]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: handle delayed ref head accounting cleanup in abort
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
9f9b8e8d
QW
54/*
55 * Declare a helper function to detect underflow of various space info members
56 */
57#define DECLARE_SPACE_INFO_UPDATE(name) \
58static inline void update_##name(struct btrfs_space_info *sinfo, \
59 s64 bytes) \
60{ \
61 if (bytes < 0 && sinfo->name < -bytes) { \
62 WARN_ON(1); \
63 sinfo->name = 0; \
64 return; \
65 } \
66 sinfo->name += bytes; \
67}
68
69DECLARE_SPACE_INFO_UPDATE(bytes_may_use);
e2907c1a 70DECLARE_SPACE_INFO_UPDATE(bytes_pinned);
9f9b8e8d 71
5d4f98a2 72static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
73 struct btrfs_delayed_ref_node *node, u64 parent,
74 u64 root_objectid, u64 owner_objectid,
75 u64 owner_offset, int refs_to_drop,
76 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
77static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
78 struct extent_buffer *leaf,
79 struct btrfs_extent_item *ei);
80static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
81 u64 parent, u64 root_objectid,
82 u64 flags, u64 owner, u64 offset,
83 struct btrfs_key *ins, int ref_mod);
84static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 85 struct btrfs_delayed_ref_node *node,
21ebfbe7 86 struct btrfs_delayed_extent_op *extent_op);
01458828 87static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
698d0082 88 int force);
11833d66
YZ
89static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
ab8d0fc4
JM
91static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 93 int dump_block_groups);
5d80366e
JB
94static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
95 u64 num_bytes);
957780eb
JB
96static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
97 struct btrfs_space_info *space_info,
98 u64 num_bytes);
99static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
100 struct btrfs_space_info *space_info,
101 u64 num_bytes);
6a63209f 102
817d52f8
JB
103static noinline int
104block_group_cache_done(struct btrfs_block_group_cache *cache)
105{
106 smp_mb();
36cce922
JB
107 return cache->cached == BTRFS_CACHE_FINISHED ||
108 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
109}
110
0f9dd46c
JB
111static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112{
113 return (cache->flags & bits) == bits;
114}
115
758f2dfc 116void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
117{
118 atomic_inc(&cache->count);
119}
120
121void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122{
f0486c68
YZ
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
0966a7b1
QW
126
127 /*
128 * If not empty, someone is still holding mutex of
129 * full_stripe_lock, which can only be released by caller.
130 * And it will definitely cause use-after-free when caller
131 * tries to release full stripe lock.
132 *
133 * No better way to resolve, but only to warn.
134 */
135 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 136 kfree(cache->free_space_ctl);
11dfe35a 137 kfree(cache);
f0486c68 138 }
11dfe35a
JB
139}
140
0f9dd46c
JB
141/*
142 * this adds the block group to the fs_info rb tree for the block group
143 * cache
144 */
b2950863 145static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
146 struct btrfs_block_group_cache *block_group)
147{
148 struct rb_node **p;
149 struct rb_node *parent = NULL;
150 struct btrfs_block_group_cache *cache;
151
152 spin_lock(&info->block_group_cache_lock);
153 p = &info->block_group_cache_tree.rb_node;
154
155 while (*p) {
156 parent = *p;
157 cache = rb_entry(parent, struct btrfs_block_group_cache,
158 cache_node);
159 if (block_group->key.objectid < cache->key.objectid) {
160 p = &(*p)->rb_left;
161 } else if (block_group->key.objectid > cache->key.objectid) {
162 p = &(*p)->rb_right;
163 } else {
164 spin_unlock(&info->block_group_cache_lock);
165 return -EEXIST;
166 }
167 }
168
169 rb_link_node(&block_group->cache_node, parent, p);
170 rb_insert_color(&block_group->cache_node,
171 &info->block_group_cache_tree);
a1897fdd
LB
172
173 if (info->first_logical_byte > block_group->key.objectid)
174 info->first_logical_byte = block_group->key.objectid;
175
0f9dd46c
JB
176 spin_unlock(&info->block_group_cache_lock);
177
178 return 0;
179}
180
181/*
182 * This will return the block group at or after bytenr if contains is 0, else
183 * it will return the block group that contains the bytenr
184 */
185static struct btrfs_block_group_cache *
186block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
187 int contains)
188{
189 struct btrfs_block_group_cache *cache, *ret = NULL;
190 struct rb_node *n;
191 u64 end, start;
192
193 spin_lock(&info->block_group_cache_lock);
194 n = info->block_group_cache_tree.rb_node;
195
196 while (n) {
197 cache = rb_entry(n, struct btrfs_block_group_cache,
198 cache_node);
199 end = cache->key.objectid + cache->key.offset - 1;
200 start = cache->key.objectid;
201
202 if (bytenr < start) {
203 if (!contains && (!ret || start < ret->key.objectid))
204 ret = cache;
205 n = n->rb_left;
206 } else if (bytenr > start) {
207 if (contains && bytenr <= end) {
208 ret = cache;
209 break;
210 }
211 n = n->rb_right;
212 } else {
213 ret = cache;
214 break;
215 }
216 }
a1897fdd 217 if (ret) {
11dfe35a 218 btrfs_get_block_group(ret);
a1897fdd
LB
219 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
220 info->first_logical_byte = ret->key.objectid;
221 }
0f9dd46c
JB
222 spin_unlock(&info->block_group_cache_lock);
223
224 return ret;
225}
226
2ff7e61e 227static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 228 u64 start, u64 num_bytes)
817d52f8 229{
11833d66 230 u64 end = start + num_bytes - 1;
0b246afa 231 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 232 start, end, EXTENT_UPTODATE);
0b246afa 233 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 234 start, end, EXTENT_UPTODATE);
11833d66
YZ
235 return 0;
236}
817d52f8 237
9e715da8 238static void free_excluded_extents(struct btrfs_block_group_cache *cache)
11833d66 239{
9e715da8 240 struct btrfs_fs_info *fs_info = cache->fs_info;
11833d66 241 u64 start, end;
817d52f8 242
11833d66
YZ
243 start = cache->key.objectid;
244 end = start + cache->key.offset - 1;
245
0b246afa 246 clear_extent_bits(&fs_info->freed_extents[0],
91166212 247 start, end, EXTENT_UPTODATE);
0b246afa 248 clear_extent_bits(&fs_info->freed_extents[1],
91166212 249 start, end, EXTENT_UPTODATE);
817d52f8
JB
250}
251
3c4da657 252static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
817d52f8 253{
3c4da657 254 struct btrfs_fs_info *fs_info = cache->fs_info;
817d52f8
JB
255 u64 bytenr;
256 u64 *logical;
257 int stripe_len;
258 int i, nr, ret;
259
06b2331f
YZ
260 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
261 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
262 cache->bytes_super += stripe_len;
2ff7e61e 263 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 264 stripe_len);
835d974f
JB
265 if (ret)
266 return ret;
06b2331f
YZ
267 }
268
817d52f8
JB
269 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
270 bytenr = btrfs_sb_offset(i);
0b246afa 271 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
63a9c7b9 272 bytenr, &logical, &nr, &stripe_len);
835d974f
JB
273 if (ret)
274 return ret;
11833d66 275
817d52f8 276 while (nr--) {
51bf5f0b
JB
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
2ff7e61e 297 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
817d52f8 302 }
11833d66 303
817d52f8
JB
304 kfree(logical);
305 }
817d52f8
JB
306 return 0;
307}
308
11833d66
YZ
309static struct btrfs_caching_control *
310get_caching_control(struct btrfs_block_group_cache *cache)
311{
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
dde5abee
JB
315 if (!cache->caching_ctl) {
316 spin_unlock(&cache->lock);
11833d66
YZ
317 return NULL;
318 }
319
320 ctl = cache->caching_ctl;
1e4f4714 321 refcount_inc(&ctl->count);
11833d66
YZ
322 spin_unlock(&cache->lock);
323 return ctl;
324}
325
326static void put_caching_control(struct btrfs_caching_control *ctl)
327{
1e4f4714 328 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
329 kfree(ctl);
330}
331
d0bd4560 332#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 333static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 334{
2ff7e61e 335 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
336 u64 start = block_group->key.objectid;
337 u64 len = block_group->key.offset;
338 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 339 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
340 u64 step = chunk << 1;
341
342 while (len > chunk) {
343 btrfs_remove_free_space(block_group, start, chunk);
344 start += step;
345 if (len < step)
346 len = 0;
347 else
348 len -= step;
349 }
350}
351#endif
352
0f9dd46c
JB
353/*
354 * this is only called by cache_block_group, since we could have freed extents
355 * we need to check the pinned_extents for any extents that can't be used yet
356 * since their free space will be released as soon as the transaction commits.
357 */
a5ed9182 358u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
4457c1c7 359 u64 start, u64 end)
0f9dd46c 360{
4457c1c7 361 struct btrfs_fs_info *info = block_group->fs_info;
817d52f8 362 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
363 int ret;
364
365 while (start < end) {
11833d66 366 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 367 &extent_start, &extent_end,
e6138876
JB
368 EXTENT_DIRTY | EXTENT_UPTODATE,
369 NULL);
0f9dd46c
JB
370 if (ret)
371 break;
372
06b2331f 373 if (extent_start <= start) {
0f9dd46c
JB
374 start = extent_end + 1;
375 } else if (extent_start > start && extent_start < end) {
376 size = extent_start - start;
817d52f8 377 total_added += size;
ea6a478e
JB
378 ret = btrfs_add_free_space(block_group, start,
379 size);
79787eaa 380 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
381 start = extent_end + 1;
382 } else {
383 break;
384 }
385 }
386
387 if (start < end) {
388 size = end - start;
817d52f8 389 total_added += size;
ea6a478e 390 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 391 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
392 }
393
817d52f8 394 return total_added;
0f9dd46c
JB
395}
396
73fa48b6 397static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 398{
0b246afa
JM
399 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
400 struct btrfs_fs_info *fs_info = block_group->fs_info;
401 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 402 struct btrfs_path *path;
5f39d397 403 struct extent_buffer *leaf;
11833d66 404 struct btrfs_key key;
817d52f8 405 u64 total_found = 0;
11833d66
YZ
406 u64 last = 0;
407 u32 nritems;
73fa48b6 408 int ret;
d0bd4560 409 bool wakeup = true;
f510cfec 410
e37c9e69
CM
411 path = btrfs_alloc_path();
412 if (!path)
73fa48b6 413 return -ENOMEM;
7d7d6068 414
817d52f8 415 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 416
d0bd4560
JB
417#ifdef CONFIG_BTRFS_DEBUG
418 /*
419 * If we're fragmenting we don't want to make anybody think we can
420 * allocate from this block group until we've had a chance to fragment
421 * the free space.
422 */
2ff7e61e 423 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
424 wakeup = false;
425#endif
5cd57b2c 426 /*
817d52f8
JB
427 * We don't want to deadlock with somebody trying to allocate a new
428 * extent for the extent root while also trying to search the extent
429 * root to add free space. So we skip locking and search the commit
430 * root, since its read-only
5cd57b2c
CM
431 */
432 path->skip_locking = 1;
817d52f8 433 path->search_commit_root = 1;
e4058b54 434 path->reada = READA_FORWARD;
817d52f8 435
e4404d6e 436 key.objectid = last;
e37c9e69 437 key.offset = 0;
11833d66 438 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 439
52ee28d2 440next:
11833d66 441 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 442 if (ret < 0)
73fa48b6 443 goto out;
a512bbf8 444
11833d66
YZ
445 leaf = path->nodes[0];
446 nritems = btrfs_header_nritems(leaf);
447
d397712b 448 while (1) {
7841cb28 449 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 450 last = (u64)-1;
817d52f8 451 break;
f25784b3 452 }
817d52f8 453
11833d66
YZ
454 if (path->slots[0] < nritems) {
455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
456 } else {
457 ret = find_next_key(path, 0, &key);
458 if (ret)
e37c9e69 459 break;
817d52f8 460
c9ea7b24 461 if (need_resched() ||
9e351cc8 462 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
463 if (wakeup)
464 caching_ctl->progress = last;
ff5714cc 465 btrfs_release_path(path);
9e351cc8 466 up_read(&fs_info->commit_root_sem);
589d8ade 467 mutex_unlock(&caching_ctl->mutex);
11833d66 468 cond_resched();
73fa48b6
OS
469 mutex_lock(&caching_ctl->mutex);
470 down_read(&fs_info->commit_root_sem);
471 goto next;
589d8ade 472 }
0a3896d0
JB
473
474 ret = btrfs_next_leaf(extent_root, path);
475 if (ret < 0)
73fa48b6 476 goto out;
0a3896d0
JB
477 if (ret)
478 break;
589d8ade
JB
479 leaf = path->nodes[0];
480 nritems = btrfs_header_nritems(leaf);
481 continue;
11833d66 482 }
817d52f8 483
52ee28d2
LB
484 if (key.objectid < last) {
485 key.objectid = last;
486 key.offset = 0;
487 key.type = BTRFS_EXTENT_ITEM_KEY;
488
d0bd4560
JB
489 if (wakeup)
490 caching_ctl->progress = last;
52ee28d2
LB
491 btrfs_release_path(path);
492 goto next;
493 }
494
11833d66
YZ
495 if (key.objectid < block_group->key.objectid) {
496 path->slots[0]++;
817d52f8 497 continue;
e37c9e69 498 }
0f9dd46c 499
e37c9e69 500 if (key.objectid >= block_group->key.objectid +
0f9dd46c 501 block_group->key.offset)
e37c9e69 502 break;
7d7d6068 503
3173a18f
JB
504 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
505 key.type == BTRFS_METADATA_ITEM_KEY) {
4457c1c7 506 total_found += add_new_free_space(block_group, last,
817d52f8 507 key.objectid);
3173a18f
JB
508 if (key.type == BTRFS_METADATA_ITEM_KEY)
509 last = key.objectid +
da17066c 510 fs_info->nodesize;
3173a18f
JB
511 else
512 last = key.objectid + key.offset;
817d52f8 513
73fa48b6 514 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 515 total_found = 0;
d0bd4560
JB
516 if (wakeup)
517 wake_up(&caching_ctl->wait);
11833d66 518 }
817d52f8 519 }
e37c9e69
CM
520 path->slots[0]++;
521 }
817d52f8 522 ret = 0;
e37c9e69 523
4457c1c7 524 total_found += add_new_free_space(block_group, last,
817d52f8
JB
525 block_group->key.objectid +
526 block_group->key.offset);
11833d66 527 caching_ctl->progress = (u64)-1;
817d52f8 528
73fa48b6
OS
529out:
530 btrfs_free_path(path);
531 return ret;
532}
533
534static noinline void caching_thread(struct btrfs_work *work)
535{
536 struct btrfs_block_group_cache *block_group;
537 struct btrfs_fs_info *fs_info;
538 struct btrfs_caching_control *caching_ctl;
539 int ret;
540
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
544
545 mutex_lock(&caching_ctl->mutex);
546 down_read(&fs_info->commit_root_sem);
547
1e144fb8
OS
548 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549 ret = load_free_space_tree(caching_ctl);
550 else
551 ret = load_extent_tree_free(caching_ctl);
73fa48b6 552
817d52f8 553 spin_lock(&block_group->lock);
11833d66 554 block_group->caching_ctl = NULL;
73fa48b6 555 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 556 spin_unlock(&block_group->lock);
0f9dd46c 557
d0bd4560 558#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 559 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
560 u64 bytes_used;
561
562 spin_lock(&block_group->space_info->lock);
563 spin_lock(&block_group->lock);
564 bytes_used = block_group->key.offset -
565 btrfs_block_group_used(&block_group->item);
566 block_group->space_info->bytes_used += bytes_used >> 1;
567 spin_unlock(&block_group->lock);
568 spin_unlock(&block_group->space_info->lock);
2ff7e61e 569 fragment_free_space(block_group);
d0bd4560
JB
570 }
571#endif
572
573 caching_ctl->progress = (u64)-1;
11833d66 574
9e351cc8 575 up_read(&fs_info->commit_root_sem);
9e715da8 576 free_excluded_extents(block_group);
11833d66 577 mutex_unlock(&caching_ctl->mutex);
73fa48b6 578
11833d66
YZ
579 wake_up(&caching_ctl->wait);
580
581 put_caching_control(caching_ctl);
11dfe35a 582 btrfs_put_block_group(block_group);
817d52f8
JB
583}
584
9d66e233 585static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 586 int load_cache_only)
817d52f8 587{
291c7d2f 588 DEFINE_WAIT(wait);
11833d66
YZ
589 struct btrfs_fs_info *fs_info = cache->fs_info;
590 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
591 int ret = 0;
592
291c7d2f 593 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
594 if (!caching_ctl)
595 return -ENOMEM;
291c7d2f
JB
596
597 INIT_LIST_HEAD(&caching_ctl->list);
598 mutex_init(&caching_ctl->mutex);
599 init_waitqueue_head(&caching_ctl->wait);
600 caching_ctl->block_group = cache;
601 caching_ctl->progress = cache->key.objectid;
1e4f4714 602 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
603 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604 caching_thread, NULL, NULL);
291c7d2f
JB
605
606 spin_lock(&cache->lock);
607 /*
608 * This should be a rare occasion, but this could happen I think in the
609 * case where one thread starts to load the space cache info, and then
610 * some other thread starts a transaction commit which tries to do an
611 * allocation while the other thread is still loading the space cache
612 * info. The previous loop should have kept us from choosing this block
613 * group, but if we've moved to the state where we will wait on caching
614 * block groups we need to first check if we're doing a fast load here,
615 * so we can wait for it to finish, otherwise we could end up allocating
616 * from a block group who's cache gets evicted for one reason or
617 * another.
618 */
619 while (cache->cached == BTRFS_CACHE_FAST) {
620 struct btrfs_caching_control *ctl;
621
622 ctl = cache->caching_ctl;
1e4f4714 623 refcount_inc(&ctl->count);
291c7d2f
JB
624 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625 spin_unlock(&cache->lock);
626
627 schedule();
628
629 finish_wait(&ctl->wait, &wait);
630 put_caching_control(ctl);
631 spin_lock(&cache->lock);
632 }
633
634 if (cache->cached != BTRFS_CACHE_NO) {
635 spin_unlock(&cache->lock);
636 kfree(caching_ctl);
11833d66 637 return 0;
291c7d2f
JB
638 }
639 WARN_ON(cache->caching_ctl);
640 cache->caching_ctl = caching_ctl;
641 cache->cached = BTRFS_CACHE_FAST;
642 spin_unlock(&cache->lock);
11833d66 643
d8953d69 644 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 645 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
646 ret = load_free_space_cache(fs_info, cache);
647
648 spin_lock(&cache->lock);
649 if (ret == 1) {
291c7d2f 650 cache->caching_ctl = NULL;
9d66e233
JB
651 cache->cached = BTRFS_CACHE_FINISHED;
652 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 653 caching_ctl->progress = (u64)-1;
9d66e233 654 } else {
291c7d2f
JB
655 if (load_cache_only) {
656 cache->caching_ctl = NULL;
657 cache->cached = BTRFS_CACHE_NO;
658 } else {
659 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 660 cache->has_caching_ctl = 1;
291c7d2f 661 }
9d66e233
JB
662 }
663 spin_unlock(&cache->lock);
d0bd4560
JB
664#ifdef CONFIG_BTRFS_DEBUG
665 if (ret == 1 &&
2ff7e61e 666 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
667 u64 bytes_used;
668
669 spin_lock(&cache->space_info->lock);
670 spin_lock(&cache->lock);
671 bytes_used = cache->key.offset -
672 btrfs_block_group_used(&cache->item);
673 cache->space_info->bytes_used += bytes_used >> 1;
674 spin_unlock(&cache->lock);
675 spin_unlock(&cache->space_info->lock);
2ff7e61e 676 fragment_free_space(cache);
d0bd4560
JB
677 }
678#endif
cb83b7b8
JB
679 mutex_unlock(&caching_ctl->mutex);
680
291c7d2f 681 wake_up(&caching_ctl->wait);
3c14874a 682 if (ret == 1) {
291c7d2f 683 put_caching_control(caching_ctl);
9e715da8 684 free_excluded_extents(cache);
9d66e233 685 return 0;
3c14874a 686 }
291c7d2f
JB
687 } else {
688 /*
1e144fb8
OS
689 * We're either using the free space tree or no caching at all.
690 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
691 */
692 spin_lock(&cache->lock);
693 if (load_cache_only) {
694 cache->caching_ctl = NULL;
695 cache->cached = BTRFS_CACHE_NO;
696 } else {
697 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 698 cache->has_caching_ctl = 1;
291c7d2f
JB
699 }
700 spin_unlock(&cache->lock);
701 wake_up(&caching_ctl->wait);
9d66e233
JB
702 }
703
291c7d2f
JB
704 if (load_cache_only) {
705 put_caching_control(caching_ctl);
11833d66 706 return 0;
817d52f8 707 }
817d52f8 708
9e351cc8 709 down_write(&fs_info->commit_root_sem);
1e4f4714 710 refcount_inc(&caching_ctl->count);
11833d66 711 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 712 up_write(&fs_info->commit_root_sem);
11833d66 713
11dfe35a 714 btrfs_get_block_group(cache);
11833d66 715
e66f0bb1 716 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 717
ef8bbdfe 718 return ret;
e37c9e69
CM
719}
720
0f9dd46c
JB
721/*
722 * return the block group that starts at or after bytenr
723 */
d397712b
CM
724static struct btrfs_block_group_cache *
725btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 726{
e2c89907 727 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
728}
729
0f9dd46c 730/*
9f55684c 731 * return the block group that contains the given bytenr
0f9dd46c 732 */
d397712b
CM
733struct btrfs_block_group_cache *btrfs_lookup_block_group(
734 struct btrfs_fs_info *info,
735 u64 bytenr)
be744175 736{
e2c89907 737 return block_group_cache_tree_search(info, bytenr, 1);
be744175 738}
0b86a832 739
0f9dd46c
JB
740static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
741 u64 flags)
6324fbf3 742{
0f9dd46c 743 struct list_head *head = &info->space_info;
0f9dd46c 744 struct btrfs_space_info *found;
4184ea7f 745
52ba6929 746 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 747
4184ea7f
CM
748 rcu_read_lock();
749 list_for_each_entry_rcu(found, head, list) {
67377734 750 if (found->flags & flags) {
4184ea7f 751 rcu_read_unlock();
0f9dd46c 752 return found;
4184ea7f 753 }
0f9dd46c 754 }
4184ea7f 755 rcu_read_unlock();
0f9dd46c 756 return NULL;
6324fbf3
CM
757}
758
0d9f824d 759static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
29d2b84c 760 bool metadata, u64 root_objectid)
0d9f824d
OS
761{
762 struct btrfs_space_info *space_info;
763 u64 flags;
764
29d2b84c 765 if (metadata) {
0d9f824d
OS
766 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
767 flags = BTRFS_BLOCK_GROUP_SYSTEM;
768 else
769 flags = BTRFS_BLOCK_GROUP_METADATA;
770 } else {
771 flags = BTRFS_BLOCK_GROUP_DATA;
772 }
773
774 space_info = __find_space_info(fs_info, flags);
55e8196a 775 ASSERT(space_info);
dec59fa3
EL
776 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
777 BTRFS_TOTAL_BYTES_PINNED_BATCH);
0d9f824d
OS
778}
779
4184ea7f
CM
780/*
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
783 */
784void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785{
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
788
789 rcu_read_lock();
790 list_for_each_entry_rcu(found, head, list)
791 found->full = 0;
792 rcu_read_unlock();
793}
794
1a4ed8fd 795/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 796int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
797{
798 int ret;
799 struct btrfs_key key;
31840ae1 800 struct btrfs_path *path;
e02119d5 801
31840ae1 802 path = btrfs_alloc_path();
d8926bb3
MF
803 if (!path)
804 return -ENOMEM;
805
e02119d5
CM
806 key.objectid = start;
807 key.offset = len;
3173a18f 808 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 810 btrfs_free_path(path);
7bb86316
CM
811 return ret;
812}
813
a22285a6 814/*
3173a18f 815 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
816 *
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
822 */
823int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 824 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 825 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
826{
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
833 u32 item_size;
834 u64 num_refs;
835 u64 extent_flags;
836 int ret;
837
3173a18f
JB
838 /*
839 * If we don't have skinny metadata, don't bother doing anything
840 * different
841 */
0b246afa
JM
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
3173a18f
JB
844 metadata = 0;
845 }
846
a22285a6
YZ
847 path = btrfs_alloc_path();
848 if (!path)
849 return -ENOMEM;
850
a22285a6
YZ
851 if (!trans) {
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
854 }
639eefc8
FDBM
855
856search_again:
857 key.objectid = bytenr;
858 key.offset = offset;
859 if (metadata)
860 key.type = BTRFS_METADATA_ITEM_KEY;
861 else
862 key.type = BTRFS_EXTENT_ITEM_KEY;
863
0b246afa 864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
865 if (ret < 0)
866 goto out_free;
867
3173a18f 868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
869 if (path->slots[0]) {
870 path->slots[0]--;
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 path->slots[0]);
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 875 key.offset == fs_info->nodesize)
74be9510
FDBM
876 ret = 0;
877 }
3173a18f
JB
878 }
879
a22285a6
YZ
880 if (ret == 0) {
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
888 } else {
ba3c2b19
NB
889 ret = -EINVAL;
890 btrfs_print_v0_err(fs_info);
891 if (trans)
892 btrfs_abort_transaction(trans, ret);
893 else
894 btrfs_handle_fs_error(fs_info, ret, NULL);
895
896 goto out_free;
a22285a6 897 }
ba3c2b19 898
a22285a6
YZ
899 BUG_ON(num_refs == 0);
900 } else {
901 num_refs = 0;
902 extent_flags = 0;
903 ret = 0;
904 }
905
906 if (!trans)
907 goto out;
908
909 delayed_refs = &trans->transaction->delayed_refs;
910 spin_lock(&delayed_refs->lock);
f72ad18e 911 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
912 if (head) {
913 if (!mutex_trylock(&head->mutex)) {
d278850e 914 refcount_inc(&head->refs);
a22285a6
YZ
915 spin_unlock(&delayed_refs->lock);
916
b3b4aa74 917 btrfs_release_path(path);
a22285a6 918
8cc33e5c
DS
919 /*
920 * Mutex was contended, block until it's released and try
921 * again
922 */
a22285a6
YZ
923 mutex_lock(&head->mutex);
924 mutex_unlock(&head->mutex);
d278850e 925 btrfs_put_delayed_ref_head(head);
639eefc8 926 goto search_again;
a22285a6 927 }
d7df2c79 928 spin_lock(&head->lock);
a22285a6
YZ
929 if (head->extent_op && head->extent_op->update_flags)
930 extent_flags |= head->extent_op->flags_to_set;
931 else
932 BUG_ON(num_refs == 0);
933
d278850e 934 num_refs += head->ref_mod;
d7df2c79 935 spin_unlock(&head->lock);
a22285a6
YZ
936 mutex_unlock(&head->mutex);
937 }
938 spin_unlock(&delayed_refs->lock);
939out:
940 WARN_ON(num_refs == 0);
941 if (refs)
942 *refs = num_refs;
943 if (flags)
944 *flags = extent_flags;
945out_free:
946 btrfs_free_path(path);
947 return ret;
948}
949
d8d5f3e1
CM
950/*
951 * Back reference rules. Back refs have three main goals:
952 *
953 * 1) differentiate between all holders of references to an extent so that
954 * when a reference is dropped we can make sure it was a valid reference
955 * before freeing the extent.
956 *
957 * 2) Provide enough information to quickly find the holders of an extent
958 * if we notice a given block is corrupted or bad.
959 *
960 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
961 * maintenance. This is actually the same as #2, but with a slightly
962 * different use case.
963 *
5d4f98a2
YZ
964 * There are two kinds of back refs. The implicit back refs is optimized
965 * for pointers in non-shared tree blocks. For a given pointer in a block,
966 * back refs of this kind provide information about the block's owner tree
967 * and the pointer's key. These information allow us to find the block by
968 * b-tree searching. The full back refs is for pointers in tree blocks not
969 * referenced by their owner trees. The location of tree block is recorded
970 * in the back refs. Actually the full back refs is generic, and can be
971 * used in all cases the implicit back refs is used. The major shortcoming
972 * of the full back refs is its overhead. Every time a tree block gets
973 * COWed, we have to update back refs entry for all pointers in it.
974 *
975 * For a newly allocated tree block, we use implicit back refs for
976 * pointers in it. This means most tree related operations only involve
977 * implicit back refs. For a tree block created in old transaction, the
978 * only way to drop a reference to it is COW it. So we can detect the
979 * event that tree block loses its owner tree's reference and do the
980 * back refs conversion.
981 *
01327610 982 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
983 *
984 * The reference count of the block is one and the tree is the block's
985 * owner tree. Nothing to do in this case.
986 *
987 * The reference count of the block is one and the tree is not the
988 * block's owner tree. In this case, full back refs is used for pointers
989 * in the block. Remove these full back refs, add implicit back refs for
990 * every pointers in the new block.
991 *
992 * The reference count of the block is greater than one and the tree is
993 * the block's owner tree. In this case, implicit back refs is used for
994 * pointers in the block. Add full back refs for every pointers in the
995 * block, increase lower level extents' reference counts. The original
996 * implicit back refs are entailed to the new block.
997 *
998 * The reference count of the block is greater than one and the tree is
999 * not the block's owner tree. Add implicit back refs for every pointer in
1000 * the new block, increase lower level extents' reference count.
1001 *
1002 * Back Reference Key composing:
1003 *
1004 * The key objectid corresponds to the first byte in the extent,
1005 * The key type is used to differentiate between types of back refs.
1006 * There are different meanings of the key offset for different types
1007 * of back refs.
1008 *
d8d5f3e1
CM
1009 * File extents can be referenced by:
1010 *
1011 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1012 * - different files inside a single subvolume
d8d5f3e1
CM
1013 * - different offsets inside a file (bookend extents in file.c)
1014 *
5d4f98a2 1015 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1016 *
1017 * - Objectid of the subvolume root
d8d5f3e1 1018 * - objectid of the file holding the reference
5d4f98a2
YZ
1019 * - original offset in the file
1020 * - how many bookend extents
d8d5f3e1 1021 *
5d4f98a2
YZ
1022 * The key offset for the implicit back refs is hash of the first
1023 * three fields.
d8d5f3e1 1024 *
5d4f98a2 1025 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1026 *
5d4f98a2 1027 * - number of pointers in the tree leaf
d8d5f3e1 1028 *
5d4f98a2
YZ
1029 * The key offset for the implicit back refs is the first byte of
1030 * the tree leaf
d8d5f3e1 1031 *
5d4f98a2
YZ
1032 * When a file extent is allocated, The implicit back refs is used.
1033 * the fields are filled in:
d8d5f3e1 1034 *
5d4f98a2 1035 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1036 *
5d4f98a2
YZ
1037 * When a file extent is removed file truncation, we find the
1038 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1039 *
5d4f98a2 1040 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1041 *
5d4f98a2 1042 * Btree extents can be referenced by:
d8d5f3e1 1043 *
5d4f98a2 1044 * - Different subvolumes
d8d5f3e1 1045 *
5d4f98a2
YZ
1046 * Both the implicit back refs and the full back refs for tree blocks
1047 * only consist of key. The key offset for the implicit back refs is
1048 * objectid of block's owner tree. The key offset for the full back refs
1049 * is the first byte of parent block.
d8d5f3e1 1050 *
5d4f98a2
YZ
1051 * When implicit back refs is used, information about the lowest key and
1052 * level of the tree block are required. These information are stored in
1053 * tree block info structure.
d8d5f3e1 1054 */
31840ae1 1055
167ce953
LB
1056/*
1057 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
52042d8e 1058 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
167ce953
LB
1059 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1060 */
1061int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1062 struct btrfs_extent_inline_ref *iref,
1063 enum btrfs_inline_ref_type is_data)
1064{
1065 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1066 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1067
1068 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1069 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1070 type == BTRFS_SHARED_DATA_REF_KEY ||
1071 type == BTRFS_EXTENT_DATA_REF_KEY) {
1072 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1073 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1074 return type;
64ecdb64
LB
1075 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1076 ASSERT(eb->fs_info);
1077 /*
1078 * Every shared one has parent tree
1079 * block, which must be aligned to
1080 * nodesize.
1081 */
1082 if (offset &&
1083 IS_ALIGNED(offset, eb->fs_info->nodesize))
1084 return type;
1085 }
167ce953 1086 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1087 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1088 return type;
64ecdb64
LB
1089 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1090 ASSERT(eb->fs_info);
1091 /*
1092 * Every shared one has parent tree
1093 * block, which must be aligned to
1094 * nodesize.
1095 */
1096 if (offset &&
1097 IS_ALIGNED(offset, eb->fs_info->nodesize))
1098 return type;
1099 }
167ce953
LB
1100 } else {
1101 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1102 return type;
1103 }
1104 }
1105
1106 btrfs_print_leaf((struct extent_buffer *)eb);
1107 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1108 eb->start, type);
1109 WARN_ON(1);
1110
1111 return BTRFS_REF_TYPE_INVALID;
1112}
1113
5d4f98a2
YZ
1114static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1115{
1116 u32 high_crc = ~(u32)0;
1117 u32 low_crc = ~(u32)0;
1118 __le64 lenum;
1119
1120 lenum = cpu_to_le64(root_objectid);
9678c543 1121 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1122 lenum = cpu_to_le64(owner);
9678c543 1123 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1124 lenum = cpu_to_le64(offset);
9678c543 1125 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1126
1127 return ((u64)high_crc << 31) ^ (u64)low_crc;
1128}
1129
1130static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1131 struct btrfs_extent_data_ref *ref)
1132{
1133 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1134 btrfs_extent_data_ref_objectid(leaf, ref),
1135 btrfs_extent_data_ref_offset(leaf, ref));
1136}
1137
1138static int match_extent_data_ref(struct extent_buffer *leaf,
1139 struct btrfs_extent_data_ref *ref,
1140 u64 root_objectid, u64 owner, u64 offset)
1141{
1142 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1143 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1144 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1145 return 0;
1146 return 1;
1147}
1148
1149static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1150 struct btrfs_path *path,
1151 u64 bytenr, u64 parent,
1152 u64 root_objectid,
1153 u64 owner, u64 offset)
1154{
bd1d53ef 1155 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2
YZ
1156 struct btrfs_key key;
1157 struct btrfs_extent_data_ref *ref;
31840ae1 1158 struct extent_buffer *leaf;
5d4f98a2 1159 u32 nritems;
74493f7a 1160 int ret;
5d4f98a2
YZ
1161 int recow;
1162 int err = -ENOENT;
74493f7a 1163
31840ae1 1164 key.objectid = bytenr;
5d4f98a2
YZ
1165 if (parent) {
1166 key.type = BTRFS_SHARED_DATA_REF_KEY;
1167 key.offset = parent;
1168 } else {
1169 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1170 key.offset = hash_extent_data_ref(root_objectid,
1171 owner, offset);
1172 }
1173again:
1174 recow = 0;
1175 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1176 if (ret < 0) {
1177 err = ret;
1178 goto fail;
1179 }
31840ae1 1180
5d4f98a2
YZ
1181 if (parent) {
1182 if (!ret)
1183 return 0;
5d4f98a2 1184 goto fail;
31840ae1
ZY
1185 }
1186
1187 leaf = path->nodes[0];
5d4f98a2
YZ
1188 nritems = btrfs_header_nritems(leaf);
1189 while (1) {
1190 if (path->slots[0] >= nritems) {
1191 ret = btrfs_next_leaf(root, path);
1192 if (ret < 0)
1193 err = ret;
1194 if (ret)
1195 goto fail;
1196
1197 leaf = path->nodes[0];
1198 nritems = btrfs_header_nritems(leaf);
1199 recow = 1;
1200 }
1201
1202 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1203 if (key.objectid != bytenr ||
1204 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1205 goto fail;
1206
1207 ref = btrfs_item_ptr(leaf, path->slots[0],
1208 struct btrfs_extent_data_ref);
1209
1210 if (match_extent_data_ref(leaf, ref, root_objectid,
1211 owner, offset)) {
1212 if (recow) {
b3b4aa74 1213 btrfs_release_path(path);
5d4f98a2
YZ
1214 goto again;
1215 }
1216 err = 0;
1217 break;
1218 }
1219 path->slots[0]++;
31840ae1 1220 }
5d4f98a2
YZ
1221fail:
1222 return err;
31840ae1
ZY
1223}
1224
5d4f98a2 1225static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1226 struct btrfs_path *path,
1227 u64 bytenr, u64 parent,
1228 u64 root_objectid, u64 owner,
1229 u64 offset, int refs_to_add)
31840ae1 1230{
62b895af 1231 struct btrfs_root *root = trans->fs_info->extent_root;
31840ae1
ZY
1232 struct btrfs_key key;
1233 struct extent_buffer *leaf;
5d4f98a2 1234 u32 size;
31840ae1
ZY
1235 u32 num_refs;
1236 int ret;
74493f7a 1237
74493f7a 1238 key.objectid = bytenr;
5d4f98a2
YZ
1239 if (parent) {
1240 key.type = BTRFS_SHARED_DATA_REF_KEY;
1241 key.offset = parent;
1242 size = sizeof(struct btrfs_shared_data_ref);
1243 } else {
1244 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1245 key.offset = hash_extent_data_ref(root_objectid,
1246 owner, offset);
1247 size = sizeof(struct btrfs_extent_data_ref);
1248 }
74493f7a 1249
5d4f98a2
YZ
1250 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1251 if (ret && ret != -EEXIST)
1252 goto fail;
1253
1254 leaf = path->nodes[0];
1255 if (parent) {
1256 struct btrfs_shared_data_ref *ref;
31840ae1 1257 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1258 struct btrfs_shared_data_ref);
1259 if (ret == 0) {
1260 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1261 } else {
1262 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1263 num_refs += refs_to_add;
1264 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1265 }
5d4f98a2
YZ
1266 } else {
1267 struct btrfs_extent_data_ref *ref;
1268 while (ret == -EEXIST) {
1269 ref = btrfs_item_ptr(leaf, path->slots[0],
1270 struct btrfs_extent_data_ref);
1271 if (match_extent_data_ref(leaf, ref, root_objectid,
1272 owner, offset))
1273 break;
b3b4aa74 1274 btrfs_release_path(path);
5d4f98a2
YZ
1275 key.offset++;
1276 ret = btrfs_insert_empty_item(trans, root, path, &key,
1277 size);
1278 if (ret && ret != -EEXIST)
1279 goto fail;
31840ae1 1280
5d4f98a2
YZ
1281 leaf = path->nodes[0];
1282 }
1283 ref = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_data_ref);
1285 if (ret == 0) {
1286 btrfs_set_extent_data_ref_root(leaf, ref,
1287 root_objectid);
1288 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1289 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1290 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1291 } else {
1292 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1293 num_refs += refs_to_add;
1294 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1295 }
31840ae1 1296 }
5d4f98a2
YZ
1297 btrfs_mark_buffer_dirty(leaf);
1298 ret = 0;
1299fail:
b3b4aa74 1300 btrfs_release_path(path);
7bb86316 1301 return ret;
74493f7a
CM
1302}
1303
5d4f98a2 1304static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2 1305 struct btrfs_path *path,
fcebe456 1306 int refs_to_drop, int *last_ref)
31840ae1 1307{
5d4f98a2
YZ
1308 struct btrfs_key key;
1309 struct btrfs_extent_data_ref *ref1 = NULL;
1310 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1311 struct extent_buffer *leaf;
5d4f98a2 1312 u32 num_refs = 0;
31840ae1
ZY
1313 int ret = 0;
1314
1315 leaf = path->nodes[0];
5d4f98a2
YZ
1316 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1317
1318 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1319 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1322 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1323 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1324 struct btrfs_shared_data_ref);
1325 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
6d8ff4e4 1326 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
ba3c2b19
NB
1327 btrfs_print_v0_err(trans->fs_info);
1328 btrfs_abort_transaction(trans, -EINVAL);
1329 return -EINVAL;
5d4f98a2
YZ
1330 } else {
1331 BUG();
1332 }
1333
56bec294
CM
1334 BUG_ON(num_refs < refs_to_drop);
1335 num_refs -= refs_to_drop;
5d4f98a2 1336
31840ae1 1337 if (num_refs == 0) {
e9f6290d 1338 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
fcebe456 1339 *last_ref = 1;
31840ae1 1340 } else {
5d4f98a2
YZ
1341 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1342 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1343 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1344 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
31840ae1
ZY
1345 btrfs_mark_buffer_dirty(leaf);
1346 }
31840ae1
ZY
1347 return ret;
1348}
1349
9ed0dea0 1350static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1351 struct btrfs_extent_inline_ref *iref)
15916de8 1352{
5d4f98a2
YZ
1353 struct btrfs_key key;
1354 struct extent_buffer *leaf;
1355 struct btrfs_extent_data_ref *ref1;
1356 struct btrfs_shared_data_ref *ref2;
1357 u32 num_refs = 0;
3de28d57 1358 int type;
5d4f98a2
YZ
1359
1360 leaf = path->nodes[0];
1361 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
ba3c2b19
NB
1362
1363 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
5d4f98a2 1364 if (iref) {
3de28d57
LB
1365 /*
1366 * If type is invalid, we should have bailed out earlier than
1367 * this call.
1368 */
1369 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1370 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1371 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1372 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1373 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1374 } else {
1375 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1376 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1377 }
1378 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1379 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1380 struct btrfs_extent_data_ref);
1381 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1382 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1383 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1384 struct btrfs_shared_data_ref);
1385 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
5d4f98a2
YZ
1386 } else {
1387 WARN_ON(1);
1388 }
1389 return num_refs;
1390}
15916de8 1391
5d4f98a2 1392static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1393 struct btrfs_path *path,
1394 u64 bytenr, u64 parent,
1395 u64 root_objectid)
1f3c79a2 1396{
b8582eea 1397 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2 1398 struct btrfs_key key;
1f3c79a2 1399 int ret;
1f3c79a2 1400
5d4f98a2
YZ
1401 key.objectid = bytenr;
1402 if (parent) {
1403 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1404 key.offset = parent;
1405 } else {
1406 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1407 key.offset = root_objectid;
1f3c79a2
LH
1408 }
1409
5d4f98a2
YZ
1410 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1411 if (ret > 0)
1412 ret = -ENOENT;
5d4f98a2 1413 return ret;
1f3c79a2
LH
1414}
1415
5d4f98a2 1416static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1417 struct btrfs_path *path,
1418 u64 bytenr, u64 parent,
1419 u64 root_objectid)
31840ae1 1420{
5d4f98a2 1421 struct btrfs_key key;
31840ae1 1422 int ret;
31840ae1 1423
5d4f98a2
YZ
1424 key.objectid = bytenr;
1425 if (parent) {
1426 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 key.offset = parent;
1428 } else {
1429 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1430 key.offset = root_objectid;
1431 }
1432
10728404 1433 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
87bde3cd 1434 path, &key, 0);
b3b4aa74 1435 btrfs_release_path(path);
31840ae1
ZY
1436 return ret;
1437}
1438
5d4f98a2 1439static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1440{
5d4f98a2
YZ
1441 int type;
1442 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1443 if (parent > 0)
1444 type = BTRFS_SHARED_BLOCK_REF_KEY;
1445 else
1446 type = BTRFS_TREE_BLOCK_REF_KEY;
1447 } else {
1448 if (parent > 0)
1449 type = BTRFS_SHARED_DATA_REF_KEY;
1450 else
1451 type = BTRFS_EXTENT_DATA_REF_KEY;
1452 }
1453 return type;
31840ae1 1454}
56bec294 1455
2c47e605
YZ
1456static int find_next_key(struct btrfs_path *path, int level,
1457 struct btrfs_key *key)
56bec294 1458
02217ed2 1459{
2c47e605 1460 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1461 if (!path->nodes[level])
1462 break;
5d4f98a2
YZ
1463 if (path->slots[level] + 1 >=
1464 btrfs_header_nritems(path->nodes[level]))
1465 continue;
1466 if (level == 0)
1467 btrfs_item_key_to_cpu(path->nodes[level], key,
1468 path->slots[level] + 1);
1469 else
1470 btrfs_node_key_to_cpu(path->nodes[level], key,
1471 path->slots[level] + 1);
1472 return 0;
1473 }
1474 return 1;
1475}
037e6390 1476
5d4f98a2
YZ
1477/*
1478 * look for inline back ref. if back ref is found, *ref_ret is set
1479 * to the address of inline back ref, and 0 is returned.
1480 *
1481 * if back ref isn't found, *ref_ret is set to the address where it
1482 * should be inserted, and -ENOENT is returned.
1483 *
1484 * if insert is true and there are too many inline back refs, the path
1485 * points to the extent item, and -EAGAIN is returned.
1486 *
1487 * NOTE: inline back refs are ordered in the same way that back ref
1488 * items in the tree are ordered.
1489 */
1490static noinline_for_stack
1491int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1492 struct btrfs_path *path,
1493 struct btrfs_extent_inline_ref **ref_ret,
1494 u64 bytenr, u64 num_bytes,
1495 u64 parent, u64 root_objectid,
1496 u64 owner, u64 offset, int insert)
1497{
867cc1fb 1498 struct btrfs_fs_info *fs_info = trans->fs_info;
87bde3cd 1499 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1500 struct btrfs_key key;
1501 struct extent_buffer *leaf;
1502 struct btrfs_extent_item *ei;
1503 struct btrfs_extent_inline_ref *iref;
1504 u64 flags;
1505 u64 item_size;
1506 unsigned long ptr;
1507 unsigned long end;
1508 int extra_size;
1509 int type;
1510 int want;
1511 int ret;
1512 int err = 0;
0b246afa 1513 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1514 int needed;
26b8003f 1515
db94535d 1516 key.objectid = bytenr;
31840ae1 1517 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1518 key.offset = num_bytes;
31840ae1 1519
5d4f98a2
YZ
1520 want = extent_ref_type(parent, owner);
1521 if (insert) {
1522 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1523 path->keep_locks = 1;
5d4f98a2
YZ
1524 } else
1525 extra_size = -1;
3173a18f
JB
1526
1527 /*
16d1c062
NB
1528 * Owner is our level, so we can just add one to get the level for the
1529 * block we are interested in.
3173a18f
JB
1530 */
1531 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1532 key.type = BTRFS_METADATA_ITEM_KEY;
1533 key.offset = owner;
1534 }
1535
1536again:
5d4f98a2 1537 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1538 if (ret < 0) {
5d4f98a2
YZ
1539 err = ret;
1540 goto out;
1541 }
3173a18f
JB
1542
1543 /*
1544 * We may be a newly converted file system which still has the old fat
1545 * extent entries for metadata, so try and see if we have one of those.
