]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent-tree.c
Btrfs: keep track of max_extent_size per space_info
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
c682f9b3 82 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
c682f9b3 85 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
86static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
98 int level, struct btrfs_key *ins,
99 int no_quota);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
62a45b60 128static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
d0bd4560
JB
335#ifdef CONFIG_BTRFS_DEBUG
336static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
338{
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
344
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
347 start += step;
348 if (len < step)
349 len = 0;
350 else
351 len -= step;
352 }
353}
354#endif
355
0f9dd46c
JB
356/*
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
360 */
817d52f8 361static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
362 struct btrfs_fs_info *info, u64 start, u64 end)
363{
817d52f8 364 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
365 int ret;
366
367 while (start < end) {
11833d66 368 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 369 &extent_start, &extent_end,
e6138876
JB
370 EXTENT_DIRTY | EXTENT_UPTODATE,
371 NULL);
0f9dd46c
JB
372 if (ret)
373 break;
374
06b2331f 375 if (extent_start <= start) {
0f9dd46c
JB
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
817d52f8 379 total_added += size;
ea6a478e
JB
380 ret = btrfs_add_free_space(block_group, start,
381 size);
79787eaa 382 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
383 start = extent_end + 1;
384 } else {
385 break;
386 }
387 }
388
389 if (start < end) {
390 size = end - start;
817d52f8 391 total_added += size;
ea6a478e 392 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 393 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
394 }
395
817d52f8 396 return total_added;
0f9dd46c
JB
397}
398
d458b054 399static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 400{
bab39bf9
JB
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
403 struct btrfs_caching_control *caching_ctl;
404 struct btrfs_root *extent_root;
e37c9e69 405 struct btrfs_path *path;
5f39d397 406 struct extent_buffer *leaf;
11833d66 407 struct btrfs_key key;
817d52f8 408 u64 total_found = 0;
11833d66
YZ
409 u64 last = 0;
410 u32 nritems;
36cce922 411 int ret = -ENOMEM;
d0bd4560 412 bool wakeup = true;
f510cfec 413
bab39bf9
JB
414 caching_ctl = container_of(work, struct btrfs_caching_control, work);
415 block_group = caching_ctl->block_group;
416 fs_info = block_group->fs_info;
417 extent_root = fs_info->extent_root;
418
e37c9e69
CM
419 path = btrfs_alloc_path();
420 if (!path)
bab39bf9 421 goto out;
7d7d6068 422
817d52f8 423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 424
d0bd4560
JB
425#ifdef CONFIG_BTRFS_DEBUG
426 /*
427 * If we're fragmenting we don't want to make anybody think we can
428 * allocate from this block group until we've had a chance to fragment
429 * the free space.
430 */
431 if (btrfs_should_fragment_free_space(extent_root, block_group))
432 wakeup = false;
433#endif
5cd57b2c 434 /*
817d52f8
JB
435 * We don't want to deadlock with somebody trying to allocate a new
436 * extent for the extent root while also trying to search the extent
437 * root to add free space. So we skip locking and search the commit
438 * root, since its read-only
5cd57b2c
CM
439 */
440 path->skip_locking = 1;
817d52f8 441 path->search_commit_root = 1;
026fd317 442 path->reada = 1;
817d52f8 443
e4404d6e 444 key.objectid = last;
e37c9e69 445 key.offset = 0;
11833d66 446 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 447again:
11833d66 448 mutex_lock(&caching_ctl->mutex);
013f1b12 449 /* need to make sure the commit_root doesn't disappear */
9e351cc8 450 down_read(&fs_info->commit_root_sem);
013f1b12 451
52ee28d2 452next:
11833d66 453 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 454 if (ret < 0)
ef8bbdfe 455 goto err;
a512bbf8 456
11833d66
YZ
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459
d397712b 460 while (1) {
7841cb28 461 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 462 last = (u64)-1;
817d52f8 463 break;
f25784b3 464 }
817d52f8 465
11833d66
YZ
466 if (path->slots[0] < nritems) {
467 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
468 } else {
469 ret = find_next_key(path, 0, &key);
470 if (ret)
e37c9e69 471 break;
817d52f8 472
c9ea7b24 473 if (need_resched() ||
9e351cc8 474 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
475 if (wakeup)
476 caching_ctl->progress = last;
ff5714cc 477 btrfs_release_path(path);
9e351cc8 478 up_read(&fs_info->commit_root_sem);
589d8ade 479 mutex_unlock(&caching_ctl->mutex);
11833d66 480 cond_resched();
589d8ade
JB
481 goto again;
482 }
0a3896d0
JB
483
484 ret = btrfs_next_leaf(extent_root, path);
485 if (ret < 0)
486 goto err;
487 if (ret)
488 break;
589d8ade
JB
489 leaf = path->nodes[0];
490 nritems = btrfs_header_nritems(leaf);
491 continue;
11833d66 492 }
817d52f8 493
52ee28d2
LB
494 if (key.objectid < last) {
495 key.objectid = last;
496 key.offset = 0;
497 key.type = BTRFS_EXTENT_ITEM_KEY;
498
d0bd4560
JB
499 if (wakeup)
500 caching_ctl->progress = last;
52ee28d2
LB
501 btrfs_release_path(path);
502 goto next;
503 }
504
11833d66
YZ
505 if (key.objectid < block_group->key.objectid) {
506 path->slots[0]++;
817d52f8 507 continue;
e37c9e69 508 }
0f9dd46c 509
e37c9e69 510 if (key.objectid >= block_group->key.objectid +
0f9dd46c 511 block_group->key.offset)
e37c9e69 512 break;
7d7d6068 513
3173a18f
JB
514 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
515 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
516 total_found += add_new_free_space(block_group,
517 fs_info, last,
518 key.objectid);
3173a18f
JB
519 if (key.type == BTRFS_METADATA_ITEM_KEY)
520 last = key.objectid +
707e8a07 521 fs_info->tree_root->nodesize;
3173a18f
JB
522 else
523 last = key.objectid + key.offset;
817d52f8 524
11833d66
YZ
525 if (total_found > (1024 * 1024 * 2)) {
526 total_found = 0;
d0bd4560
JB
527 if (wakeup)
528 wake_up(&caching_ctl->wait);
11833d66 529 }
817d52f8 530 }
e37c9e69
CM
531 path->slots[0]++;
532 }
817d52f8 533 ret = 0;
e37c9e69 534
817d52f8
JB
535 total_found += add_new_free_space(block_group, fs_info, last,
536 block_group->key.objectid +
537 block_group->key.offset);
817d52f8 538 spin_lock(&block_group->lock);
11833d66 539 block_group->caching_ctl = NULL;
817d52f8
JB
540 block_group->cached = BTRFS_CACHE_FINISHED;
541 spin_unlock(&block_group->lock);
0f9dd46c 542
d0bd4560
JB
543#ifdef CONFIG_BTRFS_DEBUG
544 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
545 u64 bytes_used;
546
547 spin_lock(&block_group->space_info->lock);
548 spin_lock(&block_group->lock);
549 bytes_used = block_group->key.offset -
550 btrfs_block_group_used(&block_group->item);
551 block_group->space_info->bytes_used += bytes_used >> 1;
552 spin_unlock(&block_group->lock);
553 spin_unlock(&block_group->space_info->lock);
554 fragment_free_space(extent_root, block_group);
555 }
556#endif
557
558 caching_ctl->progress = (u64)-1;
54aa1f4d 559err:
e37c9e69 560 btrfs_free_path(path);
9e351cc8 561 up_read(&fs_info->commit_root_sem);
817d52f8 562
11833d66
YZ
563 free_excluded_extents(extent_root, block_group);
564
565 mutex_unlock(&caching_ctl->mutex);
bab39bf9 566out:
36cce922
JB
567 if (ret) {
568 spin_lock(&block_group->lock);
569 block_group->caching_ctl = NULL;
570 block_group->cached = BTRFS_CACHE_ERROR;
571 spin_unlock(&block_group->lock);
572 }
11833d66
YZ
573 wake_up(&caching_ctl->wait);
574
575 put_caching_control(caching_ctl);
11dfe35a 576 btrfs_put_block_group(block_group);
817d52f8
JB
577}
578
9d66e233 579static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 580 int load_cache_only)
817d52f8 581{
291c7d2f 582 DEFINE_WAIT(wait);
11833d66
YZ
583 struct btrfs_fs_info *fs_info = cache->fs_info;
584 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
585 int ret = 0;
586
291c7d2f 587 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
588 if (!caching_ctl)
589 return -ENOMEM;
291c7d2f
JB
590
591 INIT_LIST_HEAD(&caching_ctl->list);
592 mutex_init(&caching_ctl->mutex);
593 init_waitqueue_head(&caching_ctl->wait);
594 caching_ctl->block_group = cache;
595 caching_ctl->progress = cache->key.objectid;
596 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
597 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
598 caching_thread, NULL, NULL);
291c7d2f
JB
599
600 spin_lock(&cache->lock);
601 /*
602 * This should be a rare occasion, but this could happen I think in the
603 * case where one thread starts to load the space cache info, and then
604 * some other thread starts a transaction commit which tries to do an
605 * allocation while the other thread is still loading the space cache
606 * info. The previous loop should have kept us from choosing this block
607 * group, but if we've moved to the state where we will wait on caching
608 * block groups we need to first check if we're doing a fast load here,
609 * so we can wait for it to finish, otherwise we could end up allocating
610 * from a block group who's cache gets evicted for one reason or
611 * another.
612 */
613 while (cache->cached == BTRFS_CACHE_FAST) {
614 struct btrfs_caching_control *ctl;
615
616 ctl = cache->caching_ctl;
617 atomic_inc(&ctl->count);
618 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
619 spin_unlock(&cache->lock);
620
621 schedule();
622
623 finish_wait(&ctl->wait, &wait);
624 put_caching_control(ctl);
625 spin_lock(&cache->lock);
626 }
627
628 if (cache->cached != BTRFS_CACHE_NO) {
629 spin_unlock(&cache->lock);
630 kfree(caching_ctl);
11833d66 631 return 0;
291c7d2f
JB
632 }
633 WARN_ON(cache->caching_ctl);
634 cache->caching_ctl = caching_ctl;
635 cache->cached = BTRFS_CACHE_FAST;
636 spin_unlock(&cache->lock);
11833d66 637
d53ba474 638 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 639 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
640 ret = load_free_space_cache(fs_info, cache);
641
642 spin_lock(&cache->lock);
643 if (ret == 1) {
291c7d2f 644 cache->caching_ctl = NULL;
9d66e233
JB
645 cache->cached = BTRFS_CACHE_FINISHED;
646 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 647 caching_ctl->progress = (u64)-1;
9d66e233 648 } else {
291c7d2f
JB
649 if (load_cache_only) {
650 cache->caching_ctl = NULL;
651 cache->cached = BTRFS_CACHE_NO;
652 } else {
653 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 654 cache->has_caching_ctl = 1;
291c7d2f 655 }
9d66e233
JB
656 }
657 spin_unlock(&cache->lock);
d0bd4560
JB
658#ifdef CONFIG_BTRFS_DEBUG
659 if (ret == 1 &&
660 btrfs_should_fragment_free_space(fs_info->extent_root,
661 cache)) {
662 u64 bytes_used;
663
664 spin_lock(&cache->space_info->lock);
665 spin_lock(&cache->lock);
666 bytes_used = cache->key.offset -
667 btrfs_block_group_used(&cache->item);
668 cache->space_info->bytes_used += bytes_used >> 1;
669 spin_unlock(&cache->lock);
670 spin_unlock(&cache->space_info->lock);
671 fragment_free_space(fs_info->extent_root, cache);
672 }
673#endif
cb83b7b8
JB
674 mutex_unlock(&caching_ctl->mutex);
675
291c7d2f 676 wake_up(&caching_ctl->wait);
3c14874a 677 if (ret == 1) {
291c7d2f 678 put_caching_control(caching_ctl);
3c14874a 679 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 680 return 0;
3c14874a 681 }
291c7d2f
JB
682 } else {
683 /*
684 * We are not going to do the fast caching, set cached to the
685 * appropriate value and wakeup any waiters.
686 */
687 spin_lock(&cache->lock);
688 if (load_cache_only) {
689 cache->caching_ctl = NULL;
690 cache->cached = BTRFS_CACHE_NO;
691 } else {
692 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 693 cache->has_caching_ctl = 1;
291c7d2f
JB
694 }
695 spin_unlock(&cache->lock);
696 wake_up(&caching_ctl->wait);
9d66e233
JB
697 }
698
291c7d2f
JB
699 if (load_cache_only) {
700 put_caching_control(caching_ctl);
11833d66 701 return 0;
817d52f8 702 }
817d52f8 703
9e351cc8 704 down_write(&fs_info->commit_root_sem);
291c7d2f 705 atomic_inc(&caching_ctl->count);
11833d66 706 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 707 up_write(&fs_info->commit_root_sem);
11833d66 708
11dfe35a 709 btrfs_get_block_group(cache);
11833d66 710
e66f0bb1 711 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 712
ef8bbdfe 713 return ret;
e37c9e69
CM
714}
715
0f9dd46c
JB
716/*
717 * return the block group that starts at or after bytenr
718 */
d397712b
CM
719static struct btrfs_block_group_cache *
720btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 721{
0f9dd46c 722 struct btrfs_block_group_cache *cache;
0ef3e66b 723
0f9dd46c 724 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 725
0f9dd46c 726 return cache;
0ef3e66b
CM
727}
728
0f9dd46c 729/*
9f55684c 730 * return the block group that contains the given bytenr
0f9dd46c 731 */
d397712b
CM
732struct btrfs_block_group_cache *btrfs_lookup_block_group(
733 struct btrfs_fs_info *info,
734 u64 bytenr)
be744175 735{
0f9dd46c 736 struct btrfs_block_group_cache *cache;
be744175 737
0f9dd46c 738 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 739
0f9dd46c 740 return cache;
be744175 741}
0b86a832 742
0f9dd46c
JB
743static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
744 u64 flags)
6324fbf3 745{
0f9dd46c 746 struct list_head *head = &info->space_info;
0f9dd46c 747 struct btrfs_space_info *found;
4184ea7f 748
52ba6929 749 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 750
4184ea7f
CM
751 rcu_read_lock();
752 list_for_each_entry_rcu(found, head, list) {
67377734 753 if (found->flags & flags) {
4184ea7f 754 rcu_read_unlock();
0f9dd46c 755 return found;
4184ea7f 756 }
0f9dd46c 757 }
4184ea7f 758 rcu_read_unlock();
0f9dd46c 759 return NULL;
6324fbf3
CM
760}
761
4184ea7f
CM
762/*
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
765 */
766void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767{
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
770
771 rcu_read_lock();
772 list_for_each_entry_rcu(found, head, list)
773 found->full = 0;
774 rcu_read_unlock();
775}
776
1a4ed8fd
FM
777/* simple helper to search for an existing data extent at a given offset */
778int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
779{
780 int ret;
781 struct btrfs_key key;
31840ae1 782 struct btrfs_path *path;
e02119d5 783
31840ae1 784 path = btrfs_alloc_path();
d8926bb3
MF
785 if (!path)
786 return -ENOMEM;
787
e02119d5
CM
788 key.objectid = start;
789 key.offset = len;
3173a18f 790 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
791 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
792 0, 0);
31840ae1 793 btrfs_free_path(path);
7bb86316
CM
794 return ret;
795}
796
a22285a6 797/*
3173a18f 798 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
799 *
800 * the head node for delayed ref is used to store the sum of all the
801 * reference count modifications queued up in the rbtree. the head
802 * node may also store the extent flags to set. This way you can check
803 * to see what the reference count and extent flags would be if all of
804 * the delayed refs are not processed.
805 */
806int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
807 struct btrfs_root *root, u64 bytenr,
3173a18f 808 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
809{
810 struct btrfs_delayed_ref_head *head;
811 struct btrfs_delayed_ref_root *delayed_refs;
812 struct btrfs_path *path;
813 struct btrfs_extent_item *ei;
814 struct extent_buffer *leaf;
815 struct btrfs_key key;
816 u32 item_size;
817 u64 num_refs;
818 u64 extent_flags;
819 int ret;
820
3173a18f
JB
821 /*
822 * If we don't have skinny metadata, don't bother doing anything
823 * different
824 */
825 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 826 offset = root->nodesize;
3173a18f
JB
827 metadata = 0;
828 }
829
a22285a6
YZ
830 path = btrfs_alloc_path();
831 if (!path)
832 return -ENOMEM;
833
a22285a6
YZ
834 if (!trans) {
835 path->skip_locking = 1;
836 path->search_commit_root = 1;
837 }
639eefc8
FDBM
838
839search_again:
840 key.objectid = bytenr;
841 key.offset = offset;
842 if (metadata)
843 key.type = BTRFS_METADATA_ITEM_KEY;
844 else
845 key.type = BTRFS_EXTENT_ITEM_KEY;
846
a22285a6
YZ
847 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
848 &key, path, 0, 0);
849 if (ret < 0)
850 goto out_free;
851
3173a18f 852 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
853 if (path->slots[0]) {
854 path->slots[0]--;
855 btrfs_item_key_to_cpu(path->nodes[0], &key,
856 path->slots[0]);
857 if (key.objectid == bytenr &&
858 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 859 key.offset == root->nodesize)
74be9510
FDBM
860 ret = 0;
861 }
3173a18f
JB
862 }
863
a22285a6
YZ
864 if (ret == 0) {
865 leaf = path->nodes[0];
866 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
867 if (item_size >= sizeof(*ei)) {
868 ei = btrfs_item_ptr(leaf, path->slots[0],
869 struct btrfs_extent_item);
870 num_refs = btrfs_extent_refs(leaf, ei);
871 extent_flags = btrfs_extent_flags(leaf, ei);
872 } else {
873#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
874 struct btrfs_extent_item_v0 *ei0;
875 BUG_ON(item_size != sizeof(*ei0));
876 ei0 = btrfs_item_ptr(leaf, path->slots[0],
877 struct btrfs_extent_item_v0);
878 num_refs = btrfs_extent_refs_v0(leaf, ei0);
879 /* FIXME: this isn't correct for data */
880 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
881#else
882 BUG();
883#endif
884 }
885 BUG_ON(num_refs == 0);
886 } else {
887 num_refs = 0;
888 extent_flags = 0;
889 ret = 0;
890 }
891
892 if (!trans)
893 goto out;
894
895 delayed_refs = &trans->transaction->delayed_refs;
896 spin_lock(&delayed_refs->lock);
897 head = btrfs_find_delayed_ref_head(trans, bytenr);
898 if (head) {
899 if (!mutex_trylock(&head->mutex)) {
900 atomic_inc(&head->node.refs);
901 spin_unlock(&delayed_refs->lock);
902
b3b4aa74 903 btrfs_release_path(path);
a22285a6 904
8cc33e5c
DS
905 /*
906 * Mutex was contended, block until it's released and try
907 * again
908 */
a22285a6
YZ
909 mutex_lock(&head->mutex);
910 mutex_unlock(&head->mutex);
911 btrfs_put_delayed_ref(&head->node);
639eefc8 912 goto search_again;
a22285a6 913 }
d7df2c79 914 spin_lock(&head->lock);
a22285a6
YZ
915 if (head->extent_op && head->extent_op->update_flags)
916 extent_flags |= head->extent_op->flags_to_set;
917 else
918 BUG_ON(num_refs == 0);
919
920 num_refs += head->node.ref_mod;
d7df2c79 921 spin_unlock(&head->lock);
a22285a6
YZ
922 mutex_unlock(&head->mutex);
923 }
924 spin_unlock(&delayed_refs->lock);
925out:
926 WARN_ON(num_refs == 0);
927 if (refs)
928 *refs = num_refs;
929 if (flags)
930 *flags = extent_flags;
931out_free:
932 btrfs_free_path(path);
933 return ret;
934}
935
d8d5f3e1
CM
936/*
937 * Back reference rules. Back refs have three main goals:
938 *
939 * 1) differentiate between all holders of references to an extent so that
940 * when a reference is dropped we can make sure it was a valid reference
941 * before freeing the extent.
942 *
943 * 2) Provide enough information to quickly find the holders of an extent
944 * if we notice a given block is corrupted or bad.
945 *
946 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
947 * maintenance. This is actually the same as #2, but with a slightly
948 * different use case.
949 *
5d4f98a2
YZ
950 * There are two kinds of back refs. The implicit back refs is optimized
951 * for pointers in non-shared tree blocks. For a given pointer in a block,
952 * back refs of this kind provide information about the block's owner tree
953 * and the pointer's key. These information allow us to find the block by
954 * b-tree searching. The full back refs is for pointers in tree blocks not
955 * referenced by their owner trees. The location of tree block is recorded
956 * in the back refs. Actually the full back refs is generic, and can be
957 * used in all cases the implicit back refs is used. The major shortcoming
958 * of the full back refs is its overhead. Every time a tree block gets
959 * COWed, we have to update back refs entry for all pointers in it.
960 *
961 * For a newly allocated tree block, we use implicit back refs for
962 * pointers in it. This means most tree related operations only involve
963 * implicit back refs. For a tree block created in old transaction, the
964 * only way to drop a reference to it is COW it. So we can detect the
965 * event that tree block loses its owner tree's reference and do the
966 * back refs conversion.
967 *
968 * When a tree block is COW'd through a tree, there are four cases:
969 *
970 * The reference count of the block is one and the tree is the block's
971 * owner tree. Nothing to do in this case.
972 *
973 * The reference count of the block is one and the tree is not the
974 * block's owner tree. In this case, full back refs is used for pointers
975 * in the block. Remove these full back refs, add implicit back refs for
976 * every pointers in the new block.
977 *
978 * The reference count of the block is greater than one and the tree is
979 * the block's owner tree. In this case, implicit back refs is used for
980 * pointers in the block. Add full back refs for every pointers in the
981 * block, increase lower level extents' reference counts. The original
982 * implicit back refs are entailed to the new block.
983 *
984 * The reference count of the block is greater than one and the tree is
985 * not the block's owner tree. Add implicit back refs for every pointer in
986 * the new block, increase lower level extents' reference count.
987 *
988 * Back Reference Key composing:
989 *
990 * The key objectid corresponds to the first byte in the extent,
991 * The key type is used to differentiate between types of back refs.
992 * There are different meanings of the key offset for different types
993 * of back refs.
994 *
d8d5f3e1
CM
995 * File extents can be referenced by:
996 *
997 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 998 * - different files inside a single subvolume
d8d5f3e1
CM
999 * - different offsets inside a file (bookend extents in file.c)
1000 *
5d4f98a2 1001 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1002 *
1003 * - Objectid of the subvolume root
d8d5f3e1 1004 * - objectid of the file holding the reference
5d4f98a2
YZ
1005 * - original offset in the file
1006 * - how many bookend extents
d8d5f3e1 1007 *
5d4f98a2
YZ
1008 * The key offset for the implicit back refs is hash of the first
1009 * three fields.
d8d5f3e1 1010 *
5d4f98a2 1011 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1012 *
5d4f98a2 1013 * - number of pointers in the tree leaf
d8d5f3e1 1014 *
5d4f98a2
YZ
1015 * The key offset for the implicit back refs is the first byte of
1016 * the tree leaf
d8d5f3e1 1017 *
5d4f98a2
YZ
1018 * When a file extent is allocated, The implicit back refs is used.
1019 * the fields are filled in:
d8d5f3e1 1020 *
5d4f98a2 1021 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1022 *
5d4f98a2
YZ
1023 * When a file extent is removed file truncation, we find the
1024 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1025 *
5d4f98a2 1026 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1027 *
5d4f98a2 1028 * Btree extents can be referenced by:
d8d5f3e1 1029 *
5d4f98a2 1030 * - Different subvolumes
d8d5f3e1 1031 *
5d4f98a2
YZ
1032 * Both the implicit back refs and the full back refs for tree blocks
1033 * only consist of key. The key offset for the implicit back refs is
1034 * objectid of block's owner tree. The key offset for the full back refs
1035 * is the first byte of parent block.
d8d5f3e1 1036 *
5d4f98a2
YZ
1037 * When implicit back refs is used, information about the lowest key and
1038 * level of the tree block are required. These information are stored in
1039 * tree block info structure.
d8d5f3e1 1040 */
31840ae1 1041
5d4f98a2
YZ
1042#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1043static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1044 struct btrfs_root *root,
1045 struct btrfs_path *path,
1046 u64 owner, u32 extra_size)
7bb86316 1047{
5d4f98a2
YZ
1048 struct btrfs_extent_item *item;
1049 struct btrfs_extent_item_v0 *ei0;
1050 struct btrfs_extent_ref_v0 *ref0;
1051 struct btrfs_tree_block_info *bi;
1052 struct extent_buffer *leaf;
7bb86316 1053 struct btrfs_key key;
5d4f98a2
YZ
1054 struct btrfs_key found_key;
1055 u32 new_size = sizeof(*item);
1056 u64 refs;
1057 int ret;
1058
1059 leaf = path->nodes[0];
1060 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1061
1062 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1063 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1064 struct btrfs_extent_item_v0);
1065 refs = btrfs_extent_refs_v0(leaf, ei0);
1066
1067 if (owner == (u64)-1) {
1068 while (1) {
1069 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1070 ret = btrfs_next_leaf(root, path);
1071 if (ret < 0)
1072 return ret;
79787eaa 1073 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1074 leaf = path->nodes[0];
1075 }
1076 btrfs_item_key_to_cpu(leaf, &found_key,
1077 path->slots[0]);
1078 BUG_ON(key.objectid != found_key.objectid);
1079 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1080 path->slots[0]++;
1081 continue;
1082 }
1083 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1084 struct btrfs_extent_ref_v0);
1085 owner = btrfs_ref_objectid_v0(leaf, ref0);
1086 break;
1087 }
1088 }
b3b4aa74 1089 btrfs_release_path(path);
5d4f98a2
YZ
1090
1091 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1092 new_size += sizeof(*bi);
1093
1094 new_size -= sizeof(*ei0);
1095 ret = btrfs_search_slot(trans, root, &key, path,
1096 new_size + extra_size, 1);
1097 if (ret < 0)
1098 return ret;
79787eaa 1099 BUG_ON(ret); /* Corruption */
5d4f98a2 1100
4b90c680 1101 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1102
1103 leaf = path->nodes[0];
1104 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1105 btrfs_set_extent_refs(leaf, item, refs);
1106 /* FIXME: get real generation */
1107 btrfs_set_extent_generation(leaf, item, 0);
1108 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1109 btrfs_set_extent_flags(leaf, item,
1110 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1111 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1112 bi = (struct btrfs_tree_block_info *)(item + 1);
1113 /* FIXME: get first key of the block */
1114 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1115 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1116 } else {
1117 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1118 }
1119 btrfs_mark_buffer_dirty(leaf);
1120 return 0;
1121}
1122#endif
1123
1124static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1125{
1126 u32 high_crc = ~(u32)0;
1127 u32 low_crc = ~(u32)0;
1128 __le64 lenum;
1129
1130 lenum = cpu_to_le64(root_objectid);
14a958e6 1131 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1132 lenum = cpu_to_le64(owner);
14a958e6 1133 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1134 lenum = cpu_to_le64(offset);
14a958e6 1135 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1136
1137 return ((u64)high_crc << 31) ^ (u64)low_crc;
1138}
1139
1140static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1141 struct btrfs_extent_data_ref *ref)
1142{
1143 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1144 btrfs_extent_data_ref_objectid(leaf, ref),
1145 btrfs_extent_data_ref_offset(leaf, ref));
1146}
1147
1148static int match_extent_data_ref(struct extent_buffer *leaf,
1149 struct btrfs_extent_data_ref *ref,
1150 u64 root_objectid, u64 owner, u64 offset)
1151{
1152 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1153 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1154 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1155 return 0;
1156 return 1;
1157}
1158
1159static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1160 struct btrfs_root *root,
1161 struct btrfs_path *path,
1162 u64 bytenr, u64 parent,
1163 u64 root_objectid,
1164 u64 owner, u64 offset)
1165{
1166 struct btrfs_key key;
1167 struct btrfs_extent_data_ref *ref;
31840ae1 1168 struct extent_buffer *leaf;
5d4f98a2 1169 u32 nritems;
74493f7a 1170 int ret;
5d4f98a2
YZ
1171 int recow;
1172 int err = -ENOENT;
74493f7a 1173
31840ae1 1174 key.objectid = bytenr;
5d4f98a2
YZ
1175 if (parent) {
1176 key.type = BTRFS_SHARED_DATA_REF_KEY;
1177 key.offset = parent;
1178 } else {
1179 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1180 key.offset = hash_extent_data_ref(root_objectid,
1181 owner, offset);
1182 }
1183again:
1184 recow = 0;
1185 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1186 if (ret < 0) {
1187 err = ret;
1188 goto fail;
1189 }
31840ae1 1190
5d4f98a2
YZ
1191 if (parent) {
1192 if (!ret)
1193 return 0;
1194#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1195 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1196 btrfs_release_path(path);
5d4f98a2
YZ
1197 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1198 if (ret < 0) {
1199 err = ret;
1200 goto fail;
1201 }
1202 if (!ret)
1203 return 0;
1204#endif
1205 goto fail;
31840ae1
ZY
1206 }
1207
1208 leaf = path->nodes[0];
5d4f98a2
YZ
1209 nritems = btrfs_header_nritems(leaf);
1210 while (1) {
1211 if (path->slots[0] >= nritems) {
1212 ret = btrfs_next_leaf(root, path);
1213 if (ret < 0)
1214 err = ret;
1215 if (ret)
1216 goto fail;
1217
1218 leaf = path->nodes[0];
1219 nritems = btrfs_header_nritems(leaf);
1220 recow = 1;
1221 }
1222
1223 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1224 if (key.objectid != bytenr ||
1225 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1226 goto fail;
1227
1228 ref = btrfs_item_ptr(leaf, path->slots[0],
1229 struct btrfs_extent_data_ref);
1230
1231 if (match_extent_data_ref(leaf, ref, root_objectid,
1232 owner, offset)) {
1233 if (recow) {
b3b4aa74 1234 btrfs_release_path(path);
5d4f98a2
YZ
1235 goto again;
1236 }
1237 err = 0;
1238 break;
1239 }
1240 path->slots[0]++;
31840ae1 1241 }
5d4f98a2
YZ
1242fail:
1243 return err;
31840ae1
ZY
1244}
1245
5d4f98a2
YZ
1246static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1247 struct btrfs_root *root,
1248 struct btrfs_path *path,
1249 u64 bytenr, u64 parent,
1250 u64 root_objectid, u64 owner,
1251 u64 offset, int refs_to_add)
31840ae1
ZY
1252{
1253 struct btrfs_key key;
1254 struct extent_buffer *leaf;
5d4f98a2 1255 u32 size;
31840ae1
ZY
1256 u32 num_refs;
1257 int ret;
74493f7a 1258
74493f7a 1259 key.objectid = bytenr;
5d4f98a2
YZ
1260 if (parent) {
1261 key.type = BTRFS_SHARED_DATA_REF_KEY;
1262 key.offset = parent;
1263 size = sizeof(struct btrfs_shared_data_ref);
1264 } else {
1265 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1266 key.offset = hash_extent_data_ref(root_objectid,
1267 owner, offset);
1268 size = sizeof(struct btrfs_extent_data_ref);
1269 }
74493f7a 1270
5d4f98a2
YZ
1271 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1272 if (ret && ret != -EEXIST)
1273 goto fail;
1274
1275 leaf = path->nodes[0];
1276 if (parent) {
1277 struct btrfs_shared_data_ref *ref;
31840ae1 1278 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1279 struct btrfs_shared_data_ref);
1280 if (ret == 0) {
1281 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1282 } else {
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1284 num_refs += refs_to_add;
1285 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1286 }
5d4f98a2
YZ
1287 } else {
1288 struct btrfs_extent_data_ref *ref;
1289 while (ret == -EEXIST) {
1290 ref = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_extent_data_ref);
1292 if (match_extent_data_ref(leaf, ref, root_objectid,
1293 owner, offset))
1294 break;
b3b4aa74 1295 btrfs_release_path(path);
5d4f98a2
YZ
1296 key.offset++;
1297 ret = btrfs_insert_empty_item(trans, root, path, &key,
1298 size);
1299 if (ret && ret != -EEXIST)
1300 goto fail;
31840ae1 1301
5d4f98a2
YZ
1302 leaf = path->nodes[0];
1303 }
1304 ref = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_extent_data_ref);
1306 if (ret == 0) {
1307 btrfs_set_extent_data_ref_root(leaf, ref,
1308 root_objectid);
1309 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1310 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1311 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1312 } else {
1313 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1314 num_refs += refs_to_add;
1315 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1316 }
31840ae1 1317 }
5d4f98a2
YZ
1318 btrfs_mark_buffer_dirty(leaf);
1319 ret = 0;
1320fail:
b3b4aa74 1321 btrfs_release_path(path);
7bb86316 1322 return ret;
74493f7a
CM
1323}
1324
5d4f98a2
YZ
1325static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1326 struct btrfs_root *root,
1327 struct btrfs_path *path,
fcebe456 1328 int refs_to_drop, int *last_ref)
31840ae1 1329{
5d4f98a2
YZ
1330 struct btrfs_key key;
1331 struct btrfs_extent_data_ref *ref1 = NULL;
1332 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1333 struct extent_buffer *leaf;
5d4f98a2 1334 u32 num_refs = 0;
31840ae1
ZY
1335 int ret = 0;
1336
1337 leaf = path->nodes[0];
5d4f98a2
YZ
1338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1339
1340 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_extent_data_ref);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_shared_data_ref);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 struct btrfs_extent_ref_v0 *ref0;
1351 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_ref_v0);
1353 num_refs = btrfs_ref_count_v0(leaf, ref0);
1354#endif
1355 } else {
1356 BUG();
1357 }
1358
56bec294
CM
1359 BUG_ON(num_refs < refs_to_drop);
1360 num_refs -= refs_to_drop;
5d4f98a2 1361
31840ae1
ZY
1362 if (num_refs == 0) {
1363 ret = btrfs_del_item(trans, root, path);
fcebe456 1364 *last_ref = 1;
31840ae1 1365 } else {
5d4f98a2
YZ
1366 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1367 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1368 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1369 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1370#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1371 else {
1372 struct btrfs_extent_ref_v0 *ref0;
1373 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1374 struct btrfs_extent_ref_v0);
1375 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1376 }
1377#endif
31840ae1
ZY
1378 btrfs_mark_buffer_dirty(leaf);
1379 }
31840ae1
ZY
1380 return ret;
1381}
1382
9ed0dea0 1383static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1384 struct btrfs_extent_inline_ref *iref)
15916de8 1385{
5d4f98a2
YZ
1386 struct btrfs_key key;
1387 struct extent_buffer *leaf;
1388 struct btrfs_extent_data_ref *ref1;
1389 struct btrfs_shared_data_ref *ref2;
1390 u32 num_refs = 0;
1391
1392 leaf = path->nodes[0];
1393 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1394 if (iref) {
1395 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1396 BTRFS_EXTENT_DATA_REF_KEY) {
1397 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1398 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1399 } else {
1400 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1401 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1402 }
1403 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1405 struct btrfs_extent_data_ref);
1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1408 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1409 struct btrfs_shared_data_ref);
1410 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1412 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1413 struct btrfs_extent_ref_v0 *ref0;
1414 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1415 struct btrfs_extent_ref_v0);
1416 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1417#endif
5d4f98a2
YZ
1418 } else {
1419 WARN_ON(1);
1420 }
1421 return num_refs;
1422}
15916de8 1423
5d4f98a2
YZ
1424static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1425 struct btrfs_root *root,
1426 struct btrfs_path *path,
1427 u64 bytenr, u64 parent,
1428 u64 root_objectid)
1f3c79a2 1429{
5d4f98a2 1430 struct btrfs_key key;
1f3c79a2 1431 int ret;
1f3c79a2 1432
5d4f98a2
YZ
1433 key.objectid = bytenr;
1434 if (parent) {
1435 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1436 key.offset = parent;
1437 } else {
1438 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1439 key.offset = root_objectid;
1f3c79a2
LH
1440 }
1441
5d4f98a2
YZ
1442 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1443 if (ret > 0)
1444 ret = -ENOENT;
1445#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1446 if (ret == -ENOENT && parent) {
b3b4aa74 1447 btrfs_release_path(path);
5d4f98a2
YZ
1448 key.type = BTRFS_EXTENT_REF_V0_KEY;
1449 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1450 if (ret > 0)
1451 ret = -ENOENT;
1452 }
1f3c79a2 1453#endif
5d4f98a2 1454 return ret;
1f3c79a2
LH
1455}
1456
5d4f98a2
YZ
1457static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1458 struct btrfs_root *root,
1459 struct btrfs_path *path,
1460 u64 bytenr, u64 parent,
1461 u64 root_objectid)
31840ae1 1462{
5d4f98a2 1463 struct btrfs_key key;
31840ae1 1464 int ret;
31840ae1 1465
5d4f98a2
YZ
1466 key.objectid = bytenr;
1467 if (parent) {
1468 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1469 key.offset = parent;
1470 } else {
1471 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1472 key.offset = root_objectid;
1473 }
1474
1475 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1476 btrfs_release_path(path);
31840ae1
ZY
1477 return ret;
1478}
1479
5d4f98a2 1480static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1481{
5d4f98a2
YZ
1482 int type;
1483 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1484 if (parent > 0)
1485 type = BTRFS_SHARED_BLOCK_REF_KEY;
1486 else
1487 type = BTRFS_TREE_BLOCK_REF_KEY;
1488 } else {
1489 if (parent > 0)
1490 type = BTRFS_SHARED_DATA_REF_KEY;
1491 else
1492 type = BTRFS_EXTENT_DATA_REF_KEY;
1493 }
1494 return type;
31840ae1 1495}
56bec294 1496
2c47e605
YZ
1497static int find_next_key(struct btrfs_path *path, int level,
1498 struct btrfs_key *key)
56bec294 1499
02217ed2 1500{
2c47e605 1501 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1502 if (!path->nodes[level])
1503 break;
5d4f98a2
YZ
1504 if (path->slots[level] + 1 >=
1505 btrfs_header_nritems(path->nodes[level]))
1506 continue;
1507 if (level == 0)
1508 btrfs_item_key_to_cpu(path->nodes[level], key,
1509 path->slots[level] + 1);
1510 else
1511 btrfs_node_key_to_cpu(path->nodes[level], key,
1512 path->slots[level] + 1);
1513 return 0;
1514 }
1515 return 1;
1516}
037e6390 1517
5d4f98a2
YZ
1518/*
1519 * look for inline back ref. if back ref is found, *ref_ret is set
1520 * to the address of inline back ref, and 0 is returned.
1521 *
1522 * if back ref isn't found, *ref_ret is set to the address where it
1523 * should be inserted, and -ENOENT is returned.
1524 *
1525 * if insert is true and there are too many inline back refs, the path
1526 * points to the extent item, and -EAGAIN is returned.
1527 *
1528 * NOTE: inline back refs are ordered in the same way that back ref
1529 * items in the tree are ordered.
1530 */
1531static noinline_for_stack
1532int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1533 struct btrfs_root *root,
1534 struct btrfs_path *path,
1535 struct btrfs_extent_inline_ref **ref_ret,
1536 u64 bytenr, u64 num_bytes,
1537 u64 parent, u64 root_objectid,
1538 u64 owner, u64 offset, int insert)
1539{
1540 struct btrfs_key key;
1541 struct extent_buffer *leaf;
1542 struct btrfs_extent_item *ei;
1543 struct btrfs_extent_inline_ref *iref;
1544 u64 flags;
1545 u64 item_size;
1546 unsigned long ptr;
1547 unsigned long end;
1548 int extra_size;
1549 int type;
1550 int want;
1551 int ret;
1552 int err = 0;
3173a18f
JB
1553 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1554 SKINNY_METADATA);
26b8003f 1555
db94535d 1556 key.objectid = bytenr;
31840ae1 1557 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1558 key.offset = num_bytes;
31840ae1 1559
5d4f98a2
YZ
1560 want = extent_ref_type(parent, owner);
1561 if (insert) {
1562 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1563 path->keep_locks = 1;
5d4f98a2
YZ
1564 } else
1565 extra_size = -1;
3173a18f
JB
1566
1567 /*
1568 * Owner is our parent level, so we can just add one to get the level
1569 * for the block we are interested in.
1570 */
1571 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1572 key.type = BTRFS_METADATA_ITEM_KEY;
1573 key.offset = owner;
1574 }
1575
1576again:
5d4f98a2 1577 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1578 if (ret < 0) {
5d4f98a2
YZ
1579 err = ret;
1580 goto out;
1581 }
3173a18f
JB
1582
1583 /*
1584 * We may be a newly converted file system which still has the old fat
1585 * extent entries for metadata, so try and see if we have one of those.
