]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: Remove redundant argument of flush_space
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
f361bf4a 19#include <linux/sched/signal.h>
edbd8d4e 20#include <linux/pagemap.h>
ec44a35c 21#include <linux/writeback.h>
21af804c 22#include <linux/blkdev.h>
b7a9f29f 23#include <linux/sort.h>
4184ea7f 24#include <linux/rcupdate.h>
817d52f8 25#include <linux/kthread.h>
5a0e3ad6 26#include <linux/slab.h>
dff51cd1 27#include <linux/ratelimit.h>
b150a4f1 28#include <linux/percpu_counter.h>
74493f7a 29#include "hash.h"
995946dd 30#include "tree-log.h"
fec577fb
CM
31#include "disk-io.h"
32#include "print-tree.h"
0b86a832 33#include "volumes.h"
53b381b3 34#include "raid56.h"
925baedd 35#include "locking.h"
fa9c0d79 36#include "free-space-cache.h"
1e144fb8 37#include "free-space-tree.h"
3fed40cc 38#include "math.h"
6ab0a202 39#include "sysfs.h"
fcebe456 40#include "qgroup.h"
fec577fb 41
709c0486
AJ
42#undef SCRAMBLE_DELAYED_REFS
43
9e622d6b
MX
44/*
45 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
48 *
0e4f8f88
CM
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
54 *
9e622d6b
MX
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 *
0e4f8f88
CM
57 */
58enum {
59 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
60 CHUNK_ALLOC_LIMITED = 1,
61 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
62};
63
ce93ec54 64static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 65 struct btrfs_fs_info *fs_info, u64 bytenr,
ce93ec54 66 u64 num_bytes, int alloc);
5d4f98a2 67static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 68 struct btrfs_fs_info *fs_info,
c682f9b3 69 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
70 u64 root_objectid, u64 owner_objectid,
71 u64 owner_offset, int refs_to_drop,
c682f9b3 72 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
73static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 struct extent_buffer *leaf,
75 struct btrfs_extent_item *ei);
76static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 77 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
78 u64 parent, u64 root_objectid,
79 u64 flags, u64 owner, u64 offset,
80 struct btrfs_key *ins, int ref_mod);
81static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 82 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
83 u64 parent, u64 root_objectid,
84 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 85 int level, struct btrfs_key *ins);
6a63209f 86static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 87 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 88 int force);
11833d66
YZ
89static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
ab8d0fc4
JM
91static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 93 int dump_block_groups);
4824f1f4 94static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 95 u64 ram_bytes, u64 num_bytes, int delalloc);
4824f1f4
WX
96static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 u64 num_bytes, int delalloc);
5d80366e
JB
98static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 u64 num_bytes);
c1c4919b 100static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
c1c4919b
JM
103 enum btrfs_reserve_flush_enum flush,
104 bool system_chunk);
957780eb
JB
105static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106 struct btrfs_space_info *space_info,
107 u64 num_bytes);
108static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109 struct btrfs_space_info *space_info,
110 u64 num_bytes);
6a63209f 111
817d52f8
JB
112static noinline int
113block_group_cache_done(struct btrfs_block_group_cache *cache)
114{
115 smp_mb();
36cce922
JB
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
118}
119
0f9dd46c
JB
120static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121{
122 return (cache->flags & bits) == bits;
123}
124
758f2dfc 125void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
126{
127 atomic_inc(&cache->count);
128}
129
130void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131{
f0486c68
YZ
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
0966a7b1
QW
135
136 /*
137 * If not empty, someone is still holding mutex of
138 * full_stripe_lock, which can only be released by caller.
139 * And it will definitely cause use-after-free when caller
140 * tries to release full stripe lock.
141 *
142 * No better way to resolve, but only to warn.
143 */
144 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 145 kfree(cache->free_space_ctl);
11dfe35a 146 kfree(cache);
f0486c68 147 }
11dfe35a
JB
148}
149
0f9dd46c
JB
150/*
151 * this adds the block group to the fs_info rb tree for the block group
152 * cache
153 */
b2950863 154static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
155 struct btrfs_block_group_cache *block_group)
156{
157 struct rb_node **p;
158 struct rb_node *parent = NULL;
159 struct btrfs_block_group_cache *cache;
160
161 spin_lock(&info->block_group_cache_lock);
162 p = &info->block_group_cache_tree.rb_node;
163
164 while (*p) {
165 parent = *p;
166 cache = rb_entry(parent, struct btrfs_block_group_cache,
167 cache_node);
168 if (block_group->key.objectid < cache->key.objectid) {
169 p = &(*p)->rb_left;
170 } else if (block_group->key.objectid > cache->key.objectid) {
171 p = &(*p)->rb_right;
172 } else {
173 spin_unlock(&info->block_group_cache_lock);
174 return -EEXIST;
175 }
176 }
177
178 rb_link_node(&block_group->cache_node, parent, p);
179 rb_insert_color(&block_group->cache_node,
180 &info->block_group_cache_tree);
a1897fdd
LB
181
182 if (info->first_logical_byte > block_group->key.objectid)
183 info->first_logical_byte = block_group->key.objectid;
184
0f9dd46c
JB
185 spin_unlock(&info->block_group_cache_lock);
186
187 return 0;
188}
189
190/*
191 * This will return the block group at or after bytenr if contains is 0, else
192 * it will return the block group that contains the bytenr
193 */
194static struct btrfs_block_group_cache *
195block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
196 int contains)
197{
198 struct btrfs_block_group_cache *cache, *ret = NULL;
199 struct rb_node *n;
200 u64 end, start;
201
202 spin_lock(&info->block_group_cache_lock);
203 n = info->block_group_cache_tree.rb_node;
204
205 while (n) {
206 cache = rb_entry(n, struct btrfs_block_group_cache,
207 cache_node);
208 end = cache->key.objectid + cache->key.offset - 1;
209 start = cache->key.objectid;
210
211 if (bytenr < start) {
212 if (!contains && (!ret || start < ret->key.objectid))
213 ret = cache;
214 n = n->rb_left;
215 } else if (bytenr > start) {
216 if (contains && bytenr <= end) {
217 ret = cache;
218 break;
219 }
220 n = n->rb_right;
221 } else {
222 ret = cache;
223 break;
224 }
225 }
a1897fdd 226 if (ret) {
11dfe35a 227 btrfs_get_block_group(ret);
a1897fdd
LB
228 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
229 info->first_logical_byte = ret->key.objectid;
230 }
0f9dd46c
JB
231 spin_unlock(&info->block_group_cache_lock);
232
233 return ret;
234}
235
2ff7e61e 236static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 237 u64 start, u64 num_bytes)
817d52f8 238{
11833d66 239 u64 end = start + num_bytes - 1;
0b246afa 240 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 241 start, end, EXTENT_UPTODATE);
0b246afa 242 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 243 start, end, EXTENT_UPTODATE);
11833d66
YZ
244 return 0;
245}
817d52f8 246
2ff7e61e 247static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
248 struct btrfs_block_group_cache *cache)
249{
250 u64 start, end;
817d52f8 251
11833d66
YZ
252 start = cache->key.objectid;
253 end = start + cache->key.offset - 1;
254
0b246afa 255 clear_extent_bits(&fs_info->freed_extents[0],
91166212 256 start, end, EXTENT_UPTODATE);
0b246afa 257 clear_extent_bits(&fs_info->freed_extents[1],
91166212 258 start, end, EXTENT_UPTODATE);
817d52f8
JB
259}
260
2ff7e61e 261static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 262 struct btrfs_block_group_cache *cache)
817d52f8 263{
817d52f8
JB
264 u64 bytenr;
265 u64 *logical;
266 int stripe_len;
267 int i, nr, ret;
268
06b2331f
YZ
269 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
270 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
271 cache->bytes_super += stripe_len;
2ff7e61e 272 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 273 stripe_len);
835d974f
JB
274 if (ret)
275 return ret;
06b2331f
YZ
276 }
277
817d52f8
JB
278 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
279 bytenr = btrfs_sb_offset(i);
0b246afa 280 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
ab8d0fc4 281 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
282 if (ret)
283 return ret;
11833d66 284
817d52f8 285 while (nr--) {
51bf5f0b
JB
286 u64 start, len;
287
288 if (logical[nr] > cache->key.objectid +
289 cache->key.offset)
290 continue;
291
292 if (logical[nr] + stripe_len <= cache->key.objectid)
293 continue;
294
295 start = logical[nr];
296 if (start < cache->key.objectid) {
297 start = cache->key.objectid;
298 len = (logical[nr] + stripe_len) - start;
299 } else {
300 len = min_t(u64, stripe_len,
301 cache->key.objectid +
302 cache->key.offset - start);
303 }
304
305 cache->bytes_super += len;
2ff7e61e 306 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
307 if (ret) {
308 kfree(logical);
309 return ret;
310 }
817d52f8 311 }
11833d66 312
817d52f8
JB
313 kfree(logical);
314 }
817d52f8
JB
315 return 0;
316}
317
11833d66
YZ
318static struct btrfs_caching_control *
319get_caching_control(struct btrfs_block_group_cache *cache)
320{
321 struct btrfs_caching_control *ctl;
322
323 spin_lock(&cache->lock);
dde5abee
JB
324 if (!cache->caching_ctl) {
325 spin_unlock(&cache->lock);
11833d66
YZ
326 return NULL;
327 }
328
329 ctl = cache->caching_ctl;
1e4f4714 330 refcount_inc(&ctl->count);
11833d66
YZ
331 spin_unlock(&cache->lock);
332 return ctl;
333}
334
335static void put_caching_control(struct btrfs_caching_control *ctl)
336{
1e4f4714 337 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
338 kfree(ctl);
339}
340
d0bd4560 341#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 342static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 343{
2ff7e61e 344 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
345 u64 start = block_group->key.objectid;
346 u64 len = block_group->key.offset;
347 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 348 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
349 u64 step = chunk << 1;
350
351 while (len > chunk) {
352 btrfs_remove_free_space(block_group, start, chunk);
353 start += step;
354 if (len < step)
355 len = 0;
356 else
357 len -= step;
358 }
359}
360#endif
361
0f9dd46c
JB
362/*
363 * this is only called by cache_block_group, since we could have freed extents
364 * we need to check the pinned_extents for any extents that can't be used yet
365 * since their free space will be released as soon as the transaction commits.
366 */
a5ed9182
OS
367u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
368 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 369{
817d52f8 370 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
371 int ret;
372
373 while (start < end) {
11833d66 374 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 375 &extent_start, &extent_end,
e6138876
JB
376 EXTENT_DIRTY | EXTENT_UPTODATE,
377 NULL);
0f9dd46c
JB
378 if (ret)
379 break;
380
06b2331f 381 if (extent_start <= start) {
0f9dd46c
JB
382 start = extent_end + 1;
383 } else if (extent_start > start && extent_start < end) {
384 size = extent_start - start;
817d52f8 385 total_added += size;
ea6a478e
JB
386 ret = btrfs_add_free_space(block_group, start,
387 size);
79787eaa 388 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
389 start = extent_end + 1;
390 } else {
391 break;
392 }
393 }
394
395 if (start < end) {
396 size = end - start;
817d52f8 397 total_added += size;
ea6a478e 398 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 399 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
400 }
401
817d52f8 402 return total_added;
0f9dd46c
JB
403}
404
73fa48b6 405static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 406{
0b246afa
JM
407 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
408 struct btrfs_fs_info *fs_info = block_group->fs_info;
409 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 410 struct btrfs_path *path;
5f39d397 411 struct extent_buffer *leaf;
11833d66 412 struct btrfs_key key;
817d52f8 413 u64 total_found = 0;
11833d66
YZ
414 u64 last = 0;
415 u32 nritems;
73fa48b6 416 int ret;
d0bd4560 417 bool wakeup = true;
f510cfec 418
e37c9e69
CM
419 path = btrfs_alloc_path();
420 if (!path)
73fa48b6 421 return -ENOMEM;
7d7d6068 422
817d52f8 423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 424
d0bd4560
JB
425#ifdef CONFIG_BTRFS_DEBUG
426 /*
427 * If we're fragmenting we don't want to make anybody think we can
428 * allocate from this block group until we've had a chance to fragment
429 * the free space.
430 */
2ff7e61e 431 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
432 wakeup = false;
433#endif
5cd57b2c 434 /*
817d52f8
JB
435 * We don't want to deadlock with somebody trying to allocate a new
436 * extent for the extent root while also trying to search the extent
437 * root to add free space. So we skip locking and search the commit
438 * root, since its read-only
5cd57b2c
CM
439 */
440 path->skip_locking = 1;
817d52f8 441 path->search_commit_root = 1;
e4058b54 442 path->reada = READA_FORWARD;
817d52f8 443
e4404d6e 444 key.objectid = last;
e37c9e69 445 key.offset = 0;
11833d66 446 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 447
52ee28d2 448next:
11833d66 449 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 450 if (ret < 0)
73fa48b6 451 goto out;
a512bbf8 452
11833d66
YZ
453 leaf = path->nodes[0];
454 nritems = btrfs_header_nritems(leaf);
455
d397712b 456 while (1) {
7841cb28 457 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 458 last = (u64)-1;
817d52f8 459 break;
f25784b3 460 }
817d52f8 461
11833d66
YZ
462 if (path->slots[0] < nritems) {
463 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
464 } else {
465 ret = find_next_key(path, 0, &key);
466 if (ret)
e37c9e69 467 break;
817d52f8 468
c9ea7b24 469 if (need_resched() ||
9e351cc8 470 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
471 if (wakeup)
472 caching_ctl->progress = last;
ff5714cc 473 btrfs_release_path(path);
9e351cc8 474 up_read(&fs_info->commit_root_sem);
589d8ade 475 mutex_unlock(&caching_ctl->mutex);
11833d66 476 cond_resched();
73fa48b6
OS
477 mutex_lock(&caching_ctl->mutex);
478 down_read(&fs_info->commit_root_sem);
479 goto next;
589d8ade 480 }
0a3896d0
JB
481
482 ret = btrfs_next_leaf(extent_root, path);
483 if (ret < 0)
73fa48b6 484 goto out;
0a3896d0
JB
485 if (ret)
486 break;
589d8ade
JB
487 leaf = path->nodes[0];
488 nritems = btrfs_header_nritems(leaf);
489 continue;
11833d66 490 }
817d52f8 491
52ee28d2
LB
492 if (key.objectid < last) {
493 key.objectid = last;
494 key.offset = 0;
495 key.type = BTRFS_EXTENT_ITEM_KEY;
496
d0bd4560
JB
497 if (wakeup)
498 caching_ctl->progress = last;
52ee28d2
LB
499 btrfs_release_path(path);
500 goto next;
501 }
502
11833d66
YZ
503 if (key.objectid < block_group->key.objectid) {
504 path->slots[0]++;
817d52f8 505 continue;
e37c9e69 506 }
0f9dd46c 507
e37c9e69 508 if (key.objectid >= block_group->key.objectid +
0f9dd46c 509 block_group->key.offset)
e37c9e69 510 break;
7d7d6068 511
3173a18f
JB
512 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
513 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
514 total_found += add_new_free_space(block_group,
515 fs_info, last,
516 key.objectid);
3173a18f
JB
517 if (key.type == BTRFS_METADATA_ITEM_KEY)
518 last = key.objectid +
da17066c 519 fs_info->nodesize;
3173a18f
JB
520 else
521 last = key.objectid + key.offset;
817d52f8 522
73fa48b6 523 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 524 total_found = 0;
d0bd4560
JB
525 if (wakeup)
526 wake_up(&caching_ctl->wait);
11833d66 527 }
817d52f8 528 }
e37c9e69
CM
529 path->slots[0]++;
530 }
817d52f8 531 ret = 0;
e37c9e69 532
817d52f8
JB
533 total_found += add_new_free_space(block_group, fs_info, last,
534 block_group->key.objectid +
535 block_group->key.offset);
11833d66 536 caching_ctl->progress = (u64)-1;
817d52f8 537
73fa48b6
OS
538out:
539 btrfs_free_path(path);
540 return ret;
541}
542
543static noinline void caching_thread(struct btrfs_work *work)
544{
545 struct btrfs_block_group_cache *block_group;
546 struct btrfs_fs_info *fs_info;
547 struct btrfs_caching_control *caching_ctl;
b4570aa9 548 struct btrfs_root *extent_root;
73fa48b6
OS
549 int ret;
550
551 caching_ctl = container_of(work, struct btrfs_caching_control, work);
552 block_group = caching_ctl->block_group;
553 fs_info = block_group->fs_info;
b4570aa9 554 extent_root = fs_info->extent_root;
73fa48b6
OS
555
556 mutex_lock(&caching_ctl->mutex);
557 down_read(&fs_info->commit_root_sem);
558
1e144fb8
OS
559 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
560 ret = load_free_space_tree(caching_ctl);
561 else
562 ret = load_extent_tree_free(caching_ctl);
73fa48b6 563
817d52f8 564 spin_lock(&block_group->lock);
11833d66 565 block_group->caching_ctl = NULL;
73fa48b6 566 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 567 spin_unlock(&block_group->lock);
0f9dd46c 568
d0bd4560 569#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 570 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
571 u64 bytes_used;
572
573 spin_lock(&block_group->space_info->lock);
574 spin_lock(&block_group->lock);
575 bytes_used = block_group->key.offset -
576 btrfs_block_group_used(&block_group->item);
577 block_group->space_info->bytes_used += bytes_used >> 1;
578 spin_unlock(&block_group->lock);
579 spin_unlock(&block_group->space_info->lock);
2ff7e61e 580 fragment_free_space(block_group);
d0bd4560
JB
581 }
582#endif
583
584 caching_ctl->progress = (u64)-1;
11833d66 585
9e351cc8 586 up_read(&fs_info->commit_root_sem);
2ff7e61e 587 free_excluded_extents(fs_info, block_group);
11833d66 588 mutex_unlock(&caching_ctl->mutex);
73fa48b6 589
11833d66
YZ
590 wake_up(&caching_ctl->wait);
591
592 put_caching_control(caching_ctl);
11dfe35a 593 btrfs_put_block_group(block_group);
817d52f8
JB
594}
595
9d66e233 596static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 597 int load_cache_only)
817d52f8 598{
291c7d2f 599 DEFINE_WAIT(wait);
11833d66
YZ
600 struct btrfs_fs_info *fs_info = cache->fs_info;
601 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
602 int ret = 0;
603
291c7d2f 604 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
605 if (!caching_ctl)
606 return -ENOMEM;
291c7d2f
JB
607
608 INIT_LIST_HEAD(&caching_ctl->list);
609 mutex_init(&caching_ctl->mutex);
610 init_waitqueue_head(&caching_ctl->wait);
611 caching_ctl->block_group = cache;
612 caching_ctl->progress = cache->key.objectid;
1e4f4714 613 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
614 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
615 caching_thread, NULL, NULL);
291c7d2f
JB
616
617 spin_lock(&cache->lock);
618 /*
619 * This should be a rare occasion, but this could happen I think in the
620 * case where one thread starts to load the space cache info, and then
621 * some other thread starts a transaction commit which tries to do an
622 * allocation while the other thread is still loading the space cache
623 * info. The previous loop should have kept us from choosing this block
624 * group, but if we've moved to the state where we will wait on caching
625 * block groups we need to first check if we're doing a fast load here,
626 * so we can wait for it to finish, otherwise we could end up allocating
627 * from a block group who's cache gets evicted for one reason or
628 * another.
629 */
630 while (cache->cached == BTRFS_CACHE_FAST) {
631 struct btrfs_caching_control *ctl;
632
633 ctl = cache->caching_ctl;
1e4f4714 634 refcount_inc(&ctl->count);
291c7d2f
JB
635 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
636 spin_unlock(&cache->lock);
637
638 schedule();
639
640 finish_wait(&ctl->wait, &wait);
641 put_caching_control(ctl);
642 spin_lock(&cache->lock);
643 }
644
645 if (cache->cached != BTRFS_CACHE_NO) {
646 spin_unlock(&cache->lock);
647 kfree(caching_ctl);
11833d66 648 return 0;
291c7d2f
JB
649 }
650 WARN_ON(cache->caching_ctl);
651 cache->caching_ctl = caching_ctl;
652 cache->cached = BTRFS_CACHE_FAST;
653 spin_unlock(&cache->lock);
11833d66 654
d53ba474 655 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 656 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
657 ret = load_free_space_cache(fs_info, cache);
658
659 spin_lock(&cache->lock);
660 if (ret == 1) {
291c7d2f 661 cache->caching_ctl = NULL;
9d66e233
JB
662 cache->cached = BTRFS_CACHE_FINISHED;
663 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 664 caching_ctl->progress = (u64)-1;
9d66e233 665 } else {
291c7d2f
JB
666 if (load_cache_only) {
667 cache->caching_ctl = NULL;
668 cache->cached = BTRFS_CACHE_NO;
669 } else {
670 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 671 cache->has_caching_ctl = 1;
291c7d2f 672 }
9d66e233
JB
673 }
674 spin_unlock(&cache->lock);
d0bd4560
JB
675#ifdef CONFIG_BTRFS_DEBUG
676 if (ret == 1 &&
2ff7e61e 677 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
678 u64 bytes_used;
679
680 spin_lock(&cache->space_info->lock);
681 spin_lock(&cache->lock);
682 bytes_used = cache->key.offset -
683 btrfs_block_group_used(&cache->item);
684 cache->space_info->bytes_used += bytes_used >> 1;
685 spin_unlock(&cache->lock);
686 spin_unlock(&cache->space_info->lock);
2ff7e61e 687 fragment_free_space(cache);
d0bd4560
JB
688 }
689#endif
cb83b7b8
JB
690 mutex_unlock(&caching_ctl->mutex);
691
291c7d2f 692 wake_up(&caching_ctl->wait);
3c14874a 693 if (ret == 1) {
291c7d2f 694 put_caching_control(caching_ctl);
2ff7e61e 695 free_excluded_extents(fs_info, cache);
9d66e233 696 return 0;
3c14874a 697 }
291c7d2f
JB
698 } else {
699 /*
1e144fb8
OS
700 * We're either using the free space tree or no caching at all.
701 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
702 */
703 spin_lock(&cache->lock);
704 if (load_cache_only) {
705 cache->caching_ctl = NULL;
706 cache->cached = BTRFS_CACHE_NO;
707 } else {
708 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 709 cache->has_caching_ctl = 1;
291c7d2f
JB
710 }
711 spin_unlock(&cache->lock);
712 wake_up(&caching_ctl->wait);
9d66e233
JB
713 }
714
291c7d2f
JB
715 if (load_cache_only) {
716 put_caching_control(caching_ctl);
11833d66 717 return 0;
817d52f8 718 }
817d52f8 719
9e351cc8 720 down_write(&fs_info->commit_root_sem);
1e4f4714 721 refcount_inc(&caching_ctl->count);
11833d66 722 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 723 up_write(&fs_info->commit_root_sem);
11833d66 724
11dfe35a 725 btrfs_get_block_group(cache);
11833d66 726
e66f0bb1 727 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 728
ef8bbdfe 729 return ret;
e37c9e69
CM
730}
731
0f9dd46c
JB
732/*
733 * return the block group that starts at or after bytenr
734 */
d397712b
CM
735static struct btrfs_block_group_cache *
736btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 737{
e2c89907 738 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
739}
740
0f9dd46c 741/*
9f55684c 742 * return the block group that contains the given bytenr
0f9dd46c 743 */
d397712b
CM
744struct btrfs_block_group_cache *btrfs_lookup_block_group(
745 struct btrfs_fs_info *info,
746 u64 bytenr)
be744175 747{
e2c89907 748 return block_group_cache_tree_search(info, bytenr, 1);
be744175 749}
0b86a832 750
0f9dd46c
JB
751static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
752 u64 flags)
6324fbf3 753{
0f9dd46c 754 struct list_head *head = &info->space_info;
0f9dd46c 755 struct btrfs_space_info *found;
4184ea7f 756
52ba6929 757 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 758
4184ea7f
CM
759 rcu_read_lock();
760 list_for_each_entry_rcu(found, head, list) {
67377734 761 if (found->flags & flags) {
4184ea7f 762 rcu_read_unlock();
0f9dd46c 763 return found;
4184ea7f 764 }
0f9dd46c 765 }
4184ea7f 766 rcu_read_unlock();
0f9dd46c 767 return NULL;
6324fbf3
CM
768}
769
0d9f824d
OS
770static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
771 u64 owner, u64 root_objectid)
772{
773 struct btrfs_space_info *space_info;
774 u64 flags;
775
776 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
777 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
778 flags = BTRFS_BLOCK_GROUP_SYSTEM;
779 else
780 flags = BTRFS_BLOCK_GROUP_METADATA;
781 } else {
782 flags = BTRFS_BLOCK_GROUP_DATA;
783 }
784
785 space_info = __find_space_info(fs_info, flags);
55e8196a 786 ASSERT(space_info);
0d9f824d
OS
787 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
788}
789
4184ea7f
CM
790/*
791 * after adding space to the filesystem, we need to clear the full flags
792 * on all the space infos.
793 */
794void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
795{
796 struct list_head *head = &info->space_info;
797 struct btrfs_space_info *found;
798
799 rcu_read_lock();
800 list_for_each_entry_rcu(found, head, list)
801 found->full = 0;
802 rcu_read_unlock();
803}
804
1a4ed8fd 805/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 806int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
807{
808 int ret;
809 struct btrfs_key key;
31840ae1 810 struct btrfs_path *path;
e02119d5 811
31840ae1 812 path = btrfs_alloc_path();
d8926bb3
MF
813 if (!path)
814 return -ENOMEM;
815
e02119d5
CM
816 key.objectid = start;
817 key.offset = len;
3173a18f 818 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 819 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 820 btrfs_free_path(path);
7bb86316
CM
821 return ret;
822}
823
a22285a6 824/*
3173a18f 825 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
826 *
827 * the head node for delayed ref is used to store the sum of all the
828 * reference count modifications queued up in the rbtree. the head
829 * node may also store the extent flags to set. This way you can check
830 * to see what the reference count and extent flags would be if all of
831 * the delayed refs are not processed.
832 */
833int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 834 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 835 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
836{
837 struct btrfs_delayed_ref_head *head;
838 struct btrfs_delayed_ref_root *delayed_refs;
839 struct btrfs_path *path;
840 struct btrfs_extent_item *ei;
841 struct extent_buffer *leaf;
842 struct btrfs_key key;
843 u32 item_size;
844 u64 num_refs;
845 u64 extent_flags;
846 int ret;
847
3173a18f
JB
848 /*
849 * If we don't have skinny metadata, don't bother doing anything
850 * different
851 */
0b246afa
JM
852 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
853 offset = fs_info->nodesize;
3173a18f
JB
854 metadata = 0;
855 }
856
a22285a6
YZ
857 path = btrfs_alloc_path();
858 if (!path)
859 return -ENOMEM;
860
a22285a6
YZ
861 if (!trans) {
862 path->skip_locking = 1;
863 path->search_commit_root = 1;
864 }
639eefc8
FDBM
865
866search_again:
867 key.objectid = bytenr;
868 key.offset = offset;
869 if (metadata)
870 key.type = BTRFS_METADATA_ITEM_KEY;
871 else
872 key.type = BTRFS_EXTENT_ITEM_KEY;
873
0b246afa 874 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
875 if (ret < 0)
876 goto out_free;
877
3173a18f 878 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
879 if (path->slots[0]) {
880 path->slots[0]--;
881 btrfs_item_key_to_cpu(path->nodes[0], &key,
882 path->slots[0]);
883 if (key.objectid == bytenr &&
884 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 885 key.offset == fs_info->nodesize)
74be9510
FDBM
886 ret = 0;
887 }
3173a18f
JB
888 }
889
a22285a6
YZ
890 if (ret == 0) {
891 leaf = path->nodes[0];
892 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
893 if (item_size >= sizeof(*ei)) {
894 ei = btrfs_item_ptr(leaf, path->slots[0],
895 struct btrfs_extent_item);
896 num_refs = btrfs_extent_refs(leaf, ei);
897 extent_flags = btrfs_extent_flags(leaf, ei);
898 } else {
899#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
900 struct btrfs_extent_item_v0 *ei0;
901 BUG_ON(item_size != sizeof(*ei0));
902 ei0 = btrfs_item_ptr(leaf, path->slots[0],
903 struct btrfs_extent_item_v0);
904 num_refs = btrfs_extent_refs_v0(leaf, ei0);
905 /* FIXME: this isn't correct for data */
906 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
907#else
908 BUG();
909#endif
910 }
911 BUG_ON(num_refs == 0);
912 } else {
913 num_refs = 0;
914 extent_flags = 0;
915 ret = 0;
916 }
917
918 if (!trans)
919 goto out;
920
921 delayed_refs = &trans->transaction->delayed_refs;
922 spin_lock(&delayed_refs->lock);
f72ad18e 923 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
924 if (head) {
925 if (!mutex_trylock(&head->mutex)) {
6df8cdf5 926 refcount_inc(&head->node.refs);
a22285a6
YZ
927 spin_unlock(&delayed_refs->lock);
928
b3b4aa74 929 btrfs_release_path(path);
a22285a6 930
8cc33e5c
DS
931 /*
932 * Mutex was contended, block until it's released and try
933 * again
934 */
a22285a6
YZ
935 mutex_lock(&head->mutex);
936 mutex_unlock(&head->mutex);
937 btrfs_put_delayed_ref(&head->node);
639eefc8 938 goto search_again;
a22285a6 939 }
d7df2c79 940 spin_lock(&head->lock);
a22285a6
YZ
941 if (head->extent_op && head->extent_op->update_flags)
942 extent_flags |= head->extent_op->flags_to_set;
943 else
944 BUG_ON(num_refs == 0);
945
946 num_refs += head->node.ref_mod;
d7df2c79 947 spin_unlock(&head->lock);
a22285a6
YZ
948 mutex_unlock(&head->mutex);
949 }
950 spin_unlock(&delayed_refs->lock);
951out:
952 WARN_ON(num_refs == 0);
953 if (refs)
954 *refs = num_refs;
955 if (flags)
956 *flags = extent_flags;
957out_free:
958 btrfs_free_path(path);
959 return ret;
960}
961
d8d5f3e1
CM
962/*
963 * Back reference rules. Back refs have three main goals:
964 *
965 * 1) differentiate between all holders of references to an extent so that
966 * when a reference is dropped we can make sure it was a valid reference
967 * before freeing the extent.
968 *
969 * 2) Provide enough information to quickly find the holders of an extent
970 * if we notice a given block is corrupted or bad.
971 *
972 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
973 * maintenance. This is actually the same as #2, but with a slightly
974 * different use case.
975 *
5d4f98a2
YZ
976 * There are two kinds of back refs. The implicit back refs is optimized
977 * for pointers in non-shared tree blocks. For a given pointer in a block,
978 * back refs of this kind provide information about the block's owner tree
979 * and the pointer's key. These information allow us to find the block by
980 * b-tree searching. The full back refs is for pointers in tree blocks not
981 * referenced by their owner trees. The location of tree block is recorded
982 * in the back refs. Actually the full back refs is generic, and can be
983 * used in all cases the implicit back refs is used. The major shortcoming
984 * of the full back refs is its overhead. Every time a tree block gets
985 * COWed, we have to update back refs entry for all pointers in it.
986 *
987 * For a newly allocated tree block, we use implicit back refs for
988 * pointers in it. This means most tree related operations only involve
989 * implicit back refs. For a tree block created in old transaction, the
990 * only way to drop a reference to it is COW it. So we can detect the
991 * event that tree block loses its owner tree's reference and do the
992 * back refs conversion.
993 *
01327610 994 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
995 *
996 * The reference count of the block is one and the tree is the block's
997 * owner tree. Nothing to do in this case.
998 *
999 * The reference count of the block is one and the tree is not the
1000 * block's owner tree. In this case, full back refs is used for pointers
1001 * in the block. Remove these full back refs, add implicit back refs for
1002 * every pointers in the new block.
1003 *
1004 * The reference count of the block is greater than one and the tree is
1005 * the block's owner tree. In this case, implicit back refs is used for
1006 * pointers in the block. Add full back refs for every pointers in the
1007 * block, increase lower level extents' reference counts. The original
1008 * implicit back refs are entailed to the new block.
1009 *
1010 * The reference count of the block is greater than one and the tree is
1011 * not the block's owner tree. Add implicit back refs for every pointer in
1012 * the new block, increase lower level extents' reference count.
1013 *
1014 * Back Reference Key composing:
1015 *
1016 * The key objectid corresponds to the first byte in the extent,
1017 * The key type is used to differentiate between types of back refs.
1018 * There are different meanings of the key offset for different types
1019 * of back refs.
1020 *
d8d5f3e1
CM
1021 * File extents can be referenced by:
1022 *
1023 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1024 * - different files inside a single subvolume
d8d5f3e1
CM
1025 * - different offsets inside a file (bookend extents in file.c)
1026 *
5d4f98a2 1027 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1028 *
1029 * - Objectid of the subvolume root
d8d5f3e1 1030 * - objectid of the file holding the reference
5d4f98a2
YZ
1031 * - original offset in the file
1032 * - how many bookend extents
d8d5f3e1 1033 *
5d4f98a2
YZ
1034 * The key offset for the implicit back refs is hash of the first
1035 * three fields.
d8d5f3e1 1036 *
5d4f98a2 1037 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1038 *
5d4f98a2 1039 * - number of pointers in the tree leaf
d8d5f3e1 1040 *
5d4f98a2
YZ
1041 * The key offset for the implicit back refs is the first byte of
1042 * the tree leaf
d8d5f3e1 1043 *
5d4f98a2
YZ
1044 * When a file extent is allocated, The implicit back refs is used.
1045 * the fields are filled in:
d8d5f3e1 1046 *
5d4f98a2 1047 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1048 *
5d4f98a2
YZ
1049 * When a file extent is removed file truncation, we find the
1050 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1051 *
5d4f98a2 1052 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1053 *
5d4f98a2 1054 * Btree extents can be referenced by:
d8d5f3e1 1055 *
5d4f98a2 1056 * - Different subvolumes
d8d5f3e1 1057 *
5d4f98a2
YZ
1058 * Both the implicit back refs and the full back refs for tree blocks
1059 * only consist of key. The key offset for the implicit back refs is
1060 * objectid of block's owner tree. The key offset for the full back refs
1061 * is the first byte of parent block.
d8d5f3e1 1062 *
5d4f98a2
YZ
1063 * When implicit back refs is used, information about the lowest key and
1064 * level of the tree block are required. These information are stored in
1065 * tree block info structure.
d8d5f3e1 1066 */
31840ae1 1067
5d4f98a2
YZ
1068#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1069static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1070 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1071 struct btrfs_path *path,
1072 u64 owner, u32 extra_size)
7bb86316 1073{
87bde3cd 1074 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1075 struct btrfs_extent_item *item;
1076 struct btrfs_extent_item_v0 *ei0;
1077 struct btrfs_extent_ref_v0 *ref0;
1078 struct btrfs_tree_block_info *bi;
1079 struct extent_buffer *leaf;
7bb86316 1080 struct btrfs_key key;
5d4f98a2
YZ
1081 struct btrfs_key found_key;
1082 u32 new_size = sizeof(*item);
1083 u64 refs;
1084 int ret;
1085
1086 leaf = path->nodes[0];
1087 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1088
1089 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1090 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1091 struct btrfs_extent_item_v0);
1092 refs = btrfs_extent_refs_v0(leaf, ei0);
1093
1094 if (owner == (u64)-1) {
1095 while (1) {
1096 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1097 ret = btrfs_next_leaf(root, path);
1098 if (ret < 0)
1099 return ret;
79787eaa 1100 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1101 leaf = path->nodes[0];
1102 }
1103 btrfs_item_key_to_cpu(leaf, &found_key,
1104 path->slots[0]);
1105 BUG_ON(key.objectid != found_key.objectid);
1106 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1107 path->slots[0]++;
1108 continue;
1109 }
1110 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1111 struct btrfs_extent_ref_v0);
1112 owner = btrfs_ref_objectid_v0(leaf, ref0);
1113 break;
1114 }
1115 }
b3b4aa74 1116 btrfs_release_path(path);
5d4f98a2
YZ
1117
1118 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1119 new_size += sizeof(*bi);
1120
1121 new_size -= sizeof(*ei0);
1122 ret = btrfs_search_slot(trans, root, &key, path,
1123 new_size + extra_size, 1);
1124 if (ret < 0)
1125 return ret;
79787eaa 1126 BUG_ON(ret); /* Corruption */
5d4f98a2 1127
87bde3cd 1128 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1129
1130 leaf = path->nodes[0];
1131 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1132 btrfs_set_extent_refs(leaf, item, refs);
1133 /* FIXME: get real generation */
1134 btrfs_set_extent_generation(leaf, item, 0);
1135 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1136 btrfs_set_extent_flags(leaf, item,
1137 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1138 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1139 bi = (struct btrfs_tree_block_info *)(item + 1);
1140 /* FIXME: get first key of the block */
b159fa28 1141 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1142 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1143 } else {
1144 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1145 }
1146 btrfs_mark_buffer_dirty(leaf);
1147 return 0;
1148}
1149#endif
1150
1151static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1152{
1153 u32 high_crc = ~(u32)0;
1154 u32 low_crc = ~(u32)0;
1155 __le64 lenum;
1156
1157 lenum = cpu_to_le64(root_objectid);
14a958e6 1158 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1159 lenum = cpu_to_le64(owner);
14a958e6 1160 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1161 lenum = cpu_to_le64(offset);
14a958e6 1162 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1163
1164 return ((u64)high_crc << 31) ^ (u64)low_crc;
1165}
1166
1167static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1168 struct btrfs_extent_data_ref *ref)
1169{
1170 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1171 btrfs_extent_data_ref_objectid(leaf, ref),
1172 btrfs_extent_data_ref_offset(leaf, ref));
1173}
1174
1175static int match_extent_data_ref(struct extent_buffer *leaf,
1176 struct btrfs_extent_data_ref *ref,
1177 u64 root_objectid, u64 owner, u64 offset)
1178{
1179 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1180 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1181 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1182 return 0;
1183 return 1;
1184}
1185
1186static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1187 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1188 struct btrfs_path *path,
1189 u64 bytenr, u64 parent,
1190 u64 root_objectid,
1191 u64 owner, u64 offset)
1192{
87bde3cd 1193 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1194 struct btrfs_key key;
1195 struct btrfs_extent_data_ref *ref;
31840ae1 1196 struct extent_buffer *leaf;
5d4f98a2 1197 u32 nritems;
74493f7a 1198 int ret;
5d4f98a2
YZ
1199 int recow;
1200 int err = -ENOENT;
74493f7a 1201
31840ae1 1202 key.objectid = bytenr;
5d4f98a2
YZ
1203 if (parent) {
1204 key.type = BTRFS_SHARED_DATA_REF_KEY;
1205 key.offset = parent;
1206 } else {
1207 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1208 key.offset = hash_extent_data_ref(root_objectid,
1209 owner, offset);
1210 }
1211again:
1212 recow = 0;
1213 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1214 if (ret < 0) {
1215 err = ret;
1216 goto fail;
1217 }
31840ae1 1218
5d4f98a2
YZ
1219 if (parent) {
1220 if (!ret)
1221 return 0;
1222#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1223 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1224 btrfs_release_path(path);
5d4f98a2
YZ
1225 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1226 if (ret < 0) {
1227 err = ret;
1228 goto fail;
1229 }
1230 if (!ret)
1231 return 0;
1232#endif
1233 goto fail;
31840ae1
ZY
1234 }
1235
1236 leaf = path->nodes[0];
5d4f98a2
YZ
1237 nritems = btrfs_header_nritems(leaf);
1238 while (1) {
1239 if (path->slots[0] >= nritems) {
1240 ret = btrfs_next_leaf(root, path);
1241 if (ret < 0)
1242 err = ret;
1243 if (ret)
1244 goto fail;
1245
1246 leaf = path->nodes[0];
1247 nritems = btrfs_header_nritems(leaf);
1248 recow = 1;
1249 }
1250
1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252 if (key.objectid != bytenr ||
1253 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1254 goto fail;
1255
1256 ref = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_extent_data_ref);
1258
1259 if (match_extent_data_ref(leaf, ref, root_objectid,
1260 owner, offset)) {
1261 if (recow) {
b3b4aa74 1262 btrfs_release_path(path);
5d4f98a2
YZ
1263 goto again;
1264 }
1265 err = 0;
1266 break;
1267 }
1268 path->slots[0]++;
31840ae1 1269 }
5d4f98a2
YZ
1270fail:
1271 return err;
31840ae1
ZY
1272}
1273
5d4f98a2 1274static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1275 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1276 struct btrfs_path *path,
1277 u64 bytenr, u64 parent,
1278 u64 root_objectid, u64 owner,
1279 u64 offset, int refs_to_add)
31840ae1 1280{
87bde3cd 1281 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1282 struct btrfs_key key;
1283 struct extent_buffer *leaf;
5d4f98a2 1284 u32 size;
31840ae1
ZY
1285 u32 num_refs;
1286 int ret;
74493f7a 1287
74493f7a 1288 key.objectid = bytenr;
5d4f98a2
YZ
1289 if (parent) {
1290 key.type = BTRFS_SHARED_DATA_REF_KEY;
1291 key.offset = parent;
1292 size = sizeof(struct btrfs_shared_data_ref);
1293 } else {
1294 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1295 key.offset = hash_extent_data_ref(root_objectid,
1296 owner, offset);
1297 size = sizeof(struct btrfs_extent_data_ref);
1298 }
74493f7a 1299
5d4f98a2
YZ
1300 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1301 if (ret && ret != -EEXIST)
1302 goto fail;
1303
1304 leaf = path->nodes[0];
1305 if (parent) {
1306 struct btrfs_shared_data_ref *ref;
31840ae1 1307 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1308 struct btrfs_shared_data_ref);
1309 if (ret == 0) {
1310 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1311 } else {
1312 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1313 num_refs += refs_to_add;
1314 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1315 }
5d4f98a2
YZ
1316 } else {
1317 struct btrfs_extent_data_ref *ref;
1318 while (ret == -EEXIST) {
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 if (match_extent_data_ref(leaf, ref, root_objectid,
1322 owner, offset))
1323 break;
b3b4aa74 1324 btrfs_release_path(path);
5d4f98a2
YZ
1325 key.offset++;
1326 ret = btrfs_insert_empty_item(trans, root, path, &key,
1327 size);
1328 if (ret && ret != -EEXIST)
1329 goto fail;
31840ae1 1330
5d4f98a2
YZ
1331 leaf = path->nodes[0];
1332 }
1333 ref = btrfs_item_ptr(leaf, path->slots[0],
1334 struct btrfs_extent_data_ref);
1335 if (ret == 0) {
1336 btrfs_set_extent_data_ref_root(leaf, ref,
1337 root_objectid);
1338 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1339 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1340 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1341 } else {
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1343 num_refs += refs_to_add;
1344 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1345 }
31840ae1 1346 }
5d4f98a2
YZ
1347 btrfs_mark_buffer_dirty(leaf);
1348 ret = 0;
1349fail:
b3b4aa74 1350 btrfs_release_path(path);
7bb86316 1351 return ret;
74493f7a
CM
1352}
1353
5d4f98a2 1354static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1355 struct btrfs_fs_info *fs_info,
5d4f98a2 1356 struct btrfs_path *path,
fcebe456 1357 int refs_to_drop, int *last_ref)
31840ae1 1358{
5d4f98a2
YZ
1359 struct btrfs_key key;
1360 struct btrfs_extent_data_ref *ref1 = NULL;
1361 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1362 struct extent_buffer *leaf;
5d4f98a2 1363 u32 num_refs = 0;
31840ae1
ZY
1364 int ret = 0;
1365
1366 leaf = path->nodes[0];
5d4f98a2
YZ
1367 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1368
1369 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1370 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1371 struct btrfs_extent_data_ref);
1372 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1373 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1374 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1375 struct btrfs_shared_data_ref);
1376 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1377#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1378 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1379 struct btrfs_extent_ref_v0 *ref0;
1380 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1381 struct btrfs_extent_ref_v0);
1382 num_refs = btrfs_ref_count_v0(leaf, ref0);
1383#endif
1384 } else {
1385 BUG();
1386 }
1387
56bec294
CM
1388 BUG_ON(num_refs < refs_to_drop);
1389 num_refs -= refs_to_drop;
5d4f98a2 1390
31840ae1 1391 if (num_refs == 0) {
87bde3cd 1392 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1393 *last_ref = 1;
31840ae1 1394 } else {
5d4f98a2
YZ
1395 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1396 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1397 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1398 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1399#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1400 else {
1401 struct btrfs_extent_ref_v0 *ref0;
1402 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1403 struct btrfs_extent_ref_v0);
1404 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1405 }
1406#endif
31840ae1
ZY
1407 btrfs_mark_buffer_dirty(leaf);
1408 }
31840ae1
ZY
1409 return ret;
1410}
1411
9ed0dea0 1412static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1413 struct btrfs_extent_inline_ref *iref)
15916de8 1414{
5d4f98a2
YZ
1415 struct btrfs_key key;
1416 struct extent_buffer *leaf;
1417 struct btrfs_extent_data_ref *ref1;
1418 struct btrfs_shared_data_ref *ref2;
1419 u32 num_refs = 0;
1420
1421 leaf = path->nodes[0];
1422 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1423 if (iref) {
1424 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1425 BTRFS_EXTENT_DATA_REF_KEY) {
1426 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1427 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1428 } else {
1429 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1430 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1431 }
1432 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1433 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1434 struct btrfs_extent_data_ref);
1435 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1436 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1437 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1438 struct btrfs_shared_data_ref);
1439 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1440#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1441 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1442 struct btrfs_extent_ref_v0 *ref0;
1443 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1444 struct btrfs_extent_ref_v0);
1445 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1446#endif
5d4f98a2
YZ
1447 } else {
1448 WARN_ON(1);
1449 }
1450 return num_refs;
1451}
15916de8 1452
5d4f98a2 1453static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1454 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1455 struct btrfs_path *path,
1456 u64 bytenr, u64 parent,
1457 u64 root_objectid)
1f3c79a2 1458{
87bde3cd 1459 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1460 struct btrfs_key key;
1f3c79a2 1461 int ret;
1f3c79a2 1462
5d4f98a2
YZ
1463 key.objectid = bytenr;
1464 if (parent) {
1465 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1466 key.offset = parent;
1467 } else {
1468 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1469 key.offset = root_objectid;
1f3c79a2
LH
1470 }
1471
5d4f98a2
YZ
1472 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1473 if (ret > 0)
1474 ret = -ENOENT;
1475#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1476 if (ret == -ENOENT && parent) {
b3b4aa74 1477 btrfs_release_path(path);
5d4f98a2
YZ
1478 key.type = BTRFS_EXTENT_REF_V0_KEY;
1479 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1480 if (ret > 0)
1481 ret = -ENOENT;
1482 }
1f3c79a2 1483#endif
5d4f98a2 1484 return ret;
1f3c79a2
LH
1485}
1486
5d4f98a2 1487static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1488 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1489 struct btrfs_path *path,
1490 u64 bytenr, u64 parent,
1491 u64 root_objectid)
31840ae1 1492{
5d4f98a2 1493 struct btrfs_key key;
31840ae1 1494 int ret;
31840ae1 1495
5d4f98a2
YZ
1496 key.objectid = bytenr;
1497 if (parent) {
1498 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1499 key.offset = parent;
1500 } else {
1501 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1502 key.offset = root_objectid;
1503 }
1504
87bde3cd
JM
1505 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1506 path, &key, 0);
b3b4aa74 1507 btrfs_release_path(path);
31840ae1
ZY
1508 return ret;
1509}
1510
5d4f98a2 1511static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1512{
5d4f98a2
YZ
1513 int type;
1514 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1515 if (parent > 0)
1516 type = BTRFS_SHARED_BLOCK_REF_KEY;
1517 else
1518 type = BTRFS_TREE_BLOCK_REF_KEY;
1519 } else {
1520 if (parent > 0)
1521 type = BTRFS_SHARED_DATA_REF_KEY;
1522 else
1523 type = BTRFS_EXTENT_DATA_REF_KEY;
1524 }
1525 return type;
31840ae1 1526}
56bec294 1527
2c47e605
YZ
1528static int find_next_key(struct btrfs_path *path, int level,
1529 struct btrfs_key *key)
56bec294 1530
02217ed2 1531{
2c47e605 1532 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1533 if (!path->nodes[level])
1534 break;
5d4f98a2
YZ
1535 if (path->slots[level] + 1 >=
1536 btrfs_header_nritems(path->nodes[level]))
1537 continue;
1538 if (level == 0)
1539 btrfs_item_key_to_cpu(path->nodes[level], key,
1540 path->slots[level] + 1);
1541 else
1542 btrfs_node_key_to_cpu(path->nodes[level], key,
1543 path->slots[level] + 1);
1544 return 0;
1545 }
1546 return 1;
1547}
037e6390 1548
5d4f98a2
YZ
1549/*
1550 * look for inline back ref. if back ref is found, *ref_ret is set
1551 * to the address of inline back ref, and 0 is returned.
