]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/extent-tree.c
Btrfs: return old and new total ref mods when adding delayed refs
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
f361bf4a 19#include <linux/sched/signal.h>
edbd8d4e 20#include <linux/pagemap.h>
ec44a35c 21#include <linux/writeback.h>
21af804c 22#include <linux/blkdev.h>
b7a9f29f 23#include <linux/sort.h>
4184ea7f 24#include <linux/rcupdate.h>
817d52f8 25#include <linux/kthread.h>
5a0e3ad6 26#include <linux/slab.h>
dff51cd1 27#include <linux/ratelimit.h>
b150a4f1 28#include <linux/percpu_counter.h>
74493f7a 29#include "hash.h"
995946dd 30#include "tree-log.h"
fec577fb
CM
31#include "disk-io.h"
32#include "print-tree.h"
0b86a832 33#include "volumes.h"
53b381b3 34#include "raid56.h"
925baedd 35#include "locking.h"
fa9c0d79 36#include "free-space-cache.h"
1e144fb8 37#include "free-space-tree.h"
3fed40cc 38#include "math.h"
6ab0a202 39#include "sysfs.h"
fcebe456 40#include "qgroup.h"
fec577fb 41
709c0486
AJ
42#undef SCRAMBLE_DELAYED_REFS
43
9e622d6b
MX
44/*
45 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
48 *
0e4f8f88
CM
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
54 *
9e622d6b
MX
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 *
0e4f8f88
CM
57 */
58enum {
59 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
60 CHUNK_ALLOC_LIMITED = 1,
61 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
62};
63
ce93ec54 64static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 65 struct btrfs_fs_info *fs_info, u64 bytenr,
ce93ec54 66 u64 num_bytes, int alloc);
5d4f98a2 67static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 68 struct btrfs_fs_info *fs_info,
c682f9b3 69 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
70 u64 root_objectid, u64 owner_objectid,
71 u64 owner_offset, int refs_to_drop,
c682f9b3 72 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
73static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 struct extent_buffer *leaf,
75 struct btrfs_extent_item *ei);
76static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 77 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
78 u64 parent, u64 root_objectid,
79 u64 flags, u64 owner, u64 offset,
80 struct btrfs_key *ins, int ref_mod);
81static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 82 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
83 u64 parent, u64 root_objectid,
84 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 85 int level, struct btrfs_key *ins);
6a63209f 86static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 87 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 88 int force);
11833d66
YZ
89static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
ab8d0fc4
JM
91static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 93 int dump_block_groups);
4824f1f4 94static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 95 u64 ram_bytes, u64 num_bytes, int delalloc);
4824f1f4
WX
96static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 u64 num_bytes, int delalloc);
5d80366e
JB
98static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 u64 num_bytes);
c1c4919b 100static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
c1c4919b
JM
103 enum btrfs_reserve_flush_enum flush,
104 bool system_chunk);
957780eb
JB
105static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106 struct btrfs_space_info *space_info,
107 u64 num_bytes);
108static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109 struct btrfs_space_info *space_info,
110 u64 num_bytes);
6a63209f 111
817d52f8
JB
112static noinline int
113block_group_cache_done(struct btrfs_block_group_cache *cache)
114{
115 smp_mb();
36cce922
JB
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
118}
119
0f9dd46c
JB
120static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121{
122 return (cache->flags & bits) == bits;
123}
124
758f2dfc 125void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
126{
127 atomic_inc(&cache->count);
128}
129
130void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131{
f0486c68
YZ
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
0966a7b1
QW
135
136 /*
137 * If not empty, someone is still holding mutex of
138 * full_stripe_lock, which can only be released by caller.
139 * And it will definitely cause use-after-free when caller
140 * tries to release full stripe lock.
141 *
142 * No better way to resolve, but only to warn.
143 */
144 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 145 kfree(cache->free_space_ctl);
11dfe35a 146 kfree(cache);
f0486c68 147 }
11dfe35a
JB
148}
149
0f9dd46c
JB
150/*
151 * this adds the block group to the fs_info rb tree for the block group
152 * cache
153 */
b2950863 154static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
155 struct btrfs_block_group_cache *block_group)
156{
157 struct rb_node **p;
158 struct rb_node *parent = NULL;
159 struct btrfs_block_group_cache *cache;
160
161 spin_lock(&info->block_group_cache_lock);
162 p = &info->block_group_cache_tree.rb_node;
163
164 while (*p) {
165 parent = *p;
166 cache = rb_entry(parent, struct btrfs_block_group_cache,
167 cache_node);
168 if (block_group->key.objectid < cache->key.objectid) {
169 p = &(*p)->rb_left;
170 } else if (block_group->key.objectid > cache->key.objectid) {
171 p = &(*p)->rb_right;
172 } else {
173 spin_unlock(&info->block_group_cache_lock);
174 return -EEXIST;
175 }
176 }
177
178 rb_link_node(&block_group->cache_node, parent, p);
179 rb_insert_color(&block_group->cache_node,
180 &info->block_group_cache_tree);
a1897fdd
LB
181
182 if (info->first_logical_byte > block_group->key.objectid)
183 info->first_logical_byte = block_group->key.objectid;
184
0f9dd46c
JB
185 spin_unlock(&info->block_group_cache_lock);
186
187 return 0;
188}
189
190/*
191 * This will return the block group at or after bytenr if contains is 0, else
192 * it will return the block group that contains the bytenr
193 */
194static struct btrfs_block_group_cache *
195block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
196 int contains)
197{
198 struct btrfs_block_group_cache *cache, *ret = NULL;
199 struct rb_node *n;
200 u64 end, start;
201
202 spin_lock(&info->block_group_cache_lock);
203 n = info->block_group_cache_tree.rb_node;
204
205 while (n) {
206 cache = rb_entry(n, struct btrfs_block_group_cache,
207 cache_node);
208 end = cache->key.objectid + cache->key.offset - 1;
209 start = cache->key.objectid;
210
211 if (bytenr < start) {
212 if (!contains && (!ret || start < ret->key.objectid))
213 ret = cache;
214 n = n->rb_left;
215 } else if (bytenr > start) {
216 if (contains && bytenr <= end) {
217 ret = cache;
218 break;
219 }
220 n = n->rb_right;
221 } else {
222 ret = cache;
223 break;
224 }
225 }
a1897fdd 226 if (ret) {
11dfe35a 227 btrfs_get_block_group(ret);
a1897fdd
LB
228 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
229 info->first_logical_byte = ret->key.objectid;
230 }
0f9dd46c
JB
231 spin_unlock(&info->block_group_cache_lock);
232
233 return ret;
234}
235
2ff7e61e 236static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 237 u64 start, u64 num_bytes)
817d52f8 238{
11833d66 239 u64 end = start + num_bytes - 1;
0b246afa 240 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 241 start, end, EXTENT_UPTODATE);
0b246afa 242 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 243 start, end, EXTENT_UPTODATE);
11833d66
YZ
244 return 0;
245}
817d52f8 246
2ff7e61e 247static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
248 struct btrfs_block_group_cache *cache)
249{
250 u64 start, end;
817d52f8 251
11833d66
YZ
252 start = cache->key.objectid;
253 end = start + cache->key.offset - 1;
254
0b246afa 255 clear_extent_bits(&fs_info->freed_extents[0],
91166212 256 start, end, EXTENT_UPTODATE);
0b246afa 257 clear_extent_bits(&fs_info->freed_extents[1],
91166212 258 start, end, EXTENT_UPTODATE);
817d52f8
JB
259}
260
2ff7e61e 261static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 262 struct btrfs_block_group_cache *cache)
817d52f8 263{
817d52f8
JB
264 u64 bytenr;
265 u64 *logical;
266 int stripe_len;
267 int i, nr, ret;
268
06b2331f
YZ
269 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
270 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
271 cache->bytes_super += stripe_len;
2ff7e61e 272 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 273 stripe_len);
835d974f
JB
274 if (ret)
275 return ret;
06b2331f
YZ
276 }
277
817d52f8
JB
278 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
279 bytenr = btrfs_sb_offset(i);
0b246afa 280 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
ab8d0fc4 281 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
282 if (ret)
283 return ret;
11833d66 284
817d52f8 285 while (nr--) {
51bf5f0b
JB
286 u64 start, len;
287
288 if (logical[nr] > cache->key.objectid +
289 cache->key.offset)
290 continue;
291
292 if (logical[nr] + stripe_len <= cache->key.objectid)
293 continue;
294
295 start = logical[nr];
296 if (start < cache->key.objectid) {
297 start = cache->key.objectid;
298 len = (logical[nr] + stripe_len) - start;
299 } else {
300 len = min_t(u64, stripe_len,
301 cache->key.objectid +
302 cache->key.offset - start);
303 }
304
305 cache->bytes_super += len;
2ff7e61e 306 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
307 if (ret) {
308 kfree(logical);
309 return ret;
310 }
817d52f8 311 }
11833d66 312
817d52f8
JB
313 kfree(logical);
314 }
817d52f8
JB
315 return 0;
316}
317
11833d66
YZ
318static struct btrfs_caching_control *
319get_caching_control(struct btrfs_block_group_cache *cache)
320{
321 struct btrfs_caching_control *ctl;
322
323 spin_lock(&cache->lock);
dde5abee
JB
324 if (!cache->caching_ctl) {
325 spin_unlock(&cache->lock);
11833d66
YZ
326 return NULL;
327 }
328
329 ctl = cache->caching_ctl;
1e4f4714 330 refcount_inc(&ctl->count);
11833d66
YZ
331 spin_unlock(&cache->lock);
332 return ctl;
333}
334
335static void put_caching_control(struct btrfs_caching_control *ctl)
336{
1e4f4714 337 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
338 kfree(ctl);
339}
340
d0bd4560 341#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 342static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 343{
2ff7e61e 344 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
345 u64 start = block_group->key.objectid;
346 u64 len = block_group->key.offset;
347 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 348 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
349 u64 step = chunk << 1;
350
351 while (len > chunk) {
352 btrfs_remove_free_space(block_group, start, chunk);
353 start += step;
354 if (len < step)
355 len = 0;
356 else
357 len -= step;
358 }
359}
360#endif
361
0f9dd46c
JB
362/*
363 * this is only called by cache_block_group, since we could have freed extents
364 * we need to check the pinned_extents for any extents that can't be used yet
365 * since their free space will be released as soon as the transaction commits.
366 */
a5ed9182
OS
367u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
368 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 369{
817d52f8 370 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
371 int ret;
372
373 while (start < end) {
11833d66 374 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 375 &extent_start, &extent_end,
e6138876
JB
376 EXTENT_DIRTY | EXTENT_UPTODATE,
377 NULL);
0f9dd46c
JB
378 if (ret)
379 break;
380
06b2331f 381 if (extent_start <= start) {
0f9dd46c
JB
382 start = extent_end + 1;
383 } else if (extent_start > start && extent_start < end) {
384 size = extent_start - start;
817d52f8 385 total_added += size;
ea6a478e
JB
386 ret = btrfs_add_free_space(block_group, start,
387 size);
79787eaa 388 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
389 start = extent_end + 1;
390 } else {
391 break;
392 }
393 }
394
395 if (start < end) {
396 size = end - start;
817d52f8 397 total_added += size;
ea6a478e 398 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 399 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
400 }
401
817d52f8 402 return total_added;
0f9dd46c
JB
403}
404
73fa48b6 405static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 406{
0b246afa
JM
407 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
408 struct btrfs_fs_info *fs_info = block_group->fs_info;
409 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 410 struct btrfs_path *path;
5f39d397 411 struct extent_buffer *leaf;
11833d66 412 struct btrfs_key key;
817d52f8 413 u64 total_found = 0;
11833d66
YZ
414 u64 last = 0;
415 u32 nritems;
73fa48b6 416 int ret;
d0bd4560 417 bool wakeup = true;
f510cfec 418
e37c9e69
CM
419 path = btrfs_alloc_path();
420 if (!path)
73fa48b6 421 return -ENOMEM;
7d7d6068 422
817d52f8 423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 424
d0bd4560
JB
425#ifdef CONFIG_BTRFS_DEBUG
426 /*
427 * If we're fragmenting we don't want to make anybody think we can
428 * allocate from this block group until we've had a chance to fragment
429 * the free space.
430 */
2ff7e61e 431 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
432 wakeup = false;
433#endif
5cd57b2c 434 /*
817d52f8
JB
435 * We don't want to deadlock with somebody trying to allocate a new
436 * extent for the extent root while also trying to search the extent
437 * root to add free space. So we skip locking and search the commit
438 * root, since its read-only
5cd57b2c
CM
439 */
440 path->skip_locking = 1;
817d52f8 441 path->search_commit_root = 1;
e4058b54 442 path->reada = READA_FORWARD;
817d52f8 443
e4404d6e 444 key.objectid = last;
e37c9e69 445 key.offset = 0;
11833d66 446 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 447
52ee28d2 448next:
11833d66 449 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 450 if (ret < 0)
73fa48b6 451 goto out;
a512bbf8 452
11833d66
YZ
453 leaf = path->nodes[0];
454 nritems = btrfs_header_nritems(leaf);
455
d397712b 456 while (1) {
7841cb28 457 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 458 last = (u64)-1;
817d52f8 459 break;
f25784b3 460 }
817d52f8 461
11833d66
YZ
462 if (path->slots[0] < nritems) {
463 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
464 } else {
465 ret = find_next_key(path, 0, &key);
466 if (ret)
e37c9e69 467 break;
817d52f8 468
c9ea7b24 469 if (need_resched() ||
9e351cc8 470 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
471 if (wakeup)
472 caching_ctl->progress = last;
ff5714cc 473 btrfs_release_path(path);
9e351cc8 474 up_read(&fs_info->commit_root_sem);
589d8ade 475 mutex_unlock(&caching_ctl->mutex);
11833d66 476 cond_resched();
73fa48b6
OS
477 mutex_lock(&caching_ctl->mutex);
478 down_read(&fs_info->commit_root_sem);
479 goto next;
589d8ade 480 }
0a3896d0
JB
481
482 ret = btrfs_next_leaf(extent_root, path);
483 if (ret < 0)
73fa48b6 484 goto out;
0a3896d0
JB
485 if (ret)
486 break;
589d8ade
JB
487 leaf = path->nodes[0];
488 nritems = btrfs_header_nritems(leaf);
489 continue;
11833d66 490 }
817d52f8 491
52ee28d2
LB
492 if (key.objectid < last) {
493 key.objectid = last;
494 key.offset = 0;
495 key.type = BTRFS_EXTENT_ITEM_KEY;
496
d0bd4560
JB
497 if (wakeup)
498 caching_ctl->progress = last;
52ee28d2
LB
499 btrfs_release_path(path);
500 goto next;
501 }
502
11833d66
YZ
503 if (key.objectid < block_group->key.objectid) {
504 path->slots[0]++;
817d52f8 505 continue;
e37c9e69 506 }
0f9dd46c 507
e37c9e69 508 if (key.objectid >= block_group->key.objectid +
0f9dd46c 509 block_group->key.offset)
e37c9e69 510 break;
7d7d6068 511
3173a18f
JB
512 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
513 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
514 total_found += add_new_free_space(block_group,
515 fs_info, last,
516 key.objectid);
3173a18f
JB
517 if (key.type == BTRFS_METADATA_ITEM_KEY)
518 last = key.objectid +
da17066c 519 fs_info->nodesize;
3173a18f
JB
520 else
521 last = key.objectid + key.offset;
817d52f8 522
73fa48b6 523 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 524 total_found = 0;
d0bd4560
JB
525 if (wakeup)
526 wake_up(&caching_ctl->wait);
11833d66 527 }
817d52f8 528 }
e37c9e69
CM
529 path->slots[0]++;
530 }
817d52f8 531 ret = 0;
e37c9e69 532
817d52f8
JB
533 total_found += add_new_free_space(block_group, fs_info, last,
534 block_group->key.objectid +
535 block_group->key.offset);
11833d66 536 caching_ctl->progress = (u64)-1;
817d52f8 537
73fa48b6
OS
538out:
539 btrfs_free_path(path);
540 return ret;
541}
542
543static noinline void caching_thread(struct btrfs_work *work)
544{
545 struct btrfs_block_group_cache *block_group;
546 struct btrfs_fs_info *fs_info;
547 struct btrfs_caching_control *caching_ctl;
b4570aa9 548 struct btrfs_root *extent_root;
73fa48b6
OS
549 int ret;
550
551 caching_ctl = container_of(work, struct btrfs_caching_control, work);
552 block_group = caching_ctl->block_group;
553 fs_info = block_group->fs_info;
b4570aa9 554 extent_root = fs_info->extent_root;
73fa48b6
OS
555
556 mutex_lock(&caching_ctl->mutex);
557 down_read(&fs_info->commit_root_sem);
558
1e144fb8
OS
559 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
560 ret = load_free_space_tree(caching_ctl);
561 else
562 ret = load_extent_tree_free(caching_ctl);
73fa48b6 563
817d52f8 564 spin_lock(&block_group->lock);
11833d66 565 block_group->caching_ctl = NULL;
73fa48b6 566 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 567 spin_unlock(&block_group->lock);
0f9dd46c 568
d0bd4560 569#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 570 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
571 u64 bytes_used;
572
573 spin_lock(&block_group->space_info->lock);
574 spin_lock(&block_group->lock);
575 bytes_used = block_group->key.offset -
576 btrfs_block_group_used(&block_group->item);
577 block_group->space_info->bytes_used += bytes_used >> 1;
578 spin_unlock(&block_group->lock);
579 spin_unlock(&block_group->space_info->lock);
2ff7e61e 580 fragment_free_space(block_group);
d0bd4560
JB
581 }
582#endif
583
584 caching_ctl->progress = (u64)-1;
11833d66 585
9e351cc8 586 up_read(&fs_info->commit_root_sem);
2ff7e61e 587 free_excluded_extents(fs_info, block_group);
11833d66 588 mutex_unlock(&caching_ctl->mutex);
73fa48b6 589
11833d66
YZ
590 wake_up(&caching_ctl->wait);
591
592 put_caching_control(caching_ctl);
11dfe35a 593 btrfs_put_block_group(block_group);
817d52f8
JB
594}
595
9d66e233 596static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 597 int load_cache_only)
817d52f8 598{
291c7d2f 599 DEFINE_WAIT(wait);
11833d66
YZ
600 struct btrfs_fs_info *fs_info = cache->fs_info;
601 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
602 int ret = 0;
603
291c7d2f 604 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
605 if (!caching_ctl)
606 return -ENOMEM;
291c7d2f
JB
607
608 INIT_LIST_HEAD(&caching_ctl->list);
609 mutex_init(&caching_ctl->mutex);
610 init_waitqueue_head(&caching_ctl->wait);
611 caching_ctl->block_group = cache;
612 caching_ctl->progress = cache->key.objectid;
1e4f4714 613 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
614 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
615 caching_thread, NULL, NULL);
291c7d2f
JB
616
617 spin_lock(&cache->lock);
618 /*
619 * This should be a rare occasion, but this could happen I think in the
620 * case where one thread starts to load the space cache info, and then
621 * some other thread starts a transaction commit which tries to do an
622 * allocation while the other thread is still loading the space cache
623 * info. The previous loop should have kept us from choosing this block
624 * group, but if we've moved to the state where we will wait on caching
625 * block groups we need to first check if we're doing a fast load here,
626 * so we can wait for it to finish, otherwise we could end up allocating
627 * from a block group who's cache gets evicted for one reason or
628 * another.
629 */
630 while (cache->cached == BTRFS_CACHE_FAST) {
631 struct btrfs_caching_control *ctl;
632
633 ctl = cache->caching_ctl;
1e4f4714 634 refcount_inc(&ctl->count);
291c7d2f
JB
635 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
636 spin_unlock(&cache->lock);
637
638 schedule();
639
640 finish_wait(&ctl->wait, &wait);
641 put_caching_control(ctl);
642 spin_lock(&cache->lock);
643 }
644
645 if (cache->cached != BTRFS_CACHE_NO) {
646 spin_unlock(&cache->lock);
647 kfree(caching_ctl);
11833d66 648 return 0;
291c7d2f
JB
649 }
650 WARN_ON(cache->caching_ctl);
651 cache->caching_ctl = caching_ctl;
652 cache->cached = BTRFS_CACHE_FAST;
653 spin_unlock(&cache->lock);
11833d66 654
d53ba474 655 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 656 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
657 ret = load_free_space_cache(fs_info, cache);
658
659 spin_lock(&cache->lock);
660 if (ret == 1) {
291c7d2f 661 cache->caching_ctl = NULL;
9d66e233
JB
662 cache->cached = BTRFS_CACHE_FINISHED;
663 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 664 caching_ctl->progress = (u64)-1;
9d66e233 665 } else {
291c7d2f
JB
666 if (load_cache_only) {
667 cache->caching_ctl = NULL;
668 cache->cached = BTRFS_CACHE_NO;
669 } else {
670 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 671 cache->has_caching_ctl = 1;
291c7d2f 672 }
9d66e233
JB
673 }
674 spin_unlock(&cache->lock);
d0bd4560
JB
675#ifdef CONFIG_BTRFS_DEBUG
676 if (ret == 1 &&
2ff7e61e 677 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
678 u64 bytes_used;
679
680 spin_lock(&cache->space_info->lock);
681 spin_lock(&cache->lock);
682 bytes_used = cache->key.offset -
683 btrfs_block_group_used(&cache->item);
684 cache->space_info->bytes_used += bytes_used >> 1;
685 spin_unlock(&cache->lock);
686 spin_unlock(&cache->space_info->lock);
2ff7e61e 687 fragment_free_space(cache);
d0bd4560
JB
688 }
689#endif
cb83b7b8
JB
690 mutex_unlock(&caching_ctl->mutex);
691
291c7d2f 692 wake_up(&caching_ctl->wait);
3c14874a 693 if (ret == 1) {
291c7d2f 694 put_caching_control(caching_ctl);
2ff7e61e 695 free_excluded_extents(fs_info, cache);
9d66e233 696 return 0;
3c14874a 697 }
291c7d2f
JB
698 } else {
699 /*
1e144fb8
OS
700 * We're either using the free space tree or no caching at all.
701 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
702 */
703 spin_lock(&cache->lock);
704 if (load_cache_only) {
705 cache->caching_ctl = NULL;
706 cache->cached = BTRFS_CACHE_NO;
707 } else {
708 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 709 cache->has_caching_ctl = 1;
291c7d2f
JB
710 }
711 spin_unlock(&cache->lock);
712 wake_up(&caching_ctl->wait);
9d66e233
JB
713 }
714
291c7d2f
JB
715 if (load_cache_only) {
716 put_caching_control(caching_ctl);
11833d66 717 return 0;
817d52f8 718 }
817d52f8 719
9e351cc8 720 down_write(&fs_info->commit_root_sem);
1e4f4714 721 refcount_inc(&caching_ctl->count);
11833d66 722 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 723 up_write(&fs_info->commit_root_sem);
11833d66 724
11dfe35a 725 btrfs_get_block_group(cache);
11833d66 726
e66f0bb1 727 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 728
ef8bbdfe 729 return ret;
e37c9e69
CM
730}
731
0f9dd46c
JB
732/*
733 * return the block group that starts at or after bytenr
734 */
d397712b
CM
735static struct btrfs_block_group_cache *
736btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 737{
e2c89907 738 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
739}
740
0f9dd46c 741/*
9f55684c 742 * return the block group that contains the given bytenr
0f9dd46c 743 */
d397712b
CM
744struct btrfs_block_group_cache *btrfs_lookup_block_group(
745 struct btrfs_fs_info *info,
746 u64 bytenr)
be744175 747{
e2c89907 748 return block_group_cache_tree_search(info, bytenr, 1);
be744175 749}
0b86a832 750
0f9dd46c
JB
751static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
752 u64 flags)
6324fbf3 753{
0f9dd46c 754 struct list_head *head = &info->space_info;
0f9dd46c 755 struct btrfs_space_info *found;
4184ea7f 756
52ba6929 757 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 758
4184ea7f
CM
759 rcu_read_lock();
760 list_for_each_entry_rcu(found, head, list) {
67377734 761 if (found->flags & flags) {
4184ea7f 762 rcu_read_unlock();
0f9dd46c 763 return found;
4184ea7f 764 }
0f9dd46c 765 }
4184ea7f 766 rcu_read_unlock();
0f9dd46c 767 return NULL;
6324fbf3
CM
768}
769
0d9f824d
OS
770static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
771 u64 owner, u64 root_objectid)
772{
773 struct btrfs_space_info *space_info;
774 u64 flags;
775
776 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
777 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
778 flags = BTRFS_BLOCK_GROUP_SYSTEM;
779 else
780 flags = BTRFS_BLOCK_GROUP_METADATA;
781 } else {
782 flags = BTRFS_BLOCK_GROUP_DATA;
783 }
784
785 space_info = __find_space_info(fs_info, flags);
55e8196a 786 ASSERT(space_info);
0d9f824d
OS
787 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
788}
789
4184ea7f
CM
790/*
791 * after adding space to the filesystem, we need to clear the full flags
792 * on all the space infos.
793 */
794void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
795{
796 struct list_head *head = &info->space_info;
797 struct btrfs_space_info *found;
798
799 rcu_read_lock();
800 list_for_each_entry_rcu(found, head, list)
801 found->full = 0;
802 rcu_read_unlock();
803}
804
1a4ed8fd 805/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 806int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
807{
808 int ret;
809 struct btrfs_key key;
31840ae1 810 struct btrfs_path *path;
e02119d5 811
31840ae1 812 path = btrfs_alloc_path();
d8926bb3
MF
813 if (!path)
814 return -ENOMEM;
815
e02119d5
CM
816 key.objectid = start;
817 key.offset = len;
3173a18f 818 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 819 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 820 btrfs_free_path(path);
7bb86316
CM
821 return ret;
822}
823
a22285a6 824/*
3173a18f 825 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
826 *
827 * the head node for delayed ref is used to store the sum of all the
828 * reference count modifications queued up in the rbtree. the head
829 * node may also store the extent flags to set. This way you can check
830 * to see what the reference count and extent flags would be if all of
831 * the delayed refs are not processed.
832 */
833int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 834 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 835 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
836{
837 struct btrfs_delayed_ref_head *head;
838 struct btrfs_delayed_ref_root *delayed_refs;
839 struct btrfs_path *path;
840 struct btrfs_extent_item *ei;
841 struct extent_buffer *leaf;
842 struct btrfs_key key;
843 u32 item_size;
844 u64 num_refs;
845 u64 extent_flags;
846 int ret;
847
3173a18f
JB
848 /*
849 * If we don't have skinny metadata, don't bother doing anything
850 * different
851 */
0b246afa
JM
852 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
853 offset = fs_info->nodesize;
3173a18f
JB
854 metadata = 0;
855 }
856
a22285a6
YZ
857 path = btrfs_alloc_path();
858 if (!path)
859 return -ENOMEM;
860
a22285a6
YZ
861 if (!trans) {
862 path->skip_locking = 1;
863 path->search_commit_root = 1;
864 }
639eefc8
FDBM
865
866search_again:
867 key.objectid = bytenr;
868 key.offset = offset;
869 if (metadata)
870 key.type = BTRFS_METADATA_ITEM_KEY;
871 else
872 key.type = BTRFS_EXTENT_ITEM_KEY;
873
0b246afa 874 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
875 if (ret < 0)
876 goto out_free;
877
3173a18f 878 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
879 if (path->slots[0]) {
880 path->slots[0]--;
881 btrfs_item_key_to_cpu(path->nodes[0], &key,
882 path->slots[0]);
883 if (key.objectid == bytenr &&
884 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 885 key.offset == fs_info->nodesize)
74be9510
FDBM
886 ret = 0;
887 }
3173a18f
JB
888 }
889
a22285a6
YZ
890 if (ret == 0) {
891 leaf = path->nodes[0];
892 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
893 if (item_size >= sizeof(*ei)) {
894 ei = btrfs_item_ptr(leaf, path->slots[0],
895 struct btrfs_extent_item);
896 num_refs = btrfs_extent_refs(leaf, ei);
897 extent_flags = btrfs_extent_flags(leaf, ei);
898 } else {
899#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
900 struct btrfs_extent_item_v0 *ei0;
901 BUG_ON(item_size != sizeof(*ei0));
902 ei0 = btrfs_item_ptr(leaf, path->slots[0],
903 struct btrfs_extent_item_v0);
904 num_refs = btrfs_extent_refs_v0(leaf, ei0);
905 /* FIXME: this isn't correct for data */
906 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
907#else
908 BUG();
909#endif
910 }
911 BUG_ON(num_refs == 0);
912 } else {
913 num_refs = 0;
914 extent_flags = 0;
915 ret = 0;
916 }
917
918 if (!trans)
919 goto out;
920
921 delayed_refs = &trans->transaction->delayed_refs;
922 spin_lock(&delayed_refs->lock);
f72ad18e 923 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
924 if (head) {
925 if (!mutex_trylock(&head->mutex)) {
6df8cdf5 926 refcount_inc(&head->node.refs);
a22285a6
YZ
927 spin_unlock(&delayed_refs->lock);
928
b3b4aa74 929 btrfs_release_path(path);
a22285a6 930
8cc33e5c
DS
931 /*
932 * Mutex was contended, block until it's released and try
933 * again
934 */
a22285a6
YZ
935 mutex_lock(&head->mutex);
936 mutex_unlock(&head->mutex);
937 btrfs_put_delayed_ref(&head->node);
639eefc8 938 goto search_again;
a22285a6 939 }
d7df2c79 940 spin_lock(&head->lock);
a22285a6
YZ
941 if (head->extent_op && head->extent_op->update_flags)
942 extent_flags |= head->extent_op->flags_to_set;
943 else
944 BUG_ON(num_refs == 0);
945
946 num_refs += head->node.ref_mod;
d7df2c79 947 spin_unlock(&head->lock);
a22285a6
YZ
948 mutex_unlock(&head->mutex);
949 }
950 spin_unlock(&delayed_refs->lock);
951out:
952 WARN_ON(num_refs == 0);
953 if (refs)
954 *refs = num_refs;
955 if (flags)
956 *flags = extent_flags;
957out_free:
958 btrfs_free_path(path);
959 return ret;
960}
961
d8d5f3e1
CM
962/*
963 * Back reference rules. Back refs have three main goals:
964 *
965 * 1) differentiate between all holders of references to an extent so that
966 * when a reference is dropped we can make sure it was a valid reference
967 * before freeing the extent.
968 *
969 * 2) Provide enough information to quickly find the holders of an extent
970 * if we notice a given block is corrupted or bad.
971 *
972 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
973 * maintenance. This is actually the same as #2, but with a slightly
974 * different use case.
975 *
5d4f98a2
YZ
976 * There are two kinds of back refs. The implicit back refs is optimized
977 * for pointers in non-shared tree blocks. For a given pointer in a block,
978 * back refs of this kind provide information about the block's owner tree
979 * and the pointer's key. These information allow us to find the block by
980 * b-tree searching. The full back refs is for pointers in tree blocks not
981 * referenced by their owner trees. The location of tree block is recorded
982 * in the back refs. Actually the full back refs is generic, and can be
983 * used in all cases the implicit back refs is used. The major shortcoming
984 * of the full back refs is its overhead. Every time a tree block gets
985 * COWed, we have to update back refs entry for all pointers in it.
986 *
987 * For a newly allocated tree block, we use implicit back refs for
988 * pointers in it. This means most tree related operations only involve
989 * implicit back refs. For a tree block created in old transaction, the
990 * only way to drop a reference to it is COW it. So we can detect the
991 * event that tree block loses its owner tree's reference and do the
992 * back refs conversion.
993 *
01327610 994 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
995 *
996 * The reference count of the block is one and the tree is the block's
997 * owner tree. Nothing to do in this case.
998 *
999 * The reference count of the block is one and the tree is not the
1000 * block's owner tree. In this case, full back refs is used for pointers
1001 * in the block. Remove these full back refs, add implicit back refs for
1002 * every pointers in the new block.
1003 *
1004 * The reference count of the block is greater than one and the tree is
1005 * the block's owner tree. In this case, implicit back refs is used for
1006 * pointers in the block. Add full back refs for every pointers in the
1007 * block, increase lower level extents' reference counts. The original
1008 * implicit back refs are entailed to the new block.
1009 *
1010 * The reference count of the block is greater than one and the tree is
1011 * not the block's owner tree. Add implicit back refs for every pointer in
1012 * the new block, increase lower level extents' reference count.
1013 *
1014 * Back Reference Key composing:
1015 *
1016 * The key objectid corresponds to the first byte in the extent,
1017 * The key type is used to differentiate between types of back refs.
1018 * There are different meanings of the key offset for different types
1019 * of back refs.
1020 *
d8d5f3e1
CM
1021 * File extents can be referenced by:
1022 *
1023 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1024 * - different files inside a single subvolume
d8d5f3e1
CM
1025 * - different offsets inside a file (bookend extents in file.c)
1026 *
5d4f98a2 1027 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1028 *
1029 * - Objectid of the subvolume root
d8d5f3e1 1030 * - objectid of the file holding the reference
5d4f98a2
YZ
1031 * - original offset in the file
1032 * - how many bookend extents
d8d5f3e1 1033 *
5d4f98a2
YZ
1034 * The key offset for the implicit back refs is hash of the first
1035 * three fields.
d8d5f3e1 1036 *
5d4f98a2 1037 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1038 *
5d4f98a2 1039 * - number of pointers in the tree leaf
d8d5f3e1 1040 *
5d4f98a2
YZ
1041 * The key offset for the implicit back refs is the first byte of
1042 * the tree leaf
d8d5f3e1 1043 *
5d4f98a2
YZ
1044 * When a file extent is allocated, The implicit back refs is used.