1586 */
1587 if (ret > 0 && skinny_metadata) {
1588 skinny_metadata = false;
1589 if (path->slots[0]) {
1590 path->slots[0]--;
1591 btrfs_item_key_to_cpu(path->nodes[0], &key,
1592 path->slots[0]);
1593 if (key.objectid == bytenr &&
1594 key.type == BTRFS_EXTENT_ITEM_KEY &&
1595 key.offset == num_bytes)
1596 ret = 0;
1597 }
1598 if (ret) {
9ce49a0b 1599 key.objectid = bytenr;
3173a18f
JB
1600 key.type = BTRFS_EXTENT_ITEM_KEY;
1601 key.offset = num_bytes;
1602 btrfs_release_path(path);
1603 goto again;
1604 }
1605 }
1606
79787eaa
JM
1607 if (ret && !insert) {
1608 err = -ENOENT;
1609 goto out;
fae7f21c 1610 } else if (WARN_ON(ret)) {
492104c8 1611 err = -EIO;
492104c8 1612 goto out;
79787eaa 1613 }
5d4f98a2
YZ
1614
1615 leaf = path->nodes[0];
1616 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1617#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1618 if (item_size < sizeof(*ei)) {
1619 if (!insert) {
1620 err = -ENOENT;
1621 goto out;
1622 }
1623 ret = convert_extent_item_v0(trans, root, path, owner,
1624 extra_size);
1625 if (ret < 0) {
1626 err = ret;
1627 goto out;
1628 }
1629 leaf = path->nodes[0];
1630 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1631 }
1632#endif
1633 BUG_ON(item_size < sizeof(*ei));
1634
5d4f98a2
YZ
1635 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1636 flags = btrfs_extent_flags(leaf, ei);
1637
1638 ptr = (unsigned long)(ei + 1);
1639 end = (unsigned long)ei + item_size;
1640
3173a18f 1641 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1642 ptr += sizeof(struct btrfs_tree_block_info);
1643 BUG_ON(ptr > end);
5d4f98a2
YZ
1644 }
1645
1646 err = -ENOENT;
1647 while (1) {
1648 if (ptr >= end) {
1649 WARN_ON(ptr > end);
1650 break;
1651 }
1652 iref = (struct btrfs_extent_inline_ref *)ptr;
1653 type = btrfs_extent_inline_ref_type(leaf, iref);
1654 if (want < type)
1655 break;
1656 if (want > type) {
1657 ptr += btrfs_extent_inline_ref_size(type);
1658 continue;
1659 }
1660
1661 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1662 struct btrfs_extent_data_ref *dref;
1663 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1664 if (match_extent_data_ref(leaf, dref, root_objectid,
1665 owner, offset)) {
1666 err = 0;
1667 break;
1668 }
1669 if (hash_extent_data_ref_item(leaf, dref) <
1670 hash_extent_data_ref(root_objectid, owner, offset))
1671 break;
1672 } else {
1673 u64 ref_offset;
1674 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1675 if (parent > 0) {
1676 if (parent == ref_offset) {
1677 err = 0;
1678 break;
1679 }
1680 if (ref_offset < parent)
1681 break;
1682 } else {
1683 if (root_objectid == ref_offset) {
1684 err = 0;
1685 break;
1686 }
1687 if (ref_offset < root_objectid)
1688 break;
1689 }
1690 }
1691 ptr += btrfs_extent_inline_ref_size(type);
1692 }
1693 if (err == -ENOENT && insert) {
1694 if (item_size + extra_size >=
1695 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1696 err = -EAGAIN;
1697 goto out;
1698 }
1699 /*
1700 * To add new inline back ref, we have to make sure
1701 * there is no corresponding back ref item.
1702 * For simplicity, we just do not add new inline back
1703 * ref if there is any kind of item for this block
1704 */
2c47e605
YZ
1705 if (find_next_key(path, 0, &key) == 0 &&
1706 key.objectid == bytenr &&
85d4198e 1707 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1708 err = -EAGAIN;
1709 goto out;
1710 }
1711 }
1712 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1713out:
85d4198e 1714 if (insert) {
5d4f98a2
YZ
1715 path->keep_locks = 0;
1716 btrfs_unlock_up_safe(path, 1);
1717 }
1718 return err;
1719}
1720
1721/*
1722 * helper to add new inline back ref
1723 */
1724static noinline_for_stack
fd279fae 1725void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1726 struct btrfs_path *path,
1727 struct btrfs_extent_inline_ref *iref,
1728 u64 parent, u64 root_objectid,
1729 u64 owner, u64 offset, int refs_to_add,
1730 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1731{
1732 struct extent_buffer *leaf;
1733 struct btrfs_extent_item *ei;
1734 unsigned long ptr;
1735 unsigned long end;
1736 unsigned long item_offset;
1737 u64 refs;
1738 int size;
1739 int type;
5d4f98a2
YZ
1740
1741 leaf = path->nodes[0];
1742 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1743 item_offset = (unsigned long)iref - (unsigned long)ei;
1744
1745 type = extent_ref_type(parent, owner);
1746 size = btrfs_extent_inline_ref_size(type);
1747
4b90c680 1748 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1749
1750 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1751 refs = btrfs_extent_refs(leaf, ei);
1752 refs += refs_to_add;
1753 btrfs_set_extent_refs(leaf, ei, refs);
1754 if (extent_op)
1755 __run_delayed_extent_op(extent_op, leaf, ei);
1756
1757 ptr = (unsigned long)ei + item_offset;
1758 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1759 if (ptr < end - size)
1760 memmove_extent_buffer(leaf, ptr + size, ptr,
1761 end - size - ptr);
1762
1763 iref = (struct btrfs_extent_inline_ref *)ptr;
1764 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1765 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1766 struct btrfs_extent_data_ref *dref;
1767 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1768 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1769 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1770 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1771 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1772 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1773 struct btrfs_shared_data_ref *sref;
1774 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1775 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1776 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1777 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1778 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1779 } else {
1780 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1781 }
1782 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1783}
1784
1785static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1786 struct btrfs_root *root,
1787 struct btrfs_path *path,
1788 struct btrfs_extent_inline_ref **ref_ret,
1789 u64 bytenr, u64 num_bytes, u64 parent,
1790 u64 root_objectid, u64 owner, u64 offset)
1791{
1792 int ret;
1793
1794 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1795 bytenr, num_bytes, parent,
1796 root_objectid, owner, offset, 0);
1797 if (ret != -ENOENT)
54aa1f4d 1798 return ret;
5d4f98a2 1799
b3b4aa74 1800 btrfs_release_path(path);
5d4f98a2
YZ
1801 *ref_ret = NULL;
1802
1803 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1804 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1805 root_objectid);
1806 } else {
1807 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1808 root_objectid, owner, offset);
b9473439 1809 }
5d4f98a2
YZ
1810 return ret;
1811}
31840ae1 1812
5d4f98a2
YZ
1813/*
1814 * helper to update/remove inline back ref
1815 */
1816static noinline_for_stack
afe5fea7 1817void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1818 struct btrfs_path *path,
1819 struct btrfs_extent_inline_ref *iref,
1820 int refs_to_mod,
fcebe456
JB
1821 struct btrfs_delayed_extent_op *extent_op,
1822 int *last_ref)
5d4f98a2
YZ
1823{
1824 struct extent_buffer *leaf;
1825 struct btrfs_extent_item *ei;
1826 struct btrfs_extent_data_ref *dref = NULL;
1827 struct btrfs_shared_data_ref *sref = NULL;
1828 unsigned long ptr;
1829 unsigned long end;
1830 u32 item_size;
1831 int size;
1832 int type;
5d4f98a2
YZ
1833 u64 refs;
1834
1835 leaf = path->nodes[0];
1836 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1837 refs = btrfs_extent_refs(leaf, ei);
1838 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1839 refs += refs_to_mod;
1840 btrfs_set_extent_refs(leaf, ei, refs);
1841 if (extent_op)
1842 __run_delayed_extent_op(extent_op, leaf, ei);
1843
1844 type = btrfs_extent_inline_ref_type(leaf, iref);
1845
1846 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1847 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1848 refs = btrfs_extent_data_ref_count(leaf, dref);
1849 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1850 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1851 refs = btrfs_shared_data_ref_count(leaf, sref);
1852 } else {
1853 refs = 1;
1854 BUG_ON(refs_to_mod != -1);
56bec294 1855 }
31840ae1 1856
5d4f98a2
YZ
1857 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1858 refs += refs_to_mod;
1859
1860 if (refs > 0) {
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1862 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1863 else
1864 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1865 } else {
fcebe456 1866 *last_ref = 1;
5d4f98a2
YZ
1867 size = btrfs_extent_inline_ref_size(type);
1868 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1869 ptr = (unsigned long)iref;
1870 end = (unsigned long)ei + item_size;
1871 if (ptr + size < end)
1872 memmove_extent_buffer(leaf, ptr, ptr + size,
1873 end - ptr - size);
1874 item_size -= size;
afe5fea7 1875 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1876 }
1877 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1878}
1879
1880static noinline_for_stack
1881int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1882 struct btrfs_root *root,
1883 struct btrfs_path *path,
1884 u64 bytenr, u64 num_bytes, u64 parent,
1885 u64 root_objectid, u64 owner,
1886 u64 offset, int refs_to_add,
1887 struct btrfs_delayed_extent_op *extent_op)
1888{
1889 struct btrfs_extent_inline_ref *iref;
1890 int ret;
1891
1892 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1893 bytenr, num_bytes, parent,
1894 root_objectid, owner, offset, 1);
1895 if (ret == 0) {
1896 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1897 update_inline_extent_backref(root, path, iref,
fcebe456 1898 refs_to_add, extent_op, NULL);
5d4f98a2 1899 } else if (ret == -ENOENT) {
fd279fae 1900 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1901 root_objectid, owner, offset,
1902 refs_to_add, extent_op);
1903 ret = 0;
771ed689 1904 }
5d4f98a2
YZ
1905 return ret;
1906}
31840ae1 1907
5d4f98a2
YZ
1908static int insert_extent_backref(struct btrfs_trans_handle *trans,
1909 struct btrfs_root *root,
1910 struct btrfs_path *path,
1911 u64 bytenr, u64 parent, u64 root_objectid,
1912 u64 owner, u64 offset, int refs_to_add)
1913{
1914 int ret;
1915 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1916 BUG_ON(refs_to_add != 1);
1917 ret = insert_tree_block_ref(trans, root, path, bytenr,
1918 parent, root_objectid);
1919 } else {
1920 ret = insert_extent_data_ref(trans, root, path, bytenr,
1921 parent, root_objectid,
1922 owner, offset, refs_to_add);
1923 }
1924 return ret;
1925}
56bec294 1926
5d4f98a2
YZ
1927static int remove_extent_backref(struct btrfs_trans_handle *trans,
1928 struct btrfs_root *root,
1929 struct btrfs_path *path,
1930 struct btrfs_extent_inline_ref *iref,
fcebe456 1931 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1932{
143bede5 1933 int ret = 0;
b9473439 1934
5d4f98a2
YZ
1935 BUG_ON(!is_data && refs_to_drop != 1);
1936 if (iref) {
afe5fea7 1937 update_inline_extent_backref(root, path, iref,
fcebe456 1938 -refs_to_drop, NULL, last_ref);
5d4f98a2 1939 } else if (is_data) {
fcebe456
JB
1940 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1941 last_ref);
5d4f98a2 1942 } else {
fcebe456 1943 *last_ref = 1;
5d4f98a2
YZ
1944 ret = btrfs_del_item(trans, root, path);
1945 }
1946 return ret;
1947}
1948
86557861 1949#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1950static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1951 u64 *discarded_bytes)
5d4f98a2 1952{
86557861
JM
1953 int j, ret = 0;
1954 u64 bytes_left, end;
4d89d377 1955 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1956
4d89d377
JM
1957 if (WARN_ON(start != aligned_start)) {
1958 len -= aligned_start - start;
1959 len = round_down(len, 1 << 9);
1960 start = aligned_start;
1961 }
d04c6b88 1962
4d89d377 1963 *discarded_bytes = 0;
86557861
JM
1964
1965 if (!len)
1966 return 0;
1967
1968 end = start + len;
1969 bytes_left = len;
1970
1971 /* Skip any superblocks on this device. */
1972 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1973 u64 sb_start = btrfs_sb_offset(j);
1974 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1975 u64 size = sb_start - start;
1976
1977 if (!in_range(sb_start, start, bytes_left) &&
1978 !in_range(sb_end, start, bytes_left) &&
1979 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1980 continue;
1981
1982 /*
1983 * Superblock spans beginning of range. Adjust start and
1984 * try again.
1985 */
1986 if (sb_start <= start) {
1987 start += sb_end - start;
1988 if (start > end) {
1989 bytes_left = 0;
1990 break;
1991 }
1992 bytes_left = end - start;
1993 continue;
1994 }
1995
1996 if (size) {
1997 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1998 GFP_NOFS, 0);
1999 if (!ret)
2000 *discarded_bytes += size;
2001 else if (ret != -EOPNOTSUPP)
2002 return ret;
2003 }
2004
2005 start = sb_end;
2006 if (start > end) {
2007 bytes_left = 0;
2008 break;
2009 }
2010 bytes_left = end - start;
2011 }
2012
2013 if (bytes_left) {
2014 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2015 GFP_NOFS, 0);
2016 if (!ret)
86557861 2017 *discarded_bytes += bytes_left;
4d89d377 2018 }
d04c6b88 2019 return ret;
5d4f98a2 2020}
5d4f98a2 2021
1edb647b
FM
2022int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2023 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2024{
5d4f98a2 2025 int ret;
5378e607 2026 u64 discarded_bytes = 0;
a1d3c478 2027 struct btrfs_bio *bbio = NULL;
5d4f98a2 2028
e244a0ae 2029
5d4f98a2 2030 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 2031 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 2032 bytenr, &num_bytes, &bbio, 0);
79787eaa 2033 /* Error condition is -ENOMEM */
5d4f98a2 2034 if (!ret) {
a1d3c478 2035 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2036 int i;
2037
5d4f98a2 2038
a1d3c478 2039 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2040 u64 bytes;
d5e2003c
JB
2041 if (!stripe->dev->can_discard)
2042 continue;
2043
5378e607
LD
2044 ret = btrfs_issue_discard(stripe->dev->bdev,
2045 stripe->physical,
d04c6b88
JM
2046 stripe->length,
2047 &bytes);
5378e607 2048 if (!ret)
d04c6b88 2049 discarded_bytes += bytes;
5378e607 2050 else if (ret != -EOPNOTSUPP)
79787eaa 2051 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2052
2053 /*
2054 * Just in case we get back EOPNOTSUPP for some reason,
2055 * just ignore the return value so we don't screw up
2056 * people calling discard_extent.
2057 */
2058 ret = 0;
5d4f98a2 2059 }
6e9606d2 2060 btrfs_put_bbio(bbio);
5d4f98a2 2061 }
5378e607
LD
2062
2063 if (actual_bytes)
2064 *actual_bytes = discarded_bytes;
2065
5d4f98a2 2066
53b381b3
DW
2067 if (ret == -EOPNOTSUPP)
2068 ret = 0;
5d4f98a2 2069 return ret;
5d4f98a2
YZ
2070}
2071
79787eaa 2072/* Can return -ENOMEM */
5d4f98a2
YZ
2073int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2074 struct btrfs_root *root,
2075 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
2076 u64 root_objectid, u64 owner, u64 offset,
2077 int no_quota)
5d4f98a2
YZ
2078{
2079 int ret;
66d7e7f0
AJ
2080 struct btrfs_fs_info *fs_info = root->fs_info;
2081
5d4f98a2
YZ
2082 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2083 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2084
2085 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2086 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2087 num_bytes,
5d4f98a2 2088 parent, root_objectid, (int)owner,
fcebe456 2089 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 2090 } else {
66d7e7f0
AJ
2091 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2092 num_bytes,
5d4f98a2 2093 parent, root_objectid, owner, offset,
fcebe456 2094 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
2095 }
2096 return ret;
2097}
2098
2099static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
c682f9b3 2101 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2102 u64 parent, u64 root_objectid,
2103 u64 owner, u64 offset, int refs_to_add,
2104 struct btrfs_delayed_extent_op *extent_op)
2105{
fcebe456 2106 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2107 struct btrfs_path *path;
2108 struct extent_buffer *leaf;
2109 struct btrfs_extent_item *item;
fcebe456 2110 struct btrfs_key key;
c682f9b3
QW
2111 u64 bytenr = node->bytenr;
2112 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2113 u64 refs;
2114 int ret;
c682f9b3 2115 int no_quota = node->no_quota;
5d4f98a2
YZ
2116
2117 path = btrfs_alloc_path();
2118 if (!path)
2119 return -ENOMEM;
2120
fcebe456
JB
2121 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2122 no_quota = 1;
2123
5d4f98a2
YZ
2124 path->reada = 1;
2125 path->leave_spinning = 1;
2126 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2127 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2128 bytenr, num_bytes, parent,
5d4f98a2
YZ
2129 root_objectid, owner, offset,
2130 refs_to_add, extent_op);
0ed4792a 2131 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2132 goto out;
fcebe456
JB
2133
2134 /*
2135 * Ok we had -EAGAIN which means we didn't have space to insert and
2136 * inline extent ref, so just update the reference count and add a
2137 * normal backref.
2138 */
5d4f98a2 2139 leaf = path->nodes[0];
fcebe456 2140 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2141 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2142 refs = btrfs_extent_refs(leaf, item);
2143 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2144 if (extent_op)
2145 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2146
5d4f98a2 2147 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2148 btrfs_release_path(path);
56bec294
CM
2149
2150 path->reada = 1;
b9473439 2151 path->leave_spinning = 1;
56bec294
CM
2152 /* now insert the actual backref */
2153 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2154 path, bytenr, parent, root_objectid,
2155 owner, offset, refs_to_add);
79787eaa
JM
2156 if (ret)
2157 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2158out:
56bec294 2159 btrfs_free_path(path);
30d133fc 2160 return ret;
56bec294
CM
2161}
2162
5d4f98a2
YZ
2163static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2164 struct btrfs_root *root,
2165 struct btrfs_delayed_ref_node *node,
2166 struct btrfs_delayed_extent_op *extent_op,
2167 int insert_reserved)
56bec294 2168{
5d4f98a2
YZ
2169 int ret = 0;
2170 struct btrfs_delayed_data_ref *ref;
2171 struct btrfs_key ins;
2172 u64 parent = 0;
2173 u64 ref_root = 0;
2174 u64 flags = 0;
2175
2176 ins.objectid = node->bytenr;
2177 ins.offset = node->num_bytes;
2178 ins.type = BTRFS_EXTENT_ITEM_KEY;
2179
2180 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2181 trace_run_delayed_data_ref(node, ref, node->action);
2182
5d4f98a2
YZ
2183 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2184 parent = ref->parent;
fcebe456 2185 ref_root = ref->root;
5d4f98a2
YZ
2186
2187 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2188 if (extent_op)
5d4f98a2 2189 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2190 ret = alloc_reserved_file_extent(trans, root,
2191 parent, ref_root, flags,
2192 ref->objectid, ref->offset,
2193 &ins, node->ref_mod);
5d4f98a2 2194 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2195 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2196 ref_root, ref->objectid,
2197 ref->offset, node->ref_mod,
c682f9b3 2198 extent_op);
5d4f98a2 2199 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2200 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2201 ref_root, ref->objectid,
2202 ref->offset, node->ref_mod,
c682f9b3 2203 extent_op);
5d4f98a2
YZ
2204 } else {
2205 BUG();
2206 }
2207 return ret;
2208}
2209
2210static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2211 struct extent_buffer *leaf,
2212 struct btrfs_extent_item *ei)
2213{
2214 u64 flags = btrfs_extent_flags(leaf, ei);
2215 if (extent_op->update_flags) {
2216 flags |= extent_op->flags_to_set;
2217 btrfs_set_extent_flags(leaf, ei, flags);
2218 }
2219
2220 if (extent_op->update_key) {
2221 struct btrfs_tree_block_info *bi;
2222 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2223 bi = (struct btrfs_tree_block_info *)(ei + 1);
2224 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2225 }
2226}
2227
2228static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2229 struct btrfs_root *root,
2230 struct btrfs_delayed_ref_node *node,
2231 struct btrfs_delayed_extent_op *extent_op)
2232{
2233 struct btrfs_key key;
2234 struct btrfs_path *path;
2235 struct btrfs_extent_item *ei;
2236 struct extent_buffer *leaf;
2237 u32 item_size;
56bec294 2238 int ret;
5d4f98a2 2239 int err = 0;
b1c79e09 2240 int metadata = !extent_op->is_data;
5d4f98a2 2241
79787eaa
JM
2242 if (trans->aborted)
2243 return 0;
2244
3173a18f
JB
2245 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2246 metadata = 0;
2247
5d4f98a2
YZ
2248 path = btrfs_alloc_path();
2249 if (!path)
2250 return -ENOMEM;
2251
2252 key.objectid = node->bytenr;
5d4f98a2 2253
3173a18f 2254 if (metadata) {
3173a18f 2255 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2256 key.offset = extent_op->level;
3173a18f
JB
2257 } else {
2258 key.type = BTRFS_EXTENT_ITEM_KEY;
2259 key.offset = node->num_bytes;
2260 }
2261
2262again:
5d4f98a2
YZ
2263 path->reada = 1;
2264 path->leave_spinning = 1;
2265 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2266 path, 0, 1);
2267 if (ret < 0) {
2268 err = ret;
2269 goto out;
2270 }
2271 if (ret > 0) {
3173a18f 2272 if (metadata) {
55994887
FDBM
2273 if (path->slots[0] > 0) {
2274 path->slots[0]--;
2275 btrfs_item_key_to_cpu(path->nodes[0], &key,
2276 path->slots[0]);
2277 if (key.objectid == node->bytenr &&
2278 key.type == BTRFS_EXTENT_ITEM_KEY &&
2279 key.offset == node->num_bytes)
2280 ret = 0;
2281 }
2282 if (ret > 0) {
2283 btrfs_release_path(path);
2284 metadata = 0;
3173a18f 2285
55994887
FDBM
2286 key.objectid = node->bytenr;
2287 key.offset = node->num_bytes;
2288 key.type = BTRFS_EXTENT_ITEM_KEY;
2289 goto again;
2290 }
2291 } else {
2292 err = -EIO;
2293 goto out;
3173a18f 2294 }
5d4f98a2
YZ
2295 }
2296
2297 leaf = path->nodes[0];
2298 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2299#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2300 if (item_size < sizeof(*ei)) {
2301 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2302 path, (u64)-1, 0);
2303 if (ret < 0) {
2304 err = ret;
2305 goto out;
2306 }
2307 leaf = path->nodes[0];
2308 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2309 }
2310#endif
2311 BUG_ON(item_size < sizeof(*ei));
2312 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2313 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2314
5d4f98a2
YZ
2315 btrfs_mark_buffer_dirty(leaf);
2316out:
2317 btrfs_free_path(path);
2318 return err;
56bec294
CM
2319}
2320
5d4f98a2
YZ
2321static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2322 struct btrfs_root *root,
2323 struct btrfs_delayed_ref_node *node,
2324 struct btrfs_delayed_extent_op *extent_op,
2325 int insert_reserved)
56bec294
CM
2326{
2327 int ret = 0;
5d4f98a2
YZ
2328 struct btrfs_delayed_tree_ref *ref;
2329 struct btrfs_key ins;
2330 u64 parent = 0;
2331 u64 ref_root = 0;
3173a18f
JB
2332 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2333 SKINNY_METADATA);
56bec294 2334
5d4f98a2 2335 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2336 trace_run_delayed_tree_ref(node, ref, node->action);
2337
5d4f98a2
YZ
2338 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2339 parent = ref->parent;
fcebe456 2340 ref_root = ref->root;
5d4f98a2 2341
3173a18f
JB
2342 ins.objectid = node->bytenr;
2343 if (skinny_metadata) {
2344 ins.offset = ref->level;
2345 ins.type = BTRFS_METADATA_ITEM_KEY;
2346 } else {
2347 ins.offset = node->num_bytes;
2348 ins.type = BTRFS_EXTENT_ITEM_KEY;
2349 }
2350
5d4f98a2
YZ
2351 BUG_ON(node->ref_mod != 1);
2352 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2353 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2354 ret = alloc_reserved_tree_block(trans, root,
2355 parent, ref_root,
2356 extent_op->flags_to_set,
2357 &extent_op->key,
fcebe456
JB
2358 ref->level, &ins,
2359 node->no_quota);
5d4f98a2 2360 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2361 ret = __btrfs_inc_extent_ref(trans, root, node,
2362 parent, ref_root,
2363 ref->level, 0, 1,
fcebe456 2364 extent_op);
5d4f98a2 2365 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2366 ret = __btrfs_free_extent(trans, root, node,
2367 parent, ref_root,
2368 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2369 } else {
2370 BUG();
2371 }
56bec294
CM
2372 return ret;
2373}
2374
2375/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2376static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2377 struct btrfs_root *root,
2378 struct btrfs_delayed_ref_node *node,
2379 struct btrfs_delayed_extent_op *extent_op,
2380 int insert_reserved)
56bec294 2381{
79787eaa
JM
2382 int ret = 0;
2383
857cc2fc
JB
2384 if (trans->aborted) {
2385 if (insert_reserved)
2386 btrfs_pin_extent(root, node->bytenr,
2387 node->num_bytes, 1);
79787eaa 2388 return 0;
857cc2fc 2389 }
79787eaa 2390
5d4f98a2 2391 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2392 struct btrfs_delayed_ref_head *head;
2393 /*
2394 * we've hit the end of the chain and we were supposed
2395 * to insert this extent into the tree. But, it got
2396 * deleted before we ever needed to insert it, so all
2397 * we have to do is clean up the accounting
2398 */
5d4f98a2
YZ
2399 BUG_ON(extent_op);
2400 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2401 trace_run_delayed_ref_head(node, head, node->action);
2402
56bec294 2403 if (insert_reserved) {
f0486c68
YZ
2404 btrfs_pin_extent(root, node->bytenr,
2405 node->num_bytes, 1);
5d4f98a2
YZ
2406 if (head->is_data) {
2407 ret = btrfs_del_csums(trans, root,
2408 node->bytenr,
2409 node->num_bytes);
5d4f98a2 2410 }
56bec294 2411 }
79787eaa 2412 return ret;
56bec294
CM
2413 }
2414
5d4f98a2
YZ
2415 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2416 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2417 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2418 insert_reserved);
2419 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2420 node->type == BTRFS_SHARED_DATA_REF_KEY)
2421 ret = run_delayed_data_ref(trans, root, node, extent_op,
2422 insert_reserved);
2423 else
2424 BUG();
2425 return ret;
56bec294
CM
2426}
2427
c6fc2454 2428static inline struct btrfs_delayed_ref_node *
56bec294
CM
2429select_delayed_ref(struct btrfs_delayed_ref_head *head)
2430{
cffc3374
FM
2431 struct btrfs_delayed_ref_node *ref;
2432
c6fc2454
QW
2433 if (list_empty(&head->ref_list))
2434 return NULL;
d7df2c79 2435
cffc3374
FM
2436 /*
2437 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2438 * This is to prevent a ref count from going down to zero, which deletes
2439 * the extent item from the extent tree, when there still are references
2440 * to add, which would fail because they would not find the extent item.
2441 */
2442 list_for_each_entry(ref, &head->ref_list, list) {
2443 if (ref->action == BTRFS_ADD_DELAYED_REF)
2444 return ref;
2445 }
2446
c6fc2454
QW
2447 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2448 list);
56bec294
CM
2449}
2450
79787eaa
JM
2451/*
2452 * Returns 0 on success or if called with an already aborted transaction.
2453 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2454 */
d7df2c79
JB
2455static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2456 struct btrfs_root *root,
2457 unsigned long nr)
56bec294 2458{
56bec294
CM
2459 struct btrfs_delayed_ref_root *delayed_refs;
2460 struct btrfs_delayed_ref_node *ref;
2461 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2462 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2463 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2464 ktime_t start = ktime_get();
56bec294 2465 int ret;
d7df2c79 2466 unsigned long count = 0;
0a2b2a84 2467 unsigned long actual_count = 0;
56bec294 2468 int must_insert_reserved = 0;
56bec294
CM
2469
2470 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2471 while (1) {
2472 if (!locked_ref) {
d7df2c79 2473 if (count >= nr)
56bec294 2474 break;
56bec294 2475
d7df2c79
JB
2476 spin_lock(&delayed_refs->lock);
2477 locked_ref = btrfs_select_ref_head(trans);
2478 if (!locked_ref) {
2479 spin_unlock(&delayed_refs->lock);
2480 break;
2481 }
c3e69d58
CM
2482
2483 /* grab the lock that says we are going to process
2484 * all the refs for this head */
2485 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2486 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2487 /*
2488 * we may have dropped the spin lock to get the head
2489 * mutex lock, and that might have given someone else
2490 * time to free the head. If that's true, it has been
2491 * removed from our list and we can move on.
2492 */
2493 if (ret == -EAGAIN) {
2494 locked_ref = NULL;
2495 count++;
2496 continue;
56bec294
CM
2497 }
2498 }
a28ec197 2499
d7df2c79 2500 spin_lock(&locked_ref->lock);
ae1e206b 2501
d1270cd9
AJ
2502 /*
2503 * locked_ref is the head node, so we have to go one
2504 * node back for any delayed ref updates
2505 */
2506 ref = select_delayed_ref(locked_ref);
2507
2508 if (ref && ref->seq &&
097b8a7c 2509 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2510 spin_unlock(&locked_ref->lock);
093486c4 2511 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2512 spin_lock(&delayed_refs->lock);
2513 locked_ref->processing = 0;
d1270cd9
AJ
2514 delayed_refs->num_heads_ready++;
2515 spin_unlock(&delayed_refs->lock);
d7df2c79 2516 locked_ref = NULL;
d1270cd9 2517 cond_resched();
27a377db 2518 count++;
d1270cd9
AJ
2519 continue;
2520 }
2521
56bec294
CM
2522 /*
2523 * record the must insert reserved flag before we
2524 * drop the spin lock.
2525 */
2526 must_insert_reserved = locked_ref->must_insert_reserved;
2527 locked_ref->must_insert_reserved = 0;
7bb86316 2528
5d4f98a2
YZ
2529 extent_op = locked_ref->extent_op;
2530 locked_ref->extent_op = NULL;
2531
56bec294 2532 if (!ref) {
d7df2c79
JB
2533
2534
56bec294
CM
2535 /* All delayed refs have been processed, Go ahead
2536 * and send the head node to run_one_delayed_ref,
2537 * so that any accounting fixes can happen
2538 */
2539 ref = &locked_ref->node;
5d4f98a2
YZ
2540
2541 if (extent_op && must_insert_reserved) {
78a6184a 2542 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2543 extent_op = NULL;
2544 }
2545
2546 if (extent_op) {
d7df2c79 2547 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2548 ret = run_delayed_extent_op(trans, root,
2549 ref, extent_op);
78a6184a 2550 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2551
79787eaa 2552 if (ret) {
857cc2fc
JB
2553 /*
2554 * Need to reset must_insert_reserved if
2555 * there was an error so the abort stuff
2556 * can cleanup the reserved space
2557 * properly.
2558 */
2559 if (must_insert_reserved)
2560 locked_ref->must_insert_reserved = 1;
d7df2c79 2561 locked_ref->processing = 0;
c2cf52eb 2562 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2563 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2564 return ret;
2565 }
d7df2c79 2566 continue;
5d4f98a2 2567 }
02217ed2 2568
d7df2c79
JB
2569 /*
2570 * Need to drop our head ref lock and re-aqcuire the
2571 * delayed ref lock and then re-check to make sure
2572 * nobody got added.
2573 */
2574 spin_unlock(&locked_ref->lock);
2575 spin_lock(&delayed_refs->lock);
2576 spin_lock(&locked_ref->lock);
c6fc2454 2577 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2578 locked_ref->extent_op) {
d7df2c79
JB
2579 spin_unlock(&locked_ref->lock);
2580 spin_unlock(&delayed_refs->lock);
2581 continue;
2582 }
2583 ref->in_tree = 0;
2584 delayed_refs->num_heads--;
c46effa6
LB
2585 rb_erase(&locked_ref->href_node,
2586 &delayed_refs->href_root);
d7df2c79
JB
2587 spin_unlock(&delayed_refs->lock);
2588 } else {
0a2b2a84 2589 actual_count++;
d7df2c79 2590 ref->in_tree = 0;
c6fc2454 2591 list_del(&ref->list);
c46effa6 2592 }
d7df2c79
JB
2593 atomic_dec(&delayed_refs->num_entries);
2594
093486c4 2595 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2596 /*
2597 * when we play the delayed ref, also correct the
2598 * ref_mod on head
2599 */
2600 switch (ref->action) {
2601 case BTRFS_ADD_DELAYED_REF:
2602 case BTRFS_ADD_DELAYED_EXTENT:
2603 locked_ref->node.ref_mod -= ref->ref_mod;
2604 break;
2605 case BTRFS_DROP_DELAYED_REF:
2606 locked_ref->node.ref_mod += ref->ref_mod;
2607 break;
2608 default:
2609 WARN_ON(1);
2610 }
2611 }
d7df2c79 2612 spin_unlock(&locked_ref->lock);
925baedd 2613
5d4f98a2 2614 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2615 must_insert_reserved);
eb099670 2616
78a6184a 2617 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2618 if (ret) {
d7df2c79 2619 locked_ref->processing = 0;
093486c4
MX
2620 btrfs_delayed_ref_unlock(locked_ref);
2621 btrfs_put_delayed_ref(ref);
c2cf52eb 2622 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2623 return ret;
2624 }
2625
093486c4
MX
2626 /*
2627 * If this node is a head, that means all the refs in this head
2628 * have been dealt with, and we will pick the next head to deal
2629 * with, so we must unlock the head and drop it from the cluster
2630 * list before we release it.
2631 */
2632 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2633 if (locked_ref->is_data &&
2634 locked_ref->total_ref_mod < 0) {
2635 spin_lock(&delayed_refs->lock);
2636 delayed_refs->pending_csums -= ref->num_bytes;
2637 spin_unlock(&delayed_refs->lock);
2638 }
093486c4
MX
2639 btrfs_delayed_ref_unlock(locked_ref);
2640 locked_ref = NULL;
2641 }
2642 btrfs_put_delayed_ref(ref);
2643 count++;
c3e69d58 2644 cond_resched();
c3e69d58 2645 }
0a2b2a84
JB
2646
2647 /*
2648 * We don't want to include ref heads since we can have empty ref heads
2649 * and those will drastically skew our runtime down since we just do
2650 * accounting, no actual extent tree updates.
2651 */
2652 if (actual_count > 0) {
2653 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2654 u64 avg;
2655
2656 /*
2657 * We weigh the current average higher than our current runtime
2658 * to avoid large swings in the average.
2659 */
2660 spin_lock(&delayed_refs->lock);
2661 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2662 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2663 spin_unlock(&delayed_refs->lock);
2664 }
d7df2c79 2665 return 0;
c3e69d58
CM
2666}
2667
709c0486
AJ
2668#ifdef SCRAMBLE_DELAYED_REFS
2669/*
2670 * Normally delayed refs get processed in ascending bytenr order. This
2671 * correlates in most cases to the order added. To expose dependencies on this
2672 * order, we start to process the tree in the middle instead of the beginning
2673 */
2674static u64 find_middle(struct rb_root *root)
2675{
2676 struct rb_node *n = root->rb_node;
2677 struct btrfs_delayed_ref_node *entry;
2678 int alt = 1;
2679 u64 middle;
2680 u64 first = 0, last = 0;
2681
2682 n = rb_first(root);
2683 if (n) {
2684 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2685 first = entry->bytenr;
2686 }
2687 n = rb_last(root);
2688 if (n) {
2689 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2690 last = entry->bytenr;
2691 }
2692 n = root->rb_node;
2693
2694 while (n) {
2695 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2696 WARN_ON(!entry->in_tree);
2697
2698 middle = entry->bytenr;
2699
2700 if (alt)
2701 n = n->rb_left;
2702 else
2703 n = n->rb_right;
2704
2705 alt = 1 - alt;
2706 }
2707 return middle;
2708}
2709#endif
2710
1be41b78
JB
2711static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2712{
2713 u64 num_bytes;
2714
2715 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2716 sizeof(struct btrfs_extent_inline_ref));
2717 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2718 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2719
2720 /*
2721 * We don't ever fill up leaves all the way so multiply by 2 just to be
2722 * closer to what we're really going to want to ouse.
2723 */
f8c269d7 2724 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2725}
2726
1262133b
JB
2727/*
2728 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2729 * would require to store the csums for that many bytes.
2730 */
28f75a0e 2731u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2732{
2733 u64 csum_size;
2734 u64 num_csums_per_leaf;
2735 u64 num_csums;
2736
2737 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2738 num_csums_per_leaf = div64_u64(csum_size,
2739 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2740 num_csums = div64_u64(csum_bytes, root->sectorsize);
2741 num_csums += num_csums_per_leaf - 1;
2742 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2743 return num_csums;
2744}
2745
0a2b2a84 2746int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2747 struct btrfs_root *root)
2748{
2749 struct btrfs_block_rsv *global_rsv;
2750 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2751 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2752 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2753 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2754 int ret = 0;
2755
2756 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2757 num_heads = heads_to_leaves(root, num_heads);
2758 if (num_heads > 1)
707e8a07 2759 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2760 num_bytes <<= 1;
28f75a0e 2761 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2762 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2763 num_dirty_bgs);
1be41b78
JB
2764 global_rsv = &root->fs_info->global_block_rsv;
2765
2766 /*
2767 * If we can't allocate any more chunks lets make sure we have _lots_ of
2768 * wiggle room since running delayed refs can create more delayed refs.
2769 */
cb723e49
JB
2770 if (global_rsv->space_info->full) {
2771 num_dirty_bgs_bytes <<= 1;
1be41b78 2772 num_bytes <<= 1;
cb723e49 2773 }
1be41b78
JB
2774
2775 spin_lock(&global_rsv->lock);
cb723e49 2776 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2777 ret = 1;
2778 spin_unlock(&global_rsv->lock);
2779 return ret;
2780}
2781
0a2b2a84
JB
2782int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2783 struct btrfs_root *root)
2784{
2785 struct btrfs_fs_info *fs_info = root->fs_info;
2786 u64 num_entries =
2787 atomic_read(&trans->transaction->delayed_refs.num_entries);
2788 u64 avg_runtime;
a79b7d4b 2789 u64 val;
0a2b2a84
JB
2790
2791 smp_mb();
2792 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2793 val = num_entries * avg_runtime;
0a2b2a84
JB
2794 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2795 return 1;
a79b7d4b
CM
2796 if (val >= NSEC_PER_SEC / 2)
2797 return 2;
0a2b2a84
JB
2798
2799 return btrfs_check_space_for_delayed_refs(trans, root);
2800}
2801
a79b7d4b
CM
2802struct async_delayed_refs {
2803 struct btrfs_root *root;
2804 int count;
2805 int error;
2806 int sync;
2807 struct completion wait;
2808 struct btrfs_work work;
2809};
2810
2811static void delayed_ref_async_start(struct btrfs_work *work)
2812{
2813 struct async_delayed_refs *async;
2814 struct btrfs_trans_handle *trans;
2815 int ret;
2816
2817 async = container_of(work, struct async_delayed_refs, work);
2818
2819 trans = btrfs_join_transaction(async->root);
2820 if (IS_ERR(trans)) {
2821 async->error = PTR_ERR(trans);
2822 goto done;
2823 }
2824
2825 /*
2826 * trans->sync means that when we call end_transaciton, we won't
2827 * wait on delayed refs
2828 */
2829 trans->sync = true;
2830 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2831 if (ret)
2832 async->error = ret;
2833
2834 ret = btrfs_end_transaction(trans, async->root);
2835 if (ret && !async->error)
2836 async->error = ret;
2837done:
2838 if (async->sync)
2839 complete(&async->wait);
2840 else
2841 kfree(async);
2842}
2843
2844int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2845 unsigned long count, int wait)
2846{
2847 struct async_delayed_refs *async;
2848 int ret;
2849
2850 async = kmalloc(sizeof(*async), GFP_NOFS);
2851 if (!async)
2852 return -ENOMEM;
2853
2854 async->root = root->fs_info->tree_root;
2855 async->count = count;
2856 async->error = 0;
2857 if (wait)
2858 async->sync = 1;
2859 else
2860 async->sync = 0;
2861 init_completion(&async->wait);
2862
9e0af237
LB
2863 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2864 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2865
2866 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2867
2868 if (wait) {
2869 wait_for_completion(&async->wait);
2870 ret = async->error;
2871 kfree(async);
2872 return ret;
2873 }
2874 return 0;
2875}
2876
c3e69d58
CM
2877/*
2878 * this starts processing the delayed reference count updates and
2879 * extent insertions we have queued up so far. count can be
2880 * 0, which means to process everything in the tree at the start
2881 * of the run (but not newly added entries), or it can be some target
2882 * number you'd like to process.