1552 *
1553 * if back ref isn't found, *ref_ret is set to the address where it
1554 * should be inserted, and -ENOENT is returned.
1555 *
1556 * if insert is true and there are too many inline back refs, the path
1557 * points to the extent item, and -EAGAIN is returned.
1558 *
1559 * NOTE: inline back refs are ordered in the same way that back ref
1560 * items in the tree are ordered.
1561 */
1562static noinline_for_stack
1563int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1564 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1565 struct btrfs_path *path,
1566 struct btrfs_extent_inline_ref **ref_ret,
1567 u64 bytenr, u64 num_bytes,
1568 u64 parent, u64 root_objectid,
1569 u64 owner, u64 offset, int insert)
1570{
87bde3cd 1571 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1572 struct btrfs_key key;
1573 struct extent_buffer *leaf;
1574 struct btrfs_extent_item *ei;
1575 struct btrfs_extent_inline_ref *iref;
1576 u64 flags;
1577 u64 item_size;
1578 unsigned long ptr;
1579 unsigned long end;
1580 int extra_size;
1581 int type;
1582 int want;
1583 int ret;
1584 int err = 0;
0b246afa 1585 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
26b8003f 1586
db94535d 1587 key.objectid = bytenr;
31840ae1 1588 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1589 key.offset = num_bytes;
31840ae1 1590
5d4f98a2
YZ
1591 want = extent_ref_type(parent, owner);
1592 if (insert) {
1593 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1594 path->keep_locks = 1;
5d4f98a2
YZ
1595 } else
1596 extra_size = -1;
3173a18f
JB
1597
1598 /*
1599 * Owner is our parent level, so we can just add one to get the level
1600 * for the block we are interested in.
1601 */
1602 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1603 key.type = BTRFS_METADATA_ITEM_KEY;
1604 key.offset = owner;
1605 }
1606
1607again:
5d4f98a2 1608 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1609 if (ret < 0) {
5d4f98a2
YZ
1610 err = ret;
1611 goto out;
1612 }
3173a18f
JB
1613
1614 /*
1615 * We may be a newly converted file system which still has the old fat
1616 * extent entries for metadata, so try and see if we have one of those.
1617 */
1618 if (ret > 0 && skinny_metadata) {
1619 skinny_metadata = false;
1620 if (path->slots[0]) {
1621 path->slots[0]--;
1622 btrfs_item_key_to_cpu(path->nodes[0], &key,
1623 path->slots[0]);
1624 if (key.objectid == bytenr &&
1625 key.type == BTRFS_EXTENT_ITEM_KEY &&
1626 key.offset == num_bytes)
1627 ret = 0;
1628 }
1629 if (ret) {
9ce49a0b 1630 key.objectid = bytenr;
3173a18f
JB
1631 key.type = BTRFS_EXTENT_ITEM_KEY;
1632 key.offset = num_bytes;
1633 btrfs_release_path(path);
1634 goto again;
1635 }
1636 }
1637
79787eaa
JM
1638 if (ret && !insert) {
1639 err = -ENOENT;
1640 goto out;
fae7f21c 1641 } else if (WARN_ON(ret)) {
492104c8 1642 err = -EIO;
492104c8 1643 goto out;
79787eaa 1644 }
5d4f98a2
YZ
1645
1646 leaf = path->nodes[0];
1647 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1648#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1649 if (item_size < sizeof(*ei)) {
1650 if (!insert) {
1651 err = -ENOENT;
1652 goto out;
1653 }
87bde3cd 1654 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1655 extra_size);
1656 if (ret < 0) {
1657 err = ret;
1658 goto out;
1659 }
1660 leaf = path->nodes[0];
1661 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1662 }
1663#endif
1664 BUG_ON(item_size < sizeof(*ei));
1665
5d4f98a2
YZ
1666 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1667 flags = btrfs_extent_flags(leaf, ei);
1668
1669 ptr = (unsigned long)(ei + 1);
1670 end = (unsigned long)ei + item_size;
1671
3173a18f 1672 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1673 ptr += sizeof(struct btrfs_tree_block_info);
1674 BUG_ON(ptr > end);
5d4f98a2
YZ
1675 }
1676
1677 err = -ENOENT;
1678 while (1) {
1679 if (ptr >= end) {
1680 WARN_ON(ptr > end);
1681 break;
1682 }
1683 iref = (struct btrfs_extent_inline_ref *)ptr;
1684 type = btrfs_extent_inline_ref_type(leaf, iref);
1685 if (want < type)
1686 break;
1687 if (want > type) {
1688 ptr += btrfs_extent_inline_ref_size(type);
1689 continue;
1690 }
1691
1692 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1693 struct btrfs_extent_data_ref *dref;
1694 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1695 if (match_extent_data_ref(leaf, dref, root_objectid,
1696 owner, offset)) {
1697 err = 0;
1698 break;
1699 }
1700 if (hash_extent_data_ref_item(leaf, dref) <
1701 hash_extent_data_ref(root_objectid, owner, offset))
1702 break;
1703 } else {
1704 u64 ref_offset;
1705 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1706 if (parent > 0) {
1707 if (parent == ref_offset) {
1708 err = 0;
1709 break;
1710 }
1711 if (ref_offset < parent)
1712 break;
1713 } else {
1714 if (root_objectid == ref_offset) {
1715 err = 0;
1716 break;
1717 }
1718 if (ref_offset < root_objectid)
1719 break;
1720 }
1721 }
1722 ptr += btrfs_extent_inline_ref_size(type);
1723 }
1724 if (err == -ENOENT && insert) {
1725 if (item_size + extra_size >=
1726 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1727 err = -EAGAIN;
1728 goto out;
1729 }
1730 /*
1731 * To add new inline back ref, we have to make sure
1732 * there is no corresponding back ref item.
1733 * For simplicity, we just do not add new inline back
1734 * ref if there is any kind of item for this block
1735 */
2c47e605
YZ
1736 if (find_next_key(path, 0, &key) == 0 &&
1737 key.objectid == bytenr &&
85d4198e 1738 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1739 err = -EAGAIN;
1740 goto out;
1741 }
1742 }
1743 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1744out:
85d4198e 1745 if (insert) {
5d4f98a2
YZ
1746 path->keep_locks = 0;
1747 btrfs_unlock_up_safe(path, 1);
1748 }
1749 return err;
1750}
1751
1752/*
1753 * helper to add new inline back ref
1754 */
1755static noinline_for_stack
87bde3cd 1756void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1757 struct btrfs_path *path,
1758 struct btrfs_extent_inline_ref *iref,
1759 u64 parent, u64 root_objectid,
1760 u64 owner, u64 offset, int refs_to_add,
1761 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1762{
1763 struct extent_buffer *leaf;
1764 struct btrfs_extent_item *ei;
1765 unsigned long ptr;
1766 unsigned long end;
1767 unsigned long item_offset;
1768 u64 refs;
1769 int size;
1770 int type;
5d4f98a2
YZ
1771
1772 leaf = path->nodes[0];
1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 item_offset = (unsigned long)iref - (unsigned long)ei;
1775
1776 type = extent_ref_type(parent, owner);
1777 size = btrfs_extent_inline_ref_size(type);
1778
87bde3cd 1779 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1780
1781 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1782 refs = btrfs_extent_refs(leaf, ei);
1783 refs += refs_to_add;
1784 btrfs_set_extent_refs(leaf, ei, refs);
1785 if (extent_op)
1786 __run_delayed_extent_op(extent_op, leaf, ei);
1787
1788 ptr = (unsigned long)ei + item_offset;
1789 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1790 if (ptr < end - size)
1791 memmove_extent_buffer(leaf, ptr + size, ptr,
1792 end - size - ptr);
1793
1794 iref = (struct btrfs_extent_inline_ref *)ptr;
1795 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1796 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1797 struct btrfs_extent_data_ref *dref;
1798 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1799 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1800 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1801 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1802 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1803 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1804 struct btrfs_shared_data_ref *sref;
1805 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1806 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1807 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1808 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1809 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1810 } else {
1811 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1814}
1815
1816static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1817 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1818 struct btrfs_path *path,
1819 struct btrfs_extent_inline_ref **ref_ret,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner, u64 offset)
1822{
1823 int ret;
1824
87bde3cd 1825 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1826 bytenr, num_bytes, parent,
1827 root_objectid, owner, offset, 0);
1828 if (ret != -ENOENT)
54aa1f4d 1829 return ret;
5d4f98a2 1830
b3b4aa74 1831 btrfs_release_path(path);
5d4f98a2
YZ
1832 *ref_ret = NULL;
1833
1834 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1835 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1836 parent, root_objectid);
5d4f98a2 1837 } else {
87bde3cd
JM
1838 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1839 parent, root_objectid, owner,
1840 offset);
b9473439 1841 }
5d4f98a2
YZ
1842 return ret;
1843}
31840ae1 1844
5d4f98a2
YZ
1845/*
1846 * helper to update/remove inline back ref
1847 */
1848static noinline_for_stack
87bde3cd 1849void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1850 struct btrfs_path *path,
1851 struct btrfs_extent_inline_ref *iref,
1852 int refs_to_mod,
fcebe456
JB
1853 struct btrfs_delayed_extent_op *extent_op,
1854 int *last_ref)
5d4f98a2
YZ
1855{
1856 struct extent_buffer *leaf;
1857 struct btrfs_extent_item *ei;
1858 struct btrfs_extent_data_ref *dref = NULL;
1859 struct btrfs_shared_data_ref *sref = NULL;
1860 unsigned long ptr;
1861 unsigned long end;
1862 u32 item_size;
1863 int size;
1864 int type;
5d4f98a2
YZ
1865 u64 refs;
1866
1867 leaf = path->nodes[0];
1868 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1869 refs = btrfs_extent_refs(leaf, ei);
1870 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1871 refs += refs_to_mod;
1872 btrfs_set_extent_refs(leaf, ei, refs);
1873 if (extent_op)
1874 __run_delayed_extent_op(extent_op, leaf, ei);
1875
1876 type = btrfs_extent_inline_ref_type(leaf, iref);
1877
1878 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1879 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1880 refs = btrfs_extent_data_ref_count(leaf, dref);
1881 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1882 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1883 refs = btrfs_shared_data_ref_count(leaf, sref);
1884 } else {
1885 refs = 1;
1886 BUG_ON(refs_to_mod != -1);
56bec294 1887 }
31840ae1 1888
5d4f98a2
YZ
1889 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1890 refs += refs_to_mod;
1891
1892 if (refs > 0) {
1893 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1894 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1895 else
1896 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1897 } else {
fcebe456 1898 *last_ref = 1;
5d4f98a2
YZ
1899 size = btrfs_extent_inline_ref_size(type);
1900 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1901 ptr = (unsigned long)iref;
1902 end = (unsigned long)ei + item_size;
1903 if (ptr + size < end)
1904 memmove_extent_buffer(leaf, ptr, ptr + size,
1905 end - ptr - size);
1906 item_size -= size;
87bde3cd 1907 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1908 }
1909 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1910}
1911
1912static noinline_for_stack
1913int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1914 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1915 struct btrfs_path *path,
1916 u64 bytenr, u64 num_bytes, u64 parent,
1917 u64 root_objectid, u64 owner,
1918 u64 offset, int refs_to_add,
1919 struct btrfs_delayed_extent_op *extent_op)
1920{
1921 struct btrfs_extent_inline_ref *iref;
1922 int ret;
1923
87bde3cd 1924 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1925 bytenr, num_bytes, parent,
1926 root_objectid, owner, offset, 1);
1927 if (ret == 0) {
1928 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1929 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1930 refs_to_add, extent_op, NULL);
5d4f98a2 1931 } else if (ret == -ENOENT) {
87bde3cd 1932 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
1933 root_objectid, owner, offset,
1934 refs_to_add, extent_op);
1935 ret = 0;
771ed689 1936 }
5d4f98a2
YZ
1937 return ret;
1938}
31840ae1 1939
5d4f98a2 1940static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1941 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1942 struct btrfs_path *path,
1943 u64 bytenr, u64 parent, u64 root_objectid,
1944 u64 owner, u64 offset, int refs_to_add)
1945{
1946 int ret;
1947 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1948 BUG_ON(refs_to_add != 1);
87bde3cd 1949 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
1950 parent, root_objectid);
1951 } else {
87bde3cd 1952 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
1953 parent, root_objectid,
1954 owner, offset, refs_to_add);
1955 }
1956 return ret;
1957}
56bec294 1958
5d4f98a2 1959static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1960 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1961 struct btrfs_path *path,
1962 struct btrfs_extent_inline_ref *iref,
fcebe456 1963 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1964{
143bede5 1965 int ret = 0;
b9473439 1966
5d4f98a2
YZ
1967 BUG_ON(!is_data && refs_to_drop != 1);
1968 if (iref) {
87bde3cd 1969 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1970 -refs_to_drop, NULL, last_ref);
5d4f98a2 1971 } else if (is_data) {
87bde3cd 1972 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 1973 last_ref);
5d4f98a2 1974 } else {
fcebe456 1975 *last_ref = 1;
87bde3cd 1976 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
1977 }
1978 return ret;
1979}
1980
86557861 1981#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1982static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1983 u64 *discarded_bytes)
5d4f98a2 1984{
86557861
JM
1985 int j, ret = 0;
1986 u64 bytes_left, end;
4d89d377 1987 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1988
4d89d377
JM
1989 if (WARN_ON(start != aligned_start)) {
1990 len -= aligned_start - start;
1991 len = round_down(len, 1 << 9);
1992 start = aligned_start;
1993 }
d04c6b88 1994
4d89d377 1995 *discarded_bytes = 0;
86557861
JM
1996
1997 if (!len)
1998 return 0;
1999
2000 end = start + len;
2001 bytes_left = len;
2002
2003 /* Skip any superblocks on this device. */
2004 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2005 u64 sb_start = btrfs_sb_offset(j);
2006 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2007 u64 size = sb_start - start;
2008
2009 if (!in_range(sb_start, start, bytes_left) &&
2010 !in_range(sb_end, start, bytes_left) &&
2011 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2012 continue;
2013
2014 /*
2015 * Superblock spans beginning of range. Adjust start and
2016 * try again.
2017 */
2018 if (sb_start <= start) {
2019 start += sb_end - start;
2020 if (start > end) {
2021 bytes_left = 0;
2022 break;
2023 }
2024 bytes_left = end - start;
2025 continue;
2026 }
2027
2028 if (size) {
2029 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2030 GFP_NOFS, 0);
2031 if (!ret)
2032 *discarded_bytes += size;
2033 else if (ret != -EOPNOTSUPP)
2034 return ret;
2035 }
2036
2037 start = sb_end;
2038 if (start > end) {
2039 bytes_left = 0;
2040 break;
2041 }
2042 bytes_left = end - start;
2043 }
2044
2045 if (bytes_left) {
2046 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2047 GFP_NOFS, 0);
2048 if (!ret)
86557861 2049 *discarded_bytes += bytes_left;
4d89d377 2050 }
d04c6b88 2051 return ret;
5d4f98a2 2052}
5d4f98a2 2053
2ff7e61e 2054int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2055 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2056{
5d4f98a2 2057 int ret;
5378e607 2058 u64 discarded_bytes = 0;
a1d3c478 2059 struct btrfs_bio *bbio = NULL;
5d4f98a2 2060
e244a0ae 2061
2999241d
FM
2062 /*
2063 * Avoid races with device replace and make sure our bbio has devices
2064 * associated to its stripes that don't go away while we are discarding.
2065 */
0b246afa 2066 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2067 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2068 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2069 &bbio, 0);
79787eaa 2070 /* Error condition is -ENOMEM */
5d4f98a2 2071 if (!ret) {
a1d3c478 2072 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2073 int i;
2074
5d4f98a2 2075
a1d3c478 2076 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2077 u64 bytes;
d5e2003c
JB
2078 if (!stripe->dev->can_discard)
2079 continue;
2080
5378e607
LD
2081 ret = btrfs_issue_discard(stripe->dev->bdev,
2082 stripe->physical,
d04c6b88
JM
2083 stripe->length,
2084 &bytes);
5378e607 2085 if (!ret)
d04c6b88 2086 discarded_bytes += bytes;
5378e607 2087 else if (ret != -EOPNOTSUPP)
79787eaa 2088 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2089
2090 /*
2091 * Just in case we get back EOPNOTSUPP for some reason,
2092 * just ignore the return value so we don't screw up
2093 * people calling discard_extent.
2094 */
2095 ret = 0;
5d4f98a2 2096 }
6e9606d2 2097 btrfs_put_bbio(bbio);
5d4f98a2 2098 }
0b246afa 2099 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2100
2101 if (actual_bytes)
2102 *actual_bytes = discarded_bytes;
2103
5d4f98a2 2104
53b381b3
DW
2105 if (ret == -EOPNOTSUPP)
2106 ret = 0;
5d4f98a2 2107 return ret;
5d4f98a2
YZ
2108}
2109
79787eaa 2110/* Can return -ENOMEM */
5d4f98a2 2111int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2112 struct btrfs_fs_info *fs_info,
5d4f98a2 2113 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2114 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2115{
d7eae340 2116 int old_ref_mod, new_ref_mod;
5d4f98a2 2117 int ret;
66d7e7f0 2118
5d4f98a2
YZ
2119 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2120 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2121
2122 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 2123 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
2124 num_bytes, parent,
2125 root_objectid, (int)owner,
2126 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2127 &old_ref_mod, &new_ref_mod);
5d4f98a2 2128 } else {
66d7e7f0 2129 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
2130 num_bytes, parent,
2131 root_objectid, owner, offset,
d7eae340
OS
2132 0, BTRFS_ADD_DELAYED_REF,
2133 &old_ref_mod, &new_ref_mod);
5d4f98a2 2134 }
d7eae340
OS
2135
2136 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2137 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2138
5d4f98a2
YZ
2139 return ret;
2140}
2141
2142static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2143 struct btrfs_fs_info *fs_info,
c682f9b3 2144 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2145 u64 parent, u64 root_objectid,
2146 u64 owner, u64 offset, int refs_to_add,
2147 struct btrfs_delayed_extent_op *extent_op)
2148{
2149 struct btrfs_path *path;
2150 struct extent_buffer *leaf;
2151 struct btrfs_extent_item *item;
fcebe456 2152 struct btrfs_key key;
c682f9b3
QW
2153 u64 bytenr = node->bytenr;
2154 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2155 u64 refs;
2156 int ret;
5d4f98a2
YZ
2157
2158 path = btrfs_alloc_path();
2159 if (!path)
2160 return -ENOMEM;
2161
e4058b54 2162 path->reada = READA_FORWARD;
5d4f98a2
YZ
2163 path->leave_spinning = 1;
2164 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2165 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2166 num_bytes, parent, root_objectid,
2167 owner, offset,
5d4f98a2 2168 refs_to_add, extent_op);
0ed4792a 2169 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2170 goto out;
fcebe456
JB
2171
2172 /*
2173 * Ok we had -EAGAIN which means we didn't have space to insert and
2174 * inline extent ref, so just update the reference count and add a
2175 * normal backref.
2176 */
5d4f98a2 2177 leaf = path->nodes[0];
fcebe456 2178 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2179 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2180 refs = btrfs_extent_refs(leaf, item);
2181 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2182 if (extent_op)
2183 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2184
5d4f98a2 2185 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2186 btrfs_release_path(path);
56bec294 2187
e4058b54 2188 path->reada = READA_FORWARD;
b9473439 2189 path->leave_spinning = 1;
56bec294 2190 /* now insert the actual backref */
87bde3cd
JM
2191 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2192 root_objectid, owner, offset, refs_to_add);
79787eaa 2193 if (ret)
66642832 2194 btrfs_abort_transaction(trans, ret);
5d4f98a2 2195out:
56bec294 2196 btrfs_free_path(path);
30d133fc 2197 return ret;
56bec294
CM
2198}
2199
5d4f98a2 2200static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2201 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2202 struct btrfs_delayed_ref_node *node,
2203 struct btrfs_delayed_extent_op *extent_op,
2204 int insert_reserved)
56bec294 2205{
5d4f98a2
YZ
2206 int ret = 0;
2207 struct btrfs_delayed_data_ref *ref;
2208 struct btrfs_key ins;
2209 u64 parent = 0;
2210 u64 ref_root = 0;
2211 u64 flags = 0;
2212
2213 ins.objectid = node->bytenr;
2214 ins.offset = node->num_bytes;
2215 ins.type = BTRFS_EXTENT_ITEM_KEY;
2216
2217 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2218 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2219
5d4f98a2
YZ
2220 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2221 parent = ref->parent;
fcebe456 2222 ref_root = ref->root;
5d4f98a2
YZ
2223
2224 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2225 if (extent_op)
5d4f98a2 2226 flags |= extent_op->flags_to_set;
2ff7e61e 2227 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2228 parent, ref_root, flags,
2229 ref->objectid, ref->offset,
2230 &ins, node->ref_mod);
5d4f98a2 2231 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2232 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2233 ref_root, ref->objectid,
2234 ref->offset, node->ref_mod,
c682f9b3 2235 extent_op);
5d4f98a2 2236 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2237 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2238 ref_root, ref->objectid,
2239 ref->offset, node->ref_mod,
c682f9b3 2240 extent_op);
5d4f98a2
YZ
2241 } else {
2242 BUG();
2243 }
2244 return ret;
2245}
2246
2247static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2248 struct extent_buffer *leaf,
2249 struct btrfs_extent_item *ei)
2250{
2251 u64 flags = btrfs_extent_flags(leaf, ei);
2252 if (extent_op->update_flags) {
2253 flags |= extent_op->flags_to_set;
2254 btrfs_set_extent_flags(leaf, ei, flags);
2255 }
2256
2257 if (extent_op->update_key) {
2258 struct btrfs_tree_block_info *bi;
2259 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2260 bi = (struct btrfs_tree_block_info *)(ei + 1);
2261 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2262 }
2263}
2264
2265static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2266 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2267 struct btrfs_delayed_ref_node *node,
2268 struct btrfs_delayed_extent_op *extent_op)
2269{
2270 struct btrfs_key key;
2271 struct btrfs_path *path;
2272 struct btrfs_extent_item *ei;
2273 struct extent_buffer *leaf;
2274 u32 item_size;
56bec294 2275 int ret;
5d4f98a2 2276 int err = 0;
b1c79e09 2277 int metadata = !extent_op->is_data;
5d4f98a2 2278
79787eaa
JM
2279 if (trans->aborted)
2280 return 0;
2281
0b246afa 2282 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2283 metadata = 0;
2284
5d4f98a2
YZ
2285 path = btrfs_alloc_path();
2286 if (!path)
2287 return -ENOMEM;
2288
2289 key.objectid = node->bytenr;
5d4f98a2 2290
3173a18f 2291 if (metadata) {
3173a18f 2292 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2293 key.offset = extent_op->level;
3173a18f
JB
2294 } else {
2295 key.type = BTRFS_EXTENT_ITEM_KEY;
2296 key.offset = node->num_bytes;
2297 }
2298
2299again:
e4058b54 2300 path->reada = READA_FORWARD;
5d4f98a2 2301 path->leave_spinning = 1;
0b246afa 2302 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2303 if (ret < 0) {
2304 err = ret;
2305 goto out;
2306 }
2307 if (ret > 0) {
3173a18f 2308 if (metadata) {
55994887
FDBM
2309 if (path->slots[0] > 0) {
2310 path->slots[0]--;
2311 btrfs_item_key_to_cpu(path->nodes[0], &key,
2312 path->slots[0]);
2313 if (key.objectid == node->bytenr &&
2314 key.type == BTRFS_EXTENT_ITEM_KEY &&
2315 key.offset == node->num_bytes)
2316 ret = 0;
2317 }
2318 if (ret > 0) {
2319 btrfs_release_path(path);
2320 metadata = 0;
3173a18f 2321
55994887
FDBM
2322 key.objectid = node->bytenr;
2323 key.offset = node->num_bytes;
2324 key.type = BTRFS_EXTENT_ITEM_KEY;
2325 goto again;
2326 }
2327 } else {
2328 err = -EIO;
2329 goto out;
3173a18f 2330 }
5d4f98a2
YZ
2331 }
2332
2333 leaf = path->nodes[0];
2334 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2335#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2336 if (item_size < sizeof(*ei)) {
87bde3cd 2337 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2338 if (ret < 0) {
2339 err = ret;
2340 goto out;
2341 }
2342 leaf = path->nodes[0];
2343 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2344 }
2345#endif
2346 BUG_ON(item_size < sizeof(*ei));
2347 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2348 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2349
5d4f98a2
YZ
2350 btrfs_mark_buffer_dirty(leaf);
2351out:
2352 btrfs_free_path(path);
2353 return err;
56bec294
CM
2354}
2355
5d4f98a2 2356static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2357 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2358 struct btrfs_delayed_ref_node *node,
2359 struct btrfs_delayed_extent_op *extent_op,
2360 int insert_reserved)
56bec294
CM
2361{
2362 int ret = 0;
5d4f98a2
YZ
2363 struct btrfs_delayed_tree_ref *ref;
2364 struct btrfs_key ins;
2365 u64 parent = 0;
2366 u64 ref_root = 0;
0b246afa 2367 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
56bec294 2368
5d4f98a2 2369 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2370 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2371
5d4f98a2
YZ
2372 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2373 parent = ref->parent;
fcebe456 2374 ref_root = ref->root;
5d4f98a2 2375
3173a18f
JB
2376 ins.objectid = node->bytenr;
2377 if (skinny_metadata) {
2378 ins.offset = ref->level;
2379 ins.type = BTRFS_METADATA_ITEM_KEY;
2380 } else {
2381 ins.offset = node->num_bytes;
2382 ins.type = BTRFS_EXTENT_ITEM_KEY;
2383 }
2384
02794222 2385 if (node->ref_mod != 1) {
2ff7e61e 2386 btrfs_err(fs_info,
02794222
LB
2387 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2388 node->bytenr, node->ref_mod, node->action, ref_root,
2389 parent);
2390 return -EIO;
2391 }
5d4f98a2 2392 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2393 BUG_ON(!extent_op || !extent_op->update_flags);
2ff7e61e 2394 ret = alloc_reserved_tree_block(trans, fs_info,
5d4f98a2
YZ
2395 parent, ref_root,
2396 extent_op->flags_to_set,
2397 &extent_op->key,
b06c4bf5 2398 ref->level, &ins);
5d4f98a2 2399 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2400 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2401 parent, ref_root,
2402 ref->level, 0, 1,
fcebe456 2403 extent_op);
5d4f98a2 2404 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2405 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2406 parent, ref_root,
2407 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2408 } else {
2409 BUG();
2410 }
56bec294
CM
2411 return ret;
2412}
2413
2414/* helper function to actually process a single delayed ref entry */
5d4f98a2 2415static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2416 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2417 struct btrfs_delayed_ref_node *node,
2418 struct btrfs_delayed_extent_op *extent_op,
2419 int insert_reserved)
56bec294 2420{
79787eaa
JM
2421 int ret = 0;
2422
857cc2fc
JB
2423 if (trans->aborted) {
2424 if (insert_reserved)
2ff7e61e 2425 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2426 node->num_bytes, 1);
79787eaa 2427 return 0;
857cc2fc 2428 }
79787eaa 2429
5d4f98a2 2430 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2431 struct btrfs_delayed_ref_head *head;
2432 /*
2433 * we've hit the end of the chain and we were supposed
2434 * to insert this extent into the tree. But, it got
2435 * deleted before we ever needed to insert it, so all
2436 * we have to do is clean up the accounting
2437 */
5d4f98a2
YZ
2438 BUG_ON(extent_op);
2439 head = btrfs_delayed_node_to_head(node);
0b246afa 2440 trace_run_delayed_ref_head(fs_info, node, head, node->action);
599c75ec 2441
d7eae340
OS
2442 if (head->total_ref_mod < 0) {
2443 struct btrfs_block_group_cache *cache;
2444
2445 cache = btrfs_lookup_block_group(fs_info, node->bytenr);
2446 ASSERT(cache);
2447 percpu_counter_add(&cache->space_info->total_bytes_pinned,
2448 -node->num_bytes);
2449 btrfs_put_block_group(cache);
2450 }
2451
56bec294 2452 if (insert_reserved) {
2ff7e61e 2453 btrfs_pin_extent(fs_info, node->bytenr,
f0486c68 2454 node->num_bytes, 1);
5d4f98a2 2455 if (head->is_data) {
0b246afa 2456 ret = btrfs_del_csums(trans, fs_info,
5d4f98a2
YZ
2457 node->bytenr,
2458 node->num_bytes);
5d4f98a2 2459 }
56bec294 2460 }
297d750b
QW
2461
2462 /* Also free its reserved qgroup space */
0b246afa 2463 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
297d750b 2464 head->qgroup_reserved);
79787eaa 2465 return ret;
56bec294
CM
2466 }
2467
5d4f98a2
YZ
2468 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2469 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2470 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2471 insert_reserved);
2472 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2473 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2474 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2475 insert_reserved);
2476 else
2477 BUG();
2478 return ret;
56bec294
CM
2479}
2480
c6fc2454 2481static inline struct btrfs_delayed_ref_node *
56bec294
CM
2482select_delayed_ref(struct btrfs_delayed_ref_head *head)
2483{
cffc3374
FM
2484 struct btrfs_delayed_ref_node *ref;
2485
c6fc2454
QW
2486 if (list_empty(&head->ref_list))
2487 return NULL;
d7df2c79 2488
cffc3374
FM
2489 /*
2490 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2491 * This is to prevent a ref count from going down to zero, which deletes
2492 * the extent item from the extent tree, when there still are references
2493 * to add, which would fail because they would not find the extent item.
2494 */
1d57ee94
WX
2495 if (!list_empty(&head->ref_add_list))
2496 return list_first_entry(&head->ref_add_list,
2497 struct btrfs_delayed_ref_node, add_list);
2498
2499 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2500 list);
2501 ASSERT(list_empty(&ref->add_list));
2502 return ref;
56bec294
CM
2503}
2504
79787eaa
JM
2505/*
2506 * Returns 0 on success or if called with an already aborted transaction.
2507 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2508 */
d7df2c79 2509static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2510 struct btrfs_fs_info *fs_info,
d7df2c79 2511 unsigned long nr)
56bec294 2512{
56bec294
CM
2513 struct btrfs_delayed_ref_root *delayed_refs;
2514 struct btrfs_delayed_ref_node *ref;
2515 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2516 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2517 ktime_t start = ktime_get();
56bec294 2518 int ret;
d7df2c79 2519 unsigned long count = 0;
0a2b2a84 2520 unsigned long actual_count = 0;
56bec294 2521 int must_insert_reserved = 0;
56bec294
CM
2522
2523 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2524 while (1) {
2525 if (!locked_ref) {
d7df2c79 2526 if (count >= nr)
56bec294 2527 break;
56bec294 2528
d7df2c79
JB
2529 spin_lock(&delayed_refs->lock);
2530 locked_ref = btrfs_select_ref_head(trans);
2531 if (!locked_ref) {
2532 spin_unlock(&delayed_refs->lock);
2533 break;
2534 }
c3e69d58
CM
2535
2536 /* grab the lock that says we are going to process
2537 * all the refs for this head */
2538 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2539 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2540 /*
2541 * we may have dropped the spin lock to get the head
2542 * mutex lock, and that might have given someone else
2543 * time to free the head. If that's true, it has been
2544 * removed from our list and we can move on.
2545 */
2546 if (ret == -EAGAIN) {
2547 locked_ref = NULL;
2548 count++;
2549 continue;
56bec294
CM
2550 }
2551 }
a28ec197 2552
2c3cf7d5
FM
2553 /*
2554 * We need to try and merge add/drops of the same ref since we
2555 * can run into issues with relocate dropping the implicit ref
2556 * and then it being added back again before the drop can
2557 * finish. If we merged anything we need to re-loop so we can
2558 * get a good ref.
2559 * Or we can get node references of the same type that weren't
2560 * merged when created due to bumps in the tree mod seq, and
2561 * we need to merge them to prevent adding an inline extent
2562 * backref before dropping it (triggering a BUG_ON at
2563 * insert_inline_extent_backref()).
2564 */
d7df2c79 2565 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2566 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2567 locked_ref);
ae1e206b 2568
d1270cd9
AJ
2569 /*
2570 * locked_ref is the head node, so we have to go one
2571 * node back for any delayed ref updates
2572 */
2573 ref = select_delayed_ref(locked_ref);
2574
2575 if (ref && ref->seq &&
097b8a7c 2576 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2577 spin_unlock(&locked_ref->lock);
d7df2c79
JB
2578 spin_lock(&delayed_refs->lock);
2579 locked_ref->processing = 0;
d1270cd9
AJ
2580 delayed_refs->num_heads_ready++;
2581 spin_unlock(&delayed_refs->lock);
d0280996 2582 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79 2583 locked_ref = NULL;
d1270cd9 2584 cond_resched();
27a377db 2585 count++;
d1270cd9
AJ
2586 continue;
2587 }
2588
56bec294
CM
2589 /*
2590 * record the must insert reserved flag before we
2591 * drop the spin lock.
2592 */
2593 must_insert_reserved = locked_ref->must_insert_reserved;
2594 locked_ref->must_insert_reserved = 0;
7bb86316 2595
5d4f98a2
YZ
2596 extent_op = locked_ref->extent_op;
2597 locked_ref->extent_op = NULL;
2598
56bec294 2599 if (!ref) {
d7df2c79
JB
2600
2601
56bec294
CM
2602 /* All delayed refs have been processed, Go ahead
2603 * and send the head node to run_one_delayed_ref,
2604 * so that any accounting fixes can happen
2605 */
2606 ref = &locked_ref->node;
5d4f98a2
YZ
2607
2608 if (extent_op && must_insert_reserved) {
78a6184a 2609 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2610 extent_op = NULL;
2611 }
2612
2613 if (extent_op) {
d7df2c79 2614 spin_unlock(&locked_ref->lock);
2ff7e61e 2615 ret = run_delayed_extent_op(trans, fs_info,
5d4f98a2 2616 ref, extent_op);
78a6184a 2617 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2618
79787eaa 2619 if (ret) {
857cc2fc
JB
2620 /*
2621 * Need to reset must_insert_reserved if
2622 * there was an error so the abort stuff
2623 * can cleanup the reserved space
2624 * properly.
2625 */
2626 if (must_insert_reserved)
2627 locked_ref->must_insert_reserved = 1;
aa7c8da3 2628 spin_lock(&delayed_refs->lock);
d7df2c79 2629 locked_ref->processing = 0;
aa7c8da3
JM
2630 delayed_refs->num_heads_ready++;
2631 spin_unlock(&delayed_refs->lock);
5d163e0e
JM
2632 btrfs_debug(fs_info,
2633 "run_delayed_extent_op returned %d",
2634 ret);
093486c4 2635 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2636 return ret;
2637 }
d7df2c79 2638 continue;
5d4f98a2 2639 }
02217ed2 2640
d7df2c79 2641 /*
01327610 2642 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2643 * delayed ref lock and then re-check to make sure
2644 * nobody got added.
2645 */
2646 spin_unlock(&locked_ref->lock);
2647 spin_lock(&delayed_refs->lock);
2648 spin_lock(&locked_ref->lock);
c6fc2454 2649 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2650 locked_ref->extent_op) {
d7df2c79
JB
2651 spin_unlock(&locked_ref->lock);
2652 spin_unlock(&delayed_refs->lock);
2653 continue;
2654 }
2655 ref->in_tree = 0;
2656 delayed_refs->num_heads--;
c46effa6
LB
2657 rb_erase(&locked_ref->href_node,
2658 &delayed_refs->href_root);
d7df2c79
JB
2659 spin_unlock(&delayed_refs->lock);
2660 } else {
0a2b2a84 2661 actual_count++;
d7df2c79 2662 ref->in_tree = 0;
c6fc2454 2663 list_del(&ref->list);
1d57ee94
WX
2664 if (!list_empty(&ref->add_list))
2665 list_del(&ref->add_list);
c46effa6 2666 }
d7df2c79
JB
2667 atomic_dec(&delayed_refs->num_entries);
2668
093486c4 2669 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2670 /*
2671 * when we play the delayed ref, also correct the
2672 * ref_mod on head
2673 */
2674 switch (ref->action) {
2675 case BTRFS_ADD_DELAYED_REF:
2676 case BTRFS_ADD_DELAYED_EXTENT:
2677 locked_ref->node.ref_mod -= ref->ref_mod;
2678 break;
2679 case BTRFS_DROP_DELAYED_REF:
2680 locked_ref->node.ref_mod += ref->ref_mod;
2681 break;
2682 default:
2683 WARN_ON(1);
2684 }
2685 }
d7df2c79 2686 spin_unlock(&locked_ref->lock);
925baedd 2687
2ff7e61e 2688 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2689 must_insert_reserved);
eb099670 2690
78a6184a 2691 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2692 if (ret) {
9d1032cc 2693 spin_lock(&delayed_refs->lock);
d7df2c79 2694 locked_ref->processing = 0;
9d1032cc
WX
2695 delayed_refs->num_heads_ready++;
2696 spin_unlock(&delayed_refs->lock);
093486c4
MX
2697 btrfs_delayed_ref_unlock(locked_ref);
2698 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2699 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2700 ret);
79787eaa
JM
2701 return ret;
2702 }
2703
093486c4
MX
2704 /*
2705 * If this node is a head, that means all the refs in this head
2706 * have been dealt with, and we will pick the next head to deal
2707 * with, so we must unlock the head and drop it from the cluster
2708 * list before we release it.
2709 */
2710 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2711 if (locked_ref->is_data &&
2712 locked_ref->total_ref_mod < 0) {
2713 spin_lock(&delayed_refs->lock);
2714 delayed_refs->pending_csums -= ref->num_bytes;
2715 spin_unlock(&delayed_refs->lock);
2716 }
093486c4
MX
2717 btrfs_delayed_ref_unlock(locked_ref);
2718 locked_ref = NULL;
2719 }
2720 btrfs_put_delayed_ref(ref);
2721 count++;
c3e69d58 2722 cond_resched();
c3e69d58 2723 }
0a2b2a84
JB
2724
2725 /*
2726 * We don't want to include ref heads since we can have empty ref heads
2727 * and those will drastically skew our runtime down since we just do
2728 * accounting, no actual extent tree updates.
2729 */
2730 if (actual_count > 0) {
2731 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2732 u64 avg;
2733
2734 /*
2735 * We weigh the current average higher than our current runtime
2736 * to avoid large swings in the average.
2737 */
2738 spin_lock(&delayed_refs->lock);
2739 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2740 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2741 spin_unlock(&delayed_refs->lock);
2742 }
d7df2c79 2743 return 0;
c3e69d58
CM
2744}
2745
709c0486
AJ
2746#ifdef SCRAMBLE_DELAYED_REFS
2747/*
2748 * Normally delayed refs get processed in ascending bytenr order. This
2749 * correlates in most cases to the order added. To expose dependencies on this
2750 * order, we start to process the tree in the middle instead of the beginning
2751 */
2752static u64 find_middle(struct rb_root *root)
2753{
2754 struct rb_node *n = root->rb_node;
2755 struct btrfs_delayed_ref_node *entry;
2756 int alt = 1;
2757 u64 middle;
2758 u64 first = 0, last = 0;
2759
2760 n = rb_first(root);
2761 if (n) {
2762 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2763 first = entry->bytenr;
2764 }
2765 n = rb_last(root);
2766 if (n) {
2767 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2768 last = entry->bytenr;
2769 }
2770 n = root->rb_node;
2771
2772 while (n) {
2773 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2774 WARN_ON(!entry->in_tree);
2775
2776 middle = entry->bytenr;
2777
2778 if (alt)
2779 n = n->rb_left;
2780 else
2781 n = n->rb_right;
2782
2783 alt = 1 - alt;
2784 }
2785 return middle;
2786}
2787#endif
2788
2ff7e61e 2789static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2790{
2791 u64 num_bytes;
2792
2793 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2794 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2795 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2796 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2797
2798 /*
2799 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2800 * closer to what we're really going to want to use.
1be41b78 2801 */
0b246afa 2802 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2803}
2804
1262133b
JB
2805/*
2806 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2807 * would require to store the csums for that many bytes.
2808 */
2ff7e61e 2809u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2810{
2811 u64 csum_size;
2812 u64 num_csums_per_leaf;
2813 u64 num_csums;
2814
0b246afa 2815 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2816 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2817 (u64)btrfs_super_csum_size(fs_info->super_copy));
2818 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2819 num_csums += num_csums_per_leaf - 1;
2820 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2821 return num_csums;
2822}
2823
0a2b2a84 2824int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2825 struct btrfs_fs_info *fs_info)
1be41b78
JB
2826{
2827 struct btrfs_block_rsv *global_rsv;
2828 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2829 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2830 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2831 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2832 int ret = 0;
2833
0b246afa 2834 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2835 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2836 if (num_heads > 1)
0b246afa 2837 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2838 num_bytes <<= 1;
2ff7e61e
JM
2839 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2840 fs_info->nodesize;
0b246afa 2841 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2842 num_dirty_bgs);
0b246afa 2843 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2844
2845 /*
2846 * If we can't allocate any more chunks lets make sure we have _lots_ of
2847 * wiggle room since running delayed refs can create more delayed refs.
