9414 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9415 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9416 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9417}
9418
6d07bcec
MX
9419/*
9420 * helper to account the unused space of all the readonly block group in the
633c0aad 9421 * space_info. takes mirrors into account.
6d07bcec 9422 */
633c0aad 9423u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9424{
9425 struct btrfs_block_group_cache *block_group;
9426 u64 free_bytes = 0;
9427 int factor;
9428
01327610 9429 /* It's df, we don't care if it's racy */
633c0aad
JB
9430 if (list_empty(&sinfo->ro_bgs))
9431 return 0;
9432
9433 spin_lock(&sinfo->lock);
9434 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9435 spin_lock(&block_group->lock);
9436
9437 if (!block_group->ro) {
9438 spin_unlock(&block_group->lock);
9439 continue;
9440 }
9441
9442 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9443 BTRFS_BLOCK_GROUP_RAID10 |
9444 BTRFS_BLOCK_GROUP_DUP))
9445 factor = 2;
9446 else
9447 factor = 1;
9448
9449 free_bytes += (block_group->key.offset -
9450 btrfs_block_group_used(&block_group->item)) *
9451 factor;
9452
9453 spin_unlock(&block_group->lock);
9454 }
6d07bcec
MX
9455 spin_unlock(&sinfo->lock);
9456
9457 return free_bytes;
9458}
9459
868f401a 9460void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9461 struct btrfs_block_group_cache *cache)
5d4f98a2 9462{
f0486c68
YZ
9463 struct btrfs_space_info *sinfo = cache->space_info;
9464 u64 num_bytes;
9465
9466 BUG_ON(!cache->ro);
9467
9468 spin_lock(&sinfo->lock);
9469 spin_lock(&cache->lock);
868f401a
Z
9470 if (!--cache->ro) {
9471 num_bytes = cache->key.offset - cache->reserved -
9472 cache->pinned - cache->bytes_super -
9473 btrfs_block_group_used(&cache->item);
9474 sinfo->bytes_readonly -= num_bytes;
9475 list_del_init(&cache->ro_list);
9476 }
f0486c68
YZ
9477 spin_unlock(&cache->lock);
9478 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9479}
9480
ba1bf481
JB
9481/*
9482 * checks to see if its even possible to relocate this block group.
9483 *
9484 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9485 * ok to go ahead and try.
9486 */
9487int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9488{
ba1bf481
JB
9489 struct btrfs_block_group_cache *block_group;
9490 struct btrfs_space_info *space_info;
9491 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9492 struct btrfs_device *device;
6df9a95e 9493 struct btrfs_trans_handle *trans;
cdcb725c 9494 u64 min_free;
6719db6a
JB
9495 u64 dev_min = 1;
9496 u64 dev_nr = 0;
4a5e98f5 9497 u64 target;
0305bc27 9498 int debug;
cdcb725c 9499 int index;
ba1bf481
JB
9500 int full = 0;
9501 int ret = 0;
1a40e23b 9502
0305bc27
QW
9503 debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9504
ba1bf481 9505 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9506
ba1bf481 9507 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9508 if (!block_group) {
9509 if (debug)
9510 btrfs_warn(root->fs_info,
9511 "can't find block group for bytenr %llu",
9512 bytenr);
ba1bf481 9513 return -1;
0305bc27 9514 }
1a40e23b 9515
cdcb725c 9516 min_free = btrfs_block_group_used(&block_group->item);
9517
ba1bf481 9518 /* no bytes used, we're good */
cdcb725c 9519 if (!min_free)
1a40e23b
ZY
9520 goto out;
9521
ba1bf481
JB
9522 space_info = block_group->space_info;
9523 spin_lock(&space_info->lock);
17d217fe 9524
ba1bf481 9525 full = space_info->full;
17d217fe 9526
ba1bf481
JB
9527 /*
9528 * if this is the last block group we have in this space, we can't
7ce618db
CM
9529 * relocate it unless we're able to allocate a new chunk below.
9530 *
9531 * Otherwise, we need to make sure we have room in the space to handle
9532 * all of the extents from this block group. If we can, we're good
ba1bf481 9533 */
7ce618db 9534 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9535 (space_info->bytes_used + space_info->bytes_reserved +
9536 space_info->bytes_pinned + space_info->bytes_readonly +
9537 min_free < space_info->total_bytes)) {
ba1bf481
JB
9538 spin_unlock(&space_info->lock);
9539 goto out;
17d217fe 9540 }
ba1bf481 9541 spin_unlock(&space_info->lock);
ea8c2819 9542
ba1bf481
JB
9543 /*
9544 * ok we don't have enough space, but maybe we have free space on our
9545 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9546 * alloc devices and guess if we have enough space. if this block
9547 * group is going to be restriped, run checks against the target
9548 * profile instead of the current one.
ba1bf481
JB
9549 */
9550 ret = -1;
ea8c2819 9551
cdcb725c 9552 /*
9553 * index:
9554 * 0: raid10
9555 * 1: raid1
9556 * 2: dup
9557 * 3: raid0
9558 * 4: single
9559 */
4a5e98f5
ID
9560 target = get_restripe_target(root->fs_info, block_group->flags);
9561 if (target) {
31e50229 9562 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9563 } else {
9564 /*
9565 * this is just a balance, so if we were marked as full
9566 * we know there is no space for a new chunk
9567 */
0305bc27
QW
9568 if (full) {
9569 if (debug)
9570 btrfs_warn(root->fs_info,
9571 "no space to alloc new chunk for block group %llu",
9572 block_group->key.objectid);
4a5e98f5 9573 goto out;
0305bc27 9574 }
4a5e98f5
ID
9575
9576 index = get_block_group_index(block_group);
9577 }
9578
e6ec716f 9579 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9580 dev_min = 4;
6719db6a
JB
9581 /* Divide by 2 */
9582 min_free >>= 1;
e6ec716f 9583 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9584 dev_min = 2;
e6ec716f 9585 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9586 /* Multiply by 2 */
9587 min_free <<= 1;
e6ec716f 9588 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9589 dev_min = fs_devices->rw_devices;
47c5713f 9590 min_free = div64_u64(min_free, dev_min);
cdcb725c 9591 }
9592
6df9a95e
JB
9593 /* We need to do this so that we can look at pending chunks */
9594 trans = btrfs_join_transaction(root);
9595 if (IS_ERR(trans)) {
9596 ret = PTR_ERR(trans);
9597 goto out;
9598 }
9599
ba1bf481
JB
9600 mutex_lock(&root->fs_info->chunk_mutex);
9601 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9602 u64 dev_offset;
56bec294 9603
ba1bf481
JB
9604 /*
9605 * check to make sure we can actually find a chunk with enough
9606 * space to fit our block group in.
