]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: replace btrfs_set_lock_blocking_rw with appropriate helpers
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
9f9b8e8d
QW
54/*
55 * Declare a helper function to detect underflow of various space info members
56 */
57#define DECLARE_SPACE_INFO_UPDATE(name) \
58static inline void update_##name(struct btrfs_space_info *sinfo, \
59 s64 bytes) \
60{ \
61 if (bytes < 0 && sinfo->name < -bytes) { \
62 WARN_ON(1); \
63 sinfo->name = 0; \
64 return; \
65 } \
66 sinfo->name += bytes; \
67}
68
69DECLARE_SPACE_INFO_UPDATE(bytes_may_use);
e2907c1a 70DECLARE_SPACE_INFO_UPDATE(bytes_pinned);
9f9b8e8d 71
5d4f98a2 72static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
73 struct btrfs_delayed_ref_node *node, u64 parent,
74 u64 root_objectid, u64 owner_objectid,
75 u64 owner_offset, int refs_to_drop,
76 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
77static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
78 struct extent_buffer *leaf,
79 struct btrfs_extent_item *ei);
80static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
81 u64 parent, u64 root_objectid,
82 u64 flags, u64 owner, u64 offset,
83 struct btrfs_key *ins, int ref_mod);
84static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 85 struct btrfs_delayed_ref_node *node,
21ebfbe7 86 struct btrfs_delayed_extent_op *extent_op);
01458828 87static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
698d0082 88 int force);
11833d66
YZ
89static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
ab8d0fc4
JM
91static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 93 int dump_block_groups);
5d80366e
JB
94static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
95 u64 num_bytes);
957780eb
JB
96static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
97 struct btrfs_space_info *space_info,
98 u64 num_bytes);
99static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
100 struct btrfs_space_info *space_info,
101 u64 num_bytes);
6a63209f 102
817d52f8
JB
103static noinline int
104block_group_cache_done(struct btrfs_block_group_cache *cache)
105{
106 smp_mb();
36cce922
JB
107 return cache->cached == BTRFS_CACHE_FINISHED ||
108 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
109}
110
0f9dd46c
JB
111static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112{
113 return (cache->flags & bits) == bits;
114}
115
758f2dfc 116void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
117{
118 atomic_inc(&cache->count);
119}
120
121void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122{
f0486c68
YZ
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
0966a7b1
QW
126
127 /*
128 * If not empty, someone is still holding mutex of
129 * full_stripe_lock, which can only be released by caller.
130 * And it will definitely cause use-after-free when caller
131 * tries to release full stripe lock.
132 *
133 * No better way to resolve, but only to warn.
134 */
135 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 136 kfree(cache->free_space_ctl);
11dfe35a 137 kfree(cache);
f0486c68 138 }
11dfe35a
JB
139}
140
0f9dd46c
JB
141/*
142 * this adds the block group to the fs_info rb tree for the block group
143 * cache
144 */
b2950863 145static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
146 struct btrfs_block_group_cache *block_group)
147{
148 struct rb_node **p;
149 struct rb_node *parent = NULL;
150 struct btrfs_block_group_cache *cache;
151
152 spin_lock(&info->block_group_cache_lock);
153 p = &info->block_group_cache_tree.rb_node;
154
155 while (*p) {
156 parent = *p;
157 cache = rb_entry(parent, struct btrfs_block_group_cache,
158 cache_node);
159 if (block_group->key.objectid < cache->key.objectid) {
160 p = &(*p)->rb_left;
161 } else if (block_group->key.objectid > cache->key.objectid) {
162 p = &(*p)->rb_right;
163 } else {
164 spin_unlock(&info->block_group_cache_lock);
165 return -EEXIST;
166 }
167 }
168
169 rb_link_node(&block_group->cache_node, parent, p);
170 rb_insert_color(&block_group->cache_node,
171 &info->block_group_cache_tree);
a1897fdd
LB
172
173 if (info->first_logical_byte > block_group->key.objectid)
174 info->first_logical_byte = block_group->key.objectid;
175
0f9dd46c
JB
176 spin_unlock(&info->block_group_cache_lock);
177
178 return 0;
179}
180
181/*
182 * This will return the block group at or after bytenr if contains is 0, else
183 * it will return the block group that contains the bytenr
184 */
185static struct btrfs_block_group_cache *
186block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
187 int contains)
188{
189 struct btrfs_block_group_cache *cache, *ret = NULL;
190 struct rb_node *n;
191 u64 end, start;
192
193 spin_lock(&info->block_group_cache_lock);
194 n = info->block_group_cache_tree.rb_node;
195
196 while (n) {
197 cache = rb_entry(n, struct btrfs_block_group_cache,
198 cache_node);
199 end = cache->key.objectid + cache->key.offset - 1;
200 start = cache->key.objectid;
201
202 if (bytenr < start) {
203 if (!contains && (!ret || start < ret->key.objectid))
204 ret = cache;
205 n = n->rb_left;
206 } else if (bytenr > start) {
207 if (contains && bytenr <= end) {
208 ret = cache;
209 break;
210 }
211 n = n->rb_right;
212 } else {
213 ret = cache;
214 break;
215 }
216 }
a1897fdd 217 if (ret) {
11dfe35a 218 btrfs_get_block_group(ret);
a1897fdd
LB
219 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
220 info->first_logical_byte = ret->key.objectid;
221 }
0f9dd46c
JB
222 spin_unlock(&info->block_group_cache_lock);
223
224 return ret;
225}
226
2ff7e61e 227static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 228 u64 start, u64 num_bytes)
817d52f8 229{
11833d66 230 u64 end = start + num_bytes - 1;
0b246afa 231 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 232 start, end, EXTENT_UPTODATE);
0b246afa 233 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 234 start, end, EXTENT_UPTODATE);
11833d66
YZ
235 return 0;
236}
817d52f8 237
9e715da8 238static void free_excluded_extents(struct btrfs_block_group_cache *cache)
11833d66 239{
9e715da8 240 struct btrfs_fs_info *fs_info = cache->fs_info;
11833d66 241 u64 start, end;
817d52f8 242
11833d66
YZ
243 start = cache->key.objectid;
244 end = start + cache->key.offset - 1;
245
0b246afa 246 clear_extent_bits(&fs_info->freed_extents[0],
91166212 247 start, end, EXTENT_UPTODATE);
0b246afa 248 clear_extent_bits(&fs_info->freed_extents[1],
91166212 249 start, end, EXTENT_UPTODATE);
817d52f8
JB
250}
251
3c4da657 252static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
817d52f8 253{
3c4da657 254 struct btrfs_fs_info *fs_info = cache->fs_info;
817d52f8
JB
255 u64 bytenr;
256 u64 *logical;
257 int stripe_len;
258 int i, nr, ret;
259
06b2331f
YZ
260 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
261 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
262 cache->bytes_super += stripe_len;
2ff7e61e 263 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 264 stripe_len);
835d974f
JB
265 if (ret)
266 return ret;
06b2331f
YZ
267 }
268
817d52f8
JB
269 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
270 bytenr = btrfs_sb_offset(i);
0b246afa 271 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
63a9c7b9 272 bytenr, &logical, &nr, &stripe_len);
835d974f
JB
273 if (ret)
274 return ret;
11833d66 275
817d52f8 276 while (nr--) {
51bf5f0b
JB
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
2ff7e61e 297 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
817d52f8 302 }
11833d66 303
817d52f8
JB
304 kfree(logical);
305 }
817d52f8
JB
306 return 0;
307}
308
11833d66
YZ
309static struct btrfs_caching_control *
310get_caching_control(struct btrfs_block_group_cache *cache)
311{
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
dde5abee
JB
315 if (!cache->caching_ctl) {
316 spin_unlock(&cache->lock);
11833d66
YZ
317 return NULL;
318 }
319
320 ctl = cache->caching_ctl;
1e4f4714 321 refcount_inc(&ctl->count);
11833d66
YZ
322 spin_unlock(&cache->lock);
323 return ctl;
324}
325
326static void put_caching_control(struct btrfs_caching_control *ctl)
327{
1e4f4714 328 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
329 kfree(ctl);
330}
331
d0bd4560 332#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 333static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 334{
2ff7e61e 335 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
336 u64 start = block_group->key.objectid;
337 u64 len = block_group->key.offset;
338 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 339 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
340 u64 step = chunk << 1;
341
342 while (len > chunk) {
343 btrfs_remove_free_space(block_group, start, chunk);
344 start += step;
345 if (len < step)
346 len = 0;
347 else
348 len -= step;
349 }
350}
351#endif
352
0f9dd46c
JB
353/*
354 * this is only called by cache_block_group, since we could have freed extents
355 * we need to check the pinned_extents for any extents that can't be used yet
356 * since their free space will be released as soon as the transaction commits.
357 */
a5ed9182 358u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
4457c1c7 359 u64 start, u64 end)
0f9dd46c 360{
4457c1c7 361 struct btrfs_fs_info *info = block_group->fs_info;
817d52f8 362 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
363 int ret;
364
365 while (start < end) {
11833d66 366 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 367 &extent_start, &extent_end,
e6138876
JB
368 EXTENT_DIRTY | EXTENT_UPTODATE,
369 NULL);
0f9dd46c
JB
370 if (ret)
371 break;
372
06b2331f 373 if (extent_start <= start) {
0f9dd46c
JB
374 start = extent_end + 1;
375 } else if (extent_start > start && extent_start < end) {
376 size = extent_start - start;
817d52f8 377 total_added += size;
ea6a478e
JB
378 ret = btrfs_add_free_space(block_group, start,
379 size);
79787eaa 380 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
381 start = extent_end + 1;
382 } else {
383 break;
384 }
385 }
386
387 if (start < end) {
388 size = end - start;
817d52f8 389 total_added += size;
ea6a478e 390 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 391 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
392 }
393
817d52f8 394 return total_added;
0f9dd46c
JB
395}
396
73fa48b6 397static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 398{
0b246afa
JM
399 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
400 struct btrfs_fs_info *fs_info = block_group->fs_info;
401 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 402 struct btrfs_path *path;
5f39d397 403 struct extent_buffer *leaf;
11833d66 404 struct btrfs_key key;
817d52f8 405 u64 total_found = 0;
11833d66
YZ
406 u64 last = 0;
407 u32 nritems;
73fa48b6 408 int ret;
d0bd4560 409 bool wakeup = true;
f510cfec 410
e37c9e69
CM
411 path = btrfs_alloc_path();
412 if (!path)
73fa48b6 413 return -ENOMEM;
7d7d6068 414
817d52f8 415 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 416
d0bd4560
JB
417#ifdef CONFIG_BTRFS_DEBUG
418 /*
419 * If we're fragmenting we don't want to make anybody think we can
420 * allocate from this block group until we've had a chance to fragment
421 * the free space.
422 */
2ff7e61e 423 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
424 wakeup = false;
425#endif
5cd57b2c 426 /*
817d52f8
JB
427 * We don't want to deadlock with somebody trying to allocate a new
428 * extent for the extent root while also trying to search the extent
429 * root to add free space. So we skip locking and search the commit
430 * root, since its read-only
5cd57b2c
CM
431 */
432 path->skip_locking = 1;
817d52f8 433 path->search_commit_root = 1;
e4058b54 434 path->reada = READA_FORWARD;
817d52f8 435
e4404d6e 436 key.objectid = last;
e37c9e69 437 key.offset = 0;
11833d66 438 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 439
52ee28d2 440next:
11833d66 441 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 442 if (ret < 0)
73fa48b6 443 goto out;
a512bbf8 444
11833d66
YZ
445 leaf = path->nodes[0];
446 nritems = btrfs_header_nritems(leaf);
447
d397712b 448 while (1) {
7841cb28 449 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 450 last = (u64)-1;
817d52f8 451 break;
f25784b3 452 }
817d52f8 453
11833d66
YZ
454 if (path->slots[0] < nritems) {
455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
456 } else {
457 ret = find_next_key(path, 0, &key);
458 if (ret)
e37c9e69 459 break;
817d52f8 460
c9ea7b24 461 if (need_resched() ||
9e351cc8 462 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
463 if (wakeup)
464 caching_ctl->progress = last;
ff5714cc 465 btrfs_release_path(path);
9e351cc8 466 up_read(&fs_info->commit_root_sem);
589d8ade 467 mutex_unlock(&caching_ctl->mutex);
11833d66 468 cond_resched();
73fa48b6
OS
469 mutex_lock(&caching_ctl->mutex);
470 down_read(&fs_info->commit_root_sem);
471 goto next;
589d8ade 472 }
0a3896d0
JB
473
474 ret = btrfs_next_leaf(extent_root, path);
475 if (ret < 0)
73fa48b6 476 goto out;
0a3896d0
JB
477 if (ret)
478 break;
589d8ade
JB
479 leaf = path->nodes[0];
480 nritems = btrfs_header_nritems(leaf);
481 continue;
11833d66 482 }
817d52f8 483
52ee28d2
LB
484 if (key.objectid < last) {
485 key.objectid = last;
486 key.offset = 0;
487 key.type = BTRFS_EXTENT_ITEM_KEY;
488
d0bd4560
JB
489 if (wakeup)
490 caching_ctl->progress = last;
52ee28d2
LB
491 btrfs_release_path(path);
492 goto next;
493 }
494
11833d66
YZ
495 if (key.objectid < block_group->key.objectid) {
496 path->slots[0]++;
817d52f8 497 continue;
e37c9e69 498 }
0f9dd46c 499
e37c9e69 500 if (key.objectid >= block_group->key.objectid +
0f9dd46c 501 block_group->key.offset)
e37c9e69 502 break;
7d7d6068 503
3173a18f
JB
504 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
505 key.type == BTRFS_METADATA_ITEM_KEY) {
4457c1c7 506 total_found += add_new_free_space(block_group, last,
817d52f8 507 key.objectid);
3173a18f
JB
508 if (key.type == BTRFS_METADATA_ITEM_KEY)
509 last = key.objectid +
da17066c 510 fs_info->nodesize;
3173a18f
JB
511 else
512 last = key.objectid + key.offset;
817d52f8 513
73fa48b6 514 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 515 total_found = 0;
d0bd4560
JB
516 if (wakeup)
517 wake_up(&caching_ctl->wait);
11833d66 518 }
817d52f8 519 }
e37c9e69
CM
520 path->slots[0]++;
521 }
817d52f8 522 ret = 0;
e37c9e69 523
4457c1c7 524 total_found += add_new_free_space(block_group, last,
817d52f8
JB
525 block_group->key.objectid +
526 block_group->key.offset);
11833d66 527 caching_ctl->progress = (u64)-1;
817d52f8 528
73fa48b6
OS
529out:
530 btrfs_free_path(path);
531 return ret;
532}
533
534static noinline void caching_thread(struct btrfs_work *work)
535{
536 struct btrfs_block_group_cache *block_group;
537 struct btrfs_fs_info *fs_info;
538 struct btrfs_caching_control *caching_ctl;
539 int ret;
540
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
544
545 mutex_lock(&caching_ctl->mutex);
546 down_read(&fs_info->commit_root_sem);
547
1e144fb8
OS
548 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549 ret = load_free_space_tree(caching_ctl);
550 else
551 ret = load_extent_tree_free(caching_ctl);
73fa48b6 552
817d52f8 553 spin_lock(&block_group->lock);
11833d66 554 block_group->caching_ctl = NULL;
73fa48b6 555 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 556 spin_unlock(&block_group->lock);
0f9dd46c 557
d0bd4560 558#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 559 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
560 u64 bytes_used;
561
562 spin_lock(&block_group->space_info->lock);
563 spin_lock(&block_group->lock);
564 bytes_used = block_group->key.offset -
565 btrfs_block_group_used(&block_group->item);
566 block_group->space_info->bytes_used += bytes_used >> 1;
567 spin_unlock(&block_group->lock);
568 spin_unlock(&block_group->space_info->lock);
2ff7e61e 569 fragment_free_space(block_group);
d0bd4560
JB
570 }
571#endif
572
573 caching_ctl->progress = (u64)-1;
11833d66 574
9e351cc8 575 up_read(&fs_info->commit_root_sem);
9e715da8 576 free_excluded_extents(block_group);
11833d66 577 mutex_unlock(&caching_ctl->mutex);
73fa48b6 578
11833d66
YZ
579 wake_up(&caching_ctl->wait);
580
581 put_caching_control(caching_ctl);
11dfe35a 582 btrfs_put_block_group(block_group);
817d52f8
JB
583}
584
9d66e233 585static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 586 int load_cache_only)
817d52f8 587{
291c7d2f 588 DEFINE_WAIT(wait);
11833d66
YZ
589 struct btrfs_fs_info *fs_info = cache->fs_info;
590 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
591 int ret = 0;
592
291c7d2f 593 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
594 if (!caching_ctl)
595 return -ENOMEM;
291c7d2f
JB
596
597 INIT_LIST_HEAD(&caching_ctl->list);
598 mutex_init(&caching_ctl->mutex);
599 init_waitqueue_head(&caching_ctl->wait);
600 caching_ctl->block_group = cache;
601 caching_ctl->progress = cache->key.objectid;
1e4f4714 602 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
603 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604 caching_thread, NULL, NULL);
291c7d2f
JB
605
606 spin_lock(&cache->lock);
607 /*
608 * This should be a rare occasion, but this could happen I think in the
609 * case where one thread starts to load the space cache info, and then
610 * some other thread starts a transaction commit which tries to do an
611 * allocation while the other thread is still loading the space cache
612 * info. The previous loop should have kept us from choosing this block
613 * group, but if we've moved to the state where we will wait on caching
614 * block groups we need to first check if we're doing a fast load here,
615 * so we can wait for it to finish, otherwise we could end up allocating
616 * from a block group who's cache gets evicted for one reason or
617 * another.
618 */
619 while (cache->cached == BTRFS_CACHE_FAST) {
620 struct btrfs_caching_control *ctl;
621
622 ctl = cache->caching_ctl;
1e4f4714 623 refcount_inc(&ctl->count);
291c7d2f
JB
624 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625 spin_unlock(&cache->lock);
626
627 schedule();
628
629 finish_wait(&ctl->wait, &wait);
630 put_caching_control(ctl);
631 spin_lock(&cache->lock);
632 }
633
634 if (cache->cached != BTRFS_CACHE_NO) {
635 spin_unlock(&cache->lock);
636 kfree(caching_ctl);
11833d66 637 return 0;
291c7d2f
JB
638 }
639 WARN_ON(cache->caching_ctl);
640 cache->caching_ctl = caching_ctl;
641 cache->cached = BTRFS_CACHE_FAST;
642 spin_unlock(&cache->lock);
11833d66 643
d8953d69 644 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 645 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
646 ret = load_free_space_cache(fs_info, cache);
647
648 spin_lock(&cache->lock);
649 if (ret == 1) {
291c7d2f 650 cache->caching_ctl = NULL;
9d66e233
JB
651 cache->cached = BTRFS_CACHE_FINISHED;
652 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 653 caching_ctl->progress = (u64)-1;
9d66e233 654 } else {
291c7d2f
JB
655 if (load_cache_only) {
656 cache->caching_ctl = NULL;
657 cache->cached = BTRFS_CACHE_NO;
658 } else {
659 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 660 cache->has_caching_ctl = 1;
291c7d2f 661 }
9d66e233
JB
662 }
663 spin_unlock(&cache->lock);
d0bd4560
JB
664#ifdef CONFIG_BTRFS_DEBUG
665 if (ret == 1 &&
2ff7e61e 666 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
667 u64 bytes_used;
668
669 spin_lock(&cache->space_info->lock);
670 spin_lock(&cache->lock);
671 bytes_used = cache->key.offset -
672 btrfs_block_group_used(&cache->item);
673 cache->space_info->bytes_used += bytes_used >> 1;
674 spin_unlock(&cache->lock);
675 spin_unlock(&cache->space_info->lock);
2ff7e61e 676 fragment_free_space(cache);
d0bd4560
JB
677 }
678#endif
cb83b7b8
JB
679 mutex_unlock(&caching_ctl->mutex);
680
291c7d2f 681 wake_up(&caching_ctl->wait);
3c14874a 682 if (ret == 1) {
291c7d2f 683 put_caching_control(caching_ctl);
9e715da8 684 free_excluded_extents(cache);
9d66e233 685 return 0;
3c14874a 686 }
291c7d2f
JB
687 } else {
688 /*
1e144fb8
OS
689 * We're either using the free space tree or no caching at all.
690 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
691 */
692 spin_lock(&cache->lock);
693 if (load_cache_only) {
694 cache->caching_ctl = NULL;
695 cache->cached = BTRFS_CACHE_NO;
696 } else {
697 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 698 cache->has_caching_ctl = 1;
291c7d2f
JB
699 }
700 spin_unlock(&cache->lock);
701 wake_up(&caching_ctl->wait);
9d66e233
JB
702 }
703
291c7d2f
JB
704 if (load_cache_only) {
705 put_caching_control(caching_ctl);
11833d66 706 return 0;
817d52f8 707 }
817d52f8 708
9e351cc8 709 down_write(&fs_info->commit_root_sem);
1e4f4714 710 refcount_inc(&caching_ctl->count);
11833d66 711 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 712 up_write(&fs_info->commit_root_sem);
11833d66 713
11dfe35a 714 btrfs_get_block_group(cache);
11833d66 715
e66f0bb1 716 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 717
ef8bbdfe 718 return ret;
e37c9e69
CM
719}
720
0f9dd46c
JB
721/*
722 * return the block group that starts at or after bytenr
723 */
d397712b
CM
724static struct btrfs_block_group_cache *
725btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 726{
e2c89907 727 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
728}
729
0f9dd46c 730/*
9f55684c 731 * return the block group that contains the given bytenr
0f9dd46c 732 */
d397712b
CM
733struct btrfs_block_group_cache *btrfs_lookup_block_group(
734 struct btrfs_fs_info *info,
735 u64 bytenr)
be744175 736{
e2c89907 737 return block_group_cache_tree_search(info, bytenr, 1);
be744175 738}
0b86a832 739
0f9dd46c
JB
740static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
741 u64 flags)
6324fbf3 742{
0f9dd46c 743 struct list_head *head = &info->space_info;
0f9dd46c 744 struct btrfs_space_info *found;
4184ea7f 745
52ba6929 746 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 747
4184ea7f
CM
748 rcu_read_lock();
749 list_for_each_entry_rcu(found, head, list) {
67377734 750 if (found->flags & flags) {
4184ea7f 751 rcu_read_unlock();
0f9dd46c 752 return found;
4184ea7f 753 }
0f9dd46c 754 }
4184ea7f 755 rcu_read_unlock();
0f9dd46c 756 return NULL;
6324fbf3
CM
757}
758
0d9f824d 759static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
29d2b84c 760 bool metadata, u64 root_objectid)
0d9f824d
OS
761{
762 struct btrfs_space_info *space_info;
763 u64 flags;
764
29d2b84c 765 if (metadata) {
0d9f824d
OS
766 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
767 flags = BTRFS_BLOCK_GROUP_SYSTEM;
768 else
769 flags = BTRFS_BLOCK_GROUP_METADATA;
770 } else {
771 flags = BTRFS_BLOCK_GROUP_DATA;
772 }
773
774 space_info = __find_space_info(fs_info, flags);
55e8196a 775 ASSERT(space_info);
dec59fa3
EL
776 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
777 BTRFS_TOTAL_BYTES_PINNED_BATCH);
0d9f824d
OS
778}
779
4184ea7f
CM
780/*
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
783 */
784void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785{
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
788
789 rcu_read_lock();
790 list_for_each_entry_rcu(found, head, list)
791 found->full = 0;
792 rcu_read_unlock();
793}
794
1a4ed8fd 795/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 796int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
797{
798 int ret;
799 struct btrfs_key key;
31840ae1 800 struct btrfs_path *path;
e02119d5 801
31840ae1 802 path = btrfs_alloc_path();
d8926bb3
MF
803 if (!path)
804 return -ENOMEM;
805
e02119d5
CM
806 key.objectid = start;
807 key.offset = len;
3173a18f 808 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 810 btrfs_free_path(path);
7bb86316
CM
811 return ret;
812}
813
a22285a6 814/*
3173a18f 815 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
816 *
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
822 */
823int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 824 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 825 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
826{
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
833 u32 item_size;
834 u64 num_refs;
835 u64 extent_flags;
836 int ret;
837
3173a18f
JB
838 /*
839 * If we don't have skinny metadata, don't bother doing anything
840 * different
841 */
0b246afa
JM
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
3173a18f
JB
844 metadata = 0;
845 }
846
a22285a6
YZ
847 path = btrfs_alloc_path();
848 if (!path)
849 return -ENOMEM;
850
a22285a6
YZ
851 if (!trans) {
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
854 }
639eefc8
FDBM
855
856search_again:
857 key.objectid = bytenr;
858 key.offset = offset;
859 if (metadata)
860 key.type = BTRFS_METADATA_ITEM_KEY;
861 else
862 key.type = BTRFS_EXTENT_ITEM_KEY;
863
0b246afa 864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
865 if (ret < 0)
866 goto out_free;
867
3173a18f 868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
869 if (path->slots[0]) {
870 path->slots[0]--;
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 path->slots[0]);
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 875 key.offset == fs_info->nodesize)
74be9510
FDBM
876 ret = 0;
877 }
3173a18f
JB
878 }
879
a22285a6
YZ
880 if (ret == 0) {
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
888 } else {
ba3c2b19
NB
889 ret = -EINVAL;
890 btrfs_print_v0_err(fs_info);
891 if (trans)
892 btrfs_abort_transaction(trans, ret);
893 else
894 btrfs_handle_fs_error(fs_info, ret, NULL);
895
896 goto out_free;
a22285a6 897 }
ba3c2b19 898
a22285a6
YZ
899 BUG_ON(num_refs == 0);
900 } else {
901 num_refs = 0;
902 extent_flags = 0;
903 ret = 0;
904 }
905
906 if (!trans)
907 goto out;
908
909 delayed_refs = &trans->transaction->delayed_refs;
910 spin_lock(&delayed_refs->lock);
f72ad18e 911 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
912 if (head) {
913 if (!mutex_trylock(&head->mutex)) {
d278850e 914 refcount_inc(&head->refs);
a22285a6
YZ
915 spin_unlock(&delayed_refs->lock);
916
b3b4aa74 917 btrfs_release_path(path);
a22285a6 918
8cc33e5c
DS
919 /*
920 * Mutex was contended, block until it's released and try
921 * again
922 */
a22285a6
YZ
923 mutex_lock(&head->mutex);
924 mutex_unlock(&head->mutex);
d278850e 925 btrfs_put_delayed_ref_head(head);
639eefc8 926 goto search_again;
a22285a6 927 }
d7df2c79 928 spin_lock(&head->lock);
a22285a6
YZ
929 if (head->extent_op && head->extent_op->update_flags)
930 extent_flags |= head->extent_op->flags_to_set;
931 else
932 BUG_ON(num_refs == 0);
933
d278850e 934 num_refs += head->ref_mod;
d7df2c79 935 spin_unlock(&head->lock);
a22285a6
YZ
936 mutex_unlock(&head->mutex);
937 }
938 spin_unlock(&delayed_refs->lock);
939out:
940 WARN_ON(num_refs == 0);
941 if (refs)
942 *refs = num_refs;
943 if (flags)
944 *flags = extent_flags;
945out_free:
946 btrfs_free_path(path);
947 return ret;
948}
949
d8d5f3e1
CM
950/*
951 * Back reference rules. Back refs have three main goals:
952 *
953 * 1) differentiate between all holders of references to an extent so that
954 * when a reference is dropped we can make sure it was a valid reference
955 * before freeing the extent.
956 *
957 * 2) Provide enough information to quickly find the holders of an extent
958 * if we notice a given block is corrupted or bad.
959 *
960 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
961 * maintenance. This is actually the same as #2, but with a slightly
962 * different use case.
963 *
5d4f98a2
YZ
964 * There are two kinds of back refs. The implicit back refs is optimized
965 * for pointers in non-shared tree blocks. For a given pointer in a block,
966 * back refs of this kind provide information about the block's owner tree
967 * and the pointer's key. These information allow us to find the block by
968 * b-tree searching. The full back refs is for pointers in tree blocks not
969 * referenced by their owner trees. The location of tree block is recorded
970 * in the back refs. Actually the full back refs is generic, and can be
971 * used in all cases the implicit back refs is used. The major shortcoming
972 * of the full back refs is its overhead. Every time a tree block gets
973 * COWed, we have to update back refs entry for all pointers in it.
974 *
975 * For a newly allocated tree block, we use implicit back refs for
976 * pointers in it. This means most tree related operations only involve
977 * implicit back refs. For a tree block created in old transaction, the
978 * only way to drop a reference to it is COW it. So we can detect the
979 * event that tree block loses its owner tree's reference and do the
980 * back refs conversion.
981 *
01327610 982 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
983 *
984 * The reference count of the block is one and the tree is the block's
985 * owner tree. Nothing to do in this case.
986 *
987 * The reference count of the block is one and the tree is not the
988 * block's owner tree. In this case, full back refs is used for pointers
989 * in the block. Remove these full back refs, add implicit back refs for
990 * every pointers in the new block.
991 *
992 * The reference count of the block is greater than one and the tree is
993 * the block's owner tree. In this case, implicit back refs is used for
994 * pointers in the block. Add full back refs for every pointers in the
995 * block, increase lower level extents' reference counts. The original
996 * implicit back refs are entailed to the new block.
997 *
998 * The reference count of the block is greater than one and the tree is
999 * not the block's owner tree. Add implicit back refs for every pointer in
1000 * the new block, increase lower level extents' reference count.
1001 *
1002 * Back Reference Key composing:
1003 *
1004 * The key objectid corresponds to the first byte in the extent,
1005 * The key type is used to differentiate between types of back refs.
1006 * There are different meanings of the key offset for different types
1007 * of back refs.
1008 *
d8d5f3e1
CM
1009 * File extents can be referenced by:
1010 *
1011 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1012 * - different files inside a single subvolume
d8d5f3e1
CM
1013 * - different offsets inside a file (bookend extents in file.c)
1014 *
5d4f98a2 1015 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1016 *
1017 * - Objectid of the subvolume root
d8d5f3e1 1018 * - objectid of the file holding the reference
5d4f98a2
YZ
1019 * - original offset in the file
1020 * - how many bookend extents
d8d5f3e1 1021 *
5d4f98a2
YZ
1022 * The key offset for the implicit back refs is hash of the first
1023 * three fields.
d8d5f3e1 1024 *
5d4f98a2 1025 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1026 *
5d4f98a2 1027 * - number of pointers in the tree leaf
d8d5f3e1 1028 *
5d4f98a2
YZ
1029 * The key offset for the implicit back refs is the first byte of
1030 * the tree leaf
d8d5f3e1 1031 *
5d4f98a2
YZ
1032 * When a file extent is allocated, The implicit back refs is used.
1033 * the fields are filled in:
d8d5f3e1 1034 *
5d4f98a2 1035 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1036 *
5d4f98a2
YZ
1037 * When a file extent is removed file truncation, we find the
1038 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1039 *
5d4f98a2 1040 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1041 *
5d4f98a2 1042 * Btree extents can be referenced by:
d8d5f3e1 1043 *
5d4f98a2 1044 * - Different subvolumes
d8d5f3e1 1045 *
5d4f98a2
YZ
1046 * Both the implicit back refs and the full back refs for tree blocks
1047 * only consist of key. The key offset for the implicit back refs is
1048 * objectid of block's owner tree. The key offset for the full back refs
1049 * is the first byte of parent block.
d8d5f3e1 1050 *
5d4f98a2
YZ
1051 * When implicit back refs is used, information about the lowest key and
1052 * level of the tree block are required. These information are stored in
1053 * tree block info structure.
d8d5f3e1 1054 */
31840ae1 1055
167ce953
LB
1056/*
1057 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
52042d8e 1058 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
167ce953
LB
1059 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1060 */
1061int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1062 struct btrfs_extent_inline_ref *iref,
1063 enum btrfs_inline_ref_type is_data)
1064{
1065 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1066 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1067
1068 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1069 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1070 type == BTRFS_SHARED_DATA_REF_KEY ||
1071 type == BTRFS_EXTENT_DATA_REF_KEY) {
1072 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1073 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1074 return type;
64ecdb64
LB
1075 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1076 ASSERT(eb->fs_info);
1077 /*
1078 * Every shared one has parent tree
1079 * block, which must be aligned to
1080 * nodesize.
1081 */
1082 if (offset &&
1083 IS_ALIGNED(offset, eb->fs_info->nodesize))
1084 return type;
1085 }
167ce953 1086 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1087 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1088 return type;
64ecdb64
LB
1089 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1090 ASSERT(eb->fs_info);
1091 /*
1092 * Every shared one has parent tree
1093 * block, which must be aligned to
1094 * nodesize.
1095 */
1096 if (offset &&
1097 IS_ALIGNED(offset, eb->fs_info->nodesize))
1098 return type;
1099 }
167ce953
LB
1100 } else {
1101 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1102 return type;
1103 }
1104 }
1105
1106 btrfs_print_leaf((struct extent_buffer *)eb);
1107 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1108 eb->start, type);
1109 WARN_ON(1);
1110
1111 return BTRFS_REF_TYPE_INVALID;
1112}
1113
5d4f98a2
YZ
1114static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1115{
1116 u32 high_crc = ~(u32)0;
1117 u32 low_crc = ~(u32)0;
1118 __le64 lenum;
1119
1120 lenum = cpu_to_le64(root_objectid);
9678c543 1121 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1122 lenum = cpu_to_le64(owner);
9678c543 1123 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1124 lenum = cpu_to_le64(offset);
9678c543 1125 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1126
1127 return ((u64)high_crc << 31) ^ (u64)low_crc;
1128}
1129
1130static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1131 struct btrfs_extent_data_ref *ref)
1132{
1133 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1134 btrfs_extent_data_ref_objectid(leaf, ref),
1135 btrfs_extent_data_ref_offset(leaf, ref));
1136}
1137
1138static int match_extent_data_ref(struct extent_buffer *leaf,
1139 struct btrfs_extent_data_ref *ref,
1140 u64 root_objectid, u64 owner, u64 offset)
1141{
1142 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1143 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1144 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1145 return 0;
1146 return 1;
1147}
1148
1149static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1150 struct btrfs_path *path,
1151 u64 bytenr, u64 parent,
1152 u64 root_objectid,
1153 u64 owner, u64 offset)
1154{
bd1d53ef 1155 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2
YZ
1156 struct btrfs_key key;
1157 struct btrfs_extent_data_ref *ref;
31840ae1 1158 struct extent_buffer *leaf;
5d4f98a2 1159 u32 nritems;
74493f7a 1160 int ret;
5d4f98a2
YZ
1161 int recow;
1162 int err = -ENOENT;
74493f7a 1163
31840ae1 1164 key.objectid = bytenr;
5d4f98a2
YZ
1165 if (parent) {
1166 key.type = BTRFS_SHARED_DATA_REF_KEY;
1167 key.offset = parent;
1168 } else {
1169 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1170 key.offset = hash_extent_data_ref(root_objectid,
1171 owner, offset);
1172 }
1173again:
1174 recow = 0;
1175 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1176 if (ret < 0) {
1177 err = ret;
1178 goto fail;
1179 }
31840ae1 1180
5d4f98a2
YZ
1181 if (parent) {
1182 if (!ret)
1183 return 0;
5d4f98a2 1184 goto fail;
31840ae1
ZY
1185 }
1186
1187 leaf = path->nodes[0];
5d4f98a2
YZ
1188 nritems = btrfs_header_nritems(leaf);
1189 while (1) {
1190 if (path->slots[0] >= nritems) {
1191 ret = btrfs_next_leaf(root, path);
1192 if (ret < 0)
1193 err = ret;
1194 if (ret)
1195 goto fail;
1196
1197 leaf = path->nodes[0];
1198 nritems = btrfs_header_nritems(leaf);
1199 recow = 1;
1200 }
1201
1202 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1203 if (key.objectid != bytenr ||
1204 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1205 goto fail;
1206
1207 ref = btrfs_item_ptr(leaf, path->slots[0],
1208 struct btrfs_extent_data_ref);
1209
1210 if (match_extent_data_ref(leaf, ref, root_objectid,
1211 owner, offset)) {
1212 if (recow) {
b3b4aa74 1213 btrfs_release_path(path);
5d4f98a2
YZ
1214 goto again;
1215 }
1216 err = 0;
1217 break;
1218 }
1219 path->slots[0]++;
31840ae1 1220 }
5d4f98a2
YZ
1221fail:
1222 return err;
31840ae1
ZY
1223}
1224
5d4f98a2 1225static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1226 struct btrfs_path *path,
1227 u64 bytenr, u64 parent,
1228 u64 root_objectid, u64 owner,
1229 u64 offset, int refs_to_add)
31840ae1 1230{
62b895af 1231 struct btrfs_root *root = trans->fs_info->extent_root;
31840ae1
ZY
1232 struct btrfs_key key;
1233 struct extent_buffer *leaf;
5d4f98a2 1234 u32 size;
31840ae1
ZY
1235 u32 num_refs;
1236 int ret;
74493f7a 1237
74493f7a 1238 key.objectid = bytenr;
5d4f98a2
YZ
1239 if (parent) {
1240 key.type = BTRFS_SHARED_DATA_REF_KEY;
1241 key.offset = parent;
1242 size = sizeof(struct btrfs_shared_data_ref);
1243 } else {
1244 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1245 key.offset = hash_extent_data_ref(root_objectid,
1246 owner, offset);
1247 size = sizeof(struct btrfs_extent_data_ref);
1248 }
74493f7a 1249
5d4f98a2
YZ
1250 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1251 if (ret && ret != -EEXIST)
1252 goto fail;
1253
1254 leaf = path->nodes[0];
1255 if (parent) {
1256 struct btrfs_shared_data_ref *ref;
31840ae1 1257 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1258 struct btrfs_shared_data_ref);
1259 if (ret == 0) {
1260 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1261 } else {
1262 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1263 num_refs += refs_to_add;
1264 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1265 }
5d4f98a2
YZ
1266 } else {
1267 struct btrfs_extent_data_ref *ref;
1268 while (ret == -EEXIST) {
1269 ref = btrfs_item_ptr(leaf, path->slots[0],
1270 struct btrfs_extent_data_ref);
1271 if (match_extent_data_ref(leaf, ref, root_objectid,
1272 owner, offset))
1273 break;
b3b4aa74 1274 btrfs_release_path(path);
5d4f98a2
YZ
1275 key.offset++;
1276 ret = btrfs_insert_empty_item(trans, root, path, &key,
1277 size);
1278 if (ret && ret != -EEXIST)
1279 goto fail;
31840ae1 1280
5d4f98a2
YZ
1281 leaf = path->nodes[0];
1282 }
1283 ref = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_data_ref);
1285 if (ret == 0) {
1286 btrfs_set_extent_data_ref_root(leaf, ref,
1287 root_objectid);
1288 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1289 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1290 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1291 } else {
1292 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1293 num_refs += refs_to_add;
1294 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1295 }
31840ae1 1296 }
5d4f98a2
YZ
1297 btrfs_mark_buffer_dirty(leaf);
1298 ret = 0;
1299fail:
b3b4aa74 1300 btrfs_release_path(path);
7bb86316 1301 return ret;
74493f7a
CM
1302}
1303
5d4f98a2 1304static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2 1305 struct btrfs_path *path,
fcebe456 1306 int refs_to_drop, int *last_ref)
31840ae1 1307{
5d4f98a2
YZ
1308 struct btrfs_key key;
1309 struct btrfs_extent_data_ref *ref1 = NULL;
1310 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1311 struct extent_buffer *leaf;
5d4f98a2 1312 u32 num_refs = 0;
31840ae1
ZY
1313 int ret = 0;
1314
1315 leaf = path->nodes[0];
5d4f98a2
YZ
1316 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1317
1318 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1319 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1322 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1323 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1324 struct btrfs_shared_data_ref);
1325 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
6d8ff4e4 1326 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
ba3c2b19
NB
1327 btrfs_print_v0_err(trans->fs_info);
1328 btrfs_abort_transaction(trans, -EINVAL);
1329 return -EINVAL;
5d4f98a2
YZ
1330 } else {
1331 BUG();
1332 }
1333
56bec294
CM
1334 BUG_ON(num_refs < refs_to_drop);
1335 num_refs -= refs_to_drop;
5d4f98a2 1336
31840ae1 1337 if (num_refs == 0) {
e9f6290d 1338 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
fcebe456 1339 *last_ref = 1;
31840ae1 1340 } else {
5d4f98a2
YZ
1341 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1342 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1343 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1344 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
31840ae1
ZY
1345 btrfs_mark_buffer_dirty(leaf);
1346 }
31840ae1
ZY
1347 return ret;
1348}
1349
9ed0dea0 1350static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1351 struct btrfs_extent_inline_ref *iref)
15916de8 1352{
5d4f98a2
YZ
1353 struct btrfs_key key;
1354 struct extent_buffer *leaf;
1355 struct btrfs_extent_data_ref *ref1;
1356 struct btrfs_shared_data_ref *ref2;
1357 u32 num_refs = 0;
3de28d57 1358 int type;
5d4f98a2
YZ
1359
1360 leaf = path->nodes[0];
1361 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
ba3c2b19
NB
1362
1363 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
5d4f98a2 1364 if (iref) {
3de28d57
LB
1365 /*
1366 * If type is invalid, we should have bailed out earlier than
1367 * this call.
1368 */
1369 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1370 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1371 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1372 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1373 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1374 } else {
1375 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1376 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1377 }
1378 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1379 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1380 struct btrfs_extent_data_ref);
1381 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1382 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1383 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1384 struct btrfs_shared_data_ref);
1385 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
5d4f98a2
YZ
1386 } else {
1387 WARN_ON(1);
1388 }
1389 return num_refs;
1390}
15916de8 1391
5d4f98a2 1392static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1393 struct btrfs_path *path,
1394 u64 bytenr, u64 parent,
1395 u64 root_objectid)
1f3c79a2 1396{
b8582eea 1397 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2 1398 struct btrfs_key key;
1f3c79a2 1399 int ret;
1f3c79a2 1400
5d4f98a2
YZ
1401 key.objectid = bytenr;
1402 if (parent) {
1403 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1404 key.offset = parent;
1405 } else {
1406 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1407 key.offset = root_objectid;
1f3c79a2
LH
1408 }
1409
5d4f98a2
YZ
1410 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1411 if (ret > 0)
1412 ret = -ENOENT;
5d4f98a2 1413 return ret;
1f3c79a2
LH
1414}
1415
5d4f98a2 1416static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1417 struct btrfs_path *path,
1418 u64 bytenr, u64 parent,
1419 u64 root_objectid)
31840ae1 1420{
5d4f98a2 1421 struct btrfs_key key;
31840ae1 1422 int ret;
31840ae1 1423
5d4f98a2
YZ
1424 key.objectid = bytenr;
1425 if (parent) {
1426 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 key.offset = parent;
1428 } else {
1429 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1430 key.offset = root_objectid;
1431 }
1432
10728404 1433 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
87bde3cd 1434 path, &key, 0);
b3b4aa74 1435 btrfs_release_path(path);
31840ae1
ZY
1436 return ret;
1437}
1438
5d4f98a2 1439static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1440{
5d4f98a2
YZ
1441 int type;
1442 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1443 if (parent > 0)
1444 type = BTRFS_SHARED_BLOCK_REF_KEY;
1445 else
1446 type = BTRFS_TREE_BLOCK_REF_KEY;
1447 } else {
1448 if (parent > 0)
1449 type = BTRFS_SHARED_DATA_REF_KEY;
1450 else
1451 type = BTRFS_EXTENT_DATA_REF_KEY;
1452 }
1453 return type;
31840ae1 1454}
56bec294 1455
2c47e605
YZ
1456static int find_next_key(struct btrfs_path *path, int level,
1457 struct btrfs_key *key)
56bec294 1458
02217ed2 1459{
2c47e605 1460 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1461 if (!path->nodes[level])
1462 break;
5d4f98a2
YZ
1463 if (path->slots[level] + 1 >=
1464 btrfs_header_nritems(path->nodes[level]))
1465 continue;
1466 if (level == 0)
1467 btrfs_item_key_to_cpu(path->nodes[level], key,
1468 path->slots[level] + 1);
1469 else
1470 btrfs_node_key_to_cpu(path->nodes[level], key,
1471 path->slots[level] + 1);
1472 return 0;
1473 }
1474 return 1;
1475}
037e6390 1476
5d4f98a2
YZ
1477/*
1478 * look for inline back ref. if back ref is found, *ref_ret is set
1479 * to the address of inline back ref, and 0 is returned.
1480 *
1481 * if back ref isn't found, *ref_ret is set to the address where it
1482 * should be inserted, and -ENOENT is returned.
1483 *
1484 * if insert is true and there are too many inline back refs, the path
1485 * points to the extent item, and -EAGAIN is returned.
1486 *
1487 * NOTE: inline back refs are ordered in the same way that back ref
1488 * items in the tree are ordered.
1489 */
1490static noinline_for_stack
1491int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1492 struct btrfs_path *path,
1493 struct btrfs_extent_inline_ref **ref_ret,
1494 u64 bytenr, u64 num_bytes,
1495 u64 parent, u64 root_objectid,
1496 u64 owner, u64 offset, int insert)
1497{
867cc1fb 1498 struct btrfs_fs_info *fs_info = trans->fs_info;
87bde3cd 1499 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1500 struct btrfs_key key;
1501 struct extent_buffer *leaf;
1502 struct btrfs_extent_item *ei;
1503 struct btrfs_extent_inline_ref *iref;
1504 u64 flags;
1505 u64 item_size;
1506 unsigned long ptr;
1507 unsigned long end;
1508 int extra_size;
1509 int type;
1510 int want;
1511 int ret;
1512 int err = 0;
0b246afa 1513 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1514 int needed;
26b8003f 1515
db94535d 1516 key.objectid = bytenr;
31840ae1 1517 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1518 key.offset = num_bytes;
31840ae1 1519
5d4f98a2
YZ
1520 want = extent_ref_type(parent, owner);
1521 if (insert) {
1522 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1523 path->keep_locks = 1;
5d4f98a2
YZ
1524 } else
1525 extra_size = -1;
3173a18f
JB
1526
1527 /*
16d1c062
NB
1528 * Owner is our level, so we can just add one to get the level for the
1529 * block we are interested in.
3173a18f
JB
1530 */
1531 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1532 key.type = BTRFS_METADATA_ITEM_KEY;
1533 key.offset = owner;
1534 }
1535
1536again:
5d4f98a2 1537 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1538 if (ret < 0) {
5d4f98a2
YZ
1539 err = ret;
1540 goto out;
1541 }
3173a18f
JB
1542
1543 /*
1544 * We may be a newly converted file system which still has the old fat
1545 * extent entries for metadata, so try and see if we have one of those.