2848 */
cb723e49
JB
2849 if (global_rsv->space_info->full) {
2850 num_dirty_bgs_bytes <<= 1;
1be41b78 2851 num_bytes <<= 1;
cb723e49 2852 }
1be41b78
JB
2853
2854 spin_lock(&global_rsv->lock);
cb723e49 2855 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2856 ret = 1;
2857 spin_unlock(&global_rsv->lock);
2858 return ret;
2859}
2860
0a2b2a84 2861int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2862 struct btrfs_fs_info *fs_info)
0a2b2a84 2863{
0a2b2a84
JB
2864 u64 num_entries =
2865 atomic_read(&trans->transaction->delayed_refs.num_entries);
2866 u64 avg_runtime;
a79b7d4b 2867 u64 val;
0a2b2a84
JB
2868
2869 smp_mb();
2870 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2871 val = num_entries * avg_runtime;
dc1a90c6 2872 if (val >= NSEC_PER_SEC)
0a2b2a84 2873 return 1;
a79b7d4b
CM
2874 if (val >= NSEC_PER_SEC / 2)
2875 return 2;
0a2b2a84 2876
2ff7e61e 2877 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2878}
2879
a79b7d4b
CM
2880struct async_delayed_refs {
2881 struct btrfs_root *root;
31b9655f 2882 u64 transid;
a79b7d4b
CM
2883 int count;
2884 int error;
2885 int sync;
2886 struct completion wait;
2887 struct btrfs_work work;
2888};
2889
2ff7e61e
JM
2890static inline struct async_delayed_refs *
2891to_async_delayed_refs(struct btrfs_work *work)
2892{
2893 return container_of(work, struct async_delayed_refs, work);
2894}
2895
a79b7d4b
CM
2896static void delayed_ref_async_start(struct btrfs_work *work)
2897{
2ff7e61e 2898 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2899 struct btrfs_trans_handle *trans;
2ff7e61e 2900 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2901 int ret;
2902
0f873eca 2903 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2904 if (btrfs_transaction_blocked(fs_info))
31b9655f 2905 goto done;
31b9655f 2906
0f873eca
CM
2907 trans = btrfs_join_transaction(async->root);
2908 if (IS_ERR(trans)) {
2909 async->error = PTR_ERR(trans);
a79b7d4b
CM
2910 goto done;
2911 }
2912
2913 /*
01327610 2914 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2915 * wait on delayed refs
2916 */
2917 trans->sync = true;
0f873eca
CM
2918
2919 /* Don't bother flushing if we got into a different transaction */
2920 if (trans->transid > async->transid)
2921 goto end;
2922
2ff7e61e 2923 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
a79b7d4b
CM
2924 if (ret)
2925 async->error = ret;
0f873eca 2926end:
3a45bb20 2927 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2928 if (ret && !async->error)
2929 async->error = ret;
2930done:
2931 if (async->sync)
2932 complete(&async->wait);
2933 else
2934 kfree(async);
2935}
2936
2ff7e61e 2937int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2938 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2939{
2940 struct async_delayed_refs *async;
2941 int ret;
2942
2943 async = kmalloc(sizeof(*async), GFP_NOFS);
2944 if (!async)
2945 return -ENOMEM;
2946
0b246afa 2947 async->root = fs_info->tree_root;
a79b7d4b
CM
2948 async->count = count;
2949 async->error = 0;
31b9655f 2950 async->transid = transid;
a79b7d4b
CM
2951 if (wait)
2952 async->sync = 1;
2953 else
2954 async->sync = 0;
2955 init_completion(&async->wait);
2956
9e0af237
LB
2957 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2958 delayed_ref_async_start, NULL, NULL);
a79b7d4b 2959
0b246afa 2960 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
2961
2962 if (wait) {
2963 wait_for_completion(&async->wait);
2964 ret = async->error;
2965 kfree(async);
2966 return ret;
2967 }
2968 return 0;
2969}
2970
c3e69d58
CM
2971/*
2972 * this starts processing the delayed reference count updates and
2973 * extent insertions we have queued up so far. count can be
2974 * 0, which means to process everything in the tree at the start
2975 * of the run (but not newly added entries), or it can be some target
2976 * number you'd like to process.
79787eaa
JM
2977 *
2978 * Returns 0 on success or if called with an aborted transaction
2979 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2980 */
2981int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2982 struct btrfs_fs_info *fs_info, unsigned long count)
c3e69d58
CM
2983{
2984 struct rb_node *node;
2985 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2986 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2987 int ret;
2988 int run_all = count == (unsigned long)-1;
d9a0540a 2989 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2990
79787eaa
JM
2991 /* We'll clean this up in btrfs_cleanup_transaction */
2992 if (trans->aborted)
2993 return 0;
2994
0b246afa 2995 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2996 return 0;
2997
c3e69d58 2998 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2999 if (count == 0)
d7df2c79 3000 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3001
c3e69d58 3002again:
709c0486
AJ
3003#ifdef SCRAMBLE_DELAYED_REFS
3004 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3005#endif
d9a0540a 3006 trans->can_flush_pending_bgs = false;
2ff7e61e 3007 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
d7df2c79 3008 if (ret < 0) {
66642832 3009 btrfs_abort_transaction(trans, ret);
d7df2c79 3010 return ret;
eb099670 3011 }
c3e69d58 3012
56bec294 3013 if (run_all) {
d7df2c79 3014 if (!list_empty(&trans->new_bgs))
2ff7e61e 3015 btrfs_create_pending_block_groups(trans, fs_info);
ea658bad 3016
d7df2c79 3017 spin_lock(&delayed_refs->lock);
c46effa6 3018 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
3019 if (!node) {
3020 spin_unlock(&delayed_refs->lock);
56bec294 3021 goto out;
d7df2c79 3022 }
e9d0b13b 3023
56bec294 3024 while (node) {
c46effa6
LB
3025 head = rb_entry(node, struct btrfs_delayed_ref_head,
3026 href_node);
3027 if (btrfs_delayed_ref_is_head(&head->node)) {
3028 struct btrfs_delayed_ref_node *ref;
5caf2a00 3029
c46effa6 3030 ref = &head->node;
6df8cdf5 3031 refcount_inc(&ref->refs);
56bec294
CM
3032
3033 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
3034 /*
3035 * Mutex was contended, block until it's
3036 * released and try again
3037 */
56bec294
CM
3038 mutex_lock(&head->mutex);
3039 mutex_unlock(&head->mutex);
3040
3041 btrfs_put_delayed_ref(ref);
1887be66 3042 cond_resched();
56bec294 3043 goto again;
c46effa6
LB
3044 } else {
3045 WARN_ON(1);
56bec294
CM
3046 }
3047 node = rb_next(node);
3048 }
3049 spin_unlock(&delayed_refs->lock);
d7df2c79 3050 cond_resched();
56bec294 3051 goto again;
5f39d397 3052 }
54aa1f4d 3053out:
d9a0540a 3054 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3055 return 0;
3056}
3057
5d4f98a2 3058int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3059 struct btrfs_fs_info *fs_info,
5d4f98a2 3060 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3061 int level, int is_data)
5d4f98a2
YZ
3062{
3063 struct btrfs_delayed_extent_op *extent_op;
3064 int ret;
3065
78a6184a 3066 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3067 if (!extent_op)
3068 return -ENOMEM;
3069
3070 extent_op->flags_to_set = flags;
35b3ad50
DS
3071 extent_op->update_flags = true;
3072 extent_op->update_key = false;
3073 extent_op->is_data = is_data ? true : false;
b1c79e09 3074 extent_op->level = level;
5d4f98a2 3075
0b246afa 3076 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3077 num_bytes, extent_op);
5d4f98a2 3078 if (ret)
78a6184a 3079 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3080 return ret;
3081}
3082
e4c3b2dc 3083static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3084 struct btrfs_path *path,
3085 u64 objectid, u64 offset, u64 bytenr)
3086{
3087 struct btrfs_delayed_ref_head *head;
3088 struct btrfs_delayed_ref_node *ref;
3089 struct btrfs_delayed_data_ref *data_ref;
3090 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3091 struct btrfs_transaction *cur_trans;
5d4f98a2
YZ
3092 int ret = 0;
3093
e4c3b2dc
LB
3094 cur_trans = root->fs_info->running_transaction;
3095 if (!cur_trans)
3096 return 0;
3097
3098 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3099 spin_lock(&delayed_refs->lock);
f72ad18e 3100 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3101 if (!head) {
3102 spin_unlock(&delayed_refs->lock);
3103 return 0;
3104 }
5d4f98a2
YZ
3105
3106 if (!mutex_trylock(&head->mutex)) {
6df8cdf5 3107 refcount_inc(&head->node.refs);
5d4f98a2
YZ
3108 spin_unlock(&delayed_refs->lock);
3109
b3b4aa74 3110 btrfs_release_path(path);
5d4f98a2 3111
8cc33e5c
DS
3112 /*
3113 * Mutex was contended, block until it's released and let
3114 * caller try again
3115 */
5d4f98a2
YZ
3116 mutex_lock(&head->mutex);
3117 mutex_unlock(&head->mutex);
3118 btrfs_put_delayed_ref(&head->node);
3119 return -EAGAIN;
3120 }
d7df2c79 3121 spin_unlock(&delayed_refs->lock);
5d4f98a2 3122
d7df2c79 3123 spin_lock(&head->lock);
c6fc2454 3124 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3125 /* If it's a shared ref we know a cross reference exists */
3126 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3127 ret = 1;
3128 break;
3129 }
5d4f98a2 3130
d7df2c79 3131 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3132
d7df2c79
JB
3133 /*
3134 * If our ref doesn't match the one we're currently looking at
3135 * then we have a cross reference.
3136 */
3137 if (data_ref->root != root->root_key.objectid ||
3138 data_ref->objectid != objectid ||
3139 data_ref->offset != offset) {
3140 ret = 1;
3141 break;
3142 }
5d4f98a2 3143 }
d7df2c79 3144 spin_unlock(&head->lock);
5d4f98a2 3145 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3146 return ret;
3147}
3148
e4c3b2dc 3149static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3150 struct btrfs_path *path,
3151 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3152{
0b246afa
JM
3153 struct btrfs_fs_info *fs_info = root->fs_info;
3154 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3155 struct extent_buffer *leaf;
5d4f98a2
YZ
3156 struct btrfs_extent_data_ref *ref;
3157 struct btrfs_extent_inline_ref *iref;
3158 struct btrfs_extent_item *ei;
f321e491 3159 struct btrfs_key key;
5d4f98a2 3160 u32 item_size;
be20aa9d 3161 int ret;
925baedd 3162
be20aa9d 3163 key.objectid = bytenr;
31840ae1 3164 key.offset = (u64)-1;
f321e491 3165 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3166
be20aa9d
CM
3167 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3168 if (ret < 0)
3169 goto out;
79787eaa 3170 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3171
3172 ret = -ENOENT;
3173 if (path->slots[0] == 0)
31840ae1 3174 goto out;
be20aa9d 3175
31840ae1 3176 path->slots[0]--;
f321e491 3177 leaf = path->nodes[0];
5d4f98a2 3178 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3179
5d4f98a2 3180 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3181 goto out;
f321e491 3182
5d4f98a2
YZ
3183 ret = 1;
3184 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3185#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3186 if (item_size < sizeof(*ei)) {
3187 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3188 goto out;
3189 }
3190#endif
3191 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3192
5d4f98a2
YZ
3193 if (item_size != sizeof(*ei) +
3194 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3195 goto out;
be20aa9d 3196
5d4f98a2
YZ
3197 if (btrfs_extent_generation(leaf, ei) <=
3198 btrfs_root_last_snapshot(&root->root_item))
3199 goto out;
3200
3201 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3202 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3203 BTRFS_EXTENT_DATA_REF_KEY)
3204 goto out;
3205
3206 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3207 if (btrfs_extent_refs(leaf, ei) !=
3208 btrfs_extent_data_ref_count(leaf, ref) ||
3209 btrfs_extent_data_ref_root(leaf, ref) !=
3210 root->root_key.objectid ||
3211 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3212 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3213 goto out;
3214
3215 ret = 0;
3216out:
3217 return ret;
3218}
3219
e4c3b2dc
LB
3220int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3221 u64 bytenr)
5d4f98a2
YZ
3222{
3223 struct btrfs_path *path;
3224 int ret;
3225 int ret2;
3226
3227 path = btrfs_alloc_path();
3228 if (!path)
3229 return -ENOENT;
3230
3231 do {
e4c3b2dc 3232 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3233 offset, bytenr);
3234 if (ret && ret != -ENOENT)
f321e491 3235 goto out;
80ff3856 3236
e4c3b2dc 3237 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3238 offset, bytenr);
3239 } while (ret2 == -EAGAIN);
3240
3241 if (ret2 && ret2 != -ENOENT) {
3242 ret = ret2;
3243 goto out;
f321e491 3244 }
5d4f98a2
YZ
3245
3246 if (ret != -ENOENT || ret2 != -ENOENT)
3247 ret = 0;
be20aa9d 3248out:
80ff3856 3249 btrfs_free_path(path);
f0486c68
YZ
3250 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3251 WARN_ON(ret > 0);
f321e491 3252 return ret;
be20aa9d 3253}
c5739bba 3254
5d4f98a2 3255static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3256 struct btrfs_root *root,
5d4f98a2 3257 struct extent_buffer *buf,
e339a6b0 3258 int full_backref, int inc)
31840ae1 3259{
0b246afa 3260 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3261 u64 bytenr;
5d4f98a2
YZ
3262 u64 num_bytes;
3263 u64 parent;
31840ae1 3264 u64 ref_root;
31840ae1 3265 u32 nritems;
31840ae1
ZY
3266 struct btrfs_key key;
3267 struct btrfs_file_extent_item *fi;
3268 int i;
3269 int level;
3270 int ret = 0;
2ff7e61e
JM
3271 int (*process_func)(struct btrfs_trans_handle *,
3272 struct btrfs_fs_info *,
b06c4bf5 3273 u64, u64, u64, u64, u64, u64);
31840ae1 3274
fccb84c9 3275
0b246afa 3276 if (btrfs_is_testing(fs_info))
faa2dbf0 3277 return 0;
fccb84c9 3278
31840ae1 3279 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3280 nritems = btrfs_header_nritems(buf);
3281 level = btrfs_header_level(buf);
3282
27cdeb70 3283 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3284 return 0;
31840ae1 3285
5d4f98a2
YZ
3286 if (inc)
3287 process_func = btrfs_inc_extent_ref;
3288 else
3289 process_func = btrfs_free_extent;
31840ae1 3290
5d4f98a2
YZ
3291 if (full_backref)
3292 parent = buf->start;
3293 else
3294 parent = 0;
3295
3296 for (i = 0; i < nritems; i++) {
31840ae1 3297 if (level == 0) {
5d4f98a2 3298 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3299 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3300 continue;
5d4f98a2 3301 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3302 struct btrfs_file_extent_item);
3303 if (btrfs_file_extent_type(buf, fi) ==
3304 BTRFS_FILE_EXTENT_INLINE)
3305 continue;
3306 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3307 if (bytenr == 0)
3308 continue;
5d4f98a2
YZ
3309
3310 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3311 key.offset -= btrfs_file_extent_offset(buf, fi);
2ff7e61e 3312 ret = process_func(trans, fs_info, bytenr, num_bytes,
5d4f98a2 3313 parent, ref_root, key.objectid,
b06c4bf5 3314 key.offset);
31840ae1
ZY
3315 if (ret)
3316 goto fail;
3317 } else {
5d4f98a2 3318 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3319 num_bytes = fs_info->nodesize;
2ff7e61e 3320 ret = process_func(trans, fs_info, bytenr, num_bytes,
b06c4bf5 3321 parent, ref_root, level - 1, 0);
31840ae1
ZY
3322 if (ret)
3323 goto fail;
3324 }
3325 }
3326 return 0;
3327fail:
5d4f98a2
YZ
3328 return ret;
3329}
3330
3331int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3332 struct extent_buffer *buf, int full_backref)
5d4f98a2 3333{
e339a6b0 3334 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3335}
3336
3337int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3338 struct extent_buffer *buf, int full_backref)
5d4f98a2 3339{
e339a6b0 3340 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3341}
3342
9078a3e1 3343static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3344 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3345 struct btrfs_path *path,
3346 struct btrfs_block_group_cache *cache)
3347{
3348 int ret;
0b246afa 3349 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3350 unsigned long bi;
3351 struct extent_buffer *leaf;
9078a3e1 3352
9078a3e1 3353 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3354 if (ret) {
3355 if (ret > 0)
3356 ret = -ENOENT;
54aa1f4d 3357 goto fail;
df95e7f0 3358 }
5f39d397
CM
3359
3360 leaf = path->nodes[0];
3361 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3362 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3363 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3364fail:
24b89d08 3365 btrfs_release_path(path);
df95e7f0 3366 return ret;
9078a3e1
CM
3367
3368}
3369
4a8c9a62 3370static struct btrfs_block_group_cache *
2ff7e61e 3371next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3372 struct btrfs_block_group_cache *cache)
3373{
3374 struct rb_node *node;
292cbd51 3375
0b246afa 3376 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3377
3378 /* If our block group was removed, we need a full search. */
3379 if (RB_EMPTY_NODE(&cache->cache_node)) {
3380 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3381
0b246afa 3382 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3383 btrfs_put_block_group(cache);
0b246afa 3384 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3385 }
4a8c9a62
YZ
3386 node = rb_next(&cache->cache_node);
3387 btrfs_put_block_group(cache);
3388 if (node) {
3389 cache = rb_entry(node, struct btrfs_block_group_cache,
3390 cache_node);
11dfe35a 3391 btrfs_get_block_group(cache);
4a8c9a62
YZ
3392 } else
3393 cache = NULL;
0b246afa 3394 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3395 return cache;
3396}
3397
0af3d00b
JB
3398static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3399 struct btrfs_trans_handle *trans,
3400 struct btrfs_path *path)
3401{
0b246afa
JM
3402 struct btrfs_fs_info *fs_info = block_group->fs_info;
3403 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3404 struct inode *inode = NULL;
364ecf36 3405 struct extent_changeset *data_reserved = NULL;
0af3d00b 3406 u64 alloc_hint = 0;
2b20982e 3407 int dcs = BTRFS_DC_ERROR;
f8c269d7 3408 u64 num_pages = 0;
0af3d00b
JB
3409 int retries = 0;
3410 int ret = 0;
3411
3412 /*
3413 * If this block group is smaller than 100 megs don't bother caching the
3414 * block group.
3415 */
ee22184b 3416 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3417 spin_lock(&block_group->lock);
3418 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3419 spin_unlock(&block_group->lock);
3420 return 0;
3421 }
3422
0c0ef4bc
JB
3423 if (trans->aborted)
3424 return 0;
0af3d00b 3425again:
77ab86bf 3426 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3427 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3428 ret = PTR_ERR(inode);
b3b4aa74 3429 btrfs_release_path(path);
0af3d00b
JB
3430 goto out;
3431 }
3432
3433 if (IS_ERR(inode)) {
3434 BUG_ON(retries);
3435 retries++;
3436
3437 if (block_group->ro)
3438 goto out_free;
3439
77ab86bf
JM
3440 ret = create_free_space_inode(fs_info, trans, block_group,
3441 path);
0af3d00b
JB
3442 if (ret)
3443 goto out_free;
3444 goto again;
3445 }
3446
5b0e95bf
JB
3447 /* We've already setup this transaction, go ahead and exit */
3448 if (block_group->cache_generation == trans->transid &&
3449 i_size_read(inode)) {
3450 dcs = BTRFS_DC_SETUP;
3451 goto out_put;
3452 }
3453
0af3d00b
JB
3454 /*
3455 * We want to set the generation to 0, that way if anything goes wrong
3456 * from here on out we know not to trust this cache when we load up next
3457 * time.
3458 */
3459 BTRFS_I(inode)->generation = 0;
3460 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3461 if (ret) {
3462 /*
3463 * So theoretically we could recover from this, simply set the
3464 * super cache generation to 0 so we know to invalidate the
3465 * cache, but then we'd have to keep track of the block groups
3466 * that fail this way so we know we _have_ to reset this cache
3467 * before the next commit or risk reading stale cache. So to
3468 * limit our exposure to horrible edge cases lets just abort the
3469 * transaction, this only happens in really bad situations
3470 * anyway.
3471 */
66642832 3472 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3473 goto out_put;
3474 }
0af3d00b
JB
3475 WARN_ON(ret);
3476
3477 if (i_size_read(inode) > 0) {
2ff7e61e 3478 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3479 &fs_info->global_block_rsv);
7b61cd92
MX
3480 if (ret)
3481 goto out_put;
3482
77ab86bf 3483 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3484 if (ret)
3485 goto out_put;
3486 }
3487
3488 spin_lock(&block_group->lock);
cf7c1ef6 3489 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3490 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3491 /*
3492 * don't bother trying to write stuff out _if_
3493 * a) we're not cached,
1a79c1f2
LB
3494 * b) we're with nospace_cache mount option,
3495 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3496 */
2b20982e 3497 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3498 spin_unlock(&block_group->lock);
3499 goto out_put;
3500 }
3501 spin_unlock(&block_group->lock);
3502
2968b1f4
JB
3503 /*
3504 * We hit an ENOSPC when setting up the cache in this transaction, just
3505 * skip doing the setup, we've already cleared the cache so we're safe.
3506 */
3507 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3508 ret = -ENOSPC;
3509 goto out_put;
3510 }
3511
6fc823b1
JB
3512 /*
3513 * Try to preallocate enough space based on how big the block group is.
3514 * Keep in mind this has to include any pinned space which could end up
3515 * taking up quite a bit since it's not folded into the other space
3516 * cache.
3517 */
ee22184b 3518 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3519 if (!num_pages)
3520 num_pages = 1;
3521
0af3d00b 3522 num_pages *= 16;
09cbfeaf 3523 num_pages *= PAGE_SIZE;
0af3d00b 3524
364ecf36 3525 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3526 if (ret)
3527 goto out_put;
3528
3529 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3530 num_pages, num_pages,
3531 &alloc_hint);
2968b1f4
JB
3532 /*
3533 * Our cache requires contiguous chunks so that we don't modify a bunch
3534 * of metadata or split extents when writing the cache out, which means
3535 * we can enospc if we are heavily fragmented in addition to just normal
3536 * out of space conditions. So if we hit this just skip setting up any
3537 * other block groups for this transaction, maybe we'll unpin enough
3538 * space the next time around.
3539 */
2b20982e
JB
3540 if (!ret)
3541 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3542 else if (ret == -ENOSPC)
3543 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3544
0af3d00b
JB
3545out_put:
3546 iput(inode);
3547out_free:
b3b4aa74 3548 btrfs_release_path(path);
0af3d00b
JB
3549out:
3550 spin_lock(&block_group->lock);
e65cbb94 3551 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3552 block_group->cache_generation = trans->transid;
2b20982e 3553 block_group->disk_cache_state = dcs;
0af3d00b
JB
3554 spin_unlock(&block_group->lock);
3555
364ecf36 3556 extent_changeset_free(data_reserved);
0af3d00b
JB
3557 return ret;
3558}
3559
dcdf7f6d 3560int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3561 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3562{
3563 struct btrfs_block_group_cache *cache, *tmp;
3564 struct btrfs_transaction *cur_trans = trans->transaction;
3565 struct btrfs_path *path;
3566
3567 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3568 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3569 return 0;
3570
3571 path = btrfs_alloc_path();
3572 if (!path)
3573 return -ENOMEM;
3574
3575 /* Could add new block groups, use _safe just in case */
3576 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3577 dirty_list) {
3578 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3579 cache_save_setup(cache, trans, path);
3580 }
3581
3582 btrfs_free_path(path);
3583 return 0;
3584}
3585
1bbc621e
CM
3586/*
3587 * transaction commit does final block group cache writeback during a
3588 * critical section where nothing is allowed to change the FS. This is
3589 * required in order for the cache to actually match the block group,
3590 * but can introduce a lot of latency into the commit.
3591 *
3592 * So, btrfs_start_dirty_block_groups is here to kick off block group
3593 * cache IO. There's a chance we'll have to redo some of it if the
3594 * block group changes again during the commit, but it greatly reduces
3595 * the commit latency by getting rid of the easy block groups while
3596 * we're still allowing others to join the commit.
3597 */
3598int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3599 struct btrfs_fs_info *fs_info)
9078a3e1 3600{
4a8c9a62 3601 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3602 struct btrfs_transaction *cur_trans = trans->transaction;
3603 int ret = 0;
c9dc4c65 3604 int should_put;
1bbc621e
CM
3605 struct btrfs_path *path = NULL;
3606 LIST_HEAD(dirty);
3607 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3608 int num_started = 0;
1bbc621e
CM
3609 int loops = 0;
3610
3611 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3612 if (list_empty(&cur_trans->dirty_bgs)) {
3613 spin_unlock(&cur_trans->dirty_bgs_lock);
3614 return 0;
1bbc621e 3615 }
b58d1a9e 3616 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3617 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3618
1bbc621e 3619again:
1bbc621e
CM
3620 /*
3621 * make sure all the block groups on our dirty list actually
3622 * exist
3623 */
2ff7e61e 3624 btrfs_create_pending_block_groups(trans, fs_info);
1bbc621e
CM
3625
3626 if (!path) {
3627 path = btrfs_alloc_path();
3628 if (!path)
3629 return -ENOMEM;
3630 }
3631
b58d1a9e
FM
3632 /*
3633 * cache_write_mutex is here only to save us from balance or automatic
3634 * removal of empty block groups deleting this block group while we are
3635 * writing out the cache
3636 */
3637 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3638 while (!list_empty(&dirty)) {
3639 cache = list_first_entry(&dirty,
3640 struct btrfs_block_group_cache,
3641 dirty_list);
1bbc621e
CM
3642 /*
3643 * this can happen if something re-dirties a block
3644 * group that is already under IO. Just wait for it to
3645 * finish and then do it all again
3646 */
3647 if (!list_empty(&cache->io_list)) {
3648 list_del_init(&cache->io_list);
afdb5718 3649 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3650 btrfs_put_block_group(cache);
3651 }
3652
3653
3654 /*
3655 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3656 * if it should update the cache_state. Don't delete
3657 * until after we wait.
3658 *
3659 * Since we're not running in the commit critical section
3660 * we need the dirty_bgs_lock to protect from update_block_group
3661 */
3662 spin_lock(&cur_trans->dirty_bgs_lock);
3663 list_del_init(&cache->dirty_list);
3664 spin_unlock(&cur_trans->dirty_bgs_lock);
3665
3666 should_put = 1;
3667
3668 cache_save_setup(cache, trans, path);
3669
3670 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3671 cache->io_ctl.inode = NULL;
0b246afa 3672 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3673 cache, path);
1bbc621e
CM
3674 if (ret == 0 && cache->io_ctl.inode) {
3675 num_started++;
3676 should_put = 0;
3677
3678 /*
3679 * the cache_write_mutex is protecting
3680 * the io_list
3681 */
3682 list_add_tail(&cache->io_list, io);
3683 } else {
3684 /*
3685 * if we failed to write the cache, the
3686 * generation will be bad and life goes on
3687 */
3688 ret = 0;
3689 }
3690 }
ff1f8250 3691 if (!ret) {
2ff7e61e
JM
3692 ret = write_one_cache_group(trans, fs_info,
3693 path, cache);
ff1f8250
FM
3694 /*
3695 * Our block group might still be attached to the list
3696 * of new block groups in the transaction handle of some
3697 * other task (struct btrfs_trans_handle->new_bgs). This
3698 * means its block group item isn't yet in the extent
3699 * tree. If this happens ignore the error, as we will
3700 * try again later in the critical section of the
3701 * transaction commit.
3702 */
3703 if (ret == -ENOENT) {
3704 ret = 0;
3705 spin_lock(&cur_trans->dirty_bgs_lock);
3706 if (list_empty(&cache->dirty_list)) {
3707 list_add_tail(&cache->dirty_list,
3708 &cur_trans->dirty_bgs);
3709 btrfs_get_block_group(cache);
3710 }
3711 spin_unlock(&cur_trans->dirty_bgs_lock);
3712 } else if (ret) {
66642832 3713 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3714 }
3715 }
1bbc621e
CM
3716
3717 /* if its not on the io list, we need to put the block group */
3718 if (should_put)
3719 btrfs_put_block_group(cache);
3720
3721 if (ret)
3722 break;
b58d1a9e
FM
3723
3724 /*
3725 * Avoid blocking other tasks for too long. It might even save
3726 * us from writing caches for block groups that are going to be
3727 * removed.
3728 */
3729 mutex_unlock(&trans->transaction->cache_write_mutex);
3730 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3731 }
b58d1a9e 3732 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3733
3734 /*
3735 * go through delayed refs for all the stuff we've just kicked off
3736 * and then loop back (just once)
3737 */
2ff7e61e 3738 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1bbc621e
CM
3739 if (!ret && loops == 0) {
3740 loops++;
3741 spin_lock(&cur_trans->dirty_bgs_lock);
3742 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3743 /*
3744 * dirty_bgs_lock protects us from concurrent block group
3745 * deletes too (not just cache_write_mutex).
3746 */
3747 if (!list_empty(&dirty)) {
3748 spin_unlock(&cur_trans->dirty_bgs_lock);
3749 goto again;
3750 }
1bbc621e 3751 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3752 } else if (ret < 0) {
2ff7e61e 3753 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3754 }
3755
3756 btrfs_free_path(path);
3757 return ret;
3758}
3759
3760int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3761 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3762{
3763 struct btrfs_block_group_cache *cache;
3764 struct btrfs_transaction *cur_trans = trans->transaction;
3765 int ret = 0;
3766 int should_put;
3767 struct btrfs_path *path;
3768 struct list_head *io = &cur_trans->io_bgs;
3769 int num_started = 0;
9078a3e1
CM
3770
3771 path = btrfs_alloc_path();
3772 if (!path)
3773 return -ENOMEM;
3774
ce93ec54 3775 /*
e44081ef
FM
3776 * Even though we are in the critical section of the transaction commit,
3777 * we can still have concurrent tasks adding elements to this
3778 * transaction's list of dirty block groups. These tasks correspond to
3779 * endio free space workers started when writeback finishes for a
3780 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3781 * allocate new block groups as a result of COWing nodes of the root
3782 * tree when updating the free space inode. The writeback for the space
3783 * caches is triggered by an earlier call to
3784 * btrfs_start_dirty_block_groups() and iterations of the following
3785 * loop.
3786 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3787 * delayed refs to make sure we have the best chance at doing this all
3788 * in one shot.
3789 */
e44081ef 3790 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3791 while (!list_empty(&cur_trans->dirty_bgs)) {
3792 cache = list_first_entry(&cur_trans->dirty_bgs,
3793 struct btrfs_block_group_cache,
3794 dirty_list);
c9dc4c65
CM
3795
3796 /*
3797 * this can happen if cache_save_setup re-dirties a block
3798 * group that is already under IO. Just wait for it to
3799 * finish and then do it all again
3800 */
3801 if (!list_empty(&cache->io_list)) {
e44081ef 3802 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3803 list_del_init(&cache->io_list);
afdb5718 3804 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3805 btrfs_put_block_group(cache);
e44081ef 3806 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3807 }
3808
1bbc621e
CM
3809 /*
3810 * don't remove from the dirty list until after we've waited
3811 * on any pending IO
3812 */
ce93ec54 3813 list_del_init(&cache->dirty_list);
e44081ef 3814 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3815 should_put = 1;
3816
1bbc621e 3817 cache_save_setup(cache, trans, path);
c9dc4c65 3818
ce93ec54 3819 if (!ret)
2ff7e61e
JM
3820 ret = btrfs_run_delayed_refs(trans, fs_info,
3821 (unsigned long) -1);
c9dc4c65
CM
3822
3823 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3824 cache->io_ctl.inode = NULL;
0b246afa 3825 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3826 cache, path);
c9dc4c65
CM
3827 if (ret == 0 && cache->io_ctl.inode) {
3828 num_started++;
3829 should_put = 0;
1bbc621e 3830 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3831 } else {
3832 /*
3833 * if we failed to write the cache, the
3834 * generation will be bad and life goes on
3835 */
3836 ret = 0;
3837 }
3838 }
ff1f8250 3839 if (!ret) {
2ff7e61e
JM
3840 ret = write_one_cache_group(trans, fs_info,
3841 path, cache);
2bc0bb5f
FM
3842 /*
3843 * One of the free space endio workers might have
3844 * created a new block group while updating a free space
3845 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3846 * and hasn't released its transaction handle yet, in
3847 * which case the new block group is still attached to
3848 * its transaction handle and its creation has not
3849 * finished yet (no block group item in the extent tree
3850 * yet, etc). If this is the case, wait for all free
3851 * space endio workers to finish and retry. This is a
3852 * a very rare case so no need for a more efficient and
3853 * complex approach.
3854 */
3855 if (ret == -ENOENT) {
3856 wait_event(cur_trans->writer_wait,
3857 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3858 ret = write_one_cache_group(trans, fs_info,
3859 path, cache);
2bc0bb5f 3860 }
ff1f8250 3861 if (ret)
66642832 3862 btrfs_abort_transaction(trans, ret);
ff1f8250 3863 }
c9dc4c65
CM
3864
3865 /* if its not on the io list, we need to put the block group */
3866 if (should_put)
3867 btrfs_put_block_group(cache);
e44081ef 3868 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3869 }
e44081ef 3870 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3871
1bbc621e
CM
3872 while (!list_empty(io)) {
3873 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3874 io_list);
3875 list_del_init(&cache->io_list);
afdb5718 3876 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3877 btrfs_put_block_group(cache);
3878 }
3879
9078a3e1 3880 btrfs_free_path(path);
ce93ec54 3881 return ret;
9078a3e1
CM
3882}
3883
2ff7e61e 3884int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3885{
3886 struct btrfs_block_group_cache *block_group;
3887 int readonly = 0;
3888
0b246afa 3889 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3890 if (!block_group || block_group->ro)
3891 readonly = 1;
3892 if (block_group)
fa9c0d79 3893 btrfs_put_block_group(block_group);
d2fb3437
YZ
3894 return readonly;
3895}
3896
f78c436c
FM
3897bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3898{
3899 struct btrfs_block_group_cache *bg;
3900 bool ret = true;
3901
3902 bg = btrfs_lookup_block_group(fs_info, bytenr);
3903 if (!bg)
3904 return false;
3905
3906 spin_lock(&bg->lock);
3907 if (bg->ro)
3908 ret = false;
3909 else
3910 atomic_inc(&bg->nocow_writers);
3911 spin_unlock(&bg->lock);
3912
3913 /* no put on block group, done by btrfs_dec_nocow_writers */
3914 if (!ret)
3915 btrfs_put_block_group(bg);
3916
3917 return ret;
3918
3919}
3920
3921void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3922{
3923 struct btrfs_block_group_cache *bg;
3924
3925 bg = btrfs_lookup_block_group(fs_info, bytenr);
3926 ASSERT(bg);
3927 if (atomic_dec_and_test(&bg->nocow_writers))
3928 wake_up_atomic_t(&bg->nocow_writers);
3929 /*
3930 * Once for our lookup and once for the lookup done by a previous call
3931 * to btrfs_inc_nocow_writers()
3932 */
3933 btrfs_put_block_group(bg);
3934 btrfs_put_block_group(bg);
3935}
3936
3937static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3938{
3939 schedule();
3940 return 0;
3941}
3942
3943void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3944{
3945 wait_on_atomic_t(&bg->nocow_writers,
3946 btrfs_wait_nocow_writers_atomic_t,
3947 TASK_UNINTERRUPTIBLE);
3948}
3949
6ab0a202
JM
3950static const char *alloc_name(u64 flags)
3951{
3952 switch (flags) {
3953 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3954 return "mixed";
3955 case BTRFS_BLOCK_GROUP_METADATA:
3956 return "metadata";
3957 case BTRFS_BLOCK_GROUP_DATA:
3958 return "data";
3959 case BTRFS_BLOCK_GROUP_SYSTEM:
3960 return "system";
3961 default:
3962 WARN_ON(1);
3963 return "invalid-combination";
3964 };
3965}
3966
2be12ef7
NB
3967static int create_space_info(struct btrfs_fs_info *info, u64 flags,
3968 struct btrfs_space_info **new)
3969{
3970
3971 struct btrfs_space_info *space_info;
3972 int i;
3973 int ret;
3974
3975 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3976 if (!space_info)
3977 return -ENOMEM;
3978
3979 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3980 GFP_KERNEL);
3981 if (ret) {
3982 kfree(space_info);
3983 return ret;
3984 }
3985
3986 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3987 INIT_LIST_HEAD(&space_info->block_groups[i]);
3988 init_rwsem(&space_info->groups_sem);
3989 spin_lock_init(&space_info->lock);
3990 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3991 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3992 init_waitqueue_head(&space_info->wait);
3993 INIT_LIST_HEAD(&space_info->ro_bgs);
3994 INIT_LIST_HEAD(&space_info->tickets);
3995 INIT_LIST_HEAD(&space_info->priority_tickets);
3996
3997 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3998 info->space_info_kobj, "%s",
3999 alloc_name(space_info->flags));
4000 if (ret) {
4001 percpu_counter_destroy(&space_info->total_bytes_pinned);
4002 kfree(space_info);
4003 return ret;
4004 }
4005
4006 *new = space_info;
4007 list_add_rcu(&space_info->list, &info->space_info);
4008 if (flags & BTRFS_BLOCK_GROUP_DATA)
4009 info->data_sinfo = space_info;
4010
4011 return ret;
4012}
4013
d2006e6d 4014static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4015 u64 total_bytes, u64 bytes_used,
e40edf2d 4016 u64 bytes_readonly,
593060d7
CM
4017 struct btrfs_space_info **space_info)
4018{
4019 struct btrfs_space_info *found;
b742bb82
YZ
4020 int factor;
4021
4022 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4023 BTRFS_BLOCK_GROUP_RAID10))
4024 factor = 2;
4025 else
4026 factor = 1;
593060d7
CM
4027
4028 found = __find_space_info(info, flags);
d2006e6d
NB
4029 ASSERT(found);
4030 spin_lock(&found->lock);
4031 found->total_bytes += total_bytes;
4032 found->disk_total += total_bytes * factor;
4033 found->bytes_used += bytes_used;
4034 found->disk_used += bytes_used * factor;
4035 found->bytes_readonly += bytes_readonly;
4036 if (total_bytes > 0)
4037 found->full = 0;
4038 space_info_add_new_bytes(info, found, total_bytes -
4039 bytes_used - bytes_readonly);
4040 spin_unlock(&found->lock);
4041 *space_info = found;
593060d7
CM
4042}
4043
8790d502
CM
4044static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4045{
899c81ea
ID
4046 u64 extra_flags = chunk_to_extended(flags) &
4047 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4048
de98ced9 4049 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4050 if (flags & BTRFS_BLOCK_GROUP_DATA)
4051 fs_info->avail_data_alloc_bits |= extra_flags;
4052 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4053 fs_info->avail_metadata_alloc_bits |= extra_flags;
4054 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4055 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4056 write_sequnlock(&fs_info->profiles_lock);
8790d502 4057}
593060d7 4058
fc67c450
ID
4059/*
4060 * returns target flags in extended format or 0 if restripe for this
4061 * chunk_type is not in progress
c6664b42
ID
4062 *
4063 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4064 */
4065static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4066{
4067 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4068 u64 target = 0;
4069
fc67c450
ID
4070 if (!bctl)
4071 return 0;
4072
4073 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4074 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4075 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4076 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4077 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4078 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4079 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4080 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4081 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4082 }
4083
4084 return target;
4085}
4086
a46d11a8
ID
4087/*
4088 * @flags: available profiles in extended format (see ctree.h)
4089 *
e4d8ec0f
ID
4090 * Returns reduced profile in chunk format. If profile changing is in
4091 * progress (either running or paused) picks the target profile (if it's
4092 * already available), otherwise falls back to plain reducing.
a46d11a8 4093 */
2ff7e61e 4094static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4095{
0b246afa 4096 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4097 u64 target;
9c170b26
ZL
4098 u64 raid_type;
4099 u64 allowed = 0;
a061fc8d 4100
fc67c450
ID
4101 /*
4102 * see if restripe for this chunk_type is in progress, if so
4103 * try to reduce to the target profile
4104 */
0b246afa
JM
4105 spin_lock(&fs_info->balance_lock);
4106 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4107 if (target) {
4108 /* pick target profile only if it's already available */
4109 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4110 spin_unlock(&fs_info->balance_lock);
fc67c450 4111 return extended_to_chunk(target);
e4d8ec0f
ID
4112 }
4113 }
0b246afa 4114 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4115
53b381b3 4116 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4117 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4118 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4119 allowed |= btrfs_raid_group[raid_type];
4120 }
4121 allowed &= flags;
4122
4123 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4124 allowed = BTRFS_BLOCK_GROUP_RAID6;
4125 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4126 allowed = BTRFS_BLOCK_GROUP_RAID5;
4127 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4128 allowed = BTRFS_BLOCK_GROUP_RAID10;
4129 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4130 allowed = BTRFS_BLOCK_GROUP_RAID1;
4131 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4132 allowed = BTRFS_BLOCK_GROUP_RAID0;
4133
4134 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4135
4136 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4137}
4138
2ff7e61e 4139static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4140{
de98ced9 4141 unsigned seq;
f8213bdc 4142 u64 flags;
de98ced9
MX
4143
4144 do {
f8213bdc 4145 flags = orig_flags;
0b246afa 4146 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4147
4148 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4149 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4150 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4151 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4152 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4153 flags |= fs_info->avail_metadata_alloc_bits;
4154 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4155
2ff7e61e 4156 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4157}
4158
1b86826d 4159static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4160{
0b246afa 4161 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4162 u64 flags;
53b381b3 4163 u64 ret;
9ed74f2d 4164
b742bb82
YZ
4165 if (data)
4166 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4167 else if (root == fs_info->chunk_root)
b742bb82 4168 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4169 else
b742bb82 4170 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4171
2ff7e61e 4172 ret = get_alloc_profile(fs_info, flags);
53b381b3 4173 return ret;
6a63209f 4174}
9ed74f2d 4175
1b86826d
JM
4176u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4177{
4178 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4179}
4180
4181u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4182{
4183 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4184}
4185
4186u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4187{
4188 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4189}
4190
4136135b
LB
4191static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4192 bool may_use_included)
4193{
4194 ASSERT(s_info);
4195 return s_info->bytes_used + s_info->bytes_reserved +
4196 s_info->bytes_pinned + s_info->bytes_readonly +
4197 (may_use_included ? s_info->bytes_may_use : 0);
4198}
4199
04f4f916 4200int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4201{
6a63209f 4202 struct btrfs_space_info *data_sinfo;
04f4f916 4203 struct btrfs_root *root = inode->root;
b4d7c3c9 4204 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4205 u64 used;
94b947b2 4206 int ret = 0;
c99f1b0c
ZL
4207 int need_commit = 2;
4208 int have_pinned_space;
6a63209f 4209
6a63209f 4210 /* make sure bytes are sectorsize aligned */
0b246afa 4211 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4212
9dced186 4213 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4214 need_commit = 0;
9dced186 4215 ASSERT(current->journal_info);
0af3d00b
JB
4216 }
4217
b4d7c3c9 4218 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4219 if (!data_sinfo)
4220 goto alloc;
9ed74f2d 4221
6a63209f
JB
4222again:
4223 /* make sure we have enough space to handle the data first */
4224 spin_lock(&data_sinfo->lock);
4136135b 4225 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4226
4227 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4228 struct btrfs_trans_handle *trans;
9ed74f2d 4229
6a63209f
JB
4230 /*
4231 * if we don't have enough free bytes in this space then we need
4232 * to alloc a new chunk.
4233 */
b9fd47cd 4234 if (!data_sinfo->full) {
6a63209f 4235 u64 alloc_target;
9ed74f2d 4236
0e4f8f88 4237 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4238 spin_unlock(&data_sinfo->lock);
33b4d47f 4239alloc:
1b86826d 4240 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4241 /*
4242 * It is ugly that we don't call nolock join
4243 * transaction for the free space inode case here.
4244 * But it is safe because we only do the data space
4245 * reservation for the free space cache in the
4246 * transaction context, the common join transaction
4247 * just increase the counter of the current transaction
4248 * handler, doesn't try to acquire the trans_lock of
4249 * the fs.
4250 */
7a7eaa40 4251 trans = btrfs_join_transaction(root);
a22285a6
YZ
4252 if (IS_ERR(trans))
4253 return PTR_ERR(trans);
9ed74f2d 4254
2ff7e61e 4255 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4256 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4257 btrfs_end_transaction(trans);
d52a5b5f
MX
4258 if (ret < 0) {
4259 if (ret != -ENOSPC)
4260 return ret;
c99f1b0c
ZL
4261 else {
4262 have_pinned_space = 1;
d52a5b5f 4263 goto commit_trans;
c99f1b0c 4264 }
d52a5b5f 4265 }
9ed74f2d 4266
b4d7c3c9
LZ
4267 if (!data_sinfo)
4268 data_sinfo = fs_info->data_sinfo;
4269
6a63209f
JB
4270 goto again;
4271 }
f2bb8f5c
JB
4272
4273 /*
b150a4f1 4274 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4275 * allocation, and no removed chunk in current transaction,
4276 * don't bother committing the transaction.
f2bb8f5c 4277 */
c99f1b0c
ZL
4278 have_pinned_space = percpu_counter_compare(
4279 &data_sinfo->total_bytes_pinned,
4280 used + bytes - data_sinfo->total_bytes);
6a63209f 4281 spin_unlock(&data_sinfo->lock);
6a63209f 4282
4e06bdd6 4283 /* commit the current transaction and try again */
d52a5b5f 4284commit_trans:
c99f1b0c 4285 if (need_commit &&
0b246afa 4286 !atomic_read(&fs_info->open_ioctl_trans)) {
c99f1b0c 4287 need_commit--;
b150a4f1 4288
e1746e83
ZL
4289 if (need_commit > 0) {
4290 btrfs_start_delalloc_roots(fs_info, 0, -1);
6374e57a 4291 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4292 (u64)-1);
e1746e83 4293 }
9a4e7276 4294
7a7eaa40 4295 trans = btrfs_join_transaction(root);
a22285a6
YZ
4296 if (IS_ERR(trans))
4297 return PTR_ERR(trans);
c99f1b0c 4298 if (have_pinned_space >= 0 ||
3204d33c
JB
4299 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4300 &trans->transaction->flags) ||
c99f1b0c 4301 need_commit > 0) {
3a45bb20 4302 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4303 if (ret)
4304 return ret;
d7c15171 4305 /*
c2d6cb16
FM
4306 * The cleaner kthread might still be doing iput
4307 * operations. Wait for it to finish so that
4308 * more space is released.
d7c15171 4309 */
0b246afa
JM
4310 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4311 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4312 goto again;
4313 } else {
3a45bb20 4314 btrfs_end_transaction(trans);
94b947b2 4315 }
4e06bdd6 4316 }
9ed74f2d 4317
0b246afa 4318 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4319 "space_info:enospc",
4320 data_sinfo->flags, bytes, 1);
6a63209f
JB
4321 return -ENOSPC;
4322 }
4323 data_sinfo->bytes_may_use += bytes;
0b246afa 4324 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4325 data_sinfo->flags, bytes, 1);
6a63209f 4326 spin_unlock(&data_sinfo->lock);
6a63209f 4327
237c0e9f 4328 return ret;
9ed74f2d 4329}
6a63209f 4330
364ecf36
QW
4331int btrfs_check_data_free_space(struct inode *inode,
4332 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4333{
0b246afa 4334 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4335 int ret;
4336
4337 /* align the range */
0b246afa
JM
4338 len = round_up(start + len, fs_info->sectorsize) -
4339 round_down(start, fs_info->sectorsize);
4340 start = round_down(start, fs_info->sectorsize);
4ceff079 4341
04f4f916 4342 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4343 if (ret < 0)
4344 return ret;
4345
1e5ec2e7 4346 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4347 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4348 if (ret < 0)
1e5ec2e7 4349 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4350 else
4351 ret = 0;
4ceff079
QW
4352 return ret;
4353}
4354
4ceff079
QW
4355/*
4356 * Called if we need to clear a data reservation for this inode
4357 * Normally in a error case.