79787eaa
JM
2883 *
2884 * Returns 0 on success or if called with an aborted transaction
2885 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2886 */
2887int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2888 struct btrfs_root *root, unsigned long count)
2889{
2890 struct rb_node *node;
2891 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2892 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2893 int ret;
2894 int run_all = count == (unsigned long)-1;
d9a0540a 2895 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2896
79787eaa
JM
2897 /* We'll clean this up in btrfs_cleanup_transaction */
2898 if (trans->aborted)
2899 return 0;
2900
c3e69d58
CM
2901 if (root == root->fs_info->extent_root)
2902 root = root->fs_info->tree_root;
2903
2904 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2905 if (count == 0)
d7df2c79 2906 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2907
c3e69d58 2908again:
709c0486
AJ
2909#ifdef SCRAMBLE_DELAYED_REFS
2910 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2911#endif
d9a0540a 2912 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2913 ret = __btrfs_run_delayed_refs(trans, root, count);
2914 if (ret < 0) {
2915 btrfs_abort_transaction(trans, root, ret);
2916 return ret;
eb099670 2917 }
c3e69d58 2918
56bec294 2919 if (run_all) {
d7df2c79 2920 if (!list_empty(&trans->new_bgs))
ea658bad 2921 btrfs_create_pending_block_groups(trans, root);
ea658bad 2922
d7df2c79 2923 spin_lock(&delayed_refs->lock);
c46effa6 2924 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2925 if (!node) {
2926 spin_unlock(&delayed_refs->lock);
56bec294 2927 goto out;
d7df2c79 2928 }
c3e69d58 2929 count = (unsigned long)-1;
e9d0b13b 2930
56bec294 2931 while (node) {
c46effa6
LB
2932 head = rb_entry(node, struct btrfs_delayed_ref_head,
2933 href_node);
2934 if (btrfs_delayed_ref_is_head(&head->node)) {
2935 struct btrfs_delayed_ref_node *ref;
5caf2a00 2936
c46effa6 2937 ref = &head->node;
56bec294
CM
2938 atomic_inc(&ref->refs);
2939
2940 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2941 /*
2942 * Mutex was contended, block until it's
2943 * released and try again
2944 */
56bec294
CM
2945 mutex_lock(&head->mutex);
2946 mutex_unlock(&head->mutex);
2947
2948 btrfs_put_delayed_ref(ref);
1887be66 2949 cond_resched();
56bec294 2950 goto again;
c46effa6
LB
2951 } else {
2952 WARN_ON(1);
56bec294
CM
2953 }
2954 node = rb_next(node);
2955 }
2956 spin_unlock(&delayed_refs->lock);
d7df2c79 2957 cond_resched();
56bec294 2958 goto again;
5f39d397 2959 }
54aa1f4d 2960out:
edf39272 2961 assert_qgroups_uptodate(trans);
d9a0540a 2962 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
2963 return 0;
2964}
2965
5d4f98a2
YZ
2966int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root,
2968 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2969 int level, int is_data)
5d4f98a2
YZ
2970{
2971 struct btrfs_delayed_extent_op *extent_op;
2972 int ret;
2973
78a6184a 2974 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2975 if (!extent_op)
2976 return -ENOMEM;
2977
2978 extent_op->flags_to_set = flags;
2979 extent_op->update_flags = 1;
2980 extent_op->update_key = 0;
2981 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2982 extent_op->level = level;
5d4f98a2 2983
66d7e7f0
AJ
2984 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2985 num_bytes, extent_op);
5d4f98a2 2986 if (ret)
78a6184a 2987 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2988 return ret;
2989}
2990
2991static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2992 struct btrfs_root *root,
2993 struct btrfs_path *path,
2994 u64 objectid, u64 offset, u64 bytenr)
2995{
2996 struct btrfs_delayed_ref_head *head;
2997 struct btrfs_delayed_ref_node *ref;
2998 struct btrfs_delayed_data_ref *data_ref;
2999 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
3000 int ret = 0;
3001
5d4f98a2
YZ
3002 delayed_refs = &trans->transaction->delayed_refs;
3003 spin_lock(&delayed_refs->lock);
3004 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
3005 if (!head) {
3006 spin_unlock(&delayed_refs->lock);
3007 return 0;
3008 }
5d4f98a2
YZ
3009
3010 if (!mutex_trylock(&head->mutex)) {
3011 atomic_inc(&head->node.refs);
3012 spin_unlock(&delayed_refs->lock);
3013
b3b4aa74 3014 btrfs_release_path(path);
5d4f98a2 3015
8cc33e5c
DS
3016 /*
3017 * Mutex was contended, block until it's released and let
3018 * caller try again
3019 */
5d4f98a2
YZ
3020 mutex_lock(&head->mutex);
3021 mutex_unlock(&head->mutex);
3022 btrfs_put_delayed_ref(&head->node);
3023 return -EAGAIN;
3024 }
d7df2c79 3025 spin_unlock(&delayed_refs->lock);
5d4f98a2 3026
d7df2c79 3027 spin_lock(&head->lock);
c6fc2454 3028 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3029 /* If it's a shared ref we know a cross reference exists */
3030 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3031 ret = 1;
3032 break;
3033 }
5d4f98a2 3034
d7df2c79 3035 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3036
d7df2c79
JB
3037 /*
3038 * If our ref doesn't match the one we're currently looking at
3039 * then we have a cross reference.
3040 */
3041 if (data_ref->root != root->root_key.objectid ||
3042 data_ref->objectid != objectid ||
3043 data_ref->offset != offset) {
3044 ret = 1;
3045 break;
3046 }
5d4f98a2 3047 }
d7df2c79 3048 spin_unlock(&head->lock);
5d4f98a2 3049 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3050 return ret;
3051}
3052
3053static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3054 struct btrfs_root *root,
3055 struct btrfs_path *path,
3056 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
3057{
3058 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3059 struct extent_buffer *leaf;
5d4f98a2
YZ
3060 struct btrfs_extent_data_ref *ref;
3061 struct btrfs_extent_inline_ref *iref;
3062 struct btrfs_extent_item *ei;
f321e491 3063 struct btrfs_key key;
5d4f98a2 3064 u32 item_size;
be20aa9d 3065 int ret;
925baedd 3066
be20aa9d 3067 key.objectid = bytenr;
31840ae1 3068 key.offset = (u64)-1;
f321e491 3069 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3070
be20aa9d
CM
3071 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3072 if (ret < 0)
3073 goto out;
79787eaa 3074 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3075
3076 ret = -ENOENT;
3077 if (path->slots[0] == 0)
31840ae1 3078 goto out;
be20aa9d 3079
31840ae1 3080 path->slots[0]--;
f321e491 3081 leaf = path->nodes[0];
5d4f98a2 3082 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3083
5d4f98a2 3084 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3085 goto out;
f321e491 3086
5d4f98a2
YZ
3087 ret = 1;
3088 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3089#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3090 if (item_size < sizeof(*ei)) {
3091 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3092 goto out;
3093 }
3094#endif
3095 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3096
5d4f98a2
YZ
3097 if (item_size != sizeof(*ei) +
3098 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3099 goto out;
be20aa9d 3100
5d4f98a2
YZ
3101 if (btrfs_extent_generation(leaf, ei) <=
3102 btrfs_root_last_snapshot(&root->root_item))
3103 goto out;
3104
3105 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3106 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3107 BTRFS_EXTENT_DATA_REF_KEY)
3108 goto out;
3109
3110 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3111 if (btrfs_extent_refs(leaf, ei) !=
3112 btrfs_extent_data_ref_count(leaf, ref) ||
3113 btrfs_extent_data_ref_root(leaf, ref) !=
3114 root->root_key.objectid ||
3115 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3116 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3117 goto out;
3118
3119 ret = 0;
3120out:
3121 return ret;
3122}
3123
3124int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3125 struct btrfs_root *root,
3126 u64 objectid, u64 offset, u64 bytenr)
3127{
3128 struct btrfs_path *path;
3129 int ret;
3130 int ret2;
3131
3132 path = btrfs_alloc_path();
3133 if (!path)
3134 return -ENOENT;
3135
3136 do {
3137 ret = check_committed_ref(trans, root, path, objectid,
3138 offset, bytenr);
3139 if (ret && ret != -ENOENT)
f321e491 3140 goto out;
80ff3856 3141
5d4f98a2
YZ
3142 ret2 = check_delayed_ref(trans, root, path, objectid,
3143 offset, bytenr);
3144 } while (ret2 == -EAGAIN);
3145
3146 if (ret2 && ret2 != -ENOENT) {
3147 ret = ret2;
3148 goto out;
f321e491 3149 }
5d4f98a2
YZ
3150
3151 if (ret != -ENOENT || ret2 != -ENOENT)
3152 ret = 0;
be20aa9d 3153out:
80ff3856 3154 btrfs_free_path(path);
f0486c68
YZ
3155 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3156 WARN_ON(ret > 0);
f321e491 3157 return ret;
be20aa9d 3158}
c5739bba 3159
5d4f98a2 3160static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3161 struct btrfs_root *root,
5d4f98a2 3162 struct extent_buffer *buf,
e339a6b0 3163 int full_backref, int inc)
31840ae1
ZY
3164{
3165 u64 bytenr;
5d4f98a2
YZ
3166 u64 num_bytes;
3167 u64 parent;
31840ae1 3168 u64 ref_root;
31840ae1 3169 u32 nritems;
31840ae1
ZY
3170 struct btrfs_key key;
3171 struct btrfs_file_extent_item *fi;
3172 int i;
3173 int level;
3174 int ret = 0;
31840ae1 3175 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3176 u64, u64, u64, u64, u64, u64, int);
31840ae1 3177
fccb84c9
DS
3178
3179 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3180 return 0;
fccb84c9 3181
31840ae1 3182 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3183 nritems = btrfs_header_nritems(buf);
3184 level = btrfs_header_level(buf);
3185
27cdeb70 3186 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3187 return 0;
31840ae1 3188
5d4f98a2
YZ
3189 if (inc)
3190 process_func = btrfs_inc_extent_ref;
3191 else
3192 process_func = btrfs_free_extent;
31840ae1 3193
5d4f98a2
YZ
3194 if (full_backref)
3195 parent = buf->start;
3196 else
3197 parent = 0;
3198
3199 for (i = 0; i < nritems; i++) {
31840ae1 3200 if (level == 0) {
5d4f98a2 3201 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3202 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3203 continue;
5d4f98a2 3204 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3205 struct btrfs_file_extent_item);
3206 if (btrfs_file_extent_type(buf, fi) ==
3207 BTRFS_FILE_EXTENT_INLINE)
3208 continue;
3209 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3210 if (bytenr == 0)
3211 continue;
5d4f98a2
YZ
3212
3213 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3214 key.offset -= btrfs_file_extent_offset(buf, fi);
3215 ret = process_func(trans, root, bytenr, num_bytes,
3216 parent, ref_root, key.objectid,
e339a6b0 3217 key.offset, 1);
31840ae1
ZY
3218 if (ret)
3219 goto fail;
3220 } else {
5d4f98a2 3221 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3222 num_bytes = root->nodesize;
5d4f98a2 3223 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3224 parent, ref_root, level - 1, 0,
e339a6b0 3225 1);
31840ae1
ZY
3226 if (ret)
3227 goto fail;
3228 }
3229 }
3230 return 0;
3231fail:
5d4f98a2
YZ
3232 return ret;
3233}
3234
3235int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3236 struct extent_buffer *buf, int full_backref)
5d4f98a2 3237{
e339a6b0 3238 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3239}
3240
3241int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3242 struct extent_buffer *buf, int full_backref)
5d4f98a2 3243{
e339a6b0 3244 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3245}
3246
9078a3e1
CM
3247static int write_one_cache_group(struct btrfs_trans_handle *trans,
3248 struct btrfs_root *root,
3249 struct btrfs_path *path,
3250 struct btrfs_block_group_cache *cache)
3251{
3252 int ret;
9078a3e1 3253 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3254 unsigned long bi;
3255 struct extent_buffer *leaf;
9078a3e1 3256
9078a3e1 3257 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3258 if (ret) {
3259 if (ret > 0)
3260 ret = -ENOENT;
54aa1f4d 3261 goto fail;
df95e7f0 3262 }
5f39d397
CM
3263
3264 leaf = path->nodes[0];
3265 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3266 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3267 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3268fail:
24b89d08 3269 btrfs_release_path(path);
df95e7f0 3270 return ret;
9078a3e1
CM
3271
3272}
3273
4a8c9a62
YZ
3274static struct btrfs_block_group_cache *
3275next_block_group(struct btrfs_root *root,
3276 struct btrfs_block_group_cache *cache)
3277{
3278 struct rb_node *node;
292cbd51 3279
4a8c9a62 3280 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3281
3282 /* If our block group was removed, we need a full search. */
3283 if (RB_EMPTY_NODE(&cache->cache_node)) {
3284 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3285
3286 spin_unlock(&root->fs_info->block_group_cache_lock);
3287 btrfs_put_block_group(cache);
3288 cache = btrfs_lookup_first_block_group(root->fs_info,
3289 next_bytenr);
3290 return cache;
3291 }
4a8c9a62
YZ
3292 node = rb_next(&cache->cache_node);
3293 btrfs_put_block_group(cache);
3294 if (node) {
3295 cache = rb_entry(node, struct btrfs_block_group_cache,
3296 cache_node);
11dfe35a 3297 btrfs_get_block_group(cache);
4a8c9a62
YZ
3298 } else
3299 cache = NULL;
3300 spin_unlock(&root->fs_info->block_group_cache_lock);
3301 return cache;
3302}
3303
0af3d00b
JB
3304static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3305 struct btrfs_trans_handle *trans,
3306 struct btrfs_path *path)
3307{
3308 struct btrfs_root *root = block_group->fs_info->tree_root;
3309 struct inode *inode = NULL;
3310 u64 alloc_hint = 0;
2b20982e 3311 int dcs = BTRFS_DC_ERROR;
f8c269d7 3312 u64 num_pages = 0;
0af3d00b
JB
3313 int retries = 0;
3314 int ret = 0;
3315
3316 /*
3317 * If this block group is smaller than 100 megs don't bother caching the
3318 * block group.
3319 */
3320 if (block_group->key.offset < (100 * 1024 * 1024)) {
3321 spin_lock(&block_group->lock);
3322 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3323 spin_unlock(&block_group->lock);
3324 return 0;
3325 }
3326
0c0ef4bc
JB
3327 if (trans->aborted)
3328 return 0;
0af3d00b
JB
3329again:
3330 inode = lookup_free_space_inode(root, block_group, path);
3331 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3332 ret = PTR_ERR(inode);
b3b4aa74 3333 btrfs_release_path(path);
0af3d00b
JB
3334 goto out;
3335 }
3336
3337 if (IS_ERR(inode)) {
3338 BUG_ON(retries);
3339 retries++;
3340
3341 if (block_group->ro)
3342 goto out_free;
3343
3344 ret = create_free_space_inode(root, trans, block_group, path);
3345 if (ret)
3346 goto out_free;
3347 goto again;
3348 }
3349
5b0e95bf
JB
3350 /* We've already setup this transaction, go ahead and exit */
3351 if (block_group->cache_generation == trans->transid &&
3352 i_size_read(inode)) {
3353 dcs = BTRFS_DC_SETUP;
3354 goto out_put;
3355 }
3356
0af3d00b
JB
3357 /*
3358 * We want to set the generation to 0, that way if anything goes wrong
3359 * from here on out we know not to trust this cache when we load up next
3360 * time.
3361 */
3362 BTRFS_I(inode)->generation = 0;
3363 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3364 if (ret) {
3365 /*
3366 * So theoretically we could recover from this, simply set the
3367 * super cache generation to 0 so we know to invalidate the
3368 * cache, but then we'd have to keep track of the block groups
3369 * that fail this way so we know we _have_ to reset this cache
3370 * before the next commit or risk reading stale cache. So to
3371 * limit our exposure to horrible edge cases lets just abort the
3372 * transaction, this only happens in really bad situations
3373 * anyway.
3374 */
3375 btrfs_abort_transaction(trans, root, ret);
3376 goto out_put;
3377 }
0af3d00b
JB
3378 WARN_ON(ret);
3379
3380 if (i_size_read(inode) > 0) {
7b61cd92
MX
3381 ret = btrfs_check_trunc_cache_free_space(root,
3382 &root->fs_info->global_block_rsv);
3383 if (ret)
3384 goto out_put;
3385
1bbc621e 3386 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3387 if (ret)
3388 goto out_put;
3389 }
3390
3391 spin_lock(&block_group->lock);
cf7c1ef6 3392 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3393 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3394 /*
3395 * don't bother trying to write stuff out _if_
3396 * a) we're not cached,
3397 * b) we're with nospace_cache mount option.
3398 */
2b20982e 3399 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3400 spin_unlock(&block_group->lock);
3401 goto out_put;
3402 }
3403 spin_unlock(&block_group->lock);
3404
6fc823b1
JB
3405 /*
3406 * Try to preallocate enough space based on how big the block group is.
3407 * Keep in mind this has to include any pinned space which could end up
3408 * taking up quite a bit since it's not folded into the other space
3409 * cache.
3410 */
f8c269d7 3411 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3412 if (!num_pages)
3413 num_pages = 1;
3414
0af3d00b
JB
3415 num_pages *= 16;
3416 num_pages *= PAGE_CACHE_SIZE;
3417
e2d1f923 3418 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
0af3d00b
JB
3419 if (ret)
3420 goto out_put;
3421
3422 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3423 num_pages, num_pages,
3424 &alloc_hint);
2b20982e
JB
3425 if (!ret)
3426 dcs = BTRFS_DC_SETUP;
0af3d00b 3427 btrfs_free_reserved_data_space(inode, num_pages);
c09544e0 3428
0af3d00b
JB
3429out_put:
3430 iput(inode);
3431out_free:
b3b4aa74 3432 btrfs_release_path(path);
0af3d00b
JB
3433out:
3434 spin_lock(&block_group->lock);
e65cbb94 3435 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3436 block_group->cache_generation = trans->transid;
2b20982e 3437 block_group->disk_cache_state = dcs;
0af3d00b
JB
3438 spin_unlock(&block_group->lock);
3439
3440 return ret;
3441}
3442
dcdf7f6d
JB
3443int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3444 struct btrfs_root *root)
3445{
3446 struct btrfs_block_group_cache *cache, *tmp;
3447 struct btrfs_transaction *cur_trans = trans->transaction;
3448 struct btrfs_path *path;
3449
3450 if (list_empty(&cur_trans->dirty_bgs) ||
3451 !btrfs_test_opt(root, SPACE_CACHE))
3452 return 0;
3453
3454 path = btrfs_alloc_path();
3455 if (!path)
3456 return -ENOMEM;
3457
3458 /* Could add new block groups, use _safe just in case */
3459 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3460 dirty_list) {
3461 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3462 cache_save_setup(cache, trans, path);
3463 }
3464
3465 btrfs_free_path(path);
3466 return 0;
3467}
3468
1bbc621e
CM
3469/*
3470 * transaction commit does final block group cache writeback during a
3471 * critical section where nothing is allowed to change the FS. This is
3472 * required in order for the cache to actually match the block group,
3473 * but can introduce a lot of latency into the commit.
3474 *
3475 * So, btrfs_start_dirty_block_groups is here to kick off block group
3476 * cache IO. There's a chance we'll have to redo some of it if the
3477 * block group changes again during the commit, but it greatly reduces
3478 * the commit latency by getting rid of the easy block groups while
3479 * we're still allowing others to join the commit.
3480 */
3481int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3482 struct btrfs_root *root)
9078a3e1 3483{
4a8c9a62 3484 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3485 struct btrfs_transaction *cur_trans = trans->transaction;
3486 int ret = 0;
c9dc4c65 3487 int should_put;
1bbc621e
CM
3488 struct btrfs_path *path = NULL;
3489 LIST_HEAD(dirty);
3490 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3491 int num_started = 0;
1bbc621e
CM
3492 int loops = 0;
3493
3494 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3495 if (list_empty(&cur_trans->dirty_bgs)) {
3496 spin_unlock(&cur_trans->dirty_bgs_lock);
3497 return 0;
1bbc621e 3498 }
b58d1a9e 3499 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3500 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3501
1bbc621e 3502again:
1bbc621e
CM
3503 /*
3504 * make sure all the block groups on our dirty list actually
3505 * exist
3506 */
3507 btrfs_create_pending_block_groups(trans, root);
3508
3509 if (!path) {
3510 path = btrfs_alloc_path();
3511 if (!path)
3512 return -ENOMEM;
3513 }
3514
b58d1a9e
FM
3515 /*
3516 * cache_write_mutex is here only to save us from balance or automatic
3517 * removal of empty block groups deleting this block group while we are
3518 * writing out the cache
3519 */
3520 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3521 while (!list_empty(&dirty)) {
3522 cache = list_first_entry(&dirty,
3523 struct btrfs_block_group_cache,
3524 dirty_list);
1bbc621e
CM
3525 /*
3526 * this can happen if something re-dirties a block
3527 * group that is already under IO. Just wait for it to
3528 * finish and then do it all again
3529 */
3530 if (!list_empty(&cache->io_list)) {
3531 list_del_init(&cache->io_list);
3532 btrfs_wait_cache_io(root, trans, cache,
3533 &cache->io_ctl, path,
3534 cache->key.objectid);
3535 btrfs_put_block_group(cache);
3536 }
3537
3538
3539 /*
3540 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3541 * if it should update the cache_state. Don't delete
3542 * until after we wait.
3543 *
3544 * Since we're not running in the commit critical section
3545 * we need the dirty_bgs_lock to protect from update_block_group
3546 */
3547 spin_lock(&cur_trans->dirty_bgs_lock);
3548 list_del_init(&cache->dirty_list);
3549 spin_unlock(&cur_trans->dirty_bgs_lock);
3550
3551 should_put = 1;
3552
3553 cache_save_setup(cache, trans, path);
3554
3555 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3556 cache->io_ctl.inode = NULL;
3557 ret = btrfs_write_out_cache(root, trans, cache, path);
3558 if (ret == 0 && cache->io_ctl.inode) {
3559 num_started++;
3560 should_put = 0;
3561
3562 /*
3563 * the cache_write_mutex is protecting
3564 * the io_list
3565 */
3566 list_add_tail(&cache->io_list, io);
3567 } else {
3568 /*
3569 * if we failed to write the cache, the
3570 * generation will be bad and life goes on
3571 */
3572 ret = 0;
3573 }
3574 }
ff1f8250 3575 if (!ret) {
1bbc621e 3576 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3577 /*
3578 * Our block group might still be attached to the list
3579 * of new block groups in the transaction handle of some
3580 * other task (struct btrfs_trans_handle->new_bgs). This
3581 * means its block group item isn't yet in the extent
3582 * tree. If this happens ignore the error, as we will
3583 * try again later in the critical section of the
3584 * transaction commit.
3585 */
3586 if (ret == -ENOENT) {
3587 ret = 0;
3588 spin_lock(&cur_trans->dirty_bgs_lock);
3589 if (list_empty(&cache->dirty_list)) {
3590 list_add_tail(&cache->dirty_list,
3591 &cur_trans->dirty_bgs);
3592 btrfs_get_block_group(cache);
3593 }
3594 spin_unlock(&cur_trans->dirty_bgs_lock);
3595 } else if (ret) {
3596 btrfs_abort_transaction(trans, root, ret);
3597 }
3598 }
1bbc621e
CM
3599
3600 /* if its not on the io list, we need to put the block group */
3601 if (should_put)
3602 btrfs_put_block_group(cache);
3603
3604 if (ret)
3605 break;
b58d1a9e
FM
3606
3607 /*
3608 * Avoid blocking other tasks for too long. It might even save
3609 * us from writing caches for block groups that are going to be
3610 * removed.
3611 */
3612 mutex_unlock(&trans->transaction->cache_write_mutex);
3613 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3614 }
b58d1a9e 3615 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3616
3617 /*
3618 * go through delayed refs for all the stuff we've just kicked off
3619 * and then loop back (just once)
3620 */
3621 ret = btrfs_run_delayed_refs(trans, root, 0);
3622 if (!ret && loops == 0) {
3623 loops++;
3624 spin_lock(&cur_trans->dirty_bgs_lock);
3625 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3626 /*
3627 * dirty_bgs_lock protects us from concurrent block group
3628 * deletes too (not just cache_write_mutex).
3629 */
3630 if (!list_empty(&dirty)) {
3631 spin_unlock(&cur_trans->dirty_bgs_lock);
3632 goto again;
3633 }
1bbc621e 3634 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3635 }
3636
3637 btrfs_free_path(path);
3638 return ret;
3639}
3640
3641int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3642 struct btrfs_root *root)
3643{
3644 struct btrfs_block_group_cache *cache;
3645 struct btrfs_transaction *cur_trans = trans->transaction;
3646 int ret = 0;
3647 int should_put;
3648 struct btrfs_path *path;
3649 struct list_head *io = &cur_trans->io_bgs;
3650 int num_started = 0;
9078a3e1
CM
3651
3652 path = btrfs_alloc_path();
3653 if (!path)
3654 return -ENOMEM;
3655
ce93ec54
JB
3656 /*
3657 * We don't need the lock here since we are protected by the transaction
3658 * commit. We want to do the cache_save_setup first and then run the
3659 * delayed refs to make sure we have the best chance at doing this all
3660 * in one shot.
3661 */
3662 while (!list_empty(&cur_trans->dirty_bgs)) {
3663 cache = list_first_entry(&cur_trans->dirty_bgs,
3664 struct btrfs_block_group_cache,
3665 dirty_list);
c9dc4c65
CM
3666
3667 /*
3668 * this can happen if cache_save_setup re-dirties a block
3669 * group that is already under IO. Just wait for it to
3670 * finish and then do it all again
3671 */
3672 if (!list_empty(&cache->io_list)) {
3673 list_del_init(&cache->io_list);
3674 btrfs_wait_cache_io(root, trans, cache,
3675 &cache->io_ctl, path,
3676 cache->key.objectid);
3677 btrfs_put_block_group(cache);
c9dc4c65
CM
3678 }
3679
1bbc621e
CM
3680 /*
3681 * don't remove from the dirty list until after we've waited
3682 * on any pending IO
3683 */
ce93ec54 3684 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3685 should_put = 1;
3686
1bbc621e 3687 cache_save_setup(cache, trans, path);
c9dc4c65 3688
ce93ec54 3689 if (!ret)
c9dc4c65
CM
3690 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3691
3692 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3693 cache->io_ctl.inode = NULL;
3694 ret = btrfs_write_out_cache(root, trans, cache, path);
3695 if (ret == 0 && cache->io_ctl.inode) {
3696 num_started++;
3697 should_put = 0;
1bbc621e 3698 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3699 } else {
3700 /*
3701 * if we failed to write the cache, the
3702 * generation will be bad and life goes on
3703 */
3704 ret = 0;
3705 }
3706 }
ff1f8250 3707 if (!ret) {
ce93ec54 3708 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3709 if (ret)
3710 btrfs_abort_transaction(trans, root, ret);
3711 }
c9dc4c65
CM
3712
3713 /* if its not on the io list, we need to put the block group */
3714 if (should_put)
3715 btrfs_put_block_group(cache);
3716 }
3717
1bbc621e
CM
3718 while (!list_empty(io)) {
3719 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3720 io_list);
3721 list_del_init(&cache->io_list);
c9dc4c65
CM
3722 btrfs_wait_cache_io(root, trans, cache,
3723 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3724 btrfs_put_block_group(cache);
3725 }
3726
9078a3e1 3727 btrfs_free_path(path);
ce93ec54 3728 return ret;
9078a3e1
CM
3729}
3730
d2fb3437
YZ
3731int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3732{
3733 struct btrfs_block_group_cache *block_group;
3734 int readonly = 0;
3735
3736 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3737 if (!block_group || block_group->ro)
3738 readonly = 1;
3739 if (block_group)
fa9c0d79 3740 btrfs_put_block_group(block_group);
d2fb3437
YZ
3741 return readonly;
3742}
3743
6ab0a202
JM
3744static const char *alloc_name(u64 flags)
3745{
3746 switch (flags) {
3747 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3748 return "mixed";
3749 case BTRFS_BLOCK_GROUP_METADATA:
3750 return "metadata";
3751 case BTRFS_BLOCK_GROUP_DATA:
3752 return "data";
3753 case BTRFS_BLOCK_GROUP_SYSTEM:
3754 return "system";
3755 default:
3756 WARN_ON(1);
3757 return "invalid-combination";
3758 };
3759}
3760
593060d7
CM
3761static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3762 u64 total_bytes, u64 bytes_used,
3763 struct btrfs_space_info **space_info)
3764{
3765 struct btrfs_space_info *found;
b742bb82
YZ
3766 int i;
3767 int factor;
b150a4f1 3768 int ret;
b742bb82
YZ
3769
3770 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3771 BTRFS_BLOCK_GROUP_RAID10))
3772 factor = 2;
3773 else
3774 factor = 1;
593060d7
CM
3775
3776 found = __find_space_info(info, flags);
3777 if (found) {
25179201 3778 spin_lock(&found->lock);
593060d7 3779 found->total_bytes += total_bytes;
89a55897 3780 found->disk_total += total_bytes * factor;
593060d7 3781 found->bytes_used += bytes_used;
b742bb82 3782 found->disk_used += bytes_used * factor;
2e6e5183
FM
3783 if (total_bytes > 0)
3784 found->full = 0;
25179201 3785 spin_unlock(&found->lock);
593060d7
CM
3786 *space_info = found;
3787 return 0;
3788 }
c146afad 3789 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3790 if (!found)
3791 return -ENOMEM;
3792
908c7f19 3793 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3794 if (ret) {
3795 kfree(found);
3796 return ret;
3797 }
3798
c1895442 3799 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3800 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3801 init_rwsem(&found->groups_sem);
0f9dd46c 3802 spin_lock_init(&found->lock);
52ba6929 3803 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3804 found->total_bytes = total_bytes;
89a55897 3805 found->disk_total = total_bytes * factor;
593060d7 3806 found->bytes_used = bytes_used;
b742bb82 3807 found->disk_used = bytes_used * factor;
593060d7 3808 found->bytes_pinned = 0;
e8569813 3809 found->bytes_reserved = 0;
c146afad 3810 found->bytes_readonly = 0;
f0486c68 3811 found->bytes_may_use = 0;
6af3e3ad 3812 found->full = 0;
4f4db217 3813 found->max_extent_size = 0;
0e4f8f88 3814 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3815 found->chunk_alloc = 0;
fdb5effd
JB
3816 found->flush = 0;
3817 init_waitqueue_head(&found->wait);
633c0aad 3818 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3819
3820 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3821 info->space_info_kobj, "%s",
3822 alloc_name(found->flags));
3823 if (ret) {
3824 kfree(found);
3825 return ret;
3826 }
3827
593060d7 3828 *space_info = found;
4184ea7f 3829 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3830 if (flags & BTRFS_BLOCK_GROUP_DATA)
3831 info->data_sinfo = found;
6ab0a202
JM
3832
3833 return ret;
593060d7
CM
3834}
3835
8790d502
CM
3836static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3837{
899c81ea
ID
3838 u64 extra_flags = chunk_to_extended(flags) &
3839 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3840
de98ced9 3841 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3842 if (flags & BTRFS_BLOCK_GROUP_DATA)
3843 fs_info->avail_data_alloc_bits |= extra_flags;
3844 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3845 fs_info->avail_metadata_alloc_bits |= extra_flags;
3846 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3847 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3848 write_sequnlock(&fs_info->profiles_lock);
8790d502 3849}
593060d7 3850
fc67c450
ID
3851/*
3852 * returns target flags in extended format or 0 if restripe for this
3853 * chunk_type is not in progress
c6664b42
ID
3854 *
3855 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3856 */
3857static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3858{
3859 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3860 u64 target = 0;
3861
fc67c450
ID
3862 if (!bctl)
3863 return 0;
3864
3865 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3866 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3867 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3868 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3869 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3870 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3871 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3872 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3873 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3874 }
3875
3876 return target;
3877}
3878
a46d11a8
ID
3879/*
3880 * @flags: available profiles in extended format (see ctree.h)
3881 *
e4d8ec0f
ID
3882 * Returns reduced profile in chunk format. If profile changing is in
3883 * progress (either running or paused) picks the target profile (if it's
3884 * already available), otherwise falls back to plain reducing.
a46d11a8 3885 */
48a3b636 3886static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3887{
95669976 3888 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3889 u64 target;
9c170b26
ZL
3890 u64 raid_type;
3891 u64 allowed = 0;
a061fc8d 3892
fc67c450
ID
3893 /*
3894 * see if restripe for this chunk_type is in progress, if so
3895 * try to reduce to the target profile
3896 */
e4d8ec0f 3897 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3898 target = get_restripe_target(root->fs_info, flags);
3899 if (target) {
3900 /* pick target profile only if it's already available */
3901 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3902 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3903 return extended_to_chunk(target);
e4d8ec0f
ID
3904 }
3905 }
3906 spin_unlock(&root->fs_info->balance_lock);
3907
53b381b3 3908 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
3909 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3910 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3911 allowed |= btrfs_raid_group[raid_type];
3912 }
3913 allowed &= flags;
3914
3915 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3916 allowed = BTRFS_BLOCK_GROUP_RAID6;
3917 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3918 allowed = BTRFS_BLOCK_GROUP_RAID5;
3919 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3920 allowed = BTRFS_BLOCK_GROUP_RAID10;
3921 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3922 allowed = BTRFS_BLOCK_GROUP_RAID1;
3923 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3924 allowed = BTRFS_BLOCK_GROUP_RAID0;
3925
3926 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3927
3928 return extended_to_chunk(flags | allowed);
ec44a35c
CM
3929}
3930
f8213bdc 3931static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3932{
de98ced9 3933 unsigned seq;
f8213bdc 3934 u64 flags;
de98ced9
MX
3935
3936 do {
f8213bdc 3937 flags = orig_flags;
de98ced9
MX
3938 seq = read_seqbegin(&root->fs_info->profiles_lock);
3939
3940 if (flags & BTRFS_BLOCK_GROUP_DATA)
3941 flags |= root->fs_info->avail_data_alloc_bits;
3942 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3943 flags |= root->fs_info->avail_system_alloc_bits;
3944 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3945 flags |= root->fs_info->avail_metadata_alloc_bits;
3946 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3947
b742bb82 3948 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3949}
3950
6d07bcec 3951u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3952{
b742bb82 3953 u64 flags;
53b381b3 3954 u64 ret;
9ed74f2d 3955
b742bb82
YZ
3956 if (data)
3957 flags = BTRFS_BLOCK_GROUP_DATA;
3958 else if (root == root->fs_info->chunk_root)
3959 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3960 else
b742bb82 3961 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3962
53b381b3
DW
3963 ret = get_alloc_profile(root, flags);
3964 return ret;
6a63209f 3965}
9ed74f2d 3966
6a63209f 3967/*
6a63209f
JB
3968 * This will check the space that the inode allocates from to make sure we have
3969 * enough space for bytes.
6a63209f 3970 */
e2d1f923 3971int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
6a63209f 3972{
6a63209f 3973 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3974 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3975 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3976 u64 used;
94b947b2 3977 int ret = 0;
c99f1b0c
ZL
3978 int need_commit = 2;
3979 int have_pinned_space;
6a63209f 3980
6a63209f 3981 /* make sure bytes are sectorsize aligned */
fda2832f 3982 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3983
9dced186 3984 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 3985 need_commit = 0;
9dced186 3986 ASSERT(current->journal_info);
0af3d00b
JB
3987 }
3988
b4d7c3c9 3989 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3990 if (!data_sinfo)
3991 goto alloc;
9ed74f2d 3992
6a63209f
JB
3993again:
3994 /* make sure we have enough space to handle the data first */
3995 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3996 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3997 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3998 data_sinfo->bytes_may_use;
ab6e2410
JB
3999
4000 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4001 struct btrfs_trans_handle *trans;
9ed74f2d 4002
6a63209f
JB
4003 /*
4004 * if we don't have enough free bytes in this space then we need
4005 * to alloc a new chunk.
4006 */
b9fd47cd 4007 if (!data_sinfo->full) {
6a63209f 4008 u64 alloc_target;
9ed74f2d 4009
0e4f8f88 4010 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4011 spin_unlock(&data_sinfo->lock);
33b4d47f 4012alloc:
6a63209f 4013 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4014 /*
4015 * It is ugly that we don't call nolock join
4016 * transaction for the free space inode case here.
4017 * But it is safe because we only do the data space
4018 * reservation for the free space cache in the
4019 * transaction context, the common join transaction
4020 * just increase the counter of the current transaction
4021 * handler, doesn't try to acquire the trans_lock of
4022 * the fs.
4023 */
7a7eaa40 4024 trans = btrfs_join_transaction(root);
a22285a6
YZ
4025 if (IS_ERR(trans))
4026 return PTR_ERR(trans);
9ed74f2d 4027
6a63209f 4028 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
4029 alloc_target,
4030 CHUNK_ALLOC_NO_FORCE);
6a63209f 4031 btrfs_end_transaction(trans, root);
d52a5b5f
MX
4032 if (ret < 0) {
4033 if (ret != -ENOSPC)
4034 return ret;
c99f1b0c
ZL
4035 else {
4036 have_pinned_space = 1;
d52a5b5f 4037 goto commit_trans;
c99f1b0c 4038 }
d52a5b5f 4039 }
9ed74f2d 4040
b4d7c3c9
LZ
4041 if (!data_sinfo)
4042 data_sinfo = fs_info->data_sinfo;
4043
6a63209f
JB
4044 goto again;
4045 }
f2bb8f5c
JB
4046
4047 /*
b150a4f1 4048 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4049 * allocation, and no removed chunk in current transaction,
4050 * don't bother committing the transaction.
f2bb8f5c 4051 */
c99f1b0c
ZL
4052 have_pinned_space = percpu_counter_compare(
4053 &data_sinfo->total_bytes_pinned,
4054 used + bytes - data_sinfo->total_bytes);
6a63209f 4055 spin_unlock(&data_sinfo->lock);
6a63209f 4056
4e06bdd6 4057 /* commit the current transaction and try again */
d52a5b5f 4058commit_trans:
c99f1b0c 4059 if (need_commit &&
a4abeea4 4060 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4061 need_commit--;
b150a4f1 4062
9a4e7276
ZL
4063 if (need_commit > 0)
4064 btrfs_wait_ordered_roots(fs_info, -1);
4065
7a7eaa40 4066 trans = btrfs_join_transaction(root);
a22285a6
YZ
4067 if (IS_ERR(trans))
4068 return PTR_ERR(trans);
c99f1b0c 4069 if (have_pinned_space >= 0 ||
3204d33c
JB
4070 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4071 &trans->transaction->flags) ||
c99f1b0c 4072 need_commit > 0) {
94b947b2
ZL
4073 ret = btrfs_commit_transaction(trans, root);
4074 if (ret)
4075 return ret;
d7c15171
ZL
4076 /*
4077 * make sure that all running delayed iput are
4078 * done
4079 */
4080 down_write(&root->fs_info->delayed_iput_sem);
4081 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
4082 goto again;
4083 } else {
4084 btrfs_end_transaction(trans, root);
4085 }
4e06bdd6 4086 }
9ed74f2d 4087
cab45e22
JM
4088 trace_btrfs_space_reservation(root->fs_info,
4089 "space_info:enospc",
4090 data_sinfo->flags, bytes, 1);
6a63209f
JB
4091 return -ENOSPC;
4092 }
e2d1f923 4093 ret = btrfs_qgroup_reserve(root, write_bytes);
237c0e9f
DY
4094 if (ret)
4095 goto out;
6a63209f 4096 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4097 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4098 data_sinfo->flags, bytes, 1);
237c0e9f 4099out:
6a63209f 4100 spin_unlock(&data_sinfo->lock);
6a63209f 4101
237c0e9f 4102 return ret;
9ed74f2d 4103}
6a63209f 4104
6a63209f 4105/*
fb25e914 4106 * Called if we need to clear a data reservation for this inode.
6a63209f 4107 */
0ca1f7ce 4108void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 4109{
0ca1f7ce 4110 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 4111 struct btrfs_space_info *data_sinfo;
e3ccfa98 4112
6a63209f 4113 /* make sure bytes are sectorsize aligned */
fda2832f 4114 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 4115
b4d7c3c9 4116 data_sinfo = root->fs_info->data_sinfo;
6a63209f 4117 spin_lock(&data_sinfo->lock);
7ee9e440 4118 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 4119 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 4120 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4121 data_sinfo->flags, bytes, 0);
6a63209f 4122 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
4123}
4124
97e728d4 4125static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4126{
97e728d4
JB
4127 struct list_head *head = &info->space_info;
4128 struct btrfs_space_info *found;
e3ccfa98 4129
97e728d4
JB
4130 rcu_read_lock();
4131 list_for_each_entry_rcu(found, head, list) {
4132 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4133 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4134 }
97e728d4 4135 rcu_read_unlock();
e3ccfa98
JB
4136}
4137
3c76cd84
MX
4138static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4139{
4140 return (global->size << 1);
4141}
4142
e5bc2458 4143static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4144 struct btrfs_space_info *sinfo, int force)
32c00aff 4145{
fb25e914 4146 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4147 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4148 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4149 u64 thresh;
e3ccfa98 4150
0e4f8f88
CM
4151 if (force == CHUNK_ALLOC_FORCE)
4152 return 1;
4153
fb25e914
JB
4154 /*
4155 * We need to take into account the global rsv because for all intents
4156 * and purposes it's used space. Don't worry about locking the
4157 * global_rsv, it doesn't change except when the transaction commits.
4158 */
54338b5c 4159 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4160 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4161
0e4f8f88
CM
4162 /*
4163 * in limited mode, we want to have some free space up to
4164 * about 1% of the FS size.
4165 */
4166 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4167 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4168 thresh = max_t(u64, 64 * 1024 * 1024,
4169 div_factor_fine(thresh, 1));
4170
4171 if (num_bytes - num_allocated < thresh)
4172 return 1;
4173 }
0e4f8f88 4174
698d0082 4175 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4176 return 0;
424499db 4177 return 1;
32c00aff
JB
4178}
4179
39c2d7fa 4180static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4181{
4182 u64 num_dev;
4183
53b381b3
DW
4184 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4185 BTRFS_BLOCK_GROUP_RAID0 |
4186 BTRFS_BLOCK_GROUP_RAID5 |
4187 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4188 num_dev = root->fs_info->fs_devices->rw_devices;
4189 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4190 num_dev = 2;
4191 else
4192 num_dev = 1; /* DUP or single */
4193
39c2d7fa 4194 return num_dev;
15d1ff81
LB
4195}
4196
39c2d7fa
FM
4197/*
4198 * If @is_allocation is true, reserve space in the system space info necessary
4199 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4200 * removing a chunk.
4201 */
4202void check_system_chunk(struct btrfs_trans_handle *trans,
4203 struct btrfs_root *root,
4617ea3a 4204 u64 type)
15d1ff81
LB
4205{
4206 struct btrfs_space_info *info;
4207 u64 left;
4208 u64 thresh;
4fbcdf66 4209 int ret = 0;
39c2d7fa 4210 u64 num_devs;
4fbcdf66
FM
4211
4212 /*
4213 * Needed because we can end up allocating a system chunk and for an
4214 * atomic and race free space reservation in the chunk block reserve.
