]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/extent-tree.c
Merge branch 'misc-4.10' into for-chris-4.10-20161130
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
1e144fb8 36#include "free-space-tree.h"
3fed40cc 37#include "math.h"
6ab0a202 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
fec577fb 40
709c0486
AJ
41#undef SCRAMBLE_DELAYED_REFS
42
9e622d6b
MX
43/*
44 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
0e4f8f88
CM
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
9e622d6b
MX
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
0e4f8f88
CM
56 */
57enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
61};
62
ce93ec54
JB
63static int update_block_group(struct btrfs_trans_handle *trans,
64 struct btrfs_root *root, u64 bytenr,
65 u64 num_bytes, int alloc);
5d4f98a2
YZ
66static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 struct btrfs_root *root,
c682f9b3 68 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
c682f9b3 71 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
72static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 84 int level, struct btrfs_key *ins);
6a63209f 85static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
86 struct btrfs_root *extent_root, u64 flags,
87 int force);
11833d66
YZ
88static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
ab8d0fc4
JM
90static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 92 int dump_block_groups);
4824f1f4 93static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 94 u64 ram_bytes, u64 num_bytes, int delalloc);
4824f1f4
WX
95static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
96 u64 num_bytes, int delalloc);
5d80366e
JB
97static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
98 u64 num_bytes);
48a3b636
ES
99int btrfs_pin_extent(struct btrfs_root *root,
100 u64 bytenr, u64 num_bytes, int reserved);
957780eb
JB
101static int __reserve_metadata_bytes(struct btrfs_root *root,
102 struct btrfs_space_info *space_info,
103 u64 orig_bytes,
104 enum btrfs_reserve_flush_enum flush);
105static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106 struct btrfs_space_info *space_info,
107 u64 num_bytes);
108static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109 struct btrfs_space_info *space_info,
110 u64 num_bytes);
6a63209f 111
817d52f8
JB
112static noinline int
113block_group_cache_done(struct btrfs_block_group_cache *cache)
114{
115 smp_mb();
36cce922
JB
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
118}
119
0f9dd46c
JB
120static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121{
122 return (cache->flags & bits) == bits;
123}
124
758f2dfc 125void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
126{
127 atomic_inc(&cache->count);
128}
129
130void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131{
f0486c68
YZ
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
34d52cb6 135 kfree(cache->free_space_ctl);
11dfe35a 136 kfree(cache);
f0486c68 137 }
11dfe35a
JB
138}
139
0f9dd46c
JB
140/*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
b2950863 144static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
145 struct btrfs_block_group_cache *block_group)
146{
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
a1897fdd
LB
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
0f9dd46c
JB
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178}
179
180/*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184static struct btrfs_block_group_cache *
185block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187{
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
a1897fdd 216 if (ret) {
11dfe35a 217 btrfs_get_block_group(ret);
a1897fdd
LB
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
0f9dd46c
JB
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224}
225
11833d66
YZ
226static int add_excluded_extent(struct btrfs_root *root,
227 u64 start, u64 num_bytes)
817d52f8 228{
11833d66
YZ
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&root->fs_info->freed_extents[0],
ceeb0ae7 231 start, end, EXTENT_UPTODATE);
11833d66 232 set_extent_bits(&root->fs_info->freed_extents[1],
ceeb0ae7 233 start, end, EXTENT_UPTODATE);
11833d66
YZ
234 return 0;
235}
817d52f8 236
11833d66
YZ
237static void free_excluded_extents(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239{
240 u64 start, end;
817d52f8 241
11833d66
YZ
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
245 clear_extent_bits(&root->fs_info->freed_extents[0],
91166212 246 start, end, EXTENT_UPTODATE);
11833d66 247 clear_extent_bits(&root->fs_info->freed_extents[1],
91166212 248 start, end, EXTENT_UPTODATE);
817d52f8
JB
249}
250
11833d66
YZ
251static int exclude_super_stripes(struct btrfs_root *root,
252 struct btrfs_block_group_cache *cache)
817d52f8 253{
817d52f8
JB
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
06b2331f
YZ
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, cache->key.objectid,
263 stripe_len);
835d974f
JB
264 if (ret)
265 return ret;
06b2331f
YZ
266 }
267
817d52f8
JB
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
ab8d0fc4
JM
270 ret = btrfs_rmap_block(root->fs_info, cache->key.objectid,
271 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
272 if (ret)
273 return ret;
11833d66 274
817d52f8 275 while (nr--) {
51bf5f0b
JB
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
296 ret = add_excluded_extent(root, start, len);
835d974f
JB
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
817d52f8 301 }
11833d66 302
817d52f8
JB
303 kfree(logical);
304 }
817d52f8
JB
305 return 0;
306}
307
11833d66
YZ
308static struct btrfs_caching_control *
309get_caching_control(struct btrfs_block_group_cache *cache)
310{
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
dde5abee
JB
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
11833d66
YZ
316 return NULL;
317 }
318
319 ctl = cache->caching_ctl;
320 atomic_inc(&ctl->count);
321 spin_unlock(&cache->lock);
322 return ctl;
323}
324
325static void put_caching_control(struct btrfs_caching_control *ctl)
326{
327 if (atomic_dec_and_test(&ctl->count))
328 kfree(ctl);
329}
330
d0bd4560
JB
331#ifdef CONFIG_BTRFS_DEBUG
332static void fragment_free_space(struct btrfs_root *root,
333 struct btrfs_block_group_cache *block_group)
334{
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 root->nodesize : root->sectorsize;
339 u64 step = chunk << 1;
340
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
348 }
349}
350#endif
351
0f9dd46c
JB
352/*
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
356 */
a5ed9182
OS
357u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 359{
817d52f8 360 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
361 int ret;
362
363 while (start < end) {
11833d66 364 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 365 &extent_start, &extent_end,
e6138876
JB
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
0f9dd46c
JB
368 if (ret)
369 break;
370
06b2331f 371 if (extent_start <= start) {
0f9dd46c
JB
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
817d52f8 375 total_added += size;
ea6a478e
JB
376 ret = btrfs_add_free_space(block_group, start,
377 size);
79787eaa 378 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
379 start = extent_end + 1;
380 } else {
381 break;
382 }
383 }
384
385 if (start < end) {
386 size = end - start;
817d52f8 387 total_added += size;
ea6a478e 388 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 389 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
390 }
391
817d52f8 392 return total_added;
0f9dd46c
JB
393}
394
73fa48b6 395static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 396{
bab39bf9
JB
397 struct btrfs_block_group_cache *block_group;
398 struct btrfs_fs_info *fs_info;
bab39bf9 399 struct btrfs_root *extent_root;
e37c9e69 400 struct btrfs_path *path;
5f39d397 401 struct extent_buffer *leaf;
11833d66 402 struct btrfs_key key;
817d52f8 403 u64 total_found = 0;
11833d66
YZ
404 u64 last = 0;
405 u32 nritems;
73fa48b6 406 int ret;
d0bd4560 407 bool wakeup = true;
f510cfec 408
bab39bf9
JB
409 block_group = caching_ctl->block_group;
410 fs_info = block_group->fs_info;
411 extent_root = fs_info->extent_root;
412
e37c9e69
CM
413 path = btrfs_alloc_path();
414 if (!path)
73fa48b6 415 return -ENOMEM;
7d7d6068 416
817d52f8 417 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 418
d0bd4560
JB
419#ifdef CONFIG_BTRFS_DEBUG
420 /*
421 * If we're fragmenting we don't want to make anybody think we can
422 * allocate from this block group until we've had a chance to fragment
423 * the free space.
424 */
425 if (btrfs_should_fragment_free_space(extent_root, block_group))
426 wakeup = false;
427#endif
5cd57b2c 428 /*
817d52f8
JB
429 * We don't want to deadlock with somebody trying to allocate a new
430 * extent for the extent root while also trying to search the extent
431 * root to add free space. So we skip locking and search the commit
432 * root, since its read-only
5cd57b2c
CM
433 */
434 path->skip_locking = 1;
817d52f8 435 path->search_commit_root = 1;
e4058b54 436 path->reada = READA_FORWARD;
817d52f8 437
e4404d6e 438 key.objectid = last;
e37c9e69 439 key.offset = 0;
11833d66 440 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 441
52ee28d2 442next:
11833d66 443 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 444 if (ret < 0)
73fa48b6 445 goto out;
a512bbf8 446
11833d66
YZ
447 leaf = path->nodes[0];
448 nritems = btrfs_header_nritems(leaf);
449
d397712b 450 while (1) {
7841cb28 451 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 452 last = (u64)-1;
817d52f8 453 break;
f25784b3 454 }
817d52f8 455
11833d66
YZ
456 if (path->slots[0] < nritems) {
457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
458 } else {
459 ret = find_next_key(path, 0, &key);
460 if (ret)
e37c9e69 461 break;
817d52f8 462
c9ea7b24 463 if (need_resched() ||
9e351cc8 464 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
465 if (wakeup)
466 caching_ctl->progress = last;
ff5714cc 467 btrfs_release_path(path);
9e351cc8 468 up_read(&fs_info->commit_root_sem);
589d8ade 469 mutex_unlock(&caching_ctl->mutex);
11833d66 470 cond_resched();
73fa48b6
OS
471 mutex_lock(&caching_ctl->mutex);
472 down_read(&fs_info->commit_root_sem);
473 goto next;
589d8ade 474 }
0a3896d0
JB
475
476 ret = btrfs_next_leaf(extent_root, path);
477 if (ret < 0)
73fa48b6 478 goto out;
0a3896d0
JB
479 if (ret)
480 break;
589d8ade
JB
481 leaf = path->nodes[0];
482 nritems = btrfs_header_nritems(leaf);
483 continue;
11833d66 484 }
817d52f8 485
52ee28d2
LB
486 if (key.objectid < last) {
487 key.objectid = last;
488 key.offset = 0;
489 key.type = BTRFS_EXTENT_ITEM_KEY;
490
d0bd4560
JB
491 if (wakeup)
492 caching_ctl->progress = last;
52ee28d2
LB
493 btrfs_release_path(path);
494 goto next;
495 }
496
11833d66
YZ
497 if (key.objectid < block_group->key.objectid) {
498 path->slots[0]++;
817d52f8 499 continue;
e37c9e69 500 }
0f9dd46c 501
e37c9e69 502 if (key.objectid >= block_group->key.objectid +
0f9dd46c 503 block_group->key.offset)
e37c9e69 504 break;
7d7d6068 505
3173a18f
JB
506 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
507 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
508 total_found += add_new_free_space(block_group,
509 fs_info, last,
510 key.objectid);
3173a18f
JB
511 if (key.type == BTRFS_METADATA_ITEM_KEY)
512 last = key.objectid +
707e8a07 513 fs_info->tree_root->nodesize;
3173a18f
JB
514 else
515 last = key.objectid + key.offset;
817d52f8 516
73fa48b6 517 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 518 total_found = 0;
d0bd4560
JB
519 if (wakeup)
520 wake_up(&caching_ctl->wait);
11833d66 521 }
817d52f8 522 }
e37c9e69
CM
523 path->slots[0]++;
524 }
817d52f8 525 ret = 0;
e37c9e69 526
817d52f8
JB
527 total_found += add_new_free_space(block_group, fs_info, last,
528 block_group->key.objectid +
529 block_group->key.offset);
11833d66 530 caching_ctl->progress = (u64)-1;
817d52f8 531
73fa48b6
OS
532out:
533 btrfs_free_path(path);
534 return ret;
535}
536
537static noinline void caching_thread(struct btrfs_work *work)
538{
539 struct btrfs_block_group_cache *block_group;
540 struct btrfs_fs_info *fs_info;
541 struct btrfs_caching_control *caching_ctl;
b4570aa9 542 struct btrfs_root *extent_root;
73fa48b6
OS
543 int ret;
544
545 caching_ctl = container_of(work, struct btrfs_caching_control, work);
546 block_group = caching_ctl->block_group;
547 fs_info = block_group->fs_info;
b4570aa9 548 extent_root = fs_info->extent_root;
73fa48b6
OS
549
550 mutex_lock(&caching_ctl->mutex);
551 down_read(&fs_info->commit_root_sem);
552
1e144fb8
OS
553 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
554 ret = load_free_space_tree(caching_ctl);
555 else
556 ret = load_extent_tree_free(caching_ctl);
73fa48b6 557
817d52f8 558 spin_lock(&block_group->lock);
11833d66 559 block_group->caching_ctl = NULL;
73fa48b6 560 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 561 spin_unlock(&block_group->lock);
0f9dd46c 562
d0bd4560
JB
563#ifdef CONFIG_BTRFS_DEBUG
564 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
565 u64 bytes_used;
566
567 spin_lock(&block_group->space_info->lock);
568 spin_lock(&block_group->lock);
569 bytes_used = block_group->key.offset -
570 btrfs_block_group_used(&block_group->item);
571 block_group->space_info->bytes_used += bytes_used >> 1;
572 spin_unlock(&block_group->lock);
573 spin_unlock(&block_group->space_info->lock);
574 fragment_free_space(extent_root, block_group);
575 }
576#endif
577
578 caching_ctl->progress = (u64)-1;
11833d66 579
9e351cc8 580 up_read(&fs_info->commit_root_sem);
73fa48b6 581 free_excluded_extents(fs_info->extent_root, block_group);
11833d66 582 mutex_unlock(&caching_ctl->mutex);
73fa48b6 583
11833d66
YZ
584 wake_up(&caching_ctl->wait);
585
586 put_caching_control(caching_ctl);
11dfe35a 587 btrfs_put_block_group(block_group);
817d52f8
JB
588}
589
9d66e233 590static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 591 int load_cache_only)
817d52f8 592{
291c7d2f 593 DEFINE_WAIT(wait);
11833d66
YZ
594 struct btrfs_fs_info *fs_info = cache->fs_info;
595 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
596 int ret = 0;
597
291c7d2f 598 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
599 if (!caching_ctl)
600 return -ENOMEM;
291c7d2f
JB
601
602 INIT_LIST_HEAD(&caching_ctl->list);
603 mutex_init(&caching_ctl->mutex);
604 init_waitqueue_head(&caching_ctl->wait);
605 caching_ctl->block_group = cache;
606 caching_ctl->progress = cache->key.objectid;
607 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
608 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
609 caching_thread, NULL, NULL);
291c7d2f
JB
610
611 spin_lock(&cache->lock);
612 /*
613 * This should be a rare occasion, but this could happen I think in the
614 * case where one thread starts to load the space cache info, and then
615 * some other thread starts a transaction commit which tries to do an
616 * allocation while the other thread is still loading the space cache
617 * info. The previous loop should have kept us from choosing this block
618 * group, but if we've moved to the state where we will wait on caching
619 * block groups we need to first check if we're doing a fast load here,
620 * so we can wait for it to finish, otherwise we could end up allocating
621 * from a block group who's cache gets evicted for one reason or
622 * another.
623 */
624 while (cache->cached == BTRFS_CACHE_FAST) {
625 struct btrfs_caching_control *ctl;
626
627 ctl = cache->caching_ctl;
628 atomic_inc(&ctl->count);
629 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
630 spin_unlock(&cache->lock);
631
632 schedule();
633
634 finish_wait(&ctl->wait, &wait);
635 put_caching_control(ctl);
636 spin_lock(&cache->lock);
637 }
638
639 if (cache->cached != BTRFS_CACHE_NO) {
640 spin_unlock(&cache->lock);
641 kfree(caching_ctl);
11833d66 642 return 0;
291c7d2f
JB
643 }
644 WARN_ON(cache->caching_ctl);
645 cache->caching_ctl = caching_ctl;
646 cache->cached = BTRFS_CACHE_FAST;
647 spin_unlock(&cache->lock);
11833d66 648
d53ba474 649 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 650 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
651 ret = load_free_space_cache(fs_info, cache);
652
653 spin_lock(&cache->lock);
654 if (ret == 1) {
291c7d2f 655 cache->caching_ctl = NULL;
9d66e233
JB
656 cache->cached = BTRFS_CACHE_FINISHED;
657 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 658 caching_ctl->progress = (u64)-1;
9d66e233 659 } else {
291c7d2f
JB
660 if (load_cache_only) {
661 cache->caching_ctl = NULL;
662 cache->cached = BTRFS_CACHE_NO;
663 } else {
664 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 665 cache->has_caching_ctl = 1;
291c7d2f 666 }
9d66e233
JB
667 }
668 spin_unlock(&cache->lock);
d0bd4560
JB
669#ifdef CONFIG_BTRFS_DEBUG
670 if (ret == 1 &&
671 btrfs_should_fragment_free_space(fs_info->extent_root,
672 cache)) {
673 u64 bytes_used;
674
675 spin_lock(&cache->space_info->lock);
676 spin_lock(&cache->lock);
677 bytes_used = cache->key.offset -
678 btrfs_block_group_used(&cache->item);
679 cache->space_info->bytes_used += bytes_used >> 1;
680 spin_unlock(&cache->lock);
681 spin_unlock(&cache->space_info->lock);
682 fragment_free_space(fs_info->extent_root, cache);
683 }
684#endif
cb83b7b8
JB
685 mutex_unlock(&caching_ctl->mutex);
686
291c7d2f 687 wake_up(&caching_ctl->wait);
3c14874a 688 if (ret == 1) {
291c7d2f 689 put_caching_control(caching_ctl);
3c14874a 690 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 691 return 0;
3c14874a 692 }
291c7d2f
JB
693 } else {
694 /*
1e144fb8
OS
695 * We're either using the free space tree or no caching at all.
696 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
697 */
698 spin_lock(&cache->lock);
699 if (load_cache_only) {
700 cache->caching_ctl = NULL;
701 cache->cached = BTRFS_CACHE_NO;
702 } else {
703 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 704 cache->has_caching_ctl = 1;
291c7d2f
JB
705 }
706 spin_unlock(&cache->lock);
707 wake_up(&caching_ctl->wait);
9d66e233
JB
708 }
709
291c7d2f
JB
710 if (load_cache_only) {
711 put_caching_control(caching_ctl);
11833d66 712 return 0;
817d52f8 713 }
817d52f8 714
9e351cc8 715 down_write(&fs_info->commit_root_sem);
291c7d2f 716 atomic_inc(&caching_ctl->count);
11833d66 717 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 718 up_write(&fs_info->commit_root_sem);
11833d66 719
11dfe35a 720 btrfs_get_block_group(cache);
11833d66 721
e66f0bb1 722 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 723
ef8bbdfe 724 return ret;
e37c9e69
CM
725}
726
0f9dd46c
JB
727/*
728 * return the block group that starts at or after bytenr
729 */
d397712b
CM
730static struct btrfs_block_group_cache *
731btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 732{
e2c89907 733 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
734}
735
0f9dd46c 736/*
9f55684c 737 * return the block group that contains the given bytenr
0f9dd46c 738 */
d397712b
CM
739struct btrfs_block_group_cache *btrfs_lookup_block_group(
740 struct btrfs_fs_info *info,
741 u64 bytenr)
be744175 742{
e2c89907 743 return block_group_cache_tree_search(info, bytenr, 1);
be744175 744}
0b86a832 745
0f9dd46c
JB
746static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
747 u64 flags)
6324fbf3 748{
0f9dd46c 749 struct list_head *head = &info->space_info;
0f9dd46c 750 struct btrfs_space_info *found;
4184ea7f 751
52ba6929 752 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 753
4184ea7f
CM
754 rcu_read_lock();
755 list_for_each_entry_rcu(found, head, list) {
67377734 756 if (found->flags & flags) {
4184ea7f 757 rcu_read_unlock();
0f9dd46c 758 return found;
4184ea7f 759 }
0f9dd46c 760 }
4184ea7f 761 rcu_read_unlock();
0f9dd46c 762 return NULL;
6324fbf3
CM
763}
764
4184ea7f
CM
765/*
766 * after adding space to the filesystem, we need to clear the full flags
767 * on all the space infos.
768 */
769void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
770{
771 struct list_head *head = &info->space_info;
772 struct btrfs_space_info *found;
773
774 rcu_read_lock();
775 list_for_each_entry_rcu(found, head, list)
776 found->full = 0;
777 rcu_read_unlock();
778}
779
1a4ed8fd
FM
780/* simple helper to search for an existing data extent at a given offset */
781int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
782{
783 int ret;
784 struct btrfs_key key;
31840ae1 785 struct btrfs_path *path;
e02119d5 786
31840ae1 787 path = btrfs_alloc_path();
d8926bb3
MF
788 if (!path)
789 return -ENOMEM;
790
e02119d5
CM
791 key.objectid = start;
792 key.offset = len;
3173a18f 793 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
794 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
795 0, 0);
31840ae1 796 btrfs_free_path(path);
7bb86316
CM
797 return ret;
798}
799
a22285a6 800/*
3173a18f 801 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
802 *
803 * the head node for delayed ref is used to store the sum of all the
804 * reference count modifications queued up in the rbtree. the head
805 * node may also store the extent flags to set. This way you can check
806 * to see what the reference count and extent flags would be if all of
807 * the delayed refs are not processed.
808 */
809int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
810 struct btrfs_root *root, u64 bytenr,
3173a18f 811 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
812{
813 struct btrfs_delayed_ref_head *head;
814 struct btrfs_delayed_ref_root *delayed_refs;
815 struct btrfs_path *path;
816 struct btrfs_extent_item *ei;
817 struct extent_buffer *leaf;
818 struct btrfs_key key;
819 u32 item_size;
820 u64 num_refs;
821 u64 extent_flags;
822 int ret;
823
3173a18f
JB
824 /*
825 * If we don't have skinny metadata, don't bother doing anything
826 * different
827 */
828 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 829 offset = root->nodesize;
3173a18f
JB
830 metadata = 0;
831 }
832
a22285a6
YZ
833 path = btrfs_alloc_path();
834 if (!path)
835 return -ENOMEM;
836
a22285a6
YZ
837 if (!trans) {
838 path->skip_locking = 1;
839 path->search_commit_root = 1;
840 }
639eefc8
FDBM
841
842search_again:
843 key.objectid = bytenr;
844 key.offset = offset;
845 if (metadata)
846 key.type = BTRFS_METADATA_ITEM_KEY;
847 else
848 key.type = BTRFS_EXTENT_ITEM_KEY;
849
a22285a6
YZ
850 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
851 &key, path, 0, 0);
852 if (ret < 0)
853 goto out_free;
854
3173a18f 855 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
856 if (path->slots[0]) {
857 path->slots[0]--;
858 btrfs_item_key_to_cpu(path->nodes[0], &key,
859 path->slots[0]);
860 if (key.objectid == bytenr &&
861 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 862 key.offset == root->nodesize)
74be9510
FDBM
863 ret = 0;
864 }
3173a18f
JB
865 }
866
a22285a6
YZ
867 if (ret == 0) {
868 leaf = path->nodes[0];
869 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
870 if (item_size >= sizeof(*ei)) {
871 ei = btrfs_item_ptr(leaf, path->slots[0],
872 struct btrfs_extent_item);
873 num_refs = btrfs_extent_refs(leaf, ei);
874 extent_flags = btrfs_extent_flags(leaf, ei);
875 } else {
876#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
877 struct btrfs_extent_item_v0 *ei0;
878 BUG_ON(item_size != sizeof(*ei0));
879 ei0 = btrfs_item_ptr(leaf, path->slots[0],
880 struct btrfs_extent_item_v0);
881 num_refs = btrfs_extent_refs_v0(leaf, ei0);
882 /* FIXME: this isn't correct for data */
883 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
884#else
885 BUG();
886#endif
887 }
888 BUG_ON(num_refs == 0);
889 } else {
890 num_refs = 0;
891 extent_flags = 0;
892 ret = 0;
893 }
894
895 if (!trans)
896 goto out;
897
898 delayed_refs = &trans->transaction->delayed_refs;
899 spin_lock(&delayed_refs->lock);
900 head = btrfs_find_delayed_ref_head(trans, bytenr);
901 if (head) {
902 if (!mutex_trylock(&head->mutex)) {
903 atomic_inc(&head->node.refs);
904 spin_unlock(&delayed_refs->lock);
905
b3b4aa74 906 btrfs_release_path(path);
a22285a6 907
8cc33e5c
DS
908 /*
909 * Mutex was contended, block until it's released and try
910 * again
911 */
a22285a6
YZ
912 mutex_lock(&head->mutex);
913 mutex_unlock(&head->mutex);
914 btrfs_put_delayed_ref(&head->node);
639eefc8 915 goto search_again;
a22285a6 916 }
d7df2c79 917 spin_lock(&head->lock);
a22285a6
YZ
918 if (head->extent_op && head->extent_op->update_flags)
919 extent_flags |= head->extent_op->flags_to_set;
920 else
921 BUG_ON(num_refs == 0);
922
923 num_refs += head->node.ref_mod;
d7df2c79 924 spin_unlock(&head->lock);
a22285a6
YZ
925 mutex_unlock(&head->mutex);
926 }
927 spin_unlock(&delayed_refs->lock);
928out:
929 WARN_ON(num_refs == 0);
930 if (refs)
931 *refs = num_refs;
932 if (flags)
933 *flags = extent_flags;
934out_free:
935 btrfs_free_path(path);
936 return ret;
937}
938
d8d5f3e1
CM
939/*
940 * Back reference rules. Back refs have three main goals:
941 *
942 * 1) differentiate between all holders of references to an extent so that
943 * when a reference is dropped we can make sure it was a valid reference
944 * before freeing the extent.
945 *
946 * 2) Provide enough information to quickly find the holders of an extent
947 * if we notice a given block is corrupted or bad.
948 *
949 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
950 * maintenance. This is actually the same as #2, but with a slightly
951 * different use case.
952 *
5d4f98a2
YZ
953 * There are two kinds of back refs. The implicit back refs is optimized
954 * for pointers in non-shared tree blocks. For a given pointer in a block,
955 * back refs of this kind provide information about the block's owner tree
956 * and the pointer's key. These information allow us to find the block by
957 * b-tree searching. The full back refs is for pointers in tree blocks not
958 * referenced by their owner trees. The location of tree block is recorded
959 * in the back refs. Actually the full back refs is generic, and can be
960 * used in all cases the implicit back refs is used. The major shortcoming
961 * of the full back refs is its overhead. Every time a tree block gets
962 * COWed, we have to update back refs entry for all pointers in it.
963 *
964 * For a newly allocated tree block, we use implicit back refs for
965 * pointers in it. This means most tree related operations only involve
966 * implicit back refs. For a tree block created in old transaction, the
967 * only way to drop a reference to it is COW it. So we can detect the
968 * event that tree block loses its owner tree's reference and do the
969 * back refs conversion.
970 *
01327610 971 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
972 *
973 * The reference count of the block is one and the tree is the block's
974 * owner tree. Nothing to do in this case.
975 *
976 * The reference count of the block is one and the tree is not the
977 * block's owner tree. In this case, full back refs is used for pointers
978 * in the block. Remove these full back refs, add implicit back refs for
979 * every pointers in the new block.
980 *
981 * The reference count of the block is greater than one and the tree is
982 * the block's owner tree. In this case, implicit back refs is used for
983 * pointers in the block. Add full back refs for every pointers in the
984 * block, increase lower level extents' reference counts. The original
985 * implicit back refs are entailed to the new block.
986 *
987 * The reference count of the block is greater than one and the tree is
988 * not the block's owner tree. Add implicit back refs for every pointer in
989 * the new block, increase lower level extents' reference count.
990 *
991 * Back Reference Key composing:
992 *
993 * The key objectid corresponds to the first byte in the extent,
994 * The key type is used to differentiate between types of back refs.
995 * There are different meanings of the key offset for different types
996 * of back refs.
997 *
d8d5f3e1
CM
998 * File extents can be referenced by:
999 *
1000 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1001 * - different files inside a single subvolume
d8d5f3e1
CM
1002 * - different offsets inside a file (bookend extents in file.c)
1003 *
5d4f98a2 1004 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1005 *
1006 * - Objectid of the subvolume root
d8d5f3e1 1007 * - objectid of the file holding the reference
5d4f98a2
YZ
1008 * - original offset in the file
1009 * - how many bookend extents
d8d5f3e1 1010 *
5d4f98a2
YZ
1011 * The key offset for the implicit back refs is hash of the first
1012 * three fields.
d8d5f3e1 1013 *
5d4f98a2 1014 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1015 *
5d4f98a2 1016 * - number of pointers in the tree leaf
d8d5f3e1 1017 *
5d4f98a2
YZ
1018 * The key offset for the implicit back refs is the first byte of
1019 * the tree leaf
d8d5f3e1 1020 *
5d4f98a2
YZ
1021 * When a file extent is allocated, The implicit back refs is used.
1022 * the fields are filled in:
d8d5f3e1 1023 *
5d4f98a2 1024 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1025 *
5d4f98a2
YZ
1026 * When a file extent is removed file truncation, we find the
1027 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1028 *
5d4f98a2 1029 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1030 *
5d4f98a2 1031 * Btree extents can be referenced by:
d8d5f3e1 1032 *
5d4f98a2 1033 * - Different subvolumes
d8d5f3e1 1034 *
5d4f98a2
YZ
1035 * Both the implicit back refs and the full back refs for tree blocks
1036 * only consist of key. The key offset for the implicit back refs is
1037 * objectid of block's owner tree. The key offset for the full back refs
1038 * is the first byte of parent block.
d8d5f3e1 1039 *
5d4f98a2
YZ
1040 * When implicit back refs is used, information about the lowest key and
1041 * level of the tree block are required. These information are stored in
1042 * tree block info structure.
d8d5f3e1 1043 */
31840ae1 1044
5d4f98a2
YZ
1045#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1046static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1047 struct btrfs_root *root,
1048 struct btrfs_path *path,
1049 u64 owner, u32 extra_size)
7bb86316 1050{
5d4f98a2
YZ
1051 struct btrfs_extent_item *item;
1052 struct btrfs_extent_item_v0 *ei0;
1053 struct btrfs_extent_ref_v0 *ref0;
1054 struct btrfs_tree_block_info *bi;
1055 struct extent_buffer *leaf;
7bb86316 1056 struct btrfs_key key;
5d4f98a2
YZ
1057 struct btrfs_key found_key;
1058 u32 new_size = sizeof(*item);
1059 u64 refs;
1060 int ret;
1061
1062 leaf = path->nodes[0];
1063 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1064
1065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067 struct btrfs_extent_item_v0);
1068 refs = btrfs_extent_refs_v0(leaf, ei0);
1069
1070 if (owner == (u64)-1) {
1071 while (1) {
1072 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073 ret = btrfs_next_leaf(root, path);
1074 if (ret < 0)
1075 return ret;
79787eaa 1076 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1077 leaf = path->nodes[0];
1078 }
1079 btrfs_item_key_to_cpu(leaf, &found_key,
1080 path->slots[0]);
1081 BUG_ON(key.objectid != found_key.objectid);
1082 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1083 path->slots[0]++;
1084 continue;
1085 }
1086 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087 struct btrfs_extent_ref_v0);
1088 owner = btrfs_ref_objectid_v0(leaf, ref0);
1089 break;
1090 }
1091 }
b3b4aa74 1092 btrfs_release_path(path);
5d4f98a2
YZ
1093
1094 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095 new_size += sizeof(*bi);
1096
1097 new_size -= sizeof(*ei0);
1098 ret = btrfs_search_slot(trans, root, &key, path,
1099 new_size + extra_size, 1);
1100 if (ret < 0)
1101 return ret;
79787eaa 1102 BUG_ON(ret); /* Corruption */
5d4f98a2 1103
4b90c680 1104 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1105
1106 leaf = path->nodes[0];
1107 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108 btrfs_set_extent_refs(leaf, item, refs);
1109 /* FIXME: get real generation */
1110 btrfs_set_extent_generation(leaf, item, 0);
1111 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112 btrfs_set_extent_flags(leaf, item,
1113 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115 bi = (struct btrfs_tree_block_info *)(item + 1);
1116 /* FIXME: get first key of the block */
b159fa28 1117 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1118 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1119 } else {
1120 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1121 }
1122 btrfs_mark_buffer_dirty(leaf);
1123 return 0;
1124}
1125#endif
1126
1127static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1128{
1129 u32 high_crc = ~(u32)0;
1130 u32 low_crc = ~(u32)0;
1131 __le64 lenum;
1132
1133 lenum = cpu_to_le64(root_objectid);
14a958e6 1134 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1135 lenum = cpu_to_le64(owner);
14a958e6 1136 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1137 lenum = cpu_to_le64(offset);
14a958e6 1138 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1139
1140 return ((u64)high_crc << 31) ^ (u64)low_crc;
1141}
1142
1143static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1144 struct btrfs_extent_data_ref *ref)
1145{
1146 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1147 btrfs_extent_data_ref_objectid(leaf, ref),
1148 btrfs_extent_data_ref_offset(leaf, ref));
1149}
1150
1151static int match_extent_data_ref(struct extent_buffer *leaf,
1152 struct btrfs_extent_data_ref *ref,
1153 u64 root_objectid, u64 owner, u64 offset)
1154{
1155 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1156 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1157 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1158 return 0;
1159 return 1;
1160}
1161
1162static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1163 struct btrfs_root *root,
1164 struct btrfs_path *path,
1165 u64 bytenr, u64 parent,
1166 u64 root_objectid,
1167 u64 owner, u64 offset)
1168{
1169 struct btrfs_key key;
1170 struct btrfs_extent_data_ref *ref;
31840ae1 1171 struct extent_buffer *leaf;
5d4f98a2 1172 u32 nritems;
74493f7a 1173 int ret;
5d4f98a2
YZ
1174 int recow;
1175 int err = -ENOENT;
74493f7a 1176
31840ae1 1177 key.objectid = bytenr;
5d4f98a2
YZ
1178 if (parent) {
1179 key.type = BTRFS_SHARED_DATA_REF_KEY;
1180 key.offset = parent;
1181 } else {
1182 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1183 key.offset = hash_extent_data_ref(root_objectid,
1184 owner, offset);
1185 }
1186again:
1187 recow = 0;
1188 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1189 if (ret < 0) {
1190 err = ret;
1191 goto fail;
1192 }
31840ae1 1193
5d4f98a2
YZ
1194 if (parent) {
1195 if (!ret)
1196 return 0;
1197#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1198 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1199 btrfs_release_path(path);
5d4f98a2
YZ
1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 if (ret < 0) {
1202 err = ret;
1203 goto fail;
1204 }
1205 if (!ret)
1206 return 0;
1207#endif
1208 goto fail;
31840ae1
ZY
1209 }
1210
1211 leaf = path->nodes[0];
5d4f98a2
YZ
1212 nritems = btrfs_header_nritems(leaf);
1213 while (1) {
1214 if (path->slots[0] >= nritems) {
1215 ret = btrfs_next_leaf(root, path);
1216 if (ret < 0)
1217 err = ret;
1218 if (ret)
1219 goto fail;
1220
1221 leaf = path->nodes[0];
1222 nritems = btrfs_header_nritems(leaf);
1223 recow = 1;
1224 }
1225
1226 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1227 if (key.objectid != bytenr ||
1228 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1229 goto fail;
1230
1231 ref = btrfs_item_ptr(leaf, path->slots[0],
1232 struct btrfs_extent_data_ref);
1233
1234 if (match_extent_data_ref(leaf, ref, root_objectid,
1235 owner, offset)) {
1236 if (recow) {
b3b4aa74 1237 btrfs_release_path(path);
5d4f98a2
YZ
1238 goto again;
1239 }
1240 err = 0;
1241 break;
1242 }
1243 path->slots[0]++;
31840ae1 1244 }
5d4f98a2
YZ
1245fail:
1246 return err;
31840ae1
ZY
1247}
1248
5d4f98a2
YZ
1249static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1250 struct btrfs_root *root,
1251 struct btrfs_path *path,
1252 u64 bytenr, u64 parent,
1253 u64 root_objectid, u64 owner,
1254 u64 offset, int refs_to_add)
31840ae1
ZY
1255{
1256 struct btrfs_key key;
1257 struct extent_buffer *leaf;
5d4f98a2 1258 u32 size;
31840ae1
ZY
1259 u32 num_refs;
1260 int ret;
74493f7a 1261
74493f7a 1262 key.objectid = bytenr;
5d4f98a2
YZ
1263 if (parent) {
1264 key.type = BTRFS_SHARED_DATA_REF_KEY;
1265 key.offset = parent;
1266 size = sizeof(struct btrfs_shared_data_ref);
1267 } else {
1268 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1269 key.offset = hash_extent_data_ref(root_objectid,
1270 owner, offset);
1271 size = sizeof(struct btrfs_extent_data_ref);
1272 }
74493f7a 1273
5d4f98a2
YZ
1274 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1275 if (ret && ret != -EEXIST)
1276 goto fail;
1277
1278 leaf = path->nodes[0];
1279 if (parent) {
1280 struct btrfs_shared_data_ref *ref;
31840ae1 1281 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1282 struct btrfs_shared_data_ref);
1283 if (ret == 0) {
1284 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1285 } else {
1286 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1287 num_refs += refs_to_add;
1288 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1289 }
5d4f98a2
YZ
1290 } else {
1291 struct btrfs_extent_data_ref *ref;
1292 while (ret == -EEXIST) {
1293 ref = btrfs_item_ptr(leaf, path->slots[0],
1294 struct btrfs_extent_data_ref);
1295 if (match_extent_data_ref(leaf, ref, root_objectid,
1296 owner, offset))
1297 break;
b3b4aa74 1298 btrfs_release_path(path);
5d4f98a2
YZ
1299 key.offset++;
1300 ret = btrfs_insert_empty_item(trans, root, path, &key,
1301 size);
1302 if (ret && ret != -EEXIST)
1303 goto fail;
31840ae1 1304
5d4f98a2
YZ
1305 leaf = path->nodes[0];
1306 }
1307 ref = btrfs_item_ptr(leaf, path->slots[0],
1308 struct btrfs_extent_data_ref);
1309 if (ret == 0) {
1310 btrfs_set_extent_data_ref_root(leaf, ref,
1311 root_objectid);
1312 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1313 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1314 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1315 } else {
1316 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1317 num_refs += refs_to_add;
1318 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1319 }
31840ae1 1320 }
5d4f98a2
YZ
1321 btrfs_mark_buffer_dirty(leaf);
1322 ret = 0;
1323fail:
b3b4aa74 1324 btrfs_release_path(path);
7bb86316 1325 return ret;
74493f7a
CM
1326}
1327
5d4f98a2
YZ
1328static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1329 struct btrfs_root *root,
1330 struct btrfs_path *path,
fcebe456 1331 int refs_to_drop, int *last_ref)
31840ae1 1332{
5d4f98a2
YZ
1333 struct btrfs_key key;
1334 struct btrfs_extent_data_ref *ref1 = NULL;
1335 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1336 struct extent_buffer *leaf;
5d4f98a2 1337 u32 num_refs = 0;
31840ae1
ZY
1338 int ret = 0;
1339
1340 leaf = path->nodes[0];
5d4f98a2
YZ
1341 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1342
1343 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1344 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_extent_data_ref);
1346 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1347 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1348 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1349 struct btrfs_shared_data_ref);
1350 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1351#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1352 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1353 struct btrfs_extent_ref_v0 *ref0;
1354 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1355 struct btrfs_extent_ref_v0);
1356 num_refs = btrfs_ref_count_v0(leaf, ref0);
1357#endif
1358 } else {
1359 BUG();
1360 }
1361
56bec294
CM
1362 BUG_ON(num_refs < refs_to_drop);
1363 num_refs -= refs_to_drop;
5d4f98a2 1364
31840ae1
ZY
1365 if (num_refs == 0) {
1366 ret = btrfs_del_item(trans, root, path);
fcebe456 1367 *last_ref = 1;
31840ae1 1368 } else {
5d4f98a2
YZ
1369 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1370 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1371 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1372 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1373#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1374 else {
1375 struct btrfs_extent_ref_v0 *ref0;
1376 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1377 struct btrfs_extent_ref_v0);
1378 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1379 }
1380#endif
31840ae1
ZY
1381 btrfs_mark_buffer_dirty(leaf);
1382 }
31840ae1
ZY
1383 return ret;
1384}
1385
9ed0dea0 1386static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1387 struct btrfs_extent_inline_ref *iref)
15916de8 1388{
5d4f98a2
YZ
1389 struct btrfs_key key;
1390 struct extent_buffer *leaf;
1391 struct btrfs_extent_data_ref *ref1;
1392 struct btrfs_shared_data_ref *ref2;
1393 u32 num_refs = 0;
1394
1395 leaf = path->nodes[0];
1396 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1397 if (iref) {
1398 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1399 BTRFS_EXTENT_DATA_REF_KEY) {
1400 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1401 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1402 } else {
1403 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1404 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1405 }
1406 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1407 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1408 struct btrfs_extent_data_ref);
1409 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1410 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1411 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1412 struct btrfs_shared_data_ref);
1413 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1414#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1415 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1416 struct btrfs_extent_ref_v0 *ref0;
1417 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1418 struct btrfs_extent_ref_v0);
1419 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1420#endif
5d4f98a2
YZ
1421 } else {
1422 WARN_ON(1);
1423 }
1424 return num_refs;
1425}
15916de8 1426
5d4f98a2
YZ
1427static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1428 struct btrfs_root *root,
1429 struct btrfs_path *path,
1430 u64 bytenr, u64 parent,
1431 u64 root_objectid)
1f3c79a2 1432{
5d4f98a2 1433 struct btrfs_key key;
1f3c79a2 1434 int ret;
1f3c79a2 1435
5d4f98a2
YZ
1436 key.objectid = bytenr;
1437 if (parent) {
1438 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1439 key.offset = parent;
1440 } else {
1441 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1442 key.offset = root_objectid;
1f3c79a2
LH
1443 }
1444
5d4f98a2
YZ
1445 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1446 if (ret > 0)
1447 ret = -ENOENT;
1448#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1449 if (ret == -ENOENT && parent) {
b3b4aa74 1450 btrfs_release_path(path);
5d4f98a2
YZ
1451 key.type = BTRFS_EXTENT_REF_V0_KEY;
1452 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1453 if (ret > 0)
1454 ret = -ENOENT;
1455 }
1f3c79a2 1456#endif
5d4f98a2 1457 return ret;
1f3c79a2
LH
1458}
1459
5d4f98a2
YZ
1460static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1461 struct btrfs_root *root,
1462 struct btrfs_path *path,
1463 u64 bytenr, u64 parent,
1464 u64 root_objectid)
31840ae1 1465{
5d4f98a2 1466 struct btrfs_key key;
31840ae1 1467 int ret;
31840ae1 1468
5d4f98a2
YZ
1469 key.objectid = bytenr;
1470 if (parent) {
1471 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1472 key.offset = parent;
1473 } else {
1474 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1475 key.offset = root_objectid;
1476 }
1477
1478 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1479 btrfs_release_path(path);
31840ae1
ZY
1480 return ret;
1481}
1482
5d4f98a2 1483static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1484{
5d4f98a2
YZ
1485 int type;
1486 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1487 if (parent > 0)
1488 type = BTRFS_SHARED_BLOCK_REF_KEY;
1489 else
1490 type = BTRFS_TREE_BLOCK_REF_KEY;
1491 } else {
1492 if (parent > 0)
1493 type = BTRFS_SHARED_DATA_REF_KEY;
1494 else
1495 type = BTRFS_EXTENT_DATA_REF_KEY;
1496 }
1497 return type;
31840ae1 1498}
56bec294 1499
2c47e605
YZ
1500static int find_next_key(struct btrfs_path *path, int level,
1501 struct btrfs_key *key)
56bec294 1502
02217ed2 1503{
2c47e605 1504 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1505 if (!path->nodes[level])
1506 break;
5d4f98a2
YZ
1507 if (path->slots[level] + 1 >=
1508 btrfs_header_nritems(path->nodes[level]))
1509 continue;
1510 if (level == 0)
1511 btrfs_item_key_to_cpu(path->nodes[level], key,
1512 path->slots[level] + 1);
1513 else
1514 btrfs_node_key_to_cpu(path->nodes[level], key,
1515 path->slots[level] + 1);
1516 return 0;
1517 }
1518 return 1;
1519}
037e6390 1520
5d4f98a2
YZ
1521/*
1522 * look for inline back ref. if back ref is found, *ref_ret is set
1523 * to the address of inline back ref, and 0 is returned.
1524 *
1525 * if back ref isn't found, *ref_ret is set to the address where it
1526 * should be inserted, and -ENOENT is returned.
1527 *
1528 * if insert is true and there are too many inline back refs, the path
1529 * points to the extent item, and -EAGAIN is returned.
1530 *
1531 * NOTE: inline back refs are ordered in the same way that back ref
1532 * items in the tree are ordered.
1533 */
1534static noinline_for_stack
1535int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1536 struct btrfs_root *root,
1537 struct btrfs_path *path,
1538 struct btrfs_extent_inline_ref **ref_ret,
1539 u64 bytenr, u64 num_bytes,
1540 u64 parent, u64 root_objectid,
1541 u64 owner, u64 offset, int insert)
1542{
1543 struct btrfs_key key;
1544 struct extent_buffer *leaf;
1545 struct btrfs_extent_item *ei;
1546 struct btrfs_extent_inline_ref *iref;
1547 u64 flags;
1548 u64 item_size;
1549 unsigned long ptr;
1550 unsigned long end;
1551 int extra_size;
1552 int type;
1553 int want;
1554 int ret;
1555 int err = 0;
3173a18f
JB
1556 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1557 SKINNY_METADATA);
26b8003f 1558
db94535d 1559 key.objectid = bytenr;
31840ae1 1560 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1561 key.offset = num_bytes;
31840ae1 1562
5d4f98a2
YZ
1563 want = extent_ref_type(parent, owner);
1564 if (insert) {
1565 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1566 path->keep_locks = 1;
5d4f98a2
YZ
1567 } else
1568 extra_size = -1;
3173a18f
JB
1569
1570 /*
1571 * Owner is our parent level, so we can just add one to get the level
1572 * for the block we are interested in.