1546 */
1547 if (ret > 0 && skinny_metadata) {
1548 skinny_metadata = false;
1549 if (path->slots[0]) {
1550 path->slots[0]--;
1551 btrfs_item_key_to_cpu(path->nodes[0], &key,
1552 path->slots[0]);
1553 if (key.objectid == bytenr &&
1554 key.type == BTRFS_EXTENT_ITEM_KEY &&
1555 key.offset == num_bytes)
1556 ret = 0;
1557 }
1558 if (ret) {
9ce49a0b 1559 key.objectid = bytenr;
3173a18f
JB
1560 key.type = BTRFS_EXTENT_ITEM_KEY;
1561 key.offset = num_bytes;
1562 btrfs_release_path(path);
1563 goto again;
1564 }
1565 }
1566
79787eaa
JM
1567 if (ret && !insert) {
1568 err = -ENOENT;
1569 goto out;
fae7f21c 1570 } else if (WARN_ON(ret)) {
492104c8 1571 err = -EIO;
492104c8 1572 goto out;
79787eaa 1573 }
5d4f98a2
YZ
1574
1575 leaf = path->nodes[0];
1576 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6d8ff4e4 1577 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
1578 err = -EINVAL;
1579 btrfs_print_v0_err(fs_info);
1580 btrfs_abort_transaction(trans, err);
1581 goto out;
1582 }
5d4f98a2 1583
5d4f98a2
YZ
1584 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1585 flags = btrfs_extent_flags(leaf, ei);
1586
1587 ptr = (unsigned long)(ei + 1);
1588 end = (unsigned long)ei + item_size;
1589
3173a18f 1590 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1591 ptr += sizeof(struct btrfs_tree_block_info);
1592 BUG_ON(ptr > end);
5d4f98a2
YZ
1593 }
1594
3de28d57
LB
1595 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1596 needed = BTRFS_REF_TYPE_DATA;
1597 else
1598 needed = BTRFS_REF_TYPE_BLOCK;
1599
5d4f98a2
YZ
1600 err = -ENOENT;
1601 while (1) {
1602 if (ptr >= end) {
1603 WARN_ON(ptr > end);
1604 break;
1605 }
1606 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1607 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1608 if (type == BTRFS_REF_TYPE_INVALID) {
af431dcb 1609 err = -EUCLEAN;
3de28d57
LB
1610 goto out;
1611 }
1612
5d4f98a2
YZ
1613 if (want < type)
1614 break;
1615 if (want > type) {
1616 ptr += btrfs_extent_inline_ref_size(type);
1617 continue;
1618 }
1619
1620 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1621 struct btrfs_extent_data_ref *dref;
1622 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1623 if (match_extent_data_ref(leaf, dref, root_objectid,
1624 owner, offset)) {
1625 err = 0;
1626 break;
1627 }
1628 if (hash_extent_data_ref_item(leaf, dref) <
1629 hash_extent_data_ref(root_objectid, owner, offset))
1630 break;
1631 } else {
1632 u64 ref_offset;
1633 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1634 if (parent > 0) {
1635 if (parent == ref_offset) {
1636 err = 0;
1637 break;
1638 }
1639 if (ref_offset < parent)
1640 break;
1641 } else {
1642 if (root_objectid == ref_offset) {
1643 err = 0;
1644 break;
1645 }
1646 if (ref_offset < root_objectid)
1647 break;
1648 }
1649 }
1650 ptr += btrfs_extent_inline_ref_size(type);
1651 }
1652 if (err == -ENOENT && insert) {
1653 if (item_size + extra_size >=
1654 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1655 err = -EAGAIN;
1656 goto out;
1657 }
1658 /*
1659 * To add new inline back ref, we have to make sure
1660 * there is no corresponding back ref item.
1661 * For simplicity, we just do not add new inline back
1662 * ref if there is any kind of item for this block
1663 */
2c47e605
YZ
1664 if (find_next_key(path, 0, &key) == 0 &&
1665 key.objectid == bytenr &&
85d4198e 1666 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1667 err = -EAGAIN;
1668 goto out;
1669 }
1670 }
1671 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1672out:
85d4198e 1673 if (insert) {
5d4f98a2
YZ
1674 path->keep_locks = 0;
1675 btrfs_unlock_up_safe(path, 1);
1676 }
1677 return err;
1678}
1679
1680/*
1681 * helper to add new inline back ref
1682 */
1683static noinline_for_stack
87bde3cd 1684void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1685 struct btrfs_path *path,
1686 struct btrfs_extent_inline_ref *iref,
1687 u64 parent, u64 root_objectid,
1688 u64 owner, u64 offset, int refs_to_add,
1689 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1690{
1691 struct extent_buffer *leaf;
1692 struct btrfs_extent_item *ei;
1693 unsigned long ptr;
1694 unsigned long end;
1695 unsigned long item_offset;
1696 u64 refs;
1697 int size;
1698 int type;
5d4f98a2
YZ
1699
1700 leaf = path->nodes[0];
1701 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1702 item_offset = (unsigned long)iref - (unsigned long)ei;
1703
1704 type = extent_ref_type(parent, owner);
1705 size = btrfs_extent_inline_ref_size(type);
1706
87bde3cd 1707 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1708
1709 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1710 refs = btrfs_extent_refs(leaf, ei);
1711 refs += refs_to_add;
1712 btrfs_set_extent_refs(leaf, ei, refs);
1713 if (extent_op)
1714 __run_delayed_extent_op(extent_op, leaf, ei);
1715
1716 ptr = (unsigned long)ei + item_offset;
1717 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1718 if (ptr < end - size)
1719 memmove_extent_buffer(leaf, ptr + size, ptr,
1720 end - size - ptr);
1721
1722 iref = (struct btrfs_extent_inline_ref *)ptr;
1723 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1724 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1725 struct btrfs_extent_data_ref *dref;
1726 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1727 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1728 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1729 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1730 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1731 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1732 struct btrfs_shared_data_ref *sref;
1733 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1734 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1735 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1736 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1737 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1738 } else {
1739 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1740 }
1741 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1742}
1743
1744static int lookup_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1745 struct btrfs_path *path,
1746 struct btrfs_extent_inline_ref **ref_ret,
1747 u64 bytenr, u64 num_bytes, u64 parent,
1748 u64 root_objectid, u64 owner, u64 offset)
1749{
1750 int ret;
1751
867cc1fb
NB
1752 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1753 num_bytes, parent, root_objectid,
1754 owner, offset, 0);
5d4f98a2 1755 if (ret != -ENOENT)
54aa1f4d 1756 return ret;
5d4f98a2 1757
b3b4aa74 1758 btrfs_release_path(path);
5d4f98a2
YZ
1759 *ref_ret = NULL;
1760
1761 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
b8582eea
NB
1762 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1763 root_objectid);
5d4f98a2 1764 } else {
bd1d53ef
NB
1765 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1766 root_objectid, owner, offset);
b9473439 1767 }
5d4f98a2
YZ
1768 return ret;
1769}
31840ae1 1770
5d4f98a2
YZ
1771/*
1772 * helper to update/remove inline back ref
1773 */
1774static noinline_for_stack
61a18f1c 1775void update_inline_extent_backref(struct btrfs_path *path,
143bede5
JM
1776 struct btrfs_extent_inline_ref *iref,
1777 int refs_to_mod,
fcebe456
JB
1778 struct btrfs_delayed_extent_op *extent_op,
1779 int *last_ref)
5d4f98a2 1780{
61a18f1c
NB
1781 struct extent_buffer *leaf = path->nodes[0];
1782 struct btrfs_fs_info *fs_info = leaf->fs_info;
5d4f98a2
YZ
1783 struct btrfs_extent_item *ei;
1784 struct btrfs_extent_data_ref *dref = NULL;
1785 struct btrfs_shared_data_ref *sref = NULL;
1786 unsigned long ptr;
1787 unsigned long end;
1788 u32 item_size;
1789 int size;
1790 int type;
5d4f98a2
YZ
1791 u64 refs;
1792
5d4f98a2
YZ
1793 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1794 refs = btrfs_extent_refs(leaf, ei);
1795 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1796 refs += refs_to_mod;
1797 btrfs_set_extent_refs(leaf, ei, refs);
1798 if (extent_op)
1799 __run_delayed_extent_op(extent_op, leaf, ei);
1800
3de28d57
LB
1801 /*
1802 * If type is invalid, we should have bailed out after
1803 * lookup_inline_extent_backref().
1804 */
1805 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1806 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1807
1808 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1809 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1810 refs = btrfs_extent_data_ref_count(leaf, dref);
1811 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1812 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1813 refs = btrfs_shared_data_ref_count(leaf, sref);
1814 } else {
1815 refs = 1;
1816 BUG_ON(refs_to_mod != -1);
56bec294 1817 }
31840ae1 1818
5d4f98a2
YZ
1819 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1820 refs += refs_to_mod;
1821
1822 if (refs > 0) {
1823 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1824 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1825 else
1826 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1827 } else {
fcebe456 1828 *last_ref = 1;
5d4f98a2
YZ
1829 size = btrfs_extent_inline_ref_size(type);
1830 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1831 ptr = (unsigned long)iref;
1832 end = (unsigned long)ei + item_size;
1833 if (ptr + size < end)
1834 memmove_extent_buffer(leaf, ptr, ptr + size,
1835 end - ptr - size);
1836 item_size -= size;
87bde3cd 1837 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1838 }
1839 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1840}
1841
1842static noinline_for_stack
1843int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1844 struct btrfs_path *path,
1845 u64 bytenr, u64 num_bytes, u64 parent,
1846 u64 root_objectid, u64 owner,
1847 u64 offset, int refs_to_add,
1848 struct btrfs_delayed_extent_op *extent_op)
1849{
1850 struct btrfs_extent_inline_ref *iref;
1851 int ret;
1852
867cc1fb
NB
1853 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1854 num_bytes, parent, root_objectid,
1855 owner, offset, 1);
5d4f98a2
YZ
1856 if (ret == 0) {
1857 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
61a18f1c
NB
1858 update_inline_extent_backref(path, iref, refs_to_add,
1859 extent_op, NULL);
5d4f98a2 1860 } else if (ret == -ENOENT) {
a639cdeb 1861 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
143bede5
JM
1862 root_objectid, owner, offset,
1863 refs_to_add, extent_op);
1864 ret = 0;
771ed689 1865 }
5d4f98a2
YZ
1866 return ret;
1867}
31840ae1 1868
5d4f98a2 1869static int insert_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1870 struct btrfs_path *path,
1871 u64 bytenr, u64 parent, u64 root_objectid,
1872 u64 owner, u64 offset, int refs_to_add)
1873{
1874 int ret;
1875 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1876 BUG_ON(refs_to_add != 1);
10728404
NB
1877 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1878 root_objectid);
5d4f98a2 1879 } else {
62b895af
NB
1880 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1881 root_objectid, owner, offset,
1882 refs_to_add);
5d4f98a2
YZ
1883 }
1884 return ret;
1885}
56bec294 1886
5d4f98a2 1887static int remove_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1888 struct btrfs_path *path,
1889 struct btrfs_extent_inline_ref *iref,
fcebe456 1890 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1891{
143bede5 1892 int ret = 0;
b9473439 1893
5d4f98a2
YZ
1894 BUG_ON(!is_data && refs_to_drop != 1);
1895 if (iref) {
61a18f1c
NB
1896 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1897 last_ref);
5d4f98a2 1898 } else if (is_data) {
e9f6290d 1899 ret = remove_extent_data_ref(trans, path, refs_to_drop,
fcebe456 1900 last_ref);
5d4f98a2 1901 } else {
fcebe456 1902 *last_ref = 1;
87cc7a8a 1903 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
5d4f98a2
YZ
1904 }
1905 return ret;
1906}
1907
86557861 1908#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1909static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1910 u64 *discarded_bytes)
5d4f98a2 1911{
86557861
JM
1912 int j, ret = 0;
1913 u64 bytes_left, end;
4d89d377 1914 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1915
4d89d377
JM
1916 if (WARN_ON(start != aligned_start)) {
1917 len -= aligned_start - start;
1918 len = round_down(len, 1 << 9);
1919 start = aligned_start;
1920 }
d04c6b88 1921
4d89d377 1922 *discarded_bytes = 0;
86557861
JM
1923
1924 if (!len)
1925 return 0;
1926
1927 end = start + len;
1928 bytes_left = len;
1929
1930 /* Skip any superblocks on this device. */
1931 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1932 u64 sb_start = btrfs_sb_offset(j);
1933 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1934 u64 size = sb_start - start;
1935
1936 if (!in_range(sb_start, start, bytes_left) &&
1937 !in_range(sb_end, start, bytes_left) &&
1938 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1939 continue;
1940
1941 /*
1942 * Superblock spans beginning of range. Adjust start and
1943 * try again.
1944 */
1945 if (sb_start <= start) {
1946 start += sb_end - start;
1947 if (start > end) {
1948 bytes_left = 0;
1949 break;
1950 }
1951 bytes_left = end - start;
1952 continue;
1953 }
1954
1955 if (size) {
1956 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1957 GFP_NOFS, 0);
1958 if (!ret)
1959 *discarded_bytes += size;
1960 else if (ret != -EOPNOTSUPP)
1961 return ret;
1962 }
1963
1964 start = sb_end;
1965 if (start > end) {
1966 bytes_left = 0;
1967 break;
1968 }
1969 bytes_left = end - start;
1970 }
1971
1972 if (bytes_left) {
1973 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1974 GFP_NOFS, 0);
1975 if (!ret)
86557861 1976 *discarded_bytes += bytes_left;
4d89d377 1977 }
d04c6b88 1978 return ret;
5d4f98a2 1979}
5d4f98a2 1980
2ff7e61e 1981int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 1982 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1983{
5d4f98a2 1984 int ret;
5378e607 1985 u64 discarded_bytes = 0;
a1d3c478 1986 struct btrfs_bio *bbio = NULL;
5d4f98a2 1987
e244a0ae 1988
2999241d
FM
1989 /*
1990 * Avoid races with device replace and make sure our bbio has devices
1991 * associated to its stripes that don't go away while we are discarding.
1992 */
0b246afa 1993 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 1994 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
1995 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1996 &bbio, 0);
79787eaa 1997 /* Error condition is -ENOMEM */
5d4f98a2 1998 if (!ret) {
a1d3c478 1999 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2000 int i;
2001
5d4f98a2 2002
a1d3c478 2003 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2004 u64 bytes;
38b5f68e
AJ
2005 struct request_queue *req_q;
2006
627e0873
FM
2007 if (!stripe->dev->bdev) {
2008 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2009 continue;
2010 }
38b5f68e
AJ
2011 req_q = bdev_get_queue(stripe->dev->bdev);
2012 if (!blk_queue_discard(req_q))
d5e2003c
JB
2013 continue;
2014
5378e607
LD
2015 ret = btrfs_issue_discard(stripe->dev->bdev,
2016 stripe->physical,
d04c6b88
JM
2017 stripe->length,
2018 &bytes);
5378e607 2019 if (!ret)
d04c6b88 2020 discarded_bytes += bytes;
5378e607 2021 else if (ret != -EOPNOTSUPP)
79787eaa 2022 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2023
2024 /*
2025 * Just in case we get back EOPNOTSUPP for some reason,
2026 * just ignore the return value so we don't screw up
2027 * people calling discard_extent.
2028 */
2029 ret = 0;
5d4f98a2 2030 }
6e9606d2 2031 btrfs_put_bbio(bbio);
5d4f98a2 2032 }
0b246afa 2033 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2034
2035 if (actual_bytes)
2036 *actual_bytes = discarded_bytes;
2037
5d4f98a2 2038
53b381b3
DW
2039 if (ret == -EOPNOTSUPP)
2040 ret = 0;
5d4f98a2 2041 return ret;
5d4f98a2
YZ
2042}
2043
79787eaa 2044/* Can return -ENOMEM */
5d4f98a2 2045int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2046 struct btrfs_root *root,
5d4f98a2 2047 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2048 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2049{
84f7d8e6 2050 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2051 int old_ref_mod, new_ref_mod;
5d4f98a2 2052 int ret;
66d7e7f0 2053
5d4f98a2
YZ
2054 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2055 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2056
fd708b81
JB
2057 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2058 owner, offset, BTRFS_ADD_DELAYED_REF);
2059
5d4f98a2 2060 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
44e1c47d 2061 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7be07912
OS
2062 num_bytes, parent,
2063 root_objectid, (int)owner,
2064 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2065 &old_ref_mod, &new_ref_mod);
5d4f98a2 2066 } else {
88a979c6 2067 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7be07912
OS
2068 num_bytes, parent,
2069 root_objectid, owner, offset,
d7eae340
OS
2070 0, BTRFS_ADD_DELAYED_REF,
2071 &old_ref_mod, &new_ref_mod);
5d4f98a2 2072 }
d7eae340 2073
29d2b84c
NB
2074 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2075 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2076
2077 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2078 }
d7eae340 2079
5d4f98a2
YZ
2080 return ret;
2081}
2082
bd3c685e
NB
2083/*
2084 * __btrfs_inc_extent_ref - insert backreference for a given extent
2085 *
2086 * @trans: Handle of transaction
2087 *
2088 * @node: The delayed ref node used to get the bytenr/length for
2089 * extent whose references are incremented.
2090 *
2091 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2092 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2093 * bytenr of the parent block. Since new extents are always
2094 * created with indirect references, this will only be the case
2095 * when relocating a shared extent. In that case, root_objectid
2096 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2097 * be 0
2098 *
2099 * @root_objectid: The id of the root where this modification has originated,
2100 * this can be either one of the well-known metadata trees or
2101 * the subvolume id which references this extent.
2102 *
2103 * @owner: For data extents it is the inode number of the owning file.
2104 * For metadata extents this parameter holds the level in the
2105 * tree of the extent.
2106 *
2107 * @offset: For metadata extents the offset is ignored and is currently
2108 * always passed as 0. For data extents it is the fileoffset
2109 * this extent belongs to.
2110 *
2111 * @refs_to_add Number of references to add
2112 *
2113 * @extent_op Pointer to a structure, holding information necessary when
2114 * updating a tree block's flags
2115 *
2116 */
5d4f98a2 2117static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
c682f9b3 2118 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2119 u64 parent, u64 root_objectid,
2120 u64 owner, u64 offset, int refs_to_add,
2121 struct btrfs_delayed_extent_op *extent_op)
2122{
2123 struct btrfs_path *path;
2124 struct extent_buffer *leaf;
2125 struct btrfs_extent_item *item;
fcebe456 2126 struct btrfs_key key;
c682f9b3
QW
2127 u64 bytenr = node->bytenr;
2128 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2129 u64 refs;
2130 int ret;
5d4f98a2
YZ
2131
2132 path = btrfs_alloc_path();
2133 if (!path)
2134 return -ENOMEM;
2135
e4058b54 2136 path->reada = READA_FORWARD;
5d4f98a2
YZ
2137 path->leave_spinning = 1;
2138 /* this will setup the path even if it fails to insert the back ref */
a639cdeb
NB
2139 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2140 parent, root_objectid, owner,
2141 offset, refs_to_add, extent_op);
0ed4792a 2142 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2143 goto out;
fcebe456
JB
2144
2145 /*
2146 * Ok we had -EAGAIN which means we didn't have space to insert and
2147 * inline extent ref, so just update the reference count and add a
2148 * normal backref.
2149 */
5d4f98a2 2150 leaf = path->nodes[0];
fcebe456 2151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2152 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2153 refs = btrfs_extent_refs(leaf, item);
2154 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2155 if (extent_op)
2156 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2157
5d4f98a2 2158 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2159 btrfs_release_path(path);
56bec294 2160
e4058b54 2161 path->reada = READA_FORWARD;
b9473439 2162 path->leave_spinning = 1;
56bec294 2163 /* now insert the actual backref */
37593410
NB
2164 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2165 owner, offset, refs_to_add);
79787eaa 2166 if (ret)
66642832 2167 btrfs_abort_transaction(trans, ret);
5d4f98a2 2168out:
56bec294 2169 btrfs_free_path(path);
30d133fc 2170 return ret;
56bec294
CM
2171}
2172
5d4f98a2 2173static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2174 struct btrfs_delayed_ref_node *node,
2175 struct btrfs_delayed_extent_op *extent_op,
2176 int insert_reserved)
56bec294 2177{
5d4f98a2
YZ
2178 int ret = 0;
2179 struct btrfs_delayed_data_ref *ref;
2180 struct btrfs_key ins;
2181 u64 parent = 0;
2182 u64 ref_root = 0;
2183 u64 flags = 0;
2184
2185 ins.objectid = node->bytenr;
2186 ins.offset = node->num_bytes;
2187 ins.type = BTRFS_EXTENT_ITEM_KEY;
2188
2189 ref = btrfs_delayed_node_to_data_ref(node);
2bf98ef3 2190 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
599c75ec 2191
5d4f98a2
YZ
2192 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2193 parent = ref->parent;
fcebe456 2194 ref_root = ref->root;
5d4f98a2
YZ
2195
2196 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2197 if (extent_op)
5d4f98a2 2198 flags |= extent_op->flags_to_set;
ef89b824
NB
2199 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2200 flags, ref->objectid,
2201 ref->offset, &ins,
2202 node->ref_mod);
5d4f98a2 2203 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2204 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2205 ref->objectid, ref->offset,
2206 node->ref_mod, extent_op);
5d4f98a2 2207 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2208 ret = __btrfs_free_extent(trans, node, parent,
5d4f98a2
YZ
2209 ref_root, ref->objectid,
2210 ref->offset, node->ref_mod,
c682f9b3 2211 extent_op);
5d4f98a2
YZ
2212 } else {
2213 BUG();
2214 }
2215 return ret;
2216}
2217
2218static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2219 struct extent_buffer *leaf,
2220 struct btrfs_extent_item *ei)
2221{
2222 u64 flags = btrfs_extent_flags(leaf, ei);
2223 if (extent_op->update_flags) {
2224 flags |= extent_op->flags_to_set;
2225 btrfs_set_extent_flags(leaf, ei, flags);
2226 }
2227
2228 if (extent_op->update_key) {
2229 struct btrfs_tree_block_info *bi;
2230 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2231 bi = (struct btrfs_tree_block_info *)(ei + 1);
2232 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2233 }
2234}
2235
2236static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
d278850e 2237 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2238 struct btrfs_delayed_extent_op *extent_op)
2239{
20b9a2d6 2240 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
2241 struct btrfs_key key;
2242 struct btrfs_path *path;
2243 struct btrfs_extent_item *ei;
2244 struct extent_buffer *leaf;
2245 u32 item_size;
56bec294 2246 int ret;
5d4f98a2 2247 int err = 0;
b1c79e09 2248 int metadata = !extent_op->is_data;
5d4f98a2 2249
79787eaa
JM
2250 if (trans->aborted)
2251 return 0;
2252
0b246afa 2253 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2254 metadata = 0;
2255
5d4f98a2
YZ
2256 path = btrfs_alloc_path();
2257 if (!path)
2258 return -ENOMEM;
2259
d278850e 2260 key.objectid = head->bytenr;
5d4f98a2 2261
3173a18f 2262 if (metadata) {
3173a18f 2263 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2264 key.offset = extent_op->level;
3173a18f
JB
2265 } else {
2266 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2267 key.offset = head->num_bytes;
3173a18f
JB
2268 }
2269
2270again:
e4058b54 2271 path->reada = READA_FORWARD;
5d4f98a2 2272 path->leave_spinning = 1;
0b246afa 2273 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2274 if (ret < 0) {
2275 err = ret;
2276 goto out;
2277 }
2278 if (ret > 0) {
3173a18f 2279 if (metadata) {
55994887
FDBM
2280 if (path->slots[0] > 0) {
2281 path->slots[0]--;
2282 btrfs_item_key_to_cpu(path->nodes[0], &key,
2283 path->slots[0]);
d278850e 2284 if (key.objectid == head->bytenr &&
55994887 2285 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2286 key.offset == head->num_bytes)
55994887
FDBM
2287 ret = 0;
2288 }
2289 if (ret > 0) {
2290 btrfs_release_path(path);
2291 metadata = 0;
3173a18f 2292
d278850e
JB
2293 key.objectid = head->bytenr;
2294 key.offset = head->num_bytes;
55994887
FDBM
2295 key.type = BTRFS_EXTENT_ITEM_KEY;
2296 goto again;
2297 }
2298 } else {
2299 err = -EIO;
2300 goto out;
3173a18f 2301 }
5d4f98a2
YZ
2302 }
2303
2304 leaf = path->nodes[0];
2305 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ba3c2b19 2306
6d8ff4e4 2307 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
2308 err = -EINVAL;
2309 btrfs_print_v0_err(fs_info);
2310 btrfs_abort_transaction(trans, err);
2311 goto out;
2312 }
2313
5d4f98a2
YZ
2314 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2315 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2316
5d4f98a2
YZ
2317 btrfs_mark_buffer_dirty(leaf);
2318out:
2319 btrfs_free_path(path);
2320 return err;
56bec294
CM
2321}
2322
5d4f98a2 2323static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2324 struct btrfs_delayed_ref_node *node,
2325 struct btrfs_delayed_extent_op *extent_op,
2326 int insert_reserved)
56bec294
CM
2327{
2328 int ret = 0;
5d4f98a2 2329 struct btrfs_delayed_tree_ref *ref;
5d4f98a2
YZ
2330 u64 parent = 0;
2331 u64 ref_root = 0;
56bec294 2332
5d4f98a2 2333 ref = btrfs_delayed_node_to_tree_ref(node);
f97806f2 2334 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
599c75ec 2335
5d4f98a2
YZ
2336 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2337 parent = ref->parent;
fcebe456 2338 ref_root = ref->root;
5d4f98a2 2339
02794222 2340 if (node->ref_mod != 1) {
f97806f2 2341 btrfs_err(trans->fs_info,
02794222
LB
2342 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2343 node->bytenr, node->ref_mod, node->action, ref_root,
2344 parent);
2345 return -EIO;
2346 }
5d4f98a2 2347 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2348 BUG_ON(!extent_op || !extent_op->update_flags);
21ebfbe7 2349 ret = alloc_reserved_tree_block(trans, node, extent_op);
5d4f98a2 2350 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2351 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2352 ref->level, 0, 1, extent_op);
5d4f98a2 2353 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2354 ret = __btrfs_free_extent(trans, node, parent, ref_root,
c682f9b3 2355 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2356 } else {
2357 BUG();
2358 }
56bec294
CM
2359 return ret;
2360}
2361
2362/* helper function to actually process a single delayed ref entry */
5d4f98a2 2363static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2364 struct btrfs_delayed_ref_node *node,
2365 struct btrfs_delayed_extent_op *extent_op,
2366 int insert_reserved)
56bec294 2367{
79787eaa
JM
2368 int ret = 0;
2369
857cc2fc
JB
2370 if (trans->aborted) {
2371 if (insert_reserved)
5fac7f9e 2372 btrfs_pin_extent(trans->fs_info, node->bytenr,
857cc2fc 2373 node->num_bytes, 1);
79787eaa 2374 return 0;
857cc2fc 2375 }
79787eaa 2376
5d4f98a2
YZ
2377 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2378 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
f97806f2 2379 ret = run_delayed_tree_ref(trans, node, extent_op,
5d4f98a2
YZ
2380 insert_reserved);
2381 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2382 node->type == BTRFS_SHARED_DATA_REF_KEY)
2bf98ef3 2383 ret = run_delayed_data_ref(trans, node, extent_op,
5d4f98a2
YZ
2384 insert_reserved);
2385 else
2386 BUG();
80ee54bf
JB
2387 if (ret && insert_reserved)
2388 btrfs_pin_extent(trans->fs_info, node->bytenr,
2389 node->num_bytes, 1);
5d4f98a2 2390 return ret;
56bec294
CM
2391}
2392
c6fc2454 2393static inline struct btrfs_delayed_ref_node *
56bec294
CM
2394select_delayed_ref(struct btrfs_delayed_ref_head *head)
2395{
cffc3374
FM
2396 struct btrfs_delayed_ref_node *ref;
2397
e3d03965 2398 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
c6fc2454 2399 return NULL;
d7df2c79 2400
cffc3374
FM
2401 /*
2402 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2403 * This is to prevent a ref count from going down to zero, which deletes
2404 * the extent item from the extent tree, when there still are references
2405 * to add, which would fail because they would not find the extent item.
2406 */
1d57ee94
WX
2407 if (!list_empty(&head->ref_add_list))
2408 return list_first_entry(&head->ref_add_list,
2409 struct btrfs_delayed_ref_node, add_list);
2410
e3d03965 2411 ref = rb_entry(rb_first_cached(&head->ref_tree),
0e0adbcf 2412 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2413 ASSERT(list_empty(&ref->add_list));
2414 return ref;
56bec294
CM
2415}
2416
2eadaa22
JB
2417static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2418 struct btrfs_delayed_ref_head *head)
2419{
2420 spin_lock(&delayed_refs->lock);
2421 head->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 btrfs_delayed_ref_unlock(head);
2425}
2426
bedc6617
JB
2427static struct btrfs_delayed_extent_op *cleanup_extent_op(
2428 struct btrfs_delayed_ref_head *head)
b00e6250
JB
2429{
2430 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
b00e6250
JB
2431
2432 if (!extent_op)
bedc6617
JB
2433 return NULL;
2434
b00e6250 2435 if (head->must_insert_reserved) {
bedc6617 2436 head->extent_op = NULL;
b00e6250 2437 btrfs_free_delayed_extent_op(extent_op);
bedc6617 2438 return NULL;
b00e6250 2439 }
bedc6617
JB
2440 return extent_op;
2441}
2442
2443static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
2444 struct btrfs_delayed_ref_head *head)
2445{
2446 struct btrfs_delayed_extent_op *extent_op;
2447 int ret;
2448
2449 extent_op = cleanup_extent_op(head);
2450 if (!extent_op)
2451 return 0;
2452 head->extent_op = NULL;
b00e6250 2453 spin_unlock(&head->lock);
20b9a2d6 2454 ret = run_delayed_extent_op(trans, head, extent_op);
b00e6250
JB
2455 btrfs_free_delayed_extent_op(extent_op);
2456 return ret ? ret : 1;
2457}
2458
31890da0
JB
2459void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2460 struct btrfs_delayed_ref_root *delayed_refs,
2461 struct btrfs_delayed_ref_head *head)
07c47775 2462{
ba2c4d4e 2463 int nr_items = 1; /* Dropping this ref head update. */
07c47775
JB
2464
2465 if (head->total_ref_mod < 0) {
2466 struct btrfs_space_info *space_info;
2467 u64 flags;
2468
2469 if (head->is_data)
2470 flags = BTRFS_BLOCK_GROUP_DATA;
2471 else if (head->is_system)
2472 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2473 else
2474 flags = BTRFS_BLOCK_GROUP_METADATA;
2475 space_info = __find_space_info(fs_info, flags);
2476 ASSERT(space_info);
2477 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2478 -head->num_bytes,
2479 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2480
ba2c4d4e
JB
2481 /*
2482 * We had csum deletions accounted for in our delayed refs rsv,
2483 * we need to drop the csum leaves for this update from our
2484 * delayed_refs_rsv.
2485 */
07c47775
JB
2486 if (head->is_data) {
2487 spin_lock(&delayed_refs->lock);
2488 delayed_refs->pending_csums -= head->num_bytes;
2489 spin_unlock(&delayed_refs->lock);
ba2c4d4e
JB
2490 nr_items += btrfs_csum_bytes_to_leaves(fs_info,
2491 head->num_bytes);
07c47775
JB
2492 }
2493 }
2494
2495 /* Also free its reserved qgroup space */
2496 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2497 head->qgroup_reserved);
ba2c4d4e 2498 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
07c47775
JB
2499}
2500
194ab0bc 2501static int cleanup_ref_head(struct btrfs_trans_handle *trans,
194ab0bc
JB
2502 struct btrfs_delayed_ref_head *head)
2503{
f9871edd
NB
2504
2505 struct btrfs_fs_info *fs_info = trans->fs_info;
194ab0bc
JB
2506 struct btrfs_delayed_ref_root *delayed_refs;
2507 int ret;
2508
2509 delayed_refs = &trans->transaction->delayed_refs;
2510
bedc6617 2511 ret = run_and_cleanup_extent_op(trans, head);
194ab0bc
JB
2512 if (ret < 0) {
2513 unselect_delayed_ref_head(delayed_refs, head);
2514 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2515 return ret;
2516 } else if (ret) {
2517 return ret;
2518 }
2519
2520 /*
2521 * Need to drop our head ref lock and re-acquire the delayed ref lock
2522 * and then re-check to make sure nobody got added.
2523 */
2524 spin_unlock(&head->lock);
2525 spin_lock(&delayed_refs->lock);
2526 spin_lock(&head->lock);
e3d03965 2527 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
194ab0bc
JB
2528 spin_unlock(&head->lock);
2529 spin_unlock(&delayed_refs->lock);
2530 return 1;
2531 }
d7baffda 2532 btrfs_delete_ref_head(delayed_refs, head);
c1103f7a 2533 spin_unlock(&head->lock);
1e7a1421 2534 spin_unlock(&delayed_refs->lock);
c1103f7a 2535
c1103f7a 2536 if (head->must_insert_reserved) {
d278850e
JB
2537 btrfs_pin_extent(fs_info, head->bytenr,
2538 head->num_bytes, 1);
c1103f7a 2539 if (head->is_data) {
d278850e
JB
2540 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2541 head->num_bytes);
c1103f7a
JB
2542 }
2543 }
2544
31890da0 2545 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
07c47775
JB
2546
2547 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a 2548 btrfs_delayed_ref_unlock(head);
d278850e 2549 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2550 return 0;
2551}
2552
b1cdbcb5
NB
2553static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2554 struct btrfs_trans_handle *trans)
2555{
2556 struct btrfs_delayed_ref_root *delayed_refs =
2557 &trans->transaction->delayed_refs;
2558 struct btrfs_delayed_ref_head *head = NULL;
2559 int ret;
2560
2561 spin_lock(&delayed_refs->lock);
5637c74b 2562 head = btrfs_select_ref_head(delayed_refs);
b1cdbcb5
NB
2563 if (!head) {
2564 spin_unlock(&delayed_refs->lock);
2565 return head;
2566 }
2567
2568 /*
2569 * Grab the lock that says we are going to process all the refs for
2570 * this head
2571 */
9e920a6f 2572 ret = btrfs_delayed_ref_lock(delayed_refs, head);
b1cdbcb5
NB
2573 spin_unlock(&delayed_refs->lock);
2574
2575 /*
2576 * We may have dropped the spin lock to get the head mutex lock, and
2577 * that might have given someone else time to free the head. If that's
2578 * true, it has been removed from our list and we can move on.
2579 */
2580 if (ret == -EAGAIN)
2581 head = ERR_PTR(-EAGAIN);
2582
2583 return head;
2584}
2585
e7261386
NB
2586static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2587 struct btrfs_delayed_ref_head *locked_ref,
2588 unsigned long *run_refs)
2589{
2590 struct btrfs_fs_info *fs_info = trans->fs_info;
2591 struct btrfs_delayed_ref_root *delayed_refs;
2592 struct btrfs_delayed_extent_op *extent_op;
2593 struct btrfs_delayed_ref_node *ref;
2594 int must_insert_reserved = 0;
2595 int ret;
2596
2597 delayed_refs = &trans->transaction->delayed_refs;
2598
0110a4c4
NB
2599 lockdep_assert_held(&locked_ref->mutex);
2600 lockdep_assert_held(&locked_ref->lock);
2601
e7261386
NB
2602 while ((ref = select_delayed_ref(locked_ref))) {
2603 if (ref->seq &&
2604 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2605 spin_unlock(&locked_ref->lock);
2606 unselect_delayed_ref_head(delayed_refs, locked_ref);
2607 return -EAGAIN;
2608 }
2609
2610 (*run_refs)++;
2611 ref->in_tree = 0;
2612 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2613 RB_CLEAR_NODE(&ref->ref_node);
2614 if (!list_empty(&ref->add_list))
2615 list_del(&ref->add_list);
2616 /*
2617 * When we play the delayed ref, also correct the ref_mod on
2618 * head
2619 */
2620 switch (ref->action) {
2621 case BTRFS_ADD_DELAYED_REF:
2622 case BTRFS_ADD_DELAYED_EXTENT:
2623 locked_ref->ref_mod -= ref->ref_mod;
2624 break;
2625 case BTRFS_DROP_DELAYED_REF:
2626 locked_ref->ref_mod += ref->ref_mod;
2627 break;
2628 default:
2629 WARN_ON(1);
2630 }
2631 atomic_dec(&delayed_refs->num_entries);
2632
2633 /*
2634 * Record the must_insert_reserved flag before we drop the
2635 * spin lock.
2636 */
2637 must_insert_reserved = locked_ref->must_insert_reserved;
2638 locked_ref->must_insert_reserved = 0;
2639
2640 extent_op = locked_ref->extent_op;
2641 locked_ref->extent_op = NULL;
2642 spin_unlock(&locked_ref->lock);
2643
2644 ret = run_one_delayed_ref(trans, ref, extent_op,
2645 must_insert_reserved);
2646
2647 btrfs_free_delayed_extent_op(extent_op);
2648 if (ret) {
2649 unselect_delayed_ref_head(delayed_refs, locked_ref);
2650 btrfs_put_delayed_ref(ref);
2651 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2652 ret);
2653 return ret;
2654 }
2655
2656 btrfs_put_delayed_ref(ref);
2657 cond_resched();
2658
2659 spin_lock(&locked_ref->lock);
2660 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2661 }
2662
2663 return 0;
2664}
2665
79787eaa
JM
2666/*
2667 * Returns 0 on success or if called with an already aborted transaction.
2668 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2669 */
d7df2c79 2670static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2671 unsigned long nr)
56bec294 2672{
0a1e458a 2673 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294 2674 struct btrfs_delayed_ref_root *delayed_refs;
56bec294 2675 struct btrfs_delayed_ref_head *locked_ref = NULL;
0a2b2a84 2676 ktime_t start = ktime_get();
56bec294 2677 int ret;
d7df2c79 2678 unsigned long count = 0;
0a2b2a84 2679 unsigned long actual_count = 0;
56bec294
CM
2680
2681 delayed_refs = &trans->transaction->delayed_refs;
0110a4c4 2682 do {
56bec294 2683 if (!locked_ref) {
b1cdbcb5 2684 locked_ref = btrfs_obtain_ref_head(trans);
0110a4c4
NB
2685 if (IS_ERR_OR_NULL(locked_ref)) {
2686 if (PTR_ERR(locked_ref) == -EAGAIN) {
2687 continue;
2688 } else {
2689 break;
2690 }
56bec294 2691 }
0110a4c4 2692 count++;
56bec294 2693 }
2c3cf7d5
FM
2694 /*
2695 * We need to try and merge add/drops of the same ref since we
2696 * can run into issues with relocate dropping the implicit ref
2697 * and then it being added back again before the drop can
2698 * finish. If we merged anything we need to re-loop so we can
2699 * get a good ref.
2700 * Or we can get node references of the same type that weren't
2701 * merged when created due to bumps in the tree mod seq, and
2702 * we need to merge them to prevent adding an inline extent
2703 * backref before dropping it (triggering a BUG_ON at
2704 * insert_inline_extent_backref()).
2705 */
d7df2c79 2706 spin_lock(&locked_ref->lock);
be97f133 2707 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
ae1e206b 2708
0110a4c4
NB
2709 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2710 &actual_count);
2711 if (ret < 0 && ret != -EAGAIN) {
2712 /*
2713 * Error, btrfs_run_delayed_refs_for_head already
2714 * unlocked everything so just bail out
2715 */
2716 return ret;
2717 } else if (!ret) {
2718 /*
2719 * Success, perform the usual cleanup of a processed
2720 * head
2721 */
f9871edd 2722 ret = cleanup_ref_head(trans, locked_ref);
194ab0bc 2723 if (ret > 0 ) {
b00e6250
JB
2724 /* We dropped our lock, we need to loop. */
2725 ret = 0;
d7df2c79 2726 continue;
194ab0bc
JB
2727 } else if (ret) {
2728 return ret;
5d4f98a2 2729 }
22cd2e7d 2730 }
1ce7a5ec 2731
b00e6250 2732 /*
0110a4c4
NB
2733 * Either success case or btrfs_run_delayed_refs_for_head
2734 * returned -EAGAIN, meaning we need to select another head
b00e6250 2735 */
b00e6250 2736
0110a4c4 2737 locked_ref = NULL;
c3e69d58 2738 cond_resched();
0110a4c4 2739 } while ((nr != -1 && count < nr) || locked_ref);
0a2b2a84
JB
2740
2741 /*
2742 * We don't want to include ref heads since we can have empty ref heads
2743 * and those will drastically skew our runtime down since we just do
2744 * accounting, no actual extent tree updates.
2745 */
2746 if (actual_count > 0) {
2747 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2748 u64 avg;
2749
2750 /*
2751 * We weigh the current average higher than our current runtime
2752 * to avoid large swings in the average.
2753 */
2754 spin_lock(&delayed_refs->lock);
2755 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2756 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2757 spin_unlock(&delayed_refs->lock);
2758 }
d7df2c79 2759 return 0;
c3e69d58
CM
2760}
2761
709c0486
AJ
2762#ifdef SCRAMBLE_DELAYED_REFS
2763/*
2764 * Normally delayed refs get processed in ascending bytenr order. This
2765 * correlates in most cases to the order added. To expose dependencies on this
2766 * order, we start to process the tree in the middle instead of the beginning
2767 */
2768static u64 find_middle(struct rb_root *root)
2769{
2770 struct rb_node *n = root->rb_node;
2771 struct btrfs_delayed_ref_node *entry;
2772 int alt = 1;
2773 u64 middle;
2774 u64 first = 0, last = 0;
2775
2776 n = rb_first(root);
2777 if (n) {
2778 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2779 first = entry->bytenr;
2780 }
2781 n = rb_last(root);
2782 if (n) {
2783 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2784 last = entry->bytenr;
2785 }
2786 n = root->rb_node;
2787
2788 while (n) {
2789 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2790 WARN_ON(!entry->in_tree);
2791
2792 middle = entry->bytenr;
2793
2794 if (alt)
2795 n = n->rb_left;
2796 else
2797 n = n->rb_right;
2798
2799 alt = 1 - alt;
2800 }
2801 return middle;
2802}
2803#endif
2804
2ff7e61e 2805static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2806{
2807 u64 num_bytes;
2808
2809 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2810 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2811 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2812 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2813
2814 /*
2815 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2816 * closer to what we're really going to want to use.
1be41b78 2817 */
0b246afa 2818 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2819}
2820
1262133b
JB
2821/*
2822 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2823 * would require to store the csums for that many bytes.
2824 */
2ff7e61e 2825u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2826{
2827 u64 csum_size;
2828 u64 num_csums_per_leaf;
2829 u64 num_csums;
2830
0b246afa 2831 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2832 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2833 (u64)btrfs_super_csum_size(fs_info->super_copy));
2834 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2835 num_csums += num_csums_per_leaf - 1;
2836 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2837 return num_csums;
2838}
2839
64403612 2840bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
1be41b78 2841{
64403612
JB
2842 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
2843 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2844 bool ret = false;
2845 u64 reserved;
1be41b78 2846
64403612
JB
2847 spin_lock(&global_rsv->lock);
2848 reserved = global_rsv->reserved;
2849 spin_unlock(&global_rsv->lock);
1be41b78
JB
2850
2851 /*
64403612
JB
2852 * Since the global reserve is just kind of magic we don't really want
2853 * to rely on it to save our bacon, so if our size is more than the
2854 * delayed_refs_rsv and the global rsv then it's time to think about
2855 * bailing.
1be41b78 2856 */
64403612
JB
2857 spin_lock(&delayed_refs_rsv->lock);
2858 reserved += delayed_refs_rsv->reserved;
2859 if (delayed_refs_rsv->size >= reserved)
2860 ret = true;
2861 spin_unlock(&delayed_refs_rsv->lock);
1be41b78
JB
2862 return ret;
2863}
2864
7c861627 2865int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
0a2b2a84 2866{
0a2b2a84
JB
2867 u64 num_entries =
2868 atomic_read(&trans->transaction->delayed_refs.num_entries);
2869 u64 avg_runtime;
a79b7d4b 2870 u64 val;
0a2b2a84
JB
2871
2872 smp_mb();
7c861627 2873 avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
a79b7d4b 2874 val = num_entries * avg_runtime;
dc1a90c6 2875 if (val >= NSEC_PER_SEC)
0a2b2a84 2876 return 1;
a79b7d4b
CM
2877 if (val >= NSEC_PER_SEC / 2)
2878 return 2;
0a2b2a84 2879
64403612 2880 return btrfs_check_space_for_delayed_refs(trans->fs_info);
0a2b2a84
JB
2881}
2882
a79b7d4b
CM
2883struct async_delayed_refs {
2884 struct btrfs_root *root;
31b9655f 2885 u64 transid;
a79b7d4b
CM
2886 int count;
2887 int error;
2888 int sync;
2889 struct completion wait;
2890 struct btrfs_work work;
2891};
2892
2ff7e61e
JM
2893static inline struct async_delayed_refs *
2894to_async_delayed_refs(struct btrfs_work *work)
2895{
2896 return container_of(work, struct async_delayed_refs, work);
2897}
2898
a79b7d4b
CM
2899static void delayed_ref_async_start(struct btrfs_work *work)
2900{
2ff7e61e 2901 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2902 struct btrfs_trans_handle *trans;
2ff7e61e 2903 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2904 int ret;
2905
0f873eca 2906 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2907 if (btrfs_transaction_blocked(fs_info))
31b9655f 2908 goto done;
31b9655f 2909
0f873eca
CM
2910 trans = btrfs_join_transaction(async->root);
2911 if (IS_ERR(trans)) {
2912 async->error = PTR_ERR(trans);
a79b7d4b
CM
2913 goto done;
2914 }
2915
2916 /*
01327610 2917 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2918 * wait on delayed refs
2919 */
2920 trans->sync = true;
0f873eca
CM
2921
2922 /* Don't bother flushing if we got into a different transaction */
2923 if (trans->transid > async->transid)
2924 goto end;
2925
c79a70b1 2926 ret = btrfs_run_delayed_refs(trans, async->count);
a79b7d4b
CM
2927 if (ret)
2928 async->error = ret;
0f873eca 2929end:
3a45bb20 2930 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2931 if (ret && !async->error)
2932 async->error = ret;
2933done:
2934 if (async->sync)
2935 complete(&async->wait);
2936 else
2937 kfree(async);
2938}
2939
2ff7e61e 2940int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2941 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2942{
2943 struct async_delayed_refs *async;
2944 int ret;
2945
2946 async = kmalloc(sizeof(*async), GFP_NOFS);
2947 if (!async)
2948 return -ENOMEM;
2949
0b246afa 2950 async->root = fs_info->tree_root;
a79b7d4b
CM
2951 async->count = count;
2952 async->error = 0;
31b9655f 2953 async->transid = transid;
a79b7d4b
CM
2954 if (wait)
2955 async->sync = 1;
2956 else
2957 async->sync = 0;
2958 init_completion(&async->wait);
2959
9e0af237
LB
2960 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2961 delayed_ref_async_start, NULL, NULL);
a79b7d4b 2962
0b246afa 2963 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
2964
2965 if (wait) {
2966 wait_for_completion(&async->wait);
2967 ret = async->error;
2968 kfree(async);
2969 return ret;
2970 }
2971 return 0;
2972}
2973
c3e69d58
CM
2974/*
2975 * this starts processing the delayed reference count updates and
2976 * extent insertions we have queued up so far. count can be
2977 * 0, which means to process everything in the tree at the start
2978 * of the run (but not newly added entries), or it can be some target
2979 * number you'd like to process.