4215 */
4216 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4217
4218 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4219 spin_lock(&info->lock);
4220 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4221 info->bytes_reserved - info->bytes_readonly -
4222 info->bytes_may_use;
15d1ff81
LB
4223 spin_unlock(&info->lock);
4224
39c2d7fa
FM
4225 num_devs = get_profile_num_devs(root, type);
4226
4227 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4228 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4229 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4230
15d1ff81 4231 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4232 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4233 left, thresh, type);
15d1ff81
LB
4234 dump_space_info(info, 0, 0);
4235 }
4236
4237 if (left < thresh) {
4238 u64 flags;
4239
4240 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4241 /*
4242 * Ignore failure to create system chunk. We might end up not
4243 * needing it, as we might not need to COW all nodes/leafs from
4244 * the paths we visit in the chunk tree (they were already COWed
4245 * or created in the current transaction for example).
4246 */
4247 ret = btrfs_alloc_chunk(trans, root, flags);
4248 }
4249
4250 if (!ret) {
4251 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4252 &root->fs_info->chunk_block_rsv,
4253 thresh, BTRFS_RESERVE_NO_FLUSH);
4254 if (!ret)
4255 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4256 }
4257}
4258
6324fbf3 4259static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4260 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4261{
6324fbf3 4262 struct btrfs_space_info *space_info;
97e728d4 4263 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4264 int wait_for_alloc = 0;
9ed74f2d 4265 int ret = 0;
9ed74f2d 4266
c6b305a8
JB
4267 /* Don't re-enter if we're already allocating a chunk */
4268 if (trans->allocating_chunk)
4269 return -ENOSPC;
4270
6324fbf3 4271 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4272 if (!space_info) {
4273 ret = update_space_info(extent_root->fs_info, flags,
4274 0, 0, &space_info);
79787eaa 4275 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4276 }
79787eaa 4277 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4278
6d74119f 4279again:
25179201 4280 spin_lock(&space_info->lock);
9e622d6b 4281 if (force < space_info->force_alloc)
0e4f8f88 4282 force = space_info->force_alloc;
25179201 4283 if (space_info->full) {
09fb99a6
FDBM
4284 if (should_alloc_chunk(extent_root, space_info, force))
4285 ret = -ENOSPC;
4286 else
4287 ret = 0;
25179201 4288 spin_unlock(&space_info->lock);
09fb99a6 4289 return ret;
9ed74f2d
JB
4290 }
4291
698d0082 4292 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4293 spin_unlock(&space_info->lock);
6d74119f
JB
4294 return 0;
4295 } else if (space_info->chunk_alloc) {
4296 wait_for_alloc = 1;
4297 } else {
4298 space_info->chunk_alloc = 1;
9ed74f2d 4299 }
0e4f8f88 4300
25179201 4301 spin_unlock(&space_info->lock);
9ed74f2d 4302
6d74119f
JB
4303 mutex_lock(&fs_info->chunk_mutex);
4304
4305 /*
4306 * The chunk_mutex is held throughout the entirety of a chunk
4307 * allocation, so once we've acquired the chunk_mutex we know that the
4308 * other guy is done and we need to recheck and see if we should
4309 * allocate.
4310 */
4311 if (wait_for_alloc) {
4312 mutex_unlock(&fs_info->chunk_mutex);
4313 wait_for_alloc = 0;
4314 goto again;
4315 }
4316
c6b305a8
JB
4317 trans->allocating_chunk = true;
4318
67377734
JB
4319 /*
4320 * If we have mixed data/metadata chunks we want to make sure we keep
4321 * allocating mixed chunks instead of individual chunks.
4322 */
4323 if (btrfs_mixed_space_info(space_info))
4324 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4325
97e728d4
JB
4326 /*
4327 * if we're doing a data chunk, go ahead and make sure that
4328 * we keep a reasonable number of metadata chunks allocated in the
4329 * FS as well.
4330 */
9ed74f2d 4331 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4332 fs_info->data_chunk_allocations++;
4333 if (!(fs_info->data_chunk_allocations %
4334 fs_info->metadata_ratio))
4335 force_metadata_allocation(fs_info);
9ed74f2d
JB
4336 }
4337
15d1ff81
LB
4338 /*
4339 * Check if we have enough space in SYSTEM chunk because we may need
4340 * to update devices.
4341 */
4617ea3a 4342 check_system_chunk(trans, extent_root, flags);
15d1ff81 4343
2b82032c 4344 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4345 trans->allocating_chunk = false;
92b8e897 4346
9ed74f2d 4347 spin_lock(&space_info->lock);
a81cb9a2
AO
4348 if (ret < 0 && ret != -ENOSPC)
4349 goto out;
9ed74f2d 4350 if (ret)
6324fbf3 4351 space_info->full = 1;
424499db
YZ
4352 else
4353 ret = 1;
6d74119f 4354
0e4f8f88 4355 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4356out:
6d74119f 4357 space_info->chunk_alloc = 0;
9ed74f2d 4358 spin_unlock(&space_info->lock);
a25c75d5 4359 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4360 /*
4361 * When we allocate a new chunk we reserve space in the chunk block
4362 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4363 * add new nodes/leafs to it if we end up needing to do it when
4364 * inserting the chunk item and updating device items as part of the
4365 * second phase of chunk allocation, performed by
4366 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4367 * large number of new block groups to create in our transaction
4368 * handle's new_bgs list to avoid exhausting the chunk block reserve
4369 * in extreme cases - like having a single transaction create many new
4370 * block groups when starting to write out the free space caches of all
4371 * the block groups that were made dirty during the lifetime of the
4372 * transaction.
4373 */
d9a0540a
FM
4374 if (trans->can_flush_pending_bgs &&
4375 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
00d80e34
FM
4376 btrfs_create_pending_block_groups(trans, trans->root);
4377 btrfs_trans_release_chunk_metadata(trans);
4378 }
0f9dd46c 4379 return ret;
6324fbf3 4380}
9ed74f2d 4381
a80c8dcf
JB
4382static int can_overcommit(struct btrfs_root *root,
4383 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4384 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4385{
96f1bb57 4386 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4387 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4388 u64 space_size;
a80c8dcf
JB
4389 u64 avail;
4390 u64 used;
4391
4392 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4393 space_info->bytes_pinned + space_info->bytes_readonly;
4394
96f1bb57
JB
4395 /*
4396 * We only want to allow over committing if we have lots of actual space
4397 * free, but if we don't have enough space to handle the global reserve
4398 * space then we could end up having a real enospc problem when trying
4399 * to allocate a chunk or some other such important allocation.
4400 */
3c76cd84
MX
4401 spin_lock(&global_rsv->lock);
4402 space_size = calc_global_rsv_need_space(global_rsv);
4403 spin_unlock(&global_rsv->lock);
4404 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4405 return 0;
4406
4407 used += space_info->bytes_may_use;
a80c8dcf
JB
4408
4409 spin_lock(&root->fs_info->free_chunk_lock);
4410 avail = root->fs_info->free_chunk_space;
4411 spin_unlock(&root->fs_info->free_chunk_lock);
4412
4413 /*
4414 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4415 * space is actually useable. For raid56, the space info used
4416 * doesn't include the parity drive, so we don't have to
4417 * change the math
a80c8dcf
JB
4418 */
4419 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4420 BTRFS_BLOCK_GROUP_RAID1 |
4421 BTRFS_BLOCK_GROUP_RAID10))
4422 avail >>= 1;
4423
4424 /*
561c294d
MX
4425 * If we aren't flushing all things, let us overcommit up to
4426 * 1/2th of the space. If we can flush, don't let us overcommit
4427 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4428 */
08e007d2 4429 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4430 avail >>= 3;
a80c8dcf 4431 else
14575aef 4432 avail >>= 1;
a80c8dcf 4433
14575aef 4434 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4435 return 1;
4436 return 0;
4437}
4438
48a3b636 4439static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4440 unsigned long nr_pages, int nr_items)
da633a42
MX
4441{
4442 struct super_block *sb = root->fs_info->sb;
da633a42 4443
925a6efb
JB
4444 if (down_read_trylock(&sb->s_umount)) {
4445 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4446 up_read(&sb->s_umount);
4447 } else {
da633a42
MX
4448 /*
4449 * We needn't worry the filesystem going from r/w to r/o though
4450 * we don't acquire ->s_umount mutex, because the filesystem
4451 * should guarantee the delalloc inodes list be empty after
4452 * the filesystem is readonly(all dirty pages are written to
4453 * the disk).
4454 */
6c255e67 4455 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4456 if (!current->journal_info)
6c255e67 4457 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4458 }
4459}
4460
18cd8ea6
MX
4461static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4462{
4463 u64 bytes;
4464 int nr;
4465
4466 bytes = btrfs_calc_trans_metadata_size(root, 1);
4467 nr = (int)div64_u64(to_reclaim, bytes);
4468 if (!nr)
4469 nr = 1;
4470 return nr;
4471}
4472
c61a16a7
MX
4473#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4474
9ed74f2d 4475/*
5da9d01b 4476 * shrink metadata reservation for delalloc
9ed74f2d 4477 */
f4c738c2
JB
4478static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4479 bool wait_ordered)
5da9d01b 4480{
0ca1f7ce 4481 struct btrfs_block_rsv *block_rsv;
0019f10d 4482 struct btrfs_space_info *space_info;
663350ac 4483 struct btrfs_trans_handle *trans;
f4c738c2 4484 u64 delalloc_bytes;
5da9d01b 4485 u64 max_reclaim;
b1953bce 4486 long time_left;
d3ee29e3
MX
4487 unsigned long nr_pages;
4488 int loops;
b0244199 4489 int items;
08e007d2 4490 enum btrfs_reserve_flush_enum flush;
5da9d01b 4491
c61a16a7 4492 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4493 items = calc_reclaim_items_nr(root, to_reclaim);
4494 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4495
663350ac 4496 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4497 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4498 space_info = block_rsv->space_info;
bf9022e0 4499
963d678b
MX
4500 delalloc_bytes = percpu_counter_sum_positive(
4501 &root->fs_info->delalloc_bytes);
f4c738c2 4502 if (delalloc_bytes == 0) {
fdb5effd 4503 if (trans)
f4c738c2 4504 return;
38c135af 4505 if (wait_ordered)
b0244199 4506 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4507 return;
fdb5effd
JB
4508 }
4509
d3ee29e3 4510 loops = 0;
f4c738c2
JB
4511 while (delalloc_bytes && loops < 3) {
4512 max_reclaim = min(delalloc_bytes, to_reclaim);
4513 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4514 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4515 /*
4516 * We need to wait for the async pages to actually start before
4517 * we do anything.
4518 */
9f3a074d
MX
4519 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4520 if (!max_reclaim)
4521 goto skip_async;
4522
4523 if (max_reclaim <= nr_pages)
4524 max_reclaim = 0;
4525 else
4526 max_reclaim -= nr_pages;
dea31f52 4527
9f3a074d
MX
4528 wait_event(root->fs_info->async_submit_wait,
4529 atomic_read(&root->fs_info->async_delalloc_pages) <=
4530 (int)max_reclaim);
4531skip_async:
08e007d2
MX
4532 if (!trans)
4533 flush = BTRFS_RESERVE_FLUSH_ALL;
4534 else
4535 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4536 spin_lock(&space_info->lock);
08e007d2 4537 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4538 spin_unlock(&space_info->lock);
4539 break;
4540 }
0019f10d 4541 spin_unlock(&space_info->lock);
5da9d01b 4542
36e39c40 4543 loops++;
f104d044 4544 if (wait_ordered && !trans) {
b0244199 4545 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4546 } else {
f4c738c2 4547 time_left = schedule_timeout_killable(1);
f104d044
JB
4548 if (time_left)
4549 break;
4550 }
963d678b
MX
4551 delalloc_bytes = percpu_counter_sum_positive(
4552 &root->fs_info->delalloc_bytes);
5da9d01b 4553 }
5da9d01b
YZ
4554}
4555
663350ac
JB
4556/**
4557 * maybe_commit_transaction - possibly commit the transaction if its ok to
4558 * @root - the root we're allocating for
4559 * @bytes - the number of bytes we want to reserve
4560 * @force - force the commit
8bb8ab2e 4561 *
663350ac
JB
4562 * This will check to make sure that committing the transaction will actually
4563 * get us somewhere and then commit the transaction if it does. Otherwise it
4564 * will return -ENOSPC.
8bb8ab2e 4565 */
663350ac
JB
4566static int may_commit_transaction(struct btrfs_root *root,
4567 struct btrfs_space_info *space_info,
4568 u64 bytes, int force)
4569{
4570 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4571 struct btrfs_trans_handle *trans;
4572
4573 trans = (struct btrfs_trans_handle *)current->journal_info;
4574 if (trans)
4575 return -EAGAIN;
4576
4577 if (force)
4578 goto commit;
4579
4580 /* See if there is enough pinned space to make this reservation */
b150a4f1 4581 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4582 bytes) >= 0)
663350ac 4583 goto commit;
663350ac
JB
4584
4585 /*
4586 * See if there is some space in the delayed insertion reservation for
4587 * this reservation.
4588 */
4589 if (space_info != delayed_rsv->space_info)
4590 return -ENOSPC;
4591
4592 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4593 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4594 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4595 spin_unlock(&delayed_rsv->lock);
4596 return -ENOSPC;
4597 }
4598 spin_unlock(&delayed_rsv->lock);
4599
4600commit:
4601 trans = btrfs_join_transaction(root);
4602 if (IS_ERR(trans))
4603 return -ENOSPC;
4604
4605 return btrfs_commit_transaction(trans, root);
4606}
4607
96c3f433 4608enum flush_state {
67b0fd63
JB
4609 FLUSH_DELAYED_ITEMS_NR = 1,
4610 FLUSH_DELAYED_ITEMS = 2,
4611 FLUSH_DELALLOC = 3,
4612 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4613 ALLOC_CHUNK = 5,
4614 COMMIT_TRANS = 6,
96c3f433
JB
4615};
4616
4617static int flush_space(struct btrfs_root *root,
4618 struct btrfs_space_info *space_info, u64 num_bytes,
4619 u64 orig_bytes, int state)
4620{
4621 struct btrfs_trans_handle *trans;
4622 int nr;
f4c738c2 4623 int ret = 0;
96c3f433
JB
4624
4625 switch (state) {
96c3f433
JB
4626 case FLUSH_DELAYED_ITEMS_NR:
4627 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4628 if (state == FLUSH_DELAYED_ITEMS_NR)
4629 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4630 else
96c3f433 4631 nr = -1;
18cd8ea6 4632
96c3f433
JB
4633 trans = btrfs_join_transaction(root);
4634 if (IS_ERR(trans)) {
4635 ret = PTR_ERR(trans);
4636 break;
4637 }
4638 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4639 btrfs_end_transaction(trans, root);
4640 break;
67b0fd63
JB
4641 case FLUSH_DELALLOC:
4642 case FLUSH_DELALLOC_WAIT:
24af7dd1 4643 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4644 state == FLUSH_DELALLOC_WAIT);
4645 break;
ea658bad
JB
4646 case ALLOC_CHUNK:
4647 trans = btrfs_join_transaction(root);
4648 if (IS_ERR(trans)) {
4649 ret = PTR_ERR(trans);
4650 break;
4651 }
4652 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4653 btrfs_get_alloc_profile(root, 0),
4654 CHUNK_ALLOC_NO_FORCE);
4655 btrfs_end_transaction(trans, root);
4656 if (ret == -ENOSPC)
4657 ret = 0;
4658 break;
96c3f433
JB
4659 case COMMIT_TRANS:
4660 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4661 break;
4662 default:
4663 ret = -ENOSPC;
4664 break;
4665 }
4666
4667 return ret;
4668}
21c7e756
MX
4669
4670static inline u64
4671btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4672 struct btrfs_space_info *space_info)
4673{
4674 u64 used;
4675 u64 expected;
4676 u64 to_reclaim;
4677
4678 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4679 16 * 1024 * 1024);
4680 spin_lock(&space_info->lock);
4681 if (can_overcommit(root, space_info, to_reclaim,
4682 BTRFS_RESERVE_FLUSH_ALL)) {
4683 to_reclaim = 0;
4684 goto out;
4685 }
4686
4687 used = space_info->bytes_used + space_info->bytes_reserved +
4688 space_info->bytes_pinned + space_info->bytes_readonly +
4689 space_info->bytes_may_use;
4690 if (can_overcommit(root, space_info, 1024 * 1024,
4691 BTRFS_RESERVE_FLUSH_ALL))
4692 expected = div_factor_fine(space_info->total_bytes, 95);
4693 else
4694 expected = div_factor_fine(space_info->total_bytes, 90);
4695
4696 if (used > expected)
4697 to_reclaim = used - expected;
4698 else
4699 to_reclaim = 0;
4700 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4701 space_info->bytes_reserved);
4702out:
4703 spin_unlock(&space_info->lock);
4704
4705 return to_reclaim;
4706}
4707
4708static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4709 struct btrfs_fs_info *fs_info, u64 used)
4710{
365c5313
JB
4711 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4712
4713 /* If we're just plain full then async reclaim just slows us down. */
4714 if (space_info->bytes_used >= thresh)
4715 return 0;
4716
4717 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4718 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4719}
4720
4721static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4722 struct btrfs_fs_info *fs_info,
4723 int flush_state)
21c7e756
MX
4724{
4725 u64 used;
4726
4727 spin_lock(&space_info->lock);
25ce459c
LB
4728 /*
4729 * We run out of space and have not got any free space via flush_space,
4730 * so don't bother doing async reclaim.
4731 */
4732 if (flush_state > COMMIT_TRANS && space_info->full) {
4733 spin_unlock(&space_info->lock);
4734 return 0;
4735 }
4736
21c7e756
MX
4737 used = space_info->bytes_used + space_info->bytes_reserved +
4738 space_info->bytes_pinned + space_info->bytes_readonly +
4739 space_info->bytes_may_use;
4740 if (need_do_async_reclaim(space_info, fs_info, used)) {
4741 spin_unlock(&space_info->lock);
4742 return 1;
4743 }
4744 spin_unlock(&space_info->lock);
4745
4746 return 0;
4747}
4748
4749static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4750{
4751 struct btrfs_fs_info *fs_info;
4752 struct btrfs_space_info *space_info;
4753 u64 to_reclaim;
4754 int flush_state;
4755
4756 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4757 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4758
4759 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4760 space_info);
4761 if (!to_reclaim)
4762 return;
4763
4764 flush_state = FLUSH_DELAYED_ITEMS_NR;
4765 do {
4766 flush_space(fs_info->fs_root, space_info, to_reclaim,
4767 to_reclaim, flush_state);
4768 flush_state++;
25ce459c
LB
4769 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4770 flush_state))
21c7e756 4771 return;
365c5313 4772 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4773}
4774
4775void btrfs_init_async_reclaim_work(struct work_struct *work)
4776{
4777 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4778}
4779
4a92b1b8
JB
4780/**
4781 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4782 * @root - the root we're allocating for
4783 * @block_rsv - the block_rsv we're allocating for
4784 * @orig_bytes - the number of bytes we want
48fc7f7e 4785 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4786 *
4a92b1b8
JB
4787 * This will reserve orgi_bytes number of bytes from the space info associated
4788 * with the block_rsv. If there is not enough space it will make an attempt to
4789 * flush out space to make room. It will do this by flushing delalloc if
4790 * possible or committing the transaction. If flush is 0 then no attempts to
4791 * regain reservations will be made and this will fail if there is not enough
4792 * space already.
8bb8ab2e 4793 */
4a92b1b8 4794static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4795 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4796 u64 orig_bytes,
4797 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4798{
f0486c68 4799 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4800 u64 used;
8bb8ab2e 4801 u64 num_bytes = orig_bytes;
67b0fd63 4802 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4803 int ret = 0;
fdb5effd 4804 bool flushing = false;
9ed74f2d 4805
8bb8ab2e 4806again:
fdb5effd 4807 ret = 0;
8bb8ab2e 4808 spin_lock(&space_info->lock);
fdb5effd 4809 /*
08e007d2
MX
4810 * We only want to wait if somebody other than us is flushing and we
4811 * are actually allowed to flush all things.
fdb5effd 4812 */
08e007d2
MX
4813 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4814 space_info->flush) {
fdb5effd
JB
4815 spin_unlock(&space_info->lock);
4816 /*
4817 * If we have a trans handle we can't wait because the flusher
4818 * may have to commit the transaction, which would mean we would
4819 * deadlock since we are waiting for the flusher to finish, but
4820 * hold the current transaction open.
4821 */
663350ac 4822 if (current->journal_info)
fdb5effd 4823 return -EAGAIN;
b9688bb8
AJ
4824 ret = wait_event_killable(space_info->wait, !space_info->flush);
4825 /* Must have been killed, return */
4826 if (ret)
fdb5effd
JB
4827 return -EINTR;
4828
4829 spin_lock(&space_info->lock);
4830 }
4831
4832 ret = -ENOSPC;
2bf64758
JB
4833 used = space_info->bytes_used + space_info->bytes_reserved +
4834 space_info->bytes_pinned + space_info->bytes_readonly +
4835 space_info->bytes_may_use;
9ed74f2d 4836
8bb8ab2e
JB
4837 /*
4838 * The idea here is that we've not already over-reserved the block group
4839 * then we can go ahead and save our reservation first and then start
4840 * flushing if we need to. Otherwise if we've already overcommitted
4841 * lets start flushing stuff first and then come back and try to make
4842 * our reservation.
4843 */
2bf64758
JB
4844 if (used <= space_info->total_bytes) {
4845 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4846 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4847 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4848 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4849 ret = 0;
4850 } else {
4851 /*
4852 * Ok set num_bytes to orig_bytes since we aren't
4853 * overocmmitted, this way we only try and reclaim what
4854 * we need.
4855 */
4856 num_bytes = orig_bytes;
4857 }
4858 } else {
4859 /*
4860 * Ok we're over committed, set num_bytes to the overcommitted
4861 * amount plus the amount of bytes that we need for this
4862 * reservation.
4863 */
2bf64758 4864 num_bytes = used - space_info->total_bytes +
96c3f433 4865 (orig_bytes * 2);
8bb8ab2e 4866 }
9ed74f2d 4867
44734ed1
JB
4868 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4869 space_info->bytes_may_use += orig_bytes;
4870 trace_btrfs_space_reservation(root->fs_info, "space_info",
4871 space_info->flags, orig_bytes,
4872 1);
4873 ret = 0;
2bf64758
JB
4874 }
4875
8bb8ab2e
JB
4876 /*
4877 * Couldn't make our reservation, save our place so while we're trying
4878 * to reclaim space we can actually use it instead of somebody else
4879 * stealing it from us.
08e007d2
MX
4880 *
4881 * We make the other tasks wait for the flush only when we can flush
4882 * all things.
8bb8ab2e 4883 */
72bcd99d 4884 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4885 flushing = true;
4886 space_info->flush = 1;
21c7e756
MX
4887 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4888 used += orig_bytes;
f6acfd50
JB
4889 /*
4890 * We will do the space reservation dance during log replay,
4891 * which means we won't have fs_info->fs_root set, so don't do
4892 * the async reclaim as we will panic.
4893 */
4894 if (!root->fs_info->log_root_recovering &&
4895 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4896 !work_busy(&root->fs_info->async_reclaim_work))
4897 queue_work(system_unbound_wq,
4898 &root->fs_info->async_reclaim_work);
8bb8ab2e 4899 }
f0486c68 4900 spin_unlock(&space_info->lock);
9ed74f2d 4901
08e007d2 4902 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4903 goto out;
f0486c68 4904
96c3f433
JB
4905 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4906 flush_state);
4907 flush_state++;
08e007d2
MX
4908
4909 /*
4910 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4911 * would happen. So skip delalloc flush.
4912 */
4913 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4914 (flush_state == FLUSH_DELALLOC ||
4915 flush_state == FLUSH_DELALLOC_WAIT))
4916 flush_state = ALLOC_CHUNK;
4917
96c3f433 4918 if (!ret)
8bb8ab2e 4919 goto again;
08e007d2
MX
4920 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4921 flush_state < COMMIT_TRANS)
4922 goto again;
4923 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4924 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4925 goto again;
4926
4927out:
5d80366e
JB
4928 if (ret == -ENOSPC &&
4929 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4930 struct btrfs_block_rsv *global_rsv =
4931 &root->fs_info->global_block_rsv;
4932
4933 if (block_rsv != global_rsv &&
4934 !block_rsv_use_bytes(global_rsv, orig_bytes))
4935 ret = 0;
4936 }
cab45e22
JM
4937 if (ret == -ENOSPC)
4938 trace_btrfs_space_reservation(root->fs_info,
4939 "space_info:enospc",
4940 space_info->flags, orig_bytes, 1);
fdb5effd 4941 if (flushing) {
8bb8ab2e 4942 spin_lock(&space_info->lock);
fdb5effd
JB
4943 space_info->flush = 0;
4944 wake_up_all(&space_info->wait);
8bb8ab2e 4945 spin_unlock(&space_info->lock);
f0486c68 4946 }
f0486c68
YZ
4947 return ret;
4948}
4949
79787eaa
JM
4950static struct btrfs_block_rsv *get_block_rsv(
4951 const struct btrfs_trans_handle *trans,
4952 const struct btrfs_root *root)
f0486c68 4953{
4c13d758
JB
4954 struct btrfs_block_rsv *block_rsv = NULL;
4955
e9cf439f
AM
4956 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4957 (root == root->fs_info->csum_root && trans->adding_csums) ||
4958 (root == root->fs_info->uuid_root))
f7a81ea4
SB
4959 block_rsv = trans->block_rsv;
4960
4c13d758 4961 if (!block_rsv)
f0486c68
YZ
4962 block_rsv = root->block_rsv;
4963
4964 if (!block_rsv)
4965 block_rsv = &root->fs_info->empty_block_rsv;
4966
4967 return block_rsv;
4968}
4969
4970static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4971 u64 num_bytes)
4972{
4973 int ret = -ENOSPC;
4974 spin_lock(&block_rsv->lock);
4975 if (block_rsv->reserved >= num_bytes) {
4976 block_rsv->reserved -= num_bytes;
4977 if (block_rsv->reserved < block_rsv->size)
4978 block_rsv->full = 0;
4979 ret = 0;
4980 }
4981 spin_unlock(&block_rsv->lock);
4982 return ret;
4983}
4984
4985static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4986 u64 num_bytes, int update_size)
4987{
4988 spin_lock(&block_rsv->lock);
4989 block_rsv->reserved += num_bytes;
4990 if (update_size)
4991 block_rsv->size += num_bytes;
4992 else if (block_rsv->reserved >= block_rsv->size)
4993 block_rsv->full = 1;
4994 spin_unlock(&block_rsv->lock);
4995}
4996
d52be818
JB
4997int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4998 struct btrfs_block_rsv *dest, u64 num_bytes,
4999 int min_factor)
5000{
5001 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5002 u64 min_bytes;
5003
5004 if (global_rsv->space_info != dest->space_info)
5005 return -ENOSPC;
5006
5007 spin_lock(&global_rsv->lock);
5008 min_bytes = div_factor(global_rsv->size, min_factor);
5009 if (global_rsv->reserved < min_bytes + num_bytes) {
5010 spin_unlock(&global_rsv->lock);
5011 return -ENOSPC;
5012 }
5013 global_rsv->reserved -= num_bytes;
5014 if (global_rsv->reserved < global_rsv->size)
5015 global_rsv->full = 0;
5016 spin_unlock(&global_rsv->lock);
5017
5018 block_rsv_add_bytes(dest, num_bytes, 1);
5019 return 0;
5020}
5021
8c2a3ca2
JB
5022static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5023 struct btrfs_block_rsv *block_rsv,
62a45b60 5024 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5025{
5026 struct btrfs_space_info *space_info = block_rsv->space_info;
5027
5028 spin_lock(&block_rsv->lock);
5029 if (num_bytes == (u64)-1)
5030 num_bytes = block_rsv->size;
5031 block_rsv->size -= num_bytes;
5032 if (block_rsv->reserved >= block_rsv->size) {
5033 num_bytes = block_rsv->reserved - block_rsv->size;
5034 block_rsv->reserved = block_rsv->size;
5035 block_rsv->full = 1;
5036 } else {
5037 num_bytes = 0;
5038 }
5039 spin_unlock(&block_rsv->lock);
5040
5041 if (num_bytes > 0) {
5042 if (dest) {
e9e22899
JB
5043 spin_lock(&dest->lock);
5044 if (!dest->full) {
5045 u64 bytes_to_add;
5046
5047 bytes_to_add = dest->size - dest->reserved;
5048 bytes_to_add = min(num_bytes, bytes_to_add);
5049 dest->reserved += bytes_to_add;
5050 if (dest->reserved >= dest->size)
5051 dest->full = 1;
5052 num_bytes -= bytes_to_add;
5053 }
5054 spin_unlock(&dest->lock);
5055 }
5056 if (num_bytes) {
f0486c68 5057 spin_lock(&space_info->lock);
fb25e914 5058 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 5059 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5060 space_info->flags, num_bytes, 0);
f0486c68 5061 spin_unlock(&space_info->lock);
4e06bdd6 5062 }
9ed74f2d 5063 }
f0486c68 5064}
4e06bdd6 5065
f0486c68
YZ
5066static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5067 struct btrfs_block_rsv *dst, u64 num_bytes)
5068{
5069 int ret;
9ed74f2d 5070
f0486c68
YZ
5071 ret = block_rsv_use_bytes(src, num_bytes);
5072 if (ret)
5073 return ret;
9ed74f2d 5074
f0486c68 5075 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5076 return 0;
5077}
5078
66d8f3dd 5079void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5080{
f0486c68
YZ
5081 memset(rsv, 0, sizeof(*rsv));
5082 spin_lock_init(&rsv->lock);
66d8f3dd 5083 rsv->type = type;
f0486c68
YZ
5084}
5085
66d8f3dd
MX
5086struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5087 unsigned short type)
f0486c68
YZ
5088{
5089 struct btrfs_block_rsv *block_rsv;
5090 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5091
f0486c68
YZ
5092 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5093 if (!block_rsv)
5094 return NULL;
9ed74f2d 5095
66d8f3dd 5096 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5097 block_rsv->space_info = __find_space_info(fs_info,
5098 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5099 return block_rsv;
5100}
9ed74f2d 5101
f0486c68
YZ
5102void btrfs_free_block_rsv(struct btrfs_root *root,
5103 struct btrfs_block_rsv *rsv)
5104{
2aaa6655
JB
5105 if (!rsv)
5106 return;
dabdb640
JB
5107 btrfs_block_rsv_release(root, rsv, (u64)-1);
5108 kfree(rsv);
9ed74f2d
JB
5109}
5110
cdfb080e
CM
5111void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5112{
5113 kfree(rsv);
5114}
5115
08e007d2
MX
5116int btrfs_block_rsv_add(struct btrfs_root *root,
5117 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5118 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5119{
f0486c68 5120 int ret;
9ed74f2d 5121
f0486c68
YZ
5122 if (num_bytes == 0)
5123 return 0;
8bb8ab2e 5124
61b520a9 5125 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5126 if (!ret) {
5127 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5128 return 0;
5129 }
9ed74f2d 5130
f0486c68 5131 return ret;
f0486c68 5132}
9ed74f2d 5133
4a92b1b8 5134int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5135 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5136{
5137 u64 num_bytes = 0;
f0486c68 5138 int ret = -ENOSPC;
9ed74f2d 5139
f0486c68
YZ
5140 if (!block_rsv)
5141 return 0;
9ed74f2d 5142
f0486c68 5143 spin_lock(&block_rsv->lock);
36ba022a
JB
5144 num_bytes = div_factor(block_rsv->size, min_factor);
5145 if (block_rsv->reserved >= num_bytes)
5146 ret = 0;
5147 spin_unlock(&block_rsv->lock);
9ed74f2d 5148
36ba022a
JB
5149 return ret;
5150}
5151
08e007d2
MX
5152int btrfs_block_rsv_refill(struct btrfs_root *root,
5153 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5154 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5155{
5156 u64 num_bytes = 0;
5157 int ret = -ENOSPC;
5158
5159 if (!block_rsv)
5160 return 0;
5161
5162 spin_lock(&block_rsv->lock);
5163 num_bytes = min_reserved;
13553e52 5164 if (block_rsv->reserved >= num_bytes)
f0486c68 5165 ret = 0;
13553e52 5166 else
f0486c68 5167 num_bytes -= block_rsv->reserved;
f0486c68 5168 spin_unlock(&block_rsv->lock);
13553e52 5169
f0486c68
YZ
5170 if (!ret)
5171 return 0;
5172
aa38a711 5173 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5174 if (!ret) {
5175 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5176 return 0;
6a63209f 5177 }
9ed74f2d 5178
13553e52 5179 return ret;
f0486c68
YZ
5180}
5181
5182int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5183 struct btrfs_block_rsv *dst_rsv,
5184 u64 num_bytes)
5185{
5186 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5187}
5188
5189void btrfs_block_rsv_release(struct btrfs_root *root,
5190 struct btrfs_block_rsv *block_rsv,
5191 u64 num_bytes)
5192{
5193 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5194 if (global_rsv == block_rsv ||
f0486c68
YZ
5195 block_rsv->space_info != global_rsv->space_info)
5196 global_rsv = NULL;
8c2a3ca2
JB
5197 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5198 num_bytes);
6a63209f
JB
5199}
5200
5201/*
8929ecfa
YZ
5202 * helper to calculate size of global block reservation.
5203 * the desired value is sum of space used by extent tree,
5204 * checksum tree and root tree
6a63209f 5205 */
8929ecfa 5206static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5207{
8929ecfa
YZ
5208 struct btrfs_space_info *sinfo;
5209 u64 num_bytes;
5210 u64 meta_used;
5211 u64 data_used;
6c41761f 5212 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5213
8929ecfa
YZ
5214 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5215 spin_lock(&sinfo->lock);
5216 data_used = sinfo->bytes_used;
5217 spin_unlock(&sinfo->lock);
33b4d47f 5218
8929ecfa
YZ
5219 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5220 spin_lock(&sinfo->lock);
6d48755d
JB
5221 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5222 data_used = 0;
8929ecfa
YZ
5223 meta_used = sinfo->bytes_used;
5224 spin_unlock(&sinfo->lock);
ab6e2410 5225
8929ecfa
YZ
5226 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5227 csum_size * 2;
f8c269d7 5228 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5229
8929ecfa 5230 if (num_bytes * 3 > meta_used)
f8c269d7 5231 num_bytes = div_u64(meta_used, 3);
ab6e2410 5232
707e8a07 5233 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5234}
6a63209f 5235
8929ecfa
YZ
5236static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5237{
5238 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5239 struct btrfs_space_info *sinfo = block_rsv->space_info;
5240 u64 num_bytes;
6a63209f 5241
8929ecfa 5242 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5243
8929ecfa 5244 spin_lock(&sinfo->lock);
1f699d38 5245 spin_lock(&block_rsv->lock);
4e06bdd6 5246
fdf30d1c 5247 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5248
8929ecfa 5249 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5250 sinfo->bytes_reserved + sinfo->bytes_readonly +
5251 sinfo->bytes_may_use;
8929ecfa
YZ
5252
5253 if (sinfo->total_bytes > num_bytes) {
5254 num_bytes = sinfo->total_bytes - num_bytes;
5255 block_rsv->reserved += num_bytes;
fb25e914 5256 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5257 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5258 sinfo->flags, num_bytes, 1);
6a63209f 5259 }
6a63209f 5260
8929ecfa
YZ
5261 if (block_rsv->reserved >= block_rsv->size) {
5262 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5263 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5264 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5265 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5266 block_rsv->reserved = block_rsv->size;
5267 block_rsv->full = 1;
5268 }
182608c8 5269
8929ecfa 5270 spin_unlock(&block_rsv->lock);
1f699d38 5271 spin_unlock(&sinfo->lock);
6a63209f
JB
5272}
5273
f0486c68 5274static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5275{
f0486c68 5276 struct btrfs_space_info *space_info;
6a63209f 5277
f0486c68
YZ
5278 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5279 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5280
f0486c68 5281 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5282 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5283 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5284 fs_info->trans_block_rsv.space_info = space_info;
5285 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5286 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5287
8929ecfa
YZ
5288 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5289 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5290 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5291 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5292 if (fs_info->quota_root)
5293 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5294 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5295
8929ecfa 5296 update_global_block_rsv(fs_info);
6a63209f
JB
5297}
5298
8929ecfa 5299static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5300{
8c2a3ca2
JB
5301 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5302 (u64)-1);
8929ecfa
YZ
5303 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5304 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5305 WARN_ON(fs_info->trans_block_rsv.size > 0);
5306 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5307 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5308 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5309 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5310 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5311}
5312
a22285a6
YZ
5313void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5314 struct btrfs_root *root)
6a63209f 5315{
0e721106
JB
5316 if (!trans->block_rsv)
5317 return;
5318
a22285a6
YZ
5319 if (!trans->bytes_reserved)
5320 return;
6a63209f 5321
e77266e4 5322 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5323 trans->transid, trans->bytes_reserved, 0);
b24e03db 5324 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5325 trans->bytes_reserved = 0;
5326}
6a63209f 5327
4fbcdf66
FM
5328/*
5329 * To be called after all the new block groups attached to the transaction
5330 * handle have been created (btrfs_create_pending_block_groups()).
5331 */
5332void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5333{
5334 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5335
5336 if (!trans->chunk_bytes_reserved)
5337 return;
5338
5339 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5340
5341 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5342 trans->chunk_bytes_reserved);
5343 trans->chunk_bytes_reserved = 0;
5344}
5345
79787eaa 5346/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5347int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5348 struct inode *inode)
5349{
5350 struct btrfs_root *root = BTRFS_I(inode)->root;
5351 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5352 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5353
5354 /*
fcb80c2a
JB
5355 * We need to hold space in order to delete our orphan item once we've
5356 * added it, so this takes the reservation so we can release it later
5357 * when we are truly done with the orphan item.
d68fc57b 5358 */
ff5714cc 5359 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5360 trace_btrfs_space_reservation(root->fs_info, "orphan",
5361 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5362 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5363}
5364
d68fc57b 5365void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5366{
d68fc57b 5367 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5368 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5369 trace_btrfs_space_reservation(root->fs_info, "orphan",
5370 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5371 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5372}
97e728d4 5373
d5c12070
MX
5374/*
5375 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5376 * root: the root of the parent directory
5377 * rsv: block reservation
5378 * items: the number of items that we need do reservation
5379 * qgroup_reserved: used to return the reserved size in qgroup
5380 *
5381 * This function is used to reserve the space for snapshot/subvolume
5382 * creation and deletion. Those operations are different with the
5383 * common file/directory operations, they change two fs/file trees
5384 * and root tree, the number of items that the qgroup reserves is
5385 * different with the free space reservation. So we can not use
5386 * the space reseravtion mechanism in start_transaction().
5387 */
5388int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5389 struct btrfs_block_rsv *rsv,
5390 int items,
ee3441b4
JM
5391 u64 *qgroup_reserved,
5392 bool use_global_rsv)
a22285a6 5393{
d5c12070
MX
5394 u64 num_bytes;
5395 int ret;
ee3441b4 5396 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5397
5398 if (root->fs_info->quota_enabled) {
5399 /* One for parent inode, two for dir entries */
707e8a07 5400 num_bytes = 3 * root->nodesize;
d5c12070
MX
5401 ret = btrfs_qgroup_reserve(root, num_bytes);
5402 if (ret)
5403 return ret;
5404 } else {
5405 num_bytes = 0;
5406 }
5407
5408 *qgroup_reserved = num_bytes;
5409
5410 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5411 rsv->space_info = __find_space_info(root->fs_info,
5412 BTRFS_BLOCK_GROUP_METADATA);
5413 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5414 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5415
5416 if (ret == -ENOSPC && use_global_rsv)
5417 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5418
d5c12070
MX
5419 if (ret) {
5420 if (*qgroup_reserved)
5421 btrfs_qgroup_free(root, *qgroup_reserved);
5422 }
5423
5424 return ret;
5425}
5426
5427void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5428 struct btrfs_block_rsv *rsv,
5429 u64 qgroup_reserved)
5430{
5431 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5432}
5433
7709cde3
JB
5434/**
5435 * drop_outstanding_extent - drop an outstanding extent
5436 * @inode: the inode we're dropping the extent for
dcab6a3b 5437 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5438 *
5439 * This is called when we are freeing up an outstanding extent, either called
5440 * after an error or after an extent is written. This will return the number of
5441 * reserved extents that need to be freed. This must be called with
5442 * BTRFS_I(inode)->lock held.
5443 */
dcab6a3b 5444static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5445{
7fd2ae21 5446 unsigned drop_inode_space = 0;
9e0baf60 5447 unsigned dropped_extents = 0;
dcab6a3b 5448 unsigned num_extents = 0;
9e0baf60 5449
dcab6a3b
JB
5450 num_extents = (unsigned)div64_u64(num_bytes +
5451 BTRFS_MAX_EXTENT_SIZE - 1,
5452 BTRFS_MAX_EXTENT_SIZE);
5453 ASSERT(num_extents);
5454 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5455 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5456
7fd2ae21 5457 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5458 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5459 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5460 drop_inode_space = 1;
7fd2ae21 5461
9e0baf60
JB
5462 /*
5463 * If we have more or the same amount of outsanding extents than we have
5464 * reserved then we need to leave the reserved extents count alone.