9607 */
63a212ab
SB
9608 if (device->total_bytes > device->bytes_used + min_free &&
9609 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9610 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9611 &dev_offset, NULL);
ba1bf481 9612 if (!ret)
cdcb725c 9613 dev_nr++;
9614
9615 if (dev_nr >= dev_min)
73e48b27 9616 break;
cdcb725c 9617
ba1bf481 9618 ret = -1;
725c8463 9619 }
edbd8d4e 9620 }
0305bc27
QW
9621 if (debug && ret == -1)
9622 btrfs_warn(root->fs_info,
9623 "no space to allocate a new chunk for block group %llu",
9624 block_group->key.objectid);
ba1bf481 9625 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9626 btrfs_end_transaction(trans, root);
edbd8d4e 9627out:
ba1bf481 9628 btrfs_put_block_group(block_group);
edbd8d4e
CM
9629 return ret;
9630}
9631
b2950863
CH
9632static int find_first_block_group(struct btrfs_root *root,
9633 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9634{
925baedd 9635 int ret = 0;
0b86a832
CM
9636 struct btrfs_key found_key;
9637 struct extent_buffer *leaf;
9638 int slot;
edbd8d4e 9639
0b86a832
CM
9640 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9641 if (ret < 0)
925baedd
CM
9642 goto out;
9643
d397712b 9644 while (1) {
0b86a832 9645 slot = path->slots[0];
edbd8d4e 9646 leaf = path->nodes[0];
0b86a832
CM
9647 if (slot >= btrfs_header_nritems(leaf)) {
9648 ret = btrfs_next_leaf(root, path);
9649 if (ret == 0)
9650 continue;
9651 if (ret < 0)
925baedd 9652 goto out;
0b86a832 9653 break;
edbd8d4e 9654 }
0b86a832 9655 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9656
0b86a832 9657 if (found_key.objectid >= key->objectid &&
925baedd
CM
9658 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9659 ret = 0;
9660 goto out;
9661 }
0b86a832 9662 path->slots[0]++;
edbd8d4e 9663 }
925baedd 9664out:
0b86a832 9665 return ret;
edbd8d4e
CM
9666}
9667
0af3d00b
JB
9668void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9669{
9670 struct btrfs_block_group_cache *block_group;
9671 u64 last = 0;
9672
9673 while (1) {
9674 struct inode *inode;
9675
9676 block_group = btrfs_lookup_first_block_group(info, last);
9677 while (block_group) {
9678 spin_lock(&block_group->lock);
9679 if (block_group->iref)
9680 break;
9681 spin_unlock(&block_group->lock);
9682 block_group = next_block_group(info->tree_root,
9683 block_group);
9684 }
9685 if (!block_group) {
9686 if (last == 0)
9687 break;
9688 last = 0;
9689 continue;
9690 }
9691
9692 inode = block_group->inode;
9693 block_group->iref = 0;
9694 block_group->inode = NULL;
9695 spin_unlock(&block_group->lock);
9696 iput(inode);
9697 last = block_group->key.objectid + block_group->key.offset;
9698 btrfs_put_block_group(block_group);
9699 }
9700}
9701
1a40e23b
ZY
9702int btrfs_free_block_groups(struct btrfs_fs_info *info)
9703{
9704 struct btrfs_block_group_cache *block_group;
4184ea7f 9705 struct btrfs_space_info *space_info;
11833d66 9706 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9707 struct rb_node *n;
9708
9e351cc8 9709 down_write(&info->commit_root_sem);
11833d66
YZ
9710 while (!list_empty(&info->caching_block_groups)) {
9711 caching_ctl = list_entry(info->caching_block_groups.next,
9712 struct btrfs_caching_control, list);
9713 list_del(&caching_ctl->list);
9714 put_caching_control(caching_ctl);
9715 }
9e351cc8 9716 up_write(&info->commit_root_sem);
11833d66 9717
47ab2a6c
JB
9718 spin_lock(&info->unused_bgs_lock);
9719 while (!list_empty(&info->unused_bgs)) {
9720 block_group = list_first_entry(&info->unused_bgs,
9721 struct btrfs_block_group_cache,
9722 bg_list);
9723 list_del_init(&block_group->bg_list);
9724 btrfs_put_block_group(block_group);
9725 }
9726 spin_unlock(&info->unused_bgs_lock);
9727
1a40e23b
ZY
9728 spin_lock(&info->block_group_cache_lock);
9729 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9730 block_group = rb_entry(n, struct btrfs_block_group_cache,
9731 cache_node);
1a40e23b
ZY
9732 rb_erase(&block_group->cache_node,
9733 &info->block_group_cache_tree);
01eacb27 9734 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9735 spin_unlock(&info->block_group_cache_lock);
9736
80eb234a 9737 down_write(&block_group->space_info->groups_sem);
1a40e23b 9738 list_del(&block_group->list);
80eb234a 9739 up_write(&block_group->space_info->groups_sem);
d2fb3437 9740
817d52f8 9741 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9742 wait_block_group_cache_done(block_group);
817d52f8 9743
3c14874a
JB
9744 /*
9745 * We haven't cached this block group, which means we could
9746 * possibly have excluded extents on this block group.
9747 */
36cce922
JB
9748 if (block_group->cached == BTRFS_CACHE_NO ||
9749 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9750 free_excluded_extents(info->extent_root, block_group);
9751
817d52f8 9752 btrfs_remove_free_space_cache(block_group);
11dfe35a 9753 btrfs_put_block_group(block_group);
d899e052
YZ
9754
9755 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9756 }
9757 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9758
9759 /* now that all the block groups are freed, go through and
9760 * free all the space_info structs. This is only called during
9761 * the final stages of unmount, and so we know nobody is
9762 * using them. We call synchronize_rcu() once before we start,
9763 * just to be on the safe side.