1045 * the fields are filled in:
d8d5f3e1 1046 *
5d4f98a2 1047 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1048 *
5d4f98a2
YZ
1049 * When a file extent is removed file truncation, we find the
1050 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1051 *
5d4f98a2 1052 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1053 *
5d4f98a2 1054 * Btree extents can be referenced by:
d8d5f3e1 1055 *
5d4f98a2 1056 * - Different subvolumes
d8d5f3e1 1057 *
5d4f98a2
YZ
1058 * Both the implicit back refs and the full back refs for tree blocks
1059 * only consist of key. The key offset for the implicit back refs is
1060 * objectid of block's owner tree. The key offset for the full back refs
1061 * is the first byte of parent block.
d8d5f3e1 1062 *
5d4f98a2
YZ
1063 * When implicit back refs is used, information about the lowest key and
1064 * level of the tree block are required. These information are stored in
1065 * tree block info structure.
d8d5f3e1 1066 */
31840ae1 1067
5d4f98a2
YZ
1068#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1069static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1070 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1071 struct btrfs_path *path,
1072 u64 owner, u32 extra_size)
7bb86316 1073{
87bde3cd 1074 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1075 struct btrfs_extent_item *item;
1076 struct btrfs_extent_item_v0 *ei0;
1077 struct btrfs_extent_ref_v0 *ref0;
1078 struct btrfs_tree_block_info *bi;
1079 struct extent_buffer *leaf;
7bb86316 1080 struct btrfs_key key;
5d4f98a2
YZ
1081 struct btrfs_key found_key;
1082 u32 new_size = sizeof(*item);
1083 u64 refs;
1084 int ret;
1085
1086 leaf = path->nodes[0];
1087 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1088
1089 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1090 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1091 struct btrfs_extent_item_v0);
1092 refs = btrfs_extent_refs_v0(leaf, ei0);
1093
1094 if (owner == (u64)-1) {
1095 while (1) {
1096 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1097 ret = btrfs_next_leaf(root, path);
1098 if (ret < 0)
1099 return ret;
79787eaa 1100 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1101 leaf = path->nodes[0];
1102 }
1103 btrfs_item_key_to_cpu(leaf, &found_key,
1104 path->slots[0]);
1105 BUG_ON(key.objectid != found_key.objectid);
1106 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1107 path->slots[0]++;
1108 continue;
1109 }
1110 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1111 struct btrfs_extent_ref_v0);
1112 owner = btrfs_ref_objectid_v0(leaf, ref0);
1113 break;
1114 }
1115 }
b3b4aa74 1116 btrfs_release_path(path);
5d4f98a2
YZ
1117
1118 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1119 new_size += sizeof(*bi);
1120
1121 new_size -= sizeof(*ei0);
1122 ret = btrfs_search_slot(trans, root, &key, path,
1123 new_size + extra_size, 1);
1124 if (ret < 0)
1125 return ret;
79787eaa 1126 BUG_ON(ret); /* Corruption */
5d4f98a2 1127
87bde3cd 1128 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1129
1130 leaf = path->nodes[0];
1131 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1132 btrfs_set_extent_refs(leaf, item, refs);
1133 /* FIXME: get real generation */
1134 btrfs_set_extent_generation(leaf, item, 0);
1135 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1136 btrfs_set_extent_flags(leaf, item,
1137 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1138 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1139 bi = (struct btrfs_tree_block_info *)(item + 1);
1140 /* FIXME: get first key of the block */
b159fa28 1141 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1142 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1143 } else {
1144 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1145 }
1146 btrfs_mark_buffer_dirty(leaf);
1147 return 0;
1148}
1149#endif
1150
1151static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1152{
1153 u32 high_crc = ~(u32)0;
1154 u32 low_crc = ~(u32)0;
1155 __le64 lenum;
1156
1157 lenum = cpu_to_le64(root_objectid);
14a958e6 1158 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1159 lenum = cpu_to_le64(owner);
14a958e6 1160 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1161 lenum = cpu_to_le64(offset);
14a958e6 1162 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1163
1164 return ((u64)high_crc << 31) ^ (u64)low_crc;
1165}
1166
1167static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1168 struct btrfs_extent_data_ref *ref)
1169{
1170 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1171 btrfs_extent_data_ref_objectid(leaf, ref),
1172 btrfs_extent_data_ref_offset(leaf, ref));
1173}
1174
1175static int match_extent_data_ref(struct extent_buffer *leaf,
1176 struct btrfs_extent_data_ref *ref,
1177 u64 root_objectid, u64 owner, u64 offset)
1178{
1179 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1180 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1181 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1182 return 0;
1183 return 1;
1184}
1185
1186static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1187 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1188 struct btrfs_path *path,
1189 u64 bytenr, u64 parent,
1190 u64 root_objectid,
1191 u64 owner, u64 offset)
1192{
87bde3cd 1193 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1194 struct btrfs_key key;
1195 struct btrfs_extent_data_ref *ref;
31840ae1 1196 struct extent_buffer *leaf;
5d4f98a2 1197 u32 nritems;
74493f7a 1198 int ret;
5d4f98a2
YZ
1199 int recow;
1200 int err = -ENOENT;
74493f7a 1201
31840ae1 1202 key.objectid = bytenr;
5d4f98a2
YZ
1203 if (parent) {
1204 key.type = BTRFS_SHARED_DATA_REF_KEY;
1205 key.offset = parent;
1206 } else {
1207 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1208 key.offset = hash_extent_data_ref(root_objectid,
1209 owner, offset);
1210 }
1211again:
1212 recow = 0;
1213 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1214 if (ret < 0) {
1215 err = ret;
1216 goto fail;
1217 }
31840ae1 1218
5d4f98a2
YZ
1219 if (parent) {
1220 if (!ret)
1221 return 0;
1222#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1223 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1224 btrfs_release_path(path);
5d4f98a2
YZ
1225 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1226 if (ret < 0) {
1227 err = ret;
1228 goto fail;
1229 }
1230 if (!ret)
1231 return 0;
1232#endif
1233 goto fail;
31840ae1
ZY
1234 }
1235
1236 leaf = path->nodes[0];
5d4f98a2
YZ
1237 nritems = btrfs_header_nritems(leaf);
1238 while (1) {
1239 if (path->slots[0] >= nritems) {
1240 ret = btrfs_next_leaf(root, path);
1241 if (ret < 0)
1242 err = ret;
1243 if (ret)
1244 goto fail;
1245
1246 leaf = path->nodes[0];
1247 nritems = btrfs_header_nritems(leaf);
1248 recow = 1;
1249 }
1250
1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252 if (key.objectid != bytenr ||
1253 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1254 goto fail;
1255
1256 ref = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_extent_data_ref);
1258
1259 if (match_extent_data_ref(leaf, ref, root_objectid,
1260 owner, offset)) {
1261 if (recow) {
b3b4aa74 1262 btrfs_release_path(path);
5d4f98a2
YZ
1263 goto again;
1264 }
1265 err = 0;
1266 break;
1267 }
1268 path->slots[0]++;
31840ae1 1269 }
5d4f98a2
YZ
1270fail:
1271 return err;
31840ae1
ZY
1272}
1273
5d4f98a2 1274static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1275 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1276 struct btrfs_path *path,
1277 u64 bytenr, u64 parent,
1278 u64 root_objectid, u64 owner,
1279 u64 offset, int refs_to_add)
31840ae1 1280{
87bde3cd 1281 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1282 struct btrfs_key key;
1283 struct extent_buffer *leaf;
5d4f98a2 1284 u32 size;
31840ae1
ZY
1285 u32 num_refs;
1286 int ret;
74493f7a 1287
74493f7a 1288 key.objectid = bytenr;
5d4f98a2
YZ
1289 if (parent) {
1290 key.type = BTRFS_SHARED_DATA_REF_KEY;
1291 key.offset = parent;
1292 size = sizeof(struct btrfs_shared_data_ref);
1293 } else {
1294 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1295 key.offset = hash_extent_data_ref(root_objectid,
1296 owner, offset);
1297 size = sizeof(struct btrfs_extent_data_ref);
1298 }
74493f7a 1299
5d4f98a2
YZ
1300 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1301 if (ret && ret != -EEXIST)
1302 goto fail;
1303
1304 leaf = path->nodes[0];
1305 if (parent) {
1306 struct btrfs_shared_data_ref *ref;
31840ae1 1307 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1308 struct btrfs_shared_data_ref);
1309 if (ret == 0) {
1310 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1311 } else {
1312 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1313 num_refs += refs_to_add;
1314 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1315 }
5d4f98a2
YZ
1316 } else {
1317 struct btrfs_extent_data_ref *ref;
1318 while (ret == -EEXIST) {
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 if (match_extent_data_ref(leaf, ref, root_objectid,
1322 owner, offset))
1323 break;
b3b4aa74 1324 btrfs_release_path(path);
5d4f98a2
YZ
1325 key.offset++;
1326 ret = btrfs_insert_empty_item(trans, root, path, &key,
1327 size);
1328 if (ret && ret != -EEXIST)
1329 goto fail;
31840ae1 1330
5d4f98a2
YZ
1331 leaf = path->nodes[0];
1332 }
1333 ref = btrfs_item_ptr(leaf, path->slots[0],
1334 struct btrfs_extent_data_ref);
1335 if (ret == 0) {
1336 btrfs_set_extent_data_ref_root(leaf, ref,
1337 root_objectid);
1338 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1339 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1340 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1341 } else {
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1343 num_refs += refs_to_add;
1344 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1345 }
31840ae1 1346 }
5d4f98a2
YZ
1347 btrfs_mark_buffer_dirty(leaf);
1348 ret = 0;
1349fail:
b3b4aa74 1350 btrfs_release_path(path);
7bb86316 1351 return ret;
74493f7a
CM
1352}
1353
5d4f98a2 1354static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1355 struct btrfs_fs_info *fs_info,
5d4f98a2 1356 struct btrfs_path *path,
fcebe456 1357 int refs_to_drop, int *last_ref)
31840ae1 1358{
5d4f98a2
YZ
1359 struct btrfs_key key;
1360 struct btrfs_extent_data_ref *ref1 = NULL;
1361 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1362 struct extent_buffer *leaf;
5d4f98a2 1363 u32 num_refs = 0;
31840ae1
ZY
1364 int ret = 0;
1365
1366 leaf = path->nodes[0];
5d4f98a2
YZ
1367 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1368
1369 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1370 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1371 struct btrfs_extent_data_ref);
1372 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1373 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1374 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1375 struct btrfs_shared_data_ref);
1376 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1377#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1378 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1379 struct btrfs_extent_ref_v0 *ref0;
1380 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1381 struct btrfs_extent_ref_v0);
1382 num_refs = btrfs_ref_count_v0(leaf, ref0);
1383#endif
1384 } else {
1385 BUG();
1386 }
1387
56bec294
CM
1388 BUG_ON(num_refs < refs_to_drop);
1389 num_refs -= refs_to_drop;
5d4f98a2 1390
31840ae1 1391 if (num_refs == 0) {
87bde3cd 1392 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1393 *last_ref = 1;
31840ae1 1394 } else {
5d4f98a2
YZ
1395 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1396 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1397 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1398 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1399#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1400 else {
1401 struct btrfs_extent_ref_v0 *ref0;
1402 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1403 struct btrfs_extent_ref_v0);
1404 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1405 }
1406#endif
31840ae1
ZY
1407 btrfs_mark_buffer_dirty(leaf);
1408 }
31840ae1
ZY
1409 return ret;
1410}
1411
9ed0dea0 1412static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1413 struct btrfs_extent_inline_ref *iref)
15916de8 1414{
5d4f98a2
YZ
1415 struct btrfs_key key;
1416 struct extent_buffer *leaf;
1417 struct btrfs_extent_data_ref *ref1;
1418 struct btrfs_shared_data_ref *ref2;
1419 u32 num_refs = 0;
1420
1421 leaf = path->nodes[0];
1422 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1423 if (iref) {
1424 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1425 BTRFS_EXTENT_DATA_REF_KEY) {
1426 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1427 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1428 } else {
1429 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1430 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1431 }
1432 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1433 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1434 struct btrfs_extent_data_ref);
1435 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1436 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1437 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1438 struct btrfs_shared_data_ref);
1439 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1440#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1441 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1442 struct btrfs_extent_ref_v0 *ref0;
1443 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1444 struct btrfs_extent_ref_v0);
1445 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1446#endif
5d4f98a2
YZ
1447 } else {
1448 WARN_ON(1);
1449 }
1450 return num_refs;
1451}
15916de8 1452
5d4f98a2 1453static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1454 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1455 struct btrfs_path *path,
1456 u64 bytenr, u64 parent,
1457 u64 root_objectid)
1f3c79a2 1458{
87bde3cd 1459 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1460 struct btrfs_key key;
1f3c79a2 1461 int ret;
1f3c79a2 1462
5d4f98a2
YZ
1463 key.objectid = bytenr;
1464 if (parent) {
1465 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1466 key.offset = parent;
1467 } else {
1468 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1469 key.offset = root_objectid;
1f3c79a2
LH
1470 }
1471
5d4f98a2
YZ
1472 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1473 if (ret > 0)
1474 ret = -ENOENT;
1475#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1476 if (ret == -ENOENT && parent) {
b3b4aa74 1477 btrfs_release_path(path);
5d4f98a2
YZ
1478 key.type = BTRFS_EXTENT_REF_V0_KEY;
1479 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1480 if (ret > 0)
1481 ret = -ENOENT;
1482 }
1f3c79a2 1483#endif
5d4f98a2 1484 return ret;
1f3c79a2
LH
1485}
1486
5d4f98a2 1487static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1488 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1489 struct btrfs_path *path,
1490 u64 bytenr, u64 parent,
1491 u64 root_objectid)
31840ae1 1492{
5d4f98a2 1493 struct btrfs_key key;
31840ae1 1494 int ret;
31840ae1 1495
5d4f98a2
YZ
1496 key.objectid = bytenr;
1497 if (parent) {
1498 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1499 key.offset = parent;
1500 } else {
1501 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1502 key.offset = root_objectid;
1503 }
1504
87bde3cd
JM
1505 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1506 path, &key, 0);
b3b4aa74 1507 btrfs_release_path(path);
31840ae1
ZY
1508 return ret;
1509}
1510
5d4f98a2 1511static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1512{
5d4f98a2
YZ
1513 int type;
1514 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1515 if (parent > 0)
1516 type = BTRFS_SHARED_BLOCK_REF_KEY;
1517 else
1518 type = BTRFS_TREE_BLOCK_REF_KEY;
1519 } else {
1520 if (parent > 0)
1521 type = BTRFS_SHARED_DATA_REF_KEY;
1522 else
1523 type = BTRFS_EXTENT_DATA_REF_KEY;
1524 }
1525 return type;
31840ae1 1526}
56bec294 1527
2c47e605
YZ
1528static int find_next_key(struct btrfs_path *path, int level,
1529 struct btrfs_key *key)
56bec294 1530
02217ed2 1531{
2c47e605 1532 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1533 if (!path->nodes[level])
1534 break;
5d4f98a2
YZ
1535 if (path->slots[level] + 1 >=
1536 btrfs_header_nritems(path->nodes[level]))
1537 continue;
1538 if (level == 0)
1539 btrfs_item_key_to_cpu(path->nodes[level], key,
1540 path->slots[level] + 1);
1541 else
1542 btrfs_node_key_to_cpu(path->nodes[level], key,
1543 path->slots[level] + 1);
1544 return 0;
1545 }
1546 return 1;
1547}
037e6390 1548
5d4f98a2
YZ
1549/*
1550 * look for inline back ref. if back ref is found, *ref_ret is set
1551 * to the address of inline back ref, and 0 is returned.
1552 *
1553 * if back ref isn't found, *ref_ret is set to the address where it
1554 * should be inserted, and -ENOENT is returned.
1555 *
1556 * if insert is true and there are too many inline back refs, the path
1557 * points to the extent item, and -EAGAIN is returned.
1558 *
1559 * NOTE: inline back refs are ordered in the same way that back ref
1560 * items in the tree are ordered.
1561 */
1562static noinline_for_stack
1563int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1564 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1565 struct btrfs_path *path,
1566 struct btrfs_extent_inline_ref **ref_ret,
1567 u64 bytenr, u64 num_bytes,
1568 u64 parent, u64 root_objectid,
1569 u64 owner, u64 offset, int insert)
1570{
87bde3cd 1571 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1572 struct btrfs_key key;
1573 struct extent_buffer *leaf;
1574 struct btrfs_extent_item *ei;
1575 struct btrfs_extent_inline_ref *iref;
1576 u64 flags;
1577 u64 item_size;
1578 unsigned long ptr;
1579 unsigned long end;
1580 int extra_size;
1581 int type;
1582 int want;
1583 int ret;
1584 int err = 0;
0b246afa 1585 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
26b8003f 1586
db94535d 1587 key.objectid = bytenr;
31840ae1 1588 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1589 key.offset = num_bytes;
31840ae1 1590
5d4f98a2
YZ
1591 want = extent_ref_type(parent, owner);
1592 if (insert) {
1593 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1594 path->keep_locks = 1;
5d4f98a2
YZ
1595 } else
1596 extra_size = -1;
3173a18f
JB
1597
1598 /*
1599 * Owner is our parent level, so we can just add one to get the level
1600 * for the block we are interested in.
1601 */
1602 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1603 key.type = BTRFS_METADATA_ITEM_KEY;
1604 key.offset = owner;
1605 }
1606
1607again:
5d4f98a2 1608 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1609 if (ret < 0) {
5d4f98a2
YZ
1610 err = ret;
1611 goto out;
1612 }
3173a18f
JB
1613
1614 /*
1615 * We may be a newly converted file system which still has the old fat
1616 * extent entries for metadata, so try and see if we have one of those.
1617 */
1618 if (ret > 0 && skinny_metadata) {
1619 skinny_metadata = false;
1620 if (path->slots[0]) {
1621 path->slots[0]--;
1622 btrfs_item_key_to_cpu(path->nodes[0], &key,
1623 path->slots[0]);
1624 if (key.objectid == bytenr &&
1625 key.type == BTRFS_EXTENT_ITEM_KEY &&
1626 key.offset == num_bytes)
1627 ret = 0;
1628 }
1629 if (ret) {
9ce49a0b 1630 key.objectid = bytenr;
3173a18f
JB
1631 key.type = BTRFS_EXTENT_ITEM_KEY;
1632 key.offset = num_bytes;
1633 btrfs_release_path(path);
1634 goto again;
1635 }
1636 }
1637
79787eaa
JM
1638 if (ret && !insert) {
1639 err = -ENOENT;
1640 goto out;
fae7f21c 1641 } else if (WARN_ON(ret)) {
492104c8 1642 err = -EIO;
492104c8 1643 goto out;
79787eaa 1644 }
5d4f98a2
YZ
1645
1646 leaf = path->nodes[0];
1647 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1648#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1649 if (item_size < sizeof(*ei)) {
1650 if (!insert) {
1651 err = -ENOENT;
1652 goto out;
1653 }
87bde3cd 1654 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1655 extra_size);
1656 if (ret < 0) {
1657 err = ret;
1658 goto out;
1659 }
1660 leaf = path->nodes[0];
1661 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1662 }
1663#endif
1664 BUG_ON(item_size < sizeof(*ei));
1665
5d4f98a2
YZ
1666 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1667 flags = btrfs_extent_flags(leaf, ei);
1668
1669 ptr = (unsigned long)(ei + 1);
1670 end = (unsigned long)ei + item_size;
1671
3173a18f 1672 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1673 ptr += sizeof(struct btrfs_tree_block_info);
1674 BUG_ON(ptr > end);
5d4f98a2
YZ
1675 }
1676
1677 err = -ENOENT;
1678 while (1) {
1679 if (ptr >= end) {
1680 WARN_ON(ptr > end);
1681 break;
1682 }
1683 iref = (struct btrfs_extent_inline_ref *)ptr;
1684 type = btrfs_extent_inline_ref_type(leaf, iref);
1685 if (want < type)
1686 break;
1687 if (want > type) {
1688 ptr += btrfs_extent_inline_ref_size(type);
1689 continue;
1690 }
1691
1692 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1693 struct btrfs_extent_data_ref *dref;
1694 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1695 if (match_extent_data_ref(leaf, dref, root_objectid,
1696 owner, offset)) {
1697 err = 0;
1698 break;
1699 }
1700 if (hash_extent_data_ref_item(leaf, dref) <
1701 hash_extent_data_ref(root_objectid, owner, offset))
1702 break;
1703 } else {
1704 u64 ref_offset;
1705 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1706 if (parent > 0) {
1707 if (parent == ref_offset) {
1708 err = 0;
1709 break;
1710 }
1711 if (ref_offset < parent)
1712 break;
1713 } else {
1714 if (root_objectid == ref_offset) {
1715 err = 0;
1716 break;
1717 }
1718 if (ref_offset < root_objectid)
1719 break;
1720 }
1721 }
1722 ptr += btrfs_extent_inline_ref_size(type);
1723 }
1724 if (err == -ENOENT && insert) {
1725 if (item_size + extra_size >=
1726 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1727 err = -EAGAIN;
1728 goto out;
1729 }
1730 /*
1731 * To add new inline back ref, we have to make sure
1732 * there is no corresponding back ref item.
1733 * For simplicity, we just do not add new inline back
1734 * ref if there is any kind of item for this block
1735 */
2c47e605
YZ
1736 if (find_next_key(path, 0, &key) == 0 &&
1737 key.objectid == bytenr &&
85d4198e 1738 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1739 err = -EAGAIN;
1740 goto out;
1741 }
1742 }
1743 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1744out:
85d4198e 1745 if (insert) {
5d4f98a2
YZ
1746 path->keep_locks = 0;
1747 btrfs_unlock_up_safe(path, 1);
1748 }
1749 return err;
1750}
1751
1752/*
1753 * helper to add new inline back ref
1754 */
1755static noinline_for_stack
87bde3cd 1756void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1757 struct btrfs_path *path,
1758 struct btrfs_extent_inline_ref *iref,
1759 u64 parent, u64 root_objectid,
1760 u64 owner, u64 offset, int refs_to_add,
1761 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1762{
1763 struct extent_buffer *leaf;
1764 struct btrfs_extent_item *ei;
1765 unsigned long ptr;
1766 unsigned long end;
1767 unsigned long item_offset;
1768 u64 refs;
1769 int size;
1770 int type;
5d4f98a2
YZ
1771
1772 leaf = path->nodes[0];
1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 item_offset = (unsigned long)iref - (unsigned long)ei;
1775
1776 type = extent_ref_type(parent, owner);
1777 size = btrfs_extent_inline_ref_size(type);
1778
87bde3cd 1779 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1780
1781 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1782 refs = btrfs_extent_refs(leaf, ei);
1783 refs += refs_to_add;
1784 btrfs_set_extent_refs(leaf, ei, refs);
1785 if (extent_op)
1786 __run_delayed_extent_op(extent_op, leaf, ei);
1787
1788 ptr = (unsigned long)ei + item_offset;
1789 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1790 if (ptr < end - size)
1791 memmove_extent_buffer(leaf, ptr + size, ptr,
1792 end - size - ptr);
1793
1794 iref = (struct btrfs_extent_inline_ref *)ptr;
1795 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1796 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1797 struct btrfs_extent_data_ref *dref;
1798 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1799 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1800 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1801 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1802 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1803 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1804 struct btrfs_shared_data_ref *sref;
1805 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1806 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1807 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1808 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1809 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1810 } else {
1811 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1814}
1815
1816static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1817 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1818 struct btrfs_path *path,
1819 struct btrfs_extent_inline_ref **ref_ret,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner, u64 offset)
1822{
1823 int ret;
1824
87bde3cd 1825 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1826 bytenr, num_bytes, parent,
1827 root_objectid, owner, offset, 0);
1828 if (ret != -ENOENT)
54aa1f4d 1829 return ret;
5d4f98a2 1830
b3b4aa74 1831 btrfs_release_path(path);
5d4f98a2
YZ
1832 *ref_ret = NULL;
1833
1834 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1835 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1836 parent, root_objectid);
5d4f98a2 1837 } else {
87bde3cd
JM
1838 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1839 parent, root_objectid, owner,
1840 offset);
b9473439 1841 }
5d4f98a2
YZ
1842 return ret;
1843}
31840ae1 1844
5d4f98a2
YZ
1845/*
1846 * helper to update/remove inline back ref
1847 */
1848static noinline_for_stack
87bde3cd 1849void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1850 struct btrfs_path *path,
1851 struct btrfs_extent_inline_ref *iref,
1852 int refs_to_mod,
fcebe456
JB
1853 struct btrfs_delayed_extent_op *extent_op,
1854 int *last_ref)
5d4f98a2
YZ
1855{
1856 struct extent_buffer *leaf;
1857 struct btrfs_extent_item *ei;
1858 struct btrfs_extent_data_ref *dref = NULL;
1859 struct btrfs_shared_data_ref *sref = NULL;
1860 unsigned long ptr;
1861 unsigned long end;
1862 u32 item_size;
1863 int size;
1864 int type;
5d4f98a2
YZ
1865 u64 refs;
1866
1867 leaf = path->nodes[0];
1868 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1869 refs = btrfs_extent_refs(leaf, ei);
1870 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1871 refs += refs_to_mod;
1872 btrfs_set_extent_refs(leaf, ei, refs);
1873 if (extent_op)
1874 __run_delayed_extent_op(extent_op, leaf, ei);
1875
1876 type = btrfs_extent_inline_ref_type(leaf, iref);
1877
1878 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1879 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1880 refs = btrfs_extent_data_ref_count(leaf, dref);
1881 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1882 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1883 refs = btrfs_shared_data_ref_count(leaf, sref);
1884 } else {
1885 refs = 1;
1886 BUG_ON(refs_to_mod != -1);
56bec294 1887 }
31840ae1 1888
5d4f98a2
YZ
1889 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1890 refs += refs_to_mod;
1891
1892 if (refs > 0) {
1893 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1894 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1895 else
1896 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1897 } else {
fcebe456 1898 *last_ref = 1;
5d4f98a2
YZ
1899 size = btrfs_extent_inline_ref_size(type);
1900 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1901 ptr = (unsigned long)iref;
1902 end = (unsigned long)ei + item_size;
1903 if (ptr + size < end)
1904 memmove_extent_buffer(leaf, ptr, ptr + size,
1905 end - ptr - size);
1906 item_size -= size;
87bde3cd 1907 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1908 }
1909 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1910}
1911
1912static noinline_for_stack
1913int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1914 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1915 struct btrfs_path *path,
1916 u64 bytenr, u64 num_bytes, u64 parent,
1917 u64 root_objectid, u64 owner,
1918 u64 offset, int refs_to_add,
1919 struct btrfs_delayed_extent_op *extent_op)
1920{
1921 struct btrfs_extent_inline_ref *iref;
1922 int ret;
1923
87bde3cd 1924 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1925 bytenr, num_bytes, parent,
1926 root_objectid, owner, offset, 1);
1927 if (ret == 0) {
1928 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1929 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1930 refs_to_add, extent_op, NULL);
5d4f98a2 1931 } else if (ret == -ENOENT) {
87bde3cd 1932 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
1933 root_objectid, owner, offset,
1934 refs_to_add, extent_op);
1935 ret = 0;
771ed689 1936 }
5d4f98a2
YZ
1937 return ret;
1938}
31840ae1 1939
5d4f98a2 1940static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1941 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1942 struct btrfs_path *path,
1943 u64 bytenr, u64 parent, u64 root_objectid,
1944 u64 owner, u64 offset, int refs_to_add)
1945{
1946 int ret;
1947 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1948 BUG_ON(refs_to_add != 1);
87bde3cd 1949 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
1950 parent, root_objectid);
1951 } else {
87bde3cd 1952 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
1953 parent, root_objectid,
1954 owner, offset, refs_to_add);
1955 }
1956 return ret;
1957}
56bec294 1958
5d4f98a2 1959static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1960 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1961 struct btrfs_path *path,
1962 struct btrfs_extent_inline_ref *iref,
fcebe456 1963 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1964{
143bede5 1965 int ret = 0;
b9473439 1966
5d4f98a2
YZ
1967 BUG_ON(!is_data && refs_to_drop != 1);
1968 if (iref) {
87bde3cd 1969 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1970 -refs_to_drop, NULL, last_ref);
5d4f98a2 1971 } else if (is_data) {
87bde3cd 1972 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 1973 last_ref);
5d4f98a2 1974 } else {
fcebe456 1975 *last_ref = 1;
87bde3cd 1976 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
1977 }
1978 return ret;
1979}
1980
86557861 1981#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1982static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1983 u64 *discarded_bytes)
5d4f98a2 1984{
86557861
JM
1985 int j, ret = 0;
1986 u64 bytes_left, end;
4d89d377 1987 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1988
4d89d377
JM
1989 if (WARN_ON(start != aligned_start)) {
1990 len -= aligned_start - start;
1991 len = round_down(len, 1 << 9);
1992 start = aligned_start;
1993 }
d04c6b88 1994
4d89d377 1995 *discarded_bytes = 0;
86557861
JM
1996
1997 if (!len)
1998 return 0;
1999
2000 end = start + len;
2001 bytes_left = len;
2002
2003 /* Skip any superblocks on this device. */
2004 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2005 u64 sb_start = btrfs_sb_offset(j);
2006 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2007 u64 size = sb_start - start;
2008
2009 if (!in_range(sb_start, start, bytes_left) &&
2010 !in_range(sb_end, start, bytes_left) &&
2011 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2012 continue;
2013
2014 /*
2015 * Superblock spans beginning of range. Adjust start and
2016 * try again.
2017 */
2018 if (sb_start <= start) {
2019 start += sb_end - start;
2020 if (start > end) {
2021 bytes_left = 0;
2022 break;
2023 }
2024 bytes_left = end - start;
2025 continue;
2026 }
2027
2028 if (size) {
2029 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2030 GFP_NOFS, 0);
2031 if (!ret)
2032 *discarded_bytes += size;
2033 else if (ret != -EOPNOTSUPP)
2034 return ret;
2035 }
2036
2037 start = sb_end;
2038 if (start > end) {
2039 bytes_left = 0;
2040 break;
2041 }
2042 bytes_left = end - start;
2043 }
2044
2045 if (bytes_left) {
2046 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2047 GFP_NOFS, 0);
2048 if (!ret)
86557861 2049 *discarded_bytes += bytes_left;
4d89d377 2050 }
d04c6b88 2051 return ret;
5d4f98a2 2052}
5d4f98a2 2053
2ff7e61e 2054int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2055 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2056{
5d4f98a2 2057 int ret;
5378e607 2058 u64 discarded_bytes = 0;
a1d3c478 2059 struct btrfs_bio *bbio = NULL;
5d4f98a2 2060
e244a0ae 2061
2999241d
FM
2062 /*
2063 * Avoid races with device replace and make sure our bbio has devices
2064 * associated to its stripes that don't go away while we are discarding.
2065 */
0b246afa 2066 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2067 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2068 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2069 &bbio, 0);
79787eaa 2070 /* Error condition is -ENOMEM */
5d4f98a2 2071 if (!ret) {
a1d3c478 2072 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2073 int i;
2074
5d4f98a2 2075
a1d3c478 2076 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2077 u64 bytes;
d5e2003c
JB
2078 if (!stripe->dev->can_discard)
2079 continue;
2080
5378e607
LD
2081 ret = btrfs_issue_discard(stripe->dev->bdev,
2082 stripe->physical,
d04c6b88
JM
2083 stripe->length,
2084 &bytes);
5378e607 2085 if (!ret)
d04c6b88 2086 discarded_bytes += bytes;
5378e607 2087 else if (ret != -EOPNOTSUPP)
79787eaa 2088 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2089
2090 /*
2091 * Just in case we get back EOPNOTSUPP for some reason,
2092 * just ignore the return value so we don't screw up
2093 * people calling discard_extent.
2094 */
2095 ret = 0;
5d4f98a2 2096 }
6e9606d2 2097 btrfs_put_bbio(bbio);
5d4f98a2 2098 }
0b246afa 2099 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2100
2101 if (actual_bytes)
2102 *actual_bytes = discarded_bytes;
2103
5d4f98a2 2104
53b381b3
DW
2105 if (ret == -EOPNOTSUPP)
2106 ret = 0;
5d4f98a2 2107 return ret;
5d4f98a2
YZ
2108}
2109
79787eaa 2110/* Can return -ENOMEM */
5d4f98a2 2111int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2112 struct btrfs_fs_info *fs_info,
5d4f98a2 2113 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2114 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2115{
2116 int ret;
66d7e7f0 2117
5d4f98a2
YZ
2118 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2119 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2120
2121 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 2122 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
2123 num_bytes, parent,
2124 root_objectid, (int)owner,
2125 BTRFS_ADD_DELAYED_REF, NULL,
2126 NULL, NULL);
5d4f98a2 2127 } else {
66d7e7f0 2128 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
2129 num_bytes, parent,
2130 root_objectid, owner, offset,
2131 0, BTRFS_ADD_DELAYED_REF, NULL,
2132 NULL);
5d4f98a2
YZ
2133 }
2134 return ret;
2135}
2136
2137static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2138 struct btrfs_fs_info *fs_info,
c682f9b3 2139 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2140 u64 parent, u64 root_objectid,
2141 u64 owner, u64 offset, int refs_to_add,
2142 struct btrfs_delayed_extent_op *extent_op)
2143{
2144 struct btrfs_path *path;
2145 struct extent_buffer *leaf;
2146 struct btrfs_extent_item *item;
fcebe456 2147 struct btrfs_key key;
c682f9b3
QW
2148 u64 bytenr = node->bytenr;
2149 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2150 u64 refs;
2151 int ret;
5d4f98a2
YZ
2152
2153 path = btrfs_alloc_path();
2154 if (!path)
2155 return -ENOMEM;
2156
e4058b54 2157 path->reada = READA_FORWARD;
5d4f98a2
YZ
2158 path->leave_spinning = 1;
2159 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2160 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2161 num_bytes, parent, root_objectid,
2162 owner, offset,
5d4f98a2 2163 refs_to_add, extent_op);
0ed4792a 2164 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2165 goto out;
fcebe456
JB
2166
2167 /*
2168 * Ok we had -EAGAIN which means we didn't have space to insert and
2169 * inline extent ref, so just update the reference count and add a
2170 * normal backref.