1573 */
1574 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1575 key.type = BTRFS_METADATA_ITEM_KEY;
1576 key.offset = owner;
1577 }
1578
1579again:
5d4f98a2 1580 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1581 if (ret < 0) {
5d4f98a2
YZ
1582 err = ret;
1583 goto out;
1584 }
3173a18f
JB
1585
1586 /*
1587 * We may be a newly converted file system which still has the old fat
1588 * extent entries for metadata, so try and see if we have one of those.
1589 */
1590 if (ret > 0 && skinny_metadata) {
1591 skinny_metadata = false;
1592 if (path->slots[0]) {
1593 path->slots[0]--;
1594 btrfs_item_key_to_cpu(path->nodes[0], &key,
1595 path->slots[0]);
1596 if (key.objectid == bytenr &&
1597 key.type == BTRFS_EXTENT_ITEM_KEY &&
1598 key.offset == num_bytes)
1599 ret = 0;
1600 }
1601 if (ret) {
9ce49a0b 1602 key.objectid = bytenr;
3173a18f
JB
1603 key.type = BTRFS_EXTENT_ITEM_KEY;
1604 key.offset = num_bytes;
1605 btrfs_release_path(path);
1606 goto again;
1607 }
1608 }
1609
79787eaa
JM
1610 if (ret && !insert) {
1611 err = -ENOENT;
1612 goto out;
fae7f21c 1613 } else if (WARN_ON(ret)) {
492104c8 1614 err = -EIO;
492104c8 1615 goto out;
79787eaa 1616 }
5d4f98a2
YZ
1617
1618 leaf = path->nodes[0];
1619 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1620#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1621 if (item_size < sizeof(*ei)) {
1622 if (!insert) {
1623 err = -ENOENT;
1624 goto out;
1625 }
1626 ret = convert_extent_item_v0(trans, root, path, owner,
1627 extra_size);
1628 if (ret < 0) {
1629 err = ret;
1630 goto out;
1631 }
1632 leaf = path->nodes[0];
1633 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1634 }
1635#endif
1636 BUG_ON(item_size < sizeof(*ei));
1637
5d4f98a2
YZ
1638 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1639 flags = btrfs_extent_flags(leaf, ei);
1640
1641 ptr = (unsigned long)(ei + 1);
1642 end = (unsigned long)ei + item_size;
1643
3173a18f 1644 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1645 ptr += sizeof(struct btrfs_tree_block_info);
1646 BUG_ON(ptr > end);
5d4f98a2
YZ
1647 }
1648
1649 err = -ENOENT;
1650 while (1) {
1651 if (ptr >= end) {
1652 WARN_ON(ptr > end);
1653 break;
1654 }
1655 iref = (struct btrfs_extent_inline_ref *)ptr;
1656 type = btrfs_extent_inline_ref_type(leaf, iref);
1657 if (want < type)
1658 break;
1659 if (want > type) {
1660 ptr += btrfs_extent_inline_ref_size(type);
1661 continue;
1662 }
1663
1664 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1665 struct btrfs_extent_data_ref *dref;
1666 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1667 if (match_extent_data_ref(leaf, dref, root_objectid,
1668 owner, offset)) {
1669 err = 0;
1670 break;
1671 }
1672 if (hash_extent_data_ref_item(leaf, dref) <
1673 hash_extent_data_ref(root_objectid, owner, offset))
1674 break;
1675 } else {
1676 u64 ref_offset;
1677 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1678 if (parent > 0) {
1679 if (parent == ref_offset) {
1680 err = 0;
1681 break;
1682 }
1683 if (ref_offset < parent)
1684 break;
1685 } else {
1686 if (root_objectid == ref_offset) {
1687 err = 0;
1688 break;
1689 }
1690 if (ref_offset < root_objectid)
1691 break;
1692 }
1693 }
1694 ptr += btrfs_extent_inline_ref_size(type);
1695 }
1696 if (err == -ENOENT && insert) {
1697 if (item_size + extra_size >=
1698 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1699 err = -EAGAIN;
1700 goto out;
1701 }
1702 /*
1703 * To add new inline back ref, we have to make sure
1704 * there is no corresponding back ref item.
1705 * For simplicity, we just do not add new inline back
1706 * ref if there is any kind of item for this block
1707 */
2c47e605
YZ
1708 if (find_next_key(path, 0, &key) == 0 &&
1709 key.objectid == bytenr &&
85d4198e 1710 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1711 err = -EAGAIN;
1712 goto out;
1713 }
1714 }
1715 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1716out:
85d4198e 1717 if (insert) {
5d4f98a2
YZ
1718 path->keep_locks = 0;
1719 btrfs_unlock_up_safe(path, 1);
1720 }
1721 return err;
1722}
1723
1724/*
1725 * helper to add new inline back ref
1726 */
1727static noinline_for_stack
fd279fae 1728void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1729 struct btrfs_path *path,
1730 struct btrfs_extent_inline_ref *iref,
1731 u64 parent, u64 root_objectid,
1732 u64 owner, u64 offset, int refs_to_add,
1733 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1734{
1735 struct extent_buffer *leaf;
1736 struct btrfs_extent_item *ei;
1737 unsigned long ptr;
1738 unsigned long end;
1739 unsigned long item_offset;
1740 u64 refs;
1741 int size;
1742 int type;
5d4f98a2
YZ
1743
1744 leaf = path->nodes[0];
1745 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1746 item_offset = (unsigned long)iref - (unsigned long)ei;
1747
1748 type = extent_ref_type(parent, owner);
1749 size = btrfs_extent_inline_ref_size(type);
1750
4b90c680 1751 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1752
1753 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1754 refs = btrfs_extent_refs(leaf, ei);
1755 refs += refs_to_add;
1756 btrfs_set_extent_refs(leaf, ei, refs);
1757 if (extent_op)
1758 __run_delayed_extent_op(extent_op, leaf, ei);
1759
1760 ptr = (unsigned long)ei + item_offset;
1761 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1762 if (ptr < end - size)
1763 memmove_extent_buffer(leaf, ptr + size, ptr,
1764 end - size - ptr);
1765
1766 iref = (struct btrfs_extent_inline_ref *)ptr;
1767 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1768 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1769 struct btrfs_extent_data_ref *dref;
1770 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1771 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1772 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1773 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1774 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1775 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1776 struct btrfs_shared_data_ref *sref;
1777 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1778 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1779 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1780 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1781 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1782 } else {
1783 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1784 }
1785 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1786}
1787
1788static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1789 struct btrfs_root *root,
1790 struct btrfs_path *path,
1791 struct btrfs_extent_inline_ref **ref_ret,
1792 u64 bytenr, u64 num_bytes, u64 parent,
1793 u64 root_objectid, u64 owner, u64 offset)
1794{
1795 int ret;
1796
1797 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1798 bytenr, num_bytes, parent,
1799 root_objectid, owner, offset, 0);
1800 if (ret != -ENOENT)
54aa1f4d 1801 return ret;
5d4f98a2 1802
b3b4aa74 1803 btrfs_release_path(path);
5d4f98a2
YZ
1804 *ref_ret = NULL;
1805
1806 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1807 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1808 root_objectid);
1809 } else {
1810 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1811 root_objectid, owner, offset);
b9473439 1812 }
5d4f98a2
YZ
1813 return ret;
1814}
31840ae1 1815
5d4f98a2
YZ
1816/*
1817 * helper to update/remove inline back ref
1818 */
1819static noinline_for_stack
afe5fea7 1820void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1821 struct btrfs_path *path,
1822 struct btrfs_extent_inline_ref *iref,
1823 int refs_to_mod,
fcebe456
JB
1824 struct btrfs_delayed_extent_op *extent_op,
1825 int *last_ref)
5d4f98a2
YZ
1826{
1827 struct extent_buffer *leaf;
1828 struct btrfs_extent_item *ei;
1829 struct btrfs_extent_data_ref *dref = NULL;
1830 struct btrfs_shared_data_ref *sref = NULL;
1831 unsigned long ptr;
1832 unsigned long end;
1833 u32 item_size;
1834 int size;
1835 int type;
5d4f98a2
YZ
1836 u64 refs;
1837
1838 leaf = path->nodes[0];
1839 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1840 refs = btrfs_extent_refs(leaf, ei);
1841 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1842 refs += refs_to_mod;
1843 btrfs_set_extent_refs(leaf, ei, refs);
1844 if (extent_op)
1845 __run_delayed_extent_op(extent_op, leaf, ei);
1846
1847 type = btrfs_extent_inline_ref_type(leaf, iref);
1848
1849 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1850 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1851 refs = btrfs_extent_data_ref_count(leaf, dref);
1852 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1853 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1854 refs = btrfs_shared_data_ref_count(leaf, sref);
1855 } else {
1856 refs = 1;
1857 BUG_ON(refs_to_mod != -1);
56bec294 1858 }
31840ae1 1859
5d4f98a2
YZ
1860 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1861 refs += refs_to_mod;
1862
1863 if (refs > 0) {
1864 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1865 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1866 else
1867 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1868 } else {
fcebe456 1869 *last_ref = 1;
5d4f98a2
YZ
1870 size = btrfs_extent_inline_ref_size(type);
1871 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1872 ptr = (unsigned long)iref;
1873 end = (unsigned long)ei + item_size;
1874 if (ptr + size < end)
1875 memmove_extent_buffer(leaf, ptr, ptr + size,
1876 end - ptr - size);
1877 item_size -= size;
afe5fea7 1878 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1879 }
1880 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1881}
1882
1883static noinline_for_stack
1884int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1885 struct btrfs_root *root,
1886 struct btrfs_path *path,
1887 u64 bytenr, u64 num_bytes, u64 parent,
1888 u64 root_objectid, u64 owner,
1889 u64 offset, int refs_to_add,
1890 struct btrfs_delayed_extent_op *extent_op)
1891{
1892 struct btrfs_extent_inline_ref *iref;
1893 int ret;
1894
1895 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1896 bytenr, num_bytes, parent,
1897 root_objectid, owner, offset, 1);
1898 if (ret == 0) {
1899 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1900 update_inline_extent_backref(root, path, iref,
fcebe456 1901 refs_to_add, extent_op, NULL);
5d4f98a2 1902 } else if (ret == -ENOENT) {
fd279fae 1903 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1904 root_objectid, owner, offset,
1905 refs_to_add, extent_op);
1906 ret = 0;
771ed689 1907 }
5d4f98a2
YZ
1908 return ret;
1909}
31840ae1 1910
5d4f98a2
YZ
1911static int insert_extent_backref(struct btrfs_trans_handle *trans,
1912 struct btrfs_root *root,
1913 struct btrfs_path *path,
1914 u64 bytenr, u64 parent, u64 root_objectid,
1915 u64 owner, u64 offset, int refs_to_add)
1916{
1917 int ret;
1918 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1919 BUG_ON(refs_to_add != 1);
1920 ret = insert_tree_block_ref(trans, root, path, bytenr,
1921 parent, root_objectid);
1922 } else {
1923 ret = insert_extent_data_ref(trans, root, path, bytenr,
1924 parent, root_objectid,
1925 owner, offset, refs_to_add);
1926 }
1927 return ret;
1928}
56bec294 1929
5d4f98a2
YZ
1930static int remove_extent_backref(struct btrfs_trans_handle *trans,
1931 struct btrfs_root *root,
1932 struct btrfs_path *path,
1933 struct btrfs_extent_inline_ref *iref,
fcebe456 1934 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1935{
143bede5 1936 int ret = 0;
b9473439 1937
5d4f98a2
YZ
1938 BUG_ON(!is_data && refs_to_drop != 1);
1939 if (iref) {
afe5fea7 1940 update_inline_extent_backref(root, path, iref,
fcebe456 1941 -refs_to_drop, NULL, last_ref);
5d4f98a2 1942 } else if (is_data) {
fcebe456
JB
1943 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1944 last_ref);
5d4f98a2 1945 } else {
fcebe456 1946 *last_ref = 1;
5d4f98a2
YZ
1947 ret = btrfs_del_item(trans, root, path);
1948 }
1949 return ret;
1950}
1951
86557861 1952#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1953static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1954 u64 *discarded_bytes)
5d4f98a2 1955{
86557861
JM
1956 int j, ret = 0;
1957 u64 bytes_left, end;
4d89d377 1958 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1959
4d89d377
JM
1960 if (WARN_ON(start != aligned_start)) {
1961 len -= aligned_start - start;
1962 len = round_down(len, 1 << 9);
1963 start = aligned_start;
1964 }
d04c6b88 1965
4d89d377 1966 *discarded_bytes = 0;
86557861
JM
1967
1968 if (!len)
1969 return 0;
1970
1971 end = start + len;
1972 bytes_left = len;
1973
1974 /* Skip any superblocks on this device. */
1975 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1976 u64 sb_start = btrfs_sb_offset(j);
1977 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1978 u64 size = sb_start - start;
1979
1980 if (!in_range(sb_start, start, bytes_left) &&
1981 !in_range(sb_end, start, bytes_left) &&
1982 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1983 continue;
1984
1985 /*
1986 * Superblock spans beginning of range. Adjust start and
1987 * try again.
1988 */
1989 if (sb_start <= start) {
1990 start += sb_end - start;
1991 if (start > end) {
1992 bytes_left = 0;
1993 break;
1994 }
1995 bytes_left = end - start;
1996 continue;
1997 }
1998
1999 if (size) {
2000 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2001 GFP_NOFS, 0);
2002 if (!ret)
2003 *discarded_bytes += size;
2004 else if (ret != -EOPNOTSUPP)
2005 return ret;
2006 }
2007
2008 start = sb_end;
2009 if (start > end) {
2010 bytes_left = 0;
2011 break;
2012 }
2013 bytes_left = end - start;
2014 }
2015
2016 if (bytes_left) {
2017 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2018 GFP_NOFS, 0);
2019 if (!ret)
86557861 2020 *discarded_bytes += bytes_left;
4d89d377 2021 }
d04c6b88 2022 return ret;
5d4f98a2 2023}
5d4f98a2 2024
1edb647b
FM
2025int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2026 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2027{
5d4f98a2 2028 int ret;
5378e607 2029 u64 discarded_bytes = 0;
a1d3c478 2030 struct btrfs_bio *bbio = NULL;
5d4f98a2 2031
e244a0ae 2032
2999241d
FM
2033 /*
2034 * Avoid races with device replace and make sure our bbio has devices
2035 * associated to its stripes that don't go away while we are discarding.
2036 */
2037 btrfs_bio_counter_inc_blocked(root->fs_info);
5d4f98a2 2038 /* Tell the block device(s) that the sectors can be discarded */
cf8cddd3 2039 ret = btrfs_map_block(root->fs_info, BTRFS_MAP_DISCARD,
a1d3c478 2040 bytenr, &num_bytes, &bbio, 0);
79787eaa 2041 /* Error condition is -ENOMEM */
5d4f98a2 2042 if (!ret) {
a1d3c478 2043 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2044 int i;
2045
5d4f98a2 2046
a1d3c478 2047 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2048 u64 bytes;
d5e2003c
JB
2049 if (!stripe->dev->can_discard)
2050 continue;
2051
5378e607
LD
2052 ret = btrfs_issue_discard(stripe->dev->bdev,
2053 stripe->physical,
d04c6b88
JM
2054 stripe->length,
2055 &bytes);
5378e607 2056 if (!ret)
d04c6b88 2057 discarded_bytes += bytes;
5378e607 2058 else if (ret != -EOPNOTSUPP)
79787eaa 2059 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2060
2061 /*
2062 * Just in case we get back EOPNOTSUPP for some reason,
2063 * just ignore the return value so we don't screw up
2064 * people calling discard_extent.
2065 */
2066 ret = 0;
5d4f98a2 2067 }
6e9606d2 2068 btrfs_put_bbio(bbio);
5d4f98a2 2069 }
2999241d 2070 btrfs_bio_counter_dec(root->fs_info);
5378e607
LD
2071
2072 if (actual_bytes)
2073 *actual_bytes = discarded_bytes;
2074
5d4f98a2 2075
53b381b3
DW
2076 if (ret == -EOPNOTSUPP)
2077 ret = 0;
5d4f98a2 2078 return ret;
5d4f98a2
YZ
2079}
2080
79787eaa 2081/* Can return -ENOMEM */
5d4f98a2
YZ
2082int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2083 struct btrfs_root *root,
2084 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2085 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2086{
2087 int ret;
66d7e7f0
AJ
2088 struct btrfs_fs_info *fs_info = root->fs_info;
2089
5d4f98a2
YZ
2090 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2091 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2092
2093 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2094 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2095 num_bytes,
5d4f98a2 2096 parent, root_objectid, (int)owner,
b06c4bf5 2097 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2 2098 } else {
66d7e7f0 2099 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5846a3c2
QW
2100 num_bytes, parent, root_objectid,
2101 owner, offset, 0,
b06c4bf5 2102 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2
YZ
2103 }
2104 return ret;
2105}
2106
2107static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2108 struct btrfs_root *root,
c682f9b3 2109 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2110 u64 parent, u64 root_objectid,
2111 u64 owner, u64 offset, int refs_to_add,
2112 struct btrfs_delayed_extent_op *extent_op)
2113{
fcebe456 2114 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2115 struct btrfs_path *path;
2116 struct extent_buffer *leaf;
2117 struct btrfs_extent_item *item;
fcebe456 2118 struct btrfs_key key;
c682f9b3
QW
2119 u64 bytenr = node->bytenr;
2120 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2121 u64 refs;
2122 int ret;
5d4f98a2
YZ
2123
2124 path = btrfs_alloc_path();
2125 if (!path)
2126 return -ENOMEM;
2127
e4058b54 2128 path->reada = READA_FORWARD;
5d4f98a2
YZ
2129 path->leave_spinning = 1;
2130 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2131 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2132 bytenr, num_bytes, parent,
5d4f98a2
YZ
2133 root_objectid, owner, offset,
2134 refs_to_add, extent_op);
0ed4792a 2135 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2136 goto out;
fcebe456
JB
2137
2138 /*
2139 * Ok we had -EAGAIN which means we didn't have space to insert and
2140 * inline extent ref, so just update the reference count and add a
2141 * normal backref.
2142 */
5d4f98a2 2143 leaf = path->nodes[0];
fcebe456 2144 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2145 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2146 refs = btrfs_extent_refs(leaf, item);
2147 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2148 if (extent_op)
2149 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2150
5d4f98a2 2151 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2152 btrfs_release_path(path);
56bec294 2153
e4058b54 2154 path->reada = READA_FORWARD;
b9473439 2155 path->leave_spinning = 1;
56bec294
CM
2156 /* now insert the actual backref */
2157 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2158 path, bytenr, parent, root_objectid,
2159 owner, offset, refs_to_add);
79787eaa 2160 if (ret)
66642832 2161 btrfs_abort_transaction(trans, ret);
5d4f98a2 2162out:
56bec294 2163 btrfs_free_path(path);
30d133fc 2164 return ret;
56bec294
CM
2165}
2166
5d4f98a2
YZ
2167static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2168 struct btrfs_root *root,
2169 struct btrfs_delayed_ref_node *node,
2170 struct btrfs_delayed_extent_op *extent_op,
2171 int insert_reserved)
56bec294 2172{
5d4f98a2
YZ
2173 int ret = 0;
2174 struct btrfs_delayed_data_ref *ref;
2175 struct btrfs_key ins;
2176 u64 parent = 0;
2177 u64 ref_root = 0;
2178 u64 flags = 0;
2179
2180 ins.objectid = node->bytenr;
2181 ins.offset = node->num_bytes;
2182 ins.type = BTRFS_EXTENT_ITEM_KEY;
2183
2184 ref = btrfs_delayed_node_to_data_ref(node);
bc074524 2185 trace_run_delayed_data_ref(root->fs_info, node, ref, node->action);
599c75ec 2186
5d4f98a2
YZ
2187 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2188 parent = ref->parent;
fcebe456 2189 ref_root = ref->root;
5d4f98a2
YZ
2190
2191 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2192 if (extent_op)
5d4f98a2 2193 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2194 ret = alloc_reserved_file_extent(trans, root,
2195 parent, ref_root, flags,
2196 ref->objectid, ref->offset,
2197 &ins, node->ref_mod);
5d4f98a2 2198 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2199 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2200 ref_root, ref->objectid,
2201 ref->offset, node->ref_mod,
c682f9b3 2202 extent_op);
5d4f98a2 2203 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2204 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2205 ref_root, ref->objectid,
2206 ref->offset, node->ref_mod,
c682f9b3 2207 extent_op);
5d4f98a2
YZ
2208 } else {
2209 BUG();
2210 }
2211 return ret;
2212}
2213
2214static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2215 struct extent_buffer *leaf,
2216 struct btrfs_extent_item *ei)
2217{
2218 u64 flags = btrfs_extent_flags(leaf, ei);
2219 if (extent_op->update_flags) {
2220 flags |= extent_op->flags_to_set;
2221 btrfs_set_extent_flags(leaf, ei, flags);
2222 }
2223
2224 if (extent_op->update_key) {
2225 struct btrfs_tree_block_info *bi;
2226 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2227 bi = (struct btrfs_tree_block_info *)(ei + 1);
2228 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2229 }
2230}
2231
2232static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2233 struct btrfs_root *root,
2234 struct btrfs_delayed_ref_node *node,
2235 struct btrfs_delayed_extent_op *extent_op)
2236{
2237 struct btrfs_key key;
2238 struct btrfs_path *path;
2239 struct btrfs_extent_item *ei;
2240 struct extent_buffer *leaf;
2241 u32 item_size;
56bec294 2242 int ret;
5d4f98a2 2243 int err = 0;
b1c79e09 2244 int metadata = !extent_op->is_data;
5d4f98a2 2245
79787eaa
JM
2246 if (trans->aborted)
2247 return 0;
2248
3173a18f
JB
2249 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2250 metadata = 0;
2251
5d4f98a2
YZ
2252 path = btrfs_alloc_path();
2253 if (!path)
2254 return -ENOMEM;
2255
2256 key.objectid = node->bytenr;
5d4f98a2 2257
3173a18f 2258 if (metadata) {
3173a18f 2259 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2260 key.offset = extent_op->level;
3173a18f
JB
2261 } else {
2262 key.type = BTRFS_EXTENT_ITEM_KEY;
2263 key.offset = node->num_bytes;
2264 }
2265
2266again:
e4058b54 2267 path->reada = READA_FORWARD;
5d4f98a2
YZ
2268 path->leave_spinning = 1;
2269 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2270 path, 0, 1);
2271 if (ret < 0) {
2272 err = ret;
2273 goto out;
2274 }
2275 if (ret > 0) {
3173a18f 2276 if (metadata) {
55994887
FDBM
2277 if (path->slots[0] > 0) {
2278 path->slots[0]--;
2279 btrfs_item_key_to_cpu(path->nodes[0], &key,
2280 path->slots[0]);
2281 if (key.objectid == node->bytenr &&
2282 key.type == BTRFS_EXTENT_ITEM_KEY &&
2283 key.offset == node->num_bytes)
2284 ret = 0;
2285 }
2286 if (ret > 0) {
2287 btrfs_release_path(path);
2288 metadata = 0;
3173a18f 2289
55994887
FDBM
2290 key.objectid = node->bytenr;
2291 key.offset = node->num_bytes;
2292 key.type = BTRFS_EXTENT_ITEM_KEY;
2293 goto again;
2294 }
2295 } else {
2296 err = -EIO;
2297 goto out;
3173a18f 2298 }
5d4f98a2
YZ
2299 }
2300
2301 leaf = path->nodes[0];
2302 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2303#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2304 if (item_size < sizeof(*ei)) {
2305 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2306 path, (u64)-1, 0);
2307 if (ret < 0) {
2308 err = ret;
2309 goto out;
2310 }
2311 leaf = path->nodes[0];
2312 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2313 }
2314#endif
2315 BUG_ON(item_size < sizeof(*ei));
2316 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2317 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2318
5d4f98a2
YZ
2319 btrfs_mark_buffer_dirty(leaf);
2320out:
2321 btrfs_free_path(path);
2322 return err;
56bec294
CM
2323}
2324
5d4f98a2
YZ
2325static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2326 struct btrfs_root *root,
2327 struct btrfs_delayed_ref_node *node,
2328 struct btrfs_delayed_extent_op *extent_op,
2329 int insert_reserved)
56bec294
CM
2330{
2331 int ret = 0;
5d4f98a2
YZ
2332 struct btrfs_delayed_tree_ref *ref;
2333 struct btrfs_key ins;
2334 u64 parent = 0;
2335 u64 ref_root = 0;
3173a18f
JB
2336 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2337 SKINNY_METADATA);
56bec294 2338
5d4f98a2 2339 ref = btrfs_delayed_node_to_tree_ref(node);
bc074524 2340 trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action);
599c75ec 2341
5d4f98a2
YZ
2342 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2343 parent = ref->parent;
fcebe456 2344 ref_root = ref->root;
5d4f98a2 2345
3173a18f
JB
2346 ins.objectid = node->bytenr;
2347 if (skinny_metadata) {
2348 ins.offset = ref->level;
2349 ins.type = BTRFS_METADATA_ITEM_KEY;
2350 } else {
2351 ins.offset = node->num_bytes;
2352 ins.type = BTRFS_EXTENT_ITEM_KEY;
2353 }
2354
02794222
LB
2355 if (node->ref_mod != 1) {
2356 btrfs_err(root->fs_info,
2357 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2358 node->bytenr, node->ref_mod, node->action, ref_root,
2359 parent);
2360 return -EIO;
2361 }
5d4f98a2 2362 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2363 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2364 ret = alloc_reserved_tree_block(trans, root,
2365 parent, ref_root,
2366 extent_op->flags_to_set,
2367 &extent_op->key,
b06c4bf5 2368 ref->level, &ins);
5d4f98a2 2369 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2370 ret = __btrfs_inc_extent_ref(trans, root, node,
2371 parent, ref_root,
2372 ref->level, 0, 1,
fcebe456 2373 extent_op);
5d4f98a2 2374 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2375 ret = __btrfs_free_extent(trans, root, node,
2376 parent, ref_root,
2377 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2378 } else {
2379 BUG();
2380 }
56bec294
CM
2381 return ret;
2382}
2383
2384/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2385static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2386 struct btrfs_root *root,
2387 struct btrfs_delayed_ref_node *node,
2388 struct btrfs_delayed_extent_op *extent_op,
2389 int insert_reserved)
56bec294 2390{
79787eaa
JM
2391 int ret = 0;
2392
857cc2fc
JB
2393 if (trans->aborted) {
2394 if (insert_reserved)
2395 btrfs_pin_extent(root, node->bytenr,
2396 node->num_bytes, 1);
79787eaa 2397 return 0;
857cc2fc 2398 }
79787eaa 2399
5d4f98a2 2400 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2401 struct btrfs_delayed_ref_head *head;
2402 /*
2403 * we've hit the end of the chain and we were supposed
2404 * to insert this extent into the tree. But, it got
2405 * deleted before we ever needed to insert it, so all
2406 * we have to do is clean up the accounting
2407 */
5d4f98a2
YZ
2408 BUG_ON(extent_op);
2409 head = btrfs_delayed_node_to_head(node);
bc074524
JM
2410 trace_run_delayed_ref_head(root->fs_info, node, head,
2411 node->action);
599c75ec 2412
56bec294 2413 if (insert_reserved) {
f0486c68
YZ
2414 btrfs_pin_extent(root, node->bytenr,
2415 node->num_bytes, 1);
5d4f98a2
YZ
2416 if (head->is_data) {
2417 ret = btrfs_del_csums(trans, root,
2418 node->bytenr,
2419 node->num_bytes);
5d4f98a2 2420 }
56bec294 2421 }
297d750b
QW
2422
2423 /* Also free its reserved qgroup space */
2424 btrfs_qgroup_free_delayed_ref(root->fs_info,
2425 head->qgroup_ref_root,
2426 head->qgroup_reserved);
79787eaa 2427 return ret;
56bec294
CM
2428 }
2429
5d4f98a2
YZ
2430 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2431 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2432 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2433 insert_reserved);
2434 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2435 node->type == BTRFS_SHARED_DATA_REF_KEY)
2436 ret = run_delayed_data_ref(trans, root, node, extent_op,
2437 insert_reserved);
2438 else
2439 BUG();
2440 return ret;
56bec294
CM
2441}
2442
c6fc2454 2443static inline struct btrfs_delayed_ref_node *
56bec294
CM
2444select_delayed_ref(struct btrfs_delayed_ref_head *head)
2445{
cffc3374
FM
2446 struct btrfs_delayed_ref_node *ref;
2447
c6fc2454
QW
2448 if (list_empty(&head->ref_list))
2449 return NULL;
d7df2c79 2450
cffc3374
FM
2451 /*
2452 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2453 * This is to prevent a ref count from going down to zero, which deletes
2454 * the extent item from the extent tree, when there still are references
2455 * to add, which would fail because they would not find the extent item.
2456 */
1d57ee94
WX
2457 if (!list_empty(&head->ref_add_list))
2458 return list_first_entry(&head->ref_add_list,
2459 struct btrfs_delayed_ref_node, add_list);
2460
2461 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2462 list);
2463 ASSERT(list_empty(&ref->add_list));
2464 return ref;
56bec294
CM
2465}
2466
79787eaa
JM
2467/*
2468 * Returns 0 on success or if called with an already aborted transaction.
2469 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2470 */
d7df2c79
JB
2471static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2472 struct btrfs_root *root,
2473 unsigned long nr)
56bec294 2474{
56bec294
CM
2475 struct btrfs_delayed_ref_root *delayed_refs;
2476 struct btrfs_delayed_ref_node *ref;
2477 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2478 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2479 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2480 ktime_t start = ktime_get();
56bec294 2481 int ret;
d7df2c79 2482 unsigned long count = 0;
0a2b2a84 2483 unsigned long actual_count = 0;
56bec294 2484 int must_insert_reserved = 0;
56bec294
CM
2485
2486 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2487 while (1) {
2488 if (!locked_ref) {
d7df2c79 2489 if (count >= nr)
56bec294 2490 break;
56bec294 2491
d7df2c79
JB
2492 spin_lock(&delayed_refs->lock);
2493 locked_ref = btrfs_select_ref_head(trans);
2494 if (!locked_ref) {
2495 spin_unlock(&delayed_refs->lock);
2496 break;
2497 }
c3e69d58
CM
2498
2499 /* grab the lock that says we are going to process
2500 * all the refs for this head */
2501 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2502 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2503 /*
2504 * we may have dropped the spin lock to get the head
2505 * mutex lock, and that might have given someone else
2506 * time to free the head. If that's true, it has been
2507 * removed from our list and we can move on.
2508 */
2509 if (ret == -EAGAIN) {
2510 locked_ref = NULL;
2511 count++;
2512 continue;
56bec294
CM
2513 }
2514 }
a28ec197 2515
2c3cf7d5
FM
2516 /*
2517 * We need to try and merge add/drops of the same ref since we
2518 * can run into issues with relocate dropping the implicit ref
2519 * and then it being added back again before the drop can
2520 * finish. If we merged anything we need to re-loop so we can
2521 * get a good ref.
2522 * Or we can get node references of the same type that weren't
2523 * merged when created due to bumps in the tree mod seq, and
2524 * we need to merge them to prevent adding an inline extent
2525 * backref before dropping it (triggering a BUG_ON at
2526 * insert_inline_extent_backref()).
2527 */
d7df2c79 2528 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2529 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2530 locked_ref);
ae1e206b 2531
d1270cd9
AJ
2532 /*
2533 * locked_ref is the head node, so we have to go one
2534 * node back for any delayed ref updates
2535 */
2536 ref = select_delayed_ref(locked_ref);
2537
2538 if (ref && ref->seq &&
097b8a7c 2539 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2540 spin_unlock(&locked_ref->lock);
093486c4 2541 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2542 spin_lock(&delayed_refs->lock);
2543 locked_ref->processing = 0;
d1270cd9
AJ
2544 delayed_refs->num_heads_ready++;
2545 spin_unlock(&delayed_refs->lock);
d7df2c79 2546 locked_ref = NULL;
d1270cd9 2547 cond_resched();
27a377db 2548 count++;
d1270cd9
AJ
2549 continue;
2550 }
2551
56bec294
CM
2552 /*
2553 * record the must insert reserved flag before we
2554 * drop the spin lock.
2555 */
2556 must_insert_reserved = locked_ref->must_insert_reserved;
2557 locked_ref->must_insert_reserved = 0;
7bb86316 2558
5d4f98a2
YZ
2559 extent_op = locked_ref->extent_op;
2560 locked_ref->extent_op = NULL;
2561
56bec294 2562 if (!ref) {
d7df2c79
JB
2563
2564
56bec294
CM
2565 /* All delayed refs have been processed, Go ahead
2566 * and send the head node to run_one_delayed_ref,
2567 * so that any accounting fixes can happen
2568 */
2569 ref = &locked_ref->node;
5d4f98a2
YZ
2570
2571 if (extent_op && must_insert_reserved) {
78a6184a 2572 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2573 extent_op = NULL;
2574 }
2575
2576 if (extent_op) {
d7df2c79 2577 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2578 ret = run_delayed_extent_op(trans, root,
2579 ref, extent_op);
78a6184a 2580 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2581
79787eaa 2582 if (ret) {
857cc2fc
JB
2583 /*
2584 * Need to reset must_insert_reserved if
2585 * there was an error so the abort stuff
2586 * can cleanup the reserved space
2587 * properly.
2588 */
2589 if (must_insert_reserved)
2590 locked_ref->must_insert_reserved = 1;
d7df2c79 2591 locked_ref->processing = 0;
5d163e0e
JM
2592 btrfs_debug(fs_info,
2593 "run_delayed_extent_op returned %d",
2594 ret);
093486c4 2595 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2596 return ret;
2597 }
d7df2c79 2598 continue;
5d4f98a2 2599 }
02217ed2 2600
d7df2c79 2601 /*
01327610 2602 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2603 * delayed ref lock and then re-check to make sure
2604 * nobody got added.
2605 */
2606 spin_unlock(&locked_ref->lock);
2607 spin_lock(&delayed_refs->lock);
2608 spin_lock(&locked_ref->lock);
c6fc2454 2609 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2610 locked_ref->extent_op) {
d7df2c79
JB
2611 spin_unlock(&locked_ref->lock);
2612 spin_unlock(&delayed_refs->lock);
2613 continue;
2614 }
2615 ref->in_tree = 0;
2616 delayed_refs->num_heads--;
c46effa6
LB
2617 rb_erase(&locked_ref->href_node,
2618 &delayed_refs->href_root);
d7df2c79
JB
2619 spin_unlock(&delayed_refs->lock);
2620 } else {
0a2b2a84 2621 actual_count++;
d7df2c79 2622 ref->in_tree = 0;
c6fc2454 2623 list_del(&ref->list);
1d57ee94
WX
2624 if (!list_empty(&ref->add_list))
2625 list_del(&ref->add_list);
c46effa6 2626 }
d7df2c79
JB
2627 atomic_dec(&delayed_refs->num_entries);
2628
093486c4 2629 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2630 /*
2631 * when we play the delayed ref, also correct the
2632 * ref_mod on head
2633 */
2634 switch (ref->action) {
2635 case BTRFS_ADD_DELAYED_REF:
2636 case BTRFS_ADD_DELAYED_EXTENT:
2637 locked_ref->node.ref_mod -= ref->ref_mod;
2638 break;
2639 case BTRFS_DROP_DELAYED_REF:
2640 locked_ref->node.ref_mod += ref->ref_mod;
2641 break;
2642 default:
2643 WARN_ON(1);
2644 }
2645 }
d7df2c79 2646 spin_unlock(&locked_ref->lock);
925baedd 2647
5d4f98a2 2648 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2649 must_insert_reserved);
eb099670 2650
78a6184a 2651 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2652 if (ret) {
9d1032cc 2653 spin_lock(&delayed_refs->lock);
d7df2c79 2654 locked_ref->processing = 0;
9d1032cc
WX
2655 delayed_refs->num_heads_ready++;
2656 spin_unlock(&delayed_refs->lock);
093486c4
MX
2657 btrfs_delayed_ref_unlock(locked_ref);
2658 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2659 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2660 ret);
79787eaa
JM
2661 return ret;
2662 }
2663
093486c4
MX
2664 /*
2665 * If this node is a head, that means all the refs in this head
2666 * have been dealt with, and we will pick the next head to deal
2667 * with, so we must unlock the head and drop it from the cluster
2668 * list before we release it.
2669 */
2670 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2671 if (locked_ref->is_data &&
2672 locked_ref->total_ref_mod < 0) {
2673 spin_lock(&delayed_refs->lock);
2674 delayed_refs->pending_csums -= ref->num_bytes;
2675 spin_unlock(&delayed_refs->lock);
2676 }
093486c4
MX
2677 btrfs_delayed_ref_unlock(locked_ref);
2678 locked_ref = NULL;
2679 }
2680 btrfs_put_delayed_ref(ref);
2681 count++;
c3e69d58 2682 cond_resched();
c3e69d58 2683 }
0a2b2a84
JB
2684
2685 /*
2686 * We don't want to include ref heads since we can have empty ref heads
2687 * and those will drastically skew our runtime down since we just do
2688 * accounting, no actual extent tree updates.
2689 */
2690 if (actual_count > 0) {
2691 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2692 u64 avg;
2693
2694 /*
2695 * We weigh the current average higher than our current runtime
2696 * to avoid large swings in the average.
2697 */
2698 spin_lock(&delayed_refs->lock);
2699 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2700 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2701 spin_unlock(&delayed_refs->lock);
2702 }
d7df2c79 2703 return 0;
c3e69d58
CM
2704}
2705
709c0486
AJ
2706#ifdef SCRAMBLE_DELAYED_REFS
2707/*
2708 * Normally delayed refs get processed in ascending bytenr order. This
2709 * correlates in most cases to the order added. To expose dependencies on this
2710 * order, we start to process the tree in the middle instead of the beginning
2711 */
2712static u64 find_middle(struct rb_root *root)
2713{
2714 struct rb_node *n = root->rb_node;
2715 struct btrfs_delayed_ref_node *entry;
2716 int alt = 1;
2717 u64 middle;
2718 u64 first = 0, last = 0;
2719
2720 n = rb_first(root);
2721 if (n) {
2722 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2723 first = entry->bytenr;
2724 }
2725 n = rb_last(root);
2726 if (n) {
2727 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2728 last = entry->bytenr;
2729 }
2730 n = root->rb_node;
2731
2732 while (n) {
2733 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2734 WARN_ON(!entry->in_tree);
2735
2736 middle = entry->bytenr;
2737
2738 if (alt)
2739 n = n->rb_left;
2740 else
2741 n = n->rb_right;
2742
2743 alt = 1 - alt;
2744 }
2745 return middle;
2746}
2747#endif
2748
1be41b78
JB
2749static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2750{
2751 u64 num_bytes;
2752
2753 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2754 sizeof(struct btrfs_extent_inline_ref));
2755 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2756 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2757
2758 /*
2759 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2760 * closer to what we're really going to want to use.
1be41b78 2761 */
f8c269d7 2762 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2763}
2764
1262133b
JB
2765/*
2766 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2767 * would require to store the csums for that many bytes.
2768 */
28f75a0e 2769u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2770{
2771 u64 csum_size;
2772 u64 num_csums_per_leaf;
2773 u64 num_csums;
2774
14a1e067 2775 csum_size = BTRFS_MAX_ITEM_SIZE(root);
1262133b
JB
2776 num_csums_per_leaf = div64_u64(csum_size,
2777 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2778 num_csums = div64_u64(csum_bytes, root->sectorsize);
2779 num_csums += num_csums_per_leaf - 1;
2780 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2781 return num_csums;
2782}
2783
0a2b2a84 2784int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2785 struct btrfs_root *root)
2786{
2787 struct btrfs_block_rsv *global_rsv;
2788 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2789 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2790 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2791 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2792 int ret = 0;
2793
2794 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2795 num_heads = heads_to_leaves(root, num_heads);
2796 if (num_heads > 1)
707e8a07 2797 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2798 num_bytes <<= 1;
28f75a0e 2799 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2800 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2801 num_dirty_bgs);
1be41b78
JB
2802 global_rsv = &root->fs_info->global_block_rsv;
2803
2804 /*
2805 * If we can't allocate any more chunks lets make sure we have _lots_ of
2806 * wiggle room since running delayed refs can create more delayed refs.
2807 */
cb723e49
JB
2808 if (global_rsv->space_info->full) {
2809 num_dirty_bgs_bytes <<= 1;
1be41b78 2810 num_bytes <<= 1;
cb723e49 2811 }
1be41b78
JB
2812
2813 spin_lock(&global_rsv->lock);
cb723e49 2814 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2815 ret = 1;
2816 spin_unlock(&global_rsv->lock);
2817 return ret;
2818}
2819
0a2b2a84
JB
2820int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2821 struct btrfs_root *root)
2822{
2823 struct btrfs_fs_info *fs_info = root->fs_info;
2824 u64 num_entries =
2825 atomic_read(&trans->transaction->delayed_refs.num_entries);
2826 u64 avg_runtime;
a79b7d4b 2827 u64 val;
0a2b2a84
JB
2828
2829 smp_mb();
2830 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2831 val = num_entries * avg_runtime;
dc1a90c6 2832 if (val >= NSEC_PER_SEC)
0a2b2a84 2833 return 1;
a79b7d4b
CM
2834 if (val >= NSEC_PER_SEC / 2)
2835 return 2;
0a2b2a84
JB
2836
2837 return btrfs_check_space_for_delayed_refs(trans, root);
2838}
2839
a79b7d4b
CM
2840struct async_delayed_refs {
2841 struct btrfs_root *root;
31b9655f 2842 u64 transid;
a79b7d4b
CM
2843 int count;
2844 int error;
2845 int sync;
2846 struct completion wait;
2847 struct btrfs_work work;
2848};
2849
2850static void delayed_ref_async_start(struct btrfs_work *work)
2851{
2852 struct async_delayed_refs *async;
2853 struct btrfs_trans_handle *trans;
2854 int ret;
2855
2856 async = container_of(work, struct async_delayed_refs, work);
2857
0f873eca
CM
2858 /* if the commit is already started, we don't need to wait here */
2859 if (btrfs_transaction_blocked(async->root->fs_info))
31b9655f 2860 goto done;
31b9655f 2861
0f873eca
CM
2862 trans = btrfs_join_transaction(async->root);
2863 if (IS_ERR(trans)) {
2864 async->error = PTR_ERR(trans);
a79b7d4b
CM
2865 goto done;
2866 }
2867
2868 /*
01327610 2869 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2870 * wait on delayed refs
2871 */
2872 trans->sync = true;
0f873eca
CM
2873
2874 /* Don't bother flushing if we got into a different transaction */
2875 if (trans->transid > async->transid)
2876 goto end;
2877
a79b7d4b
CM
2878 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2879 if (ret)
2880 async->error = ret;
0f873eca 2881end:
a79b7d4b
CM
2882 ret = btrfs_end_transaction(trans, async->root);
2883 if (ret && !async->error)
2884 async->error = ret;
2885done:
2886 if (async->sync)
2887 complete(&async->wait);
2888 else
2889 kfree(async);
2890}
2891
2892int btrfs_async_run_delayed_refs(struct btrfs_root *root,
31b9655f 2893 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2894{
2895 struct async_delayed_refs *async;
2896 int ret;
2897
2898 async = kmalloc(sizeof(*async), GFP_NOFS);
2899 if (!async)
2900 return -ENOMEM;
2901
2902 async->root = root->fs_info->tree_root;
2903 async->count = count;
2904 async->error = 0;
31b9655f 2905 async->transid = transid;
a79b7d4b
CM
2906 if (wait)
2907 async->sync = 1;
2908 else
2909 async->sync = 0;
2910 init_completion(&async->wait);
2911
9e0af237
LB
2912 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2913 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2914
2915 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2916
2917 if (wait) {
2918 wait_for_completion(&async->wait);
2919 ret = async->error;
2920 kfree(async);
2921 return ret;
2922 }
2923 return 0;
2924}
2925
c3e69d58
CM
2926/*
2927 * this starts processing the delayed reference count updates and
2928 * extent insertions we have queued up so far. count can be
2929 * 0, which means to process everything in the tree at the start
2930 * of the run (but not newly added entries), or it can be some target
2931 * number you'd like to process.