5465 */
5466 if (BTRFS_I(inode)->outstanding_extents >=
5467 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5468 return drop_inode_space;
9e0baf60
JB
5469
5470 dropped_extents = BTRFS_I(inode)->reserved_extents -
5471 BTRFS_I(inode)->outstanding_extents;
5472 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5473 return dropped_extents + drop_inode_space;
9e0baf60
JB
5474}
5475
7709cde3
JB
5476/**
5477 * calc_csum_metadata_size - return the amount of metada space that must be
5478 * reserved/free'd for the given bytes.
5479 * @inode: the inode we're manipulating
5480 * @num_bytes: the number of bytes in question
5481 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5482 *
5483 * This adjusts the number of csum_bytes in the inode and then returns the
5484 * correct amount of metadata that must either be reserved or freed. We
5485 * calculate how many checksums we can fit into one leaf and then divide the
5486 * number of bytes that will need to be checksumed by this value to figure out
5487 * how many checksums will be required. If we are adding bytes then the number
5488 * may go up and we will return the number of additional bytes that must be
5489 * reserved. If it is going down we will return the number of bytes that must
5490 * be freed.
5491 *
5492 * This must be called with BTRFS_I(inode)->lock held.
5493 */
5494static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5495 int reserve)
6324fbf3 5496{
7709cde3 5497 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5498 u64 old_csums, num_csums;
7709cde3
JB
5499
5500 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5501 BTRFS_I(inode)->csum_bytes == 0)
5502 return 0;
5503
28f75a0e 5504 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5505 if (reserve)
5506 BTRFS_I(inode)->csum_bytes += num_bytes;
5507 else
5508 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5509 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5510
5511 /* No change, no need to reserve more */
5512 if (old_csums == num_csums)
5513 return 0;
5514
5515 if (reserve)
5516 return btrfs_calc_trans_metadata_size(root,
5517 num_csums - old_csums);
5518
5519 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5520}
c146afad 5521
0ca1f7ce
YZ
5522int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5523{
5524 struct btrfs_root *root = BTRFS_I(inode)->root;
5525 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5526 u64 to_reserve = 0;
660d3f6c 5527 u64 csum_bytes;
9e0baf60 5528 unsigned nr_extents = 0;
660d3f6c 5529 int extra_reserve = 0;
08e007d2 5530 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5531 int ret = 0;
c64c2bd8 5532 bool delalloc_lock = true;
88e081bf
WS
5533 u64 to_free = 0;
5534 unsigned dropped;
6324fbf3 5535
c64c2bd8
JB
5536 /* If we are a free space inode we need to not flush since we will be in
5537 * the middle of a transaction commit. We also don't need the delalloc
5538 * mutex since we won't race with anybody. We need this mostly to make
5539 * lockdep shut its filthy mouth.
5540 */
5541 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5542 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5543 delalloc_lock = false;
5544 }
c09544e0 5545
08e007d2
MX
5546 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5547 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5548 schedule_timeout(1);
ec44a35c 5549
c64c2bd8
JB
5550 if (delalloc_lock)
5551 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5552
0ca1f7ce 5553 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5554
9e0baf60 5555 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5556 nr_extents = (unsigned)div64_u64(num_bytes +
5557 BTRFS_MAX_EXTENT_SIZE - 1,
5558 BTRFS_MAX_EXTENT_SIZE);
5559 BTRFS_I(inode)->outstanding_extents += nr_extents;
5560 nr_extents = 0;
9e0baf60
JB
5561
5562 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5563 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5564 nr_extents = BTRFS_I(inode)->outstanding_extents -
5565 BTRFS_I(inode)->reserved_extents;
57a45ced 5566
7fd2ae21
JB
5567 /*
5568 * Add an item to reserve for updating the inode when we complete the
5569 * delalloc io.
5570 */
72ac3c0d
JB
5571 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5572 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5573 nr_extents++;
660d3f6c 5574 extra_reserve = 1;
593060d7 5575 }
7fd2ae21
JB
5576
5577 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5578 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5579 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5580 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5581
88e081bf 5582 if (root->fs_info->quota_enabled) {
237c0e9f 5583 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
88e081bf
WS
5584 if (ret)
5585 goto out_fail;
5586 }
c5567237 5587
88e081bf
WS
5588 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5589 if (unlikely(ret)) {
5590 if (root->fs_info->quota_enabled)
237c0e9f 5591 btrfs_qgroup_free(root, nr_extents * root->nodesize);
88e081bf 5592 goto out_fail;
9e0baf60 5593 }
25179201 5594
660d3f6c
JB
5595 spin_lock(&BTRFS_I(inode)->lock);
5596 if (extra_reserve) {
72ac3c0d
JB
5597 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5598 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5599 nr_extents--;
5600 }
5601 BTRFS_I(inode)->reserved_extents += nr_extents;
5602 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5603
5604 if (delalloc_lock)
5605 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5606
8c2a3ca2 5607 if (to_reserve)
67871254 5608 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5609 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5610 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5611
0ca1f7ce 5612 return 0;
88e081bf
WS
5613
5614out_fail:
5615 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5616 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5617 /*
5618 * If the inodes csum_bytes is the same as the original
5619 * csum_bytes then we know we haven't raced with any free()ers
5620 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5621 */
f4881bc7 5622 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5623 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5624 } else {
5625 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5626 u64 bytes;
5627
5628 /*
5629 * This is tricky, but first we need to figure out how much we
5630 * free'd from any free-ers that occured during this
5631 * reservation, so we reset ->csum_bytes to the csum_bytes
5632 * before we dropped our lock, and then call the free for the
5633 * number of bytes that were freed while we were trying our
5634 * reservation.
5635 */
5636 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5637 BTRFS_I(inode)->csum_bytes = csum_bytes;
5638 to_free = calc_csum_metadata_size(inode, bytes, 0);
5639
5640
5641 /*
5642 * Now we need to see how much we would have freed had we not
5643 * been making this reservation and our ->csum_bytes were not
5644 * artificially inflated.
5645 */
5646 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5647 bytes = csum_bytes - orig_csum_bytes;
5648 bytes = calc_csum_metadata_size(inode, bytes, 0);
5649
5650 /*
5651 * Now reset ->csum_bytes to what it should be. If bytes is
5652 * more than to_free then we would have free'd more space had we
5653 * not had an artificially high ->csum_bytes, so we need to free
5654 * the remainder. If bytes is the same or less then we don't
5655 * need to do anything, the other free-ers did the correct
5656 * thing.
5657 */
5658 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5659 if (bytes > to_free)
5660 to_free = bytes - to_free;
5661 else
5662 to_free = 0;
5663 }
88e081bf 5664 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5665 if (dropped)
88e081bf
WS
5666 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5667
5668 if (to_free) {
5669 btrfs_block_rsv_release(root, block_rsv, to_free);
5670 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5671 btrfs_ino(inode), to_free, 0);
5672 }
5673 if (delalloc_lock)
5674 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5675 return ret;
0ca1f7ce
YZ
5676}
5677
7709cde3
JB
5678/**
5679 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5680 * @inode: the inode to release the reservation for
5681 * @num_bytes: the number of bytes we're releasing
5682 *
5683 * This will release the metadata reservation for an inode. This can be called
5684 * once we complete IO for a given set of bytes to release their metadata
5685 * reservations.
5686 */
0ca1f7ce
YZ
5687void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5688{
5689 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5690 u64 to_free = 0;
5691 unsigned dropped;
0ca1f7ce
YZ
5692
5693 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5694 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5695 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5696
0934856d
MX
5697 if (num_bytes)
5698 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5699 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5700 if (dropped > 0)
5701 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5702
6a3891c5
JB
5703 if (btrfs_test_is_dummy_root(root))
5704 return;
5705
8c2a3ca2
JB
5706 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5707 btrfs_ino(inode), to_free, 0);
c5567237 5708
0ca1f7ce
YZ
5709 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5710 to_free);
5711}
5712
7709cde3
JB
5713/**
5714 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5715 * @inode: inode we're writing to
5716 * @num_bytes: the number of bytes we want to allocate
5717 *
5718 * This will do the following things
5719 *
5720 * o reserve space in the data space info for num_bytes
5721 * o reserve space in the metadata space info based on number of outstanding
5722 * extents and how much csums will be needed
5723 * o add to the inodes ->delalloc_bytes
5724 * o add it to the fs_info's delalloc inodes list.
5725 *
5726 * This will return 0 for success and -ENOSPC if there is no space left.
5727 */
0ca1f7ce
YZ
5728int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5729{
5730 int ret;
5731
e2d1f923 5732 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
d397712b 5733 if (ret)
0ca1f7ce
YZ
5734 return ret;
5735
5736 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5737 if (ret) {
5738 btrfs_free_reserved_data_space(inode, num_bytes);
5739 return ret;
5740 }
5741
5742 return 0;
5743}
5744
7709cde3
JB
5745/**
5746 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5747 * @inode: inode we're releasing space for
5748 * @num_bytes: the number of bytes we want to free up
5749 *
5750 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5751 * called in the case that we don't need the metadata AND data reservations
5752 * anymore. So if there is an error or we insert an inline extent.
5753 *
5754 * This function will release the metadata space that was not used and will
5755 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5756 * list if there are no delalloc bytes left.
5757 */
0ca1f7ce
YZ
5758void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5759{
5760 btrfs_delalloc_release_metadata(inode, num_bytes);
5761 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5762}
5763
ce93ec54
JB
5764static int update_block_group(struct btrfs_trans_handle *trans,
5765 struct btrfs_root *root, u64 bytenr,
5766 u64 num_bytes, int alloc)
9078a3e1 5767{
0af3d00b 5768 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5769 struct btrfs_fs_info *info = root->fs_info;
db94535d 5770 u64 total = num_bytes;
9078a3e1 5771 u64 old_val;
db94535d 5772 u64 byte_in_group;
0af3d00b 5773 int factor;
3e1ad54f 5774
5d4f98a2 5775 /* block accounting for super block */
eb73c1b7 5776 spin_lock(&info->delalloc_root_lock);
6c41761f 5777 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5778 if (alloc)
5779 old_val += num_bytes;
5780 else
5781 old_val -= num_bytes;
6c41761f 5782 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5783 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5784
d397712b 5785 while (total) {
db94535d 5786 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5787 if (!cache)
79787eaa 5788 return -ENOENT;
b742bb82
YZ
5789 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5790 BTRFS_BLOCK_GROUP_RAID1 |
5791 BTRFS_BLOCK_GROUP_RAID10))
5792 factor = 2;
5793 else
5794 factor = 1;
9d66e233
JB
5795 /*
5796 * If this block group has free space cache written out, we
5797 * need to make sure to load it if we are removing space. This
5798 * is because we need the unpinning stage to actually add the
5799 * space back to the block group, otherwise we will leak space.
5800 */
5801 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5802 cache_block_group(cache, 1);
0af3d00b 5803
db94535d
CM
5804 byte_in_group = bytenr - cache->key.objectid;
5805 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5806
25179201 5807 spin_lock(&cache->space_info->lock);
c286ac48 5808 spin_lock(&cache->lock);
0af3d00b 5809
73bc1876 5810 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5811 cache->disk_cache_state < BTRFS_DC_CLEAR)
5812 cache->disk_cache_state = BTRFS_DC_CLEAR;
5813
9078a3e1 5814 old_val = btrfs_block_group_used(&cache->item);
db94535d 5815 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5816 if (alloc) {
db94535d 5817 old_val += num_bytes;
11833d66
YZ
5818 btrfs_set_block_group_used(&cache->item, old_val);
5819 cache->reserved -= num_bytes;
11833d66 5820 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5821 cache->space_info->bytes_used += num_bytes;
5822 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5823 spin_unlock(&cache->lock);
25179201 5824 spin_unlock(&cache->space_info->lock);
cd1bc465 5825 } else {
db94535d 5826 old_val -= num_bytes;
ae0ab003
FM
5827 btrfs_set_block_group_used(&cache->item, old_val);
5828 cache->pinned += num_bytes;
5829 cache->space_info->bytes_pinned += num_bytes;
5830 cache->space_info->bytes_used -= num_bytes;
5831 cache->space_info->disk_used -= num_bytes * factor;
5832 spin_unlock(&cache->lock);
5833 spin_unlock(&cache->space_info->lock);
47ab2a6c 5834
ae0ab003
FM
5835 set_extent_dirty(info->pinned_extents,
5836 bytenr, bytenr + num_bytes - 1,
5837 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5838 /*
5839 * No longer have used bytes in this block group, queue
5840 * it for deletion.
5841 */
5842 if (old_val == 0) {
5843 spin_lock(&info->unused_bgs_lock);
5844 if (list_empty(&cache->bg_list)) {
5845 btrfs_get_block_group(cache);
5846 list_add_tail(&cache->bg_list,
5847 &info->unused_bgs);
5848 }
5849 spin_unlock(&info->unused_bgs_lock);
5850 }
cd1bc465 5851 }
1bbc621e
CM
5852
5853 spin_lock(&trans->transaction->dirty_bgs_lock);
5854 if (list_empty(&cache->dirty_list)) {
5855 list_add_tail(&cache->dirty_list,
5856 &trans->transaction->dirty_bgs);
5857 trans->transaction->num_dirty_bgs++;
5858 btrfs_get_block_group(cache);
5859 }
5860 spin_unlock(&trans->transaction->dirty_bgs_lock);
5861
fa9c0d79 5862 btrfs_put_block_group(cache);
db94535d
CM
5863 total -= num_bytes;
5864 bytenr += num_bytes;
9078a3e1
CM
5865 }
5866 return 0;
5867}
6324fbf3 5868
a061fc8d
CM
5869static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5870{
0f9dd46c 5871 struct btrfs_block_group_cache *cache;
d2fb3437 5872 u64 bytenr;
0f9dd46c 5873
a1897fdd
LB
5874 spin_lock(&root->fs_info->block_group_cache_lock);
5875 bytenr = root->fs_info->first_logical_byte;
5876 spin_unlock(&root->fs_info->block_group_cache_lock);
5877
5878 if (bytenr < (u64)-1)
5879 return bytenr;
5880
0f9dd46c
JB
5881 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5882 if (!cache)
a061fc8d 5883 return 0;
0f9dd46c 5884
d2fb3437 5885 bytenr = cache->key.objectid;
fa9c0d79 5886 btrfs_put_block_group(cache);
d2fb3437
YZ
5887
5888 return bytenr;
a061fc8d
CM
5889}
5890
f0486c68
YZ
5891static int pin_down_extent(struct btrfs_root *root,
5892 struct btrfs_block_group_cache *cache,
5893 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5894{
11833d66
YZ
5895 spin_lock(&cache->space_info->lock);
5896 spin_lock(&cache->lock);
5897 cache->pinned += num_bytes;
5898 cache->space_info->bytes_pinned += num_bytes;
5899 if (reserved) {
5900 cache->reserved -= num_bytes;
5901 cache->space_info->bytes_reserved -= num_bytes;
5902 }
5903 spin_unlock(&cache->lock);
5904 spin_unlock(&cache->space_info->lock);
68b38550 5905
f0486c68
YZ
5906 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5907 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5908 if (reserved)
0be5dc67 5909 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5910 return 0;
5911}
68b38550 5912
f0486c68
YZ
5913/*
5914 * this function must be called within transaction
5915 */
5916int btrfs_pin_extent(struct btrfs_root *root,
5917 u64 bytenr, u64 num_bytes, int reserved)
5918{
5919 struct btrfs_block_group_cache *cache;
68b38550 5920
f0486c68 5921 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5922 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5923
5924 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5925
5926 btrfs_put_block_group(cache);
11833d66
YZ
5927 return 0;
5928}
5929
f0486c68 5930/*
e688b725
CM
5931 * this function must be called within transaction
5932 */
dcfac415 5933int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5934 u64 bytenr, u64 num_bytes)
5935{
5936 struct btrfs_block_group_cache *cache;
b50c6e25 5937 int ret;
e688b725
CM
5938
5939 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5940 if (!cache)
5941 return -EINVAL;
e688b725
CM
5942
5943 /*
5944 * pull in the free space cache (if any) so that our pin
5945 * removes the free space from the cache. We have load_only set
5946 * to one because the slow code to read in the free extents does check
5947 * the pinned extents.
5948 */
f6373bf3 5949 cache_block_group(cache, 1);
e688b725
CM
5950
5951 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5952
5953 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5954 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5955 btrfs_put_block_group(cache);
b50c6e25 5956 return ret;
e688b725
CM
5957}
5958
8c2a1a30
JB
5959static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5960{
5961 int ret;
5962 struct btrfs_block_group_cache *block_group;
5963 struct btrfs_caching_control *caching_ctl;
5964
5965 block_group = btrfs_lookup_block_group(root->fs_info, start);
5966 if (!block_group)
5967 return -EINVAL;
5968
5969 cache_block_group(block_group, 0);
5970 caching_ctl = get_caching_control(block_group);
5971
5972 if (!caching_ctl) {
5973 /* Logic error */
5974 BUG_ON(!block_group_cache_done(block_group));
5975 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5976 } else {
5977 mutex_lock(&caching_ctl->mutex);
5978
5979 if (start >= caching_ctl->progress) {
5980 ret = add_excluded_extent(root, start, num_bytes);
5981 } else if (start + num_bytes <= caching_ctl->progress) {
5982 ret = btrfs_remove_free_space(block_group,
5983 start, num_bytes);
5984 } else {
5985 num_bytes = caching_ctl->progress - start;
5986 ret = btrfs_remove_free_space(block_group,
5987 start, num_bytes);
5988 if (ret)
5989 goto out_lock;
5990
5991 num_bytes = (start + num_bytes) -
5992 caching_ctl->progress;
5993 start = caching_ctl->progress;
5994 ret = add_excluded_extent(root, start, num_bytes);
5995 }
5996out_lock:
5997 mutex_unlock(&caching_ctl->mutex);
5998 put_caching_control(caching_ctl);
5999 }
6000 btrfs_put_block_group(block_group);
6001 return ret;
6002}
6003
6004int btrfs_exclude_logged_extents(struct btrfs_root *log,
6005 struct extent_buffer *eb)
6006{
6007 struct btrfs_file_extent_item *item;
6008 struct btrfs_key key;
6009 int found_type;
6010 int i;
6011
6012 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6013 return 0;
6014
6015 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6016 btrfs_item_key_to_cpu(eb, &key, i);
6017 if (key.type != BTRFS_EXTENT_DATA_KEY)
6018 continue;
6019 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6020 found_type = btrfs_file_extent_type(eb, item);
6021 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6022 continue;
6023 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6024 continue;
6025 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6026 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6027 __exclude_logged_extent(log, key.objectid, key.offset);
6028 }
6029
6030 return 0;
6031}
6032
fb25e914
JB
6033/**
6034 * btrfs_update_reserved_bytes - update the block_group and space info counters
6035 * @cache: The cache we are manipulating
6036 * @num_bytes: The number of bytes in question
6037 * @reserve: One of the reservation enums
e570fd27 6038 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
6039 *
6040 * This is called by the allocator when it reserves space, or by somebody who is
6041 * freeing space that was never actually used on disk. For example if you
6042 * reserve some space for a new leaf in transaction A and before transaction A
6043 * commits you free that leaf, you call this with reserve set to 0 in order to
6044 * clear the reservation.
6045 *
6046 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6047 * ENOSPC accounting. For data we handle the reservation through clearing the
6048 * delalloc bits in the io_tree. We have to do this since we could end up
6049 * allocating less disk space for the amount of data we have reserved in the
6050 * case of compression.
6051 *
6052 * If this is a reservation and the block group has become read only we cannot
6053 * make the reservation and return -EAGAIN, otherwise this function always
6054 * succeeds.
f0486c68 6055 */
fb25e914 6056static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 6057 u64 num_bytes, int reserve, int delalloc)
11833d66 6058{
fb25e914 6059 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6060 int ret = 0;
79787eaa 6061
fb25e914
JB
6062 spin_lock(&space_info->lock);
6063 spin_lock(&cache->lock);
6064 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6065 if (cache->ro) {
6066 ret = -EAGAIN;
6067 } else {
fb25e914
JB
6068 cache->reserved += num_bytes;
6069 space_info->bytes_reserved += num_bytes;
6070 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6071 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6072 "space_info", space_info->flags,
6073 num_bytes, 0);
fb25e914
JB
6074 space_info->bytes_may_use -= num_bytes;
6075 }
e570fd27
MX
6076
6077 if (delalloc)
6078 cache->delalloc_bytes += num_bytes;
f0486c68 6079 }
fb25e914
JB
6080 } else {
6081 if (cache->ro)
6082 space_info->bytes_readonly += num_bytes;
6083 cache->reserved -= num_bytes;
6084 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6085
6086 if (delalloc)
6087 cache->delalloc_bytes -= num_bytes;
324ae4df 6088 }
fb25e914
JB
6089 spin_unlock(&cache->lock);
6090 spin_unlock(&space_info->lock);
f0486c68 6091 return ret;
324ae4df 6092}
9078a3e1 6093
143bede5 6094void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6095 struct btrfs_root *root)
e8569813 6096{
e8569813 6097 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6098 struct btrfs_caching_control *next;
6099 struct btrfs_caching_control *caching_ctl;
6100 struct btrfs_block_group_cache *cache;
e8569813 6101
9e351cc8 6102 down_write(&fs_info->commit_root_sem);
25179201 6103
11833d66
YZ
6104 list_for_each_entry_safe(caching_ctl, next,
6105 &fs_info->caching_block_groups, list) {
6106 cache = caching_ctl->block_group;
6107 if (block_group_cache_done(cache)) {
6108 cache->last_byte_to_unpin = (u64)-1;
6109 list_del_init(&caching_ctl->list);
6110 put_caching_control(caching_ctl);
e8569813 6111 } else {
11833d66 6112 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6113 }
e8569813 6114 }
11833d66
YZ
6115
6116 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6117 fs_info->pinned_extents = &fs_info->freed_extents[1];
6118 else
6119 fs_info->pinned_extents = &fs_info->freed_extents[0];
6120
9e351cc8 6121 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6122
6123 update_global_block_rsv(fs_info);
e8569813
ZY
6124}
6125
678886bd
FM
6126static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6127 const bool return_free_space)
ccd467d6 6128{
11833d66
YZ
6129 struct btrfs_fs_info *fs_info = root->fs_info;
6130 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6131 struct btrfs_space_info *space_info;
6132 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 6133 u64 len;
7b398f8e 6134 bool readonly;
ccd467d6 6135
11833d66 6136 while (start <= end) {
7b398f8e 6137 readonly = false;
11833d66
YZ
6138 if (!cache ||
6139 start >= cache->key.objectid + cache->key.offset) {
6140 if (cache)
6141 btrfs_put_block_group(cache);
6142 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6143 BUG_ON(!cache); /* Logic error */
11833d66
YZ
6144 }
6145
6146 len = cache->key.objectid + cache->key.offset - start;
6147 len = min(len, end + 1 - start);
6148
6149 if (start < cache->last_byte_to_unpin) {
6150 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6151 if (return_free_space)
6152 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6153 }
6154
f0486c68 6155 start += len;
7b398f8e 6156 space_info = cache->space_info;
f0486c68 6157
7b398f8e 6158 spin_lock(&space_info->lock);
11833d66
YZ
6159 spin_lock(&cache->lock);
6160 cache->pinned -= len;
7b398f8e 6161 space_info->bytes_pinned -= len;
4f4db217 6162 space_info->max_extent_size = 0;
d288db5d 6163 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6164 if (cache->ro) {
6165 space_info->bytes_readonly += len;
6166 readonly = true;
6167 }
11833d66 6168 spin_unlock(&cache->lock);
7b398f8e
JB
6169 if (!readonly && global_rsv->space_info == space_info) {
6170 spin_lock(&global_rsv->lock);
6171 if (!global_rsv->full) {
6172 len = min(len, global_rsv->size -
6173 global_rsv->reserved);
6174 global_rsv->reserved += len;
6175 space_info->bytes_may_use += len;
6176 if (global_rsv->reserved >= global_rsv->size)
6177 global_rsv->full = 1;
6178 }
6179 spin_unlock(&global_rsv->lock);
6180 }
6181 spin_unlock(&space_info->lock);
ccd467d6 6182 }
11833d66
YZ
6183
6184 if (cache)
6185 btrfs_put_block_group(cache);
ccd467d6
CM
6186 return 0;
6187}
6188
6189int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6190 struct btrfs_root *root)
a28ec197 6191{
11833d66 6192 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6193 struct btrfs_block_group_cache *block_group, *tmp;
6194 struct list_head *deleted_bgs;
11833d66 6195 struct extent_io_tree *unpin;
1a5bc167
CM
6196 u64 start;
6197 u64 end;
a28ec197 6198 int ret;
a28ec197 6199
11833d66
YZ
6200 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6201 unpin = &fs_info->freed_extents[1];
6202 else
6203 unpin = &fs_info->freed_extents[0];
6204
e33e17ee 6205 while (!trans->aborted) {
d4b450cd 6206 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6207 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6208 EXTENT_DIRTY, NULL);
d4b450cd
FM
6209 if (ret) {
6210 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6211 break;
d4b450cd 6212 }
1f3c79a2 6213
5378e607
LD
6214 if (btrfs_test_opt(root, DISCARD))
6215 ret = btrfs_discard_extent(root, start,
6216 end + 1 - start, NULL);
1f3c79a2 6217
1a5bc167 6218 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6219 unpin_extent_range(root, start, end, true);
d4b450cd 6220 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6221 cond_resched();
a28ec197 6222 }
817d52f8 6223
e33e17ee
JM
6224 /*
6225 * Transaction is finished. We don't need the lock anymore. We
6226 * do need to clean up the block groups in case of a transaction
6227 * abort.
6228 */
6229 deleted_bgs = &trans->transaction->deleted_bgs;
6230 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6231 u64 trimmed = 0;
6232
6233 ret = -EROFS;
6234 if (!trans->aborted)
6235 ret = btrfs_discard_extent(root,
6236 block_group->key.objectid,
6237 block_group->key.offset,
6238 &trimmed);
6239
6240 list_del_init(&block_group->bg_list);
6241 btrfs_put_block_group_trimming(block_group);
6242 btrfs_put_block_group(block_group);
6243
6244 if (ret) {
6245 const char *errstr = btrfs_decode_error(ret);
6246 btrfs_warn(fs_info,
6247 "Discard failed while removing blockgroup: errno=%d %s\n",
6248 ret, errstr);
6249 }
6250 }
6251
e20d96d6
CM
6252 return 0;
6253}
6254
b150a4f1
JB
6255static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6256 u64 owner, u64 root_objectid)
6257{
6258 struct btrfs_space_info *space_info;
6259 u64 flags;
6260
6261 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6262 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6263 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6264 else
6265 flags = BTRFS_BLOCK_GROUP_METADATA;
6266 } else {
6267 flags = BTRFS_BLOCK_GROUP_DATA;
6268 }
6269
6270 space_info = __find_space_info(fs_info, flags);
6271 BUG_ON(!space_info); /* Logic bug */
6272 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6273}
6274
6275
5d4f98a2
YZ
6276static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6277 struct btrfs_root *root,
c682f9b3 6278 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6279 u64 root_objectid, u64 owner_objectid,
6280 u64 owner_offset, int refs_to_drop,
c682f9b3 6281 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6282{
e2fa7227 6283 struct btrfs_key key;
5d4f98a2 6284 struct btrfs_path *path;
1261ec42
CM
6285 struct btrfs_fs_info *info = root->fs_info;
6286 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6287 struct extent_buffer *leaf;
5d4f98a2
YZ
6288 struct btrfs_extent_item *ei;
6289 struct btrfs_extent_inline_ref *iref;
a28ec197 6290 int ret;
5d4f98a2 6291 int is_data;
952fccac
CM
6292 int extent_slot = 0;
6293 int found_extent = 0;
6294 int num_to_del = 1;
c682f9b3 6295 int no_quota = node->no_quota;
5d4f98a2
YZ
6296 u32 item_size;
6297 u64 refs;
c682f9b3
QW
6298 u64 bytenr = node->bytenr;
6299 u64 num_bytes = node->num_bytes;
fcebe456 6300 int last_ref = 0;
3173a18f
JB
6301 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6302 SKINNY_METADATA);
037e6390 6303
fcebe456
JB
6304 if (!info->quota_enabled || !is_fstree(root_objectid))
6305 no_quota = 1;
6306
5caf2a00 6307 path = btrfs_alloc_path();
54aa1f4d
CM
6308 if (!path)
6309 return -ENOMEM;
5f26f772 6310
3c12ac72 6311 path->reada = 1;
b9473439 6312 path->leave_spinning = 1;
5d4f98a2
YZ
6313
6314 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6315 BUG_ON(!is_data && refs_to_drop != 1);
6316
3173a18f
JB
6317 if (is_data)
6318 skinny_metadata = 0;
6319
5d4f98a2
YZ
6320 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6321 bytenr, num_bytes, parent,
6322 root_objectid, owner_objectid,
6323 owner_offset);
7bb86316 6324 if (ret == 0) {
952fccac 6325 extent_slot = path->slots[0];
5d4f98a2
YZ
6326 while (extent_slot >= 0) {
6327 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6328 extent_slot);
5d4f98a2 6329 if (key.objectid != bytenr)
952fccac 6330 break;
5d4f98a2
YZ
6331 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6332 key.offset == num_bytes) {
952fccac
CM
6333 found_extent = 1;
6334 break;
6335 }
3173a18f
JB
6336 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6337 key.offset == owner_objectid) {
6338 found_extent = 1;
6339 break;
6340 }
952fccac
CM
6341 if (path->slots[0] - extent_slot > 5)
6342 break;
5d4f98a2 6343 extent_slot--;
952fccac 6344 }
5d4f98a2
YZ
6345#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6346 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6347 if (found_extent && item_size < sizeof(*ei))
6348 found_extent = 0;
6349#endif
31840ae1 6350 if (!found_extent) {
5d4f98a2 6351 BUG_ON(iref);
56bec294 6352 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6353 NULL, refs_to_drop,
fcebe456 6354 is_data, &last_ref);
005d6427
DS
6355 if (ret) {
6356 btrfs_abort_transaction(trans, extent_root, ret);
6357 goto out;
6358 }
b3b4aa74 6359 btrfs_release_path(path);
b9473439 6360 path->leave_spinning = 1;
5d4f98a2
YZ
6361
6362 key.objectid = bytenr;
6363 key.type = BTRFS_EXTENT_ITEM_KEY;
6364 key.offset = num_bytes;
6365
3173a18f
JB
6366 if (!is_data && skinny_metadata) {
6367 key.type = BTRFS_METADATA_ITEM_KEY;
6368 key.offset = owner_objectid;
6369 }
6370
31840ae1
ZY
6371 ret = btrfs_search_slot(trans, extent_root,
6372 &key, path, -1, 1);
3173a18f
JB
6373 if (ret > 0 && skinny_metadata && path->slots[0]) {
6374 /*
6375 * Couldn't find our skinny metadata item,
6376 * see if we have ye olde extent item.
6377 */
6378 path->slots[0]--;
6379 btrfs_item_key_to_cpu(path->nodes[0], &key,
6380 path->slots[0]);
6381 if (key.objectid == bytenr &&
6382 key.type == BTRFS_EXTENT_ITEM_KEY &&
6383 key.offset == num_bytes)
6384 ret = 0;
6385 }
6386
6387 if (ret > 0 && skinny_metadata) {
6388 skinny_metadata = false;
9ce49a0b 6389 key.objectid = bytenr;
3173a18f
JB
6390 key.type = BTRFS_EXTENT_ITEM_KEY;
6391 key.offset = num_bytes;
6392 btrfs_release_path(path);
6393 ret = btrfs_search_slot(trans, extent_root,
6394 &key, path, -1, 1);
6395 }
6396
f3465ca4 6397 if (ret) {
c2cf52eb 6398 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6399 ret, bytenr);
b783e62d
JB
6400 if (ret > 0)
6401 btrfs_print_leaf(extent_root,
6402 path->nodes[0]);
f3465ca4 6403 }
005d6427
DS
6404 if (ret < 0) {
6405 btrfs_abort_transaction(trans, extent_root, ret);
6406 goto out;
6407 }
31840ae1
ZY
6408 extent_slot = path->slots[0];
6409 }
fae7f21c 6410 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6411 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6412 btrfs_err(info,
6413 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6414 bytenr, parent, root_objectid, owner_objectid,
6415 owner_offset);
c4a050bb
JB
6416 btrfs_abort_transaction(trans, extent_root, ret);
6417 goto out;
79787eaa 6418 } else {
005d6427
DS
6419 btrfs_abort_transaction(trans, extent_root, ret);
6420 goto out;
7bb86316 6421 }
5f39d397
CM
6422
6423 leaf = path->nodes[0];
5d4f98a2
YZ
6424 item_size = btrfs_item_size_nr(leaf, extent_slot);
6425#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6426 if (item_size < sizeof(*ei)) {
6427 BUG_ON(found_extent || extent_slot != path->slots[0]);
6428 ret = convert_extent_item_v0(trans, extent_root, path,
6429 owner_objectid, 0);
005d6427
DS
6430 if (ret < 0) {
6431 btrfs_abort_transaction(trans, extent_root, ret);
6432 goto out;
6433 }
5d4f98a2 6434
b3b4aa74 6435 btrfs_release_path(path);
5d4f98a2
YZ
6436 path->leave_spinning = 1;
6437
6438 key.objectid = bytenr;
6439 key.type = BTRFS_EXTENT_ITEM_KEY;
6440 key.offset = num_bytes;
6441
6442 ret = btrfs_search_slot(trans, extent_root, &key, path,
6443 -1, 1);
6444 if (ret) {
c2cf52eb 6445 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6446 ret, bytenr);
5d4f98a2
YZ
6447 btrfs_print_leaf(extent_root, path->nodes[0]);
6448 }
005d6427
DS
6449 if (ret < 0) {
6450 btrfs_abort_transaction(trans, extent_root, ret);
6451 goto out;
6452 }
6453
5d4f98a2
YZ
6454 extent_slot = path->slots[0];
6455 leaf = path->nodes[0];
6456 item_size = btrfs_item_size_nr(leaf, extent_slot);
6457 }
6458#endif
6459 BUG_ON(item_size < sizeof(*ei));
952fccac 6460 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6461 struct btrfs_extent_item);
3173a18f
JB
6462 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6463 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6464 struct btrfs_tree_block_info *bi;
6465 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6466 bi = (struct btrfs_tree_block_info *)(ei + 1);
6467 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6468 }
56bec294 6469
5d4f98a2 6470 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6471 if (refs < refs_to_drop) {
6472 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6473 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6474 ret = -EINVAL;
6475 btrfs_abort_transaction(trans, extent_root, ret);
6476 goto out;
6477 }
56bec294 6478 refs -= refs_to_drop;
5f39d397 6479
5d4f98a2
YZ
6480 if (refs > 0) {
6481 if (extent_op)
6482 __run_delayed_extent_op(extent_op, leaf, ei);
6483 /*
6484 * In the case of inline back ref, reference count will
6485 * be updated by remove_extent_backref
952fccac 6486 */
5d4f98a2
YZ
6487 if (iref) {
6488 BUG_ON(!found_extent);
6489 } else {
6490 btrfs_set_extent_refs(leaf, ei, refs);
6491 btrfs_mark_buffer_dirty(leaf);
6492 }
6493 if (found_extent) {
6494 ret = remove_extent_backref(trans, extent_root, path,
6495 iref, refs_to_drop,
fcebe456 6496 is_data, &last_ref);
005d6427
DS
6497 if (ret) {
6498 btrfs_abort_transaction(trans, extent_root, ret);
6499 goto out;
6500 }
952fccac 6501 }
b150a4f1
JB
6502 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6503 root_objectid);
5d4f98a2 6504 } else {
5d4f98a2
YZ
6505 if (found_extent) {
6506 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6507 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6508 if (iref) {
6509 BUG_ON(path->slots[0] != extent_slot);
6510 } else {
6511 BUG_ON(path->slots[0] != extent_slot + 1);
6512 path->slots[0] = extent_slot;
6513 num_to_del = 2;
6514 }
78fae27e 6515 }
b9473439 6516
fcebe456 6517 last_ref = 1;
952fccac
CM
6518 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6519 num_to_del);
005d6427
DS
6520 if (ret) {
6521 btrfs_abort_transaction(trans, extent_root, ret);
6522 goto out;
6523 }
b3b4aa74 6524 btrfs_release_path(path);
21af804c 6525
5d4f98a2 6526 if (is_data) {
459931ec 6527 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6528 if (ret) {
6529 btrfs_abort_transaction(trans, extent_root, ret);
6530 goto out;
6531 }
459931ec
CM
6532 }
6533
ce93ec54 6534 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6535 if (ret) {
6536 btrfs_abort_transaction(trans, extent_root, ret);
6537 goto out;
6538 }
a28ec197 6539 }
fcebe456
JB
6540 btrfs_release_path(path);
6541
79787eaa 6542out:
5caf2a00 6543 btrfs_free_path(path);
a28ec197
CM
6544 return ret;
6545}
6546
1887be66 6547/*
f0486c68 6548 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6549 * delayed ref for that extent as well. This searches the delayed ref tree for
6550 * a given extent, and if there are no other delayed refs to be processed, it
6551 * removes it from the tree.
6552 */
6553static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6554 struct btrfs_root *root, u64 bytenr)
6555{
6556 struct btrfs_delayed_ref_head *head;
6557 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6558 int ret = 0;
1887be66
CM
6559
6560 delayed_refs = &trans->transaction->delayed_refs;
6561 spin_lock(&delayed_refs->lock);
6562 head = btrfs_find_delayed_ref_head(trans, bytenr);
6563 if (!head)
cf93da7b 6564 goto out_delayed_unlock;
1887be66 6565
d7df2c79 6566 spin_lock(&head->lock);
c6fc2454 6567 if (!list_empty(&head->ref_list))
1887be66
CM
6568 goto out;
6569
5d4f98a2
YZ
6570 if (head->extent_op) {
6571 if (!head->must_insert_reserved)
6572 goto out;
78a6184a 6573 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6574 head->extent_op = NULL;
6575 }
6576
1887be66
CM
6577 /*
6578 * waiting for the lock here would deadlock. If someone else has it
6579 * locked they are already in the process of dropping it anyway
6580 */
6581 if (!mutex_trylock(&head->mutex))
6582 goto out;
6583
6584 /*
6585 * at this point we have a head with no other entries. Go
6586 * ahead and process it.
6587 */
6588 head->node.in_tree = 0;
c46effa6 6589 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6590
d7df2c79 6591 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6592
6593 /*
6594 * we don't take a ref on the node because we're removing it from the
6595 * tree, so we just steal the ref the tree was holding.
6596 */
c3e69d58 6597 delayed_refs->num_heads--;
d7df2c79 6598 if (head->processing == 0)
c3e69d58 6599 delayed_refs->num_heads_ready--;
d7df2c79
JB
6600 head->processing = 0;
6601 spin_unlock(&head->lock);
1887be66
CM
6602 spin_unlock(&delayed_refs->lock);
6603
f0486c68
YZ
6604 BUG_ON(head->extent_op);
6605 if (head->must_insert_reserved)
6606 ret = 1;
6607
6608 mutex_unlock(&head->mutex);
1887be66 6609 btrfs_put_delayed_ref(&head->node);
f0486c68 6610 return ret;
1887be66 6611out:
d7df2c79 6612 spin_unlock(&head->lock);
cf93da7b
CM
6613
6614out_delayed_unlock:
1887be66
CM
6615 spin_unlock(&delayed_refs->lock);
6616 return 0;
6617}
6618
f0486c68
YZ
6619void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6620 struct btrfs_root *root,
6621 struct extent_buffer *buf,
5581a51a 6622 u64 parent, int last_ref)
f0486c68 6623{
b150a4f1 6624 int pin = 1;
f0486c68
YZ
6625 int ret;
6626
6627 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6628 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6629 buf->start, buf->len,
6630 parent, root->root_key.objectid,
6631 btrfs_header_level(buf),
5581a51a 6632 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6633 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6634 }
6635
6636 if (!last_ref)
6637 return;
6638
f0486c68 6639 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6640 struct btrfs_block_group_cache *cache;
6641
f0486c68
YZ
6642 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6643 ret = check_ref_cleanup(trans, root, buf->start);
6644 if (!ret)
37be25bc 6645 goto out;
f0486c68
YZ
6646 }
6647
6219872d
FM
6648 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6649
f0486c68
YZ
6650 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6651 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6652 btrfs_put_block_group(cache);
37be25bc 6653 goto out;
f0486c68
YZ
6654 }
6655
6656 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6657
6658 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6659 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6660 btrfs_put_block_group(cache);
0be5dc67 6661 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6662 pin = 0;
f0486c68
YZ
6663 }
6664out:
b150a4f1
JB
6665 if (pin)
6666 add_pinned_bytes(root->fs_info, buf->len,
6667 btrfs_header_level(buf),
6668 root->root_key.objectid);
6669
a826d6dc
JB
6670 /*
6671 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6672 * anymore.
6673 */
6674 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6675}
6676
79787eaa 6677/* Can return -ENOMEM */
66d7e7f0
AJ
6678int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6679 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6680 u64 owner, u64 offset, int no_quota)
925baedd
CM
6681{
6682 int ret;
66d7e7f0 6683 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6684
fccb84c9 6685 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6686 return 0;
fccb84c9 6687
b150a4f1
JB
6688 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6689
56bec294
CM
6690 /*
6691 * tree log blocks never actually go into the extent allocation
6692 * tree, just update pinning info and exit early.