2171 */
5d4f98a2 2172 leaf = path->nodes[0];
fcebe456 2173 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2174 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2175 refs = btrfs_extent_refs(leaf, item);
2176 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2177 if (extent_op)
2178 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2179
5d4f98a2 2180 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2181 btrfs_release_path(path);
56bec294 2182
e4058b54 2183 path->reada = READA_FORWARD;
b9473439 2184 path->leave_spinning = 1;
56bec294 2185 /* now insert the actual backref */
87bde3cd
JM
2186 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2187 root_objectid, owner, offset, refs_to_add);
79787eaa 2188 if (ret)
66642832 2189 btrfs_abort_transaction(trans, ret);
5d4f98a2 2190out:
56bec294 2191 btrfs_free_path(path);
30d133fc 2192 return ret;
56bec294
CM
2193}
2194
5d4f98a2 2195static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2196 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2197 struct btrfs_delayed_ref_node *node,
2198 struct btrfs_delayed_extent_op *extent_op,
2199 int insert_reserved)
56bec294 2200{
5d4f98a2
YZ
2201 int ret = 0;
2202 struct btrfs_delayed_data_ref *ref;
2203 struct btrfs_key ins;
2204 u64 parent = 0;
2205 u64 ref_root = 0;
2206 u64 flags = 0;
2207
2208 ins.objectid = node->bytenr;
2209 ins.offset = node->num_bytes;
2210 ins.type = BTRFS_EXTENT_ITEM_KEY;
2211
2212 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2213 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2214
5d4f98a2
YZ
2215 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2216 parent = ref->parent;
fcebe456 2217 ref_root = ref->root;
5d4f98a2
YZ
2218
2219 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2220 if (extent_op)
5d4f98a2 2221 flags |= extent_op->flags_to_set;
2ff7e61e 2222 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2223 parent, ref_root, flags,
2224 ref->objectid, ref->offset,
2225 &ins, node->ref_mod);
5d4f98a2 2226 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2227 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2228 ref_root, ref->objectid,
2229 ref->offset, node->ref_mod,
c682f9b3 2230 extent_op);
5d4f98a2 2231 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2232 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2233 ref_root, ref->objectid,
2234 ref->offset, node->ref_mod,
c682f9b3 2235 extent_op);
5d4f98a2
YZ
2236 } else {
2237 BUG();
2238 }
2239 return ret;
2240}
2241
2242static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2243 struct extent_buffer *leaf,
2244 struct btrfs_extent_item *ei)
2245{
2246 u64 flags = btrfs_extent_flags(leaf, ei);
2247 if (extent_op->update_flags) {
2248 flags |= extent_op->flags_to_set;
2249 btrfs_set_extent_flags(leaf, ei, flags);
2250 }
2251
2252 if (extent_op->update_key) {
2253 struct btrfs_tree_block_info *bi;
2254 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2255 bi = (struct btrfs_tree_block_info *)(ei + 1);
2256 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2257 }
2258}
2259
2260static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2261 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2262 struct btrfs_delayed_ref_node *node,
2263 struct btrfs_delayed_extent_op *extent_op)
2264{
2265 struct btrfs_key key;
2266 struct btrfs_path *path;
2267 struct btrfs_extent_item *ei;
2268 struct extent_buffer *leaf;
2269 u32 item_size;
56bec294 2270 int ret;
5d4f98a2 2271 int err = 0;
b1c79e09 2272 int metadata = !extent_op->is_data;
5d4f98a2 2273
79787eaa
JM
2274 if (trans->aborted)
2275 return 0;
2276
0b246afa 2277 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2278 metadata = 0;
2279
5d4f98a2
YZ
2280 path = btrfs_alloc_path();
2281 if (!path)
2282 return -ENOMEM;
2283
2284 key.objectid = node->bytenr;
5d4f98a2 2285
3173a18f 2286 if (metadata) {
3173a18f 2287 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2288 key.offset = extent_op->level;
3173a18f
JB
2289 } else {
2290 key.type = BTRFS_EXTENT_ITEM_KEY;
2291 key.offset = node->num_bytes;
2292 }
2293
2294again:
e4058b54 2295 path->reada = READA_FORWARD;
5d4f98a2 2296 path->leave_spinning = 1;
0b246afa 2297 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2298 if (ret < 0) {
2299 err = ret;
2300 goto out;
2301 }
2302 if (ret > 0) {
3173a18f 2303 if (metadata) {
55994887
FDBM
2304 if (path->slots[0] > 0) {
2305 path->slots[0]--;
2306 btrfs_item_key_to_cpu(path->nodes[0], &key,
2307 path->slots[0]);
2308 if (key.objectid == node->bytenr &&
2309 key.type == BTRFS_EXTENT_ITEM_KEY &&
2310 key.offset == node->num_bytes)
2311 ret = 0;
2312 }
2313 if (ret > 0) {
2314 btrfs_release_path(path);
2315 metadata = 0;
3173a18f 2316
55994887
FDBM
2317 key.objectid = node->bytenr;
2318 key.offset = node->num_bytes;
2319 key.type = BTRFS_EXTENT_ITEM_KEY;
2320 goto again;
2321 }
2322 } else {
2323 err = -EIO;
2324 goto out;
3173a18f 2325 }
5d4f98a2
YZ
2326 }
2327
2328 leaf = path->nodes[0];
2329 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2330#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2331 if (item_size < sizeof(*ei)) {
87bde3cd 2332 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2333 if (ret < 0) {
2334 err = ret;
2335 goto out;
2336 }
2337 leaf = path->nodes[0];
2338 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2339 }
2340#endif
2341 BUG_ON(item_size < sizeof(*ei));
2342 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2343 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2344
5d4f98a2
YZ
2345 btrfs_mark_buffer_dirty(leaf);
2346out:
2347 btrfs_free_path(path);
2348 return err;
56bec294
CM
2349}
2350
5d4f98a2 2351static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2352 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2353 struct btrfs_delayed_ref_node *node,
2354 struct btrfs_delayed_extent_op *extent_op,
2355 int insert_reserved)
56bec294
CM
2356{
2357 int ret = 0;
5d4f98a2
YZ
2358 struct btrfs_delayed_tree_ref *ref;
2359 struct btrfs_key ins;
2360 u64 parent = 0;
2361 u64 ref_root = 0;
0b246afa 2362 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
56bec294 2363
5d4f98a2 2364 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2365 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2366
5d4f98a2
YZ
2367 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2368 parent = ref->parent;
fcebe456 2369 ref_root = ref->root;
5d4f98a2 2370
3173a18f
JB
2371 ins.objectid = node->bytenr;
2372 if (skinny_metadata) {
2373 ins.offset = ref->level;
2374 ins.type = BTRFS_METADATA_ITEM_KEY;
2375 } else {
2376 ins.offset = node->num_bytes;
2377 ins.type = BTRFS_EXTENT_ITEM_KEY;
2378 }
2379
02794222 2380 if (node->ref_mod != 1) {
2ff7e61e 2381 btrfs_err(fs_info,
02794222
LB
2382 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2383 node->bytenr, node->ref_mod, node->action, ref_root,
2384 parent);
2385 return -EIO;
2386 }
5d4f98a2 2387 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2388 BUG_ON(!extent_op || !extent_op->update_flags);
2ff7e61e 2389 ret = alloc_reserved_tree_block(trans, fs_info,
5d4f98a2
YZ
2390 parent, ref_root,
2391 extent_op->flags_to_set,
2392 &extent_op->key,
b06c4bf5 2393 ref->level, &ins);
5d4f98a2 2394 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2395 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2396 parent, ref_root,
2397 ref->level, 0, 1,
fcebe456 2398 extent_op);
5d4f98a2 2399 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2400 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2401 parent, ref_root,
2402 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2403 } else {
2404 BUG();
2405 }
56bec294
CM
2406 return ret;
2407}
2408
2409/* helper function to actually process a single delayed ref entry */
5d4f98a2 2410static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2411 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2412 struct btrfs_delayed_ref_node *node,
2413 struct btrfs_delayed_extent_op *extent_op,
2414 int insert_reserved)
56bec294 2415{
79787eaa
JM
2416 int ret = 0;
2417
857cc2fc
JB
2418 if (trans->aborted) {
2419 if (insert_reserved)
2ff7e61e 2420 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2421 node->num_bytes, 1);
79787eaa 2422 return 0;
857cc2fc 2423 }
79787eaa 2424
5d4f98a2 2425 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2426 struct btrfs_delayed_ref_head *head;
2427 /*
2428 * we've hit the end of the chain and we were supposed
2429 * to insert this extent into the tree. But, it got
2430 * deleted before we ever needed to insert it, so all
2431 * we have to do is clean up the accounting
2432 */
5d4f98a2
YZ
2433 BUG_ON(extent_op);
2434 head = btrfs_delayed_node_to_head(node);
0b246afa 2435 trace_run_delayed_ref_head(fs_info, node, head, node->action);
599c75ec 2436
56bec294 2437 if (insert_reserved) {
2ff7e61e 2438 btrfs_pin_extent(fs_info, node->bytenr,
f0486c68 2439 node->num_bytes, 1);
5d4f98a2 2440 if (head->is_data) {
0b246afa 2441 ret = btrfs_del_csums(trans, fs_info,
5d4f98a2
YZ
2442 node->bytenr,
2443 node->num_bytes);
5d4f98a2 2444 }
56bec294 2445 }
297d750b
QW
2446
2447 /* Also free its reserved qgroup space */
0b246afa 2448 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
297d750b 2449 head->qgroup_reserved);
79787eaa 2450 return ret;
56bec294
CM
2451 }
2452
5d4f98a2
YZ
2453 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2454 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2455 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2456 insert_reserved);
2457 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2458 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2459 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2460 insert_reserved);
2461 else
2462 BUG();
2463 return ret;
56bec294
CM
2464}
2465
c6fc2454 2466static inline struct btrfs_delayed_ref_node *
56bec294
CM
2467select_delayed_ref(struct btrfs_delayed_ref_head *head)
2468{
cffc3374
FM
2469 struct btrfs_delayed_ref_node *ref;
2470
c6fc2454
QW
2471 if (list_empty(&head->ref_list))
2472 return NULL;
d7df2c79 2473
cffc3374
FM
2474 /*
2475 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2476 * This is to prevent a ref count from going down to zero, which deletes
2477 * the extent item from the extent tree, when there still are references
2478 * to add, which would fail because they would not find the extent item.
2479 */
1d57ee94
WX
2480 if (!list_empty(&head->ref_add_list))
2481 return list_first_entry(&head->ref_add_list,
2482 struct btrfs_delayed_ref_node, add_list);
2483
2484 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2485 list);
2486 ASSERT(list_empty(&ref->add_list));
2487 return ref;
56bec294
CM
2488}
2489
79787eaa
JM
2490/*
2491 * Returns 0 on success or if called with an already aborted transaction.
2492 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2493 */
d7df2c79 2494static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2495 struct btrfs_fs_info *fs_info,
d7df2c79 2496 unsigned long nr)
56bec294 2497{
56bec294
CM
2498 struct btrfs_delayed_ref_root *delayed_refs;
2499 struct btrfs_delayed_ref_node *ref;
2500 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2501 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2502 ktime_t start = ktime_get();
56bec294 2503 int ret;
d7df2c79 2504 unsigned long count = 0;
0a2b2a84 2505 unsigned long actual_count = 0;
56bec294 2506 int must_insert_reserved = 0;
56bec294
CM
2507
2508 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2509 while (1) {
2510 if (!locked_ref) {
d7df2c79 2511 if (count >= nr)
56bec294 2512 break;
56bec294 2513
d7df2c79
JB
2514 spin_lock(&delayed_refs->lock);
2515 locked_ref = btrfs_select_ref_head(trans);
2516 if (!locked_ref) {
2517 spin_unlock(&delayed_refs->lock);
2518 break;
2519 }
c3e69d58
CM
2520
2521 /* grab the lock that says we are going to process
2522 * all the refs for this head */
2523 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2524 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2525 /*
2526 * we may have dropped the spin lock to get the head
2527 * mutex lock, and that might have given someone else
2528 * time to free the head. If that's true, it has been
2529 * removed from our list and we can move on.
2530 */
2531 if (ret == -EAGAIN) {
2532 locked_ref = NULL;
2533 count++;
2534 continue;
56bec294
CM
2535 }
2536 }
a28ec197 2537
2c3cf7d5
FM
2538 /*
2539 * We need to try and merge add/drops of the same ref since we
2540 * can run into issues with relocate dropping the implicit ref
2541 * and then it being added back again before the drop can
2542 * finish. If we merged anything we need to re-loop so we can
2543 * get a good ref.
2544 * Or we can get node references of the same type that weren't
2545 * merged when created due to bumps in the tree mod seq, and
2546 * we need to merge them to prevent adding an inline extent
2547 * backref before dropping it (triggering a BUG_ON at
2548 * insert_inline_extent_backref()).
2549 */
d7df2c79 2550 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2551 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2552 locked_ref);
ae1e206b 2553
d1270cd9
AJ
2554 /*
2555 * locked_ref is the head node, so we have to go one
2556 * node back for any delayed ref updates
2557 */
2558 ref = select_delayed_ref(locked_ref);
2559
2560 if (ref && ref->seq &&
097b8a7c 2561 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2562 spin_unlock(&locked_ref->lock);
d7df2c79
JB
2563 spin_lock(&delayed_refs->lock);
2564 locked_ref->processing = 0;
d1270cd9
AJ
2565 delayed_refs->num_heads_ready++;
2566 spin_unlock(&delayed_refs->lock);
d0280996 2567 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79 2568 locked_ref = NULL;
d1270cd9 2569 cond_resched();
27a377db 2570 count++;
d1270cd9
AJ
2571 continue;
2572 }
2573
56bec294
CM
2574 /*
2575 * record the must insert reserved flag before we
2576 * drop the spin lock.
2577 */
2578 must_insert_reserved = locked_ref->must_insert_reserved;
2579 locked_ref->must_insert_reserved = 0;
7bb86316 2580
5d4f98a2
YZ
2581 extent_op = locked_ref->extent_op;
2582 locked_ref->extent_op = NULL;
2583
56bec294 2584 if (!ref) {
d7df2c79
JB
2585
2586
56bec294
CM
2587 /* All delayed refs have been processed, Go ahead
2588 * and send the head node to run_one_delayed_ref,
2589 * so that any accounting fixes can happen
2590 */
2591 ref = &locked_ref->node;
5d4f98a2
YZ
2592
2593 if (extent_op && must_insert_reserved) {
78a6184a 2594 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2595 extent_op = NULL;
2596 }
2597
2598 if (extent_op) {
d7df2c79 2599 spin_unlock(&locked_ref->lock);
2ff7e61e 2600 ret = run_delayed_extent_op(trans, fs_info,
5d4f98a2 2601 ref, extent_op);
78a6184a 2602 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2603
79787eaa 2604 if (ret) {
857cc2fc
JB
2605 /*
2606 * Need to reset must_insert_reserved if
2607 * there was an error so the abort stuff
2608 * can cleanup the reserved space
2609 * properly.
2610 */
2611 if (must_insert_reserved)
2612 locked_ref->must_insert_reserved = 1;
aa7c8da3 2613 spin_lock(&delayed_refs->lock);
d7df2c79 2614 locked_ref->processing = 0;
aa7c8da3
JM
2615 delayed_refs->num_heads_ready++;
2616 spin_unlock(&delayed_refs->lock);
5d163e0e
JM
2617 btrfs_debug(fs_info,
2618 "run_delayed_extent_op returned %d",
2619 ret);
093486c4 2620 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2621 return ret;
2622 }
d7df2c79 2623 continue;
5d4f98a2 2624 }
02217ed2 2625
d7df2c79 2626 /*
01327610 2627 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2628 * delayed ref lock and then re-check to make sure
2629 * nobody got added.
2630 */
2631 spin_unlock(&locked_ref->lock);
2632 spin_lock(&delayed_refs->lock);
2633 spin_lock(&locked_ref->lock);
c6fc2454 2634 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2635 locked_ref->extent_op) {
d7df2c79
JB
2636 spin_unlock(&locked_ref->lock);
2637 spin_unlock(&delayed_refs->lock);
2638 continue;
2639 }
2640 ref->in_tree = 0;
2641 delayed_refs->num_heads--;
c46effa6
LB
2642 rb_erase(&locked_ref->href_node,
2643 &delayed_refs->href_root);
d7df2c79
JB
2644 spin_unlock(&delayed_refs->lock);
2645 } else {
0a2b2a84 2646 actual_count++;
d7df2c79 2647 ref->in_tree = 0;
c6fc2454 2648 list_del(&ref->list);
1d57ee94
WX
2649 if (!list_empty(&ref->add_list))
2650 list_del(&ref->add_list);
c46effa6 2651 }
d7df2c79
JB
2652 atomic_dec(&delayed_refs->num_entries);
2653
093486c4 2654 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2655 /*
2656 * when we play the delayed ref, also correct the
2657 * ref_mod on head
2658 */
2659 switch (ref->action) {
2660 case BTRFS_ADD_DELAYED_REF:
2661 case BTRFS_ADD_DELAYED_EXTENT:
2662 locked_ref->node.ref_mod -= ref->ref_mod;
2663 break;
2664 case BTRFS_DROP_DELAYED_REF:
2665 locked_ref->node.ref_mod += ref->ref_mod;
2666 break;
2667 default:
2668 WARN_ON(1);
2669 }
2670 }
d7df2c79 2671 spin_unlock(&locked_ref->lock);
925baedd 2672
2ff7e61e 2673 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2674 must_insert_reserved);
eb099670 2675
78a6184a 2676 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2677 if (ret) {
9d1032cc 2678 spin_lock(&delayed_refs->lock);
d7df2c79 2679 locked_ref->processing = 0;
9d1032cc
WX
2680 delayed_refs->num_heads_ready++;
2681 spin_unlock(&delayed_refs->lock);
093486c4
MX
2682 btrfs_delayed_ref_unlock(locked_ref);
2683 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2684 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2685 ret);
79787eaa
JM
2686 return ret;
2687 }
2688
093486c4
MX
2689 /*
2690 * If this node is a head, that means all the refs in this head
2691 * have been dealt with, and we will pick the next head to deal
2692 * with, so we must unlock the head and drop it from the cluster
2693 * list before we release it.
2694 */
2695 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2696 if (locked_ref->is_data &&
2697 locked_ref->total_ref_mod < 0) {
2698 spin_lock(&delayed_refs->lock);
2699 delayed_refs->pending_csums -= ref->num_bytes;
2700 spin_unlock(&delayed_refs->lock);
2701 }
093486c4
MX
2702 btrfs_delayed_ref_unlock(locked_ref);
2703 locked_ref = NULL;
2704 }
2705 btrfs_put_delayed_ref(ref);
2706 count++;
c3e69d58 2707 cond_resched();
c3e69d58 2708 }
0a2b2a84
JB
2709
2710 /*
2711 * We don't want to include ref heads since we can have empty ref heads
2712 * and those will drastically skew our runtime down since we just do
2713 * accounting, no actual extent tree updates.
2714 */
2715 if (actual_count > 0) {
2716 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2717 u64 avg;
2718
2719 /*
2720 * We weigh the current average higher than our current runtime
2721 * to avoid large swings in the average.
2722 */
2723 spin_lock(&delayed_refs->lock);
2724 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2725 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2726 spin_unlock(&delayed_refs->lock);
2727 }
d7df2c79 2728 return 0;
c3e69d58
CM
2729}
2730
709c0486
AJ
2731#ifdef SCRAMBLE_DELAYED_REFS
2732/*
2733 * Normally delayed refs get processed in ascending bytenr order. This
2734 * correlates in most cases to the order added. To expose dependencies on this
2735 * order, we start to process the tree in the middle instead of the beginning
2736 */
2737static u64 find_middle(struct rb_root *root)
2738{
2739 struct rb_node *n = root->rb_node;
2740 struct btrfs_delayed_ref_node *entry;
2741 int alt = 1;
2742 u64 middle;
2743 u64 first = 0, last = 0;
2744
2745 n = rb_first(root);
2746 if (n) {
2747 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2748 first = entry->bytenr;
2749 }
2750 n = rb_last(root);
2751 if (n) {
2752 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2753 last = entry->bytenr;
2754 }
2755 n = root->rb_node;
2756
2757 while (n) {
2758 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2759 WARN_ON(!entry->in_tree);
2760
2761 middle = entry->bytenr;
2762
2763 if (alt)
2764 n = n->rb_left;
2765 else
2766 n = n->rb_right;
2767
2768 alt = 1 - alt;
2769 }
2770 return middle;
2771}
2772#endif
2773
2ff7e61e 2774static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2775{
2776 u64 num_bytes;
2777
2778 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2779 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2780 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2781 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2782
2783 /*
2784 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2785 * closer to what we're really going to want to use.
1be41b78 2786 */
0b246afa 2787 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2788}
2789
1262133b
JB
2790/*
2791 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2792 * would require to store the csums for that many bytes.
2793 */
2ff7e61e 2794u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2795{
2796 u64 csum_size;
2797 u64 num_csums_per_leaf;
2798 u64 num_csums;
2799
0b246afa 2800 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2801 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2802 (u64)btrfs_super_csum_size(fs_info->super_copy));
2803 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2804 num_csums += num_csums_per_leaf - 1;
2805 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2806 return num_csums;
2807}
2808
0a2b2a84 2809int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2810 struct btrfs_fs_info *fs_info)
1be41b78
JB
2811{
2812 struct btrfs_block_rsv *global_rsv;
2813 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2814 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2815 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2816 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2817 int ret = 0;
2818
0b246afa 2819 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2820 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2821 if (num_heads > 1)
0b246afa 2822 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2823 num_bytes <<= 1;
2ff7e61e
JM
2824 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2825 fs_info->nodesize;
0b246afa 2826 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2827 num_dirty_bgs);
0b246afa 2828 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2829
2830 /*
2831 * If we can't allocate any more chunks lets make sure we have _lots_ of
2832 * wiggle room since running delayed refs can create more delayed refs.
2833 */
cb723e49
JB
2834 if (global_rsv->space_info->full) {
2835 num_dirty_bgs_bytes <<= 1;
1be41b78 2836 num_bytes <<= 1;
cb723e49 2837 }
1be41b78
JB
2838
2839 spin_lock(&global_rsv->lock);
cb723e49 2840 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2841 ret = 1;
2842 spin_unlock(&global_rsv->lock);
2843 return ret;
2844}
2845
0a2b2a84 2846int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2847 struct btrfs_fs_info *fs_info)
0a2b2a84 2848{
0a2b2a84
JB
2849 u64 num_entries =
2850 atomic_read(&trans->transaction->delayed_refs.num_entries);
2851 u64 avg_runtime;
a79b7d4b 2852 u64 val;
0a2b2a84
JB
2853
2854 smp_mb();
2855 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2856 val = num_entries * avg_runtime;
dc1a90c6 2857 if (val >= NSEC_PER_SEC)
0a2b2a84 2858 return 1;
a79b7d4b
CM
2859 if (val >= NSEC_PER_SEC / 2)
2860 return 2;
0a2b2a84 2861
2ff7e61e 2862 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2863}
2864
a79b7d4b
CM
2865struct async_delayed_refs {
2866 struct btrfs_root *root;
31b9655f 2867 u64 transid;
a79b7d4b
CM
2868 int count;
2869 int error;
2870 int sync;
2871 struct completion wait;
2872 struct btrfs_work work;
2873};
2874
2ff7e61e
JM
2875static inline struct async_delayed_refs *
2876to_async_delayed_refs(struct btrfs_work *work)
2877{
2878 return container_of(work, struct async_delayed_refs, work);
2879}
2880
a79b7d4b
CM
2881static void delayed_ref_async_start(struct btrfs_work *work)
2882{
2ff7e61e 2883 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2884 struct btrfs_trans_handle *trans;
2ff7e61e 2885 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2886 int ret;
2887
0f873eca 2888 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2889 if (btrfs_transaction_blocked(fs_info))
31b9655f 2890 goto done;
31b9655f 2891
0f873eca
CM
2892 trans = btrfs_join_transaction(async->root);
2893 if (IS_ERR(trans)) {
2894 async->error = PTR_ERR(trans);
a79b7d4b
CM
2895 goto done;
2896 }
2897
2898 /*
01327610 2899 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2900 * wait on delayed refs
2901 */
2902 trans->sync = true;
0f873eca
CM
2903
2904 /* Don't bother flushing if we got into a different transaction */
2905 if (trans->transid > async->transid)
2906 goto end;
2907
2ff7e61e 2908 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
a79b7d4b
CM
2909 if (ret)
2910 async->error = ret;
0f873eca 2911end:
3a45bb20 2912 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2913 if (ret && !async->error)
2914 async->error = ret;
2915done:
2916 if (async->sync)
2917 complete(&async->wait);
2918 else
2919 kfree(async);
2920}
2921
2ff7e61e 2922int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2923 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2924{
2925 struct async_delayed_refs *async;
2926 int ret;
2927
2928 async = kmalloc(sizeof(*async), GFP_NOFS);
2929 if (!async)
2930 return -ENOMEM;
2931
0b246afa 2932 async->root = fs_info->tree_root;
a79b7d4b
CM
2933 async->count = count;
2934 async->error = 0;
31b9655f 2935 async->transid = transid;
a79b7d4b
CM
2936 if (wait)
2937 async->sync = 1;
2938 else
2939 async->sync = 0;
2940 init_completion(&async->wait);
2941
9e0af237
LB
2942 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2943 delayed_ref_async_start, NULL, NULL);
a79b7d4b 2944
0b246afa 2945 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
2946
2947 if (wait) {
2948 wait_for_completion(&async->wait);
2949 ret = async->error;
2950 kfree(async);
2951 return ret;
2952 }
2953 return 0;
2954}
2955
c3e69d58
CM
2956/*
2957 * this starts processing the delayed reference count updates and
2958 * extent insertions we have queued up so far. count can be
2959 * 0, which means to process everything in the tree at the start
2960 * of the run (but not newly added entries), or it can be some target
2961 * number you'd like to process.
79787eaa
JM
2962 *
2963 * Returns 0 on success or if called with an aborted transaction
2964 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2965 */
2966int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2967 struct btrfs_fs_info *fs_info, unsigned long count)
c3e69d58
CM
2968{
2969 struct rb_node *node;
2970 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2971 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2972 int ret;
2973 int run_all = count == (unsigned long)-1;
d9a0540a 2974 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2975
79787eaa
JM
2976 /* We'll clean this up in btrfs_cleanup_transaction */
2977 if (trans->aborted)
2978 return 0;
2979
0b246afa 2980 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2981 return 0;
2982
c3e69d58 2983 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2984 if (count == 0)
d7df2c79 2985 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2986
c3e69d58 2987again:
709c0486
AJ
2988#ifdef SCRAMBLE_DELAYED_REFS
2989 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2990#endif
d9a0540a 2991 trans->can_flush_pending_bgs = false;
2ff7e61e 2992 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
d7df2c79 2993 if (ret < 0) {
66642832 2994 btrfs_abort_transaction(trans, ret);
d7df2c79 2995 return ret;
eb099670 2996 }
c3e69d58 2997
56bec294 2998 if (run_all) {
d7df2c79 2999 if (!list_empty(&trans->new_bgs))
2ff7e61e 3000 btrfs_create_pending_block_groups(trans, fs_info);
ea658bad 3001
d7df2c79 3002 spin_lock(&delayed_refs->lock);
c46effa6 3003 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
3004 if (!node) {
3005 spin_unlock(&delayed_refs->lock);
56bec294 3006 goto out;
d7df2c79 3007 }
e9d0b13b 3008
56bec294 3009 while (node) {
c46effa6
LB
3010 head = rb_entry(node, struct btrfs_delayed_ref_head,
3011 href_node);
3012 if (btrfs_delayed_ref_is_head(&head->node)) {
3013 struct btrfs_delayed_ref_node *ref;
5caf2a00 3014
c46effa6 3015 ref = &head->node;
6df8cdf5 3016 refcount_inc(&ref->refs);
56bec294
CM
3017
3018 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
3019 /*
3020 * Mutex was contended, block until it's
3021 * released and try again
3022 */
56bec294
CM
3023 mutex_lock(&head->mutex);
3024 mutex_unlock(&head->mutex);
3025
3026 btrfs_put_delayed_ref(ref);
1887be66 3027 cond_resched();
56bec294 3028 goto again;
c46effa6
LB
3029 } else {
3030 WARN_ON(1);
56bec294
CM
3031 }
3032 node = rb_next(node);
3033 }
3034 spin_unlock(&delayed_refs->lock);
d7df2c79 3035 cond_resched();
56bec294 3036 goto again;
5f39d397 3037 }
54aa1f4d 3038out:
d9a0540a 3039 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3040 return 0;
3041}
3042
5d4f98a2 3043int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3044 struct btrfs_fs_info *fs_info,
5d4f98a2 3045 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3046 int level, int is_data)
5d4f98a2
YZ
3047{
3048 struct btrfs_delayed_extent_op *extent_op;
3049 int ret;
3050
78a6184a 3051 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3052 if (!extent_op)
3053 return -ENOMEM;
3054
3055 extent_op->flags_to_set = flags;
35b3ad50
DS
3056 extent_op->update_flags = true;
3057 extent_op->update_key = false;
3058 extent_op->is_data = is_data ? true : false;
b1c79e09 3059 extent_op->level = level;
5d4f98a2 3060
0b246afa 3061 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3062 num_bytes, extent_op);
5d4f98a2 3063 if (ret)
78a6184a 3064 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3065 return ret;
3066}
3067
e4c3b2dc 3068static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3069 struct btrfs_path *path,
3070 u64 objectid, u64 offset, u64 bytenr)
3071{
3072 struct btrfs_delayed_ref_head *head;
3073 struct btrfs_delayed_ref_node *ref;
3074 struct btrfs_delayed_data_ref *data_ref;
3075 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3076 struct btrfs_transaction *cur_trans;
5d4f98a2
YZ
3077 int ret = 0;
3078
e4c3b2dc
LB
3079 cur_trans = root->fs_info->running_transaction;
3080 if (!cur_trans)
3081 return 0;
3082
3083 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3084 spin_lock(&delayed_refs->lock);
f72ad18e 3085 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3086 if (!head) {
3087 spin_unlock(&delayed_refs->lock);
3088 return 0;
3089 }
5d4f98a2
YZ
3090
3091 if (!mutex_trylock(&head->mutex)) {
6df8cdf5 3092 refcount_inc(&head->node.refs);
5d4f98a2
YZ
3093 spin_unlock(&delayed_refs->lock);
3094
b3b4aa74 3095 btrfs_release_path(path);
5d4f98a2 3096
8cc33e5c
DS
3097 /*
3098 * Mutex was contended, block until it's released and let
3099 * caller try again
3100 */
5d4f98a2
YZ
3101 mutex_lock(&head->mutex);
3102 mutex_unlock(&head->mutex);
3103 btrfs_put_delayed_ref(&head->node);
3104 return -EAGAIN;
3105 }
d7df2c79 3106 spin_unlock(&delayed_refs->lock);
5d4f98a2 3107
d7df2c79 3108 spin_lock(&head->lock);
c6fc2454 3109 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3110 /* If it's a shared ref we know a cross reference exists */
3111 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3112 ret = 1;
3113 break;
3114 }
5d4f98a2 3115
d7df2c79 3116 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3117
d7df2c79
JB
3118 /*
3119 * If our ref doesn't match the one we're currently looking at
3120 * then we have a cross reference.