1546 */
1547 if (ret > 0 && skinny_metadata) {
1548 skinny_metadata = false;
1549 if (path->slots[0]) {
1550 path->slots[0]--;
1551 btrfs_item_key_to_cpu(path->nodes[0], &key,
1552 path->slots[0]);
1553 if (key.objectid == bytenr &&
1554 key.type == BTRFS_EXTENT_ITEM_KEY &&
1555 key.offset == num_bytes)
1556 ret = 0;
1557 }
1558 if (ret) {
9ce49a0b 1559 key.objectid = bytenr;
3173a18f
JB
1560 key.type = BTRFS_EXTENT_ITEM_KEY;
1561 key.offset = num_bytes;
1562 btrfs_release_path(path);
1563 goto again;
1564 }
1565 }
1566
79787eaa
JM
1567 if (ret && !insert) {
1568 err = -ENOENT;
1569 goto out;
fae7f21c 1570 } else if (WARN_ON(ret)) {
492104c8 1571 err = -EIO;
492104c8 1572 goto out;
79787eaa 1573 }
5d4f98a2
YZ
1574
1575 leaf = path->nodes[0];
1576 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6d8ff4e4 1577 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
1578 err = -EINVAL;
1579 btrfs_print_v0_err(fs_info);
1580 btrfs_abort_transaction(trans, err);
1581 goto out;
1582 }
5d4f98a2 1583
5d4f98a2
YZ
1584 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1585 flags = btrfs_extent_flags(leaf, ei);
1586
1587 ptr = (unsigned long)(ei + 1);
1588 end = (unsigned long)ei + item_size;
1589
3173a18f 1590 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1591 ptr += sizeof(struct btrfs_tree_block_info);
1592 BUG_ON(ptr > end);
5d4f98a2
YZ
1593 }
1594
3de28d57
LB
1595 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1596 needed = BTRFS_REF_TYPE_DATA;
1597 else
1598 needed = BTRFS_REF_TYPE_BLOCK;
1599
5d4f98a2
YZ
1600 err = -ENOENT;
1601 while (1) {
1602 if (ptr >= end) {
1603 WARN_ON(ptr > end);
1604 break;
1605 }
1606 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1607 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1608 if (type == BTRFS_REF_TYPE_INVALID) {
af431dcb 1609 err = -EUCLEAN;
3de28d57
LB
1610 goto out;
1611 }
1612
5d4f98a2
YZ
1613 if (want < type)
1614 break;
1615 if (want > type) {
1616 ptr += btrfs_extent_inline_ref_size(type);
1617 continue;
1618 }
1619
1620 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1621 struct btrfs_extent_data_ref *dref;
1622 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1623 if (match_extent_data_ref(leaf, dref, root_objectid,
1624 owner, offset)) {
1625 err = 0;
1626 break;
1627 }
1628 if (hash_extent_data_ref_item(leaf, dref) <
1629 hash_extent_data_ref(root_objectid, owner, offset))
1630 break;
1631 } else {
1632 u64 ref_offset;
1633 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1634 if (parent > 0) {
1635 if (parent == ref_offset) {
1636 err = 0;
1637 break;
1638 }
1639 if (ref_offset < parent)
1640 break;
1641 } else {
1642 if (root_objectid == ref_offset) {
1643 err = 0;
1644 break;
1645 }
1646 if (ref_offset < root_objectid)
1647 break;
1648 }
1649 }
1650 ptr += btrfs_extent_inline_ref_size(type);
1651 }
1652 if (err == -ENOENT && insert) {
1653 if (item_size + extra_size >=
1654 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1655 err = -EAGAIN;
1656 goto out;
1657 }
1658 /*
1659 * To add new inline back ref, we have to make sure
1660 * there is no corresponding back ref item.
1661 * For simplicity, we just do not add new inline back
1662 * ref if there is any kind of item for this block
1663 */
2c47e605
YZ
1664 if (find_next_key(path, 0, &key) == 0 &&
1665 key.objectid == bytenr &&
85d4198e 1666 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1667 err = -EAGAIN;
1668 goto out;
1669 }
1670 }
1671 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1672out:
85d4198e 1673 if (insert) {
5d4f98a2
YZ
1674 path->keep_locks = 0;
1675 btrfs_unlock_up_safe(path, 1);
1676 }
1677 return err;
1678}
1679
1680/*
1681 * helper to add new inline back ref
1682 */
1683static noinline_for_stack
87bde3cd 1684void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1685 struct btrfs_path *path,
1686 struct btrfs_extent_inline_ref *iref,
1687 u64 parent, u64 root_objectid,
1688 u64 owner, u64 offset, int refs_to_add,
1689 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1690{
1691 struct extent_buffer *leaf;
1692 struct btrfs_extent_item *ei;
1693 unsigned long ptr;
1694 unsigned long end;
1695 unsigned long item_offset;
1696 u64 refs;
1697 int size;
1698 int type;
5d4f98a2
YZ
1699
1700 leaf = path->nodes[0];
1701 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1702 item_offset = (unsigned long)iref - (unsigned long)ei;
1703
1704 type = extent_ref_type(parent, owner);
1705 size = btrfs_extent_inline_ref_size(type);
1706
87bde3cd 1707 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1708
1709 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1710 refs = btrfs_extent_refs(leaf, ei);
1711 refs += refs_to_add;
1712 btrfs_set_extent_refs(leaf, ei, refs);
1713 if (extent_op)
1714 __run_delayed_extent_op(extent_op, leaf, ei);
1715
1716 ptr = (unsigned long)ei + item_offset;
1717 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1718 if (ptr < end - size)
1719 memmove_extent_buffer(leaf, ptr + size, ptr,
1720 end - size - ptr);
1721
1722 iref = (struct btrfs_extent_inline_ref *)ptr;
1723 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1724 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1725 struct btrfs_extent_data_ref *dref;
1726 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1727 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1728 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1729 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1730 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1731 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1732 struct btrfs_shared_data_ref *sref;
1733 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1734 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1735 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1736 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1737 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1738 } else {
1739 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1740 }
1741 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1742}
1743
1744static int lookup_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1745 struct btrfs_path *path,
1746 struct btrfs_extent_inline_ref **ref_ret,
1747 u64 bytenr, u64 num_bytes, u64 parent,
1748 u64 root_objectid, u64 owner, u64 offset)
1749{
1750 int ret;
1751
867cc1fb
NB
1752 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1753 num_bytes, parent, root_objectid,
1754 owner, offset, 0);
5d4f98a2 1755 if (ret != -ENOENT)
54aa1f4d 1756 return ret;
5d4f98a2 1757
b3b4aa74 1758 btrfs_release_path(path);
5d4f98a2
YZ
1759 *ref_ret = NULL;
1760
1761 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
b8582eea
NB
1762 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1763 root_objectid);
5d4f98a2 1764 } else {
bd1d53ef
NB
1765 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1766 root_objectid, owner, offset);
b9473439 1767 }
5d4f98a2
YZ
1768 return ret;
1769}
31840ae1 1770
5d4f98a2
YZ
1771/*
1772 * helper to update/remove inline back ref
1773 */
1774static noinline_for_stack
61a18f1c 1775void update_inline_extent_backref(struct btrfs_path *path,
143bede5
JM
1776 struct btrfs_extent_inline_ref *iref,
1777 int refs_to_mod,
fcebe456
JB
1778 struct btrfs_delayed_extent_op *extent_op,
1779 int *last_ref)
5d4f98a2 1780{
61a18f1c
NB
1781 struct extent_buffer *leaf = path->nodes[0];
1782 struct btrfs_fs_info *fs_info = leaf->fs_info;
5d4f98a2
YZ
1783 struct btrfs_extent_item *ei;
1784 struct btrfs_extent_data_ref *dref = NULL;
1785 struct btrfs_shared_data_ref *sref = NULL;
1786 unsigned long ptr;
1787 unsigned long end;
1788 u32 item_size;
1789 int size;
1790 int type;
5d4f98a2
YZ
1791 u64 refs;
1792
5d4f98a2
YZ
1793 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1794 refs = btrfs_extent_refs(leaf, ei);
1795 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1796 refs += refs_to_mod;
1797 btrfs_set_extent_refs(leaf, ei, refs);
1798 if (extent_op)
1799 __run_delayed_extent_op(extent_op, leaf, ei);
1800
3de28d57
LB
1801 /*
1802 * If type is invalid, we should have bailed out after
1803 * lookup_inline_extent_backref().
1804 */
1805 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1806 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1807
1808 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1809 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1810 refs = btrfs_extent_data_ref_count(leaf, dref);
1811 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1812 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1813 refs = btrfs_shared_data_ref_count(leaf, sref);
1814 } else {
1815 refs = 1;
1816 BUG_ON(refs_to_mod != -1);
56bec294 1817 }
31840ae1 1818
5d4f98a2
YZ
1819 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1820 refs += refs_to_mod;
1821
1822 if (refs > 0) {
1823 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1824 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1825 else
1826 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1827 } else {
fcebe456 1828 *last_ref = 1;
5d4f98a2
YZ
1829 size = btrfs_extent_inline_ref_size(type);
1830 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1831 ptr = (unsigned long)iref;
1832 end = (unsigned long)ei + item_size;
1833 if (ptr + size < end)
1834 memmove_extent_buffer(leaf, ptr, ptr + size,
1835 end - ptr - size);
1836 item_size -= size;
87bde3cd 1837 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1838 }
1839 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1840}
1841
1842static noinline_for_stack
1843int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1844 struct btrfs_path *path,
1845 u64 bytenr, u64 num_bytes, u64 parent,
1846 u64 root_objectid, u64 owner,
1847 u64 offset, int refs_to_add,
1848 struct btrfs_delayed_extent_op *extent_op)
1849{
1850 struct btrfs_extent_inline_ref *iref;
1851 int ret;
1852
867cc1fb
NB
1853 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1854 num_bytes, parent, root_objectid,
1855 owner, offset, 1);
5d4f98a2
YZ
1856 if (ret == 0) {
1857 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
61a18f1c
NB
1858 update_inline_extent_backref(path, iref, refs_to_add,
1859 extent_op, NULL);
5d4f98a2 1860 } else if (ret == -ENOENT) {
a639cdeb 1861 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
143bede5
JM
1862 root_objectid, owner, offset,
1863 refs_to_add, extent_op);
1864 ret = 0;
771ed689 1865 }
5d4f98a2
YZ
1866 return ret;
1867}
31840ae1 1868
5d4f98a2 1869static int insert_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1870 struct btrfs_path *path,
1871 u64 bytenr, u64 parent, u64 root_objectid,
1872 u64 owner, u64 offset, int refs_to_add)
1873{
1874 int ret;
1875 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1876 BUG_ON(refs_to_add != 1);
10728404
NB
1877 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1878 root_objectid);
5d4f98a2 1879 } else {
62b895af
NB
1880 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1881 root_objectid, owner, offset,
1882 refs_to_add);
5d4f98a2
YZ
1883 }
1884 return ret;
1885}
56bec294 1886
5d4f98a2 1887static int remove_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1888 struct btrfs_path *path,
1889 struct btrfs_extent_inline_ref *iref,
fcebe456 1890 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1891{
143bede5 1892 int ret = 0;
b9473439 1893
5d4f98a2
YZ
1894 BUG_ON(!is_data && refs_to_drop != 1);
1895 if (iref) {
61a18f1c
NB
1896 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1897 last_ref);
5d4f98a2 1898 } else if (is_data) {
e9f6290d 1899 ret = remove_extent_data_ref(trans, path, refs_to_drop,
fcebe456 1900 last_ref);
5d4f98a2 1901 } else {
fcebe456 1902 *last_ref = 1;
87cc7a8a 1903 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
5d4f98a2
YZ
1904 }
1905 return ret;
1906}
1907
86557861 1908#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1909static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1910 u64 *discarded_bytes)
5d4f98a2 1911{
86557861
JM
1912 int j, ret = 0;
1913 u64 bytes_left, end;
4d89d377 1914 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1915
4d89d377
JM
1916 if (WARN_ON(start != aligned_start)) {
1917 len -= aligned_start - start;
1918 len = round_down(len, 1 << 9);
1919 start = aligned_start;
1920 }
d04c6b88 1921
4d89d377 1922 *discarded_bytes = 0;
86557861
JM
1923
1924 if (!len)
1925 return 0;
1926
1927 end = start + len;
1928 bytes_left = len;
1929
1930 /* Skip any superblocks on this device. */
1931 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1932 u64 sb_start = btrfs_sb_offset(j);
1933 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1934 u64 size = sb_start - start;
1935
1936 if (!in_range(sb_start, start, bytes_left) &&
1937 !in_range(sb_end, start, bytes_left) &&
1938 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1939 continue;
1940
1941 /*
1942 * Superblock spans beginning of range. Adjust start and
1943 * try again.
1944 */
1945 if (sb_start <= start) {
1946 start += sb_end - start;
1947 if (start > end) {
1948 bytes_left = 0;
1949 break;
1950 }
1951 bytes_left = end - start;
1952 continue;
1953 }
1954
1955 if (size) {
1956 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1957 GFP_NOFS, 0);
1958 if (!ret)
1959 *discarded_bytes += size;
1960 else if (ret != -EOPNOTSUPP)
1961 return ret;
1962 }
1963
1964 start = sb_end;
1965 if (start > end) {
1966 bytes_left = 0;
1967 break;
1968 }
1969 bytes_left = end - start;
1970 }
1971
1972 if (bytes_left) {
1973 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1974 GFP_NOFS, 0);
1975 if (!ret)
86557861 1976 *discarded_bytes += bytes_left;
4d89d377 1977 }
d04c6b88 1978 return ret;
5d4f98a2 1979}
5d4f98a2 1980
2ff7e61e 1981int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 1982 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1983{
5d4f98a2 1984 int ret;
5378e607 1985 u64 discarded_bytes = 0;
a1d3c478 1986 struct btrfs_bio *bbio = NULL;
5d4f98a2 1987
e244a0ae 1988
2999241d
FM
1989 /*
1990 * Avoid races with device replace and make sure our bbio has devices
1991 * associated to its stripes that don't go away while we are discarding.
1992 */
0b246afa 1993 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 1994 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
1995 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1996 &bbio, 0);
79787eaa 1997 /* Error condition is -ENOMEM */
5d4f98a2 1998 if (!ret) {
a1d3c478 1999 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2000 int i;
2001
5d4f98a2 2002
a1d3c478 2003 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2004 u64 bytes;
38b5f68e
AJ
2005 struct request_queue *req_q;
2006
627e0873
FM
2007 if (!stripe->dev->bdev) {
2008 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2009 continue;
2010 }
38b5f68e
AJ
2011 req_q = bdev_get_queue(stripe->dev->bdev);
2012 if (!blk_queue_discard(req_q))
d5e2003c
JB
2013 continue;
2014
5378e607
LD
2015 ret = btrfs_issue_discard(stripe->dev->bdev,
2016 stripe->physical,
d04c6b88
JM
2017 stripe->length,
2018 &bytes);
5378e607 2019 if (!ret)
d04c6b88 2020 discarded_bytes += bytes;
5378e607 2021 else if (ret != -EOPNOTSUPP)
79787eaa 2022 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2023
2024 /*
2025 * Just in case we get back EOPNOTSUPP for some reason,
2026 * just ignore the return value so we don't screw up
2027 * people calling discard_extent.
2028 */
2029 ret = 0;
5d4f98a2 2030 }
6e9606d2 2031 btrfs_put_bbio(bbio);
5d4f98a2 2032 }
0b246afa 2033 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2034
2035 if (actual_bytes)
2036 *actual_bytes = discarded_bytes;
2037
5d4f98a2 2038
53b381b3
DW
2039 if (ret == -EOPNOTSUPP)
2040 ret = 0;
5d4f98a2 2041 return ret;
5d4f98a2
YZ
2042}
2043
79787eaa 2044/* Can return -ENOMEM */
5d4f98a2 2045int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2046 struct btrfs_root *root,
5d4f98a2 2047 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2048 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2049{
84f7d8e6 2050 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2051 int old_ref_mod, new_ref_mod;
5d4f98a2 2052 int ret;
66d7e7f0 2053
5d4f98a2
YZ
2054 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2055 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2056
fd708b81
JB
2057 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2058 owner, offset, BTRFS_ADD_DELAYED_REF);
2059
5d4f98a2 2060 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
44e1c47d 2061 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7be07912
OS
2062 num_bytes, parent,
2063 root_objectid, (int)owner,
2064 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2065 &old_ref_mod, &new_ref_mod);
5d4f98a2 2066 } else {
88a979c6 2067 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7be07912
OS
2068 num_bytes, parent,
2069 root_objectid, owner, offset,
d7eae340
OS
2070 0, BTRFS_ADD_DELAYED_REF,
2071 &old_ref_mod, &new_ref_mod);
5d4f98a2 2072 }
d7eae340 2073
29d2b84c
NB
2074 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2075 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2076
2077 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2078 }
d7eae340 2079
5d4f98a2
YZ
2080 return ret;
2081}
2082
bd3c685e
NB
2083/*
2084 * __btrfs_inc_extent_ref - insert backreference for a given extent
2085 *
2086 * @trans: Handle of transaction
2087 *
2088 * @node: The delayed ref node used to get the bytenr/length for
2089 * extent whose references are incremented.
2090 *
2091 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2092 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2093 * bytenr of the parent block. Since new extents are always
2094 * created with indirect references, this will only be the case
2095 * when relocating a shared extent. In that case, root_objectid
2096 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2097 * be 0
2098 *
2099 * @root_objectid: The id of the root where this modification has originated,
2100 * this can be either one of the well-known metadata trees or
2101 * the subvolume id which references this extent.
2102 *
2103 * @owner: For data extents it is the inode number of the owning file.
2104 * For metadata extents this parameter holds the level in the
2105 * tree of the extent.
2106 *
2107 * @offset: For metadata extents the offset is ignored and is currently
2108 * always passed as 0. For data extents it is the fileoffset
2109 * this extent belongs to.
2110 *
2111 * @refs_to_add Number of references to add
2112 *
2113 * @extent_op Pointer to a structure, holding information necessary when
2114 * updating a tree block's flags
2115 *
2116 */
5d4f98a2 2117static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
c682f9b3 2118 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2119 u64 parent, u64 root_objectid,
2120 u64 owner, u64 offset, int refs_to_add,
2121 struct btrfs_delayed_extent_op *extent_op)
2122{
2123 struct btrfs_path *path;
2124 struct extent_buffer *leaf;
2125 struct btrfs_extent_item *item;
fcebe456 2126 struct btrfs_key key;
c682f9b3
QW
2127 u64 bytenr = node->bytenr;
2128 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2129 u64 refs;
2130 int ret;
5d4f98a2
YZ
2131
2132 path = btrfs_alloc_path();
2133 if (!path)
2134 return -ENOMEM;
2135
e4058b54 2136 path->reada = READA_FORWARD;
5d4f98a2
YZ
2137 path->leave_spinning = 1;
2138 /* this will setup the path even if it fails to insert the back ref */
a639cdeb
NB
2139 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2140 parent, root_objectid, owner,
2141 offset, refs_to_add, extent_op);
0ed4792a 2142 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2143 goto out;
fcebe456
JB
2144
2145 /*
2146 * Ok we had -EAGAIN which means we didn't have space to insert and
2147 * inline extent ref, so just update the reference count and add a
2148 * normal backref.
2149 */
5d4f98a2 2150 leaf = path->nodes[0];
fcebe456 2151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2152 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2153 refs = btrfs_extent_refs(leaf, item);
2154 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2155 if (extent_op)
2156 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2157
5d4f98a2 2158 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2159 btrfs_release_path(path);
56bec294 2160
e4058b54 2161 path->reada = READA_FORWARD;
b9473439 2162 path->leave_spinning = 1;
56bec294 2163 /* now insert the actual backref */
37593410
NB
2164 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2165 owner, offset, refs_to_add);
79787eaa 2166 if (ret)
66642832 2167 btrfs_abort_transaction(trans, ret);
5d4f98a2 2168out:
56bec294 2169 btrfs_free_path(path);
30d133fc 2170 return ret;
56bec294
CM
2171}
2172
5d4f98a2 2173static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2174 struct btrfs_delayed_ref_node *node,
2175 struct btrfs_delayed_extent_op *extent_op,
2176 int insert_reserved)
56bec294 2177{
5d4f98a2
YZ
2178 int ret = 0;
2179 struct btrfs_delayed_data_ref *ref;
2180 struct btrfs_key ins;
2181 u64 parent = 0;
2182 u64 ref_root = 0;
2183 u64 flags = 0;
2184
2185 ins.objectid = node->bytenr;
2186 ins.offset = node->num_bytes;
2187 ins.type = BTRFS_EXTENT_ITEM_KEY;
2188
2189 ref = btrfs_delayed_node_to_data_ref(node);
2bf98ef3 2190 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
599c75ec 2191
5d4f98a2
YZ
2192 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2193 parent = ref->parent;
fcebe456 2194 ref_root = ref->root;
5d4f98a2
YZ
2195
2196 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2197 if (extent_op)
5d4f98a2 2198 flags |= extent_op->flags_to_set;
ef89b824
NB
2199 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2200 flags, ref->objectid,
2201 ref->offset, &ins,
2202 node->ref_mod);
5d4f98a2 2203 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2204 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2205 ref->objectid, ref->offset,
2206 node->ref_mod, extent_op);
5d4f98a2 2207 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2208 ret = __btrfs_free_extent(trans, node, parent,
5d4f98a2
YZ
2209 ref_root, ref->objectid,
2210 ref->offset, node->ref_mod,
c682f9b3 2211 extent_op);
5d4f98a2
YZ
2212 } else {
2213 BUG();
2214 }
2215 return ret;
2216}
2217
2218static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2219 struct extent_buffer *leaf,
2220 struct btrfs_extent_item *ei)
2221{
2222 u64 flags = btrfs_extent_flags(leaf, ei);
2223 if (extent_op->update_flags) {
2224 flags |= extent_op->flags_to_set;
2225 btrfs_set_extent_flags(leaf, ei, flags);
2226 }
2227
2228 if (extent_op->update_key) {
2229 struct btrfs_tree_block_info *bi;
2230 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2231 bi = (struct btrfs_tree_block_info *)(ei + 1);
2232 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2233 }
2234}
2235
2236static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
d278850e 2237 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2238 struct btrfs_delayed_extent_op *extent_op)
2239{
20b9a2d6 2240 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
2241 struct btrfs_key key;
2242 struct btrfs_path *path;
2243 struct btrfs_extent_item *ei;
2244 struct extent_buffer *leaf;
2245 u32 item_size;
56bec294 2246 int ret;
5d4f98a2 2247 int err = 0;
b1c79e09 2248 int metadata = !extent_op->is_data;
5d4f98a2 2249
79787eaa
JM
2250 if (trans->aborted)
2251 return 0;
2252
0b246afa 2253 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2254 metadata = 0;
2255
5d4f98a2
YZ
2256 path = btrfs_alloc_path();
2257 if (!path)
2258 return -ENOMEM;
2259
d278850e 2260 key.objectid = head->bytenr;
5d4f98a2 2261
3173a18f 2262 if (metadata) {
3173a18f 2263 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2264 key.offset = extent_op->level;
3173a18f
JB
2265 } else {
2266 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2267 key.offset = head->num_bytes;
3173a18f
JB
2268 }
2269
2270again:
e4058b54 2271 path->reada = READA_FORWARD;
5d4f98a2 2272 path->leave_spinning = 1;
0b246afa 2273 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2274 if (ret < 0) {
2275 err = ret;
2276 goto out;
2277 }
2278 if (ret > 0) {
3173a18f 2279 if (metadata) {
55994887
FDBM
2280 if (path->slots[0] > 0) {
2281 path->slots[0]--;
2282 btrfs_item_key_to_cpu(path->nodes[0], &key,
2283 path->slots[0]);
d278850e 2284 if (key.objectid == head->bytenr &&
55994887 2285 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2286 key.offset == head->num_bytes)
55994887
FDBM
2287 ret = 0;
2288 }
2289 if (ret > 0) {
2290 btrfs_release_path(path);
2291 metadata = 0;
3173a18f 2292
d278850e
JB
2293 key.objectid = head->bytenr;
2294 key.offset = head->num_bytes;
55994887
FDBM
2295 key.type = BTRFS_EXTENT_ITEM_KEY;
2296 goto again;
2297 }
2298 } else {
2299 err = -EIO;
2300 goto out;
3173a18f 2301 }
5d4f98a2
YZ
2302 }
2303
2304 leaf = path->nodes[0];
2305 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ba3c2b19 2306
6d8ff4e4 2307 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
2308 err = -EINVAL;
2309 btrfs_print_v0_err(fs_info);
2310 btrfs_abort_transaction(trans, err);
2311 goto out;
2312 }
2313
5d4f98a2
YZ
2314 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2315 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2316
5d4f98a2
YZ
2317 btrfs_mark_buffer_dirty(leaf);
2318out:
2319 btrfs_free_path(path);
2320 return err;
56bec294
CM
2321}
2322
5d4f98a2 2323static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2324 struct btrfs_delayed_ref_node *node,
2325 struct btrfs_delayed_extent_op *extent_op,
2326 int insert_reserved)
56bec294
CM
2327{
2328 int ret = 0;
5d4f98a2 2329 struct btrfs_delayed_tree_ref *ref;
5d4f98a2
YZ
2330 u64 parent = 0;
2331 u64 ref_root = 0;
56bec294 2332
5d4f98a2 2333 ref = btrfs_delayed_node_to_tree_ref(node);
f97806f2 2334 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
599c75ec 2335
5d4f98a2
YZ
2336 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2337 parent = ref->parent;
fcebe456 2338 ref_root = ref->root;
5d4f98a2 2339
02794222 2340 if (node->ref_mod != 1) {
f97806f2 2341 btrfs_err(trans->fs_info,
02794222
LB
2342 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2343 node->bytenr, node->ref_mod, node->action, ref_root,
2344 parent);
2345 return -EIO;
2346 }
5d4f98a2 2347 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2348 BUG_ON(!extent_op || !extent_op->update_flags);
21ebfbe7 2349 ret = alloc_reserved_tree_block(trans, node, extent_op);
5d4f98a2 2350 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2351 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2352 ref->level, 0, 1, extent_op);
5d4f98a2 2353 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2354 ret = __btrfs_free_extent(trans, node, parent, ref_root,
c682f9b3 2355 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2356 } else {
2357 BUG();
2358 }
56bec294
CM
2359 return ret;
2360}
2361
2362/* helper function to actually process a single delayed ref entry */
5d4f98a2 2363static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2364 struct btrfs_delayed_ref_node *node,
2365 struct btrfs_delayed_extent_op *extent_op,
2366 int insert_reserved)
56bec294 2367{
79787eaa
JM
2368 int ret = 0;
2369
857cc2fc
JB
2370 if (trans->aborted) {
2371 if (insert_reserved)
5fac7f9e 2372 btrfs_pin_extent(trans->fs_info, node->bytenr,
857cc2fc 2373 node->num_bytes, 1);
79787eaa 2374 return 0;
857cc2fc 2375 }
79787eaa 2376
5d4f98a2
YZ
2377 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2378 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
f97806f2 2379 ret = run_delayed_tree_ref(trans, node, extent_op,
5d4f98a2
YZ
2380 insert_reserved);
2381 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2382 node->type == BTRFS_SHARED_DATA_REF_KEY)
2bf98ef3 2383 ret = run_delayed_data_ref(trans, node, extent_op,
5d4f98a2
YZ
2384 insert_reserved);
2385 else
2386 BUG();
80ee54bf
JB
2387 if (ret && insert_reserved)
2388 btrfs_pin_extent(trans->fs_info, node->bytenr,
2389 node->num_bytes, 1);
5d4f98a2 2390 return ret;
56bec294
CM
2391}
2392
c6fc2454 2393static inline struct btrfs_delayed_ref_node *
56bec294
CM
2394select_delayed_ref(struct btrfs_delayed_ref_head *head)
2395{
cffc3374
FM
2396 struct btrfs_delayed_ref_node *ref;
2397
e3d03965 2398 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
c6fc2454 2399 return NULL;
d7df2c79 2400
cffc3374
FM
2401 /*
2402 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2403 * This is to prevent a ref count from going down to zero, which deletes
2404 * the extent item from the extent tree, when there still are references
2405 * to add, which would fail because they would not find the extent item.
2406 */
1d57ee94
WX
2407 if (!list_empty(&head->ref_add_list))
2408 return list_first_entry(&head->ref_add_list,
2409 struct btrfs_delayed_ref_node, add_list);
2410
e3d03965 2411 ref = rb_entry(rb_first_cached(&head->ref_tree),
0e0adbcf 2412 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2413 ASSERT(list_empty(&ref->add_list));
2414 return ref;
56bec294
CM
2415}
2416
2eadaa22
JB
2417static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2418 struct btrfs_delayed_ref_head *head)
2419{
2420 spin_lock(&delayed_refs->lock);
2421 head->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 btrfs_delayed_ref_unlock(head);
2425}
2426
bedc6617
JB
2427static struct btrfs_delayed_extent_op *cleanup_extent_op(
2428 struct btrfs_delayed_ref_head *head)
b00e6250
JB
2429{
2430 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
b00e6250
JB
2431
2432 if (!extent_op)
bedc6617
JB
2433 return NULL;
2434
b00e6250 2435 if (head->must_insert_reserved) {
bedc6617 2436 head->extent_op = NULL;
b00e6250 2437 btrfs_free_delayed_extent_op(extent_op);
bedc6617 2438 return NULL;
b00e6250 2439 }
bedc6617
JB
2440 return extent_op;
2441}
2442
2443static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
2444 struct btrfs_delayed_ref_head *head)
2445{
2446 struct btrfs_delayed_extent_op *extent_op;
2447 int ret;
2448
2449 extent_op = cleanup_extent_op(head);
2450 if (!extent_op)
2451 return 0;
2452 head->extent_op = NULL;
b00e6250 2453 spin_unlock(&head->lock);
20b9a2d6 2454 ret = run_delayed_extent_op(trans, head, extent_op);
b00e6250
JB
2455 btrfs_free_delayed_extent_op(extent_op);
2456 return ret ? ret : 1;
2457}
2458
31890da0
JB
2459void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2460 struct btrfs_delayed_ref_root *delayed_refs,
2461 struct btrfs_delayed_ref_head *head)
07c47775 2462{
ba2c4d4e 2463 int nr_items = 1; /* Dropping this ref head update. */
07c47775
JB
2464
2465 if (head->total_ref_mod < 0) {
2466 struct btrfs_space_info *space_info;
2467 u64 flags;
2468
2469 if (head->is_data)
2470 flags = BTRFS_BLOCK_GROUP_DATA;
2471 else if (head->is_system)
2472 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2473 else
2474 flags = BTRFS_BLOCK_GROUP_METADATA;
2475 space_info = __find_space_info(fs_info, flags);
2476 ASSERT(space_info);
2477 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2478 -head->num_bytes,
2479 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2480
ba2c4d4e
JB
2481 /*
2482 * We had csum deletions accounted for in our delayed refs rsv,
2483 * we need to drop the csum leaves for this update from our
2484 * delayed_refs_rsv.
2485 */
07c47775
JB
2486 if (head->is_data) {
2487 spin_lock(&delayed_refs->lock);
2488 delayed_refs->pending_csums -= head->num_bytes;
2489 spin_unlock(&delayed_refs->lock);
ba2c4d4e
JB
2490 nr_items += btrfs_csum_bytes_to_leaves(fs_info,
2491 head->num_bytes);
07c47775
JB
2492 }
2493 }
2494
2495 /* Also free its reserved qgroup space */
2496 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2497 head->qgroup_reserved);
ba2c4d4e 2498 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
07c47775
JB
2499}
2500
194ab0bc 2501static int cleanup_ref_head(struct btrfs_trans_handle *trans,
194ab0bc
JB
2502 struct btrfs_delayed_ref_head *head)
2503{
f9871edd
NB
2504
2505 struct btrfs_fs_info *fs_info = trans->fs_info;
194ab0bc
JB
2506 struct btrfs_delayed_ref_root *delayed_refs;
2507 int ret;
2508
2509 delayed_refs = &trans->transaction->delayed_refs;
2510
bedc6617 2511 ret = run_and_cleanup_extent_op(trans, head);
194ab0bc
JB
2512 if (ret < 0) {
2513 unselect_delayed_ref_head(delayed_refs, head);
2514 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2515 return ret;
2516 } else if (ret) {
2517 return ret;
2518 }
2519
2520 /*
2521 * Need to drop our head ref lock and re-acquire the delayed ref lock
2522 * and then re-check to make sure nobody got added.
2523 */
2524 spin_unlock(&head->lock);
2525 spin_lock(&delayed_refs->lock);
2526 spin_lock(&head->lock);
e3d03965 2527 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
194ab0bc
JB
2528 spin_unlock(&head->lock);
2529 spin_unlock(&delayed_refs->lock);
2530 return 1;
2531 }
d7baffda 2532 btrfs_delete_ref_head(delayed_refs, head);
c1103f7a 2533 spin_unlock(&head->lock);
1e7a1421 2534 spin_unlock(&delayed_refs->lock);
c1103f7a 2535
c1103f7a 2536 if (head->must_insert_reserved) {
d278850e
JB
2537 btrfs_pin_extent(fs_info, head->bytenr,
2538 head->num_bytes, 1);
c1103f7a 2539 if (head->is_data) {
d278850e
JB
2540 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2541 head->num_bytes);
c1103f7a
JB
2542 }
2543 }
2544
31890da0 2545 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
07c47775
JB
2546
2547 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a 2548 btrfs_delayed_ref_unlock(head);
d278850e 2549 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2550 return 0;
2551}
2552
b1cdbcb5
NB
2553static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2554 struct btrfs_trans_handle *trans)
2555{
2556 struct btrfs_delayed_ref_root *delayed_refs =
2557 &trans->transaction->delayed_refs;
2558 struct btrfs_delayed_ref_head *head = NULL;
2559 int ret;
2560
2561 spin_lock(&delayed_refs->lock);
5637c74b 2562 head = btrfs_select_ref_head(delayed_refs);
b1cdbcb5
NB
2563 if (!head) {
2564 spin_unlock(&delayed_refs->lock);
2565 return head;
2566 }
2567
2568 /*
2569 * Grab the lock that says we are going to process all the refs for
2570 * this head
2571 */
9e920a6f 2572 ret = btrfs_delayed_ref_lock(delayed_refs, head);
b1cdbcb5
NB
2573 spin_unlock(&delayed_refs->lock);
2574
2575 /*
2576 * We may have dropped the spin lock to get the head mutex lock, and
2577 * that might have given someone else time to free the head. If that's
2578 * true, it has been removed from our list and we can move on.
2579 */
2580 if (ret == -EAGAIN)
2581 head = ERR_PTR(-EAGAIN);
2582
2583 return head;
2584}
2585
e7261386
NB
2586static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2587 struct btrfs_delayed_ref_head *locked_ref,
2588 unsigned long *run_refs)
2589{
2590 struct btrfs_fs_info *fs_info = trans->fs_info;
2591 struct btrfs_delayed_ref_root *delayed_refs;
2592 struct btrfs_delayed_extent_op *extent_op;
2593 struct btrfs_delayed_ref_node *ref;
2594 int must_insert_reserved = 0;
2595 int ret;
2596
2597 delayed_refs = &trans->transaction->delayed_refs;
2598
0110a4c4
NB
2599 lockdep_assert_held(&locked_ref->mutex);
2600 lockdep_assert_held(&locked_ref->lock);
2601
e7261386
NB
2602 while ((ref = select_delayed_ref(locked_ref))) {
2603 if (ref->seq &&
2604 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2605 spin_unlock(&locked_ref->lock);
2606 unselect_delayed_ref_head(delayed_refs, locked_ref);
2607 return -EAGAIN;
2608 }
2609
2610 (*run_refs)++;
2611 ref->in_tree = 0;
2612 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2613 RB_CLEAR_NODE(&ref->ref_node);
2614 if (!list_empty(&ref->add_list))
2615 list_del(&ref->add_list);
2616 /*
2617 * When we play the delayed ref, also correct the ref_mod on
2618 * head
2619 */
2620 switch (ref->action) {
2621 case BTRFS_ADD_DELAYED_REF:
2622 case BTRFS_ADD_DELAYED_EXTENT:
2623 locked_ref->ref_mod -= ref->ref_mod;
2624 break;
2625 case BTRFS_DROP_DELAYED_REF:
2626 locked_ref->ref_mod += ref->ref_mod;
2627 break;
2628 default:
2629 WARN_ON(1);
2630 }
2631 atomic_dec(&delayed_refs->num_entries);
2632
2633 /*
2634 * Record the must_insert_reserved flag before we drop the
2635 * spin lock.
2636 */
2637 must_insert_reserved = locked_ref->must_insert_reserved;
2638 locked_ref->must_insert_reserved = 0;
2639
2640 extent_op = locked_ref->extent_op;
2641 locked_ref->extent_op = NULL;
2642 spin_unlock(&locked_ref->lock);
2643
2644 ret = run_one_delayed_ref(trans, ref, extent_op,
2645 must_insert_reserved);
2646
2647 btrfs_free_delayed_extent_op(extent_op);
2648 if (ret) {
2649 unselect_delayed_ref_head(delayed_refs, locked_ref);
2650 btrfs_put_delayed_ref(ref);
2651 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2652 ret);
2653 return ret;
2654 }
2655
2656 btrfs_put_delayed_ref(ref);
2657 cond_resched();
2658
2659 spin_lock(&locked_ref->lock);
2660 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2661 }
2662
2663 return 0;
2664}
2665
79787eaa
JM
2666/*
2667 * Returns 0 on success or if called with an already aborted transaction.
2668 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2669 */
d7df2c79 2670static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2671 unsigned long nr)
56bec294 2672{
0a1e458a 2673 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294 2674 struct btrfs_delayed_ref_root *delayed_refs;
56bec294 2675 struct btrfs_delayed_ref_head *locked_ref = NULL;
0a2b2a84 2676 ktime_t start = ktime_get();
56bec294 2677 int ret;
d7df2c79 2678 unsigned long count = 0;
0a2b2a84 2679 unsigned long actual_count = 0;
56bec294
CM
2680
2681 delayed_refs = &trans->transaction->delayed_refs;
0110a4c4 2682 do {
56bec294 2683 if (!locked_ref) {
b1cdbcb5 2684 locked_ref = btrfs_obtain_ref_head(trans);
0110a4c4
NB
2685 if (IS_ERR_OR_NULL(locked_ref)) {
2686 if (PTR_ERR(locked_ref) == -EAGAIN) {
2687 continue;
2688 } else {
2689 break;
2690 }
56bec294 2691 }
0110a4c4 2692 count++;
56bec294 2693 }
2c3cf7d5
FM
2694 /*
2695 * We need to try and merge add/drops of the same ref since we
2696 * can run into issues with relocate dropping the implicit ref
2697 * and then it being added back again before the drop can
2698 * finish. If we merged anything we need to re-loop so we can
2699 * get a good ref.
2700 * Or we can get node references of the same type that weren't
2701 * merged when created due to bumps in the tree mod seq, and
2702 * we need to merge them to prevent adding an inline extent
2703 * backref before dropping it (triggering a BUG_ON at
2704 * insert_inline_extent_backref()).
2705 */
d7df2c79 2706 spin_lock(&locked_ref->lock);
be97f133 2707 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
ae1e206b 2708
0110a4c4
NB
2709 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2710 &actual_count);
2711 if (ret < 0 && ret != -EAGAIN) {
2712 /*
2713 * Error, btrfs_run_delayed_refs_for_head already
2714 * unlocked everything so just bail out
2715 */
2716 return ret;
2717 } else if (!ret) {
2718 /*
2719 * Success, perform the usual cleanup of a processed
2720 * head
2721 */
f9871edd 2722 ret = cleanup_ref_head(trans, locked_ref);
194ab0bc 2723 if (ret > 0 ) {
b00e6250
JB
2724 /* We dropped our lock, we need to loop. */
2725 ret = 0;
d7df2c79 2726 continue;
194ab0bc
JB
2727 } else if (ret) {
2728 return ret;
5d4f98a2 2729 }
22cd2e7d 2730 }
1ce7a5ec 2731
b00e6250 2732 /*
0110a4c4
NB
2733 * Either success case or btrfs_run_delayed_refs_for_head
2734 * returned -EAGAIN, meaning we need to select another head
b00e6250 2735 */
b00e6250 2736
0110a4c4 2737 locked_ref = NULL;
c3e69d58 2738 cond_resched();
0110a4c4 2739 } while ((nr != -1 && count < nr) || locked_ref);
0a2b2a84
JB
2740
2741 /*
2742 * We don't want to include ref heads since we can have empty ref heads
2743 * and those will drastically skew our runtime down since we just do
2744 * accounting, no actual extent tree updates.
2745 */
2746 if (actual_count > 0) {
2747 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2748 u64 avg;
2749
2750 /*
2751 * We weigh the current average higher than our current runtime
2752 * to avoid large swings in the average.
2753 */
2754 spin_lock(&delayed_refs->lock);
2755 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2756 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2757 spin_unlock(&delayed_refs->lock);
2758 }
d7df2c79 2759 return 0;
c3e69d58
CM
2760}
2761
709c0486
AJ
2762#ifdef SCRAMBLE_DELAYED_REFS
2763/*
2764 * Normally delayed refs get processed in ascending bytenr order. This
2765 * correlates in most cases to the order added. To expose dependencies on this
2766 * order, we start to process the tree in the middle instead of the beginning
2767 */
2768static u64 find_middle(struct rb_root *root)
2769{
2770 struct rb_node *n = root->rb_node;
2771 struct btrfs_delayed_ref_node *entry;
2772 int alt = 1;
2773 u64 middle;
2774 u64 first = 0, last = 0;
2775
2776 n = rb_first(root);
2777 if (n) {
2778 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2779 first = entry->bytenr;
2780 }
2781 n = rb_last(root);
2782 if (n) {
2783 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2784 last = entry->bytenr;
2785 }
2786 n = root->rb_node;
2787
2788 while (n) {
2789 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2790 WARN_ON(!entry->in_tree);
2791
2792 middle = entry->bytenr;
2793
2794 if (alt)
2795 n = n->rb_left;
2796 else
2797 n = n->rb_right;
2798
2799 alt = 1 - alt;
2800 }
2801 return middle;
2802}
2803#endif
2804
2ff7e61e 2805static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2806{
2807 u64 num_bytes;
2808
2809 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2810 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2811 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2812 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2813
2814 /*
2815 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2816 * closer to what we're really going to want to use.
1be41b78 2817 */
0b246afa 2818 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2819}
2820
1262133b
JB
2821/*
2822 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2823 * would require to store the csums for that many bytes.
2824 */
2ff7e61e 2825u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2826{
2827 u64 csum_size;
2828 u64 num_csums_per_leaf;
2829 u64 num_csums;
2830
0b246afa 2831 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2832 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2833 (u64)btrfs_super_csum_size(fs_info->super_copy));
2834 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2835 num_csums += num_csums_per_leaf - 1;
2836 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2837 return num_csums;
2838}
2839
64403612 2840bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
1be41b78 2841{
64403612
JB
2842 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
2843 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2844 bool ret = false;
2845 u64 reserved;
1be41b78 2846
64403612
JB
2847 spin_lock(&global_rsv->lock);
2848 reserved = global_rsv->reserved;
2849 spin_unlock(&global_rsv->lock);
1be41b78
JB
2850
2851 /*
64403612
JB
2852 * Since the global reserve is just kind of magic we don't really want
2853 * to rely on it to save our bacon, so if our size is more than the
2854 * delayed_refs_rsv and the global rsv then it's time to think about
2855 * bailing.
1be41b78 2856 */
64403612
JB
2857 spin_lock(&delayed_refs_rsv->lock);
2858 reserved += delayed_refs_rsv->reserved;
2859 if (delayed_refs_rsv->size >= reserved)
2860 ret = true;
2861 spin_unlock(&delayed_refs_rsv->lock);
1be41b78
JB
2862 return ret;
2863}
2864
7c861627 2865int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
0a2b2a84 2866{
0a2b2a84
JB
2867 u64 num_entries =
2868 atomic_read(&trans->transaction->delayed_refs.num_entries);
2869 u64 avg_runtime;
a79b7d4b 2870 u64 val;
0a2b2a84
JB
2871
2872 smp_mb();
7c861627 2873 avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
a79b7d4b 2874 val = num_entries * avg_runtime;
dc1a90c6 2875 if (val >= NSEC_PER_SEC)
0a2b2a84 2876 return 1;
a79b7d4b
CM
2877 if (val >= NSEC_PER_SEC / 2)
2878 return 2;
0a2b2a84 2879
64403612 2880 return btrfs_check_space_for_delayed_refs(trans->fs_info);
0a2b2a84
JB
2881}
2882
a79b7d4b
CM
2883struct async_delayed_refs {
2884 struct btrfs_root *root;
31b9655f 2885 u64 transid;
a79b7d4b
CM
2886 int count;
2887 int error;
2888 int sync;
2889 struct completion wait;
2890 struct btrfs_work work;
2891};
2892
2ff7e61e
JM
2893static inline struct async_delayed_refs *
2894to_async_delayed_refs(struct btrfs_work *work)
2895{
2896 return container_of(work, struct async_delayed_refs, work);
2897}
2898
a79b7d4b
CM
2899static void delayed_ref_async_start(struct btrfs_work *work)
2900{
2ff7e61e 2901 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2902 struct btrfs_trans_handle *trans;
2ff7e61e 2903 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2904 int ret;
2905
0f873eca 2906 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2907 if (btrfs_transaction_blocked(fs_info))
31b9655f 2908 goto done;
31b9655f 2909
0f873eca
CM
2910 trans = btrfs_join_transaction(async->root);
2911 if (IS_ERR(trans)) {
2912 async->error = PTR_ERR(trans);
a79b7d4b
CM
2913 goto done;
2914 }
2915
2916 /*
01327610 2917 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2918 * wait on delayed refs
2919 */
2920 trans->sync = true;
0f873eca
CM
2921
2922 /* Don't bother flushing if we got into a different transaction */
2923 if (trans->transid > async->transid)
2924 goto end;
2925
c79a70b1 2926 ret = btrfs_run_delayed_refs(trans, async->count);
a79b7d4b
CM
2927 if (ret)
2928 async->error = ret;
0f873eca 2929end:
3a45bb20 2930 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2931 if (ret && !async->error)
2932 async->error = ret;
2933done:
2934 if (async->sync)
2935 complete(&async->wait);
2936 else
2937 kfree(async);
2938}
2939
2ff7e61e 2940int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2941 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2942{
2943 struct async_delayed_refs *async;
2944 int ret;
2945
2946 async = kmalloc(sizeof(*async), GFP_NOFS);
2947 if (!async)
2948 return -ENOMEM;
2949
0b246afa 2950 async->root = fs_info->tree_root;
a79b7d4b
CM
2951 async->count = count;
2952 async->error = 0;
31b9655f 2953 async->transid = transid;
a79b7d4b
CM
2954 if (wait)
2955 async->sync = 1;
2956 else
2957 async->sync = 0;
2958 init_completion(&async->wait);
2959
9e0af237
LB
2960 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2961 delayed_ref_async_start, NULL, NULL);
a79b7d4b 2962
0b246afa 2963 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
2964
2965 if (wait) {
2966 wait_for_completion(&async->wait);
2967 ret = async->error;
2968 kfree(async);
2969 return ret;
2970 }
2971 return 0;
2972}
2973
c3e69d58
CM
2974/*
2975 * this starts processing the delayed reference count updates and
2976 * extent insertions we have queued up so far. count can be
2977 * 0, which means to process everything in the tree at the start
2978 * of the run (but not newly added entries), or it can be some target
2979 * number you'd like to process.