79787eaa
JM
2980 *
2981 * Returns 0 on success or if called with an aborted transaction
2982 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2983 */
2984int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 2985 unsigned long count)
c3e69d58 2986{
c79a70b1 2987 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
2988 struct rb_node *node;
2989 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2990 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2991 int ret;
2992 int run_all = count == (unsigned long)-1;
c3e69d58 2993
79787eaa
JM
2994 /* We'll clean this up in btrfs_cleanup_transaction */
2995 if (trans->aborted)
2996 return 0;
2997
0b246afa 2998 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2999 return 0;
3000
c3e69d58 3001 delayed_refs = &trans->transaction->delayed_refs;
26455d33 3002 if (count == 0)
d7df2c79 3003 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3004
c3e69d58 3005again:
709c0486
AJ
3006#ifdef SCRAMBLE_DELAYED_REFS
3007 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3008#endif
0a1e458a 3009 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 3010 if (ret < 0) {
66642832 3011 btrfs_abort_transaction(trans, ret);
d7df2c79 3012 return ret;
eb099670 3013 }
c3e69d58 3014
56bec294 3015 if (run_all) {
119e80df 3016 btrfs_create_pending_block_groups(trans);
ea658bad 3017
d7df2c79 3018 spin_lock(&delayed_refs->lock);
5c9d028b 3019 node = rb_first_cached(&delayed_refs->href_root);
d7df2c79
JB
3020 if (!node) {
3021 spin_unlock(&delayed_refs->lock);
56bec294 3022 goto out;
d7df2c79 3023 }
d278850e
JB
3024 head = rb_entry(node, struct btrfs_delayed_ref_head,
3025 href_node);
3026 refcount_inc(&head->refs);
3027 spin_unlock(&delayed_refs->lock);
e9d0b13b 3028
d278850e
JB
3029 /* Mutex was contended, block until it's released and retry. */
3030 mutex_lock(&head->mutex);
3031 mutex_unlock(&head->mutex);
56bec294 3032
d278850e 3033 btrfs_put_delayed_ref_head(head);
d7df2c79 3034 cond_resched();
56bec294 3035 goto again;
5f39d397 3036 }
54aa1f4d 3037out:
a28ec197
CM
3038 return 0;
3039}
3040
5d4f98a2 3041int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3042 struct btrfs_fs_info *fs_info,
5d4f98a2 3043 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3044 int level, int is_data)
5d4f98a2
YZ
3045{
3046 struct btrfs_delayed_extent_op *extent_op;
3047 int ret;
3048
78a6184a 3049 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3050 if (!extent_op)
3051 return -ENOMEM;
3052
3053 extent_op->flags_to_set = flags;
35b3ad50
DS
3054 extent_op->update_flags = true;
3055 extent_op->update_key = false;
3056 extent_op->is_data = is_data ? true : false;
b1c79e09 3057 extent_op->level = level;
5d4f98a2 3058
0b246afa 3059 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3060 num_bytes, extent_op);
5d4f98a2 3061 if (ret)
78a6184a 3062 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3063 return ret;
3064}
3065
e4c3b2dc 3066static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3067 struct btrfs_path *path,
3068 u64 objectid, u64 offset, u64 bytenr)
3069{
3070 struct btrfs_delayed_ref_head *head;
3071 struct btrfs_delayed_ref_node *ref;
3072 struct btrfs_delayed_data_ref *data_ref;
3073 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3074 struct btrfs_transaction *cur_trans;
0e0adbcf 3075 struct rb_node *node;
5d4f98a2
YZ
3076 int ret = 0;
3077
998ac6d2 3078 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 3079 cur_trans = root->fs_info->running_transaction;
998ac6d2 3080 if (cur_trans)
3081 refcount_inc(&cur_trans->use_count);
3082 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
3083 if (!cur_trans)
3084 return 0;
3085
3086 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3087 spin_lock(&delayed_refs->lock);
f72ad18e 3088 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3089 if (!head) {
3090 spin_unlock(&delayed_refs->lock);
998ac6d2 3091 btrfs_put_transaction(cur_trans);
d7df2c79
JB
3092 return 0;
3093 }
5d4f98a2
YZ
3094
3095 if (!mutex_trylock(&head->mutex)) {
d278850e 3096 refcount_inc(&head->refs);
5d4f98a2
YZ
3097 spin_unlock(&delayed_refs->lock);
3098
b3b4aa74 3099 btrfs_release_path(path);
5d4f98a2 3100
8cc33e5c
DS
3101 /*
3102 * Mutex was contended, block until it's released and let
3103 * caller try again
3104 */
5d4f98a2
YZ
3105 mutex_lock(&head->mutex);
3106 mutex_unlock(&head->mutex);
d278850e 3107 btrfs_put_delayed_ref_head(head);
998ac6d2 3108 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3109 return -EAGAIN;
3110 }
d7df2c79 3111 spin_unlock(&delayed_refs->lock);
5d4f98a2 3112
d7df2c79 3113 spin_lock(&head->lock);
0e0adbcf
JB
3114 /*
3115 * XXX: We should replace this with a proper search function in the
3116 * future.
3117 */
e3d03965
LB
3118 for (node = rb_first_cached(&head->ref_tree); node;
3119 node = rb_next(node)) {
0e0adbcf 3120 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3121 /* If it's a shared ref we know a cross reference exists */
3122 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3123 ret = 1;
3124 break;
3125 }
5d4f98a2 3126
d7df2c79 3127 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3128
d7df2c79
JB
3129 /*
3130 * If our ref doesn't match the one we're currently looking at
3131 * then we have a cross reference.
3132 */
3133 if (data_ref->root != root->root_key.objectid ||
3134 data_ref->objectid != objectid ||
3135 data_ref->offset != offset) {
3136 ret = 1;
3137 break;
3138 }
5d4f98a2 3139 }
d7df2c79 3140 spin_unlock(&head->lock);
5d4f98a2 3141 mutex_unlock(&head->mutex);
998ac6d2 3142 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3143 return ret;
3144}
3145
e4c3b2dc 3146static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3147 struct btrfs_path *path,
3148 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3149{
0b246afa
JM
3150 struct btrfs_fs_info *fs_info = root->fs_info;
3151 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3152 struct extent_buffer *leaf;
5d4f98a2
YZ
3153 struct btrfs_extent_data_ref *ref;
3154 struct btrfs_extent_inline_ref *iref;
3155 struct btrfs_extent_item *ei;
f321e491 3156 struct btrfs_key key;
5d4f98a2 3157 u32 item_size;
3de28d57 3158 int type;
be20aa9d 3159 int ret;
925baedd 3160
be20aa9d 3161 key.objectid = bytenr;
31840ae1 3162 key.offset = (u64)-1;
f321e491 3163 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3164
be20aa9d
CM
3165 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3166 if (ret < 0)
3167 goto out;
79787eaa 3168 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3169
3170 ret = -ENOENT;
3171 if (path->slots[0] == 0)
31840ae1 3172 goto out;
be20aa9d 3173
31840ae1 3174 path->slots[0]--;
f321e491 3175 leaf = path->nodes[0];
5d4f98a2 3176 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3177
5d4f98a2 3178 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3179 goto out;
f321e491 3180
5d4f98a2
YZ
3181 ret = 1;
3182 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5d4f98a2 3183 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3184
5d4f98a2
YZ
3185 if (item_size != sizeof(*ei) +
3186 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3187 goto out;
be20aa9d 3188
5d4f98a2
YZ
3189 if (btrfs_extent_generation(leaf, ei) <=
3190 btrfs_root_last_snapshot(&root->root_item))
3191 goto out;
3192
3193 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3194
3195 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3196 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3197 goto out;
3198
3199 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3200 if (btrfs_extent_refs(leaf, ei) !=
3201 btrfs_extent_data_ref_count(leaf, ref) ||
3202 btrfs_extent_data_ref_root(leaf, ref) !=
3203 root->root_key.objectid ||
3204 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3205 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3206 goto out;
3207
3208 ret = 0;
3209out:
3210 return ret;
3211}
3212
e4c3b2dc
LB
3213int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3214 u64 bytenr)
5d4f98a2
YZ
3215{
3216 struct btrfs_path *path;
3217 int ret;
5d4f98a2
YZ
3218
3219 path = btrfs_alloc_path();
3220 if (!path)
9132c4ff 3221 return -ENOMEM;
5d4f98a2
YZ
3222
3223 do {
e4c3b2dc 3224 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3225 offset, bytenr);
3226 if (ret && ret != -ENOENT)
f321e491 3227 goto out;
80ff3856 3228
380fd066
MT
3229 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3230 } while (ret == -EAGAIN);
5d4f98a2 3231
be20aa9d 3232out:
80ff3856 3233 btrfs_free_path(path);
f0486c68
YZ
3234 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3235 WARN_ON(ret > 0);
f321e491 3236 return ret;
be20aa9d 3237}
c5739bba 3238
5d4f98a2 3239static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3240 struct btrfs_root *root,
5d4f98a2 3241 struct extent_buffer *buf,
e339a6b0 3242 int full_backref, int inc)
31840ae1 3243{
0b246afa 3244 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3245 u64 bytenr;
5d4f98a2
YZ
3246 u64 num_bytes;
3247 u64 parent;
31840ae1 3248 u64 ref_root;
31840ae1 3249 u32 nritems;
31840ae1
ZY
3250 struct btrfs_key key;
3251 struct btrfs_file_extent_item *fi;
3252 int i;
3253 int level;
3254 int ret = 0;
2ff7e61e 3255 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3256 struct btrfs_root *,
b06c4bf5 3257 u64, u64, u64, u64, u64, u64);
31840ae1 3258
fccb84c9 3259
0b246afa 3260 if (btrfs_is_testing(fs_info))
faa2dbf0 3261 return 0;
fccb84c9 3262
31840ae1 3263 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3264 nritems = btrfs_header_nritems(buf);
3265 level = btrfs_header_level(buf);
3266
27cdeb70 3267 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3268 return 0;
31840ae1 3269
5d4f98a2
YZ
3270 if (inc)
3271 process_func = btrfs_inc_extent_ref;
3272 else
3273 process_func = btrfs_free_extent;
31840ae1 3274
5d4f98a2
YZ
3275 if (full_backref)
3276 parent = buf->start;
3277 else
3278 parent = 0;
3279
3280 for (i = 0; i < nritems; i++) {
31840ae1 3281 if (level == 0) {
5d4f98a2 3282 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3283 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3284 continue;
5d4f98a2 3285 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3286 struct btrfs_file_extent_item);
3287 if (btrfs_file_extent_type(buf, fi) ==
3288 BTRFS_FILE_EXTENT_INLINE)
3289 continue;
3290 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3291 if (bytenr == 0)
3292 continue;
5d4f98a2
YZ
3293
3294 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3295 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3296 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3297 parent, ref_root, key.objectid,
b06c4bf5 3298 key.offset);
31840ae1
ZY
3299 if (ret)
3300 goto fail;
3301 } else {
5d4f98a2 3302 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3303 num_bytes = fs_info->nodesize;
84f7d8e6 3304 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3305 parent, ref_root, level - 1, 0);
31840ae1
ZY
3306 if (ret)
3307 goto fail;
3308 }
3309 }
3310 return 0;
3311fail:
5d4f98a2
YZ
3312 return ret;
3313}
3314
3315int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3316 struct extent_buffer *buf, int full_backref)
5d4f98a2 3317{
e339a6b0 3318 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3319}
3320
3321int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3322 struct extent_buffer *buf, int full_backref)
5d4f98a2 3323{
e339a6b0 3324 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3325}
3326
9078a3e1 3327static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3328 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3329 struct btrfs_path *path,
3330 struct btrfs_block_group_cache *cache)
3331{
3332 int ret;
0b246afa 3333 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3334 unsigned long bi;
3335 struct extent_buffer *leaf;
9078a3e1 3336
9078a3e1 3337 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3338 if (ret) {
3339 if (ret > 0)
3340 ret = -ENOENT;
54aa1f4d 3341 goto fail;
df95e7f0 3342 }
5f39d397
CM
3343
3344 leaf = path->nodes[0];
3345 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3346 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3347 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3348fail:
24b89d08 3349 btrfs_release_path(path);
df95e7f0 3350 return ret;
9078a3e1
CM
3351
3352}
3353
4a8c9a62 3354static struct btrfs_block_group_cache *
2ff7e61e 3355next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3356 struct btrfs_block_group_cache *cache)
3357{
3358 struct rb_node *node;
292cbd51 3359
0b246afa 3360 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3361
3362 /* If our block group was removed, we need a full search. */
3363 if (RB_EMPTY_NODE(&cache->cache_node)) {
3364 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3365
0b246afa 3366 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3367 btrfs_put_block_group(cache);
0b246afa 3368 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3369 }
4a8c9a62
YZ
3370 node = rb_next(&cache->cache_node);
3371 btrfs_put_block_group(cache);
3372 if (node) {
3373 cache = rb_entry(node, struct btrfs_block_group_cache,
3374 cache_node);
11dfe35a 3375 btrfs_get_block_group(cache);
4a8c9a62
YZ
3376 } else
3377 cache = NULL;
0b246afa 3378 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3379 return cache;
3380}
3381
0af3d00b
JB
3382static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3383 struct btrfs_trans_handle *trans,
3384 struct btrfs_path *path)
3385{
0b246afa
JM
3386 struct btrfs_fs_info *fs_info = block_group->fs_info;
3387 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3388 struct inode *inode = NULL;
364ecf36 3389 struct extent_changeset *data_reserved = NULL;
0af3d00b 3390 u64 alloc_hint = 0;
2b20982e 3391 int dcs = BTRFS_DC_ERROR;
f8c269d7 3392 u64 num_pages = 0;
0af3d00b
JB
3393 int retries = 0;
3394 int ret = 0;
3395
3396 /*
3397 * If this block group is smaller than 100 megs don't bother caching the
3398 * block group.
3399 */
ee22184b 3400 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3401 spin_lock(&block_group->lock);
3402 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3403 spin_unlock(&block_group->lock);
3404 return 0;
3405 }
3406
0c0ef4bc
JB
3407 if (trans->aborted)
3408 return 0;
0af3d00b 3409again:
77ab86bf 3410 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3411 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3412 ret = PTR_ERR(inode);
b3b4aa74 3413 btrfs_release_path(path);
0af3d00b
JB
3414 goto out;
3415 }
3416
3417 if (IS_ERR(inode)) {
3418 BUG_ON(retries);
3419 retries++;
3420
3421 if (block_group->ro)
3422 goto out_free;
3423
77ab86bf
JM
3424 ret = create_free_space_inode(fs_info, trans, block_group,
3425 path);
0af3d00b
JB
3426 if (ret)
3427 goto out_free;
3428 goto again;
3429 }
3430
3431 /*
3432 * We want to set the generation to 0, that way if anything goes wrong
3433 * from here on out we know not to trust this cache when we load up next
3434 * time.
3435 */
3436 BTRFS_I(inode)->generation = 0;
3437 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3438 if (ret) {
3439 /*
3440 * So theoretically we could recover from this, simply set the
3441 * super cache generation to 0 so we know to invalidate the
3442 * cache, but then we'd have to keep track of the block groups
3443 * that fail this way so we know we _have_ to reset this cache
3444 * before the next commit or risk reading stale cache. So to
3445 * limit our exposure to horrible edge cases lets just abort the
3446 * transaction, this only happens in really bad situations
3447 * anyway.
3448 */
66642832 3449 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3450 goto out_put;
3451 }
0af3d00b
JB
3452 WARN_ON(ret);
3453
8e138e0d
JB
3454 /* We've already setup this transaction, go ahead and exit */
3455 if (block_group->cache_generation == trans->transid &&
3456 i_size_read(inode)) {
3457 dcs = BTRFS_DC_SETUP;
3458 goto out_put;
3459 }
3460
0af3d00b 3461 if (i_size_read(inode) > 0) {
2ff7e61e 3462 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3463 &fs_info->global_block_rsv);
7b61cd92
MX
3464 if (ret)
3465 goto out_put;
3466
77ab86bf 3467 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3468 if (ret)
3469 goto out_put;
3470 }
3471
3472 spin_lock(&block_group->lock);
cf7c1ef6 3473 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3474 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3475 /*
3476 * don't bother trying to write stuff out _if_
3477 * a) we're not cached,
1a79c1f2
LB
3478 * b) we're with nospace_cache mount option,
3479 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3480 */
2b20982e 3481 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3482 spin_unlock(&block_group->lock);
3483 goto out_put;
3484 }
3485 spin_unlock(&block_group->lock);
3486
2968b1f4
JB
3487 /*
3488 * We hit an ENOSPC when setting up the cache in this transaction, just
3489 * skip doing the setup, we've already cleared the cache so we're safe.
3490 */
3491 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3492 ret = -ENOSPC;
3493 goto out_put;
3494 }
3495
6fc823b1
JB
3496 /*
3497 * Try to preallocate enough space based on how big the block group is.
3498 * Keep in mind this has to include any pinned space which could end up
3499 * taking up quite a bit since it's not folded into the other space
3500 * cache.
3501 */
ee22184b 3502 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3503 if (!num_pages)
3504 num_pages = 1;
3505
0af3d00b 3506 num_pages *= 16;
09cbfeaf 3507 num_pages *= PAGE_SIZE;
0af3d00b 3508
364ecf36 3509 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3510 if (ret)
3511 goto out_put;
3512
3513 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3514 num_pages, num_pages,
3515 &alloc_hint);
2968b1f4
JB
3516 /*
3517 * Our cache requires contiguous chunks so that we don't modify a bunch
3518 * of metadata or split extents when writing the cache out, which means
3519 * we can enospc if we are heavily fragmented in addition to just normal
3520 * out of space conditions. So if we hit this just skip setting up any
3521 * other block groups for this transaction, maybe we'll unpin enough
3522 * space the next time around.
3523 */
2b20982e
JB
3524 if (!ret)
3525 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3526 else if (ret == -ENOSPC)
3527 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3528
0af3d00b
JB
3529out_put:
3530 iput(inode);
3531out_free:
b3b4aa74 3532 btrfs_release_path(path);
0af3d00b
JB
3533out:
3534 spin_lock(&block_group->lock);
e65cbb94 3535 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3536 block_group->cache_generation = trans->transid;
2b20982e 3537 block_group->disk_cache_state = dcs;
0af3d00b
JB
3538 spin_unlock(&block_group->lock);
3539
364ecf36 3540 extent_changeset_free(data_reserved);
0af3d00b
JB
3541 return ret;
3542}
3543
dcdf7f6d 3544int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3545 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3546{
3547 struct btrfs_block_group_cache *cache, *tmp;
3548 struct btrfs_transaction *cur_trans = trans->transaction;
3549 struct btrfs_path *path;
3550
3551 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3552 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3553 return 0;
3554
3555 path = btrfs_alloc_path();
3556 if (!path)
3557 return -ENOMEM;
3558
3559 /* Could add new block groups, use _safe just in case */
3560 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3561 dirty_list) {
3562 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3563 cache_save_setup(cache, trans, path);
3564 }
3565
3566 btrfs_free_path(path);
3567 return 0;
3568}
3569
1bbc621e
CM
3570/*
3571 * transaction commit does final block group cache writeback during a
3572 * critical section where nothing is allowed to change the FS. This is
3573 * required in order for the cache to actually match the block group,
3574 * but can introduce a lot of latency into the commit.
3575 *
3576 * So, btrfs_start_dirty_block_groups is here to kick off block group
3577 * cache IO. There's a chance we'll have to redo some of it if the
3578 * block group changes again during the commit, but it greatly reduces
3579 * the commit latency by getting rid of the easy block groups while
3580 * we're still allowing others to join the commit.
3581 */
21217054 3582int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3583{
21217054 3584 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3585 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3586 struct btrfs_transaction *cur_trans = trans->transaction;
3587 int ret = 0;
c9dc4c65 3588 int should_put;
1bbc621e
CM
3589 struct btrfs_path *path = NULL;
3590 LIST_HEAD(dirty);
3591 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3592 int num_started = 0;
1bbc621e
CM
3593 int loops = 0;
3594
3595 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3596 if (list_empty(&cur_trans->dirty_bgs)) {
3597 spin_unlock(&cur_trans->dirty_bgs_lock);
3598 return 0;
1bbc621e 3599 }
b58d1a9e 3600 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3601 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3602
1bbc621e 3603again:
1bbc621e
CM
3604 /*
3605 * make sure all the block groups on our dirty list actually
3606 * exist
3607 */
6c686b35 3608 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3609
3610 if (!path) {
3611 path = btrfs_alloc_path();
3612 if (!path)
3613 return -ENOMEM;
3614 }
3615
b58d1a9e
FM
3616 /*
3617 * cache_write_mutex is here only to save us from balance or automatic
3618 * removal of empty block groups deleting this block group while we are
3619 * writing out the cache
3620 */
3621 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3622 while (!list_empty(&dirty)) {
ba2c4d4e
JB
3623 bool drop_reserve = true;
3624
1bbc621e
CM
3625 cache = list_first_entry(&dirty,
3626 struct btrfs_block_group_cache,
3627 dirty_list);
1bbc621e
CM
3628 /*
3629 * this can happen if something re-dirties a block
3630 * group that is already under IO. Just wait for it to
3631 * finish and then do it all again
3632 */
3633 if (!list_empty(&cache->io_list)) {
3634 list_del_init(&cache->io_list);
afdb5718 3635 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3636 btrfs_put_block_group(cache);
3637 }
3638
3639
3640 /*
3641 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3642 * if it should update the cache_state. Don't delete
3643 * until after we wait.
3644 *
3645 * Since we're not running in the commit critical section
3646 * we need the dirty_bgs_lock to protect from update_block_group
3647 */
3648 spin_lock(&cur_trans->dirty_bgs_lock);
3649 list_del_init(&cache->dirty_list);
3650 spin_unlock(&cur_trans->dirty_bgs_lock);
3651
3652 should_put = 1;
3653
3654 cache_save_setup(cache, trans, path);
3655
3656 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3657 cache->io_ctl.inode = NULL;
0b246afa 3658 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3659 cache, path);
1bbc621e
CM
3660 if (ret == 0 && cache->io_ctl.inode) {
3661 num_started++;
3662 should_put = 0;
3663
3664 /*
45ae2c18
NB
3665 * The cache_write_mutex is protecting the
3666 * io_list, also refer to the definition of
3667 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3668 */
3669 list_add_tail(&cache->io_list, io);
3670 } else {
3671 /*
3672 * if we failed to write the cache, the
3673 * generation will be bad and life goes on
3674 */
3675 ret = 0;
3676 }
3677 }
ff1f8250 3678 if (!ret) {
2ff7e61e
JM
3679 ret = write_one_cache_group(trans, fs_info,
3680 path, cache);
ff1f8250
FM
3681 /*
3682 * Our block group might still be attached to the list
3683 * of new block groups in the transaction handle of some
3684 * other task (struct btrfs_trans_handle->new_bgs). This
3685 * means its block group item isn't yet in the extent
3686 * tree. If this happens ignore the error, as we will
3687 * try again later in the critical section of the
3688 * transaction commit.
3689 */
3690 if (ret == -ENOENT) {
3691 ret = 0;
3692 spin_lock(&cur_trans->dirty_bgs_lock);
3693 if (list_empty(&cache->dirty_list)) {
3694 list_add_tail(&cache->dirty_list,
3695 &cur_trans->dirty_bgs);
3696 btrfs_get_block_group(cache);
ba2c4d4e 3697 drop_reserve = false;
ff1f8250
FM
3698 }
3699 spin_unlock(&cur_trans->dirty_bgs_lock);
3700 } else if (ret) {
66642832 3701 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3702 }
3703 }
1bbc621e 3704
52042d8e 3705 /* if it's not on the io list, we need to put the block group */
1bbc621e
CM
3706 if (should_put)
3707 btrfs_put_block_group(cache);
ba2c4d4e
JB
3708 if (drop_reserve)
3709 btrfs_delayed_refs_rsv_release(fs_info, 1);
1bbc621e
CM
3710
3711 if (ret)
3712 break;
b58d1a9e
FM
3713
3714 /*
3715 * Avoid blocking other tasks for too long. It might even save
3716 * us from writing caches for block groups that are going to be
3717 * removed.
3718 */
3719 mutex_unlock(&trans->transaction->cache_write_mutex);
3720 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3721 }
b58d1a9e 3722 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3723
3724 /*
3725 * go through delayed refs for all the stuff we've just kicked off
3726 * and then loop back (just once)
3727 */
c79a70b1 3728 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3729 if (!ret && loops == 0) {
3730 loops++;
3731 spin_lock(&cur_trans->dirty_bgs_lock);
3732 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3733 /*
3734 * dirty_bgs_lock protects us from concurrent block group
3735 * deletes too (not just cache_write_mutex).
3736 */
3737 if (!list_empty(&dirty)) {
3738 spin_unlock(&cur_trans->dirty_bgs_lock);
3739 goto again;
3740 }
1bbc621e 3741 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3742 } else if (ret < 0) {
2ff7e61e 3743 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3744 }
3745
3746 btrfs_free_path(path);
3747 return ret;
3748}
3749
3750int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3751 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3752{
3753 struct btrfs_block_group_cache *cache;
3754 struct btrfs_transaction *cur_trans = trans->transaction;
3755 int ret = 0;
3756 int should_put;
3757 struct btrfs_path *path;
3758 struct list_head *io = &cur_trans->io_bgs;
3759 int num_started = 0;
9078a3e1
CM
3760
3761 path = btrfs_alloc_path();
3762 if (!path)
3763 return -ENOMEM;
3764
ce93ec54 3765 /*
e44081ef
FM
3766 * Even though we are in the critical section of the transaction commit,
3767 * we can still have concurrent tasks adding elements to this
3768 * transaction's list of dirty block groups. These tasks correspond to
3769 * endio free space workers started when writeback finishes for a
3770 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3771 * allocate new block groups as a result of COWing nodes of the root
3772 * tree when updating the free space inode. The writeback for the space
3773 * caches is triggered by an earlier call to
3774 * btrfs_start_dirty_block_groups() and iterations of the following
3775 * loop.
3776 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3777 * delayed refs to make sure we have the best chance at doing this all
3778 * in one shot.
3779 */
e44081ef 3780 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3781 while (!list_empty(&cur_trans->dirty_bgs)) {
3782 cache = list_first_entry(&cur_trans->dirty_bgs,
3783 struct btrfs_block_group_cache,
3784 dirty_list);
c9dc4c65
CM
3785
3786 /*
3787 * this can happen if cache_save_setup re-dirties a block
3788 * group that is already under IO. Just wait for it to
3789 * finish and then do it all again
3790 */
3791 if (!list_empty(&cache->io_list)) {
e44081ef 3792 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3793 list_del_init(&cache->io_list);
afdb5718 3794 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3795 btrfs_put_block_group(cache);
e44081ef 3796 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3797 }
3798
1bbc621e
CM
3799 /*
3800 * don't remove from the dirty list until after we've waited
3801 * on any pending IO
3802 */
ce93ec54 3803 list_del_init(&cache->dirty_list);
e44081ef 3804 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3805 should_put = 1;
3806
1bbc621e 3807 cache_save_setup(cache, trans, path);
c9dc4c65 3808
ce93ec54 3809 if (!ret)
c79a70b1 3810 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3811 (unsigned long) -1);
c9dc4c65
CM
3812
3813 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3814 cache->io_ctl.inode = NULL;
0b246afa 3815 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3816 cache, path);
c9dc4c65
CM
3817 if (ret == 0 && cache->io_ctl.inode) {
3818 num_started++;
3819 should_put = 0;
1bbc621e 3820 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3821 } else {
3822 /*
3823 * if we failed to write the cache, the
3824 * generation will be bad and life goes on
3825 */
3826 ret = 0;
3827 }
3828 }
ff1f8250 3829 if (!ret) {
2ff7e61e
JM
3830 ret = write_one_cache_group(trans, fs_info,
3831 path, cache);
2bc0bb5f
FM
3832 /*
3833 * One of the free space endio workers might have
3834 * created a new block group while updating a free space
3835 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3836 * and hasn't released its transaction handle yet, in
3837 * which case the new block group is still attached to
3838 * its transaction handle and its creation has not
3839 * finished yet (no block group item in the extent tree
3840 * yet, etc). If this is the case, wait for all free
3841 * space endio workers to finish and retry. This is a
3842 * a very rare case so no need for a more efficient and
3843 * complex approach.
3844 */
3845 if (ret == -ENOENT) {
3846 wait_event(cur_trans->writer_wait,
3847 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3848 ret = write_one_cache_group(trans, fs_info,
3849 path, cache);
2bc0bb5f 3850 }
ff1f8250 3851 if (ret)
66642832 3852 btrfs_abort_transaction(trans, ret);
ff1f8250 3853 }
c9dc4c65
CM
3854
3855 /* if its not on the io list, we need to put the block group */
3856 if (should_put)
3857 btrfs_put_block_group(cache);
ba2c4d4e 3858 btrfs_delayed_refs_rsv_release(fs_info, 1);
e44081ef 3859 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3860 }
e44081ef 3861 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3862
45ae2c18
NB
3863 /*
3864 * Refer to the definition of io_bgs member for details why it's safe
3865 * to use it without any locking
3866 */
1bbc621e
CM
3867 while (!list_empty(io)) {
3868 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3869 io_list);
3870 list_del_init(&cache->io_list);
afdb5718 3871 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3872 btrfs_put_block_group(cache);
3873 }
3874
9078a3e1 3875 btrfs_free_path(path);
ce93ec54 3876 return ret;
9078a3e1
CM
3877}
3878
2ff7e61e 3879int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3880{
3881 struct btrfs_block_group_cache *block_group;
3882 int readonly = 0;
3883
0b246afa 3884 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3885 if (!block_group || block_group->ro)
3886 readonly = 1;
3887 if (block_group)
fa9c0d79 3888 btrfs_put_block_group(block_group);
d2fb3437
YZ
3889 return readonly;
3890}
3891
f78c436c
FM
3892bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3893{
3894 struct btrfs_block_group_cache *bg;
3895 bool ret = true;
3896
3897 bg = btrfs_lookup_block_group(fs_info, bytenr);
3898 if (!bg)
3899 return false;
3900
3901 spin_lock(&bg->lock);
3902 if (bg->ro)
3903 ret = false;
3904 else
3905 atomic_inc(&bg->nocow_writers);
3906 spin_unlock(&bg->lock);
3907
3908 /* no put on block group, done by btrfs_dec_nocow_writers */
3909 if (!ret)
3910 btrfs_put_block_group(bg);
3911
3912 return ret;
3913
3914}
3915
3916void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3917{
3918 struct btrfs_block_group_cache *bg;
3919
3920 bg = btrfs_lookup_block_group(fs_info, bytenr);
3921 ASSERT(bg);
3922 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 3923 wake_up_var(&bg->nocow_writers);
f78c436c
FM
3924 /*
3925 * Once for our lookup and once for the lookup done by a previous call
3926 * to btrfs_inc_nocow_writers()
3927 */
3928 btrfs_put_block_group(bg);
3929 btrfs_put_block_group(bg);
3930}
3931
f78c436c
FM
3932void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3933{
4625956a 3934 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
3935}
3936
6ab0a202
JM
3937static const char *alloc_name(u64 flags)
3938{
3939 switch (flags) {
3940 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3941 return "mixed";
3942 case BTRFS_BLOCK_GROUP_METADATA:
3943 return "metadata";
3944 case BTRFS_BLOCK_GROUP_DATA:
3945 return "data";
3946 case BTRFS_BLOCK_GROUP_SYSTEM:
3947 return "system";
3948 default:
3949 WARN_ON(1);
3950 return "invalid-combination";
3951 };
3952}
3953
4ca61683 3954static int create_space_info(struct btrfs_fs_info *info, u64 flags)
2be12ef7
NB
3955{
3956
3957 struct btrfs_space_info *space_info;
3958 int i;
3959 int ret;
3960
3961 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3962 if (!space_info)
3963 return -ENOMEM;
3964
3965 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3966 GFP_KERNEL);
3967 if (ret) {
3968 kfree(space_info);
3969 return ret;
3970 }
3971
3972 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3973 INIT_LIST_HEAD(&space_info->block_groups[i]);
3974 init_rwsem(&space_info->groups_sem);
3975 spin_lock_init(&space_info->lock);
3976 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3977 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3978 init_waitqueue_head(&space_info->wait);
3979 INIT_LIST_HEAD(&space_info->ro_bgs);
3980 INIT_LIST_HEAD(&space_info->tickets);
3981 INIT_LIST_HEAD(&space_info->priority_tickets);
3982
3983 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3984 info->space_info_kobj, "%s",
3985 alloc_name(space_info->flags));
3986 if (ret) {
3987 percpu_counter_destroy(&space_info->total_bytes_pinned);
3988 kfree(space_info);
3989 return ret;
3990 }
3991
2be12ef7
NB
3992 list_add_rcu(&space_info->list, &info->space_info);
3993 if (flags & BTRFS_BLOCK_GROUP_DATA)
3994 info->data_sinfo = space_info;
3995
3996 return ret;
3997}
3998
d2006e6d 3999static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4000 u64 total_bytes, u64 bytes_used,
e40edf2d 4001 u64 bytes_readonly,
593060d7
CM
4002 struct btrfs_space_info **space_info)
4003{
4004 struct btrfs_space_info *found;
b742bb82
YZ
4005 int factor;
4006
46df06b8 4007 factor = btrfs_bg_type_to_factor(flags);
593060d7
CM
4008
4009 found = __find_space_info(info, flags);
d2006e6d
NB
4010 ASSERT(found);
4011 spin_lock(&found->lock);
4012 found->total_bytes += total_bytes;
4013 found->disk_total += total_bytes * factor;
4014 found->bytes_used += bytes_used;
4015 found->disk_used += bytes_used * factor;
4016 found->bytes_readonly += bytes_readonly;
4017 if (total_bytes > 0)
4018 found->full = 0;
4019 space_info_add_new_bytes(info, found, total_bytes -
4020 bytes_used - bytes_readonly);
4021 spin_unlock(&found->lock);
4022 *space_info = found;
593060d7
CM
4023}
4024
8790d502
CM
4025static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4026{
899c81ea
ID
4027 u64 extra_flags = chunk_to_extended(flags) &
4028 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4029
de98ced9 4030 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4031 if (flags & BTRFS_BLOCK_GROUP_DATA)
4032 fs_info->avail_data_alloc_bits |= extra_flags;
4033 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4034 fs_info->avail_metadata_alloc_bits |= extra_flags;
4035 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4036 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4037 write_sequnlock(&fs_info->profiles_lock);
8790d502 4038}
593060d7 4039
fc67c450
ID
4040/*
4041 * returns target flags in extended format or 0 if restripe for this
4042 * chunk_type is not in progress
c6664b42 4043 *
dccdb07b 4044 * should be called with balance_lock held
fc67c450
ID
4045 */
4046static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4047{
4048 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4049 u64 target = 0;
4050
fc67c450
ID
4051 if (!bctl)
4052 return 0;
4053
4054 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4055 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4056 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4057 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4058 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4059 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4060 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4061 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4062 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4063 }
4064
4065 return target;
4066}
4067
a46d11a8
ID
4068/*
4069 * @flags: available profiles in extended format (see ctree.h)
4070 *
e4d8ec0f
ID
4071 * Returns reduced profile in chunk format. If profile changing is in
4072 * progress (either running or paused) picks the target profile (if it's
4073 * already available), otherwise falls back to plain reducing.
a46d11a8 4074 */
2ff7e61e 4075static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4076{
0b246afa 4077 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4078 u64 target;
9c170b26
ZL
4079 u64 raid_type;
4080 u64 allowed = 0;
a061fc8d 4081
fc67c450
ID
4082 /*
4083 * see if restripe for this chunk_type is in progress, if so
4084 * try to reduce to the target profile
4085 */
0b246afa
JM
4086 spin_lock(&fs_info->balance_lock);
4087 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4088 if (target) {
4089 /* pick target profile only if it's already available */
4090 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4091 spin_unlock(&fs_info->balance_lock);
fc67c450 4092 return extended_to_chunk(target);
e4d8ec0f
ID
4093 }
4094 }
0b246afa 4095 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4096
53b381b3 4097 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4098 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4099 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
41a6e891 4100 allowed |= btrfs_raid_array[raid_type].bg_flag;
9c170b26
ZL
4101 }
4102 allowed &= flags;
4103
4104 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4105 allowed = BTRFS_BLOCK_GROUP_RAID6;
4106 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4107 allowed = BTRFS_BLOCK_GROUP_RAID5;
4108 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4109 allowed = BTRFS_BLOCK_GROUP_RAID10;
4110 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4111 allowed = BTRFS_BLOCK_GROUP_RAID1;
4112 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4113 allowed = BTRFS_BLOCK_GROUP_RAID0;
4114
4115 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4116
4117 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4118}
4119
2ff7e61e 4120static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4121{
de98ced9 4122 unsigned seq;
f8213bdc 4123 u64 flags;
de98ced9
MX
4124
4125 do {
f8213bdc 4126 flags = orig_flags;
0b246afa 4127 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4128
4129 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4130 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4131 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4132 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4133 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4134 flags |= fs_info->avail_metadata_alloc_bits;
4135 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4136
2ff7e61e 4137 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4138}
4139
1b86826d 4140static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4141{
0b246afa 4142 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4143 u64 flags;
53b381b3 4144 u64 ret;
9ed74f2d 4145
b742bb82
YZ
4146 if (data)
4147 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4148 else if (root == fs_info->chunk_root)
b742bb82 4149 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4150 else
b742bb82 4151 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4152
2ff7e61e 4153 ret = get_alloc_profile(fs_info, flags);
53b381b3 4154 return ret;
6a63209f 4155}
9ed74f2d 4156
1b86826d
JM
4157u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4158{
4159 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4160}
4161
4162u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4163{
4164 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4165}
4166
4167u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4168{
4169 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4170}
4171
4136135b
LB
4172static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4173 bool may_use_included)
4174{
4175 ASSERT(s_info);
4176 return s_info->bytes_used + s_info->bytes_reserved +
4177 s_info->bytes_pinned + s_info->bytes_readonly +
4178 (may_use_included ? s_info->bytes_may_use : 0);
4179}
4180
04f4f916 4181int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4182{
04f4f916 4183 struct btrfs_root *root = inode->root;
b4d7c3c9 4184 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4185 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4186 u64 used;
94b947b2 4187 int ret = 0;
c99f1b0c
ZL
4188 int need_commit = 2;
4189 int have_pinned_space;
6a63209f 4190
6a63209f 4191 /* make sure bytes are sectorsize aligned */
0b246afa 4192 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4193
9dced186 4194 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4195 need_commit = 0;
9dced186 4196 ASSERT(current->journal_info);
0af3d00b
JB
4197 }
4198
6a63209f
JB
4199again:
4200 /* make sure we have enough space to handle the data first */
4201 spin_lock(&data_sinfo->lock);
4136135b 4202 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4203
4204 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4205 struct btrfs_trans_handle *trans;
9ed74f2d 4206
6a63209f
JB
4207 /*
4208 * if we don't have enough free bytes in this space then we need
4209 * to alloc a new chunk.
4210 */
b9fd47cd 4211 if (!data_sinfo->full) {
6a63209f 4212 u64 alloc_target;
9ed74f2d 4213
0e4f8f88 4214 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4215 spin_unlock(&data_sinfo->lock);
1174cade 4216
1b86826d 4217 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4218 /*
4219 * It is ugly that we don't call nolock join
4220 * transaction for the free space inode case here.
4221 * But it is safe because we only do the data space
4222 * reservation for the free space cache in the
4223 * transaction context, the common join transaction
4224 * just increase the counter of the current transaction
4225 * handler, doesn't try to acquire the trans_lock of
4226 * the fs.
4227 */
7a7eaa40 4228 trans = btrfs_join_transaction(root);
a22285a6
YZ
4229 if (IS_ERR(trans))
4230 return PTR_ERR(trans);
9ed74f2d 4231
01458828 4232 ret = do_chunk_alloc(trans, alloc_target,
0e4f8f88 4233 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4234 btrfs_end_transaction(trans);
d52a5b5f
MX
4235 if (ret < 0) {
4236 if (ret != -ENOSPC)
4237 return ret;
c99f1b0c
ZL
4238 else {
4239 have_pinned_space = 1;
d52a5b5f 4240 goto commit_trans;
c99f1b0c 4241 }
d52a5b5f 4242 }
9ed74f2d 4243
6a63209f
JB
4244 goto again;
4245 }
f2bb8f5c
JB
4246
4247 /*
b150a4f1 4248 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4249 * allocation, and no removed chunk in current transaction,
4250 * don't bother committing the transaction.
f2bb8f5c 4251 */
dec59fa3 4252 have_pinned_space = __percpu_counter_compare(
c99f1b0c 4253 &data_sinfo->total_bytes_pinned,
dec59fa3
EL
4254 used + bytes - data_sinfo->total_bytes,
4255 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6a63209f 4256 spin_unlock(&data_sinfo->lock);
6a63209f 4257
4e06bdd6 4258 /* commit the current transaction and try again */
d52a5b5f 4259commit_trans:
92e2f7e3 4260 if (need_commit) {
c99f1b0c 4261 need_commit--;
b150a4f1 4262
e1746e83 4263 if (need_commit > 0) {
82b3e53b 4264 btrfs_start_delalloc_roots(fs_info, -1);
6374e57a 4265 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4266 (u64)-1);
e1746e83 4267 }
9a4e7276 4268
7a7eaa40 4269 trans = btrfs_join_transaction(root);
a22285a6
YZ
4270 if (IS_ERR(trans))
4271 return PTR_ERR(trans);
c99f1b0c 4272 if (have_pinned_space >= 0 ||
3204d33c
JB
4273 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4274 &trans->transaction->flags) ||
c99f1b0c 4275 need_commit > 0) {
3a45bb20 4276 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4277 if (ret)
4278 return ret;
d7c15171 4279 /*
c2d6cb16
FM
4280 * The cleaner kthread might still be doing iput
4281 * operations. Wait for it to finish so that
4282 * more space is released.
d7c15171 4283 */
0b246afa
JM
4284 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4285 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4286 goto again;
4287 } else {
3a45bb20 4288 btrfs_end_transaction(trans);
94b947b2 4289 }
4e06bdd6 4290 }
9ed74f2d 4291
0b246afa 4292 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4293 "space_info:enospc",
4294 data_sinfo->flags, bytes, 1);
6a63209f
JB
4295 return -ENOSPC;
4296 }
9f9b8e8d 4297 update_bytes_may_use(data_sinfo, bytes);
0b246afa 4298 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4299 data_sinfo->flags, bytes, 1);
6a63209f 4300 spin_unlock(&data_sinfo->lock);
6a63209f 4301
4559b0a7 4302 return 0;
9ed74f2d 4303}
6a63209f 4304
364ecf36
QW
4305int btrfs_check_data_free_space(struct inode *inode,
4306 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4307{
0b246afa 4308 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4309 int ret;
4310
4311 /* align the range */
0b246afa
JM
4312 len = round_up(start + len, fs_info->sectorsize) -
4313 round_down(start, fs_info->sectorsize);
4314 start = round_down(start, fs_info->sectorsize);
4ceff079 4315
04f4f916 4316 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4317 if (ret < 0)
4318 return ret;
4319
1e5ec2e7 4320 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4321 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4322 if (ret < 0)
1e5ec2e7 4323 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4324 else
4325 ret = 0;
4ceff079
QW
4326 return ret;
4327}
4328
4ceff079
QW
4329/*
4330 * Called if we need to clear a data reservation for this inode
4331 * Normally in a error case.
4332 *
51773bec
QW
4333 * This one will *NOT* use accurate qgroup reserved space API, just for case
4334 * which we can't sleep and is sure it won't affect qgroup reserved space.
4335 * Like clear_bit_hook().
4ceff079 4336 */
51773bec
QW
4337void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4338 u64 len)
4ceff079 4339{
0b246afa 4340 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4341 struct btrfs_space_info *data_sinfo;
4342
4343 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4344 len = round_up(start + len, fs_info->sectorsize) -
4345 round_down(start, fs_info->sectorsize);
4346 start = round_down(start, fs_info->sectorsize);
4ceff079 4347
0b246afa 4348 data_sinfo = fs_info->data_sinfo;
4ceff079 4349 spin_lock(&data_sinfo->lock);
9f9b8e8d 4350 update_bytes_may_use(data_sinfo, -len);
0b246afa 4351 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4352 data_sinfo->flags, len, 0);
4353 spin_unlock(&data_sinfo->lock);
4354}
4355
51773bec
QW
4356/*
4357 * Called if we need to clear a data reservation for this inode
4358 * Normally in a error case.
4359 *
01327610 4360 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4361 * space framework.
4362 */
bc42bda2
QW
4363void btrfs_free_reserved_data_space(struct inode *inode,
4364 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4365{
0c476a5d
JM
4366 struct btrfs_root *root = BTRFS_I(inode)->root;
4367
4368 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4369 len = round_up(start + len, root->fs_info->sectorsize) -
4370 round_down(start, root->fs_info->sectorsize);
4371 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4372
51773bec 4373 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4374 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4375}
4376
97e728d4 4377static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4378{
97e728d4
JB
4379 struct list_head *head = &info->space_info;
4380 struct btrfs_space_info *found;
e3ccfa98 4381
97e728d4
JB
4382 rcu_read_lock();
4383 list_for_each_entry_rcu(found, head, list) {
4384 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4385 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4386 }
97e728d4 4387 rcu_read_unlock();
e3ccfa98
JB
4388}
4389
3c76cd84
MX
4390static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4391{
4392 return (global->size << 1);
4393}
4394
2ff7e61e 4395static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4396 struct btrfs_space_info *sinfo, int force)
32c00aff 4397{
0b246afa 4398 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4399 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4400 u64 thresh;
e3ccfa98 4401
0e4f8f88
CM
4402 if (force == CHUNK_ALLOC_FORCE)
4403 return 1;
4404
fb25e914
JB
4405 /*
4406 * We need to take into account the global rsv because for all intents
4407 * and purposes it's used space. Don't worry about locking the
4408 * global_rsv, it doesn't change except when the transaction commits.
4409 */
54338b5c 4410 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4411 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4412
0e4f8f88
CM
4413 /*
4414 * in limited mode, we want to have some free space up to
4415 * about 1% of the FS size.
4416 */
4417 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4418 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4419 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4420
8d8aafee 4421 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4422 return 1;
4423 }
0e4f8f88 4424
8d8aafee 4425 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4426 return 0;
424499db 4427 return 1;
32c00aff
JB
4428}
4429
2ff7e61e 4430static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4431{
4432 u64 num_dev;
4433
53b381b3
DW
4434 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4435 BTRFS_BLOCK_GROUP_RAID0 |
4436 BTRFS_BLOCK_GROUP_RAID5 |
4437 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4438 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4439 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4440 num_dev = 2;
4441 else
4442 num_dev = 1; /* DUP or single */
4443
39c2d7fa 4444 return num_dev;
15d1ff81
LB
4445}
4446
39c2d7fa
FM
4447/*
4448 * If @is_allocation is true, reserve space in the system space info necessary
4449 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4450 * removing a chunk.
4451 */
451a2c13 4452void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
15d1ff81 4453{
451a2c13 4454 struct btrfs_fs_info *fs_info = trans->fs_info;
15d1ff81
LB
4455 struct btrfs_space_info *info;
4456 u64 left;
4457 u64 thresh;
4fbcdf66 4458 int ret = 0;
39c2d7fa 4459 u64 num_devs;
4fbcdf66
FM
4460
4461 /*
4462 * Needed because we can end up allocating a system chunk and for an
4463 * atomic and race free space reservation in the chunk block reserve.
4464 */
a32bf9a3 4465 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4466
0b246afa 4467 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4468 spin_lock(&info->lock);
4136135b 4469 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4470 spin_unlock(&info->lock);
4471
2ff7e61e 4472 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4473
4474 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4475 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4476 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4477
0b246afa
JM
4478 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4479 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4480 left, thresh, type);
4481 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4482 }
4483
4484 if (left < thresh) {
1b86826d 4485 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4486
4fbcdf66
FM
4487 /*
4488 * Ignore failure to create system chunk. We might end up not
4489 * needing it, as we might not need to COW all nodes/leafs from
4490 * the paths we visit in the chunk tree (they were already COWed
4491 * or created in the current transaction for example).
4492 */
c216b203 4493 ret = btrfs_alloc_chunk(trans, flags);
4fbcdf66
FM
4494 }
4495
4496 if (!ret) {
0b246afa
JM
4497 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4498 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4499 thresh, BTRFS_RESERVE_NO_FLUSH);
4500 if (!ret)
4501 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4502 }
4503}
4504
28b737f6
LB
4505/*
4506 * If force is CHUNK_ALLOC_FORCE:
4507 * - return 1 if it successfully allocates a chunk,
4508 * - return errors including -ENOSPC otherwise.
4509 * If force is NOT CHUNK_ALLOC_FORCE:
4510 * - return 0 if it doesn't need to allocate a new chunk,
4511 * - return 1 if it successfully allocates a chunk,
4512 * - return errors including -ENOSPC otherwise.