56bec294 6693 */
5d4f98a2
YZ
6694 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6695 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6696 /* unlocks the pinned mutex */
11833d66 6697 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6698 ret = 0;
5d4f98a2 6699 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6700 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6701 num_bytes,
5d4f98a2 6702 parent, root_objectid, (int)owner,
fcebe456 6703 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6704 } else {
66d7e7f0
AJ
6705 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6706 num_bytes,
6707 parent, root_objectid, owner,
6708 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6709 NULL, no_quota);
56bec294 6710 }
925baedd
CM
6711 return ret;
6712}
6713
817d52f8
JB
6714/*
6715 * when we wait for progress in the block group caching, its because
6716 * our allocation attempt failed at least once. So, we must sleep
6717 * and let some progress happen before we try again.
6718 *
6719 * This function will sleep at least once waiting for new free space to
6720 * show up, and then it will check the block group free space numbers
6721 * for our min num_bytes. Another option is to have it go ahead
6722 * and look in the rbtree for a free extent of a given size, but this
6723 * is a good start.
36cce922
JB
6724 *
6725 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6726 * any of the information in this block group.
817d52f8 6727 */
36cce922 6728static noinline void
817d52f8
JB
6729wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6730 u64 num_bytes)
6731{
11833d66 6732 struct btrfs_caching_control *caching_ctl;
817d52f8 6733
11833d66
YZ
6734 caching_ctl = get_caching_control(cache);
6735 if (!caching_ctl)
36cce922 6736 return;
817d52f8 6737
11833d66 6738 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6739 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6740
6741 put_caching_control(caching_ctl);
11833d66
YZ
6742}
6743
6744static noinline int
6745wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6746{
6747 struct btrfs_caching_control *caching_ctl;
36cce922 6748 int ret = 0;
11833d66
YZ
6749
6750 caching_ctl = get_caching_control(cache);
6751 if (!caching_ctl)
36cce922 6752 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6753
6754 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6755 if (cache->cached == BTRFS_CACHE_ERROR)
6756 ret = -EIO;
11833d66 6757 put_caching_control(caching_ctl);
36cce922 6758 return ret;
817d52f8
JB
6759}
6760
31e50229 6761int __get_raid_index(u64 flags)
b742bb82 6762{
7738a53a 6763 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6764 return BTRFS_RAID_RAID10;
7738a53a 6765 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6766 return BTRFS_RAID_RAID1;
7738a53a 6767 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6768 return BTRFS_RAID_DUP;
7738a53a 6769 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6770 return BTRFS_RAID_RAID0;
53b381b3 6771 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6772 return BTRFS_RAID_RAID5;
53b381b3 6773 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6774 return BTRFS_RAID_RAID6;
7738a53a 6775
e942f883 6776 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6777}
6778
6ab0a202 6779int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6780{
31e50229 6781 return __get_raid_index(cache->flags);
7738a53a
ID
6782}
6783
6ab0a202
JM
6784static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6785 [BTRFS_RAID_RAID10] = "raid10",
6786 [BTRFS_RAID_RAID1] = "raid1",
6787 [BTRFS_RAID_DUP] = "dup",
6788 [BTRFS_RAID_RAID0] = "raid0",
6789 [BTRFS_RAID_SINGLE] = "single",
6790 [BTRFS_RAID_RAID5] = "raid5",
6791 [BTRFS_RAID_RAID6] = "raid6",
6792};
6793
1b8e5df6 6794static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6795{
6796 if (type >= BTRFS_NR_RAID_TYPES)
6797 return NULL;
6798
6799 return btrfs_raid_type_names[type];
6800}
6801
817d52f8 6802enum btrfs_loop_type {
285ff5af
JB
6803 LOOP_CACHING_NOWAIT = 0,
6804 LOOP_CACHING_WAIT = 1,
6805 LOOP_ALLOC_CHUNK = 2,
6806 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6807};
6808
e570fd27
MX
6809static inline void
6810btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6811 int delalloc)
6812{
6813 if (delalloc)
6814 down_read(&cache->data_rwsem);
6815}
6816
6817static inline void
6818btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6819 int delalloc)
6820{
6821 btrfs_get_block_group(cache);
6822 if (delalloc)
6823 down_read(&cache->data_rwsem);
6824}
6825
6826static struct btrfs_block_group_cache *
6827btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6828 struct btrfs_free_cluster *cluster,
6829 int delalloc)
6830{
6831 struct btrfs_block_group_cache *used_bg;
6832 bool locked = false;
6833again:
6834 spin_lock(&cluster->refill_lock);
6835 if (locked) {
6836 if (used_bg == cluster->block_group)
6837 return used_bg;
6838
6839 up_read(&used_bg->data_rwsem);
6840 btrfs_put_block_group(used_bg);
6841 }
6842
6843 used_bg = cluster->block_group;
6844 if (!used_bg)
6845 return NULL;
6846
6847 if (used_bg == block_group)
6848 return used_bg;
6849
6850 btrfs_get_block_group(used_bg);
6851
6852 if (!delalloc)
6853 return used_bg;
6854
6855 if (down_read_trylock(&used_bg->data_rwsem))
6856 return used_bg;
6857
6858 spin_unlock(&cluster->refill_lock);
6859 down_read(&used_bg->data_rwsem);
6860 locked = true;
6861 goto again;
6862}
6863
6864static inline void
6865btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6866 int delalloc)
6867{
6868 if (delalloc)
6869 up_read(&cache->data_rwsem);
6870 btrfs_put_block_group(cache);
6871}
6872
fec577fb
CM
6873/*
6874 * walks the btree of allocated extents and find a hole of a given size.
6875 * The key ins is changed to record the hole:
a4820398 6876 * ins->objectid == start position
62e2749e 6877 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6878 * ins->offset == the size of the hole.
fec577fb 6879 * Any available blocks before search_start are skipped.
a4820398
MX
6880 *
6881 * If there is no suitable free space, we will record the max size of
6882 * the free space extent currently.
fec577fb 6883 */
00361589 6884static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6885 u64 num_bytes, u64 empty_size,
98ed5174 6886 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6887 u64 flags, int delalloc)
fec577fb 6888{
80eb234a 6889 int ret = 0;
d397712b 6890 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6891 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6892 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6893 u64 search_start = 0;
a4820398 6894 u64 max_extent_size = 0;
239b14b3 6895 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6896 struct btrfs_space_info *space_info;
fa9c0d79 6897 int loop = 0;
b6919a58
DS
6898 int index = __get_raid_index(flags);
6899 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6900 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6901 bool failed_cluster_refill = false;
1cdda9b8 6902 bool failed_alloc = false;
67377734 6903 bool use_cluster = true;
60d2adbb 6904 bool have_caching_bg = false;
fec577fb 6905
db94535d 6906 WARN_ON(num_bytes < root->sectorsize);
962a298f 6907 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6908 ins->objectid = 0;
6909 ins->offset = 0;
b1a4d965 6910
b6919a58 6911 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6912
b6919a58 6913 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6914 if (!space_info) {
b6919a58 6915 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6916 return -ENOSPC;
6917 }
2552d17e 6918
4f4db217
JB
6919 /*
6920 * If our free space is heavily fragmented we may not be able to make
6921 * big contiguous allocations, so instead of doing the expensive search
6922 * for free space, simply return ENOSPC with our max_extent_size so we
6923 * can go ahead and search for a more manageable chunk.
6924 *
6925 * If our max_extent_size is large enough for our allocation simply
6926 * disable clustering since we will likely not be able to find enough
6927 * space to create a cluster and induce latency trying.
6928 */
6929 if (unlikely(space_info->max_extent_size)) {
6930 spin_lock(&space_info->lock);
6931 if (space_info->max_extent_size &&
6932 num_bytes > space_info->max_extent_size) {
6933 ins->offset = space_info->max_extent_size;
6934 spin_unlock(&space_info->lock);
6935 return -ENOSPC;
6936 } else if (space_info->max_extent_size) {
6937 use_cluster = false;
6938 }
6939 spin_unlock(&space_info->lock);
6940 }
6941
67377734
JB
6942 /*
6943 * If the space info is for both data and metadata it means we have a
6944 * small filesystem and we can't use the clustering stuff.
6945 */
6946 if (btrfs_mixed_space_info(space_info))
6947 use_cluster = false;
6948
b6919a58 6949 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6950 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6951 if (!btrfs_test_opt(root, SSD))
6952 empty_cluster = 64 * 1024;
239b14b3
CM
6953 }
6954
b6919a58 6955 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6956 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6957 last_ptr = &root->fs_info->data_alloc_cluster;
6958 }
0f9dd46c 6959
239b14b3 6960 if (last_ptr) {
fa9c0d79
CM
6961 spin_lock(&last_ptr->lock);
6962 if (last_ptr->block_group)
6963 hint_byte = last_ptr->window_start;
6964 spin_unlock(&last_ptr->lock);
239b14b3 6965 }
fa9c0d79 6966
a061fc8d 6967 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6968 search_start = max(search_start, hint_byte);
0b86a832 6969
817d52f8 6970 if (!last_ptr)
fa9c0d79 6971 empty_cluster = 0;
fa9c0d79 6972
2552d17e 6973 if (search_start == hint_byte) {
2552d17e
JB
6974 block_group = btrfs_lookup_block_group(root->fs_info,
6975 search_start);
817d52f8
JB
6976 /*
6977 * we don't want to use the block group if it doesn't match our
6978 * allocation bits, or if its not cached.
ccf0e725
JB
6979 *
6980 * However if we are re-searching with an ideal block group
6981 * picked out then we don't care that the block group is cached.
817d52f8 6982 */
b6919a58 6983 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 6984 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 6985 down_read(&space_info->groups_sem);
44fb5511
CM
6986 if (list_empty(&block_group->list) ||
6987 block_group->ro) {
6988 /*
6989 * someone is removing this block group,
6990 * we can't jump into the have_block_group
6991 * target because our list pointers are not
6992 * valid
6993 */
6994 btrfs_put_block_group(block_group);
6995 up_read(&space_info->groups_sem);
ccf0e725 6996 } else {
b742bb82 6997 index = get_block_group_index(block_group);
e570fd27 6998 btrfs_lock_block_group(block_group, delalloc);
44fb5511 6999 goto have_block_group;
ccf0e725 7000 }
2552d17e 7001 } else if (block_group) {
fa9c0d79 7002 btrfs_put_block_group(block_group);
2552d17e 7003 }
42e70e7a 7004 }
2552d17e 7005search:
60d2adbb 7006 have_caching_bg = false;
80eb234a 7007 down_read(&space_info->groups_sem);
b742bb82
YZ
7008 list_for_each_entry(block_group, &space_info->block_groups[index],
7009 list) {
6226cb0a 7010 u64 offset;
817d52f8 7011 int cached;
8a1413a2 7012
e570fd27 7013 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7014 search_start = block_group->key.objectid;
42e70e7a 7015
83a50de9
CM
7016 /*
7017 * this can happen if we end up cycling through all the
7018 * raid types, but we want to make sure we only allocate
7019 * for the proper type.
7020 */
b6919a58 7021 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7022 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7023 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7024 BTRFS_BLOCK_GROUP_RAID5 |
7025 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7026 BTRFS_BLOCK_GROUP_RAID10;
7027
7028 /*
7029 * if they asked for extra copies and this block group
7030 * doesn't provide them, bail. This does allow us to
7031 * fill raid0 from raid1.
7032 */
b6919a58 7033 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7034 goto loop;
7035 }
7036
2552d17e 7037have_block_group:
291c7d2f
JB
7038 cached = block_group_cache_done(block_group);
7039 if (unlikely(!cached)) {
f6373bf3 7040 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7041 BUG_ON(ret < 0);
7042 ret = 0;
817d52f8
JB
7043 }
7044
36cce922
JB
7045 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7046 goto loop;
ea6a478e 7047 if (unlikely(block_group->ro))
2552d17e 7048 goto loop;
0f9dd46c 7049
0a24325e 7050 /*
062c05c4
AO
7051 * Ok we want to try and use the cluster allocator, so
7052 * lets look there
0a24325e 7053 */
062c05c4 7054 if (last_ptr) {
215a63d1 7055 struct btrfs_block_group_cache *used_block_group;
8de972b4 7056 unsigned long aligned_cluster;
fa9c0d79
CM
7057 /*
7058 * the refill lock keeps out other
7059 * people trying to start a new cluster
7060 */
e570fd27
MX
7061 used_block_group = btrfs_lock_cluster(block_group,
7062 last_ptr,
7063 delalloc);
7064 if (!used_block_group)
44fb5511 7065 goto refill_cluster;
274bd4fb 7066
e570fd27
MX
7067 if (used_block_group != block_group &&
7068 (used_block_group->ro ||
7069 !block_group_bits(used_block_group, flags)))
7070 goto release_cluster;
44fb5511 7071
274bd4fb 7072 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7073 last_ptr,
7074 num_bytes,
7075 used_block_group->key.objectid,
7076 &max_extent_size);
fa9c0d79
CM
7077 if (offset) {
7078 /* we have a block, we're done */
7079 spin_unlock(&last_ptr->refill_lock);
3f7de037 7080 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7081 used_block_group,
7082 search_start, num_bytes);
215a63d1 7083 if (used_block_group != block_group) {
e570fd27
MX
7084 btrfs_release_block_group(block_group,
7085 delalloc);
215a63d1
MX
7086 block_group = used_block_group;
7087 }
fa9c0d79
CM
7088 goto checks;
7089 }
7090
274bd4fb 7091 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7092release_cluster:
062c05c4
AO
7093 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7094 * set up a new clusters, so lets just skip it
7095 * and let the allocator find whatever block
7096 * it can find. If we reach this point, we
7097 * will have tried the cluster allocator
7098 * plenty of times and not have found
7099 * anything, so we are likely way too
7100 * fragmented for the clustering stuff to find
a5f6f719
AO
7101 * anything.
7102 *
7103 * However, if the cluster is taken from the
7104 * current block group, release the cluster
7105 * first, so that we stand a better chance of
7106 * succeeding in the unclustered
7107 * allocation. */
7108 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7109 used_block_group != block_group) {
062c05c4 7110 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7111 btrfs_release_block_group(used_block_group,
7112 delalloc);
062c05c4
AO
7113 goto unclustered_alloc;
7114 }
7115
fa9c0d79
CM
7116 /*
7117 * this cluster didn't work out, free it and
7118 * start over
7119 */
7120 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7121
e570fd27
MX
7122 if (used_block_group != block_group)
7123 btrfs_release_block_group(used_block_group,
7124 delalloc);
7125refill_cluster:
a5f6f719
AO
7126 if (loop >= LOOP_NO_EMPTY_SIZE) {
7127 spin_unlock(&last_ptr->refill_lock);
7128 goto unclustered_alloc;
7129 }
7130
8de972b4
CM
7131 aligned_cluster = max_t(unsigned long,
7132 empty_cluster + empty_size,
7133 block_group->full_stripe_len);
7134
fa9c0d79 7135 /* allocate a cluster in this block group */
00361589
JB
7136 ret = btrfs_find_space_cluster(root, block_group,
7137 last_ptr, search_start,
7138 num_bytes,
7139 aligned_cluster);
fa9c0d79
CM
7140 if (ret == 0) {
7141 /*
7142 * now pull our allocation out of this
7143 * cluster
7144 */
7145 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7146 last_ptr,
7147 num_bytes,
7148 search_start,
7149 &max_extent_size);
fa9c0d79
CM
7150 if (offset) {
7151 /* we found one, proceed */
7152 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7153 trace_btrfs_reserve_extent_cluster(root,
7154 block_group, search_start,
7155 num_bytes);
fa9c0d79
CM
7156 goto checks;
7157 }
0a24325e
JB
7158 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7159 && !failed_cluster_refill) {
817d52f8
JB
7160 spin_unlock(&last_ptr->refill_lock);
7161
0a24325e 7162 failed_cluster_refill = true;
817d52f8
JB
7163 wait_block_group_cache_progress(block_group,
7164 num_bytes + empty_cluster + empty_size);
7165 goto have_block_group;
fa9c0d79 7166 }
817d52f8 7167
fa9c0d79
CM
7168 /*
7169 * at this point we either didn't find a cluster
7170 * or we weren't able to allocate a block from our
7171 * cluster. Free the cluster we've been trying
7172 * to use, and go to the next block group
7173 */
0a24325e 7174 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7175 spin_unlock(&last_ptr->refill_lock);
0a24325e 7176 goto loop;
fa9c0d79
CM
7177 }
7178
062c05c4 7179unclustered_alloc:
a5f6f719
AO
7180 spin_lock(&block_group->free_space_ctl->tree_lock);
7181 if (cached &&
7182 block_group->free_space_ctl->free_space <
7183 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7184 if (block_group->free_space_ctl->free_space >
7185 max_extent_size)
7186 max_extent_size =
7187 block_group->free_space_ctl->free_space;
a5f6f719
AO
7188 spin_unlock(&block_group->free_space_ctl->tree_lock);
7189 goto loop;
7190 }
7191 spin_unlock(&block_group->free_space_ctl->tree_lock);
7192
6226cb0a 7193 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7194 num_bytes, empty_size,
7195 &max_extent_size);
1cdda9b8
JB
7196 /*
7197 * If we didn't find a chunk, and we haven't failed on this
7198 * block group before, and this block group is in the middle of
7199 * caching and we are ok with waiting, then go ahead and wait
7200 * for progress to be made, and set failed_alloc to true.
7201 *
7202 * If failed_alloc is true then we've already waited on this
7203 * block group once and should move on to the next block group.
7204 */
7205 if (!offset && !failed_alloc && !cached &&
7206 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7207 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7208 num_bytes + empty_size);
7209 failed_alloc = true;
817d52f8 7210 goto have_block_group;
1cdda9b8 7211 } else if (!offset) {
60d2adbb
MX
7212 if (!cached)
7213 have_caching_bg = true;
1cdda9b8 7214 goto loop;
817d52f8 7215 }
fa9c0d79 7216checks:
4e54b17a 7217 search_start = ALIGN(offset, root->stripesize);
25179201 7218
2552d17e
JB
7219 /* move on to the next group */
7220 if (search_start + num_bytes >
215a63d1
MX
7221 block_group->key.objectid + block_group->key.offset) {
7222 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7223 goto loop;
6226cb0a 7224 }
f5a31e16 7225
f0486c68 7226 if (offset < search_start)
215a63d1 7227 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7228 search_start - offset);
7229 BUG_ON(offset > search_start);
2552d17e 7230
215a63d1 7231 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7232 alloc_type, delalloc);
f0486c68 7233 if (ret == -EAGAIN) {
215a63d1 7234 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7235 goto loop;
0f9dd46c 7236 }
0b86a832 7237
f0486c68 7238 /* we are all good, lets return */
2552d17e
JB
7239 ins->objectid = search_start;
7240 ins->offset = num_bytes;
d2fb3437 7241
3f7de037
JB
7242 trace_btrfs_reserve_extent(orig_root, block_group,
7243 search_start, num_bytes);
e570fd27 7244 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7245 break;
7246loop:
0a24325e 7247 failed_cluster_refill = false;
1cdda9b8 7248 failed_alloc = false;
b742bb82 7249 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7250 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7251 }
7252 up_read(&space_info->groups_sem);
7253
60d2adbb
MX
7254 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7255 goto search;
7256
b742bb82
YZ
7257 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7258 goto search;
7259
285ff5af 7260 /*
ccf0e725
JB
7261 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7262 * caching kthreads as we move along
817d52f8
JB
7263 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7264 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7265 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7266 * again
fa9c0d79 7267 */
723bda20 7268 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7269 index = 0;
723bda20 7270 loop++;
817d52f8 7271 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7272 struct btrfs_trans_handle *trans;
f017f15f
WS
7273 int exist = 0;
7274
7275 trans = current->journal_info;
7276 if (trans)
7277 exist = 1;
7278 else
7279 trans = btrfs_join_transaction(root);
00361589 7280
00361589
JB
7281 if (IS_ERR(trans)) {
7282 ret = PTR_ERR(trans);
7283 goto out;
7284 }
7285
b6919a58 7286 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7287 CHUNK_ALLOC_FORCE);
7288 /*
7289 * Do not bail out on ENOSPC since we
7290 * can do more things.
7291 */
00361589 7292 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7293 btrfs_abort_transaction(trans,
7294 root, ret);
00361589
JB
7295 else
7296 ret = 0;
f017f15f
WS
7297 if (!exist)
7298 btrfs_end_transaction(trans, root);
00361589 7299 if (ret)
ea658bad 7300 goto out;
2552d17e
JB
7301 }
7302
723bda20
JB
7303 if (loop == LOOP_NO_EMPTY_SIZE) {
7304 empty_size = 0;
7305 empty_cluster = 0;
fa9c0d79 7306 }
723bda20
JB
7307
7308 goto search;
2552d17e
JB
7309 } else if (!ins->objectid) {
7310 ret = -ENOSPC;
d82a6f1d 7311 } else if (ins->objectid) {
80eb234a 7312 ret = 0;
be744175 7313 }
79787eaa 7314out:
4f4db217
JB
7315 if (ret == -ENOSPC) {
7316 spin_lock(&space_info->lock);
7317 space_info->max_extent_size = max_extent_size;
7318 spin_unlock(&space_info->lock);
a4820398 7319 ins->offset = max_extent_size;
4f4db217 7320 }
0f70abe2 7321 return ret;
fec577fb 7322}
ec44a35c 7323
9ed74f2d
JB
7324static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7325 int dump_block_groups)
0f9dd46c
JB
7326{
7327 struct btrfs_block_group_cache *cache;
b742bb82 7328 int index = 0;
0f9dd46c 7329
9ed74f2d 7330 spin_lock(&info->lock);
efe120a0 7331 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7332 info->flags,
7333 info->total_bytes - info->bytes_used - info->bytes_pinned -
7334 info->bytes_reserved - info->bytes_readonly,
d397712b 7335 (info->full) ? "" : "not ");
efe120a0 7336 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7337 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7338 info->total_bytes, info->bytes_used, info->bytes_pinned,
7339 info->bytes_reserved, info->bytes_may_use,
7340 info->bytes_readonly);
9ed74f2d
JB
7341 spin_unlock(&info->lock);
7342
7343 if (!dump_block_groups)
7344 return;
0f9dd46c 7345
80eb234a 7346 down_read(&info->groups_sem);
b742bb82
YZ
7347again:
7348 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7349 spin_lock(&cache->lock);
efe120a0
FH
7350 printk(KERN_INFO "BTRFS: "
7351 "block group %llu has %llu bytes, "
7352 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7353 cache->key.objectid, cache->key.offset,
7354 btrfs_block_group_used(&cache->item), cache->pinned,
7355 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7356 btrfs_dump_free_space(cache, bytes);
7357 spin_unlock(&cache->lock);
7358 }
b742bb82
YZ
7359 if (++index < BTRFS_NR_RAID_TYPES)
7360 goto again;
80eb234a 7361 up_read(&info->groups_sem);
0f9dd46c 7362}
e8569813 7363
00361589 7364int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7365 u64 num_bytes, u64 min_alloc_size,
7366 u64 empty_size, u64 hint_byte,
e570fd27 7367 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7368{
36af4e07 7369 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7370 u64 flags;
fec577fb 7371 int ret;
925baedd 7372
b6919a58 7373 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7374again:
db94535d 7375 WARN_ON(num_bytes < root->sectorsize);
00361589 7376 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7377 flags, delalloc);
3b951516 7378
9e622d6b 7379 if (ret == -ENOSPC) {
a4820398
MX
7380 if (!final_tried && ins->offset) {
7381 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7382 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7383 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7384 if (num_bytes == min_alloc_size)
7385 final_tried = true;
7386 goto again;
7387 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7388 struct btrfs_space_info *sinfo;
7389
b6919a58 7390 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7391 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7392 flags, num_bytes);
53804280
JM
7393 if (sinfo)
7394 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7395 }
925baedd 7396 }
0f9dd46c
JB
7397
7398 return ret;
e6dcd2dc
CM
7399}
7400
e688b725 7401static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7402 u64 start, u64 len,
7403 int pin, int delalloc)
65b51a00 7404{
0f9dd46c 7405 struct btrfs_block_group_cache *cache;
1f3c79a2 7406 int ret = 0;
0f9dd46c 7407
0f9dd46c
JB
7408 cache = btrfs_lookup_block_group(root->fs_info, start);
7409 if (!cache) {
c2cf52eb 7410 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7411 start);
0f9dd46c
JB
7412 return -ENOSPC;
7413 }
1f3c79a2 7414
e688b725
CM
7415 if (pin)
7416 pin_down_extent(root, cache, start, len, 1);
7417 else {
dcc82f47
FM
7418 if (btrfs_test_opt(root, DISCARD))
7419 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7420 btrfs_add_free_space(cache, start, len);
e570fd27 7421 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7422 }
31193213 7423
fa9c0d79 7424 btrfs_put_block_group(cache);
817d52f8 7425
1abe9b8a 7426 trace_btrfs_reserved_extent_free(root, start, len);
7427
e6dcd2dc
CM
7428 return ret;
7429}
7430
e688b725 7431int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7432 u64 start, u64 len, int delalloc)
e688b725 7433{
e570fd27 7434 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7435}
7436
7437int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7438 u64 start, u64 len)
7439{
e570fd27 7440 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7441}
7442
5d4f98a2
YZ
7443static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7444 struct btrfs_root *root,
7445 u64 parent, u64 root_objectid,
7446 u64 flags, u64 owner, u64 offset,
7447 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7448{
7449 int ret;
5d4f98a2 7450 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7451 struct btrfs_extent_item *extent_item;
5d4f98a2 7452 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7453 struct btrfs_path *path;
5d4f98a2
YZ
7454 struct extent_buffer *leaf;
7455 int type;
7456 u32 size;
26b8003f 7457
5d4f98a2
YZ
7458 if (parent > 0)
7459 type = BTRFS_SHARED_DATA_REF_KEY;
7460 else
7461 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7462
5d4f98a2 7463 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7464
7465 path = btrfs_alloc_path();
db5b493a
TI
7466 if (!path)
7467 return -ENOMEM;
47e4bb98 7468
b9473439 7469 path->leave_spinning = 1;
5d4f98a2
YZ
7470 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7471 ins, size);
79787eaa
JM
7472 if (ret) {
7473 btrfs_free_path(path);
7474 return ret;
7475 }
0f9dd46c 7476
5d4f98a2
YZ
7477 leaf = path->nodes[0];
7478 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7479 struct btrfs_extent_item);
5d4f98a2
YZ
7480 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7481 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7482 btrfs_set_extent_flags(leaf, extent_item,
7483 flags | BTRFS_EXTENT_FLAG_DATA);
7484
7485 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7486 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7487 if (parent > 0) {
7488 struct btrfs_shared_data_ref *ref;
7489 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7490 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7491 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7492 } else {
7493 struct btrfs_extent_data_ref *ref;
7494 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7495 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7496 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7497 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7498 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7499 }
47e4bb98
CM
7500
7501 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7502 btrfs_free_path(path);
f510cfec 7503
ce93ec54 7504 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7505 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7506 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7507 ins->objectid, ins->offset);
f5947066
CM
7508 BUG();
7509 }
0be5dc67 7510 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7511 return ret;
7512}
7513
5d4f98a2
YZ
7514static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7515 struct btrfs_root *root,
7516 u64 parent, u64 root_objectid,
7517 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7518 int level, struct btrfs_key *ins,
7519 int no_quota)
e6dcd2dc
CM
7520{
7521 int ret;
5d4f98a2
YZ
7522 struct btrfs_fs_info *fs_info = root->fs_info;
7523 struct btrfs_extent_item *extent_item;
7524 struct btrfs_tree_block_info *block_info;
7525 struct btrfs_extent_inline_ref *iref;
7526 struct btrfs_path *path;
7527 struct extent_buffer *leaf;
3173a18f 7528 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7529 u64 num_bytes = ins->offset;
3173a18f
JB
7530 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7531 SKINNY_METADATA);
7532
7533 if (!skinny_metadata)
7534 size += sizeof(*block_info);
1c2308f8 7535
5d4f98a2 7536 path = btrfs_alloc_path();
857cc2fc
JB
7537 if (!path) {
7538 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7539 root->nodesize);
d8926bb3 7540 return -ENOMEM;
857cc2fc 7541 }
56bec294 7542
5d4f98a2
YZ
7543 path->leave_spinning = 1;
7544 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7545 ins, size);
79787eaa 7546 if (ret) {
dd825259 7547 btrfs_free_path(path);
857cc2fc 7548 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7549 root->nodesize);
79787eaa
JM
7550 return ret;
7551 }
5d4f98a2
YZ
7552
7553 leaf = path->nodes[0];
7554 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7555 struct btrfs_extent_item);
7556 btrfs_set_extent_refs(leaf, extent_item, 1);
7557 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7558 btrfs_set_extent_flags(leaf, extent_item,
7559 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7560
3173a18f
JB
7561 if (skinny_metadata) {
7562 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7563 num_bytes = root->nodesize;
3173a18f
JB
7564 } else {
7565 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7566 btrfs_set_tree_block_key(leaf, block_info, key);
7567 btrfs_set_tree_block_level(leaf, block_info, level);
7568 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7569 }
5d4f98a2 7570
5d4f98a2
YZ
7571 if (parent > 0) {
7572 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7573 btrfs_set_extent_inline_ref_type(leaf, iref,
7574 BTRFS_SHARED_BLOCK_REF_KEY);
7575 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7576 } else {
7577 btrfs_set_extent_inline_ref_type(leaf, iref,
7578 BTRFS_TREE_BLOCK_REF_KEY);
7579 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7580 }
7581
7582 btrfs_mark_buffer_dirty(leaf);
7583 btrfs_free_path(path);
7584
ce93ec54
JB
7585 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7586 1);
79787eaa 7587 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7588 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7589 ins->objectid, ins->offset);
5d4f98a2
YZ
7590 BUG();
7591 }
0be5dc67 7592
707e8a07 7593 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7594 return ret;
7595}
7596
7597int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7598 struct btrfs_root *root,
7599 u64 root_objectid, u64 owner,
7600 u64 offset, struct btrfs_key *ins)
7601{
7602 int ret;
7603
7604 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7605
66d7e7f0
AJ
7606 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7607 ins->offset, 0,
7608 root_objectid, owner, offset,
7609 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7610 return ret;
7611}
e02119d5
CM
7612
7613/*
7614 * this is used by the tree logging recovery code. It records that
7615 * an extent has been allocated and makes sure to clear the free
7616 * space cache bits as well
7617 */
5d4f98a2
YZ
7618int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7619 struct btrfs_root *root,
7620 u64 root_objectid, u64 owner, u64 offset,
7621 struct btrfs_key *ins)
e02119d5
CM
7622{
7623 int ret;
7624 struct btrfs_block_group_cache *block_group;
11833d66 7625
8c2a1a30
JB
7626 /*
7627 * Mixed block groups will exclude before processing the log so we only
7628 * need to do the exlude dance if this fs isn't mixed.
7629 */
7630 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7631 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7632 if (ret)
8c2a1a30 7633 return ret;
11833d66
YZ
7634 }
7635
8c2a1a30
JB
7636 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7637 if (!block_group)
7638 return -EINVAL;
7639
fb25e914 7640 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7641 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7642 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7643 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7644 0, owner, offset, ins, 1);
b50c6e25 7645 btrfs_put_block_group(block_group);
e02119d5
CM
7646 return ret;
7647}
7648
48a3b636
ES
7649static struct extent_buffer *
7650btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7651 u64 bytenr, int level)
65b51a00
CM
7652{
7653 struct extent_buffer *buf;
7654
a83fffb7 7655 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7656 if (!buf)
7657 return ERR_PTR(-ENOMEM);
7658 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7659 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7660 btrfs_tree_lock(buf);
01d58472 7661 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7662 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7663
7664 btrfs_set_lock_blocking(buf);
65b51a00 7665 btrfs_set_buffer_uptodate(buf);
b4ce94de 7666
d0c803c4 7667 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7668 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7669 /*
7670 * we allow two log transactions at a time, use different
7671 * EXENT bit to differentiate dirty pages.
7672 */
656f30db 7673 if (buf->log_index == 0)
8cef4e16
YZ
7674 set_extent_dirty(&root->dirty_log_pages, buf->start,
7675 buf->start + buf->len - 1, GFP_NOFS);
7676 else
7677 set_extent_new(&root->dirty_log_pages, buf->start,
7678 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7679 } else {
656f30db 7680 buf->log_index = -1;
d0c803c4 7681 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7682 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7683 }
65b51a00 7684 trans->blocks_used++;
b4ce94de 7685 /* this returns a buffer locked for blocking */
65b51a00
CM
7686 return buf;
7687}
7688
f0486c68
YZ
7689static struct btrfs_block_rsv *
7690use_block_rsv(struct btrfs_trans_handle *trans,
7691 struct btrfs_root *root, u32 blocksize)
7692{
7693 struct btrfs_block_rsv *block_rsv;
68a82277 7694 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7695 int ret;
d88033db 7696 bool global_updated = false;
f0486c68
YZ
7697
7698 block_rsv = get_block_rsv(trans, root);
7699
b586b323
MX
7700 if (unlikely(block_rsv->size == 0))
7701 goto try_reserve;
d88033db 7702again:
f0486c68
YZ
7703 ret = block_rsv_use_bytes(block_rsv, blocksize);
7704 if (!ret)
7705 return block_rsv;
7706
b586b323
MX
7707 if (block_rsv->failfast)
7708 return ERR_PTR(ret);
7709
d88033db
MX
7710 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7711 global_updated = true;
7712 update_global_block_rsv(root->fs_info);
7713 goto again;
7714 }
7715
b586b323
MX
7716 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7717 static DEFINE_RATELIMIT_STATE(_rs,
7718 DEFAULT_RATELIMIT_INTERVAL * 10,
7719 /*DEFAULT_RATELIMIT_BURST*/ 1);
7720 if (__ratelimit(&_rs))
7721 WARN(1, KERN_DEBUG
efe120a0 7722 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7723 }
7724try_reserve:
7725 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7726 BTRFS_RESERVE_NO_FLUSH);
7727 if (!ret)
7728 return block_rsv;
7729 /*
7730 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7731 * the global reserve if its space type is the same as the global
7732 * reservation.
b586b323 7733 */
5881cfc9
MX
7734 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7735 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7736 ret = block_rsv_use_bytes(global_rsv, blocksize);
7737 if (!ret)
7738 return global_rsv;
7739 }
7740 return ERR_PTR(ret);
f0486c68
YZ
7741}
7742
8c2a3ca2
JB
7743static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7744 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7745{
7746 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7747 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7748}
7749
fec577fb 7750/*
f0486c68 7751 * finds a free extent and does all the dirty work required for allocation
67b7859e 7752 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7753 */
4d75f8a9
DS
7754struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7755 struct btrfs_root *root,
5d4f98a2
YZ
7756 u64 parent, u64 root_objectid,
7757 struct btrfs_disk_key *key, int level,
5581a51a 7758 u64 hint, u64 empty_size)
fec577fb 7759{
e2fa7227 7760 struct btrfs_key ins;
f0486c68 7761 struct btrfs_block_rsv *block_rsv;
5f39d397 7762 struct extent_buffer *buf;
67b7859e 7763 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7764 u64 flags = 0;
7765 int ret;
4d75f8a9 7766 u32 blocksize = root->nodesize;
3173a18f
JB
7767 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7768 SKINNY_METADATA);
fec577fb 7769
fccb84c9 7770 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7771 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7772 level);
faa2dbf0
JB
7773 if (!IS_ERR(buf))
7774 root->alloc_bytenr += blocksize;
7775 return buf;
7776 }
fccb84c9 7777
f0486c68
YZ
7778 block_rsv = use_block_rsv(trans, root, blocksize);
7779 if (IS_ERR(block_rsv))
7780 return ERR_CAST(block_rsv);
7781
00361589 7782 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7783 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7784 if (ret)
7785 goto out_unuse;
55c69072 7786
fe864576 7787 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7788 if (IS_ERR(buf)) {
7789 ret = PTR_ERR(buf);
7790 goto out_free_reserved;
7791 }
f0486c68
YZ
7792
7793 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7794 if (parent == 0)
7795 parent = ins.objectid;
7796 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7797 } else
7798 BUG_ON(parent > 0);
7799
7800 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7801 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7802 if (!extent_op) {
7803 ret = -ENOMEM;
7804 goto out_free_buf;
7805 }
f0486c68
YZ
7806 if (key)
7807 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7808 else
7809 memset(&extent_op->key, 0, sizeof(extent_op->key));
7810 extent_op->flags_to_set = flags;
3173a18f
JB
7811 if (skinny_metadata)
7812 extent_op->update_key = 0;
7813 else
7814 extent_op->update_key = 1;
f0486c68
YZ
7815 extent_op->update_flags = 1;
7816 extent_op->is_data = 0;
b1c79e09 7817 extent_op->level = level;
f0486c68 7818
66d7e7f0 7819 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7820 ins.objectid, ins.offset,
7821 parent, root_objectid, level,
7822 BTRFS_ADD_DELAYED_EXTENT,
7823 extent_op, 0);
7824 if (ret)
7825 goto out_free_delayed;
f0486c68 7826 }
fec577fb 7827 return buf;
67b7859e
OS
7828
7829out_free_delayed:
7830 btrfs_free_delayed_extent_op(extent_op);
7831out_free_buf:
7832 free_extent_buffer(buf);
7833out_free_reserved:
7834 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7835out_unuse:
7836 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7837 return ERR_PTR(ret);
fec577fb 7838}
a28ec197 7839
2c47e605
YZ
7840struct walk_control {
7841 u64 refs[BTRFS_MAX_LEVEL];
7842 u64 flags[BTRFS_MAX_LEVEL];
7843 struct btrfs_key update_progress;
7844 int stage;
7845 int level;
7846 int shared_level;
7847 int update_ref;
7848 int keep_locks;
1c4850e2
YZ
7849 int reada_slot;
7850 int reada_count;
66d7e7f0 7851 int for_reloc;
2c47e605
YZ
7852};
7853
7854#define DROP_REFERENCE 1
7855#define UPDATE_BACKREF 2
7856
1c4850e2
YZ
7857static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7858 struct btrfs_root *root,
7859 struct walk_control *wc,
7860 struct btrfs_path *path)
6407bf6d 7861{
1c4850e2
YZ
7862 u64 bytenr;
7863 u64 generation;
7864 u64 refs;
94fcca9f 7865 u64 flags;
5d4f98a2 7866 u32 nritems;
1c4850e2
YZ
7867 u32 blocksize;
7868 struct btrfs_key key;
7869 struct extent_buffer *eb;
6407bf6d 7870 int ret;
1c4850e2
YZ
7871 int slot;
7872 int nread = 0;
6407bf6d 7873
1c4850e2
YZ
7874 if (path->slots[wc->level] < wc->reada_slot) {
7875 wc->reada_count = wc->reada_count * 2 / 3;
7876 wc->reada_count = max(wc->reada_count, 2);
7877 } else {
7878 wc->reada_count = wc->reada_count * 3 / 2;
7879 wc->reada_count = min_t(int, wc->reada_count,
7880 BTRFS_NODEPTRS_PER_BLOCK(root));
7881 }
7bb86316 7882
1c4850e2
YZ
7883 eb = path->nodes[wc->level];
7884 nritems = btrfs_header_nritems(eb);
707e8a07 7885 blocksize = root->nodesize;
bd56b302 7886
1c4850e2
YZ
7887 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7888 if (nread >= wc->reada_count)
7889 break;
bd56b302 7890
2dd3e67b 7891 cond_resched();
1c4850e2
YZ
7892 bytenr = btrfs_node_blockptr(eb, slot);
7893 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7894
1c4850e2
YZ
7895 if (slot == path->slots[wc->level])
7896 goto reada;
5d4f98a2 7897
1c4850e2
YZ
7898 if (wc->stage == UPDATE_BACKREF &&
7899 generation <= root->root_key.offset)
bd56b302
CM
7900 continue;
7901
94fcca9f 7902 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7903 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7904 wc->level - 1, 1, &refs,
7905 &flags);
79787eaa
JM
7906 /* We don't care about errors in readahead. */
7907 if (ret < 0)
7908 continue;
94fcca9f
YZ
7909 BUG_ON(refs == 0);
7910
1c4850e2 7911 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7912 if (refs == 1)
7913 goto reada;
bd56b302 7914
94fcca9f
YZ
7915 if (wc->level == 1 &&
7916 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7917 continue;
1c4850e2
YZ
7918 if (!wc->update_ref ||
7919 generation <= root->root_key.offset)
7920 continue;
7921 btrfs_node_key_to_cpu(eb, &key, slot);
7922 ret = btrfs_comp_cpu_keys(&key,
7923 &wc->update_progress);
7924 if (ret < 0)
7925 continue;
94fcca9f
YZ
7926 } else {
7927 if (wc->level == 1 &&
7928 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7929 continue;
6407bf6d 7930 }
1c4850e2 7931reada:
d3e46fea 7932 readahead_tree_block(root, bytenr);
1c4850e2 7933 nread++;
20524f02 7934 }
1c4850e2 7935 wc->reada_slot = slot;
20524f02 7936}
2c47e605 7937
0ed4792a
QW
7938/*
7939 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7940 * for later qgroup accounting.
7941 *
7942 * Current, this function does nothing.
7943 */
1152651a
MF
7944static int account_leaf_items(struct btrfs_trans_handle *trans,
7945 struct btrfs_root *root,
7946 struct extent_buffer *eb)
7947{
7948 int nr = btrfs_header_nritems(eb);
0ed4792a 7949 int i, extent_type;
1152651a
MF
7950 struct btrfs_key key;
7951 struct btrfs_file_extent_item *fi;
7952 u64 bytenr, num_bytes;
7953
7954 for (i = 0; i < nr; i++) {
7955 btrfs_item_key_to_cpu(eb, &key, i);
7956
7957 if (key.type != BTRFS_EXTENT_DATA_KEY)
7958 continue;
7959
7960 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7961 /* filter out non qgroup-accountable extents */
7962 extent_type = btrfs_file_extent_type(eb, fi);
7963
7964 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7965 continue;
7966
7967 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7968 if (!bytenr)
7969 continue;
7970
7971 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
1152651a
MF
7972 }
7973 return 0;
7974}
7975
7976/*
7977 * Walk up the tree from the bottom, freeing leaves and any interior
7978 * nodes which have had all slots visited. If a node (leaf or
7979 * interior) is freed, the node above it will have it's slot
7980 * incremented. The root node will never be freed.