4358 *
51773bec
QW
4359 * This one will *NOT* use accurate qgroup reserved space API, just for case
4360 * which we can't sleep and is sure it won't affect qgroup reserved space.
4361 * Like clear_bit_hook().
4ceff079 4362 */
51773bec
QW
4363void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4364 u64 len)
4ceff079 4365{
0b246afa 4366 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4367 struct btrfs_space_info *data_sinfo;
4368
4369 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4370 len = round_up(start + len, fs_info->sectorsize) -
4371 round_down(start, fs_info->sectorsize);
4372 start = round_down(start, fs_info->sectorsize);
4ceff079 4373
0b246afa 4374 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4375 spin_lock(&data_sinfo->lock);
4376 if (WARN_ON(data_sinfo->bytes_may_use < len))
4377 data_sinfo->bytes_may_use = 0;
4378 else
4379 data_sinfo->bytes_may_use -= len;
0b246afa 4380 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4381 data_sinfo->flags, len, 0);
4382 spin_unlock(&data_sinfo->lock);
4383}
4384
51773bec
QW
4385/*
4386 * Called if we need to clear a data reservation for this inode
4387 * Normally in a error case.
4388 *
01327610 4389 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4390 * space framework.
4391 */
bc42bda2
QW
4392void btrfs_free_reserved_data_space(struct inode *inode,
4393 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4394{
0c476a5d
JM
4395 struct btrfs_root *root = BTRFS_I(inode)->root;
4396
4397 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4398 len = round_up(start + len, root->fs_info->sectorsize) -
4399 round_down(start, root->fs_info->sectorsize);
4400 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4401
51773bec 4402 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4403 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4404}
4405
97e728d4 4406static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4407{
97e728d4
JB
4408 struct list_head *head = &info->space_info;
4409 struct btrfs_space_info *found;
e3ccfa98 4410
97e728d4
JB
4411 rcu_read_lock();
4412 list_for_each_entry_rcu(found, head, list) {
4413 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4414 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4415 }
97e728d4 4416 rcu_read_unlock();
e3ccfa98
JB
4417}
4418
3c76cd84
MX
4419static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4420{
4421 return (global->size << 1);
4422}
4423
2ff7e61e 4424static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4425 struct btrfs_space_info *sinfo, int force)
32c00aff 4426{
0b246afa 4427 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
424499db 4428 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4429 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4430 u64 thresh;
e3ccfa98 4431
0e4f8f88
CM
4432 if (force == CHUNK_ALLOC_FORCE)
4433 return 1;
4434
fb25e914
JB
4435 /*
4436 * We need to take into account the global rsv because for all intents
4437 * and purposes it's used space. Don't worry about locking the
4438 * global_rsv, it doesn't change except when the transaction commits.
4439 */
54338b5c 4440 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4441 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4442
0e4f8f88
CM
4443 /*
4444 * in limited mode, we want to have some free space up to
4445 * about 1% of the FS size.
4446 */
4447 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4448 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4449 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4450
4451 if (num_bytes - num_allocated < thresh)
4452 return 1;
4453 }
0e4f8f88 4454
ee22184b 4455 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4456 return 0;
424499db 4457 return 1;
32c00aff
JB
4458}
4459
2ff7e61e 4460static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4461{
4462 u64 num_dev;
4463
53b381b3
DW
4464 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4465 BTRFS_BLOCK_GROUP_RAID0 |
4466 BTRFS_BLOCK_GROUP_RAID5 |
4467 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4468 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4469 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4470 num_dev = 2;
4471 else
4472 num_dev = 1; /* DUP or single */
4473
39c2d7fa 4474 return num_dev;
15d1ff81
LB
4475}
4476
39c2d7fa
FM
4477/*
4478 * If @is_allocation is true, reserve space in the system space info necessary
4479 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4480 * removing a chunk.
4481 */
4482void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4483 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4484{
4485 struct btrfs_space_info *info;
4486 u64 left;
4487 u64 thresh;
4fbcdf66 4488 int ret = 0;
39c2d7fa 4489 u64 num_devs;
4fbcdf66
FM
4490
4491 /*
4492 * Needed because we can end up allocating a system chunk and for an
4493 * atomic and race free space reservation in the chunk block reserve.
4494 */
0b246afa 4495 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
15d1ff81 4496
0b246afa 4497 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4498 spin_lock(&info->lock);
4136135b 4499 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4500 spin_unlock(&info->lock);
4501
2ff7e61e 4502 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4503
4504 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4505 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4506 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4507
0b246afa
JM
4508 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4509 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4510 left, thresh, type);
4511 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4512 }
4513
4514 if (left < thresh) {
1b86826d 4515 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4516
4fbcdf66
FM
4517 /*
4518 * Ignore failure to create system chunk. We might end up not
4519 * needing it, as we might not need to COW all nodes/leafs from
4520 * the paths we visit in the chunk tree (they were already COWed
4521 * or created in the current transaction for example).
4522 */
2ff7e61e 4523 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4524 }
4525
4526 if (!ret) {
0b246afa
JM
4527 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4528 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4529 thresh, BTRFS_RESERVE_NO_FLUSH);
4530 if (!ret)
4531 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4532 }
4533}
4534
28b737f6
LB
4535/*
4536 * If force is CHUNK_ALLOC_FORCE:
4537 * - return 1 if it successfully allocates a chunk,
4538 * - return errors including -ENOSPC otherwise.
4539 * If force is NOT CHUNK_ALLOC_FORCE:
4540 * - return 0 if it doesn't need to allocate a new chunk,
4541 * - return 1 if it successfully allocates a chunk,
4542 * - return errors including -ENOSPC otherwise.
4543 */
6324fbf3 4544static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4545 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4546{
6324fbf3 4547 struct btrfs_space_info *space_info;
6d74119f 4548 int wait_for_alloc = 0;
9ed74f2d 4549 int ret = 0;
9ed74f2d 4550
c6b305a8
JB
4551 /* Don't re-enter if we're already allocating a chunk */
4552 if (trans->allocating_chunk)
4553 return -ENOSPC;
4554
0b246afa 4555 space_info = __find_space_info(fs_info, flags);
593060d7 4556 if (!space_info) {
2be12ef7
NB
4557 ret = create_space_info(fs_info, flags, &space_info);
4558 if (ret)
4559 return ret;
9ed74f2d
JB
4560 }
4561
6d74119f 4562again:
25179201 4563 spin_lock(&space_info->lock);
9e622d6b 4564 if (force < space_info->force_alloc)
0e4f8f88 4565 force = space_info->force_alloc;
25179201 4566 if (space_info->full) {
2ff7e61e 4567 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4568 ret = -ENOSPC;
4569 else
4570 ret = 0;
25179201 4571 spin_unlock(&space_info->lock);
09fb99a6 4572 return ret;
9ed74f2d
JB
4573 }
4574
2ff7e61e 4575 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4576 spin_unlock(&space_info->lock);
6d74119f
JB
4577 return 0;
4578 } else if (space_info->chunk_alloc) {
4579 wait_for_alloc = 1;
4580 } else {
4581 space_info->chunk_alloc = 1;
9ed74f2d 4582 }
0e4f8f88 4583
25179201 4584 spin_unlock(&space_info->lock);
9ed74f2d 4585
6d74119f
JB
4586 mutex_lock(&fs_info->chunk_mutex);
4587
4588 /*
4589 * The chunk_mutex is held throughout the entirety of a chunk
4590 * allocation, so once we've acquired the chunk_mutex we know that the
4591 * other guy is done and we need to recheck and see if we should
4592 * allocate.
4593 */
4594 if (wait_for_alloc) {
4595 mutex_unlock(&fs_info->chunk_mutex);
4596 wait_for_alloc = 0;
4597 goto again;
4598 }
4599
c6b305a8
JB
4600 trans->allocating_chunk = true;
4601
67377734
JB
4602 /*
4603 * If we have mixed data/metadata chunks we want to make sure we keep
4604 * allocating mixed chunks instead of individual chunks.
4605 */
4606 if (btrfs_mixed_space_info(space_info))
4607 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4608
97e728d4
JB
4609 /*
4610 * if we're doing a data chunk, go ahead and make sure that
4611 * we keep a reasonable number of metadata chunks allocated in the
4612 * FS as well.
4613 */
9ed74f2d 4614 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4615 fs_info->data_chunk_allocations++;
4616 if (!(fs_info->data_chunk_allocations %
4617 fs_info->metadata_ratio))
4618 force_metadata_allocation(fs_info);
9ed74f2d
JB
4619 }
4620
15d1ff81
LB
4621 /*
4622 * Check if we have enough space in SYSTEM chunk because we may need
4623 * to update devices.
4624 */
2ff7e61e 4625 check_system_chunk(trans, fs_info, flags);
15d1ff81 4626
2ff7e61e 4627 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4628 trans->allocating_chunk = false;
92b8e897 4629
9ed74f2d 4630 spin_lock(&space_info->lock);
a81cb9a2
AO
4631 if (ret < 0 && ret != -ENOSPC)
4632 goto out;
9ed74f2d 4633 if (ret)
6324fbf3 4634 space_info->full = 1;
424499db
YZ
4635 else
4636 ret = 1;
6d74119f 4637
0e4f8f88 4638 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4639out:
6d74119f 4640 space_info->chunk_alloc = 0;
9ed74f2d 4641 spin_unlock(&space_info->lock);
a25c75d5 4642 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4643 /*
4644 * When we allocate a new chunk we reserve space in the chunk block
4645 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4646 * add new nodes/leafs to it if we end up needing to do it when
4647 * inserting the chunk item and updating device items as part of the
4648 * second phase of chunk allocation, performed by
4649 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4650 * large number of new block groups to create in our transaction
4651 * handle's new_bgs list to avoid exhausting the chunk block reserve
4652 * in extreme cases - like having a single transaction create many new
4653 * block groups when starting to write out the free space caches of all
4654 * the block groups that were made dirty during the lifetime of the
4655 * transaction.
4656 */
d9a0540a 4657 if (trans->can_flush_pending_bgs &&
ee22184b 4658 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
2ff7e61e 4659 btrfs_create_pending_block_groups(trans, fs_info);
00d80e34
FM
4660 btrfs_trans_release_chunk_metadata(trans);
4661 }
0f9dd46c 4662 return ret;
6324fbf3 4663}
9ed74f2d 4664
c1c4919b 4665static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4666 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4667 enum btrfs_reserve_flush_enum flush,
4668 bool system_chunk)
a80c8dcf 4669{
0b246afa 4670 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4671 u64 profile;
3c76cd84 4672 u64 space_size;
a80c8dcf
JB
4673 u64 avail;
4674 u64 used;
4675
957780eb
JB
4676 /* Don't overcommit when in mixed mode. */
4677 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4678 return 0;
4679
c1c4919b
JM
4680 if (system_chunk)
4681 profile = btrfs_system_alloc_profile(fs_info);
4682 else
4683 profile = btrfs_metadata_alloc_profile(fs_info);
4684
4136135b 4685 used = btrfs_space_info_used(space_info, false);
96f1bb57 4686
96f1bb57
JB
4687 /*
4688 * We only want to allow over committing if we have lots of actual space
4689 * free, but if we don't have enough space to handle the global reserve
4690 * space then we could end up having a real enospc problem when trying
4691 * to allocate a chunk or some other such important allocation.
4692 */
3c76cd84
MX
4693 spin_lock(&global_rsv->lock);
4694 space_size = calc_global_rsv_need_space(global_rsv);
4695 spin_unlock(&global_rsv->lock);
4696 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4697 return 0;
4698
4699 used += space_info->bytes_may_use;
a80c8dcf 4700
a5ed45f8 4701 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4702
4703 /*
4704 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4705 * space is actually useable. For raid56, the space info used
4706 * doesn't include the parity drive, so we don't have to
4707 * change the math
a80c8dcf
JB
4708 */
4709 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4710 BTRFS_BLOCK_GROUP_RAID1 |
4711 BTRFS_BLOCK_GROUP_RAID10))
4712 avail >>= 1;
4713
4714 /*
561c294d
MX
4715 * If we aren't flushing all things, let us overcommit up to
4716 * 1/2th of the space. If we can flush, don't let us overcommit
4717 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4718 */
08e007d2 4719 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4720 avail >>= 3;
a80c8dcf 4721 else
14575aef 4722 avail >>= 1;
a80c8dcf 4723
14575aef 4724 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4725 return 1;
4726 return 0;
4727}
4728
2ff7e61e 4729static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4730 unsigned long nr_pages, int nr_items)
da633a42 4731{
0b246afa 4732 struct super_block *sb = fs_info->sb;
da633a42 4733
925a6efb
JB
4734 if (down_read_trylock(&sb->s_umount)) {
4735 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4736 up_read(&sb->s_umount);
4737 } else {
da633a42
MX
4738 /*
4739 * We needn't worry the filesystem going from r/w to r/o though
4740 * we don't acquire ->s_umount mutex, because the filesystem
4741 * should guarantee the delalloc inodes list be empty after
4742 * the filesystem is readonly(all dirty pages are written to
4743 * the disk).
4744 */
0b246afa 4745 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
98ad69cf 4746 if (!current->journal_info)
0b246afa 4747 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4748 }
4749}
4750
6374e57a 4751static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4752 u64 to_reclaim)
18cd8ea6
MX
4753{
4754 u64 bytes;
6374e57a 4755 u64 nr;
18cd8ea6 4756
2ff7e61e 4757 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4758 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4759 if (!nr)
4760 nr = 1;
4761 return nr;
4762}
4763
ee22184b 4764#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4765
9ed74f2d 4766/*
5da9d01b 4767 * shrink metadata reservation for delalloc
9ed74f2d 4768 */
c1c4919b
JM
4769static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4770 u64 orig, bool wait_ordered)
5da9d01b 4771{
0ca1f7ce 4772 struct btrfs_block_rsv *block_rsv;
0019f10d 4773 struct btrfs_space_info *space_info;
663350ac 4774 struct btrfs_trans_handle *trans;
f4c738c2 4775 u64 delalloc_bytes;
5da9d01b 4776 u64 max_reclaim;
6374e57a 4777 u64 items;
b1953bce 4778 long time_left;
d3ee29e3
MX
4779 unsigned long nr_pages;
4780 int loops;
08e007d2 4781 enum btrfs_reserve_flush_enum flush;
5da9d01b 4782
c61a16a7 4783 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4784 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4785 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4786
663350ac 4787 trans = (struct btrfs_trans_handle *)current->journal_info;
0b246afa 4788 block_rsv = &fs_info->delalloc_block_rsv;
0019f10d 4789 space_info = block_rsv->space_info;
bf9022e0 4790
963d678b 4791 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4792 &fs_info->delalloc_bytes);
f4c738c2 4793 if (delalloc_bytes == 0) {
fdb5effd 4794 if (trans)
f4c738c2 4795 return;
38c135af 4796 if (wait_ordered)
0b246afa 4797 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4798 return;
fdb5effd
JB
4799 }
4800
d3ee29e3 4801 loops = 0;
f4c738c2
JB
4802 while (delalloc_bytes && loops < 3) {
4803 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4804 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4805 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4806 /*
4807 * We need to wait for the async pages to actually start before
4808 * we do anything.
4809 */
0b246afa 4810 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4811 if (!max_reclaim)
4812 goto skip_async;
4813
4814 if (max_reclaim <= nr_pages)
4815 max_reclaim = 0;
4816 else
4817 max_reclaim -= nr_pages;
dea31f52 4818
0b246afa
JM
4819 wait_event(fs_info->async_submit_wait,
4820 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4821 (int)max_reclaim);
4822skip_async:
08e007d2
MX
4823 if (!trans)
4824 flush = BTRFS_RESERVE_FLUSH_ALL;
4825 else
4826 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4827 spin_lock(&space_info->lock);
957780eb
JB
4828 if (list_empty(&space_info->tickets) &&
4829 list_empty(&space_info->priority_tickets)) {
4830 spin_unlock(&space_info->lock);
4831 break;
4832 }
0019f10d 4833 spin_unlock(&space_info->lock);
5da9d01b 4834
36e39c40 4835 loops++;
f104d044 4836 if (wait_ordered && !trans) {
0b246afa 4837 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4838 } else {
f4c738c2 4839 time_left = schedule_timeout_killable(1);
f104d044
JB
4840 if (time_left)
4841 break;
4842 }
963d678b 4843 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4844 &fs_info->delalloc_bytes);
5da9d01b 4845 }
5da9d01b
YZ
4846}
4847
663350ac
JB
4848/**
4849 * maybe_commit_transaction - possibly commit the transaction if its ok to
4850 * @root - the root we're allocating for
4851 * @bytes - the number of bytes we want to reserve
4852 * @force - force the commit
8bb8ab2e 4853 *
663350ac
JB
4854 * This will check to make sure that committing the transaction will actually
4855 * get us somewhere and then commit the transaction if it does. Otherwise it
4856 * will return -ENOSPC.
8bb8ab2e 4857 */
0c9ab349 4858static int may_commit_transaction(struct btrfs_fs_info *fs_info,
663350ac
JB
4859 struct btrfs_space_info *space_info,
4860 u64 bytes, int force)
4861{
0b246afa 4862 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac
JB
4863 struct btrfs_trans_handle *trans;
4864
4865 trans = (struct btrfs_trans_handle *)current->journal_info;
4866 if (trans)
4867 return -EAGAIN;
4868
4869 if (force)
4870 goto commit;
4871
4872 /* See if there is enough pinned space to make this reservation */
b150a4f1 4873 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4874 bytes) >= 0)
663350ac 4875 goto commit;
663350ac
JB
4876
4877 /*
4878 * See if there is some space in the delayed insertion reservation for
4879 * this reservation.
4880 */
4881 if (space_info != delayed_rsv->space_info)
4882 return -ENOSPC;
4883
4884 spin_lock(&delayed_rsv->lock);
b150a4f1 4885 if (percpu_counter_compare(&space_info->total_bytes_pinned,
28785f70 4886 bytes - delayed_rsv->size) < 0) {
663350ac
JB
4887 spin_unlock(&delayed_rsv->lock);
4888 return -ENOSPC;
4889 }
4890 spin_unlock(&delayed_rsv->lock);
4891
4892commit:
a9b3311e 4893 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4894 if (IS_ERR(trans))
4895 return -ENOSPC;
4896
3a45bb20 4897 return btrfs_commit_transaction(trans);
663350ac
JB
4898}
4899
957780eb
JB
4900struct reserve_ticket {
4901 u64 bytes;
4902 int error;
4903 struct list_head list;
4904 wait_queue_head_t wait;
96c3f433
JB
4905};
4906
0c9ab349 4907static int flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4908 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4909 int state)
96c3f433 4910{
a9b3311e 4911 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4912 struct btrfs_trans_handle *trans;
4913 int nr;
f4c738c2 4914 int ret = 0;
96c3f433
JB
4915
4916 switch (state) {
96c3f433
JB
4917 case FLUSH_DELAYED_ITEMS_NR:
4918 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4919 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4920 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4921 else
96c3f433 4922 nr = -1;
18cd8ea6 4923
96c3f433
JB
4924 trans = btrfs_join_transaction(root);
4925 if (IS_ERR(trans)) {
4926 ret = PTR_ERR(trans);
4927 break;
4928 }
2ff7e61e 4929 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
3a45bb20 4930 btrfs_end_transaction(trans);
96c3f433 4931 break;
67b0fd63
JB
4932 case FLUSH_DELALLOC:
4933 case FLUSH_DELALLOC_WAIT:
7bdd6277 4934 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4935 state == FLUSH_DELALLOC_WAIT);
4936 break;
ea658bad
JB
4937 case ALLOC_CHUNK:
4938 trans = btrfs_join_transaction(root);
4939 if (IS_ERR(trans)) {
4940 ret = PTR_ERR(trans);
4941 break;
4942 }
2ff7e61e 4943 ret = do_chunk_alloc(trans, fs_info,
1b86826d 4944 btrfs_metadata_alloc_profile(fs_info),
ea658bad 4945 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4946 btrfs_end_transaction(trans);
eecba891 4947 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4948 ret = 0;
4949 break;
96c3f433 4950 case COMMIT_TRANS:
0c9ab349 4951 ret = may_commit_transaction(fs_info, space_info,
7bdd6277 4952 num_bytes, 0);
96c3f433
JB
4953 break;
4954 default:
4955 ret = -ENOSPC;
4956 break;
4957 }
4958
7bdd6277
NB
4959 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4960 ret);
96c3f433
JB
4961 return ret;
4962}
21c7e756
MX
4963
4964static inline u64
c1c4919b
JM
4965btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4966 struct btrfs_space_info *space_info,
4967 bool system_chunk)
21c7e756 4968{
957780eb 4969 struct reserve_ticket *ticket;
21c7e756
MX
4970 u64 used;
4971 u64 expected;
957780eb 4972 u64 to_reclaim = 0;
21c7e756 4973
957780eb
JB
4974 list_for_each_entry(ticket, &space_info->tickets, list)
4975 to_reclaim += ticket->bytes;
4976 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4977 to_reclaim += ticket->bytes;
4978 if (to_reclaim)
4979 return to_reclaim;
21c7e756 4980
e0af2484 4981 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
4982 if (can_overcommit(fs_info, space_info, to_reclaim,
4983 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
4984 return 0;
4985
0eee8a49
NB
4986 used = btrfs_space_info_used(space_info, true);
4987
c1c4919b
JM
4988 if (can_overcommit(fs_info, space_info, SZ_1M,
4989 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
4990 expected = div_factor_fine(space_info->total_bytes, 95);
4991 else
4992 expected = div_factor_fine(space_info->total_bytes, 90);
4993
4994 if (used > expected)
4995 to_reclaim = used - expected;
4996 else
4997 to_reclaim = 0;
4998 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4999 space_info->bytes_reserved);
21c7e756
MX
5000 return to_reclaim;
5001}
5002
c1c4919b
JM
5003static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5004 struct btrfs_space_info *space_info,
5005 u64 used, bool system_chunk)
21c7e756 5006{
365c5313
JB
5007 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5008
5009 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5010 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5011 return 0;
5012
c1c4919b
JM
5013 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5014 system_chunk))
d38b349c
JB
5015 return 0;
5016
0b246afa
JM
5017 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5018 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5019}
5020
957780eb 5021static void wake_all_tickets(struct list_head *head)
21c7e756 5022{
957780eb 5023 struct reserve_ticket *ticket;
25ce459c 5024
957780eb
JB
5025 while (!list_empty(head)) {
5026 ticket = list_first_entry(head, struct reserve_ticket, list);
5027 list_del_init(&ticket->list);
5028 ticket->error = -ENOSPC;
5029 wake_up(&ticket->wait);
21c7e756 5030 }
21c7e756
MX
5031}
5032
957780eb
JB
5033/*
5034 * This is for normal flushers, we can wait all goddamned day if we want to. We
5035 * will loop and continuously try to flush as long as we are making progress.
5036 * We count progress as clearing off tickets each time we have to loop.
5037 */
21c7e756
MX
5038static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5039{
5040 struct btrfs_fs_info *fs_info;
5041 struct btrfs_space_info *space_info;
5042 u64 to_reclaim;
5043 int flush_state;
957780eb 5044 int commit_cycles = 0;
ce129655 5045 u64 last_tickets_id;
21c7e756
MX
5046
5047 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5048 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5049
957780eb 5050 spin_lock(&space_info->lock);
c1c4919b
JM
5051 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5052 false);
957780eb
JB
5053 if (!to_reclaim) {
5054 space_info->flush = 0;
5055 spin_unlock(&space_info->lock);
21c7e756 5056 return;
957780eb 5057 }
ce129655 5058 last_tickets_id = space_info->tickets_id;
957780eb 5059 spin_unlock(&space_info->lock);
21c7e756
MX
5060
5061 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb
JB
5062 do {
5063 struct reserve_ticket *ticket;
5064 int ret;
5065
7bdd6277 5066 ret = flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5067 spin_lock(&space_info->lock);
5068 if (list_empty(&space_info->tickets)) {
5069 space_info->flush = 0;
5070 spin_unlock(&space_info->lock);
5071 return;
5072 }
c1c4919b
JM
5073 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5074 space_info,
5075 false);
957780eb
JB
5076 ticket = list_first_entry(&space_info->tickets,
5077 struct reserve_ticket, list);
ce129655 5078 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5079 flush_state++;
5080 } else {
ce129655 5081 last_tickets_id = space_info->tickets_id;
957780eb
JB
5082 flush_state = FLUSH_DELAYED_ITEMS_NR;
5083 if (commit_cycles)
5084 commit_cycles--;
5085 }
5086
5087 if (flush_state > COMMIT_TRANS) {
5088 commit_cycles++;
5089 if (commit_cycles > 2) {
5090 wake_all_tickets(&space_info->tickets);
5091 space_info->flush = 0;
5092 } else {
5093 flush_state = FLUSH_DELAYED_ITEMS_NR;
5094 }
5095 }
5096 spin_unlock(&space_info->lock);
5097 } while (flush_state <= COMMIT_TRANS);
5098}
5099
5100void btrfs_init_async_reclaim_work(struct work_struct *work)
5101{
5102 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5103}
5104
5105static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5106 struct btrfs_space_info *space_info,
5107 struct reserve_ticket *ticket)
5108{
5109 u64 to_reclaim;
5110 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5111
5112 spin_lock(&space_info->lock);
c1c4919b
JM
5113 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5114 false);
957780eb
JB
5115 if (!to_reclaim) {
5116 spin_unlock(&space_info->lock);
5117 return;
5118 }
5119 spin_unlock(&space_info->lock);
5120
21c7e756 5121 do {
7bdd6277 5122 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5123 flush_state++;
957780eb
JB
5124 spin_lock(&space_info->lock);
5125 if (ticket->bytes == 0) {
5126 spin_unlock(&space_info->lock);
21c7e756 5127 return;
957780eb
JB
5128 }
5129 spin_unlock(&space_info->lock);
5130
5131 /*
5132 * Priority flushers can't wait on delalloc without
5133 * deadlocking.
5134 */
5135 if (flush_state == FLUSH_DELALLOC ||
5136 flush_state == FLUSH_DELALLOC_WAIT)
5137 flush_state = ALLOC_CHUNK;
365c5313 5138 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5139}
5140
957780eb
JB
5141static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5142 struct btrfs_space_info *space_info,
5143 struct reserve_ticket *ticket, u64 orig_bytes)
5144
21c7e756 5145{
957780eb
JB
5146 DEFINE_WAIT(wait);
5147 int ret = 0;
5148
5149 spin_lock(&space_info->lock);
5150 while (ticket->bytes > 0 && ticket->error == 0) {
5151 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5152 if (ret) {
5153 ret = -EINTR;
5154 break;
5155 }
5156 spin_unlock(&space_info->lock);
5157
5158 schedule();
5159
5160 finish_wait(&ticket->wait, &wait);
5161 spin_lock(&space_info->lock);
5162 }
5163 if (!ret)
5164 ret = ticket->error;
5165 if (!list_empty(&ticket->list))
5166 list_del_init(&ticket->list);
5167 if (ticket->bytes && ticket->bytes < orig_bytes) {
5168 u64 num_bytes = orig_bytes - ticket->bytes;
5169 space_info->bytes_may_use -= num_bytes;
5170 trace_btrfs_space_reservation(fs_info, "space_info",
5171 space_info->flags, num_bytes, 0);
5172 }
5173 spin_unlock(&space_info->lock);
5174
5175 return ret;
21c7e756
MX
5176}
5177
4a92b1b8
JB
5178/**
5179 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5180 * @root - the root we're allocating for
957780eb 5181 * @space_info - the space info we want to allocate from
4a92b1b8 5182 * @orig_bytes - the number of bytes we want
48fc7f7e 5183 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5184 *
01327610 5185 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5186 * with the block_rsv. If there is not enough space it will make an attempt to
5187 * flush out space to make room. It will do this by flushing delalloc if
5188 * possible or committing the transaction. If flush is 0 then no attempts to
5189 * regain reservations will be made and this will fail if there is not enough
5190 * space already.
8bb8ab2e 5191 */
c1c4919b 5192static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5193 struct btrfs_space_info *space_info,
5194 u64 orig_bytes,
c1c4919b
JM
5195 enum btrfs_reserve_flush_enum flush,
5196 bool system_chunk)
9ed74f2d 5197{
957780eb 5198 struct reserve_ticket ticket;
2bf64758 5199 u64 used;
8bb8ab2e 5200 int ret = 0;
9ed74f2d 5201
957780eb 5202 ASSERT(orig_bytes);
8ca17f0f 5203 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5204
8bb8ab2e 5205 spin_lock(&space_info->lock);
fdb5effd 5206 ret = -ENOSPC;
4136135b 5207 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5208
8bb8ab2e 5209 /*
957780eb
JB
5210 * If we have enough space then hooray, make our reservation and carry
5211 * on. If not see if we can overcommit, and if we can, hooray carry on.
5212 * If not things get more complicated.
8bb8ab2e 5213 */
957780eb
JB
5214 if (used + orig_bytes <= space_info->total_bytes) {
5215 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5216 trace_btrfs_space_reservation(fs_info, "space_info",
5217 space_info->flags, orig_bytes, 1);
957780eb 5218 ret = 0;
c1c4919b
JM
5219 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5220 system_chunk)) {
44734ed1 5221 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5222 trace_btrfs_space_reservation(fs_info, "space_info",
5223 space_info->flags, orig_bytes, 1);
44734ed1 5224 ret = 0;
2bf64758
JB
5225 }
5226
8bb8ab2e 5227 /*
957780eb
JB
5228 * If we couldn't make a reservation then setup our reservation ticket
5229 * and kick the async worker if it's not already running.
08e007d2 5230 *
957780eb
JB
5231 * If we are a priority flusher then we just need to add our ticket to
5232 * the list and we will do our own flushing further down.
8bb8ab2e 5233 */
72bcd99d 5234 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5235 ticket.bytes = orig_bytes;
5236 ticket.error = 0;
5237 init_waitqueue_head(&ticket.wait);
5238 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5239 list_add_tail(&ticket.list, &space_info->tickets);
5240 if (!space_info->flush) {
5241 space_info->flush = 1;
0b246afa 5242 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5243 space_info->flags,
5244 orig_bytes, flush,
5245 "enospc");
957780eb 5246 queue_work(system_unbound_wq,
c1c4919b 5247 &fs_info->async_reclaim_work);
957780eb
JB
5248 }
5249 } else {
5250 list_add_tail(&ticket.list,
5251 &space_info->priority_tickets);
5252 }
21c7e756
MX
5253 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5254 used += orig_bytes;
f6acfd50
JB
5255 /*
5256 * We will do the space reservation dance during log replay,
5257 * which means we won't have fs_info->fs_root set, so don't do
5258 * the async reclaim as we will panic.
5259 */
0b246afa 5260 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5261 need_do_async_reclaim(fs_info, space_info,
5262 used, system_chunk) &&
0b246afa
JM
5263 !work_busy(&fs_info->async_reclaim_work)) {
5264 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5265 orig_bytes, flush, "preempt");
21c7e756 5266 queue_work(system_unbound_wq,
0b246afa 5267 &fs_info->async_reclaim_work);
f376df2b 5268 }
8bb8ab2e 5269 }
f0486c68 5270 spin_unlock(&space_info->lock);
08e007d2 5271 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5272 return ret;
f0486c68 5273
957780eb 5274 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5275 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5276 orig_bytes);
08e007d2 5277
957780eb 5278 ret = 0;
0b246afa 5279 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5280 spin_lock(&space_info->lock);
5281 if (ticket.bytes) {
5282 if (ticket.bytes < orig_bytes) {
5283 u64 num_bytes = orig_bytes - ticket.bytes;
5284 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5285 trace_btrfs_space_reservation(fs_info, "space_info",
5286 space_info->flags,
5287 num_bytes, 0);
08e007d2 5288
957780eb
JB
5289 }
5290 list_del_init(&ticket.list);
5291 ret = -ENOSPC;
5292 }
5293 spin_unlock(&space_info->lock);
5294 ASSERT(list_empty(&ticket.list));
5295 return ret;
5296}
8bb8ab2e 5297
957780eb
JB
5298/**
5299 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5300 * @root - the root we're allocating for
5301 * @block_rsv - the block_rsv we're allocating for
5302 * @orig_bytes - the number of bytes we want
5303 * @flush - whether or not we can flush to make our reservation
5304 *
5305 * This will reserve orgi_bytes number of bytes from the space info associated
5306 * with the block_rsv. If there is not enough space it will make an attempt to
5307 * flush out space to make room. It will do this by flushing delalloc if
5308 * possible or committing the transaction. If flush is 0 then no attempts to
5309 * regain reservations will be made and this will fail if there is not enough
5310 * space already.
5311 */
5312static int reserve_metadata_bytes(struct btrfs_root *root,
5313 struct btrfs_block_rsv *block_rsv,
5314 u64 orig_bytes,
5315 enum btrfs_reserve_flush_enum flush)
5316{
0b246afa
JM
5317 struct btrfs_fs_info *fs_info = root->fs_info;
5318 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5319 int ret;
c1c4919b 5320 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5321
c1c4919b
JM
5322 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5323 orig_bytes, flush, system_chunk);
5d80366e
JB
5324 if (ret == -ENOSPC &&
5325 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5326 if (block_rsv != global_rsv &&
5327 !block_rsv_use_bytes(global_rsv, orig_bytes))
5328 ret = 0;
5329 }
cab45e22 5330 if (ret == -ENOSPC)
0b246afa 5331 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5332 block_rsv->space_info->flags,
5333 orig_bytes, 1);
f0486c68
YZ
5334 return ret;
5335}
5336
79787eaa
JM
5337static struct btrfs_block_rsv *get_block_rsv(
5338 const struct btrfs_trans_handle *trans,
5339 const struct btrfs_root *root)
f0486c68 5340{
0b246afa 5341 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5342 struct btrfs_block_rsv *block_rsv = NULL;
5343
e9cf439f 5344 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5345 (root == fs_info->csum_root && trans->adding_csums) ||
5346 (root == fs_info->uuid_root))
f7a81ea4
SB
5347 block_rsv = trans->block_rsv;
5348
4c13d758 5349 if (!block_rsv)
f0486c68
YZ
5350 block_rsv = root->block_rsv;
5351
5352 if (!block_rsv)
0b246afa 5353 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5354
5355 return block_rsv;
5356}
5357
5358static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5359 u64 num_bytes)
5360{
5361 int ret = -ENOSPC;
5362 spin_lock(&block_rsv->lock);
5363 if (block_rsv->reserved >= num_bytes) {
5364 block_rsv->reserved -= num_bytes;
5365 if (block_rsv->reserved < block_rsv->size)
5366 block_rsv->full = 0;
5367 ret = 0;
5368 }
5369 spin_unlock(&block_rsv->lock);
5370 return ret;
5371}
5372
5373static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5374 u64 num_bytes, int update_size)
5375{
5376 spin_lock(&block_rsv->lock);
5377 block_rsv->reserved += num_bytes;
5378 if (update_size)
5379 block_rsv->size += num_bytes;
5380 else if (block_rsv->reserved >= block_rsv->size)
5381 block_rsv->full = 1;
5382 spin_unlock(&block_rsv->lock);
5383}
5384
d52be818
JB
5385int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5386 struct btrfs_block_rsv *dest, u64 num_bytes,
5387 int min_factor)
5388{
5389 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5390 u64 min_bytes;
5391
5392 if (global_rsv->space_info != dest->space_info)
5393 return -ENOSPC;
5394
5395 spin_lock(&global_rsv->lock);
5396 min_bytes = div_factor(global_rsv->size, min_factor);
5397 if (global_rsv->reserved < min_bytes + num_bytes) {
5398 spin_unlock(&global_rsv->lock);
5399 return -ENOSPC;
5400 }
5401 global_rsv->reserved -= num_bytes;
5402 if (global_rsv->reserved < global_rsv->size)
5403 global_rsv->full = 0;
5404 spin_unlock(&global_rsv->lock);
5405
5406 block_rsv_add_bytes(dest, num_bytes, 1);
5407 return 0;
5408}
5409
957780eb
JB
5410/*
5411 * This is for space we already have accounted in space_info->bytes_may_use, so
5412 * basically when we're returning space from block_rsv's.
5413 */
5414static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5415 struct btrfs_space_info *space_info,
5416 u64 num_bytes)
5417{
5418 struct reserve_ticket *ticket;
5419 struct list_head *head;
5420 u64 used;
5421 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5422 bool check_overcommit = false;
5423
5424 spin_lock(&space_info->lock);
5425 head = &space_info->priority_tickets;
5426
5427 /*
5428 * If we are over our limit then we need to check and see if we can
5429 * overcommit, and if we can't then we just need to free up our space
5430 * and not satisfy any requests.
5431 */
0eee8a49 5432 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5433 if (used - num_bytes >= space_info->total_bytes)
5434 check_overcommit = true;
5435again:
5436 while (!list_empty(head) && num_bytes) {
5437 ticket = list_first_entry(head, struct reserve_ticket,
5438 list);
5439 /*
5440 * We use 0 bytes because this space is already reserved, so
5441 * adding the ticket space would be a double count.
5442 */
5443 if (check_overcommit &&
c1c4919b 5444 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5445 break;
5446 if (num_bytes >= ticket->bytes) {
5447 list_del_init(&ticket->list);
5448 num_bytes -= ticket->bytes;
5449 ticket->bytes = 0;
ce129655 5450 space_info->tickets_id++;
957780eb
JB
5451 wake_up(&ticket->wait);
5452 } else {
5453 ticket->bytes -= num_bytes;
5454 num_bytes = 0;
5455 }
5456 }
5457
5458 if (num_bytes && head == &space_info->priority_tickets) {
5459 head = &space_info->tickets;
5460 flush = BTRFS_RESERVE_FLUSH_ALL;
5461 goto again;
5462 }
5463 space_info->bytes_may_use -= num_bytes;
5464 trace_btrfs_space_reservation(fs_info, "space_info",
5465 space_info->flags, num_bytes, 0);
5466 spin_unlock(&space_info->lock);
5467}
5468
5469/*
5470 * This is for newly allocated space that isn't accounted in
5471 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5472 * we use this helper.
5473 */
5474static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5475 struct btrfs_space_info *space_info,
5476 u64 num_bytes)
5477{
5478 struct reserve_ticket *ticket;
5479 struct list_head *head = &space_info->priority_tickets;
5480
5481again:
5482 while (!list_empty(head) && num_bytes) {
5483 ticket = list_first_entry(head, struct reserve_ticket,
5484 list);
5485 if (num_bytes >= ticket->bytes) {
5486 trace_btrfs_space_reservation(fs_info, "space_info",
5487 space_info->flags,
5488 ticket->bytes, 1);
5489 list_del_init(&ticket->list);
5490 num_bytes -= ticket->bytes;
5491 space_info->bytes_may_use += ticket->bytes;
5492 ticket->bytes = 0;
ce129655 5493 space_info->tickets_id++;
957780eb
JB
5494 wake_up(&ticket->wait);
5495 } else {
5496 trace_btrfs_space_reservation(fs_info, "space_info",
5497 space_info->flags,
5498 num_bytes, 1);
5499 space_info->bytes_may_use += num_bytes;
5500 ticket->bytes -= num_bytes;
5501 num_bytes = 0;
5502 }
5503 }
5504
5505 if (num_bytes && head == &space_info->priority_tickets) {
5506 head = &space_info->tickets;
5507 goto again;
5508 }
5509}
5510
8c2a3ca2
JB
5511static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5512 struct btrfs_block_rsv *block_rsv,
62a45b60 5513 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5514{
5515 struct btrfs_space_info *space_info = block_rsv->space_info;
5516
5517 spin_lock(&block_rsv->lock);
5518 if (num_bytes == (u64)-1)
5519 num_bytes = block_rsv->size;
5520 block_rsv->size -= num_bytes;
5521 if (block_rsv->reserved >= block_rsv->size) {
5522 num_bytes = block_rsv->reserved - block_rsv->size;
5523 block_rsv->reserved = block_rsv->size;
5524 block_rsv->full = 1;
5525 } else {
5526 num_bytes = 0;
5527 }
5528 spin_unlock(&block_rsv->lock);
5529
5530 if (num_bytes > 0) {
5531 if (dest) {
e9e22899
JB
5532 spin_lock(&dest->lock);
5533 if (!dest->full) {
5534 u64 bytes_to_add;
5535
5536 bytes_to_add = dest->size - dest->reserved;
5537 bytes_to_add = min(num_bytes, bytes_to_add);
5538 dest->reserved += bytes_to_add;
5539 if (dest->reserved >= dest->size)
5540 dest->full = 1;
5541 num_bytes -= bytes_to_add;
5542 }
5543 spin_unlock(&dest->lock);
5544 }
957780eb
JB
5545 if (num_bytes)
5546 space_info_add_old_bytes(fs_info, space_info,
5547 num_bytes);
9ed74f2d 5548 }
f0486c68 5549}
4e06bdd6 5550
25d609f8
JB
5551int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5552 struct btrfs_block_rsv *dst, u64 num_bytes,
5553 int update_size)
f0486c68
YZ
5554{
5555 int ret;
9ed74f2d 5556
f0486c68
YZ
5557 ret = block_rsv_use_bytes(src, num_bytes);
5558 if (ret)
5559 return ret;
9ed74f2d 5560
25d609f8 5561 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5562 return 0;
5563}
5564
66d8f3dd 5565void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5566{
f0486c68
YZ
5567 memset(rsv, 0, sizeof(*rsv));
5568 spin_lock_init(&rsv->lock);
66d8f3dd 5569 rsv->type = type;
f0486c68
YZ
5570}
5571
2ff7e61e 5572struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5573 unsigned short type)
f0486c68
YZ
5574{
5575 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5576
f0486c68
YZ
5577 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5578 if (!block_rsv)
5579 return NULL;
9ed74f2d 5580
66d8f3dd 5581 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5582 block_rsv->space_info = __find_space_info(fs_info,
5583 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5584 return block_rsv;
5585}
9ed74f2d 5586
2ff7e61e 5587void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5588 struct btrfs_block_rsv *rsv)
5589{
2aaa6655
JB
5590 if (!rsv)
5591 return;
2ff7e61e 5592 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5593 kfree(rsv);
9ed74f2d
JB
5594}
5595
cdfb080e
CM
5596void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5597{
5598 kfree(rsv);
5599}
5600
08e007d2
MX
5601int btrfs_block_rsv_add(struct btrfs_root *root,
5602 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5603 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5604{
f0486c68 5605 int ret;
9ed74f2d 5606
f0486c68
YZ
5607 if (num_bytes == 0)
5608 return 0;
8bb8ab2e 5609
61b520a9 5610 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5611 if (!ret) {
5612 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5613 return 0;
5614 }
9ed74f2d 5615
f0486c68 5616 return ret;
f0486c68 5617}
9ed74f2d 5618
2ff7e61e 5619int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5620{
5621 u64 num_bytes = 0;
f0486c68 5622 int ret = -ENOSPC;
9ed74f2d 5623
f0486c68
YZ
5624 if (!block_rsv)
5625 return 0;
9ed74f2d 5626
f0486c68 5627 spin_lock(&block_rsv->lock);
36ba022a
JB
5628 num_bytes = div_factor(block_rsv->size, min_factor);
5629 if (block_rsv->reserved >= num_bytes)
5630 ret = 0;
5631 spin_unlock(&block_rsv->lock);
9ed74f2d 5632
36ba022a
JB
5633 return ret;
5634}
5635
08e007d2
MX
5636int btrfs_block_rsv_refill(struct btrfs_root *root,
5637 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5638 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5639{
5640 u64 num_bytes = 0;
5641 int ret = -ENOSPC;
5642
5643 if (!block_rsv)
5644 return 0;
5645
5646 spin_lock(&block_rsv->lock);
5647 num_bytes = min_reserved;
13553e52 5648 if (block_rsv->reserved >= num_bytes)
f0486c68 5649 ret = 0;
13553e52 5650 else
f0486c68 5651 num_bytes -= block_rsv->reserved;
f0486c68 5652 spin_unlock(&block_rsv->lock);
13553e52 5653
f0486c68
YZ
5654 if (!ret)
5655 return 0;
5656
aa38a711 5657 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5658 if (!ret) {
5659 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5660 return 0;
6a63209f 5661 }
9ed74f2d 5662
13553e52 5663 return ret;
f0486c68
YZ
5664}
5665
2ff7e61e 5666void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5667 struct btrfs_block_rsv *block_rsv,
5668 u64 num_bytes)
5669{
0b246afa
JM
5670 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5671
17504584 5672 if (global_rsv == block_rsv ||
f0486c68
YZ
5673 block_rsv->space_info != global_rsv->space_info)
5674 global_rsv = NULL;
0b246afa 5675 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
6a63209f
JB
5676}
5677
8929ecfa
YZ
5678static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5679{
5680 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5681 struct btrfs_space_info *sinfo = block_rsv->space_info;
5682 u64 num_bytes;
6a63209f 5683
ae2e4728
JB
5684 /*
5685 * The global block rsv is based on the size of the extent tree, the
5686 * checksum tree and the root tree. If the fs is empty we want to set
5687 * it to a minimal amount for safety.