4513 */
01458828
NB
4514static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4515 int force)
9ed74f2d 4516{
01458828 4517 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 4518 struct btrfs_space_info *space_info;
2556fbb0
NB
4519 bool wait_for_alloc = false;
4520 bool should_alloc = false;
9ed74f2d 4521 int ret = 0;
9ed74f2d 4522
c6b305a8
JB
4523 /* Don't re-enter if we're already allocating a chunk */
4524 if (trans->allocating_chunk)
4525 return -ENOSPC;
4526
0b246afa 4527 space_info = __find_space_info(fs_info, flags);
dc2d3005 4528 ASSERT(space_info);
9ed74f2d 4529
2556fbb0
NB
4530 do {
4531 spin_lock(&space_info->lock);
4532 if (force < space_info->force_alloc)
4533 force = space_info->force_alloc;
4534 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4535 if (space_info->full) {
4536 /* No more free physical space */
4537 if (should_alloc)
4538 ret = -ENOSPC;
4539 else
4540 ret = 0;
4541 spin_unlock(&space_info->lock);
4542 return ret;
4543 } else if (!should_alloc) {
4544 spin_unlock(&space_info->lock);
4545 return 0;
4546 } else if (space_info->chunk_alloc) {
4547 /*
4548 * Someone is already allocating, so we need to block
4549 * until this someone is finished and then loop to
4550 * recheck if we should continue with our allocation
4551 * attempt.
4552 */
4553 wait_for_alloc = true;
4554 spin_unlock(&space_info->lock);
4555 mutex_lock(&fs_info->chunk_mutex);
4556 mutex_unlock(&fs_info->chunk_mutex);
4557 } else {
4558 /* Proceed with allocation */
4559 space_info->chunk_alloc = 1;
4560 wait_for_alloc = false;
4561 spin_unlock(&space_info->lock);
4562 }
6d74119f 4563
1e1c50a9 4564 cond_resched();
2556fbb0 4565 } while (wait_for_alloc);
6d74119f 4566
2556fbb0 4567 mutex_lock(&fs_info->chunk_mutex);
c6b305a8
JB
4568 trans->allocating_chunk = true;
4569
67377734
JB
4570 /*
4571 * If we have mixed data/metadata chunks we want to make sure we keep
4572 * allocating mixed chunks instead of individual chunks.
4573 */
4574 if (btrfs_mixed_space_info(space_info))
4575 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4576
97e728d4
JB
4577 /*
4578 * if we're doing a data chunk, go ahead and make sure that
4579 * we keep a reasonable number of metadata chunks allocated in the
4580 * FS as well.
4581 */
9ed74f2d 4582 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4583 fs_info->data_chunk_allocations++;
4584 if (!(fs_info->data_chunk_allocations %
4585 fs_info->metadata_ratio))
4586 force_metadata_allocation(fs_info);
9ed74f2d
JB
4587 }
4588
15d1ff81
LB
4589 /*
4590 * Check if we have enough space in SYSTEM chunk because we may need
4591 * to update devices.
4592 */
451a2c13 4593 check_system_chunk(trans, flags);
15d1ff81 4594
c216b203 4595 ret = btrfs_alloc_chunk(trans, flags);
c6b305a8 4596 trans->allocating_chunk = false;
92b8e897 4597
9ed74f2d 4598 spin_lock(&space_info->lock);
57f1642e
NB
4599 if (ret < 0) {
4600 if (ret == -ENOSPC)
4601 space_info->full = 1;
4602 else
4603 goto out;
4604 } else {
424499db 4605 ret = 1;
21a94f7a 4606 space_info->max_extent_size = 0;
57f1642e 4607 }
6d74119f 4608
0e4f8f88 4609 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4610out:
6d74119f 4611 space_info->chunk_alloc = 0;
9ed74f2d 4612 spin_unlock(&space_info->lock);
a25c75d5 4613 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4614 /*
4615 * When we allocate a new chunk we reserve space in the chunk block
4616 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4617 * add new nodes/leafs to it if we end up needing to do it when
4618 * inserting the chunk item and updating device items as part of the
4619 * second phase of chunk allocation, performed by
4620 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4621 * large number of new block groups to create in our transaction
4622 * handle's new_bgs list to avoid exhausting the chunk block reserve
4623 * in extreme cases - like having a single transaction create many new
4624 * block groups when starting to write out the free space caches of all
4625 * the block groups that were made dirty during the lifetime of the
4626 * transaction.
4627 */
5ce55557 4628 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
6c686b35 4629 btrfs_create_pending_block_groups(trans);
5ce55557 4630
0f9dd46c 4631 return ret;
6324fbf3 4632}
9ed74f2d 4633
c1c4919b 4634static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4635 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4636 enum btrfs_reserve_flush_enum flush,
4637 bool system_chunk)
a80c8dcf 4638{
0b246afa 4639 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4640 u64 profile;
3c76cd84 4641 u64 space_size;
a80c8dcf
JB
4642 u64 avail;
4643 u64 used;
46df06b8 4644 int factor;
a80c8dcf 4645
957780eb
JB
4646 /* Don't overcommit when in mixed mode. */
4647 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4648 return 0;
4649
c1c4919b
JM
4650 if (system_chunk)
4651 profile = btrfs_system_alloc_profile(fs_info);
4652 else
4653 profile = btrfs_metadata_alloc_profile(fs_info);
4654
4136135b 4655 used = btrfs_space_info_used(space_info, false);
96f1bb57 4656
96f1bb57
JB
4657 /*
4658 * We only want to allow over committing if we have lots of actual space
4659 * free, but if we don't have enough space to handle the global reserve
4660 * space then we could end up having a real enospc problem when trying
4661 * to allocate a chunk or some other such important allocation.
4662 */
3c76cd84
MX
4663 spin_lock(&global_rsv->lock);
4664 space_size = calc_global_rsv_need_space(global_rsv);
4665 spin_unlock(&global_rsv->lock);
4666 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4667 return 0;
4668
4669 used += space_info->bytes_may_use;
a80c8dcf 4670
a5ed45f8 4671 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4672
4673 /*
4674 * If we have dup, raid1 or raid10 then only half of the free
52042d8e 4675 * space is actually usable. For raid56, the space info used
53b381b3
DW
4676 * doesn't include the parity drive, so we don't have to
4677 * change the math
a80c8dcf 4678 */
46df06b8
DS
4679 factor = btrfs_bg_type_to_factor(profile);
4680 avail = div_u64(avail, factor);
a80c8dcf
JB
4681
4682 /*
561c294d
MX
4683 * If we aren't flushing all things, let us overcommit up to
4684 * 1/2th of the space. If we can flush, don't let us overcommit
4685 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4686 */
08e007d2 4687 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4688 avail >>= 3;
a80c8dcf 4689 else
14575aef 4690 avail >>= 1;
a80c8dcf 4691
14575aef 4692 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4693 return 1;
4694 return 0;
4695}
4696
2ff7e61e 4697static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4698 unsigned long nr_pages, int nr_items)
da633a42 4699{
0b246afa 4700 struct super_block *sb = fs_info->sb;
da633a42 4701
925a6efb
JB
4702 if (down_read_trylock(&sb->s_umount)) {
4703 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4704 up_read(&sb->s_umount);
4705 } else {
da633a42
MX
4706 /*
4707 * We needn't worry the filesystem going from r/w to r/o though
4708 * we don't acquire ->s_umount mutex, because the filesystem
4709 * should guarantee the delalloc inodes list be empty after
4710 * the filesystem is readonly(all dirty pages are written to
4711 * the disk).
4712 */
82b3e53b 4713 btrfs_start_delalloc_roots(fs_info, nr_items);
98ad69cf 4714 if (!current->journal_info)
0b246afa 4715 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4716 }
4717}
4718
6374e57a 4719static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4720 u64 to_reclaim)
18cd8ea6
MX
4721{
4722 u64 bytes;
6374e57a 4723 u64 nr;
18cd8ea6 4724
2ff7e61e 4725 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4726 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4727 if (!nr)
4728 nr = 1;
4729 return nr;
4730}
4731
ee22184b 4732#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4733
9ed74f2d 4734/*
5da9d01b 4735 * shrink metadata reservation for delalloc
9ed74f2d 4736 */
c1c4919b
JM
4737static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4738 u64 orig, bool wait_ordered)
5da9d01b 4739{
0019f10d 4740 struct btrfs_space_info *space_info;
663350ac 4741 struct btrfs_trans_handle *trans;
f4c738c2 4742 u64 delalloc_bytes;
420829d8 4743 u64 async_pages;
6374e57a 4744 u64 items;
b1953bce 4745 long time_left;
d3ee29e3
MX
4746 unsigned long nr_pages;
4747 int loops;
5da9d01b 4748
c61a16a7 4749 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4750 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4751 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4752
663350ac 4753 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4754 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4755
963d678b 4756 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4757 &fs_info->delalloc_bytes);
f4c738c2 4758 if (delalloc_bytes == 0) {
fdb5effd 4759 if (trans)
f4c738c2 4760 return;
38c135af 4761 if (wait_ordered)
0b246afa 4762 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4763 return;
fdb5effd
JB
4764 }
4765
d3ee29e3 4766 loops = 0;
f4c738c2 4767 while (delalloc_bytes && loops < 3) {
420829d8
NB
4768 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
4769
4770 /*
4771 * Triggers inode writeback for up to nr_pages. This will invoke
4772 * ->writepages callback and trigger delalloc filling
4773 * (btrfs_run_delalloc_range()).
4774 */
2ff7e61e 4775 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
420829d8 4776
dea31f52 4777 /*
420829d8
NB
4778 * We need to wait for the compressed pages to start before
4779 * we continue.
dea31f52 4780 */
420829d8
NB
4781 async_pages = atomic_read(&fs_info->async_delalloc_pages);
4782 if (!async_pages)
9f3a074d
MX
4783 goto skip_async;
4784
420829d8
NB
4785 /*
4786 * Calculate how many compressed pages we want to be written
4787 * before we continue. I.e if there are more async pages than we
4788 * require wait_event will wait until nr_pages are written.
4789 */
4790 if (async_pages <= nr_pages)
4791 async_pages = 0;
9f3a074d 4792 else
420829d8 4793 async_pages -= nr_pages;
dea31f52 4794
0b246afa
JM
4795 wait_event(fs_info->async_submit_wait,
4796 atomic_read(&fs_info->async_delalloc_pages) <=
420829d8 4797 (int)async_pages);
9f3a074d 4798skip_async:
0019f10d 4799 spin_lock(&space_info->lock);
957780eb
JB
4800 if (list_empty(&space_info->tickets) &&
4801 list_empty(&space_info->priority_tickets)) {
4802 spin_unlock(&space_info->lock);
4803 break;
4804 }
0019f10d 4805 spin_unlock(&space_info->lock);
5da9d01b 4806
36e39c40 4807 loops++;
f104d044 4808 if (wait_ordered && !trans) {
0b246afa 4809 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4810 } else {
f4c738c2 4811 time_left = schedule_timeout_killable(1);
f104d044
JB
4812 if (time_left)
4813 break;
4814 }
963d678b 4815 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4816 &fs_info->delalloc_bytes);
5da9d01b 4817 }
5da9d01b
YZ
4818}
4819
996478ca
JB
4820struct reserve_ticket {
4821 u64 bytes;
4822 int error;
4823 struct list_head list;
4824 wait_queue_head_t wait;
4825};
4826
663350ac
JB
4827/**
4828 * maybe_commit_transaction - possibly commit the transaction if its ok to
4829 * @root - the root we're allocating for
4830 * @bytes - the number of bytes we want to reserve
4831 * @force - force the commit
8bb8ab2e 4832 *
663350ac
JB
4833 * This will check to make sure that committing the transaction will actually
4834 * get us somewhere and then commit the transaction if it does. Otherwise it
4835 * will return -ENOSPC.
8bb8ab2e 4836 */
0c9ab349 4837static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4838 struct btrfs_space_info *space_info)
663350ac 4839{
996478ca 4840 struct reserve_ticket *ticket = NULL;
0b246afa 4841 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4c8edbc7 4842 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
663350ac 4843 struct btrfs_trans_handle *trans;
4c8edbc7
JB
4844 u64 bytes_needed;
4845 u64 reclaim_bytes = 0;
663350ac
JB
4846
4847 trans = (struct btrfs_trans_handle *)current->journal_info;
4848 if (trans)
4849 return -EAGAIN;
4850
996478ca
JB
4851 spin_lock(&space_info->lock);
4852 if (!list_empty(&space_info->priority_tickets))
4853 ticket = list_first_entry(&space_info->priority_tickets,
4854 struct reserve_ticket, list);
4855 else if (!list_empty(&space_info->tickets))
4856 ticket = list_first_entry(&space_info->tickets,
4857 struct reserve_ticket, list);
4c8edbc7 4858 bytes_needed = (ticket) ? ticket->bytes : 0;
996478ca
JB
4859 spin_unlock(&space_info->lock);
4860
4c8edbc7 4861 if (!bytes_needed)
996478ca 4862 return 0;
663350ac
JB
4863
4864 /* See if there is enough pinned space to make this reservation */
dec59fa3 4865 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4c8edbc7 4866 bytes_needed,
dec59fa3 4867 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
663350ac 4868 goto commit;
663350ac
JB
4869
4870 /*
4871 * See if there is some space in the delayed insertion reservation for
4872 * this reservation.
4873 */
4874 if (space_info != delayed_rsv->space_info)
4875 return -ENOSPC;
4876
4877 spin_lock(&delayed_rsv->lock);
4c8edbc7 4878 reclaim_bytes += delayed_rsv->reserved;
057aac3e
NB
4879 spin_unlock(&delayed_rsv->lock);
4880
4c8edbc7
JB
4881 spin_lock(&delayed_refs_rsv->lock);
4882 reclaim_bytes += delayed_refs_rsv->reserved;
4883 spin_unlock(&delayed_refs_rsv->lock);
4884 if (reclaim_bytes >= bytes_needed)
4885 goto commit;
4886 bytes_needed -= reclaim_bytes;
4887
dec59fa3 4888 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4c8edbc7 4889 bytes_needed,
dec59fa3 4890 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
663350ac
JB
4891 return -ENOSPC;
4892 }
663350ac
JB
4893
4894commit:
a9b3311e 4895 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4896 if (IS_ERR(trans))
4897 return -ENOSPC;
4898
3a45bb20 4899 return btrfs_commit_transaction(trans);
663350ac
JB
4900}
4901
e38ae7a0
NB
4902/*
4903 * Try to flush some data based on policy set by @state. This is only advisory
4904 * and may fail for various reasons. The caller is supposed to examine the
4905 * state of @space_info to detect the outcome.
4906 */
4907static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4908 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4909 int state)
96c3f433 4910{
a9b3311e 4911 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4912 struct btrfs_trans_handle *trans;
4913 int nr;
f4c738c2 4914 int ret = 0;
96c3f433
JB
4915
4916 switch (state) {
96c3f433
JB
4917 case FLUSH_DELAYED_ITEMS_NR:
4918 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4919 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4920 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4921 else
96c3f433 4922 nr = -1;
18cd8ea6 4923
96c3f433
JB
4924 trans = btrfs_join_transaction(root);
4925 if (IS_ERR(trans)) {
4926 ret = PTR_ERR(trans);
4927 break;
4928 }
e5c304e6 4929 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4930 btrfs_end_transaction(trans);
96c3f433 4931 break;
67b0fd63
JB
4932 case FLUSH_DELALLOC:
4933 case FLUSH_DELALLOC_WAIT:
7bdd6277 4934 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4935 state == FLUSH_DELALLOC_WAIT);
4936 break;
413df725
JB
4937 case FLUSH_DELAYED_REFS_NR:
4938 case FLUSH_DELAYED_REFS:
4939 trans = btrfs_join_transaction(root);
4940 if (IS_ERR(trans)) {
4941 ret = PTR_ERR(trans);
4942 break;
4943 }
4944 if (state == FLUSH_DELAYED_REFS_NR)
4945 nr = calc_reclaim_items_nr(fs_info, num_bytes);
4946 else
4947 nr = 0;
4948 btrfs_run_delayed_refs(trans, nr);
4949 btrfs_end_transaction(trans);
4950 break;
ea658bad
JB
4951 case ALLOC_CHUNK:
4952 trans = btrfs_join_transaction(root);
4953 if (IS_ERR(trans)) {
4954 ret = PTR_ERR(trans);
4955 break;
4956 }
01458828 4957 ret = do_chunk_alloc(trans,
1b86826d 4958 btrfs_metadata_alloc_profile(fs_info),
ea658bad 4959 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4960 btrfs_end_transaction(trans);
eecba891 4961 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4962 ret = 0;
4963 break;
96c3f433 4964 case COMMIT_TRANS:
3ec9a4c8
JB
4965 /*
4966 * If we have pending delayed iputs then we could free up a
4967 * bunch of pinned space, so make sure we run the iputs before
4968 * we do our pinned bytes check below.
4969 */
4970 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4971 btrfs_run_delayed_iputs(fs_info);
4972 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4973
996478ca 4974 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
4975 break;
4976 default:
4977 ret = -ENOSPC;
4978 break;
4979 }
4980
7bdd6277
NB
4981 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4982 ret);
e38ae7a0 4983 return;
96c3f433 4984}
21c7e756
MX
4985
4986static inline u64
c1c4919b
JM
4987btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4988 struct btrfs_space_info *space_info,
4989 bool system_chunk)
21c7e756 4990{
957780eb 4991 struct reserve_ticket *ticket;
21c7e756
MX
4992 u64 used;
4993 u64 expected;
957780eb 4994 u64 to_reclaim = 0;
21c7e756 4995
957780eb
JB
4996 list_for_each_entry(ticket, &space_info->tickets, list)
4997 to_reclaim += ticket->bytes;
4998 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4999 to_reclaim += ticket->bytes;
5000 if (to_reclaim)
5001 return to_reclaim;
21c7e756 5002
e0af2484 5003 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
5004 if (can_overcommit(fs_info, space_info, to_reclaim,
5005 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
5006 return 0;
5007
0eee8a49
NB
5008 used = btrfs_space_info_used(space_info, true);
5009
c1c4919b
JM
5010 if (can_overcommit(fs_info, space_info, SZ_1M,
5011 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
5012 expected = div_factor_fine(space_info->total_bytes, 95);
5013 else
5014 expected = div_factor_fine(space_info->total_bytes, 90);
5015
5016 if (used > expected)
5017 to_reclaim = used - expected;
5018 else
5019 to_reclaim = 0;
5020 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5021 space_info->bytes_reserved);
21c7e756
MX
5022 return to_reclaim;
5023}
5024
c1c4919b
JM
5025static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5026 struct btrfs_space_info *space_info,
5027 u64 used, bool system_chunk)
21c7e756 5028{
365c5313
JB
5029 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5030
5031 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5032 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5033 return 0;
5034
c1c4919b
JM
5035 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5036 system_chunk))
d38b349c
JB
5037 return 0;
5038
0b246afa
JM
5039 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5040 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5041}
5042
957780eb 5043static void wake_all_tickets(struct list_head *head)
21c7e756 5044{
957780eb 5045 struct reserve_ticket *ticket;
25ce459c 5046
957780eb
JB
5047 while (!list_empty(head)) {
5048 ticket = list_first_entry(head, struct reserve_ticket, list);
5049 list_del_init(&ticket->list);
5050 ticket->error = -ENOSPC;
5051 wake_up(&ticket->wait);
21c7e756 5052 }
21c7e756
MX
5053}
5054
957780eb
JB
5055/*
5056 * This is for normal flushers, we can wait all goddamned day if we want to. We
5057 * will loop and continuously try to flush as long as we are making progress.
5058 * We count progress as clearing off tickets each time we have to loop.
5059 */
21c7e756
MX
5060static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5061{
5062 struct btrfs_fs_info *fs_info;
5063 struct btrfs_space_info *space_info;
5064 u64 to_reclaim;
5065 int flush_state;
957780eb 5066 int commit_cycles = 0;
ce129655 5067 u64 last_tickets_id;
21c7e756
MX
5068
5069 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5070 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5071
957780eb 5072 spin_lock(&space_info->lock);
c1c4919b
JM
5073 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5074 false);
957780eb
JB
5075 if (!to_reclaim) {
5076 space_info->flush = 0;
5077 spin_unlock(&space_info->lock);
21c7e756 5078 return;
957780eb 5079 }
ce129655 5080 last_tickets_id = space_info->tickets_id;
957780eb 5081 spin_unlock(&space_info->lock);
21c7e756
MX
5082
5083 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5084 do {
e38ae7a0 5085 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5086 spin_lock(&space_info->lock);
5087 if (list_empty(&space_info->tickets)) {
5088 space_info->flush = 0;
5089 spin_unlock(&space_info->lock);
5090 return;
5091 }
c1c4919b
JM
5092 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5093 space_info,
5094 false);
ce129655 5095 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5096 flush_state++;
5097 } else {
ce129655 5098 last_tickets_id = space_info->tickets_id;
957780eb
JB
5099 flush_state = FLUSH_DELAYED_ITEMS_NR;
5100 if (commit_cycles)
5101 commit_cycles--;
5102 }
5103
5104 if (flush_state > COMMIT_TRANS) {
5105 commit_cycles++;
5106 if (commit_cycles > 2) {
5107 wake_all_tickets(&space_info->tickets);
5108 space_info->flush = 0;
5109 } else {
5110 flush_state = FLUSH_DELAYED_ITEMS_NR;
5111 }
5112 }
5113 spin_unlock(&space_info->lock);
5114 } while (flush_state <= COMMIT_TRANS);
5115}
5116
5117void btrfs_init_async_reclaim_work(struct work_struct *work)
5118{
5119 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5120}
5121
5122static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5123 struct btrfs_space_info *space_info,
5124 struct reserve_ticket *ticket)
5125{
5126 u64 to_reclaim;
5127 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5128
5129 spin_lock(&space_info->lock);
c1c4919b
JM
5130 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5131 false);
957780eb
JB
5132 if (!to_reclaim) {
5133 spin_unlock(&space_info->lock);
5134 return;
5135 }
5136 spin_unlock(&space_info->lock);
5137
21c7e756 5138 do {
7bdd6277 5139 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5140 flush_state++;
957780eb
JB
5141 spin_lock(&space_info->lock);
5142 if (ticket->bytes == 0) {
5143 spin_unlock(&space_info->lock);
21c7e756 5144 return;
957780eb
JB
5145 }
5146 spin_unlock(&space_info->lock);
5147
5148 /*
5149 * Priority flushers can't wait on delalloc without
5150 * deadlocking.
5151 */
5152 if (flush_state == FLUSH_DELALLOC ||
5153 flush_state == FLUSH_DELALLOC_WAIT)
5154 flush_state = ALLOC_CHUNK;
365c5313 5155 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5156}
5157
957780eb
JB
5158static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5159 struct btrfs_space_info *space_info,
5160 struct reserve_ticket *ticket, u64 orig_bytes)
5161
21c7e756 5162{
957780eb
JB
5163 DEFINE_WAIT(wait);
5164 int ret = 0;
5165
5166 spin_lock(&space_info->lock);
5167 while (ticket->bytes > 0 && ticket->error == 0) {
5168 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5169 if (ret) {
5170 ret = -EINTR;
5171 break;
5172 }
5173 spin_unlock(&space_info->lock);
5174
5175 schedule();
5176
5177 finish_wait(&ticket->wait, &wait);
5178 spin_lock(&space_info->lock);
5179 }
5180 if (!ret)
5181 ret = ticket->error;
5182 if (!list_empty(&ticket->list))
5183 list_del_init(&ticket->list);
5184 if (ticket->bytes && ticket->bytes < orig_bytes) {
5185 u64 num_bytes = orig_bytes - ticket->bytes;
9f9b8e8d 5186 update_bytes_may_use(space_info, -num_bytes);
957780eb
JB
5187 trace_btrfs_space_reservation(fs_info, "space_info",
5188 space_info->flags, num_bytes, 0);
5189 }
5190 spin_unlock(&space_info->lock);
5191
5192 return ret;
21c7e756
MX
5193}
5194
4a92b1b8
JB
5195/**
5196 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5197 * @root - the root we're allocating for
957780eb 5198 * @space_info - the space info we want to allocate from
4a92b1b8 5199 * @orig_bytes - the number of bytes we want
48fc7f7e 5200 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5201 *
01327610 5202 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5203 * with the block_rsv. If there is not enough space it will make an attempt to
5204 * flush out space to make room. It will do this by flushing delalloc if
5205 * possible or committing the transaction. If flush is 0 then no attempts to
5206 * regain reservations will be made and this will fail if there is not enough
5207 * space already.
8bb8ab2e 5208 */
c1c4919b 5209static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5210 struct btrfs_space_info *space_info,
5211 u64 orig_bytes,
c1c4919b
JM
5212 enum btrfs_reserve_flush_enum flush,
5213 bool system_chunk)
9ed74f2d 5214{
957780eb 5215 struct reserve_ticket ticket;
2bf64758 5216 u64 used;
8bb8ab2e 5217 int ret = 0;
9ed74f2d 5218
957780eb 5219 ASSERT(orig_bytes);
8ca17f0f 5220 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5221
8bb8ab2e 5222 spin_lock(&space_info->lock);
fdb5effd 5223 ret = -ENOSPC;
4136135b 5224 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5225
8bb8ab2e 5226 /*
957780eb
JB
5227 * If we have enough space then hooray, make our reservation and carry
5228 * on. If not see if we can overcommit, and if we can, hooray carry on.
5229 * If not things get more complicated.
8bb8ab2e 5230 */
957780eb 5231 if (used + orig_bytes <= space_info->total_bytes) {
9f9b8e8d 5232 update_bytes_may_use(space_info, orig_bytes);
0b246afa
JM
5233 trace_btrfs_space_reservation(fs_info, "space_info",
5234 space_info->flags, orig_bytes, 1);
957780eb 5235 ret = 0;
c1c4919b
JM
5236 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5237 system_chunk)) {
9f9b8e8d 5238 update_bytes_may_use(space_info, orig_bytes);
0b246afa
JM
5239 trace_btrfs_space_reservation(fs_info, "space_info",
5240 space_info->flags, orig_bytes, 1);
44734ed1 5241 ret = 0;
2bf64758
JB
5242 }
5243
8bb8ab2e 5244 /*
957780eb
JB
5245 * If we couldn't make a reservation then setup our reservation ticket
5246 * and kick the async worker if it's not already running.
08e007d2 5247 *
957780eb
JB
5248 * If we are a priority flusher then we just need to add our ticket to
5249 * the list and we will do our own flushing further down.
8bb8ab2e 5250 */
72bcd99d 5251 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5252 ticket.bytes = orig_bytes;
5253 ticket.error = 0;
5254 init_waitqueue_head(&ticket.wait);
5255 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5256 list_add_tail(&ticket.list, &space_info->tickets);
5257 if (!space_info->flush) {
5258 space_info->flush = 1;
0b246afa 5259 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5260 space_info->flags,
5261 orig_bytes, flush,
5262 "enospc");
957780eb 5263 queue_work(system_unbound_wq,
c1c4919b 5264 &fs_info->async_reclaim_work);
957780eb
JB
5265 }
5266 } else {
5267 list_add_tail(&ticket.list,
5268 &space_info->priority_tickets);
5269 }
21c7e756
MX
5270 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5271 used += orig_bytes;
f6acfd50
JB
5272 /*
5273 * We will do the space reservation dance during log replay,
5274 * which means we won't have fs_info->fs_root set, so don't do
5275 * the async reclaim as we will panic.
5276 */
0b246afa 5277 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5278 need_do_async_reclaim(fs_info, space_info,
5279 used, system_chunk) &&
0b246afa
JM
5280 !work_busy(&fs_info->async_reclaim_work)) {
5281 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5282 orig_bytes, flush, "preempt");
21c7e756 5283 queue_work(system_unbound_wq,
0b246afa 5284 &fs_info->async_reclaim_work);
f376df2b 5285 }
8bb8ab2e 5286 }
f0486c68 5287 spin_unlock(&space_info->lock);
08e007d2 5288 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5289 return ret;
f0486c68 5290
957780eb 5291 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5292 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5293 orig_bytes);
08e007d2 5294
957780eb 5295 ret = 0;
0b246afa 5296 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5297 spin_lock(&space_info->lock);
5298 if (ticket.bytes) {
5299 if (ticket.bytes < orig_bytes) {
5300 u64 num_bytes = orig_bytes - ticket.bytes;
9f9b8e8d 5301 update_bytes_may_use(space_info, -num_bytes);
0b246afa
JM
5302 trace_btrfs_space_reservation(fs_info, "space_info",
5303 space_info->flags,
5304 num_bytes, 0);
08e007d2 5305
957780eb
JB
5306 }
5307 list_del_init(&ticket.list);
5308 ret = -ENOSPC;
5309 }
5310 spin_unlock(&space_info->lock);
5311 ASSERT(list_empty(&ticket.list));
5312 return ret;
5313}
8bb8ab2e 5314
957780eb
JB
5315/**
5316 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5317 * @root - the root we're allocating for
5318 * @block_rsv - the block_rsv we're allocating for
5319 * @orig_bytes - the number of bytes we want
5320 * @flush - whether or not we can flush to make our reservation
5321 *
52042d8e 5322 * This will reserve orig_bytes number of bytes from the space info associated
957780eb
JB
5323 * with the block_rsv. If there is not enough space it will make an attempt to
5324 * flush out space to make room. It will do this by flushing delalloc if
5325 * possible or committing the transaction. If flush is 0 then no attempts to
5326 * regain reservations will be made and this will fail if there is not enough
5327 * space already.
5328 */
5329static int reserve_metadata_bytes(struct btrfs_root *root,
5330 struct btrfs_block_rsv *block_rsv,
5331 u64 orig_bytes,
5332 enum btrfs_reserve_flush_enum flush)
5333{
0b246afa
JM
5334 struct btrfs_fs_info *fs_info = root->fs_info;
5335 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5336 int ret;
c1c4919b 5337 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5338
c1c4919b
JM
5339 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5340 orig_bytes, flush, system_chunk);
5d80366e
JB
5341 if (ret == -ENOSPC &&
5342 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5343 if (block_rsv != global_rsv &&
5344 !block_rsv_use_bytes(global_rsv, orig_bytes))
5345 ret = 0;
5346 }
9a3daff3 5347 if (ret == -ENOSPC) {
0b246afa 5348 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5349 block_rsv->space_info->flags,
5350 orig_bytes, 1);
9a3daff3
NB
5351
5352 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5353 dump_space_info(fs_info, block_rsv->space_info,
5354 orig_bytes, 0);
5355 }
f0486c68
YZ
5356 return ret;
5357}
5358
79787eaa
JM
5359static struct btrfs_block_rsv *get_block_rsv(
5360 const struct btrfs_trans_handle *trans,
5361 const struct btrfs_root *root)
f0486c68 5362{
0b246afa 5363 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5364 struct btrfs_block_rsv *block_rsv = NULL;
5365
e9cf439f 5366 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5367 (root == fs_info->csum_root && trans->adding_csums) ||
5368 (root == fs_info->uuid_root))
f7a81ea4
SB
5369 block_rsv = trans->block_rsv;
5370
4c13d758 5371 if (!block_rsv)
f0486c68
YZ
5372 block_rsv = root->block_rsv;
5373
5374 if (!block_rsv)
0b246afa 5375 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5376
5377 return block_rsv;
5378}
5379
5380static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5381 u64 num_bytes)
5382{
5383 int ret = -ENOSPC;
5384 spin_lock(&block_rsv->lock);
5385 if (block_rsv->reserved >= num_bytes) {
5386 block_rsv->reserved -= num_bytes;
5387 if (block_rsv->reserved < block_rsv->size)
5388 block_rsv->full = 0;
5389 ret = 0;
5390 }
5391 spin_unlock(&block_rsv->lock);
5392 return ret;
5393}
5394
5395static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3a584174 5396 u64 num_bytes, bool update_size)
f0486c68
YZ
5397{
5398 spin_lock(&block_rsv->lock);
5399 block_rsv->reserved += num_bytes;
5400 if (update_size)
5401 block_rsv->size += num_bytes;
5402 else if (block_rsv->reserved >= block_rsv->size)
5403 block_rsv->full = 1;
5404 spin_unlock(&block_rsv->lock);
5405}
5406
d52be818
JB
5407int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5408 struct btrfs_block_rsv *dest, u64 num_bytes,
5409 int min_factor)
5410{
5411 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5412 u64 min_bytes;
5413
5414 if (global_rsv->space_info != dest->space_info)
5415 return -ENOSPC;
5416
5417 spin_lock(&global_rsv->lock);
5418 min_bytes = div_factor(global_rsv->size, min_factor);
5419 if (global_rsv->reserved < min_bytes + num_bytes) {
5420 spin_unlock(&global_rsv->lock);
5421 return -ENOSPC;
5422 }
5423 global_rsv->reserved -= num_bytes;
5424 if (global_rsv->reserved < global_rsv->size)
5425 global_rsv->full = 0;
5426 spin_unlock(&global_rsv->lock);
5427
3a584174 5428 block_rsv_add_bytes(dest, num_bytes, true);
d52be818
JB
5429 return 0;
5430}
5431
ba2c4d4e
JB
5432/**
5433 * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
5434 * @fs_info - the fs info for our fs.
5435 * @src - the source block rsv to transfer from.
5436 * @num_bytes - the number of bytes to transfer.
5437 *
5438 * This transfers up to the num_bytes amount from the src rsv to the
5439 * delayed_refs_rsv. Any extra bytes are returned to the space info.
5440 */
5441void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
5442 struct btrfs_block_rsv *src,
5443 u64 num_bytes)
5444{
5445 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
5446 u64 to_free = 0;
5447
5448 spin_lock(&src->lock);
5449 src->reserved -= num_bytes;
5450 src->size -= num_bytes;
5451 spin_unlock(&src->lock);
5452
5453 spin_lock(&delayed_refs_rsv->lock);
5454 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
5455 u64 delta = delayed_refs_rsv->size -
5456 delayed_refs_rsv->reserved;
5457 if (num_bytes > delta) {
5458 to_free = num_bytes - delta;
5459 num_bytes = delta;
5460 }
5461 } else {
5462 to_free = num_bytes;
5463 num_bytes = 0;
5464 }
5465
5466 if (num_bytes)
5467 delayed_refs_rsv->reserved += num_bytes;
5468 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
5469 delayed_refs_rsv->full = 1;
5470 spin_unlock(&delayed_refs_rsv->lock);
5471
5472 if (num_bytes)
5473 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5474 0, num_bytes, 1);
5475 if (to_free)
5476 space_info_add_old_bytes(fs_info, delayed_refs_rsv->space_info,
5477 to_free);
5478}
5479
5480/**
5481 * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
5482 * @fs_info - the fs_info for our fs.
5483 * @flush - control how we can flush for this reservation.
5484 *
5485 * This will refill the delayed block_rsv up to 1 items size worth of space and
5486 * will return -ENOSPC if we can't make the reservation.
5487 */
5488int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
5489 enum btrfs_reserve_flush_enum flush)
5490{
5491 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5492 u64 limit = btrfs_calc_trans_metadata_size(fs_info, 1);
5493 u64 num_bytes = 0;
5494 int ret = -ENOSPC;
5495
5496 spin_lock(&block_rsv->lock);
5497 if (block_rsv->reserved < block_rsv->size) {
5498 num_bytes = block_rsv->size - block_rsv->reserved;
5499 num_bytes = min(num_bytes, limit);
5500 }
5501 spin_unlock(&block_rsv->lock);
5502
5503 if (!num_bytes)
5504 return 0;
5505
5506 ret = reserve_metadata_bytes(fs_info->extent_root, block_rsv,
5507 num_bytes, flush);
5508 if (ret)
5509 return ret;
5510 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5511 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5512 0, num_bytes, 1);
5513 return 0;
5514}
5515
957780eb
JB
5516/*
5517 * This is for space we already have accounted in space_info->bytes_may_use, so
5518 * basically when we're returning space from block_rsv's.
5519 */
5520static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5521 struct btrfs_space_info *space_info,
5522 u64 num_bytes)
5523{
5524 struct reserve_ticket *ticket;
5525 struct list_head *head;
5526 u64 used;
5527 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5528 bool check_overcommit = false;
5529
5530 spin_lock(&space_info->lock);
5531 head = &space_info->priority_tickets;
5532
5533 /*
5534 * If we are over our limit then we need to check and see if we can
5535 * overcommit, and if we can't then we just need to free up our space
5536 * and not satisfy any requests.
5537 */
0eee8a49 5538 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5539 if (used - num_bytes >= space_info->total_bytes)
5540 check_overcommit = true;
5541again:
5542 while (!list_empty(head) && num_bytes) {
5543 ticket = list_first_entry(head, struct reserve_ticket,
5544 list);
5545 /*
5546 * We use 0 bytes because this space is already reserved, so
5547 * adding the ticket space would be a double count.
5548 */
5549 if (check_overcommit &&
c1c4919b 5550 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5551 break;
5552 if (num_bytes >= ticket->bytes) {
5553 list_del_init(&ticket->list);
5554 num_bytes -= ticket->bytes;
5555 ticket->bytes = 0;
ce129655 5556 space_info->tickets_id++;
957780eb
JB
5557 wake_up(&ticket->wait);
5558 } else {
5559 ticket->bytes -= num_bytes;
5560 num_bytes = 0;
5561 }
5562 }
5563
5564 if (num_bytes && head == &space_info->priority_tickets) {
5565 head = &space_info->tickets;
5566 flush = BTRFS_RESERVE_FLUSH_ALL;
5567 goto again;
5568 }
9f9b8e8d 5569 update_bytes_may_use(space_info, -num_bytes);
957780eb
JB
5570 trace_btrfs_space_reservation(fs_info, "space_info",
5571 space_info->flags, num_bytes, 0);
5572 spin_unlock(&space_info->lock);
5573}
5574
5575/*
5576 * This is for newly allocated space that isn't accounted in
5577 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5578 * we use this helper.
5579 */
5580static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5581 struct btrfs_space_info *space_info,
5582 u64 num_bytes)
5583{
5584 struct reserve_ticket *ticket;
5585 struct list_head *head = &space_info->priority_tickets;
5586
5587again:
5588 while (!list_empty(head) && num_bytes) {
5589 ticket = list_first_entry(head, struct reserve_ticket,
5590 list);
5591 if (num_bytes >= ticket->bytes) {
5592 trace_btrfs_space_reservation(fs_info, "space_info",
5593 space_info->flags,
5594 ticket->bytes, 1);
5595 list_del_init(&ticket->list);
5596 num_bytes -= ticket->bytes;
9f9b8e8d 5597 update_bytes_may_use(space_info, ticket->bytes);
957780eb 5598 ticket->bytes = 0;
ce129655 5599 space_info->tickets_id++;
957780eb
JB
5600 wake_up(&ticket->wait);
5601 } else {
5602 trace_btrfs_space_reservation(fs_info, "space_info",
5603 space_info->flags,
5604 num_bytes, 1);
9f9b8e8d 5605 update_bytes_may_use(space_info, num_bytes);
957780eb
JB
5606 ticket->bytes -= num_bytes;
5607 num_bytes = 0;
5608 }
5609 }
5610
5611 if (num_bytes && head == &space_info->priority_tickets) {
5612 head = &space_info->tickets;
5613 goto again;
5614 }
5615}
5616
69fe2d75 5617static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5618 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5619 struct btrfs_block_rsv *dest, u64 num_bytes,
5620 u64 *qgroup_to_release_ret)
f0486c68
YZ
5621{
5622 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5623 u64 qgroup_to_release = 0;
69fe2d75 5624 u64 ret;
f0486c68
YZ
5625
5626 spin_lock(&block_rsv->lock);
ff6bc37e 5627 if (num_bytes == (u64)-1) {
f0486c68 5628 num_bytes = block_rsv->size;
ff6bc37e
QW
5629 qgroup_to_release = block_rsv->qgroup_rsv_size;
5630 }
f0486c68
YZ
5631 block_rsv->size -= num_bytes;
5632 if (block_rsv->reserved >= block_rsv->size) {
5633 num_bytes = block_rsv->reserved - block_rsv->size;
5634 block_rsv->reserved = block_rsv->size;
5635 block_rsv->full = 1;
5636 } else {
5637 num_bytes = 0;
5638 }
ff6bc37e
QW
5639 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5640 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5641 block_rsv->qgroup_rsv_size;
5642 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5643 } else {
5644 qgroup_to_release = 0;
5645 }
f0486c68
YZ
5646 spin_unlock(&block_rsv->lock);
5647
69fe2d75 5648 ret = num_bytes;
f0486c68
YZ
5649 if (num_bytes > 0) {
5650 if (dest) {
e9e22899
JB
5651 spin_lock(&dest->lock);
5652 if (!dest->full) {
5653 u64 bytes_to_add;
5654
5655 bytes_to_add = dest->size - dest->reserved;
5656 bytes_to_add = min(num_bytes, bytes_to_add);
5657 dest->reserved += bytes_to_add;
5658 if (dest->reserved >= dest->size)
5659 dest->full = 1;
5660 num_bytes -= bytes_to_add;
5661 }
5662 spin_unlock(&dest->lock);
5663 }
957780eb
JB
5664 if (num_bytes)
5665 space_info_add_old_bytes(fs_info, space_info,
5666 num_bytes);
9ed74f2d 5667 }
ff6bc37e
QW
5668 if (qgroup_to_release_ret)
5669 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5670 return ret;
f0486c68 5671}
4e06bdd6 5672
25d609f8
JB
5673int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5674 struct btrfs_block_rsv *dst, u64 num_bytes,
3a584174 5675 bool update_size)
f0486c68
YZ
5676{
5677 int ret;
9ed74f2d 5678
f0486c68
YZ
5679 ret = block_rsv_use_bytes(src, num_bytes);
5680 if (ret)
5681 return ret;
9ed74f2d 5682
25d609f8 5683 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5684 return 0;
5685}
5686
66d8f3dd 5687void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5688{
f0486c68
YZ
5689 memset(rsv, 0, sizeof(*rsv));
5690 spin_lock_init(&rsv->lock);
66d8f3dd 5691 rsv->type = type;
f0486c68
YZ
5692}
5693
69fe2d75
JB
5694void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5695 struct btrfs_block_rsv *rsv,
5696 unsigned short type)
5697{
5698 btrfs_init_block_rsv(rsv, type);
5699 rsv->space_info = __find_space_info(fs_info,
5700 BTRFS_BLOCK_GROUP_METADATA);
5701}
5702
2ff7e61e 5703struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5704 unsigned short type)
f0486c68
YZ
5705{
5706 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5707
f0486c68
YZ
5708 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5709 if (!block_rsv)
5710 return NULL;
9ed74f2d 5711
69fe2d75 5712 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5713 return block_rsv;
5714}
9ed74f2d 5715
2ff7e61e 5716void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5717 struct btrfs_block_rsv *rsv)
5718{
2aaa6655
JB
5719 if (!rsv)
5720 return;
2ff7e61e 5721 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5722 kfree(rsv);
9ed74f2d
JB
5723}
5724
08e007d2
MX
5725int btrfs_block_rsv_add(struct btrfs_root *root,
5726 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5727 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5728{
f0486c68 5729 int ret;
9ed74f2d 5730
f0486c68
YZ
5731 if (num_bytes == 0)
5732 return 0;
8bb8ab2e 5733
61b520a9 5734 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5a2cb25a 5735 if (!ret)
3a584174 5736 block_rsv_add_bytes(block_rsv, num_bytes, true);
9ed74f2d 5737
f0486c68 5738 return ret;
f0486c68 5739}
9ed74f2d 5740
2ff7e61e 5741int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5742{
5743 u64 num_bytes = 0;
f0486c68 5744 int ret = -ENOSPC;
9ed74f2d 5745
f0486c68
YZ
5746 if (!block_rsv)
5747 return 0;
9ed74f2d 5748
f0486c68 5749 spin_lock(&block_rsv->lock);
36ba022a
JB
5750 num_bytes = div_factor(block_rsv->size, min_factor);
5751 if (block_rsv->reserved >= num_bytes)
5752 ret = 0;
5753 spin_unlock(&block_rsv->lock);
9ed74f2d 5754
36ba022a
JB
5755 return ret;
5756}
5757
08e007d2
MX
5758int btrfs_block_rsv_refill(struct btrfs_root *root,
5759 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5760 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5761{
5762 u64 num_bytes = 0;
5763 int ret = -ENOSPC;
5764
5765 if (!block_rsv)
5766 return 0;
5767
5768 spin_lock(&block_rsv->lock);
5769 num_bytes = min_reserved;
13553e52 5770 if (block_rsv->reserved >= num_bytes)
f0486c68 5771 ret = 0;
13553e52 5772 else
f0486c68 5773 num_bytes -= block_rsv->reserved;
f0486c68 5774 spin_unlock(&block_rsv->lock);
13553e52 5775
f0486c68
YZ
5776 if (!ret)
5777 return 0;
5778
aa38a711 5779 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640 5780 if (!ret) {
3a584174 5781 block_rsv_add_bytes(block_rsv, num_bytes, false);
f0486c68 5782 return 0;
6a63209f 5783 }
9ed74f2d 5784
13553e52 5785 return ret;
f0486c68
YZ
5786}
5787
69fe2d75
JB
5788/**
5789 * btrfs_inode_rsv_refill - refill the inode block rsv.
5790 * @inode - the inode we are refilling.
52042d8e 5791 * @flush - the flushing restriction.
69fe2d75
JB
5792 *
5793 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5794 * block_rsv->size as the minimum size. We'll either refill the missing amount
52042d8e 5795 * or return if we already have enough space. This will also handle the reserve
69fe2d75
JB
5796 * tracepoint for the reserved amount.
5797 */
3f2dd7a0
QW
5798static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5799 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5800{
5801 struct btrfs_root *root = inode->root;
5802 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5803 u64 num_bytes = 0;
ff6bc37e 5804 u64 qgroup_num_bytes = 0;
69fe2d75
JB
5805 int ret = -ENOSPC;
5806
5807 spin_lock(&block_rsv->lock);
5808 if (block_rsv->reserved < block_rsv->size)
5809 num_bytes = block_rsv->size - block_rsv->reserved;
ff6bc37e
QW
5810 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5811 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5812 block_rsv->qgroup_rsv_reserved;
69fe2d75
JB
5813 spin_unlock(&block_rsv->lock);
5814
5815 if (num_bytes == 0)
5816 return 0;
5817
ff6bc37e 5818 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
43b18595
QW
5819 if (ret)
5820 return ret;
69fe2d75
JB
5821 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5822 if (!ret) {
3a584174 5823 block_rsv_add_bytes(block_rsv, num_bytes, false);
69fe2d75
JB
5824 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5825 btrfs_ino(inode), num_bytes, 1);
ff6bc37e
QW
5826
5827 /* Don't forget to increase qgroup_rsv_reserved */
5828 spin_lock(&block_rsv->lock);
5829 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5830 spin_unlock(&block_rsv->lock);
5831 } else
5832 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
69fe2d75
JB
5833 return ret;
5834}
5835
ba2c4d4e
JB
5836static u64 __btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5837 struct btrfs_block_rsv *block_rsv,
5838 u64 num_bytes, u64 *qgroup_to_release)
5839{
5840 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5841 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5842 struct btrfs_block_rsv *target = delayed_rsv;
5843
5844 if (target->full || target == block_rsv)
5845 target = global_rsv;
5846
5847 if (block_rsv->space_info != target->space_info)
5848 target = NULL;
5849
5850 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
5851 qgroup_to_release);
5852}
5853
5854void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5855 struct btrfs_block_rsv *block_rsv,
5856 u64 num_bytes)
5857{
5858 __btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
5859}
5860
69fe2d75
JB
5861/**
5862 * btrfs_inode_rsv_release - release any excessive reservation.
5863 * @inode - the inode we need to release from.
43b18595
QW
5864 * @qgroup_free - free or convert qgroup meta.
5865 * Unlike normal operation, qgroup meta reservation needs to know if we are
5866 * freeing qgroup reservation or just converting it into per-trans. Normally
5867 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5868 *
5869 * This is the same as btrfs_block_rsv_release, except that it handles the
5870 * tracepoint for the reservation.
5871 */
43b18595 5872static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5873{
5874 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75
JB
5875 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5876 u64 released = 0;
ff6bc37e 5877 u64 qgroup_to_release = 0;
69fe2d75
JB
5878
5879 /*
5880 * Since we statically set the block_rsv->size we just want to say we
5881 * are releasing 0 bytes, and then we'll just get the reservation over
5882 * the size free'd.