9764 */
9765 synchronize_rcu();
9766
8929ecfa
YZ
9767 release_global_block_rsv(info);
9768
67871254 9769 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9770 int i;
9771
4184ea7f
CM
9772 space_info = list_entry(info->space_info.next,
9773 struct btrfs_space_info,
9774 list);
b069e0c3 9775 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9776 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9777 space_info->bytes_reserved > 0 ||
fae7f21c 9778 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9779 dump_space_info(space_info, 0, 0);
9780 }
f0486c68 9781 }
4184ea7f 9782 list_del(&space_info->list);
6ab0a202
JM
9783 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9784 struct kobject *kobj;
c1895442
JM
9785 kobj = space_info->block_group_kobjs[i];
9786 space_info->block_group_kobjs[i] = NULL;
9787 if (kobj) {
6ab0a202
JM
9788 kobject_del(kobj);
9789 kobject_put(kobj);
9790 }
9791 }
9792 kobject_del(&space_info->kobj);
9793 kobject_put(&space_info->kobj);
4184ea7f 9794 }
1a40e23b
ZY
9795 return 0;
9796}
9797
b742bb82
YZ
9798static void __link_block_group(struct btrfs_space_info *space_info,
9799 struct btrfs_block_group_cache *cache)
9800{
9801 int index = get_block_group_index(cache);
ed55b6ac 9802 bool first = false;
b742bb82
YZ
9803
9804 down_write(&space_info->groups_sem);
ed55b6ac
JM
9805 if (list_empty(&space_info->block_groups[index]))
9806 first = true;
9807 list_add_tail(&cache->list, &space_info->block_groups[index]);
9808 up_write(&space_info->groups_sem);
9809
9810 if (first) {
c1895442 9811 struct raid_kobject *rkobj;
6ab0a202
JM
9812 int ret;
9813
c1895442
JM
9814 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9815 if (!rkobj)
9816 goto out_err;
9817 rkobj->raid_type = index;
9818 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9819 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9820 "%s", get_raid_name(index));
6ab0a202 9821 if (ret) {
c1895442
JM
9822 kobject_put(&rkobj->kobj);
9823 goto out_err;
6ab0a202 9824 }
c1895442 9825 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9826 }
c1895442
JM
9827
9828 return;
9829out_err:
9830 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9831}
9832
920e4a58
MX
9833static struct btrfs_block_group_cache *
9834btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9835{
9836 struct btrfs_block_group_cache *cache;
9837
9838 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9839 if (!cache)
9840 return NULL;
9841
9842 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9843 GFP_NOFS);
9844 if (!cache->free_space_ctl) {
9845 kfree(cache);
9846 return NULL;
9847 }
9848
9849 cache->key.objectid = start;
9850 cache->key.offset = size;
9851 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9852
9853 cache->sectorsize = root->sectorsize;
9854 cache->fs_info = root->fs_info;
9855 cache->full_stripe_len = btrfs_full_stripe_len(root,
9856 &root->fs_info->mapping_tree,
9857 start);
1e144fb8
OS
9858 set_free_space_tree_thresholds(cache);
9859
920e4a58
MX
9860 atomic_set(&cache->count, 1);
9861 spin_lock_init(&cache->lock);
e570fd27 9862 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9863 INIT_LIST_HEAD(&cache->list);
9864 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9865 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9866 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9867 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9868 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9869 btrfs_init_free_space_ctl(cache);
04216820 9870 atomic_set(&cache->trimming, 0);
a5ed9182 9871 mutex_init(&cache->free_space_lock);
920e4a58
MX
9872
9873 return cache;
9874}
9875
9078a3e1
CM
9876int btrfs_read_block_groups(struct btrfs_root *root)
9877{
9878 struct btrfs_path *path;
9879 int ret;
9078a3e1 9880 struct btrfs_block_group_cache *cache;
be744175 9881 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9882 struct btrfs_space_info *space_info;
9078a3e1
CM
9883 struct btrfs_key key;
9884 struct btrfs_key found_key;
5f39d397 9885 struct extent_buffer *leaf;
0af3d00b
JB
9886 int need_clear = 0;
9887 u64 cache_gen;
96b5179d 9888
be744175 9889 root = info->extent_root;
9078a3e1 9890 key.objectid = 0;
0b86a832 9891 key.offset = 0;
962a298f 9892 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9893 path = btrfs_alloc_path();
9894 if (!path)
9895 return -ENOMEM;
e4058b54 9896 path->reada = READA_FORWARD;
9078a3e1 9897
6c41761f 9898 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9899 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9900 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9901 need_clear = 1;
88c2ba3b
JB
9902 if (btrfs_test_opt(root, CLEAR_CACHE))
9903 need_clear = 1;
0af3d00b 9904
d397712b 9905 while (1) {
0b86a832 9906 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9907 if (ret > 0)
9908 break;
0b86a832
CM
9909 if (ret != 0)
9910 goto error;
920e4a58 9911
5f39d397
CM
9912 leaf = path->nodes[0];
9913 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9914
9915 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9916 found_key.offset);
9078a3e1 9917 if (!cache) {
0b86a832 9918 ret = -ENOMEM;
f0486c68 9919 goto error;
9078a3e1 9920 }
96303081 9921
cf7c1ef6
LB
9922 if (need_clear) {
9923 /*
9924 * When we mount with old space cache, we need to
9925 * set BTRFS_DC_CLEAR and set dirty flag.
9926 *
9927 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9928 * truncate the old free space cache inode and
9929 * setup a new one.
9930 * b) Setting 'dirty flag' makes sure that we flush
9931 * the new space cache info onto disk.
9932 */
cf7c1ef6 9933 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9934 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9935 }
0af3d00b 9936
5f39d397
CM
9937 read_extent_buffer(leaf, &cache->item,
9938 btrfs_item_ptr_offset(leaf, path->slots[0]),
9939 sizeof(cache->item));
920e4a58 9940 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9941
9078a3e1 9942 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9943 btrfs_release_path(path);
34d52cb6 9944
3c14874a
JB
9945 /*
9946 * We need to exclude the super stripes now so that the space
9947 * info has super bytes accounted for, otherwise we'll think
9948 * we have more space than we actually do.
9949 */
835d974f
JB
9950 ret = exclude_super_stripes(root, cache);
9951 if (ret) {
9952 /*
9953 * We may have excluded something, so call this just in
9954 * case.
9955 */
9956 free_excluded_extents(root, cache);
920e4a58 9957 btrfs_put_block_group(cache);
835d974f
JB
9958 goto error;
9959 }
3c14874a 9960
817d52f8
JB
9961 /*
9962 * check for two cases, either we are full, and therefore
9963 * don't need to bother with the caching work since we won't
9964 * find any space, or we are empty, and we can just add all
9965 * the space in and be done with it. This saves us _alot_ of
9966 * time, particularly in the full case.