79787eaa
JM
2932 *
2933 * Returns 0 on success or if called with an aborted transaction
2934 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2935 */
2936int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2937 struct btrfs_root *root, unsigned long count)
2938{
2939 struct rb_node *node;
2940 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2941 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2942 int ret;
2943 int run_all = count == (unsigned long)-1;
d9a0540a 2944 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2945
79787eaa
JM
2946 /* We'll clean this up in btrfs_cleanup_transaction */
2947 if (trans->aborted)
2948 return 0;
2949
afcdd129 2950 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &root->fs_info->flags))
511711af
CM
2951 return 0;
2952
c3e69d58
CM
2953 if (root == root->fs_info->extent_root)
2954 root = root->fs_info->tree_root;
2955
2956 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2957 if (count == 0)
d7df2c79 2958 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2959
c3e69d58 2960again:
709c0486
AJ
2961#ifdef SCRAMBLE_DELAYED_REFS
2962 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2963#endif
d9a0540a 2964 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2965 ret = __btrfs_run_delayed_refs(trans, root, count);
2966 if (ret < 0) {
66642832 2967 btrfs_abort_transaction(trans, ret);
d7df2c79 2968 return ret;
eb099670 2969 }
c3e69d58 2970
56bec294 2971 if (run_all) {
d7df2c79 2972 if (!list_empty(&trans->new_bgs))
ea658bad 2973 btrfs_create_pending_block_groups(trans, root);
ea658bad 2974
d7df2c79 2975 spin_lock(&delayed_refs->lock);
c46effa6 2976 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2977 if (!node) {
2978 spin_unlock(&delayed_refs->lock);
56bec294 2979 goto out;
d7df2c79 2980 }
e9d0b13b 2981
56bec294 2982 while (node) {
c46effa6
LB
2983 head = rb_entry(node, struct btrfs_delayed_ref_head,
2984 href_node);
2985 if (btrfs_delayed_ref_is_head(&head->node)) {
2986 struct btrfs_delayed_ref_node *ref;
5caf2a00 2987
c46effa6 2988 ref = &head->node;
56bec294
CM
2989 atomic_inc(&ref->refs);
2990
2991 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2992 /*
2993 * Mutex was contended, block until it's
2994 * released and try again
2995 */
56bec294
CM
2996 mutex_lock(&head->mutex);
2997 mutex_unlock(&head->mutex);
2998
2999 btrfs_put_delayed_ref(ref);
1887be66 3000 cond_resched();
56bec294 3001 goto again;
c46effa6
LB
3002 } else {
3003 WARN_ON(1);
56bec294
CM
3004 }
3005 node = rb_next(node);
3006 }
3007 spin_unlock(&delayed_refs->lock);
d7df2c79 3008 cond_resched();
56bec294 3009 goto again;
5f39d397 3010 }
54aa1f4d 3011out:
edf39272 3012 assert_qgroups_uptodate(trans);
d9a0540a 3013 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3014 return 0;
3015}
3016
5d4f98a2
YZ
3017int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3018 struct btrfs_root *root,
3019 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3020 int level, int is_data)
5d4f98a2
YZ
3021{
3022 struct btrfs_delayed_extent_op *extent_op;
3023 int ret;
3024
78a6184a 3025 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3026 if (!extent_op)
3027 return -ENOMEM;
3028
3029 extent_op->flags_to_set = flags;
35b3ad50
DS
3030 extent_op->update_flags = true;
3031 extent_op->update_key = false;
3032 extent_op->is_data = is_data ? true : false;
b1c79e09 3033 extent_op->level = level;
5d4f98a2 3034
66d7e7f0
AJ
3035 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3036 num_bytes, extent_op);
5d4f98a2 3037 if (ret)
78a6184a 3038 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3039 return ret;
3040}
3041
3042static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3043 struct btrfs_root *root,
3044 struct btrfs_path *path,
3045 u64 objectid, u64 offset, u64 bytenr)
3046{
3047 struct btrfs_delayed_ref_head *head;
3048 struct btrfs_delayed_ref_node *ref;
3049 struct btrfs_delayed_data_ref *data_ref;
3050 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
3051 int ret = 0;
3052
5d4f98a2
YZ
3053 delayed_refs = &trans->transaction->delayed_refs;
3054 spin_lock(&delayed_refs->lock);
3055 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
3056 if (!head) {
3057 spin_unlock(&delayed_refs->lock);
3058 return 0;
3059 }
5d4f98a2
YZ
3060
3061 if (!mutex_trylock(&head->mutex)) {
3062 atomic_inc(&head->node.refs);
3063 spin_unlock(&delayed_refs->lock);
3064
b3b4aa74 3065 btrfs_release_path(path);
5d4f98a2 3066
8cc33e5c
DS
3067 /*
3068 * Mutex was contended, block until it's released and let
3069 * caller try again
3070 */
5d4f98a2
YZ
3071 mutex_lock(&head->mutex);
3072 mutex_unlock(&head->mutex);
3073 btrfs_put_delayed_ref(&head->node);
3074 return -EAGAIN;
3075 }
d7df2c79 3076 spin_unlock(&delayed_refs->lock);
5d4f98a2 3077
d7df2c79 3078 spin_lock(&head->lock);
c6fc2454 3079 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3080 /* If it's a shared ref we know a cross reference exists */
3081 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3082 ret = 1;
3083 break;
3084 }
5d4f98a2 3085
d7df2c79 3086 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3087
d7df2c79
JB
3088 /*
3089 * If our ref doesn't match the one we're currently looking at
3090 * then we have a cross reference.
3091 */
3092 if (data_ref->root != root->root_key.objectid ||
3093 data_ref->objectid != objectid ||
3094 data_ref->offset != offset) {
3095 ret = 1;
3096 break;
3097 }
5d4f98a2 3098 }
d7df2c79 3099 spin_unlock(&head->lock);
5d4f98a2 3100 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3101 return ret;
3102}
3103
3104static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3105 struct btrfs_root *root,
3106 struct btrfs_path *path,
3107 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
3108{
3109 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3110 struct extent_buffer *leaf;
5d4f98a2
YZ
3111 struct btrfs_extent_data_ref *ref;
3112 struct btrfs_extent_inline_ref *iref;
3113 struct btrfs_extent_item *ei;
f321e491 3114 struct btrfs_key key;
5d4f98a2 3115 u32 item_size;
be20aa9d 3116 int ret;
925baedd 3117
be20aa9d 3118 key.objectid = bytenr;
31840ae1 3119 key.offset = (u64)-1;
f321e491 3120 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3121
be20aa9d
CM
3122 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3123 if (ret < 0)
3124 goto out;
79787eaa 3125 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3126
3127 ret = -ENOENT;
3128 if (path->slots[0] == 0)
31840ae1 3129 goto out;
be20aa9d 3130
31840ae1 3131 path->slots[0]--;
f321e491 3132 leaf = path->nodes[0];
5d4f98a2 3133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3134
5d4f98a2 3135 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3136 goto out;
f321e491 3137
5d4f98a2
YZ
3138 ret = 1;
3139 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3140#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3141 if (item_size < sizeof(*ei)) {
3142 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3143 goto out;
3144 }
3145#endif
3146 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3147
5d4f98a2
YZ
3148 if (item_size != sizeof(*ei) +
3149 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3150 goto out;
be20aa9d 3151
5d4f98a2
YZ
3152 if (btrfs_extent_generation(leaf, ei) <=
3153 btrfs_root_last_snapshot(&root->root_item))
3154 goto out;
3155
3156 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3157 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3158 BTRFS_EXTENT_DATA_REF_KEY)
3159 goto out;
3160
3161 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3162 if (btrfs_extent_refs(leaf, ei) !=
3163 btrfs_extent_data_ref_count(leaf, ref) ||
3164 btrfs_extent_data_ref_root(leaf, ref) !=
3165 root->root_key.objectid ||
3166 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3167 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3168 goto out;
3169
3170 ret = 0;
3171out:
3172 return ret;
3173}
3174
3175int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3176 struct btrfs_root *root,
3177 u64 objectid, u64 offset, u64 bytenr)
3178{
3179 struct btrfs_path *path;
3180 int ret;
3181 int ret2;
3182
3183 path = btrfs_alloc_path();
3184 if (!path)
3185 return -ENOENT;
3186
3187 do {
3188 ret = check_committed_ref(trans, root, path, objectid,
3189 offset, bytenr);
3190 if (ret && ret != -ENOENT)
f321e491 3191 goto out;
80ff3856 3192
5d4f98a2
YZ
3193 ret2 = check_delayed_ref(trans, root, path, objectid,
3194 offset, bytenr);
3195 } while (ret2 == -EAGAIN);
3196
3197 if (ret2 && ret2 != -ENOENT) {
3198 ret = ret2;
3199 goto out;
f321e491 3200 }
5d4f98a2
YZ
3201
3202 if (ret != -ENOENT || ret2 != -ENOENT)
3203 ret = 0;
be20aa9d 3204out:
80ff3856 3205 btrfs_free_path(path);
f0486c68
YZ
3206 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3207 WARN_ON(ret > 0);
f321e491 3208 return ret;
be20aa9d 3209}
c5739bba 3210
5d4f98a2 3211static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3212 struct btrfs_root *root,
5d4f98a2 3213 struct extent_buffer *buf,
e339a6b0 3214 int full_backref, int inc)
31840ae1
ZY
3215{
3216 u64 bytenr;
5d4f98a2
YZ
3217 u64 num_bytes;
3218 u64 parent;
31840ae1 3219 u64 ref_root;
31840ae1 3220 u32 nritems;
31840ae1
ZY
3221 struct btrfs_key key;
3222 struct btrfs_file_extent_item *fi;
3223 int i;
3224 int level;
3225 int ret = 0;
31840ae1 3226 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
b06c4bf5 3227 u64, u64, u64, u64, u64, u64);
31840ae1 3228
fccb84c9 3229
f5ee5c9a 3230 if (btrfs_is_testing(root->fs_info))
faa2dbf0 3231 return 0;
fccb84c9 3232
31840ae1 3233 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3234 nritems = btrfs_header_nritems(buf);
3235 level = btrfs_header_level(buf);
3236
27cdeb70 3237 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3238 return 0;
31840ae1 3239
5d4f98a2
YZ
3240 if (inc)
3241 process_func = btrfs_inc_extent_ref;
3242 else
3243 process_func = btrfs_free_extent;
31840ae1 3244
5d4f98a2
YZ
3245 if (full_backref)
3246 parent = buf->start;
3247 else
3248 parent = 0;
3249
3250 for (i = 0; i < nritems; i++) {
31840ae1 3251 if (level == 0) {
5d4f98a2 3252 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3253 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3254 continue;
5d4f98a2 3255 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3256 struct btrfs_file_extent_item);
3257 if (btrfs_file_extent_type(buf, fi) ==
3258 BTRFS_FILE_EXTENT_INLINE)
3259 continue;
3260 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3261 if (bytenr == 0)
3262 continue;
5d4f98a2
YZ
3263
3264 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3265 key.offset -= btrfs_file_extent_offset(buf, fi);
3266 ret = process_func(trans, root, bytenr, num_bytes,
3267 parent, ref_root, key.objectid,
b06c4bf5 3268 key.offset);
31840ae1
ZY
3269 if (ret)
3270 goto fail;
3271 } else {
5d4f98a2 3272 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3273 num_bytes = root->nodesize;
5d4f98a2 3274 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3275 parent, ref_root, level - 1, 0);
31840ae1
ZY
3276 if (ret)
3277 goto fail;
3278 }
3279 }
3280 return 0;
3281fail:
5d4f98a2
YZ
3282 return ret;
3283}
3284
3285int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3286 struct extent_buffer *buf, int full_backref)
5d4f98a2 3287{
e339a6b0 3288 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3289}
3290
3291int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3292 struct extent_buffer *buf, int full_backref)
5d4f98a2 3293{
e339a6b0 3294 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3295}
3296
9078a3e1
CM
3297static int write_one_cache_group(struct btrfs_trans_handle *trans,
3298 struct btrfs_root *root,
3299 struct btrfs_path *path,
3300 struct btrfs_block_group_cache *cache)
3301{
3302 int ret;
9078a3e1 3303 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3304 unsigned long bi;
3305 struct extent_buffer *leaf;
9078a3e1 3306
9078a3e1 3307 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3308 if (ret) {
3309 if (ret > 0)
3310 ret = -ENOENT;
54aa1f4d 3311 goto fail;
df95e7f0 3312 }
5f39d397
CM
3313
3314 leaf = path->nodes[0];
3315 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3316 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3317 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3318fail:
24b89d08 3319 btrfs_release_path(path);
df95e7f0 3320 return ret;
9078a3e1
CM
3321
3322}
3323
4a8c9a62
YZ
3324static struct btrfs_block_group_cache *
3325next_block_group(struct btrfs_root *root,
3326 struct btrfs_block_group_cache *cache)
3327{
3328 struct rb_node *node;
292cbd51 3329
4a8c9a62 3330 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3331
3332 /* If our block group was removed, we need a full search. */
3333 if (RB_EMPTY_NODE(&cache->cache_node)) {
3334 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3335
3336 spin_unlock(&root->fs_info->block_group_cache_lock);
3337 btrfs_put_block_group(cache);
3338 cache = btrfs_lookup_first_block_group(root->fs_info,
3339 next_bytenr);
3340 return cache;
3341 }
4a8c9a62
YZ
3342 node = rb_next(&cache->cache_node);
3343 btrfs_put_block_group(cache);
3344 if (node) {
3345 cache = rb_entry(node, struct btrfs_block_group_cache,
3346 cache_node);
11dfe35a 3347 btrfs_get_block_group(cache);
4a8c9a62
YZ
3348 } else
3349 cache = NULL;
3350 spin_unlock(&root->fs_info->block_group_cache_lock);
3351 return cache;
3352}
3353
0af3d00b
JB
3354static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3355 struct btrfs_trans_handle *trans,
3356 struct btrfs_path *path)
3357{
3358 struct btrfs_root *root = block_group->fs_info->tree_root;
3359 struct inode *inode = NULL;
3360 u64 alloc_hint = 0;
2b20982e 3361 int dcs = BTRFS_DC_ERROR;
f8c269d7 3362 u64 num_pages = 0;
0af3d00b
JB
3363 int retries = 0;
3364 int ret = 0;
3365
3366 /*
3367 * If this block group is smaller than 100 megs don't bother caching the
3368 * block group.
3369 */
ee22184b 3370 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3371 spin_lock(&block_group->lock);
3372 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3373 spin_unlock(&block_group->lock);
3374 return 0;
3375 }
3376
0c0ef4bc
JB
3377 if (trans->aborted)
3378 return 0;
0af3d00b
JB
3379again:
3380 inode = lookup_free_space_inode(root, block_group, path);
3381 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3382 ret = PTR_ERR(inode);
b3b4aa74 3383 btrfs_release_path(path);
0af3d00b
JB
3384 goto out;
3385 }
3386
3387 if (IS_ERR(inode)) {
3388 BUG_ON(retries);
3389 retries++;
3390
3391 if (block_group->ro)
3392 goto out_free;
3393
3394 ret = create_free_space_inode(root, trans, block_group, path);
3395 if (ret)
3396 goto out_free;
3397 goto again;
3398 }
3399
5b0e95bf
JB
3400 /* We've already setup this transaction, go ahead and exit */
3401 if (block_group->cache_generation == trans->transid &&
3402 i_size_read(inode)) {
3403 dcs = BTRFS_DC_SETUP;
3404 goto out_put;
3405 }
3406
0af3d00b
JB
3407 /*
3408 * We want to set the generation to 0, that way if anything goes wrong
3409 * from here on out we know not to trust this cache when we load up next
3410 * time.
3411 */
3412 BTRFS_I(inode)->generation = 0;
3413 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3414 if (ret) {
3415 /*
3416 * So theoretically we could recover from this, simply set the
3417 * super cache generation to 0 so we know to invalidate the
3418 * cache, but then we'd have to keep track of the block groups
3419 * that fail this way so we know we _have_ to reset this cache
3420 * before the next commit or risk reading stale cache. So to
3421 * limit our exposure to horrible edge cases lets just abort the
3422 * transaction, this only happens in really bad situations
3423 * anyway.
3424 */
66642832 3425 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3426 goto out_put;
3427 }
0af3d00b
JB
3428 WARN_ON(ret);
3429
3430 if (i_size_read(inode) > 0) {
7b61cd92
MX
3431 ret = btrfs_check_trunc_cache_free_space(root,
3432 &root->fs_info->global_block_rsv);
3433 if (ret)
3434 goto out_put;
3435
1bbc621e 3436 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3437 if (ret)
3438 goto out_put;
3439 }
3440
3441 spin_lock(&block_group->lock);
cf7c1ef6 3442 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3cdde224 3443 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3444 /*
3445 * don't bother trying to write stuff out _if_
3446 * a) we're not cached,
3447 * b) we're with nospace_cache mount option.
3448 */
2b20982e 3449 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3450 spin_unlock(&block_group->lock);
3451 goto out_put;
3452 }
3453 spin_unlock(&block_group->lock);
3454
2968b1f4
JB
3455 /*
3456 * We hit an ENOSPC when setting up the cache in this transaction, just
3457 * skip doing the setup, we've already cleared the cache so we're safe.
3458 */
3459 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3460 ret = -ENOSPC;
3461 goto out_put;
3462 }
3463
6fc823b1
JB
3464 /*
3465 * Try to preallocate enough space based on how big the block group is.
3466 * Keep in mind this has to include any pinned space which could end up
3467 * taking up quite a bit since it's not folded into the other space
3468 * cache.
3469 */
ee22184b 3470 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3471 if (!num_pages)
3472 num_pages = 1;
3473
0af3d00b 3474 num_pages *= 16;
09cbfeaf 3475 num_pages *= PAGE_SIZE;
0af3d00b 3476
7cf5b976 3477 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3478 if (ret)
3479 goto out_put;
3480
3481 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3482 num_pages, num_pages,
3483 &alloc_hint);
2968b1f4
JB
3484 /*
3485 * Our cache requires contiguous chunks so that we don't modify a bunch
3486 * of metadata or split extents when writing the cache out, which means
3487 * we can enospc if we are heavily fragmented in addition to just normal
3488 * out of space conditions. So if we hit this just skip setting up any
3489 * other block groups for this transaction, maybe we'll unpin enough
3490 * space the next time around.
3491 */
2b20982e
JB
3492 if (!ret)
3493 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3494 else if (ret == -ENOSPC)
3495 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3496
0af3d00b
JB
3497out_put:
3498 iput(inode);
3499out_free:
b3b4aa74 3500 btrfs_release_path(path);
0af3d00b
JB
3501out:
3502 spin_lock(&block_group->lock);
e65cbb94 3503 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3504 block_group->cache_generation = trans->transid;
2b20982e 3505 block_group->disk_cache_state = dcs;
0af3d00b
JB
3506 spin_unlock(&block_group->lock);
3507
3508 return ret;
3509}
3510
dcdf7f6d
JB
3511int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3512 struct btrfs_root *root)
3513{
3514 struct btrfs_block_group_cache *cache, *tmp;
3515 struct btrfs_transaction *cur_trans = trans->transaction;
3516 struct btrfs_path *path;
3517
3518 if (list_empty(&cur_trans->dirty_bgs) ||
3cdde224 3519 !btrfs_test_opt(root->fs_info, SPACE_CACHE))
dcdf7f6d
JB
3520 return 0;
3521
3522 path = btrfs_alloc_path();
3523 if (!path)
3524 return -ENOMEM;
3525
3526 /* Could add new block groups, use _safe just in case */
3527 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3528 dirty_list) {
3529 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3530 cache_save_setup(cache, trans, path);
3531 }
3532
3533 btrfs_free_path(path);
3534 return 0;
3535}
3536
1bbc621e
CM
3537/*
3538 * transaction commit does final block group cache writeback during a
3539 * critical section where nothing is allowed to change the FS. This is
3540 * required in order for the cache to actually match the block group,
3541 * but can introduce a lot of latency into the commit.
3542 *
3543 * So, btrfs_start_dirty_block_groups is here to kick off block group
3544 * cache IO. There's a chance we'll have to redo some of it if the
3545 * block group changes again during the commit, but it greatly reduces
3546 * the commit latency by getting rid of the easy block groups while
3547 * we're still allowing others to join the commit.
3548 */
3549int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3550 struct btrfs_root *root)
9078a3e1 3551{
4a8c9a62 3552 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3553 struct btrfs_transaction *cur_trans = trans->transaction;
3554 int ret = 0;
c9dc4c65 3555 int should_put;
1bbc621e
CM
3556 struct btrfs_path *path = NULL;
3557 LIST_HEAD(dirty);
3558 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3559 int num_started = 0;
1bbc621e
CM
3560 int loops = 0;
3561
3562 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3563 if (list_empty(&cur_trans->dirty_bgs)) {
3564 spin_unlock(&cur_trans->dirty_bgs_lock);
3565 return 0;
1bbc621e 3566 }
b58d1a9e 3567 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3568 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3569
1bbc621e 3570again:
1bbc621e
CM
3571 /*
3572 * make sure all the block groups on our dirty list actually
3573 * exist
3574 */
3575 btrfs_create_pending_block_groups(trans, root);
3576
3577 if (!path) {
3578 path = btrfs_alloc_path();
3579 if (!path)
3580 return -ENOMEM;
3581 }
3582
b58d1a9e
FM
3583 /*
3584 * cache_write_mutex is here only to save us from balance or automatic
3585 * removal of empty block groups deleting this block group while we are
3586 * writing out the cache
3587 */
3588 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3589 while (!list_empty(&dirty)) {
3590 cache = list_first_entry(&dirty,
3591 struct btrfs_block_group_cache,
3592 dirty_list);
1bbc621e
CM
3593 /*
3594 * this can happen if something re-dirties a block
3595 * group that is already under IO. Just wait for it to
3596 * finish and then do it all again
3597 */
3598 if (!list_empty(&cache->io_list)) {
3599 list_del_init(&cache->io_list);
3600 btrfs_wait_cache_io(root, trans, cache,
3601 &cache->io_ctl, path,
3602 cache->key.objectid);
3603 btrfs_put_block_group(cache);
3604 }
3605
3606
3607 /*
3608 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3609 * if it should update the cache_state. Don't delete
3610 * until after we wait.
3611 *
3612 * Since we're not running in the commit critical section
3613 * we need the dirty_bgs_lock to protect from update_block_group
3614 */
3615 spin_lock(&cur_trans->dirty_bgs_lock);
3616 list_del_init(&cache->dirty_list);
3617 spin_unlock(&cur_trans->dirty_bgs_lock);
3618
3619 should_put = 1;
3620
3621 cache_save_setup(cache, trans, path);
3622
3623 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3624 cache->io_ctl.inode = NULL;
3625 ret = btrfs_write_out_cache(root, trans, cache, path);
3626 if (ret == 0 && cache->io_ctl.inode) {
3627 num_started++;
3628 should_put = 0;
3629
3630 /*
3631 * the cache_write_mutex is protecting
3632 * the io_list
3633 */
3634 list_add_tail(&cache->io_list, io);
3635 } else {
3636 /*
3637 * if we failed to write the cache, the
3638 * generation will be bad and life goes on
3639 */
3640 ret = 0;
3641 }
3642 }
ff1f8250 3643 if (!ret) {
1bbc621e 3644 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3645 /*
3646 * Our block group might still be attached to the list
3647 * of new block groups in the transaction handle of some
3648 * other task (struct btrfs_trans_handle->new_bgs). This
3649 * means its block group item isn't yet in the extent
3650 * tree. If this happens ignore the error, as we will
3651 * try again later in the critical section of the
3652 * transaction commit.
3653 */
3654 if (ret == -ENOENT) {
3655 ret = 0;
3656 spin_lock(&cur_trans->dirty_bgs_lock);
3657 if (list_empty(&cache->dirty_list)) {
3658 list_add_tail(&cache->dirty_list,
3659 &cur_trans->dirty_bgs);
3660 btrfs_get_block_group(cache);
3661 }
3662 spin_unlock(&cur_trans->dirty_bgs_lock);
3663 } else if (ret) {
66642832 3664 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3665 }
3666 }
1bbc621e
CM
3667
3668 /* if its not on the io list, we need to put the block group */
3669 if (should_put)
3670 btrfs_put_block_group(cache);
3671
3672 if (ret)
3673 break;
b58d1a9e
FM
3674
3675 /*
3676 * Avoid blocking other tasks for too long. It might even save
3677 * us from writing caches for block groups that are going to be
3678 * removed.
3679 */
3680 mutex_unlock(&trans->transaction->cache_write_mutex);
3681 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3682 }
b58d1a9e 3683 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3684
3685 /*
3686 * go through delayed refs for all the stuff we've just kicked off
3687 * and then loop back (just once)
3688 */
3689 ret = btrfs_run_delayed_refs(trans, root, 0);
3690 if (!ret && loops == 0) {
3691 loops++;
3692 spin_lock(&cur_trans->dirty_bgs_lock);
3693 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3694 /*
3695 * dirty_bgs_lock protects us from concurrent block group
3696 * deletes too (not just cache_write_mutex).
3697 */
3698 if (!list_empty(&dirty)) {
3699 spin_unlock(&cur_trans->dirty_bgs_lock);
3700 goto again;
3701 }
1bbc621e 3702 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751
LB
3703 } else if (ret < 0) {
3704 btrfs_cleanup_dirty_bgs(cur_trans, root);
1bbc621e
CM
3705 }
3706
3707 btrfs_free_path(path);
3708 return ret;
3709}
3710
3711int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3712 struct btrfs_root *root)
3713{
3714 struct btrfs_block_group_cache *cache;
3715 struct btrfs_transaction *cur_trans = trans->transaction;
3716 int ret = 0;
3717 int should_put;
3718 struct btrfs_path *path;
3719 struct list_head *io = &cur_trans->io_bgs;
3720 int num_started = 0;
9078a3e1
CM
3721
3722 path = btrfs_alloc_path();
3723 if (!path)
3724 return -ENOMEM;
3725
ce93ec54 3726 /*
e44081ef
FM
3727 * Even though we are in the critical section of the transaction commit,
3728 * we can still have concurrent tasks adding elements to this
3729 * transaction's list of dirty block groups. These tasks correspond to
3730 * endio free space workers started when writeback finishes for a
3731 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3732 * allocate new block groups as a result of COWing nodes of the root
3733 * tree when updating the free space inode. The writeback for the space
3734 * caches is triggered by an earlier call to
3735 * btrfs_start_dirty_block_groups() and iterations of the following
3736 * loop.
3737 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3738 * delayed refs to make sure we have the best chance at doing this all
3739 * in one shot.
3740 */
e44081ef 3741 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3742 while (!list_empty(&cur_trans->dirty_bgs)) {
3743 cache = list_first_entry(&cur_trans->dirty_bgs,
3744 struct btrfs_block_group_cache,
3745 dirty_list);
c9dc4c65
CM
3746
3747 /*
3748 * this can happen if cache_save_setup re-dirties a block
3749 * group that is already under IO. Just wait for it to
3750 * finish and then do it all again
3751 */
3752 if (!list_empty(&cache->io_list)) {
e44081ef 3753 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3754 list_del_init(&cache->io_list);
3755 btrfs_wait_cache_io(root, trans, cache,
3756 &cache->io_ctl, path,
3757 cache->key.objectid);
3758 btrfs_put_block_group(cache);
e44081ef 3759 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3760 }
3761
1bbc621e
CM
3762 /*
3763 * don't remove from the dirty list until after we've waited
3764 * on any pending IO
3765 */
ce93ec54 3766 list_del_init(&cache->dirty_list);
e44081ef 3767 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3768 should_put = 1;
3769
1bbc621e 3770 cache_save_setup(cache, trans, path);
c9dc4c65 3771
ce93ec54 3772 if (!ret)
c9dc4c65
CM
3773 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3774
3775 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3776 cache->io_ctl.inode = NULL;
3777 ret = btrfs_write_out_cache(root, trans, cache, path);
3778 if (ret == 0 && cache->io_ctl.inode) {
3779 num_started++;
3780 should_put = 0;
1bbc621e 3781 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3782 } else {
3783 /*
3784 * if we failed to write the cache, the
3785 * generation will be bad and life goes on
3786 */
3787 ret = 0;
3788 }
3789 }
ff1f8250 3790 if (!ret) {
ce93ec54 3791 ret = write_one_cache_group(trans, root, path, cache);
2bc0bb5f
FM
3792 /*
3793 * One of the free space endio workers might have
3794 * created a new block group while updating a free space
3795 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3796 * and hasn't released its transaction handle yet, in
3797 * which case the new block group is still attached to
3798 * its transaction handle and its creation has not
3799 * finished yet (no block group item in the extent tree
3800 * yet, etc). If this is the case, wait for all free
3801 * space endio workers to finish and retry. This is a
3802 * a very rare case so no need for a more efficient and
3803 * complex approach.
3804 */
3805 if (ret == -ENOENT) {
3806 wait_event(cur_trans->writer_wait,
3807 atomic_read(&cur_trans->num_writers) == 1);
3808 ret = write_one_cache_group(trans, root, path,
3809 cache);
3810 }
ff1f8250 3811 if (ret)
66642832 3812 btrfs_abort_transaction(trans, ret);
ff1f8250 3813 }
c9dc4c65
CM
3814
3815 /* if its not on the io list, we need to put the block group */
3816 if (should_put)
3817 btrfs_put_block_group(cache);
e44081ef 3818 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3819 }
e44081ef 3820 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3821
1bbc621e
CM
3822 while (!list_empty(io)) {
3823 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3824 io_list);
3825 list_del_init(&cache->io_list);
c9dc4c65
CM
3826 btrfs_wait_cache_io(root, trans, cache,
3827 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3828 btrfs_put_block_group(cache);
3829 }
3830
9078a3e1 3831 btrfs_free_path(path);
ce93ec54 3832 return ret;
9078a3e1
CM
3833}
3834
d2fb3437
YZ
3835int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3836{
3837 struct btrfs_block_group_cache *block_group;
3838 int readonly = 0;
3839
3840 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3841 if (!block_group || block_group->ro)
3842 readonly = 1;
3843 if (block_group)
fa9c0d79 3844 btrfs_put_block_group(block_group);
d2fb3437
YZ
3845 return readonly;
3846}
3847
f78c436c
FM
3848bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3849{
3850 struct btrfs_block_group_cache *bg;
3851 bool ret = true;
3852
3853 bg = btrfs_lookup_block_group(fs_info, bytenr);
3854 if (!bg)
3855 return false;
3856
3857 spin_lock(&bg->lock);
3858 if (bg->ro)
3859 ret = false;
3860 else
3861 atomic_inc(&bg->nocow_writers);
3862 spin_unlock(&bg->lock);
3863
3864 /* no put on block group, done by btrfs_dec_nocow_writers */
3865 if (!ret)
3866 btrfs_put_block_group(bg);
3867
3868 return ret;
3869
3870}
3871
3872void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3873{
3874 struct btrfs_block_group_cache *bg;
3875
3876 bg = btrfs_lookup_block_group(fs_info, bytenr);
3877 ASSERT(bg);
3878 if (atomic_dec_and_test(&bg->nocow_writers))
3879 wake_up_atomic_t(&bg->nocow_writers);
3880 /*
3881 * Once for our lookup and once for the lookup done by a previous call
3882 * to btrfs_inc_nocow_writers()
3883 */
3884 btrfs_put_block_group(bg);
3885 btrfs_put_block_group(bg);
3886}
3887
3888static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3889{
3890 schedule();
3891 return 0;
3892}
3893
3894void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3895{
3896 wait_on_atomic_t(&bg->nocow_writers,
3897 btrfs_wait_nocow_writers_atomic_t,
3898 TASK_UNINTERRUPTIBLE);
3899}
3900
6ab0a202
JM
3901static const char *alloc_name(u64 flags)
3902{
3903 switch (flags) {
3904 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3905 return "mixed";
3906 case BTRFS_BLOCK_GROUP_METADATA:
3907 return "metadata";
3908 case BTRFS_BLOCK_GROUP_DATA:
3909 return "data";
3910 case BTRFS_BLOCK_GROUP_SYSTEM:
3911 return "system";
3912 default:
3913 WARN_ON(1);
3914 return "invalid-combination";
3915 };
3916}
3917
593060d7
CM
3918static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3919 u64 total_bytes, u64 bytes_used,
e40edf2d 3920 u64 bytes_readonly,
593060d7
CM
3921 struct btrfs_space_info **space_info)
3922{
3923 struct btrfs_space_info *found;
b742bb82
YZ
3924 int i;
3925 int factor;
b150a4f1 3926 int ret;
b742bb82
YZ
3927
3928 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3929 BTRFS_BLOCK_GROUP_RAID10))
3930 factor = 2;
3931 else
3932 factor = 1;
593060d7
CM
3933
3934 found = __find_space_info(info, flags);
3935 if (found) {
25179201 3936 spin_lock(&found->lock);
593060d7 3937 found->total_bytes += total_bytes;
89a55897 3938 found->disk_total += total_bytes * factor;
593060d7 3939 found->bytes_used += bytes_used;
b742bb82 3940 found->disk_used += bytes_used * factor;
e40edf2d 3941 found->bytes_readonly += bytes_readonly;
2e6e5183
FM
3942 if (total_bytes > 0)
3943 found->full = 0;
957780eb
JB
3944 space_info_add_new_bytes(info, found, total_bytes -
3945 bytes_used - bytes_readonly);
25179201 3946 spin_unlock(&found->lock);
593060d7
CM
3947 *space_info = found;
3948 return 0;
3949 }
c146afad 3950 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3951 if (!found)
3952 return -ENOMEM;
3953
908c7f19 3954 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3955 if (ret) {
3956 kfree(found);
3957 return ret;
3958 }
3959
c1895442 3960 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3961 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3962 init_rwsem(&found->groups_sem);
0f9dd46c 3963 spin_lock_init(&found->lock);
52ba6929 3964 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3965 found->total_bytes = total_bytes;
89a55897 3966 found->disk_total = total_bytes * factor;
593060d7 3967 found->bytes_used = bytes_used;
b742bb82 3968 found->disk_used = bytes_used * factor;
593060d7 3969 found->bytes_pinned = 0;
e8569813 3970 found->bytes_reserved = 0;
e40edf2d 3971 found->bytes_readonly = bytes_readonly;
f0486c68 3972 found->bytes_may_use = 0;
6af3e3ad 3973 found->full = 0;
4f4db217 3974 found->max_extent_size = 0;
0e4f8f88 3975 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3976 found->chunk_alloc = 0;
fdb5effd
JB
3977 found->flush = 0;
3978 init_waitqueue_head(&found->wait);
633c0aad 3979 INIT_LIST_HEAD(&found->ro_bgs);
957780eb
JB
3980 INIT_LIST_HEAD(&found->tickets);
3981 INIT_LIST_HEAD(&found->priority_tickets);
6ab0a202
JM
3982
3983 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3984 info->space_info_kobj, "%s",
3985 alloc_name(found->flags));
3986 if (ret) {
3987 kfree(found);
3988 return ret;
3989 }
3990
593060d7 3991 *space_info = found;
4184ea7f 3992 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3993 if (flags & BTRFS_BLOCK_GROUP_DATA)
3994 info->data_sinfo = found;
6ab0a202
JM
3995
3996 return ret;
593060d7
CM
3997}
3998
8790d502
CM
3999static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4000{
899c81ea
ID
4001 u64 extra_flags = chunk_to_extended(flags) &
4002 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4003
de98ced9 4004 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4005 if (flags & BTRFS_BLOCK_GROUP_DATA)
4006 fs_info->avail_data_alloc_bits |= extra_flags;
4007 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4008 fs_info->avail_metadata_alloc_bits |= extra_flags;
4009 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4010 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4011 write_sequnlock(&fs_info->profiles_lock);
8790d502 4012}
593060d7 4013
fc67c450
ID
4014/*
4015 * returns target flags in extended format or 0 if restripe for this
4016 * chunk_type is not in progress
c6664b42
ID
4017 *
4018 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4019 */
4020static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4021{
4022 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4023 u64 target = 0;
4024
fc67c450
ID
4025 if (!bctl)
4026 return 0;
4027
4028 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4029 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4030 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4031 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4032 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4033 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4034 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4035 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4036 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4037 }
4038
4039 return target;
4040}
4041
a46d11a8
ID
4042/*
4043 * @flags: available profiles in extended format (see ctree.h)
4044 *
e4d8ec0f
ID
4045 * Returns reduced profile in chunk format. If profile changing is in
4046 * progress (either running or paused) picks the target profile (if it's
4047 * already available), otherwise falls back to plain reducing.
a46d11a8 4048 */
48a3b636 4049static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 4050{
95669976 4051 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 4052 u64 target;
9c170b26
ZL
4053 u64 raid_type;
4054 u64 allowed = 0;
a061fc8d 4055
fc67c450
ID
4056 /*
4057 * see if restripe for this chunk_type is in progress, if so
4058 * try to reduce to the target profile
4059 */
e4d8ec0f 4060 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
4061 target = get_restripe_target(root->fs_info, flags);
4062 if (target) {
4063 /* pick target profile only if it's already available */
4064 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 4065 spin_unlock(&root->fs_info->balance_lock);
fc67c450 4066 return extended_to_chunk(target);
e4d8ec0f
ID
4067 }
4068 }
4069 spin_unlock(&root->fs_info->balance_lock);
4070
53b381b3 4071 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4072 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4073 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4074 allowed |= btrfs_raid_group[raid_type];
4075 }
4076 allowed &= flags;
4077
4078 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4079 allowed = BTRFS_BLOCK_GROUP_RAID6;
4080 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4081 allowed = BTRFS_BLOCK_GROUP_RAID5;
4082 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4083 allowed = BTRFS_BLOCK_GROUP_RAID10;
4084 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4085 allowed = BTRFS_BLOCK_GROUP_RAID1;
4086 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4087 allowed = BTRFS_BLOCK_GROUP_RAID0;
4088
4089 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4090
4091 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4092}
4093
f8213bdc 4094static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 4095{
de98ced9 4096 unsigned seq;
f8213bdc 4097 u64 flags;
de98ced9
MX
4098
4099 do {
f8213bdc 4100 flags = orig_flags;
de98ced9
MX
4101 seq = read_seqbegin(&root->fs_info->profiles_lock);
4102
4103 if (flags & BTRFS_BLOCK_GROUP_DATA)
4104 flags |= root->fs_info->avail_data_alloc_bits;
4105 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4106 flags |= root->fs_info->avail_system_alloc_bits;
4107 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4108 flags |= root->fs_info->avail_metadata_alloc_bits;
4109 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 4110
b742bb82 4111 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
4112}
4113
6d07bcec 4114u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 4115{
b742bb82 4116 u64 flags;
53b381b3 4117 u64 ret;
9ed74f2d 4118
b742bb82
YZ
4119 if (data)
4120 flags = BTRFS_BLOCK_GROUP_DATA;
4121 else if (root == root->fs_info->chunk_root)
4122 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4123 else
b742bb82 4124 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4125
53b381b3
DW
4126 ret = get_alloc_profile(root, flags);
4127 return ret;
6a63209f 4128}
9ed74f2d 4129
4ceff079 4130int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 4131{
6a63209f 4132 struct btrfs_space_info *data_sinfo;
0ca1f7ce 4133 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 4134 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4135 u64 used;
94b947b2 4136 int ret = 0;
c99f1b0c
ZL
4137 int need_commit = 2;
4138 int have_pinned_space;
6a63209f 4139
6a63209f 4140 /* make sure bytes are sectorsize aligned */
fda2832f 4141 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 4142
9dced186 4143 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4144 need_commit = 0;
9dced186 4145 ASSERT(current->journal_info);
0af3d00b
JB
4146 }
4147
b4d7c3c9 4148 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4149 if (!data_sinfo)
4150 goto alloc;
9ed74f2d 4151
6a63209f
JB
4152again:
4153 /* make sure we have enough space to handle the data first */
4154 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
4155 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4156 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4157 data_sinfo->bytes_may_use;
ab6e2410
JB
4158
4159 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4160 struct btrfs_trans_handle *trans;
9ed74f2d 4161
6a63209f
JB
4162 /*
4163 * if we don't have enough free bytes in this space then we need
4164 * to alloc a new chunk.
4165 */
b9fd47cd 4166 if (!data_sinfo->full) {
6a63209f 4167 u64 alloc_target;
9ed74f2d 4168
0e4f8f88 4169 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4170 spin_unlock(&data_sinfo->lock);
33b4d47f 4171alloc:
6a63209f 4172 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4173 /*
4174 * It is ugly that we don't call nolock join
4175 * transaction for the free space inode case here.
4176 * But it is safe because we only do the data space
4177 * reservation for the free space cache in the
4178 * transaction context, the common join transaction
4179 * just increase the counter of the current transaction
4180 * handler, doesn't try to acquire the trans_lock of
4181 * the fs.
4182 */
7a7eaa40 4183 trans = btrfs_join_transaction(root);
a22285a6
YZ
4184 if (IS_ERR(trans))
4185 return PTR_ERR(trans);
9ed74f2d 4186
6a63209f 4187 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
4188 alloc_target,
4189 CHUNK_ALLOC_NO_FORCE);
6a63209f 4190 btrfs_end_transaction(trans, root);
d52a5b5f
MX
4191 if (ret < 0) {
4192 if (ret != -ENOSPC)
4193 return ret;
c99f1b0c
ZL
4194 else {
4195 have_pinned_space = 1;
d52a5b5f 4196 goto commit_trans;
c99f1b0c 4197 }
d52a5b5f 4198 }
9ed74f2d 4199
b4d7c3c9
LZ
4200 if (!data_sinfo)
4201 data_sinfo = fs_info->data_sinfo;
4202
6a63209f
JB
4203 goto again;
4204 }
f2bb8f5c
JB
4205
4206 /*
b150a4f1 4207 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4208 * allocation, and no removed chunk in current transaction,
4209 * don't bother committing the transaction.
f2bb8f5c 4210 */
c99f1b0c
ZL
4211 have_pinned_space = percpu_counter_compare(
4212 &data_sinfo->total_bytes_pinned,
4213 used + bytes - data_sinfo->total_bytes);
6a63209f 4214 spin_unlock(&data_sinfo->lock);
6a63209f 4215
4e06bdd6 4216 /* commit the current transaction and try again */
d52a5b5f 4217commit_trans:
c99f1b0c 4218 if (need_commit &&
a4abeea4 4219 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4220 need_commit--;
b150a4f1 4221
e1746e83
ZL
4222 if (need_commit > 0) {
4223 btrfs_start_delalloc_roots(fs_info, 0, -1);
578def7c 4224 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
e1746e83 4225 }
9a4e7276 4226
7a7eaa40 4227 trans = btrfs_join_transaction(root);
a22285a6
YZ
4228 if (IS_ERR(trans))
4229 return PTR_ERR(trans);
c99f1b0c 4230 if (have_pinned_space >= 0 ||
3204d33c
JB
4231 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4232 &trans->transaction->flags) ||
c99f1b0c 4233 need_commit > 0) {
94b947b2
ZL
4234 ret = btrfs_commit_transaction(trans, root);
4235 if (ret)
4236 return ret;
d7c15171 4237 /*
c2d6cb16
FM
4238 * The cleaner kthread might still be doing iput
4239 * operations. Wait for it to finish so that
4240 * more space is released.
d7c15171 4241 */
c2d6cb16
FM
4242 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4243 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4244 goto again;
4245 } else {
4246 btrfs_end_transaction(trans, root);
4247 }
4e06bdd6 4248 }
9ed74f2d 4249
cab45e22
JM
4250 trace_btrfs_space_reservation(root->fs_info,
4251 "space_info:enospc",
4252 data_sinfo->flags, bytes, 1);
6a63209f
JB
4253 return -ENOSPC;
4254 }
4255 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4256 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4257 data_sinfo->flags, bytes, 1);
6a63209f 4258 spin_unlock(&data_sinfo->lock);
6a63209f 4259
237c0e9f 4260 return ret;
9ed74f2d 4261}
6a63209f 4262
4ceff079
QW
4263/*
4264 * New check_data_free_space() with ability for precious data reservation
4265 * Will replace old btrfs_check_data_free_space(), but for patch split,
4266 * add a new function first and then replace it.
4267 */
7cf5b976 4268int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079
QW
4269{
4270 struct btrfs_root *root = BTRFS_I(inode)->root;
4271 int ret;
4272
4273 /* align the range */
4274 len = round_up(start + len, root->sectorsize) -
4275 round_down(start, root->sectorsize);
4276 start = round_down(start, root->sectorsize);
4277
4278 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4279 if (ret < 0)
4280 return ret;
4281
1e5ec2e7 4282 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4ceff079 4283 ret = btrfs_qgroup_reserve_data(inode, start, len);
1e5ec2e7
JB
4284 if (ret)
4285 btrfs_free_reserved_data_space_noquota(inode, start, len);
4ceff079
QW
4286 return ret;
4287}
4288
4ceff079
QW
4289/*
4290 * Called if we need to clear a data reservation for this inode
4291 * Normally in a error case.
4292 *
51773bec
QW
4293 * This one will *NOT* use accurate qgroup reserved space API, just for case
4294 * which we can't sleep and is sure it won't affect qgroup reserved space.
4295 * Like clear_bit_hook().
4ceff079 4296 */
51773bec
QW
4297void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4298 u64 len)
4ceff079
QW
4299{
4300 struct btrfs_root *root = BTRFS_I(inode)->root;
4301 struct btrfs_space_info *data_sinfo;
4302
4303 /* Make sure the range is aligned to sectorsize */
4304 len = round_up(start + len, root->sectorsize) -
4305 round_down(start, root->sectorsize);
4306 start = round_down(start, root->sectorsize);
4307
4ceff079
QW
4308 data_sinfo = root->fs_info->data_sinfo;
4309 spin_lock(&data_sinfo->lock);
4310 if (WARN_ON(data_sinfo->bytes_may_use < len))
4311 data_sinfo->bytes_may_use = 0;
4312 else
4313 data_sinfo->bytes_may_use -= len;
4314 trace_btrfs_space_reservation(root->fs_info, "space_info",
4315 data_sinfo->flags, len, 0);
4316 spin_unlock(&data_sinfo->lock);
4317}
4318
51773bec
QW
4319/*
4320 * Called if we need to clear a data reservation for this inode
4321 * Normally in a error case.
4322 *
01327610 4323 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4324 * space framework.
4325 */
4326void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4327{
0c476a5d
JM
4328 struct btrfs_root *root = BTRFS_I(inode)->root;
4329
4330 /* Make sure the range is aligned to sectorsize */
4331 len = round_up(start + len, root->sectorsize) -
4332 round_down(start, root->sectorsize);
4333 start = round_down(start, root->sectorsize);
4334
51773bec
QW
4335 btrfs_free_reserved_data_space_noquota(inode, start, len);
4336 btrfs_qgroup_free_data(inode, start, len);
4337}
4338
97e728d4 4339static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4340{
97e728d4
JB
4341 struct list_head *head = &info->space_info;
4342 struct btrfs_space_info *found;
e3ccfa98 4343
97e728d4
JB
4344 rcu_read_lock();
4345 list_for_each_entry_rcu(found, head, list) {
4346 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4347 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4348 }
97e728d4 4349 rcu_read_unlock();
e3ccfa98
JB
4350}
4351
3c76cd84
MX
4352static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4353{
4354 return (global->size << 1);
4355}
4356
e5bc2458 4357static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4358 struct btrfs_space_info *sinfo, int force)
32c00aff 4359{
fb25e914 4360 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4361 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4362 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4363 u64 thresh;
e3ccfa98 4364
0e4f8f88
CM
4365 if (force == CHUNK_ALLOC_FORCE)
4366 return 1;
4367
fb25e914
JB
4368 /*
4369 * We need to take into account the global rsv because for all intents
4370 * and purposes it's used space. Don't worry about locking the
4371 * global_rsv, it doesn't change except when the transaction commits.