3121 */
3122 if (data_ref->root != root->root_key.objectid ||
3123 data_ref->objectid != objectid ||
3124 data_ref->offset != offset) {
3125 ret = 1;
3126 break;
3127 }
5d4f98a2 3128 }
d7df2c79 3129 spin_unlock(&head->lock);
5d4f98a2 3130 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3131 return ret;
3132}
3133
e4c3b2dc 3134static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3135 struct btrfs_path *path,
3136 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3137{
0b246afa
JM
3138 struct btrfs_fs_info *fs_info = root->fs_info;
3139 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3140 struct extent_buffer *leaf;
5d4f98a2
YZ
3141 struct btrfs_extent_data_ref *ref;
3142 struct btrfs_extent_inline_ref *iref;
3143 struct btrfs_extent_item *ei;
f321e491 3144 struct btrfs_key key;
5d4f98a2 3145 u32 item_size;
be20aa9d 3146 int ret;
925baedd 3147
be20aa9d 3148 key.objectid = bytenr;
31840ae1 3149 key.offset = (u64)-1;
f321e491 3150 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3151
be20aa9d
CM
3152 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3153 if (ret < 0)
3154 goto out;
79787eaa 3155 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3156
3157 ret = -ENOENT;
3158 if (path->slots[0] == 0)
31840ae1 3159 goto out;
be20aa9d 3160
31840ae1 3161 path->slots[0]--;
f321e491 3162 leaf = path->nodes[0];
5d4f98a2 3163 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3164
5d4f98a2 3165 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3166 goto out;
f321e491 3167
5d4f98a2
YZ
3168 ret = 1;
3169 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3170#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3171 if (item_size < sizeof(*ei)) {
3172 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3173 goto out;
3174 }
3175#endif
3176 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3177
5d4f98a2
YZ
3178 if (item_size != sizeof(*ei) +
3179 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3180 goto out;
be20aa9d 3181
5d4f98a2
YZ
3182 if (btrfs_extent_generation(leaf, ei) <=
3183 btrfs_root_last_snapshot(&root->root_item))
3184 goto out;
3185
3186 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3187 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3188 BTRFS_EXTENT_DATA_REF_KEY)
3189 goto out;
3190
3191 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3192 if (btrfs_extent_refs(leaf, ei) !=
3193 btrfs_extent_data_ref_count(leaf, ref) ||
3194 btrfs_extent_data_ref_root(leaf, ref) !=
3195 root->root_key.objectid ||
3196 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3197 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3198 goto out;
3199
3200 ret = 0;
3201out:
3202 return ret;
3203}
3204
e4c3b2dc
LB
3205int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3206 u64 bytenr)
5d4f98a2
YZ
3207{
3208 struct btrfs_path *path;
3209 int ret;
3210 int ret2;
3211
3212 path = btrfs_alloc_path();
3213 if (!path)
3214 return -ENOENT;
3215
3216 do {
e4c3b2dc 3217 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3218 offset, bytenr);
3219 if (ret && ret != -ENOENT)
f321e491 3220 goto out;
80ff3856 3221
e4c3b2dc 3222 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3223 offset, bytenr);
3224 } while (ret2 == -EAGAIN);
3225
3226 if (ret2 && ret2 != -ENOENT) {
3227 ret = ret2;
3228 goto out;
f321e491 3229 }
5d4f98a2
YZ
3230
3231 if (ret != -ENOENT || ret2 != -ENOENT)
3232 ret = 0;
be20aa9d 3233out:
80ff3856 3234 btrfs_free_path(path);
f0486c68
YZ
3235 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3236 WARN_ON(ret > 0);
f321e491 3237 return ret;
be20aa9d 3238}
c5739bba 3239
5d4f98a2 3240static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3241 struct btrfs_root *root,
5d4f98a2 3242 struct extent_buffer *buf,
e339a6b0 3243 int full_backref, int inc)
31840ae1 3244{
0b246afa 3245 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3246 u64 bytenr;
5d4f98a2
YZ
3247 u64 num_bytes;
3248 u64 parent;
31840ae1 3249 u64 ref_root;
31840ae1 3250 u32 nritems;
31840ae1
ZY
3251 struct btrfs_key key;
3252 struct btrfs_file_extent_item *fi;
3253 int i;
3254 int level;
3255 int ret = 0;
2ff7e61e
JM
3256 int (*process_func)(struct btrfs_trans_handle *,
3257 struct btrfs_fs_info *,
b06c4bf5 3258 u64, u64, u64, u64, u64, u64);
31840ae1 3259
fccb84c9 3260
0b246afa 3261 if (btrfs_is_testing(fs_info))
faa2dbf0 3262 return 0;
fccb84c9 3263
31840ae1 3264 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3265 nritems = btrfs_header_nritems(buf);
3266 level = btrfs_header_level(buf);
3267
27cdeb70 3268 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3269 return 0;
31840ae1 3270
5d4f98a2
YZ
3271 if (inc)
3272 process_func = btrfs_inc_extent_ref;
3273 else
3274 process_func = btrfs_free_extent;
31840ae1 3275
5d4f98a2
YZ
3276 if (full_backref)
3277 parent = buf->start;
3278 else
3279 parent = 0;
3280
3281 for (i = 0; i < nritems; i++) {
31840ae1 3282 if (level == 0) {
5d4f98a2 3283 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3284 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3285 continue;
5d4f98a2 3286 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3287 struct btrfs_file_extent_item);
3288 if (btrfs_file_extent_type(buf, fi) ==
3289 BTRFS_FILE_EXTENT_INLINE)
3290 continue;
3291 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3292 if (bytenr == 0)
3293 continue;
5d4f98a2
YZ
3294
3295 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3296 key.offset -= btrfs_file_extent_offset(buf, fi);
2ff7e61e 3297 ret = process_func(trans, fs_info, bytenr, num_bytes,
5d4f98a2 3298 parent, ref_root, key.objectid,
b06c4bf5 3299 key.offset);
31840ae1
ZY
3300 if (ret)
3301 goto fail;
3302 } else {
5d4f98a2 3303 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3304 num_bytes = fs_info->nodesize;
2ff7e61e 3305 ret = process_func(trans, fs_info, bytenr, num_bytes,
b06c4bf5 3306 parent, ref_root, level - 1, 0);
31840ae1
ZY
3307 if (ret)
3308 goto fail;
3309 }
3310 }
3311 return 0;
3312fail:
5d4f98a2
YZ
3313 return ret;
3314}
3315
3316int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3317 struct extent_buffer *buf, int full_backref)
5d4f98a2 3318{
e339a6b0 3319 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3320}
3321
3322int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3323 struct extent_buffer *buf, int full_backref)
5d4f98a2 3324{
e339a6b0 3325 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3326}
3327
9078a3e1 3328static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3329 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3330 struct btrfs_path *path,
3331 struct btrfs_block_group_cache *cache)
3332{
3333 int ret;
0b246afa 3334 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3335 unsigned long bi;
3336 struct extent_buffer *leaf;
9078a3e1 3337
9078a3e1 3338 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3339 if (ret) {
3340 if (ret > 0)
3341 ret = -ENOENT;
54aa1f4d 3342 goto fail;
df95e7f0 3343 }
5f39d397
CM
3344
3345 leaf = path->nodes[0];
3346 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3347 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3348 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3349fail:
24b89d08 3350 btrfs_release_path(path);
df95e7f0 3351 return ret;
9078a3e1
CM
3352
3353}
3354
4a8c9a62 3355static struct btrfs_block_group_cache *
2ff7e61e 3356next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3357 struct btrfs_block_group_cache *cache)
3358{
3359 struct rb_node *node;
292cbd51 3360
0b246afa 3361 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3362
3363 /* If our block group was removed, we need a full search. */
3364 if (RB_EMPTY_NODE(&cache->cache_node)) {
3365 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3366
0b246afa 3367 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3368 btrfs_put_block_group(cache);
0b246afa 3369 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3370 }
4a8c9a62
YZ
3371 node = rb_next(&cache->cache_node);
3372 btrfs_put_block_group(cache);
3373 if (node) {
3374 cache = rb_entry(node, struct btrfs_block_group_cache,
3375 cache_node);
11dfe35a 3376 btrfs_get_block_group(cache);
4a8c9a62
YZ
3377 } else
3378 cache = NULL;
0b246afa 3379 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3380 return cache;
3381}
3382
0af3d00b
JB
3383static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3384 struct btrfs_trans_handle *trans,
3385 struct btrfs_path *path)
3386{
0b246afa
JM
3387 struct btrfs_fs_info *fs_info = block_group->fs_info;
3388 struct btrfs_root *root = fs_info->tree_root;
0af3d00b
JB
3389 struct inode *inode = NULL;
3390 u64 alloc_hint = 0;
2b20982e 3391 int dcs = BTRFS_DC_ERROR;
f8c269d7 3392 u64 num_pages = 0;
0af3d00b
JB
3393 int retries = 0;
3394 int ret = 0;
3395
3396 /*
3397 * If this block group is smaller than 100 megs don't bother caching the
3398 * block group.
3399 */
ee22184b 3400 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3401 spin_lock(&block_group->lock);
3402 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3403 spin_unlock(&block_group->lock);
3404 return 0;
3405 }
3406
0c0ef4bc
JB
3407 if (trans->aborted)
3408 return 0;
0af3d00b 3409again:
77ab86bf 3410 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3411 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3412 ret = PTR_ERR(inode);
b3b4aa74 3413 btrfs_release_path(path);
0af3d00b
JB
3414 goto out;
3415 }
3416
3417 if (IS_ERR(inode)) {
3418 BUG_ON(retries);
3419 retries++;
3420
3421 if (block_group->ro)
3422 goto out_free;
3423
77ab86bf
JM
3424 ret = create_free_space_inode(fs_info, trans, block_group,
3425 path);
0af3d00b
JB
3426 if (ret)
3427 goto out_free;
3428 goto again;
3429 }
3430
5b0e95bf
JB
3431 /* We've already setup this transaction, go ahead and exit */
3432 if (block_group->cache_generation == trans->transid &&
3433 i_size_read(inode)) {
3434 dcs = BTRFS_DC_SETUP;
3435 goto out_put;
3436 }
3437
0af3d00b
JB
3438 /*
3439 * We want to set the generation to 0, that way if anything goes wrong
3440 * from here on out we know not to trust this cache when we load up next
3441 * time.
3442 */
3443 BTRFS_I(inode)->generation = 0;
3444 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3445 if (ret) {
3446 /*
3447 * So theoretically we could recover from this, simply set the
3448 * super cache generation to 0 so we know to invalidate the
3449 * cache, but then we'd have to keep track of the block groups
3450 * that fail this way so we know we _have_ to reset this cache
3451 * before the next commit or risk reading stale cache. So to
3452 * limit our exposure to horrible edge cases lets just abort the
3453 * transaction, this only happens in really bad situations
3454 * anyway.
3455 */
66642832 3456 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3457 goto out_put;
3458 }
0af3d00b
JB
3459 WARN_ON(ret);
3460
3461 if (i_size_read(inode) > 0) {
2ff7e61e 3462 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3463 &fs_info->global_block_rsv);
7b61cd92
MX
3464 if (ret)
3465 goto out_put;
3466
77ab86bf 3467 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3468 if (ret)
3469 goto out_put;
3470 }
3471
3472 spin_lock(&block_group->lock);
cf7c1ef6 3473 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3474 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3475 /*
3476 * don't bother trying to write stuff out _if_
3477 * a) we're not cached,
1a79c1f2
LB
3478 * b) we're with nospace_cache mount option,
3479 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3480 */
2b20982e 3481 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3482 spin_unlock(&block_group->lock);
3483 goto out_put;
3484 }
3485 spin_unlock(&block_group->lock);
3486
2968b1f4
JB
3487 /*
3488 * We hit an ENOSPC when setting up the cache in this transaction, just
3489 * skip doing the setup, we've already cleared the cache so we're safe.
3490 */
3491 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3492 ret = -ENOSPC;
3493 goto out_put;
3494 }
3495
6fc823b1
JB
3496 /*
3497 * Try to preallocate enough space based on how big the block group is.
3498 * Keep in mind this has to include any pinned space which could end up
3499 * taking up quite a bit since it's not folded into the other space
3500 * cache.
3501 */
ee22184b 3502 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3503 if (!num_pages)
3504 num_pages = 1;
3505
0af3d00b 3506 num_pages *= 16;
09cbfeaf 3507 num_pages *= PAGE_SIZE;
0af3d00b 3508
7cf5b976 3509 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3510 if (ret)
3511 goto out_put;
3512
3513 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3514 num_pages, num_pages,
3515 &alloc_hint);
2968b1f4
JB
3516 /*
3517 * Our cache requires contiguous chunks so that we don't modify a bunch
3518 * of metadata or split extents when writing the cache out, which means
3519 * we can enospc if we are heavily fragmented in addition to just normal
3520 * out of space conditions. So if we hit this just skip setting up any
3521 * other block groups for this transaction, maybe we'll unpin enough
3522 * space the next time around.
3523 */
2b20982e
JB
3524 if (!ret)
3525 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3526 else if (ret == -ENOSPC)
3527 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3528
0af3d00b
JB
3529out_put:
3530 iput(inode);
3531out_free:
b3b4aa74 3532 btrfs_release_path(path);
0af3d00b
JB
3533out:
3534 spin_lock(&block_group->lock);
e65cbb94 3535 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3536 block_group->cache_generation = trans->transid;
2b20982e 3537 block_group->disk_cache_state = dcs;
0af3d00b
JB
3538 spin_unlock(&block_group->lock);
3539
3540 return ret;
3541}
3542
dcdf7f6d 3543int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3544 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3545{
3546 struct btrfs_block_group_cache *cache, *tmp;
3547 struct btrfs_transaction *cur_trans = trans->transaction;
3548 struct btrfs_path *path;
3549
3550 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3551 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3552 return 0;
3553
3554 path = btrfs_alloc_path();
3555 if (!path)
3556 return -ENOMEM;
3557
3558 /* Could add new block groups, use _safe just in case */
3559 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3560 dirty_list) {
3561 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3562 cache_save_setup(cache, trans, path);
3563 }
3564
3565 btrfs_free_path(path);
3566 return 0;
3567}
3568
1bbc621e
CM
3569/*
3570 * transaction commit does final block group cache writeback during a
3571 * critical section where nothing is allowed to change the FS. This is
3572 * required in order for the cache to actually match the block group,
3573 * but can introduce a lot of latency into the commit.
3574 *
3575 * So, btrfs_start_dirty_block_groups is here to kick off block group
3576 * cache IO. There's a chance we'll have to redo some of it if the
3577 * block group changes again during the commit, but it greatly reduces
3578 * the commit latency by getting rid of the easy block groups while
3579 * we're still allowing others to join the commit.
3580 */
3581int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3582 struct btrfs_fs_info *fs_info)
9078a3e1 3583{
4a8c9a62 3584 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3585 struct btrfs_transaction *cur_trans = trans->transaction;
3586 int ret = 0;
c9dc4c65 3587 int should_put;
1bbc621e
CM
3588 struct btrfs_path *path = NULL;
3589 LIST_HEAD(dirty);
3590 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3591 int num_started = 0;
1bbc621e
CM
3592 int loops = 0;
3593
3594 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3595 if (list_empty(&cur_trans->dirty_bgs)) {
3596 spin_unlock(&cur_trans->dirty_bgs_lock);
3597 return 0;
1bbc621e 3598 }
b58d1a9e 3599 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3600 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3601
1bbc621e 3602again:
1bbc621e
CM
3603 /*
3604 * make sure all the block groups on our dirty list actually
3605 * exist
3606 */
2ff7e61e 3607 btrfs_create_pending_block_groups(trans, fs_info);
1bbc621e
CM
3608
3609 if (!path) {
3610 path = btrfs_alloc_path();
3611 if (!path)
3612 return -ENOMEM;
3613 }
3614
b58d1a9e
FM
3615 /*
3616 * cache_write_mutex is here only to save us from balance or automatic
3617 * removal of empty block groups deleting this block group while we are
3618 * writing out the cache
3619 */
3620 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3621 while (!list_empty(&dirty)) {
3622 cache = list_first_entry(&dirty,
3623 struct btrfs_block_group_cache,
3624 dirty_list);
1bbc621e
CM
3625 /*
3626 * this can happen if something re-dirties a block
3627 * group that is already under IO. Just wait for it to
3628 * finish and then do it all again
3629 */
3630 if (!list_empty(&cache->io_list)) {
3631 list_del_init(&cache->io_list);
afdb5718 3632 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3633 btrfs_put_block_group(cache);
3634 }
3635
3636
3637 /*
3638 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3639 * if it should update the cache_state. Don't delete
3640 * until after we wait.
3641 *
3642 * Since we're not running in the commit critical section
3643 * we need the dirty_bgs_lock to protect from update_block_group
3644 */
3645 spin_lock(&cur_trans->dirty_bgs_lock);
3646 list_del_init(&cache->dirty_list);
3647 spin_unlock(&cur_trans->dirty_bgs_lock);
3648
3649 should_put = 1;
3650
3651 cache_save_setup(cache, trans, path);
3652
3653 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3654 cache->io_ctl.inode = NULL;
0b246afa 3655 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3656 cache, path);
1bbc621e
CM
3657 if (ret == 0 && cache->io_ctl.inode) {
3658 num_started++;
3659 should_put = 0;
3660
3661 /*
3662 * the cache_write_mutex is protecting
3663 * the io_list
3664 */
3665 list_add_tail(&cache->io_list, io);
3666 } else {
3667 /*
3668 * if we failed to write the cache, the
3669 * generation will be bad and life goes on
3670 */
3671 ret = 0;
3672 }
3673 }
ff1f8250 3674 if (!ret) {
2ff7e61e
JM
3675 ret = write_one_cache_group(trans, fs_info,
3676 path, cache);
ff1f8250
FM
3677 /*
3678 * Our block group might still be attached to the list
3679 * of new block groups in the transaction handle of some
3680 * other task (struct btrfs_trans_handle->new_bgs). This
3681 * means its block group item isn't yet in the extent
3682 * tree. If this happens ignore the error, as we will
3683 * try again later in the critical section of the
3684 * transaction commit.
3685 */
3686 if (ret == -ENOENT) {
3687 ret = 0;
3688 spin_lock(&cur_trans->dirty_bgs_lock);
3689 if (list_empty(&cache->dirty_list)) {
3690 list_add_tail(&cache->dirty_list,
3691 &cur_trans->dirty_bgs);
3692 btrfs_get_block_group(cache);
3693 }
3694 spin_unlock(&cur_trans->dirty_bgs_lock);
3695 } else if (ret) {
66642832 3696 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3697 }
3698 }
1bbc621e
CM
3699
3700 /* if its not on the io list, we need to put the block group */
3701 if (should_put)
3702 btrfs_put_block_group(cache);
3703
3704 if (ret)
3705 break;
b58d1a9e
FM
3706
3707 /*
3708 * Avoid blocking other tasks for too long. It might even save
3709 * us from writing caches for block groups that are going to be
3710 * removed.
3711 */
3712 mutex_unlock(&trans->transaction->cache_write_mutex);
3713 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3714 }
b58d1a9e 3715 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3716
3717 /*
3718 * go through delayed refs for all the stuff we've just kicked off
3719 * and then loop back (just once)
3720 */
2ff7e61e 3721 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1bbc621e
CM
3722 if (!ret && loops == 0) {
3723 loops++;
3724 spin_lock(&cur_trans->dirty_bgs_lock);
3725 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3726 /*
3727 * dirty_bgs_lock protects us from concurrent block group
3728 * deletes too (not just cache_write_mutex).
3729 */
3730 if (!list_empty(&dirty)) {
3731 spin_unlock(&cur_trans->dirty_bgs_lock);
3732 goto again;
3733 }
1bbc621e 3734 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3735 } else if (ret < 0) {
2ff7e61e 3736 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3737 }
3738
3739 btrfs_free_path(path);
3740 return ret;
3741}
3742
3743int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3744 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3745{
3746 struct btrfs_block_group_cache *cache;
3747 struct btrfs_transaction *cur_trans = trans->transaction;
3748 int ret = 0;
3749 int should_put;
3750 struct btrfs_path *path;
3751 struct list_head *io = &cur_trans->io_bgs;
3752 int num_started = 0;
9078a3e1
CM
3753
3754 path = btrfs_alloc_path();
3755 if (!path)
3756 return -ENOMEM;
3757
ce93ec54 3758 /*
e44081ef
FM
3759 * Even though we are in the critical section of the transaction commit,
3760 * we can still have concurrent tasks adding elements to this
3761 * transaction's list of dirty block groups. These tasks correspond to
3762 * endio free space workers started when writeback finishes for a
3763 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3764 * allocate new block groups as a result of COWing nodes of the root
3765 * tree when updating the free space inode. The writeback for the space
3766 * caches is triggered by an earlier call to
3767 * btrfs_start_dirty_block_groups() and iterations of the following
3768 * loop.
3769 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3770 * delayed refs to make sure we have the best chance at doing this all
3771 * in one shot.
3772 */
e44081ef 3773 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3774 while (!list_empty(&cur_trans->dirty_bgs)) {
3775 cache = list_first_entry(&cur_trans->dirty_bgs,
3776 struct btrfs_block_group_cache,
3777 dirty_list);
c9dc4c65
CM
3778
3779 /*
3780 * this can happen if cache_save_setup re-dirties a block
3781 * group that is already under IO. Just wait for it to
3782 * finish and then do it all again
3783 */
3784 if (!list_empty(&cache->io_list)) {
e44081ef 3785 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3786 list_del_init(&cache->io_list);
afdb5718 3787 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3788 btrfs_put_block_group(cache);
e44081ef 3789 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3790 }
3791
1bbc621e
CM
3792 /*
3793 * don't remove from the dirty list until after we've waited
3794 * on any pending IO
3795 */
ce93ec54 3796 list_del_init(&cache->dirty_list);
e44081ef 3797 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3798 should_put = 1;
3799
1bbc621e 3800 cache_save_setup(cache, trans, path);
c9dc4c65 3801
ce93ec54 3802 if (!ret)
2ff7e61e
JM
3803 ret = btrfs_run_delayed_refs(trans, fs_info,
3804 (unsigned long) -1);
c9dc4c65
CM
3805
3806 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3807 cache->io_ctl.inode = NULL;
0b246afa 3808 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3809 cache, path);
c9dc4c65
CM
3810 if (ret == 0 && cache->io_ctl.inode) {
3811 num_started++;
3812 should_put = 0;
1bbc621e 3813 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3814 } else {
3815 /*
3816 * if we failed to write the cache, the
3817 * generation will be bad and life goes on
3818 */
3819 ret = 0;
3820 }
3821 }
ff1f8250 3822 if (!ret) {
2ff7e61e
JM
3823 ret = write_one_cache_group(trans, fs_info,
3824 path, cache);
2bc0bb5f
FM
3825 /*
3826 * One of the free space endio workers might have
3827 * created a new block group while updating a free space
3828 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3829 * and hasn't released its transaction handle yet, in
3830 * which case the new block group is still attached to
3831 * its transaction handle and its creation has not
3832 * finished yet (no block group item in the extent tree
3833 * yet, etc). If this is the case, wait for all free
3834 * space endio workers to finish and retry. This is a
3835 * a very rare case so no need for a more efficient and
3836 * complex approach.
3837 */
3838 if (ret == -ENOENT) {
3839 wait_event(cur_trans->writer_wait,
3840 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3841 ret = write_one_cache_group(trans, fs_info,
3842 path, cache);
2bc0bb5f 3843 }
ff1f8250 3844 if (ret)
66642832 3845 btrfs_abort_transaction(trans, ret);
ff1f8250 3846 }
c9dc4c65
CM
3847
3848 /* if its not on the io list, we need to put the block group */
3849 if (should_put)
3850 btrfs_put_block_group(cache);
e44081ef 3851 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3852 }
e44081ef 3853 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3854
1bbc621e
CM
3855 while (!list_empty(io)) {
3856 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3857 io_list);
3858 list_del_init(&cache->io_list);
afdb5718 3859 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3860 btrfs_put_block_group(cache);
3861 }
3862
9078a3e1 3863 btrfs_free_path(path);
ce93ec54 3864 return ret;
9078a3e1
CM
3865}
3866
2ff7e61e 3867int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3868{
3869 struct btrfs_block_group_cache *block_group;
3870 int readonly = 0;
3871
0b246afa 3872 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3873 if (!block_group || block_group->ro)
3874 readonly = 1;
3875 if (block_group)
fa9c0d79 3876 btrfs_put_block_group(block_group);
d2fb3437
YZ
3877 return readonly;
3878}
3879
f78c436c
FM
3880bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3881{
3882 struct btrfs_block_group_cache *bg;
3883 bool ret = true;
3884
3885 bg = btrfs_lookup_block_group(fs_info, bytenr);
3886 if (!bg)
3887 return false;
3888
3889 spin_lock(&bg->lock);
3890 if (bg->ro)
3891 ret = false;
3892 else
3893 atomic_inc(&bg->nocow_writers);
3894 spin_unlock(&bg->lock);
3895
3896 /* no put on block group, done by btrfs_dec_nocow_writers */
3897 if (!ret)
3898 btrfs_put_block_group(bg);
3899
3900 return ret;
3901
3902}
3903
3904void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3905{
3906 struct btrfs_block_group_cache *bg;
3907
3908 bg = btrfs_lookup_block_group(fs_info, bytenr);
3909 ASSERT(bg);
3910 if (atomic_dec_and_test(&bg->nocow_writers))
3911 wake_up_atomic_t(&bg->nocow_writers);
3912 /*
3913 * Once for our lookup and once for the lookup done by a previous call
3914 * to btrfs_inc_nocow_writers()
3915 */
3916 btrfs_put_block_group(bg);
3917 btrfs_put_block_group(bg);
3918}
3919
3920static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3921{
3922 schedule();
3923 return 0;
3924}
3925
3926void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3927{
3928 wait_on_atomic_t(&bg->nocow_writers,
3929 btrfs_wait_nocow_writers_atomic_t,
3930 TASK_UNINTERRUPTIBLE);
3931}
3932
6ab0a202
JM
3933static const char *alloc_name(u64 flags)
3934{
3935 switch (flags) {
3936 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3937 return "mixed";
3938 case BTRFS_BLOCK_GROUP_METADATA:
3939 return "metadata";
3940 case BTRFS_BLOCK_GROUP_DATA:
3941 return "data";
3942 case BTRFS_BLOCK_GROUP_SYSTEM:
3943 return "system";
3944 default:
3945 WARN_ON(1);
3946 return "invalid-combination";
3947 };
3948}
3949
2be12ef7
NB
3950static int create_space_info(struct btrfs_fs_info *info, u64 flags,
3951 struct btrfs_space_info **new)
3952{
3953
3954 struct btrfs_space_info *space_info;
3955 int i;
3956 int ret;
3957
3958 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3959 if (!space_info)
3960 return -ENOMEM;
3961
3962 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3963 GFP_KERNEL);
3964 if (ret) {
3965 kfree(space_info);
3966 return ret;
3967 }
3968
3969 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3970 INIT_LIST_HEAD(&space_info->block_groups[i]);
3971 init_rwsem(&space_info->groups_sem);
3972 spin_lock_init(&space_info->lock);
3973 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3974 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3975 init_waitqueue_head(&space_info->wait);
3976 INIT_LIST_HEAD(&space_info->ro_bgs);
3977 INIT_LIST_HEAD(&space_info->tickets);
3978 INIT_LIST_HEAD(&space_info->priority_tickets);
3979
3980 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3981 info->space_info_kobj, "%s",
3982 alloc_name(space_info->flags));
3983 if (ret) {
3984 percpu_counter_destroy(&space_info->total_bytes_pinned);
3985 kfree(space_info);
3986 return ret;
3987 }
3988
3989 *new = space_info;
3990 list_add_rcu(&space_info->list, &info->space_info);
3991 if (flags & BTRFS_BLOCK_GROUP_DATA)
3992 info->data_sinfo = space_info;
3993
3994 return ret;
3995}
3996
d2006e6d 3997static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 3998 u64 total_bytes, u64 bytes_used,
e40edf2d 3999 u64 bytes_readonly,
593060d7
CM
4000 struct btrfs_space_info **space_info)
4001{
4002 struct btrfs_space_info *found;
b742bb82
YZ
4003 int factor;
4004
4005 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4006 BTRFS_BLOCK_GROUP_RAID10))
4007 factor = 2;
4008 else
4009 factor = 1;
593060d7
CM
4010
4011 found = __find_space_info(info, flags);
d2006e6d
NB
4012 ASSERT(found);
4013 spin_lock(&found->lock);
4014 found->total_bytes += total_bytes;
4015 found->disk_total += total_bytes * factor;
4016 found->bytes_used += bytes_used;
4017 found->disk_used += bytes_used * factor;
4018 found->bytes_readonly += bytes_readonly;
4019 if (total_bytes > 0)
4020 found->full = 0;
4021 space_info_add_new_bytes(info, found, total_bytes -
4022 bytes_used - bytes_readonly);
4023 spin_unlock(&found->lock);
4024 *space_info = found;
593060d7
CM
4025}
4026
8790d502
CM
4027static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4028{
899c81ea
ID
4029 u64 extra_flags = chunk_to_extended(flags) &
4030 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4031
de98ced9 4032 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4033 if (flags & BTRFS_BLOCK_GROUP_DATA)
4034 fs_info->avail_data_alloc_bits |= extra_flags;
4035 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4036 fs_info->avail_metadata_alloc_bits |= extra_flags;
4037 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4038 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4039 write_sequnlock(&fs_info->profiles_lock);
8790d502 4040}
593060d7 4041
fc67c450
ID
4042/*
4043 * returns target flags in extended format or 0 if restripe for this
4044 * chunk_type is not in progress
c6664b42
ID
4045 *
4046 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4047 */
4048static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4049{
4050 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4051 u64 target = 0;
4052
fc67c450
ID
4053 if (!bctl)
4054 return 0;
4055
4056 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4057 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4058 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4059 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4060 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4061 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4062 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4063 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4064 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4065 }
4066
4067 return target;
4068}
4069
a46d11a8
ID
4070/*
4071 * @flags: available profiles in extended format (see ctree.h)
4072 *
e4d8ec0f
ID
4073 * Returns reduced profile in chunk format. If profile changing is in
4074 * progress (either running or paused) picks the target profile (if it's
4075 * already available), otherwise falls back to plain reducing.
a46d11a8 4076 */
2ff7e61e 4077static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4078{
0b246afa 4079 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4080 u64 target;
9c170b26
ZL
4081 u64 raid_type;
4082 u64 allowed = 0;
a061fc8d 4083
fc67c450
ID
4084 /*
4085 * see if restripe for this chunk_type is in progress, if so
4086 * try to reduce to the target profile
4087 */
0b246afa
JM
4088 spin_lock(&fs_info->balance_lock);
4089 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4090 if (target) {
4091 /* pick target profile only if it's already available */
4092 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4093 spin_unlock(&fs_info->balance_lock);
fc67c450 4094 return extended_to_chunk(target);
e4d8ec0f
ID
4095 }
4096 }
0b246afa 4097 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4098
53b381b3 4099 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4100 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4101 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4102 allowed |= btrfs_raid_group[raid_type];
4103 }
4104 allowed &= flags;
4105
4106 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4107 allowed = BTRFS_BLOCK_GROUP_RAID6;
4108 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4109 allowed = BTRFS_BLOCK_GROUP_RAID5;
4110 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4111 allowed = BTRFS_BLOCK_GROUP_RAID10;
4112 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4113 allowed = BTRFS_BLOCK_GROUP_RAID1;
4114 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4115 allowed = BTRFS_BLOCK_GROUP_RAID0;
4116
4117 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4118
4119 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4120}
4121
2ff7e61e 4122static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4123{
de98ced9 4124 unsigned seq;
f8213bdc 4125 u64 flags;
de98ced9
MX
4126
4127 do {
f8213bdc 4128 flags = orig_flags;
0b246afa 4129 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4130
4131 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4132 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4133 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4134 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4135 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4136 flags |= fs_info->avail_metadata_alloc_bits;
4137 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4138
2ff7e61e 4139 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4140}
4141
1b86826d 4142static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4143{
0b246afa 4144 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4145 u64 flags;
53b381b3 4146 u64 ret;
9ed74f2d 4147
b742bb82
YZ
4148 if (data)
4149 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4150 else if (root == fs_info->chunk_root)
b742bb82 4151 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4152 else
b742bb82 4153 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4154
2ff7e61e 4155 ret = get_alloc_profile(fs_info, flags);
53b381b3 4156 return ret;
6a63209f 4157}
9ed74f2d 4158
1b86826d
JM
4159u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4160{
4161 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4162}
4163
4164u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4165{
4166 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4167}
4168
4169u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4170{
4171 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4172}
4173
4136135b
LB
4174static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4175 bool may_use_included)
4176{
4177 ASSERT(s_info);
4178 return s_info->bytes_used + s_info->bytes_reserved +
4179 s_info->bytes_pinned + s_info->bytes_readonly +
4180 (may_use_included ? s_info->bytes_may_use : 0);
4181}
4182
04f4f916 4183int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4184{
6a63209f 4185 struct btrfs_space_info *data_sinfo;
04f4f916 4186 struct btrfs_root *root = inode->root;
b4d7c3c9 4187 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4188 u64 used;
94b947b2 4189 int ret = 0;
c99f1b0c
ZL
4190 int need_commit = 2;
4191 int have_pinned_space;
6a63209f 4192
6a63209f 4193 /* make sure bytes are sectorsize aligned */
0b246afa 4194 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4195
9dced186 4196 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4197 need_commit = 0;
9dced186 4198 ASSERT(current->journal_info);
0af3d00b
JB
4199 }
4200
b4d7c3c9 4201 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4202 if (!data_sinfo)
4203 goto alloc;
9ed74f2d 4204
6a63209f
JB
4205again:
4206 /* make sure we have enough space to handle the data first */
4207 spin_lock(&data_sinfo->lock);
4136135b 4208 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4209
4210 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4211 struct btrfs_trans_handle *trans;
9ed74f2d 4212
6a63209f
JB
4213 /*
4214 * if we don't have enough free bytes in this space then we need
4215 * to alloc a new chunk.
4216 */
b9fd47cd 4217 if (!data_sinfo->full) {
6a63209f 4218 u64 alloc_target;
9ed74f2d 4219
0e4f8f88 4220 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4221 spin_unlock(&data_sinfo->lock);
33b4d47f 4222alloc:
1b86826d 4223 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4224 /*
4225 * It is ugly that we don't call nolock join
4226 * transaction for the free space inode case here.
4227 * But it is safe because we only do the data space
4228 * reservation for the free space cache in the
4229 * transaction context, the common join transaction
4230 * just increase the counter of the current transaction
4231 * handler, doesn't try to acquire the trans_lock of
4232 * the fs.
4233 */
7a7eaa40 4234 trans = btrfs_join_transaction(root);
a22285a6
YZ
4235 if (IS_ERR(trans))
4236 return PTR_ERR(trans);
9ed74f2d 4237
2ff7e61e 4238 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4239 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4240 btrfs_end_transaction(trans);
d52a5b5f
MX
4241 if (ret < 0) {
4242 if (ret != -ENOSPC)
4243 return ret;
c99f1b0c
ZL
4244 else {
4245 have_pinned_space = 1;
d52a5b5f 4246 goto commit_trans;
c99f1b0c 4247 }
d52a5b5f 4248 }
9ed74f2d 4249
b4d7c3c9
LZ
4250 if (!data_sinfo)
4251 data_sinfo = fs_info->data_sinfo;
4252
6a63209f
JB
4253 goto again;
4254 }
f2bb8f5c
JB
4255
4256 /*
b150a4f1 4257 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4258 * allocation, and no removed chunk in current transaction,
4259 * don't bother committing the transaction.
f2bb8f5c 4260 */
c99f1b0c
ZL
4261 have_pinned_space = percpu_counter_compare(
4262 &data_sinfo->total_bytes_pinned,
4263 used + bytes - data_sinfo->total_bytes);
6a63209f 4264 spin_unlock(&data_sinfo->lock);
6a63209f 4265
4e06bdd6 4266 /* commit the current transaction and try again */
d52a5b5f 4267commit_trans:
c99f1b0c 4268 if (need_commit &&
0b246afa 4269 !atomic_read(&fs_info->open_ioctl_trans)) {
c99f1b0c 4270 need_commit--;
b150a4f1 4271
e1746e83
ZL
4272 if (need_commit > 0) {
4273 btrfs_start_delalloc_roots(fs_info, 0, -1);
0b246afa
JM
4274 btrfs_wait_ordered_roots(fs_info, -1, 0,
4275 (u64)-1);
e1746e83 4276 }
9a4e7276 4277
7a7eaa40 4278 trans = btrfs_join_transaction(root);
a22285a6
YZ
4279 if (IS_ERR(trans))
4280 return PTR_ERR(trans);
c99f1b0c 4281 if (have_pinned_space >= 0 ||
3204d33c
JB
4282 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4283 &trans->transaction->flags) ||
c99f1b0c 4284 need_commit > 0) {
3a45bb20 4285 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4286 if (ret)
4287 return ret;
d7c15171 4288 /*
c2d6cb16
FM
4289 * The cleaner kthread might still be doing iput
4290 * operations. Wait for it to finish so that
4291 * more space is released.
d7c15171 4292 */
0b246afa
JM
4293 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4294 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4295 goto again;
4296 } else {
3a45bb20 4297 btrfs_end_transaction(trans);
94b947b2 4298 }
4e06bdd6 4299 }
9ed74f2d 4300
0b246afa 4301 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4302 "space_info:enospc",
4303 data_sinfo->flags, bytes, 1);
6a63209f
JB
4304 return -ENOSPC;
4305 }
4306 data_sinfo->bytes_may_use += bytes;
0b246afa 4307 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4308 data_sinfo->flags, bytes, 1);
6a63209f 4309 spin_unlock(&data_sinfo->lock);
6a63209f 4310
237c0e9f 4311 return ret;
9ed74f2d 4312}
6a63209f 4313
4ceff079
QW
4314/*
4315 * New check_data_free_space() with ability for precious data reservation
4316 * Will replace old btrfs_check_data_free_space(), but for patch split,
4317 * add a new function first and then replace it.