5883 */
ba2c4d4e
JB
5884 released = __btrfs_block_rsv_release(fs_info, block_rsv, 0,
5885 &qgroup_to_release);
69fe2d75
JB
5886 if (released > 0)
5887 trace_btrfs_space_reservation(fs_info, "delalloc",
5888 btrfs_ino(inode), released, 0);
43b18595 5889 if (qgroup_free)
ff6bc37e 5890 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5891 else
ff6bc37e
QW
5892 btrfs_qgroup_convert_reserved_meta(inode->root,
5893 qgroup_to_release);
69fe2d75
JB
5894}
5895
ba2c4d4e
JB
5896/**
5897 * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
5898 * @fs_info - the fs_info for our fs.
5899 * @nr - the number of items to drop.
5900 *
5901 * This drops the delayed ref head's count from the delayed refs rsv and frees
5902 * any excess reservation we had.
5903 */
5904void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
f0486c68 5905{
ba2c4d4e 5906 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
0b246afa 5907 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
ba2c4d4e
JB
5908 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, nr);
5909 u64 released = 0;
0b246afa 5910
ba2c4d4e
JB
5911 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv,
5912 num_bytes, NULL);
5913 if (released)
5914 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5915 0, released, 0);
6a63209f
JB
5916}
5917
8929ecfa
YZ
5918static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5919{
5920 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5921 struct btrfs_space_info *sinfo = block_rsv->space_info;
5922 u64 num_bytes;
6a63209f 5923
ae2e4728
JB
5924 /*
5925 * The global block rsv is based on the size of the extent tree, the
5926 * checksum tree and the root tree. If the fs is empty we want to set
5927 * it to a minimal amount for safety.
5928 */
5929 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5930 btrfs_root_used(&fs_info->csum_root->root_item) +
5931 btrfs_root_used(&fs_info->tree_root->root_item);
5932 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5933
8929ecfa 5934 spin_lock(&sinfo->lock);
1f699d38 5935 spin_lock(&block_rsv->lock);
4e06bdd6 5936
ee22184b 5937 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5938
fb4b10e5 5939 if (block_rsv->reserved < block_rsv->size) {
4136135b 5940 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5941 if (sinfo->total_bytes > num_bytes) {
5942 num_bytes = sinfo->total_bytes - num_bytes;
5943 num_bytes = min(num_bytes,
5944 block_rsv->size - block_rsv->reserved);
5945 block_rsv->reserved += num_bytes;
9f9b8e8d 5946 update_bytes_may_use(sinfo, num_bytes);
fb4b10e5
JB
5947 trace_btrfs_space_reservation(fs_info, "space_info",
5948 sinfo->flags, num_bytes,
5949 1);
5950 }
5951 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5952 num_bytes = block_rsv->reserved - block_rsv->size;
9f9b8e8d 5953 update_bytes_may_use(sinfo, -num_bytes);
8c2a3ca2 5954 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5955 sinfo->flags, num_bytes, 0);
8929ecfa 5956 block_rsv->reserved = block_rsv->size;
8929ecfa 5957 }
182608c8 5958
fb4b10e5
JB
5959 if (block_rsv->reserved == block_rsv->size)
5960 block_rsv->full = 1;
5961 else
5962 block_rsv->full = 0;
5963
8929ecfa 5964 spin_unlock(&block_rsv->lock);
1f699d38 5965 spin_unlock(&sinfo->lock);
6a63209f
JB
5966}
5967
f0486c68 5968static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5969{
f0486c68 5970 struct btrfs_space_info *space_info;
6a63209f 5971
f0486c68
YZ
5972 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5973 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5974
f0486c68 5975 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5976 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5977 fs_info->trans_block_rsv.space_info = space_info;
5978 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5979 fs_info->delayed_block_rsv.space_info = space_info;
ba2c4d4e 5980 fs_info->delayed_refs_rsv.space_info = space_info;
f0486c68 5981
ba2c4d4e
JB
5982 fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
5983 fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
8929ecfa
YZ
5984 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5985 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5986 if (fs_info->quota_root)
5987 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5988 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5989
8929ecfa 5990 update_global_block_rsv(fs_info);
6a63209f
JB
5991}
5992
8929ecfa 5993static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5994{
8c2a3ca2 5995 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 5996 (u64)-1, NULL);
8929ecfa
YZ
5997 WARN_ON(fs_info->trans_block_rsv.size > 0);
5998 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5999 WARN_ON(fs_info->chunk_block_rsv.size > 0);
6000 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
6001 WARN_ON(fs_info->delayed_block_rsv.size > 0);
6002 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
ba2c4d4e
JB
6003 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
6004 WARN_ON(fs_info->delayed_refs_rsv.size > 0);
fcb80c2a
JB
6005}
6006
ba2c4d4e
JB
6007/*
6008 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
6009 * @trans - the trans that may have generated delayed refs
6010 *
6011 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
6012 * it'll calculate the additional size and add it to the delayed_refs_rsv.
6013 */
6014void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
6015{
6016 struct btrfs_fs_info *fs_info = trans->fs_info;
6017 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
6018 u64 num_bytes;
6019
6020 if (!trans->delayed_ref_updates)
6021 return;
6022
6023 num_bytes = btrfs_calc_trans_metadata_size(fs_info,
6024 trans->delayed_ref_updates);
6025 spin_lock(&delayed_rsv->lock);
6026 delayed_rsv->size += num_bytes;
6027 delayed_rsv->full = 0;
6028 spin_unlock(&delayed_rsv->lock);
6029 trans->delayed_ref_updates = 0;
6030}
6a63209f 6031
4fbcdf66
FM
6032/*
6033 * To be called after all the new block groups attached to the transaction
6034 * handle have been created (btrfs_create_pending_block_groups()).
6035 */
6036void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
6037{
64b63580 6038 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
6039
6040 if (!trans->chunk_bytes_reserved)
6041 return;
6042
6043 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
6044
6045 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 6046 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
6047 trans->chunk_bytes_reserved = 0;
6048}
6049
d5c12070
MX
6050/*
6051 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
6052 * root: the root of the parent directory
6053 * rsv: block reservation
6054 * items: the number of items that we need do reservation
a5b7f429 6055 * use_global_rsv: allow fallback to the global block reservation
d5c12070
MX
6056 *
6057 * This function is used to reserve the space for snapshot/subvolume
6058 * creation and deletion. Those operations are different with the
6059 * common file/directory operations, they change two fs/file trees
6060 * and root tree, the number of items that the qgroup reserves is
6061 * different with the free space reservation. So we can not use
01327610 6062 * the space reservation mechanism in start_transaction().
d5c12070
MX
6063 */
6064int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
a5b7f429 6065 struct btrfs_block_rsv *rsv, int items,
ee3441b4 6066 bool use_global_rsv)
a22285a6 6067{
a5b7f429 6068 u64 qgroup_num_bytes = 0;
d5c12070
MX
6069 u64 num_bytes;
6070 int ret;
0b246afa
JM
6071 struct btrfs_fs_info *fs_info = root->fs_info;
6072 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 6073
0b246afa 6074 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 6075 /* One for parent inode, two for dir entries */
a5b7f429
LF
6076 qgroup_num_bytes = 3 * fs_info->nodesize;
6077 ret = btrfs_qgroup_reserve_meta_prealloc(root,
6078 qgroup_num_bytes, true);
d5c12070
MX
6079 if (ret)
6080 return ret;
d5c12070
MX
6081 }
6082
0b246afa
JM
6083 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6084 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
6085 BTRFS_BLOCK_GROUP_METADATA);
6086 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6087 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
6088
6089 if (ret == -ENOSPC && use_global_rsv)
3a584174 6090 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
ee3441b4 6091
a5b7f429
LF
6092 if (ret && qgroup_num_bytes)
6093 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
d5c12070
MX
6094
6095 return ret;
6096}
6097
2ff7e61e 6098void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 6099 struct btrfs_block_rsv *rsv)
d5c12070 6100{
2ff7e61e 6101 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
6102}
6103
69fe2d75
JB
6104static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6105 struct btrfs_inode *inode)
9e0baf60 6106{
69fe2d75
JB
6107 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6108 u64 reserve_size = 0;
ff6bc37e 6109 u64 qgroup_rsv_size = 0;
69fe2d75
JB
6110 u64 csum_leaves;
6111 unsigned outstanding_extents;
9e0baf60 6112
69fe2d75
JB
6113 lockdep_assert_held(&inode->lock);
6114 outstanding_extents = inode->outstanding_extents;
6115 if (outstanding_extents)
6116 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6117 outstanding_extents + 1);
6118 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6119 inode->csum_bytes);
6120 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6121 csum_leaves);
ff6bc37e
QW
6122 /*
6123 * For qgroup rsv, the calculation is very simple:
6124 * account one nodesize for each outstanding extent
6125 *
6126 * This is overestimating in most cases.
6127 */
6128 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
9e0baf60 6129
69fe2d75
JB
6130 spin_lock(&block_rsv->lock);
6131 block_rsv->size = reserve_size;
ff6bc37e 6132 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 6133 spin_unlock(&block_rsv->lock);
0ca1f7ce 6134}
c146afad 6135
9f3db423 6136int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6137{
3ffbd68c 6138 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75 6139 unsigned nr_extents;
08e007d2 6140 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6141 int ret = 0;
c64c2bd8 6142 bool delalloc_lock = true;
6324fbf3 6143
c64c2bd8
JB
6144 /* If we are a free space inode we need to not flush since we will be in
6145 * the middle of a transaction commit. We also don't need the delalloc
6146 * mutex since we won't race with anybody. We need this mostly to make
6147 * lockdep shut its filthy mouth.
bac357dc
JB
6148 *
6149 * If we have a transaction open (can happen if we call truncate_block
6150 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6151 */
6152 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6153 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6154 delalloc_lock = false;
da07d4ab
NB
6155 } else {
6156 if (current->journal_info)
6157 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 6158
da07d4ab
NB
6159 if (btrfs_transaction_in_commit(fs_info))
6160 schedule_timeout(1);
6161 }
ec44a35c 6162
c64c2bd8 6163 if (delalloc_lock)
9f3db423 6164 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6165
0b246afa 6166 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6167
6168 /* Add our new extents and calculate the new rsv size. */
9f3db423 6169 spin_lock(&inode->lock);
69fe2d75 6170 nr_extents = count_max_extents(num_bytes);
8b62f87b 6171 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6172 inode->csum_bytes += num_bytes;
6173 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6174 spin_unlock(&inode->lock);
57a45ced 6175
69fe2d75 6176 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 6177 if (unlikely(ret))
88e081bf 6178 goto out_fail;
25179201 6179
c64c2bd8 6180 if (delalloc_lock)
9f3db423 6181 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6182 return 0;
88e081bf
WS
6183
6184out_fail:
9f3db423 6185 spin_lock(&inode->lock);
8b62f87b
JB
6186 nr_extents = count_max_extents(num_bytes);
6187 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6188 inode->csum_bytes -= num_bytes;
6189 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6190 spin_unlock(&inode->lock);
88e081bf 6191
43b18595 6192 btrfs_inode_rsv_release(inode, true);
88e081bf 6193 if (delalloc_lock)
9f3db423 6194 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6195 return ret;
0ca1f7ce
YZ
6196}
6197
7709cde3
JB
6198/**
6199 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6200 * @inode: the inode to release the reservation for.
6201 * @num_bytes: the number of bytes we are releasing.
43b18595 6202 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
6203 *
6204 * This will release the metadata reservation for an inode. This can be called
6205 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6206 * reservations, or on error for the same reason.
7709cde3 6207 */
43b18595
QW
6208void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6209 bool qgroup_free)
0ca1f7ce 6210{
3ffbd68c 6211 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0ca1f7ce 6212
0b246afa 6213 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6214 spin_lock(&inode->lock);
69fe2d75
JB
6215 inode->csum_bytes -= num_bytes;
6216 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6217 spin_unlock(&inode->lock);
0ca1f7ce 6218
0b246afa 6219 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6220 return;
6221
43b18595 6222 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
6223}
6224
8b62f87b
JB
6225/**
6226 * btrfs_delalloc_release_extents - release our outstanding_extents
6227 * @inode: the inode to balance the reservation for.
6228 * @num_bytes: the number of bytes we originally reserved with
43b18595 6229 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
6230 *
6231 * When we reserve space we increase outstanding_extents for the extents we may
6232 * add. Once we've set the range as delalloc or created our ordered extents we
6233 * have outstanding_extents to track the real usage, so we use this to free our
6234 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6235 * with btrfs_delalloc_reserve_metadata.
6236 */
43b18595
QW
6237void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6238 bool qgroup_free)
8b62f87b 6239{
3ffbd68c 6240 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8b62f87b 6241 unsigned num_extents;
8b62f87b
JB
6242
6243 spin_lock(&inode->lock);
6244 num_extents = count_max_extents(num_bytes);
6245 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6246 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6247 spin_unlock(&inode->lock);
6248
8b62f87b
JB
6249 if (btrfs_is_testing(fs_info))
6250 return;
6251
43b18595 6252 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
6253}
6254
1ada3a62 6255/**
7cf5b976 6256 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6257 * delalloc
6258 * @inode: inode we're writing to
6259 * @start: start range we are writing to
6260 * @len: how long the range we are writing to
364ecf36
QW
6261 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6262 * current reservation.
1ada3a62 6263 *
1ada3a62
QW
6264 * This will do the following things
6265 *
6266 * o reserve space in data space info for num bytes
6267 * and reserve precious corresponding qgroup space
6268 * (Done in check_data_free_space)
6269 *
6270 * o reserve space for metadata space, based on the number of outstanding
6271 * extents and how much csums will be needed
6272 * also reserve metadata space in a per root over-reserve method.
6273 * o add to the inodes->delalloc_bytes
6274 * o add it to the fs_info's delalloc inodes list.
6275 * (Above 3 all done in delalloc_reserve_metadata)
6276 *
6277 * Return 0 for success
6278 * Return <0 for error(-ENOSPC or -EQUOT)
6279 */
364ecf36
QW
6280int btrfs_delalloc_reserve_space(struct inode *inode,
6281 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6282{
6283 int ret;
6284
364ecf36 6285 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6286 if (ret < 0)
6287 return ret;
9f3db423 6288 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6289 if (ret < 0)
bc42bda2 6290 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6291 return ret;
6292}
6293
7709cde3 6294/**
7cf5b976 6295 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6296 * @inode: inode we're releasing space for
6297 * @start: start position of the space already reserved
6298 * @len: the len of the space already reserved
8b62f87b 6299 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6300 *
6301 * This function will release the metadata space that was not used and will
6302 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6303 * list if there are no delalloc bytes left.
6304 * Also it will handle the qgroup reserved space.
6305 */
bc42bda2 6306void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6307 struct extent_changeset *reserved,
43b18595 6308 u64 start, u64 len, bool qgroup_free)
1ada3a62 6309{
43b18595 6310 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6311 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6312}
6313
ce93ec54 6314static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6315 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6316 u64 num_bytes, int alloc)
9078a3e1 6317{
0af3d00b 6318 struct btrfs_block_group_cache *cache = NULL;
db94535d 6319 u64 total = num_bytes;
9078a3e1 6320 u64 old_val;
db94535d 6321 u64 byte_in_group;
0af3d00b 6322 int factor;
ba2c4d4e 6323 int ret = 0;
3e1ad54f 6324
5d4f98a2 6325 /* block accounting for super block */
eb73c1b7 6326 spin_lock(&info->delalloc_root_lock);
6c41761f 6327 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6328 if (alloc)
6329 old_val += num_bytes;
6330 else
6331 old_val -= num_bytes;
6c41761f 6332 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6333 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6334
d397712b 6335 while (total) {
db94535d 6336 cache = btrfs_lookup_block_group(info, bytenr);
ba2c4d4e
JB
6337 if (!cache) {
6338 ret = -ENOENT;
6339 break;
6340 }
46df06b8
DS
6341 factor = btrfs_bg_type_to_factor(cache->flags);
6342
9d66e233
JB
6343 /*
6344 * If this block group has free space cache written out, we
6345 * need to make sure to load it if we are removing space. This
6346 * is because we need the unpinning stage to actually add the
6347 * space back to the block group, otherwise we will leak space.
6348 */
6349 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6350 cache_block_group(cache, 1);
0af3d00b 6351
db94535d
CM
6352 byte_in_group = bytenr - cache->key.objectid;
6353 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6354
25179201 6355 spin_lock(&cache->space_info->lock);
c286ac48 6356 spin_lock(&cache->lock);
0af3d00b 6357
6202df69 6358 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6359 cache->disk_cache_state < BTRFS_DC_CLEAR)
6360 cache->disk_cache_state = BTRFS_DC_CLEAR;
6361
9078a3e1 6362 old_val = btrfs_block_group_used(&cache->item);
db94535d 6363 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6364 if (alloc) {
db94535d 6365 old_val += num_bytes;
11833d66
YZ
6366 btrfs_set_block_group_used(&cache->item, old_val);
6367 cache->reserved -= num_bytes;
11833d66 6368 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6369 cache->space_info->bytes_used += num_bytes;
6370 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6371 spin_unlock(&cache->lock);
25179201 6372 spin_unlock(&cache->space_info->lock);
cd1bc465 6373 } else {
db94535d 6374 old_val -= num_bytes;
ae0ab003
FM
6375 btrfs_set_block_group_used(&cache->item, old_val);
6376 cache->pinned += num_bytes;
e2907c1a 6377 update_bytes_pinned(cache->space_info, num_bytes);
ae0ab003
FM
6378 cache->space_info->bytes_used -= num_bytes;
6379 cache->space_info->disk_used -= num_bytes * factor;
6380 spin_unlock(&cache->lock);
6381 spin_unlock(&cache->space_info->lock);
47ab2a6c 6382
0b246afa 6383 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6384 cache->space_info->flags,
6385 num_bytes, 1);
dec59fa3
EL
6386 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6387 num_bytes,
6388 BTRFS_TOTAL_BYTES_PINNED_BATCH);
ae0ab003
FM
6389 set_extent_dirty(info->pinned_extents,
6390 bytenr, bytenr + num_bytes - 1,
6391 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6392 }
1bbc621e
CM
6393
6394 spin_lock(&trans->transaction->dirty_bgs_lock);
6395 if (list_empty(&cache->dirty_list)) {
6396 list_add_tail(&cache->dirty_list,
6397 &trans->transaction->dirty_bgs);
bece2e82 6398 trans->transaction->num_dirty_bgs++;
ba2c4d4e 6399 trans->delayed_ref_updates++;
1bbc621e
CM
6400 btrfs_get_block_group(cache);
6401 }
6402 spin_unlock(&trans->transaction->dirty_bgs_lock);
6403
036a9348
FM
6404 /*
6405 * No longer have used bytes in this block group, queue it for
6406 * deletion. We do this after adding the block group to the
6407 * dirty list to avoid races between cleaner kthread and space
6408 * cache writeout.
6409 */
031f24da
QW
6410 if (!alloc && old_val == 0)
6411 btrfs_mark_bg_unused(cache);
036a9348 6412
fa9c0d79 6413 btrfs_put_block_group(cache);
db94535d
CM
6414 total -= num_bytes;
6415 bytenr += num_bytes;
9078a3e1 6416 }
ba2c4d4e
JB
6417
6418 /* Modified block groups are accounted for in the delayed_refs_rsv. */
6419 btrfs_update_delayed_refs_rsv(trans);
6420 return ret;
9078a3e1 6421}
6324fbf3 6422
2ff7e61e 6423static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6424{
0f9dd46c 6425 struct btrfs_block_group_cache *cache;
d2fb3437 6426 u64 bytenr;
0f9dd46c 6427
0b246afa
JM
6428 spin_lock(&fs_info->block_group_cache_lock);
6429 bytenr = fs_info->first_logical_byte;
6430 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6431
6432 if (bytenr < (u64)-1)
6433 return bytenr;
6434
0b246afa 6435 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6436 if (!cache)
a061fc8d 6437 return 0;
0f9dd46c 6438
d2fb3437 6439 bytenr = cache->key.objectid;
fa9c0d79 6440 btrfs_put_block_group(cache);
d2fb3437
YZ
6441
6442 return bytenr;
a061fc8d
CM
6443}
6444
2ff7e61e 6445static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6446 struct btrfs_block_group_cache *cache,
6447 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6448{
11833d66
YZ
6449 spin_lock(&cache->space_info->lock);
6450 spin_lock(&cache->lock);
6451 cache->pinned += num_bytes;
e2907c1a 6452 update_bytes_pinned(cache->space_info, num_bytes);
11833d66
YZ
6453 if (reserved) {
6454 cache->reserved -= num_bytes;
6455 cache->space_info->bytes_reserved -= num_bytes;
6456 }
6457 spin_unlock(&cache->lock);
6458 spin_unlock(&cache->space_info->lock);
68b38550 6459
0b246afa 6460 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6461 cache->space_info->flags, num_bytes, 1);
dec59fa3
EL
6462 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6463 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
0b246afa 6464 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6465 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6466 return 0;
6467}
68b38550 6468
f0486c68
YZ
6469/*
6470 * this function must be called within transaction
6471 */
2ff7e61e 6472int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6473 u64 bytenr, u64 num_bytes, int reserved)
6474{
6475 struct btrfs_block_group_cache *cache;
68b38550 6476
0b246afa 6477 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6478 BUG_ON(!cache); /* Logic error */
f0486c68 6479
2ff7e61e 6480 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6481
6482 btrfs_put_block_group(cache);
11833d66
YZ
6483 return 0;
6484}
6485
f0486c68 6486/*
e688b725
CM
6487 * this function must be called within transaction
6488 */
2ff7e61e 6489int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6490 u64 bytenr, u64 num_bytes)
6491{
6492 struct btrfs_block_group_cache *cache;
b50c6e25 6493 int ret;
e688b725 6494
0b246afa 6495 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6496 if (!cache)
6497 return -EINVAL;
e688b725
CM
6498
6499 /*
6500 * pull in the free space cache (if any) so that our pin
6501 * removes the free space from the cache. We have load_only set
6502 * to one because the slow code to read in the free extents does check
6503 * the pinned extents.
6504 */
f6373bf3 6505 cache_block_group(cache, 1);
e688b725 6506
2ff7e61e 6507 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6508
6509 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6510 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6511 btrfs_put_block_group(cache);
b50c6e25 6512 return ret;
e688b725
CM
6513}
6514
2ff7e61e
JM
6515static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6516 u64 start, u64 num_bytes)
8c2a1a30
JB
6517{
6518 int ret;
6519 struct btrfs_block_group_cache *block_group;
6520 struct btrfs_caching_control *caching_ctl;
6521
0b246afa 6522 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6523 if (!block_group)
6524 return -EINVAL;
6525
6526 cache_block_group(block_group, 0);
6527 caching_ctl = get_caching_control(block_group);
6528
6529 if (!caching_ctl) {
6530 /* Logic error */
6531 BUG_ON(!block_group_cache_done(block_group));
6532 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6533 } else {
6534 mutex_lock(&caching_ctl->mutex);
6535
6536 if (start >= caching_ctl->progress) {
2ff7e61e 6537 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6538 } else if (start + num_bytes <= caching_ctl->progress) {
6539 ret = btrfs_remove_free_space(block_group,
6540 start, num_bytes);
6541 } else {
6542 num_bytes = caching_ctl->progress - start;
6543 ret = btrfs_remove_free_space(block_group,
6544 start, num_bytes);
6545 if (ret)
6546 goto out_lock;
6547
6548 num_bytes = (start + num_bytes) -
6549 caching_ctl->progress;
6550 start = caching_ctl->progress;
2ff7e61e 6551 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6552 }
6553out_lock:
6554 mutex_unlock(&caching_ctl->mutex);
6555 put_caching_control(caching_ctl);
6556 }
6557 btrfs_put_block_group(block_group);
6558 return ret;
6559}
6560
2ff7e61e 6561int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6562 struct extent_buffer *eb)
6563{
6564 struct btrfs_file_extent_item *item;
6565 struct btrfs_key key;
6566 int found_type;
6567 int i;
b89311ef 6568 int ret = 0;
8c2a1a30 6569
2ff7e61e 6570 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6571 return 0;
6572
6573 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6574 btrfs_item_key_to_cpu(eb, &key, i);
6575 if (key.type != BTRFS_EXTENT_DATA_KEY)
6576 continue;
6577 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6578 found_type = btrfs_file_extent_type(eb, item);
6579 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6580 continue;
6581 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6582 continue;
6583 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6584 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
b89311ef
GJ
6585 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6586 if (ret)
6587 break;
8c2a1a30
JB
6588 }
6589
b89311ef 6590 return ret;
8c2a1a30
JB
6591}
6592
9cfa3e34
FM
6593static void
6594btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6595{
6596 atomic_inc(&bg->reservations);
6597}
6598
6599void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6600 const u64 start)
6601{
6602 struct btrfs_block_group_cache *bg;
6603
6604 bg = btrfs_lookup_block_group(fs_info, start);
6605 ASSERT(bg);
6606 if (atomic_dec_and_test(&bg->reservations))
4625956a 6607 wake_up_var(&bg->reservations);
9cfa3e34
FM
6608 btrfs_put_block_group(bg);
6609}
6610
9cfa3e34
FM
6611void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6612{
6613 struct btrfs_space_info *space_info = bg->space_info;
6614
6615 ASSERT(bg->ro);
6616
6617 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6618 return;
6619
6620 /*
6621 * Our block group is read only but before we set it to read only,
6622 * some task might have had allocated an extent from it already, but it
6623 * has not yet created a respective ordered extent (and added it to a
6624 * root's list of ordered extents).
6625 * Therefore wait for any task currently allocating extents, since the
6626 * block group's reservations counter is incremented while a read lock
6627 * on the groups' semaphore is held and decremented after releasing
6628 * the read access on that semaphore and creating the ordered extent.
6629 */
6630 down_write(&space_info->groups_sem);
6631 up_write(&space_info->groups_sem);
6632
4625956a 6633 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6634}
6635
fb25e914 6636/**
4824f1f4 6637 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6638 * @cache: The cache we are manipulating
18513091
WX
6639 * @ram_bytes: The number of bytes of file content, and will be same to
6640 * @num_bytes except for the compress path.
fb25e914 6641 * @num_bytes: The number of bytes in question
e570fd27 6642 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6643 *
745699ef
XW
6644 * This is called by the allocator when it reserves space. If this is a
6645 * reservation and the block group has become read only we cannot make the
6646 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6647 */
4824f1f4 6648static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6649 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6650{
fb25e914 6651 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6652 int ret = 0;
79787eaa 6653
fb25e914
JB
6654 spin_lock(&space_info->lock);
6655 spin_lock(&cache->lock);
4824f1f4
WX
6656 if (cache->ro) {
6657 ret = -EAGAIN;
fb25e914 6658 } else {
4824f1f4
WX
6659 cache->reserved += num_bytes;
6660 space_info->bytes_reserved += num_bytes;
9f9b8e8d 6661 update_bytes_may_use(space_info, -ram_bytes);
e570fd27 6662 if (delalloc)
4824f1f4 6663 cache->delalloc_bytes += num_bytes;
324ae4df 6664 }
fb25e914
JB
6665 spin_unlock(&cache->lock);
6666 spin_unlock(&space_info->lock);
f0486c68 6667 return ret;
324ae4df 6668}
9078a3e1 6669
4824f1f4
WX
6670/**
6671 * btrfs_free_reserved_bytes - update the block_group and space info counters
6672 * @cache: The cache we are manipulating
6673 * @num_bytes: The number of bytes in question
6674 * @delalloc: The blocks are allocated for the delalloc write
6675 *
6676 * This is called by somebody who is freeing space that was never actually used
6677 * on disk. For example if you reserve some space for a new leaf in transaction
6678 * A and before transaction A commits you free that leaf, you call this with
6679 * reserve set to 0 in order to clear the reservation.
6680 */
6681
556f3ca8 6682static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6683 u64 num_bytes, int delalloc)
4824f1f4
WX
6684{
6685 struct btrfs_space_info *space_info = cache->space_info;
4824f1f4
WX
6686
6687 spin_lock(&space_info->lock);
6688 spin_lock(&cache->lock);
6689 if (cache->ro)
6690 space_info->bytes_readonly += num_bytes;
6691 cache->reserved -= num_bytes;
6692 space_info->bytes_reserved -= num_bytes;
21a94f7a 6693 space_info->max_extent_size = 0;
4824f1f4
WX
6694
6695 if (delalloc)
6696 cache->delalloc_bytes -= num_bytes;
6697 spin_unlock(&cache->lock);
6698 spin_unlock(&space_info->lock);
4824f1f4 6699}
8b74c03e 6700void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6701{
11833d66
YZ
6702 struct btrfs_caching_control *next;
6703 struct btrfs_caching_control *caching_ctl;
6704 struct btrfs_block_group_cache *cache;
e8569813 6705
9e351cc8 6706 down_write(&fs_info->commit_root_sem);
25179201 6707
11833d66
YZ
6708 list_for_each_entry_safe(caching_ctl, next,
6709 &fs_info->caching_block_groups, list) {
6710 cache = caching_ctl->block_group;
6711 if (block_group_cache_done(cache)) {
6712 cache->last_byte_to_unpin = (u64)-1;
6713 list_del_init(&caching_ctl->list);
6714 put_caching_control(caching_ctl);
e8569813 6715 } else {
11833d66 6716 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6717 }
e8569813 6718 }
11833d66
YZ
6719
6720 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6721 fs_info->pinned_extents = &fs_info->freed_extents[1];
6722 else
6723 fs_info->pinned_extents = &fs_info->freed_extents[0];
6724
9e351cc8 6725 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6726
6727 update_global_block_rsv(fs_info);
e8569813
ZY
6728}
6729
c759c4e1
JB
6730/*
6731 * Returns the free cluster for the given space info and sets empty_cluster to
6732 * what it should be based on the mount options.
6733 */
6734static struct btrfs_free_cluster *
2ff7e61e
JM
6735fetch_cluster_info(struct btrfs_fs_info *fs_info,
6736 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6737{
6738 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6739
6740 *empty_cluster = 0;
6741 if (btrfs_mixed_space_info(space_info))
6742 return ret;
6743
c759c4e1 6744 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6745 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6746 if (btrfs_test_opt(fs_info, SSD))
6747 *empty_cluster = SZ_2M;
6748 else
ee22184b 6749 *empty_cluster = SZ_64K;
583b7231
HK
6750 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6751 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6752 *empty_cluster = SZ_2M;
0b246afa 6753 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6754 }
6755
6756 return ret;
6757}
6758
2ff7e61e
JM
6759static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6760 u64 start, u64 end,
678886bd 6761 const bool return_free_space)
ccd467d6 6762{
11833d66 6763 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6764 struct btrfs_space_info *space_info;
6765 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6766 struct btrfs_free_cluster *cluster = NULL;
11833d66 6767 u64 len;
c759c4e1
JB
6768 u64 total_unpinned = 0;
6769 u64 empty_cluster = 0;
7b398f8e 6770 bool readonly;
ccd467d6 6771
11833d66 6772 while (start <= end) {
7b398f8e 6773 readonly = false;
11833d66
YZ
6774 if (!cache ||
6775 start >= cache->key.objectid + cache->key.offset) {
6776 if (cache)
6777 btrfs_put_block_group(cache);
c759c4e1 6778 total_unpinned = 0;
11833d66 6779 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6780 BUG_ON(!cache); /* Logic error */
c759c4e1 6781
2ff7e61e 6782 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6783 cache->space_info,
6784 &empty_cluster);
6785 empty_cluster <<= 1;
11833d66
YZ
6786 }
6787
6788 len = cache->key.objectid + cache->key.offset - start;
6789 len = min(len, end + 1 - start);
6790
6791 if (start < cache->last_byte_to_unpin) {
6792 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6793 if (return_free_space)
6794 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6795 }
6796
f0486c68 6797 start += len;
c759c4e1 6798 total_unpinned += len;
7b398f8e 6799 space_info = cache->space_info;
f0486c68 6800
c759c4e1
JB
6801 /*
6802 * If this space cluster has been marked as fragmented and we've
6803 * unpinned enough in this block group to potentially allow a
6804 * cluster to be created inside of it go ahead and clear the
6805 * fragmented check.
6806 */
6807 if (cluster && cluster->fragmented &&
6808 total_unpinned > empty_cluster) {
6809 spin_lock(&cluster->lock);
6810 cluster->fragmented = 0;
6811 spin_unlock(&cluster->lock);
6812 }
6813
7b398f8e 6814 spin_lock(&space_info->lock);
11833d66
YZ
6815 spin_lock(&cache->lock);
6816 cache->pinned -= len;
e2907c1a 6817 update_bytes_pinned(space_info, -len);
c51e7bb1
JB
6818
6819 trace_btrfs_space_reservation(fs_info, "pinned",
6820 space_info->flags, len, 0);
4f4db217 6821 space_info->max_extent_size = 0;
dec59fa3
EL
6822 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6823 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
7b398f8e
JB
6824 if (cache->ro) {
6825 space_info->bytes_readonly += len;
6826 readonly = true;
6827 }
11833d66 6828 spin_unlock(&cache->lock);
957780eb
JB
6829 if (!readonly && return_free_space &&
6830 global_rsv->space_info == space_info) {
6831 u64 to_add = len;
92ac58ec 6832
7b398f8e
JB
6833 spin_lock(&global_rsv->lock);
6834 if (!global_rsv->full) {
957780eb
JB
6835 to_add = min(len, global_rsv->size -
6836 global_rsv->reserved);
6837 global_rsv->reserved += to_add;
9f9b8e8d 6838 update_bytes_may_use(space_info, to_add);
7b398f8e
JB
6839 if (global_rsv->reserved >= global_rsv->size)
6840 global_rsv->full = 1;
957780eb
JB
6841 trace_btrfs_space_reservation(fs_info,
6842 "space_info",
6843 space_info->flags,
6844 to_add, 1);
6845 len -= to_add;
7b398f8e
JB
6846 }
6847 spin_unlock(&global_rsv->lock);
957780eb
JB
6848 /* Add to any tickets we may have */
6849 if (len)
6850 space_info_add_new_bytes(fs_info, space_info,
6851 len);
7b398f8e
JB
6852 }
6853 spin_unlock(&space_info->lock);
ccd467d6 6854 }
11833d66
YZ
6855
6856 if (cache)
6857 btrfs_put_block_group(cache);
ccd467d6
CM
6858 return 0;
6859}
6860
5ead2dd0 6861int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6862{
5ead2dd0 6863 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6864 struct btrfs_block_group_cache *block_group, *tmp;
6865 struct list_head *deleted_bgs;
11833d66 6866 struct extent_io_tree *unpin;
1a5bc167
CM
6867 u64 start;
6868 u64 end;
a28ec197 6869 int ret;
a28ec197 6870
11833d66
YZ
6871 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6872 unpin = &fs_info->freed_extents[1];
6873 else
6874 unpin = &fs_info->freed_extents[0];
6875
e33e17ee 6876 while (!trans->aborted) {
0e6ec385
FM
6877 struct extent_state *cached_state = NULL;
6878
d4b450cd 6879 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6880 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 6881 EXTENT_DIRTY, &cached_state);
d4b450cd
FM
6882 if (ret) {
6883 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6884 break;
d4b450cd 6885 }
1f3c79a2 6886
0b246afa 6887 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6888 ret = btrfs_discard_extent(fs_info, start,
5378e607 6889 end + 1 - start, NULL);
1f3c79a2 6890
0e6ec385 6891 clear_extent_dirty(unpin, start, end, &cached_state);
2ff7e61e 6892 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6893 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
0e6ec385 6894 free_extent_state(cached_state);
b9473439 6895 cond_resched();
a28ec197 6896 }
817d52f8 6897
e33e17ee
JM
6898 /*
6899 * Transaction is finished. We don't need the lock anymore. We
6900 * do need to clean up the block groups in case of a transaction
6901 * abort.
6902 */
6903 deleted_bgs = &trans->transaction->deleted_bgs;
6904 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6905 u64 trimmed = 0;
6906
6907 ret = -EROFS;
6908 if (!trans->aborted)
2ff7e61e 6909 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6910 block_group->key.objectid,
6911 block_group->key.offset,
6912 &trimmed);
6913
6914 list_del_init(&block_group->bg_list);
6915 btrfs_put_block_group_trimming(block_group);
6916 btrfs_put_block_group(block_group);
6917
6918 if (ret) {
6919 const char *errstr = btrfs_decode_error(ret);
6920 btrfs_warn(fs_info,
913e1535 6921 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6922 ret, errstr);
6923 }
6924 }
6925
e20d96d6
CM
6926 return 0;
6927}
6928
5d4f98a2 6929static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
6930 struct btrfs_delayed_ref_node *node, u64 parent,
6931 u64 root_objectid, u64 owner_objectid,
6932 u64 owner_offset, int refs_to_drop,
6933 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6934{
e72cb923 6935 struct btrfs_fs_info *info = trans->fs_info;
e2fa7227 6936 struct btrfs_key key;
5d4f98a2 6937 struct btrfs_path *path;
1261ec42 6938 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6939 struct extent_buffer *leaf;
5d4f98a2
YZ
6940 struct btrfs_extent_item *ei;
6941 struct btrfs_extent_inline_ref *iref;
a28ec197 6942 int ret;
5d4f98a2 6943 int is_data;
952fccac
CM
6944 int extent_slot = 0;
6945 int found_extent = 0;
6946 int num_to_del = 1;
5d4f98a2
YZ
6947 u32 item_size;
6948 u64 refs;
c682f9b3
QW
6949 u64 bytenr = node->bytenr;
6950 u64 num_bytes = node->num_bytes;
fcebe456 6951 int last_ref = 0;
0b246afa 6952 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6953
5caf2a00 6954 path = btrfs_alloc_path();
54aa1f4d
CM
6955 if (!path)
6956 return -ENOMEM;
5f26f772 6957
e4058b54 6958 path->reada = READA_FORWARD;
b9473439 6959 path->leave_spinning = 1;
5d4f98a2
YZ
6960
6961 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6962 BUG_ON(!is_data && refs_to_drop != 1);
6963
3173a18f 6964 if (is_data)
897ca819 6965 skinny_metadata = false;
3173a18f 6966
fbe4801b
NB
6967 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6968 parent, root_objectid, owner_objectid,
5d4f98a2 6969 owner_offset);
7bb86316 6970 if (ret == 0) {
952fccac 6971 extent_slot = path->slots[0];
5d4f98a2
YZ
6972 while (extent_slot >= 0) {
6973 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6974 extent_slot);
5d4f98a2 6975 if (key.objectid != bytenr)
952fccac 6976 break;
5d4f98a2
YZ
6977 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6978 key.offset == num_bytes) {
952fccac
CM
6979 found_extent = 1;
6980 break;
6981 }
3173a18f
JB
6982 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6983 key.offset == owner_objectid) {
6984 found_extent = 1;
6985 break;
6986 }
952fccac
CM
6987 if (path->slots[0] - extent_slot > 5)
6988 break;
5d4f98a2 6989 extent_slot--;
952fccac 6990 }
a79865c6 6991
31840ae1 6992 if (!found_extent) {
5d4f98a2 6993 BUG_ON(iref);
87cc7a8a 6994 ret = remove_extent_backref(trans, path, NULL,
87bde3cd 6995 refs_to_drop,
fcebe456 6996 is_data, &last_ref);
005d6427 6997 if (ret) {
66642832 6998 btrfs_abort_transaction(trans, ret);
005d6427
DS
6999 goto out;
7000 }
b3b4aa74 7001 btrfs_release_path(path);
b9473439 7002 path->leave_spinning = 1;
5d4f98a2
YZ
7003
7004 key.objectid = bytenr;
7005 key.type = BTRFS_EXTENT_ITEM_KEY;
7006 key.offset = num_bytes;
7007
3173a18f
JB
7008 if (!is_data && skinny_metadata) {
7009 key.type = BTRFS_METADATA_ITEM_KEY;
7010 key.offset = owner_objectid;
7011 }
7012
31840ae1
ZY
7013 ret = btrfs_search_slot(trans, extent_root,
7014 &key, path, -1, 1);
3173a18f
JB
7015 if (ret > 0 && skinny_metadata && path->slots[0]) {
7016 /*
7017 * Couldn't find our skinny metadata item,
7018 * see if we have ye olde extent item.
7019 */
7020 path->slots[0]--;
7021 btrfs_item_key_to_cpu(path->nodes[0], &key,
7022 path->slots[0]);
7023 if (key.objectid == bytenr &&
7024 key.type == BTRFS_EXTENT_ITEM_KEY &&
7025 key.offset == num_bytes)
7026 ret = 0;
7027 }
7028
7029 if (ret > 0 && skinny_metadata) {
7030 skinny_metadata = false;
9ce49a0b 7031 key.objectid = bytenr;
3173a18f
JB
7032 key.type = BTRFS_EXTENT_ITEM_KEY;
7033 key.offset = num_bytes;
7034 btrfs_release_path(path);
7035 ret = btrfs_search_slot(trans, extent_root,
7036 &key, path, -1, 1);
7037 }
7038
f3465ca4 7039 if (ret) {
5d163e0e
JM
7040 btrfs_err(info,
7041 "umm, got %d back from search, was looking for %llu",
7042 ret, bytenr);
b783e62d 7043 if (ret > 0)
a4f78750 7044 btrfs_print_leaf(path->nodes[0]);
f3465ca4 7045 }
005d6427 7046 if (ret < 0) {
66642832 7047 btrfs_abort_transaction(trans, ret);
005d6427
DS
7048 goto out;
7049 }
31840ae1
ZY
7050 extent_slot = path->slots[0];
7051 }
fae7f21c 7052 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 7053 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
7054 btrfs_err(info,
7055 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
7056 bytenr, parent, root_objectid, owner_objectid,
7057 owner_offset);
66642832 7058 btrfs_abort_transaction(trans, ret);
c4a050bb 7059 goto out;
79787eaa 7060 } else {
66642832 7061 btrfs_abort_transaction(trans, ret);
005d6427 7062 goto out;
7bb86316 7063 }
5f39d397
CM
7064
7065 leaf = path->nodes[0];
5d4f98a2 7066 item_size = btrfs_item_size_nr(leaf, extent_slot);
6d8ff4e4 7067 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
7068 ret = -EINVAL;
7069 btrfs_print_v0_err(info);
7070 btrfs_abort_transaction(trans, ret);
7071 goto out;
7072 }
952fccac 7073 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7074 struct btrfs_extent_item);
3173a18f
JB
7075 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7076 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7077 struct btrfs_tree_block_info *bi;
7078 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7079 bi = (struct btrfs_tree_block_info *)(ei + 1);
7080 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7081 }
56bec294 7082
5d4f98a2 7083 refs = btrfs_extent_refs(leaf, ei);
32b02538 7084 if (refs < refs_to_drop) {
5d163e0e
JM
7085 btrfs_err(info,
7086 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7087 refs_to_drop, refs, bytenr);
32b02538 7088 ret = -EINVAL;
66642832 7089 btrfs_abort_transaction(trans, ret);
32b02538
JB
7090 goto out;
7091 }
56bec294 7092 refs -= refs_to_drop;
5f39d397 7093
5d4f98a2
YZ
7094 if (refs > 0) {
7095 if (extent_op)
7096 __run_delayed_extent_op(extent_op, leaf, ei);
7097 /*
7098 * In the case of inline back ref, reference count will
7099 * be updated by remove_extent_backref
952fccac 7100 */
5d4f98a2
YZ
7101 if (iref) {
7102 BUG_ON(!found_extent);
7103 } else {
7104 btrfs_set_extent_refs(leaf, ei, refs);
7105 btrfs_mark_buffer_dirty(leaf);
7106 }
7107 if (found_extent) {
87cc7a8a
NB
7108 ret = remove_extent_backref(trans, path, iref,
7109 refs_to_drop, is_data,
7110 &last_ref);
005d6427 7111 if (ret) {
66642832 7112 btrfs_abort_transaction(trans, ret);
005d6427
DS
7113 goto out;
7114 }
952fccac 7115 }
5d4f98a2 7116 } else {
5d4f98a2
YZ
7117 if (found_extent) {
7118 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7119 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7120 if (iref) {
7121 BUG_ON(path->slots[0] != extent_slot);
7122 } else {
7123 BUG_ON(path->slots[0] != extent_slot + 1);
7124 path->slots[0] = extent_slot;
7125 num_to_del = 2;
7126 }
78fae27e 7127 }
b9473439 7128
fcebe456 7129 last_ref = 1;
952fccac
CM
7130 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7131 num_to_del);
005d6427 7132 if (ret) {
66642832 7133 btrfs_abort_transaction(trans, ret);
005d6427
DS
7134 goto out;
7135 }
b3b4aa74 7136 btrfs_release_path(path);
21af804c 7137
5d4f98a2 7138 if (is_data) {
5b4aacef 7139 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7140 if (ret) {
66642832 7141 btrfs_abort_transaction(trans, ret);
005d6427
DS
7142 goto out;
7143 }
459931ec
CM
7144 }
7145
e7355e50 7146 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
1e144fb8 7147 if (ret) {
66642832 7148 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7149 goto out;
7150 }
7151
0b246afa 7152 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7153 if (ret) {
66642832 7154 btrfs_abort_transaction(trans, ret);
005d6427
DS
7155 goto out;
7156 }
a28ec197 7157 }
fcebe456
JB
7158 btrfs_release_path(path);
7159
79787eaa 7160out:
5caf2a00 7161 btrfs_free_path(path);
a28ec197
CM
7162 return ret;
7163}
7164
1887be66 7165/*
f0486c68 7166 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7167 * delayed ref for that extent as well. This searches the delayed ref tree for
7168 * a given extent, and if there are no other delayed refs to be processed, it
7169 * removes it from the tree.
7170 */
7171static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7172 u64 bytenr)
1887be66
CM
7173{
7174 struct btrfs_delayed_ref_head *head;
7175 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7176 int ret = 0;
1887be66
CM
7177
7178 delayed_refs = &trans->transaction->delayed_refs;
7179 spin_lock(&delayed_refs->lock);
f72ad18e 7180 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7181 if (!head)
cf93da7b 7182 goto out_delayed_unlock;
1887be66 7183
d7df2c79 7184 spin_lock(&head->lock);
e3d03965 7185 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1887be66
CM
7186 goto out;
7187
bedc6617
JB
7188 if (cleanup_extent_op(head) != NULL)
7189 goto out;
5d4f98a2 7190
1887be66
CM
7191 /*
7192 * waiting for the lock here would deadlock. If someone else has it
7193 * locked they are already in the process of dropping it anyway
7194 */
7195 if (!mutex_trylock(&head->mutex))
7196 goto out;
7197
d7baffda 7198 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79 7199 head->processing = 0;
d7baffda 7200
d7df2c79 7201 spin_unlock(&head->lock);
1887be66
CM
7202 spin_unlock(&delayed_refs->lock);
7203
f0486c68
YZ
7204 BUG_ON(head->extent_op);
7205 if (head->must_insert_reserved)
7206 ret = 1;
7207
31890da0 7208 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
f0486c68 7209 mutex_unlock(&head->mutex);
d278850e 7210 btrfs_put_delayed_ref_head(head);
f0486c68 7211 return ret;
1887be66 7212out:
d7df2c79 7213 spin_unlock(&head->lock);
cf93da7b
CM
7214
7215out_delayed_unlock:
1887be66
CM
7216 spin_unlock(&delayed_refs->lock);
7217 return 0;
7218}
7219
f0486c68
YZ
7220void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7221 struct btrfs_root *root,
7222 struct extent_buffer *buf,
5581a51a 7223 u64 parent, int last_ref)
f0486c68 7224{
0b246afa 7225 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7226 int pin = 1;
f0486c68
YZ
7227 int ret;
7228
7229 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7230 int old_ref_mod, new_ref_mod;
7231
fd708b81
JB
7232 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7233 root->root_key.objectid,
7234 btrfs_header_level(buf), 0,
7235 BTRFS_DROP_DELAYED_REF);
44e1c47d 7236 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7be07912 7237 buf->len, parent,
0b246afa
JM
7238 root->root_key.objectid,
7239 btrfs_header_level(buf),
7be07912 7240 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7241 &old_ref_mod, &new_ref_mod);
79787eaa 7242 BUG_ON(ret); /* -ENOMEM */
d7eae340 7243 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7244 }
7245
0a16c7d7 7246 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7247 struct btrfs_block_group_cache *cache;
7248
f0486c68 7249 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7250 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7251 if (!ret)
37be25bc 7252 goto out;
f0486c68
YZ
7253 }
7254
4da8b76d 7255 pin = 0;
0b246afa 7256 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7257
f0486c68 7258 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7259 pin_down_extent(fs_info, cache, buf->start,
7260 buf->len, 1);
6219872d 7261 btrfs_put_block_group(cache);
37be25bc 7262 goto out;
f0486c68
YZ
7263 }
7264
7265 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7266
7267 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7268 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7269 btrfs_put_block_group(cache);
71ff6437 7270 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7271 }
7272out:
b150a4f1 7273 if (pin)
29d2b84c 7274 add_pinned_bytes(fs_info, buf->len, true,
b150a4f1
JB
7275 root->root_key.objectid);
7276
0a16c7d7
OS
7277 if (last_ref) {
7278 /*
7279 * Deleting the buffer, clear the corrupt flag since it doesn't
7280 * matter anymore.