5688 */
5689 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5690 btrfs_root_used(&fs_info->csum_root->root_item) +
5691 btrfs_root_used(&fs_info->tree_root->root_item);
5692 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5693
8929ecfa 5694 spin_lock(&sinfo->lock);
1f699d38 5695 spin_lock(&block_rsv->lock);
4e06bdd6 5696
ee22184b 5697 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5698
fb4b10e5 5699 if (block_rsv->reserved < block_rsv->size) {
4136135b 5700 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5701 if (sinfo->total_bytes > num_bytes) {
5702 num_bytes = sinfo->total_bytes - num_bytes;
5703 num_bytes = min(num_bytes,
5704 block_rsv->size - block_rsv->reserved);
5705 block_rsv->reserved += num_bytes;
5706 sinfo->bytes_may_use += num_bytes;
5707 trace_btrfs_space_reservation(fs_info, "space_info",
5708 sinfo->flags, num_bytes,
5709 1);
5710 }
5711 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5712 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5713 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5714 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5715 sinfo->flags, num_bytes, 0);
8929ecfa 5716 block_rsv->reserved = block_rsv->size;
8929ecfa 5717 }
182608c8 5718
fb4b10e5
JB
5719 if (block_rsv->reserved == block_rsv->size)
5720 block_rsv->full = 1;
5721 else
5722 block_rsv->full = 0;
5723
8929ecfa 5724 spin_unlock(&block_rsv->lock);
1f699d38 5725 spin_unlock(&sinfo->lock);
6a63209f
JB
5726}
5727
f0486c68 5728static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5729{
f0486c68 5730 struct btrfs_space_info *space_info;
6a63209f 5731
f0486c68
YZ
5732 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5733 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5734
f0486c68 5735 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5736 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5737 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5738 fs_info->trans_block_rsv.space_info = space_info;
5739 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5740 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5741
8929ecfa
YZ
5742 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5743 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5744 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5745 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5746 if (fs_info->quota_root)
5747 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5748 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5749
8929ecfa 5750 update_global_block_rsv(fs_info);
6a63209f
JB
5751}
5752
8929ecfa 5753static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5754{
8c2a3ca2
JB
5755 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5756 (u64)-1);
8929ecfa
YZ
5757 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5758 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5759 WARN_ON(fs_info->trans_block_rsv.size > 0);
5760 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5761 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5762 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5763 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5764 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5765}
5766
a22285a6 5767void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
2ff7e61e 5768 struct btrfs_fs_info *fs_info)
6a63209f 5769{
0e721106
JB
5770 if (!trans->block_rsv)
5771 return;
5772
a22285a6
YZ
5773 if (!trans->bytes_reserved)
5774 return;
6a63209f 5775
0b246afa 5776 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 5777 trans->transid, trans->bytes_reserved, 0);
2ff7e61e
JM
5778 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5779 trans->bytes_reserved);
a22285a6
YZ
5780 trans->bytes_reserved = 0;
5781}
6a63209f 5782
4fbcdf66
FM
5783/*
5784 * To be called after all the new block groups attached to the transaction
5785 * handle have been created (btrfs_create_pending_block_groups()).
5786 */
5787void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5788{
64b63580 5789 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5790
5791 if (!trans->chunk_bytes_reserved)
5792 return;
5793
5794 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5795
5796 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5797 trans->chunk_bytes_reserved);
5798 trans->chunk_bytes_reserved = 0;
5799}
5800
79787eaa 5801/* Can only return 0 or -ENOSPC */
d68fc57b 5802int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
8ed7a2a0 5803 struct btrfs_inode *inode)
d68fc57b 5804{
8ed7a2a0
NB
5805 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5806 struct btrfs_root *root = inode->root;
40acc3ee
JB
5807 /*
5808 * We always use trans->block_rsv here as we will have reserved space
5809 * for our orphan when starting the transaction, using get_block_rsv()
5810 * here will sometimes make us choose the wrong block rsv as we could be
5811 * doing a reloc inode for a non refcounted root.
5812 */
5813 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5814 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5815
5816 /*
fcb80c2a
JB
5817 * We need to hold space in order to delete our orphan item once we've
5818 * added it, so this takes the reservation so we can release it later
5819 * when we are truly done with the orphan item.
d68fc57b 5820 */
0b246afa
JM
5821 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5822
8ed7a2a0
NB
5823 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5824 num_bytes, 1);
25d609f8 5825 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5826}
5827
703b391a 5828void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
97e728d4 5829{
703b391a
NB
5830 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5831 struct btrfs_root *root = inode->root;
0b246afa
JM
5832 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5833
703b391a
NB
5834 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5835 num_bytes, 0);
2ff7e61e 5836 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
d68fc57b 5837}
97e728d4 5838
d5c12070
MX
5839/*
5840 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5841 * root: the root of the parent directory
5842 * rsv: block reservation
5843 * items: the number of items that we need do reservation
5844 * qgroup_reserved: used to return the reserved size in qgroup
5845 *
5846 * This function is used to reserve the space for snapshot/subvolume
5847 * creation and deletion. Those operations are different with the
5848 * common file/directory operations, they change two fs/file trees
5849 * and root tree, the number of items that the qgroup reserves is
5850 * different with the free space reservation. So we can not use
01327610 5851 * the space reservation mechanism in start_transaction().
d5c12070
MX
5852 */
5853int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5854 struct btrfs_block_rsv *rsv,
5855 int items,
ee3441b4
JM
5856 u64 *qgroup_reserved,
5857 bool use_global_rsv)
a22285a6 5858{
d5c12070
MX
5859 u64 num_bytes;
5860 int ret;
0b246afa
JM
5861 struct btrfs_fs_info *fs_info = root->fs_info;
5862 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5863
0b246afa 5864 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5865 /* One for parent inode, two for dir entries */
0b246afa 5866 num_bytes = 3 * fs_info->nodesize;
003d7c59 5867 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
d5c12070
MX
5868 if (ret)
5869 return ret;
5870 } else {
5871 num_bytes = 0;
5872 }
5873
5874 *qgroup_reserved = num_bytes;
5875
0b246afa
JM
5876 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5877 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
5878 BTRFS_BLOCK_GROUP_METADATA);
5879 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5880 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5881
5882 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5883 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5884
7174109c
QW
5885 if (ret && *qgroup_reserved)
5886 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5887
5888 return ret;
5889}
5890
2ff7e61e 5891void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 5892 struct btrfs_block_rsv *rsv)
d5c12070 5893{
2ff7e61e 5894 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
5895}
5896
7709cde3
JB
5897/**
5898 * drop_outstanding_extent - drop an outstanding extent
5899 * @inode: the inode we're dropping the extent for
01327610 5900 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5901 *
5902 * This is called when we are freeing up an outstanding extent, either called
5903 * after an error or after an extent is written. This will return the number of
5904 * reserved extents that need to be freed. This must be called with
5905 * BTRFS_I(inode)->lock held.
5906 */
baa3ba39
NB
5907static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5908 u64 num_bytes)
9e0baf60 5909{
7fd2ae21 5910 unsigned drop_inode_space = 0;
9e0baf60 5911 unsigned dropped_extents = 0;
823bb20a 5912 unsigned num_extents;
9e0baf60 5913
823bb20a 5914 num_extents = count_max_extents(num_bytes);
dcab6a3b 5915 ASSERT(num_extents);
baa3ba39
NB
5916 ASSERT(inode->outstanding_extents >= num_extents);
5917 inode->outstanding_extents -= num_extents;
9e0baf60 5918
baa3ba39 5919 if (inode->outstanding_extents == 0 &&
72ac3c0d 5920 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
baa3ba39 5921 &inode->runtime_flags))
7fd2ae21 5922 drop_inode_space = 1;
7fd2ae21 5923
9e0baf60 5924 /*
01327610 5925 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5926 * reserved then we need to leave the reserved extents count alone.
5927 */
baa3ba39 5928 if (inode->outstanding_extents >= inode->reserved_extents)
7fd2ae21 5929 return drop_inode_space;
9e0baf60 5930
baa3ba39
NB
5931 dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5932 inode->reserved_extents -= dropped_extents;
7fd2ae21 5933 return dropped_extents + drop_inode_space;
9e0baf60
JB
5934}
5935
7709cde3 5936/**
01327610
NS
5937 * calc_csum_metadata_size - return the amount of metadata space that must be
5938 * reserved/freed for the given bytes.
7709cde3
JB
5939 * @inode: the inode we're manipulating
5940 * @num_bytes: the number of bytes in question
5941 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5942 *
5943 * This adjusts the number of csum_bytes in the inode and then returns the
5944 * correct amount of metadata that must either be reserved or freed. We
5945 * calculate how many checksums we can fit into one leaf and then divide the
5946 * number of bytes that will need to be checksumed by this value to figure out
5947 * how many checksums will be required. If we are adding bytes then the number
5948 * may go up and we will return the number of additional bytes that must be
5949 * reserved. If it is going down we will return the number of bytes that must
5950 * be freed.
5951 *
5952 * This must be called with BTRFS_I(inode)->lock held.
5953 */
0e6bf9b1 5954static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
7709cde3 5955 int reserve)
6324fbf3 5956{
0e6bf9b1 5957 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1262133b 5958 u64 old_csums, num_csums;
7709cde3 5959
0e6bf9b1 5960 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
7709cde3
JB
5961 return 0;
5962
0e6bf9b1 5963 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
7709cde3 5964 if (reserve)
0e6bf9b1 5965 inode->csum_bytes += num_bytes;
7709cde3 5966 else
0e6bf9b1
NB
5967 inode->csum_bytes -= num_bytes;
5968 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
7709cde3
JB
5969
5970 /* No change, no need to reserve more */
5971 if (old_csums == num_csums)
5972 return 0;
5973
5974 if (reserve)
0b246afa 5975 return btrfs_calc_trans_metadata_size(fs_info,
7709cde3
JB
5976 num_csums - old_csums);
5977
0b246afa 5978 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
0ca1f7ce 5979}
c146afad 5980
9f3db423 5981int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 5982{
9f3db423
NB
5983 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5984 struct btrfs_root *root = inode->root;
0b246afa 5985 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
9e0baf60 5986 u64 to_reserve = 0;
660d3f6c 5987 u64 csum_bytes;
823bb20a 5988 unsigned nr_extents;
08e007d2 5989 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5990 int ret = 0;
c64c2bd8 5991 bool delalloc_lock = true;
88e081bf
WS
5992 u64 to_free = 0;
5993 unsigned dropped;
48c3d480 5994 bool release_extra = false;
6324fbf3 5995
c64c2bd8
JB
5996 /* If we are a free space inode we need to not flush since we will be in
5997 * the middle of a transaction commit. We also don't need the delalloc
5998 * mutex since we won't race with anybody. We need this mostly to make
5999 * lockdep shut its filthy mouth.
bac357dc
JB
6000 *
6001 * If we have a transaction open (can happen if we call truncate_block
6002 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6003 */
6004 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6005 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6006 delalloc_lock = false;
bac357dc
JB
6007 } else if (current->journal_info) {
6008 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c64c2bd8 6009 }
c09544e0 6010
08e007d2 6011 if (flush != BTRFS_RESERVE_NO_FLUSH &&
0b246afa 6012 btrfs_transaction_in_commit(fs_info))
0ca1f7ce 6013 schedule_timeout(1);
ec44a35c 6014
c64c2bd8 6015 if (delalloc_lock)
9f3db423 6016 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6017
0b246afa 6018 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
8bb8ab2e 6019
9f3db423 6020 spin_lock(&inode->lock);
823bb20a 6021 nr_extents = count_max_extents(num_bytes);
9f3db423 6022 inode->outstanding_extents += nr_extents;
9e0baf60 6023
48c3d480 6024 nr_extents = 0;
9f3db423
NB
6025 if (inode->outstanding_extents > inode->reserved_extents)
6026 nr_extents += inode->outstanding_extents -
6027 inode->reserved_extents;
57a45ced 6028
48c3d480 6029 /* We always want to reserve a slot for updating the inode. */
0b246afa 6030 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
7709cde3 6031 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
9f3db423
NB
6032 csum_bytes = inode->csum_bytes;
6033 spin_unlock(&inode->lock);
57a45ced 6034
0b246afa 6035 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
7174109c 6036 ret = btrfs_qgroup_reserve_meta(root,
003d7c59 6037 nr_extents * fs_info->nodesize, true);
88e081bf
WS
6038 if (ret)
6039 goto out_fail;
6040 }
c5567237 6041
48c3d480 6042 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
88e081bf 6043 if (unlikely(ret)) {
da17066c 6044 btrfs_qgroup_free_meta(root,
0b246afa 6045 nr_extents * fs_info->nodesize);
88e081bf 6046 goto out_fail;
9e0baf60 6047 }
25179201 6048
9f3db423 6049 spin_lock(&inode->lock);
48c3d480 6050 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
9f3db423 6051 &inode->runtime_flags)) {
0b246afa 6052 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
48c3d480 6053 release_extra = true;
660d3f6c 6054 }
9f3db423
NB
6055 inode->reserved_extents += nr_extents;
6056 spin_unlock(&inode->lock);
c64c2bd8
JB
6057
6058 if (delalloc_lock)
9f3db423 6059 mutex_unlock(&inode->delalloc_mutex);
660d3f6c 6060
8c2a3ca2 6061 if (to_reserve)
0b246afa 6062 trace_btrfs_space_reservation(fs_info, "delalloc",
9f3db423 6063 btrfs_ino(inode), to_reserve, 1);
48c3d480 6064 if (release_extra)
2ff7e61e 6065 btrfs_block_rsv_release(fs_info, block_rsv,
0b246afa 6066 btrfs_calc_trans_metadata_size(fs_info, 1));
0ca1f7ce 6067 return 0;
88e081bf
WS
6068
6069out_fail:
9f3db423 6070 spin_lock(&inode->lock);
dcab6a3b 6071 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
6072 /*
6073 * If the inodes csum_bytes is the same as the original
6074 * csum_bytes then we know we haven't raced with any free()ers
6075 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 6076 */
9f3db423 6077 if (inode->csum_bytes == csum_bytes) {
88e081bf 6078 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7 6079 } else {
9f3db423 6080 u64 orig_csum_bytes = inode->csum_bytes;
f4881bc7
JB
6081 u64 bytes;
6082
6083 /*
6084 * This is tricky, but first we need to figure out how much we
01327610 6085 * freed from any free-ers that occurred during this
f4881bc7
JB
6086 * reservation, so we reset ->csum_bytes to the csum_bytes
6087 * before we dropped our lock, and then call the free for the
6088 * number of bytes that were freed while we were trying our
6089 * reservation.
6090 */
9f3db423
NB
6091 bytes = csum_bytes - inode->csum_bytes;
6092 inode->csum_bytes = csum_bytes;
f4881bc7
JB
6093 to_free = calc_csum_metadata_size(inode, bytes, 0);
6094
6095
6096 /*
6097 * Now we need to see how much we would have freed had we not
6098 * been making this reservation and our ->csum_bytes were not
6099 * artificially inflated.
6100 */
9f3db423 6101 inode->csum_bytes = csum_bytes - num_bytes;
f4881bc7
JB
6102 bytes = csum_bytes - orig_csum_bytes;
6103 bytes = calc_csum_metadata_size(inode, bytes, 0);
6104
6105 /*
6106 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 6107 * more than to_free then we would have freed more space had we
f4881bc7
JB
6108 * not had an artificially high ->csum_bytes, so we need to free
6109 * the remainder. If bytes is the same or less then we don't
6110 * need to do anything, the other free-ers did the correct
6111 * thing.
6112 */
9f3db423 6113 inode->csum_bytes = orig_csum_bytes - num_bytes;
f4881bc7
JB
6114 if (bytes > to_free)
6115 to_free = bytes - to_free;
6116 else
6117 to_free = 0;
6118 }
9f3db423 6119 spin_unlock(&inode->lock);
e2d1f923 6120 if (dropped)
0b246afa 6121 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
88e081bf
WS
6122
6123 if (to_free) {
2ff7e61e 6124 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
0b246afa 6125 trace_btrfs_space_reservation(fs_info, "delalloc",
9f3db423 6126 btrfs_ino(inode), to_free, 0);
88e081bf
WS
6127 }
6128 if (delalloc_lock)
9f3db423 6129 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6130 return ret;
0ca1f7ce
YZ
6131}
6132
7709cde3
JB
6133/**
6134 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6135 * @inode: the inode to release the reservation for
6136 * @num_bytes: the number of bytes we're releasing
6137 *
6138 * This will release the metadata reservation for an inode. This can be called
6139 * once we complete IO for a given set of bytes to release their metadata
6140 * reservations.
6141 */
691fa059 6142void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6143{
691fa059 6144 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
9e0baf60
JB
6145 u64 to_free = 0;
6146 unsigned dropped;
0ca1f7ce 6147
0b246afa 6148 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6149 spin_lock(&inode->lock);
dcab6a3b 6150 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 6151
0934856d
MX
6152 if (num_bytes)
6153 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
691fa059 6154 spin_unlock(&inode->lock);
9e0baf60 6155 if (dropped > 0)
0b246afa 6156 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
0ca1f7ce 6157
0b246afa 6158 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6159 return;
6160
691fa059
NB
6161 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6162 to_free, 0);
c5567237 6163
2ff7e61e 6164 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
0ca1f7ce
YZ
6165}
6166
1ada3a62 6167/**
7cf5b976 6168 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6169 * delalloc
6170 * @inode: inode we're writing to
6171 * @start: start range we are writing to
6172 * @len: how long the range we are writing to
364ecf36
QW
6173 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6174 * current reservation.
1ada3a62 6175 *
1ada3a62
QW
6176 * This will do the following things
6177 *
6178 * o reserve space in data space info for num bytes
6179 * and reserve precious corresponding qgroup space
6180 * (Done in check_data_free_space)
6181 *
6182 * o reserve space for metadata space, based on the number of outstanding
6183 * extents and how much csums will be needed
6184 * also reserve metadata space in a per root over-reserve method.
6185 * o add to the inodes->delalloc_bytes
6186 * o add it to the fs_info's delalloc inodes list.
6187 * (Above 3 all done in delalloc_reserve_metadata)
6188 *
6189 * Return 0 for success
6190 * Return <0 for error(-ENOSPC or -EQUOT)
6191 */
364ecf36
QW
6192int btrfs_delalloc_reserve_space(struct inode *inode,
6193 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6194{
6195 int ret;
6196
364ecf36 6197 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6198 if (ret < 0)
6199 return ret;
9f3db423 6200 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6201 if (ret < 0)
bc42bda2 6202 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6203 return ret;
6204}
6205
7709cde3 6206/**
7cf5b976 6207 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6208 * @inode: inode we're releasing space for
6209 * @start: start position of the space already reserved
6210 * @len: the len of the space already reserved
6211 *
6212 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6213 * called in the case that we don't need the metadata AND data reservations
6214 * anymore. So if there is an error or we insert an inline extent.
6215 *
6216 * This function will release the metadata space that was not used and will
6217 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6218 * list if there are no delalloc bytes left.
6219 * Also it will handle the qgroup reserved space.
6220 */
bc42bda2
QW
6221void btrfs_delalloc_release_space(struct inode *inode,
6222 struct extent_changeset *reserved, u64 start, u64 len)
1ada3a62 6223{
691fa059 6224 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
bc42bda2 6225 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6226}
6227
ce93ec54 6228static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6229 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6230 u64 num_bytes, int alloc)
9078a3e1 6231{
0af3d00b 6232 struct btrfs_block_group_cache *cache = NULL;
db94535d 6233 u64 total = num_bytes;
9078a3e1 6234 u64 old_val;
db94535d 6235 u64 byte_in_group;
0af3d00b 6236 int factor;
3e1ad54f 6237
5d4f98a2 6238 /* block accounting for super block */
eb73c1b7 6239 spin_lock(&info->delalloc_root_lock);
6c41761f 6240 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6241 if (alloc)
6242 old_val += num_bytes;
6243 else
6244 old_val -= num_bytes;
6c41761f 6245 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6246 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6247
d397712b 6248 while (total) {
db94535d 6249 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6250 if (!cache)
79787eaa 6251 return -ENOENT;
b742bb82
YZ
6252 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6253 BTRFS_BLOCK_GROUP_RAID1 |
6254 BTRFS_BLOCK_GROUP_RAID10))
6255 factor = 2;
6256 else
6257 factor = 1;
9d66e233
JB
6258 /*
6259 * If this block group has free space cache written out, we
6260 * need to make sure to load it if we are removing space. This
6261 * is because we need the unpinning stage to actually add the
6262 * space back to the block group, otherwise we will leak space.
6263 */
6264 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6265 cache_block_group(cache, 1);
0af3d00b 6266
db94535d
CM
6267 byte_in_group = bytenr - cache->key.objectid;
6268 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6269
25179201 6270 spin_lock(&cache->space_info->lock);
c286ac48 6271 spin_lock(&cache->lock);
0af3d00b 6272
6202df69 6273 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6274 cache->disk_cache_state < BTRFS_DC_CLEAR)
6275 cache->disk_cache_state = BTRFS_DC_CLEAR;
6276
9078a3e1 6277 old_val = btrfs_block_group_used(&cache->item);
db94535d 6278 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6279 if (alloc) {
db94535d 6280 old_val += num_bytes;
11833d66
YZ
6281 btrfs_set_block_group_used(&cache->item, old_val);
6282 cache->reserved -= num_bytes;
11833d66 6283 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6284 cache->space_info->bytes_used += num_bytes;
6285 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6286 spin_unlock(&cache->lock);
25179201 6287 spin_unlock(&cache->space_info->lock);
cd1bc465 6288 } else {
db94535d 6289 old_val -= num_bytes;
ae0ab003
FM
6290 btrfs_set_block_group_used(&cache->item, old_val);
6291 cache->pinned += num_bytes;
6292 cache->space_info->bytes_pinned += num_bytes;
6293 cache->space_info->bytes_used -= num_bytes;
6294 cache->space_info->disk_used -= num_bytes * factor;
6295 spin_unlock(&cache->lock);
6296 spin_unlock(&cache->space_info->lock);
47ab2a6c 6297
0b246afa 6298 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6299 cache->space_info->flags,
6300 num_bytes, 1);
d7eae340
OS
6301 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6302 num_bytes);
ae0ab003
FM
6303 set_extent_dirty(info->pinned_extents,
6304 bytenr, bytenr + num_bytes - 1,
6305 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6306 }
1bbc621e
CM
6307
6308 spin_lock(&trans->transaction->dirty_bgs_lock);
6309 if (list_empty(&cache->dirty_list)) {
6310 list_add_tail(&cache->dirty_list,
6311 &trans->transaction->dirty_bgs);
6312 trans->transaction->num_dirty_bgs++;
6313 btrfs_get_block_group(cache);
6314 }
6315 spin_unlock(&trans->transaction->dirty_bgs_lock);
6316
036a9348
FM
6317 /*
6318 * No longer have used bytes in this block group, queue it for
6319 * deletion. We do this after adding the block group to the
6320 * dirty list to avoid races between cleaner kthread and space
6321 * cache writeout.
6322 */
6323 if (!alloc && old_val == 0) {
6324 spin_lock(&info->unused_bgs_lock);
6325 if (list_empty(&cache->bg_list)) {
6326 btrfs_get_block_group(cache);
6327 list_add_tail(&cache->bg_list,
6328 &info->unused_bgs);
6329 }
6330 spin_unlock(&info->unused_bgs_lock);
6331 }
6332
fa9c0d79 6333 btrfs_put_block_group(cache);
db94535d
CM
6334 total -= num_bytes;
6335 bytenr += num_bytes;
9078a3e1
CM
6336 }
6337 return 0;
6338}
6324fbf3 6339
2ff7e61e 6340static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6341{
0f9dd46c 6342 struct btrfs_block_group_cache *cache;
d2fb3437 6343 u64 bytenr;
0f9dd46c 6344
0b246afa
JM
6345 spin_lock(&fs_info->block_group_cache_lock);
6346 bytenr = fs_info->first_logical_byte;
6347 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6348
6349 if (bytenr < (u64)-1)
6350 return bytenr;
6351
0b246afa 6352 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6353 if (!cache)
a061fc8d 6354 return 0;
0f9dd46c 6355
d2fb3437 6356 bytenr = cache->key.objectid;
fa9c0d79 6357 btrfs_put_block_group(cache);
d2fb3437
YZ
6358
6359 return bytenr;
a061fc8d
CM
6360}
6361
2ff7e61e 6362static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6363 struct btrfs_block_group_cache *cache,
6364 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6365{
11833d66
YZ
6366 spin_lock(&cache->space_info->lock);
6367 spin_lock(&cache->lock);
6368 cache->pinned += num_bytes;
6369 cache->space_info->bytes_pinned += num_bytes;
6370 if (reserved) {
6371 cache->reserved -= num_bytes;
6372 cache->space_info->bytes_reserved -= num_bytes;
6373 }
6374 spin_unlock(&cache->lock);
6375 spin_unlock(&cache->space_info->lock);
68b38550 6376
0b246afa 6377 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6378 cache->space_info->flags, num_bytes, 1);
4da8b76d 6379 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
0b246afa 6380 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6381 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6382 return 0;
6383}
68b38550 6384
f0486c68
YZ
6385/*
6386 * this function must be called within transaction
6387 */
2ff7e61e 6388int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6389 u64 bytenr, u64 num_bytes, int reserved)
6390{
6391 struct btrfs_block_group_cache *cache;
68b38550 6392
0b246afa 6393 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6394 BUG_ON(!cache); /* Logic error */
f0486c68 6395
2ff7e61e 6396 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6397
6398 btrfs_put_block_group(cache);
11833d66
YZ
6399 return 0;
6400}
6401
f0486c68 6402/*
e688b725
CM
6403 * this function must be called within transaction
6404 */
2ff7e61e 6405int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6406 u64 bytenr, u64 num_bytes)
6407{
6408 struct btrfs_block_group_cache *cache;
b50c6e25 6409 int ret;
e688b725 6410
0b246afa 6411 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6412 if (!cache)
6413 return -EINVAL;
e688b725
CM
6414
6415 /*
6416 * pull in the free space cache (if any) so that our pin
6417 * removes the free space from the cache. We have load_only set
6418 * to one because the slow code to read in the free extents does check
6419 * the pinned extents.
6420 */
f6373bf3 6421 cache_block_group(cache, 1);
e688b725 6422
2ff7e61e 6423 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6424
6425 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6426 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6427 btrfs_put_block_group(cache);
b50c6e25 6428 return ret;
e688b725
CM
6429}
6430
2ff7e61e
JM
6431static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6432 u64 start, u64 num_bytes)
8c2a1a30
JB
6433{
6434 int ret;
6435 struct btrfs_block_group_cache *block_group;
6436 struct btrfs_caching_control *caching_ctl;
6437
0b246afa 6438 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6439 if (!block_group)
6440 return -EINVAL;
6441
6442 cache_block_group(block_group, 0);
6443 caching_ctl = get_caching_control(block_group);
6444
6445 if (!caching_ctl) {
6446 /* Logic error */
6447 BUG_ON(!block_group_cache_done(block_group));
6448 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6449 } else {
6450 mutex_lock(&caching_ctl->mutex);
6451
6452 if (start >= caching_ctl->progress) {
2ff7e61e 6453 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6454 } else if (start + num_bytes <= caching_ctl->progress) {
6455 ret = btrfs_remove_free_space(block_group,
6456 start, num_bytes);
6457 } else {
6458 num_bytes = caching_ctl->progress - start;
6459 ret = btrfs_remove_free_space(block_group,
6460 start, num_bytes);
6461 if (ret)
6462 goto out_lock;
6463
6464 num_bytes = (start + num_bytes) -
6465 caching_ctl->progress;
6466 start = caching_ctl->progress;
2ff7e61e 6467 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6468 }
6469out_lock:
6470 mutex_unlock(&caching_ctl->mutex);
6471 put_caching_control(caching_ctl);
6472 }
6473 btrfs_put_block_group(block_group);
6474 return ret;
6475}
6476
2ff7e61e 6477int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6478 struct extent_buffer *eb)
6479{
6480 struct btrfs_file_extent_item *item;
6481 struct btrfs_key key;
6482 int found_type;
6483 int i;
6484
2ff7e61e 6485 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6486 return 0;
6487
6488 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6489 btrfs_item_key_to_cpu(eb, &key, i);
6490 if (key.type != BTRFS_EXTENT_DATA_KEY)
6491 continue;
6492 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6493 found_type = btrfs_file_extent_type(eb, item);
6494 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6495 continue;
6496 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6497 continue;
6498 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6499 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6500 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6501 }
6502
6503 return 0;
6504}
6505
9cfa3e34
FM
6506static void
6507btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6508{
6509 atomic_inc(&bg->reservations);
6510}
6511
6512void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6513 const u64 start)
6514{
6515 struct btrfs_block_group_cache *bg;
6516
6517 bg = btrfs_lookup_block_group(fs_info, start);
6518 ASSERT(bg);
6519 if (atomic_dec_and_test(&bg->reservations))
6520 wake_up_atomic_t(&bg->reservations);
6521 btrfs_put_block_group(bg);
6522}
6523
6524static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6525{
6526 schedule();
6527 return 0;
6528}
6529
6530void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6531{
6532 struct btrfs_space_info *space_info = bg->space_info;
6533
6534 ASSERT(bg->ro);
6535
6536 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6537 return;
6538
6539 /*
6540 * Our block group is read only but before we set it to read only,
6541 * some task might have had allocated an extent from it already, but it
6542 * has not yet created a respective ordered extent (and added it to a
6543 * root's list of ordered extents).
6544 * Therefore wait for any task currently allocating extents, since the
6545 * block group's reservations counter is incremented while a read lock
6546 * on the groups' semaphore is held and decremented after releasing
6547 * the read access on that semaphore and creating the ordered extent.
6548 */
6549 down_write(&space_info->groups_sem);
6550 up_write(&space_info->groups_sem);
6551
6552 wait_on_atomic_t(&bg->reservations,
6553 btrfs_wait_bg_reservations_atomic_t,
6554 TASK_UNINTERRUPTIBLE);
6555}
6556
fb25e914 6557/**
4824f1f4 6558 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6559 * @cache: The cache we are manipulating
18513091
WX
6560 * @ram_bytes: The number of bytes of file content, and will be same to
6561 * @num_bytes except for the compress path.
fb25e914 6562 * @num_bytes: The number of bytes in question
e570fd27 6563 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6564 *
745699ef
XW
6565 * This is called by the allocator when it reserves space. If this is a
6566 * reservation and the block group has become read only we cannot make the
6567 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6568 */
4824f1f4 6569static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6570 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6571{
fb25e914 6572 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6573 int ret = 0;
79787eaa 6574
fb25e914
JB
6575 spin_lock(&space_info->lock);
6576 spin_lock(&cache->lock);
4824f1f4
WX
6577 if (cache->ro) {
6578 ret = -EAGAIN;
fb25e914 6579 } else {
4824f1f4
WX
6580 cache->reserved += num_bytes;
6581 space_info->bytes_reserved += num_bytes;
e570fd27 6582
18513091
WX
6583 trace_btrfs_space_reservation(cache->fs_info,
6584 "space_info", space_info->flags,
6585 ram_bytes, 0);
6586 space_info->bytes_may_use -= ram_bytes;
e570fd27 6587 if (delalloc)
4824f1f4 6588 cache->delalloc_bytes += num_bytes;
324ae4df 6589 }
fb25e914
JB
6590 spin_unlock(&cache->lock);
6591 spin_unlock(&space_info->lock);
f0486c68 6592 return ret;
324ae4df 6593}
9078a3e1 6594
4824f1f4
WX
6595/**
6596 * btrfs_free_reserved_bytes - update the block_group and space info counters
6597 * @cache: The cache we are manipulating
6598 * @num_bytes: The number of bytes in question
6599 * @delalloc: The blocks are allocated for the delalloc write
6600 *
6601 * This is called by somebody who is freeing space that was never actually used
6602 * on disk. For example if you reserve some space for a new leaf in transaction
6603 * A and before transaction A commits you free that leaf, you call this with
6604 * reserve set to 0 in order to clear the reservation.
6605 */
6606
6607static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6608 u64 num_bytes, int delalloc)
6609{
6610 struct btrfs_space_info *space_info = cache->space_info;
6611 int ret = 0;
6612
6613 spin_lock(&space_info->lock);
6614 spin_lock(&cache->lock);
6615 if (cache->ro)
6616 space_info->bytes_readonly += num_bytes;
6617 cache->reserved -= num_bytes;
6618 space_info->bytes_reserved -= num_bytes;
6619
6620 if (delalloc)
6621 cache->delalloc_bytes -= num_bytes;
6622 spin_unlock(&cache->lock);
6623 spin_unlock(&space_info->lock);
6624 return ret;
6625}
8b74c03e 6626void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6627{
11833d66
YZ
6628 struct btrfs_caching_control *next;
6629 struct btrfs_caching_control *caching_ctl;
6630 struct btrfs_block_group_cache *cache;
e8569813 6631
9e351cc8 6632 down_write(&fs_info->commit_root_sem);
25179201 6633
11833d66
YZ
6634 list_for_each_entry_safe(caching_ctl, next,
6635 &fs_info->caching_block_groups, list) {
6636 cache = caching_ctl->block_group;
6637 if (block_group_cache_done(cache)) {
6638 cache->last_byte_to_unpin = (u64)-1;
6639 list_del_init(&caching_ctl->list);
6640 put_caching_control(caching_ctl);
e8569813 6641 } else {
11833d66 6642 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6643 }
e8569813 6644 }
11833d66
YZ
6645
6646 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6647 fs_info->pinned_extents = &fs_info->freed_extents[1];
6648 else
6649 fs_info->pinned_extents = &fs_info->freed_extents[0];
6650
9e351cc8 6651 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6652
6653 update_global_block_rsv(fs_info);
e8569813
ZY
6654}
6655
c759c4e1
JB
6656/*
6657 * Returns the free cluster for the given space info and sets empty_cluster to
6658 * what it should be based on the mount options.
6659 */
6660static struct btrfs_free_cluster *
2ff7e61e
JM
6661fetch_cluster_info(struct btrfs_fs_info *fs_info,
6662 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6663{
6664 struct btrfs_free_cluster *ret = NULL;
0b246afa 6665 bool ssd = btrfs_test_opt(fs_info, SSD);
c759c4e1
JB
6666
6667 *empty_cluster = 0;
6668 if (btrfs_mixed_space_info(space_info))
6669 return ret;
6670
6671 if (ssd)
ee22184b 6672 *empty_cluster = SZ_2M;
c759c4e1 6673 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6674 ret = &fs_info->meta_alloc_cluster;
c759c4e1 6675 if (!ssd)
ee22184b 6676 *empty_cluster = SZ_64K;
c759c4e1 6677 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
0b246afa 6678 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6679 }
6680
6681 return ret;
6682}
6683
2ff7e61e
JM
6684static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6685 u64 start, u64 end,
678886bd 6686 const bool return_free_space)
ccd467d6 6687{
11833d66 6688 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6689 struct btrfs_space_info *space_info;
6690 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6691 struct btrfs_free_cluster *cluster = NULL;
11833d66 6692 u64 len;
c759c4e1
JB
6693 u64 total_unpinned = 0;
6694 u64 empty_cluster = 0;
7b398f8e 6695 bool readonly;
ccd467d6 6696
11833d66 6697 while (start <= end) {
7b398f8e 6698 readonly = false;
11833d66
YZ
6699 if (!cache ||
6700 start >= cache->key.objectid + cache->key.offset) {
6701 if (cache)
6702 btrfs_put_block_group(cache);
c759c4e1 6703 total_unpinned = 0;
11833d66 6704 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6705 BUG_ON(!cache); /* Logic error */
c759c4e1 6706
2ff7e61e 6707 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6708 cache->space_info,
6709 &empty_cluster);
6710 empty_cluster <<= 1;
11833d66
YZ
6711 }
6712
6713 len = cache->key.objectid + cache->key.offset - start;
6714 len = min(len, end + 1 - start);
6715
6716 if (start < cache->last_byte_to_unpin) {
6717 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6718 if (return_free_space)
6719 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6720 }
6721
f0486c68 6722 start += len;
c759c4e1 6723 total_unpinned += len;
7b398f8e 6724 space_info = cache->space_info;
f0486c68 6725
c759c4e1
JB
6726 /*
6727 * If this space cluster has been marked as fragmented and we've
6728 * unpinned enough in this block group to potentially allow a
6729 * cluster to be created inside of it go ahead and clear the
6730 * fragmented check.
6731 */
6732 if (cluster && cluster->fragmented &&
6733 total_unpinned > empty_cluster) {
6734 spin_lock(&cluster->lock);
6735 cluster->fragmented = 0;
6736 spin_unlock(&cluster->lock);
6737 }
6738
7b398f8e 6739 spin_lock(&space_info->lock);
11833d66
YZ
6740 spin_lock(&cache->lock);
6741 cache->pinned -= len;
7b398f8e 6742 space_info->bytes_pinned -= len;
c51e7bb1
JB
6743
6744 trace_btrfs_space_reservation(fs_info, "pinned",
6745 space_info->flags, len, 0);
4f4db217 6746 space_info->max_extent_size = 0;
d288db5d 6747 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6748 if (cache->ro) {
6749 space_info->bytes_readonly += len;
6750 readonly = true;
6751 }
11833d66 6752 spin_unlock(&cache->lock);
957780eb
JB
6753 if (!readonly && return_free_space &&
6754 global_rsv->space_info == space_info) {
6755 u64 to_add = len;
6756 WARN_ON(!return_free_space);
7b398f8e
JB
6757 spin_lock(&global_rsv->lock);
6758 if (!global_rsv->full) {
957780eb
JB
6759 to_add = min(len, global_rsv->size -
6760 global_rsv->reserved);
6761 global_rsv->reserved += to_add;
6762 space_info->bytes_may_use += to_add;
7b398f8e
JB
6763 if (global_rsv->reserved >= global_rsv->size)
6764 global_rsv->full = 1;
957780eb
JB
6765 trace_btrfs_space_reservation(fs_info,
6766 "space_info",
6767 space_info->flags,
6768 to_add, 1);
6769 len -= to_add;
7b398f8e
JB
6770 }
6771 spin_unlock(&global_rsv->lock);
957780eb
JB
6772 /* Add to any tickets we may have */
6773 if (len)
6774 space_info_add_new_bytes(fs_info, space_info,
6775 len);
7b398f8e
JB
6776 }
6777 spin_unlock(&space_info->lock);
ccd467d6 6778 }
11833d66
YZ
6779
6780 if (cache)
6781 btrfs_put_block_group(cache);
ccd467d6
CM
6782 return 0;
6783}
6784
6785int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2ff7e61e 6786 struct btrfs_fs_info *fs_info)
a28ec197 6787{
e33e17ee
JM
6788 struct btrfs_block_group_cache *block_group, *tmp;
6789 struct list_head *deleted_bgs;
11833d66 6790 struct extent_io_tree *unpin;
1a5bc167
CM
6791 u64 start;
6792 u64 end;
a28ec197 6793 int ret;
a28ec197 6794
11833d66
YZ
6795 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6796 unpin = &fs_info->freed_extents[1];
6797 else
6798 unpin = &fs_info->freed_extents[0];
6799
e33e17ee 6800 while (!trans->aborted) {
d4b450cd 6801 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6802 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6803 EXTENT_DIRTY, NULL);
d4b450cd
FM
6804 if (ret) {
6805 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6806 break;
d4b450cd 6807 }
1f3c79a2 6808
0b246afa 6809 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6810 ret = btrfs_discard_extent(fs_info, start,
5378e607 6811 end + 1 - start, NULL);
1f3c79a2 6812
af6f8f60 6813 clear_extent_dirty(unpin, start, end);
2ff7e61e 6814 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6815 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6816 cond_resched();
a28ec197 6817 }
817d52f8 6818
e33e17ee
JM
6819 /*
6820 * Transaction is finished. We don't need the lock anymore. We
6821 * do need to clean up the block groups in case of a transaction
6822 * abort.
6823 */
6824 deleted_bgs = &trans->transaction->deleted_bgs;
6825 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6826 u64 trimmed = 0;
6827
6828 ret = -EROFS;
6829 if (!trans->aborted)
2ff7e61e 6830 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6831 block_group->key.objectid,
6832 block_group->key.offset,
6833 &trimmed);
6834
6835 list_del_init(&block_group->bg_list);
6836 btrfs_put_block_group_trimming(block_group);
6837 btrfs_put_block_group(block_group);
6838
6839 if (ret) {
6840 const char *errstr = btrfs_decode_error(ret);
6841 btrfs_warn(fs_info,
6842 "Discard failed while removing blockgroup: errno=%d %s\n",
6843 ret, errstr);
6844 }
6845 }
6846
e20d96d6
CM
6847 return 0;
6848}
6849
5d4f98a2 6850static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6851 struct btrfs_fs_info *info,
c682f9b3 6852 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6853 u64 root_objectid, u64 owner_objectid,
6854 u64 owner_offset, int refs_to_drop,
c682f9b3 6855 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6856{
e2fa7227 6857 struct btrfs_key key;
5d4f98a2 6858 struct btrfs_path *path;
1261ec42 6859 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6860 struct extent_buffer *leaf;
5d4f98a2
YZ
6861 struct btrfs_extent_item *ei;
6862 struct btrfs_extent_inline_ref *iref;
a28ec197 6863 int ret;
5d4f98a2 6864 int is_data;
952fccac
CM
6865 int extent_slot = 0;
6866 int found_extent = 0;
6867 int num_to_del = 1;
5d4f98a2
YZ
6868 u32 item_size;
6869 u64 refs;
c682f9b3
QW
6870 u64 bytenr = node->bytenr;
6871 u64 num_bytes = node->num_bytes;
fcebe456 6872 int last_ref = 0;
0b246afa 6873 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6874
5caf2a00 6875 path = btrfs_alloc_path();
54aa1f4d
CM
6876 if (!path)
6877 return -ENOMEM;
5f26f772 6878
e4058b54 6879 path->reada = READA_FORWARD;
b9473439 6880 path->leave_spinning = 1;
5d4f98a2
YZ
6881
6882 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6883 BUG_ON(!is_data && refs_to_drop != 1);
6884
3173a18f
JB
6885 if (is_data)
6886 skinny_metadata = 0;
6887
87bde3cd 6888 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6889 bytenr, num_bytes, parent,
6890 root_objectid, owner_objectid,
6891 owner_offset);
7bb86316 6892 if (ret == 0) {
952fccac 6893 extent_slot = path->slots[0];
5d4f98a2
YZ
6894 while (extent_slot >= 0) {
6895 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6896 extent_slot);
5d4f98a2 6897 if (key.objectid != bytenr)
952fccac 6898 break;
5d4f98a2
YZ
6899 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6900 key.offset == num_bytes) {
952fccac
CM
6901 found_extent = 1;
6902 break;
6903 }
3173a18f
JB
6904 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6905 key.offset == owner_objectid) {
6906 found_extent = 1;
6907 break;
6908 }
952fccac
CM
6909 if (path->slots[0] - extent_slot > 5)
6910 break;
5d4f98a2 6911 extent_slot--;
952fccac 6912 }
5d4f98a2
YZ
6913#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6914 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6915 if (found_extent && item_size < sizeof(*ei))
6916 found_extent = 0;
6917#endif
31840ae1 6918 if (!found_extent) {
5d4f98a2 6919 BUG_ON(iref);
87bde3cd
JM
6920 ret = remove_extent_backref(trans, info, path, NULL,
6921 refs_to_drop,
fcebe456 6922 is_data, &last_ref);
005d6427 6923 if (ret) {
66642832 6924 btrfs_abort_transaction(trans, ret);
005d6427
DS
6925 goto out;
6926 }
b3b4aa74 6927 btrfs_release_path(path);
b9473439 6928 path->leave_spinning = 1;
5d4f98a2
YZ
6929
6930 key.objectid = bytenr;
6931 key.type = BTRFS_EXTENT_ITEM_KEY;
6932 key.offset = num_bytes;
6933
3173a18f
JB
6934 if (!is_data && skinny_metadata) {
6935 key.type = BTRFS_METADATA_ITEM_KEY;
6936 key.offset = owner_objectid;
6937 }
6938
31840ae1
ZY
6939 ret = btrfs_search_slot(trans, extent_root,
6940 &key, path, -1, 1);
3173a18f
JB
6941 if (ret > 0 && skinny_metadata && path->slots[0]) {
6942 /*
6943 * Couldn't find our skinny metadata item,
6944 * see if we have ye olde extent item.