4318 */
7cf5b976 4319int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079 4320{
0b246afa 4321 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4322 int ret;
4323
4324 /* align the range */
0b246afa
JM
4325 len = round_up(start + len, fs_info->sectorsize) -
4326 round_down(start, fs_info->sectorsize);
4327 start = round_down(start, fs_info->sectorsize);
4ceff079 4328
04f4f916 4329 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4330 if (ret < 0)
4331 return ret;
4332
1e5ec2e7 4333 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4ceff079 4334 ret = btrfs_qgroup_reserve_data(inode, start, len);
1e5ec2e7
JB
4335 if (ret)
4336 btrfs_free_reserved_data_space_noquota(inode, start, len);
4ceff079
QW
4337 return ret;
4338}
4339
4ceff079
QW
4340/*
4341 * Called if we need to clear a data reservation for this inode
4342 * Normally in a error case.
4343 *
51773bec
QW
4344 * This one will *NOT* use accurate qgroup reserved space API, just for case
4345 * which we can't sleep and is sure it won't affect qgroup reserved space.
4346 * Like clear_bit_hook().
4ceff079 4347 */
51773bec
QW
4348void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4349 u64 len)
4ceff079 4350{
0b246afa 4351 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4352 struct btrfs_space_info *data_sinfo;
4353
4354 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4355 len = round_up(start + len, fs_info->sectorsize) -
4356 round_down(start, fs_info->sectorsize);
4357 start = round_down(start, fs_info->sectorsize);
4ceff079 4358
0b246afa 4359 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4360 spin_lock(&data_sinfo->lock);
4361 if (WARN_ON(data_sinfo->bytes_may_use < len))
4362 data_sinfo->bytes_may_use = 0;
4363 else
4364 data_sinfo->bytes_may_use -= len;
0b246afa 4365 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4366 data_sinfo->flags, len, 0);
4367 spin_unlock(&data_sinfo->lock);
4368}
4369
51773bec
QW
4370/*
4371 * Called if we need to clear a data reservation for this inode
4372 * Normally in a error case.
4373 *
01327610 4374 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4375 * space framework.
4376 */
4377void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4378{
0c476a5d
JM
4379 struct btrfs_root *root = BTRFS_I(inode)->root;
4380
4381 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4382 len = round_up(start + len, root->fs_info->sectorsize) -
4383 round_down(start, root->fs_info->sectorsize);
4384 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4385
51773bec
QW
4386 btrfs_free_reserved_data_space_noquota(inode, start, len);
4387 btrfs_qgroup_free_data(inode, start, len);
4388}
4389
97e728d4 4390static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4391{
97e728d4
JB
4392 struct list_head *head = &info->space_info;
4393 struct btrfs_space_info *found;
e3ccfa98 4394
97e728d4
JB
4395 rcu_read_lock();
4396 list_for_each_entry_rcu(found, head, list) {
4397 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4398 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4399 }
97e728d4 4400 rcu_read_unlock();
e3ccfa98
JB
4401}
4402
3c76cd84
MX
4403static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4404{
4405 return (global->size << 1);
4406}
4407
2ff7e61e 4408static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4409 struct btrfs_space_info *sinfo, int force)
32c00aff 4410{
0b246afa 4411 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
424499db 4412 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4413 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4414 u64 thresh;
e3ccfa98 4415
0e4f8f88
CM
4416 if (force == CHUNK_ALLOC_FORCE)
4417 return 1;
4418
fb25e914
JB
4419 /*
4420 * We need to take into account the global rsv because for all intents
4421 * and purposes it's used space. Don't worry about locking the
4422 * global_rsv, it doesn't change except when the transaction commits.
4423 */
54338b5c 4424 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4425 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4426
0e4f8f88
CM
4427 /*
4428 * in limited mode, we want to have some free space up to
4429 * about 1% of the FS size.
4430 */
4431 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4432 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4433 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4434
4435 if (num_bytes - num_allocated < thresh)
4436 return 1;
4437 }
0e4f8f88 4438
ee22184b 4439 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4440 return 0;
424499db 4441 return 1;
32c00aff
JB
4442}
4443
2ff7e61e 4444static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4445{
4446 u64 num_dev;
4447
53b381b3
DW
4448 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4449 BTRFS_BLOCK_GROUP_RAID0 |
4450 BTRFS_BLOCK_GROUP_RAID5 |
4451 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4452 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4453 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4454 num_dev = 2;
4455 else
4456 num_dev = 1; /* DUP or single */
4457
39c2d7fa 4458 return num_dev;
15d1ff81
LB
4459}
4460
39c2d7fa
FM
4461/*
4462 * If @is_allocation is true, reserve space in the system space info necessary
4463 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4464 * removing a chunk.
4465 */
4466void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4467 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4468{
4469 struct btrfs_space_info *info;
4470 u64 left;
4471 u64 thresh;
4fbcdf66 4472 int ret = 0;
39c2d7fa 4473 u64 num_devs;
4fbcdf66
FM
4474
4475 /*
4476 * Needed because we can end up allocating a system chunk and for an
4477 * atomic and race free space reservation in the chunk block reserve.
4478 */
0b246afa 4479 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
15d1ff81 4480
0b246afa 4481 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4482 spin_lock(&info->lock);
4136135b 4483 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4484 spin_unlock(&info->lock);
4485
2ff7e61e 4486 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4487
4488 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4489 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4490 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4491
0b246afa
JM
4492 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4493 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4494 left, thresh, type);
4495 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4496 }
4497
4498 if (left < thresh) {
1b86826d 4499 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4500
4fbcdf66
FM
4501 /*
4502 * Ignore failure to create system chunk. We might end up not
4503 * needing it, as we might not need to COW all nodes/leafs from
4504 * the paths we visit in the chunk tree (they were already COWed
4505 * or created in the current transaction for example).
4506 */
2ff7e61e 4507 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4508 }
4509
4510 if (!ret) {
0b246afa
JM
4511 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4512 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4513 thresh, BTRFS_RESERVE_NO_FLUSH);
4514 if (!ret)
4515 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4516 }
4517}
4518
28b737f6
LB
4519/*
4520 * If force is CHUNK_ALLOC_FORCE:
4521 * - return 1 if it successfully allocates a chunk,
4522 * - return errors including -ENOSPC otherwise.
4523 * If force is NOT CHUNK_ALLOC_FORCE:
4524 * - return 0 if it doesn't need to allocate a new chunk,
4525 * - return 1 if it successfully allocates a chunk,
4526 * - return errors including -ENOSPC otherwise.
4527 */
6324fbf3 4528static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4529 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4530{
6324fbf3 4531 struct btrfs_space_info *space_info;
6d74119f 4532 int wait_for_alloc = 0;
9ed74f2d 4533 int ret = 0;
9ed74f2d 4534
c6b305a8
JB
4535 /* Don't re-enter if we're already allocating a chunk */
4536 if (trans->allocating_chunk)
4537 return -ENOSPC;
4538
0b246afa 4539 space_info = __find_space_info(fs_info, flags);
593060d7 4540 if (!space_info) {
2be12ef7
NB
4541 ret = create_space_info(fs_info, flags, &space_info);
4542 if (ret)
4543 return ret;
9ed74f2d
JB
4544 }
4545
6d74119f 4546again:
25179201 4547 spin_lock(&space_info->lock);
9e622d6b 4548 if (force < space_info->force_alloc)
0e4f8f88 4549 force = space_info->force_alloc;
25179201 4550 if (space_info->full) {
2ff7e61e 4551 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4552 ret = -ENOSPC;
4553 else
4554 ret = 0;
25179201 4555 spin_unlock(&space_info->lock);
09fb99a6 4556 return ret;
9ed74f2d
JB
4557 }
4558
2ff7e61e 4559 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4560 spin_unlock(&space_info->lock);
6d74119f
JB
4561 return 0;
4562 } else if (space_info->chunk_alloc) {
4563 wait_for_alloc = 1;
4564 } else {
4565 space_info->chunk_alloc = 1;
9ed74f2d 4566 }
0e4f8f88 4567
25179201 4568 spin_unlock(&space_info->lock);
9ed74f2d 4569
6d74119f
JB
4570 mutex_lock(&fs_info->chunk_mutex);
4571
4572 /*
4573 * The chunk_mutex is held throughout the entirety of a chunk
4574 * allocation, so once we've acquired the chunk_mutex we know that the
4575 * other guy is done and we need to recheck and see if we should
4576 * allocate.
4577 */
4578 if (wait_for_alloc) {
4579 mutex_unlock(&fs_info->chunk_mutex);
4580 wait_for_alloc = 0;
4581 goto again;
4582 }
4583
c6b305a8
JB
4584 trans->allocating_chunk = true;
4585
67377734
JB
4586 /*
4587 * If we have mixed data/metadata chunks we want to make sure we keep
4588 * allocating mixed chunks instead of individual chunks.
4589 */
4590 if (btrfs_mixed_space_info(space_info))
4591 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4592
97e728d4
JB
4593 /*
4594 * if we're doing a data chunk, go ahead and make sure that
4595 * we keep a reasonable number of metadata chunks allocated in the
4596 * FS as well.
4597 */
9ed74f2d 4598 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4599 fs_info->data_chunk_allocations++;
4600 if (!(fs_info->data_chunk_allocations %
4601 fs_info->metadata_ratio))
4602 force_metadata_allocation(fs_info);
9ed74f2d
JB
4603 }
4604
15d1ff81
LB
4605 /*
4606 * Check if we have enough space in SYSTEM chunk because we may need
4607 * to update devices.
4608 */
2ff7e61e 4609 check_system_chunk(trans, fs_info, flags);
15d1ff81 4610
2ff7e61e 4611 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4612 trans->allocating_chunk = false;
92b8e897 4613
9ed74f2d 4614 spin_lock(&space_info->lock);
a81cb9a2
AO
4615 if (ret < 0 && ret != -ENOSPC)
4616 goto out;
9ed74f2d 4617 if (ret)
6324fbf3 4618 space_info->full = 1;
424499db
YZ
4619 else
4620 ret = 1;
6d74119f 4621
0e4f8f88 4622 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4623out:
6d74119f 4624 space_info->chunk_alloc = 0;
9ed74f2d 4625 spin_unlock(&space_info->lock);
a25c75d5 4626 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4627 /*
4628 * When we allocate a new chunk we reserve space in the chunk block
4629 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4630 * add new nodes/leafs to it if we end up needing to do it when
4631 * inserting the chunk item and updating device items as part of the
4632 * second phase of chunk allocation, performed by
4633 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4634 * large number of new block groups to create in our transaction
4635 * handle's new_bgs list to avoid exhausting the chunk block reserve
4636 * in extreme cases - like having a single transaction create many new
4637 * block groups when starting to write out the free space caches of all
4638 * the block groups that were made dirty during the lifetime of the
4639 * transaction.
4640 */
d9a0540a 4641 if (trans->can_flush_pending_bgs &&
ee22184b 4642 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
2ff7e61e 4643 btrfs_create_pending_block_groups(trans, fs_info);
00d80e34
FM
4644 btrfs_trans_release_chunk_metadata(trans);
4645 }
0f9dd46c 4646 return ret;
6324fbf3 4647}
9ed74f2d 4648
c1c4919b 4649static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4650 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4651 enum btrfs_reserve_flush_enum flush,
4652 bool system_chunk)
a80c8dcf 4653{
0b246afa 4654 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4655 u64 profile;
3c76cd84 4656 u64 space_size;
a80c8dcf
JB
4657 u64 avail;
4658 u64 used;
4659
957780eb
JB
4660 /* Don't overcommit when in mixed mode. */
4661 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4662 return 0;
4663
c1c4919b
JM
4664 if (system_chunk)
4665 profile = btrfs_system_alloc_profile(fs_info);
4666 else
4667 profile = btrfs_metadata_alloc_profile(fs_info);
4668
4136135b 4669 used = btrfs_space_info_used(space_info, false);
96f1bb57 4670
96f1bb57
JB
4671 /*
4672 * We only want to allow over committing if we have lots of actual space
4673 * free, but if we don't have enough space to handle the global reserve
4674 * space then we could end up having a real enospc problem when trying
4675 * to allocate a chunk or some other such important allocation.
4676 */
3c76cd84
MX
4677 spin_lock(&global_rsv->lock);
4678 space_size = calc_global_rsv_need_space(global_rsv);
4679 spin_unlock(&global_rsv->lock);
4680 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4681 return 0;
4682
4683 used += space_info->bytes_may_use;
a80c8dcf 4684
a5ed45f8 4685 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4686
4687 /*
4688 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4689 * space is actually useable. For raid56, the space info used
4690 * doesn't include the parity drive, so we don't have to
4691 * change the math
a80c8dcf
JB
4692 */
4693 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4694 BTRFS_BLOCK_GROUP_RAID1 |
4695 BTRFS_BLOCK_GROUP_RAID10))
4696 avail >>= 1;
4697
4698 /*
561c294d
MX
4699 * If we aren't flushing all things, let us overcommit up to
4700 * 1/2th of the space. If we can flush, don't let us overcommit
4701 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4702 */
08e007d2 4703 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4704 avail >>= 3;
a80c8dcf 4705 else
14575aef 4706 avail >>= 1;
a80c8dcf 4707
14575aef 4708 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4709 return 1;
4710 return 0;
4711}
4712
2ff7e61e 4713static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4714 unsigned long nr_pages, int nr_items)
da633a42 4715{
0b246afa 4716 struct super_block *sb = fs_info->sb;
da633a42 4717
925a6efb
JB
4718 if (down_read_trylock(&sb->s_umount)) {
4719 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4720 up_read(&sb->s_umount);
4721 } else {
da633a42
MX
4722 /*
4723 * We needn't worry the filesystem going from r/w to r/o though
4724 * we don't acquire ->s_umount mutex, because the filesystem
4725 * should guarantee the delalloc inodes list be empty after
4726 * the filesystem is readonly(all dirty pages are written to
4727 * the disk).
4728 */
0b246afa 4729 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
98ad69cf 4730 if (!current->journal_info)
0b246afa 4731 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4732 }
4733}
4734
2ff7e61e
JM
4735static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4736 u64 to_reclaim)
18cd8ea6
MX
4737{
4738 u64 bytes;
4739 int nr;
4740
2ff7e61e 4741 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
18cd8ea6
MX
4742 nr = (int)div64_u64(to_reclaim, bytes);
4743 if (!nr)
4744 nr = 1;
4745 return nr;
4746}
4747
ee22184b 4748#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4749
9ed74f2d 4750/*
5da9d01b 4751 * shrink metadata reservation for delalloc
9ed74f2d 4752 */
c1c4919b
JM
4753static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4754 u64 orig, bool wait_ordered)
5da9d01b 4755{
0ca1f7ce 4756 struct btrfs_block_rsv *block_rsv;
0019f10d 4757 struct btrfs_space_info *space_info;
663350ac 4758 struct btrfs_trans_handle *trans;
f4c738c2 4759 u64 delalloc_bytes;
5da9d01b 4760 u64 max_reclaim;
b1953bce 4761 long time_left;
d3ee29e3
MX
4762 unsigned long nr_pages;
4763 int loops;
b0244199 4764 int items;
08e007d2 4765 enum btrfs_reserve_flush_enum flush;
5da9d01b 4766
c61a16a7 4767 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4768 items = calc_reclaim_items_nr(fs_info, to_reclaim);
8eb0dfdb 4769 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4770
663350ac 4771 trans = (struct btrfs_trans_handle *)current->journal_info;
0b246afa 4772 block_rsv = &fs_info->delalloc_block_rsv;
0019f10d 4773 space_info = block_rsv->space_info;
bf9022e0 4774
963d678b 4775 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4776 &fs_info->delalloc_bytes);
f4c738c2 4777 if (delalloc_bytes == 0) {
fdb5effd 4778 if (trans)
f4c738c2 4779 return;
38c135af 4780 if (wait_ordered)
0b246afa 4781 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4782 return;
fdb5effd
JB
4783 }
4784
d3ee29e3 4785 loops = 0;
f4c738c2
JB
4786 while (delalloc_bytes && loops < 3) {
4787 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4788 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4789 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4790 /*
4791 * We need to wait for the async pages to actually start before
4792 * we do anything.
4793 */
0b246afa 4794 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4795 if (!max_reclaim)
4796 goto skip_async;
4797
4798 if (max_reclaim <= nr_pages)
4799 max_reclaim = 0;
4800 else
4801 max_reclaim -= nr_pages;
dea31f52 4802
0b246afa
JM
4803 wait_event(fs_info->async_submit_wait,
4804 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4805 (int)max_reclaim);
4806skip_async:
08e007d2
MX
4807 if (!trans)
4808 flush = BTRFS_RESERVE_FLUSH_ALL;
4809 else
4810 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4811 spin_lock(&space_info->lock);
c1c4919b 4812 if (can_overcommit(fs_info, space_info, orig, flush, false)) {
f4c738c2
JB
4813 spin_unlock(&space_info->lock);
4814 break;
4815 }
957780eb
JB
4816 if (list_empty(&space_info->tickets) &&
4817 list_empty(&space_info->priority_tickets)) {
4818 spin_unlock(&space_info->lock);
4819 break;
4820 }
0019f10d 4821 spin_unlock(&space_info->lock);
5da9d01b 4822
36e39c40 4823 loops++;
f104d044 4824 if (wait_ordered && !trans) {
0b246afa 4825 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4826 } else {
f4c738c2 4827 time_left = schedule_timeout_killable(1);
f104d044
JB
4828 if (time_left)
4829 break;
4830 }
963d678b 4831 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4832 &fs_info->delalloc_bytes);
5da9d01b 4833 }
5da9d01b
YZ
4834}
4835
663350ac
JB
4836/**
4837 * maybe_commit_transaction - possibly commit the transaction if its ok to
4838 * @root - the root we're allocating for
4839 * @bytes - the number of bytes we want to reserve
4840 * @force - force the commit
8bb8ab2e 4841 *
663350ac
JB
4842 * This will check to make sure that committing the transaction will actually
4843 * get us somewhere and then commit the transaction if it does. Otherwise it
4844 * will return -ENOSPC.
8bb8ab2e 4845 */
0c9ab349 4846static int may_commit_transaction(struct btrfs_fs_info *fs_info,
663350ac
JB
4847 struct btrfs_space_info *space_info,
4848 u64 bytes, int force)
4849{
0b246afa 4850 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac
JB
4851 struct btrfs_trans_handle *trans;
4852
4853 trans = (struct btrfs_trans_handle *)current->journal_info;
4854 if (trans)
4855 return -EAGAIN;
4856
4857 if (force)
4858 goto commit;
4859
4860 /* See if there is enough pinned space to make this reservation */
b150a4f1 4861 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4862 bytes) >= 0)
663350ac 4863 goto commit;
663350ac
JB
4864
4865 /*
4866 * See if there is some space in the delayed insertion reservation for
4867 * this reservation.
4868 */
4869 if (space_info != delayed_rsv->space_info)
4870 return -ENOSPC;
4871
4872 spin_lock(&delayed_rsv->lock);
b150a4f1 4873 if (percpu_counter_compare(&space_info->total_bytes_pinned,
28785f70 4874 bytes - delayed_rsv->size) < 0) {
663350ac
JB
4875 spin_unlock(&delayed_rsv->lock);
4876 return -ENOSPC;
4877 }
4878 spin_unlock(&delayed_rsv->lock);
4879
4880commit:
a9b3311e 4881 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4882 if (IS_ERR(trans))
4883 return -ENOSPC;
4884
3a45bb20 4885 return btrfs_commit_transaction(trans);
663350ac
JB
4886}
4887
957780eb
JB
4888struct reserve_ticket {
4889 u64 bytes;
4890 int error;
4891 struct list_head list;
4892 wait_queue_head_t wait;
96c3f433
JB
4893};
4894
0c9ab349 4895static int flush_space(struct btrfs_fs_info *fs_info,
96c3f433
JB
4896 struct btrfs_space_info *space_info, u64 num_bytes,
4897 u64 orig_bytes, int state)
4898{
a9b3311e 4899 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4900 struct btrfs_trans_handle *trans;
4901 int nr;
f4c738c2 4902 int ret = 0;
96c3f433
JB
4903
4904 switch (state) {
96c3f433
JB
4905 case FLUSH_DELAYED_ITEMS_NR:
4906 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4907 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4908 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4909 else
96c3f433 4910 nr = -1;
18cd8ea6 4911
96c3f433
JB
4912 trans = btrfs_join_transaction(root);
4913 if (IS_ERR(trans)) {
4914 ret = PTR_ERR(trans);
4915 break;
4916 }
2ff7e61e 4917 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
3a45bb20 4918 btrfs_end_transaction(trans);
96c3f433 4919 break;
67b0fd63
JB
4920 case FLUSH_DELALLOC:
4921 case FLUSH_DELALLOC_WAIT:
c1c4919b 4922 shrink_delalloc(fs_info, num_bytes * 2, orig_bytes,
67b0fd63
JB
4923 state == FLUSH_DELALLOC_WAIT);
4924 break;
ea658bad
JB
4925 case ALLOC_CHUNK:
4926 trans = btrfs_join_transaction(root);
4927 if (IS_ERR(trans)) {
4928 ret = PTR_ERR(trans);
4929 break;
4930 }
2ff7e61e 4931 ret = do_chunk_alloc(trans, fs_info,
1b86826d 4932 btrfs_metadata_alloc_profile(fs_info),
ea658bad 4933 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4934 btrfs_end_transaction(trans);
eecba891 4935 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4936 ret = 0;
4937 break;
96c3f433 4938 case COMMIT_TRANS:
0c9ab349
JM
4939 ret = may_commit_transaction(fs_info, space_info,
4940 orig_bytes, 0);
96c3f433
JB
4941 break;
4942 default:
4943 ret = -ENOSPC;
4944 break;
4945 }
4946
0b246afa 4947 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
f376df2b 4948 orig_bytes, state, ret);
96c3f433
JB
4949 return ret;
4950}
21c7e756
MX
4951
4952static inline u64
c1c4919b
JM
4953btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4954 struct btrfs_space_info *space_info,
4955 bool system_chunk)
21c7e756 4956{
957780eb 4957 struct reserve_ticket *ticket;
21c7e756
MX
4958 u64 used;
4959 u64 expected;
957780eb 4960 u64 to_reclaim = 0;
21c7e756 4961
957780eb
JB
4962 list_for_each_entry(ticket, &space_info->tickets, list)
4963 to_reclaim += ticket->bytes;
4964 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4965 to_reclaim += ticket->bytes;
4966 if (to_reclaim)
4967 return to_reclaim;
21c7e756 4968
e0af2484 4969 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
4970 if (can_overcommit(fs_info, space_info, to_reclaim,
4971 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
4972 return 0;
4973
0eee8a49
NB
4974 used = btrfs_space_info_used(space_info, true);
4975
c1c4919b
JM
4976 if (can_overcommit(fs_info, space_info, SZ_1M,
4977 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
4978 expected = div_factor_fine(space_info->total_bytes, 95);
4979 else
4980 expected = div_factor_fine(space_info->total_bytes, 90);
4981
4982 if (used > expected)
4983 to_reclaim = used - expected;
4984 else
4985 to_reclaim = 0;
4986 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4987 space_info->bytes_reserved);
21c7e756
MX
4988 return to_reclaim;
4989}
4990
c1c4919b
JM
4991static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4992 struct btrfs_space_info *space_info,
4993 u64 used, bool system_chunk)
21c7e756 4994{
365c5313
JB
4995 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4996
4997 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4998 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4999 return 0;
5000
c1c4919b
JM
5001 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5002 system_chunk))
d38b349c
JB
5003 return 0;
5004
0b246afa
JM
5005 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5006 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5007}
5008
957780eb 5009static void wake_all_tickets(struct list_head *head)
21c7e756 5010{
957780eb 5011 struct reserve_ticket *ticket;
25ce459c 5012
957780eb
JB
5013 while (!list_empty(head)) {
5014 ticket = list_first_entry(head, struct reserve_ticket, list);
5015 list_del_init(&ticket->list);
5016 ticket->error = -ENOSPC;
5017 wake_up(&ticket->wait);
21c7e756 5018 }
21c7e756
MX
5019}
5020
957780eb
JB
5021/*
5022 * This is for normal flushers, we can wait all goddamned day if we want to. We
5023 * will loop and continuously try to flush as long as we are making progress.
5024 * We count progress as clearing off tickets each time we have to loop.
5025 */
21c7e756
MX
5026static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5027{
5028 struct btrfs_fs_info *fs_info;
5029 struct btrfs_space_info *space_info;
5030 u64 to_reclaim;
5031 int flush_state;
957780eb 5032 int commit_cycles = 0;
ce129655 5033 u64 last_tickets_id;
21c7e756
MX
5034
5035 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5036 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5037
957780eb 5038 spin_lock(&space_info->lock);
c1c4919b
JM
5039 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5040 false);
957780eb
JB
5041 if (!to_reclaim) {
5042 space_info->flush = 0;
5043 spin_unlock(&space_info->lock);
21c7e756 5044 return;
957780eb 5045 }
ce129655 5046 last_tickets_id = space_info->tickets_id;
957780eb 5047 spin_unlock(&space_info->lock);
21c7e756
MX
5048
5049 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb
JB
5050 do {
5051 struct reserve_ticket *ticket;
5052 int ret;
5053
0c9ab349
JM
5054 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5055 flush_state);
957780eb
JB
5056 spin_lock(&space_info->lock);
5057 if (list_empty(&space_info->tickets)) {
5058 space_info->flush = 0;
5059 spin_unlock(&space_info->lock);
5060 return;
5061 }
c1c4919b
JM
5062 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5063 space_info,
5064 false);
957780eb
JB
5065 ticket = list_first_entry(&space_info->tickets,
5066 struct reserve_ticket, list);
ce129655 5067 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5068 flush_state++;
5069 } else {
ce129655 5070 last_tickets_id = space_info->tickets_id;
957780eb
JB
5071 flush_state = FLUSH_DELAYED_ITEMS_NR;
5072 if (commit_cycles)
5073 commit_cycles--;
5074 }
5075
5076 if (flush_state > COMMIT_TRANS) {
5077 commit_cycles++;
5078 if (commit_cycles > 2) {
5079 wake_all_tickets(&space_info->tickets);
5080 space_info->flush = 0;
5081 } else {
5082 flush_state = FLUSH_DELAYED_ITEMS_NR;
5083 }
5084 }
5085 spin_unlock(&space_info->lock);
5086 } while (flush_state <= COMMIT_TRANS);
5087}
5088
5089void btrfs_init_async_reclaim_work(struct work_struct *work)
5090{
5091 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5092}
5093
5094static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5095 struct btrfs_space_info *space_info,
5096 struct reserve_ticket *ticket)
5097{
5098 u64 to_reclaim;
5099 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5100
5101 spin_lock(&space_info->lock);
c1c4919b
JM
5102 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5103 false);
957780eb
JB
5104 if (!to_reclaim) {
5105 spin_unlock(&space_info->lock);
5106 return;
5107 }
5108 spin_unlock(&space_info->lock);
5109
21c7e756 5110 do {
0c9ab349
JM
5111 flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5112 flush_state);
21c7e756 5113 flush_state++;
957780eb
JB
5114 spin_lock(&space_info->lock);
5115 if (ticket->bytes == 0) {
5116 spin_unlock(&space_info->lock);
21c7e756 5117 return;
957780eb
JB
5118 }
5119 spin_unlock(&space_info->lock);
5120
5121 /*
5122 * Priority flushers can't wait on delalloc without
5123 * deadlocking.
5124 */
5125 if (flush_state == FLUSH_DELALLOC ||
5126 flush_state == FLUSH_DELALLOC_WAIT)
5127 flush_state = ALLOC_CHUNK;
365c5313 5128 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5129}
5130
957780eb
JB
5131static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5132 struct btrfs_space_info *space_info,
5133 struct reserve_ticket *ticket, u64 orig_bytes)
5134
21c7e756 5135{
957780eb
JB
5136 DEFINE_WAIT(wait);
5137 int ret = 0;
5138
5139 spin_lock(&space_info->lock);
5140 while (ticket->bytes > 0 && ticket->error == 0) {
5141 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5142 if (ret) {
5143 ret = -EINTR;
5144 break;
5145 }
5146 spin_unlock(&space_info->lock);
5147
5148 schedule();
5149
5150 finish_wait(&ticket->wait, &wait);
5151 spin_lock(&space_info->lock);
5152 }
5153 if (!ret)
5154 ret = ticket->error;
5155 if (!list_empty(&ticket->list))
5156 list_del_init(&ticket->list);
5157 if (ticket->bytes && ticket->bytes < orig_bytes) {
5158 u64 num_bytes = orig_bytes - ticket->bytes;
5159 space_info->bytes_may_use -= num_bytes;
5160 trace_btrfs_space_reservation(fs_info, "space_info",
5161 space_info->flags, num_bytes, 0);
5162 }
5163 spin_unlock(&space_info->lock);
5164
5165 return ret;
21c7e756
MX
5166}
5167
4a92b1b8
JB
5168/**
5169 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5170 * @root - the root we're allocating for
957780eb 5171 * @space_info - the space info we want to allocate from
4a92b1b8 5172 * @orig_bytes - the number of bytes we want
48fc7f7e 5173 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5174 *
01327610 5175 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5176 * with the block_rsv. If there is not enough space it will make an attempt to
5177 * flush out space to make room. It will do this by flushing delalloc if
5178 * possible or committing the transaction. If flush is 0 then no attempts to
5179 * regain reservations will be made and this will fail if there is not enough
5180 * space already.
8bb8ab2e 5181 */
c1c4919b 5182static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5183 struct btrfs_space_info *space_info,
5184 u64 orig_bytes,
c1c4919b
JM
5185 enum btrfs_reserve_flush_enum flush,
5186 bool system_chunk)
9ed74f2d 5187{
957780eb 5188 struct reserve_ticket ticket;
2bf64758 5189 u64 used;
8bb8ab2e 5190 int ret = 0;
9ed74f2d 5191
957780eb 5192 ASSERT(orig_bytes);
8ca17f0f 5193 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5194
8bb8ab2e 5195 spin_lock(&space_info->lock);
fdb5effd 5196 ret = -ENOSPC;
4136135b 5197 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5198
8bb8ab2e 5199 /*
957780eb
JB
5200 * If we have enough space then hooray, make our reservation and carry
5201 * on. If not see if we can overcommit, and if we can, hooray carry on.
5202 * If not things get more complicated.
8bb8ab2e 5203 */
957780eb
JB
5204 if (used + orig_bytes <= space_info->total_bytes) {
5205 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5206 trace_btrfs_space_reservation(fs_info, "space_info",
5207 space_info->flags, orig_bytes, 1);
957780eb 5208 ret = 0;
c1c4919b
JM
5209 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5210 system_chunk)) {
44734ed1 5211 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5212 trace_btrfs_space_reservation(fs_info, "space_info",
5213 space_info->flags, orig_bytes, 1);
44734ed1 5214 ret = 0;
2bf64758
JB
5215 }
5216
8bb8ab2e 5217 /*
957780eb
JB
5218 * If we couldn't make a reservation then setup our reservation ticket
5219 * and kick the async worker if it's not already running.
08e007d2 5220 *
957780eb
JB
5221 * If we are a priority flusher then we just need to add our ticket to
5222 * the list and we will do our own flushing further down.
8bb8ab2e 5223 */
72bcd99d 5224 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5225 ticket.bytes = orig_bytes;
5226 ticket.error = 0;
5227 init_waitqueue_head(&ticket.wait);
5228 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5229 list_add_tail(&ticket.list, &space_info->tickets);
5230 if (!space_info->flush) {
5231 space_info->flush = 1;
0b246afa 5232 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5233 space_info->flags,
5234 orig_bytes, flush,
5235 "enospc");
957780eb 5236 queue_work(system_unbound_wq,
c1c4919b 5237 &fs_info->async_reclaim_work);
957780eb
JB
5238 }
5239 } else {
5240 list_add_tail(&ticket.list,
5241 &space_info->priority_tickets);
5242 }
21c7e756
MX
5243 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5244 used += orig_bytes;
f6acfd50
JB
5245 /*
5246 * We will do the space reservation dance during log replay,
5247 * which means we won't have fs_info->fs_root set, so don't do
5248 * the async reclaim as we will panic.
5249 */
0b246afa 5250 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5251 need_do_async_reclaim(fs_info, space_info,
5252 used, system_chunk) &&
0b246afa
JM
5253 !work_busy(&fs_info->async_reclaim_work)) {
5254 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5255 orig_bytes, flush, "preempt");
21c7e756 5256 queue_work(system_unbound_wq,
0b246afa 5257 &fs_info->async_reclaim_work);
f376df2b 5258 }
8bb8ab2e 5259 }
f0486c68 5260 spin_unlock(&space_info->lock);
08e007d2 5261 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5262 return ret;
f0486c68 5263
957780eb 5264 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5265 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5266 orig_bytes);
08e007d2 5267
957780eb 5268 ret = 0;
0b246afa 5269 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5270 spin_lock(&space_info->lock);
5271 if (ticket.bytes) {
5272 if (ticket.bytes < orig_bytes) {
5273 u64 num_bytes = orig_bytes - ticket.bytes;
5274 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5275 trace_btrfs_space_reservation(fs_info, "space_info",
5276 space_info->flags,
5277 num_bytes, 0);
08e007d2 5278
957780eb
JB
5279 }
5280 list_del_init(&ticket.list);
5281 ret = -ENOSPC;
5282 }
5283 spin_unlock(&space_info->lock);
5284 ASSERT(list_empty(&ticket.list));
5285 return ret;
5286}
8bb8ab2e 5287
957780eb
JB
5288/**
5289 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5290 * @root - the root we're allocating for
5291 * @block_rsv - the block_rsv we're allocating for
5292 * @orig_bytes - the number of bytes we want
5293 * @flush - whether or not we can flush to make our reservation
5294 *
5295 * This will reserve orgi_bytes number of bytes from the space info associated
5296 * with the block_rsv. If there is not enough space it will make an attempt to
5297 * flush out space to make room. It will do this by flushing delalloc if
5298 * possible or committing the transaction. If flush is 0 then no attempts to
5299 * regain reservations will be made and this will fail if there is not enough
5300 * space already.