4372 */
54338b5c 4373 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4374 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4375
0e4f8f88
CM
4376 /*
4377 * in limited mode, we want to have some free space up to
4378 * about 1% of the FS size.
4379 */
4380 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4381 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
ee22184b 4382 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4383
4384 if (num_bytes - num_allocated < thresh)
4385 return 1;
4386 }
0e4f8f88 4387
ee22184b 4388 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4389 return 0;
424499db 4390 return 1;
32c00aff
JB
4391}
4392
39c2d7fa 4393static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4394{
4395 u64 num_dev;
4396
53b381b3
DW
4397 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4398 BTRFS_BLOCK_GROUP_RAID0 |
4399 BTRFS_BLOCK_GROUP_RAID5 |
4400 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4401 num_dev = root->fs_info->fs_devices->rw_devices;
4402 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4403 num_dev = 2;
4404 else
4405 num_dev = 1; /* DUP or single */
4406
39c2d7fa 4407 return num_dev;
15d1ff81
LB
4408}
4409
39c2d7fa
FM
4410/*
4411 * If @is_allocation is true, reserve space in the system space info necessary
4412 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4413 * removing a chunk.
4414 */
4415void check_system_chunk(struct btrfs_trans_handle *trans,
4416 struct btrfs_root *root,
4617ea3a 4417 u64 type)
15d1ff81
LB
4418{
4419 struct btrfs_space_info *info;
4420 u64 left;
4421 u64 thresh;
4fbcdf66 4422 int ret = 0;
39c2d7fa 4423 u64 num_devs;
4fbcdf66
FM
4424
4425 /*
4426 * Needed because we can end up allocating a system chunk and for an
4427 * atomic and race free space reservation in the chunk block reserve.
4428 */
4429 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4430
4431 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4432 spin_lock(&info->lock);
4433 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4434 info->bytes_reserved - info->bytes_readonly -
4435 info->bytes_may_use;
15d1ff81
LB
4436 spin_unlock(&info->lock);
4437
39c2d7fa
FM
4438 num_devs = get_profile_num_devs(root, type);
4439
4440 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4441 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4442 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4443
3cdde224 4444 if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
c2cf52eb
SK
4445 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4446 left, thresh, type);
ab8d0fc4 4447 dump_space_info(root->fs_info, info, 0, 0);
15d1ff81
LB
4448 }
4449
4450 if (left < thresh) {
4451 u64 flags;
4452
4453 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4454 /*
4455 * Ignore failure to create system chunk. We might end up not
4456 * needing it, as we might not need to COW all nodes/leafs from
4457 * the paths we visit in the chunk tree (they were already COWed
4458 * or created in the current transaction for example).
4459 */
4460 ret = btrfs_alloc_chunk(trans, root, flags);
4461 }
4462
4463 if (!ret) {
4464 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4465 &root->fs_info->chunk_block_rsv,
4466 thresh, BTRFS_RESERVE_NO_FLUSH);
4467 if (!ret)
4468 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4469 }
4470}
4471
28b737f6
LB
4472/*
4473 * If force is CHUNK_ALLOC_FORCE:
4474 * - return 1 if it successfully allocates a chunk,
4475 * - return errors including -ENOSPC otherwise.
4476 * If force is NOT CHUNK_ALLOC_FORCE:
4477 * - return 0 if it doesn't need to allocate a new chunk,
4478 * - return 1 if it successfully allocates a chunk,
4479 * - return errors including -ENOSPC otherwise.
4480 */
6324fbf3 4481static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4482 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4483{
6324fbf3 4484 struct btrfs_space_info *space_info;
97e728d4 4485 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4486 int wait_for_alloc = 0;
9ed74f2d 4487 int ret = 0;
9ed74f2d 4488
c6b305a8
JB
4489 /* Don't re-enter if we're already allocating a chunk */
4490 if (trans->allocating_chunk)
4491 return -ENOSPC;
4492
6324fbf3 4493 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4494 if (!space_info) {
4495 ret = update_space_info(extent_root->fs_info, flags,
e40edf2d 4496 0, 0, 0, &space_info);
79787eaa 4497 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4498 }
79787eaa 4499 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4500
6d74119f 4501again:
25179201 4502 spin_lock(&space_info->lock);
9e622d6b 4503 if (force < space_info->force_alloc)
0e4f8f88 4504 force = space_info->force_alloc;
25179201 4505 if (space_info->full) {
09fb99a6
FDBM
4506 if (should_alloc_chunk(extent_root, space_info, force))
4507 ret = -ENOSPC;
4508 else
4509 ret = 0;
25179201 4510 spin_unlock(&space_info->lock);
09fb99a6 4511 return ret;
9ed74f2d
JB
4512 }
4513
698d0082 4514 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4515 spin_unlock(&space_info->lock);
6d74119f
JB
4516 return 0;
4517 } else if (space_info->chunk_alloc) {
4518 wait_for_alloc = 1;
4519 } else {
4520 space_info->chunk_alloc = 1;
9ed74f2d 4521 }
0e4f8f88 4522
25179201 4523 spin_unlock(&space_info->lock);
9ed74f2d 4524
6d74119f
JB
4525 mutex_lock(&fs_info->chunk_mutex);
4526
4527 /*
4528 * The chunk_mutex is held throughout the entirety of a chunk
4529 * allocation, so once we've acquired the chunk_mutex we know that the
4530 * other guy is done and we need to recheck and see if we should
4531 * allocate.
4532 */
4533 if (wait_for_alloc) {
4534 mutex_unlock(&fs_info->chunk_mutex);
4535 wait_for_alloc = 0;
4536 goto again;
4537 }
4538
c6b305a8
JB
4539 trans->allocating_chunk = true;
4540
67377734
JB
4541 /*
4542 * If we have mixed data/metadata chunks we want to make sure we keep
4543 * allocating mixed chunks instead of individual chunks.
4544 */
4545 if (btrfs_mixed_space_info(space_info))
4546 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4547
97e728d4
JB
4548 /*
4549 * if we're doing a data chunk, go ahead and make sure that
4550 * we keep a reasonable number of metadata chunks allocated in the
4551 * FS as well.
4552 */
9ed74f2d 4553 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4554 fs_info->data_chunk_allocations++;
4555 if (!(fs_info->data_chunk_allocations %
4556 fs_info->metadata_ratio))
4557 force_metadata_allocation(fs_info);
9ed74f2d
JB
4558 }
4559
15d1ff81
LB
4560 /*
4561 * Check if we have enough space in SYSTEM chunk because we may need
4562 * to update devices.
4563 */
4617ea3a 4564 check_system_chunk(trans, extent_root, flags);
15d1ff81 4565
2b82032c 4566 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4567 trans->allocating_chunk = false;
92b8e897 4568
9ed74f2d 4569 spin_lock(&space_info->lock);
a81cb9a2
AO
4570 if (ret < 0 && ret != -ENOSPC)
4571 goto out;
9ed74f2d 4572 if (ret)
6324fbf3 4573 space_info->full = 1;
424499db
YZ
4574 else
4575 ret = 1;
6d74119f 4576
0e4f8f88 4577 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4578out:
6d74119f 4579 space_info->chunk_alloc = 0;
9ed74f2d 4580 spin_unlock(&space_info->lock);
a25c75d5 4581 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4582 /*
4583 * When we allocate a new chunk we reserve space in the chunk block
4584 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4585 * add new nodes/leafs to it if we end up needing to do it when
4586 * inserting the chunk item and updating device items as part of the
4587 * second phase of chunk allocation, performed by
4588 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4589 * large number of new block groups to create in our transaction
4590 * handle's new_bgs list to avoid exhausting the chunk block reserve
4591 * in extreme cases - like having a single transaction create many new
4592 * block groups when starting to write out the free space caches of all
4593 * the block groups that were made dirty during the lifetime of the
4594 * transaction.
4595 */
d9a0540a 4596 if (trans->can_flush_pending_bgs &&
ee22184b 4597 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
64b63580 4598 btrfs_create_pending_block_groups(trans, extent_root);
00d80e34
FM
4599 btrfs_trans_release_chunk_metadata(trans);
4600 }
0f9dd46c 4601 return ret;
6324fbf3 4602}
9ed74f2d 4603
a80c8dcf
JB
4604static int can_overcommit(struct btrfs_root *root,
4605 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4606 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4607{
957780eb
JB
4608 struct btrfs_block_rsv *global_rsv;
4609 u64 profile;
3c76cd84 4610 u64 space_size;
a80c8dcf
JB
4611 u64 avail;
4612 u64 used;
4613
957780eb
JB
4614 /* Don't overcommit when in mixed mode. */
4615 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4616 return 0;
4617
4618 BUG_ON(root->fs_info == NULL);
4619 global_rsv = &root->fs_info->global_block_rsv;
4620 profile = btrfs_get_alloc_profile(root, 0);
a80c8dcf 4621 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4622 space_info->bytes_pinned + space_info->bytes_readonly;
4623
96f1bb57
JB
4624 /*
4625 * We only want to allow over committing if we have lots of actual space
4626 * free, but if we don't have enough space to handle the global reserve
4627 * space then we could end up having a real enospc problem when trying
4628 * to allocate a chunk or some other such important allocation.
4629 */
3c76cd84
MX
4630 spin_lock(&global_rsv->lock);
4631 space_size = calc_global_rsv_need_space(global_rsv);
4632 spin_unlock(&global_rsv->lock);
4633 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4634 return 0;
4635
4636 used += space_info->bytes_may_use;
a80c8dcf
JB
4637
4638 spin_lock(&root->fs_info->free_chunk_lock);
4639 avail = root->fs_info->free_chunk_space;
4640 spin_unlock(&root->fs_info->free_chunk_lock);
4641
4642 /*
4643 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4644 * space is actually useable. For raid56, the space info used
4645 * doesn't include the parity drive, so we don't have to
4646 * change the math
a80c8dcf
JB
4647 */
4648 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4649 BTRFS_BLOCK_GROUP_RAID1 |
4650 BTRFS_BLOCK_GROUP_RAID10))
4651 avail >>= 1;
4652
4653 /*
561c294d
MX
4654 * If we aren't flushing all things, let us overcommit up to
4655 * 1/2th of the space. If we can flush, don't let us overcommit
4656 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4657 */
08e007d2 4658 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4659 avail >>= 3;
a80c8dcf 4660 else
14575aef 4661 avail >>= 1;
a80c8dcf 4662
14575aef 4663 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4664 return 1;
4665 return 0;
4666}
4667
48a3b636 4668static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4669 unsigned long nr_pages, int nr_items)
da633a42
MX
4670{
4671 struct super_block *sb = root->fs_info->sb;
da633a42 4672
925a6efb
JB
4673 if (down_read_trylock(&sb->s_umount)) {
4674 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4675 up_read(&sb->s_umount);
4676 } else {
da633a42
MX
4677 /*
4678 * We needn't worry the filesystem going from r/w to r/o though
4679 * we don't acquire ->s_umount mutex, because the filesystem
4680 * should guarantee the delalloc inodes list be empty after
4681 * the filesystem is readonly(all dirty pages are written to
4682 * the disk).
4683 */
6c255e67 4684 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4685 if (!current->journal_info)
578def7c
FM
4686 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4687 0, (u64)-1);
da633a42
MX
4688 }
4689}
4690
18cd8ea6
MX
4691static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4692{
4693 u64 bytes;
4694 int nr;
4695
4696 bytes = btrfs_calc_trans_metadata_size(root, 1);
4697 nr = (int)div64_u64(to_reclaim, bytes);
4698 if (!nr)
4699 nr = 1;
4700 return nr;
4701}
4702
ee22184b 4703#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4704
9ed74f2d 4705/*
5da9d01b 4706 * shrink metadata reservation for delalloc
9ed74f2d 4707 */
f4c738c2
JB
4708static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4709 bool wait_ordered)
5da9d01b 4710{
0ca1f7ce 4711 struct btrfs_block_rsv *block_rsv;
0019f10d 4712 struct btrfs_space_info *space_info;
663350ac 4713 struct btrfs_trans_handle *trans;
f4c738c2 4714 u64 delalloc_bytes;
5da9d01b 4715 u64 max_reclaim;
b1953bce 4716 long time_left;
d3ee29e3
MX
4717 unsigned long nr_pages;
4718 int loops;
b0244199 4719 int items;
08e007d2 4720 enum btrfs_reserve_flush_enum flush;
5da9d01b 4721
c61a16a7 4722 /* Calc the number of the pages we need flush for space reservation */
b0244199 4723 items = calc_reclaim_items_nr(root, to_reclaim);
8eb0dfdb 4724 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4725
663350ac 4726 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4727 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4728 space_info = block_rsv->space_info;
bf9022e0 4729
963d678b
MX
4730 delalloc_bytes = percpu_counter_sum_positive(
4731 &root->fs_info->delalloc_bytes);
f4c738c2 4732 if (delalloc_bytes == 0) {
fdb5effd 4733 if (trans)
f4c738c2 4734 return;
38c135af 4735 if (wait_ordered)
578def7c
FM
4736 btrfs_wait_ordered_roots(root->fs_info, items,
4737 0, (u64)-1);
f4c738c2 4738 return;
fdb5effd
JB
4739 }
4740
d3ee29e3 4741 loops = 0;
f4c738c2
JB
4742 while (delalloc_bytes && loops < 3) {
4743 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4744 nr_pages = max_reclaim >> PAGE_SHIFT;
6c255e67 4745 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4746 /*
4747 * We need to wait for the async pages to actually start before
4748 * we do anything.
4749 */
9f3a074d
MX
4750 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4751 if (!max_reclaim)
4752 goto skip_async;
4753
4754 if (max_reclaim <= nr_pages)
4755 max_reclaim = 0;
4756 else
4757 max_reclaim -= nr_pages;
dea31f52 4758
9f3a074d
MX
4759 wait_event(root->fs_info->async_submit_wait,
4760 atomic_read(&root->fs_info->async_delalloc_pages) <=
4761 (int)max_reclaim);
4762skip_async:
08e007d2
MX
4763 if (!trans)
4764 flush = BTRFS_RESERVE_FLUSH_ALL;
4765 else
4766 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4767 spin_lock(&space_info->lock);
08e007d2 4768 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4769 spin_unlock(&space_info->lock);
4770 break;
4771 }
957780eb
JB
4772 if (list_empty(&space_info->tickets) &&
4773 list_empty(&space_info->priority_tickets)) {
4774 spin_unlock(&space_info->lock);
4775 break;
4776 }
0019f10d 4777 spin_unlock(&space_info->lock);
5da9d01b 4778
36e39c40 4779 loops++;
f104d044 4780 if (wait_ordered && !trans) {
578def7c
FM
4781 btrfs_wait_ordered_roots(root->fs_info, items,
4782 0, (u64)-1);
f104d044 4783 } else {
f4c738c2 4784 time_left = schedule_timeout_killable(1);
f104d044
JB
4785 if (time_left)
4786 break;
4787 }
963d678b
MX
4788 delalloc_bytes = percpu_counter_sum_positive(
4789 &root->fs_info->delalloc_bytes);
5da9d01b 4790 }
5da9d01b
YZ
4791}
4792
663350ac
JB
4793/**
4794 * maybe_commit_transaction - possibly commit the transaction if its ok to
4795 * @root - the root we're allocating for
4796 * @bytes - the number of bytes we want to reserve
4797 * @force - force the commit
8bb8ab2e 4798 *
663350ac
JB
4799 * This will check to make sure that committing the transaction will actually
4800 * get us somewhere and then commit the transaction if it does. Otherwise it
4801 * will return -ENOSPC.
8bb8ab2e 4802 */
663350ac
JB
4803static int may_commit_transaction(struct btrfs_root *root,
4804 struct btrfs_space_info *space_info,
4805 u64 bytes, int force)
4806{
4807 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4808 struct btrfs_trans_handle *trans;
4809
4810 trans = (struct btrfs_trans_handle *)current->journal_info;
4811 if (trans)
4812 return -EAGAIN;
4813
4814 if (force)
4815 goto commit;
4816
4817 /* See if there is enough pinned space to make this reservation */
b150a4f1 4818 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4819 bytes) >= 0)
663350ac 4820 goto commit;
663350ac
JB
4821
4822 /*
4823 * See if there is some space in the delayed insertion reservation for
4824 * this reservation.
4825 */
4826 if (space_info != delayed_rsv->space_info)
4827 return -ENOSPC;
4828
4829 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4830 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4831 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4832 spin_unlock(&delayed_rsv->lock);
4833 return -ENOSPC;
4834 }
4835 spin_unlock(&delayed_rsv->lock);
4836
4837commit:
4838 trans = btrfs_join_transaction(root);
4839 if (IS_ERR(trans))
4840 return -ENOSPC;
4841
4842 return btrfs_commit_transaction(trans, root);
4843}
4844
957780eb
JB
4845struct reserve_ticket {
4846 u64 bytes;
4847 int error;
4848 struct list_head list;
4849 wait_queue_head_t wait;
96c3f433
JB
4850};
4851
4852static int flush_space(struct btrfs_root *root,
4853 struct btrfs_space_info *space_info, u64 num_bytes,
4854 u64 orig_bytes, int state)
4855{
4856 struct btrfs_trans_handle *trans;
4857 int nr;
f4c738c2 4858 int ret = 0;
96c3f433
JB
4859
4860 switch (state) {
96c3f433
JB
4861 case FLUSH_DELAYED_ITEMS_NR:
4862 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4863 if (state == FLUSH_DELAYED_ITEMS_NR)
4864 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4865 else
96c3f433 4866 nr = -1;
18cd8ea6 4867
96c3f433
JB
4868 trans = btrfs_join_transaction(root);
4869 if (IS_ERR(trans)) {
4870 ret = PTR_ERR(trans);
4871 break;
4872 }
4873 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4874 btrfs_end_transaction(trans, root);
4875 break;
67b0fd63
JB
4876 case FLUSH_DELALLOC:
4877 case FLUSH_DELALLOC_WAIT:
24af7dd1 4878 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4879 state == FLUSH_DELALLOC_WAIT);
4880 break;
ea658bad
JB
4881 case ALLOC_CHUNK:
4882 trans = btrfs_join_transaction(root);
4883 if (IS_ERR(trans)) {
4884 ret = PTR_ERR(trans);
4885 break;
4886 }
4887 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4888 btrfs_get_alloc_profile(root, 0),
4889 CHUNK_ALLOC_NO_FORCE);
4890 btrfs_end_transaction(trans, root);
eecba891 4891 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4892 ret = 0;
4893 break;
96c3f433
JB
4894 case COMMIT_TRANS:
4895 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4896 break;
4897 default:
4898 ret = -ENOSPC;
4899 break;
4900 }
4901
f376df2b
JB
4902 trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes,
4903 orig_bytes, state, ret);
96c3f433
JB
4904 return ret;
4905}
21c7e756
MX
4906
4907static inline u64
4908btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4909 struct btrfs_space_info *space_info)
4910{
957780eb 4911 struct reserve_ticket *ticket;
21c7e756
MX
4912 u64 used;
4913 u64 expected;
957780eb 4914 u64 to_reclaim = 0;
21c7e756 4915
957780eb
JB
4916 list_for_each_entry(ticket, &space_info->tickets, list)
4917 to_reclaim += ticket->bytes;
4918 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4919 to_reclaim += ticket->bytes;
4920 if (to_reclaim)
4921 return to_reclaim;
21c7e756 4922
e0af2484
WX
4923 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4924 if (can_overcommit(root, space_info, to_reclaim,
4925 BTRFS_RESERVE_FLUSH_ALL))
4926 return 0;
4927
21c7e756
MX
4928 used = space_info->bytes_used + space_info->bytes_reserved +
4929 space_info->bytes_pinned + space_info->bytes_readonly +
4930 space_info->bytes_may_use;
ee22184b 4931 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
21c7e756
MX
4932 expected = div_factor_fine(space_info->total_bytes, 95);
4933 else
4934 expected = div_factor_fine(space_info->total_bytes, 90);
4935
4936 if (used > expected)
4937 to_reclaim = used - expected;
4938 else
4939 to_reclaim = 0;
4940 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4941 space_info->bytes_reserved);
21c7e756
MX
4942 return to_reclaim;
4943}
4944
4945static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
87241c2e 4946 struct btrfs_root *root, u64 used)
21c7e756 4947{
365c5313
JB
4948 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4949
4950 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4951 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4952 return 0;
4953
87241c2e 4954 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
d38b349c
JB
4955 return 0;
4956
87241c2e
JB
4957 return (used >= thresh && !btrfs_fs_closing(root->fs_info) &&
4958 !test_bit(BTRFS_FS_STATE_REMOUNTING,
4959 &root->fs_info->fs_state));
21c7e756
MX
4960}
4961
957780eb 4962static void wake_all_tickets(struct list_head *head)
21c7e756 4963{
957780eb 4964 struct reserve_ticket *ticket;
25ce459c 4965
957780eb
JB
4966 while (!list_empty(head)) {
4967 ticket = list_first_entry(head, struct reserve_ticket, list);
4968 list_del_init(&ticket->list);
4969 ticket->error = -ENOSPC;
4970 wake_up(&ticket->wait);
21c7e756 4971 }
21c7e756
MX
4972}
4973
957780eb
JB
4974/*
4975 * This is for normal flushers, we can wait all goddamned day if we want to. We
4976 * will loop and continuously try to flush as long as we are making progress.
4977 * We count progress as clearing off tickets each time we have to loop.
4978 */
21c7e756
MX
4979static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4980{
4981 struct btrfs_fs_info *fs_info;
4982 struct btrfs_space_info *space_info;
4983 u64 to_reclaim;
4984 int flush_state;
957780eb 4985 int commit_cycles = 0;
ce129655 4986 u64 last_tickets_id;
21c7e756
MX
4987
4988 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4989 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4990
957780eb 4991 spin_lock(&space_info->lock);
21c7e756
MX
4992 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4993 space_info);
957780eb
JB
4994 if (!to_reclaim) {
4995 space_info->flush = 0;
4996 spin_unlock(&space_info->lock);
21c7e756 4997 return;
957780eb 4998 }
ce129655 4999 last_tickets_id = space_info->tickets_id;
957780eb 5000 spin_unlock(&space_info->lock);
21c7e756
MX
5001
5002 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb
JB
5003 do {
5004 struct reserve_ticket *ticket;
5005 int ret;
5006
5007 ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
5008 to_reclaim, flush_state);
5009 spin_lock(&space_info->lock);
5010 if (list_empty(&space_info->tickets)) {
5011 space_info->flush = 0;
5012 spin_unlock(&space_info->lock);
5013 return;
5014 }
5015 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5016 space_info);
5017 ticket = list_first_entry(&space_info->tickets,
5018 struct reserve_ticket, list);
ce129655 5019 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5020 flush_state++;
5021 } else {
ce129655 5022 last_tickets_id = space_info->tickets_id;
957780eb
JB
5023 flush_state = FLUSH_DELAYED_ITEMS_NR;
5024 if (commit_cycles)
5025 commit_cycles--;
5026 }
5027
5028 if (flush_state > COMMIT_TRANS) {
5029 commit_cycles++;
5030 if (commit_cycles > 2) {
5031 wake_all_tickets(&space_info->tickets);
5032 space_info->flush = 0;
5033 } else {
5034 flush_state = FLUSH_DELAYED_ITEMS_NR;
5035 }
5036 }
5037 spin_unlock(&space_info->lock);
5038 } while (flush_state <= COMMIT_TRANS);
5039}
5040
5041void btrfs_init_async_reclaim_work(struct work_struct *work)
5042{
5043 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5044}
5045
5046static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5047 struct btrfs_space_info *space_info,
5048 struct reserve_ticket *ticket)
5049{
5050 u64 to_reclaim;
5051 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5052
5053 spin_lock(&space_info->lock);
5054 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5055 space_info);
5056 if (!to_reclaim) {
5057 spin_unlock(&space_info->lock);
5058 return;
5059 }
5060 spin_unlock(&space_info->lock);
5061
21c7e756
MX
5062 do {
5063 flush_space(fs_info->fs_root, space_info, to_reclaim,
5064 to_reclaim, flush_state);
5065 flush_state++;
957780eb
JB
5066 spin_lock(&space_info->lock);
5067 if (ticket->bytes == 0) {
5068 spin_unlock(&space_info->lock);
21c7e756 5069 return;
957780eb
JB
5070 }
5071 spin_unlock(&space_info->lock);
5072
5073 /*
5074 * Priority flushers can't wait on delalloc without
5075 * deadlocking.
5076 */
5077 if (flush_state == FLUSH_DELALLOC ||
5078 flush_state == FLUSH_DELALLOC_WAIT)
5079 flush_state = ALLOC_CHUNK;
365c5313 5080 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5081}
5082
957780eb
JB
5083static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5084 struct btrfs_space_info *space_info,
5085 struct reserve_ticket *ticket, u64 orig_bytes)
5086
21c7e756 5087{
957780eb
JB
5088 DEFINE_WAIT(wait);
5089 int ret = 0;
5090
5091 spin_lock(&space_info->lock);
5092 while (ticket->bytes > 0 && ticket->error == 0) {
5093 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5094 if (ret) {
5095 ret = -EINTR;
5096 break;
5097 }
5098 spin_unlock(&space_info->lock);
5099
5100 schedule();
5101
5102 finish_wait(&ticket->wait, &wait);
5103 spin_lock(&space_info->lock);
5104 }
5105 if (!ret)
5106 ret = ticket->error;
5107 if (!list_empty(&ticket->list))
5108 list_del_init(&ticket->list);
5109 if (ticket->bytes && ticket->bytes < orig_bytes) {
5110 u64 num_bytes = orig_bytes - ticket->bytes;
5111 space_info->bytes_may_use -= num_bytes;
5112 trace_btrfs_space_reservation(fs_info, "space_info",
5113 space_info->flags, num_bytes, 0);
5114 }
5115 spin_unlock(&space_info->lock);
5116
5117 return ret;
21c7e756
MX
5118}
5119
4a92b1b8
JB
5120/**
5121 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5122 * @root - the root we're allocating for
957780eb 5123 * @space_info - the space info we want to allocate from
4a92b1b8 5124 * @orig_bytes - the number of bytes we want
48fc7f7e 5125 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5126 *
01327610 5127 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5128 * with the block_rsv. If there is not enough space it will make an attempt to
5129 * flush out space to make room. It will do this by flushing delalloc if
5130 * possible or committing the transaction. If flush is 0 then no attempts to
5131 * regain reservations will be made and this will fail if there is not enough
5132 * space already.
8bb8ab2e 5133 */
957780eb
JB
5134static int __reserve_metadata_bytes(struct btrfs_root *root,
5135 struct btrfs_space_info *space_info,
5136 u64 orig_bytes,
5137 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5138{
957780eb 5139 struct reserve_ticket ticket;
2bf64758 5140 u64 used;
8bb8ab2e 5141 int ret = 0;
9ed74f2d 5142
957780eb 5143 ASSERT(orig_bytes);
8ca17f0f 5144 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5145
8bb8ab2e 5146 spin_lock(&space_info->lock);
fdb5effd 5147 ret = -ENOSPC;
2bf64758
JB
5148 used = space_info->bytes_used + space_info->bytes_reserved +
5149 space_info->bytes_pinned + space_info->bytes_readonly +
5150 space_info->bytes_may_use;
9ed74f2d 5151
8bb8ab2e 5152 /*
957780eb
JB
5153 * If we have enough space then hooray, make our reservation and carry
5154 * on. If not see if we can overcommit, and if we can, hooray carry on.
5155 * If not things get more complicated.
8bb8ab2e 5156 */
957780eb
JB
5157 if (used + orig_bytes <= space_info->total_bytes) {
5158 space_info->bytes_may_use += orig_bytes;
5159 trace_btrfs_space_reservation(root->fs_info, "space_info",
5160 space_info->flags, orig_bytes,
5161 1);
5162 ret = 0;
5163 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
44734ed1
JB
5164 space_info->bytes_may_use += orig_bytes;
5165 trace_btrfs_space_reservation(root->fs_info, "space_info",
5166 space_info->flags, orig_bytes,
5167 1);
5168 ret = 0;
2bf64758
JB
5169 }
5170
8bb8ab2e 5171 /*
957780eb
JB
5172 * If we couldn't make a reservation then setup our reservation ticket
5173 * and kick the async worker if it's not already running.
08e007d2 5174 *
957780eb
JB
5175 * If we are a priority flusher then we just need to add our ticket to
5176 * the list and we will do our own flushing further down.
8bb8ab2e 5177 */
72bcd99d 5178 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5179 ticket.bytes = orig_bytes;
5180 ticket.error = 0;
5181 init_waitqueue_head(&ticket.wait);
5182 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5183 list_add_tail(&ticket.list, &space_info->tickets);
5184 if (!space_info->flush) {
5185 space_info->flush = 1;
f376df2b
JB
5186 trace_btrfs_trigger_flush(root->fs_info,
5187 space_info->flags,
5188 orig_bytes, flush,
5189 "enospc");
957780eb
JB
5190 queue_work(system_unbound_wq,
5191 &root->fs_info->async_reclaim_work);
5192 }
5193 } else {
5194 list_add_tail(&ticket.list,
5195 &space_info->priority_tickets);
5196 }
21c7e756
MX
5197 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5198 used += orig_bytes;
f6acfd50
JB
5199 /*
5200 * We will do the space reservation dance during log replay,
5201 * which means we won't have fs_info->fs_root set, so don't do
5202 * the async reclaim as we will panic.
5203 */
afcdd129 5204 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags) &&
87241c2e 5205 need_do_async_reclaim(space_info, root, used) &&
f376df2b
JB
5206 !work_busy(&root->fs_info->async_reclaim_work)) {
5207 trace_btrfs_trigger_flush(root->fs_info,
5208 space_info->flags,
5209 orig_bytes, flush,
5210 "preempt");
21c7e756
MX
5211 queue_work(system_unbound_wq,
5212 &root->fs_info->async_reclaim_work);
f376df2b 5213 }
8bb8ab2e 5214 }
f0486c68 5215 spin_unlock(&space_info->lock);
08e007d2 5216 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5217 return ret;
f0486c68 5218
957780eb
JB
5219 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5220 return wait_reserve_ticket(root->fs_info, space_info, &ticket,
5221 orig_bytes);
08e007d2 5222
957780eb
JB
5223 ret = 0;
5224 priority_reclaim_metadata_space(root->fs_info, space_info, &ticket);
5225 spin_lock(&space_info->lock);
5226 if (ticket.bytes) {
5227 if (ticket.bytes < orig_bytes) {
5228 u64 num_bytes = orig_bytes - ticket.bytes;
5229 space_info->bytes_may_use -= num_bytes;
5230 trace_btrfs_space_reservation(root->fs_info,
5231 "space_info", space_info->flags,
5232 num_bytes, 0);
08e007d2 5233
957780eb
JB
5234 }
5235 list_del_init(&ticket.list);
5236 ret = -ENOSPC;
5237 }
5238 spin_unlock(&space_info->lock);
5239 ASSERT(list_empty(&ticket.list));
5240 return ret;
5241}
8bb8ab2e 5242
957780eb
JB
5243/**
5244 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5245 * @root - the root we're allocating for
5246 * @block_rsv - the block_rsv we're allocating for
5247 * @orig_bytes - the number of bytes we want
5248 * @flush - whether or not we can flush to make our reservation
5249 *
5250 * This will reserve orgi_bytes number of bytes from the space info associated
5251 * with the block_rsv. If there is not enough space it will make an attempt to
5252 * flush out space to make room. It will do this by flushing delalloc if
5253 * possible or committing the transaction. If flush is 0 then no attempts to
5254 * regain reservations will be made and this will fail if there is not enough
5255 * space already.
5256 */
5257static int reserve_metadata_bytes(struct btrfs_root *root,
5258 struct btrfs_block_rsv *block_rsv,
5259 u64 orig_bytes,
5260 enum btrfs_reserve_flush_enum flush)
5261{
5262 int ret;
5263
5264 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5265 flush);
5d80366e
JB
5266 if (ret == -ENOSPC &&
5267 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5268 struct btrfs_block_rsv *global_rsv =
5269 &root->fs_info->global_block_rsv;
5270
5271 if (block_rsv != global_rsv &&
5272 !block_rsv_use_bytes(global_rsv, orig_bytes))
5273 ret = 0;
5274 }
cab45e22
JM
5275 if (ret == -ENOSPC)
5276 trace_btrfs_space_reservation(root->fs_info,
5277 "space_info:enospc",
957780eb
JB
5278 block_rsv->space_info->flags,
5279 orig_bytes, 1);
f0486c68
YZ
5280 return ret;
5281}
5282
79787eaa
JM
5283static struct btrfs_block_rsv *get_block_rsv(
5284 const struct btrfs_trans_handle *trans,
5285 const struct btrfs_root *root)
f0486c68 5286{
4c13d758
JB
5287 struct btrfs_block_rsv *block_rsv = NULL;
5288
e9cf439f
AM
5289 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5290 (root == root->fs_info->csum_root && trans->adding_csums) ||
5291 (root == root->fs_info->uuid_root))
f7a81ea4
SB
5292 block_rsv = trans->block_rsv;
5293
4c13d758 5294 if (!block_rsv)
f0486c68
YZ
5295 block_rsv = root->block_rsv;
5296
5297 if (!block_rsv)
5298 block_rsv = &root->fs_info->empty_block_rsv;
5299
5300 return block_rsv;
5301}
5302
5303static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5304 u64 num_bytes)
5305{
5306 int ret = -ENOSPC;
5307 spin_lock(&block_rsv->lock);
5308 if (block_rsv->reserved >= num_bytes) {
5309 block_rsv->reserved -= num_bytes;
5310 if (block_rsv->reserved < block_rsv->size)
5311 block_rsv->full = 0;
5312 ret = 0;
5313 }
5314 spin_unlock(&block_rsv->lock);
5315 return ret;
5316}
5317
5318static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5319 u64 num_bytes, int update_size)
5320{
5321 spin_lock(&block_rsv->lock);
5322 block_rsv->reserved += num_bytes;
5323 if (update_size)
5324 block_rsv->size += num_bytes;
5325 else if (block_rsv->reserved >= block_rsv->size)
5326 block_rsv->full = 1;
5327 spin_unlock(&block_rsv->lock);
5328}
5329
d52be818
JB
5330int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5331 struct btrfs_block_rsv *dest, u64 num_bytes,
5332 int min_factor)
5333{
5334 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5335 u64 min_bytes;
5336
5337 if (global_rsv->space_info != dest->space_info)
5338 return -ENOSPC;
5339
5340 spin_lock(&global_rsv->lock);
5341 min_bytes = div_factor(global_rsv->size, min_factor);
5342 if (global_rsv->reserved < min_bytes + num_bytes) {
5343 spin_unlock(&global_rsv->lock);
5344 return -ENOSPC;
5345 }
5346 global_rsv->reserved -= num_bytes;
5347 if (global_rsv->reserved < global_rsv->size)
5348 global_rsv->full = 0;
5349 spin_unlock(&global_rsv->lock);
5350
5351 block_rsv_add_bytes(dest, num_bytes, 1);
5352 return 0;
5353}
5354
957780eb
JB
5355/*
5356 * This is for space we already have accounted in space_info->bytes_may_use, so
5357 * basically when we're returning space from block_rsv's.
5358 */
5359static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5360 struct btrfs_space_info *space_info,
5361 u64 num_bytes)
5362{
5363 struct reserve_ticket *ticket;
5364 struct list_head *head;
5365 u64 used;
5366 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5367 bool check_overcommit = false;
5368
5369 spin_lock(&space_info->lock);
5370 head = &space_info->priority_tickets;
5371
5372 /*
5373 * If we are over our limit then we need to check and see if we can
5374 * overcommit, and if we can't then we just need to free up our space
5375 * and not satisfy any requests.
5376 */
5377 used = space_info->bytes_used + space_info->bytes_reserved +
5378 space_info->bytes_pinned + space_info->bytes_readonly +
5379 space_info->bytes_may_use;
5380 if (used - num_bytes >= space_info->total_bytes)
5381 check_overcommit = true;
5382again:
5383 while (!list_empty(head) && num_bytes) {
5384 ticket = list_first_entry(head, struct reserve_ticket,
5385 list);
5386 /*
5387 * We use 0 bytes because this space is already reserved, so
5388 * adding the ticket space would be a double count.
5389 */
5390 if (check_overcommit &&
5391 !can_overcommit(fs_info->extent_root, space_info, 0,
5392 flush))
5393 break;
5394 if (num_bytes >= ticket->bytes) {
5395 list_del_init(&ticket->list);
5396 num_bytes -= ticket->bytes;
5397 ticket->bytes = 0;
ce129655 5398 space_info->tickets_id++;
957780eb
JB
5399 wake_up(&ticket->wait);
5400 } else {
5401 ticket->bytes -= num_bytes;
5402 num_bytes = 0;
5403 }
5404 }
5405
5406 if (num_bytes && head == &space_info->priority_tickets) {
5407 head = &space_info->tickets;
5408 flush = BTRFS_RESERVE_FLUSH_ALL;
5409 goto again;
5410 }
5411 space_info->bytes_may_use -= num_bytes;
5412 trace_btrfs_space_reservation(fs_info, "space_info",
5413 space_info->flags, num_bytes, 0);
5414 spin_unlock(&space_info->lock);
5415}
5416
5417/*
5418 * This is for newly allocated space that isn't accounted in
5419 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5420 * we use this helper.
5421 */
5422static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5423 struct btrfs_space_info *space_info,
5424 u64 num_bytes)
5425{
5426 struct reserve_ticket *ticket;
5427 struct list_head *head = &space_info->priority_tickets;
5428
5429again:
5430 while (!list_empty(head) && num_bytes) {
5431 ticket = list_first_entry(head, struct reserve_ticket,
5432 list);
5433 if (num_bytes >= ticket->bytes) {
5434 trace_btrfs_space_reservation(fs_info, "space_info",
5435 space_info->flags,
5436 ticket->bytes, 1);
5437 list_del_init(&ticket->list);
5438 num_bytes -= ticket->bytes;
5439 space_info->bytes_may_use += ticket->bytes;
5440 ticket->bytes = 0;
ce129655 5441 space_info->tickets_id++;
957780eb
JB
5442 wake_up(&ticket->wait);
5443 } else {
5444 trace_btrfs_space_reservation(fs_info, "space_info",
5445 space_info->flags,
5446 num_bytes, 1);
5447 space_info->bytes_may_use += num_bytes;
5448 ticket->bytes -= num_bytes;
5449 num_bytes = 0;
5450 }
5451 }
5452
5453 if (num_bytes && head == &space_info->priority_tickets) {
5454 head = &space_info->tickets;
5455 goto again;
5456 }
5457}
5458
8c2a3ca2
JB
5459static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5460 struct btrfs_block_rsv *block_rsv,
62a45b60 5461 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5462{
5463 struct btrfs_space_info *space_info = block_rsv->space_info;
5464
5465 spin_lock(&block_rsv->lock);
5466 if (num_bytes == (u64)-1)
5467 num_bytes = block_rsv->size;
5468 block_rsv->size -= num_bytes;
5469 if (block_rsv->reserved >= block_rsv->size) {
5470 num_bytes = block_rsv->reserved - block_rsv->size;
5471 block_rsv->reserved = block_rsv->size;
5472 block_rsv->full = 1;
5473 } else {
5474 num_bytes = 0;
5475 }
5476 spin_unlock(&block_rsv->lock);
5477
5478 if (num_bytes > 0) {
5479 if (dest) {
e9e22899
JB
5480 spin_lock(&dest->lock);
5481 if (!dest->full) {
5482 u64 bytes_to_add;
5483
5484 bytes_to_add = dest->size - dest->reserved;
5485 bytes_to_add = min(num_bytes, bytes_to_add);
5486 dest->reserved += bytes_to_add;
5487 if (dest->reserved >= dest->size)
5488 dest->full = 1;
5489 num_bytes -= bytes_to_add;
5490 }
5491 spin_unlock(&dest->lock);
5492 }
957780eb
JB
5493 if (num_bytes)
5494 space_info_add_old_bytes(fs_info, space_info,
5495 num_bytes);
9ed74f2d 5496 }
f0486c68 5497}
4e06bdd6 5498
25d609f8
JB
5499int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5500 struct btrfs_block_rsv *dst, u64 num_bytes,
5501 int update_size)
f0486c68
YZ
5502{
5503 int ret;
9ed74f2d 5504
f0486c68
YZ
5505 ret = block_rsv_use_bytes(src, num_bytes);
5506 if (ret)
5507 return ret;
9ed74f2d 5508
25d609f8 5509 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5510 return 0;
5511}
5512
66d8f3dd 5513void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5514{
f0486c68
YZ
5515 memset(rsv, 0, sizeof(*rsv));
5516 spin_lock_init(&rsv->lock);
66d8f3dd 5517 rsv->type = type;
f0486c68
YZ
5518}
5519
66d8f3dd
MX
5520struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5521 unsigned short type)
f0486c68
YZ
5522{
5523 struct btrfs_block_rsv *block_rsv;
5524 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5525
f0486c68
YZ
5526 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5527 if (!block_rsv)
5528 return NULL;
9ed74f2d 5529
66d8f3dd 5530 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5531 block_rsv->space_info = __find_space_info(fs_info,
5532 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5533 return block_rsv;
5534}
9ed74f2d 5535
f0486c68
YZ
5536void btrfs_free_block_rsv(struct btrfs_root *root,
5537 struct btrfs_block_rsv *rsv)
5538{
2aaa6655
JB
5539 if (!rsv)
5540 return;
dabdb640
JB
5541 btrfs_block_rsv_release(root, rsv, (u64)-1);
5542 kfree(rsv);
9ed74f2d
JB
5543}
5544
cdfb080e
CM
5545void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5546{
5547 kfree(rsv);
5548}
5549
08e007d2
MX
5550int btrfs_block_rsv_add(struct btrfs_root *root,
5551 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5552 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5553{
f0486c68 5554 int ret;
9ed74f2d 5555
f0486c68
YZ
5556 if (num_bytes == 0)
5557 return 0;
8bb8ab2e 5558
61b520a9 5559 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5560 if (!ret) {
5561 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5562 return 0;
5563 }
9ed74f2d 5564
f0486c68 5565 return ret;
f0486c68 5566}
9ed74f2d 5567
4a92b1b8 5568int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5569 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5570{
5571 u64 num_bytes = 0;
f0486c68 5572 int ret = -ENOSPC;
9ed74f2d 5573
f0486c68
YZ
5574 if (!block_rsv)
5575 return 0;
9ed74f2d 5576
f0486c68 5577 spin_lock(&block_rsv->lock);
36ba022a
JB
5578 num_bytes = div_factor(block_rsv->size, min_factor);
5579 if (block_rsv->reserved >= num_bytes)
5580 ret = 0;
5581 spin_unlock(&block_rsv->lock);
9ed74f2d 5582
36ba022a
JB
5583 return ret;
5584}
5585
08e007d2
MX
5586int btrfs_block_rsv_refill(struct btrfs_root *root,
5587 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5588 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5589{
5590 u64 num_bytes = 0;
5591 int ret = -ENOSPC;
5592
5593 if (!block_rsv)
5594 return 0;
5595
5596 spin_lock(&block_rsv->lock);
5597 num_bytes = min_reserved;
13553e52 5598 if (block_rsv->reserved >= num_bytes)
f0486c68 5599 ret = 0;
13553e52 5600 else
f0486c68 5601 num_bytes -= block_rsv->reserved;
f0486c68 5602 spin_unlock(&block_rsv->lock);
13553e52 5603
f0486c68
YZ
5604 if (!ret)
5605 return 0;
5606
aa38a711 5607 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5608 if (!ret) {
5609 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5610 return 0;
6a63209f 5611 }
9ed74f2d 5612
13553e52 5613 return ret;
f0486c68
YZ
5614}
5615
f0486c68
YZ
5616void btrfs_block_rsv_release(struct btrfs_root *root,
5617 struct btrfs_block_rsv *block_rsv,
5618 u64 num_bytes)
5619{
5620 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5621 if (global_rsv == block_rsv ||
f0486c68
YZ
5622 block_rsv->space_info != global_rsv->space_info)
5623 global_rsv = NULL;
8c2a3ca2
JB
5624 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5625 num_bytes);
6a63209f
JB
5626}
5627
8929ecfa
YZ
5628static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5629{
5630 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5631 struct btrfs_space_info *sinfo = block_rsv->space_info;
5632 u64 num_bytes;
6a63209f 5633
ae2e4728
JB
5634 /*
5635 * The global block rsv is based on the size of the extent tree, the
5636 * checksum tree and the root tree. If the fs is empty we want to set
5637 * it to a minimal amount for safety.