7981 *
7982 * At the end of this function, we should have a path which has all
7983 * slots incremented to the next position for a search. If we need to
7984 * read a new node it will be NULL and the node above it will have the
7985 * correct slot selected for a later read.
7986 *
7987 * If we increment the root nodes slot counter past the number of
7988 * elements, 1 is returned to signal completion of the search.
7989 */
7990static int adjust_slots_upwards(struct btrfs_root *root,
7991 struct btrfs_path *path, int root_level)
7992{
7993 int level = 0;
7994 int nr, slot;
7995 struct extent_buffer *eb;
7996
7997 if (root_level == 0)
7998 return 1;
7999
8000 while (level <= root_level) {
8001 eb = path->nodes[level];
8002 nr = btrfs_header_nritems(eb);
8003 path->slots[level]++;
8004 slot = path->slots[level];
8005 if (slot >= nr || level == 0) {
8006 /*
8007 * Don't free the root - we will detect this
8008 * condition after our loop and return a
8009 * positive value for caller to stop walking the tree.
8010 */
8011 if (level != root_level) {
8012 btrfs_tree_unlock_rw(eb, path->locks[level]);
8013 path->locks[level] = 0;
8014
8015 free_extent_buffer(eb);
8016 path->nodes[level] = NULL;
8017 path->slots[level] = 0;
8018 }
8019 } else {
8020 /*
8021 * We have a valid slot to walk back down
8022 * from. Stop here so caller can process these
8023 * new nodes.
8024 */
8025 break;
8026 }
8027
8028 level++;
8029 }
8030
8031 eb = path->nodes[root_level];
8032 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8033 return 1;
8034
8035 return 0;
8036}
8037
8038/*
8039 * root_eb is the subtree root and is locked before this function is called.
0ed4792a
QW
8040 * TODO: Modify this function to mark all (including complete shared node)
8041 * to dirty_extent_root to allow it get accounted in qgroup.
1152651a
MF
8042 */
8043static int account_shared_subtree(struct btrfs_trans_handle *trans,
8044 struct btrfs_root *root,
8045 struct extent_buffer *root_eb,
8046 u64 root_gen,
8047 int root_level)
8048{
8049 int ret = 0;
8050 int level;
8051 struct extent_buffer *eb = root_eb;
8052 struct btrfs_path *path = NULL;
8053
8054 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8055 BUG_ON(root_eb == NULL);
8056
8057 if (!root->fs_info->quota_enabled)
8058 return 0;
8059
8060 if (!extent_buffer_uptodate(root_eb)) {
8061 ret = btrfs_read_buffer(root_eb, root_gen);
8062 if (ret)
8063 goto out;
8064 }
8065
8066 if (root_level == 0) {
8067 ret = account_leaf_items(trans, root, root_eb);
8068 goto out;
8069 }
8070
8071 path = btrfs_alloc_path();
8072 if (!path)
8073 return -ENOMEM;
8074
8075 /*
8076 * Walk down the tree. Missing extent blocks are filled in as
8077 * we go. Metadata is accounted every time we read a new
8078 * extent block.
8079 *
8080 * When we reach a leaf, we account for file extent items in it,
8081 * walk back up the tree (adjusting slot pointers as we go)
8082 * and restart the search process.
8083 */
8084 extent_buffer_get(root_eb); /* For path */
8085 path->nodes[root_level] = root_eb;
8086 path->slots[root_level] = 0;
8087 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8088walk_down:
8089 level = root_level;
8090 while (level >= 0) {
8091 if (path->nodes[level] == NULL) {
1152651a
MF
8092 int parent_slot;
8093 u64 child_gen;
8094 u64 child_bytenr;
8095
8096 /* We need to get child blockptr/gen from
8097 * parent before we can read it. */
8098 eb = path->nodes[level + 1];
8099 parent_slot = path->slots[level + 1];
8100 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8101 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8102
ce86cd59 8103 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8104 if (IS_ERR(eb)) {
8105 ret = PTR_ERR(eb);
8106 goto out;
8107 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8108 free_extent_buffer(eb);
64c043de 8109 ret = -EIO;
1152651a
MF
8110 goto out;
8111 }
8112
8113 path->nodes[level] = eb;
8114 path->slots[level] = 0;
8115
8116 btrfs_tree_read_lock(eb);
8117 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8118 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1152651a
MF
8119 }
8120
8121 if (level == 0) {
8122 ret = account_leaf_items(trans, root, path->nodes[level]);
8123 if (ret)
8124 goto out;
8125
8126 /* Nonzero return here means we completed our search */
8127 ret = adjust_slots_upwards(root, path, root_level);
8128 if (ret)
8129 break;
8130
8131 /* Restart search with new slots */
8132 goto walk_down;
8133 }
8134
8135 level--;
8136 }
8137
8138 ret = 0;
8139out:
8140 btrfs_free_path(path);
8141
8142 return ret;
8143}
8144
f82d02d9 8145/*
2c016dc2 8146 * helper to process tree block while walking down the tree.
2c47e605 8147 *
2c47e605
YZ
8148 * when wc->stage == UPDATE_BACKREF, this function updates
8149 * back refs for pointers in the block.
8150 *
8151 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8152 */
2c47e605 8153static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8154 struct btrfs_root *root,
2c47e605 8155 struct btrfs_path *path,
94fcca9f 8156 struct walk_control *wc, int lookup_info)
f82d02d9 8157{
2c47e605
YZ
8158 int level = wc->level;
8159 struct extent_buffer *eb = path->nodes[level];
2c47e605 8160 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8161 int ret;
8162
2c47e605
YZ
8163 if (wc->stage == UPDATE_BACKREF &&
8164 btrfs_header_owner(eb) != root->root_key.objectid)
8165 return 1;
f82d02d9 8166
2c47e605
YZ
8167 /*
8168 * when reference count of tree block is 1, it won't increase
8169 * again. once full backref flag is set, we never clear it.
8170 */
94fcca9f
YZ
8171 if (lookup_info &&
8172 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8173 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8174 BUG_ON(!path->locks[level]);
8175 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8176 eb->start, level, 1,
2c47e605
YZ
8177 &wc->refs[level],
8178 &wc->flags[level]);
79787eaa
JM
8179 BUG_ON(ret == -ENOMEM);
8180 if (ret)
8181 return ret;
2c47e605
YZ
8182 BUG_ON(wc->refs[level] == 0);
8183 }
5d4f98a2 8184
2c47e605
YZ
8185 if (wc->stage == DROP_REFERENCE) {
8186 if (wc->refs[level] > 1)
8187 return 1;
f82d02d9 8188
2c47e605 8189 if (path->locks[level] && !wc->keep_locks) {
bd681513 8190 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8191 path->locks[level] = 0;
8192 }
8193 return 0;
8194 }
f82d02d9 8195
2c47e605
YZ
8196 /* wc->stage == UPDATE_BACKREF */
8197 if (!(wc->flags[level] & flag)) {
8198 BUG_ON(!path->locks[level]);
e339a6b0 8199 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8200 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8201 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8202 BUG_ON(ret); /* -ENOMEM */
2c47e605 8203 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8204 eb->len, flag,
8205 btrfs_header_level(eb), 0);
79787eaa 8206 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8207 wc->flags[level] |= flag;
8208 }
8209
8210 /*
8211 * the block is shared by multiple trees, so it's not good to
8212 * keep the tree lock
8213 */
8214 if (path->locks[level] && level > 0) {
bd681513 8215 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8216 path->locks[level] = 0;
8217 }
8218 return 0;
8219}
8220
1c4850e2 8221/*
2c016dc2 8222 * helper to process tree block pointer.
1c4850e2
YZ
8223 *
8224 * when wc->stage == DROP_REFERENCE, this function checks
8225 * reference count of the block pointed to. if the block
8226 * is shared and we need update back refs for the subtree
8227 * rooted at the block, this function changes wc->stage to
8228 * UPDATE_BACKREF. if the block is shared and there is no
8229 * need to update back, this function drops the reference
8230 * to the block.
8231 *
8232 * NOTE: return value 1 means we should stop walking down.
8233 */
8234static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8235 struct btrfs_root *root,
8236 struct btrfs_path *path,
94fcca9f 8237 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8238{
8239 u64 bytenr;
8240 u64 generation;
8241 u64 parent;
8242 u32 blocksize;
8243 struct btrfs_key key;
8244 struct extent_buffer *next;
8245 int level = wc->level;
8246 int reada = 0;
8247 int ret = 0;
1152651a 8248 bool need_account = false;
1c4850e2
YZ
8249
8250 generation = btrfs_node_ptr_generation(path->nodes[level],
8251 path->slots[level]);
8252 /*
8253 * if the lower level block was created before the snapshot
8254 * was created, we know there is no need to update back refs
8255 * for the subtree
8256 */
8257 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8258 generation <= root->root_key.offset) {
8259 *lookup_info = 1;
1c4850e2 8260 return 1;
94fcca9f 8261 }
1c4850e2
YZ
8262
8263 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8264 blocksize = root->nodesize;
1c4850e2 8265
01d58472 8266 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8267 if (!next) {
a83fffb7 8268 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8269 if (!next)
8270 return -ENOMEM;
b2aaaa3b
JB
8271 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8272 level - 1);
1c4850e2
YZ
8273 reada = 1;
8274 }
8275 btrfs_tree_lock(next);
8276 btrfs_set_lock_blocking(next);
8277
3173a18f 8278 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8279 &wc->refs[level - 1],
8280 &wc->flags[level - 1]);
79787eaa
JM
8281 if (ret < 0) {
8282 btrfs_tree_unlock(next);
8283 return ret;
8284 }
8285
c2cf52eb
SK
8286 if (unlikely(wc->refs[level - 1] == 0)) {
8287 btrfs_err(root->fs_info, "Missing references.");
8288 BUG();
8289 }
94fcca9f 8290 *lookup_info = 0;
1c4850e2 8291
94fcca9f 8292 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8293 if (wc->refs[level - 1] > 1) {
1152651a 8294 need_account = true;
94fcca9f
YZ
8295 if (level == 1 &&
8296 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8297 goto skip;
8298
1c4850e2
YZ
8299 if (!wc->update_ref ||
8300 generation <= root->root_key.offset)
8301 goto skip;
8302
8303 btrfs_node_key_to_cpu(path->nodes[level], &key,
8304 path->slots[level]);
8305 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8306 if (ret < 0)
8307 goto skip;
8308
8309 wc->stage = UPDATE_BACKREF;
8310 wc->shared_level = level - 1;
8311 }
94fcca9f
YZ
8312 } else {
8313 if (level == 1 &&
8314 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8315 goto skip;
1c4850e2
YZ
8316 }
8317
b9fab919 8318 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8319 btrfs_tree_unlock(next);
8320 free_extent_buffer(next);
8321 next = NULL;
94fcca9f 8322 *lookup_info = 1;
1c4850e2
YZ
8323 }
8324
8325 if (!next) {
8326 if (reada && level == 1)
8327 reada_walk_down(trans, root, wc, path);
ce86cd59 8328 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8329 if (IS_ERR(next)) {
8330 return PTR_ERR(next);
8331 } else if (!extent_buffer_uptodate(next)) {
416bc658 8332 free_extent_buffer(next);
97d9a8a4 8333 return -EIO;
416bc658 8334 }
1c4850e2
YZ
8335 btrfs_tree_lock(next);
8336 btrfs_set_lock_blocking(next);
8337 }
8338
8339 level--;
8340 BUG_ON(level != btrfs_header_level(next));
8341 path->nodes[level] = next;
8342 path->slots[level] = 0;
bd681513 8343 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8344 wc->level = level;
8345 if (wc->level == 1)
8346 wc->reada_slot = 0;
8347 return 0;
8348skip:
8349 wc->refs[level - 1] = 0;
8350 wc->flags[level - 1] = 0;
94fcca9f
YZ
8351 if (wc->stage == DROP_REFERENCE) {
8352 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8353 parent = path->nodes[level]->start;
8354 } else {
8355 BUG_ON(root->root_key.objectid !=
8356 btrfs_header_owner(path->nodes[level]));
8357 parent = 0;
8358 }
1c4850e2 8359
1152651a
MF
8360 if (need_account) {
8361 ret = account_shared_subtree(trans, root, next,
8362 generation, level - 1);
8363 if (ret) {
94647322
DS
8364 btrfs_err_rl(root->fs_info,
8365 "Error "
1152651a 8366 "%d accounting shared subtree. Quota "
94647322
DS
8367 "is out of sync, rescan required.",
8368 ret);
1152651a
MF
8369 }
8370 }
94fcca9f 8371 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8372 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8373 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8374 }
1c4850e2
YZ
8375 btrfs_tree_unlock(next);
8376 free_extent_buffer(next);
94fcca9f 8377 *lookup_info = 1;
1c4850e2
YZ
8378 return 1;
8379}
8380
2c47e605 8381/*
2c016dc2 8382 * helper to process tree block while walking up the tree.
2c47e605
YZ
8383 *
8384 * when wc->stage == DROP_REFERENCE, this function drops
8385 * reference count on the block.
8386 *
8387 * when wc->stage == UPDATE_BACKREF, this function changes
8388 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8389 * to UPDATE_BACKREF previously while processing the block.
8390 *
8391 * NOTE: return value 1 means we should stop walking up.
8392 */
8393static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8394 struct btrfs_root *root,
8395 struct btrfs_path *path,
8396 struct walk_control *wc)
8397{
f0486c68 8398 int ret;
2c47e605
YZ
8399 int level = wc->level;
8400 struct extent_buffer *eb = path->nodes[level];
8401 u64 parent = 0;
8402
8403 if (wc->stage == UPDATE_BACKREF) {
8404 BUG_ON(wc->shared_level < level);
8405 if (level < wc->shared_level)
8406 goto out;
8407
2c47e605
YZ
8408 ret = find_next_key(path, level + 1, &wc->update_progress);
8409 if (ret > 0)
8410 wc->update_ref = 0;
8411
8412 wc->stage = DROP_REFERENCE;
8413 wc->shared_level = -1;
8414 path->slots[level] = 0;
8415
8416 /*
8417 * check reference count again if the block isn't locked.
8418 * we should start walking down the tree again if reference
8419 * count is one.
8420 */
8421 if (!path->locks[level]) {
8422 BUG_ON(level == 0);
8423 btrfs_tree_lock(eb);
8424 btrfs_set_lock_blocking(eb);
bd681513 8425 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8426
8427 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8428 eb->start, level, 1,
2c47e605
YZ
8429 &wc->refs[level],
8430 &wc->flags[level]);
79787eaa
JM
8431 if (ret < 0) {
8432 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8433 path->locks[level] = 0;
79787eaa
JM
8434 return ret;
8435 }
2c47e605
YZ
8436 BUG_ON(wc->refs[level] == 0);
8437 if (wc->refs[level] == 1) {
bd681513 8438 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8439 path->locks[level] = 0;
2c47e605
YZ
8440 return 1;
8441 }
f82d02d9 8442 }
2c47e605 8443 }
f82d02d9 8444
2c47e605
YZ
8445 /* wc->stage == DROP_REFERENCE */
8446 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8447
2c47e605
YZ
8448 if (wc->refs[level] == 1) {
8449 if (level == 0) {
8450 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8451 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8452 else
e339a6b0 8453 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8454 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8455 ret = account_leaf_items(trans, root, eb);
8456 if (ret) {
94647322
DS
8457 btrfs_err_rl(root->fs_info,
8458 "error "
1152651a 8459 "%d accounting leaf items. Quota "
94647322
DS
8460 "is out of sync, rescan required.",
8461 ret);
1152651a 8462 }
2c47e605
YZ
8463 }
8464 /* make block locked assertion in clean_tree_block happy */
8465 if (!path->locks[level] &&
8466 btrfs_header_generation(eb) == trans->transid) {
8467 btrfs_tree_lock(eb);
8468 btrfs_set_lock_blocking(eb);
bd681513 8469 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8470 }
01d58472 8471 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8472 }
8473
8474 if (eb == root->node) {
8475 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8476 parent = eb->start;
8477 else
8478 BUG_ON(root->root_key.objectid !=
8479 btrfs_header_owner(eb));
8480 } else {
8481 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8482 parent = path->nodes[level + 1]->start;
8483 else
8484 BUG_ON(root->root_key.objectid !=
8485 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8486 }
f82d02d9 8487
5581a51a 8488 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8489out:
8490 wc->refs[level] = 0;
8491 wc->flags[level] = 0;
f0486c68 8492 return 0;
2c47e605
YZ
8493}
8494
8495static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8496 struct btrfs_root *root,
8497 struct btrfs_path *path,
8498 struct walk_control *wc)
8499{
2c47e605 8500 int level = wc->level;
94fcca9f 8501 int lookup_info = 1;
2c47e605
YZ
8502 int ret;
8503
8504 while (level >= 0) {
94fcca9f 8505 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8506 if (ret > 0)
8507 break;
8508
8509 if (level == 0)
8510 break;
8511
7a7965f8
YZ
8512 if (path->slots[level] >=
8513 btrfs_header_nritems(path->nodes[level]))
8514 break;
8515
94fcca9f 8516 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8517 if (ret > 0) {
8518 path->slots[level]++;
8519 continue;
90d2c51d
MX
8520 } else if (ret < 0)
8521 return ret;
1c4850e2 8522 level = wc->level;
f82d02d9 8523 }
f82d02d9
YZ
8524 return 0;
8525}
8526
d397712b 8527static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8528 struct btrfs_root *root,
f82d02d9 8529 struct btrfs_path *path,
2c47e605 8530 struct walk_control *wc, int max_level)
20524f02 8531{
2c47e605 8532 int level = wc->level;
20524f02 8533 int ret;
9f3a7427 8534
2c47e605
YZ
8535 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8536 while (level < max_level && path->nodes[level]) {
8537 wc->level = level;
8538 if (path->slots[level] + 1 <
8539 btrfs_header_nritems(path->nodes[level])) {
8540 path->slots[level]++;
20524f02
CM
8541 return 0;
8542 } else {
2c47e605
YZ
8543 ret = walk_up_proc(trans, root, path, wc);
8544 if (ret > 0)
8545 return 0;
bd56b302 8546
2c47e605 8547 if (path->locks[level]) {
bd681513
CM
8548 btrfs_tree_unlock_rw(path->nodes[level],
8549 path->locks[level]);
2c47e605 8550 path->locks[level] = 0;
f82d02d9 8551 }
2c47e605
YZ
8552 free_extent_buffer(path->nodes[level]);
8553 path->nodes[level] = NULL;
8554 level++;
20524f02
CM
8555 }
8556 }
8557 return 1;
8558}
8559
9aca1d51 8560/*
2c47e605
YZ
8561 * drop a subvolume tree.
8562 *
8563 * this function traverses the tree freeing any blocks that only
8564 * referenced by the tree.
8565 *
8566 * when a shared tree block is found. this function decreases its
8567 * reference count by one. if update_ref is true, this function
8568 * also make sure backrefs for the shared block and all lower level
8569 * blocks are properly updated.
9d1a2a3a
DS
8570 *
8571 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8572 */
2c536799 8573int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8574 struct btrfs_block_rsv *block_rsv, int update_ref,
8575 int for_reloc)
20524f02 8576{
5caf2a00 8577 struct btrfs_path *path;
2c47e605
YZ
8578 struct btrfs_trans_handle *trans;
8579 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8580 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8581 struct walk_control *wc;
8582 struct btrfs_key key;
8583 int err = 0;
8584 int ret;
8585 int level;
d29a9f62 8586 bool root_dropped = false;
20524f02 8587
1152651a
MF
8588 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8589
5caf2a00 8590 path = btrfs_alloc_path();
cb1b69f4
TI
8591 if (!path) {
8592 err = -ENOMEM;
8593 goto out;
8594 }
20524f02 8595
2c47e605 8596 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8597 if (!wc) {
8598 btrfs_free_path(path);
cb1b69f4
TI
8599 err = -ENOMEM;
8600 goto out;
38a1a919 8601 }
2c47e605 8602
a22285a6 8603 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8604 if (IS_ERR(trans)) {
8605 err = PTR_ERR(trans);
8606 goto out_free;
8607 }
98d5dc13 8608
3fd0a558
YZ
8609 if (block_rsv)
8610 trans->block_rsv = block_rsv;
2c47e605 8611
9f3a7427 8612 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8613 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8614 path->nodes[level] = btrfs_lock_root_node(root);
8615 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8616 path->slots[level] = 0;
bd681513 8617 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8618 memset(&wc->update_progress, 0,
8619 sizeof(wc->update_progress));
9f3a7427 8620 } else {
9f3a7427 8621 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8622 memcpy(&wc->update_progress, &key,
8623 sizeof(wc->update_progress));
8624
6702ed49 8625 level = root_item->drop_level;
2c47e605 8626 BUG_ON(level == 0);
6702ed49 8627 path->lowest_level = level;
2c47e605
YZ
8628 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8629 path->lowest_level = 0;
8630 if (ret < 0) {
8631 err = ret;
79787eaa 8632 goto out_end_trans;
9f3a7427 8633 }
1c4850e2 8634 WARN_ON(ret > 0);
2c47e605 8635
7d9eb12c
CM
8636 /*
8637 * unlock our path, this is safe because only this
8638 * function is allowed to delete this snapshot
8639 */
5d4f98a2 8640 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8641
8642 level = btrfs_header_level(root->node);
8643 while (1) {
8644 btrfs_tree_lock(path->nodes[level]);
8645 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8646 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8647
8648 ret = btrfs_lookup_extent_info(trans, root,
8649 path->nodes[level]->start,
3173a18f 8650 level, 1, &wc->refs[level],
2c47e605 8651 &wc->flags[level]);
79787eaa
JM
8652 if (ret < 0) {
8653 err = ret;
8654 goto out_end_trans;
8655 }
2c47e605
YZ
8656 BUG_ON(wc->refs[level] == 0);
8657
8658 if (level == root_item->drop_level)
8659 break;
8660
8661 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8662 path->locks[level] = 0;
2c47e605
YZ
8663 WARN_ON(wc->refs[level] != 1);
8664 level--;
8665 }
9f3a7427 8666 }
2c47e605
YZ
8667
8668 wc->level = level;
8669 wc->shared_level = -1;
8670 wc->stage = DROP_REFERENCE;
8671 wc->update_ref = update_ref;
8672 wc->keep_locks = 0;
66d7e7f0 8673 wc->for_reloc = for_reloc;
1c4850e2 8674 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8675
d397712b 8676 while (1) {
9d1a2a3a 8677
2c47e605
YZ
8678 ret = walk_down_tree(trans, root, path, wc);
8679 if (ret < 0) {
8680 err = ret;
20524f02 8681 break;
2c47e605 8682 }
9aca1d51 8683
2c47e605
YZ
8684 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8685 if (ret < 0) {
8686 err = ret;
20524f02 8687 break;
2c47e605
YZ
8688 }
8689
8690 if (ret > 0) {
8691 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8692 break;
8693 }
2c47e605
YZ
8694
8695 if (wc->stage == DROP_REFERENCE) {
8696 level = wc->level;
8697 btrfs_node_key(path->nodes[level],
8698 &root_item->drop_progress,
8699 path->slots[level]);
8700 root_item->drop_level = level;
8701 }
8702
8703 BUG_ON(wc->level == 0);
3c8f2422
JB
8704 if (btrfs_should_end_transaction(trans, tree_root) ||
8705 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8706 ret = btrfs_update_root(trans, tree_root,
8707 &root->root_key,
8708 root_item);
79787eaa
JM
8709 if (ret) {
8710 btrfs_abort_transaction(trans, tree_root, ret);
8711 err = ret;
8712 goto out_end_trans;
8713 }
2c47e605 8714
3fd0a558 8715 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8716 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8717 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8718 err = -EAGAIN;
8719 goto out_free;
8720 }
8721
a22285a6 8722 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8723 if (IS_ERR(trans)) {
8724 err = PTR_ERR(trans);
8725 goto out_free;
8726 }
3fd0a558
YZ
8727 if (block_rsv)
8728 trans->block_rsv = block_rsv;
c3e69d58 8729 }
20524f02 8730 }
b3b4aa74 8731 btrfs_release_path(path);
79787eaa
JM
8732 if (err)
8733 goto out_end_trans;
2c47e605
YZ
8734
8735 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8736 if (ret) {
8737 btrfs_abort_transaction(trans, tree_root, ret);
8738 goto out_end_trans;
8739 }
2c47e605 8740
76dda93c 8741 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8742 ret = btrfs_find_root(tree_root, &root->root_key, path,
8743 NULL, NULL);
79787eaa
JM
8744 if (ret < 0) {
8745 btrfs_abort_transaction(trans, tree_root, ret);
8746 err = ret;
8747 goto out_end_trans;
8748 } else if (ret > 0) {
84cd948c
JB
8749 /* if we fail to delete the orphan item this time
8750 * around, it'll get picked up the next time.
8751 *
8752 * The most common failure here is just -ENOENT.
8753 */
8754 btrfs_del_orphan_item(trans, tree_root,
8755 root->root_key.objectid);
76dda93c
YZ
8756 }
8757 }
8758
27cdeb70 8759 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 8760 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
8761 } else {
8762 free_extent_buffer(root->node);
8763 free_extent_buffer(root->commit_root);
b0feb9d9 8764 btrfs_put_fs_root(root);
76dda93c 8765 }
d29a9f62 8766 root_dropped = true;
79787eaa 8767out_end_trans:
3fd0a558 8768 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8769out_free:
2c47e605 8770 kfree(wc);
5caf2a00 8771 btrfs_free_path(path);
cb1b69f4 8772out:
d29a9f62
JB
8773 /*
8774 * So if we need to stop dropping the snapshot for whatever reason we
8775 * need to make sure to add it back to the dead root list so that we
8776 * keep trying to do the work later. This also cleans up roots if we
8777 * don't have it in the radix (like when we recover after a power fail
8778 * or unmount) so we don't leak memory.
8779 */
b37b39cd 8780 if (!for_reloc && root_dropped == false)
d29a9f62 8781 btrfs_add_dead_root(root);
90515e7f 8782 if (err && err != -EAGAIN)
a4553fef 8783 btrfs_std_error(root->fs_info, err, NULL);
2c536799 8784 return err;
20524f02 8785}
9078a3e1 8786
2c47e605
YZ
8787/*
8788 * drop subtree rooted at tree block 'node'.
8789 *
8790 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8791 * only used by relocation code
2c47e605 8792 */
f82d02d9
YZ
8793int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8794 struct btrfs_root *root,
8795 struct extent_buffer *node,
8796 struct extent_buffer *parent)
8797{
8798 struct btrfs_path *path;
2c47e605 8799 struct walk_control *wc;
f82d02d9
YZ
8800 int level;
8801 int parent_level;
8802 int ret = 0;
8803 int wret;
8804
2c47e605
YZ
8805 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8806
f82d02d9 8807 path = btrfs_alloc_path();
db5b493a
TI
8808 if (!path)
8809 return -ENOMEM;
f82d02d9 8810
2c47e605 8811 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8812 if (!wc) {
8813 btrfs_free_path(path);
8814 return -ENOMEM;
8815 }
2c47e605 8816
b9447ef8 8817 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8818 parent_level = btrfs_header_level(parent);
8819 extent_buffer_get(parent);
8820 path->nodes[parent_level] = parent;
8821 path->slots[parent_level] = btrfs_header_nritems(parent);
8822
b9447ef8 8823 btrfs_assert_tree_locked(node);
f82d02d9 8824 level = btrfs_header_level(node);
f82d02d9
YZ
8825 path->nodes[level] = node;
8826 path->slots[level] = 0;
bd681513 8827 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8828
8829 wc->refs[parent_level] = 1;
8830 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8831 wc->level = level;
8832 wc->shared_level = -1;
8833 wc->stage = DROP_REFERENCE;
8834 wc->update_ref = 0;
8835 wc->keep_locks = 1;
66d7e7f0 8836 wc->for_reloc = 1;
1c4850e2 8837 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8838
8839 while (1) {
2c47e605
YZ
8840 wret = walk_down_tree(trans, root, path, wc);
8841 if (wret < 0) {
f82d02d9 8842 ret = wret;
f82d02d9 8843 break;
2c47e605 8844 }
f82d02d9 8845
2c47e605 8846 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8847 if (wret < 0)
8848 ret = wret;
8849 if (wret != 0)
8850 break;
8851 }
8852
2c47e605 8853 kfree(wc);
f82d02d9
YZ
8854 btrfs_free_path(path);
8855 return ret;
8856}
8857
ec44a35c
CM
8858static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8859{
8860 u64 num_devices;
fc67c450 8861 u64 stripped;
e4d8ec0f 8862
fc67c450
ID
8863 /*
8864 * if restripe for this chunk_type is on pick target profile and
8865 * return, otherwise do the usual balance
8866 */
8867 stripped = get_restripe_target(root->fs_info, flags);
8868 if (stripped)
8869 return extended_to_chunk(stripped);
e4d8ec0f 8870
95669976 8871 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8872
fc67c450 8873 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8874 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8875 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8876
ec44a35c
CM
8877 if (num_devices == 1) {
8878 stripped |= BTRFS_BLOCK_GROUP_DUP;
8879 stripped = flags & ~stripped;
8880
8881 /* turn raid0 into single device chunks */
8882 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8883 return stripped;
8884
8885 /* turn mirroring into duplication */
8886 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8887 BTRFS_BLOCK_GROUP_RAID10))
8888 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8889 } else {
8890 /* they already had raid on here, just return */
ec44a35c
CM
8891 if (flags & stripped)
8892 return flags;
8893
8894 stripped |= BTRFS_BLOCK_GROUP_DUP;
8895 stripped = flags & ~stripped;
8896
8897 /* switch duplicated blocks with raid1 */
8898 if (flags & BTRFS_BLOCK_GROUP_DUP)
8899 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8900
e3176ca2 8901 /* this is drive concat, leave it alone */
ec44a35c 8902 }
e3176ca2 8903
ec44a35c
CM
8904 return flags;
8905}
8906
868f401a 8907static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8908{
f0486c68
YZ
8909 struct btrfs_space_info *sinfo = cache->space_info;
8910 u64 num_bytes;
199c36ea 8911 u64 min_allocable_bytes;
f0486c68 8912 int ret = -ENOSPC;
0ef3e66b 8913
199c36ea
MX
8914 /*
8915 * We need some metadata space and system metadata space for
8916 * allocating chunks in some corner cases until we force to set
8917 * it to be readonly.
8918 */
8919 if ((sinfo->flags &
8920 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8921 !force)
8922 min_allocable_bytes = 1 * 1024 * 1024;
8923 else
8924 min_allocable_bytes = 0;
8925
f0486c68
YZ
8926 spin_lock(&sinfo->lock);
8927 spin_lock(&cache->lock);
61cfea9b
W
8928
8929 if (cache->ro) {
868f401a 8930 cache->ro++;
61cfea9b
W
8931 ret = 0;
8932 goto out;
8933 }
8934
f0486c68
YZ
8935 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8936 cache->bytes_super - btrfs_block_group_used(&cache->item);
8937
8938 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8939 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8940 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8941 sinfo->bytes_readonly += num_bytes;
868f401a 8942 cache->ro++;
633c0aad 8943 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8944 ret = 0;
8945 }
61cfea9b 8946out:
f0486c68
YZ
8947 spin_unlock(&cache->lock);
8948 spin_unlock(&sinfo->lock);
8949 return ret;
8950}
7d9eb12c 8951
868f401a 8952int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 8953 struct btrfs_block_group_cache *cache)
c286ac48 8954
f0486c68
YZ
8955{
8956 struct btrfs_trans_handle *trans;
8957 u64 alloc_flags;
8958 int ret;
7d9eb12c 8959
1bbc621e 8960again:
ff5714cc 8961 trans = btrfs_join_transaction(root);
79787eaa
JM
8962 if (IS_ERR(trans))
8963 return PTR_ERR(trans);
5d4f98a2 8964
1bbc621e
CM
8965 /*
8966 * we're not allowed to set block groups readonly after the dirty
8967 * block groups cache has started writing. If it already started,
8968 * back off and let this transaction commit
8969 */
8970 mutex_lock(&root->fs_info->ro_block_group_mutex);
3204d33c 8971 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
8972 u64 transid = trans->transid;
8973
8974 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8975 btrfs_end_transaction(trans, root);
8976
8977 ret = btrfs_wait_for_commit(root, transid);
8978 if (ret)
8979 return ret;
8980 goto again;
8981 }
8982
153c35b6
CM
8983 /*
8984 * if we are changing raid levels, try to allocate a corresponding
8985 * block group with the new raid level.
8986 */
8987 alloc_flags = update_block_group_flags(root, cache->flags);
8988 if (alloc_flags != cache->flags) {
8989 ret = do_chunk_alloc(trans, root, alloc_flags,
8990 CHUNK_ALLOC_FORCE);
8991 /*
8992 * ENOSPC is allowed here, we may have enough space
8993 * already allocated at the new raid level to
8994 * carry on
8995 */
8996 if (ret == -ENOSPC)
8997 ret = 0;
8998 if (ret < 0)
8999 goto out;
9000 }
1bbc621e 9001
868f401a 9002 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9003 if (!ret)
9004 goto out;
9005 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9006 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9007 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9008 if (ret < 0)
9009 goto out;
868f401a 9010 ret = inc_block_group_ro(cache, 0);
f0486c68 9011out:
2f081088
SL
9012 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9013 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 9014 lock_chunks(root->fs_info->chunk_root);
4617ea3a 9015 check_system_chunk(trans, root, alloc_flags);
a9629596 9016 unlock_chunks(root->fs_info->chunk_root);
2f081088 9017 }
1bbc621e 9018 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9019
f0486c68
YZ
9020 btrfs_end_transaction(trans, root);
9021 return ret;
9022}
5d4f98a2 9023
c87f08ca
CM
9024int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9025 struct btrfs_root *root, u64 type)
9026{
9027 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9028 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9029 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9030}
9031
6d07bcec
MX
9032/*
9033 * helper to account the unused space of all the readonly block group in the
633c0aad 9034 * space_info. takes mirrors into account.
6d07bcec 9035 */
633c0aad 9036u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9037{
9038 struct btrfs_block_group_cache *block_group;
9039 u64 free_bytes = 0;
9040 int factor;
9041
633c0aad
JB
9042 /* It's df, we don't care if it's racey */
9043 if (list_empty(&sinfo->ro_bgs))
9044 return 0;
9045
9046 spin_lock(&sinfo->lock);
9047 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9048 spin_lock(&block_group->lock);
9049
9050 if (!block_group->ro) {
9051 spin_unlock(&block_group->lock);
9052 continue;
9053 }
9054
9055 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9056 BTRFS_BLOCK_GROUP_RAID10 |
9057 BTRFS_BLOCK_GROUP_DUP))
9058 factor = 2;
9059 else
9060 factor = 1;
9061
9062 free_bytes += (block_group->key.offset -
9063 btrfs_block_group_used(&block_group->item)) *
9064 factor;
9065
9066 spin_unlock(&block_group->lock);
9067 }
6d07bcec
MX
9068 spin_unlock(&sinfo->lock);
9069
9070 return free_bytes;
9071}
9072
868f401a 9073void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9074 struct btrfs_block_group_cache *cache)
5d4f98a2 9075{
f0486c68
YZ
9076 struct btrfs_space_info *sinfo = cache->space_info;
9077 u64 num_bytes;
9078
9079 BUG_ON(!cache->ro);
9080
9081 spin_lock(&sinfo->lock);
9082 spin_lock(&cache->lock);
868f401a
Z
9083 if (!--cache->ro) {
9084 num_bytes = cache->key.offset - cache->reserved -
9085 cache->pinned - cache->bytes_super -
9086 btrfs_block_group_used(&cache->item);
9087 sinfo->bytes_readonly -= num_bytes;
9088 list_del_init(&cache->ro_list);
9089 }
f0486c68
YZ
9090 spin_unlock(&cache->lock);
9091 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9092}
9093
ba1bf481
JB
9094/*
9095 * checks to see if its even possible to relocate this block group.
9096 *
9097 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9098 * ok to go ahead and try.
9099 */
9100int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9101{
ba1bf481
JB
9102 struct btrfs_block_group_cache *block_group;
9103 struct btrfs_space_info *space_info;
9104 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9105 struct btrfs_device *device;
6df9a95e 9106 struct btrfs_trans_handle *trans;
cdcb725c 9107 u64 min_free;
6719db6a
JB
9108 u64 dev_min = 1;
9109 u64 dev_nr = 0;
4a5e98f5 9110 u64 target;
cdcb725c 9111 int index;
ba1bf481
JB
9112 int full = 0;
9113 int ret = 0;
1a40e23b 9114
ba1bf481 9115 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9116
ba1bf481
JB
9117 /* odd, couldn't find the block group, leave it alone */
9118 if (!block_group)
9119 return -1;
1a40e23b 9120
cdcb725c 9121 min_free = btrfs_block_group_used(&block_group->item);
9122
ba1bf481 9123 /* no bytes used, we're good */
cdcb725c 9124 if (!min_free)
1a40e23b
ZY
9125 goto out;
9126
ba1bf481
JB
9127 space_info = block_group->space_info;
9128 spin_lock(&space_info->lock);
17d217fe 9129
ba1bf481 9130 full = space_info->full;
17d217fe 9131
ba1bf481
JB
9132 /*
9133 * if this is the last block group we have in this space, we can't
7ce618db
CM
9134 * relocate it unless we're able to allocate a new chunk below.
9135 *
9136 * Otherwise, we need to make sure we have room in the space to handle
9137 * all of the extents from this block group. If we can, we're good
ba1bf481 9138 */
7ce618db 9139 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9140 (space_info->bytes_used + space_info->bytes_reserved +
9141 space_info->bytes_pinned + space_info->bytes_readonly +
9142 min_free < space_info->total_bytes)) {
ba1bf481
JB
9143 spin_unlock(&space_info->lock);
9144 goto out;
17d217fe 9145 }
ba1bf481 9146 spin_unlock(&space_info->lock);
ea8c2819 9147
ba1bf481
JB
9148 /*
9149 * ok we don't have enough space, but maybe we have free space on our
9150 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9151 * alloc devices and guess if we have enough space. if this block
9152 * group is going to be restriped, run checks against the target
9153 * profile instead of the current one.
ba1bf481
JB
9154 */
9155 ret = -1;
ea8c2819 9156
cdcb725c 9157 /*
9158 * index:
9159 * 0: raid10
9160 * 1: raid1
9161 * 2: dup
9162 * 3: raid0
9163 * 4: single
9164 */
4a5e98f5
ID
9165 target = get_restripe_target(root->fs_info, block_group->flags);
9166 if (target) {
31e50229 9167 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9168 } else {
9169 /*
9170 * this is just a balance, so if we were marked as full
9171 * we know there is no space for a new chunk
9172 */
9173 if (full)
9174 goto out;
9175
9176 index = get_block_group_index(block_group);
9177 }
9178
e6ec716f 9179 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9180 dev_min = 4;
6719db6a
JB
9181 /* Divide by 2 */
9182 min_free >>= 1;
e6ec716f 9183 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9184 dev_min = 2;
e6ec716f 9185 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9186 /* Multiply by 2 */
9187 min_free <<= 1;
e6ec716f 9188 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9189 dev_min = fs_devices->rw_devices;
47c5713f 9190 min_free = div64_u64(min_free, dev_min);
cdcb725c 9191 }
9192
6df9a95e
JB
9193 /* We need to do this so that we can look at pending chunks */
9194 trans = btrfs_join_transaction(root);
9195 if (IS_ERR(trans)) {
9196 ret = PTR_ERR(trans);
9197 goto out;
9198 }
9199
ba1bf481
JB
9200 mutex_lock(&root->fs_info->chunk_mutex);
9201 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9202 u64 dev_offset;
56bec294 9203
ba1bf481
JB
9204 /*
9205 * check to make sure we can actually find a chunk with enough
9206 * space to fit our block group in.