7281 */
7282 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7283 }
f0486c68
YZ
7284}
7285
79787eaa 7286/* Can return -ENOMEM */
2ff7e61e 7287int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7288 struct btrfs_root *root,
66d7e7f0 7289 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7290 u64 owner, u64 offset)
925baedd 7291{
84f7d8e6 7292 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7293 int old_ref_mod, new_ref_mod;
925baedd
CM
7294 int ret;
7295
f5ee5c9a 7296 if (btrfs_is_testing(fs_info))
faa2dbf0 7297 return 0;
fccb84c9 7298
fd708b81
JB
7299 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7300 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7301 root_objectid, owner, offset,
7302 BTRFS_DROP_DELAYED_REF);
7303
56bec294
CM
7304 /*
7305 * tree log blocks never actually go into the extent allocation
7306 * tree, just update pinning info and exit early.
56bec294 7307 */
5d4f98a2
YZ
7308 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7309 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7310 /* unlocks the pinned mutex */
2ff7e61e 7311 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7312 old_ref_mod = new_ref_mod = 0;
56bec294 7313 ret = 0;
5d4f98a2 7314 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
44e1c47d 7315 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7be07912
OS
7316 num_bytes, parent,
7317 root_objectid, (int)owner,
7318 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7319 &old_ref_mod, &new_ref_mod);
5d4f98a2 7320 } else {
88a979c6 7321 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7be07912
OS
7322 num_bytes, parent,
7323 root_objectid, owner, offset,
7324 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7325 &old_ref_mod, &new_ref_mod);
56bec294 7326 }
d7eae340 7327
29d2b84c
NB
7328 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7329 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7330
7331 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7332 }
d7eae340 7333
925baedd
CM
7334 return ret;
7335}
7336
817d52f8
JB
7337/*
7338 * when we wait for progress in the block group caching, its because
7339 * our allocation attempt failed at least once. So, we must sleep
7340 * and let some progress happen before we try again.
7341 *
7342 * This function will sleep at least once waiting for new free space to
7343 * show up, and then it will check the block group free space numbers
7344 * for our min num_bytes. Another option is to have it go ahead
7345 * and look in the rbtree for a free extent of a given size, but this
7346 * is a good start.
36cce922
JB
7347 *
7348 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7349 * any of the information in this block group.
817d52f8 7350 */
36cce922 7351static noinline void
817d52f8
JB
7352wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7353 u64 num_bytes)
7354{
11833d66 7355 struct btrfs_caching_control *caching_ctl;
817d52f8 7356
11833d66
YZ
7357 caching_ctl = get_caching_control(cache);
7358 if (!caching_ctl)
36cce922 7359 return;
817d52f8 7360
11833d66 7361 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7362 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7363
7364 put_caching_control(caching_ctl);
11833d66
YZ
7365}
7366
7367static noinline int
7368wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7369{
7370 struct btrfs_caching_control *caching_ctl;
36cce922 7371 int ret = 0;
11833d66
YZ
7372
7373 caching_ctl = get_caching_control(cache);
7374 if (!caching_ctl)
36cce922 7375 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7376
7377 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7378 if (cache->cached == BTRFS_CACHE_ERROR)
7379 ret = -EIO;
11833d66 7380 put_caching_control(caching_ctl);
36cce922 7381 return ret;
817d52f8
JB
7382}
7383
7384enum btrfs_loop_type {
285ff5af
JB
7385 LOOP_CACHING_NOWAIT = 0,
7386 LOOP_CACHING_WAIT = 1,
7387 LOOP_ALLOC_CHUNK = 2,
7388 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7389};
7390
e570fd27
MX
7391static inline void
7392btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7393 int delalloc)
7394{
7395 if (delalloc)
7396 down_read(&cache->data_rwsem);
7397}
7398
7399static inline void
7400btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7401 int delalloc)
7402{
7403 btrfs_get_block_group(cache);
7404 if (delalloc)
7405 down_read(&cache->data_rwsem);
7406}
7407
7408static struct btrfs_block_group_cache *
7409btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7410 struct btrfs_free_cluster *cluster,
7411 int delalloc)
7412{
89771cc9 7413 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7414
e570fd27 7415 spin_lock(&cluster->refill_lock);
6719afdc
GU
7416 while (1) {
7417 used_bg = cluster->block_group;
7418 if (!used_bg)
7419 return NULL;
7420
7421 if (used_bg == block_group)
e570fd27
MX
7422 return used_bg;
7423
6719afdc 7424 btrfs_get_block_group(used_bg);
e570fd27 7425
6719afdc
GU
7426 if (!delalloc)
7427 return used_bg;
e570fd27 7428
6719afdc
GU
7429 if (down_read_trylock(&used_bg->data_rwsem))
7430 return used_bg;
e570fd27 7431
6719afdc 7432 spin_unlock(&cluster->refill_lock);
e570fd27 7433
e321f8a8
LB
7434 /* We should only have one-level nested. */
7435 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7436
6719afdc
GU
7437 spin_lock(&cluster->refill_lock);
7438 if (used_bg == cluster->block_group)
7439 return used_bg;
e570fd27 7440
6719afdc
GU
7441 up_read(&used_bg->data_rwsem);
7442 btrfs_put_block_group(used_bg);
7443 }
e570fd27
MX
7444}
7445
7446static inline void
7447btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7448 int delalloc)
7449{
7450 if (delalloc)
7451 up_read(&cache->data_rwsem);
7452 btrfs_put_block_group(cache);
7453}
7454
b4bd745d
QW
7455/*
7456 * Structure used internally for find_free_extent() function. Wraps needed
7457 * parameters.
7458 */
7459struct find_free_extent_ctl {
7460 /* Basic allocation info */
7461 u64 ram_bytes;
7462 u64 num_bytes;
7463 u64 empty_size;
7464 u64 flags;
7465 int delalloc;
7466
7467 /* Where to start the search inside the bg */
7468 u64 search_start;
7469
7470 /* For clustered allocation */
7471 u64 empty_cluster;
7472
7473 bool have_caching_bg;
7474 bool orig_have_caching_bg;
7475
7476 /* RAID index, converted from flags */
7477 int index;
7478
e72d79d6
QW
7479 /*
7480 * Current loop number, check find_free_extent_update_loop() for details
7481 */
b4bd745d
QW
7482 int loop;
7483
7484 /*
7485 * Whether we're refilling a cluster, if true we need to re-search
7486 * current block group but don't try to refill the cluster again.
7487 */
7488 bool retry_clustered;
7489
7490 /*
7491 * Whether we're updating free space cache, if true we need to re-search
7492 * current block group but don't try updating free space cache again.
7493 */
7494 bool retry_unclustered;
7495
7496 /* If current block group is cached */
7497 int cached;
7498
7499 /* Max contiguous hole found */
7500 u64 max_extent_size;
7501
7502 /* Total free space from free space cache, not always contiguous */
7503 u64 total_free_space;
7504
7505 /* Found result */
7506 u64 found_offset;
7507};
7508
d06e3bb6
QW
7509
7510/*
7511 * Helper function for find_free_extent().
7512 *
7513 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
7514 * Return -EAGAIN to inform caller that we need to re-search this block group
7515 * Return >0 to inform caller that we find nothing
7516 * Return 0 means we have found a location and set ffe_ctl->found_offset.
7517 */
7518static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
7519 struct btrfs_free_cluster *last_ptr,
7520 struct find_free_extent_ctl *ffe_ctl,
7521 struct btrfs_block_group_cache **cluster_bg_ret)
7522{
7523 struct btrfs_fs_info *fs_info = bg->fs_info;
7524 struct btrfs_block_group_cache *cluster_bg;
7525 u64 aligned_cluster;
7526 u64 offset;
7527 int ret;
7528
7529 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
7530 if (!cluster_bg)
7531 goto refill_cluster;
7532 if (cluster_bg != bg && (cluster_bg->ro ||
7533 !block_group_bits(cluster_bg, ffe_ctl->flags)))
7534 goto release_cluster;
7535
7536 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
7537 ffe_ctl->num_bytes, cluster_bg->key.objectid,
7538 &ffe_ctl->max_extent_size);
7539 if (offset) {
7540 /* We have a block, we're done */
7541 spin_unlock(&last_ptr->refill_lock);
7542 trace_btrfs_reserve_extent_cluster(cluster_bg,
7543 ffe_ctl->search_start, ffe_ctl->num_bytes);
7544 *cluster_bg_ret = cluster_bg;
7545 ffe_ctl->found_offset = offset;
7546 return 0;
7547 }
7548 WARN_ON(last_ptr->block_group != cluster_bg);
7549
7550release_cluster:
7551 /*
7552 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
7553 * lets just skip it and let the allocator find whatever block it can
7554 * find. If we reach this point, we will have tried the cluster
7555 * allocator plenty of times and not have found anything, so we are
7556 * likely way too fragmented for the clustering stuff to find anything.
7557 *
7558 * However, if the cluster is taken from the current block group,
7559 * release the cluster first, so that we stand a better chance of
7560 * succeeding in the unclustered allocation.
7561 */
7562 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
7563 spin_unlock(&last_ptr->refill_lock);
7564 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7565 return -ENOENT;
7566 }
7567
7568 /* This cluster didn't work out, free it and start over */
7569 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7570
7571 if (cluster_bg != bg)
7572 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7573
7574refill_cluster:
7575 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
7576 spin_unlock(&last_ptr->refill_lock);
7577 return -ENOENT;
7578 }
7579
7580 aligned_cluster = max_t(u64,
7581 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
7582 bg->full_stripe_len);
7583 ret = btrfs_find_space_cluster(fs_info, bg, last_ptr,
7584 ffe_ctl->search_start, ffe_ctl->num_bytes,
7585 aligned_cluster);
7586 if (ret == 0) {
7587 /* Now pull our allocation out of this cluster */
7588 offset = btrfs_alloc_from_cluster(bg, last_ptr,
7589 ffe_ctl->num_bytes, ffe_ctl->search_start,
7590 &ffe_ctl->max_extent_size);
7591 if (offset) {
7592 /* We found one, proceed */
7593 spin_unlock(&last_ptr->refill_lock);
7594 trace_btrfs_reserve_extent_cluster(bg,
7595 ffe_ctl->search_start,
7596 ffe_ctl->num_bytes);
7597 ffe_ctl->found_offset = offset;
7598 return 0;
7599 }
7600 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
7601 !ffe_ctl->retry_clustered) {
7602 spin_unlock(&last_ptr->refill_lock);
7603
7604 ffe_ctl->retry_clustered = true;
7605 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7606 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
7607 return -EAGAIN;
7608 }
7609 /*
7610 * At this point we either didn't find a cluster or we weren't able to
7611 * allocate a block from our cluster. Free the cluster we've been
7612 * trying to use, and go to the next block group.
7613 */
7614 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7615 spin_unlock(&last_ptr->refill_lock);
7616 return 1;
7617}
7618
e1a41848
QW
7619/*
7620 * Return >0 to inform caller that we find nothing
7621 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
7622 * Return -EAGAIN to inform caller that we need to re-search this block group
7623 */
7624static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
7625 struct btrfs_free_cluster *last_ptr,
7626 struct find_free_extent_ctl *ffe_ctl)
7627{
7628 u64 offset;
7629
7630 /*
7631 * We are doing an unclustered allocation, set the fragmented flag so
7632 * we don't bother trying to setup a cluster again until we get more
7633 * space.
7634 */
7635 if (unlikely(last_ptr)) {
7636 spin_lock(&last_ptr->lock);
7637 last_ptr->fragmented = 1;
7638 spin_unlock(&last_ptr->lock);
7639 }
7640 if (ffe_ctl->cached) {
7641 struct btrfs_free_space_ctl *free_space_ctl;
7642
7643 free_space_ctl = bg->free_space_ctl;
7644 spin_lock(&free_space_ctl->tree_lock);
7645 if (free_space_ctl->free_space <
7646 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
7647 ffe_ctl->empty_size) {
7648 ffe_ctl->total_free_space = max_t(u64,
7649 ffe_ctl->total_free_space,
7650 free_space_ctl->free_space);
7651 spin_unlock(&free_space_ctl->tree_lock);
7652 return 1;
7653 }
7654 spin_unlock(&free_space_ctl->tree_lock);
7655 }
7656
7657 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
7658 ffe_ctl->num_bytes, ffe_ctl->empty_size,
7659 &ffe_ctl->max_extent_size);
7660
7661 /*
7662 * If we didn't find a chunk, and we haven't failed on this block group
7663 * before, and this block group is in the middle of caching and we are
7664 * ok with waiting, then go ahead and wait for progress to be made, and
7665 * set @retry_unclustered to true.
7666 *
7667 * If @retry_unclustered is true then we've already waited on this
7668 * block group once and should move on to the next block group.
7669 */
7670 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
7671 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
7672 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7673 ffe_ctl->empty_size);
7674 ffe_ctl->retry_unclustered = true;
7675 return -EAGAIN;
7676 } else if (!offset) {
7677 return 1;
7678 }
7679 ffe_ctl->found_offset = offset;
7680 return 0;
7681}
7682
e72d79d6
QW
7683/*
7684 * Return >0 means caller needs to re-search for free extent
7685 * Return 0 means we have the needed free extent.
7686 * Return <0 means we failed to locate any free extent.
7687 */
7688static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
7689 struct btrfs_free_cluster *last_ptr,
7690 struct btrfs_key *ins,
7691 struct find_free_extent_ctl *ffe_ctl,
7692 int full_search, bool use_cluster)
7693{
7694 struct btrfs_root *root = fs_info->extent_root;
7695 int ret;
7696
7697 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
7698 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
7699 ffe_ctl->orig_have_caching_bg = true;
7700
7701 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
7702 ffe_ctl->have_caching_bg)
7703 return 1;
7704
7705 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
7706 return 1;
7707
7708 if (ins->objectid) {
7709 if (!use_cluster && last_ptr) {
7710 spin_lock(&last_ptr->lock);
7711 last_ptr->window_start = ins->objectid;
7712 spin_unlock(&last_ptr->lock);
7713 }
7714 return 0;
7715 }
7716
7717 /*
7718 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7719 * caching kthreads as we move along
7720 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7721 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7722 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7723 * again
7724 */
7725 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
7726 ffe_ctl->index = 0;
7727 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
7728 /*
7729 * We want to skip the LOOP_CACHING_WAIT step if we
7730 * don't have any uncached bgs and we've already done a
7731 * full search through.
7732 */
7733 if (ffe_ctl->orig_have_caching_bg || !full_search)
7734 ffe_ctl->loop = LOOP_CACHING_WAIT;
7735 else
7736 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
7737 } else {
7738 ffe_ctl->loop++;
7739 }
7740
7741 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
7742 struct btrfs_trans_handle *trans;
7743 int exist = 0;
7744
7745 trans = current->journal_info;
7746 if (trans)
7747 exist = 1;
7748 else
7749 trans = btrfs_join_transaction(root);
7750
7751 if (IS_ERR(trans)) {
7752 ret = PTR_ERR(trans);
7753 return ret;
7754 }
7755
7756 ret = do_chunk_alloc(trans, ffe_ctl->flags,
7757 CHUNK_ALLOC_FORCE);
7758
7759 /*
7760 * If we can't allocate a new chunk we've already looped
7761 * through at least once, move on to the NO_EMPTY_SIZE
7762 * case.
7763 */
7764 if (ret == -ENOSPC)
7765 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
7766
7767 /* Do not bail out on ENOSPC since we can do more. */
7768 if (ret < 0 && ret != -ENOSPC)
7769 btrfs_abort_transaction(trans, ret);
7770 else
7771 ret = 0;
7772 if (!exist)
7773 btrfs_end_transaction(trans);
7774 if (ret)
7775 return ret;
7776 }
7777
7778 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
7779 /*
7780 * Don't loop again if we already have no empty_size and
7781 * no empty_cluster.
7782 */
7783 if (ffe_ctl->empty_size == 0 &&
7784 ffe_ctl->empty_cluster == 0)
7785 return -ENOSPC;
7786 ffe_ctl->empty_size = 0;
7787 ffe_ctl->empty_cluster = 0;
7788 }
7789 return 1;
7790 }
7791 return -ENOSPC;
7792}
7793
fec577fb
CM
7794/*
7795 * walks the btree of allocated extents and find a hole of a given size.
7796 * The key ins is changed to record the hole:
a4820398 7797 * ins->objectid == start position
62e2749e 7798 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7799 * ins->offset == the size of the hole.
fec577fb 7800 * Any available blocks before search_start are skipped.
a4820398
MX
7801 *
7802 * If there is no suitable free space, we will record the max size of
7803 * the free space extent currently.
e72d79d6
QW
7804 *
7805 * The overall logic and call chain:
7806 *
7807 * find_free_extent()
7808 * |- Iterate through all block groups
7809 * | |- Get a valid block group
7810 * | |- Try to do clustered allocation in that block group
7811 * | |- Try to do unclustered allocation in that block group
7812 * | |- Check if the result is valid
7813 * | | |- If valid, then exit
7814 * | |- Jump to next block group
7815 * |
7816 * |- Push harder to find free extents
7817 * |- If not found, re-iterate all block groups
fec577fb 7818 */
87bde3cd 7819static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7820 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7821 u64 hint_byte, struct btrfs_key *ins,
7822 u64 flags, int delalloc)
fec577fb 7823{
80eb234a 7824 int ret = 0;
fa9c0d79 7825 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7826 struct btrfs_block_group_cache *block_group = NULL;
b4bd745d 7827 struct find_free_extent_ctl ffe_ctl = {0};
80eb234a 7828 struct btrfs_space_info *space_info;
67377734 7829 bool use_cluster = true;
a5e681d9 7830 bool full_search = false;
fec577fb 7831
0b246afa 7832 WARN_ON(num_bytes < fs_info->sectorsize);
b4bd745d
QW
7833
7834 ffe_ctl.ram_bytes = ram_bytes;
7835 ffe_ctl.num_bytes = num_bytes;
7836 ffe_ctl.empty_size = empty_size;
7837 ffe_ctl.flags = flags;
7838 ffe_ctl.search_start = 0;
7839 ffe_ctl.retry_clustered = false;
7840 ffe_ctl.retry_unclustered = false;
7841 ffe_ctl.delalloc = delalloc;
7842 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
7843 ffe_ctl.have_caching_bg = false;
7844 ffe_ctl.orig_have_caching_bg = false;
7845 ffe_ctl.found_offset = 0;
7846
962a298f 7847 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7848 ins->objectid = 0;
7849 ins->offset = 0;
b1a4d965 7850
71ff6437 7851 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7852
0b246afa 7853 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7854 if (!space_info) {
0b246afa 7855 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7856 return -ENOSPC;
7857 }
2552d17e 7858
67377734 7859 /*
4f4db217
JB
7860 * If our free space is heavily fragmented we may not be able to make
7861 * big contiguous allocations, so instead of doing the expensive search
7862 * for free space, simply return ENOSPC with our max_extent_size so we
7863 * can go ahead and search for a more manageable chunk.
7864 *
7865 * If our max_extent_size is large enough for our allocation simply
7866 * disable clustering since we will likely not be able to find enough
7867 * space to create a cluster and induce latency trying.
67377734 7868 */
4f4db217
JB
7869 if (unlikely(space_info->max_extent_size)) {
7870 spin_lock(&space_info->lock);
7871 if (space_info->max_extent_size &&
7872 num_bytes > space_info->max_extent_size) {
7873 ins->offset = space_info->max_extent_size;
7874 spin_unlock(&space_info->lock);
7875 return -ENOSPC;
7876 } else if (space_info->max_extent_size) {
7877 use_cluster = false;
7878 }
7879 spin_unlock(&space_info->lock);
fa9c0d79 7880 }
0f9dd46c 7881
b4bd745d
QW
7882 last_ptr = fetch_cluster_info(fs_info, space_info,
7883 &ffe_ctl.empty_cluster);
239b14b3 7884 if (last_ptr) {
fa9c0d79
CM
7885 spin_lock(&last_ptr->lock);
7886 if (last_ptr->block_group)
7887 hint_byte = last_ptr->window_start;
c759c4e1
JB
7888 if (last_ptr->fragmented) {
7889 /*
7890 * We still set window_start so we can keep track of the
7891 * last place we found an allocation to try and save
7892 * some time.
7893 */
7894 hint_byte = last_ptr->window_start;
7895 use_cluster = false;
7896 }
fa9c0d79 7897 spin_unlock(&last_ptr->lock);
239b14b3 7898 }
fa9c0d79 7899
b4bd745d
QW
7900 ffe_ctl.search_start = max(ffe_ctl.search_start,
7901 first_logical_byte(fs_info, 0));
7902 ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
7903 if (ffe_ctl.search_start == hint_byte) {
7904 block_group = btrfs_lookup_block_group(fs_info,
7905 ffe_ctl.search_start);
817d52f8
JB
7906 /*
7907 * we don't want to use the block group if it doesn't match our
7908 * allocation bits, or if its not cached.
ccf0e725
JB
7909 *
7910 * However if we are re-searching with an ideal block group
7911 * picked out then we don't care that the block group is cached.
817d52f8 7912 */
b6919a58 7913 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7914 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7915 down_read(&space_info->groups_sem);
44fb5511
CM
7916 if (list_empty(&block_group->list) ||
7917 block_group->ro) {
7918 /*
7919 * someone is removing this block group,
7920 * we can't jump into the have_block_group
7921 * target because our list pointers are not
7922 * valid
7923 */
7924 btrfs_put_block_group(block_group);
7925 up_read(&space_info->groups_sem);
ccf0e725 7926 } else {
b4bd745d 7927 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3e72ee88 7928 block_group->flags);
e570fd27 7929 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7930 goto have_block_group;
ccf0e725 7931 }
2552d17e 7932 } else if (block_group) {
fa9c0d79 7933 btrfs_put_block_group(block_group);
2552d17e 7934 }
42e70e7a 7935 }
2552d17e 7936search:
b4bd745d
QW
7937 ffe_ctl.have_caching_bg = false;
7938 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
7939 ffe_ctl.index == 0)
a5e681d9 7940 full_search = true;
80eb234a 7941 down_read(&space_info->groups_sem);
b4bd745d
QW
7942 list_for_each_entry(block_group,
7943 &space_info->block_groups[ffe_ctl.index], list) {
14443937
JM
7944 /* If the block group is read-only, we can skip it entirely. */
7945 if (unlikely(block_group->ro))
7946 continue;
7947
e570fd27 7948 btrfs_grab_block_group(block_group, delalloc);
b4bd745d 7949 ffe_ctl.search_start = block_group->key.objectid;
42e70e7a 7950
83a50de9
CM
7951 /*
7952 * this can happen if we end up cycling through all the
7953 * raid types, but we want to make sure we only allocate
7954 * for the proper type.
7955 */
b6919a58 7956 if (!block_group_bits(block_group, flags)) {
bece2e82 7957 u64 extra = BTRFS_BLOCK_GROUP_DUP |
83a50de9 7958 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7959 BTRFS_BLOCK_GROUP_RAID5 |
7960 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7961 BTRFS_BLOCK_GROUP_RAID10;
7962
7963 /*
7964 * if they asked for extra copies and this block group
7965 * doesn't provide them, bail. This does allow us to
7966 * fill raid0 from raid1.
7967 */
b6919a58 7968 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7969 goto loop;
7970 }
7971
2552d17e 7972have_block_group:
b4bd745d
QW
7973 ffe_ctl.cached = block_group_cache_done(block_group);
7974 if (unlikely(!ffe_ctl.cached)) {
7975 ffe_ctl.have_caching_bg = true;
f6373bf3 7976 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7977 BUG_ON(ret < 0);
7978 ret = 0;
817d52f8
JB
7979 }
7980
36cce922
JB
7981 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7982 goto loop;
0f9dd46c 7983
0a24325e 7984 /*
062c05c4
AO
7985 * Ok we want to try and use the cluster allocator, so
7986 * lets look there
0a24325e 7987 */
c759c4e1 7988 if (last_ptr && use_cluster) {
d06e3bb6 7989 struct btrfs_block_group_cache *cluster_bg = NULL;
fa9c0d79 7990
d06e3bb6
QW
7991 ret = find_free_extent_clustered(block_group, last_ptr,
7992 &ffe_ctl, &cluster_bg);
062c05c4 7993
fa9c0d79 7994 if (ret == 0) {
d06e3bb6
QW
7995 if (cluster_bg && cluster_bg != block_group) {
7996 btrfs_release_block_group(block_group,
7997 delalloc);
7998 block_group = cluster_bg;
fa9c0d79 7999 }
d06e3bb6
QW
8000 goto checks;
8001 } else if (ret == -EAGAIN) {
817d52f8 8002 goto have_block_group;
d06e3bb6
QW
8003 } else if (ret > 0) {
8004 goto loop;
fa9c0d79 8005 }
d06e3bb6 8006 /* ret == -ENOENT case falls through */
fa9c0d79
CM
8007 }
8008
e1a41848
QW
8009 ret = find_free_extent_unclustered(block_group, last_ptr,
8010 &ffe_ctl);
8011 if (ret == -EAGAIN)
817d52f8 8012 goto have_block_group;
e1a41848 8013 else if (ret > 0)
1cdda9b8 8014 goto loop;
e1a41848 8015 /* ret == 0 case falls through */
fa9c0d79 8016checks:
b4bd745d
QW
8017 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
8018 fs_info->stripesize);
25179201 8019
2552d17e 8020 /* move on to the next group */
b4bd745d 8021 if (ffe_ctl.search_start + num_bytes >
215a63d1 8022 block_group->key.objectid + block_group->key.offset) {
b4bd745d
QW
8023 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8024 num_bytes);
2552d17e 8025 goto loop;
6226cb0a 8026 }
f5a31e16 8027
b4bd745d
QW
8028 if (ffe_ctl.found_offset < ffe_ctl.search_start)
8029 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8030 ffe_ctl.search_start - ffe_ctl.found_offset);
2552d17e 8031
18513091
WX
8032 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
8033 num_bytes, delalloc);
f0486c68 8034 if (ret == -EAGAIN) {
b4bd745d
QW
8035 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8036 num_bytes);
2552d17e 8037 goto loop;
0f9dd46c 8038 }
9cfa3e34 8039 btrfs_inc_block_group_reservations(block_group);
0b86a832 8040
f0486c68 8041 /* we are all good, lets return */
b4bd745d 8042 ins->objectid = ffe_ctl.search_start;
2552d17e 8043 ins->offset = num_bytes;
d2fb3437 8044
b4bd745d
QW
8045 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
8046 num_bytes);
e570fd27 8047 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
8048 break;
8049loop:
b4bd745d
QW
8050 ffe_ctl.retry_clustered = false;
8051 ffe_ctl.retry_unclustered = false;
3e72ee88 8052 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
b4bd745d 8053 ffe_ctl.index);
e570fd27 8054 btrfs_release_block_group(block_group, delalloc);
14443937 8055 cond_resched();
2552d17e
JB
8056 }
8057 up_read(&space_info->groups_sem);
8058
e72d79d6
QW
8059 ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
8060 full_search, use_cluster);
8061 if (ret > 0)
b742bb82
YZ
8062 goto search;
8063
4f4db217 8064 if (ret == -ENOSPC) {
b4bd745d
QW
8065 /*
8066 * Use ffe_ctl->total_free_space as fallback if we can't find
8067 * any contiguous hole.
8068 */
8069 if (!ffe_ctl.max_extent_size)
8070 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4f4db217 8071 spin_lock(&space_info->lock);
b4bd745d 8072 space_info->max_extent_size = ffe_ctl.max_extent_size;
4f4db217 8073 spin_unlock(&space_info->lock);
b4bd745d 8074 ins->offset = ffe_ctl.max_extent_size;
4f4db217 8075 }
0f70abe2 8076 return ret;
fec577fb 8077}
ec44a35c 8078
ab8d0fc4
JM
8079static void dump_space_info(struct btrfs_fs_info *fs_info,
8080 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 8081 int dump_block_groups)
0f9dd46c
JB
8082{
8083 struct btrfs_block_group_cache *cache;
b742bb82 8084 int index = 0;
0f9dd46c 8085
9ed74f2d 8086 spin_lock(&info->lock);
ab8d0fc4
JM
8087 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
8088 info->flags,
4136135b
LB
8089 info->total_bytes - btrfs_space_info_used(info, true),
8090 info->full ? "" : "not ");
ab8d0fc4
JM
8091 btrfs_info(fs_info,
8092 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
8093 info->total_bytes, info->bytes_used, info->bytes_pinned,
8094 info->bytes_reserved, info->bytes_may_use,
8095 info->bytes_readonly);
9ed74f2d
JB
8096 spin_unlock(&info->lock);
8097
8098 if (!dump_block_groups)
8099 return;
0f9dd46c 8100
80eb234a 8101 down_read(&info->groups_sem);
b742bb82
YZ
8102again:
8103 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 8104 spin_lock(&cache->lock);
ab8d0fc4
JM
8105 btrfs_info(fs_info,
8106 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8107 cache->key.objectid, cache->key.offset,
8108 btrfs_block_group_used(&cache->item), cache->pinned,
8109 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
8110 btrfs_dump_free_space(cache, bytes);
8111 spin_unlock(&cache->lock);
8112 }
b742bb82
YZ
8113 if (++index < BTRFS_NR_RAID_TYPES)
8114 goto again;
80eb234a 8115 up_read(&info->groups_sem);
0f9dd46c 8116}
e8569813 8117
6f47c706
NB
8118/*
8119 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8120 * hole that is at least as big as @num_bytes.
8121 *
8122 * @root - The root that will contain this extent
8123 *
8124 * @ram_bytes - The amount of space in ram that @num_bytes take. This
8125 * is used for accounting purposes. This value differs
8126 * from @num_bytes only in the case of compressed extents.
8127 *
8128 * @num_bytes - Number of bytes to allocate on-disk.
8129 *
8130 * @min_alloc_size - Indicates the minimum amount of space that the
8131 * allocator should try to satisfy. In some cases
8132 * @num_bytes may be larger than what is required and if
8133 * the filesystem is fragmented then allocation fails.
8134 * However, the presence of @min_alloc_size gives a
8135 * chance to try and satisfy the smaller allocation.
8136 *
8137 * @empty_size - A hint that you plan on doing more COW. This is the
8138 * size in bytes the allocator should try to find free
8139 * next to the block it returns. This is just a hint and
8140 * may be ignored by the allocator.
8141 *
8142 * @hint_byte - Hint to the allocator to start searching above the byte
8143 * address passed. It might be ignored.
8144 *
8145 * @ins - This key is modified to record the found hole. It will
8146 * have the following values:
8147 * ins->objectid == start position
8148 * ins->flags = BTRFS_EXTENT_ITEM_KEY
8149 * ins->offset == the size of the hole.
8150 *
8151 * @is_data - Boolean flag indicating whether an extent is
8152 * allocated for data (true) or metadata (false)
8153 *
8154 * @delalloc - Boolean flag indicating whether this allocation is for
8155 * delalloc or not. If 'true' data_rwsem of block groups
8156 * is going to be acquired.
8157 *
8158 *
8159 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8160 * case -ENOSPC is returned then @ins->offset will contain the size of the
8161 * largest available hole the allocator managed to find.
8162 */
18513091 8163int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
8164 u64 num_bytes, u64 min_alloc_size,
8165 u64 empty_size, u64 hint_byte,
e570fd27 8166 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 8167{
ab8d0fc4 8168 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 8169 bool final_tried = num_bytes == min_alloc_size;
b6919a58 8170 u64 flags;
fec577fb 8171 int ret;
925baedd 8172
1b86826d 8173 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 8174again:
0b246afa 8175 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8176 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8177 hint_byte, ins, flags, delalloc);
9cfa3e34 8178 if (!ret && !is_data) {
ab8d0fc4 8179 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8180 } else if (ret == -ENOSPC) {
a4820398
MX
8181 if (!final_tried && ins->offset) {
8182 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8183 num_bytes = round_down(num_bytes,
0b246afa 8184 fs_info->sectorsize);
9e622d6b 8185 num_bytes = max(num_bytes, min_alloc_size);
18513091 8186 ram_bytes = num_bytes;
9e622d6b
MX
8187 if (num_bytes == min_alloc_size)
8188 final_tried = true;
8189 goto again;
ab8d0fc4 8190 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8191 struct btrfs_space_info *sinfo;
8192
ab8d0fc4 8193 sinfo = __find_space_info(fs_info, flags);
0b246afa 8194 btrfs_err(fs_info,
5d163e0e
JM
8195 "allocation failed flags %llu, wanted %llu",
8196 flags, num_bytes);
53804280 8197 if (sinfo)
ab8d0fc4 8198 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8199 }
925baedd 8200 }
0f9dd46c
JB
8201
8202 return ret;
e6dcd2dc
CM
8203}
8204
2ff7e61e 8205static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8206 u64 start, u64 len,
8207 int pin, int delalloc)
65b51a00 8208{
0f9dd46c 8209 struct btrfs_block_group_cache *cache;
1f3c79a2 8210 int ret = 0;
0f9dd46c 8211
0b246afa 8212 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8213 if (!cache) {
0b246afa
JM
8214 btrfs_err(fs_info, "Unable to find block group for %llu",
8215 start);
0f9dd46c
JB
8216 return -ENOSPC;
8217 }
1f3c79a2 8218
e688b725 8219 if (pin)
2ff7e61e 8220 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8221 else {
0b246afa 8222 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8223 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8224 btrfs_add_free_space(cache, start, len);
4824f1f4 8225 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8226 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8227 }
31193213 8228
fa9c0d79 8229 btrfs_put_block_group(cache);
e6dcd2dc
CM
8230 return ret;
8231}
8232
2ff7e61e 8233int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8234 u64 start, u64 len, int delalloc)
e688b725 8235{
2ff7e61e 8236 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8237}
8238
2ff7e61e 8239int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8240 u64 start, u64 len)
8241{
2ff7e61e 8242 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8243}
8244
5d4f98a2 8245static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8246 u64 parent, u64 root_objectid,
8247 u64 flags, u64 owner, u64 offset,
8248 struct btrfs_key *ins, int ref_mod)
e6dcd2dc 8249{
ef89b824 8250 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8251 int ret;
e6dcd2dc 8252 struct btrfs_extent_item *extent_item;
5d4f98a2 8253 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8254 struct btrfs_path *path;
5d4f98a2
YZ
8255 struct extent_buffer *leaf;
8256 int type;
8257 u32 size;
26b8003f 8258
5d4f98a2
YZ
8259 if (parent > 0)
8260 type = BTRFS_SHARED_DATA_REF_KEY;
8261 else
8262 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8263
5d4f98a2 8264 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8265
8266 path = btrfs_alloc_path();
db5b493a
TI
8267 if (!path)
8268 return -ENOMEM;
47e4bb98 8269
b9473439 8270 path->leave_spinning = 1;
5d4f98a2
YZ
8271 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8272 ins, size);
79787eaa
JM
8273 if (ret) {
8274 btrfs_free_path(path);
8275 return ret;
8276 }
0f9dd46c 8277
5d4f98a2
YZ
8278 leaf = path->nodes[0];
8279 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8280 struct btrfs_extent_item);
5d4f98a2
YZ
8281 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8282 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8283 btrfs_set_extent_flags(leaf, extent_item,
8284 flags | BTRFS_EXTENT_FLAG_DATA);
8285
8286 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8287 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8288 if (parent > 0) {
8289 struct btrfs_shared_data_ref *ref;
8290 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8291 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8292 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8293 } else {
8294 struct btrfs_extent_data_ref *ref;
8295 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8296 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8297 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8298 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8299 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8300 }
47e4bb98
CM
8301
8302 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8303 btrfs_free_path(path);
f510cfec 8304
25a356d3 8305 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
1e144fb8
OS
8306 if (ret)
8307 return ret;
8308
6202df69 8309 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8310 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8311 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8312 ins->objectid, ins->offset);
f5947066
CM
8313 BUG();
8314 }
71ff6437 8315 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8316 return ret;
8317}
8318
5d4f98a2 8319static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 8320 struct btrfs_delayed_ref_node *node,
21ebfbe7 8321 struct btrfs_delayed_extent_op *extent_op)
e6dcd2dc 8322{
9dcdbe01 8323 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8324 int ret;
5d4f98a2 8325 struct btrfs_extent_item *extent_item;
4e6bd4e0 8326 struct btrfs_key extent_key;
5d4f98a2
YZ
8327 struct btrfs_tree_block_info *block_info;
8328 struct btrfs_extent_inline_ref *iref;
8329 struct btrfs_path *path;
8330 struct extent_buffer *leaf;
4e6bd4e0 8331 struct btrfs_delayed_tree_ref *ref;
3173a18f 8332 u32 size = sizeof(*extent_item) + sizeof(*iref);
4e6bd4e0 8333 u64 num_bytes;
21ebfbe7 8334 u64 flags = extent_op->flags_to_set;
0b246afa 8335 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f 8336
4e6bd4e0
NB
8337 ref = btrfs_delayed_node_to_tree_ref(node);
8338
4e6bd4e0
NB
8339 extent_key.objectid = node->bytenr;
8340 if (skinny_metadata) {
8341 extent_key.offset = ref->level;
8342 extent_key.type = BTRFS_METADATA_ITEM_KEY;
8343 num_bytes = fs_info->nodesize;
8344 } else {
8345 extent_key.offset = node->num_bytes;
8346 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
3173a18f 8347 size += sizeof(*block_info);
4e6bd4e0
NB
8348 num_bytes = node->num_bytes;
8349 }
1c2308f8 8350
5d4f98a2 8351 path = btrfs_alloc_path();
80ee54bf 8352 if (!path)
d8926bb3 8353 return -ENOMEM;
56bec294 8354
5d4f98a2
YZ
8355 path->leave_spinning = 1;
8356 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4e6bd4e0 8357 &extent_key, size);
79787eaa 8358 if (ret) {
dd825259 8359 btrfs_free_path(path);
79787eaa
JM
8360 return ret;
8361 }
5d4f98a2
YZ
8362
8363 leaf = path->nodes[0];
8364 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8365 struct btrfs_extent_item);
8366 btrfs_set_extent_refs(leaf, extent_item, 1);
8367 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8368 btrfs_set_extent_flags(leaf, extent_item,
8369 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8370
3173a18f
JB
8371 if (skinny_metadata) {
8372 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8373 } else {
8374 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
21ebfbe7 8375 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4e6bd4e0 8376 btrfs_set_tree_block_level(leaf, block_info, ref->level);
3173a18f
JB
8377 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8378 }
5d4f98a2 8379
d4b20733 8380 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
5d4f98a2
YZ
8381 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8382 btrfs_set_extent_inline_ref_type(leaf, iref,
8383 BTRFS_SHARED_BLOCK_REF_KEY);
d4b20733 8384 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
5d4f98a2
YZ
8385 } else {
8386 btrfs_set_extent_inline_ref_type(leaf, iref,
8387 BTRFS_TREE_BLOCK_REF_KEY);
4e6bd4e0 8388 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
5d4f98a2
YZ
8389 }
8390
8391 btrfs_mark_buffer_dirty(leaf);
8392 btrfs_free_path(path);
8393
4e6bd4e0
NB
8394 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8395 num_bytes);
1e144fb8
OS
8396 if (ret)
8397 return ret;
8398
4e6bd4e0 8399 ret = update_block_group(trans, fs_info, extent_key.objectid,
6202df69 8400 fs_info->nodesize, 1);
79787eaa 8401 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8402 btrfs_err(fs_info, "update block group failed for %llu %llu",
4e6bd4e0 8403 extent_key.objectid, extent_key.offset);
5d4f98a2
YZ
8404 BUG();
8405 }
0be5dc67 8406
4e6bd4e0 8407 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
0b246afa 8408 fs_info->nodesize);
5d4f98a2
YZ
8409 return ret;
8410}
8411
8412int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8413 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8414 u64 offset, u64 ram_bytes,
8415 struct btrfs_key *ins)
5d4f98a2
YZ
8416{
8417 int ret;
8418
84f7d8e6 8419 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8420
fd708b81
JB
8421 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8422 root->root_key.objectid, owner, offset,
8423 BTRFS_ADD_DELAYED_EXTENT);
8424
88a979c6 8425 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
84f7d8e6
JB
8426 ins->offset, 0,
8427 root->root_key.objectid, owner,
7be07912
OS
8428 offset, ram_bytes,
8429 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8430 return ret;
8431}
e02119d5
CM
8432
8433/*
8434 * this is used by the tree logging recovery code. It records that
8435 * an extent has been allocated and makes sure to clear the free
8436 * space cache bits as well
8437 */
5d4f98a2 8438int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8439 u64 root_objectid, u64 owner, u64 offset,
8440 struct btrfs_key *ins)
e02119d5 8441{
61da2abf 8442 struct btrfs_fs_info *fs_info = trans->fs_info;
e02119d5
CM
8443 int ret;
8444 struct btrfs_block_group_cache *block_group;
ed7a6948 8445 struct btrfs_space_info *space_info;
11833d66 8446
8c2a1a30
JB
8447 /*
8448 * Mixed block groups will exclude before processing the log so we only
01327610 8449 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8450 */
0b246afa 8451 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8452 ret = __exclude_logged_extent(fs_info, ins->objectid,
8453 ins->offset);
b50c6e25 8454 if (ret)
8c2a1a30 8455 return ret;
11833d66
YZ
8456 }
8457
0b246afa 8458 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8459 if (!block_group)
8460 return -EINVAL;
8461
ed7a6948
WX
8462 space_info = block_group->space_info;
8463 spin_lock(&space_info->lock);
8464 spin_lock(&block_group->lock);
8465 space_info->bytes_reserved += ins->offset;
8466 block_group->reserved += ins->offset;
8467 spin_unlock(&block_group->lock);
8468 spin_unlock(&space_info->lock);
8469
ef89b824
NB
8470 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8471 offset, ins, 1);
b50c6e25 8472 btrfs_put_block_group(block_group);
e02119d5
CM
8473 return ret;
8474}
8475
48a3b636
ES
8476static struct extent_buffer *
8477btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
bc877d28 8478 u64 bytenr, int level, u64 owner)
65b51a00 8479{
0b246afa 8480 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8481 struct extent_buffer *buf;
8482
2ff7e61e 8483 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8484 if (IS_ERR(buf))
8485 return buf;
8486
b72c3aba
QW
8487 /*
8488 * Extra safety check in case the extent tree is corrupted and extent
8489 * allocator chooses to use a tree block which is already used and
8490 * locked.
8491 */
8492 if (buf->lock_owner == current->pid) {
8493 btrfs_err_rl(fs_info,
8494"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8495 buf->start, btrfs_header_owner(buf), current->pid);
8496 free_extent_buffer(buf);
8497 return ERR_PTR(-EUCLEAN);
8498 }
8499
85d4e461 8500 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8501 btrfs_tree_lock(buf);
7c302b49 8502 clean_tree_block(fs_info, buf);
3083ee2e 8503 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8504
8505 btrfs_set_lock_blocking(buf);
4db8c528 8506 set_extent_buffer_uptodate(buf);
b4ce94de 8507
bc877d28
NB
8508 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8509 btrfs_set_header_level(buf, level);
8510 btrfs_set_header_bytenr(buf, buf->start);
8511 btrfs_set_header_generation(buf, trans->transid);
8512 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8513 btrfs_set_header_owner(buf, owner);
de37aa51 8514 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
bc877d28 8515 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
d0c803c4 8516 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8517 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8518 /*
8519 * we allow two log transactions at a time, use different
52042d8e 8520 * EXTENT bit to differentiate dirty pages.
8cef4e16 8521 */
656f30db 8522 if (buf->log_index == 0)
8cef4e16
YZ
8523 set_extent_dirty(&root->dirty_log_pages, buf->start,
8524 buf->start + buf->len - 1, GFP_NOFS);
8525 else
8526 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8527 buf->start + buf->len - 1);
d0c803c4 8528 } else {
656f30db 8529 buf->log_index = -1;
d0c803c4 8530 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8531 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8532 }
64c12921 8533 trans->dirty = true;
b4ce94de 8534 /* this returns a buffer locked for blocking */
65b51a00
CM
8535 return buf;
8536}
8537
f0486c68
YZ
8538static struct btrfs_block_rsv *
8539use_block_rsv(struct btrfs_trans_handle *trans,
8540 struct btrfs_root *root, u32 blocksize)
8541{
0b246afa 8542 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8543 struct btrfs_block_rsv *block_rsv;
0b246afa 8544 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8545 int ret;
d88033db 8546 bool global_updated = false;
f0486c68
YZ
8547
8548 block_rsv = get_block_rsv(trans, root);
8549
b586b323
MX
8550 if (unlikely(block_rsv->size == 0))
8551 goto try_reserve;
d88033db 8552again:
f0486c68
YZ
8553 ret = block_rsv_use_bytes(block_rsv, blocksize);
8554 if (!ret)
8555 return block_rsv;
8556
b586b323
MX
8557 if (block_rsv->failfast)
8558 return ERR_PTR(ret);
8559
d88033db
MX
8560 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8561 global_updated = true;
0b246afa 8562 update_global_block_rsv(fs_info);
d88033db
MX
8563 goto again;
8564 }
8565
ba2c4d4e
JB
8566 /*
8567 * The global reserve still exists to save us from ourselves, so don't
8568 * warn_on if we are short on our delayed refs reserve.