79787eaa
JM
2980 *
2981 * Returns 0 on success or if called with an aborted transaction
2982 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2983 */
2984int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 2985 unsigned long count)
c3e69d58 2986{
c79a70b1 2987 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
2988 struct rb_node *node;
2989 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2990 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2991 int ret;
2992 int run_all = count == (unsigned long)-1;
c3e69d58 2993
79787eaa
JM
2994 /* We'll clean this up in btrfs_cleanup_transaction */
2995 if (trans->aborted)
2996 return 0;
2997
0b246afa 2998 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2999 return 0;
3000
c3e69d58 3001 delayed_refs = &trans->transaction->delayed_refs;
26455d33 3002 if (count == 0)
d7df2c79 3003 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3004
c3e69d58 3005again:
709c0486
AJ
3006#ifdef SCRAMBLE_DELAYED_REFS
3007 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3008#endif
0a1e458a 3009 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 3010 if (ret < 0) {
66642832 3011 btrfs_abort_transaction(trans, ret);
d7df2c79 3012 return ret;
eb099670 3013 }
c3e69d58 3014
56bec294 3015 if (run_all) {
d7df2c79 3016 if (!list_empty(&trans->new_bgs))
6c686b35 3017 btrfs_create_pending_block_groups(trans);
ea658bad 3018
d7df2c79 3019 spin_lock(&delayed_refs->lock);
5c9d028b 3020 node = rb_first_cached(&delayed_refs->href_root);
d7df2c79
JB
3021 if (!node) {
3022 spin_unlock(&delayed_refs->lock);
56bec294 3023 goto out;
d7df2c79 3024 }
d278850e
JB
3025 head = rb_entry(node, struct btrfs_delayed_ref_head,
3026 href_node);
3027 refcount_inc(&head->refs);
3028 spin_unlock(&delayed_refs->lock);
e9d0b13b 3029
d278850e
JB
3030 /* Mutex was contended, block until it's released and retry. */
3031 mutex_lock(&head->mutex);
3032 mutex_unlock(&head->mutex);
56bec294 3033
d278850e 3034 btrfs_put_delayed_ref_head(head);
d7df2c79 3035 cond_resched();
56bec294 3036 goto again;
5f39d397 3037 }
54aa1f4d 3038out:
a28ec197
CM
3039 return 0;
3040}
3041
5d4f98a2 3042int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3043 struct btrfs_fs_info *fs_info,
5d4f98a2 3044 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3045 int level, int is_data)
5d4f98a2
YZ
3046{
3047 struct btrfs_delayed_extent_op *extent_op;
3048 int ret;
3049
78a6184a 3050 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3051 if (!extent_op)
3052 return -ENOMEM;
3053
3054 extent_op->flags_to_set = flags;
35b3ad50
DS
3055 extent_op->update_flags = true;
3056 extent_op->update_key = false;
3057 extent_op->is_data = is_data ? true : false;
b1c79e09 3058 extent_op->level = level;
5d4f98a2 3059
0b246afa 3060 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3061 num_bytes, extent_op);
5d4f98a2 3062 if (ret)
78a6184a 3063 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3064 return ret;
3065}
3066
e4c3b2dc 3067static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3068 struct btrfs_path *path,
3069 u64 objectid, u64 offset, u64 bytenr)
3070{
3071 struct btrfs_delayed_ref_head *head;
3072 struct btrfs_delayed_ref_node *ref;
3073 struct btrfs_delayed_data_ref *data_ref;
3074 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3075 struct btrfs_transaction *cur_trans;
0e0adbcf 3076 struct rb_node *node;
5d4f98a2
YZ
3077 int ret = 0;
3078
998ac6d2 3079 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 3080 cur_trans = root->fs_info->running_transaction;
998ac6d2 3081 if (cur_trans)
3082 refcount_inc(&cur_trans->use_count);
3083 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
3084 if (!cur_trans)
3085 return 0;
3086
3087 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3088 spin_lock(&delayed_refs->lock);
f72ad18e 3089 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3090 if (!head) {
3091 spin_unlock(&delayed_refs->lock);
998ac6d2 3092 btrfs_put_transaction(cur_trans);
d7df2c79
JB
3093 return 0;
3094 }
5d4f98a2
YZ
3095
3096 if (!mutex_trylock(&head->mutex)) {
d278850e 3097 refcount_inc(&head->refs);
5d4f98a2
YZ
3098 spin_unlock(&delayed_refs->lock);
3099
b3b4aa74 3100 btrfs_release_path(path);
5d4f98a2 3101
8cc33e5c
DS
3102 /*
3103 * Mutex was contended, block until it's released and let
3104 * caller try again
3105 */
5d4f98a2
YZ
3106 mutex_lock(&head->mutex);
3107 mutex_unlock(&head->mutex);
d278850e 3108 btrfs_put_delayed_ref_head(head);
998ac6d2 3109 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3110 return -EAGAIN;
3111 }
d7df2c79 3112 spin_unlock(&delayed_refs->lock);
5d4f98a2 3113
d7df2c79 3114 spin_lock(&head->lock);
0e0adbcf
JB
3115 /*
3116 * XXX: We should replace this with a proper search function in the
3117 * future.
3118 */
e3d03965
LB
3119 for (node = rb_first_cached(&head->ref_tree); node;
3120 node = rb_next(node)) {
0e0adbcf 3121 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3122 /* If it's a shared ref we know a cross reference exists */
3123 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3124 ret = 1;
3125 break;
3126 }
5d4f98a2 3127
d7df2c79 3128 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3129
d7df2c79
JB
3130 /*
3131 * If our ref doesn't match the one we're currently looking at
3132 * then we have a cross reference.
3133 */
3134 if (data_ref->root != root->root_key.objectid ||
3135 data_ref->objectid != objectid ||
3136 data_ref->offset != offset) {
3137 ret = 1;
3138 break;
3139 }
5d4f98a2 3140 }
d7df2c79 3141 spin_unlock(&head->lock);
5d4f98a2 3142 mutex_unlock(&head->mutex);
998ac6d2 3143 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3144 return ret;
3145}
3146
e4c3b2dc 3147static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3148 struct btrfs_path *path,
3149 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3150{
0b246afa
JM
3151 struct btrfs_fs_info *fs_info = root->fs_info;
3152 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3153 struct extent_buffer *leaf;
5d4f98a2
YZ
3154 struct btrfs_extent_data_ref *ref;
3155 struct btrfs_extent_inline_ref *iref;
3156 struct btrfs_extent_item *ei;
f321e491 3157 struct btrfs_key key;
5d4f98a2 3158 u32 item_size;
3de28d57 3159 int type;
be20aa9d 3160 int ret;
925baedd 3161
be20aa9d 3162 key.objectid = bytenr;
31840ae1 3163 key.offset = (u64)-1;
f321e491 3164 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3165
be20aa9d
CM
3166 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3167 if (ret < 0)
3168 goto out;
79787eaa 3169 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3170
3171 ret = -ENOENT;
3172 if (path->slots[0] == 0)
31840ae1 3173 goto out;
be20aa9d 3174
31840ae1 3175 path->slots[0]--;
f321e491 3176 leaf = path->nodes[0];
5d4f98a2 3177 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3178
5d4f98a2 3179 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3180 goto out;
f321e491 3181
5d4f98a2
YZ
3182 ret = 1;
3183 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5d4f98a2 3184 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3185
5d4f98a2
YZ
3186 if (item_size != sizeof(*ei) +
3187 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3188 goto out;
be20aa9d 3189
5d4f98a2
YZ
3190 if (btrfs_extent_generation(leaf, ei) <=
3191 btrfs_root_last_snapshot(&root->root_item))
3192 goto out;
3193
3194 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3195
3196 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3197 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3198 goto out;
3199
3200 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3201 if (btrfs_extent_refs(leaf, ei) !=
3202 btrfs_extent_data_ref_count(leaf, ref) ||
3203 btrfs_extent_data_ref_root(leaf, ref) !=
3204 root->root_key.objectid ||
3205 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3206 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3207 goto out;
3208
3209 ret = 0;
3210out:
3211 return ret;
3212}
3213
e4c3b2dc
LB
3214int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3215 u64 bytenr)
5d4f98a2
YZ
3216{
3217 struct btrfs_path *path;
3218 int ret;
5d4f98a2
YZ
3219
3220 path = btrfs_alloc_path();
3221 if (!path)
9132c4ff 3222 return -ENOMEM;
5d4f98a2
YZ
3223
3224 do {
e4c3b2dc 3225 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3226 offset, bytenr);
3227 if (ret && ret != -ENOENT)
f321e491 3228 goto out;
80ff3856 3229
380fd066
MT
3230 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3231 } while (ret == -EAGAIN);
5d4f98a2 3232
be20aa9d 3233out:
80ff3856 3234 btrfs_free_path(path);
f0486c68
YZ
3235 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3236 WARN_ON(ret > 0);
f321e491 3237 return ret;
be20aa9d 3238}
c5739bba 3239
5d4f98a2 3240static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3241 struct btrfs_root *root,
5d4f98a2 3242 struct extent_buffer *buf,
e339a6b0 3243 int full_backref, int inc)
31840ae1 3244{
0b246afa 3245 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3246 u64 bytenr;
5d4f98a2
YZ
3247 u64 num_bytes;
3248 u64 parent;
31840ae1 3249 u64 ref_root;
31840ae1 3250 u32 nritems;
31840ae1
ZY
3251 struct btrfs_key key;
3252 struct btrfs_file_extent_item *fi;
3253 int i;
3254 int level;
3255 int ret = 0;
2ff7e61e 3256 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3257 struct btrfs_root *,
b06c4bf5 3258 u64, u64, u64, u64, u64, u64);
31840ae1 3259
fccb84c9 3260
0b246afa 3261 if (btrfs_is_testing(fs_info))
faa2dbf0 3262 return 0;
fccb84c9 3263
31840ae1 3264 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3265 nritems = btrfs_header_nritems(buf);
3266 level = btrfs_header_level(buf);
3267
27cdeb70 3268 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3269 return 0;
31840ae1 3270
5d4f98a2
YZ
3271 if (inc)
3272 process_func = btrfs_inc_extent_ref;
3273 else
3274 process_func = btrfs_free_extent;
31840ae1 3275
5d4f98a2
YZ
3276 if (full_backref)
3277 parent = buf->start;
3278 else
3279 parent = 0;
3280
3281 for (i = 0; i < nritems; i++) {
31840ae1 3282 if (level == 0) {
5d4f98a2 3283 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3284 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3285 continue;
5d4f98a2 3286 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3287 struct btrfs_file_extent_item);
3288 if (btrfs_file_extent_type(buf, fi) ==
3289 BTRFS_FILE_EXTENT_INLINE)
3290 continue;
3291 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3292 if (bytenr == 0)
3293 continue;
5d4f98a2
YZ
3294
3295 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3296 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3297 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3298 parent, ref_root, key.objectid,
b06c4bf5 3299 key.offset);
31840ae1
ZY
3300 if (ret)
3301 goto fail;
3302 } else {
5d4f98a2 3303 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3304 num_bytes = fs_info->nodesize;
84f7d8e6 3305 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3306 parent, ref_root, level - 1, 0);
31840ae1
ZY
3307 if (ret)
3308 goto fail;
3309 }
3310 }
3311 return 0;
3312fail:
5d4f98a2
YZ
3313 return ret;
3314}
3315
3316int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3317 struct extent_buffer *buf, int full_backref)
5d4f98a2 3318{
e339a6b0 3319 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3320}
3321
3322int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3323 struct extent_buffer *buf, int full_backref)
5d4f98a2 3324{
e339a6b0 3325 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3326}
3327
9078a3e1 3328static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3329 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3330 struct btrfs_path *path,
3331 struct btrfs_block_group_cache *cache)
3332{
3333 int ret;
0b246afa 3334 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3335 unsigned long bi;
3336 struct extent_buffer *leaf;
9078a3e1 3337
9078a3e1 3338 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3339 if (ret) {
3340 if (ret > 0)
3341 ret = -ENOENT;
54aa1f4d 3342 goto fail;
df95e7f0 3343 }
5f39d397
CM
3344
3345 leaf = path->nodes[0];
3346 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3347 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3348 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3349fail:
24b89d08 3350 btrfs_release_path(path);
df95e7f0 3351 return ret;
9078a3e1
CM
3352
3353}
3354
4a8c9a62 3355static struct btrfs_block_group_cache *
2ff7e61e 3356next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3357 struct btrfs_block_group_cache *cache)
3358{
3359 struct rb_node *node;
292cbd51 3360
0b246afa 3361 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3362
3363 /* If our block group was removed, we need a full search. */
3364 if (RB_EMPTY_NODE(&cache->cache_node)) {
3365 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3366
0b246afa 3367 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3368 btrfs_put_block_group(cache);
0b246afa 3369 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3370 }
4a8c9a62
YZ
3371 node = rb_next(&cache->cache_node);
3372 btrfs_put_block_group(cache);
3373 if (node) {
3374 cache = rb_entry(node, struct btrfs_block_group_cache,
3375 cache_node);
11dfe35a 3376 btrfs_get_block_group(cache);
4a8c9a62
YZ
3377 } else
3378 cache = NULL;
0b246afa 3379 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3380 return cache;
3381}
3382
0af3d00b
JB
3383static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3384 struct btrfs_trans_handle *trans,
3385 struct btrfs_path *path)
3386{
0b246afa
JM
3387 struct btrfs_fs_info *fs_info = block_group->fs_info;
3388 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3389 struct inode *inode = NULL;
364ecf36 3390 struct extent_changeset *data_reserved = NULL;
0af3d00b 3391 u64 alloc_hint = 0;
2b20982e 3392 int dcs = BTRFS_DC_ERROR;
f8c269d7 3393 u64 num_pages = 0;
0af3d00b
JB
3394 int retries = 0;
3395 int ret = 0;
3396
3397 /*
3398 * If this block group is smaller than 100 megs don't bother caching the
3399 * block group.
3400 */
ee22184b 3401 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3402 spin_lock(&block_group->lock);
3403 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3404 spin_unlock(&block_group->lock);
3405 return 0;
3406 }
3407
0c0ef4bc
JB
3408 if (trans->aborted)
3409 return 0;
0af3d00b 3410again:
77ab86bf 3411 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3412 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3413 ret = PTR_ERR(inode);
b3b4aa74 3414 btrfs_release_path(path);
0af3d00b
JB
3415 goto out;
3416 }
3417
3418 if (IS_ERR(inode)) {
3419 BUG_ON(retries);
3420 retries++;
3421
3422 if (block_group->ro)
3423 goto out_free;
3424
77ab86bf
JM
3425 ret = create_free_space_inode(fs_info, trans, block_group,
3426 path);
0af3d00b
JB
3427 if (ret)
3428 goto out_free;
3429 goto again;
3430 }
3431
3432 /*
3433 * We want to set the generation to 0, that way if anything goes wrong
3434 * from here on out we know not to trust this cache when we load up next
3435 * time.
3436 */
3437 BTRFS_I(inode)->generation = 0;
3438 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3439 if (ret) {
3440 /*
3441 * So theoretically we could recover from this, simply set the
3442 * super cache generation to 0 so we know to invalidate the
3443 * cache, but then we'd have to keep track of the block groups
3444 * that fail this way so we know we _have_ to reset this cache
3445 * before the next commit or risk reading stale cache. So to
3446 * limit our exposure to horrible edge cases lets just abort the
3447 * transaction, this only happens in really bad situations
3448 * anyway.
3449 */
66642832 3450 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3451 goto out_put;
3452 }
0af3d00b
JB
3453 WARN_ON(ret);
3454
8e138e0d
JB
3455 /* We've already setup this transaction, go ahead and exit */
3456 if (block_group->cache_generation == trans->transid &&
3457 i_size_read(inode)) {
3458 dcs = BTRFS_DC_SETUP;
3459 goto out_put;
3460 }
3461
0af3d00b 3462 if (i_size_read(inode) > 0) {
2ff7e61e 3463 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3464 &fs_info->global_block_rsv);
7b61cd92
MX
3465 if (ret)
3466 goto out_put;
3467
77ab86bf 3468 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3469 if (ret)
3470 goto out_put;
3471 }
3472
3473 spin_lock(&block_group->lock);
cf7c1ef6 3474 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3475 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3476 /*
3477 * don't bother trying to write stuff out _if_
3478 * a) we're not cached,
1a79c1f2
LB
3479 * b) we're with nospace_cache mount option,
3480 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3481 */
2b20982e 3482 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3483 spin_unlock(&block_group->lock);
3484 goto out_put;
3485 }
3486 spin_unlock(&block_group->lock);
3487
2968b1f4
JB
3488 /*
3489 * We hit an ENOSPC when setting up the cache in this transaction, just
3490 * skip doing the setup, we've already cleared the cache so we're safe.
3491 */
3492 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3493 ret = -ENOSPC;
3494 goto out_put;
3495 }
3496
6fc823b1
JB
3497 /*
3498 * Try to preallocate enough space based on how big the block group is.
3499 * Keep in mind this has to include any pinned space which could end up
3500 * taking up quite a bit since it's not folded into the other space
3501 * cache.
3502 */
ee22184b 3503 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3504 if (!num_pages)
3505 num_pages = 1;
3506
0af3d00b 3507 num_pages *= 16;
09cbfeaf 3508 num_pages *= PAGE_SIZE;
0af3d00b 3509
364ecf36 3510 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3511 if (ret)
3512 goto out_put;
3513
3514 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3515 num_pages, num_pages,
3516 &alloc_hint);
2968b1f4
JB
3517 /*
3518 * Our cache requires contiguous chunks so that we don't modify a bunch
3519 * of metadata or split extents when writing the cache out, which means
3520 * we can enospc if we are heavily fragmented in addition to just normal
3521 * out of space conditions. So if we hit this just skip setting up any
3522 * other block groups for this transaction, maybe we'll unpin enough
3523 * space the next time around.
3524 */
2b20982e
JB
3525 if (!ret)
3526 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3527 else if (ret == -ENOSPC)
3528 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3529
0af3d00b
JB
3530out_put:
3531 iput(inode);
3532out_free:
b3b4aa74 3533 btrfs_release_path(path);
0af3d00b
JB
3534out:
3535 spin_lock(&block_group->lock);
e65cbb94 3536 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3537 block_group->cache_generation = trans->transid;
2b20982e 3538 block_group->disk_cache_state = dcs;
0af3d00b
JB
3539 spin_unlock(&block_group->lock);
3540
364ecf36 3541 extent_changeset_free(data_reserved);
0af3d00b
JB
3542 return ret;
3543}
3544
dcdf7f6d 3545int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3546 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3547{
3548 struct btrfs_block_group_cache *cache, *tmp;
3549 struct btrfs_transaction *cur_trans = trans->transaction;
3550 struct btrfs_path *path;
3551
3552 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3553 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3554 return 0;
3555
3556 path = btrfs_alloc_path();
3557 if (!path)
3558 return -ENOMEM;
3559
3560 /* Could add new block groups, use _safe just in case */
3561 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3562 dirty_list) {
3563 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3564 cache_save_setup(cache, trans, path);
3565 }
3566
3567 btrfs_free_path(path);
3568 return 0;
3569}
3570
1bbc621e
CM
3571/*
3572 * transaction commit does final block group cache writeback during a
3573 * critical section where nothing is allowed to change the FS. This is
3574 * required in order for the cache to actually match the block group,
3575 * but can introduce a lot of latency into the commit.
3576 *
3577 * So, btrfs_start_dirty_block_groups is here to kick off block group
3578 * cache IO. There's a chance we'll have to redo some of it if the
3579 * block group changes again during the commit, but it greatly reduces
3580 * the commit latency by getting rid of the easy block groups while
3581 * we're still allowing others to join the commit.
3582 */
21217054 3583int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3584{
21217054 3585 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3586 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3587 struct btrfs_transaction *cur_trans = trans->transaction;
3588 int ret = 0;
c9dc4c65 3589 int should_put;
1bbc621e
CM
3590 struct btrfs_path *path = NULL;
3591 LIST_HEAD(dirty);
3592 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3593 int num_started = 0;
1bbc621e
CM
3594 int loops = 0;
3595
3596 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3597 if (list_empty(&cur_trans->dirty_bgs)) {
3598 spin_unlock(&cur_trans->dirty_bgs_lock);
3599 return 0;
1bbc621e 3600 }
b58d1a9e 3601 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3602 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3603
1bbc621e 3604again:
1bbc621e
CM
3605 /*
3606 * make sure all the block groups on our dirty list actually
3607 * exist
3608 */
6c686b35 3609 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3610
3611 if (!path) {
3612 path = btrfs_alloc_path();
3613 if (!path)
3614 return -ENOMEM;
3615 }
3616
b58d1a9e
FM
3617 /*
3618 * cache_write_mutex is here only to save us from balance or automatic
3619 * removal of empty block groups deleting this block group while we are
3620 * writing out the cache
3621 */
3622 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3623 while (!list_empty(&dirty)) {
ba2c4d4e
JB
3624 bool drop_reserve = true;
3625
1bbc621e
CM
3626 cache = list_first_entry(&dirty,
3627 struct btrfs_block_group_cache,
3628 dirty_list);
1bbc621e
CM
3629 /*
3630 * this can happen if something re-dirties a block
3631 * group that is already under IO. Just wait for it to
3632 * finish and then do it all again
3633 */
3634 if (!list_empty(&cache->io_list)) {
3635 list_del_init(&cache->io_list);
afdb5718 3636 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3637 btrfs_put_block_group(cache);
3638 }
3639
3640
3641 /*
3642 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3643 * if it should update the cache_state. Don't delete
3644 * until after we wait.
3645 *
3646 * Since we're not running in the commit critical section
3647 * we need the dirty_bgs_lock to protect from update_block_group
3648 */
3649 spin_lock(&cur_trans->dirty_bgs_lock);
3650 list_del_init(&cache->dirty_list);
3651 spin_unlock(&cur_trans->dirty_bgs_lock);
3652
3653 should_put = 1;
3654
3655 cache_save_setup(cache, trans, path);
3656
3657 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3658 cache->io_ctl.inode = NULL;
0b246afa 3659 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3660 cache, path);
1bbc621e
CM
3661 if (ret == 0 && cache->io_ctl.inode) {
3662 num_started++;
3663 should_put = 0;
3664
3665 /*
45ae2c18
NB
3666 * The cache_write_mutex is protecting the
3667 * io_list, also refer to the definition of
3668 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3669 */
3670 list_add_tail(&cache->io_list, io);
3671 } else {
3672 /*
3673 * if we failed to write the cache, the
3674 * generation will be bad and life goes on
3675 */
3676 ret = 0;
3677 }
3678 }
ff1f8250 3679 if (!ret) {
2ff7e61e
JM
3680 ret = write_one_cache_group(trans, fs_info,
3681 path, cache);
ff1f8250
FM
3682 /*
3683 * Our block group might still be attached to the list
3684 * of new block groups in the transaction handle of some
3685 * other task (struct btrfs_trans_handle->new_bgs). This
3686 * means its block group item isn't yet in the extent
3687 * tree. If this happens ignore the error, as we will
3688 * try again later in the critical section of the
3689 * transaction commit.
3690 */
3691 if (ret == -ENOENT) {
3692 ret = 0;
3693 spin_lock(&cur_trans->dirty_bgs_lock);
3694 if (list_empty(&cache->dirty_list)) {
3695 list_add_tail(&cache->dirty_list,
3696 &cur_trans->dirty_bgs);
3697 btrfs_get_block_group(cache);
ba2c4d4e 3698 drop_reserve = false;
ff1f8250
FM
3699 }
3700 spin_unlock(&cur_trans->dirty_bgs_lock);
3701 } else if (ret) {
66642832 3702 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3703 }
3704 }
1bbc621e 3705
52042d8e 3706 /* if it's not on the io list, we need to put the block group */
1bbc621e
CM
3707 if (should_put)
3708 btrfs_put_block_group(cache);
ba2c4d4e
JB
3709 if (drop_reserve)
3710 btrfs_delayed_refs_rsv_release(fs_info, 1);
1bbc621e
CM
3711
3712 if (ret)
3713 break;
b58d1a9e
FM
3714
3715 /*
3716 * Avoid blocking other tasks for too long. It might even save
3717 * us from writing caches for block groups that are going to be
3718 * removed.
3719 */
3720 mutex_unlock(&trans->transaction->cache_write_mutex);
3721 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3722 }
b58d1a9e 3723 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3724
3725 /*
3726 * go through delayed refs for all the stuff we've just kicked off
3727 * and then loop back (just once)
3728 */
c79a70b1 3729 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3730 if (!ret && loops == 0) {
3731 loops++;
3732 spin_lock(&cur_trans->dirty_bgs_lock);
3733 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3734 /*
3735 * dirty_bgs_lock protects us from concurrent block group
3736 * deletes too (not just cache_write_mutex).
3737 */
3738 if (!list_empty(&dirty)) {
3739 spin_unlock(&cur_trans->dirty_bgs_lock);
3740 goto again;
3741 }
1bbc621e 3742 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3743 } else if (ret < 0) {
2ff7e61e 3744 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3745 }
3746
3747 btrfs_free_path(path);
3748 return ret;
3749}
3750
3751int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3752 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3753{
3754 struct btrfs_block_group_cache *cache;
3755 struct btrfs_transaction *cur_trans = trans->transaction;
3756 int ret = 0;
3757 int should_put;
3758 struct btrfs_path *path;
3759 struct list_head *io = &cur_trans->io_bgs;
3760 int num_started = 0;
9078a3e1
CM
3761
3762 path = btrfs_alloc_path();
3763 if (!path)
3764 return -ENOMEM;
3765
ce93ec54 3766 /*
e44081ef
FM
3767 * Even though we are in the critical section of the transaction commit,
3768 * we can still have concurrent tasks adding elements to this
3769 * transaction's list of dirty block groups. These tasks correspond to
3770 * endio free space workers started when writeback finishes for a
3771 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3772 * allocate new block groups as a result of COWing nodes of the root
3773 * tree when updating the free space inode. The writeback for the space
3774 * caches is triggered by an earlier call to
3775 * btrfs_start_dirty_block_groups() and iterations of the following
3776 * loop.
3777 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3778 * delayed refs to make sure we have the best chance at doing this all
3779 * in one shot.
3780 */
e44081ef 3781 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3782 while (!list_empty(&cur_trans->dirty_bgs)) {
3783 cache = list_first_entry(&cur_trans->dirty_bgs,
3784 struct btrfs_block_group_cache,
3785 dirty_list);
c9dc4c65
CM
3786
3787 /*
3788 * this can happen if cache_save_setup re-dirties a block
3789 * group that is already under IO. Just wait for it to
3790 * finish and then do it all again
3791 */
3792 if (!list_empty(&cache->io_list)) {
e44081ef 3793 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3794 list_del_init(&cache->io_list);
afdb5718 3795 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3796 btrfs_put_block_group(cache);
e44081ef 3797 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3798 }
3799
1bbc621e
CM
3800 /*
3801 * don't remove from the dirty list until after we've waited
3802 * on any pending IO
3803 */
ce93ec54 3804 list_del_init(&cache->dirty_list);
e44081ef 3805 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3806 should_put = 1;
3807
1bbc621e 3808 cache_save_setup(cache, trans, path);
c9dc4c65 3809
ce93ec54 3810 if (!ret)
c79a70b1 3811 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3812 (unsigned long) -1);
c9dc4c65
CM
3813
3814 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3815 cache->io_ctl.inode = NULL;
0b246afa 3816 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3817 cache, path);
c9dc4c65
CM
3818 if (ret == 0 && cache->io_ctl.inode) {
3819 num_started++;
3820 should_put = 0;
1bbc621e 3821 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3822 } else {
3823 /*
3824 * if we failed to write the cache, the
3825 * generation will be bad and life goes on
3826 */
3827 ret = 0;
3828 }
3829 }
ff1f8250 3830 if (!ret) {
2ff7e61e
JM
3831 ret = write_one_cache_group(trans, fs_info,
3832 path, cache);
2bc0bb5f
FM
3833 /*
3834 * One of the free space endio workers might have
3835 * created a new block group while updating a free space
3836 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3837 * and hasn't released its transaction handle yet, in
3838 * which case the new block group is still attached to
3839 * its transaction handle and its creation has not
3840 * finished yet (no block group item in the extent tree
3841 * yet, etc). If this is the case, wait for all free
3842 * space endio workers to finish and retry. This is a
3843 * a very rare case so no need for a more efficient and
3844 * complex approach.
3845 */
3846 if (ret == -ENOENT) {
3847 wait_event(cur_trans->writer_wait,
3848 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3849 ret = write_one_cache_group(trans, fs_info,
3850 path, cache);
2bc0bb5f 3851 }
ff1f8250 3852 if (ret)
66642832 3853 btrfs_abort_transaction(trans, ret);
ff1f8250 3854 }
c9dc4c65
CM
3855
3856 /* if its not on the io list, we need to put the block group */
3857 if (should_put)
3858 btrfs_put_block_group(cache);
ba2c4d4e 3859 btrfs_delayed_refs_rsv_release(fs_info, 1);
e44081ef 3860 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3861 }
e44081ef 3862 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3863
45ae2c18
NB
3864 /*
3865 * Refer to the definition of io_bgs member for details why it's safe
3866 * to use it without any locking
3867 */
1bbc621e
CM
3868 while (!list_empty(io)) {
3869 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3870 io_list);
3871 list_del_init(&cache->io_list);
afdb5718 3872 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3873 btrfs_put_block_group(cache);
3874 }
3875
9078a3e1 3876 btrfs_free_path(path);
ce93ec54 3877 return ret;
9078a3e1
CM
3878}
3879
2ff7e61e 3880int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3881{
3882 struct btrfs_block_group_cache *block_group;
3883 int readonly = 0;
3884
0b246afa 3885 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3886 if (!block_group || block_group->ro)
3887 readonly = 1;
3888 if (block_group)
fa9c0d79 3889 btrfs_put_block_group(block_group);
d2fb3437
YZ
3890 return readonly;
3891}
3892
f78c436c
FM
3893bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3894{
3895 struct btrfs_block_group_cache *bg;
3896 bool ret = true;
3897
3898 bg = btrfs_lookup_block_group(fs_info, bytenr);
3899 if (!bg)
3900 return false;
3901
3902 spin_lock(&bg->lock);
3903 if (bg->ro)
3904 ret = false;
3905 else
3906 atomic_inc(&bg->nocow_writers);
3907 spin_unlock(&bg->lock);
3908
3909 /* no put on block group, done by btrfs_dec_nocow_writers */
3910 if (!ret)
3911 btrfs_put_block_group(bg);
3912
3913 return ret;
3914
3915}
3916
3917void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3918{
3919 struct btrfs_block_group_cache *bg;
3920
3921 bg = btrfs_lookup_block_group(fs_info, bytenr);
3922 ASSERT(bg);
3923 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 3924 wake_up_var(&bg->nocow_writers);
f78c436c
FM
3925 /*
3926 * Once for our lookup and once for the lookup done by a previous call
3927 * to btrfs_inc_nocow_writers()
3928 */
3929 btrfs_put_block_group(bg);
3930 btrfs_put_block_group(bg);
3931}
3932
f78c436c
FM
3933void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3934{
4625956a 3935 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
3936}
3937
6ab0a202
JM
3938static const char *alloc_name(u64 flags)
3939{
3940 switch (flags) {
3941 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3942 return "mixed";
3943 case BTRFS_BLOCK_GROUP_METADATA:
3944 return "metadata";
3945 case BTRFS_BLOCK_GROUP_DATA:
3946 return "data";
3947 case BTRFS_BLOCK_GROUP_SYSTEM:
3948 return "system";
3949 default:
3950 WARN_ON(1);
3951 return "invalid-combination";
3952 };
3953}
3954
4ca61683 3955static int create_space_info(struct btrfs_fs_info *info, u64 flags)
2be12ef7
NB
3956{
3957
3958 struct btrfs_space_info *space_info;
3959 int i;
3960 int ret;
3961
3962 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3963 if (!space_info)
3964 return -ENOMEM;
3965
3966 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3967 GFP_KERNEL);
3968 if (ret) {
3969 kfree(space_info);
3970 return ret;
3971 }
3972
3973 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3974 INIT_LIST_HEAD(&space_info->block_groups[i]);
3975 init_rwsem(&space_info->groups_sem);
3976 spin_lock_init(&space_info->lock);
3977 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3978 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3979 init_waitqueue_head(&space_info->wait);
3980 INIT_LIST_HEAD(&space_info->ro_bgs);
3981 INIT_LIST_HEAD(&space_info->tickets);
3982 INIT_LIST_HEAD(&space_info->priority_tickets);
3983
3984 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3985 info->space_info_kobj, "%s",
3986 alloc_name(space_info->flags));
3987 if (ret) {
3988 percpu_counter_destroy(&space_info->total_bytes_pinned);
3989 kfree(space_info);
3990 return ret;
3991 }
3992
2be12ef7
NB
3993 list_add_rcu(&space_info->list, &info->space_info);
3994 if (flags & BTRFS_BLOCK_GROUP_DATA)
3995 info->data_sinfo = space_info;
3996
3997 return ret;
3998}
3999
d2006e6d 4000static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4001 u64 total_bytes, u64 bytes_used,
e40edf2d 4002 u64 bytes_readonly,
593060d7
CM
4003 struct btrfs_space_info **space_info)
4004{
4005 struct btrfs_space_info *found;
b742bb82
YZ
4006 int factor;
4007
46df06b8 4008 factor = btrfs_bg_type_to_factor(flags);
593060d7
CM
4009
4010 found = __find_space_info(info, flags);
d2006e6d
NB
4011 ASSERT(found);
4012 spin_lock(&found->lock);
4013 found->total_bytes += total_bytes;
4014 found->disk_total += total_bytes * factor;
4015 found->bytes_used += bytes_used;
4016 found->disk_used += bytes_used * factor;
4017 found->bytes_readonly += bytes_readonly;
4018 if (total_bytes > 0)
4019 found->full = 0;
4020 space_info_add_new_bytes(info, found, total_bytes -
4021 bytes_used - bytes_readonly);
4022 spin_unlock(&found->lock);
4023 *space_info = found;
593060d7
CM
4024}
4025
8790d502
CM
4026static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4027{
899c81ea
ID
4028 u64 extra_flags = chunk_to_extended(flags) &
4029 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4030
de98ced9 4031 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4032 if (flags & BTRFS_BLOCK_GROUP_DATA)
4033 fs_info->avail_data_alloc_bits |= extra_flags;
4034 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4035 fs_info->avail_metadata_alloc_bits |= extra_flags;
4036 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4037 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4038 write_sequnlock(&fs_info->profiles_lock);
8790d502 4039}
593060d7 4040
fc67c450
ID
4041/*
4042 * returns target flags in extended format or 0 if restripe for this
4043 * chunk_type is not in progress
c6664b42 4044 *
dccdb07b 4045 * should be called with balance_lock held
fc67c450
ID
4046 */
4047static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4048{
4049 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4050 u64 target = 0;
4051
fc67c450
ID
4052 if (!bctl)
4053 return 0;
4054
4055 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4056 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4057 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4058 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4059 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4060 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4061 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4062 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4063 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4064 }
4065
4066 return target;
4067}
4068
a46d11a8
ID
4069/*
4070 * @flags: available profiles in extended format (see ctree.h)
4071 *
e4d8ec0f
ID
4072 * Returns reduced profile in chunk format. If profile changing is in
4073 * progress (either running or paused) picks the target profile (if it's
4074 * already available), otherwise falls back to plain reducing.
a46d11a8 4075 */
2ff7e61e 4076static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4077{
0b246afa 4078 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4079 u64 target;
9c170b26
ZL
4080 u64 raid_type;
4081 u64 allowed = 0;
a061fc8d 4082
fc67c450
ID
4083 /*
4084 * see if restripe for this chunk_type is in progress, if so
4085 * try to reduce to the target profile
4086 */
0b246afa
JM
4087 spin_lock(&fs_info->balance_lock);
4088 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4089 if (target) {
4090 /* pick target profile only if it's already available */
4091 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4092 spin_unlock(&fs_info->balance_lock);
fc67c450 4093 return extended_to_chunk(target);
e4d8ec0f
ID
4094 }
4095 }
0b246afa 4096 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4097
53b381b3 4098 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4099 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4100 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
41a6e891 4101 allowed |= btrfs_raid_array[raid_type].bg_flag;
9c170b26
ZL
4102 }
4103 allowed &= flags;
4104
4105 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4106 allowed = BTRFS_BLOCK_GROUP_RAID6;
4107 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4108 allowed = BTRFS_BLOCK_GROUP_RAID5;
4109 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4110 allowed = BTRFS_BLOCK_GROUP_RAID10;
4111 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4112 allowed = BTRFS_BLOCK_GROUP_RAID1;
4113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4114 allowed = BTRFS_BLOCK_GROUP_RAID0;
4115
4116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4117
4118 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4119}
4120
2ff7e61e 4121static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4122{
de98ced9 4123 unsigned seq;
f8213bdc 4124 u64 flags;
de98ced9
MX
4125
4126 do {
f8213bdc 4127 flags = orig_flags;
0b246afa 4128 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4129
4130 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4131 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4133 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4134 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4135 flags |= fs_info->avail_metadata_alloc_bits;
4136 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4137
2ff7e61e 4138 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4139}
4140
1b86826d 4141static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4142{
0b246afa 4143 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4144 u64 flags;
53b381b3 4145 u64 ret;
9ed74f2d 4146
b742bb82
YZ
4147 if (data)
4148 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4149 else if (root == fs_info->chunk_root)
b742bb82 4150 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4151 else
b742bb82 4152 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4153
2ff7e61e 4154 ret = get_alloc_profile(fs_info, flags);
53b381b3 4155 return ret;
6a63209f 4156}
9ed74f2d 4157
1b86826d
JM
4158u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4159{
4160 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4161}
4162
4163u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4164{
4165 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4166}
4167
4168u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4169{
4170 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4171}
4172
4136135b
LB
4173static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4174 bool may_use_included)
4175{
4176 ASSERT(s_info);
4177 return s_info->bytes_used + s_info->bytes_reserved +
4178 s_info->bytes_pinned + s_info->bytes_readonly +
4179 (may_use_included ? s_info->bytes_may_use : 0);
4180}
4181
04f4f916 4182int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4183{
04f4f916 4184 struct btrfs_root *root = inode->root;
b4d7c3c9 4185 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4186 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4187 u64 used;
94b947b2 4188 int ret = 0;
c99f1b0c
ZL
4189 int need_commit = 2;
4190 int have_pinned_space;
6a63209f 4191
6a63209f 4192 /* make sure bytes are sectorsize aligned */
0b246afa 4193 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4194
9dced186 4195 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4196 need_commit = 0;
9dced186 4197 ASSERT(current->journal_info);
0af3d00b
JB
4198 }
4199
6a63209f
JB
4200again:
4201 /* make sure we have enough space to handle the data first */
4202 spin_lock(&data_sinfo->lock);
4136135b 4203 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4204
4205 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4206 struct btrfs_trans_handle *trans;
9ed74f2d 4207
6a63209f
JB
4208 /*
4209 * if we don't have enough free bytes in this space then we need
4210 * to alloc a new chunk.
4211 */
b9fd47cd 4212 if (!data_sinfo->full) {
6a63209f 4213 u64 alloc_target;
9ed74f2d 4214
0e4f8f88 4215 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4216 spin_unlock(&data_sinfo->lock);
1174cade 4217
1b86826d 4218 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4219 /*
4220 * It is ugly that we don't call nolock join
4221 * transaction for the free space inode case here.
4222 * But it is safe because we only do the data space
4223 * reservation for the free space cache in the
4224 * transaction context, the common join transaction
4225 * just increase the counter of the current transaction
4226 * handler, doesn't try to acquire the trans_lock of
4227 * the fs.
4228 */
7a7eaa40 4229 trans = btrfs_join_transaction(root);
a22285a6
YZ
4230 if (IS_ERR(trans))
4231 return PTR_ERR(trans);
9ed74f2d 4232
01458828 4233 ret = do_chunk_alloc(trans, alloc_target,
0e4f8f88 4234 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4235 btrfs_end_transaction(trans);
d52a5b5f
MX
4236 if (ret < 0) {
4237 if (ret != -ENOSPC)
4238 return ret;
c99f1b0c
ZL
4239 else {
4240 have_pinned_space = 1;
d52a5b5f 4241 goto commit_trans;
c99f1b0c 4242 }
d52a5b5f 4243 }
9ed74f2d 4244
6a63209f
JB
4245 goto again;
4246 }
f2bb8f5c
JB
4247
4248 /*
b150a4f1 4249 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4250 * allocation, and no removed chunk in current transaction,
4251 * don't bother committing the transaction.
f2bb8f5c 4252 */
dec59fa3 4253 have_pinned_space = __percpu_counter_compare(
c99f1b0c 4254 &data_sinfo->total_bytes_pinned,
dec59fa3
EL
4255 used + bytes - data_sinfo->total_bytes,
4256 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6a63209f 4257 spin_unlock(&data_sinfo->lock);
6a63209f 4258
4e06bdd6 4259 /* commit the current transaction and try again */
d52a5b5f 4260commit_trans:
92e2f7e3 4261 if (need_commit) {
c99f1b0c 4262 need_commit--;
b150a4f1 4263
e1746e83 4264 if (need_commit > 0) {
82b3e53b 4265 btrfs_start_delalloc_roots(fs_info, -1);
6374e57a 4266 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4267 (u64)-1);
e1746e83 4268 }
9a4e7276 4269
7a7eaa40 4270 trans = btrfs_join_transaction(root);
a22285a6
YZ
4271 if (IS_ERR(trans))
4272 return PTR_ERR(trans);
c99f1b0c 4273 if (have_pinned_space >= 0 ||
3204d33c
JB
4274 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4275 &trans->transaction->flags) ||
c99f1b0c 4276 need_commit > 0) {
3a45bb20 4277 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4278 if (ret)
4279 return ret;
d7c15171 4280 /*
c2d6cb16
FM
4281 * The cleaner kthread might still be doing iput
4282 * operations. Wait for it to finish so that
4283 * more space is released.
d7c15171 4284 */
0b246afa
JM
4285 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4286 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4287 goto again;
4288 } else {
3a45bb20 4289 btrfs_end_transaction(trans);
94b947b2 4290 }
4e06bdd6 4291 }
9ed74f2d 4292
0b246afa 4293 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4294 "space_info:enospc",
4295 data_sinfo->flags, bytes, 1);
6a63209f
JB
4296 return -ENOSPC;
4297 }
9f9b8e8d 4298 update_bytes_may_use(data_sinfo, bytes);
0b246afa 4299 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4300 data_sinfo->flags, bytes, 1);
6a63209f 4301 spin_unlock(&data_sinfo->lock);
6a63209f 4302
4559b0a7 4303 return 0;
9ed74f2d 4304}
6a63209f 4305
364ecf36
QW
4306int btrfs_check_data_free_space(struct inode *inode,
4307 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4308{
0b246afa 4309 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4310 int ret;
4311
4312 /* align the range */
0b246afa
JM
4313 len = round_up(start + len, fs_info->sectorsize) -
4314 round_down(start, fs_info->sectorsize);
4315 start = round_down(start, fs_info->sectorsize);
4ceff079 4316
04f4f916 4317 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4318 if (ret < 0)
4319 return ret;
4320
1e5ec2e7 4321 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4322 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4323 if (ret < 0)
1e5ec2e7 4324 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4325 else
4326 ret = 0;
4ceff079
QW
4327 return ret;
4328}
4329
4ceff079
QW
4330/*
4331 * Called if we need to clear a data reservation for this inode
4332 * Normally in a error case.
4333 *
51773bec
QW
4334 * This one will *NOT* use accurate qgroup reserved space API, just for case
4335 * which we can't sleep and is sure it won't affect qgroup reserved space.
4336 * Like clear_bit_hook().
4ceff079 4337 */
51773bec
QW
4338void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4339 u64 len)
4ceff079 4340{
0b246afa 4341 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4342 struct btrfs_space_info *data_sinfo;
4343
4344 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4345 len = round_up(start + len, fs_info->sectorsize) -
4346 round_down(start, fs_info->sectorsize);
4347 start = round_down(start, fs_info->sectorsize);
4ceff079 4348
0b246afa 4349 data_sinfo = fs_info->data_sinfo;
4ceff079 4350 spin_lock(&data_sinfo->lock);
9f9b8e8d 4351 update_bytes_may_use(data_sinfo, -len);
0b246afa 4352 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4353 data_sinfo->flags, len, 0);
4354 spin_unlock(&data_sinfo->lock);
4355}
4356
51773bec
QW
4357/*
4358 * Called if we need to clear a data reservation for this inode
4359 * Normally in a error case.
4360 *
01327610 4361 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4362 * space framework.
4363 */
bc42bda2
QW
4364void btrfs_free_reserved_data_space(struct inode *inode,
4365 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4366{
0c476a5d
JM
4367 struct btrfs_root *root = BTRFS_I(inode)->root;
4368
4369 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4370 len = round_up(start + len, root->fs_info->sectorsize) -
4371 round_down(start, root->fs_info->sectorsize);
4372 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4373
51773bec 4374 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4375 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4376}
4377
97e728d4 4378static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4379{
97e728d4
JB
4380 struct list_head *head = &info->space_info;
4381 struct btrfs_space_info *found;
e3ccfa98 4382
97e728d4
JB
4383 rcu_read_lock();
4384 list_for_each_entry_rcu(found, head, list) {
4385 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4386 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4387 }
97e728d4 4388 rcu_read_unlock();
e3ccfa98
JB
4389}
4390
3c76cd84
MX
4391static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4392{
4393 return (global->size << 1);
4394}
4395
2ff7e61e 4396static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4397 struct btrfs_space_info *sinfo, int force)
32c00aff 4398{
0b246afa 4399 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4400 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4401 u64 thresh;
e3ccfa98 4402
0e4f8f88
CM
4403 if (force == CHUNK_ALLOC_FORCE)
4404 return 1;
4405
fb25e914
JB
4406 /*
4407 * We need to take into account the global rsv because for all intents
4408 * and purposes it's used space. Don't worry about locking the
4409 * global_rsv, it doesn't change except when the transaction commits.
4410 */
54338b5c 4411 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4412 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4413
0e4f8f88
CM
4414 /*
4415 * in limited mode, we want to have some free space up to
4416 * about 1% of the FS size.
4417 */
4418 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4419 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4420 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4421
8d8aafee 4422 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4423 return 1;
4424 }
0e4f8f88 4425
8d8aafee 4426 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4427 return 0;
424499db 4428 return 1;
32c00aff
JB
4429}
4430
2ff7e61e 4431static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4432{
4433 u64 num_dev;
4434
53b381b3
DW
4435 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4436 BTRFS_BLOCK_GROUP_RAID0 |
4437 BTRFS_BLOCK_GROUP_RAID5 |
4438 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4439 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4440 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4441 num_dev = 2;
4442 else
4443 num_dev = 1; /* DUP or single */
4444
39c2d7fa 4445 return num_dev;
15d1ff81
LB
4446}
4447
39c2d7fa
FM
4448/*
4449 * If @is_allocation is true, reserve space in the system space info necessary
4450 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4451 * removing a chunk.
4452 */
451a2c13 4453void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
15d1ff81 4454{
451a2c13 4455 struct btrfs_fs_info *fs_info = trans->fs_info;
15d1ff81
LB
4456 struct btrfs_space_info *info;
4457 u64 left;
4458 u64 thresh;
4fbcdf66 4459 int ret = 0;
39c2d7fa 4460 u64 num_devs;
4fbcdf66
FM
4461
4462 /*
4463 * Needed because we can end up allocating a system chunk and for an
4464 * atomic and race free space reservation in the chunk block reserve.
4465 */
a32bf9a3 4466 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4467
0b246afa 4468 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4469 spin_lock(&info->lock);
4136135b 4470 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4471 spin_unlock(&info->lock);
4472
2ff7e61e 4473 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4474
4475 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4476 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4477 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4478
0b246afa
JM
4479 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4480 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4481 left, thresh, type);
4482 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4483 }
4484
4485 if (left < thresh) {
1b86826d 4486 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4487
4fbcdf66
FM
4488 /*
4489 * Ignore failure to create system chunk. We might end up not
4490 * needing it, as we might not need to COW all nodes/leafs from
4491 * the paths we visit in the chunk tree (they were already COWed
4492 * or created in the current transaction for example).
4493 */
c216b203 4494 ret = btrfs_alloc_chunk(trans, flags);
4fbcdf66
FM
4495 }
4496
4497 if (!ret) {
0b246afa
JM
4498 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4499 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4500 thresh, BTRFS_RESERVE_NO_FLUSH);
4501 if (!ret)
4502 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4503 }
4504}
4505
28b737f6
LB
4506/*
4507 * If force is CHUNK_ALLOC_FORCE:
4508 * - return 1 if it successfully allocates a chunk,
4509 * - return errors including -ENOSPC otherwise.
4510 * If force is NOT CHUNK_ALLOC_FORCE:
4511 * - return 0 if it doesn't need to allocate a new chunk,
4512 * - return 1 if it successfully allocates a chunk,
4513 * - return errors including -ENOSPC otherwise.