9967 */
9968 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9969 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9970 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9971 free_excluded_extents(root, cache);
817d52f8 9972 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9973 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9974 cache->cached = BTRFS_CACHE_FINISHED;
9975 add_new_free_space(cache, root->fs_info,
9976 found_key.objectid,
9977 found_key.objectid +
9978 found_key.offset);
11833d66 9979 free_excluded_extents(root, cache);
817d52f8 9980 }
96b5179d 9981
8c579fe7
JB
9982 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9983 if (ret) {
9984 btrfs_remove_free_space_cache(cache);
9985 btrfs_put_block_group(cache);
9986 goto error;
9987 }
9988
6324fbf3
CM
9989 ret = update_space_info(info, cache->flags, found_key.offset,
9990 btrfs_block_group_used(&cache->item),
9991 &space_info);
8c579fe7
JB
9992 if (ret) {
9993 btrfs_remove_free_space_cache(cache);
9994 spin_lock(&info->block_group_cache_lock);
9995 rb_erase(&cache->cache_node,
9996 &info->block_group_cache_tree);
01eacb27 9997 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9998 spin_unlock(&info->block_group_cache_lock);
9999 btrfs_put_block_group(cache);
10000 goto error;
10001 }
10002
6324fbf3 10003 cache->space_info = space_info;
1b2da372 10004 spin_lock(&cache->space_info->lock);
f0486c68 10005 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
10006 spin_unlock(&cache->space_info->lock);
10007
b742bb82 10008 __link_block_group(space_info, cache);
0f9dd46c 10009
75ccf47d 10010 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 10011 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 10012 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10013 } else if (btrfs_block_group_used(&cache->item) == 0) {
10014 spin_lock(&info->unused_bgs_lock);
10015 /* Should always be true but just in case. */
10016 if (list_empty(&cache->bg_list)) {
10017 btrfs_get_block_group(cache);
10018 list_add_tail(&cache->bg_list,
10019 &info->unused_bgs);
10020 }
10021 spin_unlock(&info->unused_bgs_lock);
10022 }
9078a3e1 10023 }
b742bb82
YZ
10024
10025 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10026 if (!(get_alloc_profile(root, space_info->flags) &
10027 (BTRFS_BLOCK_GROUP_RAID10 |
10028 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10029 BTRFS_BLOCK_GROUP_RAID5 |
10030 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10031 BTRFS_BLOCK_GROUP_DUP)))
10032 continue;
10033 /*
10034 * avoid allocating from un-mirrored block group if there are
10035 * mirrored block groups.
10036 */
1095cc0d 10037 list_for_each_entry(cache,
10038 &space_info->block_groups[BTRFS_RAID_RAID0],
10039 list)
868f401a 10040 inc_block_group_ro(cache, 1);
1095cc0d 10041 list_for_each_entry(cache,
10042 &space_info->block_groups[BTRFS_RAID_SINGLE],
10043 list)
868f401a 10044 inc_block_group_ro(cache, 1);
9078a3e1 10045 }
f0486c68
YZ
10046
10047 init_global_block_rsv(info);
0b86a832
CM
10048 ret = 0;
10049error:
9078a3e1 10050 btrfs_free_path(path);
0b86a832 10051 return ret;
9078a3e1 10052}
6324fbf3 10053
ea658bad
JB
10054void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10055 struct btrfs_root *root)
10056{
10057 struct btrfs_block_group_cache *block_group, *tmp;
10058 struct btrfs_root *extent_root = root->fs_info->extent_root;
10059 struct btrfs_block_group_item item;
10060 struct btrfs_key key;
10061 int ret = 0;
d9a0540a 10062 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10063
d9a0540a 10064 trans->can_flush_pending_bgs = false;
47ab2a6c 10065 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10066 if (ret)
c92f6be3 10067 goto next;
ea658bad
JB
10068
10069 spin_lock(&block_group->lock);
10070 memcpy(&item, &block_group->item, sizeof(item));
10071 memcpy(&key, &block_group->key, sizeof(key));
10072 spin_unlock(&block_group->lock);
10073
10074 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10075 sizeof(item));
10076 if (ret)
10077 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
10078 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10079 key.objectid, key.offset);
10080 if (ret)
10081 btrfs_abort_transaction(trans, extent_root, ret);
1e144fb8
OS
10082 add_block_group_free_space(trans, root->fs_info, block_group);
10083 /* already aborted the transaction if it failed. */
c92f6be3
FM
10084next:
10085 list_del_init(&block_group->bg_list);
ea658bad 10086 }
d9a0540a 10087 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10088}
10089
6324fbf3
CM
10090int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10091 struct btrfs_root *root, u64 bytes_used,
e17cade2 10092 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10093 u64 size)
10094{
10095 int ret;
6324fbf3
CM
10096 struct btrfs_root *extent_root;
10097 struct btrfs_block_group_cache *cache;
6324fbf3
CM
10098
10099 extent_root = root->fs_info->extent_root;
6324fbf3 10100
995946dd 10101 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 10102
920e4a58 10103 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
10104 if (!cache)
10105 return -ENOMEM;
34d52cb6 10106
6324fbf3 10107 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10108 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10109 btrfs_set_block_group_flags(&cache->item, type);
10110
920e4a58 10111 cache->flags = type;
11833d66 10112 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10113 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10114 cache->needs_free_space = 1;
835d974f
JB
10115 ret = exclude_super_stripes(root, cache);
10116 if (ret) {
10117 /*
10118 * We may have excluded something, so call this just in
10119 * case.
10120 */
10121 free_excluded_extents(root, cache);
920e4a58 10122 btrfs_put_block_group(cache);
835d974f
JB
10123 return ret;
10124 }
96303081 10125
817d52f8
JB
10126 add_new_free_space(cache, root->fs_info, chunk_offset,
10127 chunk_offset + size);
10128
11833d66
YZ
10129 free_excluded_extents(root, cache);
10130
d0bd4560
JB
10131#ifdef CONFIG_BTRFS_DEBUG
10132 if (btrfs_should_fragment_free_space(root, cache)) {
10133 u64 new_bytes_used = size - bytes_used;
10134
10135 bytes_used += new_bytes_used >> 1;
10136 fragment_free_space(root, cache);
10137 }
10138#endif
2e6e5183
FM
10139 /*
10140 * Call to ensure the corresponding space_info object is created and
10141 * assigned to our block group, but don't update its counters just yet.
10142 * We want our bg to be added to the rbtree with its ->space_info set.
10143 */
10144 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10145 &cache->space_info);
10146 if (ret) {
10147 btrfs_remove_free_space_cache(cache);
10148 btrfs_put_block_group(cache);
10149 return ret;
10150 }
10151
8c579fe7
JB
10152 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10153 if (ret) {
10154 btrfs_remove_free_space_cache(cache);
10155 btrfs_put_block_group(cache);
10156 return ret;
10157 }
10158
2e6e5183
FM
10159 /*
10160 * Now that our block group has its ->space_info set and is inserted in
10161 * the rbtree, update the space info's counters.