8569 */
8570 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
8571 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8572 static DEFINE_RATELIMIT_STATE(_rs,
8573 DEFAULT_RATELIMIT_INTERVAL * 10,
8574 /*DEFAULT_RATELIMIT_BURST*/ 1);
8575 if (__ratelimit(&_rs))
8576 WARN(1, KERN_DEBUG
efe120a0 8577 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8578 }
8579try_reserve:
8580 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8581 BTRFS_RESERVE_NO_FLUSH);
8582 if (!ret)
8583 return block_rsv;
8584 /*
8585 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8586 * the global reserve if its space type is the same as the global
8587 * reservation.
b586b323 8588 */
5881cfc9
MX
8589 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8590 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8591 ret = block_rsv_use_bytes(global_rsv, blocksize);
8592 if (!ret)
8593 return global_rsv;
8594 }
8595 return ERR_PTR(ret);
f0486c68
YZ
8596}
8597
8c2a3ca2
JB
8598static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8599 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68 8600{
3a584174 8601 block_rsv_add_bytes(block_rsv, blocksize, false);
ff6bc37e 8602 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8603}
8604
fec577fb 8605/*
f0486c68 8606 * finds a free extent and does all the dirty work required for allocation
67b7859e 8607 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8608 */
4d75f8a9 8609struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8610 struct btrfs_root *root,
8611 u64 parent, u64 root_objectid,
8612 const struct btrfs_disk_key *key,
8613 int level, u64 hint,
8614 u64 empty_size)
fec577fb 8615{
0b246afa 8616 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8617 struct btrfs_key ins;
f0486c68 8618 struct btrfs_block_rsv *block_rsv;
5f39d397 8619 struct extent_buffer *buf;
67b7859e 8620 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8621 u64 flags = 0;
8622 int ret;
0b246afa
JM
8623 u32 blocksize = fs_info->nodesize;
8624 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8625
05653ef3 8626#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8627 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8628 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
bc877d28 8629 level, root_objectid);
faa2dbf0
JB
8630 if (!IS_ERR(buf))
8631 root->alloc_bytenr += blocksize;
8632 return buf;
8633 }
05653ef3 8634#endif
fccb84c9 8635
f0486c68
YZ
8636 block_rsv = use_block_rsv(trans, root, blocksize);
8637 if (IS_ERR(block_rsv))
8638 return ERR_CAST(block_rsv);
8639
18513091 8640 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8641 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8642 if (ret)
8643 goto out_unuse;
55c69072 8644
bc877d28
NB
8645 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8646 root_objectid);
67b7859e
OS
8647 if (IS_ERR(buf)) {
8648 ret = PTR_ERR(buf);
8649 goto out_free_reserved;
8650 }
f0486c68
YZ
8651
8652 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8653 if (parent == 0)
8654 parent = ins.objectid;
8655 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8656 } else
8657 BUG_ON(parent > 0);
8658
8659 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8660 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8661 if (!extent_op) {
8662 ret = -ENOMEM;
8663 goto out_free_buf;
8664 }
f0486c68
YZ
8665 if (key)
8666 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8667 else
8668 memset(&extent_op->key, 0, sizeof(extent_op->key));
8669 extent_op->flags_to_set = flags;
35b3ad50
DS
8670 extent_op->update_key = skinny_metadata ? false : true;
8671 extent_op->update_flags = true;
8672 extent_op->is_data = false;
b1c79e09 8673 extent_op->level = level;
f0486c68 8674
fd708b81
JB
8675 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8676 root_objectid, level, 0,
8677 BTRFS_ADD_DELAYED_EXTENT);
44e1c47d 8678 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
7be07912
OS
8679 ins.offset, parent,
8680 root_objectid, level,
67b7859e 8681 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8682 extent_op, NULL, NULL);
67b7859e
OS
8683 if (ret)
8684 goto out_free_delayed;
f0486c68 8685 }
fec577fb 8686 return buf;
67b7859e
OS
8687
8688out_free_delayed:
8689 btrfs_free_delayed_extent_op(extent_op);
8690out_free_buf:
8691 free_extent_buffer(buf);
8692out_free_reserved:
2ff7e61e 8693 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8694out_unuse:
0b246afa 8695 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8696 return ERR_PTR(ret);
fec577fb 8697}
a28ec197 8698
2c47e605
YZ
8699struct walk_control {
8700 u64 refs[BTRFS_MAX_LEVEL];
8701 u64 flags[BTRFS_MAX_LEVEL];
8702 struct btrfs_key update_progress;
8703 int stage;
8704 int level;
8705 int shared_level;
8706 int update_ref;
8707 int keep_locks;
1c4850e2
YZ
8708 int reada_slot;
8709 int reada_count;
2c47e605
YZ
8710};
8711
8712#define DROP_REFERENCE 1
8713#define UPDATE_BACKREF 2
8714
1c4850e2
YZ
8715static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8716 struct btrfs_root *root,
8717 struct walk_control *wc,
8718 struct btrfs_path *path)
6407bf6d 8719{
0b246afa 8720 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8721 u64 bytenr;
8722 u64 generation;
8723 u64 refs;
94fcca9f 8724 u64 flags;
5d4f98a2 8725 u32 nritems;
1c4850e2
YZ
8726 struct btrfs_key key;
8727 struct extent_buffer *eb;
6407bf6d 8728 int ret;
1c4850e2
YZ
8729 int slot;
8730 int nread = 0;
6407bf6d 8731
1c4850e2
YZ
8732 if (path->slots[wc->level] < wc->reada_slot) {
8733 wc->reada_count = wc->reada_count * 2 / 3;
8734 wc->reada_count = max(wc->reada_count, 2);
8735 } else {
8736 wc->reada_count = wc->reada_count * 3 / 2;
8737 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8738 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8739 }
7bb86316 8740
1c4850e2
YZ
8741 eb = path->nodes[wc->level];
8742 nritems = btrfs_header_nritems(eb);
bd56b302 8743
1c4850e2
YZ
8744 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8745 if (nread >= wc->reada_count)
8746 break;
bd56b302 8747
2dd3e67b 8748 cond_resched();
1c4850e2
YZ
8749 bytenr = btrfs_node_blockptr(eb, slot);
8750 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8751
1c4850e2
YZ
8752 if (slot == path->slots[wc->level])
8753 goto reada;
5d4f98a2 8754
1c4850e2
YZ
8755 if (wc->stage == UPDATE_BACKREF &&
8756 generation <= root->root_key.offset)
bd56b302
CM
8757 continue;
8758
94fcca9f 8759 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8760 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8761 wc->level - 1, 1, &refs,
8762 &flags);
79787eaa
JM
8763 /* We don't care about errors in readahead. */
8764 if (ret < 0)
8765 continue;
94fcca9f
YZ
8766 BUG_ON(refs == 0);
8767
1c4850e2 8768 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8769 if (refs == 1)
8770 goto reada;
bd56b302 8771
94fcca9f
YZ
8772 if (wc->level == 1 &&
8773 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8774 continue;
1c4850e2
YZ
8775 if (!wc->update_ref ||
8776 generation <= root->root_key.offset)
8777 continue;
8778 btrfs_node_key_to_cpu(eb, &key, slot);
8779 ret = btrfs_comp_cpu_keys(&key,
8780 &wc->update_progress);
8781 if (ret < 0)
8782 continue;
94fcca9f
YZ
8783 } else {
8784 if (wc->level == 1 &&
8785 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8786 continue;
6407bf6d 8787 }
1c4850e2 8788reada:
2ff7e61e 8789 readahead_tree_block(fs_info, bytenr);
1c4850e2 8790 nread++;
20524f02 8791 }
1c4850e2 8792 wc->reada_slot = slot;
20524f02 8793}
2c47e605 8794
f82d02d9 8795/*
2c016dc2 8796 * helper to process tree block while walking down the tree.
2c47e605 8797 *
2c47e605
YZ
8798 * when wc->stage == UPDATE_BACKREF, this function updates
8799 * back refs for pointers in the block.
8800 *
8801 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8802 */
2c47e605 8803static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8804 struct btrfs_root *root,
2c47e605 8805 struct btrfs_path *path,
94fcca9f 8806 struct walk_control *wc, int lookup_info)
f82d02d9 8807{
2ff7e61e 8808 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8809 int level = wc->level;
8810 struct extent_buffer *eb = path->nodes[level];
2c47e605 8811 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8812 int ret;
8813
2c47e605
YZ
8814 if (wc->stage == UPDATE_BACKREF &&
8815 btrfs_header_owner(eb) != root->root_key.objectid)
8816 return 1;
f82d02d9 8817
2c47e605
YZ
8818 /*
8819 * when reference count of tree block is 1, it won't increase
8820 * again. once full backref flag is set, we never clear it.
8821 */
94fcca9f
YZ
8822 if (lookup_info &&
8823 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8824 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8825 BUG_ON(!path->locks[level]);
2ff7e61e 8826 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8827 eb->start, level, 1,
2c47e605
YZ
8828 &wc->refs[level],
8829 &wc->flags[level]);
79787eaa
JM
8830 BUG_ON(ret == -ENOMEM);
8831 if (ret)
8832 return ret;
2c47e605
YZ
8833 BUG_ON(wc->refs[level] == 0);
8834 }
5d4f98a2 8835
2c47e605
YZ
8836 if (wc->stage == DROP_REFERENCE) {
8837 if (wc->refs[level] > 1)
8838 return 1;
f82d02d9 8839
2c47e605 8840 if (path->locks[level] && !wc->keep_locks) {
bd681513 8841 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8842 path->locks[level] = 0;
8843 }
8844 return 0;
8845 }
f82d02d9 8846
2c47e605
YZ
8847 /* wc->stage == UPDATE_BACKREF */
8848 if (!(wc->flags[level] & flag)) {
8849 BUG_ON(!path->locks[level]);
e339a6b0 8850 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8851 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8852 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8853 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8854 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8855 eb->len, flag,
8856 btrfs_header_level(eb), 0);
79787eaa 8857 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8858 wc->flags[level] |= flag;
8859 }
8860
8861 /*
8862 * the block is shared by multiple trees, so it's not good to
8863 * keep the tree lock
8864 */
8865 if (path->locks[level] && level > 0) {
bd681513 8866 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8867 path->locks[level] = 0;
8868 }
8869 return 0;
8870}
8871
1c4850e2 8872/*
2c016dc2 8873 * helper to process tree block pointer.
1c4850e2
YZ
8874 *
8875 * when wc->stage == DROP_REFERENCE, this function checks
8876 * reference count of the block pointed to. if the block
8877 * is shared and we need update back refs for the subtree
8878 * rooted at the block, this function changes wc->stage to
8879 * UPDATE_BACKREF. if the block is shared and there is no
8880 * need to update back, this function drops the reference
8881 * to the block.
8882 *
8883 * NOTE: return value 1 means we should stop walking down.
8884 */
8885static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8886 struct btrfs_root *root,
8887 struct btrfs_path *path,
94fcca9f 8888 struct walk_control *wc, int *lookup_info)
1c4850e2 8889{
0b246afa 8890 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8891 u64 bytenr;
8892 u64 generation;
8893 u64 parent;
1c4850e2 8894 struct btrfs_key key;
581c1760 8895 struct btrfs_key first_key;
1c4850e2
YZ
8896 struct extent_buffer *next;
8897 int level = wc->level;
8898 int reada = 0;
8899 int ret = 0;
1152651a 8900 bool need_account = false;
1c4850e2
YZ
8901
8902 generation = btrfs_node_ptr_generation(path->nodes[level],
8903 path->slots[level]);
8904 /*
8905 * if the lower level block was created before the snapshot
8906 * was created, we know there is no need to update back refs
8907 * for the subtree
8908 */
8909 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8910 generation <= root->root_key.offset) {
8911 *lookup_info = 1;
1c4850e2 8912 return 1;
94fcca9f 8913 }
1c4850e2
YZ
8914
8915 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8916 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8917 path->slots[level]);
1c4850e2 8918
0b246afa 8919 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8920 if (!next) {
2ff7e61e 8921 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8922 if (IS_ERR(next))
8923 return PTR_ERR(next);
8924
b2aaaa3b
JB
8925 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8926 level - 1);
1c4850e2
YZ
8927 reada = 1;
8928 }
8929 btrfs_tree_lock(next);
8930 btrfs_set_lock_blocking(next);
8931
2ff7e61e 8932 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8933 &wc->refs[level - 1],
8934 &wc->flags[level - 1]);
4867268c
JB
8935 if (ret < 0)
8936 goto out_unlock;
79787eaa 8937
c2cf52eb 8938 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8939 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8940 ret = -EIO;
8941 goto out_unlock;
c2cf52eb 8942 }
94fcca9f 8943 *lookup_info = 0;
1c4850e2 8944
94fcca9f 8945 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8946 if (wc->refs[level - 1] > 1) {
1152651a 8947 need_account = true;
94fcca9f
YZ
8948 if (level == 1 &&
8949 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8950 goto skip;
8951
1c4850e2
YZ
8952 if (!wc->update_ref ||
8953 generation <= root->root_key.offset)
8954 goto skip;
8955
8956 btrfs_node_key_to_cpu(path->nodes[level], &key,
8957 path->slots[level]);
8958 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8959 if (ret < 0)
8960 goto skip;
8961
8962 wc->stage = UPDATE_BACKREF;
8963 wc->shared_level = level - 1;
8964 }
94fcca9f
YZ
8965 } else {
8966 if (level == 1 &&
8967 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8968 goto skip;
1c4850e2
YZ
8969 }
8970
b9fab919 8971 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8972 btrfs_tree_unlock(next);
8973 free_extent_buffer(next);
8974 next = NULL;
94fcca9f 8975 *lookup_info = 1;
1c4850e2
YZ
8976 }
8977
8978 if (!next) {
8979 if (reada && level == 1)
8980 reada_walk_down(trans, root, wc, path);
581c1760
QW
8981 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8982 &first_key);
64c043de
LB
8983 if (IS_ERR(next)) {
8984 return PTR_ERR(next);
8985 } else if (!extent_buffer_uptodate(next)) {
416bc658 8986 free_extent_buffer(next);
97d9a8a4 8987 return -EIO;
416bc658 8988 }
1c4850e2
YZ
8989 btrfs_tree_lock(next);
8990 btrfs_set_lock_blocking(next);
8991 }
8992
8993 level--;
4867268c
JB
8994 ASSERT(level == btrfs_header_level(next));
8995 if (level != btrfs_header_level(next)) {
8996 btrfs_err(root->fs_info, "mismatched level");
8997 ret = -EIO;
8998 goto out_unlock;
8999 }
1c4850e2
YZ
9000 path->nodes[level] = next;
9001 path->slots[level] = 0;
bd681513 9002 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
9003 wc->level = level;
9004 if (wc->level == 1)
9005 wc->reada_slot = 0;
9006 return 0;
9007skip:
9008 wc->refs[level - 1] = 0;
9009 wc->flags[level - 1] = 0;
94fcca9f
YZ
9010 if (wc->stage == DROP_REFERENCE) {
9011 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
9012 parent = path->nodes[level]->start;
9013 } else {
4867268c 9014 ASSERT(root->root_key.objectid ==
94fcca9f 9015 btrfs_header_owner(path->nodes[level]));
4867268c
JB
9016 if (root->root_key.objectid !=
9017 btrfs_header_owner(path->nodes[level])) {
9018 btrfs_err(root->fs_info,
9019 "mismatched block owner");
9020 ret = -EIO;
9021 goto out_unlock;
9022 }
94fcca9f
YZ
9023 parent = 0;
9024 }
1c4850e2 9025
2cd86d30
QW
9026 /*
9027 * Reloc tree doesn't contribute to qgroup numbers, and we have
9028 * already accounted them at merge time (replace_path),
9029 * thus we could skip expensive subtree trace here.
9030 */
9031 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
9032 need_account) {
deb40627 9033 ret = btrfs_qgroup_trace_subtree(trans, next,
33d1f05c 9034 generation, level - 1);
1152651a 9035 if (ret) {
0b246afa 9036 btrfs_err_rl(fs_info,
5d163e0e
JM
9037 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
9038 ret);
1152651a
MF
9039 }
9040 }
01e0da48 9041 ret = btrfs_free_extent(trans, root, bytenr, fs_info->nodesize,
2ff7e61e
JM
9042 parent, root->root_key.objectid,
9043 level - 1, 0);
4867268c
JB
9044 if (ret)
9045 goto out_unlock;
1c4850e2 9046 }
4867268c
JB
9047
9048 *lookup_info = 1;
9049 ret = 1;
9050
9051out_unlock:
1c4850e2
YZ
9052 btrfs_tree_unlock(next);
9053 free_extent_buffer(next);
4867268c
JB
9054
9055 return ret;
1c4850e2
YZ
9056}
9057
2c47e605 9058/*
2c016dc2 9059 * helper to process tree block while walking up the tree.
2c47e605
YZ
9060 *
9061 * when wc->stage == DROP_REFERENCE, this function drops
9062 * reference count on the block.
9063 *
9064 * when wc->stage == UPDATE_BACKREF, this function changes
9065 * wc->stage back to DROP_REFERENCE if we changed wc->stage
9066 * to UPDATE_BACKREF previously while processing the block.
9067 *
9068 * NOTE: return value 1 means we should stop walking up.
9069 */
9070static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9071 struct btrfs_root *root,
9072 struct btrfs_path *path,
9073 struct walk_control *wc)
9074{
0b246afa 9075 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 9076 int ret;
2c47e605
YZ
9077 int level = wc->level;
9078 struct extent_buffer *eb = path->nodes[level];
9079 u64 parent = 0;
9080
9081 if (wc->stage == UPDATE_BACKREF) {
9082 BUG_ON(wc->shared_level < level);
9083 if (level < wc->shared_level)
9084 goto out;
9085
2c47e605
YZ
9086 ret = find_next_key(path, level + 1, &wc->update_progress);
9087 if (ret > 0)
9088 wc->update_ref = 0;
9089
9090 wc->stage = DROP_REFERENCE;
9091 wc->shared_level = -1;
9092 path->slots[level] = 0;
9093
9094 /*
9095 * check reference count again if the block isn't locked.
9096 * we should start walking down the tree again if reference
9097 * count is one.
9098 */
9099 if (!path->locks[level]) {
9100 BUG_ON(level == 0);
9101 btrfs_tree_lock(eb);
9102 btrfs_set_lock_blocking(eb);
bd681513 9103 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9104
2ff7e61e 9105 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 9106 eb->start, level, 1,
2c47e605
YZ
9107 &wc->refs[level],
9108 &wc->flags[level]);
79787eaa
JM
9109 if (ret < 0) {
9110 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9111 path->locks[level] = 0;
79787eaa
JM
9112 return ret;
9113 }
2c47e605
YZ
9114 BUG_ON(wc->refs[level] == 0);
9115 if (wc->refs[level] == 1) {
bd681513 9116 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9117 path->locks[level] = 0;
2c47e605
YZ
9118 return 1;
9119 }
f82d02d9 9120 }
2c47e605 9121 }
f82d02d9 9122
2c47e605
YZ
9123 /* wc->stage == DROP_REFERENCE */
9124 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 9125
2c47e605
YZ
9126 if (wc->refs[level] == 1) {
9127 if (level == 0) {
9128 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 9129 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 9130 else
e339a6b0 9131 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 9132 BUG_ON(ret); /* -ENOMEM */
8d38d7eb 9133 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
1152651a 9134 if (ret) {
0b246afa 9135 btrfs_err_rl(fs_info,
5d163e0e
JM
9136 "error %d accounting leaf items. Quota is out of sync, rescan required.",
9137 ret);
1152651a 9138 }
2c47e605
YZ
9139 }
9140 /* make block locked assertion in clean_tree_block happy */
9141 if (!path->locks[level] &&
9142 btrfs_header_generation(eb) == trans->transid) {
9143 btrfs_tree_lock(eb);
9144 btrfs_set_lock_blocking(eb);
bd681513 9145 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9146 }
7c302b49 9147 clean_tree_block(fs_info, eb);
2c47e605
YZ
9148 }
9149
9150 if (eb == root->node) {
9151 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9152 parent = eb->start;
65c6e82b
QW
9153 else if (root->root_key.objectid != btrfs_header_owner(eb))
9154 goto owner_mismatch;
2c47e605
YZ
9155 } else {
9156 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9157 parent = path->nodes[level + 1]->start;
65c6e82b
QW
9158 else if (root->root_key.objectid !=
9159 btrfs_header_owner(path->nodes[level + 1]))
9160 goto owner_mismatch;
f82d02d9 9161 }
f82d02d9 9162
5581a51a 9163 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
9164out:
9165 wc->refs[level] = 0;
9166 wc->flags[level] = 0;
f0486c68 9167 return 0;
65c6e82b
QW
9168
9169owner_mismatch:
9170 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
9171 btrfs_header_owner(eb), root->root_key.objectid);
9172 return -EUCLEAN;
2c47e605
YZ
9173}
9174
9175static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9176 struct btrfs_root *root,
9177 struct btrfs_path *path,
9178 struct walk_control *wc)
9179{
2c47e605 9180 int level = wc->level;
94fcca9f 9181 int lookup_info = 1;
2c47e605
YZ
9182 int ret;
9183
9184 while (level >= 0) {
94fcca9f 9185 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
9186 if (ret > 0)
9187 break;
9188
9189 if (level == 0)
9190 break;
9191
7a7965f8
YZ
9192 if (path->slots[level] >=
9193 btrfs_header_nritems(path->nodes[level]))
9194 break;
9195
94fcca9f 9196 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9197 if (ret > 0) {
9198 path->slots[level]++;
9199 continue;
90d2c51d
MX
9200 } else if (ret < 0)
9201 return ret;
1c4850e2 9202 level = wc->level;
f82d02d9 9203 }
f82d02d9
YZ
9204 return 0;
9205}
9206
d397712b 9207static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9208 struct btrfs_root *root,
f82d02d9 9209 struct btrfs_path *path,
2c47e605 9210 struct walk_control *wc, int max_level)
20524f02 9211{
2c47e605 9212 int level = wc->level;
20524f02 9213 int ret;
9f3a7427 9214
2c47e605
YZ
9215 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9216 while (level < max_level && path->nodes[level]) {
9217 wc->level = level;
9218 if (path->slots[level] + 1 <
9219 btrfs_header_nritems(path->nodes[level])) {
9220 path->slots[level]++;
20524f02
CM
9221 return 0;
9222 } else {
2c47e605
YZ
9223 ret = walk_up_proc(trans, root, path, wc);
9224 if (ret > 0)
9225 return 0;
65c6e82b
QW
9226 if (ret < 0)
9227 return ret;
bd56b302 9228
2c47e605 9229 if (path->locks[level]) {
bd681513
CM
9230 btrfs_tree_unlock_rw(path->nodes[level],
9231 path->locks[level]);
2c47e605 9232 path->locks[level] = 0;
f82d02d9 9233 }
2c47e605
YZ
9234 free_extent_buffer(path->nodes[level]);
9235 path->nodes[level] = NULL;
9236 level++;
20524f02
CM
9237 }
9238 }
9239 return 1;
9240}
9241
9aca1d51 9242/*
2c47e605
YZ
9243 * drop a subvolume tree.
9244 *
9245 * this function traverses the tree freeing any blocks that only
9246 * referenced by the tree.
9247 *
9248 * when a shared tree block is found. this function decreases its
9249 * reference count by one. if update_ref is true, this function
9250 * also make sure backrefs for the shared block and all lower level
9251 * blocks are properly updated.
9d1a2a3a
DS
9252 *
9253 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9254 */
2c536799 9255int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9256 struct btrfs_block_rsv *block_rsv, int update_ref,
9257 int for_reloc)
20524f02 9258{
ab8d0fc4 9259 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9260 struct btrfs_path *path;
2c47e605 9261 struct btrfs_trans_handle *trans;
ab8d0fc4 9262 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9263 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9264 struct walk_control *wc;
9265 struct btrfs_key key;
9266 int err = 0;
9267 int ret;
9268 int level;
d29a9f62 9269 bool root_dropped = false;
20524f02 9270
4fd786e6 9271 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
1152651a 9272
5caf2a00 9273 path = btrfs_alloc_path();
cb1b69f4
TI
9274 if (!path) {
9275 err = -ENOMEM;
9276 goto out;
9277 }
20524f02 9278
2c47e605 9279 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9280 if (!wc) {
9281 btrfs_free_path(path);
cb1b69f4
TI
9282 err = -ENOMEM;
9283 goto out;
38a1a919 9284 }
2c47e605 9285
a22285a6 9286 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9287 if (IS_ERR(trans)) {
9288 err = PTR_ERR(trans);
9289 goto out_free;
9290 }
98d5dc13 9291
0568e82d
JB
9292 err = btrfs_run_delayed_items(trans);
9293 if (err)
9294 goto out_end_trans;
9295
3fd0a558
YZ
9296 if (block_rsv)
9297 trans->block_rsv = block_rsv;
2c47e605 9298
83354f07
JB
9299 /*
9300 * This will help us catch people modifying the fs tree while we're
9301 * dropping it. It is unsafe to mess with the fs tree while it's being
9302 * dropped as we unlock the root node and parent nodes as we walk down
9303 * the tree, assuming nothing will change. If something does change
9304 * then we'll have stale information and drop references to blocks we've
9305 * already dropped.
9306 */
9307 set_bit(BTRFS_ROOT_DELETING, &root->state);
9f3a7427 9308 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9309 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9310 path->nodes[level] = btrfs_lock_root_node(root);
9311 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9312 path->slots[level] = 0;
bd681513 9313 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9314 memset(&wc->update_progress, 0,
9315 sizeof(wc->update_progress));
9f3a7427 9316 } else {
9f3a7427 9317 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9318 memcpy(&wc->update_progress, &key,
9319 sizeof(wc->update_progress));
9320
6702ed49 9321 level = root_item->drop_level;
2c47e605 9322 BUG_ON(level == 0);
6702ed49 9323 path->lowest_level = level;
2c47e605
YZ
9324 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9325 path->lowest_level = 0;
9326 if (ret < 0) {
9327 err = ret;
79787eaa 9328 goto out_end_trans;
9f3a7427 9329 }
1c4850e2 9330 WARN_ON(ret > 0);
2c47e605 9331
7d9eb12c
CM
9332 /*
9333 * unlock our path, this is safe because only this
9334 * function is allowed to delete this snapshot
9335 */
5d4f98a2 9336 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9337
9338 level = btrfs_header_level(root->node);
9339 while (1) {
9340 btrfs_tree_lock(path->nodes[level]);
9341 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9342 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9343
2ff7e61e 9344 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9345 path->nodes[level]->start,
3173a18f 9346 level, 1, &wc->refs[level],
2c47e605 9347 &wc->flags[level]);
79787eaa
JM
9348 if (ret < 0) {
9349 err = ret;
9350 goto out_end_trans;
9351 }
2c47e605
YZ
9352 BUG_ON(wc->refs[level] == 0);
9353
9354 if (level == root_item->drop_level)
9355 break;
9356
9357 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9358 path->locks[level] = 0;
2c47e605
YZ
9359 WARN_ON(wc->refs[level] != 1);
9360 level--;
9361 }
9f3a7427 9362 }
2c47e605
YZ
9363
9364 wc->level = level;
9365 wc->shared_level = -1;
9366 wc->stage = DROP_REFERENCE;
9367 wc->update_ref = update_ref;
9368 wc->keep_locks = 0;
0b246afa 9369 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9370
d397712b 9371 while (1) {
9d1a2a3a 9372
2c47e605
YZ
9373 ret = walk_down_tree(trans, root, path, wc);
9374 if (ret < 0) {
9375 err = ret;
20524f02 9376 break;
2c47e605 9377 }
9aca1d51 9378
2c47e605
YZ
9379 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9380 if (ret < 0) {
9381 err = ret;
20524f02 9382 break;
2c47e605
YZ
9383 }
9384
9385 if (ret > 0) {
9386 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9387 break;
9388 }
2c47e605
YZ
9389
9390 if (wc->stage == DROP_REFERENCE) {
9391 level = wc->level;
9392 btrfs_node_key(path->nodes[level],
9393 &root_item->drop_progress,
9394 path->slots[level]);
9395 root_item->drop_level = level;
9396 }
9397
9398 BUG_ON(wc->level == 0);
3a45bb20 9399 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9400 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9401 ret = btrfs_update_root(trans, tree_root,
9402 &root->root_key,
9403 root_item);
79787eaa 9404 if (ret) {
66642832 9405 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9406 err = ret;
9407 goto out_end_trans;
9408 }
2c47e605 9409
3a45bb20 9410 btrfs_end_transaction_throttle(trans);
2ff7e61e 9411 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9412 btrfs_debug(fs_info,
9413 "drop snapshot early exit");
3c8f2422
JB
9414 err = -EAGAIN;
9415 goto out_free;
9416 }
9417
a22285a6 9418 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9419 if (IS_ERR(trans)) {
9420 err = PTR_ERR(trans);
9421 goto out_free;
9422 }
3fd0a558
YZ
9423 if (block_rsv)
9424 trans->block_rsv = block_rsv;
c3e69d58 9425 }
20524f02 9426 }
b3b4aa74 9427 btrfs_release_path(path);
79787eaa
JM
9428 if (err)
9429 goto out_end_trans;
2c47e605 9430
ab9ce7d4 9431 ret = btrfs_del_root(trans, &root->root_key);
79787eaa 9432 if (ret) {
66642832 9433 btrfs_abort_transaction(trans, ret);
e19182c0 9434 err = ret;
79787eaa
JM
9435 goto out_end_trans;
9436 }
2c47e605 9437
76dda93c 9438 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9439 ret = btrfs_find_root(tree_root, &root->root_key, path,
9440 NULL, NULL);
79787eaa 9441 if (ret < 0) {
66642832 9442 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9443 err = ret;
9444 goto out_end_trans;
9445 } else if (ret > 0) {
84cd948c
JB
9446 /* if we fail to delete the orphan item this time
9447 * around, it'll get picked up the next time.
9448 *
9449 * The most common failure here is just -ENOENT.
9450 */
9451 btrfs_del_orphan_item(trans, tree_root,
9452 root->root_key.objectid);
76dda93c
YZ
9453 }
9454 }
9455
27cdeb70 9456 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9457 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9458 } else {
9459 free_extent_buffer(root->node);
9460 free_extent_buffer(root->commit_root);
b0feb9d9 9461 btrfs_put_fs_root(root);
76dda93c 9462 }
d29a9f62 9463 root_dropped = true;
79787eaa 9464out_end_trans:
3a45bb20 9465 btrfs_end_transaction_throttle(trans);
79787eaa 9466out_free:
2c47e605 9467 kfree(wc);
5caf2a00 9468 btrfs_free_path(path);
cb1b69f4 9469out:
d29a9f62
JB
9470 /*
9471 * So if we need to stop dropping the snapshot for whatever reason we
9472 * need to make sure to add it back to the dead root list so that we
9473 * keep trying to do the work later. This also cleans up roots if we
9474 * don't have it in the radix (like when we recover after a power fail
9475 * or unmount) so we don't leak memory.
9476 */
897ca819 9477 if (!for_reloc && !root_dropped)
d29a9f62 9478 btrfs_add_dead_root(root);
90515e7f 9479 if (err && err != -EAGAIN)
ab8d0fc4 9480 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9481 return err;
20524f02 9482}
9078a3e1 9483
2c47e605
YZ
9484/*
9485 * drop subtree rooted at tree block 'node'.
9486 *
9487 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9488 * only used by relocation code
2c47e605 9489 */
f82d02d9
YZ
9490int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9491 struct btrfs_root *root,
9492 struct extent_buffer *node,
9493 struct extent_buffer *parent)
9494{
0b246afa 9495 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9496 struct btrfs_path *path;
2c47e605 9497 struct walk_control *wc;
f82d02d9
YZ
9498 int level;
9499 int parent_level;
9500 int ret = 0;
9501 int wret;
9502
2c47e605
YZ
9503 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9504
f82d02d9 9505 path = btrfs_alloc_path();
db5b493a
TI
9506 if (!path)
9507 return -ENOMEM;
f82d02d9 9508
2c47e605 9509 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9510 if (!wc) {
9511 btrfs_free_path(path);
9512 return -ENOMEM;
9513 }
2c47e605 9514
b9447ef8 9515 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9516 parent_level = btrfs_header_level(parent);
9517 extent_buffer_get(parent);
9518 path->nodes[parent_level] = parent;
9519 path->slots[parent_level] = btrfs_header_nritems(parent);
9520
b9447ef8 9521 btrfs_assert_tree_locked(node);
f82d02d9 9522 level = btrfs_header_level(node);
f82d02d9
YZ
9523 path->nodes[level] = node;
9524 path->slots[level] = 0;
bd681513 9525 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9526
9527 wc->refs[parent_level] = 1;
9528 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9529 wc->level = level;
9530 wc->shared_level = -1;
9531 wc->stage = DROP_REFERENCE;
9532 wc->update_ref = 0;
9533 wc->keep_locks = 1;
0b246afa 9534 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9535
9536 while (1) {
2c47e605
YZ
9537 wret = walk_down_tree(trans, root, path, wc);
9538 if (wret < 0) {
f82d02d9 9539 ret = wret;
f82d02d9 9540 break;
2c47e605 9541 }
f82d02d9 9542
2c47e605 9543 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9544 if (wret < 0)
9545 ret = wret;
9546 if (wret != 0)
9547 break;
9548 }
9549
2c47e605 9550 kfree(wc);
f82d02d9
YZ
9551 btrfs_free_path(path);
9552 return ret;
9553}
9554
6202df69 9555static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9556{
9557 u64 num_devices;
fc67c450 9558 u64 stripped;
e4d8ec0f 9559
fc67c450
ID
9560 /*
9561 * if restripe for this chunk_type is on pick target profile and
9562 * return, otherwise do the usual balance
9563 */
6202df69 9564 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9565 if (stripped)
9566 return extended_to_chunk(stripped);
e4d8ec0f 9567
6202df69 9568 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9569
fc67c450 9570 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9571 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9572 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9573
ec44a35c
CM
9574 if (num_devices == 1) {
9575 stripped |= BTRFS_BLOCK_GROUP_DUP;
9576 stripped = flags & ~stripped;
9577
9578 /* turn raid0 into single device chunks */
9579 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9580 return stripped;
9581
9582 /* turn mirroring into duplication */
9583 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9584 BTRFS_BLOCK_GROUP_RAID10))
9585 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9586 } else {
9587 /* they already had raid on here, just return */
ec44a35c
CM
9588 if (flags & stripped)
9589 return flags;
9590
9591 stripped |= BTRFS_BLOCK_GROUP_DUP;
9592 stripped = flags & ~stripped;
9593
9594 /* switch duplicated blocks with raid1 */
9595 if (flags & BTRFS_BLOCK_GROUP_DUP)
9596 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9597
e3176ca2 9598 /* this is drive concat, leave it alone */
ec44a35c 9599 }
e3176ca2 9600
ec44a35c
CM
9601 return flags;
9602}
9603
868f401a 9604static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9605{
f0486c68
YZ
9606 struct btrfs_space_info *sinfo = cache->space_info;
9607 u64 num_bytes;
199c36ea 9608 u64 min_allocable_bytes;
f0486c68 9609 int ret = -ENOSPC;
0ef3e66b 9610
199c36ea
MX
9611 /*
9612 * We need some metadata space and system metadata space for
9613 * allocating chunks in some corner cases until we force to set
9614 * it to be readonly.
9615 */
9616 if ((sinfo->flags &
9617 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9618 !force)
ee22184b 9619 min_allocable_bytes = SZ_1M;
199c36ea
MX
9620 else
9621 min_allocable_bytes = 0;
9622
f0486c68
YZ
9623 spin_lock(&sinfo->lock);
9624 spin_lock(&cache->lock);
61cfea9b
W
9625
9626 if (cache->ro) {
868f401a 9627 cache->ro++;
61cfea9b
W
9628 ret = 0;
9629 goto out;
9630 }
9631
f0486c68
YZ
9632 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9633 cache->bytes_super - btrfs_block_group_used(&cache->item);
9634
4136135b 9635 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9636 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9637 sinfo->bytes_readonly += num_bytes;
868f401a 9638 cache->ro++;
633c0aad 9639 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9640 ret = 0;
9641 }
61cfea9b 9642out:
f0486c68
YZ
9643 spin_unlock(&cache->lock);
9644 spin_unlock(&sinfo->lock);
9645 return ret;
9646}
7d9eb12c 9647
c83488af 9648int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
c286ac48 9649
f0486c68 9650{
c83488af 9651 struct btrfs_fs_info *fs_info = cache->fs_info;
f0486c68
YZ
9652 struct btrfs_trans_handle *trans;
9653 u64 alloc_flags;
9654 int ret;
7d9eb12c 9655
1bbc621e 9656again:
5e00f193 9657 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9658 if (IS_ERR(trans))
9659 return PTR_ERR(trans);
5d4f98a2 9660
1bbc621e
CM
9661 /*
9662 * we're not allowed to set block groups readonly after the dirty
9663 * block groups cache has started writing. If it already started,
9664 * back off and let this transaction commit
9665 */
0b246afa 9666 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9667 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9668 u64 transid = trans->transid;
9669
0b246afa 9670 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9671 btrfs_end_transaction(trans);
1bbc621e 9672
2ff7e61e 9673 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9674 if (ret)
9675 return ret;
9676 goto again;
9677 }
9678
153c35b6
CM
9679 /*
9680 * if we are changing raid levels, try to allocate a corresponding
9681 * block group with the new raid level.
9682 */
0b246afa 9683 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9684 if (alloc_flags != cache->flags) {
01458828 9685 ret = do_chunk_alloc(trans, alloc_flags,
153c35b6
CM
9686 CHUNK_ALLOC_FORCE);
9687 /*
9688 * ENOSPC is allowed here, we may have enough space
9689 * already allocated at the new raid level to
9690 * carry on
9691 */
9692 if (ret == -ENOSPC)
9693 ret = 0;
9694 if (ret < 0)
9695 goto out;
9696 }
1bbc621e 9697
868f401a 9698 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9699 if (!ret)
9700 goto out;
2ff7e61e 9701 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
01458828 9702 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
f0486c68
YZ
9703 if (ret < 0)
9704 goto out;
868f401a 9705 ret = inc_block_group_ro(cache, 0);
f0486c68 9706out:
2f081088 9707 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9708 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9709 mutex_lock(&fs_info->chunk_mutex);
451a2c13 9710 check_system_chunk(trans, alloc_flags);
34441361 9711 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9712 }
0b246afa 9713 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9714
3a45bb20 9715 btrfs_end_transaction(trans);
f0486c68
YZ
9716 return ret;
9717}
5d4f98a2 9718
43a7e99d 9719int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
c87f08ca 9720{
43a7e99d 9721 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
2ff7e61e 9722
01458828 9723 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9724}
9725
6d07bcec
MX
9726/*
9727 * helper to account the unused space of all the readonly block group in the
633c0aad 9728 * space_info. takes mirrors into account.
6d07bcec 9729 */
633c0aad 9730u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9731{
9732 struct btrfs_block_group_cache *block_group;
9733 u64 free_bytes = 0;
9734 int factor;
9735
01327610 9736 /* It's df, we don't care if it's racy */
633c0aad
JB
9737 if (list_empty(&sinfo->ro_bgs))
9738 return 0;
9739
9740 spin_lock(&sinfo->lock);
9741 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9742 spin_lock(&block_group->lock);
9743
9744 if (!block_group->ro) {
9745 spin_unlock(&block_group->lock);
9746 continue;
9747 }
9748
46df06b8 9749 factor = btrfs_bg_type_to_factor(block_group->flags);
6d07bcec
MX
9750 free_bytes += (block_group->key.offset -
9751 btrfs_block_group_used(&block_group->item)) *
9752 factor;
9753
9754 spin_unlock(&block_group->lock);
9755 }
6d07bcec
MX
9756 spin_unlock(&sinfo->lock);
9757
9758 return free_bytes;
9759}
9760
2ff7e61e 9761void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9762{
f0486c68
YZ
9763 struct btrfs_space_info *sinfo = cache->space_info;
9764 u64 num_bytes;
9765
9766 BUG_ON(!cache->ro);
9767
9768 spin_lock(&sinfo->lock);
9769 spin_lock(&cache->lock);
868f401a
Z
9770 if (!--cache->ro) {
9771 num_bytes = cache->key.offset - cache->reserved -
9772 cache->pinned - cache->bytes_super -
9773 btrfs_block_group_used(&cache->item);
9774 sinfo->bytes_readonly -= num_bytes;
9775 list_del_init(&cache->ro_list);
9776 }
f0486c68
YZ
9777 spin_unlock(&cache->lock);
9778 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9779}
9780
ba1bf481 9781/*
52042d8e 9782 * Checks to see if it's even possible to relocate this block group.
ba1bf481
JB
9783 *
9784 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9785 * ok to go ahead and try.
9786 */
6bccf3ab 9787int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9788{
6bccf3ab 9789 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9790 struct btrfs_block_group_cache *block_group;
9791 struct btrfs_space_info *space_info;
0b246afa 9792 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9793 struct btrfs_device *device;
6df9a95e 9794 struct btrfs_trans_handle *trans;
cdcb725c 9795 u64 min_free;
6719db6a
JB
9796 u64 dev_min = 1;
9797 u64 dev_nr = 0;
4a5e98f5 9798 u64 target;
0305bc27 9799 int debug;
cdcb725c 9800 int index;
ba1bf481
JB
9801 int full = 0;
9802 int ret = 0;
1a40e23b 9803
0b246afa 9804 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9805
0b246afa 9806 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9807
ba1bf481 9808 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9809 if (!block_group) {
9810 if (debug)
0b246afa 9811 btrfs_warn(fs_info,
0305bc27
QW
9812 "can't find block group for bytenr %llu",
9813 bytenr);
ba1bf481 9814 return -1;
0305bc27 9815 }
1a40e23b 9816
cdcb725c 9817 min_free = btrfs_block_group_used(&block_group->item);
9818
ba1bf481 9819 /* no bytes used, we're good */
cdcb725c 9820 if (!min_free)
1a40e23b
ZY
9821 goto out;
9822
ba1bf481
JB
9823 space_info = block_group->space_info;
9824 spin_lock(&space_info->lock);
17d217fe 9825
ba1bf481 9826 full = space_info->full;
17d217fe 9827
ba1bf481
JB
9828 /*
9829 * if this is the last block group we have in this space, we can't
7ce618db
CM
9830 * relocate it unless we're able to allocate a new chunk below.
9831 *
9832 * Otherwise, we need to make sure we have room in the space to handle
9833 * all of the extents from this block group. If we can, we're good
ba1bf481 9834 */
7ce618db 9835 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9836 (btrfs_space_info_used(space_info, false) + min_free <
9837 space_info->total_bytes)) {
ba1bf481
JB
9838 spin_unlock(&space_info->lock);
9839 goto out;
17d217fe 9840 }
ba1bf481 9841 spin_unlock(&space_info->lock);
ea8c2819 9842
ba1bf481
JB
9843 /*
9844 * ok we don't have enough space, but maybe we have free space on our
9845 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9846 * alloc devices and guess if we have enough space. if this block
9847 * group is going to be restriped, run checks against the target
9848 * profile instead of the current one.
ba1bf481
JB
9849 */
9850 ret = -1;
ea8c2819 9851
cdcb725c 9852 /*
9853 * index:
9854 * 0: raid10
9855 * 1: raid1
9856 * 2: dup
9857 * 3: raid0
9858 * 4: single
9859 */
0b246afa 9860 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9861 if (target) {
3e72ee88 9862 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9863 } else {
9864 /*
9865 * this is just a balance, so if we were marked as full
9866 * we know there is no space for a new chunk
9867 */
0305bc27
QW
9868 if (full) {
9869 if (debug)
0b246afa
JM
9870 btrfs_warn(fs_info,
9871 "no space to alloc new chunk for block group %llu",
9872 block_group->key.objectid);
4a5e98f5 9873 goto out;
0305bc27 9874 }
4a5e98f5 9875
3e72ee88 9876 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9877 }
9878
e6ec716f 9879 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9880 dev_min = 4;
6719db6a
JB
9881 /* Divide by 2 */
9882 min_free >>= 1;
e6ec716f 9883 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9884 dev_min = 2;
e6ec716f 9885 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9886 /* Multiply by 2 */
9887 min_free <<= 1;
e6ec716f 9888 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9889 dev_min = fs_devices->rw_devices;
47c5713f 9890 min_free = div64_u64(min_free, dev_min);
cdcb725c 9891 }
9892
6df9a95e
JB
9893 /* We need to do this so that we can look at pending chunks */
9894 trans = btrfs_join_transaction(root);
9895 if (IS_ERR(trans)) {
9896 ret = PTR_ERR(trans);
9897 goto out;
9898 }
9899
0b246afa 9900 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9901 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9902 u64 dev_offset;
56bec294 9903
ba1bf481
JB
9904 /*
9905 * check to make sure we can actually find a chunk with enough
9906 * space to fit our block group in.
9907 */
63a212ab 9908 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9909 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9910 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9911 &dev_offset, NULL);
ba1bf481 9912 if (!ret)
cdcb725c 9913 dev_nr++;
9914
9915 if (dev_nr >= dev_min)
73e48b27 9916 break;
cdcb725c 9917
ba1bf481 9918 ret = -1;
725c8463 9919 }
edbd8d4e 9920 }
0305bc27 9921 if (debug && ret == -1)
0b246afa
JM
9922 btrfs_warn(fs_info,
9923 "no space to allocate a new chunk for block group %llu",
9924 block_group->key.objectid);
9925 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9926 btrfs_end_transaction(trans);
edbd8d4e 9927out:
ba1bf481 9928 btrfs_put_block_group(block_group);
edbd8d4e
CM
9929 return ret;
9930}
9931
6bccf3ab
JM
9932static int find_first_block_group(struct btrfs_fs_info *fs_info,
9933 struct btrfs_path *path,
9934 struct btrfs_key *key)
0b86a832 9935{
6bccf3ab 9936 struct btrfs_root *root = fs_info->extent_root;
925baedd 9937 int ret = 0;
0b86a832
CM
9938 struct btrfs_key found_key;
9939 struct extent_buffer *leaf;
514c7dca
QW
9940 struct btrfs_block_group_item bg;
9941 u64 flags;
0b86a832 9942 int slot;
edbd8d4e 9943
0b86a832
CM
9944 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9945 if (ret < 0)
925baedd
CM
9946 goto out;
9947
d397712b 9948 while (1) {
0b86a832 9949 slot = path->slots[0];
edbd8d4e 9950 leaf = path->nodes[0];
0b86a832
CM
9951 if (slot >= btrfs_header_nritems(leaf)) {
9952 ret = btrfs_next_leaf(root, path);
9953 if (ret == 0)
9954 continue;
9955 if (ret < 0)
925baedd 9956 goto out;
0b86a832 9957 break;
edbd8d4e 9958 }
0b86a832 9959 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9960
0b86a832 9961 if (found_key.objectid >= key->objectid &&
925baedd 9962 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9963 struct extent_map_tree *em_tree;
9964 struct extent_map *em;
9965
9966 em_tree = &root->fs_info->mapping_tree.map_tree;
9967 read_lock(&em_tree->lock);
9968 em = lookup_extent_mapping(em_tree, found_key.objectid,
9969 found_key.offset);
9970 read_unlock(&em_tree->lock);
9971 if (!em) {
0b246afa 9972 btrfs_err(fs_info,
6fb37b75
LB
9973 "logical %llu len %llu found bg but no related chunk",
9974 found_key.objectid, found_key.offset);
9975 ret = -ENOENT;
514c7dca
QW
9976 } else if (em->start != found_key.objectid ||
9977 em->len != found_key.offset) {
9978 btrfs_err(fs_info,
9979 "block group %llu len %llu mismatch with chunk %llu len %llu",
9980 found_key.objectid, found_key.offset,
9981 em->start, em->len);
9982 ret = -EUCLEAN;
6fb37b75 9983 } else {
514c7dca
QW
9984 read_extent_buffer(leaf, &bg,
9985 btrfs_item_ptr_offset(leaf, slot),
9986 sizeof(bg));
9987 flags = btrfs_block_group_flags(&bg) &
9988 BTRFS_BLOCK_GROUP_TYPE_MASK;
9989
9990 if (flags != (em->map_lookup->type &
9991 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9992 btrfs_err(fs_info,
9993"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9994 found_key.objectid,
9995 found_key.offset, flags,
9996 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9997 em->map_lookup->type));
9998 ret = -EUCLEAN;
9999 } else {
10000 ret = 0;
10001 }
6fb37b75 10002 }
187ee58c 10003 free_extent_map(em);
925baedd
CM
10004 goto out;
10005 }
0b86a832 10006 path->slots[0]++;
edbd8d4e 10007 }
925baedd 10008out:
0b86a832 10009 return ret;
edbd8d4e
CM
10010}
10011
0af3d00b
JB
10012void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
10013{
10014 struct btrfs_block_group_cache *block_group;
10015 u64 last = 0;
10016
10017 while (1) {
10018 struct inode *inode;
10019
10020 block_group = btrfs_lookup_first_block_group(info, last);
10021 while (block_group) {
3aa7c7a3 10022 wait_block_group_cache_done(block_group);
0af3d00b
JB
10023 spin_lock(&block_group->lock);
10024 if (block_group->iref)
10025 break;
10026 spin_unlock(&block_group->lock);
2ff7e61e 10027 block_group = next_block_group(info, block_group);
0af3d00b
JB
10028 }
10029 if (!block_group) {
10030 if (last == 0)
10031 break;
10032 last = 0;
10033 continue;
10034 }
10035
10036 inode = block_group->inode;
10037 block_group->iref = 0;
10038 block_group->inode = NULL;
10039 spin_unlock(&block_group->lock);
f3bca802 10040 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
10041 iput(inode);
10042 last = block_group->key.objectid + block_group->key.offset;
10043 btrfs_put_block_group(block_group);
10044 }
10045}
10046
5cdd7db6
FM
10047/*
10048 * Must be called only after stopping all workers, since we could have block
10049 * group caching kthreads running, and therefore they could race with us if we
10050 * freed the block groups before stopping them.