4514 */
01458828
NB
4515static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4516 int force)
9ed74f2d 4517{
01458828 4518 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 4519 struct btrfs_space_info *space_info;
2556fbb0
NB
4520 bool wait_for_alloc = false;
4521 bool should_alloc = false;
9ed74f2d 4522 int ret = 0;
9ed74f2d 4523
c6b305a8
JB
4524 /* Don't re-enter if we're already allocating a chunk */
4525 if (trans->allocating_chunk)
4526 return -ENOSPC;
4527
0b246afa 4528 space_info = __find_space_info(fs_info, flags);
dc2d3005 4529 ASSERT(space_info);
9ed74f2d 4530
2556fbb0
NB
4531 do {
4532 spin_lock(&space_info->lock);
4533 if (force < space_info->force_alloc)
4534 force = space_info->force_alloc;
4535 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4536 if (space_info->full) {
4537 /* No more free physical space */
4538 if (should_alloc)
4539 ret = -ENOSPC;
4540 else
4541 ret = 0;
4542 spin_unlock(&space_info->lock);
4543 return ret;
4544 } else if (!should_alloc) {
4545 spin_unlock(&space_info->lock);
4546 return 0;
4547 } else if (space_info->chunk_alloc) {
4548 /*
4549 * Someone is already allocating, so we need to block
4550 * until this someone is finished and then loop to
4551 * recheck if we should continue with our allocation
4552 * attempt.
4553 */
4554 wait_for_alloc = true;
4555 spin_unlock(&space_info->lock);
4556 mutex_lock(&fs_info->chunk_mutex);
4557 mutex_unlock(&fs_info->chunk_mutex);
4558 } else {
4559 /* Proceed with allocation */
4560 space_info->chunk_alloc = 1;
4561 wait_for_alloc = false;
4562 spin_unlock(&space_info->lock);
4563 }
6d74119f 4564
1e1c50a9 4565 cond_resched();
2556fbb0 4566 } while (wait_for_alloc);
6d74119f 4567
2556fbb0 4568 mutex_lock(&fs_info->chunk_mutex);
c6b305a8
JB
4569 trans->allocating_chunk = true;
4570
67377734
JB
4571 /*
4572 * If we have mixed data/metadata chunks we want to make sure we keep
4573 * allocating mixed chunks instead of individual chunks.
4574 */
4575 if (btrfs_mixed_space_info(space_info))
4576 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4577
97e728d4
JB
4578 /*
4579 * if we're doing a data chunk, go ahead and make sure that
4580 * we keep a reasonable number of metadata chunks allocated in the
4581 * FS as well.
4582 */
9ed74f2d 4583 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4584 fs_info->data_chunk_allocations++;
4585 if (!(fs_info->data_chunk_allocations %
4586 fs_info->metadata_ratio))
4587 force_metadata_allocation(fs_info);
9ed74f2d
JB
4588 }
4589
15d1ff81
LB
4590 /*
4591 * Check if we have enough space in SYSTEM chunk because we may need
4592 * to update devices.
4593 */
451a2c13 4594 check_system_chunk(trans, flags);
15d1ff81 4595
c216b203 4596 ret = btrfs_alloc_chunk(trans, flags);
c6b305a8 4597 trans->allocating_chunk = false;
92b8e897 4598
9ed74f2d 4599 spin_lock(&space_info->lock);
57f1642e
NB
4600 if (ret < 0) {
4601 if (ret == -ENOSPC)
4602 space_info->full = 1;
4603 else
4604 goto out;
4605 } else {
424499db 4606 ret = 1;
21a94f7a 4607 space_info->max_extent_size = 0;
57f1642e 4608 }
6d74119f 4609
0e4f8f88 4610 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4611out:
6d74119f 4612 space_info->chunk_alloc = 0;
9ed74f2d 4613 spin_unlock(&space_info->lock);
a25c75d5 4614 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4615 /*
4616 * When we allocate a new chunk we reserve space in the chunk block
4617 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4618 * add new nodes/leafs to it if we end up needing to do it when
4619 * inserting the chunk item and updating device items as part of the
4620 * second phase of chunk allocation, performed by
4621 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4622 * large number of new block groups to create in our transaction
4623 * handle's new_bgs list to avoid exhausting the chunk block reserve
4624 * in extreme cases - like having a single transaction create many new
4625 * block groups when starting to write out the free space caches of all
4626 * the block groups that were made dirty during the lifetime of the
4627 * transaction.
4628 */
5ce55557 4629 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
6c686b35 4630 btrfs_create_pending_block_groups(trans);
5ce55557 4631
0f9dd46c 4632 return ret;
6324fbf3 4633}
9ed74f2d 4634
c1c4919b 4635static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4636 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4637 enum btrfs_reserve_flush_enum flush,
4638 bool system_chunk)
a80c8dcf 4639{
0b246afa 4640 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4641 u64 profile;
3c76cd84 4642 u64 space_size;
a80c8dcf
JB
4643 u64 avail;
4644 u64 used;
46df06b8 4645 int factor;
a80c8dcf 4646
957780eb
JB
4647 /* Don't overcommit when in mixed mode. */
4648 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4649 return 0;
4650
c1c4919b
JM
4651 if (system_chunk)
4652 profile = btrfs_system_alloc_profile(fs_info);
4653 else
4654 profile = btrfs_metadata_alloc_profile(fs_info);
4655
4136135b 4656 used = btrfs_space_info_used(space_info, false);
96f1bb57 4657
96f1bb57
JB
4658 /*
4659 * We only want to allow over committing if we have lots of actual space
4660 * free, but if we don't have enough space to handle the global reserve
4661 * space then we could end up having a real enospc problem when trying
4662 * to allocate a chunk or some other such important allocation.
4663 */
3c76cd84
MX
4664 spin_lock(&global_rsv->lock);
4665 space_size = calc_global_rsv_need_space(global_rsv);
4666 spin_unlock(&global_rsv->lock);
4667 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4668 return 0;
4669
4670 used += space_info->bytes_may_use;
a80c8dcf 4671
a5ed45f8 4672 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4673
4674 /*
4675 * If we have dup, raid1 or raid10 then only half of the free
52042d8e 4676 * space is actually usable. For raid56, the space info used
53b381b3
DW
4677 * doesn't include the parity drive, so we don't have to
4678 * change the math
a80c8dcf 4679 */
46df06b8
DS
4680 factor = btrfs_bg_type_to_factor(profile);
4681 avail = div_u64(avail, factor);
a80c8dcf
JB
4682
4683 /*
561c294d
MX
4684 * If we aren't flushing all things, let us overcommit up to
4685 * 1/2th of the space. If we can flush, don't let us overcommit
4686 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4687 */
08e007d2 4688 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4689 avail >>= 3;
a80c8dcf 4690 else
14575aef 4691 avail >>= 1;
a80c8dcf 4692
14575aef 4693 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4694 return 1;
4695 return 0;
4696}
4697
2ff7e61e 4698static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4699 unsigned long nr_pages, int nr_items)
da633a42 4700{
0b246afa 4701 struct super_block *sb = fs_info->sb;
da633a42 4702
925a6efb
JB
4703 if (down_read_trylock(&sb->s_umount)) {
4704 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4705 up_read(&sb->s_umount);
4706 } else {
da633a42
MX
4707 /*
4708 * We needn't worry the filesystem going from r/w to r/o though
4709 * we don't acquire ->s_umount mutex, because the filesystem
4710 * should guarantee the delalloc inodes list be empty after
4711 * the filesystem is readonly(all dirty pages are written to
4712 * the disk).
4713 */
82b3e53b 4714 btrfs_start_delalloc_roots(fs_info, nr_items);
98ad69cf 4715 if (!current->journal_info)
0b246afa 4716 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4717 }
4718}
4719
6374e57a 4720static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4721 u64 to_reclaim)
18cd8ea6
MX
4722{
4723 u64 bytes;
6374e57a 4724 u64 nr;
18cd8ea6 4725
2ff7e61e 4726 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4727 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4728 if (!nr)
4729 nr = 1;
4730 return nr;
4731}
4732
ee22184b 4733#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4734
9ed74f2d 4735/*
5da9d01b 4736 * shrink metadata reservation for delalloc
9ed74f2d 4737 */
c1c4919b
JM
4738static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4739 u64 orig, bool wait_ordered)
5da9d01b 4740{
0019f10d 4741 struct btrfs_space_info *space_info;
663350ac 4742 struct btrfs_trans_handle *trans;
f4c738c2 4743 u64 delalloc_bytes;
5da9d01b 4744 u64 max_reclaim;
6374e57a 4745 u64 items;
b1953bce 4746 long time_left;
d3ee29e3
MX
4747 unsigned long nr_pages;
4748 int loops;
5da9d01b 4749
c61a16a7 4750 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4751 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4752 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4753
663350ac 4754 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4755 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4756
963d678b 4757 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4758 &fs_info->delalloc_bytes);
f4c738c2 4759 if (delalloc_bytes == 0) {
fdb5effd 4760 if (trans)
f4c738c2 4761 return;
38c135af 4762 if (wait_ordered)
0b246afa 4763 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4764 return;
fdb5effd
JB
4765 }
4766
d3ee29e3 4767 loops = 0;
f4c738c2
JB
4768 while (delalloc_bytes && loops < 3) {
4769 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4770 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4771 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4772 /*
4773 * We need to wait for the async pages to actually start before
4774 * we do anything.
4775 */
0b246afa 4776 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4777 if (!max_reclaim)
4778 goto skip_async;
4779
4780 if (max_reclaim <= nr_pages)
4781 max_reclaim = 0;
4782 else
4783 max_reclaim -= nr_pages;
dea31f52 4784
0b246afa
JM
4785 wait_event(fs_info->async_submit_wait,
4786 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4787 (int)max_reclaim);
4788skip_async:
0019f10d 4789 spin_lock(&space_info->lock);
957780eb
JB
4790 if (list_empty(&space_info->tickets) &&
4791 list_empty(&space_info->priority_tickets)) {
4792 spin_unlock(&space_info->lock);
4793 break;
4794 }
0019f10d 4795 spin_unlock(&space_info->lock);
5da9d01b 4796
36e39c40 4797 loops++;
f104d044 4798 if (wait_ordered && !trans) {
0b246afa 4799 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4800 } else {
f4c738c2 4801 time_left = schedule_timeout_killable(1);
f104d044
JB
4802 if (time_left)
4803 break;
4804 }
963d678b 4805 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4806 &fs_info->delalloc_bytes);
5da9d01b 4807 }
5da9d01b
YZ
4808}
4809
996478ca
JB
4810struct reserve_ticket {
4811 u64 bytes;
4812 int error;
4813 struct list_head list;
4814 wait_queue_head_t wait;
4815};
4816
663350ac
JB
4817/**
4818 * maybe_commit_transaction - possibly commit the transaction if its ok to
4819 * @root - the root we're allocating for
4820 * @bytes - the number of bytes we want to reserve
4821 * @force - force the commit
8bb8ab2e 4822 *
663350ac
JB
4823 * This will check to make sure that committing the transaction will actually
4824 * get us somewhere and then commit the transaction if it does. Otherwise it
4825 * will return -ENOSPC.
8bb8ab2e 4826 */
0c9ab349 4827static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4828 struct btrfs_space_info *space_info)
663350ac 4829{
996478ca 4830 struct reserve_ticket *ticket = NULL;
0b246afa 4831 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4c8edbc7 4832 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
663350ac 4833 struct btrfs_trans_handle *trans;
4c8edbc7
JB
4834 u64 bytes_needed;
4835 u64 reclaim_bytes = 0;
663350ac
JB
4836
4837 trans = (struct btrfs_trans_handle *)current->journal_info;
4838 if (trans)
4839 return -EAGAIN;
4840
996478ca
JB
4841 spin_lock(&space_info->lock);
4842 if (!list_empty(&space_info->priority_tickets))
4843 ticket = list_first_entry(&space_info->priority_tickets,
4844 struct reserve_ticket, list);
4845 else if (!list_empty(&space_info->tickets))
4846 ticket = list_first_entry(&space_info->tickets,
4847 struct reserve_ticket, list);
4c8edbc7 4848 bytes_needed = (ticket) ? ticket->bytes : 0;
996478ca
JB
4849 spin_unlock(&space_info->lock);
4850
4c8edbc7 4851 if (!bytes_needed)
996478ca 4852 return 0;
663350ac
JB
4853
4854 /* See if there is enough pinned space to make this reservation */
dec59fa3 4855 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4c8edbc7 4856 bytes_needed,
dec59fa3 4857 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
663350ac 4858 goto commit;
663350ac
JB
4859
4860 /*
4861 * See if there is some space in the delayed insertion reservation for
4862 * this reservation.
4863 */
4864 if (space_info != delayed_rsv->space_info)
4865 return -ENOSPC;
4866
4867 spin_lock(&delayed_rsv->lock);
4c8edbc7 4868 reclaim_bytes += delayed_rsv->reserved;
057aac3e
NB
4869 spin_unlock(&delayed_rsv->lock);
4870
4c8edbc7
JB
4871 spin_lock(&delayed_refs_rsv->lock);
4872 reclaim_bytes += delayed_refs_rsv->reserved;
4873 spin_unlock(&delayed_refs_rsv->lock);
4874 if (reclaim_bytes >= bytes_needed)
4875 goto commit;
4876 bytes_needed -= reclaim_bytes;
4877
dec59fa3 4878 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4c8edbc7 4879 bytes_needed,
dec59fa3 4880 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
663350ac
JB
4881 return -ENOSPC;
4882 }
663350ac
JB
4883
4884commit:
a9b3311e 4885 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4886 if (IS_ERR(trans))
4887 return -ENOSPC;
4888
3a45bb20 4889 return btrfs_commit_transaction(trans);
663350ac
JB
4890}
4891
e38ae7a0
NB
4892/*
4893 * Try to flush some data based on policy set by @state. This is only advisory
4894 * and may fail for various reasons. The caller is supposed to examine the
4895 * state of @space_info to detect the outcome.
4896 */
4897static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4898 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4899 int state)
96c3f433 4900{
a9b3311e 4901 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4902 struct btrfs_trans_handle *trans;
4903 int nr;
f4c738c2 4904 int ret = 0;
96c3f433
JB
4905
4906 switch (state) {
96c3f433
JB
4907 case FLUSH_DELAYED_ITEMS_NR:
4908 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4909 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4910 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4911 else
96c3f433 4912 nr = -1;
18cd8ea6 4913
96c3f433
JB
4914 trans = btrfs_join_transaction(root);
4915 if (IS_ERR(trans)) {
4916 ret = PTR_ERR(trans);
4917 break;
4918 }
e5c304e6 4919 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4920 btrfs_end_transaction(trans);
96c3f433 4921 break;
67b0fd63
JB
4922 case FLUSH_DELALLOC:
4923 case FLUSH_DELALLOC_WAIT:
7bdd6277 4924 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4925 state == FLUSH_DELALLOC_WAIT);
4926 break;
413df725
JB
4927 case FLUSH_DELAYED_REFS_NR:
4928 case FLUSH_DELAYED_REFS:
4929 trans = btrfs_join_transaction(root);
4930 if (IS_ERR(trans)) {
4931 ret = PTR_ERR(trans);
4932 break;
4933 }
4934 if (state == FLUSH_DELAYED_REFS_NR)
4935 nr = calc_reclaim_items_nr(fs_info, num_bytes);
4936 else
4937 nr = 0;
4938 btrfs_run_delayed_refs(trans, nr);
4939 btrfs_end_transaction(trans);
4940 break;
ea658bad
JB
4941 case ALLOC_CHUNK:
4942 trans = btrfs_join_transaction(root);
4943 if (IS_ERR(trans)) {
4944 ret = PTR_ERR(trans);
4945 break;
4946 }
01458828 4947 ret = do_chunk_alloc(trans,
1b86826d 4948 btrfs_metadata_alloc_profile(fs_info),
ea658bad 4949 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4950 btrfs_end_transaction(trans);
eecba891 4951 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4952 ret = 0;
4953 break;
96c3f433 4954 case COMMIT_TRANS:
996478ca 4955 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
4956 break;
4957 default:
4958 ret = -ENOSPC;
4959 break;
4960 }
4961
7bdd6277
NB
4962 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4963 ret);
e38ae7a0 4964 return;
96c3f433 4965}
21c7e756
MX
4966
4967static inline u64
c1c4919b
JM
4968btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4969 struct btrfs_space_info *space_info,
4970 bool system_chunk)
21c7e756 4971{
957780eb 4972 struct reserve_ticket *ticket;
21c7e756
MX
4973 u64 used;
4974 u64 expected;
957780eb 4975 u64 to_reclaim = 0;
21c7e756 4976
957780eb
JB
4977 list_for_each_entry(ticket, &space_info->tickets, list)
4978 to_reclaim += ticket->bytes;
4979 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4980 to_reclaim += ticket->bytes;
4981 if (to_reclaim)
4982 return to_reclaim;
21c7e756 4983
e0af2484 4984 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
4985 if (can_overcommit(fs_info, space_info, to_reclaim,
4986 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
4987 return 0;
4988
0eee8a49
NB
4989 used = btrfs_space_info_used(space_info, true);
4990
c1c4919b
JM
4991 if (can_overcommit(fs_info, space_info, SZ_1M,
4992 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
4993 expected = div_factor_fine(space_info->total_bytes, 95);
4994 else
4995 expected = div_factor_fine(space_info->total_bytes, 90);
4996
4997 if (used > expected)
4998 to_reclaim = used - expected;
4999 else
5000 to_reclaim = 0;
5001 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5002 space_info->bytes_reserved);
21c7e756
MX
5003 return to_reclaim;
5004}
5005
c1c4919b
JM
5006static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5007 struct btrfs_space_info *space_info,
5008 u64 used, bool system_chunk)
21c7e756 5009{
365c5313
JB
5010 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5011
5012 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5013 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5014 return 0;
5015
c1c4919b
JM
5016 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5017 system_chunk))
d38b349c
JB
5018 return 0;
5019
0b246afa
JM
5020 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5021 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5022}
5023
957780eb 5024static void wake_all_tickets(struct list_head *head)
21c7e756 5025{
957780eb 5026 struct reserve_ticket *ticket;
25ce459c 5027
957780eb
JB
5028 while (!list_empty(head)) {
5029 ticket = list_first_entry(head, struct reserve_ticket, list);
5030 list_del_init(&ticket->list);
5031 ticket->error = -ENOSPC;
5032 wake_up(&ticket->wait);
21c7e756 5033 }
21c7e756
MX
5034}
5035
957780eb
JB
5036/*
5037 * This is for normal flushers, we can wait all goddamned day if we want to. We
5038 * will loop and continuously try to flush as long as we are making progress.
5039 * We count progress as clearing off tickets each time we have to loop.
5040 */
21c7e756
MX
5041static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5042{
5043 struct btrfs_fs_info *fs_info;
5044 struct btrfs_space_info *space_info;
5045 u64 to_reclaim;
5046 int flush_state;
957780eb 5047 int commit_cycles = 0;
ce129655 5048 u64 last_tickets_id;
21c7e756
MX
5049
5050 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5051 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5052
957780eb 5053 spin_lock(&space_info->lock);
c1c4919b
JM
5054 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5055 false);
957780eb
JB
5056 if (!to_reclaim) {
5057 space_info->flush = 0;
5058 spin_unlock(&space_info->lock);
21c7e756 5059 return;
957780eb 5060 }
ce129655 5061 last_tickets_id = space_info->tickets_id;
957780eb 5062 spin_unlock(&space_info->lock);
21c7e756
MX
5063
5064 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5065 do {
e38ae7a0 5066 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5067 spin_lock(&space_info->lock);
5068 if (list_empty(&space_info->tickets)) {
5069 space_info->flush = 0;
5070 spin_unlock(&space_info->lock);
5071 return;
5072 }
c1c4919b
JM
5073 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5074 space_info,
5075 false);
ce129655 5076 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5077 flush_state++;
5078 } else {
ce129655 5079 last_tickets_id = space_info->tickets_id;
957780eb
JB
5080 flush_state = FLUSH_DELAYED_ITEMS_NR;
5081 if (commit_cycles)
5082 commit_cycles--;
5083 }
5084
5085 if (flush_state > COMMIT_TRANS) {
5086 commit_cycles++;
5087 if (commit_cycles > 2) {
5088 wake_all_tickets(&space_info->tickets);
5089 space_info->flush = 0;
5090 } else {
5091 flush_state = FLUSH_DELAYED_ITEMS_NR;
5092 }
5093 }
5094 spin_unlock(&space_info->lock);
5095 } while (flush_state <= COMMIT_TRANS);
5096}
5097
5098void btrfs_init_async_reclaim_work(struct work_struct *work)
5099{
5100 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5101}
5102
5103static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5104 struct btrfs_space_info *space_info,
5105 struct reserve_ticket *ticket)
5106{
5107 u64 to_reclaim;
5108 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5109
5110 spin_lock(&space_info->lock);
c1c4919b
JM
5111 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5112 false);
957780eb
JB
5113 if (!to_reclaim) {
5114 spin_unlock(&space_info->lock);
5115 return;
5116 }
5117 spin_unlock(&space_info->lock);
5118
21c7e756 5119 do {
7bdd6277 5120 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5121 flush_state++;
957780eb
JB
5122 spin_lock(&space_info->lock);
5123 if (ticket->bytes == 0) {
5124 spin_unlock(&space_info->lock);
21c7e756 5125 return;
957780eb
JB
5126 }
5127 spin_unlock(&space_info->lock);
5128
5129 /*
5130 * Priority flushers can't wait on delalloc without
5131 * deadlocking.
5132 */
5133 if (flush_state == FLUSH_DELALLOC ||
5134 flush_state == FLUSH_DELALLOC_WAIT)
5135 flush_state = ALLOC_CHUNK;
365c5313 5136 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5137}
5138
957780eb
JB
5139static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5140 struct btrfs_space_info *space_info,
5141 struct reserve_ticket *ticket, u64 orig_bytes)
5142
21c7e756 5143{
957780eb
JB
5144 DEFINE_WAIT(wait);
5145 int ret = 0;
5146
5147 spin_lock(&space_info->lock);
5148 while (ticket->bytes > 0 && ticket->error == 0) {
5149 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5150 if (ret) {
5151 ret = -EINTR;
5152 break;
5153 }
5154 spin_unlock(&space_info->lock);
5155
5156 schedule();
5157
5158 finish_wait(&ticket->wait, &wait);
5159 spin_lock(&space_info->lock);
5160 }
5161 if (!ret)
5162 ret = ticket->error;
5163 if (!list_empty(&ticket->list))
5164 list_del_init(&ticket->list);
5165 if (ticket->bytes && ticket->bytes < orig_bytes) {
5166 u64 num_bytes = orig_bytes - ticket->bytes;
9f9b8e8d 5167 update_bytes_may_use(space_info, -num_bytes);
957780eb
JB
5168 trace_btrfs_space_reservation(fs_info, "space_info",
5169 space_info->flags, num_bytes, 0);
5170 }
5171 spin_unlock(&space_info->lock);
5172
5173 return ret;
21c7e756
MX
5174}
5175
4a92b1b8
JB
5176/**
5177 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5178 * @root - the root we're allocating for
957780eb 5179 * @space_info - the space info we want to allocate from
4a92b1b8 5180 * @orig_bytes - the number of bytes we want
48fc7f7e 5181 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5182 *
01327610 5183 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5184 * with the block_rsv. If there is not enough space it will make an attempt to
5185 * flush out space to make room. It will do this by flushing delalloc if
5186 * possible or committing the transaction. If flush is 0 then no attempts to
5187 * regain reservations will be made and this will fail if there is not enough
5188 * space already.
8bb8ab2e 5189 */
c1c4919b 5190static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5191 struct btrfs_space_info *space_info,
5192 u64 orig_bytes,
c1c4919b
JM
5193 enum btrfs_reserve_flush_enum flush,
5194 bool system_chunk)
9ed74f2d 5195{
957780eb 5196 struct reserve_ticket ticket;
2bf64758 5197 u64 used;
8bb8ab2e 5198 int ret = 0;
9ed74f2d 5199
957780eb 5200 ASSERT(orig_bytes);
8ca17f0f 5201 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5202
8bb8ab2e 5203 spin_lock(&space_info->lock);
fdb5effd 5204 ret = -ENOSPC;
4136135b 5205 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5206
8bb8ab2e 5207 /*
957780eb
JB
5208 * If we have enough space then hooray, make our reservation and carry
5209 * on. If not see if we can overcommit, and if we can, hooray carry on.
5210 * If not things get more complicated.
8bb8ab2e 5211 */
957780eb 5212 if (used + orig_bytes <= space_info->total_bytes) {
9f9b8e8d 5213 update_bytes_may_use(space_info, orig_bytes);
0b246afa
JM
5214 trace_btrfs_space_reservation(fs_info, "space_info",
5215 space_info->flags, orig_bytes, 1);
957780eb 5216 ret = 0;
c1c4919b
JM
5217 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5218 system_chunk)) {
9f9b8e8d 5219 update_bytes_may_use(space_info, orig_bytes);
0b246afa
JM
5220 trace_btrfs_space_reservation(fs_info, "space_info",
5221 space_info->flags, orig_bytes, 1);
44734ed1 5222 ret = 0;
2bf64758
JB
5223 }
5224
8bb8ab2e 5225 /*
957780eb
JB
5226 * If we couldn't make a reservation then setup our reservation ticket
5227 * and kick the async worker if it's not already running.
08e007d2 5228 *
957780eb
JB
5229 * If we are a priority flusher then we just need to add our ticket to
5230 * the list and we will do our own flushing further down.
8bb8ab2e 5231 */
72bcd99d 5232 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5233 ticket.bytes = orig_bytes;
5234 ticket.error = 0;
5235 init_waitqueue_head(&ticket.wait);
5236 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5237 list_add_tail(&ticket.list, &space_info->tickets);
5238 if (!space_info->flush) {
5239 space_info->flush = 1;
0b246afa 5240 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5241 space_info->flags,
5242 orig_bytes, flush,
5243 "enospc");
957780eb 5244 queue_work(system_unbound_wq,
c1c4919b 5245 &fs_info->async_reclaim_work);
957780eb
JB
5246 }
5247 } else {
5248 list_add_tail(&ticket.list,
5249 &space_info->priority_tickets);
5250 }
21c7e756
MX
5251 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5252 used += orig_bytes;
f6acfd50
JB
5253 /*
5254 * We will do the space reservation dance during log replay,
5255 * which means we won't have fs_info->fs_root set, so don't do
5256 * the async reclaim as we will panic.
5257 */
0b246afa 5258 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5259 need_do_async_reclaim(fs_info, space_info,
5260 used, system_chunk) &&
0b246afa
JM
5261 !work_busy(&fs_info->async_reclaim_work)) {
5262 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5263 orig_bytes, flush, "preempt");
21c7e756 5264 queue_work(system_unbound_wq,
0b246afa 5265 &fs_info->async_reclaim_work);
f376df2b 5266 }
8bb8ab2e 5267 }
f0486c68 5268 spin_unlock(&space_info->lock);
08e007d2 5269 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5270 return ret;
f0486c68 5271
957780eb 5272 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5273 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5274 orig_bytes);
08e007d2 5275
957780eb 5276 ret = 0;
0b246afa 5277 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5278 spin_lock(&space_info->lock);
5279 if (ticket.bytes) {
5280 if (ticket.bytes < orig_bytes) {
5281 u64 num_bytes = orig_bytes - ticket.bytes;
9f9b8e8d 5282 update_bytes_may_use(space_info, -num_bytes);
0b246afa
JM
5283 trace_btrfs_space_reservation(fs_info, "space_info",
5284 space_info->flags,
5285 num_bytes, 0);
08e007d2 5286
957780eb
JB
5287 }
5288 list_del_init(&ticket.list);
5289 ret = -ENOSPC;
5290 }
5291 spin_unlock(&space_info->lock);
5292 ASSERT(list_empty(&ticket.list));
5293 return ret;
5294}
8bb8ab2e 5295
957780eb
JB
5296/**
5297 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5298 * @root - the root we're allocating for
5299 * @block_rsv - the block_rsv we're allocating for
5300 * @orig_bytes - the number of bytes we want
5301 * @flush - whether or not we can flush to make our reservation
5302 *
52042d8e 5303 * This will reserve orig_bytes number of bytes from the space info associated
957780eb
JB
5304 * with the block_rsv. If there is not enough space it will make an attempt to
5305 * flush out space to make room. It will do this by flushing delalloc if
5306 * possible or committing the transaction. If flush is 0 then no attempts to
5307 * regain reservations will be made and this will fail if there is not enough
5308 * space already.
5309 */
5310static int reserve_metadata_bytes(struct btrfs_root *root,
5311 struct btrfs_block_rsv *block_rsv,
5312 u64 orig_bytes,
5313 enum btrfs_reserve_flush_enum flush)
5314{
0b246afa
JM
5315 struct btrfs_fs_info *fs_info = root->fs_info;
5316 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5317 int ret;
c1c4919b 5318 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5319
c1c4919b
JM
5320 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5321 orig_bytes, flush, system_chunk);
5d80366e
JB
5322 if (ret == -ENOSPC &&
5323 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5324 if (block_rsv != global_rsv &&
5325 !block_rsv_use_bytes(global_rsv, orig_bytes))
5326 ret = 0;
5327 }
9a3daff3 5328 if (ret == -ENOSPC) {
0b246afa 5329 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5330 block_rsv->space_info->flags,
5331 orig_bytes, 1);
9a3daff3
NB
5332
5333 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5334 dump_space_info(fs_info, block_rsv->space_info,
5335 orig_bytes, 0);
5336 }
f0486c68
YZ
5337 return ret;
5338}
5339
79787eaa
JM
5340static struct btrfs_block_rsv *get_block_rsv(
5341 const struct btrfs_trans_handle *trans,
5342 const struct btrfs_root *root)
f0486c68 5343{
0b246afa 5344 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5345 struct btrfs_block_rsv *block_rsv = NULL;
5346
e9cf439f 5347 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5348 (root == fs_info->csum_root && trans->adding_csums) ||
5349 (root == fs_info->uuid_root))
f7a81ea4
SB
5350 block_rsv = trans->block_rsv;
5351
4c13d758 5352 if (!block_rsv)
f0486c68
YZ
5353 block_rsv = root->block_rsv;
5354
5355 if (!block_rsv)
0b246afa 5356 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5357
5358 return block_rsv;
5359}
5360
5361static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5362 u64 num_bytes)
5363{
5364 int ret = -ENOSPC;
5365 spin_lock(&block_rsv->lock);
5366 if (block_rsv->reserved >= num_bytes) {
5367 block_rsv->reserved -= num_bytes;
5368 if (block_rsv->reserved < block_rsv->size)
5369 block_rsv->full = 0;
5370 ret = 0;
5371 }
5372 spin_unlock(&block_rsv->lock);
5373 return ret;
5374}
5375
5376static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3a584174 5377 u64 num_bytes, bool update_size)
f0486c68
YZ
5378{
5379 spin_lock(&block_rsv->lock);
5380 block_rsv->reserved += num_bytes;
5381 if (update_size)
5382 block_rsv->size += num_bytes;
5383 else if (block_rsv->reserved >= block_rsv->size)
5384 block_rsv->full = 1;
5385 spin_unlock(&block_rsv->lock);
5386}
5387
d52be818
JB
5388int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5389 struct btrfs_block_rsv *dest, u64 num_bytes,
5390 int min_factor)
5391{
5392 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5393 u64 min_bytes;
5394
5395 if (global_rsv->space_info != dest->space_info)
5396 return -ENOSPC;
5397
5398 spin_lock(&global_rsv->lock);
5399 min_bytes = div_factor(global_rsv->size, min_factor);
5400 if (global_rsv->reserved < min_bytes + num_bytes) {
5401 spin_unlock(&global_rsv->lock);
5402 return -ENOSPC;
5403 }
5404 global_rsv->reserved -= num_bytes;
5405 if (global_rsv->reserved < global_rsv->size)
5406 global_rsv->full = 0;
5407 spin_unlock(&global_rsv->lock);
5408
3a584174 5409 block_rsv_add_bytes(dest, num_bytes, true);
d52be818
JB
5410 return 0;
5411}
5412
ba2c4d4e
JB
5413/**
5414 * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
5415 * @fs_info - the fs info for our fs.
5416 * @src - the source block rsv to transfer from.
5417 * @num_bytes - the number of bytes to transfer.
5418 *
5419 * This transfers up to the num_bytes amount from the src rsv to the
5420 * delayed_refs_rsv. Any extra bytes are returned to the space info.
5421 */
5422void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
5423 struct btrfs_block_rsv *src,
5424 u64 num_bytes)
5425{
5426 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
5427 u64 to_free = 0;
5428
5429 spin_lock(&src->lock);
5430 src->reserved -= num_bytes;
5431 src->size -= num_bytes;
5432 spin_unlock(&src->lock);
5433
5434 spin_lock(&delayed_refs_rsv->lock);
5435 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
5436 u64 delta = delayed_refs_rsv->size -
5437 delayed_refs_rsv->reserved;
5438 if (num_bytes > delta) {
5439 to_free = num_bytes - delta;
5440 num_bytes = delta;
5441 }
5442 } else {
5443 to_free = num_bytes;
5444 num_bytes = 0;
5445 }
5446
5447 if (num_bytes)
5448 delayed_refs_rsv->reserved += num_bytes;
5449 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
5450 delayed_refs_rsv->full = 1;
5451 spin_unlock(&delayed_refs_rsv->lock);
5452
5453 if (num_bytes)
5454 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5455 0, num_bytes, 1);
5456 if (to_free)
5457 space_info_add_old_bytes(fs_info, delayed_refs_rsv->space_info,
5458 to_free);
5459}
5460
5461/**
5462 * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
5463 * @fs_info - the fs_info for our fs.
5464 * @flush - control how we can flush for this reservation.
5465 *
5466 * This will refill the delayed block_rsv up to 1 items size worth of space and
5467 * will return -ENOSPC if we can't make the reservation.
5468 */
5469int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
5470 enum btrfs_reserve_flush_enum flush)
5471{
5472 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5473 u64 limit = btrfs_calc_trans_metadata_size(fs_info, 1);
5474 u64 num_bytes = 0;
5475 int ret = -ENOSPC;
5476
5477 spin_lock(&block_rsv->lock);
5478 if (block_rsv->reserved < block_rsv->size) {
5479 num_bytes = block_rsv->size - block_rsv->reserved;
5480 num_bytes = min(num_bytes, limit);
5481 }
5482 spin_unlock(&block_rsv->lock);
5483
5484 if (!num_bytes)
5485 return 0;
5486
5487 ret = reserve_metadata_bytes(fs_info->extent_root, block_rsv,
5488 num_bytes, flush);
5489 if (ret)
5490 return ret;
5491 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5492 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5493 0, num_bytes, 1);
5494 return 0;
5495}
5496
957780eb
JB
5497/*
5498 * This is for space we already have accounted in space_info->bytes_may_use, so
5499 * basically when we're returning space from block_rsv's.
5500 */
5501static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5502 struct btrfs_space_info *space_info,
5503 u64 num_bytes)
5504{
5505 struct reserve_ticket *ticket;
5506 struct list_head *head;
5507 u64 used;
5508 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5509 bool check_overcommit = false;
5510
5511 spin_lock(&space_info->lock);
5512 head = &space_info->priority_tickets;
5513
5514 /*
5515 * If we are over our limit then we need to check and see if we can
5516 * overcommit, and if we can't then we just need to free up our space
5517 * and not satisfy any requests.
5518 */
0eee8a49 5519 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5520 if (used - num_bytes >= space_info->total_bytes)
5521 check_overcommit = true;
5522again:
5523 while (!list_empty(head) && num_bytes) {
5524 ticket = list_first_entry(head, struct reserve_ticket,
5525 list);
5526 /*
5527 * We use 0 bytes because this space is already reserved, so
5528 * adding the ticket space would be a double count.
5529 */
5530 if (check_overcommit &&
c1c4919b 5531 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5532 break;
5533 if (num_bytes >= ticket->bytes) {
5534 list_del_init(&ticket->list);
5535 num_bytes -= ticket->bytes;
5536 ticket->bytes = 0;
ce129655 5537 space_info->tickets_id++;
957780eb
JB
5538 wake_up(&ticket->wait);
5539 } else {
5540 ticket->bytes -= num_bytes;
5541 num_bytes = 0;
5542 }
5543 }
5544
5545 if (num_bytes && head == &space_info->priority_tickets) {
5546 head = &space_info->tickets;
5547 flush = BTRFS_RESERVE_FLUSH_ALL;
5548 goto again;
5549 }
9f9b8e8d 5550 update_bytes_may_use(space_info, -num_bytes);
957780eb
JB
5551 trace_btrfs_space_reservation(fs_info, "space_info",
5552 space_info->flags, num_bytes, 0);
5553 spin_unlock(&space_info->lock);
5554}
5555
5556/*
5557 * This is for newly allocated space that isn't accounted in
5558 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5559 * we use this helper.
5560 */
5561static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5562 struct btrfs_space_info *space_info,
5563 u64 num_bytes)
5564{
5565 struct reserve_ticket *ticket;
5566 struct list_head *head = &space_info->priority_tickets;
5567
5568again:
5569 while (!list_empty(head) && num_bytes) {
5570 ticket = list_first_entry(head, struct reserve_ticket,
5571 list);
5572 if (num_bytes >= ticket->bytes) {
5573 trace_btrfs_space_reservation(fs_info, "space_info",
5574 space_info->flags,
5575 ticket->bytes, 1);
5576 list_del_init(&ticket->list);
5577 num_bytes -= ticket->bytes;
9f9b8e8d 5578 update_bytes_may_use(space_info, ticket->bytes);
957780eb 5579 ticket->bytes = 0;
ce129655 5580 space_info->tickets_id++;
957780eb
JB
5581 wake_up(&ticket->wait);
5582 } else {
5583 trace_btrfs_space_reservation(fs_info, "space_info",
5584 space_info->flags,
5585 num_bytes, 1);
9f9b8e8d 5586 update_bytes_may_use(space_info, num_bytes);
957780eb
JB
5587 ticket->bytes -= num_bytes;
5588 num_bytes = 0;
5589 }
5590 }
5591
5592 if (num_bytes && head == &space_info->priority_tickets) {
5593 head = &space_info->tickets;
5594 goto again;
5595 }
5596}
5597
69fe2d75 5598static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5599 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5600 struct btrfs_block_rsv *dest, u64 num_bytes,
5601 u64 *qgroup_to_release_ret)
f0486c68
YZ
5602{
5603 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5604 u64 qgroup_to_release = 0;
69fe2d75 5605 u64 ret;
f0486c68
YZ
5606
5607 spin_lock(&block_rsv->lock);
ff6bc37e 5608 if (num_bytes == (u64)-1) {
f0486c68 5609 num_bytes = block_rsv->size;
ff6bc37e
QW
5610 qgroup_to_release = block_rsv->qgroup_rsv_size;
5611 }
f0486c68
YZ
5612 block_rsv->size -= num_bytes;
5613 if (block_rsv->reserved >= block_rsv->size) {
5614 num_bytes = block_rsv->reserved - block_rsv->size;
5615 block_rsv->reserved = block_rsv->size;
5616 block_rsv->full = 1;
5617 } else {
5618 num_bytes = 0;
5619 }
ff6bc37e
QW
5620 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5621 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5622 block_rsv->qgroup_rsv_size;
5623 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5624 } else {
5625 qgroup_to_release = 0;
5626 }
f0486c68
YZ
5627 spin_unlock(&block_rsv->lock);
5628
69fe2d75 5629 ret = num_bytes;
f0486c68
YZ
5630 if (num_bytes > 0) {
5631 if (dest) {
e9e22899
JB
5632 spin_lock(&dest->lock);
5633 if (!dest->full) {
5634 u64 bytes_to_add;
5635
5636 bytes_to_add = dest->size - dest->reserved;
5637 bytes_to_add = min(num_bytes, bytes_to_add);
5638 dest->reserved += bytes_to_add;
5639 if (dest->reserved >= dest->size)
5640 dest->full = 1;
5641 num_bytes -= bytes_to_add;
5642 }
5643 spin_unlock(&dest->lock);
5644 }
957780eb
JB
5645 if (num_bytes)
5646 space_info_add_old_bytes(fs_info, space_info,
5647 num_bytes);
9ed74f2d 5648 }
ff6bc37e
QW
5649 if (qgroup_to_release_ret)
5650 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5651 return ret;
f0486c68 5652}
4e06bdd6 5653
25d609f8
JB
5654int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5655 struct btrfs_block_rsv *dst, u64 num_bytes,
3a584174 5656 bool update_size)
f0486c68
YZ
5657{
5658 int ret;
9ed74f2d 5659
f0486c68
YZ
5660 ret = block_rsv_use_bytes(src, num_bytes);
5661 if (ret)
5662 return ret;
9ed74f2d 5663
25d609f8 5664 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5665 return 0;
5666}
5667
66d8f3dd 5668void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5669{
f0486c68
YZ
5670 memset(rsv, 0, sizeof(*rsv));
5671 spin_lock_init(&rsv->lock);
66d8f3dd 5672 rsv->type = type;
f0486c68
YZ
5673}
5674
69fe2d75
JB
5675void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5676 struct btrfs_block_rsv *rsv,
5677 unsigned short type)
5678{
5679 btrfs_init_block_rsv(rsv, type);
5680 rsv->space_info = __find_space_info(fs_info,
5681 BTRFS_BLOCK_GROUP_METADATA);
5682}
5683
2ff7e61e 5684struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5685 unsigned short type)
f0486c68
YZ
5686{
5687 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5688
f0486c68
YZ
5689 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5690 if (!block_rsv)
5691 return NULL;
9ed74f2d 5692
69fe2d75 5693 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5694 return block_rsv;
5695}
9ed74f2d 5696
2ff7e61e 5697void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5698 struct btrfs_block_rsv *rsv)
5699{
2aaa6655
JB
5700 if (!rsv)
5701 return;
2ff7e61e 5702 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5703 kfree(rsv);
9ed74f2d
JB
5704}
5705
08e007d2
MX
5706int btrfs_block_rsv_add(struct btrfs_root *root,
5707 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5708 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5709{
f0486c68 5710 int ret;
9ed74f2d 5711
f0486c68
YZ
5712 if (num_bytes == 0)
5713 return 0;
8bb8ab2e 5714
61b520a9 5715 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5a2cb25a 5716 if (!ret)
3a584174 5717 block_rsv_add_bytes(block_rsv, num_bytes, true);
9ed74f2d 5718
f0486c68 5719 return ret;
f0486c68 5720}
9ed74f2d 5721
2ff7e61e 5722int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5723{
5724 u64 num_bytes = 0;
f0486c68 5725 int ret = -ENOSPC;
9ed74f2d 5726
f0486c68
YZ
5727 if (!block_rsv)
5728 return 0;
9ed74f2d 5729
f0486c68 5730 spin_lock(&block_rsv->lock);
36ba022a
JB
5731 num_bytes = div_factor(block_rsv->size, min_factor);
5732 if (block_rsv->reserved >= num_bytes)
5733 ret = 0;
5734 spin_unlock(&block_rsv->lock);
9ed74f2d 5735
36ba022a
JB
5736 return ret;
5737}
5738
08e007d2
MX
5739int btrfs_block_rsv_refill(struct btrfs_root *root,
5740 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5741 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5742{
5743 u64 num_bytes = 0;
5744 int ret = -ENOSPC;
5745
5746 if (!block_rsv)
5747 return 0;
5748
5749 spin_lock(&block_rsv->lock);
5750 num_bytes = min_reserved;
13553e52 5751 if (block_rsv->reserved >= num_bytes)
f0486c68 5752 ret = 0;
13553e52 5753 else
f0486c68 5754 num_bytes -= block_rsv->reserved;
f0486c68 5755 spin_unlock(&block_rsv->lock);
13553e52 5756
f0486c68
YZ
5757 if (!ret)
5758 return 0;
5759
aa38a711 5760 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640 5761 if (!ret) {
3a584174 5762 block_rsv_add_bytes(block_rsv, num_bytes, false);
f0486c68 5763 return 0;
6a63209f 5764 }
9ed74f2d 5765
13553e52 5766 return ret;
f0486c68
YZ
5767}
5768
69fe2d75
JB
5769/**
5770 * btrfs_inode_rsv_refill - refill the inode block rsv.
5771 * @inode - the inode we are refilling.
52042d8e 5772 * @flush - the flushing restriction.
69fe2d75
JB
5773 *
5774 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5775 * block_rsv->size as the minimum size. We'll either refill the missing amount
52042d8e 5776 * or return if we already have enough space. This will also handle the reserve
69fe2d75
JB
5777 * tracepoint for the reserved amount.
5778 */
3f2dd7a0
QW
5779static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5780 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5781{
5782 struct btrfs_root *root = inode->root;
5783 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5784 u64 num_bytes = 0;
ff6bc37e 5785 u64 qgroup_num_bytes = 0;
69fe2d75
JB
5786 int ret = -ENOSPC;
5787
5788 spin_lock(&block_rsv->lock);
5789 if (block_rsv->reserved < block_rsv->size)
5790 num_bytes = block_rsv->size - block_rsv->reserved;
ff6bc37e
QW
5791 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5792 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5793 block_rsv->qgroup_rsv_reserved;
69fe2d75
JB
5794 spin_unlock(&block_rsv->lock);
5795
5796 if (num_bytes == 0)
5797 return 0;
5798
ff6bc37e 5799 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
43b18595
QW
5800 if (ret)
5801 return ret;
69fe2d75
JB
5802 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5803 if (!ret) {
3a584174 5804 block_rsv_add_bytes(block_rsv, num_bytes, false);
69fe2d75
JB
5805 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5806 btrfs_ino(inode), num_bytes, 1);
ff6bc37e
QW
5807
5808 /* Don't forget to increase qgroup_rsv_reserved */
5809 spin_lock(&block_rsv->lock);
5810 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5811 spin_unlock(&block_rsv->lock);
5812 } else
5813 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
69fe2d75
JB
5814 return ret;
5815}
5816
ba2c4d4e
JB
5817static u64 __btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5818 struct btrfs_block_rsv *block_rsv,
5819 u64 num_bytes, u64 *qgroup_to_release)
5820{
5821 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5822 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5823 struct btrfs_block_rsv *target = delayed_rsv;
5824
5825 if (target->full || target == block_rsv)
5826 target = global_rsv;
5827
5828 if (block_rsv->space_info != target->space_info)
5829 target = NULL;
5830
5831 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
5832 qgroup_to_release);
5833}
5834
5835void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5836 struct btrfs_block_rsv *block_rsv,
5837 u64 num_bytes)
5838{
5839 __btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
5840}
5841
69fe2d75
JB
5842/**
5843 * btrfs_inode_rsv_release - release any excessive reservation.
5844 * @inode - the inode we need to release from.
43b18595
QW
5845 * @qgroup_free - free or convert qgroup meta.
5846 * Unlike normal operation, qgroup meta reservation needs to know if we are
5847 * freeing qgroup reservation or just converting it into per-trans. Normally
5848 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5849 *
5850 * This is the same as btrfs_block_rsv_release, except that it handles the
5851 * tracepoint for the reservation.
5852 */
43b18595 5853static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5854{
5855 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75
JB
5856 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5857 u64 released = 0;
ff6bc37e 5858 u64 qgroup_to_release = 0;
69fe2d75
JB
5859
5860 /*
5861 * Since we statically set the block_rsv->size we just want to say we
5862 * are releasing 0 bytes, and then we'll just get the reservation over
5863 * the size free'd.
5864 */
ba2c4d4e
JB
5865 released = __btrfs_block_rsv_release(fs_info, block_rsv, 0,
5866 &qgroup_to_release);
69fe2d75
JB
5867 if (released > 0)
5868 trace_btrfs_space_reservation(fs_info, "delalloc",
5869 btrfs_ino(inode), released, 0);
43b18595 5870 if (qgroup_free)
ff6bc37e 5871 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5872 else
ff6bc37e
QW
5873 btrfs_qgroup_convert_reserved_meta(inode->root,
5874 qgroup_to_release);
69fe2d75
JB
5875}
5876
ba2c4d4e
JB
5877/**
5878 * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
5879 * @fs_info - the fs_info for our fs.