5301 */
5302static int reserve_metadata_bytes(struct btrfs_root *root,
5303 struct btrfs_block_rsv *block_rsv,
5304 u64 orig_bytes,
5305 enum btrfs_reserve_flush_enum flush)
5306{
0b246afa
JM
5307 struct btrfs_fs_info *fs_info = root->fs_info;
5308 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5309 int ret;
c1c4919b 5310 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5311
c1c4919b
JM
5312 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5313 orig_bytes, flush, system_chunk);
5d80366e
JB
5314 if (ret == -ENOSPC &&
5315 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5316 if (block_rsv != global_rsv &&
5317 !block_rsv_use_bytes(global_rsv, orig_bytes))
5318 ret = 0;
5319 }
cab45e22 5320 if (ret == -ENOSPC)
0b246afa 5321 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5322 block_rsv->space_info->flags,
5323 orig_bytes, 1);
f0486c68
YZ
5324 return ret;
5325}
5326
79787eaa
JM
5327static struct btrfs_block_rsv *get_block_rsv(
5328 const struct btrfs_trans_handle *trans,
5329 const struct btrfs_root *root)
f0486c68 5330{
0b246afa 5331 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5332 struct btrfs_block_rsv *block_rsv = NULL;
5333
e9cf439f 5334 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5335 (root == fs_info->csum_root && trans->adding_csums) ||
5336 (root == fs_info->uuid_root))
f7a81ea4
SB
5337 block_rsv = trans->block_rsv;
5338
4c13d758 5339 if (!block_rsv)
f0486c68
YZ
5340 block_rsv = root->block_rsv;
5341
5342 if (!block_rsv)
0b246afa 5343 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5344
5345 return block_rsv;
5346}
5347
5348static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5349 u64 num_bytes)
5350{
5351 int ret = -ENOSPC;
5352 spin_lock(&block_rsv->lock);
5353 if (block_rsv->reserved >= num_bytes) {
5354 block_rsv->reserved -= num_bytes;
5355 if (block_rsv->reserved < block_rsv->size)
5356 block_rsv->full = 0;
5357 ret = 0;
5358 }
5359 spin_unlock(&block_rsv->lock);
5360 return ret;
5361}
5362
5363static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5364 u64 num_bytes, int update_size)
5365{
5366 spin_lock(&block_rsv->lock);
5367 block_rsv->reserved += num_bytes;
5368 if (update_size)
5369 block_rsv->size += num_bytes;
5370 else if (block_rsv->reserved >= block_rsv->size)
5371 block_rsv->full = 1;
5372 spin_unlock(&block_rsv->lock);
5373}
5374
d52be818
JB
5375int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5376 struct btrfs_block_rsv *dest, u64 num_bytes,
5377 int min_factor)
5378{
5379 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5380 u64 min_bytes;
5381
5382 if (global_rsv->space_info != dest->space_info)
5383 return -ENOSPC;
5384
5385 spin_lock(&global_rsv->lock);
5386 min_bytes = div_factor(global_rsv->size, min_factor);
5387 if (global_rsv->reserved < min_bytes + num_bytes) {
5388 spin_unlock(&global_rsv->lock);
5389 return -ENOSPC;
5390 }
5391 global_rsv->reserved -= num_bytes;
5392 if (global_rsv->reserved < global_rsv->size)
5393 global_rsv->full = 0;
5394 spin_unlock(&global_rsv->lock);
5395
5396 block_rsv_add_bytes(dest, num_bytes, 1);
5397 return 0;
5398}
5399
957780eb
JB
5400/*
5401 * This is for space we already have accounted in space_info->bytes_may_use, so
5402 * basically when we're returning space from block_rsv's.
5403 */
5404static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5405 struct btrfs_space_info *space_info,
5406 u64 num_bytes)
5407{
5408 struct reserve_ticket *ticket;
5409 struct list_head *head;
5410 u64 used;
5411 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5412 bool check_overcommit = false;
5413
5414 spin_lock(&space_info->lock);
5415 head = &space_info->priority_tickets;
5416
5417 /*
5418 * If we are over our limit then we need to check and see if we can
5419 * overcommit, and if we can't then we just need to free up our space
5420 * and not satisfy any requests.
5421 */
0eee8a49 5422 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5423 if (used - num_bytes >= space_info->total_bytes)
5424 check_overcommit = true;
5425again:
5426 while (!list_empty(head) && num_bytes) {
5427 ticket = list_first_entry(head, struct reserve_ticket,
5428 list);
5429 /*
5430 * We use 0 bytes because this space is already reserved, so
5431 * adding the ticket space would be a double count.
5432 */
5433 if (check_overcommit &&
c1c4919b 5434 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5435 break;
5436 if (num_bytes >= ticket->bytes) {
5437 list_del_init(&ticket->list);
5438 num_bytes -= ticket->bytes;
5439 ticket->bytes = 0;
ce129655 5440 space_info->tickets_id++;
957780eb
JB
5441 wake_up(&ticket->wait);
5442 } else {
5443 ticket->bytes -= num_bytes;
5444 num_bytes = 0;
5445 }
5446 }
5447
5448 if (num_bytes && head == &space_info->priority_tickets) {
5449 head = &space_info->tickets;
5450 flush = BTRFS_RESERVE_FLUSH_ALL;
5451 goto again;
5452 }
5453 space_info->bytes_may_use -= num_bytes;
5454 trace_btrfs_space_reservation(fs_info, "space_info",
5455 space_info->flags, num_bytes, 0);
5456 spin_unlock(&space_info->lock);
5457}
5458
5459/*
5460 * This is for newly allocated space that isn't accounted in
5461 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5462 * we use this helper.
5463 */
5464static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5465 struct btrfs_space_info *space_info,
5466 u64 num_bytes)
5467{
5468 struct reserve_ticket *ticket;
5469 struct list_head *head = &space_info->priority_tickets;
5470
5471again:
5472 while (!list_empty(head) && num_bytes) {
5473 ticket = list_first_entry(head, struct reserve_ticket,
5474 list);
5475 if (num_bytes >= ticket->bytes) {
5476 trace_btrfs_space_reservation(fs_info, "space_info",
5477 space_info->flags,
5478 ticket->bytes, 1);
5479 list_del_init(&ticket->list);
5480 num_bytes -= ticket->bytes;
5481 space_info->bytes_may_use += ticket->bytes;
5482 ticket->bytes = 0;
ce129655 5483 space_info->tickets_id++;
957780eb
JB
5484 wake_up(&ticket->wait);
5485 } else {
5486 trace_btrfs_space_reservation(fs_info, "space_info",
5487 space_info->flags,
5488 num_bytes, 1);
5489 space_info->bytes_may_use += num_bytes;
5490 ticket->bytes -= num_bytes;
5491 num_bytes = 0;
5492 }
5493 }
5494
5495 if (num_bytes && head == &space_info->priority_tickets) {
5496 head = &space_info->tickets;
5497 goto again;
5498 }
5499}
5500
8c2a3ca2
JB
5501static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5502 struct btrfs_block_rsv *block_rsv,
62a45b60 5503 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5504{
5505 struct btrfs_space_info *space_info = block_rsv->space_info;
5506
5507 spin_lock(&block_rsv->lock);
5508 if (num_bytes == (u64)-1)
5509 num_bytes = block_rsv->size;
5510 block_rsv->size -= num_bytes;
5511 if (block_rsv->reserved >= block_rsv->size) {
5512 num_bytes = block_rsv->reserved - block_rsv->size;
5513 block_rsv->reserved = block_rsv->size;
5514 block_rsv->full = 1;
5515 } else {
5516 num_bytes = 0;
5517 }
5518 spin_unlock(&block_rsv->lock);
5519
5520 if (num_bytes > 0) {
5521 if (dest) {
e9e22899
JB
5522 spin_lock(&dest->lock);
5523 if (!dest->full) {
5524 u64 bytes_to_add;
5525
5526 bytes_to_add = dest->size - dest->reserved;
5527 bytes_to_add = min(num_bytes, bytes_to_add);
5528 dest->reserved += bytes_to_add;
5529 if (dest->reserved >= dest->size)
5530 dest->full = 1;
5531 num_bytes -= bytes_to_add;
5532 }
5533 spin_unlock(&dest->lock);
5534 }
957780eb
JB
5535 if (num_bytes)
5536 space_info_add_old_bytes(fs_info, space_info,
5537 num_bytes);
9ed74f2d 5538 }
f0486c68 5539}
4e06bdd6 5540
25d609f8
JB
5541int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5542 struct btrfs_block_rsv *dst, u64 num_bytes,
5543 int update_size)
f0486c68
YZ
5544{
5545 int ret;
9ed74f2d 5546
f0486c68
YZ
5547 ret = block_rsv_use_bytes(src, num_bytes);
5548 if (ret)
5549 return ret;
9ed74f2d 5550
25d609f8 5551 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5552 return 0;
5553}
5554
66d8f3dd 5555void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5556{
f0486c68
YZ
5557 memset(rsv, 0, sizeof(*rsv));
5558 spin_lock_init(&rsv->lock);
66d8f3dd 5559 rsv->type = type;
f0486c68
YZ
5560}
5561
2ff7e61e 5562struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5563 unsigned short type)
f0486c68
YZ
5564{
5565 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5566
f0486c68
YZ
5567 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5568 if (!block_rsv)
5569 return NULL;
9ed74f2d 5570
66d8f3dd 5571 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5572 block_rsv->space_info = __find_space_info(fs_info,
5573 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5574 return block_rsv;
5575}
9ed74f2d 5576
2ff7e61e 5577void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5578 struct btrfs_block_rsv *rsv)
5579{
2aaa6655
JB
5580 if (!rsv)
5581 return;
2ff7e61e 5582 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5583 kfree(rsv);
9ed74f2d
JB
5584}
5585
cdfb080e
CM
5586void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5587{
5588 kfree(rsv);
5589}
5590
08e007d2
MX
5591int btrfs_block_rsv_add(struct btrfs_root *root,
5592 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5593 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5594{
f0486c68 5595 int ret;
9ed74f2d 5596
f0486c68
YZ
5597 if (num_bytes == 0)
5598 return 0;
8bb8ab2e 5599
61b520a9 5600 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5601 if (!ret) {
5602 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5603 return 0;
5604 }
9ed74f2d 5605
f0486c68 5606 return ret;
f0486c68 5607}
9ed74f2d 5608
2ff7e61e 5609int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5610{
5611 u64 num_bytes = 0;
f0486c68 5612 int ret = -ENOSPC;
9ed74f2d 5613
f0486c68
YZ
5614 if (!block_rsv)
5615 return 0;
9ed74f2d 5616
f0486c68 5617 spin_lock(&block_rsv->lock);
36ba022a
JB
5618 num_bytes = div_factor(block_rsv->size, min_factor);
5619 if (block_rsv->reserved >= num_bytes)
5620 ret = 0;
5621 spin_unlock(&block_rsv->lock);
9ed74f2d 5622
36ba022a
JB
5623 return ret;
5624}
5625
08e007d2
MX
5626int btrfs_block_rsv_refill(struct btrfs_root *root,
5627 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5628 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5629{
5630 u64 num_bytes = 0;
5631 int ret = -ENOSPC;
5632
5633 if (!block_rsv)
5634 return 0;
5635
5636 spin_lock(&block_rsv->lock);
5637 num_bytes = min_reserved;
13553e52 5638 if (block_rsv->reserved >= num_bytes)
f0486c68 5639 ret = 0;
13553e52 5640 else
f0486c68 5641 num_bytes -= block_rsv->reserved;
f0486c68 5642 spin_unlock(&block_rsv->lock);
13553e52 5643
f0486c68
YZ
5644 if (!ret)
5645 return 0;
5646
aa38a711 5647 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5648 if (!ret) {
5649 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5650 return 0;
6a63209f 5651 }
9ed74f2d 5652
13553e52 5653 return ret;
f0486c68
YZ
5654}
5655
2ff7e61e 5656void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5657 struct btrfs_block_rsv *block_rsv,
5658 u64 num_bytes)
5659{
0b246afa
JM
5660 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5661
17504584 5662 if (global_rsv == block_rsv ||
f0486c68
YZ
5663 block_rsv->space_info != global_rsv->space_info)
5664 global_rsv = NULL;
0b246afa 5665 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
6a63209f
JB
5666}
5667
8929ecfa
YZ
5668static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5669{
5670 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5671 struct btrfs_space_info *sinfo = block_rsv->space_info;
5672 u64 num_bytes;
6a63209f 5673
ae2e4728
JB
5674 /*
5675 * The global block rsv is based on the size of the extent tree, the
5676 * checksum tree and the root tree. If the fs is empty we want to set
5677 * it to a minimal amount for safety.
5678 */
5679 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5680 btrfs_root_used(&fs_info->csum_root->root_item) +
5681 btrfs_root_used(&fs_info->tree_root->root_item);
5682 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5683
8929ecfa 5684 spin_lock(&sinfo->lock);
1f699d38 5685 spin_lock(&block_rsv->lock);
4e06bdd6 5686
ee22184b 5687 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5688
fb4b10e5 5689 if (block_rsv->reserved < block_rsv->size) {
4136135b 5690 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5691 if (sinfo->total_bytes > num_bytes) {
5692 num_bytes = sinfo->total_bytes - num_bytes;
5693 num_bytes = min(num_bytes,
5694 block_rsv->size - block_rsv->reserved);
5695 block_rsv->reserved += num_bytes;
5696 sinfo->bytes_may_use += num_bytes;
5697 trace_btrfs_space_reservation(fs_info, "space_info",
5698 sinfo->flags, num_bytes,
5699 1);
5700 }
5701 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5702 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5703 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5704 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5705 sinfo->flags, num_bytes, 0);
8929ecfa 5706 block_rsv->reserved = block_rsv->size;
8929ecfa 5707 }
182608c8 5708
fb4b10e5
JB
5709 if (block_rsv->reserved == block_rsv->size)
5710 block_rsv->full = 1;
5711 else
5712 block_rsv->full = 0;
5713
8929ecfa 5714 spin_unlock(&block_rsv->lock);
1f699d38 5715 spin_unlock(&sinfo->lock);
6a63209f
JB
5716}
5717
f0486c68 5718static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5719{
f0486c68 5720 struct btrfs_space_info *space_info;
6a63209f 5721
f0486c68
YZ
5722 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5723 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5724
f0486c68 5725 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5726 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5727 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5728 fs_info->trans_block_rsv.space_info = space_info;
5729 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5730 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5731
8929ecfa
YZ
5732 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5733 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5734 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5735 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5736 if (fs_info->quota_root)
5737 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5738 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5739
8929ecfa 5740 update_global_block_rsv(fs_info);
6a63209f
JB
5741}
5742
8929ecfa 5743static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5744{
8c2a3ca2
JB
5745 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5746 (u64)-1);
8929ecfa
YZ
5747 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5748 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5749 WARN_ON(fs_info->trans_block_rsv.size > 0);
5750 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5751 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5752 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5753 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5754 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5755}
5756
a22285a6 5757void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
2ff7e61e 5758 struct btrfs_fs_info *fs_info)
6a63209f 5759{
0e721106
JB
5760 if (!trans->block_rsv)
5761 return;
5762
a22285a6
YZ
5763 if (!trans->bytes_reserved)
5764 return;
6a63209f 5765
0b246afa 5766 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 5767 trans->transid, trans->bytes_reserved, 0);
2ff7e61e
JM
5768 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5769 trans->bytes_reserved);
a22285a6
YZ
5770 trans->bytes_reserved = 0;
5771}
6a63209f 5772
4fbcdf66
FM
5773/*
5774 * To be called after all the new block groups attached to the transaction
5775 * handle have been created (btrfs_create_pending_block_groups()).
5776 */
5777void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5778{
64b63580 5779 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5780
5781 if (!trans->chunk_bytes_reserved)
5782 return;
5783
5784 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5785
5786 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5787 trans->chunk_bytes_reserved);
5788 trans->chunk_bytes_reserved = 0;
5789}
5790
79787eaa 5791/* Can only return 0 or -ENOSPC */
d68fc57b 5792int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
8ed7a2a0 5793 struct btrfs_inode *inode)
d68fc57b 5794{
8ed7a2a0
NB
5795 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5796 struct btrfs_root *root = inode->root;
40acc3ee
JB
5797 /*
5798 * We always use trans->block_rsv here as we will have reserved space
5799 * for our orphan when starting the transaction, using get_block_rsv()
5800 * here will sometimes make us choose the wrong block rsv as we could be
5801 * doing a reloc inode for a non refcounted root.
5802 */
5803 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5804 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5805
5806 /*
fcb80c2a
JB
5807 * We need to hold space in order to delete our orphan item once we've
5808 * added it, so this takes the reservation so we can release it later
5809 * when we are truly done with the orphan item.
d68fc57b 5810 */
0b246afa
JM
5811 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5812
8ed7a2a0
NB
5813 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5814 num_bytes, 1);
25d609f8 5815 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5816}
5817
703b391a 5818void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
97e728d4 5819{
703b391a
NB
5820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5821 struct btrfs_root *root = inode->root;
0b246afa
JM
5822 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5823
703b391a
NB
5824 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5825 num_bytes, 0);
2ff7e61e 5826 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
d68fc57b 5827}
97e728d4 5828
d5c12070
MX
5829/*
5830 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5831 * root: the root of the parent directory
5832 * rsv: block reservation
5833 * items: the number of items that we need do reservation
5834 * qgroup_reserved: used to return the reserved size in qgroup
5835 *
5836 * This function is used to reserve the space for snapshot/subvolume
5837 * creation and deletion. Those operations are different with the
5838 * common file/directory operations, they change two fs/file trees
5839 * and root tree, the number of items that the qgroup reserves is
5840 * different with the free space reservation. So we can not use
01327610 5841 * the space reservation mechanism in start_transaction().
d5c12070
MX
5842 */
5843int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5844 struct btrfs_block_rsv *rsv,
5845 int items,
ee3441b4
JM
5846 u64 *qgroup_reserved,
5847 bool use_global_rsv)
a22285a6 5848{
d5c12070
MX
5849 u64 num_bytes;
5850 int ret;
0b246afa
JM
5851 struct btrfs_fs_info *fs_info = root->fs_info;
5852 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5853
0b246afa 5854 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5855 /* One for parent inode, two for dir entries */
0b246afa 5856 num_bytes = 3 * fs_info->nodesize;
003d7c59 5857 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
d5c12070
MX
5858 if (ret)
5859 return ret;
5860 } else {
5861 num_bytes = 0;
5862 }
5863
5864 *qgroup_reserved = num_bytes;
5865
0b246afa
JM
5866 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5867 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
5868 BTRFS_BLOCK_GROUP_METADATA);
5869 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5870 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5871
5872 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5873 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5874
7174109c
QW
5875 if (ret && *qgroup_reserved)
5876 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5877
5878 return ret;
5879}
5880
2ff7e61e 5881void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 5882 struct btrfs_block_rsv *rsv)
d5c12070 5883{
2ff7e61e 5884 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
5885}
5886
7709cde3
JB
5887/**
5888 * drop_outstanding_extent - drop an outstanding extent
5889 * @inode: the inode we're dropping the extent for
01327610 5890 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5891 *
5892 * This is called when we are freeing up an outstanding extent, either called
5893 * after an error or after an extent is written. This will return the number of
5894 * reserved extents that need to be freed. This must be called with
5895 * BTRFS_I(inode)->lock held.
5896 */
baa3ba39
NB
5897static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5898 u64 num_bytes)
9e0baf60 5899{
7fd2ae21 5900 unsigned drop_inode_space = 0;
9e0baf60 5901 unsigned dropped_extents = 0;
823bb20a 5902 unsigned num_extents;
9e0baf60 5903
823bb20a 5904 num_extents = count_max_extents(num_bytes);
dcab6a3b 5905 ASSERT(num_extents);
baa3ba39
NB
5906 ASSERT(inode->outstanding_extents >= num_extents);
5907 inode->outstanding_extents -= num_extents;
9e0baf60 5908
baa3ba39 5909 if (inode->outstanding_extents == 0 &&
72ac3c0d 5910 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
baa3ba39 5911 &inode->runtime_flags))
7fd2ae21 5912 drop_inode_space = 1;
7fd2ae21 5913
9e0baf60 5914 /*
01327610 5915 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5916 * reserved then we need to leave the reserved extents count alone.
5917 */
baa3ba39 5918 if (inode->outstanding_extents >= inode->reserved_extents)
7fd2ae21 5919 return drop_inode_space;
9e0baf60 5920
baa3ba39
NB
5921 dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5922 inode->reserved_extents -= dropped_extents;
7fd2ae21 5923 return dropped_extents + drop_inode_space;
9e0baf60
JB
5924}
5925
7709cde3 5926/**
01327610
NS
5927 * calc_csum_metadata_size - return the amount of metadata space that must be
5928 * reserved/freed for the given bytes.
7709cde3
JB
5929 * @inode: the inode we're manipulating
5930 * @num_bytes: the number of bytes in question
5931 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5932 *
5933 * This adjusts the number of csum_bytes in the inode and then returns the
5934 * correct amount of metadata that must either be reserved or freed. We
5935 * calculate how many checksums we can fit into one leaf and then divide the
5936 * number of bytes that will need to be checksumed by this value to figure out
5937 * how many checksums will be required. If we are adding bytes then the number
5938 * may go up and we will return the number of additional bytes that must be
5939 * reserved. If it is going down we will return the number of bytes that must
5940 * be freed.
5941 *
5942 * This must be called with BTRFS_I(inode)->lock held.
5943 */
0e6bf9b1 5944static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
7709cde3 5945 int reserve)
6324fbf3 5946{
0e6bf9b1 5947 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1262133b 5948 u64 old_csums, num_csums;
7709cde3 5949
0e6bf9b1 5950 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
7709cde3
JB
5951 return 0;
5952
0e6bf9b1 5953 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
7709cde3 5954 if (reserve)
0e6bf9b1 5955 inode->csum_bytes += num_bytes;
7709cde3 5956 else
0e6bf9b1
NB
5957 inode->csum_bytes -= num_bytes;
5958 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
7709cde3
JB
5959
5960 /* No change, no need to reserve more */
5961 if (old_csums == num_csums)
5962 return 0;
5963
5964 if (reserve)
0b246afa 5965 return btrfs_calc_trans_metadata_size(fs_info,
7709cde3
JB
5966 num_csums - old_csums);
5967
0b246afa 5968 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
0ca1f7ce 5969}
c146afad 5970
9f3db423 5971int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 5972{
9f3db423
NB
5973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5974 struct btrfs_root *root = inode->root;
0b246afa 5975 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
9e0baf60 5976 u64 to_reserve = 0;
660d3f6c 5977 u64 csum_bytes;
823bb20a 5978 unsigned nr_extents;
08e007d2 5979 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5980 int ret = 0;
c64c2bd8 5981 bool delalloc_lock = true;
88e081bf
WS
5982 u64 to_free = 0;
5983 unsigned dropped;
48c3d480 5984 bool release_extra = false;
6324fbf3 5985
c64c2bd8
JB
5986 /* If we are a free space inode we need to not flush since we will be in
5987 * the middle of a transaction commit. We also don't need the delalloc
5988 * mutex since we won't race with anybody. We need this mostly to make
5989 * lockdep shut its filthy mouth.
bac357dc
JB
5990 *
5991 * If we have a transaction open (can happen if we call truncate_block
5992 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
5993 */
5994 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5995 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 5996 delalloc_lock = false;
bac357dc
JB
5997 } else if (current->journal_info) {
5998 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c64c2bd8 5999 }
c09544e0 6000
08e007d2 6001 if (flush != BTRFS_RESERVE_NO_FLUSH &&
0b246afa 6002 btrfs_transaction_in_commit(fs_info))
0ca1f7ce 6003 schedule_timeout(1);
ec44a35c 6004
c64c2bd8 6005 if (delalloc_lock)
9f3db423 6006 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6007
0b246afa 6008 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
8bb8ab2e 6009
9f3db423 6010 spin_lock(&inode->lock);
823bb20a 6011 nr_extents = count_max_extents(num_bytes);
9f3db423 6012 inode->outstanding_extents += nr_extents;
9e0baf60 6013
48c3d480 6014 nr_extents = 0;
9f3db423
NB
6015 if (inode->outstanding_extents > inode->reserved_extents)
6016 nr_extents += inode->outstanding_extents -
6017 inode->reserved_extents;
57a45ced 6018
48c3d480 6019 /* We always want to reserve a slot for updating the inode. */
0b246afa 6020 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
7709cde3 6021 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
9f3db423
NB
6022 csum_bytes = inode->csum_bytes;
6023 spin_unlock(&inode->lock);
57a45ced 6024
0b246afa 6025 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
7174109c 6026 ret = btrfs_qgroup_reserve_meta(root,
003d7c59 6027 nr_extents * fs_info->nodesize, true);
88e081bf
WS
6028 if (ret)
6029 goto out_fail;
6030 }
c5567237 6031
48c3d480 6032 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
88e081bf 6033 if (unlikely(ret)) {
da17066c 6034 btrfs_qgroup_free_meta(root,
0b246afa 6035 nr_extents * fs_info->nodesize);
88e081bf 6036 goto out_fail;
9e0baf60 6037 }
25179201 6038
9f3db423 6039 spin_lock(&inode->lock);
48c3d480 6040 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
9f3db423 6041 &inode->runtime_flags)) {
0b246afa 6042 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
48c3d480 6043 release_extra = true;
660d3f6c 6044 }
9f3db423
NB
6045 inode->reserved_extents += nr_extents;
6046 spin_unlock(&inode->lock);
c64c2bd8
JB
6047
6048 if (delalloc_lock)
9f3db423 6049 mutex_unlock(&inode->delalloc_mutex);
660d3f6c 6050
8c2a3ca2 6051 if (to_reserve)
0b246afa 6052 trace_btrfs_space_reservation(fs_info, "delalloc",
9f3db423 6053 btrfs_ino(inode), to_reserve, 1);
48c3d480 6054 if (release_extra)
2ff7e61e 6055 btrfs_block_rsv_release(fs_info, block_rsv,
0b246afa 6056 btrfs_calc_trans_metadata_size(fs_info, 1));
0ca1f7ce 6057 return 0;
88e081bf
WS
6058
6059out_fail:
9f3db423 6060 spin_lock(&inode->lock);
dcab6a3b 6061 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
6062 /*
6063 * If the inodes csum_bytes is the same as the original
6064 * csum_bytes then we know we haven't raced with any free()ers
6065 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 6066 */
9f3db423 6067 if (inode->csum_bytes == csum_bytes) {
88e081bf 6068 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7 6069 } else {
9f3db423 6070 u64 orig_csum_bytes = inode->csum_bytes;
f4881bc7
JB
6071 u64 bytes;
6072
6073 /*
6074 * This is tricky, but first we need to figure out how much we
01327610 6075 * freed from any free-ers that occurred during this
f4881bc7
JB
6076 * reservation, so we reset ->csum_bytes to the csum_bytes
6077 * before we dropped our lock, and then call the free for the
6078 * number of bytes that were freed while we were trying our
6079 * reservation.
6080 */
9f3db423
NB
6081 bytes = csum_bytes - inode->csum_bytes;
6082 inode->csum_bytes = csum_bytes;
f4881bc7
JB
6083 to_free = calc_csum_metadata_size(inode, bytes, 0);
6084
6085
6086 /*
6087 * Now we need to see how much we would have freed had we not
6088 * been making this reservation and our ->csum_bytes were not
6089 * artificially inflated.
6090 */
9f3db423 6091 inode->csum_bytes = csum_bytes - num_bytes;
f4881bc7
JB
6092 bytes = csum_bytes - orig_csum_bytes;
6093 bytes = calc_csum_metadata_size(inode, bytes, 0);
6094
6095 /*
6096 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 6097 * more than to_free then we would have freed more space had we
f4881bc7
JB
6098 * not had an artificially high ->csum_bytes, so we need to free
6099 * the remainder. If bytes is the same or less then we don't
6100 * need to do anything, the other free-ers did the correct
6101 * thing.
6102 */
9f3db423 6103 inode->csum_bytes = orig_csum_bytes - num_bytes;
f4881bc7
JB
6104 if (bytes > to_free)
6105 to_free = bytes - to_free;
6106 else
6107 to_free = 0;
6108 }
9f3db423 6109 spin_unlock(&inode->lock);
e2d1f923 6110 if (dropped)
0b246afa 6111 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
88e081bf
WS
6112
6113 if (to_free) {
2ff7e61e 6114 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
0b246afa 6115 trace_btrfs_space_reservation(fs_info, "delalloc",
9f3db423 6116 btrfs_ino(inode), to_free, 0);
88e081bf
WS
6117 }
6118 if (delalloc_lock)
9f3db423 6119 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6120 return ret;
0ca1f7ce
YZ
6121}
6122
7709cde3
JB
6123/**
6124 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6125 * @inode: the inode to release the reservation for
6126 * @num_bytes: the number of bytes we're releasing
6127 *
6128 * This will release the metadata reservation for an inode. This can be called
6129 * once we complete IO for a given set of bytes to release their metadata
6130 * reservations.
6131 */
691fa059 6132void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6133{
691fa059 6134 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
9e0baf60
JB
6135 u64 to_free = 0;
6136 unsigned dropped;
0ca1f7ce 6137
0b246afa 6138 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6139 spin_lock(&inode->lock);
dcab6a3b 6140 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 6141
0934856d
MX
6142 if (num_bytes)
6143 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
691fa059 6144 spin_unlock(&inode->lock);
9e0baf60 6145 if (dropped > 0)
0b246afa 6146 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
0ca1f7ce 6147
0b246afa 6148 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6149 return;
6150
691fa059
NB
6151 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6152 to_free, 0);
c5567237 6153
2ff7e61e 6154 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
0ca1f7ce
YZ
6155}
6156
1ada3a62 6157/**
7cf5b976 6158 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6159 * delalloc
6160 * @inode: inode we're writing to
6161 * @start: start range we are writing to
6162 * @len: how long the range we are writing to
6163 *
1ada3a62
QW
6164 * This will do the following things
6165 *
6166 * o reserve space in data space info for num bytes
6167 * and reserve precious corresponding qgroup space
6168 * (Done in check_data_free_space)
6169 *
6170 * o reserve space for metadata space, based on the number of outstanding
6171 * extents and how much csums will be needed
6172 * also reserve metadata space in a per root over-reserve method.
6173 * o add to the inodes->delalloc_bytes
6174 * o add it to the fs_info's delalloc inodes list.
6175 * (Above 3 all done in delalloc_reserve_metadata)
6176 *
6177 * Return 0 for success
6178 * Return <0 for error(-ENOSPC or -EQUOT)
6179 */
7cf5b976 6180int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6181{
6182 int ret;
6183
7cf5b976 6184 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
6185 if (ret < 0)
6186 return ret;
9f3db423 6187 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6188 if (ret < 0)
7cf5b976 6189 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
6190 return ret;
6191}
6192
7709cde3 6193/**
7cf5b976 6194 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6195 * @inode: inode we're releasing space for
6196 * @start: start position of the space already reserved
6197 * @len: the len of the space already reserved
6198 *
6199 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6200 * called in the case that we don't need the metadata AND data reservations
6201 * anymore. So if there is an error or we insert an inline extent.
6202 *
6203 * This function will release the metadata space that was not used and will
6204 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6205 * list if there are no delalloc bytes left.
6206 * Also it will handle the qgroup reserved space.
6207 */
7cf5b976 6208void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62 6209{
691fa059 6210 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
7cf5b976 6211 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
6212}
6213
ce93ec54 6214static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6215 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6216 u64 num_bytes, int alloc)
9078a3e1 6217{
0af3d00b 6218 struct btrfs_block_group_cache *cache = NULL;
db94535d 6219 u64 total = num_bytes;
9078a3e1 6220 u64 old_val;
db94535d 6221 u64 byte_in_group;
0af3d00b 6222 int factor;
3e1ad54f 6223
5d4f98a2 6224 /* block accounting for super block */
eb73c1b7 6225 spin_lock(&info->delalloc_root_lock);
6c41761f 6226 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6227 if (alloc)
6228 old_val += num_bytes;
6229 else
6230 old_val -= num_bytes;
6c41761f 6231 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6232 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6233
d397712b 6234 while (total) {
db94535d 6235 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6236 if (!cache)
79787eaa 6237 return -ENOENT;
b742bb82
YZ
6238 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6239 BTRFS_BLOCK_GROUP_RAID1 |
6240 BTRFS_BLOCK_GROUP_RAID10))
6241 factor = 2;
6242 else
6243 factor = 1;
9d66e233
JB
6244 /*
6245 * If this block group has free space cache written out, we
6246 * need to make sure to load it if we are removing space. This
6247 * is because we need the unpinning stage to actually add the
6248 * space back to the block group, otherwise we will leak space.