6945 */
6946 path->slots[0]--;
6947 btrfs_item_key_to_cpu(path->nodes[0], &key,
6948 path->slots[0]);
6949 if (key.objectid == bytenr &&
6950 key.type == BTRFS_EXTENT_ITEM_KEY &&
6951 key.offset == num_bytes)
6952 ret = 0;
6953 }
6954
6955 if (ret > 0 && skinny_metadata) {
6956 skinny_metadata = false;
9ce49a0b 6957 key.objectid = bytenr;
3173a18f
JB
6958 key.type = BTRFS_EXTENT_ITEM_KEY;
6959 key.offset = num_bytes;
6960 btrfs_release_path(path);
6961 ret = btrfs_search_slot(trans, extent_root,
6962 &key, path, -1, 1);
6963 }
6964
f3465ca4 6965 if (ret) {
5d163e0e
JM
6966 btrfs_err(info,
6967 "umm, got %d back from search, was looking for %llu",
6968 ret, bytenr);
b783e62d 6969 if (ret > 0)
2ff7e61e 6970 btrfs_print_leaf(info, path->nodes[0]);
f3465ca4 6971 }
005d6427 6972 if (ret < 0) {
66642832 6973 btrfs_abort_transaction(trans, ret);
005d6427
DS
6974 goto out;
6975 }
31840ae1
ZY
6976 extent_slot = path->slots[0];
6977 }
fae7f21c 6978 } else if (WARN_ON(ret == -ENOENT)) {
2ff7e61e 6979 btrfs_print_leaf(info, path->nodes[0]);
c2cf52eb
SK
6980 btrfs_err(info,
6981 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6982 bytenr, parent, root_objectid, owner_objectid,
6983 owner_offset);
66642832 6984 btrfs_abort_transaction(trans, ret);
c4a050bb 6985 goto out;
79787eaa 6986 } else {
66642832 6987 btrfs_abort_transaction(trans, ret);
005d6427 6988 goto out;
7bb86316 6989 }
5f39d397
CM
6990
6991 leaf = path->nodes[0];
5d4f98a2
YZ
6992 item_size = btrfs_item_size_nr(leaf, extent_slot);
6993#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6994 if (item_size < sizeof(*ei)) {
6995 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
6996 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6997 0);
005d6427 6998 if (ret < 0) {
66642832 6999 btrfs_abort_transaction(trans, ret);
005d6427
DS
7000 goto out;
7001 }
5d4f98a2 7002
b3b4aa74 7003 btrfs_release_path(path);
5d4f98a2
YZ
7004 path->leave_spinning = 1;
7005
7006 key.objectid = bytenr;
7007 key.type = BTRFS_EXTENT_ITEM_KEY;
7008 key.offset = num_bytes;
7009
7010 ret = btrfs_search_slot(trans, extent_root, &key, path,
7011 -1, 1);
7012 if (ret) {
5d163e0e
JM
7013 btrfs_err(info,
7014 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 7015 ret, bytenr);
2ff7e61e 7016 btrfs_print_leaf(info, path->nodes[0]);
5d4f98a2 7017 }
005d6427 7018 if (ret < 0) {
66642832 7019 btrfs_abort_transaction(trans, ret);
005d6427
DS
7020 goto out;
7021 }
7022
5d4f98a2
YZ
7023 extent_slot = path->slots[0];
7024 leaf = path->nodes[0];
7025 item_size = btrfs_item_size_nr(leaf, extent_slot);
7026 }
7027#endif
7028 BUG_ON(item_size < sizeof(*ei));
952fccac 7029 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7030 struct btrfs_extent_item);
3173a18f
JB
7031 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7032 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7033 struct btrfs_tree_block_info *bi;
7034 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7035 bi = (struct btrfs_tree_block_info *)(ei + 1);
7036 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7037 }
56bec294 7038
5d4f98a2 7039 refs = btrfs_extent_refs(leaf, ei);
32b02538 7040 if (refs < refs_to_drop) {
5d163e0e
JM
7041 btrfs_err(info,
7042 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7043 refs_to_drop, refs, bytenr);
32b02538 7044 ret = -EINVAL;
66642832 7045 btrfs_abort_transaction(trans, ret);
32b02538
JB
7046 goto out;
7047 }
56bec294 7048 refs -= refs_to_drop;
5f39d397 7049
5d4f98a2
YZ
7050 if (refs > 0) {
7051 if (extent_op)
7052 __run_delayed_extent_op(extent_op, leaf, ei);
7053 /*
7054 * In the case of inline back ref, reference count will
7055 * be updated by remove_extent_backref
952fccac 7056 */
5d4f98a2
YZ
7057 if (iref) {
7058 BUG_ON(!found_extent);
7059 } else {
7060 btrfs_set_extent_refs(leaf, ei, refs);
7061 btrfs_mark_buffer_dirty(leaf);
7062 }
7063 if (found_extent) {
87bde3cd 7064 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7065 iref, refs_to_drop,
fcebe456 7066 is_data, &last_ref);
005d6427 7067 if (ret) {
66642832 7068 btrfs_abort_transaction(trans, ret);
005d6427
DS
7069 goto out;
7070 }
952fccac 7071 }
5d4f98a2 7072 } else {
5d4f98a2
YZ
7073 if (found_extent) {
7074 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7075 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7076 if (iref) {
7077 BUG_ON(path->slots[0] != extent_slot);
7078 } else {
7079 BUG_ON(path->slots[0] != extent_slot + 1);
7080 path->slots[0] = extent_slot;
7081 num_to_del = 2;
7082 }
78fae27e 7083 }
b9473439 7084
fcebe456 7085 last_ref = 1;
952fccac
CM
7086 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7087 num_to_del);
005d6427 7088 if (ret) {
66642832 7089 btrfs_abort_transaction(trans, ret);
005d6427
DS
7090 goto out;
7091 }
b3b4aa74 7092 btrfs_release_path(path);
21af804c 7093
5d4f98a2 7094 if (is_data) {
5b4aacef 7095 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7096 if (ret) {
66642832 7097 btrfs_abort_transaction(trans, ret);
005d6427
DS
7098 goto out;
7099 }
459931ec
CM
7100 }
7101
0b246afa 7102 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
1e144fb8 7103 if (ret) {
66642832 7104 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7105 goto out;
7106 }
7107
0b246afa 7108 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7109 if (ret) {
66642832 7110 btrfs_abort_transaction(trans, ret);
005d6427
DS
7111 goto out;
7112 }
a28ec197 7113 }
fcebe456
JB
7114 btrfs_release_path(path);
7115
79787eaa 7116out:
5caf2a00 7117 btrfs_free_path(path);
a28ec197
CM
7118 return ret;
7119}
7120
1887be66 7121/*
f0486c68 7122 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7123 * delayed ref for that extent as well. This searches the delayed ref tree for
7124 * a given extent, and if there are no other delayed refs to be processed, it
7125 * removes it from the tree.
7126 */
7127static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7128 u64 bytenr)
1887be66
CM
7129{
7130 struct btrfs_delayed_ref_head *head;
7131 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7132 int ret = 0;
1887be66
CM
7133
7134 delayed_refs = &trans->transaction->delayed_refs;
7135 spin_lock(&delayed_refs->lock);
f72ad18e 7136 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7137 if (!head)
cf93da7b 7138 goto out_delayed_unlock;
1887be66 7139
d7df2c79 7140 spin_lock(&head->lock);
c6fc2454 7141 if (!list_empty(&head->ref_list))
1887be66
CM
7142 goto out;
7143
5d4f98a2
YZ
7144 if (head->extent_op) {
7145 if (!head->must_insert_reserved)
7146 goto out;
78a6184a 7147 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7148 head->extent_op = NULL;
7149 }
7150
1887be66
CM
7151 /*
7152 * waiting for the lock here would deadlock. If someone else has it
7153 * locked they are already in the process of dropping it anyway
7154 */
7155 if (!mutex_trylock(&head->mutex))
7156 goto out;
7157
7158 /*
7159 * at this point we have a head with no other entries. Go
7160 * ahead and process it.
7161 */
7162 head->node.in_tree = 0;
c46effa6 7163 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 7164
d7df2c79 7165 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7166
7167 /*
7168 * we don't take a ref on the node because we're removing it from the
7169 * tree, so we just steal the ref the tree was holding.
7170 */
c3e69d58 7171 delayed_refs->num_heads--;
d7df2c79 7172 if (head->processing == 0)
c3e69d58 7173 delayed_refs->num_heads_ready--;
d7df2c79
JB
7174 head->processing = 0;
7175 spin_unlock(&head->lock);
1887be66
CM
7176 spin_unlock(&delayed_refs->lock);
7177
f0486c68
YZ
7178 BUG_ON(head->extent_op);
7179 if (head->must_insert_reserved)
7180 ret = 1;
7181
7182 mutex_unlock(&head->mutex);
1887be66 7183 btrfs_put_delayed_ref(&head->node);
f0486c68 7184 return ret;
1887be66 7185out:
d7df2c79 7186 spin_unlock(&head->lock);
cf93da7b
CM
7187
7188out_delayed_unlock:
1887be66
CM
7189 spin_unlock(&delayed_refs->lock);
7190 return 0;
7191}
7192
f0486c68
YZ
7193void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7194 struct btrfs_root *root,
7195 struct extent_buffer *buf,
5581a51a 7196 u64 parent, int last_ref)
f0486c68 7197{
0b246afa 7198 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7199 int pin = 1;
f0486c68
YZ
7200 int ret;
7201
7202 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7203 int old_ref_mod, new_ref_mod;
7204
7be07912
OS
7205 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7206 buf->len, parent,
0b246afa
JM
7207 root->root_key.objectid,
7208 btrfs_header_level(buf),
7be07912 7209 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7210 &old_ref_mod, &new_ref_mod);
79787eaa 7211 BUG_ON(ret); /* -ENOMEM */
d7eae340 7212 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7213 }
7214
0a16c7d7 7215 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7216 struct btrfs_block_group_cache *cache;
7217
f0486c68 7218 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7219 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7220 if (!ret)
37be25bc 7221 goto out;
f0486c68
YZ
7222 }
7223
4da8b76d 7224 pin = 0;
0b246afa 7225 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7226
f0486c68 7227 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7228 pin_down_extent(fs_info, cache, buf->start,
7229 buf->len, 1);
6219872d 7230 btrfs_put_block_group(cache);
37be25bc 7231 goto out;
f0486c68
YZ
7232 }
7233
7234 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7235
7236 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7237 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7238 btrfs_put_block_group(cache);
71ff6437 7239 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7240 }
7241out:
b150a4f1 7242 if (pin)
0b246afa 7243 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
b150a4f1
JB
7244 root->root_key.objectid);
7245
0a16c7d7
OS
7246 if (last_ref) {
7247 /*
7248 * Deleting the buffer, clear the corrupt flag since it doesn't
7249 * matter anymore.
7250 */
7251 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7252 }
f0486c68
YZ
7253}
7254
79787eaa 7255/* Can return -ENOMEM */
2ff7e61e
JM
7256int btrfs_free_extent(struct btrfs_trans_handle *trans,
7257 struct btrfs_fs_info *fs_info,
66d7e7f0 7258 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7259 u64 owner, u64 offset)
925baedd 7260{
d7eae340 7261 int old_ref_mod, new_ref_mod;
925baedd
CM
7262 int ret;
7263
f5ee5c9a 7264 if (btrfs_is_testing(fs_info))
faa2dbf0 7265 return 0;
fccb84c9 7266
b150a4f1 7267
56bec294
CM
7268 /*
7269 * tree log blocks never actually go into the extent allocation
7270 * tree, just update pinning info and exit early.
56bec294 7271 */
5d4f98a2
YZ
7272 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7273 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7274 /* unlocks the pinned mutex */
2ff7e61e 7275 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7276 old_ref_mod = new_ref_mod = 0;
56bec294 7277 ret = 0;
5d4f98a2 7278 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 7279 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
7280 num_bytes, parent,
7281 root_objectid, (int)owner,
7282 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7283 &old_ref_mod, &new_ref_mod);
5d4f98a2 7284 } else {
66d7e7f0 7285 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
7286 num_bytes, parent,
7287 root_objectid, owner, offset,
7288 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7289 &old_ref_mod, &new_ref_mod);
56bec294 7290 }
d7eae340
OS
7291
7292 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7293 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7294
925baedd
CM
7295 return ret;
7296}
7297
817d52f8
JB
7298/*
7299 * when we wait for progress in the block group caching, its because
7300 * our allocation attempt failed at least once. So, we must sleep
7301 * and let some progress happen before we try again.
7302 *
7303 * This function will sleep at least once waiting for new free space to
7304 * show up, and then it will check the block group free space numbers
7305 * for our min num_bytes. Another option is to have it go ahead
7306 * and look in the rbtree for a free extent of a given size, but this
7307 * is a good start.
36cce922
JB
7308 *
7309 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7310 * any of the information in this block group.
817d52f8 7311 */
36cce922 7312static noinline void
817d52f8
JB
7313wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7314 u64 num_bytes)
7315{
11833d66 7316 struct btrfs_caching_control *caching_ctl;
817d52f8 7317
11833d66
YZ
7318 caching_ctl = get_caching_control(cache);
7319 if (!caching_ctl)
36cce922 7320 return;
817d52f8 7321
11833d66 7322 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7323 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7324
7325 put_caching_control(caching_ctl);
11833d66
YZ
7326}
7327
7328static noinline int
7329wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7330{
7331 struct btrfs_caching_control *caching_ctl;
36cce922 7332 int ret = 0;
11833d66
YZ
7333
7334 caching_ctl = get_caching_control(cache);
7335 if (!caching_ctl)
36cce922 7336 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7337
7338 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7339 if (cache->cached == BTRFS_CACHE_ERROR)
7340 ret = -EIO;
11833d66 7341 put_caching_control(caching_ctl);
36cce922 7342 return ret;
817d52f8
JB
7343}
7344
31e50229 7345int __get_raid_index(u64 flags)
b742bb82 7346{
7738a53a 7347 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7348 return BTRFS_RAID_RAID10;
7738a53a 7349 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7350 return BTRFS_RAID_RAID1;
7738a53a 7351 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7352 return BTRFS_RAID_DUP;
7738a53a 7353 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7354 return BTRFS_RAID_RAID0;
53b381b3 7355 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7356 return BTRFS_RAID_RAID5;
53b381b3 7357 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7358 return BTRFS_RAID_RAID6;
7738a53a 7359
e942f883 7360 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7361}
7362
6ab0a202 7363int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7364{
31e50229 7365 return __get_raid_index(cache->flags);
7738a53a
ID
7366}
7367
6ab0a202
JM
7368static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7369 [BTRFS_RAID_RAID10] = "raid10",
7370 [BTRFS_RAID_RAID1] = "raid1",
7371 [BTRFS_RAID_DUP] = "dup",
7372 [BTRFS_RAID_RAID0] = "raid0",
7373 [BTRFS_RAID_SINGLE] = "single",
7374 [BTRFS_RAID_RAID5] = "raid5",
7375 [BTRFS_RAID_RAID6] = "raid6",
7376};
7377
1b8e5df6 7378static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7379{
7380 if (type >= BTRFS_NR_RAID_TYPES)
7381 return NULL;
7382
7383 return btrfs_raid_type_names[type];
7384}
7385
817d52f8 7386enum btrfs_loop_type {
285ff5af
JB
7387 LOOP_CACHING_NOWAIT = 0,
7388 LOOP_CACHING_WAIT = 1,
7389 LOOP_ALLOC_CHUNK = 2,
7390 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7391};
7392
e570fd27
MX
7393static inline void
7394btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7395 int delalloc)
7396{
7397 if (delalloc)
7398 down_read(&cache->data_rwsem);
7399}
7400
7401static inline void
7402btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7403 int delalloc)
7404{
7405 btrfs_get_block_group(cache);
7406 if (delalloc)
7407 down_read(&cache->data_rwsem);
7408}
7409
7410static struct btrfs_block_group_cache *
7411btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7412 struct btrfs_free_cluster *cluster,
7413 int delalloc)
7414{
89771cc9 7415 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7416
e570fd27 7417 spin_lock(&cluster->refill_lock);
6719afdc
GU
7418 while (1) {
7419 used_bg = cluster->block_group;
7420 if (!used_bg)
7421 return NULL;
7422
7423 if (used_bg == block_group)
e570fd27
MX
7424 return used_bg;
7425
6719afdc 7426 btrfs_get_block_group(used_bg);
e570fd27 7427
6719afdc
GU
7428 if (!delalloc)
7429 return used_bg;
e570fd27 7430
6719afdc
GU
7431 if (down_read_trylock(&used_bg->data_rwsem))
7432 return used_bg;
e570fd27 7433
6719afdc 7434 spin_unlock(&cluster->refill_lock);
e570fd27 7435
e321f8a8
LB
7436 /* We should only have one-level nested. */
7437 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7438
6719afdc
GU
7439 spin_lock(&cluster->refill_lock);
7440 if (used_bg == cluster->block_group)
7441 return used_bg;
e570fd27 7442
6719afdc
GU
7443 up_read(&used_bg->data_rwsem);
7444 btrfs_put_block_group(used_bg);
7445 }
e570fd27
MX
7446}
7447
7448static inline void
7449btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7450 int delalloc)
7451{
7452 if (delalloc)
7453 up_read(&cache->data_rwsem);
7454 btrfs_put_block_group(cache);
7455}
7456
fec577fb
CM
7457/*
7458 * walks the btree of allocated extents and find a hole of a given size.
7459 * The key ins is changed to record the hole:
a4820398 7460 * ins->objectid == start position
62e2749e 7461 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7462 * ins->offset == the size of the hole.
fec577fb 7463 * Any available blocks before search_start are skipped.
a4820398
MX
7464 *
7465 * If there is no suitable free space, we will record the max size of
7466 * the free space extent currently.
fec577fb 7467 */
87bde3cd 7468static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7469 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7470 u64 hint_byte, struct btrfs_key *ins,
7471 u64 flags, int delalloc)
fec577fb 7472{
80eb234a 7473 int ret = 0;
0b246afa 7474 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7475 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7476 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7477 u64 search_start = 0;
a4820398 7478 u64 max_extent_size = 0;
c759c4e1 7479 u64 empty_cluster = 0;
80eb234a 7480 struct btrfs_space_info *space_info;
fa9c0d79 7481 int loop = 0;
b6919a58 7482 int index = __get_raid_index(flags);
0a24325e 7483 bool failed_cluster_refill = false;
1cdda9b8 7484 bool failed_alloc = false;
67377734 7485 bool use_cluster = true;
60d2adbb 7486 bool have_caching_bg = false;
13a0db5a 7487 bool orig_have_caching_bg = false;
a5e681d9 7488 bool full_search = false;
fec577fb 7489
0b246afa 7490 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7491 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7492 ins->objectid = 0;
7493 ins->offset = 0;
b1a4d965 7494
71ff6437 7495 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7496
0b246afa 7497 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7498 if (!space_info) {
0b246afa 7499 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7500 return -ENOSPC;
7501 }
2552d17e 7502
67377734 7503 /*
4f4db217
JB
7504 * If our free space is heavily fragmented we may not be able to make
7505 * big contiguous allocations, so instead of doing the expensive search
7506 * for free space, simply return ENOSPC with our max_extent_size so we
7507 * can go ahead and search for a more manageable chunk.
7508 *
7509 * If our max_extent_size is large enough for our allocation simply
7510 * disable clustering since we will likely not be able to find enough
7511 * space to create a cluster and induce latency trying.
67377734 7512 */
4f4db217
JB
7513 if (unlikely(space_info->max_extent_size)) {
7514 spin_lock(&space_info->lock);
7515 if (space_info->max_extent_size &&
7516 num_bytes > space_info->max_extent_size) {
7517 ins->offset = space_info->max_extent_size;
7518 spin_unlock(&space_info->lock);
7519 return -ENOSPC;
7520 } else if (space_info->max_extent_size) {
7521 use_cluster = false;
7522 }
7523 spin_unlock(&space_info->lock);
fa9c0d79 7524 }
0f9dd46c 7525
2ff7e61e 7526 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7527 if (last_ptr) {
fa9c0d79
CM
7528 spin_lock(&last_ptr->lock);
7529 if (last_ptr->block_group)
7530 hint_byte = last_ptr->window_start;
c759c4e1
JB
7531 if (last_ptr->fragmented) {
7532 /*
7533 * We still set window_start so we can keep track of the
7534 * last place we found an allocation to try and save
7535 * some time.
7536 */
7537 hint_byte = last_ptr->window_start;
7538 use_cluster = false;
7539 }
fa9c0d79 7540 spin_unlock(&last_ptr->lock);
239b14b3 7541 }
fa9c0d79 7542
2ff7e61e 7543 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7544 search_start = max(search_start, hint_byte);
2552d17e 7545 if (search_start == hint_byte) {
0b246afa 7546 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7547 /*
7548 * we don't want to use the block group if it doesn't match our
7549 * allocation bits, or if its not cached.
ccf0e725
JB
7550 *
7551 * However if we are re-searching with an ideal block group
7552 * picked out then we don't care that the block group is cached.
817d52f8 7553 */
b6919a58 7554 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7555 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7556 down_read(&space_info->groups_sem);
44fb5511
CM
7557 if (list_empty(&block_group->list) ||
7558 block_group->ro) {
7559 /*
7560 * someone is removing this block group,
7561 * we can't jump into the have_block_group
7562 * target because our list pointers are not
7563 * valid
7564 */
7565 btrfs_put_block_group(block_group);
7566 up_read(&space_info->groups_sem);
ccf0e725 7567 } else {
b742bb82 7568 index = get_block_group_index(block_group);
e570fd27 7569 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7570 goto have_block_group;
ccf0e725 7571 }
2552d17e 7572 } else if (block_group) {
fa9c0d79 7573 btrfs_put_block_group(block_group);
2552d17e 7574 }
42e70e7a 7575 }
2552d17e 7576search:
60d2adbb 7577 have_caching_bg = false;
a5e681d9
JB
7578 if (index == 0 || index == __get_raid_index(flags))
7579 full_search = true;
80eb234a 7580 down_read(&space_info->groups_sem);
b742bb82
YZ
7581 list_for_each_entry(block_group, &space_info->block_groups[index],
7582 list) {
6226cb0a 7583 u64 offset;
817d52f8 7584 int cached;
8a1413a2 7585
14443937
JM
7586 /* If the block group is read-only, we can skip it entirely. */
7587 if (unlikely(block_group->ro))
7588 continue;
7589
e570fd27 7590 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7591 search_start = block_group->key.objectid;
42e70e7a 7592
83a50de9
CM
7593 /*
7594 * this can happen if we end up cycling through all the
7595 * raid types, but we want to make sure we only allocate
7596 * for the proper type.
7597 */
b6919a58 7598 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7599 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7600 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7601 BTRFS_BLOCK_GROUP_RAID5 |
7602 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7603 BTRFS_BLOCK_GROUP_RAID10;
7604
7605 /*
7606 * if they asked for extra copies and this block group
7607 * doesn't provide them, bail. This does allow us to
7608 * fill raid0 from raid1.
7609 */
b6919a58 7610 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7611 goto loop;
7612 }
7613
2552d17e 7614have_block_group:
291c7d2f
JB
7615 cached = block_group_cache_done(block_group);
7616 if (unlikely(!cached)) {
a5e681d9 7617 have_caching_bg = true;
f6373bf3 7618 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7619 BUG_ON(ret < 0);
7620 ret = 0;
817d52f8
JB
7621 }
7622
36cce922
JB
7623 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7624 goto loop;
0f9dd46c 7625
0a24325e 7626 /*
062c05c4
AO
7627 * Ok we want to try and use the cluster allocator, so
7628 * lets look there
0a24325e 7629 */
c759c4e1 7630 if (last_ptr && use_cluster) {
215a63d1 7631 struct btrfs_block_group_cache *used_block_group;
8de972b4 7632 unsigned long aligned_cluster;
fa9c0d79
CM
7633 /*
7634 * the refill lock keeps out other
7635 * people trying to start a new cluster
7636 */
e570fd27
MX
7637 used_block_group = btrfs_lock_cluster(block_group,
7638 last_ptr,
7639 delalloc);
7640 if (!used_block_group)
44fb5511 7641 goto refill_cluster;
274bd4fb 7642
e570fd27
MX
7643 if (used_block_group != block_group &&
7644 (used_block_group->ro ||
7645 !block_group_bits(used_block_group, flags)))
7646 goto release_cluster;
44fb5511 7647
274bd4fb 7648 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7649 last_ptr,
7650 num_bytes,
7651 used_block_group->key.objectid,
7652 &max_extent_size);
fa9c0d79
CM
7653 if (offset) {
7654 /* we have a block, we're done */
7655 spin_unlock(&last_ptr->refill_lock);
71ff6437 7656 trace_btrfs_reserve_extent_cluster(fs_info,
89d4346a
MX
7657 used_block_group,
7658 search_start, num_bytes);
215a63d1 7659 if (used_block_group != block_group) {
e570fd27
MX
7660 btrfs_release_block_group(block_group,
7661 delalloc);
215a63d1
MX
7662 block_group = used_block_group;
7663 }
fa9c0d79
CM
7664 goto checks;
7665 }
7666
274bd4fb 7667 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7668release_cluster:
062c05c4
AO
7669 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7670 * set up a new clusters, so lets just skip it
7671 * and let the allocator find whatever block
7672 * it can find. If we reach this point, we
7673 * will have tried the cluster allocator
7674 * plenty of times and not have found
7675 * anything, so we are likely way too
7676 * fragmented for the clustering stuff to find
a5f6f719
AO
7677 * anything.
7678 *
7679 * However, if the cluster is taken from the
7680 * current block group, release the cluster
7681 * first, so that we stand a better chance of
7682 * succeeding in the unclustered
7683 * allocation. */
7684 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7685 used_block_group != block_group) {
062c05c4 7686 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7687 btrfs_release_block_group(used_block_group,
7688 delalloc);
062c05c4
AO
7689 goto unclustered_alloc;
7690 }
7691
fa9c0d79
CM
7692 /*
7693 * this cluster didn't work out, free it and
7694 * start over
7695 */
7696 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7697
e570fd27
MX
7698 if (used_block_group != block_group)
7699 btrfs_release_block_group(used_block_group,
7700 delalloc);
7701refill_cluster:
a5f6f719
AO
7702 if (loop >= LOOP_NO_EMPTY_SIZE) {
7703 spin_unlock(&last_ptr->refill_lock);
7704 goto unclustered_alloc;
7705 }
7706
8de972b4
CM
7707 aligned_cluster = max_t(unsigned long,
7708 empty_cluster + empty_size,
7709 block_group->full_stripe_len);
7710
fa9c0d79 7711 /* allocate a cluster in this block group */
2ff7e61e 7712 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7713 last_ptr, search_start,
7714 num_bytes,
7715 aligned_cluster);
fa9c0d79
CM
7716 if (ret == 0) {
7717 /*
7718 * now pull our allocation out of this
7719 * cluster
7720 */
7721 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7722 last_ptr,
7723 num_bytes,
7724 search_start,
7725 &max_extent_size);
fa9c0d79
CM
7726 if (offset) {
7727 /* we found one, proceed */
7728 spin_unlock(&last_ptr->refill_lock);
71ff6437 7729 trace_btrfs_reserve_extent_cluster(fs_info,
3f7de037
JB
7730 block_group, search_start,
7731 num_bytes);
fa9c0d79
CM
7732 goto checks;
7733 }
0a24325e
JB
7734 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7735 && !failed_cluster_refill) {
817d52f8
JB
7736 spin_unlock(&last_ptr->refill_lock);
7737
0a24325e 7738 failed_cluster_refill = true;
817d52f8
JB
7739 wait_block_group_cache_progress(block_group,
7740 num_bytes + empty_cluster + empty_size);
7741 goto have_block_group;
fa9c0d79 7742 }
817d52f8 7743
fa9c0d79
CM
7744 /*
7745 * at this point we either didn't find a cluster
7746 * or we weren't able to allocate a block from our
7747 * cluster. Free the cluster we've been trying
7748 * to use, and go to the next block group
7749 */
0a24325e 7750 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7751 spin_unlock(&last_ptr->refill_lock);
0a24325e 7752 goto loop;
fa9c0d79
CM
7753 }
7754
062c05c4 7755unclustered_alloc:
c759c4e1
JB
7756 /*
7757 * We are doing an unclustered alloc, set the fragmented flag so
7758 * we don't bother trying to setup a cluster again until we get
7759 * more space.
7760 */
7761 if (unlikely(last_ptr)) {
7762 spin_lock(&last_ptr->lock);
7763 last_ptr->fragmented = 1;
7764 spin_unlock(&last_ptr->lock);
7765 }
0c9b36e0
LB
7766 if (cached) {
7767 struct btrfs_free_space_ctl *ctl =
7768 block_group->free_space_ctl;
7769
7770 spin_lock(&ctl->tree_lock);
7771 if (ctl->free_space <
7772 num_bytes + empty_cluster + empty_size) {
7773 if (ctl->free_space > max_extent_size)
7774 max_extent_size = ctl->free_space;
7775 spin_unlock(&ctl->tree_lock);
7776 goto loop;
7777 }
7778 spin_unlock(&ctl->tree_lock);
a5f6f719 7779 }
a5f6f719 7780
6226cb0a 7781 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7782 num_bytes, empty_size,
7783 &max_extent_size);
1cdda9b8
JB
7784 /*
7785 * If we didn't find a chunk, and we haven't failed on this
7786 * block group before, and this block group is in the middle of
7787 * caching and we are ok with waiting, then go ahead and wait
7788 * for progress to be made, and set failed_alloc to true.
7789 *
7790 * If failed_alloc is true then we've already waited on this
7791 * block group once and should move on to the next block group.
7792 */
7793 if (!offset && !failed_alloc && !cached &&
7794 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7795 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7796 num_bytes + empty_size);
7797 failed_alloc = true;
817d52f8 7798 goto have_block_group;
1cdda9b8
JB
7799 } else if (!offset) {
7800 goto loop;
817d52f8 7801 }
fa9c0d79 7802checks:
0b246afa 7803 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7804
2552d17e
JB
7805 /* move on to the next group */
7806 if (search_start + num_bytes >
215a63d1
MX
7807 block_group->key.objectid + block_group->key.offset) {
7808 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7809 goto loop;
6226cb0a 7810 }
f5a31e16 7811
f0486c68 7812 if (offset < search_start)
215a63d1 7813 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7814 search_start - offset);
7815 BUG_ON(offset > search_start);
2552d17e 7816
18513091
WX
7817 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7818 num_bytes, delalloc);
f0486c68 7819 if (ret == -EAGAIN) {
215a63d1 7820 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7821 goto loop;
0f9dd46c 7822 }
9cfa3e34 7823 btrfs_inc_block_group_reservations(block_group);
0b86a832 7824
f0486c68 7825 /* we are all good, lets return */
2552d17e
JB
7826 ins->objectid = search_start;
7827 ins->offset = num_bytes;
d2fb3437 7828
71ff6437 7829 trace_btrfs_reserve_extent(fs_info, block_group,
3f7de037 7830 search_start, num_bytes);
e570fd27 7831 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7832 break;
7833loop:
0a24325e 7834 failed_cluster_refill = false;
1cdda9b8 7835 failed_alloc = false;
b742bb82 7836 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7837 btrfs_release_block_group(block_group, delalloc);
14443937 7838 cond_resched();
2552d17e
JB
7839 }
7840 up_read(&space_info->groups_sem);
7841
13a0db5a 7842 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7843 && !orig_have_caching_bg)
7844 orig_have_caching_bg = true;
7845
60d2adbb
MX
7846 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7847 goto search;
7848
b742bb82
YZ
7849 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7850 goto search;
7851
285ff5af 7852 /*
ccf0e725
JB
7853 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7854 * caching kthreads as we move along
817d52f8
JB
7855 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7856 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7857 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7858 * again
fa9c0d79 7859 */
723bda20 7860 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7861 index = 0;
a5e681d9
JB
7862 if (loop == LOOP_CACHING_NOWAIT) {
7863 /*
7864 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7865 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7866 * full search through.
7867 */
13a0db5a 7868 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7869 loop = LOOP_CACHING_WAIT;
7870 else
7871 loop = LOOP_ALLOC_CHUNK;
7872 } else {
7873 loop++;
7874 }
7875
817d52f8 7876 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7877 struct btrfs_trans_handle *trans;
f017f15f
WS
7878 int exist = 0;
7879
7880 trans = current->journal_info;
7881 if (trans)
7882 exist = 1;
7883 else
7884 trans = btrfs_join_transaction(root);
00361589 7885
00361589
JB
7886 if (IS_ERR(trans)) {
7887 ret = PTR_ERR(trans);
7888 goto out;
7889 }
7890
2ff7e61e 7891 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7892 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7893
7894 /*
7895 * If we can't allocate a new chunk we've already looped
7896 * through at least once, move on to the NO_EMPTY_SIZE
7897 * case.
7898 */
7899 if (ret == -ENOSPC)
7900 loop = LOOP_NO_EMPTY_SIZE;
7901
ea658bad
JB
7902 /*
7903 * Do not bail out on ENOSPC since we
7904 * can do more things.
7905 */
00361589 7906 if (ret < 0 && ret != -ENOSPC)
66642832 7907 btrfs_abort_transaction(trans, ret);
00361589
JB
7908 else
7909 ret = 0;
f017f15f 7910 if (!exist)
3a45bb20 7911 btrfs_end_transaction(trans);
00361589 7912 if (ret)
ea658bad 7913 goto out;
2552d17e
JB
7914 }
7915
723bda20 7916 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7917 /*
7918 * Don't loop again if we already have no empty_size and
7919 * no empty_cluster.
7920 */
7921 if (empty_size == 0 &&
7922 empty_cluster == 0) {
7923 ret = -ENOSPC;
7924 goto out;
7925 }
723bda20
JB
7926 empty_size = 0;
7927 empty_cluster = 0;
fa9c0d79 7928 }
723bda20
JB
7929
7930 goto search;
2552d17e
JB
7931 } else if (!ins->objectid) {
7932 ret = -ENOSPC;
d82a6f1d 7933 } else if (ins->objectid) {
c759c4e1
JB
7934 if (!use_cluster && last_ptr) {
7935 spin_lock(&last_ptr->lock);
7936 last_ptr->window_start = ins->objectid;
7937 spin_unlock(&last_ptr->lock);
7938 }
80eb234a 7939 ret = 0;
be744175 7940 }
79787eaa 7941out:
4f4db217
JB
7942 if (ret == -ENOSPC) {
7943 spin_lock(&space_info->lock);
7944 space_info->max_extent_size = max_extent_size;
7945 spin_unlock(&space_info->lock);
a4820398 7946 ins->offset = max_extent_size;
4f4db217 7947 }
0f70abe2 7948 return ret;
fec577fb 7949}
ec44a35c 7950
ab8d0fc4
JM
7951static void dump_space_info(struct btrfs_fs_info *fs_info,
7952 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7953 int dump_block_groups)
0f9dd46c
JB
7954{
7955 struct btrfs_block_group_cache *cache;
b742bb82 7956 int index = 0;
0f9dd46c 7957
9ed74f2d 7958 spin_lock(&info->lock);
ab8d0fc4
JM
7959 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7960 info->flags,
4136135b
LB
7961 info->total_bytes - btrfs_space_info_used(info, true),
7962 info->full ? "" : "not ");
ab8d0fc4
JM
7963 btrfs_info(fs_info,
7964 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7965 info->total_bytes, info->bytes_used, info->bytes_pinned,
7966 info->bytes_reserved, info->bytes_may_use,
7967 info->bytes_readonly);
9ed74f2d
JB
7968 spin_unlock(&info->lock);
7969
7970 if (!dump_block_groups)
7971 return;
0f9dd46c 7972
80eb234a 7973 down_read(&info->groups_sem);
b742bb82
YZ
7974again:
7975 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7976 spin_lock(&cache->lock);
ab8d0fc4
JM
7977 btrfs_info(fs_info,
7978 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7979 cache->key.objectid, cache->key.offset,
7980 btrfs_block_group_used(&cache->item), cache->pinned,
7981 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7982 btrfs_dump_free_space(cache, bytes);
7983 spin_unlock(&cache->lock);
7984 }
b742bb82
YZ
7985 if (++index < BTRFS_NR_RAID_TYPES)
7986 goto again;
80eb234a 7987 up_read(&info->groups_sem);
0f9dd46c 7988}
e8569813 7989
18513091 7990int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7991 u64 num_bytes, u64 min_alloc_size,
7992 u64 empty_size, u64 hint_byte,
e570fd27 7993 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7994{
ab8d0fc4 7995 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7996 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7997 u64 flags;
fec577fb 7998 int ret;
925baedd 7999
1b86826d 8000 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 8001again:
0b246afa 8002 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8003 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8004 hint_byte, ins, flags, delalloc);
9cfa3e34 8005 if (!ret && !is_data) {
ab8d0fc4 8006 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8007 } else if (ret == -ENOSPC) {
a4820398
MX
8008 if (!final_tried && ins->offset) {
8009 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8010 num_bytes = round_down(num_bytes,
0b246afa 8011 fs_info->sectorsize);
9e622d6b 8012 num_bytes = max(num_bytes, min_alloc_size);
18513091 8013 ram_bytes = num_bytes;
9e622d6b
MX
8014 if (num_bytes == min_alloc_size)
8015 final_tried = true;
8016 goto again;
ab8d0fc4 8017 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8018 struct btrfs_space_info *sinfo;
8019
ab8d0fc4 8020 sinfo = __find_space_info(fs_info, flags);
0b246afa 8021 btrfs_err(fs_info,
5d163e0e
JM
8022 "allocation failed flags %llu, wanted %llu",
8023 flags, num_bytes);
53804280 8024 if (sinfo)
ab8d0fc4 8025 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8026 }
925baedd 8027 }
0f9dd46c
JB
8028
8029 return ret;
e6dcd2dc
CM
8030}
8031
2ff7e61e 8032static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8033 u64 start, u64 len,
8034 int pin, int delalloc)
65b51a00 8035{
0f9dd46c 8036 struct btrfs_block_group_cache *cache;
1f3c79a2 8037 int ret = 0;
0f9dd46c 8038
0b246afa 8039 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8040 if (!cache) {
0b246afa
JM
8041 btrfs_err(fs_info, "Unable to find block group for %llu",
8042 start);
0f9dd46c
JB
8043 return -ENOSPC;
8044 }
1f3c79a2 8045
e688b725 8046 if (pin)
2ff7e61e 8047 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8048 else {
0b246afa 8049 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8050 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8051 btrfs_add_free_space(cache, start, len);
4824f1f4 8052 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8053 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8054 }
31193213 8055
fa9c0d79 8056 btrfs_put_block_group(cache);
e6dcd2dc
CM
8057 return ret;
8058}
8059
2ff7e61e 8060int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8061 u64 start, u64 len, int delalloc)
e688b725 8062{
2ff7e61e 8063 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8064}
8065
2ff7e61e 8066int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8067 u64 start, u64 len)
8068{
2ff7e61e 8069 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8070}
8071
5d4f98a2 8072static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8073 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8074 u64 parent, u64 root_objectid,
8075 u64 flags, u64 owner, u64 offset,
8076 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8077{
8078 int ret;
e6dcd2dc 8079 struct btrfs_extent_item *extent_item;
5d4f98a2 8080 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8081 struct btrfs_path *path;
5d4f98a2
YZ
8082 struct extent_buffer *leaf;
8083 int type;
8084 u32 size;
26b8003f 8085
5d4f98a2
YZ
8086 if (parent > 0)
8087 type = BTRFS_SHARED_DATA_REF_KEY;
8088 else
8089 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8090
5d4f98a2 8091 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8092
8093 path = btrfs_alloc_path();
db5b493a
TI
8094 if (!path)
8095 return -ENOMEM;
47e4bb98 8096
b9473439 8097 path->leave_spinning = 1;
5d4f98a2
YZ
8098 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8099 ins, size);
79787eaa
JM
8100 if (ret) {
8101 btrfs_free_path(path);
8102 return ret;
8103 }
0f9dd46c 8104
5d4f98a2
YZ
8105 leaf = path->nodes[0];
8106 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8107 struct btrfs_extent_item);
5d4f98a2
YZ
8108 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8109 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8110 btrfs_set_extent_flags(leaf, extent_item,
8111 flags | BTRFS_EXTENT_FLAG_DATA);
8112
8113 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8114 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8115 if (parent > 0) {
8116 struct btrfs_shared_data_ref *ref;
8117 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8118 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8119 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8120 } else {
8121 struct btrfs_extent_data_ref *ref;
8122 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8123 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8124 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8125 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8126 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8127 }
47e4bb98
CM
8128
8129 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8130 btrfs_free_path(path);
f510cfec 8131
1e144fb8
OS
8132 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8133 ins->offset);
8134 if (ret)
8135 return ret;
8136
6202df69 8137 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8138 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8139 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8140 ins->objectid, ins->offset);
f5947066
CM
8141 BUG();
8142 }
71ff6437 8143 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8144 return ret;
8145}
8146
5d4f98a2 8147static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 8148 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8149 u64 parent, u64 root_objectid,
8150 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8151 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8152{
8153 int ret;
5d4f98a2
YZ
8154 struct btrfs_extent_item *extent_item;
8155 struct btrfs_tree_block_info *block_info;
8156 struct btrfs_extent_inline_ref *iref;
8157 struct btrfs_path *path;
8158 struct extent_buffer *leaf;
3173a18f 8159 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8160 u64 num_bytes = ins->offset;
0b246afa 8161 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f
JB
8162
8163 if (!skinny_metadata)
8164 size += sizeof(*block_info);
1c2308f8 8165
5d4f98a2 8166 path = btrfs_alloc_path();
857cc2fc 8167 if (!path) {
2ff7e61e 8168 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8169 fs_info->nodesize);
d8926bb3 8170 return -ENOMEM;
857cc2fc 8171 }
56bec294 8172
5d4f98a2
YZ
8173 path->leave_spinning = 1;
8174 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8175 ins, size);
79787eaa 8176 if (ret) {
dd825259 8177 btrfs_free_path(path);
2ff7e61e 8178 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8179 fs_info->nodesize);
79787eaa
JM
8180 return ret;
8181 }
5d4f98a2
YZ
8182
8183 leaf = path->nodes[0];
8184 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8185 struct btrfs_extent_item);
8186 btrfs_set_extent_refs(leaf, extent_item, 1);
8187 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8188 btrfs_set_extent_flags(leaf, extent_item,
8189 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8190
3173a18f
JB
8191 if (skinny_metadata) {
8192 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
0b246afa 8193 num_bytes = fs_info->nodesize;
3173a18f
JB
8194 } else {
8195 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8196 btrfs_set_tree_block_key(leaf, block_info, key);
8197 btrfs_set_tree_block_level(leaf, block_info, level);
8198 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8199 }
5d4f98a2 8200
5d4f98a2
YZ
8201 if (parent > 0) {
8202 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8203 btrfs_set_extent_inline_ref_type(leaf, iref,
8204 BTRFS_SHARED_BLOCK_REF_KEY);
8205 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8206 } else {
8207 btrfs_set_extent_inline_ref_type(leaf, iref,
8208 BTRFS_TREE_BLOCK_REF_KEY);
8209 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8210 }
8211
8212 btrfs_mark_buffer_dirty(leaf);
8213 btrfs_free_path(path);
8214
1e144fb8
OS
8215 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8216 num_bytes);
8217 if (ret)
8218 return ret;
8219
6202df69
JM
8220 ret = update_block_group(trans, fs_info, ins->objectid,
8221 fs_info->nodesize, 1);
79787eaa 8222 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8223 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8224 ins->objectid, ins->offset);
5d4f98a2
YZ
8225 BUG();
8226 }
0be5dc67 8227
71ff6437 8228 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
0b246afa 8229 fs_info->nodesize);
5d4f98a2
YZ
8230 return ret;
8231}
8232
8233int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2 8234 u64 root_objectid, u64 owner,
5846a3c2
QW
8235 u64 offset, u64 ram_bytes,
8236 struct btrfs_key *ins)
5d4f98a2 8237{
2ff7e61e 8238 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
8239 int ret;
8240
8241 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8242
0b246afa 8243 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
7be07912
OS
8244 ins->offset, 0, root_objectid, owner,
8245 offset, ram_bytes,
8246 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8247 return ret;
8248}
e02119d5
CM
8249
8250/*
8251 * this is used by the tree logging recovery code. It records that
8252 * an extent has been allocated and makes sure to clear the free
8253 * space cache bits as well
8254 */
5d4f98a2 8255int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8256 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8257 u64 root_objectid, u64 owner, u64 offset,
8258 struct btrfs_key *ins)
e02119d5
CM
8259{
8260 int ret;
8261 struct btrfs_block_group_cache *block_group;
ed7a6948 8262 struct btrfs_space_info *space_info;
11833d66 8263
8c2a1a30
JB
8264 /*
8265 * Mixed block groups will exclude before processing the log so we only
01327610 8266 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8267 */
0b246afa 8268 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8269 ret = __exclude_logged_extent(fs_info, ins->objectid,
8270 ins->offset);
b50c6e25 8271 if (ret)
8c2a1a30 8272 return ret;
11833d66
YZ
8273 }
8274
0b246afa 8275 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8276 if (!block_group)
8277 return -EINVAL;
8278
ed7a6948
WX
8279 space_info = block_group->space_info;
8280 spin_lock(&space_info->lock);
8281 spin_lock(&block_group->lock);
8282 space_info->bytes_reserved += ins->offset;
8283 block_group->reserved += ins->offset;
8284 spin_unlock(&block_group->lock);
8285 spin_unlock(&space_info->lock);
8286
2ff7e61e 8287 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8288 0, owner, offset, ins, 1);
b50c6e25 8289 btrfs_put_block_group(block_group);
e02119d5
CM
8290 return ret;
8291}
8292
48a3b636
ES
8293static struct extent_buffer *
8294btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8295 u64 bytenr, int level)
65b51a00 8296{
0b246afa 8297 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8298 struct extent_buffer *buf;
8299
2ff7e61e 8300 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8301 if (IS_ERR(buf))
8302 return buf;
8303
65b51a00 8304 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8305 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8306 btrfs_tree_lock(buf);
7c302b49 8307 clean_tree_block(fs_info, buf);
3083ee2e 8308 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8309
8310 btrfs_set_lock_blocking(buf);
4db8c528 8311 set_extent_buffer_uptodate(buf);
b4ce94de 8312
d0c803c4 8313 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8314 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8315 /*
8316 * we allow two log transactions at a time, use different
8317 * EXENT bit to differentiate dirty pages.