5638 */
5639 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5640 btrfs_root_used(&fs_info->csum_root->root_item) +
5641 btrfs_root_used(&fs_info->tree_root->root_item);
5642 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5643
8929ecfa 5644 spin_lock(&sinfo->lock);
1f699d38 5645 spin_lock(&block_rsv->lock);
4e06bdd6 5646
ee22184b 5647 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5648
fb4b10e5
JB
5649 if (block_rsv->reserved < block_rsv->size) {
5650 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5651 sinfo->bytes_reserved + sinfo->bytes_readonly +
5652 sinfo->bytes_may_use;
5653 if (sinfo->total_bytes > num_bytes) {
5654 num_bytes = sinfo->total_bytes - num_bytes;
5655 num_bytes = min(num_bytes,
5656 block_rsv->size - block_rsv->reserved);
5657 block_rsv->reserved += num_bytes;
5658 sinfo->bytes_may_use += num_bytes;
5659 trace_btrfs_space_reservation(fs_info, "space_info",
5660 sinfo->flags, num_bytes,
5661 1);
5662 }
5663 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5664 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5665 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5666 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5667 sinfo->flags, num_bytes, 0);
8929ecfa 5668 block_rsv->reserved = block_rsv->size;
8929ecfa 5669 }
182608c8 5670
fb4b10e5
JB
5671 if (block_rsv->reserved == block_rsv->size)
5672 block_rsv->full = 1;
5673 else
5674 block_rsv->full = 0;
5675
8929ecfa 5676 spin_unlock(&block_rsv->lock);
1f699d38 5677 spin_unlock(&sinfo->lock);
6a63209f
JB
5678}
5679
f0486c68 5680static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5681{
f0486c68 5682 struct btrfs_space_info *space_info;
6a63209f 5683
f0486c68
YZ
5684 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5685 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5686
f0486c68 5687 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5688 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5689 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5690 fs_info->trans_block_rsv.space_info = space_info;
5691 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5692 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5693
8929ecfa
YZ
5694 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5695 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5696 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5697 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5698 if (fs_info->quota_root)
5699 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5700 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5701
8929ecfa 5702 update_global_block_rsv(fs_info);
6a63209f
JB
5703}
5704
8929ecfa 5705static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5706{
8c2a3ca2
JB
5707 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5708 (u64)-1);
8929ecfa
YZ
5709 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5710 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5711 WARN_ON(fs_info->trans_block_rsv.size > 0);
5712 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5713 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5714 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5715 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5716 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5717}
5718
a22285a6
YZ
5719void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5720 struct btrfs_root *root)
6a63209f 5721{
0e721106
JB
5722 if (!trans->block_rsv)
5723 return;
5724
a22285a6
YZ
5725 if (!trans->bytes_reserved)
5726 return;
6a63209f 5727
e77266e4 5728 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5729 trans->transid, trans->bytes_reserved, 0);
b24e03db 5730 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5731 trans->bytes_reserved = 0;
5732}
6a63209f 5733
4fbcdf66
FM
5734/*
5735 * To be called after all the new block groups attached to the transaction
5736 * handle have been created (btrfs_create_pending_block_groups()).
5737 */
5738void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5739{
64b63580 5740 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5741
5742 if (!trans->chunk_bytes_reserved)
5743 return;
5744
5745 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5746
5747 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5748 trans->chunk_bytes_reserved);
5749 trans->chunk_bytes_reserved = 0;
5750}
5751
79787eaa 5752/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5753int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5754 struct inode *inode)
5755{
5756 struct btrfs_root *root = BTRFS_I(inode)->root;
40acc3ee
JB
5757 /*
5758 * We always use trans->block_rsv here as we will have reserved space
5759 * for our orphan when starting the transaction, using get_block_rsv()
5760 * here will sometimes make us choose the wrong block rsv as we could be
5761 * doing a reloc inode for a non refcounted root.
5762 */
5763 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5764 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5765
5766 /*
fcb80c2a
JB
5767 * We need to hold space in order to delete our orphan item once we've
5768 * added it, so this takes the reservation so we can release it later
5769 * when we are truly done with the orphan item.
d68fc57b 5770 */
ff5714cc 5771 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5772 trace_btrfs_space_reservation(root->fs_info, "orphan",
5773 btrfs_ino(inode), num_bytes, 1);
25d609f8 5774 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5775}
5776
d68fc57b 5777void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5778{
d68fc57b 5779 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5780 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5781 trace_btrfs_space_reservation(root->fs_info, "orphan",
5782 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5783 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5784}
97e728d4 5785
d5c12070
MX
5786/*
5787 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5788 * root: the root of the parent directory
5789 * rsv: block reservation
5790 * items: the number of items that we need do reservation
5791 * qgroup_reserved: used to return the reserved size in qgroup
5792 *
5793 * This function is used to reserve the space for snapshot/subvolume
5794 * creation and deletion. Those operations are different with the
5795 * common file/directory operations, they change two fs/file trees
5796 * and root tree, the number of items that the qgroup reserves is
5797 * different with the free space reservation. So we can not use
01327610 5798 * the space reservation mechanism in start_transaction().
d5c12070
MX
5799 */
5800int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5801 struct btrfs_block_rsv *rsv,
5802 int items,
ee3441b4
JM
5803 u64 *qgroup_reserved,
5804 bool use_global_rsv)
a22285a6 5805{
d5c12070
MX
5806 u64 num_bytes;
5807 int ret;
ee3441b4 5808 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070 5809
afcdd129 5810 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) {
d5c12070 5811 /* One for parent inode, two for dir entries */
707e8a07 5812 num_bytes = 3 * root->nodesize;
7174109c 5813 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5814 if (ret)
5815 return ret;
5816 } else {
5817 num_bytes = 0;
5818 }
5819
5820 *qgroup_reserved = num_bytes;
5821
5822 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5823 rsv->space_info = __find_space_info(root->fs_info,
5824 BTRFS_BLOCK_GROUP_METADATA);
5825 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5826 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5827
5828 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5829 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5830
7174109c
QW
5831 if (ret && *qgroup_reserved)
5832 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5833
5834 return ret;
5835}
5836
5837void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5838 struct btrfs_block_rsv *rsv,
5839 u64 qgroup_reserved)
5840{
5841 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5842}
5843
7709cde3
JB
5844/**
5845 * drop_outstanding_extent - drop an outstanding extent
5846 * @inode: the inode we're dropping the extent for
01327610 5847 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5848 *
5849 * This is called when we are freeing up an outstanding extent, either called
5850 * after an error or after an extent is written. This will return the number of
5851 * reserved extents that need to be freed. This must be called with
5852 * BTRFS_I(inode)->lock held.
5853 */
dcab6a3b 5854static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5855{
7fd2ae21 5856 unsigned drop_inode_space = 0;
9e0baf60 5857 unsigned dropped_extents = 0;
dcab6a3b 5858 unsigned num_extents = 0;
9e0baf60 5859
dcab6a3b
JB
5860 num_extents = (unsigned)div64_u64(num_bytes +
5861 BTRFS_MAX_EXTENT_SIZE - 1,
5862 BTRFS_MAX_EXTENT_SIZE);
5863 ASSERT(num_extents);
5864 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5865 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5866
7fd2ae21 5867 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5868 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5869 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5870 drop_inode_space = 1;
7fd2ae21 5871
9e0baf60 5872 /*
01327610 5873 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5874 * reserved then we need to leave the reserved extents count alone.
5875 */
5876 if (BTRFS_I(inode)->outstanding_extents >=
5877 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5878 return drop_inode_space;
9e0baf60
JB
5879
5880 dropped_extents = BTRFS_I(inode)->reserved_extents -
5881 BTRFS_I(inode)->outstanding_extents;
5882 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5883 return dropped_extents + drop_inode_space;
9e0baf60
JB
5884}
5885
7709cde3 5886/**
01327610
NS
5887 * calc_csum_metadata_size - return the amount of metadata space that must be
5888 * reserved/freed for the given bytes.
7709cde3
JB
5889 * @inode: the inode we're manipulating
5890 * @num_bytes: the number of bytes in question
5891 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5892 *
5893 * This adjusts the number of csum_bytes in the inode and then returns the
5894 * correct amount of metadata that must either be reserved or freed. We
5895 * calculate how many checksums we can fit into one leaf and then divide the
5896 * number of bytes that will need to be checksumed by this value to figure out
5897 * how many checksums will be required. If we are adding bytes then the number
5898 * may go up and we will return the number of additional bytes that must be
5899 * reserved. If it is going down we will return the number of bytes that must
5900 * be freed.
5901 *
5902 * This must be called with BTRFS_I(inode)->lock held.
5903 */
5904static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5905 int reserve)
6324fbf3 5906{
7709cde3 5907 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5908 u64 old_csums, num_csums;
7709cde3
JB
5909
5910 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5911 BTRFS_I(inode)->csum_bytes == 0)
5912 return 0;
5913
28f75a0e 5914 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5915 if (reserve)
5916 BTRFS_I(inode)->csum_bytes += num_bytes;
5917 else
5918 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5919 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5920
5921 /* No change, no need to reserve more */
5922 if (old_csums == num_csums)
5923 return 0;
5924
5925 if (reserve)
5926 return btrfs_calc_trans_metadata_size(root,
5927 num_csums - old_csums);
5928
5929 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5930}
c146afad 5931
0ca1f7ce
YZ
5932int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5933{
5934 struct btrfs_root *root = BTRFS_I(inode)->root;
5935 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5936 u64 to_reserve = 0;
660d3f6c 5937 u64 csum_bytes;
9e0baf60 5938 unsigned nr_extents = 0;
08e007d2 5939 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5940 int ret = 0;
c64c2bd8 5941 bool delalloc_lock = true;
88e081bf
WS
5942 u64 to_free = 0;
5943 unsigned dropped;
48c3d480 5944 bool release_extra = false;
6324fbf3 5945
c64c2bd8
JB
5946 /* If we are a free space inode we need to not flush since we will be in
5947 * the middle of a transaction commit. We also don't need the delalloc
5948 * mutex since we won't race with anybody. We need this mostly to make
5949 * lockdep shut its filthy mouth.
bac357dc
JB
5950 *
5951 * If we have a transaction open (can happen if we call truncate_block
5952 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
5953 */
5954 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5955 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 5956 delalloc_lock = false;
bac357dc
JB
5957 } else if (current->journal_info) {
5958 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c64c2bd8 5959 }
c09544e0 5960
08e007d2
MX
5961 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5962 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5963 schedule_timeout(1);
ec44a35c 5964
c64c2bd8
JB
5965 if (delalloc_lock)
5966 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5967
0ca1f7ce 5968 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5969
9e0baf60 5970 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5971 nr_extents = (unsigned)div64_u64(num_bytes +
5972 BTRFS_MAX_EXTENT_SIZE - 1,
5973 BTRFS_MAX_EXTENT_SIZE);
5974 BTRFS_I(inode)->outstanding_extents += nr_extents;
9e0baf60 5975
48c3d480 5976 nr_extents = 0;
9e0baf60 5977 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5978 BTRFS_I(inode)->reserved_extents)
48c3d480 5979 nr_extents += BTRFS_I(inode)->outstanding_extents -
9e0baf60 5980 BTRFS_I(inode)->reserved_extents;
57a45ced 5981
48c3d480
JB
5982 /* We always want to reserve a slot for updating the inode. */
5983 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1);
7709cde3 5984 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5985 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5986 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5987
afcdd129 5988 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) {
7174109c
QW
5989 ret = btrfs_qgroup_reserve_meta(root,
5990 nr_extents * root->nodesize);
88e081bf
WS
5991 if (ret)
5992 goto out_fail;
5993 }
c5567237 5994
48c3d480 5995 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
88e081bf 5996 if (unlikely(ret)) {
7174109c 5997 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
88e081bf 5998 goto out_fail;
9e0baf60 5999 }
25179201 6000
660d3f6c 6001 spin_lock(&BTRFS_I(inode)->lock);
48c3d480 6002 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
f485c9ee
JB
6003 &BTRFS_I(inode)->runtime_flags)) {
6004 to_reserve -= btrfs_calc_trans_metadata_size(root, 1);
48c3d480 6005 release_extra = true;
660d3f6c
JB
6006 }
6007 BTRFS_I(inode)->reserved_extents += nr_extents;
6008 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
6009
6010 if (delalloc_lock)
6011 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 6012
8c2a3ca2 6013 if (to_reserve)
67871254 6014 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 6015 btrfs_ino(inode), to_reserve, 1);
48c3d480
JB
6016 if (release_extra)
6017 btrfs_block_rsv_release(root, block_rsv,
6018 btrfs_calc_trans_metadata_size(root,
6019 1));
0ca1f7ce 6020 return 0;
88e081bf
WS
6021
6022out_fail:
6023 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 6024 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
6025 /*
6026 * If the inodes csum_bytes is the same as the original
6027 * csum_bytes then we know we haven't raced with any free()ers
6028 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 6029 */
f4881bc7 6030 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 6031 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
6032 } else {
6033 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6034 u64 bytes;
6035
6036 /*
6037 * This is tricky, but first we need to figure out how much we
01327610 6038 * freed from any free-ers that occurred during this
f4881bc7
JB
6039 * reservation, so we reset ->csum_bytes to the csum_bytes
6040 * before we dropped our lock, and then call the free for the
6041 * number of bytes that were freed while we were trying our
6042 * reservation.
6043 */
6044 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6045 BTRFS_I(inode)->csum_bytes = csum_bytes;
6046 to_free = calc_csum_metadata_size(inode, bytes, 0);
6047
6048
6049 /*
6050 * Now we need to see how much we would have freed had we not
6051 * been making this reservation and our ->csum_bytes were not
6052 * artificially inflated.
6053 */
6054 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6055 bytes = csum_bytes - orig_csum_bytes;
6056 bytes = calc_csum_metadata_size(inode, bytes, 0);
6057
6058 /*
6059 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 6060 * more than to_free then we would have freed more space had we
f4881bc7
JB
6061 * not had an artificially high ->csum_bytes, so we need to free
6062 * the remainder. If bytes is the same or less then we don't
6063 * need to do anything, the other free-ers did the correct
6064 * thing.
6065 */
6066 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6067 if (bytes > to_free)
6068 to_free = bytes - to_free;
6069 else
6070 to_free = 0;
6071 }
88e081bf 6072 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 6073 if (dropped)
88e081bf
WS
6074 to_free += btrfs_calc_trans_metadata_size(root, dropped);
6075
6076 if (to_free) {
6077 btrfs_block_rsv_release(root, block_rsv, to_free);
6078 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6079 btrfs_ino(inode), to_free, 0);
6080 }
6081 if (delalloc_lock)
6082 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6083 return ret;
0ca1f7ce
YZ
6084}
6085
7709cde3
JB
6086/**
6087 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6088 * @inode: the inode to release the reservation for
6089 * @num_bytes: the number of bytes we're releasing
6090 *
6091 * This will release the metadata reservation for an inode. This can be called
6092 * once we complete IO for a given set of bytes to release their metadata
6093 * reservations.
6094 */
0ca1f7ce
YZ
6095void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6096{
6097 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
6098 u64 to_free = 0;
6099 unsigned dropped;
0ca1f7ce
YZ
6100
6101 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 6102 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 6103 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 6104
0934856d
MX
6105 if (num_bytes)
6106 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 6107 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
6108 if (dropped > 0)
6109 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 6110
f5ee5c9a 6111 if (btrfs_is_testing(root->fs_info))
6a3891c5
JB
6112 return;
6113
8c2a3ca2
JB
6114 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6115 btrfs_ino(inode), to_free, 0);
c5567237 6116
0ca1f7ce
YZ
6117 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
6118 to_free);
6119}
6120
1ada3a62 6121/**
7cf5b976 6122 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6123 * delalloc
6124 * @inode: inode we're writing to
6125 * @start: start range we are writing to
6126 * @len: how long the range we are writing to
6127 *
1ada3a62
QW
6128 * This will do the following things
6129 *
6130 * o reserve space in data space info for num bytes
6131 * and reserve precious corresponding qgroup space
6132 * (Done in check_data_free_space)
6133 *
6134 * o reserve space for metadata space, based on the number of outstanding
6135 * extents and how much csums will be needed
6136 * also reserve metadata space in a per root over-reserve method.
6137 * o add to the inodes->delalloc_bytes
6138 * o add it to the fs_info's delalloc inodes list.
6139 * (Above 3 all done in delalloc_reserve_metadata)
6140 *
6141 * Return 0 for success
6142 * Return <0 for error(-ENOSPC or -EQUOT)
6143 */
7cf5b976 6144int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6145{
6146 int ret;
6147
7cf5b976 6148 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
6149 if (ret < 0)
6150 return ret;
6151 ret = btrfs_delalloc_reserve_metadata(inode, len);
6152 if (ret < 0)
7cf5b976 6153 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
6154 return ret;
6155}
6156
7709cde3 6157/**
7cf5b976 6158 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6159 * @inode: inode we're releasing space for
6160 * @start: start position of the space already reserved
6161 * @len: the len of the space already reserved
6162 *
6163 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6164 * called in the case that we don't need the metadata AND data reservations
6165 * anymore. So if there is an error or we insert an inline extent.
6166 *
6167 * This function will release the metadata space that was not used and will
6168 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6169 * list if there are no delalloc bytes left.
6170 * Also it will handle the qgroup reserved space.
6171 */
7cf5b976 6172void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6173{
6174 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 6175 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
6176}
6177
ce93ec54
JB
6178static int update_block_group(struct btrfs_trans_handle *trans,
6179 struct btrfs_root *root, u64 bytenr,
6180 u64 num_bytes, int alloc)
9078a3e1 6181{
0af3d00b 6182 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 6183 struct btrfs_fs_info *info = root->fs_info;
db94535d 6184 u64 total = num_bytes;
9078a3e1 6185 u64 old_val;
db94535d 6186 u64 byte_in_group;
0af3d00b 6187 int factor;
3e1ad54f 6188
5d4f98a2 6189 /* block accounting for super block */
eb73c1b7 6190 spin_lock(&info->delalloc_root_lock);
6c41761f 6191 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6192 if (alloc)
6193 old_val += num_bytes;
6194 else
6195 old_val -= num_bytes;
6c41761f 6196 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6197 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6198
d397712b 6199 while (total) {
db94535d 6200 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6201 if (!cache)
79787eaa 6202 return -ENOENT;
b742bb82
YZ
6203 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6204 BTRFS_BLOCK_GROUP_RAID1 |
6205 BTRFS_BLOCK_GROUP_RAID10))
6206 factor = 2;
6207 else
6208 factor = 1;
9d66e233
JB
6209 /*
6210 * If this block group has free space cache written out, we
6211 * need to make sure to load it if we are removing space. This
6212 * is because we need the unpinning stage to actually add the
6213 * space back to the block group, otherwise we will leak space.
6214 */
6215 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6216 cache_block_group(cache, 1);
0af3d00b 6217
db94535d
CM
6218 byte_in_group = bytenr - cache->key.objectid;
6219 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6220
25179201 6221 spin_lock(&cache->space_info->lock);
c286ac48 6222 spin_lock(&cache->lock);
0af3d00b 6223
3cdde224 6224 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
0af3d00b
JB
6225 cache->disk_cache_state < BTRFS_DC_CLEAR)
6226 cache->disk_cache_state = BTRFS_DC_CLEAR;
6227
9078a3e1 6228 old_val = btrfs_block_group_used(&cache->item);
db94535d 6229 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6230 if (alloc) {
db94535d 6231 old_val += num_bytes;
11833d66
YZ
6232 btrfs_set_block_group_used(&cache->item, old_val);
6233 cache->reserved -= num_bytes;
11833d66 6234 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6235 cache->space_info->bytes_used += num_bytes;
6236 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6237 spin_unlock(&cache->lock);
25179201 6238 spin_unlock(&cache->space_info->lock);
cd1bc465 6239 } else {
db94535d 6240 old_val -= num_bytes;
ae0ab003
FM
6241 btrfs_set_block_group_used(&cache->item, old_val);
6242 cache->pinned += num_bytes;
6243 cache->space_info->bytes_pinned += num_bytes;
6244 cache->space_info->bytes_used -= num_bytes;
6245 cache->space_info->disk_used -= num_bytes * factor;
6246 spin_unlock(&cache->lock);
6247 spin_unlock(&cache->space_info->lock);
47ab2a6c 6248
c51e7bb1
JB
6249 trace_btrfs_space_reservation(root->fs_info, "pinned",
6250 cache->space_info->flags,
6251 num_bytes, 1);
ae0ab003
FM
6252 set_extent_dirty(info->pinned_extents,
6253 bytenr, bytenr + num_bytes - 1,
6254 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6255 }
1bbc621e
CM
6256
6257 spin_lock(&trans->transaction->dirty_bgs_lock);
6258 if (list_empty(&cache->dirty_list)) {
6259 list_add_tail(&cache->dirty_list,
6260 &trans->transaction->dirty_bgs);
6261 trans->transaction->num_dirty_bgs++;
6262 btrfs_get_block_group(cache);
6263 }
6264 spin_unlock(&trans->transaction->dirty_bgs_lock);
6265
036a9348
FM
6266 /*
6267 * No longer have used bytes in this block group, queue it for
6268 * deletion. We do this after adding the block group to the
6269 * dirty list to avoid races between cleaner kthread and space
6270 * cache writeout.
6271 */
6272 if (!alloc && old_val == 0) {
6273 spin_lock(&info->unused_bgs_lock);
6274 if (list_empty(&cache->bg_list)) {
6275 btrfs_get_block_group(cache);
6276 list_add_tail(&cache->bg_list,
6277 &info->unused_bgs);
6278 }
6279 spin_unlock(&info->unused_bgs_lock);
6280 }
6281
fa9c0d79 6282 btrfs_put_block_group(cache);
db94535d
CM
6283 total -= num_bytes;
6284 bytenr += num_bytes;
9078a3e1
CM
6285 }
6286 return 0;
6287}
6324fbf3 6288
a061fc8d
CM
6289static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6290{
0f9dd46c 6291 struct btrfs_block_group_cache *cache;
d2fb3437 6292 u64 bytenr;
0f9dd46c 6293
a1897fdd
LB
6294 spin_lock(&root->fs_info->block_group_cache_lock);
6295 bytenr = root->fs_info->first_logical_byte;
6296 spin_unlock(&root->fs_info->block_group_cache_lock);
6297
6298 if (bytenr < (u64)-1)
6299 return bytenr;
6300
0f9dd46c
JB
6301 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6302 if (!cache)
a061fc8d 6303 return 0;
0f9dd46c 6304
d2fb3437 6305 bytenr = cache->key.objectid;
fa9c0d79 6306 btrfs_put_block_group(cache);
d2fb3437
YZ
6307
6308 return bytenr;
a061fc8d
CM
6309}
6310
f0486c68
YZ
6311static int pin_down_extent(struct btrfs_root *root,
6312 struct btrfs_block_group_cache *cache,
6313 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6314{
11833d66
YZ
6315 spin_lock(&cache->space_info->lock);
6316 spin_lock(&cache->lock);
6317 cache->pinned += num_bytes;
6318 cache->space_info->bytes_pinned += num_bytes;
6319 if (reserved) {
6320 cache->reserved -= num_bytes;
6321 cache->space_info->bytes_reserved -= num_bytes;
6322 }
6323 spin_unlock(&cache->lock);
6324 spin_unlock(&cache->space_info->lock);
68b38550 6325
c51e7bb1
JB
6326 trace_btrfs_space_reservation(root->fs_info, "pinned",
6327 cache->space_info->flags, num_bytes, 1);
f0486c68
YZ
6328 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6329 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6330 return 0;
6331}
68b38550 6332
f0486c68
YZ
6333/*
6334 * this function must be called within transaction
6335 */
6336int btrfs_pin_extent(struct btrfs_root *root,
6337 u64 bytenr, u64 num_bytes, int reserved)
6338{
6339 struct btrfs_block_group_cache *cache;
68b38550 6340
f0486c68 6341 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 6342 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
6343
6344 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6345
6346 btrfs_put_block_group(cache);
11833d66
YZ
6347 return 0;
6348}
6349
f0486c68 6350/*
e688b725
CM
6351 * this function must be called within transaction
6352 */
dcfac415 6353int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
6354 u64 bytenr, u64 num_bytes)
6355{
6356 struct btrfs_block_group_cache *cache;
b50c6e25 6357 int ret;
e688b725
CM
6358
6359 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
6360 if (!cache)
6361 return -EINVAL;
e688b725
CM
6362
6363 /*
6364 * pull in the free space cache (if any) so that our pin
6365 * removes the free space from the cache. We have load_only set
6366 * to one because the slow code to read in the free extents does check
6367 * the pinned extents.
6368 */
f6373bf3 6369 cache_block_group(cache, 1);
e688b725
CM
6370
6371 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6372
6373 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6374 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6375 btrfs_put_block_group(cache);
b50c6e25 6376 return ret;
e688b725
CM
6377}
6378
8c2a1a30
JB
6379static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6380{
6381 int ret;
6382 struct btrfs_block_group_cache *block_group;
6383 struct btrfs_caching_control *caching_ctl;
6384
6385 block_group = btrfs_lookup_block_group(root->fs_info, start);
6386 if (!block_group)
6387 return -EINVAL;
6388
6389 cache_block_group(block_group, 0);
6390 caching_ctl = get_caching_control(block_group);
6391
6392 if (!caching_ctl) {
6393 /* Logic error */
6394 BUG_ON(!block_group_cache_done(block_group));
6395 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6396 } else {
6397 mutex_lock(&caching_ctl->mutex);
6398
6399 if (start >= caching_ctl->progress) {
6400 ret = add_excluded_extent(root, start, num_bytes);
6401 } else if (start + num_bytes <= caching_ctl->progress) {
6402 ret = btrfs_remove_free_space(block_group,
6403 start, num_bytes);
6404 } else {
6405 num_bytes = caching_ctl->progress - start;
6406 ret = btrfs_remove_free_space(block_group,
6407 start, num_bytes);
6408 if (ret)
6409 goto out_lock;
6410
6411 num_bytes = (start + num_bytes) -
6412 caching_ctl->progress;
6413 start = caching_ctl->progress;
6414 ret = add_excluded_extent(root, start, num_bytes);
6415 }
6416out_lock:
6417 mutex_unlock(&caching_ctl->mutex);
6418 put_caching_control(caching_ctl);
6419 }
6420 btrfs_put_block_group(block_group);
6421 return ret;
6422}
6423
6424int btrfs_exclude_logged_extents(struct btrfs_root *log,
6425 struct extent_buffer *eb)
6426{
6427 struct btrfs_file_extent_item *item;
6428 struct btrfs_key key;
6429 int found_type;
6430 int i;
6431
6432 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6433 return 0;
6434
6435 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6436 btrfs_item_key_to_cpu(eb, &key, i);
6437 if (key.type != BTRFS_EXTENT_DATA_KEY)
6438 continue;
6439 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6440 found_type = btrfs_file_extent_type(eb, item);
6441 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6442 continue;
6443 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6444 continue;
6445 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6446 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6447 __exclude_logged_extent(log, key.objectid, key.offset);
6448 }
6449
6450 return 0;
6451}
6452
9cfa3e34
FM
6453static void
6454btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6455{
6456 atomic_inc(&bg->reservations);
6457}
6458
6459void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6460 const u64 start)
6461{
6462 struct btrfs_block_group_cache *bg;
6463
6464 bg = btrfs_lookup_block_group(fs_info, start);
6465 ASSERT(bg);
6466 if (atomic_dec_and_test(&bg->reservations))
6467 wake_up_atomic_t(&bg->reservations);
6468 btrfs_put_block_group(bg);
6469}
6470
6471static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6472{
6473 schedule();
6474 return 0;
6475}
6476
6477void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6478{
6479 struct btrfs_space_info *space_info = bg->space_info;
6480
6481 ASSERT(bg->ro);
6482
6483 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6484 return;
6485
6486 /*
6487 * Our block group is read only but before we set it to read only,
6488 * some task might have had allocated an extent from it already, but it
6489 * has not yet created a respective ordered extent (and added it to a
6490 * root's list of ordered extents).
6491 * Therefore wait for any task currently allocating extents, since the
6492 * block group's reservations counter is incremented while a read lock
6493 * on the groups' semaphore is held and decremented after releasing
6494 * the read access on that semaphore and creating the ordered extent.
6495 */
6496 down_write(&space_info->groups_sem);
6497 up_write(&space_info->groups_sem);
6498
6499 wait_on_atomic_t(&bg->reservations,
6500 btrfs_wait_bg_reservations_atomic_t,
6501 TASK_UNINTERRUPTIBLE);
6502}
6503
fb25e914 6504/**
4824f1f4 6505 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6506 * @cache: The cache we are manipulating
18513091
WX
6507 * @ram_bytes: The number of bytes of file content, and will be same to
6508 * @num_bytes except for the compress path.
fb25e914 6509 * @num_bytes: The number of bytes in question
e570fd27 6510 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6511 *
745699ef
XW
6512 * This is called by the allocator when it reserves space. If this is a
6513 * reservation and the block group has become read only we cannot make the
6514 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6515 */
4824f1f4 6516static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6517 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6518{
fb25e914 6519 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6520 int ret = 0;
79787eaa 6521
fb25e914
JB
6522 spin_lock(&space_info->lock);
6523 spin_lock(&cache->lock);
4824f1f4
WX
6524 if (cache->ro) {
6525 ret = -EAGAIN;
fb25e914 6526 } else {
4824f1f4
WX
6527 cache->reserved += num_bytes;
6528 space_info->bytes_reserved += num_bytes;
e570fd27 6529
18513091
WX
6530 trace_btrfs_space_reservation(cache->fs_info,
6531 "space_info", space_info->flags,
6532 ram_bytes, 0);
6533 space_info->bytes_may_use -= ram_bytes;
e570fd27 6534 if (delalloc)
4824f1f4 6535 cache->delalloc_bytes += num_bytes;
324ae4df 6536 }
fb25e914
JB
6537 spin_unlock(&cache->lock);
6538 spin_unlock(&space_info->lock);
f0486c68 6539 return ret;
324ae4df 6540}
9078a3e1 6541
4824f1f4
WX
6542/**
6543 * btrfs_free_reserved_bytes - update the block_group and space info counters
6544 * @cache: The cache we are manipulating
6545 * @num_bytes: The number of bytes in question
6546 * @delalloc: The blocks are allocated for the delalloc write
6547 *
6548 * This is called by somebody who is freeing space that was never actually used
6549 * on disk. For example if you reserve some space for a new leaf in transaction
6550 * A and before transaction A commits you free that leaf, you call this with
6551 * reserve set to 0 in order to clear the reservation.
6552 */
6553
6554static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6555 u64 num_bytes, int delalloc)
6556{
6557 struct btrfs_space_info *space_info = cache->space_info;
6558 int ret = 0;
6559
6560 spin_lock(&space_info->lock);
6561 spin_lock(&cache->lock);
6562 if (cache->ro)
6563 space_info->bytes_readonly += num_bytes;
6564 cache->reserved -= num_bytes;
6565 space_info->bytes_reserved -= num_bytes;
6566
6567 if (delalloc)
6568 cache->delalloc_bytes -= num_bytes;
6569 spin_unlock(&cache->lock);
6570 spin_unlock(&space_info->lock);
6571 return ret;
6572}
143bede5 6573void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6574 struct btrfs_root *root)
e8569813 6575{
e8569813 6576 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6577 struct btrfs_caching_control *next;
6578 struct btrfs_caching_control *caching_ctl;
6579 struct btrfs_block_group_cache *cache;
e8569813 6580
9e351cc8 6581 down_write(&fs_info->commit_root_sem);
25179201 6582
11833d66
YZ
6583 list_for_each_entry_safe(caching_ctl, next,
6584 &fs_info->caching_block_groups, list) {
6585 cache = caching_ctl->block_group;
6586 if (block_group_cache_done(cache)) {
6587 cache->last_byte_to_unpin = (u64)-1;
6588 list_del_init(&caching_ctl->list);
6589 put_caching_control(caching_ctl);
e8569813 6590 } else {
11833d66 6591 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6592 }
e8569813 6593 }
11833d66
YZ
6594
6595 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6596 fs_info->pinned_extents = &fs_info->freed_extents[1];
6597 else
6598 fs_info->pinned_extents = &fs_info->freed_extents[0];
6599
9e351cc8 6600 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6601
6602 update_global_block_rsv(fs_info);
e8569813
ZY
6603}
6604
c759c4e1
JB
6605/*
6606 * Returns the free cluster for the given space info and sets empty_cluster to
6607 * what it should be based on the mount options.
6608 */
6609static struct btrfs_free_cluster *
6610fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6611 u64 *empty_cluster)
6612{
6613 struct btrfs_free_cluster *ret = NULL;
3cdde224 6614 bool ssd = btrfs_test_opt(root->fs_info, SSD);
c759c4e1
JB
6615
6616 *empty_cluster = 0;
6617 if (btrfs_mixed_space_info(space_info))
6618 return ret;
6619
6620 if (ssd)
ee22184b 6621 *empty_cluster = SZ_2M;
c759c4e1
JB
6622 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6623 ret = &root->fs_info->meta_alloc_cluster;
6624 if (!ssd)
ee22184b 6625 *empty_cluster = SZ_64K;
c759c4e1
JB
6626 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6627 ret = &root->fs_info->data_alloc_cluster;
6628 }
6629
6630 return ret;
6631}
6632
678886bd
FM
6633static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6634 const bool return_free_space)
ccd467d6 6635{
11833d66
YZ
6636 struct btrfs_fs_info *fs_info = root->fs_info;
6637 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6638 struct btrfs_space_info *space_info;
6639 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6640 struct btrfs_free_cluster *cluster = NULL;
11833d66 6641 u64 len;
c759c4e1
JB
6642 u64 total_unpinned = 0;
6643 u64 empty_cluster = 0;
7b398f8e 6644 bool readonly;
ccd467d6 6645
11833d66 6646 while (start <= end) {
7b398f8e 6647 readonly = false;
11833d66
YZ
6648 if (!cache ||
6649 start >= cache->key.objectid + cache->key.offset) {
6650 if (cache)
6651 btrfs_put_block_group(cache);
c759c4e1 6652 total_unpinned = 0;
11833d66 6653 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6654 BUG_ON(!cache); /* Logic error */
c759c4e1
JB
6655
6656 cluster = fetch_cluster_info(root,
6657 cache->space_info,
6658 &empty_cluster);
6659 empty_cluster <<= 1;
11833d66
YZ
6660 }
6661
6662 len = cache->key.objectid + cache->key.offset - start;
6663 len = min(len, end + 1 - start);
6664
6665 if (start < cache->last_byte_to_unpin) {
6666 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6667 if (return_free_space)
6668 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6669 }
6670
f0486c68 6671 start += len;
c759c4e1 6672 total_unpinned += len;
7b398f8e 6673 space_info = cache->space_info;
f0486c68 6674
c759c4e1
JB
6675 /*
6676 * If this space cluster has been marked as fragmented and we've
6677 * unpinned enough in this block group to potentially allow a
6678 * cluster to be created inside of it go ahead and clear the
6679 * fragmented check.
6680 */
6681 if (cluster && cluster->fragmented &&
6682 total_unpinned > empty_cluster) {
6683 spin_lock(&cluster->lock);
6684 cluster->fragmented = 0;
6685 spin_unlock(&cluster->lock);
6686 }
6687
7b398f8e 6688 spin_lock(&space_info->lock);
11833d66
YZ
6689 spin_lock(&cache->lock);
6690 cache->pinned -= len;
7b398f8e 6691 space_info->bytes_pinned -= len;
c51e7bb1
JB
6692
6693 trace_btrfs_space_reservation(fs_info, "pinned",
6694 space_info->flags, len, 0);
4f4db217 6695 space_info->max_extent_size = 0;
d288db5d 6696 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6697 if (cache->ro) {
6698 space_info->bytes_readonly += len;
6699 readonly = true;
6700 }
11833d66 6701 spin_unlock(&cache->lock);
957780eb
JB
6702 if (!readonly && return_free_space &&
6703 global_rsv->space_info == space_info) {
6704 u64 to_add = len;
6705 WARN_ON(!return_free_space);
7b398f8e
JB
6706 spin_lock(&global_rsv->lock);
6707 if (!global_rsv->full) {
957780eb
JB
6708 to_add = min(len, global_rsv->size -
6709 global_rsv->reserved);
6710 global_rsv->reserved += to_add;
6711 space_info->bytes_may_use += to_add;
7b398f8e
JB
6712 if (global_rsv->reserved >= global_rsv->size)
6713 global_rsv->full = 1;
957780eb
JB
6714 trace_btrfs_space_reservation(fs_info,
6715 "space_info",
6716 space_info->flags,
6717 to_add, 1);
6718 len -= to_add;
7b398f8e
JB
6719 }
6720 spin_unlock(&global_rsv->lock);
957780eb
JB
6721 /* Add to any tickets we may have */
6722 if (len)
6723 space_info_add_new_bytes(fs_info, space_info,
6724 len);
7b398f8e
JB
6725 }
6726 spin_unlock(&space_info->lock);
ccd467d6 6727 }
11833d66
YZ
6728
6729 if (cache)
6730 btrfs_put_block_group(cache);
ccd467d6
CM
6731 return 0;
6732}
6733
6734int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6735 struct btrfs_root *root)
a28ec197 6736{
11833d66 6737 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6738 struct btrfs_block_group_cache *block_group, *tmp;
6739 struct list_head *deleted_bgs;
11833d66 6740 struct extent_io_tree *unpin;
1a5bc167
CM
6741 u64 start;
6742 u64 end;
a28ec197 6743 int ret;
a28ec197 6744
11833d66
YZ
6745 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6746 unpin = &fs_info->freed_extents[1];
6747 else
6748 unpin = &fs_info->freed_extents[0];
6749
e33e17ee 6750 while (!trans->aborted) {
d4b450cd 6751 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6752 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6753 EXTENT_DIRTY, NULL);
d4b450cd
FM
6754 if (ret) {
6755 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6756 break;
d4b450cd 6757 }
1f3c79a2 6758
3cdde224 6759 if (btrfs_test_opt(root->fs_info, DISCARD))
5378e607
LD
6760 ret = btrfs_discard_extent(root, start,
6761 end + 1 - start, NULL);
1f3c79a2 6762
af6f8f60 6763 clear_extent_dirty(unpin, start, end);
678886bd 6764 unpin_extent_range(root, start, end, true);
d4b450cd 6765 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6766 cond_resched();
a28ec197 6767 }
817d52f8 6768
e33e17ee
JM
6769 /*
6770 * Transaction is finished. We don't need the lock anymore. We
6771 * do need to clean up the block groups in case of a transaction
6772 * abort.
6773 */
6774 deleted_bgs = &trans->transaction->deleted_bgs;
6775 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6776 u64 trimmed = 0;
6777
6778 ret = -EROFS;
6779 if (!trans->aborted)
6780 ret = btrfs_discard_extent(root,
6781 block_group->key.objectid,
6782 block_group->key.offset,
6783 &trimmed);
6784
6785 list_del_init(&block_group->bg_list);
6786 btrfs_put_block_group_trimming(block_group);
6787 btrfs_put_block_group(block_group);
6788
6789 if (ret) {
6790 const char *errstr = btrfs_decode_error(ret);
6791 btrfs_warn(fs_info,
6792 "Discard failed while removing blockgroup: errno=%d %s\n",
6793 ret, errstr);
6794 }
6795 }
6796
e20d96d6
CM
6797 return 0;
6798}
6799
b150a4f1
JB
6800static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6801 u64 owner, u64 root_objectid)
6802{
6803 struct btrfs_space_info *space_info;
6804 u64 flags;
6805
6806 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6807 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6808 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6809 else
6810 flags = BTRFS_BLOCK_GROUP_METADATA;
6811 } else {
6812 flags = BTRFS_BLOCK_GROUP_DATA;
6813 }
6814
6815 space_info = __find_space_info(fs_info, flags);
6816 BUG_ON(!space_info); /* Logic bug */
6817 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6818}
6819
6820
5d4f98a2
YZ
6821static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6822 struct btrfs_root *root,
c682f9b3 6823 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6824 u64 root_objectid, u64 owner_objectid,
6825 u64 owner_offset, int refs_to_drop,
c682f9b3 6826 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6827{
e2fa7227 6828 struct btrfs_key key;
5d4f98a2 6829 struct btrfs_path *path;
1261ec42
CM
6830 struct btrfs_fs_info *info = root->fs_info;
6831 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6832 struct extent_buffer *leaf;
5d4f98a2
YZ
6833 struct btrfs_extent_item *ei;
6834 struct btrfs_extent_inline_ref *iref;
a28ec197 6835 int ret;
5d4f98a2 6836 int is_data;
952fccac
CM
6837 int extent_slot = 0;
6838 int found_extent = 0;
6839 int num_to_del = 1;
5d4f98a2
YZ
6840 u32 item_size;
6841 u64 refs;
c682f9b3
QW
6842 u64 bytenr = node->bytenr;
6843 u64 num_bytes = node->num_bytes;
fcebe456 6844 int last_ref = 0;
3173a18f
JB
6845 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6846 SKINNY_METADATA);
037e6390 6847
5caf2a00 6848 path = btrfs_alloc_path();
54aa1f4d
CM
6849 if (!path)
6850 return -ENOMEM;
5f26f772 6851
e4058b54 6852 path->reada = READA_FORWARD;
b9473439 6853 path->leave_spinning = 1;
5d4f98a2
YZ
6854
6855 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6856 BUG_ON(!is_data && refs_to_drop != 1);
6857
3173a18f
JB
6858 if (is_data)
6859 skinny_metadata = 0;
6860
5d4f98a2
YZ
6861 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6862 bytenr, num_bytes, parent,
6863 root_objectid, owner_objectid,
6864 owner_offset);
7bb86316 6865 if (ret == 0) {
952fccac 6866 extent_slot = path->slots[0];
5d4f98a2
YZ
6867 while (extent_slot >= 0) {
6868 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6869 extent_slot);
5d4f98a2 6870 if (key.objectid != bytenr)
952fccac 6871 break;
5d4f98a2
YZ
6872 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6873 key.offset == num_bytes) {
952fccac
CM
6874 found_extent = 1;
6875 break;
6876 }
3173a18f
JB
6877 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6878 key.offset == owner_objectid) {
6879 found_extent = 1;
6880 break;
6881 }
952fccac
CM
6882 if (path->slots[0] - extent_slot > 5)
6883 break;
5d4f98a2 6884 extent_slot--;
952fccac 6885 }
5d4f98a2
YZ
6886#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6887 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6888 if (found_extent && item_size < sizeof(*ei))
6889 found_extent = 0;
6890#endif
31840ae1 6891 if (!found_extent) {
5d4f98a2 6892 BUG_ON(iref);
56bec294 6893 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6894 NULL, refs_to_drop,
fcebe456 6895 is_data, &last_ref);
005d6427 6896 if (ret) {
66642832 6897 btrfs_abort_transaction(trans, ret);
005d6427
DS
6898 goto out;
6899 }
b3b4aa74 6900 btrfs_release_path(path);
b9473439 6901 path->leave_spinning = 1;
5d4f98a2
YZ
6902
6903 key.objectid = bytenr;
6904 key.type = BTRFS_EXTENT_ITEM_KEY;
6905 key.offset = num_bytes;
6906
3173a18f
JB
6907 if (!is_data && skinny_metadata) {
6908 key.type = BTRFS_METADATA_ITEM_KEY;
6909 key.offset = owner_objectid;
6910 }
6911
31840ae1
ZY
6912 ret = btrfs_search_slot(trans, extent_root,
6913 &key, path, -1, 1);
3173a18f
JB
6914 if (ret > 0 && skinny_metadata && path->slots[0]) {
6915 /*
6916 * Couldn't find our skinny metadata item,
6917 * see if we have ye olde extent item.