10051 */
1a40e23b
ZY
10052int btrfs_free_block_groups(struct btrfs_fs_info *info)
10053{
10054 struct btrfs_block_group_cache *block_group;
4184ea7f 10055 struct btrfs_space_info *space_info;
11833d66 10056 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
10057 struct rb_node *n;
10058
9e351cc8 10059 down_write(&info->commit_root_sem);
11833d66
YZ
10060 while (!list_empty(&info->caching_block_groups)) {
10061 caching_ctl = list_entry(info->caching_block_groups.next,
10062 struct btrfs_caching_control, list);
10063 list_del(&caching_ctl->list);
10064 put_caching_control(caching_ctl);
10065 }
9e351cc8 10066 up_write(&info->commit_root_sem);
11833d66 10067
47ab2a6c
JB
10068 spin_lock(&info->unused_bgs_lock);
10069 while (!list_empty(&info->unused_bgs)) {
10070 block_group = list_first_entry(&info->unused_bgs,
10071 struct btrfs_block_group_cache,
10072 bg_list);
10073 list_del_init(&block_group->bg_list);
10074 btrfs_put_block_group(block_group);
10075 }
10076 spin_unlock(&info->unused_bgs_lock);
10077
1a40e23b
ZY
10078 spin_lock(&info->block_group_cache_lock);
10079 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
10080 block_group = rb_entry(n, struct btrfs_block_group_cache,
10081 cache_node);
1a40e23b
ZY
10082 rb_erase(&block_group->cache_node,
10083 &info->block_group_cache_tree);
01eacb27 10084 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
10085 spin_unlock(&info->block_group_cache_lock);
10086
80eb234a 10087 down_write(&block_group->space_info->groups_sem);
1a40e23b 10088 list_del(&block_group->list);
80eb234a 10089 up_write(&block_group->space_info->groups_sem);
d2fb3437 10090
3c14874a
JB
10091 /*
10092 * We haven't cached this block group, which means we could
10093 * possibly have excluded extents on this block group.
10094 */
36cce922
JB
10095 if (block_group->cached == BTRFS_CACHE_NO ||
10096 block_group->cached == BTRFS_CACHE_ERROR)
9e715da8 10097 free_excluded_extents(block_group);
3c14874a 10098
817d52f8 10099 btrfs_remove_free_space_cache(block_group);
5cdd7db6 10100 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
10101 ASSERT(list_empty(&block_group->dirty_list));
10102 ASSERT(list_empty(&block_group->io_list));
10103 ASSERT(list_empty(&block_group->bg_list));
10104 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 10105 btrfs_put_block_group(block_group);
d899e052
YZ
10106
10107 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
10108 }
10109 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
10110
10111 /* now that all the block groups are freed, go through and
10112 * free all the space_info structs. This is only called during
10113 * the final stages of unmount, and so we know nobody is
10114 * using them. We call synchronize_rcu() once before we start,
10115 * just to be on the safe side.
10116 */
10117 synchronize_rcu();
10118
8929ecfa
YZ
10119 release_global_block_rsv(info);
10120
67871254 10121 while (!list_empty(&info->space_info)) {
6ab0a202
JM
10122 int i;
10123
4184ea7f
CM
10124 space_info = list_entry(info->space_info.next,
10125 struct btrfs_space_info,
10126 list);
d555b6c3
JB
10127
10128 /*
10129 * Do not hide this behind enospc_debug, this is actually
10130 * important and indicates a real bug if this happens.
10131 */
10132 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 10133 space_info->bytes_reserved > 0 ||
d555b6c3 10134 space_info->bytes_may_use > 0))
ab8d0fc4 10135 dump_space_info(info, space_info, 0, 0);
4184ea7f 10136 list_del(&space_info->list);
6ab0a202
JM
10137 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10138 struct kobject *kobj;
c1895442
JM
10139 kobj = space_info->block_group_kobjs[i];
10140 space_info->block_group_kobjs[i] = NULL;
10141 if (kobj) {
6ab0a202
JM
10142 kobject_del(kobj);
10143 kobject_put(kobj);
10144 }
10145 }
10146 kobject_del(&space_info->kobj);
10147 kobject_put(&space_info->kobj);
4184ea7f 10148 }
1a40e23b
ZY
10149 return 0;
10150}
10151
75cb379d
JM
10152/* link_block_group will queue up kobjects to add when we're reclaim-safe */
10153void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
10154{
10155 struct btrfs_space_info *space_info;
10156 struct raid_kobject *rkobj;
10157 LIST_HEAD(list);
10158 int index;
10159 int ret = 0;
10160
10161 spin_lock(&fs_info->pending_raid_kobjs_lock);
10162 list_splice_init(&fs_info->pending_raid_kobjs, &list);
10163 spin_unlock(&fs_info->pending_raid_kobjs_lock);
10164
10165 list_for_each_entry(rkobj, &list, list) {
10166 space_info = __find_space_info(fs_info, rkobj->flags);
10167 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
10168
10169 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10170 "%s", get_raid_name(index));
10171 if (ret) {
10172 kobject_put(&rkobj->kobj);
10173 break;
10174 }
10175 }
10176 if (ret)
10177 btrfs_warn(fs_info,
10178 "failed to add kobject for block cache, ignoring");
10179}
10180
c434d21c 10181static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 10182{
c434d21c 10183 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 10184 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 10185 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 10186 bool first = false;
b742bb82
YZ
10187
10188 down_write(&space_info->groups_sem);
ed55b6ac
JM
10189 if (list_empty(&space_info->block_groups[index]))
10190 first = true;
10191 list_add_tail(&cache->list, &space_info->block_groups[index]);
10192 up_write(&space_info->groups_sem);
10193
10194 if (first) {
75cb379d
JM
10195 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10196 if (!rkobj) {
10197 btrfs_warn(cache->fs_info,
10198 "couldn't alloc memory for raid level kobject");
10199 return;
6ab0a202 10200 }
75cb379d
JM
10201 rkobj->flags = cache->flags;
10202 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10203
10204 spin_lock(&fs_info->pending_raid_kobjs_lock);
10205 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10206 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 10207 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 10208 }
b742bb82
YZ
10209}
10210
920e4a58 10211static struct btrfs_block_group_cache *
2ff7e61e
JM
10212btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10213 u64 start, u64 size)
920e4a58
MX
10214{
10215 struct btrfs_block_group_cache *cache;
10216
10217 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10218 if (!cache)
10219 return NULL;
10220
10221 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10222 GFP_NOFS);
10223 if (!cache->free_space_ctl) {
10224 kfree(cache);
10225 return NULL;
10226 }
10227
10228 cache->key.objectid = start;
10229 cache->key.offset = size;
10230 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10231
0b246afa 10232 cache->fs_info = fs_info;
e4ff5fb5 10233 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
10234 set_free_space_tree_thresholds(cache);
10235
920e4a58
MX
10236 atomic_set(&cache->count, 1);
10237 spin_lock_init(&cache->lock);
e570fd27 10238 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10239 INIT_LIST_HEAD(&cache->list);
10240 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10241 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10242 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10243 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10244 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10245 btrfs_init_free_space_ctl(cache);
04216820 10246 atomic_set(&cache->trimming, 0);
a5ed9182 10247 mutex_init(&cache->free_space_lock);
0966a7b1 10248 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
10249
10250 return cache;
10251}
10252
7ef49515
QW
10253
10254/*
10255 * Iterate all chunks and verify that each of them has the corresponding block
10256 * group
10257 */
10258static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10259{
10260 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
10261 struct extent_map *em;
10262 struct btrfs_block_group_cache *bg;
10263 u64 start = 0;
10264 int ret = 0;
10265
10266 while (1) {
10267 read_lock(&map_tree->map_tree.lock);
10268 /*
10269 * lookup_extent_mapping will return the first extent map
10270 * intersecting the range, so setting @len to 1 is enough to
10271 * get the first chunk.
10272 */
10273 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10274 read_unlock(&map_tree->map_tree.lock);
10275 if (!em)
10276 break;
10277
10278 bg = btrfs_lookup_block_group(fs_info, em->start);
10279 if (!bg) {
10280 btrfs_err(fs_info,
10281 "chunk start=%llu len=%llu doesn't have corresponding block group",
10282 em->start, em->len);
10283 ret = -EUCLEAN;
10284 free_extent_map(em);
10285 break;
10286 }
10287 if (bg->key.objectid != em->start ||
10288 bg->key.offset != em->len ||
10289 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10290 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10291 btrfs_err(fs_info,
10292"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10293 em->start, em->len,
10294 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10295 bg->key.objectid, bg->key.offset,
10296 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10297 ret = -EUCLEAN;
10298 free_extent_map(em);
10299 btrfs_put_block_group(bg);
10300 break;
10301 }
10302 start = em->start + em->len;
10303 free_extent_map(em);
10304 btrfs_put_block_group(bg);
10305 }
10306 return ret;
10307}
10308
5b4aacef 10309int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10310{
10311 struct btrfs_path *path;
10312 int ret;
9078a3e1 10313 struct btrfs_block_group_cache *cache;
6324fbf3 10314 struct btrfs_space_info *space_info;
9078a3e1
CM
10315 struct btrfs_key key;
10316 struct btrfs_key found_key;
5f39d397 10317 struct extent_buffer *leaf;
0af3d00b
JB
10318 int need_clear = 0;
10319 u64 cache_gen;
49303381
LB
10320 u64 feature;
10321 int mixed;
10322
10323 feature = btrfs_super_incompat_flags(info->super_copy);
10324 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10325
9078a3e1 10326 key.objectid = 0;
0b86a832 10327 key.offset = 0;
962a298f 10328 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10329 path = btrfs_alloc_path();
10330 if (!path)
10331 return -ENOMEM;
e4058b54 10332 path->reada = READA_FORWARD;
9078a3e1 10333
0b246afa
JM
10334 cache_gen = btrfs_super_cache_generation(info->super_copy);
10335 if (btrfs_test_opt(info, SPACE_CACHE) &&
10336 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10337 need_clear = 1;
0b246afa 10338 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10339 need_clear = 1;
0af3d00b 10340
d397712b 10341 while (1) {
6bccf3ab 10342 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10343 if (ret > 0)
10344 break;
0b86a832
CM
10345 if (ret != 0)
10346 goto error;
920e4a58 10347
5f39d397
CM
10348 leaf = path->nodes[0];
10349 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10350
2ff7e61e 10351 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10352 found_key.offset);
9078a3e1 10353 if (!cache) {
0b86a832 10354 ret = -ENOMEM;
f0486c68 10355 goto error;
9078a3e1 10356 }
96303081 10357
cf7c1ef6
LB
10358 if (need_clear) {
10359 /*
10360 * When we mount with old space cache, we need to
10361 * set BTRFS_DC_CLEAR and set dirty flag.
10362 *
10363 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10364 * truncate the old free space cache inode and
10365 * setup a new one.
10366 * b) Setting 'dirty flag' makes sure that we flush
10367 * the new space cache info onto disk.
10368 */
0b246afa 10369 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10370 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10371 }
0af3d00b 10372
5f39d397
CM
10373 read_extent_buffer(leaf, &cache->item,
10374 btrfs_item_ptr_offset(leaf, path->slots[0]),
10375 sizeof(cache->item));
920e4a58 10376 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10377 if (!mixed &&
10378 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10379 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10380 btrfs_err(info,
10381"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10382 cache->key.objectid);
10383 ret = -EINVAL;
10384 goto error;
10385 }
0b86a832 10386
9078a3e1 10387 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10388 btrfs_release_path(path);
34d52cb6 10389
3c14874a
JB
10390 /*
10391 * We need to exclude the super stripes now so that the space
10392 * info has super bytes accounted for, otherwise we'll think
10393 * we have more space than we actually do.
10394 */
3c4da657 10395 ret = exclude_super_stripes(cache);
835d974f
JB
10396 if (ret) {
10397 /*
10398 * We may have excluded something, so call this just in
10399 * case.
10400 */
9e715da8 10401 free_excluded_extents(cache);
920e4a58 10402 btrfs_put_block_group(cache);
835d974f
JB
10403 goto error;
10404 }
3c14874a 10405
817d52f8
JB
10406 /*
10407 * check for two cases, either we are full, and therefore
10408 * don't need to bother with the caching work since we won't
10409 * find any space, or we are empty, and we can just add all
52042d8e 10410 * the space in and be done with it. This saves us _a_lot_ of
817d52f8
JB
10411 * time, particularly in the full case.
10412 */
10413 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10414 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10415 cache->cached = BTRFS_CACHE_FINISHED;
9e715da8 10416 free_excluded_extents(cache);
817d52f8 10417 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10418 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10419 cache->cached = BTRFS_CACHE_FINISHED;
4457c1c7 10420 add_new_free_space(cache, found_key.objectid,
817d52f8
JB
10421 found_key.objectid +
10422 found_key.offset);
9e715da8 10423 free_excluded_extents(cache);
817d52f8 10424 }
96b5179d 10425
0b246afa 10426 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10427 if (ret) {
10428 btrfs_remove_free_space_cache(cache);
10429 btrfs_put_block_group(cache);
10430 goto error;
10431 }
10432
0b246afa 10433 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10434 update_space_info(info, cache->flags, found_key.offset,
10435 btrfs_block_group_used(&cache->item),
10436 cache->bytes_super, &space_info);
8c579fe7 10437
6324fbf3 10438 cache->space_info = space_info;
1b2da372 10439
c434d21c 10440 link_block_group(cache);
0f9dd46c 10441
0b246afa 10442 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10443 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10444 inc_block_group_ro(cache, 1);
47ab2a6c 10445 } else if (btrfs_block_group_used(&cache->item) == 0) {
031f24da
QW
10446 ASSERT(list_empty(&cache->bg_list));
10447 btrfs_mark_bg_unused(cache);
47ab2a6c 10448 }
9078a3e1 10449 }
b742bb82 10450
0b246afa 10451 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10452 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10453 (BTRFS_BLOCK_GROUP_RAID10 |
10454 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10455 BTRFS_BLOCK_GROUP_RAID5 |
10456 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10457 BTRFS_BLOCK_GROUP_DUP)))
10458 continue;
10459 /*
10460 * avoid allocating from un-mirrored block group if there are
10461 * mirrored block groups.
10462 */
1095cc0d 10463 list_for_each_entry(cache,
10464 &space_info->block_groups[BTRFS_RAID_RAID0],
10465 list)
868f401a 10466 inc_block_group_ro(cache, 1);
1095cc0d 10467 list_for_each_entry(cache,
10468 &space_info->block_groups[BTRFS_RAID_SINGLE],
10469 list)
868f401a 10470 inc_block_group_ro(cache, 1);
9078a3e1 10471 }
f0486c68 10472
75cb379d 10473 btrfs_add_raid_kobjects(info);
f0486c68 10474 init_global_block_rsv(info);
7ef49515 10475 ret = check_chunk_block_group_mappings(info);
0b86a832 10476error:
9078a3e1 10477 btrfs_free_path(path);
0b86a832 10478 return ret;
9078a3e1 10479}
6324fbf3 10480
6c686b35 10481void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10482{
6c686b35 10483 struct btrfs_fs_info *fs_info = trans->fs_info;
545e3366 10484 struct btrfs_block_group_cache *block_group;
0b246afa 10485 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10486 struct btrfs_block_group_item item;
10487 struct btrfs_key key;
10488 int ret = 0;
10489
5ce55557
FM
10490 if (!trans->can_flush_pending_bgs)
10491 return;
10492
545e3366
JB
10493 while (!list_empty(&trans->new_bgs)) {
10494 block_group = list_first_entry(&trans->new_bgs,
10495 struct btrfs_block_group_cache,
10496 bg_list);
ea658bad 10497 if (ret)
c92f6be3 10498 goto next;
ea658bad
JB
10499
10500 spin_lock(&block_group->lock);
10501 memcpy(&item, &block_group->item, sizeof(item));
10502 memcpy(&key, &block_group->key, sizeof(key));
10503 spin_unlock(&block_group->lock);
10504
10505 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10506 sizeof(item));
10507 if (ret)
66642832 10508 btrfs_abort_transaction(trans, ret);
97aff912 10509 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
6df9a95e 10510 if (ret)
66642832 10511 btrfs_abort_transaction(trans, ret);
e4e0711c 10512 add_block_group_free_space(trans, block_group);
1e144fb8 10513 /* already aborted the transaction if it failed. */
c92f6be3 10514next:
ba2c4d4e 10515 btrfs_delayed_refs_rsv_release(fs_info, 1);
c92f6be3 10516 list_del_init(&block_group->bg_list);
ea658bad 10517 }
5ce55557 10518 btrfs_trans_release_chunk_metadata(trans);
ea658bad
JB
10519}
10520
e7e02096 10521int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
0174484d 10522 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10523{
e7e02096 10524 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 10525 struct btrfs_block_group_cache *cache;
0b246afa 10526 int ret;
6324fbf3 10527
0b246afa 10528 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10529
2ff7e61e 10530 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10531 if (!cache)
10532 return -ENOMEM;
34d52cb6 10533
6324fbf3 10534 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10535 btrfs_set_block_group_chunk_objectid(&cache->item,
10536 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10537 btrfs_set_block_group_flags(&cache->item, type);
10538
920e4a58 10539 cache->flags = type;
11833d66 10540 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10541 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10542 cache->needs_free_space = 1;
3c4da657 10543 ret = exclude_super_stripes(cache);
835d974f
JB
10544 if (ret) {
10545 /*
10546 * We may have excluded something, so call this just in
10547 * case.
10548 */
9e715da8 10549 free_excluded_extents(cache);
920e4a58 10550 btrfs_put_block_group(cache);
835d974f
JB
10551 return ret;
10552 }
96303081 10553
4457c1c7 10554 add_new_free_space(cache, chunk_offset, chunk_offset + size);
817d52f8 10555
9e715da8 10556 free_excluded_extents(cache);
11833d66 10557
d0bd4560 10558#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10559 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10560 u64 new_bytes_used = size - bytes_used;
10561
10562 bytes_used += new_bytes_used >> 1;
2ff7e61e 10563 fragment_free_space(cache);
d0bd4560
JB
10564 }
10565#endif
2e6e5183 10566 /*
2be12ef7
NB
10567 * Ensure the corresponding space_info object is created and
10568 * assigned to our block group. We want our bg to be added to the rbtree
10569 * with its ->space_info set.
2e6e5183 10570 */
2be12ef7 10571 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10572 ASSERT(cache->space_info);
2e6e5183 10573
0b246afa 10574 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10575 if (ret) {
10576 btrfs_remove_free_space_cache(cache);
10577 btrfs_put_block_group(cache);
10578 return ret;
10579 }
10580
2e6e5183
FM
10581 /*
10582 * Now that our block group has its ->space_info set and is inserted in
10583 * the rbtree, update the space info's counters.
10584 */
0b246afa 10585 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10586 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10587 cache->bytes_super, &cache->space_info);
0b246afa 10588 update_global_block_rsv(fs_info);
1b2da372 10589
c434d21c 10590 link_block_group(cache);
6324fbf3 10591
47ab2a6c 10592 list_add_tail(&cache->bg_list, &trans->new_bgs);
ba2c4d4e
JB
10593 trans->delayed_ref_updates++;
10594 btrfs_update_delayed_refs_rsv(trans);
6324fbf3 10595
0b246afa 10596 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10597 return 0;
10598}
1a40e23b 10599
10ea00f5
ID
10600static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10601{
899c81ea
ID
10602 u64 extra_flags = chunk_to_extended(flags) &
10603 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10604
de98ced9 10605 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10606 if (flags & BTRFS_BLOCK_GROUP_DATA)
10607 fs_info->avail_data_alloc_bits &= ~extra_flags;
10608 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10609 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10610 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10611 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10612 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10613}
10614
1a40e23b 10615int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
5a98ec01 10616 u64 group_start, struct extent_map *em)
1a40e23b 10617{
5a98ec01 10618 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 10619 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10620 struct btrfs_path *path;
10621 struct btrfs_block_group_cache *block_group;
44fb5511 10622 struct btrfs_free_cluster *cluster;
0b246afa 10623 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10624 struct btrfs_key key;
0af3d00b 10625 struct inode *inode;
c1895442 10626 struct kobject *kobj = NULL;
1a40e23b 10627 int ret;
10ea00f5 10628 int index;
89a55897 10629 int factor;
4f69cb98 10630 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10631 bool remove_em;
ba2c4d4e 10632 bool remove_rsv = false;
1a40e23b 10633
6bccf3ab 10634 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10635 BUG_ON(!block_group);
c146afad 10636 BUG_ON(!block_group->ro);
1a40e23b 10637
4ed0a7a3 10638 trace_btrfs_remove_block_group(block_group);
9f7c43c9 10639 /*
10640 * Free the reserved super bytes from this block group before
10641 * remove it.
10642 */
9e715da8 10643 free_excluded_extents(block_group);
fd708b81
JB
10644 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10645 block_group->key.offset);
9f7c43c9 10646
1a40e23b 10647 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10648 index = btrfs_bg_flags_to_raid_index(block_group->flags);
46df06b8 10649 factor = btrfs_bg_type_to_factor(block_group->flags);
1a40e23b 10650
44fb5511 10651 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10652 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10653 spin_lock(&cluster->refill_lock);
10654 btrfs_return_cluster_to_free_space(block_group, cluster);
10655 spin_unlock(&cluster->refill_lock);
10656
10657 /*
10658 * make sure this block group isn't part of a metadata
10659 * allocation cluster
10660 */
0b246afa 10661 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10662 spin_lock(&cluster->refill_lock);
10663 btrfs_return_cluster_to_free_space(block_group, cluster);
10664 spin_unlock(&cluster->refill_lock);
10665
1a40e23b 10666 path = btrfs_alloc_path();
d8926bb3
MF
10667 if (!path) {
10668 ret = -ENOMEM;
10669 goto out;
10670 }
1a40e23b 10671
1bbc621e
CM
10672 /*
10673 * get the inode first so any iput calls done for the io_list
10674 * aren't the final iput (no unlinks allowed now)
10675 */
77ab86bf 10676 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10677
10678 mutex_lock(&trans->transaction->cache_write_mutex);
10679 /*
52042d8e 10680 * Make sure our free space cache IO is done before removing the
1bbc621e
CM
10681 * free space inode
10682 */
10683 spin_lock(&trans->transaction->dirty_bgs_lock);
10684 if (!list_empty(&block_group->io_list)) {
10685 list_del_init(&block_group->io_list);
10686
10687 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10688
10689 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10690 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10691 btrfs_put_block_group(block_group);
10692 spin_lock(&trans->transaction->dirty_bgs_lock);
10693 }
10694
10695 if (!list_empty(&block_group->dirty_list)) {
10696 list_del_init(&block_group->dirty_list);
ba2c4d4e 10697 remove_rsv = true;
1bbc621e
CM
10698 btrfs_put_block_group(block_group);
10699 }
10700 spin_unlock(&trans->transaction->dirty_bgs_lock);
10701 mutex_unlock(&trans->transaction->cache_write_mutex);
10702
0af3d00b 10703 if (!IS_ERR(inode)) {
73f2e545 10704 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10705 if (ret) {
10706 btrfs_add_delayed_iput(inode);
10707 goto out;
10708 }
0af3d00b
JB
10709 clear_nlink(inode);
10710 /* One for the block groups ref */
10711 spin_lock(&block_group->lock);
10712 if (block_group->iref) {
10713 block_group->iref = 0;
10714 block_group->inode = NULL;
10715 spin_unlock(&block_group->lock);
10716 iput(inode);
10717 } else {
10718 spin_unlock(&block_group->lock);
10719 }
10720 /* One for our lookup ref */
455757c3 10721 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10722 }
10723
10724 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10725 key.offset = block_group->key.objectid;
10726 key.type = 0;
10727
10728 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10729 if (ret < 0)
10730 goto out;
10731 if (ret > 0)
b3b4aa74 10732 btrfs_release_path(path);
0af3d00b
JB
10733 if (ret == 0) {
10734 ret = btrfs_del_item(trans, tree_root, path);
10735 if (ret)
10736 goto out;
b3b4aa74 10737 btrfs_release_path(path);
0af3d00b
JB
10738 }
10739
0b246afa 10740 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10741 rb_erase(&block_group->cache_node,
0b246afa 10742 &fs_info->block_group_cache_tree);
292cbd51 10743 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10744
0b246afa
JM
10745 if (fs_info->first_logical_byte == block_group->key.objectid)
10746 fs_info->first_logical_byte = (u64)-1;
10747 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10748
80eb234a 10749 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10750 /*
10751 * we must use list_del_init so people can check to see if they
10752 * are still on the list after taking the semaphore
10753 */
10754 list_del_init(&block_group->list);
6ab0a202 10755 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10756 kobj = block_group->space_info->block_group_kobjs[index];
10757 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10758 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10759 }
80eb234a 10760 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10761 if (kobj) {
10762 kobject_del(kobj);
10763 kobject_put(kobj);
10764 }
1a40e23b 10765
4f69cb98
FM
10766 if (block_group->has_caching_ctl)
10767 caching_ctl = get_caching_control(block_group);
817d52f8 10768 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10769 wait_block_group_cache_done(block_group);
4f69cb98 10770 if (block_group->has_caching_ctl) {
0b246afa 10771 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10772 if (!caching_ctl) {
10773 struct btrfs_caching_control *ctl;
10774
10775 list_for_each_entry(ctl,
0b246afa 10776 &fs_info->caching_block_groups, list)
4f69cb98
FM
10777 if (ctl->block_group == block_group) {
10778 caching_ctl = ctl;
1e4f4714 10779 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10780 break;
10781 }
10782 }
10783 if (caching_ctl)
10784 list_del_init(&caching_ctl->list);
0b246afa 10785 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10786 if (caching_ctl) {
10787 /* Once for the caching bgs list and once for us. */
10788 put_caching_control(caching_ctl);
10789 put_caching_control(caching_ctl);
10790 }
10791 }
817d52f8 10792
ce93ec54
JB
10793 spin_lock(&trans->transaction->dirty_bgs_lock);
10794 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10795 WARN_ON(1);
10796 }
10797 if (!list_empty(&block_group->io_list)) {
10798 WARN_ON(1);
ce93ec54
JB
10799 }
10800 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10801 btrfs_remove_free_space_cache(block_group);
10802
c146afad 10803 spin_lock(&block_group->space_info->lock);
75c68e9f 10804 list_del_init(&block_group->ro_list);
18d018ad 10805
0b246afa 10806 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10807 WARN_ON(block_group->space_info->total_bytes
10808 < block_group->key.offset);
10809 WARN_ON(block_group->space_info->bytes_readonly
10810 < block_group->key.offset);
10811 WARN_ON(block_group->space_info->disk_total
10812 < block_group->key.offset * factor);
10813 }
c146afad
YZ
10814 block_group->space_info->total_bytes -= block_group->key.offset;
10815 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10816 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10817
c146afad 10818 spin_unlock(&block_group->space_info->lock);
283bb197 10819
0af3d00b
JB
10820 memcpy(&key, &block_group->key, sizeof(key));
10821
34441361 10822 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10823 if (!list_empty(&em->list)) {
10824 /* We're in the transaction->pending_chunks list. */
10825 free_extent_map(em);
10826 }
04216820
FM
10827 spin_lock(&block_group->lock);
10828 block_group->removed = 1;
10829 /*
10830 * At this point trimming can't start on this block group, because we
10831 * removed the block group from the tree fs_info->block_group_cache_tree
10832 * so no one can't find it anymore and even if someone already got this
10833 * block group before we removed it from the rbtree, they have already
10834 * incremented block_group->trimming - if they didn't, they won't find
10835 * any free space entries because we already removed them all when we
10836 * called btrfs_remove_free_space_cache().
10837 *
10838 * And we must not remove the extent map from the fs_info->mapping_tree
10839 * to prevent the same logical address range and physical device space
10840 * ranges from being reused for a new block group. This is because our
10841 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10842 * completely transactionless, so while it is trimming a range the
10843 * currently running transaction might finish and a new one start,
10844 * allowing for new block groups to be created that can reuse the same
10845 * physical device locations unless we take this special care.
e33e17ee
JM
10846 *
10847 * There may also be an implicit trim operation if the file system
10848 * is mounted with -odiscard. The same protections must remain
10849 * in place until the extents have been discarded completely when
10850 * the transaction commit has completed.
04216820
FM
10851 */
10852 remove_em = (atomic_read(&block_group->trimming) == 0);
10853 /*
10854 * Make sure a trimmer task always sees the em in the pinned_chunks list
10855 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10856 * before checking block_group->removed).
10857 */
10858 if (!remove_em) {
10859 /*
10860 * Our em might be in trans->transaction->pending_chunks which
10861 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10862 * and so is the fs_info->pinned_chunks list.
10863 *
10864 * So at this point we must be holding the chunk_mutex to avoid
10865 * any races with chunk allocation (more specifically at
10866 * volumes.c:contains_pending_extent()), to ensure it always
10867 * sees the em, either in the pending_chunks list or in the
10868 * pinned_chunks list.
10869 */
0b246afa 10870 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10871 }
10872 spin_unlock(&block_group->lock);
04216820
FM
10873
10874 if (remove_em) {
10875 struct extent_map_tree *em_tree;
10876
0b246afa 10877 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10878 write_lock(&em_tree->lock);
8dbcd10f
FM
10879 /*
10880 * The em might be in the pending_chunks list, so make sure the
10881 * chunk mutex is locked, since remove_extent_mapping() will
10882 * delete us from that list.
10883 */
04216820
FM
10884 remove_extent_mapping(em_tree, em);
10885 write_unlock(&em_tree->lock);
10886 /* once for the tree */
10887 free_extent_map(em);
10888 }
10889
34441361 10890 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10891
f3f72779 10892 ret = remove_block_group_free_space(trans, block_group);
1e144fb8
OS
10893 if (ret)
10894 goto out;
10895
fa9c0d79
CM
10896 btrfs_put_block_group(block_group);
10897 btrfs_put_block_group(block_group);
1a40e23b
ZY
10898
10899 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10900 if (ret > 0)
10901 ret = -EIO;
10902 if (ret < 0)
10903 goto out;
10904
10905 ret = btrfs_del_item(trans, root, path);
10906out:
ba2c4d4e
JB
10907 if (remove_rsv)
10908 btrfs_delayed_refs_rsv_release(fs_info, 1);
1a40e23b
ZY
10909 btrfs_free_path(path);
10910 return ret;
10911}
acce952b 10912
8eab77ff 10913struct btrfs_trans_handle *
7fd01182
FM
10914btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10915 const u64 chunk_offset)
8eab77ff 10916{
7fd01182
FM
10917 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10918 struct extent_map *em;
10919 struct map_lookup *map;
10920 unsigned int num_items;
10921
10922 read_lock(&em_tree->lock);
10923 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10924 read_unlock(&em_tree->lock);
10925 ASSERT(em && em->start == chunk_offset);
10926
8eab77ff 10927 /*
7fd01182
FM
10928 * We need to reserve 3 + N units from the metadata space info in order
10929 * to remove a block group (done at btrfs_remove_chunk() and at
10930 * btrfs_remove_block_group()), which are used for:
10931 *
8eab77ff
FM
10932 * 1 unit for adding the free space inode's orphan (located in the tree
10933 * of tree roots).
7fd01182
FM
10934 * 1 unit for deleting the block group item (located in the extent
10935 * tree).
10936 * 1 unit for deleting the free space item (located in tree of tree
10937 * roots).
10938 * N units for deleting N device extent items corresponding to each
10939 * stripe (located in the device tree).
10940 *
10941 * In order to remove a block group we also need to reserve units in the
10942 * system space info in order to update the chunk tree (update one or
10943 * more device items and remove one chunk item), but this is done at
10944 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10945 */
95617d69 10946 map = em->map_lookup;
7fd01182
FM
10947 num_items = 3 + map->num_stripes;
10948 free_extent_map(em);
10949
8eab77ff 10950 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10951 num_items, 1);
8eab77ff
FM
10952}
10953
47ab2a6c
JB
10954/*
10955 * Process the unused_bgs list and remove any that don't have any allocated
10956 * space inside of them.
10957 */
10958void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10959{
10960 struct btrfs_block_group_cache *block_group;
10961 struct btrfs_space_info *space_info;
47ab2a6c
JB
10962 struct btrfs_trans_handle *trans;
10963 int ret = 0;
10964
afcdd129 10965 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10966 return;
10967
10968 spin_lock(&fs_info->unused_bgs_lock);
10969 while (!list_empty(&fs_info->unused_bgs)) {
10970 u64 start, end;
e33e17ee 10971 int trimming;
47ab2a6c
JB
10972
10973 block_group = list_first_entry(&fs_info->unused_bgs,
10974 struct btrfs_block_group_cache,
10975 bg_list);
47ab2a6c 10976 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10977
10978 space_info = block_group->space_info;
10979
47ab2a6c
JB
10980 if (ret || btrfs_mixed_space_info(space_info)) {
10981 btrfs_put_block_group(block_group);
10982 continue;
10983 }
10984 spin_unlock(&fs_info->unused_bgs_lock);
10985
d5f2e33b 10986 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10987
47ab2a6c
JB
10988 /* Don't want to race with allocators so take the groups_sem */
10989 down_write(&space_info->groups_sem);
10990 spin_lock(&block_group->lock);
43794446 10991 if (block_group->reserved || block_group->pinned ||
47ab2a6c 10992 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10993 block_group->ro ||
aefbe9a6 10994 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10995 /*
10996 * We want to bail if we made new allocations or have
10997 * outstanding allocations in this block group. We do
10998 * the ro check in case balance is currently acting on
10999 * this block group.
11000 */
4ed0a7a3 11001 trace_btrfs_skip_unused_block_group(block_group);
47ab2a6c
JB
11002 spin_unlock(&block_group->lock);
11003 up_write(&space_info->groups_sem);
11004 goto next;
11005 }
11006 spin_unlock(&block_group->lock);
11007
11008 /* We don't want to force the issue, only flip if it's ok. */
868f401a 11009 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
11010 up_write(&space_info->groups_sem);
11011 if (ret < 0) {
11012 ret = 0;
11013 goto next;
11014 }
11015
11016 /*
11017 * Want to do this before we do anything else so we can recover
11018 * properly if we fail to join the transaction.
11019 */
7fd01182
FM
11020 trans = btrfs_start_trans_remove_block_group(fs_info,
11021 block_group->key.objectid);
47ab2a6c 11022 if (IS_ERR(trans)) {
2ff7e61e 11023 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
11024 ret = PTR_ERR(trans);
11025 goto next;
11026 }
11027
11028 /*
11029 * We could have pending pinned extents for this block group,
11030 * just delete them, we don't care about them anymore.
11031 */
11032 start = block_group->key.objectid;
11033 end = start + block_group->key.offset - 1;
d4b450cd
FM
11034 /*
11035 * Hold the unused_bg_unpin_mutex lock to avoid racing with
11036 * btrfs_finish_extent_commit(). If we are at transaction N,
11037 * another task might be running finish_extent_commit() for the
11038 * previous transaction N - 1, and have seen a range belonging
11039 * to the block group in freed_extents[] before we were able to
11040 * clear the whole block group range from freed_extents[]. This
11041 * means that task can lookup for the block group after we
11042 * unpinned it from freed_extents[] and removed it, leading to
11043 * a BUG_ON() at btrfs_unpin_extent_range().
11044 */
11045 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 11046 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 11047 EXTENT_DIRTY);
758eb51e 11048 if (ret) {
d4b450cd 11049 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 11050 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
11051 goto end_trans;
11052 }
11053 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 11054 EXTENT_DIRTY);
758eb51e 11055 if (ret) {
d4b450cd 11056 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 11057 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
11058 goto end_trans;
11059 }
d4b450cd 11060 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
11061
11062 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
11063 spin_lock(&space_info->lock);
11064 spin_lock(&block_group->lock);
11065
e2907c1a 11066 update_bytes_pinned(space_info, -block_group->pinned);
c30666d4 11067 space_info->bytes_readonly += block_group->pinned;
dec59fa3
EL
11068 percpu_counter_add_batch(&space_info->total_bytes_pinned,
11069 -block_group->pinned,
11070 BTRFS_TOTAL_BYTES_PINNED_BATCH);
47ab2a6c
JB
11071 block_group->pinned = 0;
11072
c30666d4
ZL
11073 spin_unlock(&block_group->lock);
11074 spin_unlock(&space_info->lock);
11075
e33e17ee 11076 /* DISCARD can flip during remount */
0b246afa 11077 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
11078
11079 /* Implicit trim during transaction commit. */
11080 if (trimming)
11081 btrfs_get_block_group_trimming(block_group);
11082
47ab2a6c
JB
11083 /*
11084 * Btrfs_remove_chunk will abort the transaction if things go
11085 * horribly wrong.
11086 */
97aff912 11087 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
e33e17ee
JM
11088
11089 if (ret) {
11090 if (trimming)
11091 btrfs_put_block_group_trimming(block_group);
11092 goto end_trans;
11093 }
11094
11095 /*
11096 * If we're not mounted with -odiscard, we can just forget
11097 * about this block group. Otherwise we'll need to wait
11098 * until transaction commit to do the actual discard.
11099 */
11100 if (trimming) {
348a0013
FM
11101 spin_lock(&fs_info->unused_bgs_lock);
11102 /*
11103 * A concurrent scrub might have added us to the list
11104 * fs_info->unused_bgs, so use a list_move operation
11105 * to add the block group to the deleted_bgs list.
11106 */
e33e17ee
JM
11107 list_move(&block_group->bg_list,
11108 &trans->transaction->deleted_bgs);
348a0013 11109 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
11110 btrfs_get_block_group(block_group);
11111 }
758eb51e 11112end_trans:
3a45bb20 11113 btrfs_end_transaction(trans);
47ab2a6c 11114next:
d5f2e33b 11115 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
11116 btrfs_put_block_group(block_group);
11117 spin_lock(&fs_info->unused_bgs_lock);
11118 }
11119 spin_unlock(&fs_info->unused_bgs_lock);
11120}
11121
c59021f8 11122int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
11123{
1aba86d6 11124 struct btrfs_super_block *disk_super;
11125 u64 features;
11126 u64 flags;
11127 int mixed = 0;
c59021f8 11128 int ret;
11129
6c41761f 11130 disk_super = fs_info->super_copy;
1aba86d6 11131 if (!btrfs_super_root(disk_super))
0dc924c5 11132 return -EINVAL;
c59021f8 11133
1aba86d6 11134 features = btrfs_super_incompat_flags(disk_super);
11135 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11136 mixed = 1;
c59021f8 11137
1aba86d6 11138 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4ca61683 11139 ret = create_space_info(fs_info, flags);
c59021f8 11140 if (ret)
1aba86d6 11141 goto out;
c59021f8 11142
1aba86d6 11143 if (mixed) {
11144 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
4ca61683 11145 ret = create_space_info(fs_info, flags);
1aba86d6 11146 } else {
11147 flags = BTRFS_BLOCK_GROUP_METADATA;
4ca61683 11148 ret = create_space_info(fs_info, flags);
1aba86d6 11149 if (ret)
11150 goto out;
11151
11152 flags = BTRFS_BLOCK_GROUP_DATA;
4ca61683 11153 ret = create_space_info(fs_info, flags);
1aba86d6 11154 }
11155out:
c59021f8 11156 return ret;
11157}
11158
2ff7e61e
JM
11159int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
11160 u64 start, u64 end)
acce952b 11161{
2ff7e61e 11162 return unpin_extent_range(fs_info, start, end, false);
acce952b 11163}
11164
499f377f
JM
11165/*
11166 * It used to be that old block groups would be left around forever.
11167 * Iterating over them would be enough to trim unused space. Since we
11168 * now automatically remove them, we also need to iterate over unallocated
11169 * space.
11170 *
11171 * We don't want a transaction for this since the discard may take a
11172 * substantial amount of time. We don't require that a transaction be
11173 * running, but we do need to take a running transaction into account
fee7acc3
JM
11174 * to ensure that we're not discarding chunks that were released or
11175 * allocated in the current transaction.
499f377f
JM
11176 *
11177 * Holding the chunks lock will prevent other threads from allocating
11178 * or releasing chunks, but it won't prevent a running transaction
11179 * from committing and releasing the memory that the pending chunks
11180 * list head uses. For that, we need to take a reference to the
fee7acc3
JM
11181 * transaction and hold the commit root sem. We only need to hold
11182 * it while performing the free space search since we have already
11183 * held back allocations.
499f377f
JM
11184 */
11185static int btrfs_trim_free_extents(struct btrfs_device *device,
11186 u64 minlen, u64 *trimmed)
11187{
11188 u64 start = 0, len = 0;
11189 int ret;
11190
11191 *trimmed = 0;
11192
0be88e36
JM
11193 /* Discard not supported = nothing to do. */
11194 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
11195 return 0;
11196
52042d8e 11197 /* Not writable = nothing to do. */
ebbede42 11198 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
11199 return 0;
11200
11201 /* No free space = nothing to do. */
11202 if (device->total_bytes <= device->bytes_used)
11203 return 0;
11204
11205 ret = 0;
11206
11207 while (1) {
fb456252 11208 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
11209 struct btrfs_transaction *trans;
11210 u64 bytes;
11211
11212 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11213 if (ret)
fee7acc3 11214 break;
499f377f 11215
fee7acc3
JM
11216 ret = down_read_killable(&fs_info->commit_root_sem);
11217 if (ret) {
11218 mutex_unlock(&fs_info->chunk_mutex);
11219 break;
11220 }
499f377f
JM
11221
11222 spin_lock(&fs_info->trans_lock);
11223 trans = fs_info->running_transaction;
11224 if (trans)
9b64f57d 11225 refcount_inc(&trans->use_count);
499f377f
JM
11226 spin_unlock(&fs_info->trans_lock);
11227
fee7acc3
JM
11228 if (!trans)
11229 up_read(&fs_info->commit_root_sem);
11230
499f377f
JM
11231 ret = find_free_dev_extent_start(trans, device, minlen, start,
11232 &start, &len);
fee7acc3
JM
11233 if (trans) {
11234 up_read(&fs_info->commit_root_sem);
499f377f 11235 btrfs_put_transaction(trans);
fee7acc3 11236 }
499f377f
JM
11237
11238 if (ret) {
499f377f
JM
11239 mutex_unlock(&fs_info->chunk_mutex);
11240 if (ret == -ENOSPC)
11241 ret = 0;
11242 break;
11243 }
11244
11245 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
499f377f
JM
11246 mutex_unlock(&fs_info->chunk_mutex);
11247
11248 if (ret)
11249 break;
11250
11251 start += len;
11252 *trimmed += bytes;
11253
11254 if (fatal_signal_pending(current)) {
11255 ret = -ERESTARTSYS;
11256 break;
11257 }
11258
11259 cond_resched();
11260 }
11261
11262 return ret;
11263}
11264
93bba24d
QW
11265/*
11266 * Trim the whole filesystem by:
11267 * 1) trimming the free space in each block group
11268 * 2) trimming the unallocated space on each device
11269 *
11270 * This will also continue trimming even if a block group or device encounters
11271 * an error. The return value will be the last error, or 0 if nothing bad
11272 * happens.
11273 */
2ff7e61e 11274int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 11275{
f7039b1d 11276 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
11277 struct btrfs_device *device;
11278 struct list_head *devices;
f7039b1d
LD
11279 u64 group_trimmed;
11280 u64 start;
11281 u64 end;
11282 u64 trimmed = 0;
93bba24d
QW
11283 u64 bg_failed = 0;
11284 u64 dev_failed = 0;
11285 int bg_ret = 0;
11286 int dev_ret = 0;
f7039b1d
LD
11287 int ret = 0;
11288
6ba9fc8e 11289 cache = btrfs_lookup_first_block_group(fs_info, range->start);
93bba24d 11290 for (; cache; cache = next_block_group(fs_info, cache)) {
f7039b1d
LD
11291 if (cache->key.objectid >= (range->start + range->len)) {
11292 btrfs_put_block_group(cache);
11293 break;
11294 }
11295
11296 start = max(range->start, cache->key.objectid);
11297 end = min(range->start + range->len,
11298 cache->key.objectid + cache->key.offset);
11299
11300 if (end - start >= range->minlen) {
11301 if (!block_group_cache_done(cache)) {
f6373bf3 11302 ret = cache_block_group(cache, 0);
1be41b78 11303 if (ret) {
93bba24d
QW
11304 bg_failed++;
11305 bg_ret = ret;
11306 continue;
1be41b78
JB
11307 }
11308 ret = wait_block_group_cache_done(cache);
11309 if (ret) {
93bba24d
QW
11310 bg_failed++;
11311 bg_ret = ret;
11312 continue;
1be41b78 11313 }
f7039b1d
LD
11314 }
11315 ret = btrfs_trim_block_group(cache,
11316 &group_trimmed,
11317 start,
11318 end,
11319 range->minlen);
11320
11321 trimmed += group_trimmed;
11322 if (ret) {
93bba24d
QW
11323 bg_failed++;
11324 bg_ret = ret;
11325 continue;
f7039b1d
LD
11326 }
11327 }
f7039b1d
LD
11328 }
11329
93bba24d
QW
11330 if (bg_failed)
11331 btrfs_warn(fs_info,
11332 "failed to trim %llu block group(s), last error %d",
11333 bg_failed, bg_ret);
0b246afa 11334 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d4e329de
JM
11335 devices = &fs_info->fs_devices->devices;
11336 list_for_each_entry(device, devices, dev_list) {
499f377f
JM
11337 ret = btrfs_trim_free_extents(device, range->minlen,
11338 &group_trimmed);
93bba24d
QW
11339 if (ret) {
11340 dev_failed++;
11341 dev_ret = ret;
499f377f 11342 break;
93bba24d 11343 }
499f377f
JM
11344
11345 trimmed += group_trimmed;
11346 }
0b246afa 11347 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11348
93bba24d
QW
11349 if (dev_failed)
11350 btrfs_warn(fs_info,
11351 "failed to trim %llu device(s), last error %d",
11352 dev_failed, dev_ret);
f7039b1d 11353 range->len = trimmed;
93bba24d
QW
11354 if (bg_ret)
11355 return bg_ret;
11356 return dev_ret;
f7039b1d 11357}
8257b2dc
MX
11358
11359/*
ea14b57f 11360 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11361 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11362 * data into the page cache through nocow before the subvolume is snapshoted,
11363 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11364 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11365 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11366 */
ea14b57f 11367void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11368{
11369 percpu_counter_dec(&root->subv_writers->counter);
093258e6 11370 cond_wake_up(&root->subv_writers->wait);
8257b2dc
MX
11371}
11372
ea14b57f 11373int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11374{
ea14b57f 11375 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11376 return 0;
11377
11378 percpu_counter_inc(&root->subv_writers->counter);
11379 /*
11380 * Make sure counter is updated before we check for snapshot creation.
11381 */
11382 smp_mb();
ea14b57f
DS
11383 if (atomic_read(&root->will_be_snapshotted)) {
11384 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11385 return 0;
11386 }
11387 return 1;
11388}
0bc19f90 11389
0bc19f90
ZL
11390void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11391{
11392 while (true) {
11393 int ret;
11394
ea14b57f 11395 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11396 if (ret)
11397 break;
4625956a
PZ
11398 wait_var_event(&root->will_be_snapshotted,
11399 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
11400 }
11401}
031f24da
QW
11402
11403void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11404{
11405 struct btrfs_fs_info *fs_info = bg->fs_info;
11406
11407 spin_lock(&fs_info->unused_bgs_lock);
11408 if (list_empty(&bg->bg_list)) {
11409 btrfs_get_block_group(bg);
11410 trace_btrfs_add_unused_block_group(bg);
11411 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11412 }
11413 spin_unlock(&fs_info->unused_bgs_lock);
11414}