8318 */
656f30db 8319 if (buf->log_index == 0)
8cef4e16
YZ
8320 set_extent_dirty(&root->dirty_log_pages, buf->start,
8321 buf->start + buf->len - 1, GFP_NOFS);
8322 else
8323 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8324 buf->start + buf->len - 1);
d0c803c4 8325 } else {
656f30db 8326 buf->log_index = -1;
d0c803c4 8327 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8328 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8329 }
64c12921 8330 trans->dirty = true;
b4ce94de 8331 /* this returns a buffer locked for blocking */
65b51a00
CM
8332 return buf;
8333}
8334
f0486c68
YZ
8335static struct btrfs_block_rsv *
8336use_block_rsv(struct btrfs_trans_handle *trans,
8337 struct btrfs_root *root, u32 blocksize)
8338{
0b246afa 8339 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8340 struct btrfs_block_rsv *block_rsv;
0b246afa 8341 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8342 int ret;
d88033db 8343 bool global_updated = false;
f0486c68
YZ
8344
8345 block_rsv = get_block_rsv(trans, root);
8346
b586b323
MX
8347 if (unlikely(block_rsv->size == 0))
8348 goto try_reserve;
d88033db 8349again:
f0486c68
YZ
8350 ret = block_rsv_use_bytes(block_rsv, blocksize);
8351 if (!ret)
8352 return block_rsv;
8353
b586b323
MX
8354 if (block_rsv->failfast)
8355 return ERR_PTR(ret);
8356
d88033db
MX
8357 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8358 global_updated = true;
0b246afa 8359 update_global_block_rsv(fs_info);
d88033db
MX
8360 goto again;
8361 }
8362
0b246afa 8363 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8364 static DEFINE_RATELIMIT_STATE(_rs,
8365 DEFAULT_RATELIMIT_INTERVAL * 10,
8366 /*DEFAULT_RATELIMIT_BURST*/ 1);
8367 if (__ratelimit(&_rs))
8368 WARN(1, KERN_DEBUG
efe120a0 8369 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8370 }
8371try_reserve:
8372 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8373 BTRFS_RESERVE_NO_FLUSH);
8374 if (!ret)
8375 return block_rsv;
8376 /*
8377 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8378 * the global reserve if its space type is the same as the global
8379 * reservation.
b586b323 8380 */
5881cfc9
MX
8381 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8382 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8383 ret = block_rsv_use_bytes(global_rsv, blocksize);
8384 if (!ret)
8385 return global_rsv;
8386 }
8387 return ERR_PTR(ret);
f0486c68
YZ
8388}
8389
8c2a3ca2
JB
8390static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8391 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8392{
8393 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8394 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8395}
8396
fec577fb 8397/*
f0486c68 8398 * finds a free extent and does all the dirty work required for allocation
67b7859e 8399 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8400 */
4d75f8a9 8401struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8402 struct btrfs_root *root,
8403 u64 parent, u64 root_objectid,
8404 const struct btrfs_disk_key *key,
8405 int level, u64 hint,
8406 u64 empty_size)
fec577fb 8407{
0b246afa 8408 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8409 struct btrfs_key ins;
f0486c68 8410 struct btrfs_block_rsv *block_rsv;
5f39d397 8411 struct extent_buffer *buf;
67b7859e 8412 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8413 u64 flags = 0;
8414 int ret;
0b246afa
JM
8415 u32 blocksize = fs_info->nodesize;
8416 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8417
05653ef3 8418#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8419 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8420 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8421 level);
faa2dbf0
JB
8422 if (!IS_ERR(buf))
8423 root->alloc_bytenr += blocksize;
8424 return buf;
8425 }
05653ef3 8426#endif
fccb84c9 8427
f0486c68
YZ
8428 block_rsv = use_block_rsv(trans, root, blocksize);
8429 if (IS_ERR(block_rsv))
8430 return ERR_CAST(block_rsv);
8431
18513091 8432 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8433 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8434 if (ret)
8435 goto out_unuse;
55c69072 8436
fe864576 8437 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8438 if (IS_ERR(buf)) {
8439 ret = PTR_ERR(buf);
8440 goto out_free_reserved;
8441 }
f0486c68
YZ
8442
8443 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8444 if (parent == 0)
8445 parent = ins.objectid;
8446 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8447 } else
8448 BUG_ON(parent > 0);
8449
8450 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8451 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8452 if (!extent_op) {
8453 ret = -ENOMEM;
8454 goto out_free_buf;
8455 }
f0486c68
YZ
8456 if (key)
8457 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8458 else
8459 memset(&extent_op->key, 0, sizeof(extent_op->key));
8460 extent_op->flags_to_set = flags;
35b3ad50
DS
8461 extent_op->update_key = skinny_metadata ? false : true;
8462 extent_op->update_flags = true;
8463 extent_op->is_data = false;
b1c79e09 8464 extent_op->level = level;
f0486c68 8465
7be07912
OS
8466 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8467 ins.offset, parent,
8468 root_objectid, level,
67b7859e 8469 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8470 extent_op, NULL, NULL);
67b7859e
OS
8471 if (ret)
8472 goto out_free_delayed;
f0486c68 8473 }
fec577fb 8474 return buf;
67b7859e
OS
8475
8476out_free_delayed:
8477 btrfs_free_delayed_extent_op(extent_op);
8478out_free_buf:
8479 free_extent_buffer(buf);
8480out_free_reserved:
2ff7e61e 8481 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8482out_unuse:
0b246afa 8483 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8484 return ERR_PTR(ret);
fec577fb 8485}
a28ec197 8486
2c47e605
YZ
8487struct walk_control {
8488 u64 refs[BTRFS_MAX_LEVEL];
8489 u64 flags[BTRFS_MAX_LEVEL];
8490 struct btrfs_key update_progress;
8491 int stage;
8492 int level;
8493 int shared_level;
8494 int update_ref;
8495 int keep_locks;
1c4850e2
YZ
8496 int reada_slot;
8497 int reada_count;
66d7e7f0 8498 int for_reloc;
2c47e605
YZ
8499};
8500
8501#define DROP_REFERENCE 1
8502#define UPDATE_BACKREF 2
8503
1c4850e2
YZ
8504static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8505 struct btrfs_root *root,
8506 struct walk_control *wc,
8507 struct btrfs_path *path)
6407bf6d 8508{
0b246afa 8509 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8510 u64 bytenr;
8511 u64 generation;
8512 u64 refs;
94fcca9f 8513 u64 flags;
5d4f98a2 8514 u32 nritems;
1c4850e2
YZ
8515 struct btrfs_key key;
8516 struct extent_buffer *eb;
6407bf6d 8517 int ret;
1c4850e2
YZ
8518 int slot;
8519 int nread = 0;
6407bf6d 8520
1c4850e2
YZ
8521 if (path->slots[wc->level] < wc->reada_slot) {
8522 wc->reada_count = wc->reada_count * 2 / 3;
8523 wc->reada_count = max(wc->reada_count, 2);
8524 } else {
8525 wc->reada_count = wc->reada_count * 3 / 2;
8526 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8527 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8528 }
7bb86316 8529
1c4850e2
YZ
8530 eb = path->nodes[wc->level];
8531 nritems = btrfs_header_nritems(eb);
bd56b302 8532
1c4850e2
YZ
8533 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8534 if (nread >= wc->reada_count)
8535 break;
bd56b302 8536
2dd3e67b 8537 cond_resched();
1c4850e2
YZ
8538 bytenr = btrfs_node_blockptr(eb, slot);
8539 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8540
1c4850e2
YZ
8541 if (slot == path->slots[wc->level])
8542 goto reada;
5d4f98a2 8543
1c4850e2
YZ
8544 if (wc->stage == UPDATE_BACKREF &&
8545 generation <= root->root_key.offset)
bd56b302
CM
8546 continue;
8547
94fcca9f 8548 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8549 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8550 wc->level - 1, 1, &refs,
8551 &flags);
79787eaa
JM
8552 /* We don't care about errors in readahead. */
8553 if (ret < 0)
8554 continue;
94fcca9f
YZ
8555 BUG_ON(refs == 0);
8556
1c4850e2 8557 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8558 if (refs == 1)
8559 goto reada;
bd56b302 8560
94fcca9f
YZ
8561 if (wc->level == 1 &&
8562 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8563 continue;
1c4850e2
YZ
8564 if (!wc->update_ref ||
8565 generation <= root->root_key.offset)
8566 continue;
8567 btrfs_node_key_to_cpu(eb, &key, slot);
8568 ret = btrfs_comp_cpu_keys(&key,
8569 &wc->update_progress);
8570 if (ret < 0)
8571 continue;
94fcca9f
YZ
8572 } else {
8573 if (wc->level == 1 &&
8574 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8575 continue;
6407bf6d 8576 }
1c4850e2 8577reada:
2ff7e61e 8578 readahead_tree_block(fs_info, bytenr);
1c4850e2 8579 nread++;
20524f02 8580 }
1c4850e2 8581 wc->reada_slot = slot;
20524f02 8582}
2c47e605 8583
f82d02d9 8584/*
2c016dc2 8585 * helper to process tree block while walking down the tree.
2c47e605 8586 *
2c47e605
YZ
8587 * when wc->stage == UPDATE_BACKREF, this function updates
8588 * back refs for pointers in the block.
8589 *
8590 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8591 */
2c47e605 8592static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8593 struct btrfs_root *root,
2c47e605 8594 struct btrfs_path *path,
94fcca9f 8595 struct walk_control *wc, int lookup_info)
f82d02d9 8596{
2ff7e61e 8597 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8598 int level = wc->level;
8599 struct extent_buffer *eb = path->nodes[level];
2c47e605 8600 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8601 int ret;
8602
2c47e605
YZ
8603 if (wc->stage == UPDATE_BACKREF &&
8604 btrfs_header_owner(eb) != root->root_key.objectid)
8605 return 1;
f82d02d9 8606
2c47e605
YZ
8607 /*
8608 * when reference count of tree block is 1, it won't increase
8609 * again. once full backref flag is set, we never clear it.
8610 */
94fcca9f
YZ
8611 if (lookup_info &&
8612 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8613 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8614 BUG_ON(!path->locks[level]);
2ff7e61e 8615 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8616 eb->start, level, 1,
2c47e605
YZ
8617 &wc->refs[level],
8618 &wc->flags[level]);
79787eaa
JM
8619 BUG_ON(ret == -ENOMEM);
8620 if (ret)
8621 return ret;
2c47e605
YZ
8622 BUG_ON(wc->refs[level] == 0);
8623 }
5d4f98a2 8624
2c47e605
YZ
8625 if (wc->stage == DROP_REFERENCE) {
8626 if (wc->refs[level] > 1)
8627 return 1;
f82d02d9 8628
2c47e605 8629 if (path->locks[level] && !wc->keep_locks) {
bd681513 8630 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8631 path->locks[level] = 0;
8632 }
8633 return 0;
8634 }
f82d02d9 8635
2c47e605
YZ
8636 /* wc->stage == UPDATE_BACKREF */
8637 if (!(wc->flags[level] & flag)) {
8638 BUG_ON(!path->locks[level]);
e339a6b0 8639 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8640 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8641 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8642 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8643 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8644 eb->len, flag,
8645 btrfs_header_level(eb), 0);
79787eaa 8646 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8647 wc->flags[level] |= flag;
8648 }
8649
8650 /*
8651 * the block is shared by multiple trees, so it's not good to
8652 * keep the tree lock
8653 */
8654 if (path->locks[level] && level > 0) {
bd681513 8655 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8656 path->locks[level] = 0;
8657 }
8658 return 0;
8659}
8660
1c4850e2 8661/*
2c016dc2 8662 * helper to process tree block pointer.
1c4850e2
YZ
8663 *
8664 * when wc->stage == DROP_REFERENCE, this function checks
8665 * reference count of the block pointed to. if the block
8666 * is shared and we need update back refs for the subtree
8667 * rooted at the block, this function changes wc->stage to
8668 * UPDATE_BACKREF. if the block is shared and there is no
8669 * need to update back, this function drops the reference
8670 * to the block.
8671 *
8672 * NOTE: return value 1 means we should stop walking down.
8673 */
8674static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8675 struct btrfs_root *root,
8676 struct btrfs_path *path,
94fcca9f 8677 struct walk_control *wc, int *lookup_info)
1c4850e2 8678{
0b246afa 8679 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8680 u64 bytenr;
8681 u64 generation;
8682 u64 parent;
8683 u32 blocksize;
8684 struct btrfs_key key;
8685 struct extent_buffer *next;
8686 int level = wc->level;
8687 int reada = 0;
8688 int ret = 0;
1152651a 8689 bool need_account = false;
1c4850e2
YZ
8690
8691 generation = btrfs_node_ptr_generation(path->nodes[level],
8692 path->slots[level]);
8693 /*
8694 * if the lower level block was created before the snapshot
8695 * was created, we know there is no need to update back refs
8696 * for the subtree
8697 */
8698 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8699 generation <= root->root_key.offset) {
8700 *lookup_info = 1;
1c4850e2 8701 return 1;
94fcca9f 8702 }
1c4850e2
YZ
8703
8704 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
0b246afa 8705 blocksize = fs_info->nodesize;
1c4850e2 8706
0b246afa 8707 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8708 if (!next) {
2ff7e61e 8709 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8710 if (IS_ERR(next))
8711 return PTR_ERR(next);
8712
b2aaaa3b
JB
8713 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8714 level - 1);
1c4850e2
YZ
8715 reada = 1;
8716 }
8717 btrfs_tree_lock(next);
8718 btrfs_set_lock_blocking(next);
8719
2ff7e61e 8720 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8721 &wc->refs[level - 1],
8722 &wc->flags[level - 1]);
4867268c
JB
8723 if (ret < 0)
8724 goto out_unlock;
79787eaa 8725
c2cf52eb 8726 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8727 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8728 ret = -EIO;
8729 goto out_unlock;
c2cf52eb 8730 }
94fcca9f 8731 *lookup_info = 0;
1c4850e2 8732
94fcca9f 8733 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8734 if (wc->refs[level - 1] > 1) {
1152651a 8735 need_account = true;
94fcca9f
YZ
8736 if (level == 1 &&
8737 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8738 goto skip;
8739
1c4850e2
YZ
8740 if (!wc->update_ref ||
8741 generation <= root->root_key.offset)
8742 goto skip;
8743
8744 btrfs_node_key_to_cpu(path->nodes[level], &key,
8745 path->slots[level]);
8746 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8747 if (ret < 0)
8748 goto skip;
8749
8750 wc->stage = UPDATE_BACKREF;
8751 wc->shared_level = level - 1;
8752 }
94fcca9f
YZ
8753 } else {
8754 if (level == 1 &&
8755 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8756 goto skip;
1c4850e2
YZ
8757 }
8758
b9fab919 8759 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8760 btrfs_tree_unlock(next);
8761 free_extent_buffer(next);
8762 next = NULL;
94fcca9f 8763 *lookup_info = 1;
1c4850e2
YZ
8764 }
8765
8766 if (!next) {
8767 if (reada && level == 1)
8768 reada_walk_down(trans, root, wc, path);
2ff7e61e 8769 next = read_tree_block(fs_info, bytenr, generation);
64c043de
LB
8770 if (IS_ERR(next)) {
8771 return PTR_ERR(next);
8772 } else if (!extent_buffer_uptodate(next)) {
416bc658 8773 free_extent_buffer(next);
97d9a8a4 8774 return -EIO;
416bc658 8775 }
1c4850e2
YZ
8776 btrfs_tree_lock(next);
8777 btrfs_set_lock_blocking(next);
8778 }
8779
8780 level--;
4867268c
JB
8781 ASSERT(level == btrfs_header_level(next));
8782 if (level != btrfs_header_level(next)) {
8783 btrfs_err(root->fs_info, "mismatched level");
8784 ret = -EIO;
8785 goto out_unlock;
8786 }
1c4850e2
YZ
8787 path->nodes[level] = next;
8788 path->slots[level] = 0;
bd681513 8789 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8790 wc->level = level;
8791 if (wc->level == 1)
8792 wc->reada_slot = 0;
8793 return 0;
8794skip:
8795 wc->refs[level - 1] = 0;
8796 wc->flags[level - 1] = 0;
94fcca9f
YZ
8797 if (wc->stage == DROP_REFERENCE) {
8798 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8799 parent = path->nodes[level]->start;
8800 } else {
4867268c 8801 ASSERT(root->root_key.objectid ==
94fcca9f 8802 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8803 if (root->root_key.objectid !=
8804 btrfs_header_owner(path->nodes[level])) {
8805 btrfs_err(root->fs_info,
8806 "mismatched block owner");
8807 ret = -EIO;
8808 goto out_unlock;
8809 }
94fcca9f
YZ
8810 parent = 0;
8811 }
1c4850e2 8812
1152651a 8813 if (need_account) {
33d1f05c
QW
8814 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8815 generation, level - 1);
1152651a 8816 if (ret) {
0b246afa 8817 btrfs_err_rl(fs_info,
5d163e0e
JM
8818 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8819 ret);
1152651a
MF
8820 }
8821 }
2ff7e61e
JM
8822 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8823 parent, root->root_key.objectid,
8824 level - 1, 0);
4867268c
JB
8825 if (ret)
8826 goto out_unlock;
1c4850e2 8827 }
4867268c
JB
8828
8829 *lookup_info = 1;
8830 ret = 1;
8831
8832out_unlock:
1c4850e2
YZ
8833 btrfs_tree_unlock(next);
8834 free_extent_buffer(next);
4867268c
JB
8835
8836 return ret;
1c4850e2
YZ
8837}
8838
2c47e605 8839/*
2c016dc2 8840 * helper to process tree block while walking up the tree.
2c47e605
YZ
8841 *
8842 * when wc->stage == DROP_REFERENCE, this function drops
8843 * reference count on the block.
8844 *
8845 * when wc->stage == UPDATE_BACKREF, this function changes
8846 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8847 * to UPDATE_BACKREF previously while processing the block.
8848 *
8849 * NOTE: return value 1 means we should stop walking up.
8850 */
8851static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8852 struct btrfs_root *root,
8853 struct btrfs_path *path,
8854 struct walk_control *wc)
8855{
0b246afa 8856 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8857 int ret;
2c47e605
YZ
8858 int level = wc->level;
8859 struct extent_buffer *eb = path->nodes[level];
8860 u64 parent = 0;
8861
8862 if (wc->stage == UPDATE_BACKREF) {
8863 BUG_ON(wc->shared_level < level);
8864 if (level < wc->shared_level)
8865 goto out;
8866
2c47e605
YZ
8867 ret = find_next_key(path, level + 1, &wc->update_progress);
8868 if (ret > 0)
8869 wc->update_ref = 0;
8870
8871 wc->stage = DROP_REFERENCE;
8872 wc->shared_level = -1;
8873 path->slots[level] = 0;
8874
8875 /*
8876 * check reference count again if the block isn't locked.
8877 * we should start walking down the tree again if reference
8878 * count is one.
8879 */
8880 if (!path->locks[level]) {
8881 BUG_ON(level == 0);
8882 btrfs_tree_lock(eb);
8883 btrfs_set_lock_blocking(eb);
bd681513 8884 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8885
2ff7e61e 8886 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8887 eb->start, level, 1,
2c47e605
YZ
8888 &wc->refs[level],
8889 &wc->flags[level]);
79787eaa
JM
8890 if (ret < 0) {
8891 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8892 path->locks[level] = 0;
79787eaa
JM
8893 return ret;
8894 }
2c47e605
YZ
8895 BUG_ON(wc->refs[level] == 0);
8896 if (wc->refs[level] == 1) {
bd681513 8897 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8898 path->locks[level] = 0;
2c47e605
YZ
8899 return 1;
8900 }
f82d02d9 8901 }
2c47e605 8902 }
f82d02d9 8903
2c47e605
YZ
8904 /* wc->stage == DROP_REFERENCE */
8905 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8906
2c47e605
YZ
8907 if (wc->refs[level] == 1) {
8908 if (level == 0) {
8909 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8910 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8911 else
e339a6b0 8912 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8913 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8914 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8915 if (ret) {
0b246afa 8916 btrfs_err_rl(fs_info,
5d163e0e
JM
8917 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8918 ret);
1152651a 8919 }
2c47e605
YZ
8920 }
8921 /* make block locked assertion in clean_tree_block happy */
8922 if (!path->locks[level] &&
8923 btrfs_header_generation(eb) == trans->transid) {
8924 btrfs_tree_lock(eb);
8925 btrfs_set_lock_blocking(eb);
bd681513 8926 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8927 }
7c302b49 8928 clean_tree_block(fs_info, eb);
2c47e605
YZ
8929 }
8930
8931 if (eb == root->node) {
8932 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8933 parent = eb->start;
8934 else
8935 BUG_ON(root->root_key.objectid !=
8936 btrfs_header_owner(eb));
8937 } else {
8938 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8939 parent = path->nodes[level + 1]->start;
8940 else
8941 BUG_ON(root->root_key.objectid !=
8942 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8943 }
f82d02d9 8944
5581a51a 8945 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8946out:
8947 wc->refs[level] = 0;
8948 wc->flags[level] = 0;
f0486c68 8949 return 0;
2c47e605
YZ
8950}
8951
8952static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8953 struct btrfs_root *root,
8954 struct btrfs_path *path,
8955 struct walk_control *wc)
8956{
2c47e605 8957 int level = wc->level;
94fcca9f 8958 int lookup_info = 1;
2c47e605
YZ
8959 int ret;
8960
8961 while (level >= 0) {
94fcca9f 8962 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8963 if (ret > 0)
8964 break;
8965
8966 if (level == 0)
8967 break;
8968
7a7965f8
YZ
8969 if (path->slots[level] >=
8970 btrfs_header_nritems(path->nodes[level]))
8971 break;
8972
94fcca9f 8973 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8974 if (ret > 0) {
8975 path->slots[level]++;
8976 continue;
90d2c51d
MX
8977 } else if (ret < 0)
8978 return ret;
1c4850e2 8979 level = wc->level;
f82d02d9 8980 }
f82d02d9
YZ
8981 return 0;
8982}
8983
d397712b 8984static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8985 struct btrfs_root *root,
f82d02d9 8986 struct btrfs_path *path,
2c47e605 8987 struct walk_control *wc, int max_level)
20524f02 8988{
2c47e605 8989 int level = wc->level;
20524f02 8990 int ret;
9f3a7427 8991
2c47e605
YZ
8992 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8993 while (level < max_level && path->nodes[level]) {
8994 wc->level = level;
8995 if (path->slots[level] + 1 <
8996 btrfs_header_nritems(path->nodes[level])) {
8997 path->slots[level]++;
20524f02
CM
8998 return 0;
8999 } else {
2c47e605
YZ
9000 ret = walk_up_proc(trans, root, path, wc);
9001 if (ret > 0)
9002 return 0;
bd56b302 9003
2c47e605 9004 if (path->locks[level]) {
bd681513
CM
9005 btrfs_tree_unlock_rw(path->nodes[level],
9006 path->locks[level]);
2c47e605 9007 path->locks[level] = 0;
f82d02d9 9008 }
2c47e605
YZ
9009 free_extent_buffer(path->nodes[level]);
9010 path->nodes[level] = NULL;
9011 level++;
20524f02
CM
9012 }
9013 }
9014 return 1;
9015}
9016
9aca1d51 9017/*
2c47e605
YZ
9018 * drop a subvolume tree.
9019 *
9020 * this function traverses the tree freeing any blocks that only
9021 * referenced by the tree.
9022 *
9023 * when a shared tree block is found. this function decreases its
9024 * reference count by one. if update_ref is true, this function
9025 * also make sure backrefs for the shared block and all lower level
9026 * blocks are properly updated.
9d1a2a3a
DS
9027 *
9028 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9029 */
2c536799 9030int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9031 struct btrfs_block_rsv *block_rsv, int update_ref,
9032 int for_reloc)
20524f02 9033{
ab8d0fc4 9034 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9035 struct btrfs_path *path;
2c47e605 9036 struct btrfs_trans_handle *trans;
ab8d0fc4 9037 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9038 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9039 struct walk_control *wc;
9040 struct btrfs_key key;
9041 int err = 0;
9042 int ret;
9043 int level;
d29a9f62 9044 bool root_dropped = false;
20524f02 9045
ab8d0fc4 9046 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9047
5caf2a00 9048 path = btrfs_alloc_path();
cb1b69f4
TI
9049 if (!path) {
9050 err = -ENOMEM;
9051 goto out;
9052 }
20524f02 9053
2c47e605 9054 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9055 if (!wc) {
9056 btrfs_free_path(path);
cb1b69f4
TI
9057 err = -ENOMEM;
9058 goto out;
38a1a919 9059 }
2c47e605 9060
a22285a6 9061 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9062 if (IS_ERR(trans)) {
9063 err = PTR_ERR(trans);
9064 goto out_free;
9065 }
98d5dc13 9066
3fd0a558
YZ
9067 if (block_rsv)
9068 trans->block_rsv = block_rsv;
2c47e605 9069
9f3a7427 9070 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9071 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9072 path->nodes[level] = btrfs_lock_root_node(root);
9073 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9074 path->slots[level] = 0;
bd681513 9075 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9076 memset(&wc->update_progress, 0,
9077 sizeof(wc->update_progress));
9f3a7427 9078 } else {
9f3a7427 9079 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9080 memcpy(&wc->update_progress, &key,
9081 sizeof(wc->update_progress));
9082
6702ed49 9083 level = root_item->drop_level;
2c47e605 9084 BUG_ON(level == 0);
6702ed49 9085 path->lowest_level = level;
2c47e605
YZ
9086 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9087 path->lowest_level = 0;
9088 if (ret < 0) {
9089 err = ret;
79787eaa 9090 goto out_end_trans;
9f3a7427 9091 }
1c4850e2 9092 WARN_ON(ret > 0);
2c47e605 9093
7d9eb12c
CM
9094 /*
9095 * unlock our path, this is safe because only this
9096 * function is allowed to delete this snapshot
9097 */
5d4f98a2 9098 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9099
9100 level = btrfs_header_level(root->node);
9101 while (1) {
9102 btrfs_tree_lock(path->nodes[level]);
9103 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9104 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9105
2ff7e61e 9106 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9107 path->nodes[level]->start,
3173a18f 9108 level, 1, &wc->refs[level],
2c47e605 9109 &wc->flags[level]);
79787eaa
JM
9110 if (ret < 0) {
9111 err = ret;
9112 goto out_end_trans;
9113 }
2c47e605
YZ
9114 BUG_ON(wc->refs[level] == 0);
9115
9116 if (level == root_item->drop_level)
9117 break;
9118
9119 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9120 path->locks[level] = 0;
2c47e605
YZ
9121 WARN_ON(wc->refs[level] != 1);
9122 level--;
9123 }
9f3a7427 9124 }
2c47e605
YZ
9125
9126 wc->level = level;
9127 wc->shared_level = -1;
9128 wc->stage = DROP_REFERENCE;
9129 wc->update_ref = update_ref;
9130 wc->keep_locks = 0;
66d7e7f0 9131 wc->for_reloc = for_reloc;
0b246afa 9132 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9133
d397712b 9134 while (1) {
9d1a2a3a 9135
2c47e605
YZ
9136 ret = walk_down_tree(trans, root, path, wc);
9137 if (ret < 0) {
9138 err = ret;
20524f02 9139 break;
2c47e605 9140 }
9aca1d51 9141
2c47e605
YZ
9142 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9143 if (ret < 0) {
9144 err = ret;
20524f02 9145 break;
2c47e605
YZ
9146 }
9147
9148 if (ret > 0) {
9149 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9150 break;
9151 }
2c47e605
YZ
9152
9153 if (wc->stage == DROP_REFERENCE) {
9154 level = wc->level;
9155 btrfs_node_key(path->nodes[level],
9156 &root_item->drop_progress,
9157 path->slots[level]);
9158 root_item->drop_level = level;
9159 }
9160
9161 BUG_ON(wc->level == 0);
3a45bb20 9162 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9163 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9164 ret = btrfs_update_root(trans, tree_root,
9165 &root->root_key,
9166 root_item);
79787eaa 9167 if (ret) {
66642832 9168 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9169 err = ret;
9170 goto out_end_trans;
9171 }
2c47e605 9172
3a45bb20 9173 btrfs_end_transaction_throttle(trans);
2ff7e61e 9174 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9175 btrfs_debug(fs_info,
9176 "drop snapshot early exit");
3c8f2422
JB
9177 err = -EAGAIN;
9178 goto out_free;
9179 }
9180
a22285a6 9181 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9182 if (IS_ERR(trans)) {
9183 err = PTR_ERR(trans);
9184 goto out_free;
9185 }
3fd0a558
YZ
9186 if (block_rsv)
9187 trans->block_rsv = block_rsv;
c3e69d58 9188 }
20524f02 9189 }
b3b4aa74 9190 btrfs_release_path(path);
79787eaa
JM
9191 if (err)
9192 goto out_end_trans;
2c47e605
YZ
9193
9194 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa 9195 if (ret) {
66642832 9196 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9197 goto out_end_trans;
9198 }
2c47e605 9199
76dda93c 9200 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9201 ret = btrfs_find_root(tree_root, &root->root_key, path,
9202 NULL, NULL);
79787eaa 9203 if (ret < 0) {
66642832 9204 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9205 err = ret;
9206 goto out_end_trans;
9207 } else if (ret > 0) {
84cd948c
JB
9208 /* if we fail to delete the orphan item this time
9209 * around, it'll get picked up the next time.
9210 *
9211 * The most common failure here is just -ENOENT.
9212 */
9213 btrfs_del_orphan_item(trans, tree_root,
9214 root->root_key.objectid);
76dda93c
YZ
9215 }
9216 }
9217
27cdeb70 9218 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9219 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9220 } else {
9221 free_extent_buffer(root->node);
9222 free_extent_buffer(root->commit_root);
b0feb9d9 9223 btrfs_put_fs_root(root);
76dda93c 9224 }
d29a9f62 9225 root_dropped = true;
79787eaa 9226out_end_trans:
3a45bb20 9227 btrfs_end_transaction_throttle(trans);
79787eaa 9228out_free:
2c47e605 9229 kfree(wc);
5caf2a00 9230 btrfs_free_path(path);
cb1b69f4 9231out:
d29a9f62
JB
9232 /*
9233 * So if we need to stop dropping the snapshot for whatever reason we
9234 * need to make sure to add it back to the dead root list so that we
9235 * keep trying to do the work later. This also cleans up roots if we
9236 * don't have it in the radix (like when we recover after a power fail
9237 * or unmount) so we don't leak memory.
9238 */
b37b39cd 9239 if (!for_reloc && root_dropped == false)
d29a9f62 9240 btrfs_add_dead_root(root);
90515e7f 9241 if (err && err != -EAGAIN)
ab8d0fc4 9242 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9243 return err;
20524f02 9244}
9078a3e1 9245
2c47e605
YZ
9246/*
9247 * drop subtree rooted at tree block 'node'.
9248 *
9249 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9250 * only used by relocation code
2c47e605 9251 */
f82d02d9
YZ
9252int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9253 struct btrfs_root *root,
9254 struct extent_buffer *node,
9255 struct extent_buffer *parent)
9256{
0b246afa 9257 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9258 struct btrfs_path *path;
2c47e605 9259 struct walk_control *wc;
f82d02d9
YZ
9260 int level;
9261 int parent_level;
9262 int ret = 0;
9263 int wret;
9264
2c47e605
YZ
9265 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9266
f82d02d9 9267 path = btrfs_alloc_path();
db5b493a
TI
9268 if (!path)
9269 return -ENOMEM;
f82d02d9 9270
2c47e605 9271 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9272 if (!wc) {
9273 btrfs_free_path(path);
9274 return -ENOMEM;
9275 }
2c47e605 9276
b9447ef8 9277 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9278 parent_level = btrfs_header_level(parent);
9279 extent_buffer_get(parent);
9280 path->nodes[parent_level] = parent;
9281 path->slots[parent_level] = btrfs_header_nritems(parent);
9282
b9447ef8 9283 btrfs_assert_tree_locked(node);
f82d02d9 9284 level = btrfs_header_level(node);
f82d02d9
YZ
9285 path->nodes[level] = node;
9286 path->slots[level] = 0;
bd681513 9287 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9288
9289 wc->refs[parent_level] = 1;
9290 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9291 wc->level = level;
9292 wc->shared_level = -1;
9293 wc->stage = DROP_REFERENCE;
9294 wc->update_ref = 0;
9295 wc->keep_locks = 1;
66d7e7f0 9296 wc->for_reloc = 1;
0b246afa 9297 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9298
9299 while (1) {
2c47e605
YZ
9300 wret = walk_down_tree(trans, root, path, wc);
9301 if (wret < 0) {
f82d02d9 9302 ret = wret;
f82d02d9 9303 break;
2c47e605 9304 }
f82d02d9 9305
2c47e605 9306 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9307 if (wret < 0)
9308 ret = wret;
9309 if (wret != 0)
9310 break;
9311 }
9312
2c47e605 9313 kfree(wc);
f82d02d9
YZ
9314 btrfs_free_path(path);
9315 return ret;
9316}
9317
6202df69 9318static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9319{
9320 u64 num_devices;
fc67c450 9321 u64 stripped;
e4d8ec0f 9322
fc67c450
ID
9323 /*
9324 * if restripe for this chunk_type is on pick target profile and
9325 * return, otherwise do the usual balance
9326 */
6202df69 9327 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9328 if (stripped)
9329 return extended_to_chunk(stripped);
e4d8ec0f 9330
6202df69 9331 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9332
fc67c450 9333 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9334 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9335 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9336
ec44a35c
CM
9337 if (num_devices == 1) {
9338 stripped |= BTRFS_BLOCK_GROUP_DUP;
9339 stripped = flags & ~stripped;
9340
9341 /* turn raid0 into single device chunks */
9342 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9343 return stripped;
9344
9345 /* turn mirroring into duplication */
9346 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9347 BTRFS_BLOCK_GROUP_RAID10))
9348 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9349 } else {
9350 /* they already had raid on here, just return */
ec44a35c
CM
9351 if (flags & stripped)
9352 return flags;
9353
9354 stripped |= BTRFS_BLOCK_GROUP_DUP;
9355 stripped = flags & ~stripped;
9356
9357 /* switch duplicated blocks with raid1 */
9358 if (flags & BTRFS_BLOCK_GROUP_DUP)
9359 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9360
e3176ca2 9361 /* this is drive concat, leave it alone */
ec44a35c 9362 }
e3176ca2 9363
ec44a35c
CM
9364 return flags;
9365}
9366
868f401a 9367static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9368{
f0486c68
YZ
9369 struct btrfs_space_info *sinfo = cache->space_info;
9370 u64 num_bytes;
199c36ea 9371 u64 min_allocable_bytes;
f0486c68 9372 int ret = -ENOSPC;
0ef3e66b 9373
199c36ea
MX
9374 /*
9375 * We need some metadata space and system metadata space for
9376 * allocating chunks in some corner cases until we force to set
9377 * it to be readonly.
9378 */
9379 if ((sinfo->flags &
9380 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9381 !force)
ee22184b 9382 min_allocable_bytes = SZ_1M;
199c36ea
MX
9383 else
9384 min_allocable_bytes = 0;
9385
f0486c68
YZ
9386 spin_lock(&sinfo->lock);
9387 spin_lock(&cache->lock);
61cfea9b
W
9388
9389 if (cache->ro) {
868f401a 9390 cache->ro++;
61cfea9b
W
9391 ret = 0;
9392 goto out;
9393 }
9394
f0486c68
YZ
9395 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9396 cache->bytes_super - btrfs_block_group_used(&cache->item);
9397
4136135b 9398 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9399 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9400 sinfo->bytes_readonly += num_bytes;
868f401a 9401 cache->ro++;
633c0aad 9402 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9403 ret = 0;
9404 }
61cfea9b 9405out:
f0486c68
YZ
9406 spin_unlock(&cache->lock);
9407 spin_unlock(&sinfo->lock);
9408 return ret;
9409}
7d9eb12c 9410
5e00f193 9411int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9412 struct btrfs_block_group_cache *cache)
c286ac48 9413
f0486c68
YZ
9414{
9415 struct btrfs_trans_handle *trans;
9416 u64 alloc_flags;
9417 int ret;
7d9eb12c 9418
1bbc621e 9419again:
5e00f193 9420 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9421 if (IS_ERR(trans))
9422 return PTR_ERR(trans);
5d4f98a2 9423
1bbc621e
CM
9424 /*
9425 * we're not allowed to set block groups readonly after the dirty
9426 * block groups cache has started writing. If it already started,
9427 * back off and let this transaction commit
9428 */
0b246afa 9429 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9430 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9431 u64 transid = trans->transid;
9432
0b246afa 9433 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9434 btrfs_end_transaction(trans);
1bbc621e 9435
2ff7e61e 9436 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9437 if (ret)
9438 return ret;
9439 goto again;
9440 }
9441
153c35b6
CM
9442 /*
9443 * if we are changing raid levels, try to allocate a corresponding
9444 * block group with the new raid level.
9445 */
0b246afa 9446 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9447 if (alloc_flags != cache->flags) {
2ff7e61e 9448 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9449 CHUNK_ALLOC_FORCE);
9450 /*
9451 * ENOSPC is allowed here, we may have enough space
9452 * already allocated at the new raid level to
9453 * carry on
9454 */
9455 if (ret == -ENOSPC)
9456 ret = 0;
9457 if (ret < 0)
9458 goto out;
9459 }
1bbc621e 9460
868f401a 9461 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9462 if (!ret)
9463 goto out;
2ff7e61e
JM
9464 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9465 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9466 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9467 if (ret < 0)
9468 goto out;
868f401a 9469 ret = inc_block_group_ro(cache, 0);
f0486c68 9470out:
2f081088 9471 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9472 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9473 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9474 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9475 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9476 }
0b246afa 9477 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9478
3a45bb20 9479 btrfs_end_transaction(trans);
f0486c68
YZ
9480 return ret;
9481}
5d4f98a2 9482
c87f08ca 9483int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9484 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9485{
2ff7e61e
JM
9486 u64 alloc_flags = get_alloc_profile(fs_info, type);
9487
9488 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9489}
9490
6d07bcec
MX
9491/*
9492 * helper to account the unused space of all the readonly block group in the
633c0aad 9493 * space_info. takes mirrors into account.
6d07bcec 9494 */
633c0aad 9495u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9496{
9497 struct btrfs_block_group_cache *block_group;
9498 u64 free_bytes = 0;
9499 int factor;
9500
01327610 9501 /* It's df, we don't care if it's racy */
633c0aad
JB
9502 if (list_empty(&sinfo->ro_bgs))
9503 return 0;
9504
9505 spin_lock(&sinfo->lock);
9506 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9507 spin_lock(&block_group->lock);
9508
9509 if (!block_group->ro) {
9510 spin_unlock(&block_group->lock);
9511 continue;
9512 }
9513
9514 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9515 BTRFS_BLOCK_GROUP_RAID10 |
9516 BTRFS_BLOCK_GROUP_DUP))
9517 factor = 2;
9518 else
9519 factor = 1;
9520
9521 free_bytes += (block_group->key.offset -
9522 btrfs_block_group_used(&block_group->item)) *
9523 factor;
9524
9525 spin_unlock(&block_group->lock);
9526 }
6d07bcec
MX
9527 spin_unlock(&sinfo->lock);
9528
9529 return free_bytes;
9530}
9531
2ff7e61e 9532void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9533{
f0486c68
YZ
9534 struct btrfs_space_info *sinfo = cache->space_info;
9535 u64 num_bytes;
9536
9537 BUG_ON(!cache->ro);
9538
9539 spin_lock(&sinfo->lock);
9540 spin_lock(&cache->lock);
868f401a
Z
9541 if (!--cache->ro) {
9542 num_bytes = cache->key.offset - cache->reserved -
9543 cache->pinned - cache->bytes_super -
9544 btrfs_block_group_used(&cache->item);
9545 sinfo->bytes_readonly -= num_bytes;
9546 list_del_init(&cache->ro_list);
9547 }
f0486c68
YZ
9548 spin_unlock(&cache->lock);
9549 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9550}
9551
ba1bf481
JB
9552/*
9553 * checks to see if its even possible to relocate this block group.
9554 *
9555 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9556 * ok to go ahead and try.
9557 */
6bccf3ab 9558int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9559{
6bccf3ab 9560 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9561 struct btrfs_block_group_cache *block_group;
9562 struct btrfs_space_info *space_info;
0b246afa 9563 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9564 struct btrfs_device *device;
6df9a95e 9565 struct btrfs_trans_handle *trans;
cdcb725c 9566 u64 min_free;
6719db6a
JB
9567 u64 dev_min = 1;
9568 u64 dev_nr = 0;
4a5e98f5 9569 u64 target;
0305bc27 9570 int debug;
cdcb725c 9571 int index;
ba1bf481
JB
9572 int full = 0;
9573 int ret = 0;
1a40e23b 9574
0b246afa 9575 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9576
0b246afa 9577 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9578
ba1bf481 9579 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9580 if (!block_group) {
9581 if (debug)
0b246afa 9582 btrfs_warn(fs_info,
0305bc27
QW
9583 "can't find block group for bytenr %llu",
9584 bytenr);
ba1bf481 9585 return -1;
0305bc27 9586 }
1a40e23b 9587
cdcb725c 9588 min_free = btrfs_block_group_used(&block_group->item);
9589
ba1bf481 9590 /* no bytes used, we're good */
cdcb725c 9591 if (!min_free)
1a40e23b
ZY
9592 goto out;
9593
ba1bf481
JB
9594 space_info = block_group->space_info;
9595 spin_lock(&space_info->lock);
17d217fe 9596
ba1bf481 9597 full = space_info->full;
17d217fe 9598
ba1bf481
JB
9599 /*
9600 * if this is the last block group we have in this space, we can't
7ce618db
CM
9601 * relocate it unless we're able to allocate a new chunk below.
9602 *
9603 * Otherwise, we need to make sure we have room in the space to handle
9604 * all of the extents from this block group. If we can, we're good
ba1bf481 9605 */
7ce618db 9606 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9607 (btrfs_space_info_used(space_info, false) + min_free <
9608 space_info->total_bytes)) {
ba1bf481
JB
9609 spin_unlock(&space_info->lock);
9610 goto out;
17d217fe 9611 }
ba1bf481 9612 spin_unlock(&space_info->lock);
ea8c2819 9613
ba1bf481
JB
9614 /*
9615 * ok we don't have enough space, but maybe we have free space on our
9616 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9617 * alloc devices and guess if we have enough space. if this block
9618 * group is going to be restriped, run checks against the target
9619 * profile instead of the current one.
ba1bf481
JB
9620 */
9621 ret = -1;
ea8c2819 9622
cdcb725c 9623 /*
9624 * index:
9625 * 0: raid10
9626 * 1: raid1
9627 * 2: dup
9628 * 3: raid0
9629 * 4: single
9630 */
0b246afa 9631 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9632 if (target) {
31e50229 9633 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9634 } else {
9635 /*
9636 * this is just a balance, so if we were marked as full
9637 * we know there is no space for a new chunk
9638 */
0305bc27
QW
9639 if (full) {
9640 if (debug)
0b246afa
JM
9641 btrfs_warn(fs_info,
9642 "no space to alloc new chunk for block group %llu",
9643 block_group->key.objectid);
4a5e98f5 9644 goto out;
0305bc27 9645 }
4a5e98f5
ID
9646
9647 index = get_block_group_index(block_group);
9648 }
9649
e6ec716f 9650 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9651 dev_min = 4;
6719db6a
JB
9652 /* Divide by 2 */
9653 min_free >>= 1;
e6ec716f 9654 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9655 dev_min = 2;
e6ec716f 9656 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9657 /* Multiply by 2 */
9658 min_free <<= 1;
e6ec716f 9659 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9660 dev_min = fs_devices->rw_devices;
47c5713f 9661 min_free = div64_u64(min_free, dev_min);
cdcb725c 9662 }
9663
6df9a95e
JB
9664 /* We need to do this so that we can look at pending chunks */
9665 trans = btrfs_join_transaction(root);
9666 if (IS_ERR(trans)) {
9667 ret = PTR_ERR(trans);
9668 goto out;
9669 }
9670
0b246afa 9671 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9672 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9673 u64 dev_offset;
56bec294 9674
ba1bf481
JB
9675 /*
9676 * check to make sure we can actually find a chunk with enough
9677 * space to fit our block group in.