6249 */
6250 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6251 cache_block_group(cache, 1);
0af3d00b 6252
db94535d
CM
6253 byte_in_group = bytenr - cache->key.objectid;
6254 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6255
25179201 6256 spin_lock(&cache->space_info->lock);
c286ac48 6257 spin_lock(&cache->lock);
0af3d00b 6258
6202df69 6259 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6260 cache->disk_cache_state < BTRFS_DC_CLEAR)
6261 cache->disk_cache_state = BTRFS_DC_CLEAR;
6262
9078a3e1 6263 old_val = btrfs_block_group_used(&cache->item);
db94535d 6264 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6265 if (alloc) {
db94535d 6266 old_val += num_bytes;
11833d66
YZ
6267 btrfs_set_block_group_used(&cache->item, old_val);
6268 cache->reserved -= num_bytes;
11833d66 6269 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6270 cache->space_info->bytes_used += num_bytes;
6271 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6272 spin_unlock(&cache->lock);
25179201 6273 spin_unlock(&cache->space_info->lock);
cd1bc465 6274 } else {
db94535d 6275 old_val -= num_bytes;
ae0ab003
FM
6276 btrfs_set_block_group_used(&cache->item, old_val);
6277 cache->pinned += num_bytes;
6278 cache->space_info->bytes_pinned += num_bytes;
6279 cache->space_info->bytes_used -= num_bytes;
6280 cache->space_info->disk_used -= num_bytes * factor;
6281 spin_unlock(&cache->lock);
6282 spin_unlock(&cache->space_info->lock);
47ab2a6c 6283
0b246afa 6284 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6285 cache->space_info->flags,
6286 num_bytes, 1);
ae0ab003
FM
6287 set_extent_dirty(info->pinned_extents,
6288 bytenr, bytenr + num_bytes - 1,
6289 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6290 }
1bbc621e
CM
6291
6292 spin_lock(&trans->transaction->dirty_bgs_lock);
6293 if (list_empty(&cache->dirty_list)) {
6294 list_add_tail(&cache->dirty_list,
6295 &trans->transaction->dirty_bgs);
6296 trans->transaction->num_dirty_bgs++;
6297 btrfs_get_block_group(cache);
6298 }
6299 spin_unlock(&trans->transaction->dirty_bgs_lock);
6300
036a9348
FM
6301 /*
6302 * No longer have used bytes in this block group, queue it for
6303 * deletion. We do this after adding the block group to the
6304 * dirty list to avoid races between cleaner kthread and space
6305 * cache writeout.
6306 */
6307 if (!alloc && old_val == 0) {
6308 spin_lock(&info->unused_bgs_lock);
6309 if (list_empty(&cache->bg_list)) {
6310 btrfs_get_block_group(cache);
6311 list_add_tail(&cache->bg_list,
6312 &info->unused_bgs);
6313 }
6314 spin_unlock(&info->unused_bgs_lock);
6315 }
6316
fa9c0d79 6317 btrfs_put_block_group(cache);
db94535d
CM
6318 total -= num_bytes;
6319 bytenr += num_bytes;
9078a3e1
CM
6320 }
6321 return 0;
6322}
6324fbf3 6323
2ff7e61e 6324static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6325{
0f9dd46c 6326 struct btrfs_block_group_cache *cache;
d2fb3437 6327 u64 bytenr;
0f9dd46c 6328
0b246afa
JM
6329 spin_lock(&fs_info->block_group_cache_lock);
6330 bytenr = fs_info->first_logical_byte;
6331 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6332
6333 if (bytenr < (u64)-1)
6334 return bytenr;
6335
0b246afa 6336 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6337 if (!cache)
a061fc8d 6338 return 0;
0f9dd46c 6339
d2fb3437 6340 bytenr = cache->key.objectid;
fa9c0d79 6341 btrfs_put_block_group(cache);
d2fb3437
YZ
6342
6343 return bytenr;
a061fc8d
CM
6344}
6345
2ff7e61e 6346static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6347 struct btrfs_block_group_cache *cache,
6348 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6349{
11833d66
YZ
6350 spin_lock(&cache->space_info->lock);
6351 spin_lock(&cache->lock);
6352 cache->pinned += num_bytes;
6353 cache->space_info->bytes_pinned += num_bytes;
6354 if (reserved) {
6355 cache->reserved -= num_bytes;
6356 cache->space_info->bytes_reserved -= num_bytes;
6357 }
6358 spin_unlock(&cache->lock);
6359 spin_unlock(&cache->space_info->lock);
68b38550 6360
0b246afa 6361 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6362 cache->space_info->flags, num_bytes, 1);
4da8b76d 6363 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
0b246afa 6364 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6365 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6366 return 0;
6367}
68b38550 6368
f0486c68
YZ
6369/*
6370 * this function must be called within transaction
6371 */
2ff7e61e 6372int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6373 u64 bytenr, u64 num_bytes, int reserved)
6374{
6375 struct btrfs_block_group_cache *cache;
68b38550 6376
0b246afa 6377 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6378 BUG_ON(!cache); /* Logic error */
f0486c68 6379
2ff7e61e 6380 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6381
6382 btrfs_put_block_group(cache);
11833d66
YZ
6383 return 0;
6384}
6385
f0486c68 6386/*
e688b725
CM
6387 * this function must be called within transaction
6388 */
2ff7e61e 6389int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6390 u64 bytenr, u64 num_bytes)
6391{
6392 struct btrfs_block_group_cache *cache;
b50c6e25 6393 int ret;
e688b725 6394
0b246afa 6395 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6396 if (!cache)
6397 return -EINVAL;
e688b725
CM
6398
6399 /*
6400 * pull in the free space cache (if any) so that our pin
6401 * removes the free space from the cache. We have load_only set
6402 * to one because the slow code to read in the free extents does check
6403 * the pinned extents.
6404 */
f6373bf3 6405 cache_block_group(cache, 1);
e688b725 6406
2ff7e61e 6407 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6408
6409 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6410 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6411 btrfs_put_block_group(cache);
b50c6e25 6412 return ret;
e688b725
CM
6413}
6414
2ff7e61e
JM
6415static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6416 u64 start, u64 num_bytes)
8c2a1a30
JB
6417{
6418 int ret;
6419 struct btrfs_block_group_cache *block_group;
6420 struct btrfs_caching_control *caching_ctl;
6421
0b246afa 6422 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6423 if (!block_group)
6424 return -EINVAL;
6425
6426 cache_block_group(block_group, 0);
6427 caching_ctl = get_caching_control(block_group);
6428
6429 if (!caching_ctl) {
6430 /* Logic error */
6431 BUG_ON(!block_group_cache_done(block_group));
6432 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6433 } else {
6434 mutex_lock(&caching_ctl->mutex);
6435
6436 if (start >= caching_ctl->progress) {
2ff7e61e 6437 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6438 } else if (start + num_bytes <= caching_ctl->progress) {
6439 ret = btrfs_remove_free_space(block_group,
6440 start, num_bytes);
6441 } else {
6442 num_bytes = caching_ctl->progress - start;
6443 ret = btrfs_remove_free_space(block_group,
6444 start, num_bytes);
6445 if (ret)
6446 goto out_lock;
6447
6448 num_bytes = (start + num_bytes) -
6449 caching_ctl->progress;
6450 start = caching_ctl->progress;
2ff7e61e 6451 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6452 }
6453out_lock:
6454 mutex_unlock(&caching_ctl->mutex);
6455 put_caching_control(caching_ctl);
6456 }
6457 btrfs_put_block_group(block_group);
6458 return ret;
6459}
6460
2ff7e61e 6461int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6462 struct extent_buffer *eb)
6463{
6464 struct btrfs_file_extent_item *item;
6465 struct btrfs_key key;
6466 int found_type;
6467 int i;
6468
2ff7e61e 6469 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6470 return 0;
6471
6472 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6473 btrfs_item_key_to_cpu(eb, &key, i);
6474 if (key.type != BTRFS_EXTENT_DATA_KEY)
6475 continue;
6476 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6477 found_type = btrfs_file_extent_type(eb, item);
6478 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6479 continue;
6480 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6481 continue;
6482 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6483 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6484 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6485 }
6486
6487 return 0;
6488}
6489
9cfa3e34
FM
6490static void
6491btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6492{
6493 atomic_inc(&bg->reservations);
6494}
6495
6496void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6497 const u64 start)
6498{
6499 struct btrfs_block_group_cache *bg;
6500
6501 bg = btrfs_lookup_block_group(fs_info, start);
6502 ASSERT(bg);
6503 if (atomic_dec_and_test(&bg->reservations))
6504 wake_up_atomic_t(&bg->reservations);
6505 btrfs_put_block_group(bg);
6506}
6507
6508static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6509{
6510 schedule();
6511 return 0;
6512}
6513
6514void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6515{
6516 struct btrfs_space_info *space_info = bg->space_info;
6517
6518 ASSERT(bg->ro);
6519
6520 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6521 return;
6522
6523 /*
6524 * Our block group is read only but before we set it to read only,
6525 * some task might have had allocated an extent from it already, but it
6526 * has not yet created a respective ordered extent (and added it to a
6527 * root's list of ordered extents).
6528 * Therefore wait for any task currently allocating extents, since the
6529 * block group's reservations counter is incremented while a read lock
6530 * on the groups' semaphore is held and decremented after releasing
6531 * the read access on that semaphore and creating the ordered extent.
6532 */
6533 down_write(&space_info->groups_sem);
6534 up_write(&space_info->groups_sem);
6535
6536 wait_on_atomic_t(&bg->reservations,
6537 btrfs_wait_bg_reservations_atomic_t,
6538 TASK_UNINTERRUPTIBLE);
6539}
6540
fb25e914 6541/**
4824f1f4 6542 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6543 * @cache: The cache we are manipulating
18513091
WX
6544 * @ram_bytes: The number of bytes of file content, and will be same to
6545 * @num_bytes except for the compress path.
fb25e914 6546 * @num_bytes: The number of bytes in question
e570fd27 6547 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6548 *
745699ef
XW
6549 * This is called by the allocator when it reserves space. If this is a
6550 * reservation and the block group has become read only we cannot make the
6551 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6552 */
4824f1f4 6553static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6554 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6555{
fb25e914 6556 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6557 int ret = 0;
79787eaa 6558
fb25e914
JB
6559 spin_lock(&space_info->lock);
6560 spin_lock(&cache->lock);
4824f1f4
WX
6561 if (cache->ro) {
6562 ret = -EAGAIN;
fb25e914 6563 } else {
4824f1f4
WX
6564 cache->reserved += num_bytes;
6565 space_info->bytes_reserved += num_bytes;
e570fd27 6566
18513091
WX
6567 trace_btrfs_space_reservation(cache->fs_info,
6568 "space_info", space_info->flags,
6569 ram_bytes, 0);
6570 space_info->bytes_may_use -= ram_bytes;
e570fd27 6571 if (delalloc)
4824f1f4 6572 cache->delalloc_bytes += num_bytes;
324ae4df 6573 }
fb25e914
JB
6574 spin_unlock(&cache->lock);
6575 spin_unlock(&space_info->lock);
f0486c68 6576 return ret;
324ae4df 6577}
9078a3e1 6578
4824f1f4
WX
6579/**
6580 * btrfs_free_reserved_bytes - update the block_group and space info counters
6581 * @cache: The cache we are manipulating
6582 * @num_bytes: The number of bytes in question
6583 * @delalloc: The blocks are allocated for the delalloc write
6584 *
6585 * This is called by somebody who is freeing space that was never actually used
6586 * on disk. For example if you reserve some space for a new leaf in transaction
6587 * A and before transaction A commits you free that leaf, you call this with
6588 * reserve set to 0 in order to clear the reservation.
6589 */
6590
6591static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6592 u64 num_bytes, int delalloc)
6593{
6594 struct btrfs_space_info *space_info = cache->space_info;
6595 int ret = 0;
6596
6597 spin_lock(&space_info->lock);
6598 spin_lock(&cache->lock);
6599 if (cache->ro)
6600 space_info->bytes_readonly += num_bytes;
6601 cache->reserved -= num_bytes;
6602 space_info->bytes_reserved -= num_bytes;
6603
6604 if (delalloc)
6605 cache->delalloc_bytes -= num_bytes;
6606 spin_unlock(&cache->lock);
6607 spin_unlock(&space_info->lock);
6608 return ret;
6609}
8b74c03e 6610void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6611{
11833d66
YZ
6612 struct btrfs_caching_control *next;
6613 struct btrfs_caching_control *caching_ctl;
6614 struct btrfs_block_group_cache *cache;
e8569813 6615
9e351cc8 6616 down_write(&fs_info->commit_root_sem);
25179201 6617
11833d66
YZ
6618 list_for_each_entry_safe(caching_ctl, next,
6619 &fs_info->caching_block_groups, list) {
6620 cache = caching_ctl->block_group;
6621 if (block_group_cache_done(cache)) {
6622 cache->last_byte_to_unpin = (u64)-1;
6623 list_del_init(&caching_ctl->list);
6624 put_caching_control(caching_ctl);
e8569813 6625 } else {
11833d66 6626 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6627 }
e8569813 6628 }
11833d66
YZ
6629
6630 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6631 fs_info->pinned_extents = &fs_info->freed_extents[1];
6632 else
6633 fs_info->pinned_extents = &fs_info->freed_extents[0];
6634
9e351cc8 6635 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6636
6637 update_global_block_rsv(fs_info);
e8569813
ZY
6638}
6639
c759c4e1
JB
6640/*
6641 * Returns the free cluster for the given space info and sets empty_cluster to
6642 * what it should be based on the mount options.
6643 */
6644static struct btrfs_free_cluster *
2ff7e61e
JM
6645fetch_cluster_info(struct btrfs_fs_info *fs_info,
6646 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6647{
6648 struct btrfs_free_cluster *ret = NULL;
0b246afa 6649 bool ssd = btrfs_test_opt(fs_info, SSD);
c759c4e1
JB
6650
6651 *empty_cluster = 0;
6652 if (btrfs_mixed_space_info(space_info))
6653 return ret;
6654
6655 if (ssd)
ee22184b 6656 *empty_cluster = SZ_2M;
c759c4e1 6657 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6658 ret = &fs_info->meta_alloc_cluster;
c759c4e1 6659 if (!ssd)
ee22184b 6660 *empty_cluster = SZ_64K;
c759c4e1 6661 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
0b246afa 6662 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6663 }
6664
6665 return ret;
6666}
6667
2ff7e61e
JM
6668static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6669 u64 start, u64 end,
678886bd 6670 const bool return_free_space)
ccd467d6 6671{
11833d66 6672 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6673 struct btrfs_space_info *space_info;
6674 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6675 struct btrfs_free_cluster *cluster = NULL;
11833d66 6676 u64 len;
c759c4e1
JB
6677 u64 total_unpinned = 0;
6678 u64 empty_cluster = 0;
7b398f8e 6679 bool readonly;
ccd467d6 6680
11833d66 6681 while (start <= end) {
7b398f8e 6682 readonly = false;
11833d66
YZ
6683 if (!cache ||
6684 start >= cache->key.objectid + cache->key.offset) {
6685 if (cache)
6686 btrfs_put_block_group(cache);
c759c4e1 6687 total_unpinned = 0;
11833d66 6688 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6689 BUG_ON(!cache); /* Logic error */
c759c4e1 6690
2ff7e61e 6691 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6692 cache->space_info,
6693 &empty_cluster);
6694 empty_cluster <<= 1;
11833d66
YZ
6695 }
6696
6697 len = cache->key.objectid + cache->key.offset - start;
6698 len = min(len, end + 1 - start);
6699
6700 if (start < cache->last_byte_to_unpin) {
6701 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6702 if (return_free_space)
6703 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6704 }
6705
f0486c68 6706 start += len;
c759c4e1 6707 total_unpinned += len;
7b398f8e 6708 space_info = cache->space_info;
f0486c68 6709
c759c4e1
JB
6710 /*
6711 * If this space cluster has been marked as fragmented and we've
6712 * unpinned enough in this block group to potentially allow a
6713 * cluster to be created inside of it go ahead and clear the
6714 * fragmented check.
6715 */
6716 if (cluster && cluster->fragmented &&
6717 total_unpinned > empty_cluster) {
6718 spin_lock(&cluster->lock);
6719 cluster->fragmented = 0;
6720 spin_unlock(&cluster->lock);
6721 }
6722
7b398f8e 6723 spin_lock(&space_info->lock);
11833d66
YZ
6724 spin_lock(&cache->lock);
6725 cache->pinned -= len;
7b398f8e 6726 space_info->bytes_pinned -= len;
c51e7bb1
JB
6727
6728 trace_btrfs_space_reservation(fs_info, "pinned",
6729 space_info->flags, len, 0);
4f4db217 6730 space_info->max_extent_size = 0;
d288db5d 6731 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6732 if (cache->ro) {
6733 space_info->bytes_readonly += len;
6734 readonly = true;
6735 }
11833d66 6736 spin_unlock(&cache->lock);
957780eb
JB
6737 if (!readonly && return_free_space &&
6738 global_rsv->space_info == space_info) {
6739 u64 to_add = len;
6740 WARN_ON(!return_free_space);
7b398f8e
JB
6741 spin_lock(&global_rsv->lock);
6742 if (!global_rsv->full) {
957780eb
JB
6743 to_add = min(len, global_rsv->size -
6744 global_rsv->reserved);
6745 global_rsv->reserved += to_add;
6746 space_info->bytes_may_use += to_add;
7b398f8e
JB
6747 if (global_rsv->reserved >= global_rsv->size)
6748 global_rsv->full = 1;
957780eb
JB
6749 trace_btrfs_space_reservation(fs_info,
6750 "space_info",
6751 space_info->flags,
6752 to_add, 1);
6753 len -= to_add;
7b398f8e
JB
6754 }
6755 spin_unlock(&global_rsv->lock);
957780eb
JB
6756 /* Add to any tickets we may have */
6757 if (len)
6758 space_info_add_new_bytes(fs_info, space_info,
6759 len);
7b398f8e
JB
6760 }
6761 spin_unlock(&space_info->lock);
ccd467d6 6762 }
11833d66
YZ
6763
6764 if (cache)
6765 btrfs_put_block_group(cache);
ccd467d6
CM
6766 return 0;
6767}
6768
6769int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2ff7e61e 6770 struct btrfs_fs_info *fs_info)
a28ec197 6771{
e33e17ee
JM
6772 struct btrfs_block_group_cache *block_group, *tmp;
6773 struct list_head *deleted_bgs;
11833d66 6774 struct extent_io_tree *unpin;
1a5bc167
CM
6775 u64 start;
6776 u64 end;
a28ec197 6777 int ret;
a28ec197 6778
11833d66
YZ
6779 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6780 unpin = &fs_info->freed_extents[1];
6781 else
6782 unpin = &fs_info->freed_extents[0];
6783
e33e17ee 6784 while (!trans->aborted) {
d4b450cd 6785 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6786 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6787 EXTENT_DIRTY, NULL);
d4b450cd
FM
6788 if (ret) {
6789 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6790 break;
d4b450cd 6791 }
1f3c79a2 6792
0b246afa 6793 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6794 ret = btrfs_discard_extent(fs_info, start,
5378e607 6795 end + 1 - start, NULL);
1f3c79a2 6796
af6f8f60 6797 clear_extent_dirty(unpin, start, end);
2ff7e61e 6798 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6799 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6800 cond_resched();
a28ec197 6801 }
817d52f8 6802
e33e17ee
JM
6803 /*
6804 * Transaction is finished. We don't need the lock anymore. We
6805 * do need to clean up the block groups in case of a transaction
6806 * abort.
6807 */
6808 deleted_bgs = &trans->transaction->deleted_bgs;
6809 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6810 u64 trimmed = 0;
6811
6812 ret = -EROFS;
6813 if (!trans->aborted)
2ff7e61e 6814 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6815 block_group->key.objectid,
6816 block_group->key.offset,
6817 &trimmed);
6818
6819 list_del_init(&block_group->bg_list);
6820 btrfs_put_block_group_trimming(block_group);
6821 btrfs_put_block_group(block_group);
6822
6823 if (ret) {
6824 const char *errstr = btrfs_decode_error(ret);
6825 btrfs_warn(fs_info,
6826 "Discard failed while removing blockgroup: errno=%d %s\n",
6827 ret, errstr);
6828 }
6829 }
6830
e20d96d6
CM
6831 return 0;
6832}
6833
5d4f98a2 6834static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6835 struct btrfs_fs_info *info,
c682f9b3 6836 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6837 u64 root_objectid, u64 owner_objectid,
6838 u64 owner_offset, int refs_to_drop,
c682f9b3 6839 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6840{
e2fa7227 6841 struct btrfs_key key;
5d4f98a2 6842 struct btrfs_path *path;
1261ec42 6843 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6844 struct extent_buffer *leaf;
5d4f98a2
YZ
6845 struct btrfs_extent_item *ei;
6846 struct btrfs_extent_inline_ref *iref;
a28ec197 6847 int ret;
5d4f98a2 6848 int is_data;
952fccac
CM
6849 int extent_slot = 0;
6850 int found_extent = 0;
6851 int num_to_del = 1;
5d4f98a2
YZ
6852 u32 item_size;
6853 u64 refs;
c682f9b3
QW
6854 u64 bytenr = node->bytenr;
6855 u64 num_bytes = node->num_bytes;
fcebe456 6856 int last_ref = 0;
0b246afa 6857 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6858
5caf2a00 6859 path = btrfs_alloc_path();
54aa1f4d
CM
6860 if (!path)
6861 return -ENOMEM;
5f26f772 6862
e4058b54 6863 path->reada = READA_FORWARD;
b9473439 6864 path->leave_spinning = 1;
5d4f98a2
YZ
6865
6866 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6867 BUG_ON(!is_data && refs_to_drop != 1);
6868
3173a18f
JB
6869 if (is_data)
6870 skinny_metadata = 0;
6871
87bde3cd 6872 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6873 bytenr, num_bytes, parent,
6874 root_objectid, owner_objectid,
6875 owner_offset);
7bb86316 6876 if (ret == 0) {
952fccac 6877 extent_slot = path->slots[0];
5d4f98a2
YZ
6878 while (extent_slot >= 0) {
6879 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6880 extent_slot);
5d4f98a2 6881 if (key.objectid != bytenr)
952fccac 6882 break;
5d4f98a2
YZ
6883 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6884 key.offset == num_bytes) {
952fccac
CM
6885 found_extent = 1;
6886 break;
6887 }
3173a18f
JB
6888 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6889 key.offset == owner_objectid) {
6890 found_extent = 1;
6891 break;
6892 }
952fccac
CM
6893 if (path->slots[0] - extent_slot > 5)
6894 break;
5d4f98a2 6895 extent_slot--;
952fccac 6896 }
5d4f98a2
YZ
6897#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6898 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6899 if (found_extent && item_size < sizeof(*ei))
6900 found_extent = 0;
6901#endif
31840ae1 6902 if (!found_extent) {
5d4f98a2 6903 BUG_ON(iref);
87bde3cd
JM
6904 ret = remove_extent_backref(trans, info, path, NULL,
6905 refs_to_drop,
fcebe456 6906 is_data, &last_ref);
005d6427 6907 if (ret) {
66642832 6908 btrfs_abort_transaction(trans, ret);
005d6427
DS
6909 goto out;
6910 }
b3b4aa74 6911 btrfs_release_path(path);
b9473439 6912 path->leave_spinning = 1;
5d4f98a2
YZ
6913
6914 key.objectid = bytenr;
6915 key.type = BTRFS_EXTENT_ITEM_KEY;
6916 key.offset = num_bytes;
6917
3173a18f
JB
6918 if (!is_data && skinny_metadata) {
6919 key.type = BTRFS_METADATA_ITEM_KEY;
6920 key.offset = owner_objectid;
6921 }
6922
31840ae1
ZY
6923 ret = btrfs_search_slot(trans, extent_root,
6924 &key, path, -1, 1);
3173a18f
JB
6925 if (ret > 0 && skinny_metadata && path->slots[0]) {
6926 /*
6927 * Couldn't find our skinny metadata item,
6928 * see if we have ye olde extent item.
6929 */
6930 path->slots[0]--;
6931 btrfs_item_key_to_cpu(path->nodes[0], &key,
6932 path->slots[0]);
6933 if (key.objectid == bytenr &&
6934 key.type == BTRFS_EXTENT_ITEM_KEY &&
6935 key.offset == num_bytes)
6936 ret = 0;
6937 }
6938
6939 if (ret > 0 && skinny_metadata) {
6940 skinny_metadata = false;
9ce49a0b 6941 key.objectid = bytenr;
3173a18f
JB
6942 key.type = BTRFS_EXTENT_ITEM_KEY;
6943 key.offset = num_bytes;
6944 btrfs_release_path(path);
6945 ret = btrfs_search_slot(trans, extent_root,
6946 &key, path, -1, 1);
6947 }
6948
f3465ca4 6949 if (ret) {
5d163e0e
JM
6950 btrfs_err(info,
6951 "umm, got %d back from search, was looking for %llu",
6952 ret, bytenr);
b783e62d 6953 if (ret > 0)
2ff7e61e 6954 btrfs_print_leaf(info, path->nodes[0]);
f3465ca4 6955 }
005d6427 6956 if (ret < 0) {
66642832 6957 btrfs_abort_transaction(trans, ret);
005d6427
DS
6958 goto out;
6959 }
31840ae1
ZY
6960 extent_slot = path->slots[0];
6961 }
fae7f21c 6962 } else if (WARN_ON(ret == -ENOENT)) {
2ff7e61e 6963 btrfs_print_leaf(info, path->nodes[0]);
c2cf52eb
SK
6964 btrfs_err(info,
6965 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6966 bytenr, parent, root_objectid, owner_objectid,
6967 owner_offset);
66642832 6968 btrfs_abort_transaction(trans, ret);
c4a050bb 6969 goto out;
79787eaa 6970 } else {
66642832 6971 btrfs_abort_transaction(trans, ret);
005d6427 6972 goto out;
7bb86316 6973 }
5f39d397
CM
6974
6975 leaf = path->nodes[0];
5d4f98a2
YZ
6976 item_size = btrfs_item_size_nr(leaf, extent_slot);
6977#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6978 if (item_size < sizeof(*ei)) {
6979 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
6980 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6981 0);
005d6427 6982 if (ret < 0) {
66642832 6983 btrfs_abort_transaction(trans, ret);
005d6427
DS
6984 goto out;
6985 }
5d4f98a2 6986
b3b4aa74 6987 btrfs_release_path(path);
5d4f98a2
YZ
6988 path->leave_spinning = 1;
6989
6990 key.objectid = bytenr;
6991 key.type = BTRFS_EXTENT_ITEM_KEY;
6992 key.offset = num_bytes;
6993
6994 ret = btrfs_search_slot(trans, extent_root, &key, path,
6995 -1, 1);
6996 if (ret) {
5d163e0e
JM
6997 btrfs_err(info,
6998 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6999 ret, bytenr);
2ff7e61e 7000 btrfs_print_leaf(info, path->nodes[0]);
5d4f98a2 7001 }
005d6427 7002 if (ret < 0) {
66642832 7003 btrfs_abort_transaction(trans, ret);
005d6427
DS
7004 goto out;
7005 }
7006
5d4f98a2
YZ
7007 extent_slot = path->slots[0];
7008 leaf = path->nodes[0];
7009 item_size = btrfs_item_size_nr(leaf, extent_slot);
7010 }
7011#endif
7012 BUG_ON(item_size < sizeof(*ei));
952fccac 7013 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7014 struct btrfs_extent_item);
3173a18f
JB
7015 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7016 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7017 struct btrfs_tree_block_info *bi;
7018 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7019 bi = (struct btrfs_tree_block_info *)(ei + 1);
7020 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7021 }
56bec294 7022
5d4f98a2 7023 refs = btrfs_extent_refs(leaf, ei);
32b02538 7024 if (refs < refs_to_drop) {
5d163e0e
JM
7025 btrfs_err(info,
7026 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7027 refs_to_drop, refs, bytenr);
32b02538 7028 ret = -EINVAL;
66642832 7029 btrfs_abort_transaction(trans, ret);
32b02538
JB
7030 goto out;
7031 }
56bec294 7032 refs -= refs_to_drop;
5f39d397 7033
5d4f98a2
YZ
7034 if (refs > 0) {
7035 if (extent_op)
7036 __run_delayed_extent_op(extent_op, leaf, ei);
7037 /*
7038 * In the case of inline back ref, reference count will
7039 * be updated by remove_extent_backref
952fccac 7040 */
5d4f98a2
YZ
7041 if (iref) {
7042 BUG_ON(!found_extent);
7043 } else {
7044 btrfs_set_extent_refs(leaf, ei, refs);
7045 btrfs_mark_buffer_dirty(leaf);
7046 }
7047 if (found_extent) {
87bde3cd 7048 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7049 iref, refs_to_drop,
fcebe456 7050 is_data, &last_ref);
005d6427 7051 if (ret) {
66642832 7052 btrfs_abort_transaction(trans, ret);
005d6427
DS
7053 goto out;
7054 }
952fccac 7055 }
0b246afa 7056 add_pinned_bytes(info, -num_bytes, owner_objectid,
b150a4f1 7057 root_objectid);
5d4f98a2 7058 } else {
5d4f98a2
YZ
7059 if (found_extent) {
7060 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7061 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7062 if (iref) {
7063 BUG_ON(path->slots[0] != extent_slot);
7064 } else {
7065 BUG_ON(path->slots[0] != extent_slot + 1);
7066 path->slots[0] = extent_slot;
7067 num_to_del = 2;
7068 }
78fae27e 7069 }
b9473439 7070
fcebe456 7071 last_ref = 1;
952fccac
CM
7072 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7073 num_to_del);
005d6427 7074 if (ret) {
66642832 7075 btrfs_abort_transaction(trans, ret);
005d6427
DS
7076 goto out;
7077 }
b3b4aa74 7078 btrfs_release_path(path);
21af804c 7079
5d4f98a2 7080 if (is_data) {
5b4aacef 7081 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7082 if (ret) {
66642832 7083 btrfs_abort_transaction(trans, ret);
005d6427
DS
7084 goto out;
7085 }
459931ec
CM
7086 }
7087
0b246afa 7088 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
1e144fb8 7089 if (ret) {
66642832 7090 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7091 goto out;
7092 }
7093
0b246afa 7094 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7095 if (ret) {
66642832 7096 btrfs_abort_transaction(trans, ret);
005d6427
DS
7097 goto out;
7098 }
a28ec197 7099 }
fcebe456
JB
7100 btrfs_release_path(path);
7101
79787eaa 7102out:
5caf2a00 7103 btrfs_free_path(path);
a28ec197
CM
7104 return ret;
7105}
7106
1887be66 7107/*
f0486c68 7108 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7109 * delayed ref for that extent as well. This searches the delayed ref tree for
7110 * a given extent, and if there are no other delayed refs to be processed, it
7111 * removes it from the tree.
7112 */
7113static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7114 u64 bytenr)
1887be66
CM
7115{
7116 struct btrfs_delayed_ref_head *head;
7117 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7118 int ret = 0;
1887be66
CM
7119
7120 delayed_refs = &trans->transaction->delayed_refs;
7121 spin_lock(&delayed_refs->lock);
f72ad18e 7122 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7123 if (!head)
cf93da7b 7124 goto out_delayed_unlock;
1887be66 7125
d7df2c79 7126 spin_lock(&head->lock);
c6fc2454 7127 if (!list_empty(&head->ref_list))
1887be66
CM
7128 goto out;
7129
5d4f98a2
YZ
7130 if (head->extent_op) {
7131 if (!head->must_insert_reserved)
7132 goto out;
78a6184a 7133 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7134 head->extent_op = NULL;
7135 }
7136
1887be66
CM
7137 /*
7138 * waiting for the lock here would deadlock. If someone else has it
7139 * locked they are already in the process of dropping it anyway
7140 */
7141 if (!mutex_trylock(&head->mutex))
7142 goto out;
7143
7144 /*
7145 * at this point we have a head with no other entries. Go
7146 * ahead and process it.
7147 */
7148 head->node.in_tree = 0;
c46effa6 7149 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 7150
d7df2c79 7151 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7152
7153 /*
7154 * we don't take a ref on the node because we're removing it from the
7155 * tree, so we just steal the ref the tree was holding.
7156 */
c3e69d58 7157 delayed_refs->num_heads--;
d7df2c79 7158 if (head->processing == 0)
c3e69d58 7159 delayed_refs->num_heads_ready--;
d7df2c79
JB
7160 head->processing = 0;
7161 spin_unlock(&head->lock);
1887be66
CM
7162 spin_unlock(&delayed_refs->lock);
7163
f0486c68
YZ
7164 BUG_ON(head->extent_op);
7165 if (head->must_insert_reserved)
7166 ret = 1;
7167
7168 mutex_unlock(&head->mutex);
1887be66 7169 btrfs_put_delayed_ref(&head->node);
f0486c68 7170 return ret;
1887be66 7171out:
d7df2c79 7172 spin_unlock(&head->lock);
cf93da7b
CM
7173
7174out_delayed_unlock:
1887be66
CM
7175 spin_unlock(&delayed_refs->lock);
7176 return 0;
7177}
7178
f0486c68
YZ
7179void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7180 struct btrfs_root *root,
7181 struct extent_buffer *buf,
5581a51a 7182 u64 parent, int last_ref)
f0486c68 7183{
0b246afa 7184 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7185 int pin = 1;
f0486c68
YZ
7186 int ret;
7187
7188 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7be07912
OS
7189 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7190 buf->len, parent,
0b246afa
JM
7191 root->root_key.objectid,
7192 btrfs_header_level(buf),
7be07912
OS
7193 BTRFS_DROP_DELAYED_REF, NULL,
7194 NULL, NULL);
79787eaa 7195 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
7196 }
7197
0a16c7d7 7198 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7199 struct btrfs_block_group_cache *cache;
7200
f0486c68 7201 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7202 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7203 if (!ret)
37be25bc 7204 goto out;
f0486c68
YZ
7205 }
7206
4da8b76d 7207 pin = 0;
0b246afa 7208 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7209
f0486c68 7210 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7211 pin_down_extent(fs_info, cache, buf->start,
7212 buf->len, 1);
6219872d 7213 btrfs_put_block_group(cache);
37be25bc 7214 goto out;
f0486c68
YZ
7215 }
7216
7217 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7218
7219 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7220 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7221 btrfs_put_block_group(cache);
71ff6437 7222 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7223 }
7224out:
b150a4f1 7225 if (pin)
0b246afa 7226 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
b150a4f1
JB
7227 root->root_key.objectid);
7228
0a16c7d7
OS
7229 if (last_ref) {
7230 /*
7231 * Deleting the buffer, clear the corrupt flag since it doesn't
7232 * matter anymore.
7233 */
7234 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7235 }
f0486c68
YZ
7236}
7237
79787eaa 7238/* Can return -ENOMEM */
2ff7e61e
JM
7239int btrfs_free_extent(struct btrfs_trans_handle *trans,
7240 struct btrfs_fs_info *fs_info,
66d7e7f0 7241 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7242 u64 owner, u64 offset)
925baedd
CM
7243{
7244 int ret;
7245
f5ee5c9a 7246 if (btrfs_is_testing(fs_info))
faa2dbf0 7247 return 0;
fccb84c9 7248
0b246afa 7249 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
b150a4f1 7250
56bec294
CM
7251 /*
7252 * tree log blocks never actually go into the extent allocation
7253 * tree, just update pinning info and exit early.