10162 */
6324fbf3
CM
10163 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10164 &cache->space_info);
8c579fe7
JB
10165 if (ret) {
10166 btrfs_remove_free_space_cache(cache);
10167 spin_lock(&root->fs_info->block_group_cache_lock);
10168 rb_erase(&cache->cache_node,
10169 &root->fs_info->block_group_cache_tree);
01eacb27 10170 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10171 spin_unlock(&root->fs_info->block_group_cache_lock);
10172 btrfs_put_block_group(cache);
10173 return ret;
10174 }
c7c144db 10175 update_global_block_rsv(root->fs_info);
1b2da372
JB
10176
10177 spin_lock(&cache->space_info->lock);
f0486c68 10178 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
10179 spin_unlock(&cache->space_info->lock);
10180
b742bb82 10181 __link_block_group(cache->space_info, cache);
6324fbf3 10182
47ab2a6c 10183 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10184
d18a2c44 10185 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 10186
6324fbf3
CM
10187 return 0;
10188}
1a40e23b 10189
10ea00f5
ID
10190static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10191{
899c81ea
ID
10192 u64 extra_flags = chunk_to_extended(flags) &
10193 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10194
de98ced9 10195 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10196 if (flags & BTRFS_BLOCK_GROUP_DATA)
10197 fs_info->avail_data_alloc_bits &= ~extra_flags;
10198 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10199 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10200 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10201 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10202 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10203}
10204
1a40e23b 10205int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
10206 struct btrfs_root *root, u64 group_start,
10207 struct extent_map *em)
1a40e23b
ZY
10208{
10209 struct btrfs_path *path;
10210 struct btrfs_block_group_cache *block_group;
44fb5511 10211 struct btrfs_free_cluster *cluster;
0af3d00b 10212 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 10213 struct btrfs_key key;
0af3d00b 10214 struct inode *inode;
c1895442 10215 struct kobject *kobj = NULL;
1a40e23b 10216 int ret;
10ea00f5 10217 int index;
89a55897 10218 int factor;
4f69cb98 10219 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10220 bool remove_em;
1a40e23b 10221
1a40e23b
ZY
10222 root = root->fs_info->extent_root;
10223
10224 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10225 BUG_ON(!block_group);
c146afad 10226 BUG_ON(!block_group->ro);
1a40e23b 10227
9f7c43c9 10228 /*
10229 * Free the reserved super bytes from this block group before
10230 * remove it.
10231 */
10232 free_excluded_extents(root, block_group);
10233
1a40e23b 10234 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10235 index = get_block_group_index(block_group);
89a55897
JB
10236 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10237 BTRFS_BLOCK_GROUP_RAID1 |
10238 BTRFS_BLOCK_GROUP_RAID10))
10239 factor = 2;
10240 else
10241 factor = 1;
1a40e23b 10242
44fb5511
CM
10243 /* make sure this block group isn't part of an allocation cluster */
10244 cluster = &root->fs_info->data_alloc_cluster;
10245 spin_lock(&cluster->refill_lock);
10246 btrfs_return_cluster_to_free_space(block_group, cluster);
10247 spin_unlock(&cluster->refill_lock);
10248
10249 /*
10250 * make sure this block group isn't part of a metadata
10251 * allocation cluster
10252 */
10253 cluster = &root->fs_info->meta_alloc_cluster;
10254 spin_lock(&cluster->refill_lock);
10255 btrfs_return_cluster_to_free_space(block_group, cluster);
10256 spin_unlock(&cluster->refill_lock);
10257
1a40e23b 10258 path = btrfs_alloc_path();
d8926bb3
MF
10259 if (!path) {
10260 ret = -ENOMEM;
10261 goto out;
10262 }
1a40e23b 10263
1bbc621e
CM
10264 /*
10265 * get the inode first so any iput calls done for the io_list
10266 * aren't the final iput (no unlinks allowed now)
10267 */
10b2f34d 10268 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
10269
10270 mutex_lock(&trans->transaction->cache_write_mutex);
10271 /*
10272 * make sure our free spache cache IO is done before remove the
10273 * free space inode
10274 */
10275 spin_lock(&trans->transaction->dirty_bgs_lock);
10276 if (!list_empty(&block_group->io_list)) {
10277 list_del_init(&block_group->io_list);
10278
10279 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10280
10281 spin_unlock(&trans->transaction->dirty_bgs_lock);
10282 btrfs_wait_cache_io(root, trans, block_group,
10283 &block_group->io_ctl, path,
10284 block_group->key.objectid);
10285 btrfs_put_block_group(block_group);
10286 spin_lock(&trans->transaction->dirty_bgs_lock);
10287 }
10288
10289 if (!list_empty(&block_group->dirty_list)) {
10290 list_del_init(&block_group->dirty_list);
10291 btrfs_put_block_group(block_group);
10292 }
10293 spin_unlock(&trans->transaction->dirty_bgs_lock);
10294 mutex_unlock(&trans->transaction->cache_write_mutex);
10295
0af3d00b 10296 if (!IS_ERR(inode)) {
b532402e 10297 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
10298 if (ret) {
10299 btrfs_add_delayed_iput(inode);
10300 goto out;
10301 }
0af3d00b
JB
10302 clear_nlink(inode);
10303 /* One for the block groups ref */
10304 spin_lock(&block_group->lock);
10305 if (block_group->iref) {
10306 block_group->iref = 0;
10307 block_group->inode = NULL;
10308 spin_unlock(&block_group->lock);
10309 iput(inode);
10310 } else {
10311 spin_unlock(&block_group->lock);
10312 }
10313 /* One for our lookup ref */
455757c3 10314 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10315 }
10316
10317 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10318 key.offset = block_group->key.objectid;
10319 key.type = 0;
10320
10321 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10322 if (ret < 0)
10323 goto out;
10324 if (ret > 0)
b3b4aa74 10325 btrfs_release_path(path);
0af3d00b
JB
10326 if (ret == 0) {
10327 ret = btrfs_del_item(trans, tree_root, path);
10328 if (ret)
10329 goto out;
b3b4aa74 10330 btrfs_release_path(path);
0af3d00b
JB
10331 }
10332
3dfdb934 10333 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
10334 rb_erase(&block_group->cache_node,
10335 &root->fs_info->block_group_cache_tree);
292cbd51 10336 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
10337
10338 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10339 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 10340 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 10341
80eb234a 10342 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10343 /*
10344 * we must use list_del_init so people can check to see if they
10345 * are still on the list after taking the semaphore
10346 */
10347 list_del_init(&block_group->list);
6ab0a202 10348 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10349 kobj = block_group->space_info->block_group_kobjs[index];
10350 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 10351 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 10352 }
80eb234a 10353 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10354 if (kobj) {
10355 kobject_del(kobj);
10356 kobject_put(kobj);
10357 }
1a40e23b 10358
4f69cb98
FM
10359 if (block_group->has_caching_ctl)
10360 caching_ctl = get_caching_control(block_group);
817d52f8 10361 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10362 wait_block_group_cache_done(block_group);