9678 */
63a212ab
SB
9679 if (device->total_bytes > device->bytes_used + min_free &&
9680 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9681 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9682 &dev_offset, NULL);
ba1bf481 9683 if (!ret)
cdcb725c 9684 dev_nr++;
9685
9686 if (dev_nr >= dev_min)
73e48b27 9687 break;
cdcb725c 9688
ba1bf481 9689 ret = -1;
725c8463 9690 }
edbd8d4e 9691 }
0305bc27 9692 if (debug && ret == -1)
0b246afa
JM
9693 btrfs_warn(fs_info,
9694 "no space to allocate a new chunk for block group %llu",
9695 block_group->key.objectid);
9696 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9697 btrfs_end_transaction(trans);
edbd8d4e 9698out:
ba1bf481 9699 btrfs_put_block_group(block_group);
edbd8d4e
CM
9700 return ret;
9701}
9702
6bccf3ab
JM
9703static int find_first_block_group(struct btrfs_fs_info *fs_info,
9704 struct btrfs_path *path,
9705 struct btrfs_key *key)
0b86a832 9706{
6bccf3ab 9707 struct btrfs_root *root = fs_info->extent_root;
925baedd 9708 int ret = 0;
0b86a832
CM
9709 struct btrfs_key found_key;
9710 struct extent_buffer *leaf;
9711 int slot;
edbd8d4e 9712
0b86a832
CM
9713 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9714 if (ret < 0)
925baedd
CM
9715 goto out;
9716
d397712b 9717 while (1) {
0b86a832 9718 slot = path->slots[0];
edbd8d4e 9719 leaf = path->nodes[0];
0b86a832
CM
9720 if (slot >= btrfs_header_nritems(leaf)) {
9721 ret = btrfs_next_leaf(root, path);
9722 if (ret == 0)
9723 continue;
9724 if (ret < 0)
925baedd 9725 goto out;
0b86a832 9726 break;
edbd8d4e 9727 }
0b86a832 9728 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9729
0b86a832 9730 if (found_key.objectid >= key->objectid &&
925baedd 9731 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9732 struct extent_map_tree *em_tree;
9733 struct extent_map *em;
9734
9735 em_tree = &root->fs_info->mapping_tree.map_tree;
9736 read_lock(&em_tree->lock);
9737 em = lookup_extent_mapping(em_tree, found_key.objectid,
9738 found_key.offset);
9739 read_unlock(&em_tree->lock);
9740 if (!em) {
0b246afa 9741 btrfs_err(fs_info,
6fb37b75
LB
9742 "logical %llu len %llu found bg but no related chunk",
9743 found_key.objectid, found_key.offset);
9744 ret = -ENOENT;
9745 } else {
9746 ret = 0;
9747 }
187ee58c 9748 free_extent_map(em);
925baedd
CM
9749 goto out;
9750 }
0b86a832 9751 path->slots[0]++;
edbd8d4e 9752 }
925baedd 9753out:
0b86a832 9754 return ret;
edbd8d4e
CM
9755}
9756
0af3d00b
JB
9757void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9758{
9759 struct btrfs_block_group_cache *block_group;
9760 u64 last = 0;
9761
9762 while (1) {
9763 struct inode *inode;
9764
9765 block_group = btrfs_lookup_first_block_group(info, last);
9766 while (block_group) {
9767 spin_lock(&block_group->lock);
9768 if (block_group->iref)
9769 break;
9770 spin_unlock(&block_group->lock);
2ff7e61e 9771 block_group = next_block_group(info, block_group);
0af3d00b
JB
9772 }
9773 if (!block_group) {
9774 if (last == 0)
9775 break;
9776 last = 0;
9777 continue;
9778 }
9779
9780 inode = block_group->inode;
9781 block_group->iref = 0;
9782 block_group->inode = NULL;
9783 spin_unlock(&block_group->lock);
f3bca802 9784 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9785 iput(inode);
9786 last = block_group->key.objectid + block_group->key.offset;
9787 btrfs_put_block_group(block_group);
9788 }
9789}
9790
5cdd7db6
FM
9791/*
9792 * Must be called only after stopping all workers, since we could have block
9793 * group caching kthreads running, and therefore they could race with us if we
9794 * freed the block groups before stopping them.
9795 */
1a40e23b
ZY
9796int btrfs_free_block_groups(struct btrfs_fs_info *info)
9797{
9798 struct btrfs_block_group_cache *block_group;
4184ea7f 9799 struct btrfs_space_info *space_info;
11833d66 9800 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9801 struct rb_node *n;
9802
9e351cc8 9803 down_write(&info->commit_root_sem);
11833d66
YZ
9804 while (!list_empty(&info->caching_block_groups)) {
9805 caching_ctl = list_entry(info->caching_block_groups.next,
9806 struct btrfs_caching_control, list);
9807 list_del(&caching_ctl->list);
9808 put_caching_control(caching_ctl);
9809 }
9e351cc8 9810 up_write(&info->commit_root_sem);
11833d66 9811
47ab2a6c
JB
9812 spin_lock(&info->unused_bgs_lock);
9813 while (!list_empty(&info->unused_bgs)) {
9814 block_group = list_first_entry(&info->unused_bgs,
9815 struct btrfs_block_group_cache,
9816 bg_list);
9817 list_del_init(&block_group->bg_list);
9818 btrfs_put_block_group(block_group);
9819 }
9820 spin_unlock(&info->unused_bgs_lock);
9821
1a40e23b
ZY
9822 spin_lock(&info->block_group_cache_lock);
9823 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9824 block_group = rb_entry(n, struct btrfs_block_group_cache,
9825 cache_node);
1a40e23b
ZY
9826 rb_erase(&block_group->cache_node,
9827 &info->block_group_cache_tree);
01eacb27 9828 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9829 spin_unlock(&info->block_group_cache_lock);
9830
80eb234a 9831 down_write(&block_group->space_info->groups_sem);
1a40e23b 9832 list_del(&block_group->list);
80eb234a 9833 up_write(&block_group->space_info->groups_sem);
d2fb3437 9834
3c14874a
JB
9835 /*
9836 * We haven't cached this block group, which means we could
9837 * possibly have excluded extents on this block group.
9838 */
36cce922
JB
9839 if (block_group->cached == BTRFS_CACHE_NO ||
9840 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9841 free_excluded_extents(info, block_group);
3c14874a 9842
817d52f8 9843 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9844 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9845 ASSERT(list_empty(&block_group->dirty_list));
9846 ASSERT(list_empty(&block_group->io_list));
9847 ASSERT(list_empty(&block_group->bg_list));
9848 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9849 btrfs_put_block_group(block_group);
d899e052
YZ
9850
9851 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9852 }
9853 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9854
9855 /* now that all the block groups are freed, go through and
9856 * free all the space_info structs. This is only called during
9857 * the final stages of unmount, and so we know nobody is
9858 * using them. We call synchronize_rcu() once before we start,
9859 * just to be on the safe side.
9860 */
9861 synchronize_rcu();
9862
8929ecfa
YZ
9863 release_global_block_rsv(info);
9864
67871254 9865 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9866 int i;
9867
4184ea7f
CM
9868 space_info = list_entry(info->space_info.next,
9869 struct btrfs_space_info,
9870 list);
d555b6c3
JB
9871
9872 /*
9873 * Do not hide this behind enospc_debug, this is actually
9874 * important and indicates a real bug if this happens.
9875 */
9876 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9877 space_info->bytes_reserved > 0 ||
d555b6c3 9878 space_info->bytes_may_use > 0))
ab8d0fc4 9879 dump_space_info(info, space_info, 0, 0);
4184ea7f 9880 list_del(&space_info->list);
6ab0a202
JM
9881 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9882 struct kobject *kobj;
c1895442
JM
9883 kobj = space_info->block_group_kobjs[i];
9884 space_info->block_group_kobjs[i] = NULL;
9885 if (kobj) {
6ab0a202
JM
9886 kobject_del(kobj);
9887 kobject_put(kobj);
9888 }
9889 }
9890 kobject_del(&space_info->kobj);
9891 kobject_put(&space_info->kobj);
4184ea7f 9892 }
1a40e23b
ZY
9893 return 0;
9894}
9895
b742bb82
YZ
9896static void __link_block_group(struct btrfs_space_info *space_info,
9897 struct btrfs_block_group_cache *cache)
9898{
9899 int index = get_block_group_index(cache);
ed55b6ac 9900 bool first = false;
b742bb82
YZ
9901
9902 down_write(&space_info->groups_sem);
ed55b6ac
JM
9903 if (list_empty(&space_info->block_groups[index]))
9904 first = true;
9905 list_add_tail(&cache->list, &space_info->block_groups[index]);
9906 up_write(&space_info->groups_sem);
9907
9908 if (first) {
c1895442 9909 struct raid_kobject *rkobj;
6ab0a202
JM
9910 int ret;
9911
c1895442
JM
9912 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9913 if (!rkobj)
9914 goto out_err;
9915 rkobj->raid_type = index;
9916 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9917 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9918 "%s", get_raid_name(index));
6ab0a202 9919 if (ret) {
c1895442
JM
9920 kobject_put(&rkobj->kobj);
9921 goto out_err;
6ab0a202 9922 }
c1895442 9923 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9924 }
c1895442
JM
9925
9926 return;
9927out_err:
ab8d0fc4
JM
9928 btrfs_warn(cache->fs_info,
9929 "failed to add kobject for block cache, ignoring");
b742bb82
YZ
9930}
9931
920e4a58 9932static struct btrfs_block_group_cache *
2ff7e61e
JM
9933btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9934 u64 start, u64 size)
920e4a58
MX
9935{
9936 struct btrfs_block_group_cache *cache;
9937
9938 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9939 if (!cache)
9940 return NULL;
9941
9942 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9943 GFP_NOFS);
9944 if (!cache->free_space_ctl) {
9945 kfree(cache);
9946 return NULL;
9947 }
9948
9949 cache->key.objectid = start;
9950 cache->key.offset = size;
9951 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9952
0b246afa 9953 cache->fs_info = fs_info;
2ff7e61e
JM
9954 cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9955 &fs_info->mapping_tree,
9956 start);
1e144fb8
OS
9957 set_free_space_tree_thresholds(cache);
9958
920e4a58
MX
9959 atomic_set(&cache->count, 1);
9960 spin_lock_init(&cache->lock);
e570fd27 9961 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9962 INIT_LIST_HEAD(&cache->list);
9963 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9964 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9965 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9966 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9967 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9968 btrfs_init_free_space_ctl(cache);
04216820 9969 atomic_set(&cache->trimming, 0);
a5ed9182 9970 mutex_init(&cache->free_space_lock);
0966a7b1 9971 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
9972
9973 return cache;
9974}
9975
5b4aacef 9976int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
9977{
9978 struct btrfs_path *path;
9979 int ret;
9078a3e1 9980 struct btrfs_block_group_cache *cache;
6324fbf3 9981 struct btrfs_space_info *space_info;
9078a3e1
CM
9982 struct btrfs_key key;
9983 struct btrfs_key found_key;
5f39d397 9984 struct extent_buffer *leaf;
0af3d00b
JB
9985 int need_clear = 0;
9986 u64 cache_gen;
49303381
LB
9987 u64 feature;
9988 int mixed;
9989
9990 feature = btrfs_super_incompat_flags(info->super_copy);
9991 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 9992
9078a3e1 9993 key.objectid = 0;
0b86a832 9994 key.offset = 0;
962a298f 9995 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9996 path = btrfs_alloc_path();
9997 if (!path)
9998 return -ENOMEM;
e4058b54 9999 path->reada = READA_FORWARD;
9078a3e1 10000
0b246afa
JM
10001 cache_gen = btrfs_super_cache_generation(info->super_copy);
10002 if (btrfs_test_opt(info, SPACE_CACHE) &&
10003 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10004 need_clear = 1;
0b246afa 10005 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10006 need_clear = 1;
0af3d00b 10007
d397712b 10008 while (1) {
6bccf3ab 10009 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10010 if (ret > 0)
10011 break;
0b86a832
CM
10012 if (ret != 0)
10013 goto error;
920e4a58 10014
5f39d397
CM
10015 leaf = path->nodes[0];
10016 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10017
2ff7e61e 10018 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10019 found_key.offset);
9078a3e1 10020 if (!cache) {
0b86a832 10021 ret = -ENOMEM;
f0486c68 10022 goto error;
9078a3e1 10023 }
96303081 10024
cf7c1ef6
LB
10025 if (need_clear) {
10026 /*
10027 * When we mount with old space cache, we need to
10028 * set BTRFS_DC_CLEAR and set dirty flag.
10029 *
10030 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10031 * truncate the old free space cache inode and
10032 * setup a new one.
10033 * b) Setting 'dirty flag' makes sure that we flush
10034 * the new space cache info onto disk.
10035 */
0b246afa 10036 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10037 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10038 }
0af3d00b 10039
5f39d397
CM
10040 read_extent_buffer(leaf, &cache->item,
10041 btrfs_item_ptr_offset(leaf, path->slots[0]),
10042 sizeof(cache->item));
920e4a58 10043 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10044 if (!mixed &&
10045 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10046 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10047 btrfs_err(info,
10048"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10049 cache->key.objectid);
10050 ret = -EINVAL;
10051 goto error;
10052 }
0b86a832 10053
9078a3e1 10054 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10055 btrfs_release_path(path);
34d52cb6 10056
3c14874a
JB
10057 /*
10058 * We need to exclude the super stripes now so that the space
10059 * info has super bytes accounted for, otherwise we'll think
10060 * we have more space than we actually do.
10061 */
2ff7e61e 10062 ret = exclude_super_stripes(info, cache);
835d974f
JB
10063 if (ret) {
10064 /*
10065 * We may have excluded something, so call this just in
10066 * case.
10067 */
2ff7e61e 10068 free_excluded_extents(info, cache);
920e4a58 10069 btrfs_put_block_group(cache);
835d974f
JB
10070 goto error;
10071 }
3c14874a 10072
817d52f8
JB
10073 /*
10074 * check for two cases, either we are full, and therefore
10075 * don't need to bother with the caching work since we won't
10076 * find any space, or we are empty, and we can just add all
10077 * the space in and be done with it. This saves us _alot_ of
10078 * time, particularly in the full case.
10079 */
10080 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10081 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10082 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10083 free_excluded_extents(info, cache);
817d52f8 10084 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10085 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10086 cache->cached = BTRFS_CACHE_FINISHED;
0b246afa 10087 add_new_free_space(cache, info,
817d52f8
JB
10088 found_key.objectid,
10089 found_key.objectid +
10090 found_key.offset);
2ff7e61e 10091 free_excluded_extents(info, cache);
817d52f8 10092 }
96b5179d 10093
0b246afa 10094 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10095 if (ret) {
10096 btrfs_remove_free_space_cache(cache);
10097 btrfs_put_block_group(cache);
10098 goto error;
10099 }
10100
0b246afa 10101 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10102 update_space_info(info, cache->flags, found_key.offset,
10103 btrfs_block_group_used(&cache->item),
10104 cache->bytes_super, &space_info);
8c579fe7 10105
6324fbf3 10106 cache->space_info = space_info;
1b2da372 10107
b742bb82 10108 __link_block_group(space_info, cache);
0f9dd46c 10109
0b246afa 10110 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10111 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10112 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10113 } else if (btrfs_block_group_used(&cache->item) == 0) {
10114 spin_lock(&info->unused_bgs_lock);
10115 /* Should always be true but just in case. */
10116 if (list_empty(&cache->bg_list)) {
10117 btrfs_get_block_group(cache);
10118 list_add_tail(&cache->bg_list,
10119 &info->unused_bgs);
10120 }
10121 spin_unlock(&info->unused_bgs_lock);
10122 }
9078a3e1 10123 }
b742bb82 10124
0b246afa 10125 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10126 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10127 (BTRFS_BLOCK_GROUP_RAID10 |
10128 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10129 BTRFS_BLOCK_GROUP_RAID5 |
10130 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10131 BTRFS_BLOCK_GROUP_DUP)))
10132 continue;
10133 /*
10134 * avoid allocating from un-mirrored block group if there are
10135 * mirrored block groups.
10136 */
1095cc0d 10137 list_for_each_entry(cache,
10138 &space_info->block_groups[BTRFS_RAID_RAID0],
10139 list)
868f401a 10140 inc_block_group_ro(cache, 1);
1095cc0d 10141 list_for_each_entry(cache,
10142 &space_info->block_groups[BTRFS_RAID_SINGLE],
10143 list)
868f401a 10144 inc_block_group_ro(cache, 1);
9078a3e1 10145 }
f0486c68
YZ
10146
10147 init_global_block_rsv(info);
0b86a832
CM
10148 ret = 0;
10149error:
9078a3e1 10150 btrfs_free_path(path);
0b86a832 10151 return ret;
9078a3e1 10152}
6324fbf3 10153
ea658bad 10154void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 10155 struct btrfs_fs_info *fs_info)
ea658bad
JB
10156{
10157 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10158 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10159 struct btrfs_block_group_item item;
10160 struct btrfs_key key;
10161 int ret = 0;
d9a0540a 10162 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10163
d9a0540a 10164 trans->can_flush_pending_bgs = false;
47ab2a6c 10165 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10166 if (ret)
c92f6be3 10167 goto next;
ea658bad
JB
10168
10169 spin_lock(&block_group->lock);
10170 memcpy(&item, &block_group->item, sizeof(item));
10171 memcpy(&key, &block_group->key, sizeof(key));
10172 spin_unlock(&block_group->lock);
10173
10174 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10175 sizeof(item));
10176 if (ret)
66642832 10177 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10178 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10179 key.offset);
6df9a95e 10180 if (ret)
66642832 10181 btrfs_abort_transaction(trans, ret);
0b246afa 10182 add_block_group_free_space(trans, fs_info, block_group);
1e144fb8 10183 /* already aborted the transaction if it failed. */
c92f6be3
FM
10184next:
10185 list_del_init(&block_group->bg_list);
ea658bad 10186 }
d9a0540a 10187 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10188}
10189
6324fbf3 10190int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10191 struct btrfs_fs_info *fs_info, u64 bytes_used,
e17cade2 10192 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10193 u64 size)
10194{
6324fbf3 10195 struct btrfs_block_group_cache *cache;
0b246afa 10196 int ret;
6324fbf3 10197
0b246afa 10198 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10199
2ff7e61e 10200 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10201 if (!cache)
10202 return -ENOMEM;
34d52cb6 10203
6324fbf3 10204 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10205 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10206 btrfs_set_block_group_flags(&cache->item, type);
10207
920e4a58 10208 cache->flags = type;
11833d66 10209 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10210 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10211 cache->needs_free_space = 1;
2ff7e61e 10212 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10213 if (ret) {
10214 /*
10215 * We may have excluded something, so call this just in
10216 * case.
10217 */
2ff7e61e 10218 free_excluded_extents(fs_info, cache);
920e4a58 10219 btrfs_put_block_group(cache);
835d974f
JB
10220 return ret;
10221 }
96303081 10222
0b246afa 10223 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
817d52f8 10224
2ff7e61e 10225 free_excluded_extents(fs_info, cache);
11833d66 10226
d0bd4560 10227#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10228 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10229 u64 new_bytes_used = size - bytes_used;
10230
10231 bytes_used += new_bytes_used >> 1;
2ff7e61e 10232 fragment_free_space(cache);
d0bd4560
JB
10233 }
10234#endif
2e6e5183 10235 /*
2be12ef7
NB
10236 * Ensure the corresponding space_info object is created and
10237 * assigned to our block group. We want our bg to be added to the rbtree
10238 * with its ->space_info set.
2e6e5183 10239 */
2be12ef7
NB
10240 cache->space_info = __find_space_info(fs_info, cache->flags);
10241 if (!cache->space_info) {
10242 ret = create_space_info(fs_info, cache->flags,
10243 &cache->space_info);
10244 if (ret) {
10245 btrfs_remove_free_space_cache(cache);
10246 btrfs_put_block_group(cache);
10247 return ret;
10248 }
2e6e5183
FM
10249 }
10250
0b246afa 10251 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10252 if (ret) {
10253 btrfs_remove_free_space_cache(cache);
10254 btrfs_put_block_group(cache);
10255 return ret;
10256 }
10257
2e6e5183
FM
10258 /*
10259 * Now that our block group has its ->space_info set and is inserted in
10260 * the rbtree, update the space info's counters.
10261 */
0b246afa 10262 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10263 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10264 cache->bytes_super, &cache->space_info);
0b246afa 10265 update_global_block_rsv(fs_info);
1b2da372 10266
b742bb82 10267 __link_block_group(cache->space_info, cache);
6324fbf3 10268
47ab2a6c 10269 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10270
0b246afa 10271 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10272 return 0;
10273}
1a40e23b 10274
10ea00f5
ID
10275static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10276{
899c81ea
ID
10277 u64 extra_flags = chunk_to_extended(flags) &
10278 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10279
de98ced9 10280 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10281 if (flags & BTRFS_BLOCK_GROUP_DATA)
10282 fs_info->avail_data_alloc_bits &= ~extra_flags;
10283 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10284 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10285 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10286 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10287 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10288}
10289
1a40e23b 10290int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10291 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10292 struct extent_map *em)
1a40e23b 10293{
6bccf3ab 10294 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10295 struct btrfs_path *path;
10296 struct btrfs_block_group_cache *block_group;
44fb5511 10297 struct btrfs_free_cluster *cluster;
0b246afa 10298 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10299 struct btrfs_key key;
0af3d00b 10300 struct inode *inode;
c1895442 10301 struct kobject *kobj = NULL;
1a40e23b 10302 int ret;
10ea00f5 10303 int index;
89a55897 10304 int factor;
4f69cb98 10305 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10306 bool remove_em;
1a40e23b 10307
6bccf3ab 10308 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10309 BUG_ON(!block_group);
c146afad 10310 BUG_ON(!block_group->ro);
1a40e23b 10311
9f7c43c9 10312 /*
10313 * Free the reserved super bytes from this block group before
10314 * remove it.
10315 */
2ff7e61e 10316 free_excluded_extents(fs_info, block_group);
9f7c43c9 10317
1a40e23b 10318 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10319 index = get_block_group_index(block_group);
89a55897
JB
10320 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10321 BTRFS_BLOCK_GROUP_RAID1 |
10322 BTRFS_BLOCK_GROUP_RAID10))
10323 factor = 2;
10324 else
10325 factor = 1;
1a40e23b 10326
44fb5511 10327 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10328 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10329 spin_lock(&cluster->refill_lock);
10330 btrfs_return_cluster_to_free_space(block_group, cluster);
10331 spin_unlock(&cluster->refill_lock);
10332
10333 /*
10334 * make sure this block group isn't part of a metadata
10335 * allocation cluster
10336 */
0b246afa 10337 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10338 spin_lock(&cluster->refill_lock);
10339 btrfs_return_cluster_to_free_space(block_group, cluster);
10340 spin_unlock(&cluster->refill_lock);
10341
1a40e23b 10342 path = btrfs_alloc_path();
d8926bb3
MF
10343 if (!path) {
10344 ret = -ENOMEM;
10345 goto out;
10346 }
1a40e23b 10347
1bbc621e
CM
10348 /*
10349 * get the inode first so any iput calls done for the io_list
10350 * aren't the final iput (no unlinks allowed now)
10351 */
77ab86bf 10352 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10353
10354 mutex_lock(&trans->transaction->cache_write_mutex);
10355 /*
10356 * make sure our free spache cache IO is done before remove the
10357 * free space inode
10358 */
10359 spin_lock(&trans->transaction->dirty_bgs_lock);
10360 if (!list_empty(&block_group->io_list)) {
10361 list_del_init(&block_group->io_list);
10362
10363 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10364
10365 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10366 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10367 btrfs_put_block_group(block_group);
10368 spin_lock(&trans->transaction->dirty_bgs_lock);
10369 }
10370
10371 if (!list_empty(&block_group->dirty_list)) {
10372 list_del_init(&block_group->dirty_list);
10373 btrfs_put_block_group(block_group);
10374 }
10375 spin_unlock(&trans->transaction->dirty_bgs_lock);
10376 mutex_unlock(&trans->transaction->cache_write_mutex);
10377
0af3d00b 10378 if (!IS_ERR(inode)) {
73f2e545 10379 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10380 if (ret) {
10381 btrfs_add_delayed_iput(inode);
10382 goto out;
10383 }
0af3d00b
JB
10384 clear_nlink(inode);
10385 /* One for the block groups ref */
10386 spin_lock(&block_group->lock);
10387 if (block_group->iref) {
10388 block_group->iref = 0;
10389 block_group->inode = NULL;
10390 spin_unlock(&block_group->lock);
10391 iput(inode);
10392 } else {
10393 spin_unlock(&block_group->lock);
10394 }
10395 /* One for our lookup ref */
455757c3 10396 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10397 }
10398
10399 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10400 key.offset = block_group->key.objectid;
10401 key.type = 0;
10402
10403 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10404 if (ret < 0)
10405 goto out;
10406 if (ret > 0)
b3b4aa74 10407 btrfs_release_path(path);
0af3d00b
JB
10408 if (ret == 0) {
10409 ret = btrfs_del_item(trans, tree_root, path);
10410 if (ret)
10411 goto out;
b3b4aa74 10412 btrfs_release_path(path);
0af3d00b
JB
10413 }
10414
0b246afa 10415 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10416 rb_erase(&block_group->cache_node,
0b246afa 10417 &fs_info->block_group_cache_tree);
292cbd51 10418 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10419
0b246afa
JM
10420 if (fs_info->first_logical_byte == block_group->key.objectid)
10421 fs_info->first_logical_byte = (u64)-1;
10422 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10423
80eb234a 10424 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10425 /*
10426 * we must use list_del_init so people can check to see if they
10427 * are still on the list after taking the semaphore
10428 */
10429 list_del_init(&block_group->list);
6ab0a202 10430 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10431 kobj = block_group->space_info->block_group_kobjs[index];
10432 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10433 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10434 }
80eb234a 10435 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10436 if (kobj) {
10437 kobject_del(kobj);
10438 kobject_put(kobj);
10439 }
1a40e23b 10440
4f69cb98
FM
10441 if (block_group->has_caching_ctl)
10442 caching_ctl = get_caching_control(block_group);
817d52f8 10443 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10444 wait_block_group_cache_done(block_group);
4f69cb98 10445 if (block_group->has_caching_ctl) {
0b246afa 10446 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10447 if (!caching_ctl) {
10448 struct btrfs_caching_control *ctl;
10449
10450 list_for_each_entry(ctl,
0b246afa 10451 &fs_info->caching_block_groups, list)
4f69cb98
FM
10452 if (ctl->block_group == block_group) {
10453 caching_ctl = ctl;
1e4f4714 10454 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10455 break;
10456 }
10457 }
10458 if (caching_ctl)
10459 list_del_init(&caching_ctl->list);
0b246afa 10460 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10461 if (caching_ctl) {
10462 /* Once for the caching bgs list and once for us. */
10463 put_caching_control(caching_ctl);
10464 put_caching_control(caching_ctl);
10465 }
10466 }
817d52f8 10467
ce93ec54
JB
10468 spin_lock(&trans->transaction->dirty_bgs_lock);
10469 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10470 WARN_ON(1);
10471 }
10472 if (!list_empty(&block_group->io_list)) {
10473 WARN_ON(1);
ce93ec54
JB
10474 }
10475 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10476 btrfs_remove_free_space_cache(block_group);
10477
c146afad 10478 spin_lock(&block_group->space_info->lock);
75c68e9f 10479 list_del_init(&block_group->ro_list);
18d018ad 10480
0b246afa 10481 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10482 WARN_ON(block_group->space_info->total_bytes
10483 < block_group->key.offset);
10484 WARN_ON(block_group->space_info->bytes_readonly
10485 < block_group->key.offset);
10486 WARN_ON(block_group->space_info->disk_total
10487 < block_group->key.offset * factor);
10488 }
c146afad
YZ
10489 block_group->space_info->total_bytes -= block_group->key.offset;
10490 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10491 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10492
c146afad 10493 spin_unlock(&block_group->space_info->lock);
283bb197 10494
0af3d00b
JB
10495 memcpy(&key, &block_group->key, sizeof(key));
10496
34441361 10497 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10498 if (!list_empty(&em->list)) {
10499 /* We're in the transaction->pending_chunks list. */
10500 free_extent_map(em);
10501 }
04216820
FM
10502 spin_lock(&block_group->lock);
10503 block_group->removed = 1;
10504 /*
10505 * At this point trimming can't start on this block group, because we
10506 * removed the block group from the tree fs_info->block_group_cache_tree
10507 * so no one can't find it anymore and even if someone already got this
10508 * block group before we removed it from the rbtree, they have already
10509 * incremented block_group->trimming - if they didn't, they won't find
10510 * any free space entries because we already removed them all when we
10511 * called btrfs_remove_free_space_cache().
10512 *
10513 * And we must not remove the extent map from the fs_info->mapping_tree
10514 * to prevent the same logical address range and physical device space
10515 * ranges from being reused for a new block group. This is because our
10516 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10517 * completely transactionless, so while it is trimming a range the
10518 * currently running transaction might finish and a new one start,
10519 * allowing for new block groups to be created that can reuse the same
10520 * physical device locations unless we take this special care.
e33e17ee
JM
10521 *
10522 * There may also be an implicit trim operation if the file system
10523 * is mounted with -odiscard. The same protections must remain
10524 * in place until the extents have been discarded completely when
10525 * the transaction commit has completed.
04216820
FM
10526 */
10527 remove_em = (atomic_read(&block_group->trimming) == 0);
10528 /*
10529 * Make sure a trimmer task always sees the em in the pinned_chunks list
10530 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10531 * before checking block_group->removed).
10532 */
10533 if (!remove_em) {
10534 /*
10535 * Our em might be in trans->transaction->pending_chunks which
10536 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10537 * and so is the fs_info->pinned_chunks list.
10538 *
10539 * So at this point we must be holding the chunk_mutex to avoid
10540 * any races with chunk allocation (more specifically at
10541 * volumes.c:contains_pending_extent()), to ensure it always
10542 * sees the em, either in the pending_chunks list or in the
10543 * pinned_chunks list.
10544 */
0b246afa 10545 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10546 }
10547 spin_unlock(&block_group->lock);
04216820
FM
10548
10549 if (remove_em) {
10550 struct extent_map_tree *em_tree;
10551
0b246afa 10552 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10553 write_lock(&em_tree->lock);
8dbcd10f
FM
10554 /*
10555 * The em might be in the pending_chunks list, so make sure the
10556 * chunk mutex is locked, since remove_extent_mapping() will
10557 * delete us from that list.
10558 */
04216820
FM
10559 remove_extent_mapping(em_tree, em);
10560 write_unlock(&em_tree->lock);
10561 /* once for the tree */
10562 free_extent_map(em);
10563 }
10564
34441361 10565 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10566
0b246afa 10567 ret = remove_block_group_free_space(trans, fs_info, block_group);
1e144fb8
OS
10568 if (ret)
10569 goto out;
10570
fa9c0d79
CM
10571 btrfs_put_block_group(block_group);
10572 btrfs_put_block_group(block_group);
1a40e23b
ZY
10573
10574 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10575 if (ret > 0)
10576 ret = -EIO;
10577 if (ret < 0)
10578 goto out;
10579
10580 ret = btrfs_del_item(trans, root, path);
10581out:
10582 btrfs_free_path(path);
10583 return ret;
10584}
acce952b 10585
8eab77ff 10586struct btrfs_trans_handle *
7fd01182
FM
10587btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10588 const u64 chunk_offset)
8eab77ff 10589{
7fd01182
FM
10590 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10591 struct extent_map *em;
10592 struct map_lookup *map;
10593 unsigned int num_items;
10594
10595 read_lock(&em_tree->lock);
10596 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10597 read_unlock(&em_tree->lock);
10598 ASSERT(em && em->start == chunk_offset);
10599
8eab77ff 10600 /*
7fd01182
FM
10601 * We need to reserve 3 + N units from the metadata space info in order
10602 * to remove a block group (done at btrfs_remove_chunk() and at
10603 * btrfs_remove_block_group()), which are used for:
10604 *
8eab77ff
FM
10605 * 1 unit for adding the free space inode's orphan (located in the tree
10606 * of tree roots).
7fd01182
FM
10607 * 1 unit for deleting the block group item (located in the extent
10608 * tree).
10609 * 1 unit for deleting the free space item (located in tree of tree
10610 * roots).
10611 * N units for deleting N device extent items corresponding to each
10612 * stripe (located in the device tree).
10613 *
10614 * In order to remove a block group we also need to reserve units in the
10615 * system space info in order to update the chunk tree (update one or
10616 * more device items and remove one chunk item), but this is done at
10617 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10618 */
95617d69 10619 map = em->map_lookup;
7fd01182
FM
10620 num_items = 3 + map->num_stripes;
10621 free_extent_map(em);
10622
8eab77ff 10623 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10624 num_items, 1);
8eab77ff
FM
10625}
10626
47ab2a6c
JB
10627/*
10628 * Process the unused_bgs list and remove any that don't have any allocated
10629 * space inside of them.
10630 */
10631void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10632{
10633 struct btrfs_block_group_cache *block_group;
10634 struct btrfs_space_info *space_info;
47ab2a6c
JB
10635 struct btrfs_trans_handle *trans;
10636 int ret = 0;
10637
afcdd129 10638 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10639 return;
10640
10641 spin_lock(&fs_info->unused_bgs_lock);
10642 while (!list_empty(&fs_info->unused_bgs)) {
10643 u64 start, end;
e33e17ee 10644 int trimming;
47ab2a6c
JB
10645
10646 block_group = list_first_entry(&fs_info->unused_bgs,
10647 struct btrfs_block_group_cache,
10648 bg_list);
47ab2a6c 10649 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10650
10651 space_info = block_group->space_info;
10652
47ab2a6c
JB
10653 if (ret || btrfs_mixed_space_info(space_info)) {
10654 btrfs_put_block_group(block_group);
10655 continue;
10656 }
10657 spin_unlock(&fs_info->unused_bgs_lock);
10658
d5f2e33b 10659 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10660
47ab2a6c
JB
10661 /* Don't want to race with allocators so take the groups_sem */
10662 down_write(&space_info->groups_sem);
10663 spin_lock(&block_group->lock);
10664 if (block_group->reserved ||
10665 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10666 block_group->ro ||
aefbe9a6 10667 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10668 /*
10669 * We want to bail if we made new allocations or have
10670 * outstanding allocations in this block group. We do
10671 * the ro check in case balance is currently acting on
10672 * this block group.
10673 */
10674 spin_unlock(&block_group->lock);
10675 up_write(&space_info->groups_sem);
10676 goto next;
10677 }
10678 spin_unlock(&block_group->lock);
10679
10680 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10681 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10682 up_write(&space_info->groups_sem);
10683 if (ret < 0) {
10684 ret = 0;
10685 goto next;
10686 }
10687
10688 /*
10689 * Want to do this before we do anything else so we can recover
10690 * properly if we fail to join the transaction.
10691 */
7fd01182
FM
10692 trans = btrfs_start_trans_remove_block_group(fs_info,
10693 block_group->key.objectid);
47ab2a6c 10694 if (IS_ERR(trans)) {
2ff7e61e 10695 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10696 ret = PTR_ERR(trans);
10697 goto next;
10698 }
10699
10700 /*
10701 * We could have pending pinned extents for this block group,
10702 * just delete them, we don't care about them anymore.
10703 */
10704 start = block_group->key.objectid;
10705 end = start + block_group->key.offset - 1;
d4b450cd
FM
10706 /*
10707 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10708 * btrfs_finish_extent_commit(). If we are at transaction N,
10709 * another task might be running finish_extent_commit() for the
10710 * previous transaction N - 1, and have seen a range belonging
10711 * to the block group in freed_extents[] before we were able to
10712 * clear the whole block group range from freed_extents[]. This
10713 * means that task can lookup for the block group after we
10714 * unpinned it from freed_extents[] and removed it, leading to
10715 * a BUG_ON() at btrfs_unpin_extent_range().
10716 */
10717 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10718 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10719 EXTENT_DIRTY);
758eb51e 10720 if (ret) {
d4b450cd 10721 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10722 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10723 goto end_trans;
10724 }
10725 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10726 EXTENT_DIRTY);
758eb51e 10727 if (ret) {
d4b450cd 10728 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10729 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10730 goto end_trans;
10731 }
d4b450cd 10732 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10733
10734 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10735 spin_lock(&space_info->lock);
10736 spin_lock(&block_group->lock);
10737
10738 space_info->bytes_pinned -= block_group->pinned;
10739 space_info->bytes_readonly += block_group->pinned;
10740 percpu_counter_add(&space_info->total_bytes_pinned,
10741 -block_group->pinned);
47ab2a6c
JB
10742 block_group->pinned = 0;
10743
c30666d4
ZL
10744 spin_unlock(&block_group->lock);
10745 spin_unlock(&space_info->lock);
10746
e33e17ee 10747 /* DISCARD can flip during remount */
0b246afa 10748 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10749
10750 /* Implicit trim during transaction commit. */
10751 if (trimming)
10752 btrfs_get_block_group_trimming(block_group);
10753
47ab2a6c
JB
10754 /*
10755 * Btrfs_remove_chunk will abort the transaction if things go
10756 * horribly wrong.
10757 */
5b4aacef 10758 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10759 block_group->key.objectid);
e33e17ee
JM
10760
10761 if (ret) {
10762 if (trimming)
10763 btrfs_put_block_group_trimming(block_group);
10764 goto end_trans;
10765 }
10766
10767 /*
10768 * If we're not mounted with -odiscard, we can just forget
10769 * about this block group. Otherwise we'll need to wait
10770 * until transaction commit to do the actual discard.
10771 */
10772 if (trimming) {
348a0013
FM
10773 spin_lock(&fs_info->unused_bgs_lock);
10774 /*
10775 * A concurrent scrub might have added us to the list
10776 * fs_info->unused_bgs, so use a list_move operation
10777 * to add the block group to the deleted_bgs list.
10778 */
e33e17ee
JM
10779 list_move(&block_group->bg_list,
10780 &trans->transaction->deleted_bgs);
348a0013 10781 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10782 btrfs_get_block_group(block_group);
10783 }
758eb51e 10784end_trans:
3a45bb20 10785 btrfs_end_transaction(trans);
47ab2a6c 10786next:
d5f2e33b 10787 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10788 btrfs_put_block_group(block_group);
10789 spin_lock(&fs_info->unused_bgs_lock);
10790 }
10791 spin_unlock(&fs_info->unused_bgs_lock);
10792}
10793
c59021f8 10794int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10795{
10796 struct btrfs_space_info *space_info;
1aba86d6 10797 struct btrfs_super_block *disk_super;
10798 u64 features;
10799 u64 flags;
10800 int mixed = 0;
c59021f8 10801 int ret;
10802
6c41761f 10803 disk_super = fs_info->super_copy;
1aba86d6 10804 if (!btrfs_super_root(disk_super))
0dc924c5 10805 return -EINVAL;
c59021f8 10806
1aba86d6 10807 features = btrfs_super_incompat_flags(disk_super);
10808 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10809 mixed = 1;
c59021f8 10810
1aba86d6 10811 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2be12ef7 10812 ret = create_space_info(fs_info, flags, &space_info);
c59021f8 10813 if (ret)
1aba86d6 10814 goto out;
c59021f8 10815
1aba86d6 10816 if (mixed) {
10817 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10818 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10819 } else {
10820 flags = BTRFS_BLOCK_GROUP_METADATA;
2be12ef7 10821 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10822 if (ret)
10823 goto out;
10824
10825 flags = BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10826 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10827 }
10828out:
c59021f8 10829 return ret;
10830}
10831
2ff7e61e
JM
10832int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10833 u64 start, u64 end)
acce952b 10834{
2ff7e61e 10835 return unpin_extent_range(fs_info, start, end, false);
acce952b 10836}
10837
499f377f
JM
10838/*
10839 * It used to be that old block groups would be left around forever.
10840 * Iterating over them would be enough to trim unused space. Since we
10841 * now automatically remove them, we also need to iterate over unallocated
10842 * space.
10843 *
10844 * We don't want a transaction for this since the discard may take a
10845 * substantial amount of time. We don't require that a transaction be
10846 * running, but we do need to take a running transaction into account
10847 * to ensure that we're not discarding chunks that were released in
10848 * the current transaction.
10849 *
10850 * Holding the chunks lock will prevent other threads from allocating
10851 * or releasing chunks, but it won't prevent a running transaction
10852 * from committing and releasing the memory that the pending chunks
10853 * list head uses. For that, we need to take a reference to the
10854 * transaction.
10855 */
10856static int btrfs_trim_free_extents(struct btrfs_device *device,
10857 u64 minlen, u64 *trimmed)
10858{
10859 u64 start = 0, len = 0;
10860 int ret;
10861
10862 *trimmed = 0;
10863
10864 /* Not writeable = nothing to do. */
10865 if (!device->writeable)
10866 return 0;
10867
10868 /* No free space = nothing to do. */
10869 if (device->total_bytes <= device->bytes_used)
10870 return 0;
10871
10872 ret = 0;
10873
10874 while (1) {
fb456252 10875 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10876 struct btrfs_transaction *trans;
10877 u64 bytes;
10878
10879 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10880 if (ret)
10881 return ret;
10882
10883 down_read(&fs_info->commit_root_sem);
10884
10885 spin_lock(&fs_info->trans_lock);
10886 trans = fs_info->running_transaction;
10887 if (trans)
9b64f57d 10888 refcount_inc(&trans->use_count);
499f377f
JM
10889 spin_unlock(&fs_info->trans_lock);
10890
10891 ret = find_free_dev_extent_start(trans, device, minlen, start,
10892 &start, &len);
10893 if (trans)
10894 btrfs_put_transaction(trans);
10895
10896 if (ret) {
10897 up_read(&fs_info->commit_root_sem);
10898 mutex_unlock(&fs_info->chunk_mutex);
10899 if (ret == -ENOSPC)
10900 ret = 0;
10901 break;
10902 }
10903
10904 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10905 up_read(&fs_info->commit_root_sem);
10906 mutex_unlock(&fs_info->chunk_mutex);
10907
10908 if (ret)
10909 break;
10910
10911 start += len;
10912 *trimmed += bytes;
10913
10914 if (fatal_signal_pending(current)) {
10915 ret = -ERESTARTSYS;
10916 break;
10917 }
10918
10919 cond_resched();
10920 }
10921
10922 return ret;
10923}
10924
2ff7e61e 10925int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10926{
f7039b1d 10927 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10928 struct btrfs_device *device;
10929 struct list_head *devices;
f7039b1d
LD
10930 u64 group_trimmed;
10931 u64 start;
10932 u64 end;
10933 u64 trimmed = 0;
2cac13e4 10934 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10935 int ret = 0;
10936
2cac13e4
LB
10937 /*
10938 * try to trim all FS space, our block group may start from non-zero.
10939 */
10940 if (range->len == total_bytes)
10941 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10942 else
10943 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10944
10945 while (cache) {
10946 if (cache->key.objectid >= (range->start + range->len)) {
10947 btrfs_put_block_group(cache);
10948 break;
10949 }
10950
10951 start = max(range->start, cache->key.objectid);
10952 end = min(range->start + range->len,
10953 cache->key.objectid + cache->key.offset);
10954
10955 if (end - start >= range->minlen) {
10956 if (!block_group_cache_done(cache)) {
f6373bf3 10957 ret = cache_block_group(cache, 0);
1be41b78
JB
10958 if (ret) {
10959 btrfs_put_block_group(cache);
10960 break;
10961 }
10962 ret = wait_block_group_cache_done(cache);
10963 if (ret) {
10964 btrfs_put_block_group(cache);
10965 break;
10966 }
f7039b1d
LD
10967 }
10968 ret = btrfs_trim_block_group(cache,
10969 &group_trimmed,
10970 start,
10971 end,
10972 range->minlen);
10973
10974 trimmed += group_trimmed;
10975 if (ret) {
10976 btrfs_put_block_group(cache);
10977 break;
10978 }
10979 }
10980
2ff7e61e 10981 cache = next_block_group(fs_info, cache);
f7039b1d
LD
10982 }
10983
0b246afa
JM
10984 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10985 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
10986 list_for_each_entry(device, devices, dev_alloc_list) {
10987 ret = btrfs_trim_free_extents(device, range->minlen,
10988 &group_trimmed);
10989 if (ret)
10990 break;
10991
10992 trimmed += group_trimmed;
10993 }
0b246afa 10994 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 10995
f7039b1d
LD
10996 range->len = trimmed;
10997 return ret;
10998}
8257b2dc
MX
10999
11000/*
9ea24bbe
FM
11001 * btrfs_{start,end}_write_no_snapshoting() are similar to
11002 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11003 * data into the page cache through nocow before the subvolume is snapshoted,
11004 * but flush the data into disk after the snapshot creation, or to prevent
11005 * operations while snapshoting is ongoing and that cause the snapshot to be
11006 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11007 */
9ea24bbe 11008void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
11009{
11010 percpu_counter_dec(&root->subv_writers->counter);
11011 /*
a83342aa 11012 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
11013 */
11014 smp_mb();
11015 if (waitqueue_active(&root->subv_writers->wait))
11016 wake_up(&root->subv_writers->wait);
11017}
11018
9ea24bbe 11019int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 11020{
ee39b432 11021 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
11022 return 0;
11023
11024 percpu_counter_inc(&root->subv_writers->counter);
11025 /*
11026 * Make sure counter is updated before we check for snapshot creation.
11027 */
11028 smp_mb();
ee39b432 11029 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 11030 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
11031 return 0;
11032 }
11033 return 1;
11034}
0bc19f90
ZL
11035
11036static int wait_snapshoting_atomic_t(atomic_t *a)
11037{
11038 schedule();
11039 return 0;
11040}
11041
11042void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11043{
11044 while (true) {
11045 int ret;
11046
11047 ret = btrfs_start_write_no_snapshoting(root);
11048 if (ret)
11049 break;
11050 wait_on_atomic_t(&root->will_be_snapshoted,
11051 wait_snapshoting_atomic_t,
11052 TASK_UNINTERRUPTIBLE);
11053 }
11054}