5880 * @nr - the number of items to drop.
5881 *
5882 * This drops the delayed ref head's count from the delayed refs rsv and frees
5883 * any excess reservation we had.
5884 */
5885void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
f0486c68 5886{
ba2c4d4e 5887 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
0b246afa 5888 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
ba2c4d4e
JB
5889 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, nr);
5890 u64 released = 0;
0b246afa 5891
ba2c4d4e
JB
5892 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv,
5893 num_bytes, NULL);
5894 if (released)
5895 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5896 0, released, 0);
6a63209f
JB
5897}
5898
8929ecfa
YZ
5899static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5900{
5901 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5902 struct btrfs_space_info *sinfo = block_rsv->space_info;
5903 u64 num_bytes;
6a63209f 5904
ae2e4728
JB
5905 /*
5906 * The global block rsv is based on the size of the extent tree, the
5907 * checksum tree and the root tree. If the fs is empty we want to set
5908 * it to a minimal amount for safety.
5909 */
5910 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5911 btrfs_root_used(&fs_info->csum_root->root_item) +
5912 btrfs_root_used(&fs_info->tree_root->root_item);
5913 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5914
8929ecfa 5915 spin_lock(&sinfo->lock);
1f699d38 5916 spin_lock(&block_rsv->lock);
4e06bdd6 5917
ee22184b 5918 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5919
fb4b10e5 5920 if (block_rsv->reserved < block_rsv->size) {
4136135b 5921 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5922 if (sinfo->total_bytes > num_bytes) {
5923 num_bytes = sinfo->total_bytes - num_bytes;
5924 num_bytes = min(num_bytes,
5925 block_rsv->size - block_rsv->reserved);
5926 block_rsv->reserved += num_bytes;
9f9b8e8d 5927 update_bytes_may_use(sinfo, num_bytes);
fb4b10e5
JB
5928 trace_btrfs_space_reservation(fs_info, "space_info",
5929 sinfo->flags, num_bytes,
5930 1);
5931 }
5932 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5933 num_bytes = block_rsv->reserved - block_rsv->size;
9f9b8e8d 5934 update_bytes_may_use(sinfo, -num_bytes);
8c2a3ca2 5935 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5936 sinfo->flags, num_bytes, 0);
8929ecfa 5937 block_rsv->reserved = block_rsv->size;
8929ecfa 5938 }
182608c8 5939
fb4b10e5
JB
5940 if (block_rsv->reserved == block_rsv->size)
5941 block_rsv->full = 1;
5942 else
5943 block_rsv->full = 0;
5944
8929ecfa 5945 spin_unlock(&block_rsv->lock);
1f699d38 5946 spin_unlock(&sinfo->lock);
6a63209f
JB
5947}
5948
f0486c68 5949static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5950{
f0486c68 5951 struct btrfs_space_info *space_info;
6a63209f 5952
f0486c68
YZ
5953 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5954 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5955
f0486c68 5956 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5957 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5958 fs_info->trans_block_rsv.space_info = space_info;
5959 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5960 fs_info->delayed_block_rsv.space_info = space_info;
ba2c4d4e 5961 fs_info->delayed_refs_rsv.space_info = space_info;
f0486c68 5962
ba2c4d4e
JB
5963 fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
5964 fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
8929ecfa
YZ
5965 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5966 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5967 if (fs_info->quota_root)
5968 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5969 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5970
8929ecfa 5971 update_global_block_rsv(fs_info);
6a63209f
JB
5972}
5973
8929ecfa 5974static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5975{
8c2a3ca2 5976 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 5977 (u64)-1, NULL);
8929ecfa
YZ
5978 WARN_ON(fs_info->trans_block_rsv.size > 0);
5979 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5980 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5981 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5982 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5983 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
ba2c4d4e
JB
5984 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
5985 WARN_ON(fs_info->delayed_refs_rsv.size > 0);
fcb80c2a
JB
5986}
5987
ba2c4d4e
JB
5988/*
5989 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
5990 * @trans - the trans that may have generated delayed refs
5991 *
5992 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
5993 * it'll calculate the additional size and add it to the delayed_refs_rsv.
5994 */
5995void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
5996{
5997 struct btrfs_fs_info *fs_info = trans->fs_info;
5998 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5999 u64 num_bytes;
6000
6001 if (!trans->delayed_ref_updates)
6002 return;
6003
6004 num_bytes = btrfs_calc_trans_metadata_size(fs_info,
6005 trans->delayed_ref_updates);
6006 spin_lock(&delayed_rsv->lock);
6007 delayed_rsv->size += num_bytes;
6008 delayed_rsv->full = 0;
6009 spin_unlock(&delayed_rsv->lock);
6010 trans->delayed_ref_updates = 0;
6011}
6a63209f 6012
4fbcdf66
FM
6013/*
6014 * To be called after all the new block groups attached to the transaction
6015 * handle have been created (btrfs_create_pending_block_groups()).
6016 */
6017void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
6018{
64b63580 6019 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
6020
6021 if (!trans->chunk_bytes_reserved)
6022 return;
6023
6024 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
6025
6026 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 6027 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
6028 trans->chunk_bytes_reserved = 0;
6029}
6030
d5c12070
MX
6031/*
6032 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
6033 * root: the root of the parent directory
6034 * rsv: block reservation
6035 * items: the number of items that we need do reservation
a5b7f429 6036 * use_global_rsv: allow fallback to the global block reservation
d5c12070
MX
6037 *
6038 * This function is used to reserve the space for snapshot/subvolume
6039 * creation and deletion. Those operations are different with the
6040 * common file/directory operations, they change two fs/file trees
6041 * and root tree, the number of items that the qgroup reserves is
6042 * different with the free space reservation. So we can not use
01327610 6043 * the space reservation mechanism in start_transaction().
d5c12070
MX
6044 */
6045int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
a5b7f429 6046 struct btrfs_block_rsv *rsv, int items,
ee3441b4 6047 bool use_global_rsv)
a22285a6 6048{
a5b7f429 6049 u64 qgroup_num_bytes = 0;
d5c12070
MX
6050 u64 num_bytes;
6051 int ret;
0b246afa
JM
6052 struct btrfs_fs_info *fs_info = root->fs_info;
6053 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 6054
0b246afa 6055 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 6056 /* One for parent inode, two for dir entries */
a5b7f429
LF
6057 qgroup_num_bytes = 3 * fs_info->nodesize;
6058 ret = btrfs_qgroup_reserve_meta_prealloc(root,
6059 qgroup_num_bytes, true);
d5c12070
MX
6060 if (ret)
6061 return ret;
d5c12070
MX
6062 }
6063
0b246afa
JM
6064 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6065 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
6066 BTRFS_BLOCK_GROUP_METADATA);
6067 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6068 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
6069
6070 if (ret == -ENOSPC && use_global_rsv)
3a584174 6071 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
ee3441b4 6072
a5b7f429
LF
6073 if (ret && qgroup_num_bytes)
6074 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
d5c12070
MX
6075
6076 return ret;
6077}
6078
2ff7e61e 6079void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 6080 struct btrfs_block_rsv *rsv)
d5c12070 6081{
2ff7e61e 6082 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
6083}
6084
69fe2d75
JB
6085static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6086 struct btrfs_inode *inode)
9e0baf60 6087{
69fe2d75
JB
6088 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6089 u64 reserve_size = 0;
ff6bc37e 6090 u64 qgroup_rsv_size = 0;
69fe2d75
JB
6091 u64 csum_leaves;
6092 unsigned outstanding_extents;
9e0baf60 6093
69fe2d75
JB
6094 lockdep_assert_held(&inode->lock);
6095 outstanding_extents = inode->outstanding_extents;
6096 if (outstanding_extents)
6097 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6098 outstanding_extents + 1);
6099 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6100 inode->csum_bytes);
6101 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6102 csum_leaves);
ff6bc37e
QW
6103 /*
6104 * For qgroup rsv, the calculation is very simple:
6105 * account one nodesize for each outstanding extent
6106 *
6107 * This is overestimating in most cases.
6108 */
6109 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
9e0baf60 6110
69fe2d75
JB
6111 spin_lock(&block_rsv->lock);
6112 block_rsv->size = reserve_size;
ff6bc37e 6113 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 6114 spin_unlock(&block_rsv->lock);
0ca1f7ce 6115}
c146afad 6116
9f3db423 6117int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6118{
3ffbd68c 6119 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75 6120 unsigned nr_extents;
08e007d2 6121 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6122 int ret = 0;
c64c2bd8 6123 bool delalloc_lock = true;
6324fbf3 6124
c64c2bd8
JB
6125 /* If we are a free space inode we need to not flush since we will be in
6126 * the middle of a transaction commit. We also don't need the delalloc
6127 * mutex since we won't race with anybody. We need this mostly to make
6128 * lockdep shut its filthy mouth.
bac357dc
JB
6129 *
6130 * If we have a transaction open (can happen if we call truncate_block
6131 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6132 */
6133 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6134 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6135 delalloc_lock = false;
da07d4ab
NB
6136 } else {
6137 if (current->journal_info)
6138 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 6139
da07d4ab
NB
6140 if (btrfs_transaction_in_commit(fs_info))
6141 schedule_timeout(1);
6142 }
ec44a35c 6143
c64c2bd8 6144 if (delalloc_lock)
9f3db423 6145 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6146
0b246afa 6147 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6148
6149 /* Add our new extents and calculate the new rsv size. */
9f3db423 6150 spin_lock(&inode->lock);
69fe2d75 6151 nr_extents = count_max_extents(num_bytes);
8b62f87b 6152 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6153 inode->csum_bytes += num_bytes;
6154 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6155 spin_unlock(&inode->lock);
57a45ced 6156
69fe2d75 6157 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 6158 if (unlikely(ret))
88e081bf 6159 goto out_fail;
25179201 6160
c64c2bd8 6161 if (delalloc_lock)
9f3db423 6162 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6163 return 0;
88e081bf
WS
6164
6165out_fail:
9f3db423 6166 spin_lock(&inode->lock);
8b62f87b
JB
6167 nr_extents = count_max_extents(num_bytes);
6168 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6169 inode->csum_bytes -= num_bytes;
6170 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6171 spin_unlock(&inode->lock);
88e081bf 6172
43b18595 6173 btrfs_inode_rsv_release(inode, true);
88e081bf 6174 if (delalloc_lock)
9f3db423 6175 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6176 return ret;
0ca1f7ce
YZ
6177}
6178
7709cde3
JB
6179/**
6180 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6181 * @inode: the inode to release the reservation for.
6182 * @num_bytes: the number of bytes we are releasing.
43b18595 6183 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
6184 *
6185 * This will release the metadata reservation for an inode. This can be called
6186 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6187 * reservations, or on error for the same reason.
7709cde3 6188 */
43b18595
QW
6189void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6190 bool qgroup_free)
0ca1f7ce 6191{
3ffbd68c 6192 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0ca1f7ce 6193
0b246afa 6194 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6195 spin_lock(&inode->lock);
69fe2d75
JB
6196 inode->csum_bytes -= num_bytes;
6197 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6198 spin_unlock(&inode->lock);
0ca1f7ce 6199
0b246afa 6200 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6201 return;
6202
43b18595 6203 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
6204}
6205
8b62f87b
JB
6206/**
6207 * btrfs_delalloc_release_extents - release our outstanding_extents
6208 * @inode: the inode to balance the reservation for.
6209 * @num_bytes: the number of bytes we originally reserved with
43b18595 6210 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
6211 *
6212 * When we reserve space we increase outstanding_extents for the extents we may
6213 * add. Once we've set the range as delalloc or created our ordered extents we
6214 * have outstanding_extents to track the real usage, so we use this to free our
6215 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6216 * with btrfs_delalloc_reserve_metadata.
6217 */
43b18595
QW
6218void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6219 bool qgroup_free)
8b62f87b 6220{
3ffbd68c 6221 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8b62f87b 6222 unsigned num_extents;
8b62f87b
JB
6223
6224 spin_lock(&inode->lock);
6225 num_extents = count_max_extents(num_bytes);
6226 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6227 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6228 spin_unlock(&inode->lock);
6229
8b62f87b
JB
6230 if (btrfs_is_testing(fs_info))
6231 return;
6232
43b18595 6233 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
6234}
6235
1ada3a62 6236/**
7cf5b976 6237 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6238 * delalloc
6239 * @inode: inode we're writing to
6240 * @start: start range we are writing to
6241 * @len: how long the range we are writing to
364ecf36
QW
6242 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6243 * current reservation.
1ada3a62 6244 *
1ada3a62
QW
6245 * This will do the following things
6246 *
6247 * o reserve space in data space info for num bytes
6248 * and reserve precious corresponding qgroup space
6249 * (Done in check_data_free_space)
6250 *
6251 * o reserve space for metadata space, based on the number of outstanding
6252 * extents and how much csums will be needed
6253 * also reserve metadata space in a per root over-reserve method.
6254 * o add to the inodes->delalloc_bytes
6255 * o add it to the fs_info's delalloc inodes list.
6256 * (Above 3 all done in delalloc_reserve_metadata)
6257 *
6258 * Return 0 for success
6259 * Return <0 for error(-ENOSPC or -EQUOT)
6260 */
364ecf36
QW
6261int btrfs_delalloc_reserve_space(struct inode *inode,
6262 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6263{
6264 int ret;
6265
364ecf36 6266 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6267 if (ret < 0)
6268 return ret;
9f3db423 6269 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6270 if (ret < 0)
bc42bda2 6271 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6272 return ret;
6273}
6274
7709cde3 6275/**
7cf5b976 6276 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6277 * @inode: inode we're releasing space for
6278 * @start: start position of the space already reserved
6279 * @len: the len of the space already reserved
8b62f87b 6280 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6281 *
6282 * This function will release the metadata space that was not used and will
6283 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6284 * list if there are no delalloc bytes left.
6285 * Also it will handle the qgroup reserved space.
6286 */
bc42bda2 6287void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6288 struct extent_changeset *reserved,
43b18595 6289 u64 start, u64 len, bool qgroup_free)
1ada3a62 6290{
43b18595 6291 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6292 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6293}
6294
ce93ec54 6295static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6296 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6297 u64 num_bytes, int alloc)
9078a3e1 6298{
0af3d00b 6299 struct btrfs_block_group_cache *cache = NULL;
db94535d 6300 u64 total = num_bytes;
9078a3e1 6301 u64 old_val;
db94535d 6302 u64 byte_in_group;
0af3d00b 6303 int factor;
ba2c4d4e 6304 int ret = 0;
3e1ad54f 6305
5d4f98a2 6306 /* block accounting for super block */
eb73c1b7 6307 spin_lock(&info->delalloc_root_lock);
6c41761f 6308 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6309 if (alloc)
6310 old_val += num_bytes;
6311 else
6312 old_val -= num_bytes;
6c41761f 6313 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6314 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6315
d397712b 6316 while (total) {
db94535d 6317 cache = btrfs_lookup_block_group(info, bytenr);
ba2c4d4e
JB
6318 if (!cache) {
6319 ret = -ENOENT;
6320 break;
6321 }
46df06b8
DS
6322 factor = btrfs_bg_type_to_factor(cache->flags);
6323
9d66e233
JB
6324 /*
6325 * If this block group has free space cache written out, we
6326 * need to make sure to load it if we are removing space. This
6327 * is because we need the unpinning stage to actually add the
6328 * space back to the block group, otherwise we will leak space.
6329 */
6330 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6331 cache_block_group(cache, 1);
0af3d00b 6332
db94535d
CM
6333 byte_in_group = bytenr - cache->key.objectid;
6334 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6335
25179201 6336 spin_lock(&cache->space_info->lock);
c286ac48 6337 spin_lock(&cache->lock);
0af3d00b 6338
6202df69 6339 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6340 cache->disk_cache_state < BTRFS_DC_CLEAR)
6341 cache->disk_cache_state = BTRFS_DC_CLEAR;
6342
9078a3e1 6343 old_val = btrfs_block_group_used(&cache->item);
db94535d 6344 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6345 if (alloc) {
db94535d 6346 old_val += num_bytes;
11833d66
YZ
6347 btrfs_set_block_group_used(&cache->item, old_val);
6348 cache->reserved -= num_bytes;
11833d66 6349 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6350 cache->space_info->bytes_used += num_bytes;
6351 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6352 spin_unlock(&cache->lock);
25179201 6353 spin_unlock(&cache->space_info->lock);
cd1bc465 6354 } else {
db94535d 6355 old_val -= num_bytes;
ae0ab003
FM
6356 btrfs_set_block_group_used(&cache->item, old_val);
6357 cache->pinned += num_bytes;
e2907c1a 6358 update_bytes_pinned(cache->space_info, num_bytes);
ae0ab003
FM
6359 cache->space_info->bytes_used -= num_bytes;
6360 cache->space_info->disk_used -= num_bytes * factor;
6361 spin_unlock(&cache->lock);
6362 spin_unlock(&cache->space_info->lock);
47ab2a6c 6363
0b246afa 6364 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6365 cache->space_info->flags,
6366 num_bytes, 1);
dec59fa3
EL
6367 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6368 num_bytes,
6369 BTRFS_TOTAL_BYTES_PINNED_BATCH);
ae0ab003
FM
6370 set_extent_dirty(info->pinned_extents,
6371 bytenr, bytenr + num_bytes - 1,
6372 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6373 }
1bbc621e
CM
6374
6375 spin_lock(&trans->transaction->dirty_bgs_lock);
6376 if (list_empty(&cache->dirty_list)) {
6377 list_add_tail(&cache->dirty_list,
6378 &trans->transaction->dirty_bgs);
bece2e82 6379 trans->transaction->num_dirty_bgs++;
ba2c4d4e 6380 trans->delayed_ref_updates++;
1bbc621e
CM
6381 btrfs_get_block_group(cache);
6382 }
6383 spin_unlock(&trans->transaction->dirty_bgs_lock);
6384
036a9348
FM
6385 /*
6386 * No longer have used bytes in this block group, queue it for
6387 * deletion. We do this after adding the block group to the
6388 * dirty list to avoid races between cleaner kthread and space
6389 * cache writeout.
6390 */
031f24da
QW
6391 if (!alloc && old_val == 0)
6392 btrfs_mark_bg_unused(cache);
036a9348 6393
fa9c0d79 6394 btrfs_put_block_group(cache);
db94535d
CM
6395 total -= num_bytes;
6396 bytenr += num_bytes;
9078a3e1 6397 }
ba2c4d4e
JB
6398
6399 /* Modified block groups are accounted for in the delayed_refs_rsv. */
6400 btrfs_update_delayed_refs_rsv(trans);
6401 return ret;
9078a3e1 6402}
6324fbf3 6403
2ff7e61e 6404static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6405{
0f9dd46c 6406 struct btrfs_block_group_cache *cache;
d2fb3437 6407 u64 bytenr;
0f9dd46c 6408
0b246afa
JM
6409 spin_lock(&fs_info->block_group_cache_lock);
6410 bytenr = fs_info->first_logical_byte;
6411 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6412
6413 if (bytenr < (u64)-1)
6414 return bytenr;
6415
0b246afa 6416 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6417 if (!cache)
a061fc8d 6418 return 0;
0f9dd46c 6419
d2fb3437 6420 bytenr = cache->key.objectid;
fa9c0d79 6421 btrfs_put_block_group(cache);
d2fb3437
YZ
6422
6423 return bytenr;
a061fc8d
CM
6424}
6425
2ff7e61e 6426static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6427 struct btrfs_block_group_cache *cache,
6428 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6429{
11833d66
YZ
6430 spin_lock(&cache->space_info->lock);
6431 spin_lock(&cache->lock);
6432 cache->pinned += num_bytes;
e2907c1a 6433 update_bytes_pinned(cache->space_info, num_bytes);
11833d66
YZ
6434 if (reserved) {
6435 cache->reserved -= num_bytes;
6436 cache->space_info->bytes_reserved -= num_bytes;
6437 }
6438 spin_unlock(&cache->lock);
6439 spin_unlock(&cache->space_info->lock);
68b38550 6440
0b246afa 6441 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6442 cache->space_info->flags, num_bytes, 1);
dec59fa3
EL
6443 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6444 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
0b246afa 6445 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6446 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6447 return 0;
6448}
68b38550 6449
f0486c68
YZ
6450/*
6451 * this function must be called within transaction
6452 */
2ff7e61e 6453int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6454 u64 bytenr, u64 num_bytes, int reserved)
6455{
6456 struct btrfs_block_group_cache *cache;
68b38550 6457
0b246afa 6458 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6459 BUG_ON(!cache); /* Logic error */
f0486c68 6460
2ff7e61e 6461 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6462
6463 btrfs_put_block_group(cache);
11833d66
YZ
6464 return 0;
6465}
6466
f0486c68 6467/*
e688b725
CM
6468 * this function must be called within transaction
6469 */
2ff7e61e 6470int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6471 u64 bytenr, u64 num_bytes)
6472{
6473 struct btrfs_block_group_cache *cache;
b50c6e25 6474 int ret;
e688b725 6475
0b246afa 6476 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6477 if (!cache)
6478 return -EINVAL;
e688b725
CM
6479
6480 /*
6481 * pull in the free space cache (if any) so that our pin
6482 * removes the free space from the cache. We have load_only set
6483 * to one because the slow code to read in the free extents does check
6484 * the pinned extents.
6485 */
f6373bf3 6486 cache_block_group(cache, 1);
e688b725 6487
2ff7e61e 6488 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6489
6490 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6491 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6492 btrfs_put_block_group(cache);
b50c6e25 6493 return ret;
e688b725
CM
6494}
6495
2ff7e61e
JM
6496static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6497 u64 start, u64 num_bytes)
8c2a1a30
JB
6498{
6499 int ret;
6500 struct btrfs_block_group_cache *block_group;
6501 struct btrfs_caching_control *caching_ctl;
6502
0b246afa 6503 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6504 if (!block_group)
6505 return -EINVAL;
6506
6507 cache_block_group(block_group, 0);
6508 caching_ctl = get_caching_control(block_group);
6509
6510 if (!caching_ctl) {
6511 /* Logic error */
6512 BUG_ON(!block_group_cache_done(block_group));
6513 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6514 } else {
6515 mutex_lock(&caching_ctl->mutex);
6516
6517 if (start >= caching_ctl->progress) {
2ff7e61e 6518 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6519 } else if (start + num_bytes <= caching_ctl->progress) {
6520 ret = btrfs_remove_free_space(block_group,
6521 start, num_bytes);
6522 } else {
6523 num_bytes = caching_ctl->progress - start;
6524 ret = btrfs_remove_free_space(block_group,
6525 start, num_bytes);
6526 if (ret)
6527 goto out_lock;
6528
6529 num_bytes = (start + num_bytes) -
6530 caching_ctl->progress;
6531 start = caching_ctl->progress;
2ff7e61e 6532 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6533 }
6534out_lock:
6535 mutex_unlock(&caching_ctl->mutex);
6536 put_caching_control(caching_ctl);
6537 }
6538 btrfs_put_block_group(block_group);
6539 return ret;
6540}
6541
2ff7e61e 6542int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6543 struct extent_buffer *eb)
6544{
6545 struct btrfs_file_extent_item *item;
6546 struct btrfs_key key;
6547 int found_type;
6548 int i;
b89311ef 6549 int ret = 0;
8c2a1a30 6550
2ff7e61e 6551 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6552 return 0;
6553
6554 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6555 btrfs_item_key_to_cpu(eb, &key, i);
6556 if (key.type != BTRFS_EXTENT_DATA_KEY)
6557 continue;
6558 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6559 found_type = btrfs_file_extent_type(eb, item);
6560 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6561 continue;
6562 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6563 continue;
6564 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6565 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
b89311ef
GJ
6566 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6567 if (ret)
6568 break;
8c2a1a30
JB
6569 }
6570
b89311ef 6571 return ret;
8c2a1a30
JB
6572}
6573
9cfa3e34
FM
6574static void
6575btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6576{
6577 atomic_inc(&bg->reservations);
6578}
6579
6580void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6581 const u64 start)
6582{
6583 struct btrfs_block_group_cache *bg;
6584
6585 bg = btrfs_lookup_block_group(fs_info, start);
6586 ASSERT(bg);
6587 if (atomic_dec_and_test(&bg->reservations))
4625956a 6588 wake_up_var(&bg->reservations);
9cfa3e34
FM
6589 btrfs_put_block_group(bg);
6590}
6591
9cfa3e34
FM
6592void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6593{
6594 struct btrfs_space_info *space_info = bg->space_info;
6595
6596 ASSERT(bg->ro);
6597
6598 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6599 return;
6600
6601 /*
6602 * Our block group is read only but before we set it to read only,
6603 * some task might have had allocated an extent from it already, but it
6604 * has not yet created a respective ordered extent (and added it to a
6605 * root's list of ordered extents).
6606 * Therefore wait for any task currently allocating extents, since the
6607 * block group's reservations counter is incremented while a read lock
6608 * on the groups' semaphore is held and decremented after releasing
6609 * the read access on that semaphore and creating the ordered extent.
6610 */
6611 down_write(&space_info->groups_sem);
6612 up_write(&space_info->groups_sem);
6613
4625956a 6614 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6615}
6616
fb25e914 6617/**
4824f1f4 6618 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6619 * @cache: The cache we are manipulating
18513091
WX
6620 * @ram_bytes: The number of bytes of file content, and will be same to
6621 * @num_bytes except for the compress path.
fb25e914 6622 * @num_bytes: The number of bytes in question
e570fd27 6623 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6624 *
745699ef
XW
6625 * This is called by the allocator when it reserves space. If this is a
6626 * reservation and the block group has become read only we cannot make the
6627 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6628 */
4824f1f4 6629static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6630 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6631{
fb25e914 6632 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6633 int ret = 0;
79787eaa 6634
fb25e914
JB
6635 spin_lock(&space_info->lock);
6636 spin_lock(&cache->lock);
4824f1f4
WX
6637 if (cache->ro) {
6638 ret = -EAGAIN;
fb25e914 6639 } else {
4824f1f4
WX
6640 cache->reserved += num_bytes;
6641 space_info->bytes_reserved += num_bytes;
9f9b8e8d 6642 update_bytes_may_use(space_info, -ram_bytes);
e570fd27 6643 if (delalloc)
4824f1f4 6644 cache->delalloc_bytes += num_bytes;
324ae4df 6645 }
fb25e914
JB
6646 spin_unlock(&cache->lock);
6647 spin_unlock(&space_info->lock);
f0486c68 6648 return ret;
324ae4df 6649}
9078a3e1 6650
4824f1f4
WX
6651/**
6652 * btrfs_free_reserved_bytes - update the block_group and space info counters
6653 * @cache: The cache we are manipulating
6654 * @num_bytes: The number of bytes in question
6655 * @delalloc: The blocks are allocated for the delalloc write
6656 *
6657 * This is called by somebody who is freeing space that was never actually used
6658 * on disk. For example if you reserve some space for a new leaf in transaction
6659 * A and before transaction A commits you free that leaf, you call this with
6660 * reserve set to 0 in order to clear the reservation.
6661 */
6662
556f3ca8 6663static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6664 u64 num_bytes, int delalloc)
4824f1f4
WX
6665{
6666 struct btrfs_space_info *space_info = cache->space_info;
4824f1f4
WX
6667
6668 spin_lock(&space_info->lock);
6669 spin_lock(&cache->lock);
6670 if (cache->ro)
6671 space_info->bytes_readonly += num_bytes;
6672 cache->reserved -= num_bytes;
6673 space_info->bytes_reserved -= num_bytes;
21a94f7a 6674 space_info->max_extent_size = 0;
4824f1f4
WX
6675
6676 if (delalloc)
6677 cache->delalloc_bytes -= num_bytes;
6678 spin_unlock(&cache->lock);
6679 spin_unlock(&space_info->lock);
4824f1f4 6680}
8b74c03e 6681void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6682{
11833d66
YZ
6683 struct btrfs_caching_control *next;
6684 struct btrfs_caching_control *caching_ctl;
6685 struct btrfs_block_group_cache *cache;
e8569813 6686
9e351cc8 6687 down_write(&fs_info->commit_root_sem);
25179201 6688
11833d66
YZ
6689 list_for_each_entry_safe(caching_ctl, next,
6690 &fs_info->caching_block_groups, list) {
6691 cache = caching_ctl->block_group;
6692 if (block_group_cache_done(cache)) {
6693 cache->last_byte_to_unpin = (u64)-1;
6694 list_del_init(&caching_ctl->list);
6695 put_caching_control(caching_ctl);
e8569813 6696 } else {
11833d66 6697 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6698 }
e8569813 6699 }
11833d66
YZ
6700
6701 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6702 fs_info->pinned_extents = &fs_info->freed_extents[1];
6703 else
6704 fs_info->pinned_extents = &fs_info->freed_extents[0];
6705
9e351cc8 6706 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6707
6708 update_global_block_rsv(fs_info);
e8569813
ZY
6709}
6710
c759c4e1
JB
6711/*
6712 * Returns the free cluster for the given space info and sets empty_cluster to
6713 * what it should be based on the mount options.
6714 */
6715static struct btrfs_free_cluster *
2ff7e61e
JM
6716fetch_cluster_info(struct btrfs_fs_info *fs_info,
6717 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6718{
6719 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6720
6721 *empty_cluster = 0;
6722 if (btrfs_mixed_space_info(space_info))
6723 return ret;
6724
c759c4e1 6725 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6726 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6727 if (btrfs_test_opt(fs_info, SSD))
6728 *empty_cluster = SZ_2M;
6729 else
ee22184b 6730 *empty_cluster = SZ_64K;
583b7231
HK
6731 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6732 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6733 *empty_cluster = SZ_2M;
0b246afa 6734 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6735 }
6736
6737 return ret;
6738}
6739
2ff7e61e
JM
6740static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6741 u64 start, u64 end,
678886bd 6742 const bool return_free_space)
ccd467d6 6743{
11833d66 6744 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6745 struct btrfs_space_info *space_info;
6746 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6747 struct btrfs_free_cluster *cluster = NULL;
11833d66 6748 u64 len;
c759c4e1
JB
6749 u64 total_unpinned = 0;
6750 u64 empty_cluster = 0;
7b398f8e 6751 bool readonly;
ccd467d6 6752
11833d66 6753 while (start <= end) {
7b398f8e 6754 readonly = false;
11833d66
YZ
6755 if (!cache ||
6756 start >= cache->key.objectid + cache->key.offset) {
6757 if (cache)
6758 btrfs_put_block_group(cache);
c759c4e1 6759 total_unpinned = 0;
11833d66 6760 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6761 BUG_ON(!cache); /* Logic error */
c759c4e1 6762
2ff7e61e 6763 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6764 cache->space_info,
6765 &empty_cluster);
6766 empty_cluster <<= 1;
11833d66
YZ
6767 }
6768
6769 len = cache->key.objectid + cache->key.offset - start;
6770 len = min(len, end + 1 - start);
6771
6772 if (start < cache->last_byte_to_unpin) {
6773 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6774 if (return_free_space)
6775 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6776 }
6777
f0486c68 6778 start += len;
c759c4e1 6779 total_unpinned += len;
7b398f8e 6780 space_info = cache->space_info;
f0486c68 6781
c759c4e1
JB
6782 /*
6783 * If this space cluster has been marked as fragmented and we've
6784 * unpinned enough in this block group to potentially allow a
6785 * cluster to be created inside of it go ahead and clear the
6786 * fragmented check.
6787 */
6788 if (cluster && cluster->fragmented &&
6789 total_unpinned > empty_cluster) {
6790 spin_lock(&cluster->lock);
6791 cluster->fragmented = 0;
6792 spin_unlock(&cluster->lock);
6793 }
6794
7b398f8e 6795 spin_lock(&space_info->lock);
11833d66
YZ
6796 spin_lock(&cache->lock);
6797 cache->pinned -= len;
e2907c1a 6798 update_bytes_pinned(space_info, -len);
c51e7bb1
JB
6799
6800 trace_btrfs_space_reservation(fs_info, "pinned",
6801 space_info->flags, len, 0);
4f4db217 6802 space_info->max_extent_size = 0;
dec59fa3
EL
6803 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6804 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
7b398f8e
JB
6805 if (cache->ro) {
6806 space_info->bytes_readonly += len;
6807 readonly = true;
6808 }
11833d66 6809 spin_unlock(&cache->lock);
957780eb
JB
6810 if (!readonly && return_free_space &&
6811 global_rsv->space_info == space_info) {
6812 u64 to_add = len;
92ac58ec 6813
7b398f8e
JB
6814 spin_lock(&global_rsv->lock);
6815 if (!global_rsv->full) {
957780eb
JB
6816 to_add = min(len, global_rsv->size -
6817 global_rsv->reserved);
6818 global_rsv->reserved += to_add;
9f9b8e8d 6819 update_bytes_may_use(space_info, to_add);
7b398f8e
JB
6820 if (global_rsv->reserved >= global_rsv->size)
6821 global_rsv->full = 1;
957780eb
JB
6822 trace_btrfs_space_reservation(fs_info,
6823 "space_info",
6824 space_info->flags,
6825 to_add, 1);
6826 len -= to_add;
7b398f8e
JB
6827 }
6828 spin_unlock(&global_rsv->lock);
957780eb
JB
6829 /* Add to any tickets we may have */
6830 if (len)
6831 space_info_add_new_bytes(fs_info, space_info,
6832 len);
7b398f8e
JB
6833 }
6834 spin_unlock(&space_info->lock);
ccd467d6 6835 }
11833d66
YZ
6836
6837 if (cache)
6838 btrfs_put_block_group(cache);
ccd467d6
CM
6839 return 0;
6840}
6841
5ead2dd0 6842int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6843{
5ead2dd0 6844 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6845 struct btrfs_block_group_cache *block_group, *tmp;
6846 struct list_head *deleted_bgs;
11833d66 6847 struct extent_io_tree *unpin;
1a5bc167
CM
6848 u64 start;
6849 u64 end;
a28ec197 6850 int ret;
a28ec197 6851
11833d66
YZ
6852 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6853 unpin = &fs_info->freed_extents[1];
6854 else
6855 unpin = &fs_info->freed_extents[0];
6856
e33e17ee 6857 while (!trans->aborted) {
0e6ec385
FM
6858 struct extent_state *cached_state = NULL;
6859
d4b450cd 6860 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6861 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 6862 EXTENT_DIRTY, &cached_state);
d4b450cd
FM
6863 if (ret) {
6864 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6865 break;
d4b450cd 6866 }
1f3c79a2 6867
0b246afa 6868 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6869 ret = btrfs_discard_extent(fs_info, start,
5378e607 6870 end + 1 - start, NULL);
1f3c79a2 6871
0e6ec385 6872 clear_extent_dirty(unpin, start, end, &cached_state);
2ff7e61e 6873 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6874 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
0e6ec385 6875 free_extent_state(cached_state);
b9473439 6876 cond_resched();
a28ec197 6877 }
817d52f8 6878
e33e17ee
JM
6879 /*
6880 * Transaction is finished. We don't need the lock anymore. We
6881 * do need to clean up the block groups in case of a transaction
6882 * abort.
6883 */
6884 deleted_bgs = &trans->transaction->deleted_bgs;
6885 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6886 u64 trimmed = 0;
6887
6888 ret = -EROFS;
6889 if (!trans->aborted)
2ff7e61e 6890 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6891 block_group->key.objectid,
6892 block_group->key.offset,
6893 &trimmed);
6894
6895 list_del_init(&block_group->bg_list);
6896 btrfs_put_block_group_trimming(block_group);
6897 btrfs_put_block_group(block_group);
6898
6899 if (ret) {
6900 const char *errstr = btrfs_decode_error(ret);
6901 btrfs_warn(fs_info,
913e1535 6902 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6903 ret, errstr);
6904 }
6905 }
6906
e20d96d6
CM
6907 return 0;
6908}
6909
5d4f98a2 6910static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
6911 struct btrfs_delayed_ref_node *node, u64 parent,
6912 u64 root_objectid, u64 owner_objectid,
6913 u64 owner_offset, int refs_to_drop,
6914 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6915{
e72cb923 6916 struct btrfs_fs_info *info = trans->fs_info;
e2fa7227 6917 struct btrfs_key key;
5d4f98a2 6918 struct btrfs_path *path;
1261ec42 6919 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6920 struct extent_buffer *leaf;
5d4f98a2
YZ
6921 struct btrfs_extent_item *ei;
6922 struct btrfs_extent_inline_ref *iref;
a28ec197 6923 int ret;
5d4f98a2 6924 int is_data;
952fccac
CM
6925 int extent_slot = 0;
6926 int found_extent = 0;
6927 int num_to_del = 1;
5d4f98a2
YZ
6928 u32 item_size;
6929 u64 refs;
c682f9b3
QW
6930 u64 bytenr = node->bytenr;
6931 u64 num_bytes = node->num_bytes;
fcebe456 6932 int last_ref = 0;
0b246afa 6933 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6934
5caf2a00 6935 path = btrfs_alloc_path();
54aa1f4d
CM
6936 if (!path)
6937 return -ENOMEM;
5f26f772 6938
e4058b54 6939 path->reada = READA_FORWARD;
b9473439 6940 path->leave_spinning = 1;
5d4f98a2
YZ
6941
6942 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6943 BUG_ON(!is_data && refs_to_drop != 1);
6944
3173a18f 6945 if (is_data)
897ca819 6946 skinny_metadata = false;
3173a18f 6947
fbe4801b
NB
6948 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6949 parent, root_objectid, owner_objectid,
5d4f98a2 6950 owner_offset);
7bb86316 6951 if (ret == 0) {
952fccac 6952 extent_slot = path->slots[0];
5d4f98a2
YZ
6953 while (extent_slot >= 0) {
6954 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6955 extent_slot);
5d4f98a2 6956 if (key.objectid != bytenr)
952fccac 6957 break;
5d4f98a2
YZ
6958 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6959 key.offset == num_bytes) {
952fccac
CM
6960 found_extent = 1;
6961 break;
6962 }
3173a18f
JB
6963 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6964 key.offset == owner_objectid) {
6965 found_extent = 1;
6966 break;
6967 }
952fccac
CM
6968 if (path->slots[0] - extent_slot > 5)
6969 break;
5d4f98a2 6970 extent_slot--;
952fccac 6971 }
a79865c6 6972
31840ae1 6973 if (!found_extent) {
5d4f98a2 6974 BUG_ON(iref);
87cc7a8a 6975 ret = remove_extent_backref(trans, path, NULL,
87bde3cd 6976 refs_to_drop,
fcebe456 6977 is_data, &last_ref);
005d6427 6978 if (ret) {
66642832 6979 btrfs_abort_transaction(trans, ret);
005d6427
DS
6980 goto out;
6981 }
b3b4aa74 6982 btrfs_release_path(path);
b9473439 6983 path->leave_spinning = 1;
5d4f98a2
YZ
6984
6985 key.objectid = bytenr;
6986 key.type = BTRFS_EXTENT_ITEM_KEY;
6987 key.offset = num_bytes;
6988
3173a18f
JB
6989 if (!is_data && skinny_metadata) {
6990 key.type = BTRFS_METADATA_ITEM_KEY;
6991 key.offset = owner_objectid;
6992 }
6993
31840ae1
ZY
6994 ret = btrfs_search_slot(trans, extent_root,
6995 &key, path, -1, 1);
3173a18f
JB
6996 if (ret > 0 && skinny_metadata && path->slots[0]) {
6997 /*
6998 * Couldn't find our skinny metadata item,
6999 * see if we have ye olde extent item.
7000 */
7001 path->slots[0]--;
7002 btrfs_item_key_to_cpu(path->nodes[0], &key,
7003 path->slots[0]);
7004 if (key.objectid == bytenr &&
7005 key.type == BTRFS_EXTENT_ITEM_KEY &&
7006 key.offset == num_bytes)
7007 ret = 0;
7008 }
7009
7010 if (ret > 0 && skinny_metadata) {
7011 skinny_metadata = false;
9ce49a0b 7012 key.objectid = bytenr;
3173a18f
JB
7013 key.type = BTRFS_EXTENT_ITEM_KEY;
7014 key.offset = num_bytes;
7015 btrfs_release_path(path);
7016 ret = btrfs_search_slot(trans, extent_root,
7017 &key, path, -1, 1);
7018 }
7019
f3465ca4 7020 if (ret) {
5d163e0e
JM
7021 btrfs_err(info,
7022 "umm, got %d back from search, was looking for %llu",
7023 ret, bytenr);
b783e62d 7024 if (ret > 0)
a4f78750 7025 btrfs_print_leaf(path->nodes[0]);
f3465ca4 7026 }
005d6427 7027 if (ret < 0) {
66642832 7028 btrfs_abort_transaction(trans, ret);
005d6427
DS
7029 goto out;
7030 }
31840ae1
ZY
7031 extent_slot = path->slots[0];
7032 }
fae7f21c 7033 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 7034 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
7035 btrfs_err(info,
7036 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
7037 bytenr, parent, root_objectid, owner_objectid,
7038 owner_offset);
66642832 7039 btrfs_abort_transaction(trans, ret);
c4a050bb 7040 goto out;
79787eaa 7041 } else {
66642832 7042 btrfs_abort_transaction(trans, ret);
005d6427 7043 goto out;
7bb86316 7044 }
5f39d397
CM
7045
7046 leaf = path->nodes[0];
5d4f98a2 7047 item_size = btrfs_item_size_nr(leaf, extent_slot);
6d8ff4e4 7048 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
7049 ret = -EINVAL;
7050 btrfs_print_v0_err(info);
7051 btrfs_abort_transaction(trans, ret);
7052 goto out;
7053 }
952fccac 7054 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7055 struct btrfs_extent_item);
3173a18f
JB
7056 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7057 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7058 struct btrfs_tree_block_info *bi;
7059 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7060 bi = (struct btrfs_tree_block_info *)(ei + 1);
7061 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7062 }
56bec294 7063
5d4f98a2 7064 refs = btrfs_extent_refs(leaf, ei);
32b02538 7065 if (refs < refs_to_drop) {
5d163e0e
JM
7066 btrfs_err(info,
7067 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7068 refs_to_drop, refs, bytenr);
32b02538 7069 ret = -EINVAL;
66642832 7070 btrfs_abort_transaction(trans, ret);
32b02538
JB
7071 goto out;
7072 }
56bec294 7073 refs -= refs_to_drop;
5f39d397 7074
5d4f98a2
YZ
7075 if (refs > 0) {
7076 if (extent_op)
7077 __run_delayed_extent_op(extent_op, leaf, ei);
7078 /*
7079 * In the case of inline back ref, reference count will
7080 * be updated by remove_extent_backref
952fccac 7081 */
5d4f98a2
YZ
7082 if (iref) {
7083 BUG_ON(!found_extent);
7084 } else {
7085 btrfs_set_extent_refs(leaf, ei, refs);
7086 btrfs_mark_buffer_dirty(leaf);
7087 }
7088 if (found_extent) {
87cc7a8a
NB
7089 ret = remove_extent_backref(trans, path, iref,
7090 refs_to_drop, is_data,
7091 &last_ref);
005d6427 7092 if (ret) {
66642832 7093 btrfs_abort_transaction(trans, ret);
005d6427
DS
7094 goto out;
7095 }
952fccac 7096 }
5d4f98a2 7097 } else {
5d4f98a2
YZ
7098 if (found_extent) {
7099 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7100 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7101 if (iref) {
7102 BUG_ON(path->slots[0] != extent_slot);
7103 } else {
7104 BUG_ON(path->slots[0] != extent_slot + 1);
7105 path->slots[0] = extent_slot;
7106 num_to_del = 2;
7107 }
78fae27e 7108 }
b9473439 7109
fcebe456 7110 last_ref = 1;
952fccac
CM
7111 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7112 num_to_del);
005d6427 7113 if (ret) {
66642832 7114 btrfs_abort_transaction(trans, ret);
005d6427
DS
7115 goto out;
7116 }
b3b4aa74 7117 btrfs_release_path(path);
21af804c 7118
5d4f98a2 7119 if (is_data) {
5b4aacef 7120 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7121 if (ret) {
66642832 7122 btrfs_abort_transaction(trans, ret);
005d6427
DS
7123 goto out;
7124 }
459931ec
CM
7125 }
7126
e7355e50 7127 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
1e144fb8 7128 if (ret) {
66642832 7129 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7130 goto out;
7131 }
7132
0b246afa 7133 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7134 if (ret) {
66642832 7135 btrfs_abort_transaction(trans, ret);
005d6427
DS
7136 goto out;
7137 }
a28ec197 7138 }
fcebe456
JB
7139 btrfs_release_path(path);
7140
79787eaa 7141out:
5caf2a00 7142 btrfs_free_path(path);
a28ec197
CM
7143 return ret;
7144}
7145
1887be66 7146/*
f0486c68 7147 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7148 * delayed ref for that extent as well. This searches the delayed ref tree for
7149 * a given extent, and if there are no other delayed refs to be processed, it
7150 * removes it from the tree.
7151 */
7152static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7153 u64 bytenr)
1887be66
CM
7154{
7155 struct btrfs_delayed_ref_head *head;
7156 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7157 int ret = 0;
1887be66
CM
7158
7159 delayed_refs = &trans->transaction->delayed_refs;
7160 spin_lock(&delayed_refs->lock);
f72ad18e 7161 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7162 if (!head)
cf93da7b 7163 goto out_delayed_unlock;
1887be66 7164
d7df2c79 7165 spin_lock(&head->lock);
e3d03965 7166 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1887be66
CM
7167 goto out;
7168
bedc6617
JB
7169 if (cleanup_extent_op(head) != NULL)
7170 goto out;
5d4f98a2 7171
1887be66
CM
7172 /*
7173 * waiting for the lock here would deadlock. If someone else has it
7174 * locked they are already in the process of dropping it anyway
7175 */
7176 if (!mutex_trylock(&head->mutex))
7177 goto out;
7178
d7baffda 7179 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79 7180 head->processing = 0;
d7baffda 7181
d7df2c79 7182 spin_unlock(&head->lock);
1887be66
CM
7183 spin_unlock(&delayed_refs->lock);
7184
f0486c68
YZ
7185 BUG_ON(head->extent_op);
7186 if (head->must_insert_reserved)
7187 ret = 1;
7188
31890da0 7189 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
f0486c68 7190 mutex_unlock(&head->mutex);
d278850e 7191 btrfs_put_delayed_ref_head(head);
f0486c68 7192 return ret;
1887be66 7193out:
d7df2c79 7194 spin_unlock(&head->lock);
cf93da7b
CM
7195
7196out_delayed_unlock:
1887be66
CM
7197 spin_unlock(&delayed_refs->lock);
7198 return 0;
7199}
7200
f0486c68
YZ
7201void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7202 struct btrfs_root *root,
7203 struct extent_buffer *buf,
5581a51a 7204 u64 parent, int last_ref)
f0486c68 7205{
0b246afa 7206 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7207 int pin = 1;
f0486c68
YZ
7208 int ret;
7209
7210 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7211 int old_ref_mod, new_ref_mod;
7212
fd708b81
JB
7213 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7214 root->root_key.objectid,
7215 btrfs_header_level(buf), 0,
7216 BTRFS_DROP_DELAYED_REF);
44e1c47d 7217 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7be07912 7218 buf->len, parent,
0b246afa
JM
7219 root->root_key.objectid,
7220 btrfs_header_level(buf),
7be07912 7221 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7222 &old_ref_mod, &new_ref_mod);
79787eaa 7223 BUG_ON(ret); /* -ENOMEM */
d7eae340 7224 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7225 }
7226
0a16c7d7 7227 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7228 struct btrfs_block_group_cache *cache;
7229
f0486c68 7230 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7231 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7232 if (!ret)
37be25bc 7233 goto out;
f0486c68
YZ
7234 }
7235
4da8b76d 7236 pin = 0;
0b246afa 7237 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7238
f0486c68 7239 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7240 pin_down_extent(fs_info, cache, buf->start,
7241 buf->len, 1);
6219872d 7242 btrfs_put_block_group(cache);
37be25bc 7243 goto out;
f0486c68
YZ
7244 }
7245
7246 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7247
7248 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7249 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7250 btrfs_put_block_group(cache);
71ff6437 7251 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7252 }
7253out:
b150a4f1 7254 if (pin)
29d2b84c 7255 add_pinned_bytes(fs_info, buf->len, true,
b150a4f1
JB
7256 root->root_key.objectid);
7257
0a16c7d7
OS
7258 if (last_ref) {
7259 /*
7260 * Deleting the buffer, clear the corrupt flag since it doesn't
7261 * matter anymore.