6918 */
6919 path->slots[0]--;
6920 btrfs_item_key_to_cpu(path->nodes[0], &key,
6921 path->slots[0]);
6922 if (key.objectid == bytenr &&
6923 key.type == BTRFS_EXTENT_ITEM_KEY &&
6924 key.offset == num_bytes)
6925 ret = 0;
6926 }
6927
6928 if (ret > 0 && skinny_metadata) {
6929 skinny_metadata = false;
9ce49a0b 6930 key.objectid = bytenr;
3173a18f
JB
6931 key.type = BTRFS_EXTENT_ITEM_KEY;
6932 key.offset = num_bytes;
6933 btrfs_release_path(path);
6934 ret = btrfs_search_slot(trans, extent_root,
6935 &key, path, -1, 1);
6936 }
6937
f3465ca4 6938 if (ret) {
5d163e0e
JM
6939 btrfs_err(info,
6940 "umm, got %d back from search, was looking for %llu",
6941 ret, bytenr);
b783e62d
JB
6942 if (ret > 0)
6943 btrfs_print_leaf(extent_root,
6944 path->nodes[0]);
f3465ca4 6945 }
005d6427 6946 if (ret < 0) {
66642832 6947 btrfs_abort_transaction(trans, ret);
005d6427
DS
6948 goto out;
6949 }
31840ae1
ZY
6950 extent_slot = path->slots[0];
6951 }
fae7f21c 6952 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6953 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6954 btrfs_err(info,
6955 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6956 bytenr, parent, root_objectid, owner_objectid,
6957 owner_offset);
66642832 6958 btrfs_abort_transaction(trans, ret);
c4a050bb 6959 goto out;
79787eaa 6960 } else {
66642832 6961 btrfs_abort_transaction(trans, ret);
005d6427 6962 goto out;
7bb86316 6963 }
5f39d397
CM
6964
6965 leaf = path->nodes[0];
5d4f98a2
YZ
6966 item_size = btrfs_item_size_nr(leaf, extent_slot);
6967#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6968 if (item_size < sizeof(*ei)) {
6969 BUG_ON(found_extent || extent_slot != path->slots[0]);
6970 ret = convert_extent_item_v0(trans, extent_root, path,
6971 owner_objectid, 0);
005d6427 6972 if (ret < 0) {
66642832 6973 btrfs_abort_transaction(trans, ret);
005d6427
DS
6974 goto out;
6975 }
5d4f98a2 6976
b3b4aa74 6977 btrfs_release_path(path);
5d4f98a2
YZ
6978 path->leave_spinning = 1;
6979
6980 key.objectid = bytenr;
6981 key.type = BTRFS_EXTENT_ITEM_KEY;
6982 key.offset = num_bytes;
6983
6984 ret = btrfs_search_slot(trans, extent_root, &key, path,
6985 -1, 1);
6986 if (ret) {
5d163e0e
JM
6987 btrfs_err(info,
6988 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6989 ret, bytenr);
5d4f98a2
YZ
6990 btrfs_print_leaf(extent_root, path->nodes[0]);
6991 }
005d6427 6992 if (ret < 0) {
66642832 6993 btrfs_abort_transaction(trans, ret);
005d6427
DS
6994 goto out;
6995 }
6996
5d4f98a2
YZ
6997 extent_slot = path->slots[0];
6998 leaf = path->nodes[0];
6999 item_size = btrfs_item_size_nr(leaf, extent_slot);
7000 }
7001#endif
7002 BUG_ON(item_size < sizeof(*ei));
952fccac 7003 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7004 struct btrfs_extent_item);
3173a18f
JB
7005 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7006 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7007 struct btrfs_tree_block_info *bi;
7008 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7009 bi = (struct btrfs_tree_block_info *)(ei + 1);
7010 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7011 }
56bec294 7012
5d4f98a2 7013 refs = btrfs_extent_refs(leaf, ei);
32b02538 7014 if (refs < refs_to_drop) {
5d163e0e
JM
7015 btrfs_err(info,
7016 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7017 refs_to_drop, refs, bytenr);
32b02538 7018 ret = -EINVAL;
66642832 7019 btrfs_abort_transaction(trans, ret);
32b02538
JB
7020 goto out;
7021 }
56bec294 7022 refs -= refs_to_drop;
5f39d397 7023
5d4f98a2
YZ
7024 if (refs > 0) {
7025 if (extent_op)
7026 __run_delayed_extent_op(extent_op, leaf, ei);
7027 /*
7028 * In the case of inline back ref, reference count will
7029 * be updated by remove_extent_backref
952fccac 7030 */
5d4f98a2
YZ
7031 if (iref) {
7032 BUG_ON(!found_extent);
7033 } else {
7034 btrfs_set_extent_refs(leaf, ei, refs);
7035 btrfs_mark_buffer_dirty(leaf);
7036 }
7037 if (found_extent) {
7038 ret = remove_extent_backref(trans, extent_root, path,
7039 iref, refs_to_drop,
fcebe456 7040 is_data, &last_ref);
005d6427 7041 if (ret) {
66642832 7042 btrfs_abort_transaction(trans, ret);
005d6427
DS
7043 goto out;
7044 }
952fccac 7045 }
b150a4f1
JB
7046 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
7047 root_objectid);
5d4f98a2 7048 } else {
5d4f98a2
YZ
7049 if (found_extent) {
7050 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7051 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7052 if (iref) {
7053 BUG_ON(path->slots[0] != extent_slot);
7054 } else {
7055 BUG_ON(path->slots[0] != extent_slot + 1);
7056 path->slots[0] = extent_slot;
7057 num_to_del = 2;
7058 }
78fae27e 7059 }
b9473439 7060
fcebe456 7061 last_ref = 1;
952fccac
CM
7062 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7063 num_to_del);
005d6427 7064 if (ret) {
66642832 7065 btrfs_abort_transaction(trans, ret);
005d6427
DS
7066 goto out;
7067 }
b3b4aa74 7068 btrfs_release_path(path);
21af804c 7069
5d4f98a2 7070 if (is_data) {
459931ec 7071 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427 7072 if (ret) {
66642832 7073 btrfs_abort_transaction(trans, ret);
005d6427
DS
7074 goto out;
7075 }
459931ec
CM
7076 }
7077
1e144fb8
OS
7078 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
7079 num_bytes);
7080 if (ret) {
66642832 7081 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7082 goto out;
7083 }
7084
ce93ec54 7085 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427 7086 if (ret) {
66642832 7087 btrfs_abort_transaction(trans, ret);
005d6427
DS
7088 goto out;
7089 }
a28ec197 7090 }
fcebe456
JB
7091 btrfs_release_path(path);
7092
79787eaa 7093out:
5caf2a00 7094 btrfs_free_path(path);
a28ec197
CM
7095 return ret;
7096}
7097
1887be66 7098/*
f0486c68 7099 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7100 * delayed ref for that extent as well. This searches the delayed ref tree for
7101 * a given extent, and if there are no other delayed refs to be processed, it
7102 * removes it from the tree.
7103 */
7104static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7105 struct btrfs_root *root, u64 bytenr)
7106{
7107 struct btrfs_delayed_ref_head *head;
7108 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7109 int ret = 0;
1887be66
CM
7110
7111 delayed_refs = &trans->transaction->delayed_refs;
7112 spin_lock(&delayed_refs->lock);
7113 head = btrfs_find_delayed_ref_head(trans, bytenr);
7114 if (!head)
cf93da7b 7115 goto out_delayed_unlock;
1887be66 7116
d7df2c79 7117 spin_lock(&head->lock);
c6fc2454 7118 if (!list_empty(&head->ref_list))
1887be66
CM
7119 goto out;
7120
5d4f98a2
YZ
7121 if (head->extent_op) {
7122 if (!head->must_insert_reserved)
7123 goto out;
78a6184a 7124 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7125 head->extent_op = NULL;
7126 }
7127
1887be66
CM
7128 /*
7129 * waiting for the lock here would deadlock. If someone else has it
7130 * locked they are already in the process of dropping it anyway
7131 */
7132 if (!mutex_trylock(&head->mutex))
7133 goto out;
7134
7135 /*
7136 * at this point we have a head with no other entries. Go
7137 * ahead and process it.
7138 */
7139 head->node.in_tree = 0;
c46effa6 7140 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 7141
d7df2c79 7142 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7143
7144 /*
7145 * we don't take a ref on the node because we're removing it from the
7146 * tree, so we just steal the ref the tree was holding.
7147 */
c3e69d58 7148 delayed_refs->num_heads--;
d7df2c79 7149 if (head->processing == 0)
c3e69d58 7150 delayed_refs->num_heads_ready--;
d7df2c79
JB
7151 head->processing = 0;
7152 spin_unlock(&head->lock);
1887be66
CM
7153 spin_unlock(&delayed_refs->lock);
7154
f0486c68
YZ
7155 BUG_ON(head->extent_op);
7156 if (head->must_insert_reserved)
7157 ret = 1;
7158
7159 mutex_unlock(&head->mutex);
1887be66 7160 btrfs_put_delayed_ref(&head->node);
f0486c68 7161 return ret;
1887be66 7162out:
d7df2c79 7163 spin_unlock(&head->lock);
cf93da7b
CM
7164
7165out_delayed_unlock:
1887be66
CM
7166 spin_unlock(&delayed_refs->lock);
7167 return 0;
7168}
7169
f0486c68
YZ
7170void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7171 struct btrfs_root *root,
7172 struct extent_buffer *buf,
5581a51a 7173 u64 parent, int last_ref)
f0486c68 7174{
b150a4f1 7175 int pin = 1;
f0486c68
YZ
7176 int ret;
7177
7178 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
7179 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7180 buf->start, buf->len,
7181 parent, root->root_key.objectid,
7182 btrfs_header_level(buf),
b06c4bf5 7183 BTRFS_DROP_DELAYED_REF, NULL);
79787eaa 7184 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
7185 }
7186
7187 if (!last_ref)
7188 return;
7189
f0486c68 7190 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7191 struct btrfs_block_group_cache *cache;
7192
f0486c68
YZ
7193 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7194 ret = check_ref_cleanup(trans, root, buf->start);
7195 if (!ret)
37be25bc 7196 goto out;
f0486c68
YZ
7197 }
7198
6219872d
FM
7199 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
7200
f0486c68
YZ
7201 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7202 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 7203 btrfs_put_block_group(cache);
37be25bc 7204 goto out;
f0486c68
YZ
7205 }
7206
7207 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7208
7209 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7210 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7211 btrfs_put_block_group(cache);
0be5dc67 7212 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 7213 pin = 0;
f0486c68
YZ
7214 }
7215out:
b150a4f1
JB
7216 if (pin)
7217 add_pinned_bytes(root->fs_info, buf->len,
7218 btrfs_header_level(buf),
7219 root->root_key.objectid);
7220
a826d6dc
JB
7221 /*
7222 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7223 * anymore.
7224 */
7225 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
7226}
7227
79787eaa 7228/* Can return -ENOMEM */
66d7e7f0
AJ
7229int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7230 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7231 u64 owner, u64 offset)
925baedd
CM
7232{
7233 int ret;
66d7e7f0 7234 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 7235
f5ee5c9a 7236 if (btrfs_is_testing(fs_info))
faa2dbf0 7237 return 0;
fccb84c9 7238
b150a4f1
JB
7239 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7240
56bec294
CM
7241 /*
7242 * tree log blocks never actually go into the extent allocation
7243 * tree, just update pinning info and exit early.
56bec294 7244 */
5d4f98a2
YZ
7245 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7246 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7247 /* unlocks the pinned mutex */
11833d66 7248 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 7249 ret = 0;
5d4f98a2 7250 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
7251 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7252 num_bytes,
5d4f98a2 7253 parent, root_objectid, (int)owner,
b06c4bf5 7254 BTRFS_DROP_DELAYED_REF, NULL);
5d4f98a2 7255 } else {
66d7e7f0
AJ
7256 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7257 num_bytes,
7258 parent, root_objectid, owner,
5846a3c2
QW
7259 offset, 0,
7260 BTRFS_DROP_DELAYED_REF, NULL);
56bec294 7261 }
925baedd
CM
7262 return ret;
7263}
7264
817d52f8
JB
7265/*
7266 * when we wait for progress in the block group caching, its because
7267 * our allocation attempt failed at least once. So, we must sleep
7268 * and let some progress happen before we try again.
7269 *
7270 * This function will sleep at least once waiting for new free space to
7271 * show up, and then it will check the block group free space numbers
7272 * for our min num_bytes. Another option is to have it go ahead
7273 * and look in the rbtree for a free extent of a given size, but this
7274 * is a good start.
36cce922
JB
7275 *
7276 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7277 * any of the information in this block group.
817d52f8 7278 */
36cce922 7279static noinline void
817d52f8
JB
7280wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7281 u64 num_bytes)
7282{
11833d66 7283 struct btrfs_caching_control *caching_ctl;
817d52f8 7284
11833d66
YZ
7285 caching_ctl = get_caching_control(cache);
7286 if (!caching_ctl)
36cce922 7287 return;
817d52f8 7288
11833d66 7289 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7290 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7291
7292 put_caching_control(caching_ctl);
11833d66
YZ
7293}
7294
7295static noinline int
7296wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7297{
7298 struct btrfs_caching_control *caching_ctl;
36cce922 7299 int ret = 0;
11833d66
YZ
7300
7301 caching_ctl = get_caching_control(cache);
7302 if (!caching_ctl)
36cce922 7303 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7304
7305 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7306 if (cache->cached == BTRFS_CACHE_ERROR)
7307 ret = -EIO;
11833d66 7308 put_caching_control(caching_ctl);
36cce922 7309 return ret;
817d52f8
JB
7310}
7311
31e50229 7312int __get_raid_index(u64 flags)
b742bb82 7313{
7738a53a 7314 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7315 return BTRFS_RAID_RAID10;
7738a53a 7316 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7317 return BTRFS_RAID_RAID1;
7738a53a 7318 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7319 return BTRFS_RAID_DUP;
7738a53a 7320 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7321 return BTRFS_RAID_RAID0;
53b381b3 7322 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7323 return BTRFS_RAID_RAID5;
53b381b3 7324 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7325 return BTRFS_RAID_RAID6;
7738a53a 7326
e942f883 7327 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7328}
7329
6ab0a202 7330int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7331{
31e50229 7332 return __get_raid_index(cache->flags);
7738a53a
ID
7333}
7334
6ab0a202
JM
7335static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7336 [BTRFS_RAID_RAID10] = "raid10",
7337 [BTRFS_RAID_RAID1] = "raid1",
7338 [BTRFS_RAID_DUP] = "dup",
7339 [BTRFS_RAID_RAID0] = "raid0",
7340 [BTRFS_RAID_SINGLE] = "single",
7341 [BTRFS_RAID_RAID5] = "raid5",
7342 [BTRFS_RAID_RAID6] = "raid6",
7343};
7344
1b8e5df6 7345static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7346{
7347 if (type >= BTRFS_NR_RAID_TYPES)
7348 return NULL;
7349
7350 return btrfs_raid_type_names[type];
7351}
7352
817d52f8 7353enum btrfs_loop_type {
285ff5af
JB
7354 LOOP_CACHING_NOWAIT = 0,
7355 LOOP_CACHING_WAIT = 1,
7356 LOOP_ALLOC_CHUNK = 2,
7357 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7358};
7359
e570fd27
MX
7360static inline void
7361btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7362 int delalloc)
7363{
7364 if (delalloc)
7365 down_read(&cache->data_rwsem);
7366}
7367
7368static inline void
7369btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7370 int delalloc)
7371{
7372 btrfs_get_block_group(cache);
7373 if (delalloc)
7374 down_read(&cache->data_rwsem);
7375}
7376
7377static struct btrfs_block_group_cache *
7378btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7379 struct btrfs_free_cluster *cluster,
7380 int delalloc)
7381{
89771cc9 7382 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7383
e570fd27 7384 spin_lock(&cluster->refill_lock);
6719afdc
GU
7385 while (1) {
7386 used_bg = cluster->block_group;
7387 if (!used_bg)
7388 return NULL;
7389
7390 if (used_bg == block_group)
e570fd27
MX
7391 return used_bg;
7392
6719afdc 7393 btrfs_get_block_group(used_bg);
e570fd27 7394
6719afdc
GU
7395 if (!delalloc)
7396 return used_bg;
e570fd27 7397
6719afdc
GU
7398 if (down_read_trylock(&used_bg->data_rwsem))
7399 return used_bg;
e570fd27 7400
6719afdc 7401 spin_unlock(&cluster->refill_lock);
e570fd27 7402
6719afdc 7403 down_read(&used_bg->data_rwsem);
e570fd27 7404
6719afdc
GU
7405 spin_lock(&cluster->refill_lock);
7406 if (used_bg == cluster->block_group)
7407 return used_bg;
e570fd27 7408
6719afdc
GU
7409 up_read(&used_bg->data_rwsem);
7410 btrfs_put_block_group(used_bg);
7411 }
e570fd27
MX
7412}
7413
7414static inline void
7415btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7416 int delalloc)
7417{
7418 if (delalloc)
7419 up_read(&cache->data_rwsem);
7420 btrfs_put_block_group(cache);
7421}
7422
fec577fb
CM
7423/*
7424 * walks the btree of allocated extents and find a hole of a given size.
7425 * The key ins is changed to record the hole:
a4820398 7426 * ins->objectid == start position
62e2749e 7427 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7428 * ins->offset == the size of the hole.
fec577fb 7429 * Any available blocks before search_start are skipped.
a4820398
MX
7430 *
7431 * If there is no suitable free space, we will record the max size of
7432 * the free space extent currently.
fec577fb 7433 */
00361589 7434static noinline int find_free_extent(struct btrfs_root *orig_root,
18513091
WX
7435 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7436 u64 hint_byte, struct btrfs_key *ins,
7437 u64 flags, int delalloc)
fec577fb 7438{
80eb234a 7439 int ret = 0;
d397712b 7440 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 7441 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7442 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7443 u64 search_start = 0;
a4820398 7444 u64 max_extent_size = 0;
c759c4e1 7445 u64 empty_cluster = 0;
80eb234a 7446 struct btrfs_space_info *space_info;
fa9c0d79 7447 int loop = 0;
b6919a58 7448 int index = __get_raid_index(flags);
0a24325e 7449 bool failed_cluster_refill = false;
1cdda9b8 7450 bool failed_alloc = false;
67377734 7451 bool use_cluster = true;
60d2adbb 7452 bool have_caching_bg = false;
13a0db5a 7453 bool orig_have_caching_bg = false;
a5e681d9 7454 bool full_search = false;
fec577fb 7455
db94535d 7456 WARN_ON(num_bytes < root->sectorsize);
962a298f 7457 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7458 ins->objectid = 0;
7459 ins->offset = 0;
b1a4d965 7460
b6919a58 7461 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 7462
b6919a58 7463 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 7464 if (!space_info) {
b6919a58 7465 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7466 return -ENOSPC;
7467 }
2552d17e 7468
67377734 7469 /*
4f4db217
JB
7470 * If our free space is heavily fragmented we may not be able to make
7471 * big contiguous allocations, so instead of doing the expensive search
7472 * for free space, simply return ENOSPC with our max_extent_size so we
7473 * can go ahead and search for a more manageable chunk.
7474 *
7475 * If our max_extent_size is large enough for our allocation simply
7476 * disable clustering since we will likely not be able to find enough
7477 * space to create a cluster and induce latency trying.
67377734 7478 */
4f4db217
JB
7479 if (unlikely(space_info->max_extent_size)) {
7480 spin_lock(&space_info->lock);
7481 if (space_info->max_extent_size &&
7482 num_bytes > space_info->max_extent_size) {
7483 ins->offset = space_info->max_extent_size;
7484 spin_unlock(&space_info->lock);
7485 return -ENOSPC;
7486 } else if (space_info->max_extent_size) {
7487 use_cluster = false;
7488 }
7489 spin_unlock(&space_info->lock);
fa9c0d79 7490 }
0f9dd46c 7491
c759c4e1 7492 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
239b14b3 7493 if (last_ptr) {
fa9c0d79
CM
7494 spin_lock(&last_ptr->lock);
7495 if (last_ptr->block_group)
7496 hint_byte = last_ptr->window_start;
c759c4e1
JB
7497 if (last_ptr->fragmented) {
7498 /*
7499 * We still set window_start so we can keep track of the
7500 * last place we found an allocation to try and save
7501 * some time.
7502 */
7503 hint_byte = last_ptr->window_start;
7504 use_cluster = false;
7505 }
fa9c0d79 7506 spin_unlock(&last_ptr->lock);
239b14b3 7507 }
fa9c0d79 7508
a061fc8d 7509 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 7510 search_start = max(search_start, hint_byte);
2552d17e 7511 if (search_start == hint_byte) {
2552d17e
JB
7512 block_group = btrfs_lookup_block_group(root->fs_info,
7513 search_start);
817d52f8
JB
7514 /*
7515 * we don't want to use the block group if it doesn't match our
7516 * allocation bits, or if its not cached.
ccf0e725
JB
7517 *
7518 * However if we are re-searching with an ideal block group
7519 * picked out then we don't care that the block group is cached.
817d52f8 7520 */
b6919a58 7521 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7522 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7523 down_read(&space_info->groups_sem);
44fb5511
CM
7524 if (list_empty(&block_group->list) ||
7525 block_group->ro) {
7526 /*
7527 * someone is removing this block group,
7528 * we can't jump into the have_block_group
7529 * target because our list pointers are not
7530 * valid
7531 */
7532 btrfs_put_block_group(block_group);
7533 up_read(&space_info->groups_sem);
ccf0e725 7534 } else {
b742bb82 7535 index = get_block_group_index(block_group);
e570fd27 7536 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7537 goto have_block_group;
ccf0e725 7538 }
2552d17e 7539 } else if (block_group) {
fa9c0d79 7540 btrfs_put_block_group(block_group);
2552d17e 7541 }
42e70e7a 7542 }
2552d17e 7543search:
60d2adbb 7544 have_caching_bg = false;
a5e681d9
JB
7545 if (index == 0 || index == __get_raid_index(flags))
7546 full_search = true;
80eb234a 7547 down_read(&space_info->groups_sem);
b742bb82
YZ
7548 list_for_each_entry(block_group, &space_info->block_groups[index],
7549 list) {
6226cb0a 7550 u64 offset;
817d52f8 7551 int cached;
8a1413a2 7552
e570fd27 7553 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7554 search_start = block_group->key.objectid;
42e70e7a 7555
83a50de9
CM
7556 /*
7557 * this can happen if we end up cycling through all the
7558 * raid types, but we want to make sure we only allocate
7559 * for the proper type.
7560 */
b6919a58 7561 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7562 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7563 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7564 BTRFS_BLOCK_GROUP_RAID5 |
7565 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7566 BTRFS_BLOCK_GROUP_RAID10;
7567
7568 /*
7569 * if they asked for extra copies and this block group
7570 * doesn't provide them, bail. This does allow us to
7571 * fill raid0 from raid1.
7572 */
b6919a58 7573 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7574 goto loop;
7575 }
7576
2552d17e 7577have_block_group:
291c7d2f
JB
7578 cached = block_group_cache_done(block_group);
7579 if (unlikely(!cached)) {
a5e681d9 7580 have_caching_bg = true;
f6373bf3 7581 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7582 BUG_ON(ret < 0);
7583 ret = 0;
817d52f8
JB
7584 }
7585
36cce922
JB
7586 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7587 goto loop;
ea6a478e 7588 if (unlikely(block_group->ro))
2552d17e 7589 goto loop;
0f9dd46c 7590
0a24325e 7591 /*
062c05c4
AO
7592 * Ok we want to try and use the cluster allocator, so
7593 * lets look there
0a24325e 7594 */
c759c4e1 7595 if (last_ptr && use_cluster) {
215a63d1 7596 struct btrfs_block_group_cache *used_block_group;
8de972b4 7597 unsigned long aligned_cluster;
fa9c0d79
CM
7598 /*
7599 * the refill lock keeps out other
7600 * people trying to start a new cluster
7601 */
e570fd27
MX
7602 used_block_group = btrfs_lock_cluster(block_group,
7603 last_ptr,
7604 delalloc);
7605 if (!used_block_group)
44fb5511 7606 goto refill_cluster;
274bd4fb 7607
e570fd27
MX
7608 if (used_block_group != block_group &&
7609 (used_block_group->ro ||
7610 !block_group_bits(used_block_group, flags)))
7611 goto release_cluster;
44fb5511 7612
274bd4fb 7613 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7614 last_ptr,
7615 num_bytes,
7616 used_block_group->key.objectid,
7617 &max_extent_size);
fa9c0d79
CM
7618 if (offset) {
7619 /* we have a block, we're done */
7620 spin_unlock(&last_ptr->refill_lock);
3f7de037 7621 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7622 used_block_group,
7623 search_start, num_bytes);
215a63d1 7624 if (used_block_group != block_group) {
e570fd27
MX
7625 btrfs_release_block_group(block_group,
7626 delalloc);
215a63d1
MX
7627 block_group = used_block_group;
7628 }
fa9c0d79
CM
7629 goto checks;
7630 }
7631
274bd4fb 7632 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7633release_cluster:
062c05c4
AO
7634 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7635 * set up a new clusters, so lets just skip it
7636 * and let the allocator find whatever block
7637 * it can find. If we reach this point, we
7638 * will have tried the cluster allocator
7639 * plenty of times and not have found
7640 * anything, so we are likely way too
7641 * fragmented for the clustering stuff to find
a5f6f719
AO
7642 * anything.
7643 *
7644 * However, if the cluster is taken from the
7645 * current block group, release the cluster
7646 * first, so that we stand a better chance of
7647 * succeeding in the unclustered
7648 * allocation. */
7649 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7650 used_block_group != block_group) {
062c05c4 7651 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7652 btrfs_release_block_group(used_block_group,
7653 delalloc);
062c05c4
AO
7654 goto unclustered_alloc;
7655 }
7656
fa9c0d79
CM
7657 /*
7658 * this cluster didn't work out, free it and
7659 * start over
7660 */
7661 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7662
e570fd27
MX
7663 if (used_block_group != block_group)
7664 btrfs_release_block_group(used_block_group,
7665 delalloc);
7666refill_cluster:
a5f6f719
AO
7667 if (loop >= LOOP_NO_EMPTY_SIZE) {
7668 spin_unlock(&last_ptr->refill_lock);
7669 goto unclustered_alloc;
7670 }
7671
8de972b4
CM
7672 aligned_cluster = max_t(unsigned long,
7673 empty_cluster + empty_size,
7674 block_group->full_stripe_len);
7675
fa9c0d79 7676 /* allocate a cluster in this block group */
00361589
JB
7677 ret = btrfs_find_space_cluster(root, block_group,
7678 last_ptr, search_start,
7679 num_bytes,
7680 aligned_cluster);
fa9c0d79
CM
7681 if (ret == 0) {
7682 /*
7683 * now pull our allocation out of this
7684 * cluster
7685 */
7686 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7687 last_ptr,
7688 num_bytes,
7689 search_start,
7690 &max_extent_size);
fa9c0d79
CM
7691 if (offset) {
7692 /* we found one, proceed */
7693 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7694 trace_btrfs_reserve_extent_cluster(root,
7695 block_group, search_start,
7696 num_bytes);
fa9c0d79
CM
7697 goto checks;
7698 }
0a24325e
JB
7699 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7700 && !failed_cluster_refill) {
817d52f8
JB
7701 spin_unlock(&last_ptr->refill_lock);
7702
0a24325e 7703 failed_cluster_refill = true;
817d52f8
JB
7704 wait_block_group_cache_progress(block_group,
7705 num_bytes + empty_cluster + empty_size);
7706 goto have_block_group;
fa9c0d79 7707 }
817d52f8 7708
fa9c0d79
CM
7709 /*
7710 * at this point we either didn't find a cluster
7711 * or we weren't able to allocate a block from our
7712 * cluster. Free the cluster we've been trying
7713 * to use, and go to the next block group
7714 */
0a24325e 7715 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7716 spin_unlock(&last_ptr->refill_lock);
0a24325e 7717 goto loop;
fa9c0d79
CM
7718 }
7719
062c05c4 7720unclustered_alloc:
c759c4e1
JB
7721 /*
7722 * We are doing an unclustered alloc, set the fragmented flag so
7723 * we don't bother trying to setup a cluster again until we get
7724 * more space.
7725 */
7726 if (unlikely(last_ptr)) {
7727 spin_lock(&last_ptr->lock);
7728 last_ptr->fragmented = 1;
7729 spin_unlock(&last_ptr->lock);
7730 }
a5f6f719
AO
7731 spin_lock(&block_group->free_space_ctl->tree_lock);
7732 if (cached &&
7733 block_group->free_space_ctl->free_space <
7734 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7735 if (block_group->free_space_ctl->free_space >
7736 max_extent_size)
7737 max_extent_size =
7738 block_group->free_space_ctl->free_space;
a5f6f719
AO
7739 spin_unlock(&block_group->free_space_ctl->tree_lock);
7740 goto loop;
7741 }
7742 spin_unlock(&block_group->free_space_ctl->tree_lock);
7743
6226cb0a 7744 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7745 num_bytes, empty_size,
7746 &max_extent_size);
1cdda9b8
JB
7747 /*
7748 * If we didn't find a chunk, and we haven't failed on this
7749 * block group before, and this block group is in the middle of
7750 * caching and we are ok with waiting, then go ahead and wait
7751 * for progress to be made, and set failed_alloc to true.
7752 *
7753 * If failed_alloc is true then we've already waited on this
7754 * block group once and should move on to the next block group.
7755 */
7756 if (!offset && !failed_alloc && !cached &&
7757 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7758 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7759 num_bytes + empty_size);
7760 failed_alloc = true;
817d52f8 7761 goto have_block_group;
1cdda9b8
JB
7762 } else if (!offset) {
7763 goto loop;
817d52f8 7764 }
fa9c0d79 7765checks:
4e54b17a 7766 search_start = ALIGN(offset, root->stripesize);
25179201 7767
2552d17e
JB
7768 /* move on to the next group */
7769 if (search_start + num_bytes >
215a63d1
MX
7770 block_group->key.objectid + block_group->key.offset) {
7771 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7772 goto loop;
6226cb0a 7773 }
f5a31e16 7774
f0486c68 7775 if (offset < search_start)
215a63d1 7776 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7777 search_start - offset);
7778 BUG_ON(offset > search_start);
2552d17e 7779
18513091
WX
7780 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7781 num_bytes, delalloc);
f0486c68 7782 if (ret == -EAGAIN) {
215a63d1 7783 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7784 goto loop;
0f9dd46c 7785 }
9cfa3e34 7786 btrfs_inc_block_group_reservations(block_group);
0b86a832 7787
f0486c68 7788 /* we are all good, lets return */
2552d17e
JB
7789 ins->objectid = search_start;
7790 ins->offset = num_bytes;
d2fb3437 7791
3f7de037
JB
7792 trace_btrfs_reserve_extent(orig_root, block_group,
7793 search_start, num_bytes);
e570fd27 7794 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7795 break;
7796loop:
0a24325e 7797 failed_cluster_refill = false;
1cdda9b8 7798 failed_alloc = false;
b742bb82 7799 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7800 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7801 }
7802 up_read(&space_info->groups_sem);
7803
13a0db5a 7804 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7805 && !orig_have_caching_bg)
7806 orig_have_caching_bg = true;
7807
60d2adbb
MX
7808 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7809 goto search;
7810
b742bb82
YZ
7811 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7812 goto search;
7813
285ff5af 7814 /*
ccf0e725
JB
7815 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7816 * caching kthreads as we move along
817d52f8
JB
7817 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7818 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7819 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7820 * again
fa9c0d79 7821 */
723bda20 7822 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7823 index = 0;
a5e681d9
JB
7824 if (loop == LOOP_CACHING_NOWAIT) {
7825 /*
7826 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7827 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7828 * full search through.
7829 */
13a0db5a 7830 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7831 loop = LOOP_CACHING_WAIT;
7832 else
7833 loop = LOOP_ALLOC_CHUNK;
7834 } else {
7835 loop++;
7836 }
7837
817d52f8 7838 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7839 struct btrfs_trans_handle *trans;
f017f15f
WS
7840 int exist = 0;
7841
7842 trans = current->journal_info;
7843 if (trans)
7844 exist = 1;
7845 else
7846 trans = btrfs_join_transaction(root);
00361589 7847
00361589
JB
7848 if (IS_ERR(trans)) {
7849 ret = PTR_ERR(trans);
7850 goto out;
7851 }
7852
b6919a58 7853 ret = do_chunk_alloc(trans, root, flags,
ea658bad 7854 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7855
7856 /*
7857 * If we can't allocate a new chunk we've already looped
7858 * through at least once, move on to the NO_EMPTY_SIZE
7859 * case.
7860 */
7861 if (ret == -ENOSPC)
7862 loop = LOOP_NO_EMPTY_SIZE;
7863
ea658bad
JB
7864 /*
7865 * Do not bail out on ENOSPC since we
7866 * can do more things.
7867 */
00361589 7868 if (ret < 0 && ret != -ENOSPC)
66642832 7869 btrfs_abort_transaction(trans, ret);
00361589
JB
7870 else
7871 ret = 0;
f017f15f
WS
7872 if (!exist)
7873 btrfs_end_transaction(trans, root);
00361589 7874 if (ret)
ea658bad 7875 goto out;
2552d17e
JB
7876 }
7877
723bda20 7878 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7879 /*
7880 * Don't loop again if we already have no empty_size and
7881 * no empty_cluster.
7882 */
7883 if (empty_size == 0 &&
7884 empty_cluster == 0) {
7885 ret = -ENOSPC;
7886 goto out;
7887 }
723bda20
JB
7888 empty_size = 0;
7889 empty_cluster = 0;
fa9c0d79 7890 }
723bda20
JB
7891
7892 goto search;
2552d17e
JB
7893 } else if (!ins->objectid) {
7894 ret = -ENOSPC;
d82a6f1d 7895 } else if (ins->objectid) {
c759c4e1
JB
7896 if (!use_cluster && last_ptr) {
7897 spin_lock(&last_ptr->lock);
7898 last_ptr->window_start = ins->objectid;
7899 spin_unlock(&last_ptr->lock);
7900 }
80eb234a 7901 ret = 0;
be744175 7902 }
79787eaa 7903out:
4f4db217
JB
7904 if (ret == -ENOSPC) {
7905 spin_lock(&space_info->lock);
7906 space_info->max_extent_size = max_extent_size;
7907 spin_unlock(&space_info->lock);
a4820398 7908 ins->offset = max_extent_size;
4f4db217 7909 }
0f70abe2 7910 return ret;
fec577fb 7911}
ec44a35c 7912
ab8d0fc4
JM
7913static void dump_space_info(struct btrfs_fs_info *fs_info,
7914 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7915 int dump_block_groups)
0f9dd46c
JB
7916{
7917 struct btrfs_block_group_cache *cache;
b742bb82 7918 int index = 0;
0f9dd46c 7919
9ed74f2d 7920 spin_lock(&info->lock);
ab8d0fc4
JM
7921 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7922 info->flags,
7923 info->total_bytes - info->bytes_used - info->bytes_pinned -
7924 info->bytes_reserved - info->bytes_readonly -
7925 info->bytes_may_use, (info->full) ? "" : "not ");
7926 btrfs_info(fs_info,
7927 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7928 info->total_bytes, info->bytes_used, info->bytes_pinned,
7929 info->bytes_reserved, info->bytes_may_use,
7930 info->bytes_readonly);
9ed74f2d
JB
7931 spin_unlock(&info->lock);
7932
7933 if (!dump_block_groups)
7934 return;
0f9dd46c 7935
80eb234a 7936 down_read(&info->groups_sem);
b742bb82
YZ
7937again:
7938 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7939 spin_lock(&cache->lock);
ab8d0fc4
JM
7940 btrfs_info(fs_info,
7941 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7942 cache->key.objectid, cache->key.offset,
7943 btrfs_block_group_used(&cache->item), cache->pinned,
7944 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7945 btrfs_dump_free_space(cache, bytes);
7946 spin_unlock(&cache->lock);
7947 }
b742bb82
YZ
7948 if (++index < BTRFS_NR_RAID_TYPES)
7949 goto again;
80eb234a 7950 up_read(&info->groups_sem);
0f9dd46c 7951}
e8569813 7952
18513091 7953int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7954 u64 num_bytes, u64 min_alloc_size,
7955 u64 empty_size, u64 hint_byte,
e570fd27 7956 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7957{
ab8d0fc4 7958 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7959 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7960 u64 flags;
fec577fb 7961 int ret;
925baedd 7962
b6919a58 7963 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7964again:
db94535d 7965 WARN_ON(num_bytes < root->sectorsize);
18513091
WX
7966 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
7967 hint_byte, ins, flags, delalloc);
9cfa3e34 7968 if (!ret && !is_data) {
ab8d0fc4 7969 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 7970 } else if (ret == -ENOSPC) {
a4820398
MX
7971 if (!final_tried && ins->offset) {
7972 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7973 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7974 num_bytes = max(num_bytes, min_alloc_size);
18513091 7975 ram_bytes = num_bytes;
9e622d6b
MX
7976 if (num_bytes == min_alloc_size)
7977 final_tried = true;
7978 goto again;
ab8d0fc4 7979 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
7980 struct btrfs_space_info *sinfo;
7981
ab8d0fc4 7982 sinfo = __find_space_info(fs_info, flags);
5d163e0e
JM
7983 btrfs_err(root->fs_info,
7984 "allocation failed flags %llu, wanted %llu",
7985 flags, num_bytes);
53804280 7986 if (sinfo)
ab8d0fc4 7987 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 7988 }
925baedd 7989 }
0f9dd46c
JB
7990
7991 return ret;
e6dcd2dc
CM
7992}
7993
e688b725 7994static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7995 u64 start, u64 len,
7996 int pin, int delalloc)
65b51a00 7997{
0f9dd46c 7998 struct btrfs_block_group_cache *cache;
1f3c79a2 7999 int ret = 0;
0f9dd46c 8000
0f9dd46c
JB
8001 cache = btrfs_lookup_block_group(root->fs_info, start);
8002 if (!cache) {
c2cf52eb 8003 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 8004 start);
0f9dd46c
JB
8005 return -ENOSPC;
8006 }
1f3c79a2 8007
e688b725
CM
8008 if (pin)
8009 pin_down_extent(root, cache, start, len, 1);
8010 else {
3cdde224 8011 if (btrfs_test_opt(root->fs_info, DISCARD))
dcc82f47 8012 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 8013 btrfs_add_free_space(cache, start, len);
4824f1f4 8014 btrfs_free_reserved_bytes(cache, len, delalloc);
31bada7c 8015 trace_btrfs_reserved_extent_free(root, start, len);
e688b725 8016 }
31193213 8017
fa9c0d79 8018 btrfs_put_block_group(cache);
e6dcd2dc
CM
8019 return ret;
8020}
8021
e688b725 8022int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 8023 u64 start, u64 len, int delalloc)
e688b725 8024{
e570fd27 8025 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
8026}
8027
8028int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
8029 u64 start, u64 len)
8030{
e570fd27 8031 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
8032}
8033
5d4f98a2
YZ
8034static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8035 struct btrfs_root *root,
8036 u64 parent, u64 root_objectid,
8037 u64 flags, u64 owner, u64 offset,
8038 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8039{
8040 int ret;
5d4f98a2 8041 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 8042 struct btrfs_extent_item *extent_item;
5d4f98a2 8043 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8044 struct btrfs_path *path;
5d4f98a2
YZ
8045 struct extent_buffer *leaf;
8046 int type;
8047 u32 size;
26b8003f 8048
5d4f98a2
YZ
8049 if (parent > 0)
8050 type = BTRFS_SHARED_DATA_REF_KEY;
8051 else
8052 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8053
5d4f98a2 8054 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8055
8056 path = btrfs_alloc_path();
db5b493a
TI
8057 if (!path)
8058 return -ENOMEM;
47e4bb98 8059
b9473439 8060 path->leave_spinning = 1;
5d4f98a2
YZ
8061 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8062 ins, size);
79787eaa
JM
8063 if (ret) {
8064 btrfs_free_path(path);
8065 return ret;
8066 }
0f9dd46c 8067
5d4f98a2
YZ
8068 leaf = path->nodes[0];
8069 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8070 struct btrfs_extent_item);
5d4f98a2
YZ
8071 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8072 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8073 btrfs_set_extent_flags(leaf, extent_item,
8074 flags | BTRFS_EXTENT_FLAG_DATA);
8075
8076 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8077 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8078 if (parent > 0) {
8079 struct btrfs_shared_data_ref *ref;
8080 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8081 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8082 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8083 } else {
8084 struct btrfs_extent_data_ref *ref;
8085 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8086 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8087 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8088 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8089 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8090 }
47e4bb98
CM
8091
8092 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8093 btrfs_free_path(path);
f510cfec 8094
1e144fb8
OS
8095 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8096 ins->offset);
8097 if (ret)
8098 return ret;
8099
ce93ec54 8100 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 8101 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8102 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8103 ins->objectid, ins->offset);
f5947066
CM
8104 BUG();
8105 }
0be5dc67 8106 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
8107 return ret;
8108}
8109
5d4f98a2
YZ
8110static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8111 struct btrfs_root *root,
8112 u64 parent, u64 root_objectid,
8113 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8114 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8115{
8116 int ret;
5d4f98a2
YZ
8117 struct btrfs_fs_info *fs_info = root->fs_info;
8118 struct btrfs_extent_item *extent_item;
8119 struct btrfs_tree_block_info *block_info;
8120 struct btrfs_extent_inline_ref *iref;
8121 struct btrfs_path *path;
8122 struct extent_buffer *leaf;
3173a18f 8123 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8124 u64 num_bytes = ins->offset;
3173a18f
JB
8125 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8126 SKINNY_METADATA);
8127
8128 if (!skinny_metadata)
8129 size += sizeof(*block_info);
1c2308f8 8130
5d4f98a2 8131 path = btrfs_alloc_path();
857cc2fc
JB
8132 if (!path) {
8133 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 8134 root->nodesize);
d8926bb3 8135 return -ENOMEM;
857cc2fc 8136 }
56bec294 8137
5d4f98a2
YZ
8138 path->leave_spinning = 1;
8139 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8140 ins, size);
79787eaa 8141 if (ret) {
dd825259 8142 btrfs_free_path(path);
857cc2fc 8143 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 8144 root->nodesize);
79787eaa
JM
8145 return ret;
8146 }
5d4f98a2
YZ
8147
8148 leaf = path->nodes[0];
8149 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8150 struct btrfs_extent_item);
8151 btrfs_set_extent_refs(leaf, extent_item, 1);
8152 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8153 btrfs_set_extent_flags(leaf, extent_item,
8154 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8155
3173a18f
JB
8156 if (skinny_metadata) {
8157 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 8158 num_bytes = root->nodesize;
3173a18f
JB
8159 } else {
8160 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8161 btrfs_set_tree_block_key(leaf, block_info, key);
8162 btrfs_set_tree_block_level(leaf, block_info, level);
8163 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8164 }
5d4f98a2 8165
5d4f98a2
YZ
8166 if (parent > 0) {
8167 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8168 btrfs_set_extent_inline_ref_type(leaf, iref,
8169 BTRFS_SHARED_BLOCK_REF_KEY);
8170 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8171 } else {
8172 btrfs_set_extent_inline_ref_type(leaf, iref,
8173 BTRFS_TREE_BLOCK_REF_KEY);
8174 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8175 }
8176
8177 btrfs_mark_buffer_dirty(leaf);
8178 btrfs_free_path(path);
8179
1e144fb8
OS
8180 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8181 num_bytes);
8182 if (ret)
8183 return ret;
8184
ce93ec54
JB
8185 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
8186 1);
79787eaa 8187 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8188 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8189 ins->objectid, ins->offset);
5d4f98a2
YZ
8190 BUG();
8191 }
0be5dc67 8192
707e8a07 8193 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
8194 return ret;
8195}
8196
8197int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8198 struct btrfs_root *root,
8199 u64 root_objectid, u64 owner,
5846a3c2
QW
8200 u64 offset, u64 ram_bytes,
8201 struct btrfs_key *ins)
5d4f98a2
YZ
8202{
8203 int ret;
8204
8205 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8206
66d7e7f0
AJ
8207 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
8208 ins->offset, 0,
8209 root_objectid, owner, offset,
5846a3c2
QW
8210 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8211 NULL);
e6dcd2dc
CM
8212 return ret;
8213}
e02119d5
CM
8214
8215/*
8216 * this is used by the tree logging recovery code. It records that
8217 * an extent has been allocated and makes sure to clear the free
8218 * space cache bits as well
8219 */
5d4f98a2
YZ
8220int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8221 struct btrfs_root *root,
8222 u64 root_objectid, u64 owner, u64 offset,
8223 struct btrfs_key *ins)
e02119d5
CM
8224{
8225 int ret;
8226 struct btrfs_block_group_cache *block_group;
ed7a6948 8227 struct btrfs_space_info *space_info;
11833d66 8228
8c2a1a30
JB
8229 /*
8230 * Mixed block groups will exclude before processing the log so we only
01327610 8231 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30
JB
8232 */
8233 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8234 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 8235 if (ret)
8c2a1a30 8236 return ret;
11833d66
YZ
8237 }
8238
8c2a1a30
JB
8239 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8240 if (!block_group)
8241 return -EINVAL;
8242
ed7a6948
WX
8243 space_info = block_group->space_info;
8244 spin_lock(&space_info->lock);
8245 spin_lock(&block_group->lock);
8246 space_info->bytes_reserved += ins->offset;
8247 block_group->reserved += ins->offset;
8248 spin_unlock(&block_group->lock);
8249 spin_unlock(&space_info->lock);
8250
5d4f98a2
YZ
8251 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8252 0, owner, offset, ins, 1);
b50c6e25 8253 btrfs_put_block_group(block_group);
e02119d5
CM
8254 return ret;
8255}
8256
48a3b636
ES
8257static struct extent_buffer *
8258btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8259 u64 bytenr, int level)
65b51a00
CM
8260{
8261 struct extent_buffer *buf;
8262
a83fffb7 8263 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8264 if (IS_ERR(buf))
8265 return buf;
8266
65b51a00 8267 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8268 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8269 btrfs_tree_lock(buf);
01d58472 8270 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 8271 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8272
8273 btrfs_set_lock_blocking(buf);
4db8c528 8274 set_extent_buffer_uptodate(buf);
b4ce94de 8275
d0c803c4 8276 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8277 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8278 /*
8279 * we allow two log transactions at a time, use different
8280 * EXENT bit to differentiate dirty pages.