9207 */
63a212ab
SB
9208 if (device->total_bytes > device->bytes_used + min_free &&
9209 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9210 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9211 &dev_offset, NULL);
ba1bf481 9212 if (!ret)
cdcb725c 9213 dev_nr++;
9214
9215 if (dev_nr >= dev_min)
73e48b27 9216 break;
cdcb725c 9217
ba1bf481 9218 ret = -1;
725c8463 9219 }
edbd8d4e 9220 }
ba1bf481 9221 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9222 btrfs_end_transaction(trans, root);
edbd8d4e 9223out:
ba1bf481 9224 btrfs_put_block_group(block_group);
edbd8d4e
CM
9225 return ret;
9226}
9227
b2950863
CH
9228static int find_first_block_group(struct btrfs_root *root,
9229 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9230{
925baedd 9231 int ret = 0;
0b86a832
CM
9232 struct btrfs_key found_key;
9233 struct extent_buffer *leaf;
9234 int slot;
edbd8d4e 9235
0b86a832
CM
9236 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9237 if (ret < 0)
925baedd
CM
9238 goto out;
9239
d397712b 9240 while (1) {
0b86a832 9241 slot = path->slots[0];
edbd8d4e 9242 leaf = path->nodes[0];
0b86a832
CM
9243 if (slot >= btrfs_header_nritems(leaf)) {
9244 ret = btrfs_next_leaf(root, path);
9245 if (ret == 0)
9246 continue;
9247 if (ret < 0)
925baedd 9248 goto out;
0b86a832 9249 break;
edbd8d4e 9250 }
0b86a832 9251 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9252
0b86a832 9253 if (found_key.objectid >= key->objectid &&
925baedd
CM
9254 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9255 ret = 0;
9256 goto out;
9257 }
0b86a832 9258 path->slots[0]++;
edbd8d4e 9259 }
925baedd 9260out:
0b86a832 9261 return ret;
edbd8d4e
CM
9262}
9263
0af3d00b
JB
9264void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9265{
9266 struct btrfs_block_group_cache *block_group;
9267 u64 last = 0;
9268
9269 while (1) {
9270 struct inode *inode;
9271
9272 block_group = btrfs_lookup_first_block_group(info, last);
9273 while (block_group) {
9274 spin_lock(&block_group->lock);
9275 if (block_group->iref)
9276 break;
9277 spin_unlock(&block_group->lock);
9278 block_group = next_block_group(info->tree_root,
9279 block_group);
9280 }
9281 if (!block_group) {
9282 if (last == 0)
9283 break;
9284 last = 0;
9285 continue;
9286 }
9287
9288 inode = block_group->inode;
9289 block_group->iref = 0;
9290 block_group->inode = NULL;
9291 spin_unlock(&block_group->lock);
9292 iput(inode);
9293 last = block_group->key.objectid + block_group->key.offset;
9294 btrfs_put_block_group(block_group);
9295 }
9296}
9297
1a40e23b
ZY
9298int btrfs_free_block_groups(struct btrfs_fs_info *info)
9299{
9300 struct btrfs_block_group_cache *block_group;
4184ea7f 9301 struct btrfs_space_info *space_info;
11833d66 9302 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9303 struct rb_node *n;
9304
9e351cc8 9305 down_write(&info->commit_root_sem);
11833d66
YZ
9306 while (!list_empty(&info->caching_block_groups)) {
9307 caching_ctl = list_entry(info->caching_block_groups.next,
9308 struct btrfs_caching_control, list);
9309 list_del(&caching_ctl->list);
9310 put_caching_control(caching_ctl);
9311 }
9e351cc8 9312 up_write(&info->commit_root_sem);
11833d66 9313
47ab2a6c
JB
9314 spin_lock(&info->unused_bgs_lock);
9315 while (!list_empty(&info->unused_bgs)) {
9316 block_group = list_first_entry(&info->unused_bgs,
9317 struct btrfs_block_group_cache,
9318 bg_list);
9319 list_del_init(&block_group->bg_list);
9320 btrfs_put_block_group(block_group);
9321 }
9322 spin_unlock(&info->unused_bgs_lock);
9323
1a40e23b
ZY
9324 spin_lock(&info->block_group_cache_lock);
9325 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9326 block_group = rb_entry(n, struct btrfs_block_group_cache,
9327 cache_node);
1a40e23b
ZY
9328 rb_erase(&block_group->cache_node,
9329 &info->block_group_cache_tree);
01eacb27 9330 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9331 spin_unlock(&info->block_group_cache_lock);
9332
80eb234a 9333 down_write(&block_group->space_info->groups_sem);
1a40e23b 9334 list_del(&block_group->list);
80eb234a 9335 up_write(&block_group->space_info->groups_sem);
d2fb3437 9336
817d52f8 9337 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9338 wait_block_group_cache_done(block_group);
817d52f8 9339
3c14874a
JB
9340 /*
9341 * We haven't cached this block group, which means we could
9342 * possibly have excluded extents on this block group.
9343 */
36cce922
JB
9344 if (block_group->cached == BTRFS_CACHE_NO ||
9345 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9346 free_excluded_extents(info->extent_root, block_group);
9347
817d52f8 9348 btrfs_remove_free_space_cache(block_group);
11dfe35a 9349 btrfs_put_block_group(block_group);
d899e052
YZ
9350
9351 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9352 }
9353 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9354
9355 /* now that all the block groups are freed, go through and
9356 * free all the space_info structs. This is only called during
9357 * the final stages of unmount, and so we know nobody is
9358 * using them. We call synchronize_rcu() once before we start,
9359 * just to be on the safe side.
9360 */
9361 synchronize_rcu();
9362
8929ecfa
YZ
9363 release_global_block_rsv(info);
9364
67871254 9365 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9366 int i;
9367
4184ea7f
CM
9368 space_info = list_entry(info->space_info.next,
9369 struct btrfs_space_info,
9370 list);
b069e0c3 9371 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9372 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9373 space_info->bytes_reserved > 0 ||
fae7f21c 9374 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9375 dump_space_info(space_info, 0, 0);
9376 }
f0486c68 9377 }
4184ea7f 9378 list_del(&space_info->list);
6ab0a202
JM
9379 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9380 struct kobject *kobj;
c1895442
JM
9381 kobj = space_info->block_group_kobjs[i];
9382 space_info->block_group_kobjs[i] = NULL;
9383 if (kobj) {
6ab0a202
JM
9384 kobject_del(kobj);
9385 kobject_put(kobj);
9386 }
9387 }
9388 kobject_del(&space_info->kobj);
9389 kobject_put(&space_info->kobj);
4184ea7f 9390 }
1a40e23b
ZY
9391 return 0;
9392}
9393
b742bb82
YZ
9394static void __link_block_group(struct btrfs_space_info *space_info,
9395 struct btrfs_block_group_cache *cache)
9396{
9397 int index = get_block_group_index(cache);
ed55b6ac 9398 bool first = false;
b742bb82
YZ
9399
9400 down_write(&space_info->groups_sem);
ed55b6ac
JM
9401 if (list_empty(&space_info->block_groups[index]))
9402 first = true;
9403 list_add_tail(&cache->list, &space_info->block_groups[index]);
9404 up_write(&space_info->groups_sem);
9405
9406 if (first) {
c1895442 9407 struct raid_kobject *rkobj;
6ab0a202
JM
9408 int ret;
9409
c1895442
JM
9410 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9411 if (!rkobj)
9412 goto out_err;
9413 rkobj->raid_type = index;
9414 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9415 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9416 "%s", get_raid_name(index));
6ab0a202 9417 if (ret) {
c1895442
JM
9418 kobject_put(&rkobj->kobj);
9419 goto out_err;
6ab0a202 9420 }
c1895442 9421 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9422 }
c1895442
JM
9423
9424 return;
9425out_err:
9426 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9427}
9428
920e4a58
MX
9429static struct btrfs_block_group_cache *
9430btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9431{
9432 struct btrfs_block_group_cache *cache;
9433
9434 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9435 if (!cache)
9436 return NULL;
9437
9438 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9439 GFP_NOFS);
9440 if (!cache->free_space_ctl) {
9441 kfree(cache);
9442 return NULL;
9443 }
9444
9445 cache->key.objectid = start;
9446 cache->key.offset = size;
9447 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9448
9449 cache->sectorsize = root->sectorsize;
9450 cache->fs_info = root->fs_info;
9451 cache->full_stripe_len = btrfs_full_stripe_len(root,
9452 &root->fs_info->mapping_tree,
9453 start);
9454 atomic_set(&cache->count, 1);
9455 spin_lock_init(&cache->lock);
e570fd27 9456 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9457 INIT_LIST_HEAD(&cache->list);
9458 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9459 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9460 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9461 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9462 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9463 btrfs_init_free_space_ctl(cache);
04216820 9464 atomic_set(&cache->trimming, 0);
920e4a58
MX
9465
9466 return cache;
9467}
9468
9078a3e1
CM
9469int btrfs_read_block_groups(struct btrfs_root *root)
9470{
9471 struct btrfs_path *path;
9472 int ret;
9078a3e1 9473 struct btrfs_block_group_cache *cache;
be744175 9474 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9475 struct btrfs_space_info *space_info;
9078a3e1
CM
9476 struct btrfs_key key;
9477 struct btrfs_key found_key;
5f39d397 9478 struct extent_buffer *leaf;
0af3d00b
JB
9479 int need_clear = 0;
9480 u64 cache_gen;
96b5179d 9481
be744175 9482 root = info->extent_root;
9078a3e1 9483 key.objectid = 0;
0b86a832 9484 key.offset = 0;
962a298f 9485 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9486 path = btrfs_alloc_path();
9487 if (!path)
9488 return -ENOMEM;
026fd317 9489 path->reada = 1;
9078a3e1 9490
6c41761f 9491 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9492 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9493 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9494 need_clear = 1;
88c2ba3b
JB
9495 if (btrfs_test_opt(root, CLEAR_CACHE))
9496 need_clear = 1;
0af3d00b 9497
d397712b 9498 while (1) {
0b86a832 9499 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9500 if (ret > 0)
9501 break;
0b86a832
CM
9502 if (ret != 0)
9503 goto error;
920e4a58 9504
5f39d397
CM
9505 leaf = path->nodes[0];
9506 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9507
9508 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9509 found_key.offset);
9078a3e1 9510 if (!cache) {
0b86a832 9511 ret = -ENOMEM;
f0486c68 9512 goto error;
9078a3e1 9513 }
96303081 9514
cf7c1ef6
LB
9515 if (need_clear) {
9516 /*
9517 * When we mount with old space cache, we need to
9518 * set BTRFS_DC_CLEAR and set dirty flag.
9519 *
9520 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9521 * truncate the old free space cache inode and
9522 * setup a new one.
9523 * b) Setting 'dirty flag' makes sure that we flush
9524 * the new space cache info onto disk.
9525 */
cf7c1ef6 9526 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9527 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9528 }
0af3d00b 9529
5f39d397
CM
9530 read_extent_buffer(leaf, &cache->item,
9531 btrfs_item_ptr_offset(leaf, path->slots[0]),
9532 sizeof(cache->item));
920e4a58 9533 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9534
9078a3e1 9535 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9536 btrfs_release_path(path);
34d52cb6 9537
3c14874a
JB
9538 /*
9539 * We need to exclude the super stripes now so that the space
9540 * info has super bytes accounted for, otherwise we'll think
9541 * we have more space than we actually do.
9542 */
835d974f
JB
9543 ret = exclude_super_stripes(root, cache);
9544 if (ret) {
9545 /*
9546 * We may have excluded something, so call this just in
9547 * case.
9548 */
9549 free_excluded_extents(root, cache);
920e4a58 9550 btrfs_put_block_group(cache);
835d974f
JB
9551 goto error;
9552 }
3c14874a 9553
817d52f8
JB
9554 /*
9555 * check for two cases, either we are full, and therefore
9556 * don't need to bother with the caching work since we won't
9557 * find any space, or we are empty, and we can just add all
9558 * the space in and be done with it. This saves us _alot_ of
9559 * time, particularly in the full case.
9560 */
9561 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9562 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9563 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9564 free_excluded_extents(root, cache);
817d52f8 9565 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9566 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9567 cache->cached = BTRFS_CACHE_FINISHED;
9568 add_new_free_space(cache, root->fs_info,
9569 found_key.objectid,
9570 found_key.objectid +
9571 found_key.offset);
11833d66 9572 free_excluded_extents(root, cache);
817d52f8 9573 }
96b5179d 9574
8c579fe7
JB
9575 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9576 if (ret) {
9577 btrfs_remove_free_space_cache(cache);
9578 btrfs_put_block_group(cache);
9579 goto error;
9580 }
9581
6324fbf3
CM
9582 ret = update_space_info(info, cache->flags, found_key.offset,
9583 btrfs_block_group_used(&cache->item),
9584 &space_info);
8c579fe7
JB
9585 if (ret) {
9586 btrfs_remove_free_space_cache(cache);
9587 spin_lock(&info->block_group_cache_lock);
9588 rb_erase(&cache->cache_node,
9589 &info->block_group_cache_tree);
01eacb27 9590 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9591 spin_unlock(&info->block_group_cache_lock);
9592 btrfs_put_block_group(cache);
9593 goto error;
9594 }
9595
6324fbf3 9596 cache->space_info = space_info;
1b2da372 9597 spin_lock(&cache->space_info->lock);
f0486c68 9598 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9599 spin_unlock(&cache->space_info->lock);
9600
b742bb82 9601 __link_block_group(space_info, cache);
0f9dd46c 9602
75ccf47d 9603 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9604 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 9605 inc_block_group_ro(cache, 1);
47ab2a6c
JB
9606 } else if (btrfs_block_group_used(&cache->item) == 0) {
9607 spin_lock(&info->unused_bgs_lock);
9608 /* Should always be true but just in case. */
9609 if (list_empty(&cache->bg_list)) {
9610 btrfs_get_block_group(cache);
9611 list_add_tail(&cache->bg_list,
9612 &info->unused_bgs);
9613 }
9614 spin_unlock(&info->unused_bgs_lock);
9615 }
9078a3e1 9616 }
b742bb82
YZ
9617
9618 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9619 if (!(get_alloc_profile(root, space_info->flags) &
9620 (BTRFS_BLOCK_GROUP_RAID10 |
9621 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9622 BTRFS_BLOCK_GROUP_RAID5 |
9623 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9624 BTRFS_BLOCK_GROUP_DUP)))
9625 continue;
9626 /*
9627 * avoid allocating from un-mirrored block group if there are
9628 * mirrored block groups.
9629 */
1095cc0d 9630 list_for_each_entry(cache,
9631 &space_info->block_groups[BTRFS_RAID_RAID0],
9632 list)
868f401a 9633 inc_block_group_ro(cache, 1);
1095cc0d 9634 list_for_each_entry(cache,
9635 &space_info->block_groups[BTRFS_RAID_SINGLE],
9636 list)
868f401a 9637 inc_block_group_ro(cache, 1);
9078a3e1 9638 }
f0486c68
YZ
9639
9640 init_global_block_rsv(info);
0b86a832
CM
9641 ret = 0;
9642error:
9078a3e1 9643 btrfs_free_path(path);
0b86a832 9644 return ret;
9078a3e1 9645}
6324fbf3 9646
ea658bad
JB
9647void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9648 struct btrfs_root *root)
9649{
9650 struct btrfs_block_group_cache *block_group, *tmp;
9651 struct btrfs_root *extent_root = root->fs_info->extent_root;
9652 struct btrfs_block_group_item item;
9653 struct btrfs_key key;
9654 int ret = 0;
d9a0540a 9655 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 9656
d9a0540a 9657 trans->can_flush_pending_bgs = false;
47ab2a6c 9658 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9659 if (ret)
c92f6be3 9660 goto next;
ea658bad
JB
9661
9662 spin_lock(&block_group->lock);
9663 memcpy(&item, &block_group->item, sizeof(item));
9664 memcpy(&key, &block_group->key, sizeof(key));
9665 spin_unlock(&block_group->lock);
9666
9667 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9668 sizeof(item));
9669 if (ret)
9670 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9671 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9672 key.objectid, key.offset);
9673 if (ret)
9674 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9675next:
9676 list_del_init(&block_group->bg_list);
ea658bad 9677 }
d9a0540a 9678 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
9679}
9680
6324fbf3
CM
9681int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9682 struct btrfs_root *root, u64 bytes_used,
e17cade2 9683 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9684 u64 size)
9685{
9686 int ret;
6324fbf3
CM
9687 struct btrfs_root *extent_root;
9688 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9689
9690 extent_root = root->fs_info->extent_root;
6324fbf3 9691
995946dd 9692 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9693
920e4a58 9694 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9695 if (!cache)
9696 return -ENOMEM;
34d52cb6 9697
6324fbf3 9698 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9699 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9700 btrfs_set_block_group_flags(&cache->item, type);
9701
920e4a58 9702 cache->flags = type;
11833d66 9703 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9704 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9705 ret = exclude_super_stripes(root, cache);
9706 if (ret) {
9707 /*
9708 * We may have excluded something, so call this just in
9709 * case.
9710 */
9711 free_excluded_extents(root, cache);
920e4a58 9712 btrfs_put_block_group(cache);
835d974f
JB
9713 return ret;
9714 }
96303081 9715
817d52f8
JB
9716 add_new_free_space(cache, root->fs_info, chunk_offset,
9717 chunk_offset + size);
9718
11833d66
YZ
9719 free_excluded_extents(root, cache);
9720
d0bd4560
JB
9721#ifdef CONFIG_BTRFS_DEBUG
9722 if (btrfs_should_fragment_free_space(root, cache)) {
9723 u64 new_bytes_used = size - bytes_used;
9724
9725 bytes_used += new_bytes_used >> 1;
9726 fragment_free_space(root, cache);
9727 }
9728#endif
2e6e5183
FM
9729 /*
9730 * Call to ensure the corresponding space_info object is created and
9731 * assigned to our block group, but don't update its counters just yet.
9732 * We want our bg to be added to the rbtree with its ->space_info set.
9733 */
9734 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9735 &cache->space_info);
9736 if (ret) {
9737 btrfs_remove_free_space_cache(cache);
9738 btrfs_put_block_group(cache);
9739 return ret;
9740 }
9741
8c579fe7
JB
9742 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9743 if (ret) {
9744 btrfs_remove_free_space_cache(cache);
9745 btrfs_put_block_group(cache);
9746 return ret;
9747 }
9748
2e6e5183
FM
9749 /*
9750 * Now that our block group has its ->space_info set and is inserted in
9751 * the rbtree, update the space info's counters.
9752 */
6324fbf3
CM
9753 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9754 &cache->space_info);
8c579fe7
JB
9755 if (ret) {
9756 btrfs_remove_free_space_cache(cache);
9757 spin_lock(&root->fs_info->block_group_cache_lock);
9758 rb_erase(&cache->cache_node,
9759 &root->fs_info->block_group_cache_tree);
01eacb27 9760 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9761 spin_unlock(&root->fs_info->block_group_cache_lock);
9762 btrfs_put_block_group(cache);
9763 return ret;
9764 }
c7c144db 9765 update_global_block_rsv(root->fs_info);
1b2da372
JB
9766
9767 spin_lock(&cache->space_info->lock);
f0486c68 9768 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9769 spin_unlock(&cache->space_info->lock);
9770
b742bb82 9771 __link_block_group(cache->space_info, cache);
6324fbf3 9772
47ab2a6c 9773 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9774
d18a2c44 9775 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9776
6324fbf3
CM
9777 return 0;
9778}
1a40e23b 9779
10ea00f5
ID
9780static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9781{
899c81ea
ID
9782 u64 extra_flags = chunk_to_extended(flags) &
9783 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9784
de98ced9 9785 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9786 if (flags & BTRFS_BLOCK_GROUP_DATA)
9787 fs_info->avail_data_alloc_bits &= ~extra_flags;
9788 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9789 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9790 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9791 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9792 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9793}
9794
1a40e23b 9795int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9796 struct btrfs_root *root, u64 group_start,
9797 struct extent_map *em)
1a40e23b
ZY
9798{
9799 struct btrfs_path *path;
9800 struct btrfs_block_group_cache *block_group;
44fb5511 9801 struct btrfs_free_cluster *cluster;
0af3d00b 9802 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9803 struct btrfs_key key;
0af3d00b 9804 struct inode *inode;
c1895442 9805 struct kobject *kobj = NULL;
1a40e23b 9806 int ret;
10ea00f5 9807 int index;
89a55897 9808 int factor;
4f69cb98 9809 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9810 bool remove_em;
1a40e23b 9811
1a40e23b
ZY
9812 root = root->fs_info->extent_root;
9813
9814 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9815 BUG_ON(!block_group);
c146afad 9816 BUG_ON(!block_group->ro);
1a40e23b 9817
9f7c43c9 9818 /*
9819 * Free the reserved super bytes from this block group before
9820 * remove it.
9821 */
9822 free_excluded_extents(root, block_group);
9823
1a40e23b 9824 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9825 index = get_block_group_index(block_group);
89a55897
JB
9826 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9827 BTRFS_BLOCK_GROUP_RAID1 |
9828 BTRFS_BLOCK_GROUP_RAID10))
9829 factor = 2;
9830 else
9831 factor = 1;
1a40e23b 9832
44fb5511
CM
9833 /* make sure this block group isn't part of an allocation cluster */
9834 cluster = &root->fs_info->data_alloc_cluster;
9835 spin_lock(&cluster->refill_lock);
9836 btrfs_return_cluster_to_free_space(block_group, cluster);
9837 spin_unlock(&cluster->refill_lock);
9838
9839 /*
9840 * make sure this block group isn't part of a metadata
9841 * allocation cluster
9842 */
9843 cluster = &root->fs_info->meta_alloc_cluster;
9844 spin_lock(&cluster->refill_lock);
9845 btrfs_return_cluster_to_free_space(block_group, cluster);
9846 spin_unlock(&cluster->refill_lock);
9847
1a40e23b 9848 path = btrfs_alloc_path();
d8926bb3
MF
9849 if (!path) {
9850 ret = -ENOMEM;
9851 goto out;
9852 }
1a40e23b 9853
1bbc621e
CM
9854 /*
9855 * get the inode first so any iput calls done for the io_list
9856 * aren't the final iput (no unlinks allowed now)
9857 */
10b2f34d 9858 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9859
9860 mutex_lock(&trans->transaction->cache_write_mutex);
9861 /*
9862 * make sure our free spache cache IO is done before remove the
9863 * free space inode
9864 */
9865 spin_lock(&trans->transaction->dirty_bgs_lock);
9866 if (!list_empty(&block_group->io_list)) {
9867 list_del_init(&block_group->io_list);
9868
9869 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9870
9871 spin_unlock(&trans->transaction->dirty_bgs_lock);
9872 btrfs_wait_cache_io(root, trans, block_group,
9873 &block_group->io_ctl, path,
9874 block_group->key.objectid);
9875 btrfs_put_block_group(block_group);
9876 spin_lock(&trans->transaction->dirty_bgs_lock);
9877 }
9878
9879 if (!list_empty(&block_group->dirty_list)) {
9880 list_del_init(&block_group->dirty_list);
9881 btrfs_put_block_group(block_group);
9882 }
9883 spin_unlock(&trans->transaction->dirty_bgs_lock);
9884 mutex_unlock(&trans->transaction->cache_write_mutex);
9885
0af3d00b 9886 if (!IS_ERR(inode)) {
b532402e 9887 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9888 if (ret) {
9889 btrfs_add_delayed_iput(inode);
9890 goto out;
9891 }
0af3d00b
JB
9892 clear_nlink(inode);
9893 /* One for the block groups ref */
9894 spin_lock(&block_group->lock);
9895 if (block_group->iref) {
9896 block_group->iref = 0;
9897 block_group->inode = NULL;
9898 spin_unlock(&block_group->lock);
9899 iput(inode);
9900 } else {
9901 spin_unlock(&block_group->lock);
9902 }
9903 /* One for our lookup ref */
455757c3 9904 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9905 }
9906
9907 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9908 key.offset = block_group->key.objectid;
9909 key.type = 0;
9910
9911 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9912 if (ret < 0)
9913 goto out;
9914 if (ret > 0)
b3b4aa74 9915 btrfs_release_path(path);
0af3d00b
JB
9916 if (ret == 0) {
9917 ret = btrfs_del_item(trans, tree_root, path);
9918 if (ret)
9919 goto out;
b3b4aa74 9920 btrfs_release_path(path);
0af3d00b
JB
9921 }
9922
3dfdb934 9923 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9924 rb_erase(&block_group->cache_node,
9925 &root->fs_info->block_group_cache_tree);
292cbd51 9926 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9927
9928 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9929 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9930 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9931
80eb234a 9932 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9933 /*
9934 * we must use list_del_init so people can check to see if they
9935 * are still on the list after taking the semaphore
9936 */
9937 list_del_init(&block_group->list);
6ab0a202 9938 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9939 kobj = block_group->space_info->block_group_kobjs[index];
9940 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9941 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9942 }
80eb234a 9943 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9944 if (kobj) {
9945 kobject_del(kobj);
9946 kobject_put(kobj);
9947 }
1a40e23b 9948
4f69cb98
FM
9949 if (block_group->has_caching_ctl)
9950 caching_ctl = get_caching_control(block_group);
817d52f8 9951 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9952 wait_block_group_cache_done(block_group);
4f69cb98
FM
9953 if (block_group->has_caching_ctl) {
9954 down_write(&root->fs_info->commit_root_sem);
9955 if (!caching_ctl) {
9956 struct btrfs_caching_control *ctl;
9957
9958 list_for_each_entry(ctl,
9959 &root->fs_info->caching_block_groups, list)
9960 if (ctl->block_group == block_group) {
9961 caching_ctl = ctl;
9962 atomic_inc(&caching_ctl->count);
9963 break;
9964 }
9965 }
9966 if (caching_ctl)
9967 list_del_init(&caching_ctl->list);
9968 up_write(&root->fs_info->commit_root_sem);
9969 if (caching_ctl) {
9970 /* Once for the caching bgs list and once for us. */
9971 put_caching_control(caching_ctl);
9972 put_caching_control(caching_ctl);
9973 }
9974 }
817d52f8 9975
ce93ec54
JB
9976 spin_lock(&trans->transaction->dirty_bgs_lock);
9977 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9978 WARN_ON(1);
9979 }
9980 if (!list_empty(&block_group->io_list)) {
9981 WARN_ON(1);
ce93ec54
JB
9982 }
9983 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
9984 btrfs_remove_free_space_cache(block_group);
9985
c146afad 9986 spin_lock(&block_group->space_info->lock);
75c68e9f 9987 list_del_init(&block_group->ro_list);
18d018ad
ZL
9988
9989 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9990 WARN_ON(block_group->space_info->total_bytes
9991 < block_group->key.offset);
9992 WARN_ON(block_group->space_info->bytes_readonly
9993 < block_group->key.offset);
9994 WARN_ON(block_group->space_info->disk_total
9995 < block_group->key.offset * factor);
9996 }
c146afad
YZ
9997 block_group->space_info->total_bytes -= block_group->key.offset;
9998 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 9999 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10000
c146afad 10001 spin_unlock(&block_group->space_info->lock);
283bb197 10002
0af3d00b
JB
10003 memcpy(&key, &block_group->key, sizeof(key));
10004
04216820 10005 lock_chunks(root);
495e64f4
FM
10006 if (!list_empty(&em->list)) {
10007 /* We're in the transaction->pending_chunks list. */
10008 free_extent_map(em);
10009 }
04216820
FM
10010 spin_lock(&block_group->lock);
10011 block_group->removed = 1;
10012 /*
10013 * At this point trimming can't start on this block group, because we
10014 * removed the block group from the tree fs_info->block_group_cache_tree
10015 * so no one can't find it anymore and even if someone already got this
10016 * block group before we removed it from the rbtree, they have already
10017 * incremented block_group->trimming - if they didn't, they won't find
10018 * any free space entries because we already removed them all when we
10019 * called btrfs_remove_free_space_cache().
10020 *
10021 * And we must not remove the extent map from the fs_info->mapping_tree
10022 * to prevent the same logical address range and physical device space
10023 * ranges from being reused for a new block group. This is because our
10024 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10025 * completely transactionless, so while it is trimming a range the
10026 * currently running transaction might finish and a new one start,
10027 * allowing for new block groups to be created that can reuse the same
10028 * physical device locations unless we take this special care.
e33e17ee
JM
10029 *
10030 * There may also be an implicit trim operation if the file system
10031 * is mounted with -odiscard. The same protections must remain
10032 * in place until the extents have been discarded completely when
10033 * the transaction commit has completed.
04216820
FM
10034 */
10035 remove_em = (atomic_read(&block_group->trimming) == 0);
10036 /*
10037 * Make sure a trimmer task always sees the em in the pinned_chunks list
10038 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10039 * before checking block_group->removed).
10040 */
10041 if (!remove_em) {
10042 /*
10043 * Our em might be in trans->transaction->pending_chunks which
10044 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10045 * and so is the fs_info->pinned_chunks list.
10046 *
10047 * So at this point we must be holding the chunk_mutex to avoid
10048 * any races with chunk allocation (more specifically at
10049 * volumes.c:contains_pending_extent()), to ensure it always
10050 * sees the em, either in the pending_chunks list or in the
10051 * pinned_chunks list.
10052 */
10053 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10054 }
10055 spin_unlock(&block_group->lock);
04216820
FM
10056
10057 if (remove_em) {
10058 struct extent_map_tree *em_tree;
10059
10060 em_tree = &root->fs_info->mapping_tree.map_tree;
10061 write_lock(&em_tree->lock);
8dbcd10f
FM
10062 /*
10063 * The em might be in the pending_chunks list, so make sure the
10064 * chunk mutex is locked, since remove_extent_mapping() will
10065 * delete us from that list.
10066 */
04216820
FM
10067 remove_extent_mapping(em_tree, em);
10068 write_unlock(&em_tree->lock);
10069 /* once for the tree */
10070 free_extent_map(em);
10071 }
10072
8dbcd10f
FM
10073 unlock_chunks(root);
10074
fa9c0d79
CM
10075 btrfs_put_block_group(block_group);
10076 btrfs_put_block_group(block_group);
1a40e23b
ZY
10077
10078 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10079 if (ret > 0)
10080 ret = -EIO;
10081 if (ret < 0)
10082 goto out;
10083
10084 ret = btrfs_del_item(trans, root, path);
10085out:
10086 btrfs_free_path(path);
10087 return ret;
10088}
acce952b 10089
47ab2a6c
JB
10090/*
10091 * Process the unused_bgs list and remove any that don't have any allocated
10092 * space inside of them.
10093 */
10094void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10095{
10096 struct btrfs_block_group_cache *block_group;
10097 struct btrfs_space_info *space_info;
10098 struct btrfs_root *root = fs_info->extent_root;
10099 struct btrfs_trans_handle *trans;
10100 int ret = 0;
10101
10102 if (!fs_info->open)
10103 return;
10104
10105 spin_lock(&fs_info->unused_bgs_lock);
10106 while (!list_empty(&fs_info->unused_bgs)) {
10107 u64 start, end;
e33e17ee 10108 int trimming;
47ab2a6c
JB
10109
10110 block_group = list_first_entry(&fs_info->unused_bgs,
10111 struct btrfs_block_group_cache,
10112 bg_list);
10113 space_info = block_group->space_info;
10114 list_del_init(&block_group->bg_list);
10115 if (ret || btrfs_mixed_space_info(space_info)) {
10116 btrfs_put_block_group(block_group);
10117 continue;
10118 }
10119 spin_unlock(&fs_info->unused_bgs_lock);
10120
67c5e7d4
FM
10121 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10122
47ab2a6c
JB
10123 /* Don't want to race with allocators so take the groups_sem */
10124 down_write(&space_info->groups_sem);
10125 spin_lock(&block_group->lock);
10126 if (block_group->reserved ||
10127 btrfs_block_group_used(&block_group->item) ||
10128 block_group->ro) {
10129 /*
10130 * We want to bail if we made new allocations or have
10131 * outstanding allocations in this block group. We do
10132 * the ro check in case balance is currently acting on
10133 * this block group.
10134 */
10135 spin_unlock(&block_group->lock);
10136 up_write(&space_info->groups_sem);
10137 goto next;
10138 }
10139 spin_unlock(&block_group->lock);
10140
10141 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10142 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10143 up_write(&space_info->groups_sem);
10144 if (ret < 0) {
10145 ret = 0;
10146 goto next;
10147 }
10148
10149 /*
10150 * Want to do this before we do anything else so we can recover
10151 * properly if we fail to join the transaction.
10152 */
3d84be79
FL
10153 /* 1 for btrfs_orphan_reserve_metadata() */
10154 trans = btrfs_start_transaction(root, 1);
47ab2a6c 10155 if (IS_ERR(trans)) {
868f401a 10156 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10157 ret = PTR_ERR(trans);
10158 goto next;
10159 }
10160
10161 /*
10162 * We could have pending pinned extents for this block group,
10163 * just delete them, we don't care about them anymore.
10164 */
10165 start = block_group->key.objectid;
10166 end = start + block_group->key.offset - 1;
d4b450cd
FM
10167 /*
10168 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10169 * btrfs_finish_extent_commit(). If we are at transaction N,
10170 * another task might be running finish_extent_commit() for the
10171 * previous transaction N - 1, and have seen a range belonging
10172 * to the block group in freed_extents[] before we were able to
10173 * clear the whole block group range from freed_extents[]. This
10174 * means that task can lookup for the block group after we
10175 * unpinned it from freed_extents[] and removed it, leading to
10176 * a BUG_ON() at btrfs_unpin_extent_range().
10177 */
10178 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10179 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 10180 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10181 if (ret) {
d4b450cd 10182 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10183 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10184 goto end_trans;
10185 }
10186 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 10187 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10188 if (ret) {
d4b450cd 10189 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10190 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10191 goto end_trans;
10192 }
d4b450cd 10193 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10194
10195 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10196 spin_lock(&space_info->lock);
10197 spin_lock(&block_group->lock);
10198
10199 space_info->bytes_pinned -= block_group->pinned;
10200 space_info->bytes_readonly += block_group->pinned;
10201 percpu_counter_add(&space_info->total_bytes_pinned,
10202 -block_group->pinned);
47ab2a6c
JB
10203 block_group->pinned = 0;
10204
c30666d4
ZL
10205 spin_unlock(&block_group->lock);
10206 spin_unlock(&space_info->lock);
10207
e33e17ee
JM
10208 /* DISCARD can flip during remount */
10209 trimming = btrfs_test_opt(root, DISCARD);
10210
10211 /* Implicit trim during transaction commit. */
10212 if (trimming)
10213 btrfs_get_block_group_trimming(block_group);
10214
47ab2a6c
JB
10215 /*
10216 * Btrfs_remove_chunk will abort the transaction if things go
10217 * horribly wrong.
10218 */
10219 ret = btrfs_remove_chunk(trans, root,
10220 block_group->key.objectid);
e33e17ee
JM
10221
10222 if (ret) {
10223 if (trimming)
10224 btrfs_put_block_group_trimming(block_group);
10225 goto end_trans;
10226 }
10227
10228 /*
10229 * If we're not mounted with -odiscard, we can just forget
10230 * about this block group. Otherwise we'll need to wait
10231 * until transaction commit to do the actual discard.
10232 */
10233 if (trimming) {
10234 WARN_ON(!list_empty(&block_group->bg_list));
10235 spin_lock(&trans->transaction->deleted_bgs_lock);
10236 list_move(&block_group->bg_list,
10237 &trans->transaction->deleted_bgs);
10238 spin_unlock(&trans->transaction->deleted_bgs_lock);
10239 btrfs_get_block_group(block_group);
10240 }
758eb51e 10241end_trans:
47ab2a6c
JB
10242 btrfs_end_transaction(trans, root);
10243next:
67c5e7d4 10244 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10245 btrfs_put_block_group(block_group);
10246 spin_lock(&fs_info->unused_bgs_lock);
10247 }
10248 spin_unlock(&fs_info->unused_bgs_lock);
10249}
10250
c59021f8 10251int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10252{
10253 struct btrfs_space_info *space_info;
1aba86d6 10254 struct btrfs_super_block *disk_super;
10255 u64 features;
10256 u64 flags;
10257 int mixed = 0;
c59021f8 10258 int ret;
10259
6c41761f 10260 disk_super = fs_info->super_copy;
1aba86d6 10261 if (!btrfs_super_root(disk_super))
10262 return 1;
c59021f8 10263
1aba86d6 10264 features = btrfs_super_incompat_flags(disk_super);
10265 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10266 mixed = 1;
c59021f8 10267
1aba86d6 10268 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10269 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10270 if (ret)
1aba86d6 10271 goto out;
c59021f8 10272
1aba86d6 10273 if (mixed) {
10274 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10275 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10276 } else {
10277 flags = BTRFS_BLOCK_GROUP_METADATA;
10278 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10279 if (ret)
10280 goto out;
10281
10282 flags = BTRFS_BLOCK_GROUP_DATA;
10283 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10284 }
10285out:
c59021f8 10286 return ret;
10287}
10288
acce952b 10289int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10290{
678886bd 10291 return unpin_extent_range(root, start, end, false);
acce952b 10292}
10293
499f377f
JM
10294/*
10295 * It used to be that old block groups would be left around forever.
10296 * Iterating over them would be enough to trim unused space. Since we
10297 * now automatically remove them, we also need to iterate over unallocated
10298 * space.
10299 *
10300 * We don't want a transaction for this since the discard may take a
10301 * substantial amount of time. We don't require that a transaction be
10302 * running, but we do need to take a running transaction into account
10303 * to ensure that we're not discarding chunks that were released in
10304 * the current transaction.
10305 *
10306 * Holding the chunks lock will prevent other threads from allocating
10307 * or releasing chunks, but it won't prevent a running transaction
10308 * from committing and releasing the memory that the pending chunks
10309 * list head uses. For that, we need to take a reference to the
10310 * transaction.
10311 */
10312static int btrfs_trim_free_extents(struct btrfs_device *device,
10313 u64 minlen, u64 *trimmed)
10314{
10315 u64 start = 0, len = 0;
10316 int ret;
10317
10318 *trimmed = 0;
10319
10320 /* Not writeable = nothing to do. */
10321 if (!device->writeable)
10322 return 0;
10323
10324 /* No free space = nothing to do. */
10325 if (device->total_bytes <= device->bytes_used)
10326 return 0;
10327
10328 ret = 0;
10329
10330 while (1) {
10331 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10332 struct btrfs_transaction *trans;
10333 u64 bytes;
10334
10335 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10336 if (ret)
10337 return ret;
10338
10339 down_read(&fs_info->commit_root_sem);
10340
10341 spin_lock(&fs_info->trans_lock);
10342 trans = fs_info->running_transaction;
10343 if (trans)
10344 atomic_inc(&trans->use_count);
10345 spin_unlock(&fs_info->trans_lock);
10346
10347 ret = find_free_dev_extent_start(trans, device, minlen, start,
10348 &start, &len);
10349 if (trans)
10350 btrfs_put_transaction(trans);
10351
10352 if (ret) {
10353 up_read(&fs_info->commit_root_sem);
10354 mutex_unlock(&fs_info->chunk_mutex);
10355 if (ret == -ENOSPC)
10356 ret = 0;
10357 break;
10358 }
10359
10360 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10361 up_read(&fs_info->commit_root_sem);
10362 mutex_unlock(&fs_info->chunk_mutex);
10363
10364 if (ret)
10365 break;
10366
10367 start += len;
10368 *trimmed += bytes;
10369
10370 if (fatal_signal_pending(current)) {
10371 ret = -ERESTARTSYS;
10372 break;
10373 }
10374
10375 cond_resched();
10376 }
10377
10378 return ret;
10379}
10380
f7039b1d
LD
10381int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10382{
10383 struct btrfs_fs_info *fs_info = root->fs_info;
10384 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10385 struct btrfs_device *device;
10386 struct list_head *devices;
f7039b1d
LD
10387 u64 group_trimmed;
10388 u64 start;
10389 u64 end;
10390 u64 trimmed = 0;
2cac13e4 10391 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10392 int ret = 0;
10393
2cac13e4
LB
10394 /*
10395 * try to trim all FS space, our block group may start from non-zero.
10396 */
10397 if (range->len == total_bytes)
10398 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10399 else
10400 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10401
10402 while (cache) {
10403 if (cache->key.objectid >= (range->start + range->len)) {
10404 btrfs_put_block_group(cache);
10405 break;
10406 }
10407
10408 start = max(range->start, cache->key.objectid);
10409 end = min(range->start + range->len,
10410 cache->key.objectid + cache->key.offset);
10411
10412 if (end - start >= range->minlen) {
10413 if (!block_group_cache_done(cache)) {
f6373bf3 10414 ret = cache_block_group(cache, 0);
1be41b78
JB
10415 if (ret) {
10416 btrfs_put_block_group(cache);
10417 break;
10418 }
10419 ret = wait_block_group_cache_done(cache);
10420 if (ret) {
10421 btrfs_put_block_group(cache);
10422 break;
10423 }
f7039b1d
LD
10424 }
10425 ret = btrfs_trim_block_group(cache,
10426 &group_trimmed,
10427 start,
10428 end,
10429 range->minlen);
10430
10431 trimmed += group_trimmed;
10432 if (ret) {
10433 btrfs_put_block_group(cache);
10434 break;
10435 }
10436 }
10437
10438 cache = next_block_group(fs_info->tree_root, cache);
10439 }
10440
499f377f
JM
10441 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10442 devices = &root->fs_info->fs_devices->alloc_list;
10443 list_for_each_entry(device, devices, dev_alloc_list) {
10444 ret = btrfs_trim_free_extents(device, range->minlen,
10445 &group_trimmed);
10446 if (ret)
10447 break;
10448
10449 trimmed += group_trimmed;
10450 }
10451 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10452
f7039b1d
LD
10453 range->len = trimmed;
10454 return ret;
10455}
8257b2dc
MX
10456
10457/*
9ea24bbe
FM
10458 * btrfs_{start,end}_write_no_snapshoting() are similar to
10459 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10460 * data into the page cache through nocow before the subvolume is snapshoted,
10461 * but flush the data into disk after the snapshot creation, or to prevent
10462 * operations while snapshoting is ongoing and that cause the snapshot to be
10463 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10464 */
9ea24bbe 10465void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10466{
10467 percpu_counter_dec(&root->subv_writers->counter);
10468 /*
a83342aa 10469 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10470 */
10471 smp_mb();
10472 if (waitqueue_active(&root->subv_writers->wait))
10473 wake_up(&root->subv_writers->wait);
10474}
10475
9ea24bbe 10476int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10477{
ee39b432 10478 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10479 return 0;
10480
10481 percpu_counter_inc(&root->subv_writers->counter);
10482 /*
10483 * Make sure counter is updated before we check for snapshot creation.
10484 */
10485 smp_mb();
ee39b432 10486 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10487 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10488 return 0;
10489 }
10490 return 1;
10491}