4f69cb98
FM
10363 if (block_group->has_caching_ctl) {
10364 down_write(&root->fs_info->commit_root_sem);
10365 if (!caching_ctl) {
10366 struct btrfs_caching_control *ctl;
10367
10368 list_for_each_entry(ctl,
10369 &root->fs_info->caching_block_groups, list)
10370 if (ctl->block_group == block_group) {
10371 caching_ctl = ctl;
10372 atomic_inc(&caching_ctl->count);
10373 break;
10374 }
10375 }
10376 if (caching_ctl)
10377 list_del_init(&caching_ctl->list);
10378 up_write(&root->fs_info->commit_root_sem);
10379 if (caching_ctl) {
10380 /* Once for the caching bgs list and once for us. */
10381 put_caching_control(caching_ctl);
10382 put_caching_control(caching_ctl);
10383 }
10384 }
817d52f8 10385
ce93ec54
JB
10386 spin_lock(&trans->transaction->dirty_bgs_lock);
10387 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10388 WARN_ON(1);
10389 }
10390 if (!list_empty(&block_group->io_list)) {
10391 WARN_ON(1);
ce93ec54
JB
10392 }
10393 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10394 btrfs_remove_free_space_cache(block_group);
10395
c146afad 10396 spin_lock(&block_group->space_info->lock);
75c68e9f 10397 list_del_init(&block_group->ro_list);
18d018ad
ZL
10398
10399 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10400 WARN_ON(block_group->space_info->total_bytes
10401 < block_group->key.offset);
10402 WARN_ON(block_group->space_info->bytes_readonly
10403 < block_group->key.offset);
10404 WARN_ON(block_group->space_info->disk_total
10405 < block_group->key.offset * factor);
10406 }
c146afad
YZ
10407 block_group->space_info->total_bytes -= block_group->key.offset;
10408 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10409 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10410
c146afad 10411 spin_unlock(&block_group->space_info->lock);
283bb197 10412
0af3d00b
JB
10413 memcpy(&key, &block_group->key, sizeof(key));
10414
04216820 10415 lock_chunks(root);
495e64f4
FM
10416 if (!list_empty(&em->list)) {
10417 /* We're in the transaction->pending_chunks list. */
10418 free_extent_map(em);
10419 }
04216820
FM
10420 spin_lock(&block_group->lock);
10421 block_group->removed = 1;
10422 /*
10423 * At this point trimming can't start on this block group, because we
10424 * removed the block group from the tree fs_info->block_group_cache_tree
10425 * so no one can't find it anymore and even if someone already got this
10426 * block group before we removed it from the rbtree, they have already
10427 * incremented block_group->trimming - if they didn't, they won't find
10428 * any free space entries because we already removed them all when we
10429 * called btrfs_remove_free_space_cache().
10430 *
10431 * And we must not remove the extent map from the fs_info->mapping_tree
10432 * to prevent the same logical address range and physical device space
10433 * ranges from being reused for a new block group. This is because our
10434 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10435 * completely transactionless, so while it is trimming a range the
10436 * currently running transaction might finish and a new one start,
10437 * allowing for new block groups to be created that can reuse the same
10438 * physical device locations unless we take this special care.
e33e17ee
JM
10439 *
10440 * There may also be an implicit trim operation if the file system
10441 * is mounted with -odiscard. The same protections must remain
10442 * in place until the extents have been discarded completely when
10443 * the transaction commit has completed.
04216820
FM
10444 */
10445 remove_em = (atomic_read(&block_group->trimming) == 0);
10446 /*
10447 * Make sure a trimmer task always sees the em in the pinned_chunks list
10448 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10449 * before checking block_group->removed).
10450 */
10451 if (!remove_em) {
10452 /*
10453 * Our em might be in trans->transaction->pending_chunks which
10454 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10455 * and so is the fs_info->pinned_chunks list.
10456 *
10457 * So at this point we must be holding the chunk_mutex to avoid
10458 * any races with chunk allocation (more specifically at
10459 * volumes.c:contains_pending_extent()), to ensure it always
10460 * sees the em, either in the pending_chunks list or in the
10461 * pinned_chunks list.
10462 */
10463 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10464 }
10465 spin_unlock(&block_group->lock);
04216820
FM
10466
10467 if (remove_em) {
10468 struct extent_map_tree *em_tree;
10469
10470 em_tree = &root->fs_info->mapping_tree.map_tree;
10471 write_lock(&em_tree->lock);
8dbcd10f
FM
10472 /*
10473 * The em might be in the pending_chunks list, so make sure the
10474 * chunk mutex is locked, since remove_extent_mapping() will
10475 * delete us from that list.
10476 */
04216820
FM
10477 remove_extent_mapping(em_tree, em);
10478 write_unlock(&em_tree->lock);
10479 /* once for the tree */
10480 free_extent_map(em);
10481 }
10482
8dbcd10f
FM
10483 unlock_chunks(root);
10484
1e144fb8
OS
10485 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10486 if (ret)
10487 goto out;
10488
fa9c0d79
CM
10489 btrfs_put_block_group(block_group);
10490 btrfs_put_block_group(block_group);
1a40e23b
ZY
10491
10492 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10493 if (ret > 0)
10494 ret = -EIO;
10495 if (ret < 0)
10496 goto out;
10497
10498 ret = btrfs_del_item(trans, root, path);
10499out:
10500 btrfs_free_path(path);
10501 return ret;
10502}
acce952b 10503
8eab77ff 10504struct btrfs_trans_handle *
7fd01182
FM
10505btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10506 const u64 chunk_offset)
8eab77ff 10507{
7fd01182
FM
10508 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10509 struct extent_map *em;
10510 struct map_lookup *map;
10511 unsigned int num_items;
10512
10513 read_lock(&em_tree->lock);
10514 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10515 read_unlock(&em_tree->lock);
10516 ASSERT(em && em->start == chunk_offset);
10517
8eab77ff 10518 /*
7fd01182
FM
10519 * We need to reserve 3 + N units from the metadata space info in order
10520 * to remove a block group (done at btrfs_remove_chunk() and at
10521 * btrfs_remove_block_group()), which are used for:
10522 *
8eab77ff
FM
10523 * 1 unit for adding the free space inode's orphan (located in the tree
10524 * of tree roots).
7fd01182
FM
10525 * 1 unit for deleting the block group item (located in the extent
10526 * tree).
10527 * 1 unit for deleting the free space item (located in tree of tree
10528 * roots).
10529 * N units for deleting N device extent items corresponding to each
10530 * stripe (located in the device tree).
10531 *
10532 * In order to remove a block group we also need to reserve units in the
10533 * system space info in order to update the chunk tree (update one or
10534 * more device items and remove one chunk item), but this is done at
10535 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10536 */
95617d69 10537 map = em->map_lookup;
7fd01182
FM
10538 num_items = 3 + map->num_stripes;
10539 free_extent_map(em);
10540
8eab77ff 10541 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10542 num_items, 1);
8eab77ff
FM
10543}
10544
47ab2a6c
JB
10545/*
10546 * Process the unused_bgs list and remove any that don't have any allocated
10547 * space inside of them.