8281 */
656f30db 8282 if (buf->log_index == 0)
8cef4e16
YZ
8283 set_extent_dirty(&root->dirty_log_pages, buf->start,
8284 buf->start + buf->len - 1, GFP_NOFS);
8285 else
8286 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8287 buf->start + buf->len - 1);
d0c803c4 8288 } else {
656f30db 8289 buf->log_index = -1;
d0c803c4 8290 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8291 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8292 }
64c12921 8293 trans->dirty = true;
b4ce94de 8294 /* this returns a buffer locked for blocking */
65b51a00
CM
8295 return buf;
8296}
8297
f0486c68
YZ
8298static struct btrfs_block_rsv *
8299use_block_rsv(struct btrfs_trans_handle *trans,
8300 struct btrfs_root *root, u32 blocksize)
8301{
8302 struct btrfs_block_rsv *block_rsv;
68a82277 8303 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 8304 int ret;
d88033db 8305 bool global_updated = false;
f0486c68
YZ
8306
8307 block_rsv = get_block_rsv(trans, root);
8308
b586b323
MX
8309 if (unlikely(block_rsv->size == 0))
8310 goto try_reserve;
d88033db 8311again:
f0486c68
YZ
8312 ret = block_rsv_use_bytes(block_rsv, blocksize);
8313 if (!ret)
8314 return block_rsv;
8315
b586b323
MX
8316 if (block_rsv->failfast)
8317 return ERR_PTR(ret);
8318
d88033db
MX
8319 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8320 global_updated = true;
8321 update_global_block_rsv(root->fs_info);
8322 goto again;
8323 }
8324
3cdde224 8325 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8326 static DEFINE_RATELIMIT_STATE(_rs,
8327 DEFAULT_RATELIMIT_INTERVAL * 10,
8328 /*DEFAULT_RATELIMIT_BURST*/ 1);
8329 if (__ratelimit(&_rs))
8330 WARN(1, KERN_DEBUG
efe120a0 8331 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8332 }
8333try_reserve:
8334 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8335 BTRFS_RESERVE_NO_FLUSH);
8336 if (!ret)
8337 return block_rsv;
8338 /*
8339 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8340 * the global reserve if its space type is the same as the global
8341 * reservation.
b586b323 8342 */
5881cfc9
MX
8343 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8344 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8345 ret = block_rsv_use_bytes(global_rsv, blocksize);
8346 if (!ret)
8347 return global_rsv;
8348 }
8349 return ERR_PTR(ret);
f0486c68
YZ
8350}
8351
8c2a3ca2
JB
8352static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8353 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8354{
8355 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8356 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8357}
8358
fec577fb 8359/*
f0486c68 8360 * finds a free extent and does all the dirty work required for allocation
67b7859e 8361 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8362 */
4d75f8a9
DS
8363struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8364 struct btrfs_root *root,
5d4f98a2
YZ
8365 u64 parent, u64 root_objectid,
8366 struct btrfs_disk_key *key, int level,
5581a51a 8367 u64 hint, u64 empty_size)
fec577fb 8368{
e2fa7227 8369 struct btrfs_key ins;
f0486c68 8370 struct btrfs_block_rsv *block_rsv;
5f39d397 8371 struct extent_buffer *buf;
67b7859e 8372 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8373 u64 flags = 0;
8374 int ret;
4d75f8a9 8375 u32 blocksize = root->nodesize;
3173a18f
JB
8376 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8377 SKINNY_METADATA);
fec577fb 8378
05653ef3 8379#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
f5ee5c9a 8380 if (btrfs_is_testing(root->fs_info)) {
faa2dbf0 8381 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8382 level);
faa2dbf0
JB
8383 if (!IS_ERR(buf))
8384 root->alloc_bytenr += blocksize;
8385 return buf;
8386 }
05653ef3 8387#endif
fccb84c9 8388
f0486c68
YZ
8389 block_rsv = use_block_rsv(trans, root, blocksize);
8390 if (IS_ERR(block_rsv))
8391 return ERR_CAST(block_rsv);
8392
18513091 8393 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8394 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8395 if (ret)
8396 goto out_unuse;
55c69072 8397
fe864576 8398 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8399 if (IS_ERR(buf)) {
8400 ret = PTR_ERR(buf);
8401 goto out_free_reserved;
8402 }
f0486c68
YZ
8403
8404 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8405 if (parent == 0)
8406 parent = ins.objectid;
8407 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8408 } else
8409 BUG_ON(parent > 0);
8410
8411 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8412 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8413 if (!extent_op) {
8414 ret = -ENOMEM;
8415 goto out_free_buf;
8416 }
f0486c68
YZ
8417 if (key)
8418 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8419 else
8420 memset(&extent_op->key, 0, sizeof(extent_op->key));
8421 extent_op->flags_to_set = flags;
35b3ad50
DS
8422 extent_op->update_key = skinny_metadata ? false : true;
8423 extent_op->update_flags = true;
8424 extent_op->is_data = false;
b1c79e09 8425 extent_op->level = level;
f0486c68 8426
66d7e7f0 8427 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
8428 ins.objectid, ins.offset,
8429 parent, root_objectid, level,
8430 BTRFS_ADD_DELAYED_EXTENT,
b06c4bf5 8431 extent_op);
67b7859e
OS
8432 if (ret)
8433 goto out_free_delayed;
f0486c68 8434 }
fec577fb 8435 return buf;
67b7859e
OS
8436
8437out_free_delayed:
8438 btrfs_free_delayed_extent_op(extent_op);
8439out_free_buf:
8440 free_extent_buffer(buf);
8441out_free_reserved:
8442 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8443out_unuse:
8444 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8445 return ERR_PTR(ret);
fec577fb 8446}
a28ec197 8447
2c47e605
YZ
8448struct walk_control {
8449 u64 refs[BTRFS_MAX_LEVEL];
8450 u64 flags[BTRFS_MAX_LEVEL];
8451 struct btrfs_key update_progress;
8452 int stage;
8453 int level;
8454 int shared_level;
8455 int update_ref;
8456 int keep_locks;
1c4850e2
YZ
8457 int reada_slot;
8458 int reada_count;
66d7e7f0 8459 int for_reloc;
2c47e605
YZ
8460};
8461
8462#define DROP_REFERENCE 1
8463#define UPDATE_BACKREF 2
8464
1c4850e2
YZ
8465static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8466 struct btrfs_root *root,
8467 struct walk_control *wc,
8468 struct btrfs_path *path)
6407bf6d 8469{
1c4850e2
YZ
8470 u64 bytenr;
8471 u64 generation;
8472 u64 refs;
94fcca9f 8473 u64 flags;
5d4f98a2 8474 u32 nritems;
1c4850e2
YZ
8475 struct btrfs_key key;
8476 struct extent_buffer *eb;
6407bf6d 8477 int ret;
1c4850e2
YZ
8478 int slot;
8479 int nread = 0;
6407bf6d 8480
1c4850e2
YZ
8481 if (path->slots[wc->level] < wc->reada_slot) {
8482 wc->reada_count = wc->reada_count * 2 / 3;
8483 wc->reada_count = max(wc->reada_count, 2);
8484 } else {
8485 wc->reada_count = wc->reada_count * 3 / 2;
8486 wc->reada_count = min_t(int, wc->reada_count,
8487 BTRFS_NODEPTRS_PER_BLOCK(root));
8488 }
7bb86316 8489
1c4850e2
YZ
8490 eb = path->nodes[wc->level];
8491 nritems = btrfs_header_nritems(eb);
bd56b302 8492
1c4850e2
YZ
8493 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8494 if (nread >= wc->reada_count)
8495 break;
bd56b302 8496
2dd3e67b 8497 cond_resched();
1c4850e2
YZ
8498 bytenr = btrfs_node_blockptr(eb, slot);
8499 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8500
1c4850e2
YZ
8501 if (slot == path->slots[wc->level])
8502 goto reada;
5d4f98a2 8503
1c4850e2
YZ
8504 if (wc->stage == UPDATE_BACKREF &&
8505 generation <= root->root_key.offset)
bd56b302
CM
8506 continue;
8507
94fcca9f 8508 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
8509 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8510 wc->level - 1, 1, &refs,
8511 &flags);
79787eaa
JM
8512 /* We don't care about errors in readahead. */
8513 if (ret < 0)
8514 continue;
94fcca9f
YZ
8515 BUG_ON(refs == 0);
8516
1c4850e2 8517 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8518 if (refs == 1)
8519 goto reada;
bd56b302 8520
94fcca9f
YZ
8521 if (wc->level == 1 &&
8522 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8523 continue;
1c4850e2
YZ
8524 if (!wc->update_ref ||
8525 generation <= root->root_key.offset)
8526 continue;
8527 btrfs_node_key_to_cpu(eb, &key, slot);
8528 ret = btrfs_comp_cpu_keys(&key,
8529 &wc->update_progress);
8530 if (ret < 0)
8531 continue;
94fcca9f
YZ
8532 } else {
8533 if (wc->level == 1 &&
8534 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8535 continue;
6407bf6d 8536 }
1c4850e2 8537reada:
d3e46fea 8538 readahead_tree_block(root, bytenr);
1c4850e2 8539 nread++;
20524f02 8540 }
1c4850e2 8541 wc->reada_slot = slot;
20524f02 8542}
2c47e605 8543
f82d02d9 8544/*
2c016dc2 8545 * helper to process tree block while walking down the tree.
2c47e605 8546 *
2c47e605
YZ
8547 * when wc->stage == UPDATE_BACKREF, this function updates
8548 * back refs for pointers in the block.
8549 *
8550 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8551 */
2c47e605 8552static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8553 struct btrfs_root *root,
2c47e605 8554 struct btrfs_path *path,
94fcca9f 8555 struct walk_control *wc, int lookup_info)
f82d02d9 8556{
2c47e605
YZ
8557 int level = wc->level;
8558 struct extent_buffer *eb = path->nodes[level];
2c47e605 8559 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8560 int ret;
8561
2c47e605
YZ
8562 if (wc->stage == UPDATE_BACKREF &&
8563 btrfs_header_owner(eb) != root->root_key.objectid)
8564 return 1;
f82d02d9 8565
2c47e605
YZ
8566 /*
8567 * when reference count of tree block is 1, it won't increase
8568 * again. once full backref flag is set, we never clear it.
8569 */
94fcca9f
YZ
8570 if (lookup_info &&
8571 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8572 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8573 BUG_ON(!path->locks[level]);
8574 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8575 eb->start, level, 1,
2c47e605
YZ
8576 &wc->refs[level],
8577 &wc->flags[level]);
79787eaa
JM
8578 BUG_ON(ret == -ENOMEM);
8579 if (ret)
8580 return ret;
2c47e605
YZ
8581 BUG_ON(wc->refs[level] == 0);
8582 }
5d4f98a2 8583
2c47e605
YZ
8584 if (wc->stage == DROP_REFERENCE) {
8585 if (wc->refs[level] > 1)
8586 return 1;
f82d02d9 8587
2c47e605 8588 if (path->locks[level] && !wc->keep_locks) {
bd681513 8589 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8590 path->locks[level] = 0;
8591 }
8592 return 0;
8593 }
f82d02d9 8594
2c47e605
YZ
8595 /* wc->stage == UPDATE_BACKREF */
8596 if (!(wc->flags[level] & flag)) {
8597 BUG_ON(!path->locks[level]);
e339a6b0 8598 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8599 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8600 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8601 BUG_ON(ret); /* -ENOMEM */
2c47e605 8602 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8603 eb->len, flag,
8604 btrfs_header_level(eb), 0);
79787eaa 8605 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8606 wc->flags[level] |= flag;
8607 }
8608
8609 /*
8610 * the block is shared by multiple trees, so it's not good to
8611 * keep the tree lock
8612 */
8613 if (path->locks[level] && level > 0) {
bd681513 8614 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8615 path->locks[level] = 0;
8616 }
8617 return 0;
8618}
8619
1c4850e2 8620/*
2c016dc2 8621 * helper to process tree block pointer.
1c4850e2
YZ
8622 *
8623 * when wc->stage == DROP_REFERENCE, this function checks
8624 * reference count of the block pointed to. if the block
8625 * is shared and we need update back refs for the subtree
8626 * rooted at the block, this function changes wc->stage to
8627 * UPDATE_BACKREF. if the block is shared and there is no
8628 * need to update back, this function drops the reference
8629 * to the block.
8630 *
8631 * NOTE: return value 1 means we should stop walking down.
8632 */
8633static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8634 struct btrfs_root *root,
8635 struct btrfs_path *path,
94fcca9f 8636 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8637{
8638 u64 bytenr;
8639 u64 generation;
8640 u64 parent;
8641 u32 blocksize;
8642 struct btrfs_key key;
8643 struct extent_buffer *next;
8644 int level = wc->level;
8645 int reada = 0;
8646 int ret = 0;
1152651a 8647 bool need_account = false;
1c4850e2
YZ
8648
8649 generation = btrfs_node_ptr_generation(path->nodes[level],
8650 path->slots[level]);
8651 /*
8652 * if the lower level block was created before the snapshot
8653 * was created, we know there is no need to update back refs
8654 * for the subtree
8655 */
8656 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8657 generation <= root->root_key.offset) {
8658 *lookup_info = 1;
1c4850e2 8659 return 1;
94fcca9f 8660 }
1c4850e2
YZ
8661
8662 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8663 blocksize = root->nodesize;
1c4850e2 8664
62d1f9fe 8665 next = find_extent_buffer(root->fs_info, bytenr);
1c4850e2 8666 if (!next) {
a83fffb7 8667 next = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8668 if (IS_ERR(next))
8669 return PTR_ERR(next);
8670
b2aaaa3b
JB
8671 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8672 level - 1);
1c4850e2
YZ
8673 reada = 1;
8674 }
8675 btrfs_tree_lock(next);
8676 btrfs_set_lock_blocking(next);
8677
3173a18f 8678 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8679 &wc->refs[level - 1],
8680 &wc->flags[level - 1]);
4867268c
JB
8681 if (ret < 0)
8682 goto out_unlock;
79787eaa 8683
c2cf52eb
SK
8684 if (unlikely(wc->refs[level - 1] == 0)) {
8685 btrfs_err(root->fs_info, "Missing references.");
4867268c
JB
8686 ret = -EIO;
8687 goto out_unlock;
c2cf52eb 8688 }
94fcca9f 8689 *lookup_info = 0;
1c4850e2 8690
94fcca9f 8691 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8692 if (wc->refs[level - 1] > 1) {
1152651a 8693 need_account = true;
94fcca9f
YZ
8694 if (level == 1 &&
8695 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8696 goto skip;
8697
1c4850e2
YZ
8698 if (!wc->update_ref ||
8699 generation <= root->root_key.offset)
8700 goto skip;
8701
8702 btrfs_node_key_to_cpu(path->nodes[level], &key,
8703 path->slots[level]);
8704 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8705 if (ret < 0)
8706 goto skip;
8707
8708 wc->stage = UPDATE_BACKREF;
8709 wc->shared_level = level - 1;
8710 }
94fcca9f
YZ
8711 } else {
8712 if (level == 1 &&
8713 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8714 goto skip;
1c4850e2
YZ
8715 }
8716
b9fab919 8717 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8718 btrfs_tree_unlock(next);
8719 free_extent_buffer(next);
8720 next = NULL;
94fcca9f 8721 *lookup_info = 1;
1c4850e2
YZ
8722 }
8723
8724 if (!next) {
8725 if (reada && level == 1)
8726 reada_walk_down(trans, root, wc, path);
ce86cd59 8727 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8728 if (IS_ERR(next)) {
8729 return PTR_ERR(next);
8730 } else if (!extent_buffer_uptodate(next)) {
416bc658 8731 free_extent_buffer(next);
97d9a8a4 8732 return -EIO;
416bc658 8733 }
1c4850e2
YZ
8734 btrfs_tree_lock(next);
8735 btrfs_set_lock_blocking(next);
8736 }
8737
8738 level--;
4867268c
JB
8739 ASSERT(level == btrfs_header_level(next));
8740 if (level != btrfs_header_level(next)) {
8741 btrfs_err(root->fs_info, "mismatched level");
8742 ret = -EIO;
8743 goto out_unlock;
8744 }
1c4850e2
YZ
8745 path->nodes[level] = next;
8746 path->slots[level] = 0;
bd681513 8747 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8748 wc->level = level;
8749 if (wc->level == 1)
8750 wc->reada_slot = 0;
8751 return 0;
8752skip:
8753 wc->refs[level - 1] = 0;
8754 wc->flags[level - 1] = 0;
94fcca9f
YZ
8755 if (wc->stage == DROP_REFERENCE) {
8756 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8757 parent = path->nodes[level]->start;
8758 } else {
4867268c 8759 ASSERT(root->root_key.objectid ==
94fcca9f 8760 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8761 if (root->root_key.objectid !=
8762 btrfs_header_owner(path->nodes[level])) {
8763 btrfs_err(root->fs_info,
8764 "mismatched block owner");
8765 ret = -EIO;
8766 goto out_unlock;
8767 }
94fcca9f
YZ
8768 parent = 0;
8769 }
1c4850e2 8770
1152651a 8771 if (need_account) {
33d1f05c
QW
8772 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8773 generation, level - 1);
1152651a 8774 if (ret) {
94647322 8775 btrfs_err_rl(root->fs_info,
5d163e0e
JM
8776 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8777 ret);
1152651a
MF
8778 }
8779 }
94fcca9f 8780 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
b06c4bf5 8781 root->root_key.objectid, level - 1, 0);
4867268c
JB
8782 if (ret)
8783 goto out_unlock;
1c4850e2 8784 }
4867268c
JB
8785
8786 *lookup_info = 1;
8787 ret = 1;
8788
8789out_unlock:
1c4850e2
YZ
8790 btrfs_tree_unlock(next);
8791 free_extent_buffer(next);
4867268c
JB
8792
8793 return ret;
1c4850e2
YZ
8794}
8795
2c47e605 8796/*
2c016dc2 8797 * helper to process tree block while walking up the tree.
2c47e605
YZ
8798 *
8799 * when wc->stage == DROP_REFERENCE, this function drops
8800 * reference count on the block.
8801 *
8802 * when wc->stage == UPDATE_BACKREF, this function changes
8803 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8804 * to UPDATE_BACKREF previously while processing the block.
8805 *
8806 * NOTE: return value 1 means we should stop walking up.
8807 */
8808static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8809 struct btrfs_root *root,
8810 struct btrfs_path *path,
8811 struct walk_control *wc)
8812{
f0486c68 8813 int ret;
2c47e605
YZ
8814 int level = wc->level;
8815 struct extent_buffer *eb = path->nodes[level];
8816 u64 parent = 0;
8817
8818 if (wc->stage == UPDATE_BACKREF) {
8819 BUG_ON(wc->shared_level < level);
8820 if (level < wc->shared_level)
8821 goto out;
8822
2c47e605
YZ
8823 ret = find_next_key(path, level + 1, &wc->update_progress);
8824 if (ret > 0)
8825 wc->update_ref = 0;
8826
8827 wc->stage = DROP_REFERENCE;
8828 wc->shared_level = -1;
8829 path->slots[level] = 0;
8830
8831 /*
8832 * check reference count again if the block isn't locked.
8833 * we should start walking down the tree again if reference
8834 * count is one.
8835 */
8836 if (!path->locks[level]) {
8837 BUG_ON(level == 0);
8838 btrfs_tree_lock(eb);
8839 btrfs_set_lock_blocking(eb);
bd681513 8840 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8841
8842 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8843 eb->start, level, 1,
2c47e605
YZ
8844 &wc->refs[level],
8845 &wc->flags[level]);
79787eaa
JM
8846 if (ret < 0) {
8847 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8848 path->locks[level] = 0;
79787eaa
JM
8849 return ret;
8850 }
2c47e605
YZ
8851 BUG_ON(wc->refs[level] == 0);
8852 if (wc->refs[level] == 1) {
bd681513 8853 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8854 path->locks[level] = 0;
2c47e605
YZ
8855 return 1;
8856 }
f82d02d9 8857 }
2c47e605 8858 }
f82d02d9 8859
2c47e605
YZ
8860 /* wc->stage == DROP_REFERENCE */
8861 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8862
2c47e605
YZ
8863 if (wc->refs[level] == 1) {
8864 if (level == 0) {
8865 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8866 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8867 else
e339a6b0 8868 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8869 BUG_ON(ret); /* -ENOMEM */
33d1f05c 8870 ret = btrfs_qgroup_trace_leaf_items(trans, root, eb);
1152651a 8871 if (ret) {
94647322 8872 btrfs_err_rl(root->fs_info,
5d163e0e
JM
8873 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8874 ret);
1152651a 8875 }
2c47e605
YZ
8876 }
8877 /* make block locked assertion in clean_tree_block happy */
8878 if (!path->locks[level] &&
8879 btrfs_header_generation(eb) == trans->transid) {
8880 btrfs_tree_lock(eb);
8881 btrfs_set_lock_blocking(eb);
bd681513 8882 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8883 }
01d58472 8884 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8885 }
8886
8887 if (eb == root->node) {
8888 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8889 parent = eb->start;
8890 else
8891 BUG_ON(root->root_key.objectid !=
8892 btrfs_header_owner(eb));
8893 } else {
8894 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8895 parent = path->nodes[level + 1]->start;
8896 else
8897 BUG_ON(root->root_key.objectid !=
8898 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8899 }
f82d02d9 8900
5581a51a 8901 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8902out:
8903 wc->refs[level] = 0;
8904 wc->flags[level] = 0;
f0486c68 8905 return 0;
2c47e605
YZ
8906}
8907
8908static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8909 struct btrfs_root *root,
8910 struct btrfs_path *path,
8911 struct walk_control *wc)
8912{
2c47e605 8913 int level = wc->level;
94fcca9f 8914 int lookup_info = 1;
2c47e605
YZ
8915 int ret;
8916
8917 while (level >= 0) {
94fcca9f 8918 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8919 if (ret > 0)
8920 break;
8921
8922 if (level == 0)
8923 break;
8924
7a7965f8
YZ
8925 if (path->slots[level] >=
8926 btrfs_header_nritems(path->nodes[level]))
8927 break;
8928
94fcca9f 8929 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8930 if (ret > 0) {
8931 path->slots[level]++;
8932 continue;
90d2c51d
MX
8933 } else if (ret < 0)
8934 return ret;
1c4850e2 8935 level = wc->level;
f82d02d9 8936 }
f82d02d9
YZ
8937 return 0;
8938}
8939
d397712b 8940static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8941 struct btrfs_root *root,
f82d02d9 8942 struct btrfs_path *path,
2c47e605 8943 struct walk_control *wc, int max_level)
20524f02 8944{
2c47e605 8945 int level = wc->level;
20524f02 8946 int ret;
9f3a7427 8947
2c47e605
YZ
8948 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8949 while (level < max_level && path->nodes[level]) {
8950 wc->level = level;
8951 if (path->slots[level] + 1 <
8952 btrfs_header_nritems(path->nodes[level])) {
8953 path->slots[level]++;
20524f02
CM
8954 return 0;
8955 } else {
2c47e605
YZ
8956 ret = walk_up_proc(trans, root, path, wc);
8957 if (ret > 0)
8958 return 0;
bd56b302 8959
2c47e605 8960 if (path->locks[level]) {
bd681513
CM
8961 btrfs_tree_unlock_rw(path->nodes[level],
8962 path->locks[level]);
2c47e605 8963 path->locks[level] = 0;
f82d02d9 8964 }
2c47e605
YZ
8965 free_extent_buffer(path->nodes[level]);
8966 path->nodes[level] = NULL;
8967 level++;
20524f02
CM
8968 }
8969 }
8970 return 1;
8971}
8972
9aca1d51 8973/*
2c47e605
YZ
8974 * drop a subvolume tree.
8975 *
8976 * this function traverses the tree freeing any blocks that only
8977 * referenced by the tree.
8978 *
8979 * when a shared tree block is found. this function decreases its
8980 * reference count by one. if update_ref is true, this function
8981 * also make sure backrefs for the shared block and all lower level
8982 * blocks are properly updated.
9d1a2a3a
DS
8983 *
8984 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8985 */
2c536799 8986int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8987 struct btrfs_block_rsv *block_rsv, int update_ref,
8988 int for_reloc)
20524f02 8989{
ab8d0fc4 8990 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 8991 struct btrfs_path *path;
2c47e605 8992 struct btrfs_trans_handle *trans;
ab8d0fc4 8993 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 8994 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8995 struct walk_control *wc;
8996 struct btrfs_key key;
8997 int err = 0;
8998 int ret;
8999 int level;
d29a9f62 9000 bool root_dropped = false;
20524f02 9001
ab8d0fc4 9002 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9003
5caf2a00 9004 path = btrfs_alloc_path();
cb1b69f4
TI
9005 if (!path) {
9006 err = -ENOMEM;
9007 goto out;
9008 }
20524f02 9009
2c47e605 9010 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9011 if (!wc) {
9012 btrfs_free_path(path);
cb1b69f4
TI
9013 err = -ENOMEM;
9014 goto out;
38a1a919 9015 }
2c47e605 9016
a22285a6 9017 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9018 if (IS_ERR(trans)) {
9019 err = PTR_ERR(trans);
9020 goto out_free;
9021 }
98d5dc13 9022
3fd0a558
YZ
9023 if (block_rsv)
9024 trans->block_rsv = block_rsv;
2c47e605 9025
9f3a7427 9026 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9027 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9028 path->nodes[level] = btrfs_lock_root_node(root);
9029 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9030 path->slots[level] = 0;
bd681513 9031 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9032 memset(&wc->update_progress, 0,
9033 sizeof(wc->update_progress));
9f3a7427 9034 } else {
9f3a7427 9035 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9036 memcpy(&wc->update_progress, &key,
9037 sizeof(wc->update_progress));
9038
6702ed49 9039 level = root_item->drop_level;
2c47e605 9040 BUG_ON(level == 0);
6702ed49 9041 path->lowest_level = level;
2c47e605
YZ
9042 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9043 path->lowest_level = 0;
9044 if (ret < 0) {
9045 err = ret;
79787eaa 9046 goto out_end_trans;
9f3a7427 9047 }
1c4850e2 9048 WARN_ON(ret > 0);
2c47e605 9049
7d9eb12c
CM
9050 /*
9051 * unlock our path, this is safe because only this
9052 * function is allowed to delete this snapshot
9053 */
5d4f98a2 9054 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9055
9056 level = btrfs_header_level(root->node);
9057 while (1) {
9058 btrfs_tree_lock(path->nodes[level]);
9059 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9060 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9061
9062 ret = btrfs_lookup_extent_info(trans, root,
9063 path->nodes[level]->start,
3173a18f 9064 level, 1, &wc->refs[level],
2c47e605 9065 &wc->flags[level]);
79787eaa
JM
9066 if (ret < 0) {
9067 err = ret;
9068 goto out_end_trans;
9069 }
2c47e605
YZ
9070 BUG_ON(wc->refs[level] == 0);
9071
9072 if (level == root_item->drop_level)
9073 break;
9074
9075 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9076 path->locks[level] = 0;
2c47e605
YZ
9077 WARN_ON(wc->refs[level] != 1);
9078 level--;
9079 }
9f3a7427 9080 }
2c47e605
YZ
9081
9082 wc->level = level;
9083 wc->shared_level = -1;
9084 wc->stage = DROP_REFERENCE;
9085 wc->update_ref = update_ref;
9086 wc->keep_locks = 0;
66d7e7f0 9087 wc->for_reloc = for_reloc;
1c4850e2 9088 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 9089
d397712b 9090 while (1) {
9d1a2a3a 9091
2c47e605
YZ
9092 ret = walk_down_tree(trans, root, path, wc);
9093 if (ret < 0) {
9094 err = ret;
20524f02 9095 break;
2c47e605 9096 }
9aca1d51 9097
2c47e605
YZ
9098 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9099 if (ret < 0) {
9100 err = ret;
20524f02 9101 break;
2c47e605
YZ
9102 }
9103
9104 if (ret > 0) {
9105 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9106 break;
9107 }
2c47e605
YZ
9108
9109 if (wc->stage == DROP_REFERENCE) {
9110 level = wc->level;
9111 btrfs_node_key(path->nodes[level],
9112 &root_item->drop_progress,
9113 path->slots[level]);
9114 root_item->drop_level = level;
9115 }
9116
9117 BUG_ON(wc->level == 0);
3c8f2422
JB
9118 if (btrfs_should_end_transaction(trans, tree_root) ||
9119 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
9120 ret = btrfs_update_root(trans, tree_root,
9121 &root->root_key,
9122 root_item);
79787eaa 9123 if (ret) {
66642832 9124 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9125 err = ret;
9126 goto out_end_trans;
9127 }
2c47e605 9128
3fd0a558 9129 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 9130 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
ab8d0fc4
JM
9131 btrfs_debug(fs_info,
9132 "drop snapshot early exit");
3c8f2422
JB
9133 err = -EAGAIN;
9134 goto out_free;
9135 }
9136
a22285a6 9137 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9138 if (IS_ERR(trans)) {
9139 err = PTR_ERR(trans);
9140 goto out_free;
9141 }
3fd0a558
YZ
9142 if (block_rsv)
9143 trans->block_rsv = block_rsv;
c3e69d58 9144 }
20524f02 9145 }
b3b4aa74 9146 btrfs_release_path(path);
79787eaa
JM
9147 if (err)
9148 goto out_end_trans;
2c47e605
YZ
9149
9150 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa 9151 if (ret) {
66642832 9152 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9153 goto out_end_trans;
9154 }
2c47e605 9155
76dda93c 9156 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9157 ret = btrfs_find_root(tree_root, &root->root_key, path,
9158 NULL, NULL);
79787eaa 9159 if (ret < 0) {
66642832 9160 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9161 err = ret;
9162 goto out_end_trans;
9163 } else if (ret > 0) {
84cd948c
JB
9164 /* if we fail to delete the orphan item this time
9165 * around, it'll get picked up the next time.
9166 *
9167 * The most common failure here is just -ENOENT.
9168 */
9169 btrfs_del_orphan_item(trans, tree_root,
9170 root->root_key.objectid);
76dda93c
YZ
9171 }
9172 }
9173
27cdeb70 9174 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9175 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9176 } else {
9177 free_extent_buffer(root->node);
9178 free_extent_buffer(root->commit_root);
b0feb9d9 9179 btrfs_put_fs_root(root);
76dda93c 9180 }
d29a9f62 9181 root_dropped = true;
79787eaa 9182out_end_trans:
3fd0a558 9183 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 9184out_free:
2c47e605 9185 kfree(wc);
5caf2a00 9186 btrfs_free_path(path);
cb1b69f4 9187out:
d29a9f62
JB
9188 /*
9189 * So if we need to stop dropping the snapshot for whatever reason we
9190 * need to make sure to add it back to the dead root list so that we
9191 * keep trying to do the work later. This also cleans up roots if we
9192 * don't have it in the radix (like when we recover after a power fail
9193 * or unmount) so we don't leak memory.
9194 */
b37b39cd 9195 if (!for_reloc && root_dropped == false)
d29a9f62 9196 btrfs_add_dead_root(root);
90515e7f 9197 if (err && err != -EAGAIN)
ab8d0fc4 9198 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9199 return err;
20524f02 9200}
9078a3e1 9201
2c47e605
YZ
9202/*
9203 * drop subtree rooted at tree block 'node'.
9204 *
9205 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9206 * only used by relocation code
2c47e605 9207 */
f82d02d9
YZ
9208int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9209 struct btrfs_root *root,
9210 struct extent_buffer *node,
9211 struct extent_buffer *parent)
9212{
9213 struct btrfs_path *path;
2c47e605 9214 struct walk_control *wc;
f82d02d9
YZ
9215 int level;
9216 int parent_level;
9217 int ret = 0;
9218 int wret;
9219
2c47e605
YZ
9220 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9221
f82d02d9 9222 path = btrfs_alloc_path();
db5b493a
TI
9223 if (!path)
9224 return -ENOMEM;
f82d02d9 9225
2c47e605 9226 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9227 if (!wc) {
9228 btrfs_free_path(path);
9229 return -ENOMEM;
9230 }
2c47e605 9231
b9447ef8 9232 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9233 parent_level = btrfs_header_level(parent);
9234 extent_buffer_get(parent);
9235 path->nodes[parent_level] = parent;
9236 path->slots[parent_level] = btrfs_header_nritems(parent);
9237
b9447ef8 9238 btrfs_assert_tree_locked(node);
f82d02d9 9239 level = btrfs_header_level(node);
f82d02d9
YZ
9240 path->nodes[level] = node;
9241 path->slots[level] = 0;
bd681513 9242 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9243
9244 wc->refs[parent_level] = 1;
9245 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9246 wc->level = level;
9247 wc->shared_level = -1;
9248 wc->stage = DROP_REFERENCE;
9249 wc->update_ref = 0;
9250 wc->keep_locks = 1;
66d7e7f0 9251 wc->for_reloc = 1;
1c4850e2 9252 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
9253
9254 while (1) {
2c47e605
YZ
9255 wret = walk_down_tree(trans, root, path, wc);
9256 if (wret < 0) {
f82d02d9 9257 ret = wret;
f82d02d9 9258 break;
2c47e605 9259 }
f82d02d9 9260
2c47e605 9261 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9262 if (wret < 0)
9263 ret = wret;
9264 if (wret != 0)
9265 break;
9266 }
9267
2c47e605 9268 kfree(wc);
f82d02d9
YZ
9269 btrfs_free_path(path);
9270 return ret;
9271}
9272
ec44a35c
CM
9273static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9274{
9275 u64 num_devices;
fc67c450 9276 u64 stripped;
e4d8ec0f 9277
fc67c450
ID
9278 /*
9279 * if restripe for this chunk_type is on pick target profile and
9280 * return, otherwise do the usual balance
9281 */
9282 stripped = get_restripe_target(root->fs_info, flags);
9283 if (stripped)
9284 return extended_to_chunk(stripped);
e4d8ec0f 9285
95669976 9286 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 9287
fc67c450 9288 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9289 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9290 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9291
ec44a35c
CM
9292 if (num_devices == 1) {
9293 stripped |= BTRFS_BLOCK_GROUP_DUP;
9294 stripped = flags & ~stripped;
9295
9296 /* turn raid0 into single device chunks */
9297 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9298 return stripped;
9299
9300 /* turn mirroring into duplication */
9301 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9302 BTRFS_BLOCK_GROUP_RAID10))
9303 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9304 } else {
9305 /* they already had raid on here, just return */
ec44a35c
CM
9306 if (flags & stripped)
9307 return flags;
9308
9309 stripped |= BTRFS_BLOCK_GROUP_DUP;
9310 stripped = flags & ~stripped;
9311
9312 /* switch duplicated blocks with raid1 */
9313 if (flags & BTRFS_BLOCK_GROUP_DUP)
9314 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9315
e3176ca2 9316 /* this is drive concat, leave it alone */
ec44a35c 9317 }
e3176ca2 9318
ec44a35c
CM
9319 return flags;
9320}
9321
868f401a 9322static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9323{
f0486c68
YZ
9324 struct btrfs_space_info *sinfo = cache->space_info;
9325 u64 num_bytes;
199c36ea 9326 u64 min_allocable_bytes;
f0486c68 9327 int ret = -ENOSPC;
0ef3e66b 9328
199c36ea
MX
9329 /*
9330 * We need some metadata space and system metadata space for
9331 * allocating chunks in some corner cases until we force to set
9332 * it to be readonly.
9333 */
9334 if ((sinfo->flags &
9335 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9336 !force)
ee22184b 9337 min_allocable_bytes = SZ_1M;
199c36ea
MX
9338 else
9339 min_allocable_bytes = 0;
9340
f0486c68
YZ
9341 spin_lock(&sinfo->lock);
9342 spin_lock(&cache->lock);
61cfea9b
W
9343
9344 if (cache->ro) {
868f401a 9345 cache->ro++;
61cfea9b
W
9346 ret = 0;
9347 goto out;
9348 }
9349
f0486c68
YZ
9350 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9351 cache->bytes_super - btrfs_block_group_used(&cache->item);
9352
9353 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
9354 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9355 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9356 sinfo->bytes_readonly += num_bytes;
868f401a 9357 cache->ro++;
633c0aad 9358 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9359 ret = 0;
9360 }
61cfea9b 9361out:
f0486c68
YZ
9362 spin_unlock(&cache->lock);
9363 spin_unlock(&sinfo->lock);
9364 return ret;
9365}
7d9eb12c 9366
868f401a 9367int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 9368 struct btrfs_block_group_cache *cache)
c286ac48 9369
f0486c68
YZ
9370{
9371 struct btrfs_trans_handle *trans;
9372 u64 alloc_flags;
9373 int ret;
7d9eb12c 9374
1bbc621e 9375again:
ff5714cc 9376 trans = btrfs_join_transaction(root);
79787eaa
JM
9377 if (IS_ERR(trans))
9378 return PTR_ERR(trans);
5d4f98a2 9379
1bbc621e
CM
9380 /*
9381 * we're not allowed to set block groups readonly after the dirty
9382 * block groups cache has started writing. If it already started,
9383 * back off and let this transaction commit
9384 */
9385 mutex_lock(&root->fs_info->ro_block_group_mutex);
3204d33c 9386 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9387 u64 transid = trans->transid;
9388
9389 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9390 btrfs_end_transaction(trans, root);
9391
9392 ret = btrfs_wait_for_commit(root, transid);
9393 if (ret)
9394 return ret;
9395 goto again;
9396 }
9397
153c35b6
CM
9398 /*
9399 * if we are changing raid levels, try to allocate a corresponding
9400 * block group with the new raid level.
9401 */
9402 alloc_flags = update_block_group_flags(root, cache->flags);
9403 if (alloc_flags != cache->flags) {
9404 ret = do_chunk_alloc(trans, root, alloc_flags,
9405 CHUNK_ALLOC_FORCE);
9406 /*
9407 * ENOSPC is allowed here, we may have enough space
9408 * already allocated at the new raid level to
9409 * carry on
9410 */
9411 if (ret == -ENOSPC)
9412 ret = 0;
9413 if (ret < 0)
9414 goto out;
9415 }
1bbc621e 9416
868f401a 9417 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9418 if (!ret)
9419 goto out;
9420 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9421 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9422 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9423 if (ret < 0)
9424 goto out;
868f401a 9425 ret = inc_block_group_ro(cache, 0);
f0486c68 9426out:
2f081088
SL
9427 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9428 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 9429 lock_chunks(root->fs_info->chunk_root);
4617ea3a 9430 check_system_chunk(trans, root, alloc_flags);
a9629596 9431 unlock_chunks(root->fs_info->chunk_root);
2f081088 9432 }
1bbc621e 9433 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9434
f0486c68
YZ
9435 btrfs_end_transaction(trans, root);
9436 return ret;
9437}
5d4f98a2 9438
c87f08ca
CM
9439int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9440 struct btrfs_root *root, u64 type)
9441{
9442 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9443 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9444 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9445}
9446
6d07bcec
MX
9447/*
9448 * helper to account the unused space of all the readonly block group in the
633c0aad 9449 * space_info. takes mirrors into account.
6d07bcec 9450 */
633c0aad 9451u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9452{
9453 struct btrfs_block_group_cache *block_group;
9454 u64 free_bytes = 0;
9455 int factor;
9456
01327610 9457 /* It's df, we don't care if it's racy */
633c0aad
JB
9458 if (list_empty(&sinfo->ro_bgs))
9459 return 0;
9460
9461 spin_lock(&sinfo->lock);
9462 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9463 spin_lock(&block_group->lock);
9464
9465 if (!block_group->ro) {
9466 spin_unlock(&block_group->lock);
9467 continue;
9468 }
9469
9470 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9471 BTRFS_BLOCK_GROUP_RAID10 |
9472 BTRFS_BLOCK_GROUP_DUP))
9473 factor = 2;
9474 else
9475 factor = 1;
9476
9477 free_bytes += (block_group->key.offset -
9478 btrfs_block_group_used(&block_group->item)) *
9479 factor;
9480
9481 spin_unlock(&block_group->lock);
9482 }
6d07bcec
MX
9483 spin_unlock(&sinfo->lock);
9484
9485 return free_bytes;
9486}
9487
868f401a 9488void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9489 struct btrfs_block_group_cache *cache)
5d4f98a2 9490{
f0486c68
YZ
9491 struct btrfs_space_info *sinfo = cache->space_info;
9492 u64 num_bytes;
9493
9494 BUG_ON(!cache->ro);
9495
9496 spin_lock(&sinfo->lock);
9497 spin_lock(&cache->lock);
868f401a
Z
9498 if (!--cache->ro) {
9499 num_bytes = cache->key.offset - cache->reserved -
9500 cache->pinned - cache->bytes_super -
9501 btrfs_block_group_used(&cache->item);
9502 sinfo->bytes_readonly -= num_bytes;
9503 list_del_init(&cache->ro_list);
9504 }
f0486c68
YZ
9505 spin_unlock(&cache->lock);
9506 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9507}
9508
ba1bf481
JB
9509/*
9510 * checks to see if its even possible to relocate this block group.
9511 *
9512 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9513 * ok to go ahead and try.
9514 */
9515int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9516{
ba1bf481
JB
9517 struct btrfs_block_group_cache *block_group;
9518 struct btrfs_space_info *space_info;
9519 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9520 struct btrfs_device *device;
6df9a95e 9521 struct btrfs_trans_handle *trans;
cdcb725c 9522 u64 min_free;
6719db6a
JB
9523 u64 dev_min = 1;
9524 u64 dev_nr = 0;
4a5e98f5 9525 u64 target;
0305bc27 9526 int debug;
cdcb725c 9527 int index;
ba1bf481
JB
9528 int full = 0;
9529 int ret = 0;
1a40e23b 9530
3cdde224 9531 debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG);
0305bc27 9532
ba1bf481 9533 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9534
ba1bf481 9535 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9536 if (!block_group) {
9537 if (debug)
9538 btrfs_warn(root->fs_info,
9539 "can't find block group for bytenr %llu",
9540 bytenr);
ba1bf481 9541 return -1;
0305bc27 9542 }
1a40e23b 9543
cdcb725c 9544 min_free = btrfs_block_group_used(&block_group->item);
9545
ba1bf481 9546 /* no bytes used, we're good */
cdcb725c 9547 if (!min_free)
1a40e23b
ZY
9548 goto out;
9549
ba1bf481
JB
9550 space_info = block_group->space_info;
9551 spin_lock(&space_info->lock);
17d217fe 9552
ba1bf481 9553 full = space_info->full;
17d217fe 9554
ba1bf481
JB
9555 /*
9556 * if this is the last block group we have in this space, we can't
7ce618db
CM
9557 * relocate it unless we're able to allocate a new chunk below.
9558 *
9559 * Otherwise, we need to make sure we have room in the space to handle
9560 * all of the extents from this block group. If we can, we're good
ba1bf481 9561 */
7ce618db 9562 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9563 (space_info->bytes_used + space_info->bytes_reserved +
9564 space_info->bytes_pinned + space_info->bytes_readonly +
9565 min_free < space_info->total_bytes)) {
ba1bf481
JB
9566 spin_unlock(&space_info->lock);
9567 goto out;
17d217fe 9568 }
ba1bf481 9569 spin_unlock(&space_info->lock);
ea8c2819 9570
ba1bf481
JB
9571 /*
9572 * ok we don't have enough space, but maybe we have free space on our
9573 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9574 * alloc devices and guess if we have enough space. if this block
9575 * group is going to be restriped, run checks against the target
9576 * profile instead of the current one.
ba1bf481
JB
9577 */
9578 ret = -1;
ea8c2819 9579
cdcb725c 9580 /*
9581 * index:
9582 * 0: raid10
9583 * 1: raid1
9584 * 2: dup
9585 * 3: raid0
9586 * 4: single
9587 */
4a5e98f5
ID
9588 target = get_restripe_target(root->fs_info, block_group->flags);
9589 if (target) {
31e50229 9590 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9591 } else {
9592 /*
9593 * this is just a balance, so if we were marked as full
9594 * we know there is no space for a new chunk
9595 */
0305bc27
QW
9596 if (full) {
9597 if (debug)
9598 btrfs_warn(root->fs_info,
9599 "no space to alloc new chunk for block group %llu",
9600 block_group->key.objectid);
4a5e98f5 9601 goto out;
0305bc27 9602 }
4a5e98f5
ID
9603
9604 index = get_block_group_index(block_group);
9605 }
9606
e6ec716f 9607 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9608 dev_min = 4;
6719db6a
JB
9609 /* Divide by 2 */
9610 min_free >>= 1;
e6ec716f 9611 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9612 dev_min = 2;
e6ec716f 9613 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9614 /* Multiply by 2 */
9615 min_free <<= 1;
e6ec716f 9616 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9617 dev_min = fs_devices->rw_devices;
47c5713f 9618 min_free = div64_u64(min_free, dev_min);
cdcb725c 9619 }
9620
6df9a95e
JB
9621 /* We need to do this so that we can look at pending chunks */
9622 trans = btrfs_join_transaction(root);
9623 if (IS_ERR(trans)) {
9624 ret = PTR_ERR(trans);
9625 goto out;
9626 }
9627
ba1bf481
JB
9628 mutex_lock(&root->fs_info->chunk_mutex);
9629 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9630 u64 dev_offset;
56bec294 9631
ba1bf481
JB
9632 /*
9633 * check to make sure we can actually find a chunk with enough
9634 * space to fit our block group in.