7262 */
7263 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7264 }
f0486c68
YZ
7265}
7266
79787eaa 7267/* Can return -ENOMEM */
2ff7e61e 7268int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7269 struct btrfs_root *root,
66d7e7f0 7270 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7271 u64 owner, u64 offset)
925baedd 7272{
84f7d8e6 7273 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7274 int old_ref_mod, new_ref_mod;
925baedd
CM
7275 int ret;
7276
f5ee5c9a 7277 if (btrfs_is_testing(fs_info))
faa2dbf0 7278 return 0;
fccb84c9 7279
fd708b81
JB
7280 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7281 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7282 root_objectid, owner, offset,
7283 BTRFS_DROP_DELAYED_REF);
7284
56bec294
CM
7285 /*
7286 * tree log blocks never actually go into the extent allocation
7287 * tree, just update pinning info and exit early.
56bec294 7288 */
5d4f98a2
YZ
7289 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7290 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7291 /* unlocks the pinned mutex */
2ff7e61e 7292 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7293 old_ref_mod = new_ref_mod = 0;
56bec294 7294 ret = 0;
5d4f98a2 7295 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
44e1c47d 7296 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7be07912
OS
7297 num_bytes, parent,
7298 root_objectid, (int)owner,
7299 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7300 &old_ref_mod, &new_ref_mod);
5d4f98a2 7301 } else {
88a979c6 7302 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7be07912
OS
7303 num_bytes, parent,
7304 root_objectid, owner, offset,
7305 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7306 &old_ref_mod, &new_ref_mod);
56bec294 7307 }
d7eae340 7308
29d2b84c
NB
7309 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7310 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7311
7312 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7313 }
d7eae340 7314
925baedd
CM
7315 return ret;
7316}
7317
817d52f8
JB
7318/*
7319 * when we wait for progress in the block group caching, its because
7320 * our allocation attempt failed at least once. So, we must sleep
7321 * and let some progress happen before we try again.
7322 *
7323 * This function will sleep at least once waiting for new free space to
7324 * show up, and then it will check the block group free space numbers
7325 * for our min num_bytes. Another option is to have it go ahead
7326 * and look in the rbtree for a free extent of a given size, but this
7327 * is a good start.
36cce922
JB
7328 *
7329 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7330 * any of the information in this block group.
817d52f8 7331 */
36cce922 7332static noinline void
817d52f8
JB
7333wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7334 u64 num_bytes)
7335{
11833d66 7336 struct btrfs_caching_control *caching_ctl;
817d52f8 7337
11833d66
YZ
7338 caching_ctl = get_caching_control(cache);
7339 if (!caching_ctl)
36cce922 7340 return;
817d52f8 7341
11833d66 7342 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7343 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7344
7345 put_caching_control(caching_ctl);
11833d66
YZ
7346}
7347
7348static noinline int
7349wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7350{
7351 struct btrfs_caching_control *caching_ctl;
36cce922 7352 int ret = 0;
11833d66
YZ
7353
7354 caching_ctl = get_caching_control(cache);
7355 if (!caching_ctl)
36cce922 7356 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7357
7358 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7359 if (cache->cached == BTRFS_CACHE_ERROR)
7360 ret = -EIO;
11833d66 7361 put_caching_control(caching_ctl);
36cce922 7362 return ret;
817d52f8
JB
7363}
7364
7365enum btrfs_loop_type {
285ff5af
JB
7366 LOOP_CACHING_NOWAIT = 0,
7367 LOOP_CACHING_WAIT = 1,
7368 LOOP_ALLOC_CHUNK = 2,
7369 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7370};
7371
e570fd27
MX
7372static inline void
7373btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7374 int delalloc)
7375{
7376 if (delalloc)
7377 down_read(&cache->data_rwsem);
7378}
7379
7380static inline void
7381btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7382 int delalloc)
7383{
7384 btrfs_get_block_group(cache);
7385 if (delalloc)
7386 down_read(&cache->data_rwsem);
7387}
7388
7389static struct btrfs_block_group_cache *
7390btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7391 struct btrfs_free_cluster *cluster,
7392 int delalloc)
7393{
89771cc9 7394 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7395
e570fd27 7396 spin_lock(&cluster->refill_lock);
6719afdc
GU
7397 while (1) {
7398 used_bg = cluster->block_group;
7399 if (!used_bg)
7400 return NULL;
7401
7402 if (used_bg == block_group)
e570fd27
MX
7403 return used_bg;
7404
6719afdc 7405 btrfs_get_block_group(used_bg);
e570fd27 7406
6719afdc
GU
7407 if (!delalloc)
7408 return used_bg;
e570fd27 7409
6719afdc
GU
7410 if (down_read_trylock(&used_bg->data_rwsem))
7411 return used_bg;
e570fd27 7412
6719afdc 7413 spin_unlock(&cluster->refill_lock);
e570fd27 7414
e321f8a8
LB
7415 /* We should only have one-level nested. */
7416 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7417
6719afdc
GU
7418 spin_lock(&cluster->refill_lock);
7419 if (used_bg == cluster->block_group)
7420 return used_bg;
e570fd27 7421
6719afdc
GU
7422 up_read(&used_bg->data_rwsem);
7423 btrfs_put_block_group(used_bg);
7424 }
e570fd27
MX
7425}
7426
7427static inline void
7428btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7429 int delalloc)
7430{
7431 if (delalloc)
7432 up_read(&cache->data_rwsem);
7433 btrfs_put_block_group(cache);
7434}
7435
b4bd745d
QW
7436/*
7437 * Structure used internally for find_free_extent() function. Wraps needed
7438 * parameters.
7439 */
7440struct find_free_extent_ctl {
7441 /* Basic allocation info */
7442 u64 ram_bytes;
7443 u64 num_bytes;
7444 u64 empty_size;
7445 u64 flags;
7446 int delalloc;
7447
7448 /* Where to start the search inside the bg */
7449 u64 search_start;
7450
7451 /* For clustered allocation */
7452 u64 empty_cluster;
7453
7454 bool have_caching_bg;
7455 bool orig_have_caching_bg;
7456
7457 /* RAID index, converted from flags */
7458 int index;
7459
e72d79d6
QW
7460 /*
7461 * Current loop number, check find_free_extent_update_loop() for details
7462 */
b4bd745d
QW
7463 int loop;
7464
7465 /*
7466 * Whether we're refilling a cluster, if true we need to re-search
7467 * current block group but don't try to refill the cluster again.
7468 */
7469 bool retry_clustered;
7470
7471 /*
7472 * Whether we're updating free space cache, if true we need to re-search
7473 * current block group but don't try updating free space cache again.
7474 */
7475 bool retry_unclustered;
7476
7477 /* If current block group is cached */
7478 int cached;
7479
7480 /* Max contiguous hole found */
7481 u64 max_extent_size;
7482
7483 /* Total free space from free space cache, not always contiguous */
7484 u64 total_free_space;
7485
7486 /* Found result */
7487 u64 found_offset;
7488};
7489
d06e3bb6
QW
7490
7491/*
7492 * Helper function for find_free_extent().
7493 *
7494 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
7495 * Return -EAGAIN to inform caller that we need to re-search this block group
7496 * Return >0 to inform caller that we find nothing
7497 * Return 0 means we have found a location and set ffe_ctl->found_offset.
7498 */
7499static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
7500 struct btrfs_free_cluster *last_ptr,
7501 struct find_free_extent_ctl *ffe_ctl,
7502 struct btrfs_block_group_cache **cluster_bg_ret)
7503{
7504 struct btrfs_fs_info *fs_info = bg->fs_info;
7505 struct btrfs_block_group_cache *cluster_bg;
7506 u64 aligned_cluster;
7507 u64 offset;
7508 int ret;
7509
7510 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
7511 if (!cluster_bg)
7512 goto refill_cluster;
7513 if (cluster_bg != bg && (cluster_bg->ro ||
7514 !block_group_bits(cluster_bg, ffe_ctl->flags)))
7515 goto release_cluster;
7516
7517 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
7518 ffe_ctl->num_bytes, cluster_bg->key.objectid,
7519 &ffe_ctl->max_extent_size);
7520 if (offset) {
7521 /* We have a block, we're done */
7522 spin_unlock(&last_ptr->refill_lock);
7523 trace_btrfs_reserve_extent_cluster(cluster_bg,
7524 ffe_ctl->search_start, ffe_ctl->num_bytes);
7525 *cluster_bg_ret = cluster_bg;
7526 ffe_ctl->found_offset = offset;
7527 return 0;
7528 }
7529 WARN_ON(last_ptr->block_group != cluster_bg);
7530
7531release_cluster:
7532 /*
7533 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
7534 * lets just skip it and let the allocator find whatever block it can
7535 * find. If we reach this point, we will have tried the cluster
7536 * allocator plenty of times and not have found anything, so we are
7537 * likely way too fragmented for the clustering stuff to find anything.
7538 *
7539 * However, if the cluster is taken from the current block group,
7540 * release the cluster first, so that we stand a better chance of
7541 * succeeding in the unclustered allocation.
7542 */
7543 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
7544 spin_unlock(&last_ptr->refill_lock);
7545 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7546 return -ENOENT;
7547 }
7548
7549 /* This cluster didn't work out, free it and start over */
7550 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7551
7552 if (cluster_bg != bg)
7553 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7554
7555refill_cluster:
7556 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
7557 spin_unlock(&last_ptr->refill_lock);
7558 return -ENOENT;
7559 }
7560
7561 aligned_cluster = max_t(u64,
7562 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
7563 bg->full_stripe_len);
7564 ret = btrfs_find_space_cluster(fs_info, bg, last_ptr,
7565 ffe_ctl->search_start, ffe_ctl->num_bytes,
7566 aligned_cluster);
7567 if (ret == 0) {
7568 /* Now pull our allocation out of this cluster */
7569 offset = btrfs_alloc_from_cluster(bg, last_ptr,
7570 ffe_ctl->num_bytes, ffe_ctl->search_start,
7571 &ffe_ctl->max_extent_size);
7572 if (offset) {
7573 /* We found one, proceed */
7574 spin_unlock(&last_ptr->refill_lock);
7575 trace_btrfs_reserve_extent_cluster(bg,
7576 ffe_ctl->search_start,
7577 ffe_ctl->num_bytes);
7578 ffe_ctl->found_offset = offset;
7579 return 0;
7580 }
7581 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
7582 !ffe_ctl->retry_clustered) {
7583 spin_unlock(&last_ptr->refill_lock);
7584
7585 ffe_ctl->retry_clustered = true;
7586 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7587 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
7588 return -EAGAIN;
7589 }
7590 /*
7591 * At this point we either didn't find a cluster or we weren't able to
7592 * allocate a block from our cluster. Free the cluster we've been
7593 * trying to use, and go to the next block group.
7594 */
7595 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7596 spin_unlock(&last_ptr->refill_lock);
7597 return 1;
7598}
7599
e1a41848
QW
7600/*
7601 * Return >0 to inform caller that we find nothing
7602 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
7603 * Return -EAGAIN to inform caller that we need to re-search this block group
7604 */
7605static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
7606 struct btrfs_free_cluster *last_ptr,
7607 struct find_free_extent_ctl *ffe_ctl)
7608{
7609 u64 offset;
7610
7611 /*
7612 * We are doing an unclustered allocation, set the fragmented flag so
7613 * we don't bother trying to setup a cluster again until we get more
7614 * space.
7615 */
7616 if (unlikely(last_ptr)) {
7617 spin_lock(&last_ptr->lock);
7618 last_ptr->fragmented = 1;
7619 spin_unlock(&last_ptr->lock);
7620 }
7621 if (ffe_ctl->cached) {
7622 struct btrfs_free_space_ctl *free_space_ctl;
7623
7624 free_space_ctl = bg->free_space_ctl;
7625 spin_lock(&free_space_ctl->tree_lock);
7626 if (free_space_ctl->free_space <
7627 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
7628 ffe_ctl->empty_size) {
7629 ffe_ctl->total_free_space = max_t(u64,
7630 ffe_ctl->total_free_space,
7631 free_space_ctl->free_space);
7632 spin_unlock(&free_space_ctl->tree_lock);
7633 return 1;
7634 }
7635 spin_unlock(&free_space_ctl->tree_lock);
7636 }
7637
7638 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
7639 ffe_ctl->num_bytes, ffe_ctl->empty_size,
7640 &ffe_ctl->max_extent_size);
7641
7642 /*
7643 * If we didn't find a chunk, and we haven't failed on this block group
7644 * before, and this block group is in the middle of caching and we are
7645 * ok with waiting, then go ahead and wait for progress to be made, and
7646 * set @retry_unclustered to true.
7647 *
7648 * If @retry_unclustered is true then we've already waited on this
7649 * block group once and should move on to the next block group.
7650 */
7651 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
7652 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
7653 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7654 ffe_ctl->empty_size);
7655 ffe_ctl->retry_unclustered = true;
7656 return -EAGAIN;
7657 } else if (!offset) {
7658 return 1;
7659 }
7660 ffe_ctl->found_offset = offset;
7661 return 0;
7662}
7663
e72d79d6
QW
7664/*
7665 * Return >0 means caller needs to re-search for free extent
7666 * Return 0 means we have the needed free extent.
7667 * Return <0 means we failed to locate any free extent.
7668 */
7669static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
7670 struct btrfs_free_cluster *last_ptr,
7671 struct btrfs_key *ins,
7672 struct find_free_extent_ctl *ffe_ctl,
7673 int full_search, bool use_cluster)
7674{
7675 struct btrfs_root *root = fs_info->extent_root;
7676 int ret;
7677
7678 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
7679 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
7680 ffe_ctl->orig_have_caching_bg = true;
7681
7682 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
7683 ffe_ctl->have_caching_bg)
7684 return 1;
7685
7686 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
7687 return 1;
7688
7689 if (ins->objectid) {
7690 if (!use_cluster && last_ptr) {
7691 spin_lock(&last_ptr->lock);
7692 last_ptr->window_start = ins->objectid;
7693 spin_unlock(&last_ptr->lock);
7694 }
7695 return 0;
7696 }
7697
7698 /*
7699 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7700 * caching kthreads as we move along
7701 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7702 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7703 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7704 * again
7705 */
7706 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
7707 ffe_ctl->index = 0;
7708 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
7709 /*
7710 * We want to skip the LOOP_CACHING_WAIT step if we
7711 * don't have any uncached bgs and we've already done a
7712 * full search through.
7713 */
7714 if (ffe_ctl->orig_have_caching_bg || !full_search)
7715 ffe_ctl->loop = LOOP_CACHING_WAIT;
7716 else
7717 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
7718 } else {
7719 ffe_ctl->loop++;
7720 }
7721
7722 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
7723 struct btrfs_trans_handle *trans;
7724 int exist = 0;
7725
7726 trans = current->journal_info;
7727 if (trans)
7728 exist = 1;
7729 else
7730 trans = btrfs_join_transaction(root);
7731
7732 if (IS_ERR(trans)) {
7733 ret = PTR_ERR(trans);
7734 return ret;
7735 }
7736
7737 ret = do_chunk_alloc(trans, ffe_ctl->flags,
7738 CHUNK_ALLOC_FORCE);
7739
7740 /*
7741 * If we can't allocate a new chunk we've already looped
7742 * through at least once, move on to the NO_EMPTY_SIZE
7743 * case.
7744 */
7745 if (ret == -ENOSPC)
7746 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
7747
7748 /* Do not bail out on ENOSPC since we can do more. */
7749 if (ret < 0 && ret != -ENOSPC)
7750 btrfs_abort_transaction(trans, ret);
7751 else
7752 ret = 0;
7753 if (!exist)
7754 btrfs_end_transaction(trans);
7755 if (ret)
7756 return ret;
7757 }
7758
7759 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
7760 /*
7761 * Don't loop again if we already have no empty_size and
7762 * no empty_cluster.
7763 */
7764 if (ffe_ctl->empty_size == 0 &&
7765 ffe_ctl->empty_cluster == 0)
7766 return -ENOSPC;
7767 ffe_ctl->empty_size = 0;
7768 ffe_ctl->empty_cluster = 0;
7769 }
7770 return 1;
7771 }
7772 return -ENOSPC;
7773}
7774
fec577fb
CM
7775/*
7776 * walks the btree of allocated extents and find a hole of a given size.
7777 * The key ins is changed to record the hole:
a4820398 7778 * ins->objectid == start position
62e2749e 7779 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7780 * ins->offset == the size of the hole.
fec577fb 7781 * Any available blocks before search_start are skipped.
a4820398
MX
7782 *
7783 * If there is no suitable free space, we will record the max size of
7784 * the free space extent currently.
e72d79d6
QW
7785 *
7786 * The overall logic and call chain:
7787 *
7788 * find_free_extent()
7789 * |- Iterate through all block groups
7790 * | |- Get a valid block group
7791 * | |- Try to do clustered allocation in that block group
7792 * | |- Try to do unclustered allocation in that block group
7793 * | |- Check if the result is valid
7794 * | | |- If valid, then exit
7795 * | |- Jump to next block group
7796 * |
7797 * |- Push harder to find free extents
7798 * |- If not found, re-iterate all block groups
fec577fb 7799 */
87bde3cd 7800static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7801 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7802 u64 hint_byte, struct btrfs_key *ins,
7803 u64 flags, int delalloc)
fec577fb 7804{
80eb234a 7805 int ret = 0;
fa9c0d79 7806 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7807 struct btrfs_block_group_cache *block_group = NULL;
b4bd745d 7808 struct find_free_extent_ctl ffe_ctl = {0};
80eb234a 7809 struct btrfs_space_info *space_info;
67377734 7810 bool use_cluster = true;
a5e681d9 7811 bool full_search = false;
fec577fb 7812
0b246afa 7813 WARN_ON(num_bytes < fs_info->sectorsize);
b4bd745d
QW
7814
7815 ffe_ctl.ram_bytes = ram_bytes;
7816 ffe_ctl.num_bytes = num_bytes;
7817 ffe_ctl.empty_size = empty_size;
7818 ffe_ctl.flags = flags;
7819 ffe_ctl.search_start = 0;
7820 ffe_ctl.retry_clustered = false;
7821 ffe_ctl.retry_unclustered = false;
7822 ffe_ctl.delalloc = delalloc;
7823 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
7824 ffe_ctl.have_caching_bg = false;
7825 ffe_ctl.orig_have_caching_bg = false;
7826 ffe_ctl.found_offset = 0;
7827
962a298f 7828 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7829 ins->objectid = 0;
7830 ins->offset = 0;
b1a4d965 7831
71ff6437 7832 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7833
0b246afa 7834 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7835 if (!space_info) {
0b246afa 7836 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7837 return -ENOSPC;
7838 }
2552d17e 7839
67377734 7840 /*
4f4db217
JB
7841 * If our free space is heavily fragmented we may not be able to make
7842 * big contiguous allocations, so instead of doing the expensive search
7843 * for free space, simply return ENOSPC with our max_extent_size so we
7844 * can go ahead and search for a more manageable chunk.
7845 *
7846 * If our max_extent_size is large enough for our allocation simply
7847 * disable clustering since we will likely not be able to find enough
7848 * space to create a cluster and induce latency trying.
67377734 7849 */
4f4db217
JB
7850 if (unlikely(space_info->max_extent_size)) {
7851 spin_lock(&space_info->lock);
7852 if (space_info->max_extent_size &&
7853 num_bytes > space_info->max_extent_size) {
7854 ins->offset = space_info->max_extent_size;
7855 spin_unlock(&space_info->lock);
7856 return -ENOSPC;
7857 } else if (space_info->max_extent_size) {
7858 use_cluster = false;
7859 }
7860 spin_unlock(&space_info->lock);
fa9c0d79 7861 }
0f9dd46c 7862
b4bd745d
QW
7863 last_ptr = fetch_cluster_info(fs_info, space_info,
7864 &ffe_ctl.empty_cluster);
239b14b3 7865 if (last_ptr) {
fa9c0d79
CM
7866 spin_lock(&last_ptr->lock);
7867 if (last_ptr->block_group)
7868 hint_byte = last_ptr->window_start;
c759c4e1
JB
7869 if (last_ptr->fragmented) {
7870 /*
7871 * We still set window_start so we can keep track of the
7872 * last place we found an allocation to try and save
7873 * some time.
7874 */
7875 hint_byte = last_ptr->window_start;
7876 use_cluster = false;
7877 }
fa9c0d79 7878 spin_unlock(&last_ptr->lock);
239b14b3 7879 }
fa9c0d79 7880
b4bd745d
QW
7881 ffe_ctl.search_start = max(ffe_ctl.search_start,
7882 first_logical_byte(fs_info, 0));
7883 ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
7884 if (ffe_ctl.search_start == hint_byte) {
7885 block_group = btrfs_lookup_block_group(fs_info,
7886 ffe_ctl.search_start);
817d52f8
JB
7887 /*
7888 * we don't want to use the block group if it doesn't match our
7889 * allocation bits, or if its not cached.
ccf0e725
JB
7890 *
7891 * However if we are re-searching with an ideal block group
7892 * picked out then we don't care that the block group is cached.
817d52f8 7893 */
b6919a58 7894 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7895 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7896 down_read(&space_info->groups_sem);
44fb5511
CM
7897 if (list_empty(&block_group->list) ||
7898 block_group->ro) {
7899 /*
7900 * someone is removing this block group,
7901 * we can't jump into the have_block_group
7902 * target because our list pointers are not
7903 * valid
7904 */
7905 btrfs_put_block_group(block_group);
7906 up_read(&space_info->groups_sem);
ccf0e725 7907 } else {
b4bd745d 7908 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3e72ee88 7909 block_group->flags);
e570fd27 7910 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7911 goto have_block_group;
ccf0e725 7912 }
2552d17e 7913 } else if (block_group) {
fa9c0d79 7914 btrfs_put_block_group(block_group);
2552d17e 7915 }
42e70e7a 7916 }
2552d17e 7917search:
b4bd745d
QW
7918 ffe_ctl.have_caching_bg = false;
7919 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
7920 ffe_ctl.index == 0)
a5e681d9 7921 full_search = true;
80eb234a 7922 down_read(&space_info->groups_sem);
b4bd745d
QW
7923 list_for_each_entry(block_group,
7924 &space_info->block_groups[ffe_ctl.index], list) {
14443937
JM
7925 /* If the block group is read-only, we can skip it entirely. */
7926 if (unlikely(block_group->ro))
7927 continue;
7928
e570fd27 7929 btrfs_grab_block_group(block_group, delalloc);
b4bd745d 7930 ffe_ctl.search_start = block_group->key.objectid;
42e70e7a 7931
83a50de9
CM
7932 /*
7933 * this can happen if we end up cycling through all the
7934 * raid types, but we want to make sure we only allocate
7935 * for the proper type.
7936 */
b6919a58 7937 if (!block_group_bits(block_group, flags)) {
bece2e82 7938 u64 extra = BTRFS_BLOCK_GROUP_DUP |
83a50de9 7939 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7940 BTRFS_BLOCK_GROUP_RAID5 |
7941 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7942 BTRFS_BLOCK_GROUP_RAID10;
7943
7944 /*
7945 * if they asked for extra copies and this block group
7946 * doesn't provide them, bail. This does allow us to
7947 * fill raid0 from raid1.
7948 */
b6919a58 7949 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7950 goto loop;
7951 }
7952
2552d17e 7953have_block_group:
b4bd745d
QW
7954 ffe_ctl.cached = block_group_cache_done(block_group);
7955 if (unlikely(!ffe_ctl.cached)) {
7956 ffe_ctl.have_caching_bg = true;
f6373bf3 7957 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7958 BUG_ON(ret < 0);
7959 ret = 0;
817d52f8
JB
7960 }
7961
36cce922
JB
7962 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7963 goto loop;
0f9dd46c 7964
0a24325e 7965 /*
062c05c4
AO
7966 * Ok we want to try and use the cluster allocator, so
7967 * lets look there
0a24325e 7968 */
c759c4e1 7969 if (last_ptr && use_cluster) {
d06e3bb6 7970 struct btrfs_block_group_cache *cluster_bg = NULL;
fa9c0d79 7971
d06e3bb6
QW
7972 ret = find_free_extent_clustered(block_group, last_ptr,
7973 &ffe_ctl, &cluster_bg);
062c05c4 7974
fa9c0d79 7975 if (ret == 0) {
d06e3bb6
QW
7976 if (cluster_bg && cluster_bg != block_group) {
7977 btrfs_release_block_group(block_group,
7978 delalloc);
7979 block_group = cluster_bg;
fa9c0d79 7980 }
d06e3bb6
QW
7981 goto checks;
7982 } else if (ret == -EAGAIN) {
817d52f8 7983 goto have_block_group;
d06e3bb6
QW
7984 } else if (ret > 0) {
7985 goto loop;
fa9c0d79 7986 }
d06e3bb6 7987 /* ret == -ENOENT case falls through */
fa9c0d79
CM
7988 }
7989
e1a41848
QW
7990 ret = find_free_extent_unclustered(block_group, last_ptr,
7991 &ffe_ctl);
7992 if (ret == -EAGAIN)
817d52f8 7993 goto have_block_group;
e1a41848 7994 else if (ret > 0)
1cdda9b8 7995 goto loop;
e1a41848 7996 /* ret == 0 case falls through */
fa9c0d79 7997checks:
b4bd745d
QW
7998 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
7999 fs_info->stripesize);
25179201 8000
2552d17e 8001 /* move on to the next group */
b4bd745d 8002 if (ffe_ctl.search_start + num_bytes >
215a63d1 8003 block_group->key.objectid + block_group->key.offset) {
b4bd745d
QW
8004 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8005 num_bytes);
2552d17e 8006 goto loop;
6226cb0a 8007 }
f5a31e16 8008
b4bd745d
QW
8009 if (ffe_ctl.found_offset < ffe_ctl.search_start)
8010 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8011 ffe_ctl.search_start - ffe_ctl.found_offset);
2552d17e 8012
18513091
WX
8013 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
8014 num_bytes, delalloc);
f0486c68 8015 if (ret == -EAGAIN) {
b4bd745d
QW
8016 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8017 num_bytes);
2552d17e 8018 goto loop;
0f9dd46c 8019 }
9cfa3e34 8020 btrfs_inc_block_group_reservations(block_group);
0b86a832 8021
f0486c68 8022 /* we are all good, lets return */
b4bd745d 8023 ins->objectid = ffe_ctl.search_start;
2552d17e 8024 ins->offset = num_bytes;
d2fb3437 8025
b4bd745d
QW
8026 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
8027 num_bytes);
e570fd27 8028 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
8029 break;
8030loop:
b4bd745d
QW
8031 ffe_ctl.retry_clustered = false;
8032 ffe_ctl.retry_unclustered = false;
3e72ee88 8033 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
b4bd745d 8034 ffe_ctl.index);
e570fd27 8035 btrfs_release_block_group(block_group, delalloc);
14443937 8036 cond_resched();
2552d17e
JB
8037 }
8038 up_read(&space_info->groups_sem);
8039
e72d79d6
QW
8040 ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
8041 full_search, use_cluster);
8042 if (ret > 0)
b742bb82
YZ
8043 goto search;
8044
4f4db217 8045 if (ret == -ENOSPC) {
b4bd745d
QW
8046 /*
8047 * Use ffe_ctl->total_free_space as fallback if we can't find
8048 * any contiguous hole.
8049 */
8050 if (!ffe_ctl.max_extent_size)
8051 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4f4db217 8052 spin_lock(&space_info->lock);
b4bd745d 8053 space_info->max_extent_size = ffe_ctl.max_extent_size;
4f4db217 8054 spin_unlock(&space_info->lock);
b4bd745d 8055 ins->offset = ffe_ctl.max_extent_size;
4f4db217 8056 }
0f70abe2 8057 return ret;
fec577fb 8058}
ec44a35c 8059
ab8d0fc4
JM
8060static void dump_space_info(struct btrfs_fs_info *fs_info,
8061 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 8062 int dump_block_groups)
0f9dd46c
JB
8063{
8064 struct btrfs_block_group_cache *cache;
b742bb82 8065 int index = 0;
0f9dd46c 8066
9ed74f2d 8067 spin_lock(&info->lock);
ab8d0fc4
JM
8068 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
8069 info->flags,
4136135b
LB
8070 info->total_bytes - btrfs_space_info_used(info, true),
8071 info->full ? "" : "not ");
ab8d0fc4
JM
8072 btrfs_info(fs_info,
8073 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
8074 info->total_bytes, info->bytes_used, info->bytes_pinned,
8075 info->bytes_reserved, info->bytes_may_use,
8076 info->bytes_readonly);
9ed74f2d
JB
8077 spin_unlock(&info->lock);
8078
8079 if (!dump_block_groups)
8080 return;
0f9dd46c 8081
80eb234a 8082 down_read(&info->groups_sem);
b742bb82
YZ
8083again:
8084 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 8085 spin_lock(&cache->lock);
ab8d0fc4
JM
8086 btrfs_info(fs_info,
8087 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8088 cache->key.objectid, cache->key.offset,
8089 btrfs_block_group_used(&cache->item), cache->pinned,
8090 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
8091 btrfs_dump_free_space(cache, bytes);
8092 spin_unlock(&cache->lock);
8093 }
b742bb82
YZ
8094 if (++index < BTRFS_NR_RAID_TYPES)
8095 goto again;
80eb234a 8096 up_read(&info->groups_sem);
0f9dd46c 8097}
e8569813 8098
6f47c706
NB
8099/*
8100 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8101 * hole that is at least as big as @num_bytes.
8102 *
8103 * @root - The root that will contain this extent
8104 *
8105 * @ram_bytes - The amount of space in ram that @num_bytes take. This
8106 * is used for accounting purposes. This value differs
8107 * from @num_bytes only in the case of compressed extents.
8108 *
8109 * @num_bytes - Number of bytes to allocate on-disk.
8110 *
8111 * @min_alloc_size - Indicates the minimum amount of space that the
8112 * allocator should try to satisfy. In some cases
8113 * @num_bytes may be larger than what is required and if
8114 * the filesystem is fragmented then allocation fails.
8115 * However, the presence of @min_alloc_size gives a
8116 * chance to try and satisfy the smaller allocation.
8117 *
8118 * @empty_size - A hint that you plan on doing more COW. This is the
8119 * size in bytes the allocator should try to find free
8120 * next to the block it returns. This is just a hint and
8121 * may be ignored by the allocator.
8122 *
8123 * @hint_byte - Hint to the allocator to start searching above the byte
8124 * address passed. It might be ignored.
8125 *
8126 * @ins - This key is modified to record the found hole. It will
8127 * have the following values:
8128 * ins->objectid == start position
8129 * ins->flags = BTRFS_EXTENT_ITEM_KEY
8130 * ins->offset == the size of the hole.
8131 *
8132 * @is_data - Boolean flag indicating whether an extent is
8133 * allocated for data (true) or metadata (false)
8134 *
8135 * @delalloc - Boolean flag indicating whether this allocation is for
8136 * delalloc or not. If 'true' data_rwsem of block groups
8137 * is going to be acquired.
8138 *
8139 *
8140 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8141 * case -ENOSPC is returned then @ins->offset will contain the size of the
8142 * largest available hole the allocator managed to find.
8143 */
18513091 8144int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
8145 u64 num_bytes, u64 min_alloc_size,
8146 u64 empty_size, u64 hint_byte,
e570fd27 8147 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 8148{
ab8d0fc4 8149 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 8150 bool final_tried = num_bytes == min_alloc_size;
b6919a58 8151 u64 flags;
fec577fb 8152 int ret;
925baedd 8153
1b86826d 8154 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 8155again:
0b246afa 8156 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8157 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8158 hint_byte, ins, flags, delalloc);
9cfa3e34 8159 if (!ret && !is_data) {
ab8d0fc4 8160 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8161 } else if (ret == -ENOSPC) {
a4820398
MX
8162 if (!final_tried && ins->offset) {
8163 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8164 num_bytes = round_down(num_bytes,
0b246afa 8165 fs_info->sectorsize);
9e622d6b 8166 num_bytes = max(num_bytes, min_alloc_size);
18513091 8167 ram_bytes = num_bytes;
9e622d6b
MX
8168 if (num_bytes == min_alloc_size)
8169 final_tried = true;
8170 goto again;
ab8d0fc4 8171 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8172 struct btrfs_space_info *sinfo;
8173
ab8d0fc4 8174 sinfo = __find_space_info(fs_info, flags);
0b246afa 8175 btrfs_err(fs_info,
5d163e0e
JM
8176 "allocation failed flags %llu, wanted %llu",
8177 flags, num_bytes);
53804280 8178 if (sinfo)
ab8d0fc4 8179 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8180 }
925baedd 8181 }
0f9dd46c
JB
8182
8183 return ret;
e6dcd2dc
CM
8184}
8185
2ff7e61e 8186static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8187 u64 start, u64 len,
8188 int pin, int delalloc)
65b51a00 8189{
0f9dd46c 8190 struct btrfs_block_group_cache *cache;
1f3c79a2 8191 int ret = 0;
0f9dd46c 8192
0b246afa 8193 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8194 if (!cache) {
0b246afa
JM
8195 btrfs_err(fs_info, "Unable to find block group for %llu",
8196 start);
0f9dd46c
JB
8197 return -ENOSPC;
8198 }
1f3c79a2 8199
e688b725 8200 if (pin)
2ff7e61e 8201 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8202 else {
0b246afa 8203 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8204 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8205 btrfs_add_free_space(cache, start, len);
4824f1f4 8206 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8207 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8208 }
31193213 8209
fa9c0d79 8210 btrfs_put_block_group(cache);
e6dcd2dc
CM
8211 return ret;
8212}
8213
2ff7e61e 8214int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8215 u64 start, u64 len, int delalloc)
e688b725 8216{
2ff7e61e 8217 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8218}
8219
2ff7e61e 8220int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8221 u64 start, u64 len)
8222{
2ff7e61e 8223 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8224}
8225
5d4f98a2 8226static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8227 u64 parent, u64 root_objectid,
8228 u64 flags, u64 owner, u64 offset,
8229 struct btrfs_key *ins, int ref_mod)
e6dcd2dc 8230{
ef89b824 8231 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8232 int ret;
e6dcd2dc 8233 struct btrfs_extent_item *extent_item;
5d4f98a2 8234 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8235 struct btrfs_path *path;
5d4f98a2
YZ
8236 struct extent_buffer *leaf;
8237 int type;
8238 u32 size;
26b8003f 8239
5d4f98a2
YZ
8240 if (parent > 0)
8241 type = BTRFS_SHARED_DATA_REF_KEY;
8242 else
8243 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8244
5d4f98a2 8245 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8246
8247 path = btrfs_alloc_path();
db5b493a
TI
8248 if (!path)
8249 return -ENOMEM;
47e4bb98 8250
b9473439 8251 path->leave_spinning = 1;
5d4f98a2
YZ
8252 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8253 ins, size);
79787eaa
JM
8254 if (ret) {
8255 btrfs_free_path(path);
8256 return ret;
8257 }
0f9dd46c 8258
5d4f98a2
YZ
8259 leaf = path->nodes[0];
8260 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8261 struct btrfs_extent_item);
5d4f98a2
YZ
8262 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8263 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8264 btrfs_set_extent_flags(leaf, extent_item,
8265 flags | BTRFS_EXTENT_FLAG_DATA);
8266
8267 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8268 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8269 if (parent > 0) {
8270 struct btrfs_shared_data_ref *ref;
8271 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8272 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8273 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8274 } else {
8275 struct btrfs_extent_data_ref *ref;
8276 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8277 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8278 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8279 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8280 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8281 }
47e4bb98
CM
8282
8283 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8284 btrfs_free_path(path);
f510cfec 8285
25a356d3 8286 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
1e144fb8
OS
8287 if (ret)
8288 return ret;
8289
6202df69 8290 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8291 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8292 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8293 ins->objectid, ins->offset);
f5947066
CM
8294 BUG();
8295 }
71ff6437 8296 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8297 return ret;
8298}
8299
5d4f98a2 8300static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 8301 struct btrfs_delayed_ref_node *node,
21ebfbe7 8302 struct btrfs_delayed_extent_op *extent_op)
e6dcd2dc 8303{
9dcdbe01 8304 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8305 int ret;
5d4f98a2 8306 struct btrfs_extent_item *extent_item;
4e6bd4e0 8307 struct btrfs_key extent_key;
5d4f98a2
YZ
8308 struct btrfs_tree_block_info *block_info;
8309 struct btrfs_extent_inline_ref *iref;
8310 struct btrfs_path *path;
8311 struct extent_buffer *leaf;
4e6bd4e0 8312 struct btrfs_delayed_tree_ref *ref;
3173a18f 8313 u32 size = sizeof(*extent_item) + sizeof(*iref);
4e6bd4e0 8314 u64 num_bytes;
21ebfbe7 8315 u64 flags = extent_op->flags_to_set;
0b246afa 8316 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f 8317
4e6bd4e0
NB
8318 ref = btrfs_delayed_node_to_tree_ref(node);
8319
4e6bd4e0
NB
8320 extent_key.objectid = node->bytenr;
8321 if (skinny_metadata) {
8322 extent_key.offset = ref->level;
8323 extent_key.type = BTRFS_METADATA_ITEM_KEY;
8324 num_bytes = fs_info->nodesize;
8325 } else {
8326 extent_key.offset = node->num_bytes;
8327 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
3173a18f 8328 size += sizeof(*block_info);
4e6bd4e0
NB
8329 num_bytes = node->num_bytes;
8330 }
1c2308f8 8331
5d4f98a2 8332 path = btrfs_alloc_path();
80ee54bf 8333 if (!path)
d8926bb3 8334 return -ENOMEM;
56bec294 8335
5d4f98a2
YZ
8336 path->leave_spinning = 1;
8337 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4e6bd4e0 8338 &extent_key, size);
79787eaa 8339 if (ret) {
dd825259 8340 btrfs_free_path(path);
79787eaa
JM
8341 return ret;
8342 }
5d4f98a2
YZ
8343
8344 leaf = path->nodes[0];
8345 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8346 struct btrfs_extent_item);
8347 btrfs_set_extent_refs(leaf, extent_item, 1);
8348 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8349 btrfs_set_extent_flags(leaf, extent_item,
8350 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8351
3173a18f
JB
8352 if (skinny_metadata) {
8353 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8354 } else {
8355 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
21ebfbe7 8356 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4e6bd4e0 8357 btrfs_set_tree_block_level(leaf, block_info, ref->level);
3173a18f
JB
8358 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8359 }
5d4f98a2 8360
d4b20733 8361 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
5d4f98a2
YZ
8362 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8363 btrfs_set_extent_inline_ref_type(leaf, iref,
8364 BTRFS_SHARED_BLOCK_REF_KEY);
d4b20733 8365 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
5d4f98a2
YZ
8366 } else {
8367 btrfs_set_extent_inline_ref_type(leaf, iref,
8368 BTRFS_TREE_BLOCK_REF_KEY);
4e6bd4e0 8369 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
5d4f98a2
YZ
8370 }
8371
8372 btrfs_mark_buffer_dirty(leaf);
8373 btrfs_free_path(path);
8374
4e6bd4e0
NB
8375 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8376 num_bytes);
1e144fb8
OS
8377 if (ret)
8378 return ret;
8379
4e6bd4e0 8380 ret = update_block_group(trans, fs_info, extent_key.objectid,
6202df69 8381 fs_info->nodesize, 1);
79787eaa 8382 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8383 btrfs_err(fs_info, "update block group failed for %llu %llu",
4e6bd4e0 8384 extent_key.objectid, extent_key.offset);
5d4f98a2
YZ
8385 BUG();
8386 }
0be5dc67 8387
4e6bd4e0 8388 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
0b246afa 8389 fs_info->nodesize);
5d4f98a2
YZ
8390 return ret;
8391}
8392
8393int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8394 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8395 u64 offset, u64 ram_bytes,
8396 struct btrfs_key *ins)
5d4f98a2
YZ
8397{
8398 int ret;
8399
84f7d8e6 8400 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8401
fd708b81
JB
8402 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8403 root->root_key.objectid, owner, offset,
8404 BTRFS_ADD_DELAYED_EXTENT);
8405
88a979c6 8406 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
84f7d8e6
JB
8407 ins->offset, 0,
8408 root->root_key.objectid, owner,
7be07912
OS
8409 offset, ram_bytes,
8410 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8411 return ret;
8412}
e02119d5
CM
8413
8414/*
8415 * this is used by the tree logging recovery code. It records that
8416 * an extent has been allocated and makes sure to clear the free
8417 * space cache bits as well
8418 */
5d4f98a2 8419int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8420 u64 root_objectid, u64 owner, u64 offset,
8421 struct btrfs_key *ins)
e02119d5 8422{
61da2abf 8423 struct btrfs_fs_info *fs_info = trans->fs_info;
e02119d5
CM
8424 int ret;
8425 struct btrfs_block_group_cache *block_group;
ed7a6948 8426 struct btrfs_space_info *space_info;
11833d66 8427
8c2a1a30
JB
8428 /*
8429 * Mixed block groups will exclude before processing the log so we only
01327610 8430 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8431 */
0b246afa 8432 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8433 ret = __exclude_logged_extent(fs_info, ins->objectid,
8434 ins->offset);
b50c6e25 8435 if (ret)
8c2a1a30 8436 return ret;
11833d66
YZ
8437 }
8438
0b246afa 8439 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8440 if (!block_group)
8441 return -EINVAL;
8442
ed7a6948
WX
8443 space_info = block_group->space_info;
8444 spin_lock(&space_info->lock);
8445 spin_lock(&block_group->lock);
8446 space_info->bytes_reserved += ins->offset;
8447 block_group->reserved += ins->offset;
8448 spin_unlock(&block_group->lock);
8449 spin_unlock(&space_info->lock);
8450
ef89b824
NB
8451 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8452 offset, ins, 1);
b50c6e25 8453 btrfs_put_block_group(block_group);
e02119d5
CM
8454 return ret;
8455}
8456
48a3b636
ES
8457static struct extent_buffer *
8458btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
bc877d28 8459 u64 bytenr, int level, u64 owner)
65b51a00 8460{
0b246afa 8461 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8462 struct extent_buffer *buf;
8463
2ff7e61e 8464 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8465 if (IS_ERR(buf))
8466 return buf;
8467
b72c3aba
QW
8468 /*
8469 * Extra safety check in case the extent tree is corrupted and extent
8470 * allocator chooses to use a tree block which is already used and
8471 * locked.
8472 */
8473 if (buf->lock_owner == current->pid) {
8474 btrfs_err_rl(fs_info,
8475"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8476 buf->start, btrfs_header_owner(buf), current->pid);
8477 free_extent_buffer(buf);
8478 return ERR_PTR(-EUCLEAN);
8479 }
8480
85d4e461 8481 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8482 btrfs_tree_lock(buf);
7c302b49 8483 clean_tree_block(fs_info, buf);
3083ee2e 8484 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8485
8486 btrfs_set_lock_blocking(buf);
4db8c528 8487 set_extent_buffer_uptodate(buf);
b4ce94de 8488
bc877d28
NB
8489 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8490 btrfs_set_header_level(buf, level);
8491 btrfs_set_header_bytenr(buf, buf->start);
8492 btrfs_set_header_generation(buf, trans->transid);
8493 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8494 btrfs_set_header_owner(buf, owner);
de37aa51 8495 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
bc877d28 8496 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
d0c803c4 8497 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8498 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8499 /*
8500 * we allow two log transactions at a time, use different
52042d8e 8501 * EXTENT bit to differentiate dirty pages.
8cef4e16 8502 */
656f30db 8503 if (buf->log_index == 0)
8cef4e16
YZ
8504 set_extent_dirty(&root->dirty_log_pages, buf->start,
8505 buf->start + buf->len - 1, GFP_NOFS);
8506 else
8507 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8508 buf->start + buf->len - 1);
d0c803c4 8509 } else {
656f30db 8510 buf->log_index = -1;
d0c803c4 8511 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8512 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8513 }
64c12921 8514 trans->dirty = true;
b4ce94de 8515 /* this returns a buffer locked for blocking */
65b51a00
CM
8516 return buf;
8517}
8518
f0486c68
YZ
8519static struct btrfs_block_rsv *
8520use_block_rsv(struct btrfs_trans_handle *trans,
8521 struct btrfs_root *root, u32 blocksize)
8522{
0b246afa 8523 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8524 struct btrfs_block_rsv *block_rsv;
0b246afa 8525 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8526 int ret;
d88033db 8527 bool global_updated = false;
f0486c68
YZ
8528
8529 block_rsv = get_block_rsv(trans, root);
8530
b586b323
MX
8531 if (unlikely(block_rsv->size == 0))
8532 goto try_reserve;
d88033db 8533again:
f0486c68
YZ
8534 ret = block_rsv_use_bytes(block_rsv, blocksize);
8535 if (!ret)
8536 return block_rsv;
8537
b586b323
MX
8538 if (block_rsv->failfast)
8539 return ERR_PTR(ret);
8540
d88033db
MX
8541 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8542 global_updated = true;
0b246afa 8543 update_global_block_rsv(fs_info);
d88033db
MX
8544 goto again;
8545 }
8546
ba2c4d4e
JB
8547 /*
8548 * The global reserve still exists to save us from ourselves, so don't
8549 * warn_on if we are short on our delayed refs reserve.