10548 */
10549void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10550{
10551 struct btrfs_block_group_cache *block_group;
10552 struct btrfs_space_info *space_info;
10553 struct btrfs_root *root = fs_info->extent_root;
10554 struct btrfs_trans_handle *trans;
10555 int ret = 0;
10556
10557 if (!fs_info->open)
10558 return;
10559
10560 spin_lock(&fs_info->unused_bgs_lock);
10561 while (!list_empty(&fs_info->unused_bgs)) {
10562 u64 start, end;
e33e17ee 10563 int trimming;
47ab2a6c
JB
10564
10565 block_group = list_first_entry(&fs_info->unused_bgs,
10566 struct btrfs_block_group_cache,
10567 bg_list);
47ab2a6c 10568 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10569
10570 space_info = block_group->space_info;
10571
47ab2a6c
JB
10572 if (ret || btrfs_mixed_space_info(space_info)) {
10573 btrfs_put_block_group(block_group);
10574 continue;
10575 }
10576 spin_unlock(&fs_info->unused_bgs_lock);
10577
d5f2e33b 10578 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10579
47ab2a6c
JB
10580 /* Don't want to race with allocators so take the groups_sem */
10581 down_write(&space_info->groups_sem);
10582 spin_lock(&block_group->lock);
10583 if (block_group->reserved ||
10584 btrfs_block_group_used(&block_group->item) ||
aefbe9a6
ZL
10585 block_group->ro ||
10586 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10587 /*
10588 * We want to bail if we made new allocations or have
10589 * outstanding allocations in this block group. We do
10590 * the ro check in case balance is currently acting on
10591 * this block group.
10592 */
10593 spin_unlock(&block_group->lock);
10594 up_write(&space_info->groups_sem);
10595 goto next;
10596 }
10597 spin_unlock(&block_group->lock);
10598
10599 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10600 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10601 up_write(&space_info->groups_sem);
10602 if (ret < 0) {
10603 ret = 0;
10604 goto next;
10605 }
10606
10607 /*
10608 * Want to do this before we do anything else so we can recover
10609 * properly if we fail to join the transaction.
10610 */
7fd01182
FM
10611 trans = btrfs_start_trans_remove_block_group(fs_info,
10612 block_group->key.objectid);
47ab2a6c 10613 if (IS_ERR(trans)) {
868f401a 10614 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10615 ret = PTR_ERR(trans);
10616 goto next;
10617 }
10618
10619 /*
10620 * We could have pending pinned extents for this block group,
10621 * just delete them, we don't care about them anymore.
10622 */
10623 start = block_group->key.objectid;
10624 end = start + block_group->key.offset - 1;
d4b450cd
FM
10625 /*
10626 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10627 * btrfs_finish_extent_commit(). If we are at transaction N,
10628 * another task might be running finish_extent_commit() for the
10629 * previous transaction N - 1, and have seen a range belonging
10630 * to the block group in freed_extents[] before we were able to
10631 * clear the whole block group range from freed_extents[]. This
10632 * means that task can lookup for the block group after we
10633 * unpinned it from freed_extents[] and removed it, leading to
10634 * a BUG_ON() at btrfs_unpin_extent_range().
10635 */
10636 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10637 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10638 EXTENT_DIRTY);
758eb51e 10639 if (ret) {
d4b450cd 10640 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10641 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10642 goto end_trans;
10643 }
10644 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10645 EXTENT_DIRTY);
758eb51e 10646 if (ret) {
d4b450cd 10647 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10648 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10649 goto end_trans;
10650 }
d4b450cd 10651 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10652
10653 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10654 spin_lock(&space_info->lock);
10655 spin_lock(&block_group->lock);
10656
10657 space_info->bytes_pinned -= block_group->pinned;
10658 space_info->bytes_readonly += block_group->pinned;
10659 percpu_counter_add(&space_info->total_bytes_pinned,
10660 -block_group->pinned);
47ab2a6c
JB
10661 block_group->pinned = 0;
10662
c30666d4
ZL
10663 spin_unlock(&block_group->lock);
10664 spin_unlock(&space_info->lock);
10665
e33e17ee
JM
10666 /* DISCARD can flip during remount */
10667 trimming = btrfs_test_opt(root, DISCARD);
10668
10669 /* Implicit trim during transaction commit. */
10670 if (trimming)
10671 btrfs_get_block_group_trimming(block_group);
10672
47ab2a6c
JB
10673 /*
10674 * Btrfs_remove_chunk will abort the transaction if things go
10675 * horribly wrong.
10676 */
10677 ret = btrfs_remove_chunk(trans, root,
10678 block_group->key.objectid);
e33e17ee
JM
10679
10680 if (ret) {
10681 if (trimming)
10682 btrfs_put_block_group_trimming(block_group);
10683 goto end_trans;
10684 }
10685
10686 /*
10687 * If we're not mounted with -odiscard, we can just forget
10688 * about this block group. Otherwise we'll need to wait
10689 * until transaction commit to do the actual discard.
10690 */
10691 if (trimming) {
348a0013
FM
10692 spin_lock(&fs_info->unused_bgs_lock);
10693 /*
10694 * A concurrent scrub might have added us to the list
10695 * fs_info->unused_bgs, so use a list_move operation
10696 * to add the block group to the deleted_bgs list.
10697 */
e33e17ee
JM
10698 list_move(&block_group->bg_list,
10699 &trans->transaction->deleted_bgs);
348a0013 10700 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10701 btrfs_get_block_group(block_group);
10702 }
758eb51e 10703end_trans:
47ab2a6c
JB
10704 btrfs_end_transaction(trans, root);
10705next:
d5f2e33b 10706 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10707 btrfs_put_block_group(block_group);
10708 spin_lock(&fs_info->unused_bgs_lock);
10709 }
10710 spin_unlock(&fs_info->unused_bgs_lock);
10711}
10712
c59021f8 10713int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10714{
10715 struct btrfs_space_info *space_info;
1aba86d6 10716 struct btrfs_super_block *disk_super;
10717 u64 features;
10718 u64 flags;
10719 int mixed = 0;
c59021f8 10720 int ret;
10721
6c41761f 10722 disk_super = fs_info->super_copy;
1aba86d6 10723 if (!btrfs_super_root(disk_super))
0dc924c5 10724 return -EINVAL;
c59021f8 10725
1aba86d6 10726 features = btrfs_super_incompat_flags(disk_super);
10727 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10728 mixed = 1;
c59021f8 10729
1aba86d6 10730 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10731 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10732 if (ret)
1aba86d6 10733 goto out;
c59021f8 10734
1aba86d6 10735 if (mixed) {
10736 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10737 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10738 } else {
10739 flags = BTRFS_BLOCK_GROUP_METADATA;
10740 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10741 if (ret)
10742 goto out;
10743
10744 flags = BTRFS_BLOCK_GROUP_DATA;
10745 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10746 }
10747out:
c59021f8 10748 return ret;
10749}
10750
acce952b 10751int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10752{
678886bd 10753 return unpin_extent_range(root, start, end, false);
acce952b 10754}
10755
499f377f
JM
10756/*
10757 * It used to be that old block groups would be left around forever.