9635 */
63a212ab
SB
9636 if (device->total_bytes > device->bytes_used + min_free &&
9637 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9638 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9639 &dev_offset, NULL);
ba1bf481 9640 if (!ret)
cdcb725c 9641 dev_nr++;
9642
9643 if (dev_nr >= dev_min)
73e48b27 9644 break;
cdcb725c 9645
ba1bf481 9646 ret = -1;
725c8463 9647 }
edbd8d4e 9648 }
0305bc27
QW
9649 if (debug && ret == -1)
9650 btrfs_warn(root->fs_info,
9651 "no space to allocate a new chunk for block group %llu",
9652 block_group->key.objectid);
ba1bf481 9653 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9654 btrfs_end_transaction(trans, root);
edbd8d4e 9655out:
ba1bf481 9656 btrfs_put_block_group(block_group);
edbd8d4e
CM
9657 return ret;
9658}
9659
b2950863
CH
9660static int find_first_block_group(struct btrfs_root *root,
9661 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9662{
925baedd 9663 int ret = 0;
0b86a832
CM
9664 struct btrfs_key found_key;
9665 struct extent_buffer *leaf;
9666 int slot;
edbd8d4e 9667
0b86a832
CM
9668 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9669 if (ret < 0)
925baedd
CM
9670 goto out;
9671
d397712b 9672 while (1) {
0b86a832 9673 slot = path->slots[0];
edbd8d4e 9674 leaf = path->nodes[0];
0b86a832
CM
9675 if (slot >= btrfs_header_nritems(leaf)) {
9676 ret = btrfs_next_leaf(root, path);
9677 if (ret == 0)
9678 continue;
9679 if (ret < 0)
925baedd 9680 goto out;
0b86a832 9681 break;
edbd8d4e 9682 }
0b86a832 9683 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9684
0b86a832 9685 if (found_key.objectid >= key->objectid &&
925baedd 9686 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9687 struct extent_map_tree *em_tree;
9688 struct extent_map *em;
9689
9690 em_tree = &root->fs_info->mapping_tree.map_tree;
9691 read_lock(&em_tree->lock);
9692 em = lookup_extent_mapping(em_tree, found_key.objectid,
9693 found_key.offset);
9694 read_unlock(&em_tree->lock);
9695 if (!em) {
9696 btrfs_err(root->fs_info,
9697 "logical %llu len %llu found bg but no related chunk",
9698 found_key.objectid, found_key.offset);
9699 ret = -ENOENT;
9700 } else {
9701 ret = 0;
9702 }
187ee58c 9703 free_extent_map(em);
925baedd
CM
9704 goto out;
9705 }
0b86a832 9706 path->slots[0]++;
edbd8d4e 9707 }
925baedd 9708out:
0b86a832 9709 return ret;
edbd8d4e
CM
9710}
9711
0af3d00b
JB
9712void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9713{
9714 struct btrfs_block_group_cache *block_group;
9715 u64 last = 0;
9716
9717 while (1) {
9718 struct inode *inode;
9719
9720 block_group = btrfs_lookup_first_block_group(info, last);
9721 while (block_group) {
9722 spin_lock(&block_group->lock);
9723 if (block_group->iref)
9724 break;
9725 spin_unlock(&block_group->lock);
9726 block_group = next_block_group(info->tree_root,
9727 block_group);
9728 }
9729 if (!block_group) {
9730 if (last == 0)
9731 break;
9732 last = 0;
9733 continue;
9734 }
9735
9736 inode = block_group->inode;
9737 block_group->iref = 0;
9738 block_group->inode = NULL;
9739 spin_unlock(&block_group->lock);
f3bca802 9740 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9741 iput(inode);
9742 last = block_group->key.objectid + block_group->key.offset;
9743 btrfs_put_block_group(block_group);
9744 }
9745}
9746
1a40e23b
ZY
9747int btrfs_free_block_groups(struct btrfs_fs_info *info)
9748{
9749 struct btrfs_block_group_cache *block_group;
4184ea7f 9750 struct btrfs_space_info *space_info;
11833d66 9751 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9752 struct rb_node *n;
9753
9e351cc8 9754 down_write(&info->commit_root_sem);
11833d66
YZ
9755 while (!list_empty(&info->caching_block_groups)) {
9756 caching_ctl = list_entry(info->caching_block_groups.next,
9757 struct btrfs_caching_control, list);
9758 list_del(&caching_ctl->list);
9759 put_caching_control(caching_ctl);
9760 }
9e351cc8 9761 up_write(&info->commit_root_sem);
11833d66 9762
47ab2a6c
JB
9763 spin_lock(&info->unused_bgs_lock);
9764 while (!list_empty(&info->unused_bgs)) {
9765 block_group = list_first_entry(&info->unused_bgs,
9766 struct btrfs_block_group_cache,
9767 bg_list);
9768 list_del_init(&block_group->bg_list);
9769 btrfs_put_block_group(block_group);
9770 }
9771 spin_unlock(&info->unused_bgs_lock);
9772
1a40e23b
ZY
9773 spin_lock(&info->block_group_cache_lock);
9774 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9775 block_group = rb_entry(n, struct btrfs_block_group_cache,
9776 cache_node);
1a40e23b
ZY
9777 rb_erase(&block_group->cache_node,
9778 &info->block_group_cache_tree);
01eacb27 9779 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9780 spin_unlock(&info->block_group_cache_lock);
9781
80eb234a 9782 down_write(&block_group->space_info->groups_sem);
1a40e23b 9783 list_del(&block_group->list);
80eb234a 9784 up_write(&block_group->space_info->groups_sem);
d2fb3437 9785
817d52f8 9786 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9787 wait_block_group_cache_done(block_group);
817d52f8 9788
3c14874a
JB
9789 /*
9790 * We haven't cached this block group, which means we could
9791 * possibly have excluded extents on this block group.
9792 */
36cce922
JB
9793 if (block_group->cached == BTRFS_CACHE_NO ||
9794 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9795 free_excluded_extents(info->extent_root, block_group);
9796
817d52f8 9797 btrfs_remove_free_space_cache(block_group);
f3bca802
LB
9798 ASSERT(list_empty(&block_group->dirty_list));
9799 ASSERT(list_empty(&block_group->io_list));
9800 ASSERT(list_empty(&block_group->bg_list));
9801 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9802 btrfs_put_block_group(block_group);
d899e052
YZ
9803
9804 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9805 }
9806 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9807
9808 /* now that all the block groups are freed, go through and
9809 * free all the space_info structs. This is only called during
9810 * the final stages of unmount, and so we know nobody is
9811 * using them. We call synchronize_rcu() once before we start,
9812 * just to be on the safe side.
9813 */
9814 synchronize_rcu();
9815
8929ecfa
YZ
9816 release_global_block_rsv(info);
9817
67871254 9818 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9819 int i;
9820
4184ea7f
CM
9821 space_info = list_entry(info->space_info.next,
9822 struct btrfs_space_info,
9823 list);
d555b6c3
JB
9824
9825 /*
9826 * Do not hide this behind enospc_debug, this is actually
9827 * important and indicates a real bug if this happens.
9828 */
9829 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9830 space_info->bytes_reserved > 0 ||
d555b6c3 9831 space_info->bytes_may_use > 0))
ab8d0fc4 9832 dump_space_info(info, space_info, 0, 0);
4184ea7f 9833 list_del(&space_info->list);
6ab0a202
JM
9834 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9835 struct kobject *kobj;
c1895442
JM
9836 kobj = space_info->block_group_kobjs[i];
9837 space_info->block_group_kobjs[i] = NULL;
9838 if (kobj) {
6ab0a202
JM
9839 kobject_del(kobj);
9840 kobject_put(kobj);
9841 }
9842 }
9843 kobject_del(&space_info->kobj);
9844 kobject_put(&space_info->kobj);
4184ea7f 9845 }
1a40e23b
ZY
9846 return 0;
9847}
9848
b742bb82
YZ
9849static void __link_block_group(struct btrfs_space_info *space_info,
9850 struct btrfs_block_group_cache *cache)
9851{
9852 int index = get_block_group_index(cache);
ed55b6ac 9853 bool first = false;
b742bb82
YZ
9854
9855 down_write(&space_info->groups_sem);
ed55b6ac
JM
9856 if (list_empty(&space_info->block_groups[index]))
9857 first = true;
9858 list_add_tail(&cache->list, &space_info->block_groups[index]);
9859 up_write(&space_info->groups_sem);
9860
9861 if (first) {
c1895442 9862 struct raid_kobject *rkobj;
6ab0a202
JM
9863 int ret;
9864
c1895442
JM
9865 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9866 if (!rkobj)
9867 goto out_err;
9868 rkobj->raid_type = index;
9869 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9870 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9871 "%s", get_raid_name(index));
6ab0a202 9872 if (ret) {
c1895442
JM
9873 kobject_put(&rkobj->kobj);
9874 goto out_err;
6ab0a202 9875 }
c1895442 9876 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9877 }
c1895442
JM
9878
9879 return;
9880out_err:
ab8d0fc4
JM
9881 btrfs_warn(cache->fs_info,
9882 "failed to add kobject for block cache, ignoring");
b742bb82
YZ
9883}
9884
920e4a58
MX
9885static struct btrfs_block_group_cache *
9886btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9887{
9888 struct btrfs_block_group_cache *cache;
9889
9890 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9891 if (!cache)
9892 return NULL;
9893
9894 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9895 GFP_NOFS);
9896 if (!cache->free_space_ctl) {
9897 kfree(cache);
9898 return NULL;
9899 }
9900
9901 cache->key.objectid = start;
9902 cache->key.offset = size;
9903 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9904
9905 cache->sectorsize = root->sectorsize;
9906 cache->fs_info = root->fs_info;
9907 cache->full_stripe_len = btrfs_full_stripe_len(root,
9908 &root->fs_info->mapping_tree,
9909 start);
1e144fb8
OS
9910 set_free_space_tree_thresholds(cache);
9911
920e4a58
MX
9912 atomic_set(&cache->count, 1);
9913 spin_lock_init(&cache->lock);
e570fd27 9914 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9915 INIT_LIST_HEAD(&cache->list);
9916 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9917 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9918 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9919 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9920 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9921 btrfs_init_free_space_ctl(cache);
04216820 9922 atomic_set(&cache->trimming, 0);
a5ed9182 9923 mutex_init(&cache->free_space_lock);
920e4a58
MX
9924
9925 return cache;
9926}
9927
9078a3e1
CM
9928int btrfs_read_block_groups(struct btrfs_root *root)
9929{
9930 struct btrfs_path *path;
9931 int ret;
9078a3e1 9932 struct btrfs_block_group_cache *cache;
be744175 9933 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9934 struct btrfs_space_info *space_info;
9078a3e1
CM
9935 struct btrfs_key key;
9936 struct btrfs_key found_key;
5f39d397 9937 struct extent_buffer *leaf;
0af3d00b
JB
9938 int need_clear = 0;
9939 u64 cache_gen;
49303381
LB
9940 u64 feature;
9941 int mixed;
9942
9943 feature = btrfs_super_incompat_flags(info->super_copy);
9944 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 9945
be744175 9946 root = info->extent_root;
9078a3e1 9947 key.objectid = 0;
0b86a832 9948 key.offset = 0;
962a298f 9949 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9950 path = btrfs_alloc_path();
9951 if (!path)
9952 return -ENOMEM;
e4058b54 9953 path->reada = READA_FORWARD;
9078a3e1 9954
6c41761f 9955 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
3cdde224 9956 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
6c41761f 9957 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9958 need_clear = 1;
3cdde224 9959 if (btrfs_test_opt(root->fs_info, CLEAR_CACHE))
88c2ba3b 9960 need_clear = 1;
0af3d00b 9961
d397712b 9962 while (1) {
0b86a832 9963 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9964 if (ret > 0)
9965 break;
0b86a832
CM
9966 if (ret != 0)
9967 goto error;
920e4a58 9968
5f39d397
CM
9969 leaf = path->nodes[0];
9970 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9971
9972 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9973 found_key.offset);
9078a3e1 9974 if (!cache) {
0b86a832 9975 ret = -ENOMEM;
f0486c68 9976 goto error;
9078a3e1 9977 }
96303081 9978
cf7c1ef6
LB
9979 if (need_clear) {
9980 /*
9981 * When we mount with old space cache, we need to
9982 * set BTRFS_DC_CLEAR and set dirty flag.
9983 *
9984 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9985 * truncate the old free space cache inode and
9986 * setup a new one.
9987 * b) Setting 'dirty flag' makes sure that we flush
9988 * the new space cache info onto disk.
9989 */
3cdde224 9990 if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
ce93ec54 9991 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9992 }
0af3d00b 9993
5f39d397
CM
9994 read_extent_buffer(leaf, &cache->item,
9995 btrfs_item_ptr_offset(leaf, path->slots[0]),
9996 sizeof(cache->item));
920e4a58 9997 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
9998 if (!mixed &&
9999 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10000 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10001 btrfs_err(info,
10002"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10003 cache->key.objectid);
10004 ret = -EINVAL;
10005 goto error;
10006 }
0b86a832 10007
9078a3e1 10008 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10009 btrfs_release_path(path);
34d52cb6 10010
3c14874a
JB
10011 /*
10012 * We need to exclude the super stripes now so that the space
10013 * info has super bytes accounted for, otherwise we'll think
10014 * we have more space than we actually do.
10015 */
835d974f
JB
10016 ret = exclude_super_stripes(root, cache);
10017 if (ret) {
10018 /*
10019 * We may have excluded something, so call this just in
10020 * case.
10021 */
10022 free_excluded_extents(root, cache);
920e4a58 10023 btrfs_put_block_group(cache);
835d974f
JB
10024 goto error;
10025 }
3c14874a 10026
817d52f8
JB
10027 /*
10028 * check for two cases, either we are full, and therefore
10029 * don't need to bother with the caching work since we won't
10030 * find any space, or we are empty, and we can just add all
10031 * the space in and be done with it. This saves us _alot_ of
10032 * time, particularly in the full case.
10033 */
10034 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10035 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10036 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 10037 free_excluded_extents(root, cache);
817d52f8 10038 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10039 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
10040 cache->cached = BTRFS_CACHE_FINISHED;
10041 add_new_free_space(cache, root->fs_info,
10042 found_key.objectid,
10043 found_key.objectid +
10044 found_key.offset);
11833d66 10045 free_excluded_extents(root, cache);
817d52f8 10046 }
96b5179d 10047
8c579fe7
JB
10048 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10049 if (ret) {
10050 btrfs_remove_free_space_cache(cache);
10051 btrfs_put_block_group(cache);
10052 goto error;
10053 }
10054
c83f8eff 10055 trace_btrfs_add_block_group(root->fs_info, cache, 0);
6324fbf3
CM
10056 ret = update_space_info(info, cache->flags, found_key.offset,
10057 btrfs_block_group_used(&cache->item),
e40edf2d 10058 cache->bytes_super, &space_info);
8c579fe7
JB
10059 if (ret) {
10060 btrfs_remove_free_space_cache(cache);
10061 spin_lock(&info->block_group_cache_lock);
10062 rb_erase(&cache->cache_node,
10063 &info->block_group_cache_tree);
01eacb27 10064 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10065 spin_unlock(&info->block_group_cache_lock);
10066 btrfs_put_block_group(cache);
10067 goto error;
10068 }
10069
6324fbf3 10070 cache->space_info = space_info;
1b2da372 10071
b742bb82 10072 __link_block_group(space_info, cache);
0f9dd46c 10073
75ccf47d 10074 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 10075 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 10076 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10077 } else if (btrfs_block_group_used(&cache->item) == 0) {
10078 spin_lock(&info->unused_bgs_lock);
10079 /* Should always be true but just in case. */
10080 if (list_empty(&cache->bg_list)) {
10081 btrfs_get_block_group(cache);
10082 list_add_tail(&cache->bg_list,
10083 &info->unused_bgs);
10084 }
10085 spin_unlock(&info->unused_bgs_lock);
10086 }
9078a3e1 10087 }
b742bb82
YZ
10088
10089 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10090 if (!(get_alloc_profile(root, space_info->flags) &
10091 (BTRFS_BLOCK_GROUP_RAID10 |
10092 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10093 BTRFS_BLOCK_GROUP_RAID5 |
10094 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10095 BTRFS_BLOCK_GROUP_DUP)))
10096 continue;
10097 /*
10098 * avoid allocating from un-mirrored block group if there are
10099 * mirrored block groups.
10100 */
1095cc0d 10101 list_for_each_entry(cache,
10102 &space_info->block_groups[BTRFS_RAID_RAID0],
10103 list)
868f401a 10104 inc_block_group_ro(cache, 1);
1095cc0d 10105 list_for_each_entry(cache,
10106 &space_info->block_groups[BTRFS_RAID_SINGLE],
10107 list)
868f401a 10108 inc_block_group_ro(cache, 1);
9078a3e1 10109 }
f0486c68
YZ
10110
10111 init_global_block_rsv(info);
0b86a832
CM
10112 ret = 0;
10113error:
9078a3e1 10114 btrfs_free_path(path);
0b86a832 10115 return ret;
9078a3e1 10116}
6324fbf3 10117
ea658bad
JB
10118void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10119 struct btrfs_root *root)
10120{
10121 struct btrfs_block_group_cache *block_group, *tmp;
10122 struct btrfs_root *extent_root = root->fs_info->extent_root;
10123 struct btrfs_block_group_item item;
10124 struct btrfs_key key;
10125 int ret = 0;
d9a0540a 10126 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10127
d9a0540a 10128 trans->can_flush_pending_bgs = false;
47ab2a6c 10129 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10130 if (ret)
c92f6be3 10131 goto next;
ea658bad
JB
10132
10133 spin_lock(&block_group->lock);
10134 memcpy(&item, &block_group->item, sizeof(item));
10135 memcpy(&key, &block_group->key, sizeof(key));
10136 spin_unlock(&block_group->lock);
10137
10138 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10139 sizeof(item));
10140 if (ret)
66642832 10141 btrfs_abort_transaction(trans, ret);
6df9a95e
JB
10142 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10143 key.objectid, key.offset);
10144 if (ret)
66642832 10145 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
10146 add_block_group_free_space(trans, root->fs_info, block_group);
10147 /* already aborted the transaction if it failed. */
c92f6be3
FM
10148next:
10149 list_del_init(&block_group->bg_list);
ea658bad 10150 }
d9a0540a 10151 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10152}
10153
6324fbf3
CM
10154int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10155 struct btrfs_root *root, u64 bytes_used,
e17cade2 10156 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10157 u64 size)
10158{
10159 int ret;
6324fbf3
CM
10160 struct btrfs_root *extent_root;
10161 struct btrfs_block_group_cache *cache;
6324fbf3 10162 extent_root = root->fs_info->extent_root;
6324fbf3 10163
995946dd 10164 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 10165
920e4a58 10166 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
10167 if (!cache)
10168 return -ENOMEM;
34d52cb6 10169
6324fbf3 10170 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10171 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10172 btrfs_set_block_group_flags(&cache->item, type);
10173
920e4a58 10174 cache->flags = type;
11833d66 10175 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10176 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10177 cache->needs_free_space = 1;
835d974f
JB
10178 ret = exclude_super_stripes(root, cache);
10179 if (ret) {
10180 /*
10181 * We may have excluded something, so call this just in
10182 * case.
10183 */
10184 free_excluded_extents(root, cache);
920e4a58 10185 btrfs_put_block_group(cache);
835d974f
JB
10186 return ret;
10187 }
96303081 10188
817d52f8
JB
10189 add_new_free_space(cache, root->fs_info, chunk_offset,
10190 chunk_offset + size);
10191
11833d66
YZ
10192 free_excluded_extents(root, cache);
10193
d0bd4560
JB
10194#ifdef CONFIG_BTRFS_DEBUG
10195 if (btrfs_should_fragment_free_space(root, cache)) {
10196 u64 new_bytes_used = size - bytes_used;
10197
10198 bytes_used += new_bytes_used >> 1;
10199 fragment_free_space(root, cache);
10200 }
10201#endif
2e6e5183
FM
10202 /*
10203 * Call to ensure the corresponding space_info object is created and
10204 * assigned to our block group, but don't update its counters just yet.
10205 * We want our bg to be added to the rbtree with its ->space_info set.
10206 */
e40edf2d 10207 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
2e6e5183
FM
10208 &cache->space_info);
10209 if (ret) {
10210 btrfs_remove_free_space_cache(cache);
10211 btrfs_put_block_group(cache);
10212 return ret;
10213 }
10214
8c579fe7
JB
10215 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10216 if (ret) {
10217 btrfs_remove_free_space_cache(cache);
10218 btrfs_put_block_group(cache);
10219 return ret;
10220 }
10221
2e6e5183
FM
10222 /*
10223 * Now that our block group has its ->space_info set and is inserted in
10224 * the rbtree, update the space info's counters.
10225 */
c83f8eff 10226 trace_btrfs_add_block_group(root->fs_info, cache, 1);
6324fbf3 10227 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
e40edf2d 10228 cache->bytes_super, &cache->space_info);
8c579fe7
JB
10229 if (ret) {
10230 btrfs_remove_free_space_cache(cache);
10231 spin_lock(&root->fs_info->block_group_cache_lock);
10232 rb_erase(&cache->cache_node,
10233 &root->fs_info->block_group_cache_tree);
01eacb27 10234 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10235 spin_unlock(&root->fs_info->block_group_cache_lock);
10236 btrfs_put_block_group(cache);
10237 return ret;
10238 }
c7c144db 10239 update_global_block_rsv(root->fs_info);
1b2da372 10240
b742bb82 10241 __link_block_group(cache->space_info, cache);
6324fbf3 10242
47ab2a6c 10243 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10244
d18a2c44 10245 set_avail_alloc_bits(extent_root->fs_info, type);
6324fbf3
CM
10246 return 0;
10247}
1a40e23b 10248
10ea00f5
ID
10249static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10250{
899c81ea
ID
10251 u64 extra_flags = chunk_to_extended(flags) &
10252 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10253
de98ced9 10254 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10255 if (flags & BTRFS_BLOCK_GROUP_DATA)
10256 fs_info->avail_data_alloc_bits &= ~extra_flags;
10257 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10258 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10259 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10260 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10261 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10262}
10263
1a40e23b 10264int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
10265 struct btrfs_root *root, u64 group_start,
10266 struct extent_map *em)
1a40e23b
ZY
10267{
10268 struct btrfs_path *path;
10269 struct btrfs_block_group_cache *block_group;
44fb5511 10270 struct btrfs_free_cluster *cluster;
0af3d00b 10271 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 10272 struct btrfs_key key;
0af3d00b 10273 struct inode *inode;
c1895442 10274 struct kobject *kobj = NULL;
1a40e23b 10275 int ret;
10ea00f5 10276 int index;
89a55897 10277 int factor;
4f69cb98 10278 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10279 bool remove_em;
1a40e23b 10280
1a40e23b
ZY
10281 root = root->fs_info->extent_root;
10282
10283 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10284 BUG_ON(!block_group);
c146afad 10285 BUG_ON(!block_group->ro);
1a40e23b 10286
9f7c43c9 10287 /*
10288 * Free the reserved super bytes from this block group before
10289 * remove it.
10290 */
10291 free_excluded_extents(root, block_group);
10292
1a40e23b 10293 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10294 index = get_block_group_index(block_group);
89a55897
JB
10295 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10296 BTRFS_BLOCK_GROUP_RAID1 |
10297 BTRFS_BLOCK_GROUP_RAID10))
10298 factor = 2;
10299 else
10300 factor = 1;
1a40e23b 10301
44fb5511
CM
10302 /* make sure this block group isn't part of an allocation cluster */
10303 cluster = &root->fs_info->data_alloc_cluster;
10304 spin_lock(&cluster->refill_lock);
10305 btrfs_return_cluster_to_free_space(block_group, cluster);
10306 spin_unlock(&cluster->refill_lock);
10307
10308 /*
10309 * make sure this block group isn't part of a metadata
10310 * allocation cluster
10311 */
10312 cluster = &root->fs_info->meta_alloc_cluster;
10313 spin_lock(&cluster->refill_lock);
10314 btrfs_return_cluster_to_free_space(block_group, cluster);
10315 spin_unlock(&cluster->refill_lock);
10316
1a40e23b 10317 path = btrfs_alloc_path();
d8926bb3
MF
10318 if (!path) {
10319 ret = -ENOMEM;
10320 goto out;
10321 }
1a40e23b 10322
1bbc621e
CM
10323 /*
10324 * get the inode first so any iput calls done for the io_list
10325 * aren't the final iput (no unlinks allowed now)
10326 */
10b2f34d 10327 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
10328
10329 mutex_lock(&trans->transaction->cache_write_mutex);
10330 /*
10331 * make sure our free spache cache IO is done before remove the
10332 * free space inode
10333 */
10334 spin_lock(&trans->transaction->dirty_bgs_lock);
10335 if (!list_empty(&block_group->io_list)) {
10336 list_del_init(&block_group->io_list);
10337
10338 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10339
10340 spin_unlock(&trans->transaction->dirty_bgs_lock);
10341 btrfs_wait_cache_io(root, trans, block_group,
10342 &block_group->io_ctl, path,
10343 block_group->key.objectid);
10344 btrfs_put_block_group(block_group);
10345 spin_lock(&trans->transaction->dirty_bgs_lock);
10346 }
10347
10348 if (!list_empty(&block_group->dirty_list)) {
10349 list_del_init(&block_group->dirty_list);
10350 btrfs_put_block_group(block_group);
10351 }
10352 spin_unlock(&trans->transaction->dirty_bgs_lock);
10353 mutex_unlock(&trans->transaction->cache_write_mutex);
10354
0af3d00b 10355 if (!IS_ERR(inode)) {
b532402e 10356 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
10357 if (ret) {
10358 btrfs_add_delayed_iput(inode);
10359 goto out;
10360 }
0af3d00b
JB
10361 clear_nlink(inode);
10362 /* One for the block groups ref */
10363 spin_lock(&block_group->lock);
10364 if (block_group->iref) {
10365 block_group->iref = 0;
10366 block_group->inode = NULL;
10367 spin_unlock(&block_group->lock);
10368 iput(inode);
10369 } else {
10370 spin_unlock(&block_group->lock);
10371 }
10372 /* One for our lookup ref */
455757c3 10373 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10374 }
10375
10376 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10377 key.offset = block_group->key.objectid;
10378 key.type = 0;
10379
10380 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10381 if (ret < 0)
10382 goto out;
10383 if (ret > 0)
b3b4aa74 10384 btrfs_release_path(path);
0af3d00b
JB
10385 if (ret == 0) {
10386 ret = btrfs_del_item(trans, tree_root, path);
10387 if (ret)
10388 goto out;
b3b4aa74 10389 btrfs_release_path(path);
0af3d00b
JB
10390 }
10391
3dfdb934 10392 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
10393 rb_erase(&block_group->cache_node,
10394 &root->fs_info->block_group_cache_tree);
292cbd51 10395 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
10396
10397 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10398 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 10399 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 10400
80eb234a 10401 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10402 /*
10403 * we must use list_del_init so people can check to see if they
10404 * are still on the list after taking the semaphore
10405 */
10406 list_del_init(&block_group->list);
6ab0a202 10407 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10408 kobj = block_group->space_info->block_group_kobjs[index];
10409 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 10410 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 10411 }
80eb234a 10412 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10413 if (kobj) {
10414 kobject_del(kobj);
10415 kobject_put(kobj);
10416 }
1a40e23b 10417
4f69cb98
FM
10418 if (block_group->has_caching_ctl)
10419 caching_ctl = get_caching_control(block_group);
817d52f8 10420 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10421 wait_block_group_cache_done(block_group);
4f69cb98
FM
10422 if (block_group->has_caching_ctl) {
10423 down_write(&root->fs_info->commit_root_sem);
10424 if (!caching_ctl) {
10425 struct btrfs_caching_control *ctl;
10426
10427 list_for_each_entry(ctl,
10428 &root->fs_info->caching_block_groups, list)
10429 if (ctl->block_group == block_group) {
10430 caching_ctl = ctl;
10431 atomic_inc(&caching_ctl->count);
10432 break;
10433 }
10434 }
10435 if (caching_ctl)
10436 list_del_init(&caching_ctl->list);
10437 up_write(&root->fs_info->commit_root_sem);
10438 if (caching_ctl) {
10439 /* Once for the caching bgs list and once for us. */
10440 put_caching_control(caching_ctl);
10441 put_caching_control(caching_ctl);
10442 }
10443 }
817d52f8 10444
ce93ec54
JB
10445 spin_lock(&trans->transaction->dirty_bgs_lock);
10446 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10447 WARN_ON(1);
10448 }
10449 if (!list_empty(&block_group->io_list)) {
10450 WARN_ON(1);
ce93ec54
JB
10451 }
10452 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10453 btrfs_remove_free_space_cache(block_group);
10454
c146afad 10455 spin_lock(&block_group->space_info->lock);
75c68e9f 10456 list_del_init(&block_group->ro_list);
18d018ad 10457
3cdde224 10458 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10459 WARN_ON(block_group->space_info->total_bytes
10460 < block_group->key.offset);
10461 WARN_ON(block_group->space_info->bytes_readonly
10462 < block_group->key.offset);
10463 WARN_ON(block_group->space_info->disk_total
10464 < block_group->key.offset * factor);
10465 }
c146afad
YZ
10466 block_group->space_info->total_bytes -= block_group->key.offset;
10467 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10468 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10469
c146afad 10470 spin_unlock(&block_group->space_info->lock);
283bb197 10471
0af3d00b
JB
10472 memcpy(&key, &block_group->key, sizeof(key));
10473
04216820 10474 lock_chunks(root);
495e64f4
FM
10475 if (!list_empty(&em->list)) {
10476 /* We're in the transaction->pending_chunks list. */
10477 free_extent_map(em);
10478 }
04216820
FM
10479 spin_lock(&block_group->lock);
10480 block_group->removed = 1;
10481 /*
10482 * At this point trimming can't start on this block group, because we
10483 * removed the block group from the tree fs_info->block_group_cache_tree
10484 * so no one can't find it anymore and even if someone already got this
10485 * block group before we removed it from the rbtree, they have already
10486 * incremented block_group->trimming - if they didn't, they won't find
10487 * any free space entries because we already removed them all when we
10488 * called btrfs_remove_free_space_cache().
10489 *
10490 * And we must not remove the extent map from the fs_info->mapping_tree
10491 * to prevent the same logical address range and physical device space
10492 * ranges from being reused for a new block group. This is because our
10493 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10494 * completely transactionless, so while it is trimming a range the
10495 * currently running transaction might finish and a new one start,
10496 * allowing for new block groups to be created that can reuse the same
10497 * physical device locations unless we take this special care.
e33e17ee
JM
10498 *
10499 * There may also be an implicit trim operation if the file system
10500 * is mounted with -odiscard. The same protections must remain
10501 * in place until the extents have been discarded completely when
10502 * the transaction commit has completed.
04216820
FM
10503 */
10504 remove_em = (atomic_read(&block_group->trimming) == 0);
10505 /*
10506 * Make sure a trimmer task always sees the em in the pinned_chunks list
10507 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10508 * before checking block_group->removed).
10509 */
10510 if (!remove_em) {
10511 /*
10512 * Our em might be in trans->transaction->pending_chunks which
10513 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10514 * and so is the fs_info->pinned_chunks list.
10515 *
10516 * So at this point we must be holding the chunk_mutex to avoid
10517 * any races with chunk allocation (more specifically at
10518 * volumes.c:contains_pending_extent()), to ensure it always
10519 * sees the em, either in the pending_chunks list or in the
10520 * pinned_chunks list.
10521 */
10522 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10523 }
10524 spin_unlock(&block_group->lock);
04216820
FM
10525
10526 if (remove_em) {
10527 struct extent_map_tree *em_tree;
10528
10529 em_tree = &root->fs_info->mapping_tree.map_tree;
10530 write_lock(&em_tree->lock);
8dbcd10f
FM
10531 /*
10532 * The em might be in the pending_chunks list, so make sure the
10533 * chunk mutex is locked, since remove_extent_mapping() will
10534 * delete us from that list.
10535 */
04216820
FM
10536 remove_extent_mapping(em_tree, em);
10537 write_unlock(&em_tree->lock);
10538 /* once for the tree */
10539 free_extent_map(em);
10540 }
10541
8dbcd10f
FM
10542 unlock_chunks(root);
10543
1e144fb8
OS
10544 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10545 if (ret)
10546 goto out;
10547
fa9c0d79
CM
10548 btrfs_put_block_group(block_group);
10549 btrfs_put_block_group(block_group);
1a40e23b
ZY
10550
10551 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10552 if (ret > 0)
10553 ret = -EIO;
10554 if (ret < 0)
10555 goto out;
10556
10557 ret = btrfs_del_item(trans, root, path);
10558out:
10559 btrfs_free_path(path);
10560 return ret;
10561}
acce952b 10562
8eab77ff 10563struct btrfs_trans_handle *
7fd01182
FM
10564btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10565 const u64 chunk_offset)
8eab77ff 10566{
7fd01182
FM
10567 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10568 struct extent_map *em;
10569 struct map_lookup *map;
10570 unsigned int num_items;
10571
10572 read_lock(&em_tree->lock);
10573 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10574 read_unlock(&em_tree->lock);
10575 ASSERT(em && em->start == chunk_offset);
10576
8eab77ff 10577 /*
7fd01182
FM
10578 * We need to reserve 3 + N units from the metadata space info in order
10579 * to remove a block group (done at btrfs_remove_chunk() and at
10580 * btrfs_remove_block_group()), which are used for:
10581 *
8eab77ff
FM
10582 * 1 unit for adding the free space inode's orphan (located in the tree
10583 * of tree roots).
7fd01182
FM
10584 * 1 unit for deleting the block group item (located in the extent
10585 * tree).
10586 * 1 unit for deleting the free space item (located in tree of tree
10587 * roots).
10588 * N units for deleting N device extent items corresponding to each
10589 * stripe (located in the device tree).
10590 *
10591 * In order to remove a block group we also need to reserve units in the
10592 * system space info in order to update the chunk tree (update one or
10593 * more device items and remove one chunk item), but this is done at
10594 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10595 */
95617d69 10596 map = em->map_lookup;
7fd01182
FM
10597 num_items = 3 + map->num_stripes;
10598 free_extent_map(em);
10599
8eab77ff 10600 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10601 num_items, 1);
8eab77ff
FM
10602}
10603
47ab2a6c
JB
10604/*
10605 * Process the unused_bgs list and remove any that don't have any allocated
10606 * space inside of them.
10607 */
10608void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10609{
10610 struct btrfs_block_group_cache *block_group;
10611 struct btrfs_space_info *space_info;
10612 struct btrfs_root *root = fs_info->extent_root;
10613 struct btrfs_trans_handle *trans;
10614 int ret = 0;
10615
afcdd129 10616 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10617 return;
10618
10619 spin_lock(&fs_info->unused_bgs_lock);
10620 while (!list_empty(&fs_info->unused_bgs)) {
10621 u64 start, end;
e33e17ee 10622 int trimming;
47ab2a6c
JB
10623
10624 block_group = list_first_entry(&fs_info->unused_bgs,
10625 struct btrfs_block_group_cache,
10626 bg_list);
47ab2a6c 10627 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10628
10629 space_info = block_group->space_info;
10630
47ab2a6c
JB
10631 if (ret || btrfs_mixed_space_info(space_info)) {
10632 btrfs_put_block_group(block_group);
10633 continue;
10634 }
10635 spin_unlock(&fs_info->unused_bgs_lock);
10636
d5f2e33b 10637 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10638
47ab2a6c
JB
10639 /* Don't want to race with allocators so take the groups_sem */
10640 down_write(&space_info->groups_sem);
10641 spin_lock(&block_group->lock);
10642 if (block_group->reserved ||
10643 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10644 block_group->ro ||
aefbe9a6 10645 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10646 /*
10647 * We want to bail if we made new allocations or have
10648 * outstanding allocations in this block group. We do
10649 * the ro check in case balance is currently acting on
10650 * this block group.
10651 */
10652 spin_unlock(&block_group->lock);
10653 up_write(&space_info->groups_sem);
10654 goto next;
10655 }
10656 spin_unlock(&block_group->lock);
10657
10658 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10659 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10660 up_write(&space_info->groups_sem);
10661 if (ret < 0) {
10662 ret = 0;
10663 goto next;
10664 }
10665
10666 /*
10667 * Want to do this before we do anything else so we can recover
10668 * properly if we fail to join the transaction.
10669 */
7fd01182
FM
10670 trans = btrfs_start_trans_remove_block_group(fs_info,
10671 block_group->key.objectid);
47ab2a6c 10672 if (IS_ERR(trans)) {
868f401a 10673 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10674 ret = PTR_ERR(trans);
10675 goto next;
10676 }
10677
10678 /*
10679 * We could have pending pinned extents for this block group,
10680 * just delete them, we don't care about them anymore.
10681 */
10682 start = block_group->key.objectid;
10683 end = start + block_group->key.offset - 1;
d4b450cd
FM
10684 /*
10685 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10686 * btrfs_finish_extent_commit(). If we are at transaction N,
10687 * another task might be running finish_extent_commit() for the
10688 * previous transaction N - 1, and have seen a range belonging
10689 * to the block group in freed_extents[] before we were able to
10690 * clear the whole block group range from freed_extents[]. This
10691 * means that task can lookup for the block group after we
10692 * unpinned it from freed_extents[] and removed it, leading to
10693 * a BUG_ON() at btrfs_unpin_extent_range().
10694 */
10695 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10696 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10697 EXTENT_DIRTY);
758eb51e 10698 if (ret) {
d4b450cd 10699 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10700 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10701 goto end_trans;
10702 }
10703 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10704 EXTENT_DIRTY);
758eb51e 10705 if (ret) {
d4b450cd 10706 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10707 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10708 goto end_trans;
10709 }
d4b450cd 10710 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10711
10712 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10713 spin_lock(&space_info->lock);
10714 spin_lock(&block_group->lock);
10715
10716 space_info->bytes_pinned -= block_group->pinned;
10717 space_info->bytes_readonly += block_group->pinned;
10718 percpu_counter_add(&space_info->total_bytes_pinned,
10719 -block_group->pinned);
47ab2a6c
JB
10720 block_group->pinned = 0;
10721
c30666d4
ZL
10722 spin_unlock(&block_group->lock);
10723 spin_unlock(&space_info->lock);
10724
e33e17ee 10725 /* DISCARD can flip during remount */
3cdde224 10726 trimming = btrfs_test_opt(root->fs_info, DISCARD);
e33e17ee
JM
10727
10728 /* Implicit trim during transaction commit. */
10729 if (trimming)
10730 btrfs_get_block_group_trimming(block_group);
10731
47ab2a6c
JB
10732 /*
10733 * Btrfs_remove_chunk will abort the transaction if things go
10734 * horribly wrong.
10735 */
10736 ret = btrfs_remove_chunk(trans, root,
10737 block_group->key.objectid);
e33e17ee
JM
10738
10739 if (ret) {
10740 if (trimming)
10741 btrfs_put_block_group_trimming(block_group);
10742 goto end_trans;
10743 }
10744
10745 /*
10746 * If we're not mounted with -odiscard, we can just forget
10747 * about this block group. Otherwise we'll need to wait
10748 * until transaction commit to do the actual discard.
10749 */
10750 if (trimming) {
348a0013
FM
10751 spin_lock(&fs_info->unused_bgs_lock);
10752 /*
10753 * A concurrent scrub might have added us to the list
10754 * fs_info->unused_bgs, so use a list_move operation
10755 * to add the block group to the deleted_bgs list.
10756 */
e33e17ee
JM
10757 list_move(&block_group->bg_list,
10758 &trans->transaction->deleted_bgs);
348a0013 10759 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10760 btrfs_get_block_group(block_group);
10761 }
758eb51e 10762end_trans:
47ab2a6c
JB
10763 btrfs_end_transaction(trans, root);
10764next:
d5f2e33b 10765 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10766 btrfs_put_block_group(block_group);
10767 spin_lock(&fs_info->unused_bgs_lock);
10768 }
10769 spin_unlock(&fs_info->unused_bgs_lock);
10770}
10771
c59021f8 10772int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10773{
10774 struct btrfs_space_info *space_info;
1aba86d6 10775 struct btrfs_super_block *disk_super;
10776 u64 features;
10777 u64 flags;
10778 int mixed = 0;
c59021f8 10779 int ret;
10780
6c41761f 10781 disk_super = fs_info->super_copy;
1aba86d6 10782 if (!btrfs_super_root(disk_super))
0dc924c5 10783 return -EINVAL;
c59021f8 10784
1aba86d6 10785 features = btrfs_super_incompat_flags(disk_super);
10786 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10787 mixed = 1;
c59021f8 10788
1aba86d6 10789 flags = BTRFS_BLOCK_GROUP_SYSTEM;
e40edf2d 10790 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
c59021f8 10791 if (ret)
1aba86d6 10792 goto out;
c59021f8 10793
1aba86d6 10794 if (mixed) {
10795 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10796 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10797 } else {
10798 flags = BTRFS_BLOCK_GROUP_METADATA;
e40edf2d 10799 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10800 if (ret)
10801 goto out;
10802
10803 flags = BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10804 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10805 }
10806out:
c59021f8 10807 return ret;
10808}
10809
acce952b 10810int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10811{
678886bd 10812 return unpin_extent_range(root, start, end, false);
acce952b 10813}
10814
499f377f
JM
10815/*
10816 * It used to be that old block groups would be left around forever.
10817 * Iterating over them would be enough to trim unused space. Since we
10818 * now automatically remove them, we also need to iterate over unallocated
10819 * space.
10820 *
10821 * We don't want a transaction for this since the discard may take a
10822 * substantial amount of time. We don't require that a transaction be
10823 * running, but we do need to take a running transaction into account
10824 * to ensure that we're not discarding chunks that were released in
10825 * the current transaction.
10826 *
10827 * Holding the chunks lock will prevent other threads from allocating
10828 * or releasing chunks, but it won't prevent a running transaction
10829 * from committing and releasing the memory that the pending chunks
10830 * list head uses. For that, we need to take a reference to the
10831 * transaction.
10832 */
10833static int btrfs_trim_free_extents(struct btrfs_device *device,
10834 u64 minlen, u64 *trimmed)
10835{
10836 u64 start = 0, len = 0;
10837 int ret;
10838
10839 *trimmed = 0;
10840
10841 /* Not writeable = nothing to do. */
10842 if (!device->writeable)
10843 return 0;
10844
10845 /* No free space = nothing to do. */
10846 if (device->total_bytes <= device->bytes_used)
10847 return 0;
10848
10849 ret = 0;
10850
10851 while (1) {
10852 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10853 struct btrfs_transaction *trans;
10854 u64 bytes;
10855
10856 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10857 if (ret)
10858 return ret;
10859
10860 down_read(&fs_info->commit_root_sem);
10861
10862 spin_lock(&fs_info->trans_lock);
10863 trans = fs_info->running_transaction;
10864 if (trans)
10865 atomic_inc(&trans->use_count);
10866 spin_unlock(&fs_info->trans_lock);
10867
10868 ret = find_free_dev_extent_start(trans, device, minlen, start,
10869 &start, &len);
10870 if (trans)
10871 btrfs_put_transaction(trans);
10872
10873 if (ret) {
10874 up_read(&fs_info->commit_root_sem);
10875 mutex_unlock(&fs_info->chunk_mutex);
10876 if (ret == -ENOSPC)
10877 ret = 0;
10878 break;
10879 }
10880
10881 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10882 up_read(&fs_info->commit_root_sem);
10883 mutex_unlock(&fs_info->chunk_mutex);
10884
10885 if (ret)
10886 break;
10887
10888 start += len;
10889 *trimmed += bytes;
10890
10891 if (fatal_signal_pending(current)) {
10892 ret = -ERESTARTSYS;
10893 break;
10894 }
10895
10896 cond_resched();
10897 }
10898
10899 return ret;
10900}
10901
f7039b1d
LD
10902int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10903{
10904 struct btrfs_fs_info *fs_info = root->fs_info;
10905 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10906 struct btrfs_device *device;
10907 struct list_head *devices;
f7039b1d
LD
10908 u64 group_trimmed;
10909 u64 start;
10910 u64 end;
10911 u64 trimmed = 0;
2cac13e4 10912 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10913 int ret = 0;
10914
2cac13e4
LB
10915 /*
10916 * try to trim all FS space, our block group may start from non-zero.
10917 */
10918 if (range->len == total_bytes)
10919 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10920 else
10921 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10922
10923 while (cache) {
10924 if (cache->key.objectid >= (range->start + range->len)) {
10925 btrfs_put_block_group(cache);
10926 break;
10927 }
10928
10929 start = max(range->start, cache->key.objectid);
10930 end = min(range->start + range->len,
10931 cache->key.objectid + cache->key.offset);
10932
10933 if (end - start >= range->minlen) {
10934 if (!block_group_cache_done(cache)) {
f6373bf3 10935 ret = cache_block_group(cache, 0);
1be41b78
JB
10936 if (ret) {
10937 btrfs_put_block_group(cache);
10938 break;
10939 }
10940 ret = wait_block_group_cache_done(cache);
10941 if (ret) {
10942 btrfs_put_block_group(cache);
10943 break;
10944 }
f7039b1d
LD
10945 }
10946 ret = btrfs_trim_block_group(cache,
10947 &group_trimmed,
10948 start,
10949 end,
10950 range->minlen);
10951
10952 trimmed += group_trimmed;
10953 if (ret) {
10954 btrfs_put_block_group(cache);
10955 break;
10956 }
10957 }
10958
10959 cache = next_block_group(fs_info->tree_root, cache);
10960 }
10961
499f377f
JM
10962 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10963 devices = &root->fs_info->fs_devices->alloc_list;
10964 list_for_each_entry(device, devices, dev_alloc_list) {
10965 ret = btrfs_trim_free_extents(device, range->minlen,
10966 &group_trimmed);
10967 if (ret)
10968 break;
10969
10970 trimmed += group_trimmed;
10971 }
10972 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10973
f7039b1d
LD
10974 range->len = trimmed;
10975 return ret;
10976}
8257b2dc
MX
10977
10978/*
9ea24bbe
FM
10979 * btrfs_{start,end}_write_no_snapshoting() are similar to
10980 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10981 * data into the page cache through nocow before the subvolume is snapshoted,
10982 * but flush the data into disk after the snapshot creation, or to prevent
10983 * operations while snapshoting is ongoing and that cause the snapshot to be
10984 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10985 */
9ea24bbe 10986void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10987{
10988 percpu_counter_dec(&root->subv_writers->counter);
10989 /*
a83342aa 10990 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10991 */
10992 smp_mb();
10993 if (waitqueue_active(&root->subv_writers->wait))
10994 wake_up(&root->subv_writers->wait);
10995}
10996
9ea24bbe 10997int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10998{
ee39b432 10999 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
11000 return 0;
11001
11002 percpu_counter_inc(&root->subv_writers->counter);
11003 /*
11004 * Make sure counter is updated before we check for snapshot creation.
11005 */
11006 smp_mb();
ee39b432 11007 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 11008 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
11009 return 0;
11010 }
11011 return 1;
11012}
0bc19f90
ZL
11013
11014static int wait_snapshoting_atomic_t(atomic_t *a)
11015{
11016 schedule();
11017 return 0;
11018}
11019
11020void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11021{
11022 while (true) {
11023 int ret;
11024
11025 ret = btrfs_start_write_no_snapshoting(root);
11026 if (ret)
11027 break;
11028 wait_on_atomic_t(&root->will_be_snapshoted,
11029 wait_snapshoting_atomic_t,
11030 TASK_UNINTERRUPTIBLE);
11031 }
11032}