8550 */
8551 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
8552 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8553 static DEFINE_RATELIMIT_STATE(_rs,
8554 DEFAULT_RATELIMIT_INTERVAL * 10,
8555 /*DEFAULT_RATELIMIT_BURST*/ 1);
8556 if (__ratelimit(&_rs))
8557 WARN(1, KERN_DEBUG
efe120a0 8558 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8559 }
8560try_reserve:
8561 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8562 BTRFS_RESERVE_NO_FLUSH);
8563 if (!ret)
8564 return block_rsv;
8565 /*
8566 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8567 * the global reserve if its space type is the same as the global
8568 * reservation.
b586b323 8569 */
5881cfc9
MX
8570 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8571 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8572 ret = block_rsv_use_bytes(global_rsv, blocksize);
8573 if (!ret)
8574 return global_rsv;
8575 }
8576 return ERR_PTR(ret);
f0486c68
YZ
8577}
8578
8c2a3ca2
JB
8579static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8580 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68 8581{
3a584174 8582 block_rsv_add_bytes(block_rsv, blocksize, false);
ff6bc37e 8583 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8584}
8585
fec577fb 8586/*
f0486c68 8587 * finds a free extent and does all the dirty work required for allocation
67b7859e 8588 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8589 */
4d75f8a9 8590struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8591 struct btrfs_root *root,
8592 u64 parent, u64 root_objectid,
8593 const struct btrfs_disk_key *key,
8594 int level, u64 hint,
8595 u64 empty_size)
fec577fb 8596{
0b246afa 8597 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8598 struct btrfs_key ins;
f0486c68 8599 struct btrfs_block_rsv *block_rsv;
5f39d397 8600 struct extent_buffer *buf;
67b7859e 8601 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8602 u64 flags = 0;
8603 int ret;
0b246afa
JM
8604 u32 blocksize = fs_info->nodesize;
8605 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8606
05653ef3 8607#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8608 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8609 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
bc877d28 8610 level, root_objectid);
faa2dbf0
JB
8611 if (!IS_ERR(buf))
8612 root->alloc_bytenr += blocksize;
8613 return buf;
8614 }
05653ef3 8615#endif
fccb84c9 8616
f0486c68
YZ
8617 block_rsv = use_block_rsv(trans, root, blocksize);
8618 if (IS_ERR(block_rsv))
8619 return ERR_CAST(block_rsv);
8620
18513091 8621 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8622 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8623 if (ret)
8624 goto out_unuse;
55c69072 8625
bc877d28
NB
8626 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8627 root_objectid);
67b7859e
OS
8628 if (IS_ERR(buf)) {
8629 ret = PTR_ERR(buf);
8630 goto out_free_reserved;
8631 }
f0486c68
YZ
8632
8633 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8634 if (parent == 0)
8635 parent = ins.objectid;
8636 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8637 } else
8638 BUG_ON(parent > 0);
8639
8640 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8641 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8642 if (!extent_op) {
8643 ret = -ENOMEM;
8644 goto out_free_buf;
8645 }
f0486c68
YZ
8646 if (key)
8647 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8648 else
8649 memset(&extent_op->key, 0, sizeof(extent_op->key));
8650 extent_op->flags_to_set = flags;
35b3ad50
DS
8651 extent_op->update_key = skinny_metadata ? false : true;
8652 extent_op->update_flags = true;
8653 extent_op->is_data = false;
b1c79e09 8654 extent_op->level = level;
f0486c68 8655
fd708b81
JB
8656 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8657 root_objectid, level, 0,
8658 BTRFS_ADD_DELAYED_EXTENT);
44e1c47d 8659 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
7be07912
OS
8660 ins.offset, parent,
8661 root_objectid, level,
67b7859e 8662 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8663 extent_op, NULL, NULL);
67b7859e
OS
8664 if (ret)
8665 goto out_free_delayed;
f0486c68 8666 }
fec577fb 8667 return buf;
67b7859e
OS
8668
8669out_free_delayed:
8670 btrfs_free_delayed_extent_op(extent_op);
8671out_free_buf:
8672 free_extent_buffer(buf);
8673out_free_reserved:
2ff7e61e 8674 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8675out_unuse:
0b246afa 8676 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8677 return ERR_PTR(ret);
fec577fb 8678}
a28ec197 8679
2c47e605
YZ
8680struct walk_control {
8681 u64 refs[BTRFS_MAX_LEVEL];
8682 u64 flags[BTRFS_MAX_LEVEL];
8683 struct btrfs_key update_progress;
8684 int stage;
8685 int level;
8686 int shared_level;
8687 int update_ref;
8688 int keep_locks;
1c4850e2
YZ
8689 int reada_slot;
8690 int reada_count;
2c47e605
YZ
8691};
8692
8693#define DROP_REFERENCE 1
8694#define UPDATE_BACKREF 2
8695
1c4850e2
YZ
8696static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8697 struct btrfs_root *root,
8698 struct walk_control *wc,
8699 struct btrfs_path *path)
6407bf6d 8700{
0b246afa 8701 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8702 u64 bytenr;
8703 u64 generation;
8704 u64 refs;
94fcca9f 8705 u64 flags;
5d4f98a2 8706 u32 nritems;
1c4850e2
YZ
8707 struct btrfs_key key;
8708 struct extent_buffer *eb;
6407bf6d 8709 int ret;
1c4850e2
YZ
8710 int slot;
8711 int nread = 0;
6407bf6d 8712
1c4850e2
YZ
8713 if (path->slots[wc->level] < wc->reada_slot) {
8714 wc->reada_count = wc->reada_count * 2 / 3;
8715 wc->reada_count = max(wc->reada_count, 2);
8716 } else {
8717 wc->reada_count = wc->reada_count * 3 / 2;
8718 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8719 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8720 }
7bb86316 8721
1c4850e2
YZ
8722 eb = path->nodes[wc->level];
8723 nritems = btrfs_header_nritems(eb);
bd56b302 8724
1c4850e2
YZ
8725 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8726 if (nread >= wc->reada_count)
8727 break;
bd56b302 8728
2dd3e67b 8729 cond_resched();
1c4850e2
YZ
8730 bytenr = btrfs_node_blockptr(eb, slot);
8731 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8732
1c4850e2
YZ
8733 if (slot == path->slots[wc->level])
8734 goto reada;
5d4f98a2 8735
1c4850e2
YZ
8736 if (wc->stage == UPDATE_BACKREF &&
8737 generation <= root->root_key.offset)
bd56b302
CM
8738 continue;
8739
94fcca9f 8740 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8741 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8742 wc->level - 1, 1, &refs,
8743 &flags);
79787eaa
JM
8744 /* We don't care about errors in readahead. */
8745 if (ret < 0)
8746 continue;
94fcca9f
YZ
8747 BUG_ON(refs == 0);
8748
1c4850e2 8749 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8750 if (refs == 1)
8751 goto reada;
bd56b302 8752
94fcca9f
YZ
8753 if (wc->level == 1 &&
8754 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8755 continue;
1c4850e2
YZ
8756 if (!wc->update_ref ||
8757 generation <= root->root_key.offset)
8758 continue;
8759 btrfs_node_key_to_cpu(eb, &key, slot);
8760 ret = btrfs_comp_cpu_keys(&key,
8761 &wc->update_progress);
8762 if (ret < 0)
8763 continue;
94fcca9f
YZ
8764 } else {
8765 if (wc->level == 1 &&
8766 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8767 continue;
6407bf6d 8768 }
1c4850e2 8769reada:
2ff7e61e 8770 readahead_tree_block(fs_info, bytenr);
1c4850e2 8771 nread++;
20524f02 8772 }
1c4850e2 8773 wc->reada_slot = slot;
20524f02 8774}
2c47e605 8775
f82d02d9 8776/*
2c016dc2 8777 * helper to process tree block while walking down the tree.
2c47e605 8778 *
2c47e605
YZ
8779 * when wc->stage == UPDATE_BACKREF, this function updates
8780 * back refs for pointers in the block.
8781 *
8782 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8783 */
2c47e605 8784static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8785 struct btrfs_root *root,
2c47e605 8786 struct btrfs_path *path,
94fcca9f 8787 struct walk_control *wc, int lookup_info)
f82d02d9 8788{
2ff7e61e 8789 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8790 int level = wc->level;
8791 struct extent_buffer *eb = path->nodes[level];
2c47e605 8792 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8793 int ret;
8794
2c47e605
YZ
8795 if (wc->stage == UPDATE_BACKREF &&
8796 btrfs_header_owner(eb) != root->root_key.objectid)
8797 return 1;
f82d02d9 8798
2c47e605
YZ
8799 /*
8800 * when reference count of tree block is 1, it won't increase
8801 * again. once full backref flag is set, we never clear it.
8802 */
94fcca9f
YZ
8803 if (lookup_info &&
8804 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8805 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8806 BUG_ON(!path->locks[level]);
2ff7e61e 8807 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8808 eb->start, level, 1,
2c47e605
YZ
8809 &wc->refs[level],
8810 &wc->flags[level]);
79787eaa
JM
8811 BUG_ON(ret == -ENOMEM);
8812 if (ret)
8813 return ret;
2c47e605
YZ
8814 BUG_ON(wc->refs[level] == 0);
8815 }
5d4f98a2 8816
2c47e605
YZ
8817 if (wc->stage == DROP_REFERENCE) {
8818 if (wc->refs[level] > 1)
8819 return 1;
f82d02d9 8820
2c47e605 8821 if (path->locks[level] && !wc->keep_locks) {
bd681513 8822 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8823 path->locks[level] = 0;
8824 }
8825 return 0;
8826 }
f82d02d9 8827
2c47e605
YZ
8828 /* wc->stage == UPDATE_BACKREF */
8829 if (!(wc->flags[level] & flag)) {
8830 BUG_ON(!path->locks[level]);
e339a6b0 8831 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8832 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8833 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8834 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8835 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8836 eb->len, flag,
8837 btrfs_header_level(eb), 0);
79787eaa 8838 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8839 wc->flags[level] |= flag;
8840 }
8841
8842 /*
8843 * the block is shared by multiple trees, so it's not good to
8844 * keep the tree lock
8845 */
8846 if (path->locks[level] && level > 0) {
bd681513 8847 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8848 path->locks[level] = 0;
8849 }
8850 return 0;
8851}
8852
1c4850e2 8853/*
2c016dc2 8854 * helper to process tree block pointer.
1c4850e2
YZ
8855 *
8856 * when wc->stage == DROP_REFERENCE, this function checks
8857 * reference count of the block pointed to. if the block
8858 * is shared and we need update back refs for the subtree
8859 * rooted at the block, this function changes wc->stage to
8860 * UPDATE_BACKREF. if the block is shared and there is no
8861 * need to update back, this function drops the reference
8862 * to the block.
8863 *
8864 * NOTE: return value 1 means we should stop walking down.
8865 */
8866static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8867 struct btrfs_root *root,
8868 struct btrfs_path *path,
94fcca9f 8869 struct walk_control *wc, int *lookup_info)
1c4850e2 8870{
0b246afa 8871 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8872 u64 bytenr;
8873 u64 generation;
8874 u64 parent;
1c4850e2 8875 struct btrfs_key key;
581c1760 8876 struct btrfs_key first_key;
1c4850e2
YZ
8877 struct extent_buffer *next;
8878 int level = wc->level;
8879 int reada = 0;
8880 int ret = 0;
1152651a 8881 bool need_account = false;
1c4850e2
YZ
8882
8883 generation = btrfs_node_ptr_generation(path->nodes[level],
8884 path->slots[level]);
8885 /*
8886 * if the lower level block was created before the snapshot
8887 * was created, we know there is no need to update back refs
8888 * for the subtree
8889 */
8890 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8891 generation <= root->root_key.offset) {
8892 *lookup_info = 1;
1c4850e2 8893 return 1;
94fcca9f 8894 }
1c4850e2
YZ
8895
8896 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8897 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8898 path->slots[level]);
1c4850e2 8899
0b246afa 8900 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8901 if (!next) {
2ff7e61e 8902 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8903 if (IS_ERR(next))
8904 return PTR_ERR(next);
8905
b2aaaa3b
JB
8906 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8907 level - 1);
1c4850e2
YZ
8908 reada = 1;
8909 }
8910 btrfs_tree_lock(next);
8911 btrfs_set_lock_blocking(next);
8912
2ff7e61e 8913 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8914 &wc->refs[level - 1],
8915 &wc->flags[level - 1]);
4867268c
JB
8916 if (ret < 0)
8917 goto out_unlock;
79787eaa 8918
c2cf52eb 8919 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8920 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8921 ret = -EIO;
8922 goto out_unlock;
c2cf52eb 8923 }
94fcca9f 8924 *lookup_info = 0;
1c4850e2 8925
94fcca9f 8926 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8927 if (wc->refs[level - 1] > 1) {
1152651a 8928 need_account = true;
94fcca9f
YZ
8929 if (level == 1 &&
8930 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8931 goto skip;
8932
1c4850e2
YZ
8933 if (!wc->update_ref ||
8934 generation <= root->root_key.offset)
8935 goto skip;
8936
8937 btrfs_node_key_to_cpu(path->nodes[level], &key,
8938 path->slots[level]);
8939 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8940 if (ret < 0)
8941 goto skip;
8942
8943 wc->stage = UPDATE_BACKREF;
8944 wc->shared_level = level - 1;
8945 }
94fcca9f
YZ
8946 } else {
8947 if (level == 1 &&
8948 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8949 goto skip;
1c4850e2
YZ
8950 }
8951
b9fab919 8952 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8953 btrfs_tree_unlock(next);
8954 free_extent_buffer(next);
8955 next = NULL;
94fcca9f 8956 *lookup_info = 1;
1c4850e2
YZ
8957 }
8958
8959 if (!next) {
8960 if (reada && level == 1)
8961 reada_walk_down(trans, root, wc, path);
581c1760
QW
8962 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8963 &first_key);
64c043de
LB
8964 if (IS_ERR(next)) {
8965 return PTR_ERR(next);
8966 } else if (!extent_buffer_uptodate(next)) {
416bc658 8967 free_extent_buffer(next);
97d9a8a4 8968 return -EIO;
416bc658 8969 }
1c4850e2
YZ
8970 btrfs_tree_lock(next);
8971 btrfs_set_lock_blocking(next);
8972 }
8973
8974 level--;
4867268c
JB
8975 ASSERT(level == btrfs_header_level(next));
8976 if (level != btrfs_header_level(next)) {
8977 btrfs_err(root->fs_info, "mismatched level");
8978 ret = -EIO;
8979 goto out_unlock;
8980 }
1c4850e2
YZ
8981 path->nodes[level] = next;
8982 path->slots[level] = 0;
bd681513 8983 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8984 wc->level = level;
8985 if (wc->level == 1)
8986 wc->reada_slot = 0;
8987 return 0;
8988skip:
8989 wc->refs[level - 1] = 0;
8990 wc->flags[level - 1] = 0;
94fcca9f
YZ
8991 if (wc->stage == DROP_REFERENCE) {
8992 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8993 parent = path->nodes[level]->start;
8994 } else {
4867268c 8995 ASSERT(root->root_key.objectid ==
94fcca9f 8996 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8997 if (root->root_key.objectid !=
8998 btrfs_header_owner(path->nodes[level])) {
8999 btrfs_err(root->fs_info,
9000 "mismatched block owner");
9001 ret = -EIO;
9002 goto out_unlock;
9003 }
94fcca9f
YZ
9004 parent = 0;
9005 }
1c4850e2 9006
2cd86d30
QW
9007 /*
9008 * Reloc tree doesn't contribute to qgroup numbers, and we have
9009 * already accounted them at merge time (replace_path),
9010 * thus we could skip expensive subtree trace here.
9011 */
9012 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
9013 need_account) {
deb40627 9014 ret = btrfs_qgroup_trace_subtree(trans, next,
33d1f05c 9015 generation, level - 1);
1152651a 9016 if (ret) {
0b246afa 9017 btrfs_err_rl(fs_info,
5d163e0e
JM
9018 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
9019 ret);
1152651a
MF
9020 }
9021 }
01e0da48 9022 ret = btrfs_free_extent(trans, root, bytenr, fs_info->nodesize,
2ff7e61e
JM
9023 parent, root->root_key.objectid,
9024 level - 1, 0);
4867268c
JB
9025 if (ret)
9026 goto out_unlock;
1c4850e2 9027 }
4867268c
JB
9028
9029 *lookup_info = 1;
9030 ret = 1;
9031
9032out_unlock:
1c4850e2
YZ
9033 btrfs_tree_unlock(next);
9034 free_extent_buffer(next);
4867268c
JB
9035
9036 return ret;
1c4850e2
YZ
9037}
9038
2c47e605 9039/*
2c016dc2 9040 * helper to process tree block while walking up the tree.
2c47e605
YZ
9041 *
9042 * when wc->stage == DROP_REFERENCE, this function drops
9043 * reference count on the block.
9044 *
9045 * when wc->stage == UPDATE_BACKREF, this function changes
9046 * wc->stage back to DROP_REFERENCE if we changed wc->stage
9047 * to UPDATE_BACKREF previously while processing the block.
9048 *
9049 * NOTE: return value 1 means we should stop walking up.
9050 */
9051static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9052 struct btrfs_root *root,
9053 struct btrfs_path *path,
9054 struct walk_control *wc)
9055{
0b246afa 9056 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 9057 int ret;
2c47e605
YZ
9058 int level = wc->level;
9059 struct extent_buffer *eb = path->nodes[level];
9060 u64 parent = 0;
9061
9062 if (wc->stage == UPDATE_BACKREF) {
9063 BUG_ON(wc->shared_level < level);
9064 if (level < wc->shared_level)
9065 goto out;
9066
2c47e605
YZ
9067 ret = find_next_key(path, level + 1, &wc->update_progress);
9068 if (ret > 0)
9069 wc->update_ref = 0;
9070
9071 wc->stage = DROP_REFERENCE;
9072 wc->shared_level = -1;
9073 path->slots[level] = 0;
9074
9075 /*
9076 * check reference count again if the block isn't locked.
9077 * we should start walking down the tree again if reference
9078 * count is one.
9079 */
9080 if (!path->locks[level]) {
9081 BUG_ON(level == 0);
9082 btrfs_tree_lock(eb);
9083 btrfs_set_lock_blocking(eb);
bd681513 9084 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9085
2ff7e61e 9086 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 9087 eb->start, level, 1,
2c47e605
YZ
9088 &wc->refs[level],
9089 &wc->flags[level]);
79787eaa
JM
9090 if (ret < 0) {
9091 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9092 path->locks[level] = 0;
79787eaa
JM
9093 return ret;
9094 }
2c47e605
YZ
9095 BUG_ON(wc->refs[level] == 0);
9096 if (wc->refs[level] == 1) {
bd681513 9097 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9098 path->locks[level] = 0;
2c47e605
YZ
9099 return 1;
9100 }
f82d02d9 9101 }
2c47e605 9102 }
f82d02d9 9103
2c47e605
YZ
9104 /* wc->stage == DROP_REFERENCE */
9105 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 9106
2c47e605
YZ
9107 if (wc->refs[level] == 1) {
9108 if (level == 0) {
9109 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 9110 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 9111 else
e339a6b0 9112 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 9113 BUG_ON(ret); /* -ENOMEM */
8d38d7eb 9114 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
1152651a 9115 if (ret) {
0b246afa 9116 btrfs_err_rl(fs_info,
5d163e0e
JM
9117 "error %d accounting leaf items. Quota is out of sync, rescan required.",
9118 ret);
1152651a 9119 }
2c47e605
YZ
9120 }
9121 /* make block locked assertion in clean_tree_block happy */
9122 if (!path->locks[level] &&
9123 btrfs_header_generation(eb) == trans->transid) {
9124 btrfs_tree_lock(eb);
9125 btrfs_set_lock_blocking(eb);
bd681513 9126 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9127 }
7c302b49 9128 clean_tree_block(fs_info, eb);
2c47e605
YZ
9129 }
9130
9131 if (eb == root->node) {
9132 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9133 parent = eb->start;
65c6e82b
QW
9134 else if (root->root_key.objectid != btrfs_header_owner(eb))
9135 goto owner_mismatch;
2c47e605
YZ
9136 } else {
9137 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9138 parent = path->nodes[level + 1]->start;
65c6e82b
QW
9139 else if (root->root_key.objectid !=
9140 btrfs_header_owner(path->nodes[level + 1]))
9141 goto owner_mismatch;
f82d02d9 9142 }
f82d02d9 9143
5581a51a 9144 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
9145out:
9146 wc->refs[level] = 0;
9147 wc->flags[level] = 0;
f0486c68 9148 return 0;
65c6e82b
QW
9149
9150owner_mismatch:
9151 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
9152 btrfs_header_owner(eb), root->root_key.objectid);
9153 return -EUCLEAN;
2c47e605
YZ
9154}
9155
9156static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9157 struct btrfs_root *root,
9158 struct btrfs_path *path,
9159 struct walk_control *wc)
9160{
2c47e605 9161 int level = wc->level;
94fcca9f 9162 int lookup_info = 1;
2c47e605
YZ
9163 int ret;
9164
9165 while (level >= 0) {
94fcca9f 9166 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
9167 if (ret > 0)
9168 break;
9169
9170 if (level == 0)
9171 break;
9172
7a7965f8
YZ
9173 if (path->slots[level] >=
9174 btrfs_header_nritems(path->nodes[level]))
9175 break;
9176
94fcca9f 9177 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9178 if (ret > 0) {
9179 path->slots[level]++;
9180 continue;
90d2c51d
MX
9181 } else if (ret < 0)
9182 return ret;
1c4850e2 9183 level = wc->level;
f82d02d9 9184 }
f82d02d9
YZ
9185 return 0;
9186}
9187
d397712b 9188static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9189 struct btrfs_root *root,
f82d02d9 9190 struct btrfs_path *path,
2c47e605 9191 struct walk_control *wc, int max_level)
20524f02 9192{
2c47e605 9193 int level = wc->level;
20524f02 9194 int ret;
9f3a7427 9195
2c47e605
YZ
9196 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9197 while (level < max_level && path->nodes[level]) {
9198 wc->level = level;
9199 if (path->slots[level] + 1 <
9200 btrfs_header_nritems(path->nodes[level])) {
9201 path->slots[level]++;
20524f02
CM
9202 return 0;
9203 } else {
2c47e605
YZ
9204 ret = walk_up_proc(trans, root, path, wc);
9205 if (ret > 0)
9206 return 0;
65c6e82b
QW
9207 if (ret < 0)
9208 return ret;
bd56b302 9209
2c47e605 9210 if (path->locks[level]) {
bd681513
CM
9211 btrfs_tree_unlock_rw(path->nodes[level],
9212 path->locks[level]);
2c47e605 9213 path->locks[level] = 0;
f82d02d9 9214 }
2c47e605
YZ
9215 free_extent_buffer(path->nodes[level]);
9216 path->nodes[level] = NULL;
9217 level++;
20524f02
CM
9218 }
9219 }
9220 return 1;
9221}
9222
9aca1d51 9223/*
2c47e605
YZ
9224 * drop a subvolume tree.
9225 *
9226 * this function traverses the tree freeing any blocks that only
9227 * referenced by the tree.
9228 *
9229 * when a shared tree block is found. this function decreases its
9230 * reference count by one. if update_ref is true, this function
9231 * also make sure backrefs for the shared block and all lower level
9232 * blocks are properly updated.
9d1a2a3a
DS
9233 *
9234 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9235 */
2c536799 9236int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9237 struct btrfs_block_rsv *block_rsv, int update_ref,
9238 int for_reloc)
20524f02 9239{
ab8d0fc4 9240 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9241 struct btrfs_path *path;
2c47e605 9242 struct btrfs_trans_handle *trans;
ab8d0fc4 9243 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9244 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9245 struct walk_control *wc;
9246 struct btrfs_key key;
9247 int err = 0;
9248 int ret;
9249 int level;
d29a9f62 9250 bool root_dropped = false;
20524f02 9251
4fd786e6 9252 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
1152651a 9253
5caf2a00 9254 path = btrfs_alloc_path();
cb1b69f4
TI
9255 if (!path) {
9256 err = -ENOMEM;
9257 goto out;
9258 }
20524f02 9259
2c47e605 9260 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9261 if (!wc) {
9262 btrfs_free_path(path);
cb1b69f4
TI
9263 err = -ENOMEM;
9264 goto out;
38a1a919 9265 }
2c47e605 9266
a22285a6 9267 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9268 if (IS_ERR(trans)) {
9269 err = PTR_ERR(trans);
9270 goto out_free;
9271 }
98d5dc13 9272
0568e82d
JB
9273 err = btrfs_run_delayed_items(trans);
9274 if (err)
9275 goto out_end_trans;
9276
3fd0a558
YZ
9277 if (block_rsv)
9278 trans->block_rsv = block_rsv;
2c47e605 9279
83354f07
JB
9280 /*
9281 * This will help us catch people modifying the fs tree while we're
9282 * dropping it. It is unsafe to mess with the fs tree while it's being
9283 * dropped as we unlock the root node and parent nodes as we walk down
9284 * the tree, assuming nothing will change. If something does change
9285 * then we'll have stale information and drop references to blocks we've
9286 * already dropped.
9287 */
9288 set_bit(BTRFS_ROOT_DELETING, &root->state);
9f3a7427 9289 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9290 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9291 path->nodes[level] = btrfs_lock_root_node(root);
9292 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9293 path->slots[level] = 0;
bd681513 9294 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9295 memset(&wc->update_progress, 0,
9296 sizeof(wc->update_progress));
9f3a7427 9297 } else {
9f3a7427 9298 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9299 memcpy(&wc->update_progress, &key,
9300 sizeof(wc->update_progress));
9301
6702ed49 9302 level = root_item->drop_level;
2c47e605 9303 BUG_ON(level == 0);
6702ed49 9304 path->lowest_level = level;
2c47e605
YZ
9305 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9306 path->lowest_level = 0;
9307 if (ret < 0) {
9308 err = ret;
79787eaa 9309 goto out_end_trans;
9f3a7427 9310 }
1c4850e2 9311 WARN_ON(ret > 0);
2c47e605 9312
7d9eb12c
CM
9313 /*
9314 * unlock our path, this is safe because only this
9315 * function is allowed to delete this snapshot
9316 */
5d4f98a2 9317 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9318
9319 level = btrfs_header_level(root->node);
9320 while (1) {
9321 btrfs_tree_lock(path->nodes[level]);
9322 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9323 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9324
2ff7e61e 9325 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9326 path->nodes[level]->start,
3173a18f 9327 level, 1, &wc->refs[level],
2c47e605 9328 &wc->flags[level]);
79787eaa
JM
9329 if (ret < 0) {
9330 err = ret;
9331 goto out_end_trans;
9332 }
2c47e605
YZ
9333 BUG_ON(wc->refs[level] == 0);
9334
9335 if (level == root_item->drop_level)
9336 break;
9337
9338 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9339 path->locks[level] = 0;
2c47e605
YZ
9340 WARN_ON(wc->refs[level] != 1);
9341 level--;
9342 }
9f3a7427 9343 }
2c47e605
YZ
9344
9345 wc->level = level;
9346 wc->shared_level = -1;
9347 wc->stage = DROP_REFERENCE;
9348 wc->update_ref = update_ref;
9349 wc->keep_locks = 0;
0b246afa 9350 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9351
d397712b 9352 while (1) {
9d1a2a3a 9353
2c47e605
YZ
9354 ret = walk_down_tree(trans, root, path, wc);
9355 if (ret < 0) {
9356 err = ret;
20524f02 9357 break;
2c47e605 9358 }
9aca1d51 9359
2c47e605
YZ
9360 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9361 if (ret < 0) {
9362 err = ret;
20524f02 9363 break;
2c47e605
YZ
9364 }
9365
9366 if (ret > 0) {
9367 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9368 break;
9369 }
2c47e605
YZ
9370
9371 if (wc->stage == DROP_REFERENCE) {
9372 level = wc->level;
9373 btrfs_node_key(path->nodes[level],
9374 &root_item->drop_progress,
9375 path->slots[level]);
9376 root_item->drop_level = level;
9377 }
9378
9379 BUG_ON(wc->level == 0);
3a45bb20 9380 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9381 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9382 ret = btrfs_update_root(trans, tree_root,
9383 &root->root_key,
9384 root_item);
79787eaa 9385 if (ret) {
66642832 9386 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9387 err = ret;
9388 goto out_end_trans;
9389 }
2c47e605 9390
3a45bb20 9391 btrfs_end_transaction_throttle(trans);
2ff7e61e 9392 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9393 btrfs_debug(fs_info,
9394 "drop snapshot early exit");
3c8f2422
JB
9395 err = -EAGAIN;
9396 goto out_free;
9397 }
9398
a22285a6 9399 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9400 if (IS_ERR(trans)) {
9401 err = PTR_ERR(trans);
9402 goto out_free;
9403 }
3fd0a558
YZ
9404 if (block_rsv)
9405 trans->block_rsv = block_rsv;
c3e69d58 9406 }
20524f02 9407 }
b3b4aa74 9408 btrfs_release_path(path);
79787eaa
JM
9409 if (err)
9410 goto out_end_trans;
2c47e605 9411
ab9ce7d4 9412 ret = btrfs_del_root(trans, &root->root_key);
79787eaa 9413 if (ret) {
66642832 9414 btrfs_abort_transaction(trans, ret);
e19182c0 9415 err = ret;
79787eaa
JM
9416 goto out_end_trans;
9417 }
2c47e605 9418
76dda93c 9419 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9420 ret = btrfs_find_root(tree_root, &root->root_key, path,
9421 NULL, NULL);
79787eaa 9422 if (ret < 0) {
66642832 9423 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9424 err = ret;
9425 goto out_end_trans;
9426 } else if (ret > 0) {
84cd948c
JB
9427 /* if we fail to delete the orphan item this time
9428 * around, it'll get picked up the next time.
9429 *
9430 * The most common failure here is just -ENOENT.
9431 */
9432 btrfs_del_orphan_item(trans, tree_root,
9433 root->root_key.objectid);
76dda93c
YZ
9434 }
9435 }
9436
27cdeb70 9437 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9438 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9439 } else {
9440 free_extent_buffer(root->node);
9441 free_extent_buffer(root->commit_root);
b0feb9d9 9442 btrfs_put_fs_root(root);
76dda93c 9443 }
d29a9f62 9444 root_dropped = true;
79787eaa 9445out_end_trans:
3a45bb20 9446 btrfs_end_transaction_throttle(trans);
79787eaa 9447out_free:
2c47e605 9448 kfree(wc);
5caf2a00 9449 btrfs_free_path(path);
cb1b69f4 9450out:
d29a9f62
JB
9451 /*
9452 * So if we need to stop dropping the snapshot for whatever reason we
9453 * need to make sure to add it back to the dead root list so that we
9454 * keep trying to do the work later. This also cleans up roots if we
9455 * don't have it in the radix (like when we recover after a power fail
9456 * or unmount) so we don't leak memory.
9457 */
897ca819 9458 if (!for_reloc && !root_dropped)
d29a9f62 9459 btrfs_add_dead_root(root);
90515e7f 9460 if (err && err != -EAGAIN)
ab8d0fc4 9461 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9462 return err;
20524f02 9463}
9078a3e1 9464
2c47e605
YZ
9465/*
9466 * drop subtree rooted at tree block 'node'.
9467 *
9468 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9469 * only used by relocation code
2c47e605 9470 */
f82d02d9
YZ
9471int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9472 struct btrfs_root *root,
9473 struct extent_buffer *node,
9474 struct extent_buffer *parent)
9475{
0b246afa 9476 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9477 struct btrfs_path *path;
2c47e605 9478 struct walk_control *wc;
f82d02d9
YZ
9479 int level;
9480 int parent_level;
9481 int ret = 0;
9482 int wret;
9483
2c47e605
YZ
9484 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9485
f82d02d9 9486 path = btrfs_alloc_path();
db5b493a
TI
9487 if (!path)
9488 return -ENOMEM;
f82d02d9 9489
2c47e605 9490 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9491 if (!wc) {
9492 btrfs_free_path(path);
9493 return -ENOMEM;
9494 }
2c47e605 9495
b9447ef8 9496 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9497 parent_level = btrfs_header_level(parent);
9498 extent_buffer_get(parent);
9499 path->nodes[parent_level] = parent;
9500 path->slots[parent_level] = btrfs_header_nritems(parent);
9501
b9447ef8 9502 btrfs_assert_tree_locked(node);
f82d02d9 9503 level = btrfs_header_level(node);
f82d02d9
YZ
9504 path->nodes[level] = node;
9505 path->slots[level] = 0;
bd681513 9506 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9507
9508 wc->refs[parent_level] = 1;
9509 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9510 wc->level = level;
9511 wc->shared_level = -1;
9512 wc->stage = DROP_REFERENCE;
9513 wc->update_ref = 0;
9514 wc->keep_locks = 1;
0b246afa 9515 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9516
9517 while (1) {
2c47e605
YZ
9518 wret = walk_down_tree(trans, root, path, wc);
9519 if (wret < 0) {
f82d02d9 9520 ret = wret;
f82d02d9 9521 break;
2c47e605 9522 }
f82d02d9 9523
2c47e605 9524 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9525 if (wret < 0)
9526 ret = wret;
9527 if (wret != 0)
9528 break;
9529 }
9530
2c47e605 9531 kfree(wc);
f82d02d9
YZ
9532 btrfs_free_path(path);
9533 return ret;
9534}
9535
6202df69 9536static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9537{
9538 u64 num_devices;
fc67c450 9539 u64 stripped;
e4d8ec0f 9540
fc67c450
ID
9541 /*
9542 * if restripe for this chunk_type is on pick target profile and
9543 * return, otherwise do the usual balance
9544 */
6202df69 9545 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9546 if (stripped)
9547 return extended_to_chunk(stripped);
e4d8ec0f 9548
6202df69 9549 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9550
fc67c450 9551 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9552 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9553 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9554
ec44a35c
CM
9555 if (num_devices == 1) {
9556 stripped |= BTRFS_BLOCK_GROUP_DUP;
9557 stripped = flags & ~stripped;
9558
9559 /* turn raid0 into single device chunks */
9560 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9561 return stripped;
9562
9563 /* turn mirroring into duplication */
9564 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9565 BTRFS_BLOCK_GROUP_RAID10))
9566 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9567 } else {
9568 /* they already had raid on here, just return */
ec44a35c
CM
9569 if (flags & stripped)
9570 return flags;
9571
9572 stripped |= BTRFS_BLOCK_GROUP_DUP;
9573 stripped = flags & ~stripped;
9574
9575 /* switch duplicated blocks with raid1 */
9576 if (flags & BTRFS_BLOCK_GROUP_DUP)
9577 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9578
e3176ca2 9579 /* this is drive concat, leave it alone */
ec44a35c 9580 }
e3176ca2 9581
ec44a35c
CM
9582 return flags;
9583}
9584
868f401a 9585static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9586{
f0486c68
YZ
9587 struct btrfs_space_info *sinfo = cache->space_info;
9588 u64 num_bytes;
199c36ea 9589 u64 min_allocable_bytes;
f0486c68 9590 int ret = -ENOSPC;
0ef3e66b 9591
199c36ea
MX
9592 /*
9593 * We need some metadata space and system metadata space for
9594 * allocating chunks in some corner cases until we force to set
9595 * it to be readonly.
9596 */
9597 if ((sinfo->flags &
9598 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9599 !force)
ee22184b 9600 min_allocable_bytes = SZ_1M;
199c36ea
MX
9601 else
9602 min_allocable_bytes = 0;
9603
f0486c68
YZ
9604 spin_lock(&sinfo->lock);
9605 spin_lock(&cache->lock);
61cfea9b
W
9606
9607 if (cache->ro) {
868f401a 9608 cache->ro++;
61cfea9b
W
9609 ret = 0;
9610 goto out;
9611 }
9612
f0486c68
YZ
9613 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9614 cache->bytes_super - btrfs_block_group_used(&cache->item);
9615
4136135b 9616 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9617 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9618 sinfo->bytes_readonly += num_bytes;
868f401a 9619 cache->ro++;
633c0aad 9620 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9621 ret = 0;
9622 }
61cfea9b 9623out:
f0486c68
YZ
9624 spin_unlock(&cache->lock);
9625 spin_unlock(&sinfo->lock);
9626 return ret;
9627}
7d9eb12c 9628
c83488af 9629int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
c286ac48 9630
f0486c68 9631{
c83488af 9632 struct btrfs_fs_info *fs_info = cache->fs_info;
f0486c68
YZ
9633 struct btrfs_trans_handle *trans;
9634 u64 alloc_flags;
9635 int ret;
7d9eb12c 9636
1bbc621e 9637again:
5e00f193 9638 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9639 if (IS_ERR(trans))
9640 return PTR_ERR(trans);
5d4f98a2 9641
1bbc621e
CM
9642 /*
9643 * we're not allowed to set block groups readonly after the dirty
9644 * block groups cache has started writing. If it already started,
9645 * back off and let this transaction commit
9646 */
0b246afa 9647 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9648 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9649 u64 transid = trans->transid;
9650
0b246afa 9651 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9652 btrfs_end_transaction(trans);
1bbc621e 9653
2ff7e61e 9654 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9655 if (ret)
9656 return ret;
9657 goto again;
9658 }
9659
153c35b6
CM
9660 /*
9661 * if we are changing raid levels, try to allocate a corresponding
9662 * block group with the new raid level.
9663 */
0b246afa 9664 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9665 if (alloc_flags != cache->flags) {
01458828 9666 ret = do_chunk_alloc(trans, alloc_flags,
153c35b6
CM
9667 CHUNK_ALLOC_FORCE);
9668 /*
9669 * ENOSPC is allowed here, we may have enough space
9670 * already allocated at the new raid level to
9671 * carry on
9672 */
9673 if (ret == -ENOSPC)
9674 ret = 0;
9675 if (ret < 0)
9676 goto out;
9677 }
1bbc621e 9678
868f401a 9679 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9680 if (!ret)
9681 goto out;
2ff7e61e 9682 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
01458828 9683 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
f0486c68
YZ
9684 if (ret < 0)
9685 goto out;
868f401a 9686 ret = inc_block_group_ro(cache, 0);
f0486c68 9687out:
2f081088 9688 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9689 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9690 mutex_lock(&fs_info->chunk_mutex);
451a2c13 9691 check_system_chunk(trans, alloc_flags);
34441361 9692 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9693 }
0b246afa 9694 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9695
3a45bb20 9696 btrfs_end_transaction(trans);
f0486c68
YZ
9697 return ret;
9698}
5d4f98a2 9699
43a7e99d 9700int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
c87f08ca 9701{
43a7e99d 9702 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
2ff7e61e 9703
01458828 9704 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9705}
9706
6d07bcec
MX
9707/*
9708 * helper to account the unused space of all the readonly block group in the
633c0aad 9709 * space_info. takes mirrors into account.
6d07bcec 9710 */
633c0aad 9711u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9712{
9713 struct btrfs_block_group_cache *block_group;
9714 u64 free_bytes = 0;
9715 int factor;
9716
01327610 9717 /* It's df, we don't care if it's racy */
633c0aad
JB
9718 if (list_empty(&sinfo->ro_bgs))
9719 return 0;
9720
9721 spin_lock(&sinfo->lock);
9722 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9723 spin_lock(&block_group->lock);
9724
9725 if (!block_group->ro) {
9726 spin_unlock(&block_group->lock);
9727 continue;
9728 }
9729
46df06b8 9730 factor = btrfs_bg_type_to_factor(block_group->flags);
6d07bcec
MX
9731 free_bytes += (block_group->key.offset -
9732 btrfs_block_group_used(&block_group->item)) *
9733 factor;
9734
9735 spin_unlock(&block_group->lock);
9736 }
6d07bcec
MX
9737 spin_unlock(&sinfo->lock);
9738
9739 return free_bytes;
9740}
9741
2ff7e61e 9742void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9743{
f0486c68
YZ
9744 struct btrfs_space_info *sinfo = cache->space_info;
9745 u64 num_bytes;
9746
9747 BUG_ON(!cache->ro);
9748
9749 spin_lock(&sinfo->lock);
9750 spin_lock(&cache->lock);
868f401a
Z
9751 if (!--cache->ro) {
9752 num_bytes = cache->key.offset - cache->reserved -
9753 cache->pinned - cache->bytes_super -
9754 btrfs_block_group_used(&cache->item);
9755 sinfo->bytes_readonly -= num_bytes;
9756 list_del_init(&cache->ro_list);
9757 }
f0486c68
YZ
9758 spin_unlock(&cache->lock);
9759 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9760}
9761
ba1bf481 9762/*
52042d8e 9763 * Checks to see if it's even possible to relocate this block group.
ba1bf481
JB
9764 *
9765 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9766 * ok to go ahead and try.
9767 */
6bccf3ab 9768int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9769{
6bccf3ab 9770 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9771 struct btrfs_block_group_cache *block_group;
9772 struct btrfs_space_info *space_info;
0b246afa 9773 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9774 struct btrfs_device *device;
6df9a95e 9775 struct btrfs_trans_handle *trans;
cdcb725c 9776 u64 min_free;
6719db6a
JB
9777 u64 dev_min = 1;
9778 u64 dev_nr = 0;
4a5e98f5 9779 u64 target;
0305bc27 9780 int debug;
cdcb725c 9781 int index;
ba1bf481
JB
9782 int full = 0;
9783 int ret = 0;
1a40e23b 9784
0b246afa 9785 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9786
0b246afa 9787 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9788
ba1bf481 9789 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9790 if (!block_group) {
9791 if (debug)
0b246afa 9792 btrfs_warn(fs_info,
0305bc27
QW
9793 "can't find block group for bytenr %llu",
9794 bytenr);
ba1bf481 9795 return -1;
0305bc27 9796 }
1a40e23b 9797
cdcb725c 9798 min_free = btrfs_block_group_used(&block_group->item);
9799
ba1bf481 9800 /* no bytes used, we're good */
cdcb725c 9801 if (!min_free)
1a40e23b
ZY
9802 goto out;
9803
ba1bf481
JB
9804 space_info = block_group->space_info;
9805 spin_lock(&space_info->lock);
17d217fe 9806
ba1bf481 9807 full = space_info->full;
17d217fe 9808
ba1bf481
JB
9809 /*
9810 * if this is the last block group we have in this space, we can't
7ce618db
CM
9811 * relocate it unless we're able to allocate a new chunk below.
9812 *
9813 * Otherwise, we need to make sure we have room in the space to handle
9814 * all of the extents from this block group. If we can, we're good
ba1bf481 9815 */
7ce618db 9816 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9817 (btrfs_space_info_used(space_info, false) + min_free <
9818 space_info->total_bytes)) {
ba1bf481
JB
9819 spin_unlock(&space_info->lock);
9820 goto out;
17d217fe 9821 }
ba1bf481 9822 spin_unlock(&space_info->lock);
ea8c2819 9823
ba1bf481
JB
9824 /*
9825 * ok we don't have enough space, but maybe we have free space on our
9826 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9827 * alloc devices and guess if we have enough space. if this block
9828 * group is going to be restriped, run checks against the target
9829 * profile instead of the current one.
ba1bf481
JB
9830 */
9831 ret = -1;
ea8c2819 9832
cdcb725c 9833 /*
9834 * index:
9835 * 0: raid10
9836 * 1: raid1
9837 * 2: dup
9838 * 3: raid0
9839 * 4: single
9840 */
0b246afa 9841 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9842 if (target) {
3e72ee88 9843 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9844 } else {
9845 /*
9846 * this is just a balance, so if we were marked as full
9847 * we know there is no space for a new chunk
9848 */
0305bc27
QW
9849 if (full) {
9850 if (debug)
0b246afa
JM
9851 btrfs_warn(fs_info,
9852 "no space to alloc new chunk for block group %llu",
9853 block_group->key.objectid);
4a5e98f5 9854 goto out;
0305bc27 9855 }
4a5e98f5 9856
3e72ee88 9857 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9858 }
9859
e6ec716f 9860 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9861 dev_min = 4;
6719db6a
JB
9862 /* Divide by 2 */
9863 min_free >>= 1;
e6ec716f 9864 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9865 dev_min = 2;
e6ec716f 9866 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9867 /* Multiply by 2 */
9868 min_free <<= 1;
e6ec716f 9869 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9870 dev_min = fs_devices->rw_devices;
47c5713f 9871 min_free = div64_u64(min_free, dev_min);
cdcb725c 9872 }
9873
6df9a95e
JB
9874 /* We need to do this so that we can look at pending chunks */
9875 trans = btrfs_join_transaction(root);
9876 if (IS_ERR(trans)) {
9877 ret = PTR_ERR(trans);
9878 goto out;
9879 }
9880
0b246afa 9881 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9882 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9883 u64 dev_offset;
56bec294 9884
ba1bf481
JB
9885 /*
9886 * check to make sure we can actually find a chunk with enough
9887 * space to fit our block group in.
9888 */
63a212ab 9889 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9890 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9891 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9892 &dev_offset, NULL);
ba1bf481 9893 if (!ret)
cdcb725c 9894 dev_nr++;
9895
9896 if (dev_nr >= dev_min)
73e48b27 9897 break;
cdcb725c 9898
ba1bf481 9899 ret = -1;
725c8463 9900 }
edbd8d4e 9901 }
0305bc27 9902 if (debug && ret == -1)
0b246afa
JM
9903 btrfs_warn(fs_info,
9904 "no space to allocate a new chunk for block group %llu",
9905 block_group->key.objectid);
9906 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9907 btrfs_end_transaction(trans);
edbd8d4e 9908out:
ba1bf481 9909 btrfs_put_block_group(block_group);
edbd8d4e
CM
9910 return ret;
9911}
9912
6bccf3ab
JM
9913static int find_first_block_group(struct btrfs_fs_info *fs_info,
9914 struct btrfs_path *path,
9915 struct btrfs_key *key)
0b86a832 9916{
6bccf3ab 9917 struct btrfs_root *root = fs_info->extent_root;
925baedd 9918 int ret = 0;
0b86a832
CM
9919 struct btrfs_key found_key;
9920 struct extent_buffer *leaf;
514c7dca
QW
9921 struct btrfs_block_group_item bg;
9922 u64 flags;
0b86a832 9923 int slot;
edbd8d4e 9924
0b86a832
CM
9925 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9926 if (ret < 0)
925baedd
CM
9927 goto out;
9928
d397712b 9929 while (1) {
0b86a832 9930 slot = path->slots[0];
edbd8d4e 9931 leaf = path->nodes[0];
0b86a832
CM
9932 if (slot >= btrfs_header_nritems(leaf)) {
9933 ret = btrfs_next_leaf(root, path);
9934 if (ret == 0)
9935 continue;
9936 if (ret < 0)
925baedd 9937 goto out;
0b86a832 9938 break;
edbd8d4e 9939 }
0b86a832 9940 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9941
0b86a832 9942 if (found_key.objectid >= key->objectid &&
925baedd 9943 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9944 struct extent_map_tree *em_tree;
9945 struct extent_map *em;
9946
9947 em_tree = &root->fs_info->mapping_tree.map_tree;
9948 read_lock(&em_tree->lock);
9949 em = lookup_extent_mapping(em_tree, found_key.objectid,
9950 found_key.offset);
9951 read_unlock(&em_tree->lock);
9952 if (!em) {
0b246afa 9953 btrfs_err(fs_info,
6fb37b75
LB
9954 "logical %llu len %llu found bg but no related chunk",
9955 found_key.objectid, found_key.offset);
9956 ret = -ENOENT;
514c7dca
QW
9957 } else if (em->start != found_key.objectid ||
9958 em->len != found_key.offset) {
9959 btrfs_err(fs_info,
9960 "block group %llu len %llu mismatch with chunk %llu len %llu",
9961 found_key.objectid, found_key.offset,
9962 em->start, em->len);
9963 ret = -EUCLEAN;
6fb37b75 9964 } else {
514c7dca
QW
9965 read_extent_buffer(leaf, &bg,
9966 btrfs_item_ptr_offset(leaf, slot),
9967 sizeof(bg));
9968 flags = btrfs_block_group_flags(&bg) &
9969 BTRFS_BLOCK_GROUP_TYPE_MASK;
9970
9971 if (flags != (em->map_lookup->type &
9972 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9973 btrfs_err(fs_info,
9974"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9975 found_key.objectid,
9976 found_key.offset, flags,
9977 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9978 em->map_lookup->type));
9979 ret = -EUCLEAN;
9980 } else {
9981 ret = 0;
9982 }
6fb37b75 9983 }
187ee58c 9984 free_extent_map(em);
925baedd
CM
9985 goto out;
9986 }
0b86a832 9987 path->slots[0]++;
edbd8d4e 9988 }
925baedd 9989out:
0b86a832 9990 return ret;
edbd8d4e
CM
9991}
9992
0af3d00b
JB
9993void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9994{
9995 struct btrfs_block_group_cache *block_group;
9996 u64 last = 0;
9997
9998 while (1) {
9999 struct inode *inode;
10000
10001 block_group = btrfs_lookup_first_block_group(info, last);
10002 while (block_group) {
3aa7c7a3 10003 wait_block_group_cache_done(block_group);
0af3d00b
JB
10004 spin_lock(&block_group->lock);
10005 if (block_group->iref)
10006 break;
10007 spin_unlock(&block_group->lock);
2ff7e61e 10008 block_group = next_block_group(info, block_group);
0af3d00b
JB
10009 }
10010 if (!block_group) {
10011 if (last == 0)
10012 break;
10013 last = 0;
10014 continue;
10015 }
10016
10017 inode = block_group->inode;
10018 block_group->iref = 0;
10019 block_group->inode = NULL;
10020 spin_unlock(&block_group->lock);
f3bca802 10021 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
10022 iput(inode);
10023 last = block_group->key.objectid + block_group->key.offset;
10024 btrfs_put_block_group(block_group);
10025 }
10026}
10027
5cdd7db6
FM
10028/*
10029 * Must be called only after stopping all workers, since we could have block
10030 * group caching kthreads running, and therefore they could race with us if we
10031 * freed the block groups before stopping them.