10758 * Iterating over them would be enough to trim unused space. Since we
10759 * now automatically remove them, we also need to iterate over unallocated
10760 * space.
10761 *
10762 * We don't want a transaction for this since the discard may take a
10763 * substantial amount of time. We don't require that a transaction be
10764 * running, but we do need to take a running transaction into account
10765 * to ensure that we're not discarding chunks that were released in
10766 * the current transaction.
10767 *
10768 * Holding the chunks lock will prevent other threads from allocating
10769 * or releasing chunks, but it won't prevent a running transaction
10770 * from committing and releasing the memory that the pending chunks
10771 * list head uses. For that, we need to take a reference to the
10772 * transaction.
10773 */
10774static int btrfs_trim_free_extents(struct btrfs_device *device,
10775 u64 minlen, u64 *trimmed)
10776{
10777 u64 start = 0, len = 0;
10778 int ret;
10779
10780 *trimmed = 0;
10781
10782 /* Not writeable = nothing to do. */
10783 if (!device->writeable)
10784 return 0;
10785
10786 /* No free space = nothing to do. */
10787 if (device->total_bytes <= device->bytes_used)
10788 return 0;
10789
10790 ret = 0;
10791
10792 while (1) {
10793 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10794 struct btrfs_transaction *trans;
10795 u64 bytes;
10796
10797 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10798 if (ret)
10799 return ret;
10800
10801 down_read(&fs_info->commit_root_sem);
10802
10803 spin_lock(&fs_info->trans_lock);
10804 trans = fs_info->running_transaction;
10805 if (trans)
10806 atomic_inc(&trans->use_count);
10807 spin_unlock(&fs_info->trans_lock);
10808
10809 ret = find_free_dev_extent_start(trans, device, minlen, start,
10810 &start, &len);
10811 if (trans)
10812 btrfs_put_transaction(trans);
10813
10814 if (ret) {
10815 up_read(&fs_info->commit_root_sem);
10816 mutex_unlock(&fs_info->chunk_mutex);
10817 if (ret == -ENOSPC)
10818 ret = 0;
10819 break;
10820 }
10821
10822 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10823 up_read(&fs_info->commit_root_sem);
10824 mutex_unlock(&fs_info->chunk_mutex);
10825
10826 if (ret)
10827 break;
10828
10829 start += len;
10830 *trimmed += bytes;
10831
10832 if (fatal_signal_pending(current)) {
10833 ret = -ERESTARTSYS;
10834 break;
10835 }
10836
10837 cond_resched();
10838 }
10839
10840 return ret;
10841}
10842
f7039b1d
LD
10843int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10844{
10845 struct btrfs_fs_info *fs_info = root->fs_info;
10846 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10847 struct btrfs_device *device;
10848 struct list_head *devices;
f7039b1d
LD
10849 u64 group_trimmed;
10850 u64 start;
10851 u64 end;
10852 u64 trimmed = 0;
2cac13e4 10853 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10854 int ret = 0;
10855
2cac13e4
LB
10856 /*
10857 * try to trim all FS space, our block group may start from non-zero.
10858 */
10859 if (range->len == total_bytes)
10860 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10861 else
10862 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10863
10864 while (cache) {
10865 if (cache->key.objectid >= (range->start + range->len)) {
10866 btrfs_put_block_group(cache);
10867 break;
10868 }
10869
10870 start = max(range->start, cache->key.objectid);
10871 end = min(range->start + range->len,
10872 cache->key.objectid + cache->key.offset);
10873
10874 if (end - start >= range->minlen) {
10875 if (!block_group_cache_done(cache)) {
f6373bf3 10876 ret = cache_block_group(cache, 0);
1be41b78
JB
10877 if (ret) {
10878 btrfs_put_block_group(cache);
10879 break;
10880 }
10881 ret = wait_block_group_cache_done(cache);
10882 if (ret) {
10883 btrfs_put_block_group(cache);
10884 break;
10885 }
f7039b1d
LD
10886 }
10887 ret = btrfs_trim_block_group(cache,
10888 &group_trimmed,
10889 start,
10890 end,
10891 range->minlen);
10892
10893 trimmed += group_trimmed;
10894 if (ret) {
10895 btrfs_put_block_group(cache);
10896 break;
10897 }
10898 }
10899
10900 cache = next_block_group(fs_info->tree_root, cache);
10901 }
10902
499f377f
JM
10903 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10904 devices = &root->fs_info->fs_devices->alloc_list;
10905 list_for_each_entry(device, devices, dev_alloc_list) {
10906 ret = btrfs_trim_free_extents(device, range->minlen,
10907 &group_trimmed);
10908 if (ret)
10909 break;
10910
10911 trimmed += group_trimmed;
10912 }
10913 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10914
f7039b1d
LD
10915 range->len = trimmed;
10916 return ret;
10917}
8257b2dc
MX
10918
10919/*
9ea24bbe
FM
10920 * btrfs_{start,end}_write_no_snapshoting() are similar to
10921 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10922 * data into the page cache through nocow before the subvolume is snapshoted,
10923 * but flush the data into disk after the snapshot creation, or to prevent
10924 * operations while snapshoting is ongoing and that cause the snapshot to be
10925 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10926 */
9ea24bbe 10927void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10928{
10929 percpu_counter_dec(&root->subv_writers->counter);
10930 /*
a83342aa 10931 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10932 */
10933 smp_mb();
10934 if (waitqueue_active(&root->subv_writers->wait))
10935 wake_up(&root->subv_writers->wait);
10936}
10937
9ea24bbe 10938int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10939{
ee39b432 10940 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10941 return 0;
10942
10943 percpu_counter_inc(&root->subv_writers->counter);
10944 /*
10945 * Make sure counter is updated before we check for snapshot creation.
10946 */
10947 smp_mb();
ee39b432 10948 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10949 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10950 return 0;
10951 }
10952 return 1;
10953}
0bc19f90
ZL
10954
10955static int wait_snapshoting_atomic_t(atomic_t *a)
10956{
10957 schedule();
10958 return 0;
10959}
10960
10961void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10962{
10963 while (true) {
10964 int ret;
10965
10966 ret = btrfs_start_write_no_snapshoting(root);
10967 if (ret)
10968 break;
10969 wait_on_atomic_t(&root->will_be_snapshoted,
10970 wait_snapshoting_atomic_t,
10971 TASK_UNINTERRUPTIBLE);
10972 }
10973}