10032 */
1a40e23b
ZY
10033int btrfs_free_block_groups(struct btrfs_fs_info *info)
10034{
10035 struct btrfs_block_group_cache *block_group;
4184ea7f 10036 struct btrfs_space_info *space_info;
11833d66 10037 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
10038 struct rb_node *n;
10039
9e351cc8 10040 down_write(&info->commit_root_sem);
11833d66
YZ
10041 while (!list_empty(&info->caching_block_groups)) {
10042 caching_ctl = list_entry(info->caching_block_groups.next,
10043 struct btrfs_caching_control, list);
10044 list_del(&caching_ctl->list);
10045 put_caching_control(caching_ctl);
10046 }
9e351cc8 10047 up_write(&info->commit_root_sem);
11833d66 10048
47ab2a6c
JB
10049 spin_lock(&info->unused_bgs_lock);
10050 while (!list_empty(&info->unused_bgs)) {
10051 block_group = list_first_entry(&info->unused_bgs,
10052 struct btrfs_block_group_cache,
10053 bg_list);
10054 list_del_init(&block_group->bg_list);
10055 btrfs_put_block_group(block_group);
10056 }
10057 spin_unlock(&info->unused_bgs_lock);
10058
1a40e23b
ZY
10059 spin_lock(&info->block_group_cache_lock);
10060 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
10061 block_group = rb_entry(n, struct btrfs_block_group_cache,
10062 cache_node);
1a40e23b
ZY
10063 rb_erase(&block_group->cache_node,
10064 &info->block_group_cache_tree);
01eacb27 10065 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
10066 spin_unlock(&info->block_group_cache_lock);
10067
80eb234a 10068 down_write(&block_group->space_info->groups_sem);
1a40e23b 10069 list_del(&block_group->list);
80eb234a 10070 up_write(&block_group->space_info->groups_sem);
d2fb3437 10071
3c14874a
JB
10072 /*
10073 * We haven't cached this block group, which means we could
10074 * possibly have excluded extents on this block group.
10075 */
36cce922
JB
10076 if (block_group->cached == BTRFS_CACHE_NO ||
10077 block_group->cached == BTRFS_CACHE_ERROR)
9e715da8 10078 free_excluded_extents(block_group);
3c14874a 10079
817d52f8 10080 btrfs_remove_free_space_cache(block_group);
5cdd7db6 10081 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
10082 ASSERT(list_empty(&block_group->dirty_list));
10083 ASSERT(list_empty(&block_group->io_list));
10084 ASSERT(list_empty(&block_group->bg_list));
10085 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 10086 btrfs_put_block_group(block_group);
d899e052
YZ
10087
10088 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
10089 }
10090 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
10091
10092 /* now that all the block groups are freed, go through and
10093 * free all the space_info structs. This is only called during
10094 * the final stages of unmount, and so we know nobody is
10095 * using them. We call synchronize_rcu() once before we start,
10096 * just to be on the safe side.
10097 */
10098 synchronize_rcu();
10099
8929ecfa
YZ
10100 release_global_block_rsv(info);
10101
67871254 10102 while (!list_empty(&info->space_info)) {
6ab0a202
JM
10103 int i;
10104
4184ea7f
CM
10105 space_info = list_entry(info->space_info.next,
10106 struct btrfs_space_info,
10107 list);
d555b6c3
JB
10108
10109 /*
10110 * Do not hide this behind enospc_debug, this is actually
10111 * important and indicates a real bug if this happens.
10112 */
10113 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 10114 space_info->bytes_reserved > 0 ||
d555b6c3 10115 space_info->bytes_may_use > 0))
ab8d0fc4 10116 dump_space_info(info, space_info, 0, 0);
4184ea7f 10117 list_del(&space_info->list);
6ab0a202
JM
10118 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10119 struct kobject *kobj;
c1895442
JM
10120 kobj = space_info->block_group_kobjs[i];
10121 space_info->block_group_kobjs[i] = NULL;
10122 if (kobj) {
6ab0a202
JM
10123 kobject_del(kobj);
10124 kobject_put(kobj);
10125 }
10126 }
10127 kobject_del(&space_info->kobj);
10128 kobject_put(&space_info->kobj);
4184ea7f 10129 }
1a40e23b
ZY
10130 return 0;
10131}
10132
75cb379d
JM
10133/* link_block_group will queue up kobjects to add when we're reclaim-safe */
10134void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
10135{
10136 struct btrfs_space_info *space_info;
10137 struct raid_kobject *rkobj;
10138 LIST_HEAD(list);
10139 int index;
10140 int ret = 0;
10141
10142 spin_lock(&fs_info->pending_raid_kobjs_lock);
10143 list_splice_init(&fs_info->pending_raid_kobjs, &list);
10144 spin_unlock(&fs_info->pending_raid_kobjs_lock);
10145
10146 list_for_each_entry(rkobj, &list, list) {
10147 space_info = __find_space_info(fs_info, rkobj->flags);
10148 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
10149
10150 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10151 "%s", get_raid_name(index));
10152 if (ret) {
10153 kobject_put(&rkobj->kobj);
10154 break;
10155 }
10156 }
10157 if (ret)
10158 btrfs_warn(fs_info,
10159 "failed to add kobject for block cache, ignoring");
10160}
10161
c434d21c 10162static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 10163{
c434d21c 10164 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 10165 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 10166 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 10167 bool first = false;
b742bb82
YZ
10168
10169 down_write(&space_info->groups_sem);
ed55b6ac
JM
10170 if (list_empty(&space_info->block_groups[index]))
10171 first = true;
10172 list_add_tail(&cache->list, &space_info->block_groups[index]);
10173 up_write(&space_info->groups_sem);
10174
10175 if (first) {
75cb379d
JM
10176 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10177 if (!rkobj) {
10178 btrfs_warn(cache->fs_info,
10179 "couldn't alloc memory for raid level kobject");
10180 return;
6ab0a202 10181 }
75cb379d
JM
10182 rkobj->flags = cache->flags;
10183 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10184
10185 spin_lock(&fs_info->pending_raid_kobjs_lock);
10186 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10187 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 10188 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 10189 }
b742bb82
YZ
10190}
10191
920e4a58 10192static struct btrfs_block_group_cache *
2ff7e61e
JM
10193btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10194 u64 start, u64 size)
920e4a58
MX
10195{
10196 struct btrfs_block_group_cache *cache;
10197
10198 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10199 if (!cache)
10200 return NULL;
10201
10202 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10203 GFP_NOFS);
10204 if (!cache->free_space_ctl) {
10205 kfree(cache);
10206 return NULL;
10207 }
10208
10209 cache->key.objectid = start;
10210 cache->key.offset = size;
10211 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10212
0b246afa 10213 cache->fs_info = fs_info;
e4ff5fb5 10214 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
10215 set_free_space_tree_thresholds(cache);
10216
920e4a58
MX
10217 atomic_set(&cache->count, 1);
10218 spin_lock_init(&cache->lock);
e570fd27 10219 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10220 INIT_LIST_HEAD(&cache->list);
10221 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10222 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10223 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10224 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10225 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10226 btrfs_init_free_space_ctl(cache);
04216820 10227 atomic_set(&cache->trimming, 0);
a5ed9182 10228 mutex_init(&cache->free_space_lock);
0966a7b1 10229 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
10230
10231 return cache;
10232}
10233
7ef49515
QW
10234
10235/*
10236 * Iterate all chunks and verify that each of them has the corresponding block
10237 * group
10238 */
10239static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10240{
10241 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
10242 struct extent_map *em;
10243 struct btrfs_block_group_cache *bg;
10244 u64 start = 0;
10245 int ret = 0;
10246
10247 while (1) {
10248 read_lock(&map_tree->map_tree.lock);
10249 /*
10250 * lookup_extent_mapping will return the first extent map
10251 * intersecting the range, so setting @len to 1 is enough to
10252 * get the first chunk.
10253 */
10254 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10255 read_unlock(&map_tree->map_tree.lock);
10256 if (!em)
10257 break;
10258
10259 bg = btrfs_lookup_block_group(fs_info, em->start);
10260 if (!bg) {
10261 btrfs_err(fs_info,
10262 "chunk start=%llu len=%llu doesn't have corresponding block group",
10263 em->start, em->len);
10264 ret = -EUCLEAN;
10265 free_extent_map(em);
10266 break;
10267 }
10268 if (bg->key.objectid != em->start ||
10269 bg->key.offset != em->len ||
10270 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10271 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10272 btrfs_err(fs_info,
10273"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10274 em->start, em->len,
10275 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10276 bg->key.objectid, bg->key.offset,
10277 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10278 ret = -EUCLEAN;
10279 free_extent_map(em);
10280 btrfs_put_block_group(bg);
10281 break;
10282 }
10283 start = em->start + em->len;
10284 free_extent_map(em);
10285 btrfs_put_block_group(bg);
10286 }
10287 return ret;
10288}
10289
5b4aacef 10290int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10291{
10292 struct btrfs_path *path;
10293 int ret;
9078a3e1 10294 struct btrfs_block_group_cache *cache;
6324fbf3 10295 struct btrfs_space_info *space_info;
9078a3e1
CM
10296 struct btrfs_key key;
10297 struct btrfs_key found_key;
5f39d397 10298 struct extent_buffer *leaf;
0af3d00b
JB
10299 int need_clear = 0;
10300 u64 cache_gen;
49303381
LB
10301 u64 feature;
10302 int mixed;
10303
10304 feature = btrfs_super_incompat_flags(info->super_copy);
10305 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10306
9078a3e1 10307 key.objectid = 0;
0b86a832 10308 key.offset = 0;
962a298f 10309 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10310 path = btrfs_alloc_path();
10311 if (!path)
10312 return -ENOMEM;
e4058b54 10313 path->reada = READA_FORWARD;
9078a3e1 10314
0b246afa
JM
10315 cache_gen = btrfs_super_cache_generation(info->super_copy);
10316 if (btrfs_test_opt(info, SPACE_CACHE) &&
10317 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10318 need_clear = 1;
0b246afa 10319 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10320 need_clear = 1;
0af3d00b 10321
d397712b 10322 while (1) {
6bccf3ab 10323 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10324 if (ret > 0)
10325 break;
0b86a832
CM
10326 if (ret != 0)
10327 goto error;
920e4a58 10328
5f39d397
CM
10329 leaf = path->nodes[0];
10330 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10331
2ff7e61e 10332 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10333 found_key.offset);
9078a3e1 10334 if (!cache) {
0b86a832 10335 ret = -ENOMEM;
f0486c68 10336 goto error;
9078a3e1 10337 }
96303081 10338
cf7c1ef6
LB
10339 if (need_clear) {
10340 /*
10341 * When we mount with old space cache, we need to
10342 * set BTRFS_DC_CLEAR and set dirty flag.
10343 *
10344 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10345 * truncate the old free space cache inode and
10346 * setup a new one.
10347 * b) Setting 'dirty flag' makes sure that we flush
10348 * the new space cache info onto disk.
10349 */
0b246afa 10350 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10351 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10352 }
0af3d00b 10353
5f39d397
CM
10354 read_extent_buffer(leaf, &cache->item,
10355 btrfs_item_ptr_offset(leaf, path->slots[0]),
10356 sizeof(cache->item));
920e4a58 10357 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10358 if (!mixed &&
10359 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10360 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10361 btrfs_err(info,
10362"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10363 cache->key.objectid);
10364 ret = -EINVAL;
10365 goto error;
10366 }
0b86a832 10367
9078a3e1 10368 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10369 btrfs_release_path(path);
34d52cb6 10370
3c14874a
JB
10371 /*
10372 * We need to exclude the super stripes now so that the space
10373 * info has super bytes accounted for, otherwise we'll think
10374 * we have more space than we actually do.
10375 */
3c4da657 10376 ret = exclude_super_stripes(cache);
835d974f
JB
10377 if (ret) {
10378 /*
10379 * We may have excluded something, so call this just in
10380 * case.
10381 */
9e715da8 10382 free_excluded_extents(cache);
920e4a58 10383 btrfs_put_block_group(cache);
835d974f
JB
10384 goto error;
10385 }
3c14874a 10386
817d52f8
JB
10387 /*
10388 * check for two cases, either we are full, and therefore
10389 * don't need to bother with the caching work since we won't
10390 * find any space, or we are empty, and we can just add all
52042d8e 10391 * the space in and be done with it. This saves us _a_lot_ of
817d52f8
JB
10392 * time, particularly in the full case.
10393 */
10394 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10395 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10396 cache->cached = BTRFS_CACHE_FINISHED;
9e715da8 10397 free_excluded_extents(cache);
817d52f8 10398 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10399 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10400 cache->cached = BTRFS_CACHE_FINISHED;
4457c1c7 10401 add_new_free_space(cache, found_key.objectid,
817d52f8
JB
10402 found_key.objectid +
10403 found_key.offset);
9e715da8 10404 free_excluded_extents(cache);
817d52f8 10405 }
96b5179d 10406
0b246afa 10407 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10408 if (ret) {
10409 btrfs_remove_free_space_cache(cache);
10410 btrfs_put_block_group(cache);
10411 goto error;
10412 }
10413
0b246afa 10414 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10415 update_space_info(info, cache->flags, found_key.offset,
10416 btrfs_block_group_used(&cache->item),
10417 cache->bytes_super, &space_info);
8c579fe7 10418
6324fbf3 10419 cache->space_info = space_info;
1b2da372 10420
c434d21c 10421 link_block_group(cache);
0f9dd46c 10422
0b246afa 10423 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10424 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10425 inc_block_group_ro(cache, 1);
47ab2a6c 10426 } else if (btrfs_block_group_used(&cache->item) == 0) {
031f24da
QW
10427 ASSERT(list_empty(&cache->bg_list));
10428 btrfs_mark_bg_unused(cache);
47ab2a6c 10429 }
9078a3e1 10430 }
b742bb82 10431
0b246afa 10432 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10433 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10434 (BTRFS_BLOCK_GROUP_RAID10 |
10435 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10436 BTRFS_BLOCK_GROUP_RAID5 |
10437 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10438 BTRFS_BLOCK_GROUP_DUP)))
10439 continue;
10440 /*
10441 * avoid allocating from un-mirrored block group if there are
10442 * mirrored block groups.
10443 */
1095cc0d 10444 list_for_each_entry(cache,
10445 &space_info->block_groups[BTRFS_RAID_RAID0],
10446 list)
868f401a 10447 inc_block_group_ro(cache, 1);
1095cc0d 10448 list_for_each_entry(cache,
10449 &space_info->block_groups[BTRFS_RAID_SINGLE],
10450 list)
868f401a 10451 inc_block_group_ro(cache, 1);
9078a3e1 10452 }
f0486c68 10453
75cb379d 10454 btrfs_add_raid_kobjects(info);
f0486c68 10455 init_global_block_rsv(info);
7ef49515 10456 ret = check_chunk_block_group_mappings(info);
0b86a832 10457error:
9078a3e1 10458 btrfs_free_path(path);
0b86a832 10459 return ret;
9078a3e1 10460}
6324fbf3 10461
6c686b35 10462void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10463{
6c686b35 10464 struct btrfs_fs_info *fs_info = trans->fs_info;
545e3366 10465 struct btrfs_block_group_cache *block_group;
0b246afa 10466 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10467 struct btrfs_block_group_item item;
10468 struct btrfs_key key;
10469 int ret = 0;
10470
5ce55557
FM
10471 if (!trans->can_flush_pending_bgs)
10472 return;
10473
545e3366
JB
10474 while (!list_empty(&trans->new_bgs)) {
10475 block_group = list_first_entry(&trans->new_bgs,
10476 struct btrfs_block_group_cache,
10477 bg_list);
ea658bad 10478 if (ret)
c92f6be3 10479 goto next;
ea658bad
JB
10480
10481 spin_lock(&block_group->lock);
10482 memcpy(&item, &block_group->item, sizeof(item));
10483 memcpy(&key, &block_group->key, sizeof(key));
10484 spin_unlock(&block_group->lock);
10485
10486 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10487 sizeof(item));
10488 if (ret)
66642832 10489 btrfs_abort_transaction(trans, ret);
97aff912 10490 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
6df9a95e 10491 if (ret)
66642832 10492 btrfs_abort_transaction(trans, ret);
e4e0711c 10493 add_block_group_free_space(trans, block_group);
1e144fb8 10494 /* already aborted the transaction if it failed. */
c92f6be3 10495next:
ba2c4d4e 10496 btrfs_delayed_refs_rsv_release(fs_info, 1);
c92f6be3 10497 list_del_init(&block_group->bg_list);
ea658bad 10498 }
5ce55557 10499 btrfs_trans_release_chunk_metadata(trans);
ea658bad
JB
10500}
10501
e7e02096 10502int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
0174484d 10503 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10504{
e7e02096 10505 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 10506 struct btrfs_block_group_cache *cache;
0b246afa 10507 int ret;
6324fbf3 10508
0b246afa 10509 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10510
2ff7e61e 10511 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10512 if (!cache)
10513 return -ENOMEM;
34d52cb6 10514
6324fbf3 10515 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10516 btrfs_set_block_group_chunk_objectid(&cache->item,
10517 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10518 btrfs_set_block_group_flags(&cache->item, type);
10519
920e4a58 10520 cache->flags = type;
11833d66 10521 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10522 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10523 cache->needs_free_space = 1;
3c4da657 10524 ret = exclude_super_stripes(cache);
835d974f
JB
10525 if (ret) {
10526 /*
10527 * We may have excluded something, so call this just in
10528 * case.
10529 */
9e715da8 10530 free_excluded_extents(cache);
920e4a58 10531 btrfs_put_block_group(cache);
835d974f
JB
10532 return ret;
10533 }
96303081 10534
4457c1c7 10535 add_new_free_space(cache, chunk_offset, chunk_offset + size);
817d52f8 10536
9e715da8 10537 free_excluded_extents(cache);
11833d66 10538
d0bd4560 10539#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10540 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10541 u64 new_bytes_used = size - bytes_used;
10542
10543 bytes_used += new_bytes_used >> 1;
2ff7e61e 10544 fragment_free_space(cache);
d0bd4560
JB
10545 }
10546#endif
2e6e5183 10547 /*
2be12ef7
NB
10548 * Ensure the corresponding space_info object is created and
10549 * assigned to our block group. We want our bg to be added to the rbtree
10550 * with its ->space_info set.
2e6e5183 10551 */
2be12ef7 10552 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10553 ASSERT(cache->space_info);
2e6e5183 10554
0b246afa 10555 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10556 if (ret) {
10557 btrfs_remove_free_space_cache(cache);
10558 btrfs_put_block_group(cache);
10559 return ret;
10560 }
10561
2e6e5183
FM
10562 /*
10563 * Now that our block group has its ->space_info set and is inserted in
10564 * the rbtree, update the space info's counters.
10565 */
0b246afa 10566 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10567 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10568 cache->bytes_super, &cache->space_info);
0b246afa 10569 update_global_block_rsv(fs_info);
1b2da372 10570
c434d21c 10571 link_block_group(cache);
6324fbf3 10572
47ab2a6c 10573 list_add_tail(&cache->bg_list, &trans->new_bgs);
ba2c4d4e
JB
10574 trans->delayed_ref_updates++;
10575 btrfs_update_delayed_refs_rsv(trans);
6324fbf3 10576
0b246afa 10577 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10578 return 0;
10579}
1a40e23b 10580
10ea00f5
ID
10581static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10582{
899c81ea
ID
10583 u64 extra_flags = chunk_to_extended(flags) &
10584 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10585
de98ced9 10586 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10587 if (flags & BTRFS_BLOCK_GROUP_DATA)
10588 fs_info->avail_data_alloc_bits &= ~extra_flags;
10589 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10590 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10591 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10592 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10593 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10594}
10595
1a40e23b 10596int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
5a98ec01 10597 u64 group_start, struct extent_map *em)
1a40e23b 10598{
5a98ec01 10599 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 10600 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10601 struct btrfs_path *path;
10602 struct btrfs_block_group_cache *block_group;
44fb5511 10603 struct btrfs_free_cluster *cluster;
0b246afa 10604 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10605 struct btrfs_key key;
0af3d00b 10606 struct inode *inode;
c1895442 10607 struct kobject *kobj = NULL;
1a40e23b 10608 int ret;
10ea00f5 10609 int index;
89a55897 10610 int factor;
4f69cb98 10611 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10612 bool remove_em;
ba2c4d4e 10613 bool remove_rsv = false;
1a40e23b 10614
6bccf3ab 10615 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10616 BUG_ON(!block_group);
c146afad 10617 BUG_ON(!block_group->ro);
1a40e23b 10618
4ed0a7a3 10619 trace_btrfs_remove_block_group(block_group);
9f7c43c9 10620 /*
10621 * Free the reserved super bytes from this block group before
10622 * remove it.
10623 */
9e715da8 10624 free_excluded_extents(block_group);
fd708b81
JB
10625 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10626 block_group->key.offset);
9f7c43c9 10627
1a40e23b 10628 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10629 index = btrfs_bg_flags_to_raid_index(block_group->flags);
46df06b8 10630 factor = btrfs_bg_type_to_factor(block_group->flags);
1a40e23b 10631
44fb5511 10632 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10633 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10634 spin_lock(&cluster->refill_lock);
10635 btrfs_return_cluster_to_free_space(block_group, cluster);
10636 spin_unlock(&cluster->refill_lock);
10637
10638 /*
10639 * make sure this block group isn't part of a metadata
10640 * allocation cluster
10641 */
0b246afa 10642 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10643 spin_lock(&cluster->refill_lock);
10644 btrfs_return_cluster_to_free_space(block_group, cluster);
10645 spin_unlock(&cluster->refill_lock);
10646
1a40e23b 10647 path = btrfs_alloc_path();
d8926bb3
MF
10648 if (!path) {
10649 ret = -ENOMEM;
10650 goto out;
10651 }
1a40e23b 10652
1bbc621e
CM
10653 /*
10654 * get the inode first so any iput calls done for the io_list
10655 * aren't the final iput (no unlinks allowed now)
10656 */
77ab86bf 10657 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10658
10659 mutex_lock(&trans->transaction->cache_write_mutex);
10660 /*
52042d8e 10661 * Make sure our free space cache IO is done before removing the
1bbc621e
CM
10662 * free space inode
10663 */
10664 spin_lock(&trans->transaction->dirty_bgs_lock);
10665 if (!list_empty(&block_group->io_list)) {
10666 list_del_init(&block_group->io_list);
10667
10668 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10669
10670 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10671 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10672 btrfs_put_block_group(block_group);
10673 spin_lock(&trans->transaction->dirty_bgs_lock);
10674 }
10675
10676 if (!list_empty(&block_group->dirty_list)) {
10677 list_del_init(&block_group->dirty_list);
ba2c4d4e 10678 remove_rsv = true;
1bbc621e
CM
10679 btrfs_put_block_group(block_group);
10680 }
10681 spin_unlock(&trans->transaction->dirty_bgs_lock);
10682 mutex_unlock(&trans->transaction->cache_write_mutex);
10683
0af3d00b 10684 if (!IS_ERR(inode)) {
73f2e545 10685 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10686 if (ret) {
10687 btrfs_add_delayed_iput(inode);
10688 goto out;
10689 }
0af3d00b
JB
10690 clear_nlink(inode);
10691 /* One for the block groups ref */
10692 spin_lock(&block_group->lock);
10693 if (block_group->iref) {
10694 block_group->iref = 0;
10695 block_group->inode = NULL;
10696 spin_unlock(&block_group->lock);
10697 iput(inode);
10698 } else {
10699 spin_unlock(&block_group->lock);
10700 }
10701 /* One for our lookup ref */
455757c3 10702 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10703 }
10704
10705 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10706 key.offset = block_group->key.objectid;
10707 key.type = 0;
10708
10709 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10710 if (ret < 0)
10711 goto out;
10712 if (ret > 0)
b3b4aa74 10713 btrfs_release_path(path);
0af3d00b
JB
10714 if (ret == 0) {
10715 ret = btrfs_del_item(trans, tree_root, path);
10716 if (ret)
10717 goto out;
b3b4aa74 10718 btrfs_release_path(path);
0af3d00b
JB
10719 }
10720
0b246afa 10721 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10722 rb_erase(&block_group->cache_node,
0b246afa 10723 &fs_info->block_group_cache_tree);
292cbd51 10724 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10725
0b246afa
JM
10726 if (fs_info->first_logical_byte == block_group->key.objectid)
10727 fs_info->first_logical_byte = (u64)-1;
10728 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10729
80eb234a 10730 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10731 /*
10732 * we must use list_del_init so people can check to see if they
10733 * are still on the list after taking the semaphore
10734 */
10735 list_del_init(&block_group->list);
6ab0a202 10736 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10737 kobj = block_group->space_info->block_group_kobjs[index];
10738 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10739 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10740 }
80eb234a 10741 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10742 if (kobj) {
10743 kobject_del(kobj);
10744 kobject_put(kobj);
10745 }
1a40e23b 10746
4f69cb98
FM
10747 if (block_group->has_caching_ctl)
10748 caching_ctl = get_caching_control(block_group);
817d52f8 10749 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10750 wait_block_group_cache_done(block_group);
4f69cb98 10751 if (block_group->has_caching_ctl) {
0b246afa 10752 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10753 if (!caching_ctl) {
10754 struct btrfs_caching_control *ctl;
10755
10756 list_for_each_entry(ctl,
0b246afa 10757 &fs_info->caching_block_groups, list)
4f69cb98
FM
10758 if (ctl->block_group == block_group) {
10759 caching_ctl = ctl;
1e4f4714 10760 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10761 break;
10762 }
10763 }
10764 if (caching_ctl)
10765 list_del_init(&caching_ctl->list);
0b246afa 10766 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10767 if (caching_ctl) {
10768 /* Once for the caching bgs list and once for us. */
10769 put_caching_control(caching_ctl);
10770 put_caching_control(caching_ctl);
10771 }
10772 }
817d52f8 10773
ce93ec54
JB
10774 spin_lock(&trans->transaction->dirty_bgs_lock);
10775 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10776 WARN_ON(1);
10777 }
10778 if (!list_empty(&block_group->io_list)) {
10779 WARN_ON(1);
ce93ec54
JB
10780 }
10781 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10782 btrfs_remove_free_space_cache(block_group);
10783
c146afad 10784 spin_lock(&block_group->space_info->lock);
75c68e9f 10785 list_del_init(&block_group->ro_list);
18d018ad 10786
0b246afa 10787 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10788 WARN_ON(block_group->space_info->total_bytes
10789 < block_group->key.offset);
10790 WARN_ON(block_group->space_info->bytes_readonly
10791 < block_group->key.offset);
10792 WARN_ON(block_group->space_info->disk_total
10793 < block_group->key.offset * factor);
10794 }
c146afad
YZ
10795 block_group->space_info->total_bytes -= block_group->key.offset;
10796 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10797 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10798
c146afad 10799 spin_unlock(&block_group->space_info->lock);
283bb197 10800
0af3d00b
JB
10801 memcpy(&key, &block_group->key, sizeof(key));
10802
34441361 10803 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10804 if (!list_empty(&em->list)) {
10805 /* We're in the transaction->pending_chunks list. */
10806 free_extent_map(em);
10807 }
04216820
FM
10808 spin_lock(&block_group->lock);
10809 block_group->removed = 1;
10810 /*
10811 * At this point trimming can't start on this block group, because we
10812 * removed the block group from the tree fs_info->block_group_cache_tree
10813 * so no one can't find it anymore and even if someone already got this
10814 * block group before we removed it from the rbtree, they have already
10815 * incremented block_group->trimming - if they didn't, they won't find
10816 * any free space entries because we already removed them all when we
10817 * called btrfs_remove_free_space_cache().
10818 *
10819 * And we must not remove the extent map from the fs_info->mapping_tree
10820 * to prevent the same logical address range and physical device space
10821 * ranges from being reused for a new block group. This is because our
10822 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10823 * completely transactionless, so while it is trimming a range the
10824 * currently running transaction might finish and a new one start,
10825 * allowing for new block groups to be created that can reuse the same
10826 * physical device locations unless we take this special care.
e33e17ee
JM
10827 *
10828 * There may also be an implicit trim operation if the file system
10829 * is mounted with -odiscard. The same protections must remain
10830 * in place until the extents have been discarded completely when
10831 * the transaction commit has completed.
04216820
FM
10832 */
10833 remove_em = (atomic_read(&block_group->trimming) == 0);
10834 /*
10835 * Make sure a trimmer task always sees the em in the pinned_chunks list
10836 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10837 * before checking block_group->removed).
10838 */
10839 if (!remove_em) {
10840 /*
10841 * Our em might be in trans->transaction->pending_chunks which
10842 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10843 * and so is the fs_info->pinned_chunks list.
10844 *
10845 * So at this point we must be holding the chunk_mutex to avoid
10846 * any races with chunk allocation (more specifically at
10847 * volumes.c:contains_pending_extent()), to ensure it always
10848 * sees the em, either in the pending_chunks list or in the
10849 * pinned_chunks list.
10850 */
0b246afa 10851 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10852 }
10853 spin_unlock(&block_group->lock);
04216820
FM
10854
10855 if (remove_em) {
10856 struct extent_map_tree *em_tree;
10857
0b246afa 10858 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10859 write_lock(&em_tree->lock);
8dbcd10f
FM
10860 /*
10861 * The em might be in the pending_chunks list, so make sure the
10862 * chunk mutex is locked, since remove_extent_mapping() will
10863 * delete us from that list.
10864 */
04216820
FM
10865 remove_extent_mapping(em_tree, em);
10866 write_unlock(&em_tree->lock);
10867 /* once for the tree */
10868 free_extent_map(em);
10869 }
10870
34441361 10871 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10872
f3f72779 10873 ret = remove_block_group_free_space(trans, block_group);
1e144fb8
OS
10874 if (ret)
10875 goto out;
10876
fa9c0d79
CM
10877 btrfs_put_block_group(block_group);
10878 btrfs_put_block_group(block_group);
1a40e23b
ZY
10879
10880 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10881 if (ret > 0)
10882 ret = -EIO;
10883 if (ret < 0)
10884 goto out;
10885
10886 ret = btrfs_del_item(trans, root, path);
10887out:
ba2c4d4e
JB
10888 if (remove_rsv)
10889 btrfs_delayed_refs_rsv_release(fs_info, 1);
1a40e23b
ZY
10890 btrfs_free_path(path);
10891 return ret;
10892}
acce952b 10893
8eab77ff 10894struct btrfs_trans_handle *
7fd01182
FM
10895btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10896 const u64 chunk_offset)
8eab77ff 10897{
7fd01182
FM
10898 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10899 struct extent_map *em;
10900 struct map_lookup *map;
10901 unsigned int num_items;
10902
10903 read_lock(&em_tree->lock);
10904 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10905 read_unlock(&em_tree->lock);
10906 ASSERT(em && em->start == chunk_offset);
10907
8eab77ff 10908 /*
7fd01182
FM
10909 * We need to reserve 3 + N units from the metadata space info in order
10910 * to remove a block group (done at btrfs_remove_chunk() and at
10911 * btrfs_remove_block_group()), which are used for:
10912 *
8eab77ff
FM
10913 * 1 unit for adding the free space inode's orphan (located in the tree
10914 * of tree roots).
7fd01182
FM
10915 * 1 unit for deleting the block group item (located in the extent
10916 * tree).
10917 * 1 unit for deleting the free space item (located in tree of tree
10918 * roots).
10919 * N units for deleting N device extent items corresponding to each
10920 * stripe (located in the device tree).
10921 *
10922 * In order to remove a block group we also need to reserve units in the
10923 * system space info in order to update the chunk tree (update one or
10924 * more device items and remove one chunk item), but this is done at
10925 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10926 */
95617d69 10927 map = em->map_lookup;
7fd01182
FM
10928 num_items = 3 + map->num_stripes;
10929 free_extent_map(em);
10930
8eab77ff 10931 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10932 num_items, 1);
8eab77ff
FM
10933}
10934
47ab2a6c
JB
10935/*
10936 * Process the unused_bgs list and remove any that don't have any allocated
10937 * space inside of them.
10938 */
10939void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10940{
10941 struct btrfs_block_group_cache *block_group;
10942 struct btrfs_space_info *space_info;
47ab2a6c
JB
10943 struct btrfs_trans_handle *trans;
10944 int ret = 0;
10945
afcdd129 10946 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10947 return;
10948
10949 spin_lock(&fs_info->unused_bgs_lock);
10950 while (!list_empty(&fs_info->unused_bgs)) {
10951 u64 start, end;
e33e17ee 10952 int trimming;
47ab2a6c
JB
10953
10954 block_group = list_first_entry(&fs_info->unused_bgs,
10955 struct btrfs_block_group_cache,
10956 bg_list);
47ab2a6c 10957 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10958
10959 space_info = block_group->space_info;
10960
47ab2a6c
JB
10961 if (ret || btrfs_mixed_space_info(space_info)) {
10962 btrfs_put_block_group(block_group);
10963 continue;
10964 }
10965 spin_unlock(&fs_info->unused_bgs_lock);
10966
d5f2e33b 10967 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10968
47ab2a6c
JB
10969 /* Don't want to race with allocators so take the groups_sem */
10970 down_write(&space_info->groups_sem);
10971 spin_lock(&block_group->lock);
43794446 10972 if (block_group->reserved || block_group->pinned ||
47ab2a6c 10973 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10974 block_group->ro ||
aefbe9a6 10975 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10976 /*
10977 * We want to bail if we made new allocations or have
10978 * outstanding allocations in this block group. We do
10979 * the ro check in case balance is currently acting on
10980 * this block group.
10981 */
4ed0a7a3 10982 trace_btrfs_skip_unused_block_group(block_group);
47ab2a6c
JB
10983 spin_unlock(&block_group->lock);
10984 up_write(&space_info->groups_sem);
10985 goto next;
10986 }
10987 spin_unlock(&block_group->lock);
10988
10989 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10990 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10991 up_write(&space_info->groups_sem);
10992 if (ret < 0) {
10993 ret = 0;
10994 goto next;
10995 }
10996
10997 /*
10998 * Want to do this before we do anything else so we can recover
10999 * properly if we fail to join the transaction.
11000 */
7fd01182
FM
11001 trans = btrfs_start_trans_remove_block_group(fs_info,
11002 block_group->key.objectid);
47ab2a6c 11003 if (IS_ERR(trans)) {
2ff7e61e 11004 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
11005 ret = PTR_ERR(trans);
11006 goto next;
11007 }
11008
11009 /*
11010 * We could have pending pinned extents for this block group,
11011 * just delete them, we don't care about them anymore.
11012 */
11013 start = block_group->key.objectid;
11014 end = start + block_group->key.offset - 1;
d4b450cd
FM
11015 /*
11016 * Hold the unused_bg_unpin_mutex lock to avoid racing with
11017 * btrfs_finish_extent_commit(). If we are at transaction N,
11018 * another task might be running finish_extent_commit() for the
11019 * previous transaction N - 1, and have seen a range belonging
11020 * to the block group in freed_extents[] before we were able to
11021 * clear the whole block group range from freed_extents[]. This
11022 * means that task can lookup for the block group after we
11023 * unpinned it from freed_extents[] and removed it, leading to
11024 * a BUG_ON() at btrfs_unpin_extent_range().
11025 */
11026 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 11027 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 11028 EXTENT_DIRTY);
758eb51e 11029 if (ret) {
d4b450cd 11030 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 11031 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
11032 goto end_trans;
11033 }
11034 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 11035 EXTENT_DIRTY);
758eb51e 11036 if (ret) {
d4b450cd 11037 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 11038 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
11039 goto end_trans;
11040 }
d4b450cd 11041 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
11042
11043 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
11044 spin_lock(&space_info->lock);
11045 spin_lock(&block_group->lock);
11046
e2907c1a 11047 update_bytes_pinned(space_info, -block_group->pinned);
c30666d4 11048 space_info->bytes_readonly += block_group->pinned;
dec59fa3
EL
11049 percpu_counter_add_batch(&space_info->total_bytes_pinned,
11050 -block_group->pinned,
11051 BTRFS_TOTAL_BYTES_PINNED_BATCH);
47ab2a6c
JB
11052 block_group->pinned = 0;
11053
c30666d4
ZL
11054 spin_unlock(&block_group->lock);
11055 spin_unlock(&space_info->lock);
11056
e33e17ee 11057 /* DISCARD can flip during remount */
0b246afa 11058 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
11059
11060 /* Implicit trim during transaction commit. */
11061 if (trimming)
11062 btrfs_get_block_group_trimming(block_group);
11063
47ab2a6c
JB
11064 /*
11065 * Btrfs_remove_chunk will abort the transaction if things go
11066 * horribly wrong.
11067 */
97aff912 11068 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
e33e17ee
JM
11069
11070 if (ret) {
11071 if (trimming)
11072 btrfs_put_block_group_trimming(block_group);
11073 goto end_trans;
11074 }
11075
11076 /*
11077 * If we're not mounted with -odiscard, we can just forget
11078 * about this block group. Otherwise we'll need to wait
11079 * until transaction commit to do the actual discard.
11080 */
11081 if (trimming) {
348a0013
FM
11082 spin_lock(&fs_info->unused_bgs_lock);
11083 /*
11084 * A concurrent scrub might have added us to the list
11085 * fs_info->unused_bgs, so use a list_move operation
11086 * to add the block group to the deleted_bgs list.
11087 */
e33e17ee
JM
11088 list_move(&block_group->bg_list,
11089 &trans->transaction->deleted_bgs);
348a0013 11090 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
11091 btrfs_get_block_group(block_group);
11092 }
758eb51e 11093end_trans:
3a45bb20 11094 btrfs_end_transaction(trans);
47ab2a6c 11095next:
d5f2e33b 11096 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
11097 btrfs_put_block_group(block_group);
11098 spin_lock(&fs_info->unused_bgs_lock);
11099 }
11100 spin_unlock(&fs_info->unused_bgs_lock);
11101}
11102
c59021f8 11103int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
11104{
1aba86d6 11105 struct btrfs_super_block *disk_super;
11106 u64 features;
11107 u64 flags;
11108 int mixed = 0;
c59021f8 11109 int ret;
11110
6c41761f 11111 disk_super = fs_info->super_copy;
1aba86d6 11112 if (!btrfs_super_root(disk_super))
0dc924c5 11113 return -EINVAL;
c59021f8 11114
1aba86d6 11115 features = btrfs_super_incompat_flags(disk_super);
11116 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11117 mixed = 1;
c59021f8 11118
1aba86d6 11119 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4ca61683 11120 ret = create_space_info(fs_info, flags);
c59021f8 11121 if (ret)
1aba86d6 11122 goto out;
c59021f8 11123
1aba86d6 11124 if (mixed) {
11125 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
4ca61683 11126 ret = create_space_info(fs_info, flags);
1aba86d6 11127 } else {
11128 flags = BTRFS_BLOCK_GROUP_METADATA;
4ca61683 11129 ret = create_space_info(fs_info, flags);
1aba86d6 11130 if (ret)
11131 goto out;
11132
11133 flags = BTRFS_BLOCK_GROUP_DATA;
4ca61683 11134 ret = create_space_info(fs_info, flags);
1aba86d6 11135 }
11136out:
c59021f8 11137 return ret;
11138}
11139
2ff7e61e
JM
11140int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
11141 u64 start, u64 end)
acce952b 11142{
2ff7e61e 11143 return unpin_extent_range(fs_info, start, end, false);
acce952b 11144}
11145
499f377f
JM
11146/*
11147 * It used to be that old block groups would be left around forever.
11148 * Iterating over them would be enough to trim unused space. Since we
11149 * now automatically remove them, we also need to iterate over unallocated
11150 * space.
11151 *
11152 * We don't want a transaction for this since the discard may take a
11153 * substantial amount of time. We don't require that a transaction be
11154 * running, but we do need to take a running transaction into account
fee7acc3
JM
11155 * to ensure that we're not discarding chunks that were released or
11156 * allocated in the current transaction.
499f377f
JM
11157 *
11158 * Holding the chunks lock will prevent other threads from allocating
11159 * or releasing chunks, but it won't prevent a running transaction
11160 * from committing and releasing the memory that the pending chunks
11161 * list head uses. For that, we need to take a reference to the
fee7acc3
JM
11162 * transaction and hold the commit root sem. We only need to hold
11163 * it while performing the free space search since we have already
11164 * held back allocations.
499f377f
JM
11165 */
11166static int btrfs_trim_free_extents(struct btrfs_device *device,
11167 u64 minlen, u64 *trimmed)
11168{
11169 u64 start = 0, len = 0;
11170 int ret;
11171
11172 *trimmed = 0;
11173
0be88e36
JM
11174 /* Discard not supported = nothing to do. */
11175 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
11176 return 0;
11177
52042d8e 11178 /* Not writable = nothing to do. */
ebbede42 11179 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
11180 return 0;
11181
11182 /* No free space = nothing to do. */
11183 if (device->total_bytes <= device->bytes_used)
11184 return 0;
11185
11186 ret = 0;
11187
11188 while (1) {
fb456252 11189 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
11190 struct btrfs_transaction *trans;
11191 u64 bytes;
11192
11193 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11194 if (ret)
fee7acc3 11195 break;
499f377f 11196
fee7acc3
JM
11197 ret = down_read_killable(&fs_info->commit_root_sem);
11198 if (ret) {
11199 mutex_unlock(&fs_info->chunk_mutex);
11200 break;
11201 }
499f377f
JM
11202
11203 spin_lock(&fs_info->trans_lock);
11204 trans = fs_info->running_transaction;
11205 if (trans)
9b64f57d 11206 refcount_inc(&trans->use_count);
499f377f
JM
11207 spin_unlock(&fs_info->trans_lock);
11208
fee7acc3
JM
11209 if (!trans)
11210 up_read(&fs_info->commit_root_sem);
11211
499f377f
JM
11212 ret = find_free_dev_extent_start(trans, device, minlen, start,
11213 &start, &len);
fee7acc3
JM
11214 if (trans) {
11215 up_read(&fs_info->commit_root_sem);
499f377f 11216 btrfs_put_transaction(trans);
fee7acc3 11217 }
499f377f
JM
11218
11219 if (ret) {
499f377f
JM
11220 mutex_unlock(&fs_info->chunk_mutex);
11221 if (ret == -ENOSPC)
11222 ret = 0;
11223 break;
11224 }
11225
11226 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
499f377f
JM
11227 mutex_unlock(&fs_info->chunk_mutex);
11228
11229 if (ret)
11230 break;
11231
11232 start += len;
11233 *trimmed += bytes;
11234
11235 if (fatal_signal_pending(current)) {
11236 ret = -ERESTARTSYS;
11237 break;
11238 }
11239
11240 cond_resched();
11241 }
11242
11243 return ret;
11244}
11245
93bba24d
QW
11246/*
11247 * Trim the whole filesystem by:
11248 * 1) trimming the free space in each block group
11249 * 2) trimming the unallocated space on each device
11250 *
11251 * This will also continue trimming even if a block group or device encounters
11252 * an error. The return value will be the last error, or 0 if nothing bad
11253 * happens.
11254 */
2ff7e61e 11255int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 11256{
f7039b1d 11257 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
11258 struct btrfs_device *device;
11259 struct list_head *devices;
f7039b1d
LD
11260 u64 group_trimmed;
11261 u64 start;
11262 u64 end;
11263 u64 trimmed = 0;
93bba24d
QW
11264 u64 bg_failed = 0;
11265 u64 dev_failed = 0;
11266 int bg_ret = 0;
11267 int dev_ret = 0;
f7039b1d
LD
11268 int ret = 0;
11269
6ba9fc8e 11270 cache = btrfs_lookup_first_block_group(fs_info, range->start);
93bba24d 11271 for (; cache; cache = next_block_group(fs_info, cache)) {
f7039b1d
LD
11272 if (cache->key.objectid >= (range->start + range->len)) {
11273 btrfs_put_block_group(cache);
11274 break;
11275 }
11276
11277 start = max(range->start, cache->key.objectid);
11278 end = min(range->start + range->len,
11279 cache->key.objectid + cache->key.offset);
11280
11281 if (end - start >= range->minlen) {
11282 if (!block_group_cache_done(cache)) {
f6373bf3 11283 ret = cache_block_group(cache, 0);
1be41b78 11284 if (ret) {
93bba24d
QW
11285 bg_failed++;
11286 bg_ret = ret;
11287 continue;
1be41b78
JB
11288 }
11289 ret = wait_block_group_cache_done(cache);
11290 if (ret) {
93bba24d
QW
11291 bg_failed++;
11292 bg_ret = ret;
11293 continue;
1be41b78 11294 }
f7039b1d
LD
11295 }
11296 ret = btrfs_trim_block_group(cache,
11297 &group_trimmed,
11298 start,
11299 end,
11300 range->minlen);
11301
11302 trimmed += group_trimmed;
11303 if (ret) {
93bba24d
QW
11304 bg_failed++;
11305 bg_ret = ret;
11306 continue;
f7039b1d
LD
11307 }
11308 }
f7039b1d
LD
11309 }
11310
93bba24d
QW
11311 if (bg_failed)
11312 btrfs_warn(fs_info,
11313 "failed to trim %llu block group(s), last error %d",
11314 bg_failed, bg_ret);
0b246afa 11315 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d4e329de
JM
11316 devices = &fs_info->fs_devices->devices;
11317 list_for_each_entry(device, devices, dev_list) {
499f377f
JM
11318 ret = btrfs_trim_free_extents(device, range->minlen,
11319 &group_trimmed);
93bba24d
QW
11320 if (ret) {
11321 dev_failed++;
11322 dev_ret = ret;
499f377f 11323 break;
93bba24d 11324 }
499f377f
JM
11325
11326 trimmed += group_trimmed;
11327 }
0b246afa 11328 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11329
93bba24d
QW
11330 if (dev_failed)
11331 btrfs_warn(fs_info,
11332 "failed to trim %llu device(s), last error %d",
11333 dev_failed, dev_ret);
f7039b1d 11334 range->len = trimmed;
93bba24d
QW
11335 if (bg_ret)
11336 return bg_ret;
11337 return dev_ret;
f7039b1d 11338}
8257b2dc
MX
11339
11340/*
ea14b57f 11341 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11342 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11343 * data into the page cache through nocow before the subvolume is snapshoted,
11344 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11345 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11346 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11347 */
ea14b57f 11348void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11349{
11350 percpu_counter_dec(&root->subv_writers->counter);
093258e6 11351 cond_wake_up(&root->subv_writers->wait);
8257b2dc
MX
11352}
11353
ea14b57f 11354int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11355{
ea14b57f 11356 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11357 return 0;
11358
11359 percpu_counter_inc(&root->subv_writers->counter);
11360 /*
11361 * Make sure counter is updated before we check for snapshot creation.
11362 */
11363 smp_mb();
ea14b57f
DS
11364 if (atomic_read(&root->will_be_snapshotted)) {
11365 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11366 return 0;
11367 }
11368 return 1;
11369}
0bc19f90 11370
0bc19f90
ZL
11371void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11372{
11373 while (true) {
11374 int ret;
11375
ea14b57f 11376 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11377 if (ret)
11378 break;
4625956a
PZ
11379 wait_var_event(&root->will_be_snapshotted,
11380 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
11381 }
11382}
031f24da
QW
11383
11384void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11385{
11386 struct btrfs_fs_info *fs_info = bg->fs_info;
11387
11388 spin_lock(&fs_info->unused_bgs_lock);
11389 if (list_empty(&bg->bg_list)) {
11390 btrfs_get_block_group(bg);
11391 trace_btrfs_add_unused_block_group(bg);
11392 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11393 }
11394 spin_unlock(&fs_info->unused_bgs_lock);
11395}