56bec294 7254 */
5d4f98a2
YZ
7255 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7256 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7257 /* unlocks the pinned mutex */
2ff7e61e 7258 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
56bec294 7259 ret = 0;
5d4f98a2 7260 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 7261 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
7262 num_bytes, parent,
7263 root_objectid, (int)owner,
7264 BTRFS_DROP_DELAYED_REF, NULL,
7265 NULL, NULL);
5d4f98a2 7266 } else {
66d7e7f0 7267 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
7268 num_bytes, parent,
7269 root_objectid, owner, offset,
7270 0, BTRFS_DROP_DELAYED_REF,
7271 NULL, NULL);
56bec294 7272 }
925baedd
CM
7273 return ret;
7274}
7275
817d52f8
JB
7276/*
7277 * when we wait for progress in the block group caching, its because
7278 * our allocation attempt failed at least once. So, we must sleep
7279 * and let some progress happen before we try again.
7280 *
7281 * This function will sleep at least once waiting for new free space to
7282 * show up, and then it will check the block group free space numbers
7283 * for our min num_bytes. Another option is to have it go ahead
7284 * and look in the rbtree for a free extent of a given size, but this
7285 * is a good start.
36cce922
JB
7286 *
7287 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7288 * any of the information in this block group.
817d52f8 7289 */
36cce922 7290static noinline void
817d52f8
JB
7291wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7292 u64 num_bytes)
7293{
11833d66 7294 struct btrfs_caching_control *caching_ctl;
817d52f8 7295
11833d66
YZ
7296 caching_ctl = get_caching_control(cache);
7297 if (!caching_ctl)
36cce922 7298 return;
817d52f8 7299
11833d66 7300 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7301 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7302
7303 put_caching_control(caching_ctl);
11833d66
YZ
7304}
7305
7306static noinline int
7307wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7308{
7309 struct btrfs_caching_control *caching_ctl;
36cce922 7310 int ret = 0;
11833d66
YZ
7311
7312 caching_ctl = get_caching_control(cache);
7313 if (!caching_ctl)
36cce922 7314 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7315
7316 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7317 if (cache->cached == BTRFS_CACHE_ERROR)
7318 ret = -EIO;
11833d66 7319 put_caching_control(caching_ctl);
36cce922 7320 return ret;
817d52f8
JB
7321}
7322
31e50229 7323int __get_raid_index(u64 flags)
b742bb82 7324{
7738a53a 7325 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7326 return BTRFS_RAID_RAID10;
7738a53a 7327 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7328 return BTRFS_RAID_RAID1;
7738a53a 7329 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7330 return BTRFS_RAID_DUP;
7738a53a 7331 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7332 return BTRFS_RAID_RAID0;
53b381b3 7333 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7334 return BTRFS_RAID_RAID5;
53b381b3 7335 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7336 return BTRFS_RAID_RAID6;
7738a53a 7337
e942f883 7338 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7339}
7340
6ab0a202 7341int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7342{
31e50229 7343 return __get_raid_index(cache->flags);
7738a53a
ID
7344}
7345
6ab0a202
JM
7346static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7347 [BTRFS_RAID_RAID10] = "raid10",
7348 [BTRFS_RAID_RAID1] = "raid1",
7349 [BTRFS_RAID_DUP] = "dup",
7350 [BTRFS_RAID_RAID0] = "raid0",
7351 [BTRFS_RAID_SINGLE] = "single",
7352 [BTRFS_RAID_RAID5] = "raid5",
7353 [BTRFS_RAID_RAID6] = "raid6",
7354};
7355
1b8e5df6 7356static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7357{
7358 if (type >= BTRFS_NR_RAID_TYPES)
7359 return NULL;
7360
7361 return btrfs_raid_type_names[type];
7362}
7363
817d52f8 7364enum btrfs_loop_type {
285ff5af
JB
7365 LOOP_CACHING_NOWAIT = 0,
7366 LOOP_CACHING_WAIT = 1,
7367 LOOP_ALLOC_CHUNK = 2,
7368 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7369};
7370
e570fd27
MX
7371static inline void
7372btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7373 int delalloc)
7374{
7375 if (delalloc)
7376 down_read(&cache->data_rwsem);
7377}
7378
7379static inline void
7380btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7381 int delalloc)
7382{
7383 btrfs_get_block_group(cache);
7384 if (delalloc)
7385 down_read(&cache->data_rwsem);
7386}
7387
7388static struct btrfs_block_group_cache *
7389btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7390 struct btrfs_free_cluster *cluster,
7391 int delalloc)
7392{
89771cc9 7393 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7394
e570fd27 7395 spin_lock(&cluster->refill_lock);
6719afdc
GU
7396 while (1) {
7397 used_bg = cluster->block_group;
7398 if (!used_bg)
7399 return NULL;
7400
7401 if (used_bg == block_group)
e570fd27
MX
7402 return used_bg;
7403
6719afdc 7404 btrfs_get_block_group(used_bg);
e570fd27 7405
6719afdc
GU
7406 if (!delalloc)
7407 return used_bg;
e570fd27 7408
6719afdc
GU
7409 if (down_read_trylock(&used_bg->data_rwsem))
7410 return used_bg;
e570fd27 7411
6719afdc 7412 spin_unlock(&cluster->refill_lock);
e570fd27 7413
e321f8a8
LB
7414 /* We should only have one-level nested. */
7415 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7416
6719afdc
GU
7417 spin_lock(&cluster->refill_lock);
7418 if (used_bg == cluster->block_group)
7419 return used_bg;
e570fd27 7420
6719afdc
GU
7421 up_read(&used_bg->data_rwsem);
7422 btrfs_put_block_group(used_bg);
7423 }
e570fd27
MX
7424}
7425
7426static inline void
7427btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7428 int delalloc)
7429{
7430 if (delalloc)
7431 up_read(&cache->data_rwsem);
7432 btrfs_put_block_group(cache);
7433}
7434
fec577fb
CM
7435/*
7436 * walks the btree of allocated extents and find a hole of a given size.
7437 * The key ins is changed to record the hole:
a4820398 7438 * ins->objectid == start position
62e2749e 7439 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7440 * ins->offset == the size of the hole.
fec577fb 7441 * Any available blocks before search_start are skipped.
a4820398
MX
7442 *
7443 * If there is no suitable free space, we will record the max size of
7444 * the free space extent currently.
fec577fb 7445 */
87bde3cd 7446static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7447 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7448 u64 hint_byte, struct btrfs_key *ins,
7449 u64 flags, int delalloc)
fec577fb 7450{
80eb234a 7451 int ret = 0;
0b246afa 7452 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7453 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7454 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7455 u64 search_start = 0;
a4820398 7456 u64 max_extent_size = 0;
c759c4e1 7457 u64 empty_cluster = 0;
80eb234a 7458 struct btrfs_space_info *space_info;
fa9c0d79 7459 int loop = 0;
b6919a58 7460 int index = __get_raid_index(flags);
0a24325e 7461 bool failed_cluster_refill = false;
1cdda9b8 7462 bool failed_alloc = false;
67377734 7463 bool use_cluster = true;
60d2adbb 7464 bool have_caching_bg = false;
13a0db5a 7465 bool orig_have_caching_bg = false;
a5e681d9 7466 bool full_search = false;
fec577fb 7467
0b246afa 7468 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7469 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7470 ins->objectid = 0;
7471 ins->offset = 0;
b1a4d965 7472
71ff6437 7473 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7474
0b246afa 7475 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7476 if (!space_info) {
0b246afa 7477 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7478 return -ENOSPC;
7479 }
2552d17e 7480
67377734 7481 /*
4f4db217
JB
7482 * If our free space is heavily fragmented we may not be able to make
7483 * big contiguous allocations, so instead of doing the expensive search
7484 * for free space, simply return ENOSPC with our max_extent_size so we
7485 * can go ahead and search for a more manageable chunk.
7486 *
7487 * If our max_extent_size is large enough for our allocation simply
7488 * disable clustering since we will likely not be able to find enough
7489 * space to create a cluster and induce latency trying.
67377734 7490 */
4f4db217
JB
7491 if (unlikely(space_info->max_extent_size)) {
7492 spin_lock(&space_info->lock);
7493 if (space_info->max_extent_size &&
7494 num_bytes > space_info->max_extent_size) {
7495 ins->offset = space_info->max_extent_size;
7496 spin_unlock(&space_info->lock);
7497 return -ENOSPC;
7498 } else if (space_info->max_extent_size) {
7499 use_cluster = false;
7500 }
7501 spin_unlock(&space_info->lock);
fa9c0d79 7502 }
0f9dd46c 7503
2ff7e61e 7504 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7505 if (last_ptr) {
fa9c0d79
CM
7506 spin_lock(&last_ptr->lock);
7507 if (last_ptr->block_group)
7508 hint_byte = last_ptr->window_start;
c759c4e1
JB
7509 if (last_ptr->fragmented) {
7510 /*
7511 * We still set window_start so we can keep track of the
7512 * last place we found an allocation to try and save
7513 * some time.
7514 */
7515 hint_byte = last_ptr->window_start;
7516 use_cluster = false;
7517 }
fa9c0d79 7518 spin_unlock(&last_ptr->lock);
239b14b3 7519 }
fa9c0d79 7520
2ff7e61e 7521 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7522 search_start = max(search_start, hint_byte);
2552d17e 7523 if (search_start == hint_byte) {
0b246afa 7524 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7525 /*
7526 * we don't want to use the block group if it doesn't match our
7527 * allocation bits, or if its not cached.
ccf0e725
JB
7528 *
7529 * However if we are re-searching with an ideal block group
7530 * picked out then we don't care that the block group is cached.
817d52f8 7531 */
b6919a58 7532 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7533 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7534 down_read(&space_info->groups_sem);
44fb5511
CM
7535 if (list_empty(&block_group->list) ||
7536 block_group->ro) {
7537 /*
7538 * someone is removing this block group,
7539 * we can't jump into the have_block_group
7540 * target because our list pointers are not
7541 * valid
7542 */
7543 btrfs_put_block_group(block_group);
7544 up_read(&space_info->groups_sem);
ccf0e725 7545 } else {
b742bb82 7546 index = get_block_group_index(block_group);
e570fd27 7547 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7548 goto have_block_group;
ccf0e725 7549 }
2552d17e 7550 } else if (block_group) {
fa9c0d79 7551 btrfs_put_block_group(block_group);
2552d17e 7552 }
42e70e7a 7553 }
2552d17e 7554search:
60d2adbb 7555 have_caching_bg = false;
a5e681d9
JB
7556 if (index == 0 || index == __get_raid_index(flags))
7557 full_search = true;
80eb234a 7558 down_read(&space_info->groups_sem);
b742bb82
YZ
7559 list_for_each_entry(block_group, &space_info->block_groups[index],
7560 list) {
6226cb0a 7561 u64 offset;
817d52f8 7562 int cached;
8a1413a2 7563
e570fd27 7564 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7565 search_start = block_group->key.objectid;
42e70e7a 7566
83a50de9
CM
7567 /*
7568 * this can happen if we end up cycling through all the
7569 * raid types, but we want to make sure we only allocate
7570 * for the proper type.
7571 */
b6919a58 7572 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7573 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7574 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7575 BTRFS_BLOCK_GROUP_RAID5 |
7576 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7577 BTRFS_BLOCK_GROUP_RAID10;
7578
7579 /*
7580 * if they asked for extra copies and this block group
7581 * doesn't provide them, bail. This does allow us to
7582 * fill raid0 from raid1.
7583 */
b6919a58 7584 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7585 goto loop;
7586 }
7587
2552d17e 7588have_block_group:
291c7d2f
JB
7589 cached = block_group_cache_done(block_group);
7590 if (unlikely(!cached)) {
a5e681d9 7591 have_caching_bg = true;
f6373bf3 7592 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7593 BUG_ON(ret < 0);
7594 ret = 0;
817d52f8
JB
7595 }
7596
36cce922
JB
7597 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7598 goto loop;
ea6a478e 7599 if (unlikely(block_group->ro))
2552d17e 7600 goto loop;
0f9dd46c 7601
0a24325e 7602 /*
062c05c4
AO
7603 * Ok we want to try and use the cluster allocator, so
7604 * lets look there
0a24325e 7605 */
c759c4e1 7606 if (last_ptr && use_cluster) {
215a63d1 7607 struct btrfs_block_group_cache *used_block_group;
8de972b4 7608 unsigned long aligned_cluster;
fa9c0d79
CM
7609 /*
7610 * the refill lock keeps out other
7611 * people trying to start a new cluster
7612 */
e570fd27
MX
7613 used_block_group = btrfs_lock_cluster(block_group,
7614 last_ptr,
7615 delalloc);
7616 if (!used_block_group)
44fb5511 7617 goto refill_cluster;
274bd4fb 7618
e570fd27
MX
7619 if (used_block_group != block_group &&
7620 (used_block_group->ro ||
7621 !block_group_bits(used_block_group, flags)))
7622 goto release_cluster;
44fb5511 7623
274bd4fb 7624 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7625 last_ptr,
7626 num_bytes,
7627 used_block_group->key.objectid,
7628 &max_extent_size);
fa9c0d79
CM
7629 if (offset) {
7630 /* we have a block, we're done */
7631 spin_unlock(&last_ptr->refill_lock);
71ff6437 7632 trace_btrfs_reserve_extent_cluster(fs_info,
89d4346a
MX
7633 used_block_group,
7634 search_start, num_bytes);
215a63d1 7635 if (used_block_group != block_group) {
e570fd27
MX
7636 btrfs_release_block_group(block_group,
7637 delalloc);
215a63d1
MX
7638 block_group = used_block_group;
7639 }
fa9c0d79
CM
7640 goto checks;
7641 }
7642
274bd4fb 7643 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7644release_cluster:
062c05c4
AO
7645 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7646 * set up a new clusters, so lets just skip it
7647 * and let the allocator find whatever block
7648 * it can find. If we reach this point, we
7649 * will have tried the cluster allocator
7650 * plenty of times and not have found
7651 * anything, so we are likely way too
7652 * fragmented for the clustering stuff to find
a5f6f719
AO
7653 * anything.
7654 *
7655 * However, if the cluster is taken from the
7656 * current block group, release the cluster
7657 * first, so that we stand a better chance of
7658 * succeeding in the unclustered
7659 * allocation. */
7660 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7661 used_block_group != block_group) {
062c05c4 7662 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7663 btrfs_release_block_group(used_block_group,
7664 delalloc);
062c05c4
AO
7665 goto unclustered_alloc;
7666 }
7667
fa9c0d79
CM
7668 /*
7669 * this cluster didn't work out, free it and
7670 * start over
7671 */
7672 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7673
e570fd27
MX
7674 if (used_block_group != block_group)
7675 btrfs_release_block_group(used_block_group,
7676 delalloc);
7677refill_cluster:
a5f6f719
AO
7678 if (loop >= LOOP_NO_EMPTY_SIZE) {
7679 spin_unlock(&last_ptr->refill_lock);
7680 goto unclustered_alloc;
7681 }
7682
8de972b4
CM
7683 aligned_cluster = max_t(unsigned long,
7684 empty_cluster + empty_size,
7685 block_group->full_stripe_len);
7686
fa9c0d79 7687 /* allocate a cluster in this block group */
2ff7e61e 7688 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7689 last_ptr, search_start,
7690 num_bytes,
7691 aligned_cluster);
fa9c0d79
CM
7692 if (ret == 0) {
7693 /*
7694 * now pull our allocation out of this
7695 * cluster
7696 */
7697 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7698 last_ptr,
7699 num_bytes,
7700 search_start,
7701 &max_extent_size);
fa9c0d79
CM
7702 if (offset) {
7703 /* we found one, proceed */
7704 spin_unlock(&last_ptr->refill_lock);
71ff6437 7705 trace_btrfs_reserve_extent_cluster(fs_info,
3f7de037
JB
7706 block_group, search_start,
7707 num_bytes);
fa9c0d79
CM
7708 goto checks;
7709 }
0a24325e
JB
7710 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7711 && !failed_cluster_refill) {
817d52f8
JB
7712 spin_unlock(&last_ptr->refill_lock);
7713
0a24325e 7714 failed_cluster_refill = true;
817d52f8
JB
7715 wait_block_group_cache_progress(block_group,
7716 num_bytes + empty_cluster + empty_size);
7717 goto have_block_group;
fa9c0d79 7718 }
817d52f8 7719
fa9c0d79
CM
7720 /*
7721 * at this point we either didn't find a cluster
7722 * or we weren't able to allocate a block from our
7723 * cluster. Free the cluster we've been trying
7724 * to use, and go to the next block group
7725 */
0a24325e 7726 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7727 spin_unlock(&last_ptr->refill_lock);
0a24325e 7728 goto loop;
fa9c0d79
CM
7729 }
7730
062c05c4 7731unclustered_alloc:
c759c4e1
JB
7732 /*
7733 * We are doing an unclustered alloc, set the fragmented flag so
7734 * we don't bother trying to setup a cluster again until we get
7735 * more space.
7736 */
7737 if (unlikely(last_ptr)) {
7738 spin_lock(&last_ptr->lock);
7739 last_ptr->fragmented = 1;
7740 spin_unlock(&last_ptr->lock);
7741 }
0c9b36e0
LB
7742 if (cached) {
7743 struct btrfs_free_space_ctl *ctl =
7744 block_group->free_space_ctl;
7745
7746 spin_lock(&ctl->tree_lock);
7747 if (ctl->free_space <
7748 num_bytes + empty_cluster + empty_size) {
7749 if (ctl->free_space > max_extent_size)
7750 max_extent_size = ctl->free_space;
7751 spin_unlock(&ctl->tree_lock);
7752 goto loop;
7753 }
7754 spin_unlock(&ctl->tree_lock);
a5f6f719 7755 }
a5f6f719 7756
6226cb0a 7757 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7758 num_bytes, empty_size,
7759 &max_extent_size);
1cdda9b8
JB
7760 /*
7761 * If we didn't find a chunk, and we haven't failed on this
7762 * block group before, and this block group is in the middle of
7763 * caching and we are ok with waiting, then go ahead and wait
7764 * for progress to be made, and set failed_alloc to true.
7765 *
7766 * If failed_alloc is true then we've already waited on this
7767 * block group once and should move on to the next block group.
7768 */
7769 if (!offset && !failed_alloc && !cached &&
7770 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7771 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7772 num_bytes + empty_size);
7773 failed_alloc = true;
817d52f8 7774 goto have_block_group;
1cdda9b8
JB
7775 } else if (!offset) {
7776 goto loop;
817d52f8 7777 }
fa9c0d79 7778checks:
0b246afa 7779 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7780
2552d17e
JB
7781 /* move on to the next group */
7782 if (search_start + num_bytes >
215a63d1
MX
7783 block_group->key.objectid + block_group->key.offset) {
7784 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7785 goto loop;
6226cb0a 7786 }
f5a31e16 7787
f0486c68 7788 if (offset < search_start)
215a63d1 7789 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7790 search_start - offset);
7791 BUG_ON(offset > search_start);
2552d17e 7792
18513091
WX
7793 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7794 num_bytes, delalloc);
f0486c68 7795 if (ret == -EAGAIN) {
215a63d1 7796 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7797 goto loop;
0f9dd46c 7798 }
9cfa3e34 7799 btrfs_inc_block_group_reservations(block_group);
0b86a832 7800
f0486c68 7801 /* we are all good, lets return */
2552d17e
JB
7802 ins->objectid = search_start;
7803 ins->offset = num_bytes;
d2fb3437 7804
71ff6437 7805 trace_btrfs_reserve_extent(fs_info, block_group,
3f7de037 7806 search_start, num_bytes);
e570fd27 7807 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7808 break;
7809loop:
0a24325e 7810 failed_cluster_refill = false;
1cdda9b8 7811 failed_alloc = false;
b742bb82 7812 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7813 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7814 }
7815 up_read(&space_info->groups_sem);
7816
13a0db5a 7817 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7818 && !orig_have_caching_bg)
7819 orig_have_caching_bg = true;
7820
60d2adbb
MX
7821 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7822 goto search;
7823
b742bb82
YZ
7824 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7825 goto search;
7826
285ff5af 7827 /*
ccf0e725
JB
7828 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7829 * caching kthreads as we move along
817d52f8
JB
7830 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7831 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7832 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7833 * again
fa9c0d79 7834 */
723bda20 7835 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7836 index = 0;
a5e681d9
JB
7837 if (loop == LOOP_CACHING_NOWAIT) {
7838 /*
7839 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7840 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7841 * full search through.
7842 */
13a0db5a 7843 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7844 loop = LOOP_CACHING_WAIT;
7845 else
7846 loop = LOOP_ALLOC_CHUNK;
7847 } else {
7848 loop++;
7849 }
7850
817d52f8 7851 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7852 struct btrfs_trans_handle *trans;
f017f15f
WS
7853 int exist = 0;
7854
7855 trans = current->journal_info;
7856 if (trans)
7857 exist = 1;
7858 else
7859 trans = btrfs_join_transaction(root);
00361589 7860
00361589
JB
7861 if (IS_ERR(trans)) {
7862 ret = PTR_ERR(trans);
7863 goto out;
7864 }
7865
2ff7e61e 7866 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7867 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7868
7869 /*
7870 * If we can't allocate a new chunk we've already looped
7871 * through at least once, move on to the NO_EMPTY_SIZE
7872 * case.
7873 */
7874 if (ret == -ENOSPC)
7875 loop = LOOP_NO_EMPTY_SIZE;
7876
ea658bad
JB
7877 /*
7878 * Do not bail out on ENOSPC since we
7879 * can do more things.
7880 */
00361589 7881 if (ret < 0 && ret != -ENOSPC)
66642832 7882 btrfs_abort_transaction(trans, ret);
00361589
JB
7883 else
7884 ret = 0;
f017f15f 7885 if (!exist)
3a45bb20 7886 btrfs_end_transaction(trans);
00361589 7887 if (ret)
ea658bad 7888 goto out;
2552d17e
JB
7889 }
7890
723bda20 7891 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7892 /*
7893 * Don't loop again if we already have no empty_size and
7894 * no empty_cluster.
7895 */
7896 if (empty_size == 0 &&
7897 empty_cluster == 0) {
7898 ret = -ENOSPC;
7899 goto out;
7900 }
723bda20
JB
7901 empty_size = 0;
7902 empty_cluster = 0;
fa9c0d79 7903 }
723bda20
JB
7904
7905 goto search;
2552d17e
JB
7906 } else if (!ins->objectid) {
7907 ret = -ENOSPC;
d82a6f1d 7908 } else if (ins->objectid) {
c759c4e1
JB
7909 if (!use_cluster && last_ptr) {
7910 spin_lock(&last_ptr->lock);
7911 last_ptr->window_start = ins->objectid;
7912 spin_unlock(&last_ptr->lock);
7913 }
80eb234a 7914 ret = 0;
be744175 7915 }
79787eaa 7916out:
4f4db217
JB
7917 if (ret == -ENOSPC) {
7918 spin_lock(&space_info->lock);
7919 space_info->max_extent_size = max_extent_size;
7920 spin_unlock(&space_info->lock);
a4820398 7921 ins->offset = max_extent_size;
4f4db217 7922 }
0f70abe2 7923 return ret;
fec577fb 7924}
ec44a35c 7925
ab8d0fc4
JM
7926static void dump_space_info(struct btrfs_fs_info *fs_info,
7927 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7928 int dump_block_groups)
0f9dd46c
JB
7929{
7930 struct btrfs_block_group_cache *cache;
b742bb82 7931 int index = 0;
0f9dd46c 7932
9ed74f2d 7933 spin_lock(&info->lock);
ab8d0fc4
JM
7934 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7935 info->flags,
4136135b
LB
7936 info->total_bytes - btrfs_space_info_used(info, true),
7937 info->full ? "" : "not ");
ab8d0fc4
JM
7938 btrfs_info(fs_info,
7939 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7940 info->total_bytes, info->bytes_used, info->bytes_pinned,
7941 info->bytes_reserved, info->bytes_may_use,
7942 info->bytes_readonly);
9ed74f2d
JB
7943 spin_unlock(&info->lock);
7944
7945 if (!dump_block_groups)
7946 return;
0f9dd46c 7947
80eb234a 7948 down_read(&info->groups_sem);
b742bb82
YZ
7949again:
7950 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7951 spin_lock(&cache->lock);
ab8d0fc4
JM
7952 btrfs_info(fs_info,
7953 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7954 cache->key.objectid, cache->key.offset,
7955 btrfs_block_group_used(&cache->item), cache->pinned,
7956 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7957 btrfs_dump_free_space(cache, bytes);
7958 spin_unlock(&cache->lock);
7959 }
b742bb82
YZ
7960 if (++index < BTRFS_NR_RAID_TYPES)
7961 goto again;
80eb234a 7962 up_read(&info->groups_sem);
0f9dd46c 7963}
e8569813 7964
18513091 7965int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7966 u64 num_bytes, u64 min_alloc_size,
7967 u64 empty_size, u64 hint_byte,
e570fd27 7968 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7969{
ab8d0fc4 7970 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7971 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7972 u64 flags;
fec577fb 7973 int ret;
925baedd 7974
1b86826d 7975 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 7976again:
0b246afa 7977 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 7978 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 7979 hint_byte, ins, flags, delalloc);
9cfa3e34 7980 if (!ret && !is_data) {
ab8d0fc4 7981 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 7982 } else if (ret == -ENOSPC) {
a4820398
MX
7983 if (!final_tried && ins->offset) {
7984 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 7985 num_bytes = round_down(num_bytes,
0b246afa 7986 fs_info->sectorsize);
9e622d6b 7987 num_bytes = max(num_bytes, min_alloc_size);
18513091 7988 ram_bytes = num_bytes;
9e622d6b
MX
7989 if (num_bytes == min_alloc_size)
7990 final_tried = true;
7991 goto again;
ab8d0fc4 7992 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
7993 struct btrfs_space_info *sinfo;
7994
ab8d0fc4 7995 sinfo = __find_space_info(fs_info, flags);
0b246afa 7996 btrfs_err(fs_info,
5d163e0e
JM
7997 "allocation failed flags %llu, wanted %llu",
7998 flags, num_bytes);
53804280 7999 if (sinfo)
ab8d0fc4 8000 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8001 }
925baedd 8002 }
0f9dd46c
JB
8003
8004 return ret;
e6dcd2dc
CM
8005}
8006
2ff7e61e 8007static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8008 u64 start, u64 len,
8009 int pin, int delalloc)
65b51a00 8010{
0f9dd46c 8011 struct btrfs_block_group_cache *cache;
1f3c79a2 8012 int ret = 0;
0f9dd46c 8013
0b246afa 8014 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8015 if (!cache) {
0b246afa
JM
8016 btrfs_err(fs_info, "Unable to find block group for %llu",
8017 start);
0f9dd46c
JB
8018 return -ENOSPC;
8019 }
1f3c79a2 8020
e688b725 8021 if (pin)
2ff7e61e 8022 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8023 else {
0b246afa 8024 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8025 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8026 btrfs_add_free_space(cache, start, len);
4824f1f4 8027 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8028 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8029 }
31193213 8030
fa9c0d79 8031 btrfs_put_block_group(cache);
e6dcd2dc
CM
8032 return ret;
8033}
8034
2ff7e61e 8035int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8036 u64 start, u64 len, int delalloc)
e688b725 8037{
2ff7e61e 8038 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8039}
8040
2ff7e61e 8041int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8042 u64 start, u64 len)
8043{
2ff7e61e 8044 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8045}
8046
5d4f98a2 8047static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8048 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8049 u64 parent, u64 root_objectid,
8050 u64 flags, u64 owner, u64 offset,
8051 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8052{
8053 int ret;
e6dcd2dc 8054 struct btrfs_extent_item *extent_item;
5d4f98a2 8055 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8056 struct btrfs_path *path;
5d4f98a2
YZ
8057 struct extent_buffer *leaf;
8058 int type;
8059 u32 size;
26b8003f 8060
5d4f98a2
YZ
8061 if (parent > 0)
8062 type = BTRFS_SHARED_DATA_REF_KEY;
8063 else
8064 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8065
5d4f98a2 8066 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8067
8068 path = btrfs_alloc_path();
db5b493a
TI
8069 if (!path)
8070 return -ENOMEM;
47e4bb98 8071
b9473439 8072 path->leave_spinning = 1;
5d4f98a2
YZ
8073 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8074 ins, size);
79787eaa
JM
8075 if (ret) {
8076 btrfs_free_path(path);
8077 return ret;
8078 }
0f9dd46c 8079
5d4f98a2
YZ
8080 leaf = path->nodes[0];
8081 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8082 struct btrfs_extent_item);
5d4f98a2
YZ
8083 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8084 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8085 btrfs_set_extent_flags(leaf, extent_item,
8086 flags | BTRFS_EXTENT_FLAG_DATA);
8087
8088 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8089 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8090 if (parent > 0) {
8091 struct btrfs_shared_data_ref *ref;
8092 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8093 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8094 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8095 } else {
8096 struct btrfs_extent_data_ref *ref;
8097 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8098 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8099 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8100 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8101 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8102 }
47e4bb98
CM
8103
8104 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8105 btrfs_free_path(path);
f510cfec 8106
1e144fb8
OS
8107 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8108 ins->offset);
8109 if (ret)
8110 return ret;
8111
6202df69 8112 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8113 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8114 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8115 ins->objectid, ins->offset);
f5947066
CM
8116 BUG();
8117 }
71ff6437 8118 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8119 return ret;
8120}
8121
5d4f98a2 8122static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 8123 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8124 u64 parent, u64 root_objectid,
8125 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8126 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8127{
8128 int ret;
5d4f98a2
YZ
8129 struct btrfs_extent_item *extent_item;
8130 struct btrfs_tree_block_info *block_info;
8131 struct btrfs_extent_inline_ref *iref;
8132 struct btrfs_path *path;
8133 struct extent_buffer *leaf;
3173a18f 8134 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8135 u64 num_bytes = ins->offset;
0b246afa 8136 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f
JB
8137
8138 if (!skinny_metadata)
8139 size += sizeof(*block_info);
1c2308f8 8140
5d4f98a2 8141 path = btrfs_alloc_path();
857cc2fc 8142 if (!path) {
2ff7e61e 8143 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8144 fs_info->nodesize);
d8926bb3 8145 return -ENOMEM;
857cc2fc 8146 }
56bec294 8147
5d4f98a2
YZ
8148 path->leave_spinning = 1;
8149 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8150 ins, size);
79787eaa 8151 if (ret) {
dd825259 8152 btrfs_free_path(path);
2ff7e61e 8153 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8154 fs_info->nodesize);
79787eaa
JM
8155 return ret;
8156 }
5d4f98a2
YZ
8157
8158 leaf = path->nodes[0];
8159 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8160 struct btrfs_extent_item);
8161 btrfs_set_extent_refs(leaf, extent_item, 1);
8162 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8163 btrfs_set_extent_flags(leaf, extent_item,
8164 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8165
3173a18f
JB
8166 if (skinny_metadata) {
8167 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
0b246afa 8168 num_bytes = fs_info->nodesize;
3173a18f
JB
8169 } else {
8170 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8171 btrfs_set_tree_block_key(leaf, block_info, key);
8172 btrfs_set_tree_block_level(leaf, block_info, level);
8173 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8174 }
5d4f98a2 8175
5d4f98a2
YZ
8176 if (parent > 0) {
8177 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8178 btrfs_set_extent_inline_ref_type(leaf, iref,
8179 BTRFS_SHARED_BLOCK_REF_KEY);
8180 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8181 } else {
8182 btrfs_set_extent_inline_ref_type(leaf, iref,
8183 BTRFS_TREE_BLOCK_REF_KEY);
8184 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8185 }
8186
8187 btrfs_mark_buffer_dirty(leaf);
8188 btrfs_free_path(path);
8189
1e144fb8
OS
8190 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8191 num_bytes);
8192 if (ret)
8193 return ret;
8194
6202df69
JM
8195 ret = update_block_group(trans, fs_info, ins->objectid,
8196 fs_info->nodesize, 1);
79787eaa 8197 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8198 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8199 ins->objectid, ins->offset);
5d4f98a2
YZ
8200 BUG();
8201 }
0be5dc67 8202
71ff6437 8203 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
0b246afa 8204 fs_info->nodesize);
5d4f98a2
YZ
8205 return ret;
8206}
8207
8208int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2 8209 u64 root_objectid, u64 owner,
5846a3c2
QW
8210 u64 offset, u64 ram_bytes,
8211 struct btrfs_key *ins)
5d4f98a2 8212{
2ff7e61e 8213 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
8214 int ret;
8215
8216 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8217
0b246afa 8218 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
7be07912
OS
8219 ins->offset, 0, root_objectid, owner,
8220 offset, ram_bytes,
8221 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8222 return ret;
8223}
e02119d5
CM
8224
8225/*
8226 * this is used by the tree logging recovery code. It records that
8227 * an extent has been allocated and makes sure to clear the free
8228 * space cache bits as well
8229 */
5d4f98a2 8230int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8231 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8232 u64 root_objectid, u64 owner, u64 offset,
8233 struct btrfs_key *ins)
e02119d5
CM
8234{
8235 int ret;
8236 struct btrfs_block_group_cache *block_group;
ed7a6948 8237 struct btrfs_space_info *space_info;
11833d66 8238
8c2a1a30
JB
8239 /*
8240 * Mixed block groups will exclude before processing the log so we only
01327610 8241 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8242 */
0b246afa 8243 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8244 ret = __exclude_logged_extent(fs_info, ins->objectid,
8245 ins->offset);
b50c6e25 8246 if (ret)
8c2a1a30 8247 return ret;
11833d66
YZ
8248 }
8249
0b246afa 8250 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8251 if (!block_group)
8252 return -EINVAL;
8253
ed7a6948
WX
8254 space_info = block_group->space_info;
8255 spin_lock(&space_info->lock);
8256 spin_lock(&block_group->lock);
8257 space_info->bytes_reserved += ins->offset;
8258 block_group->reserved += ins->offset;
8259 spin_unlock(&block_group->lock);
8260 spin_unlock(&space_info->lock);
8261
2ff7e61e 8262 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8263 0, owner, offset, ins, 1);
b50c6e25 8264 btrfs_put_block_group(block_group);
e02119d5
CM
8265 return ret;
8266}
8267
48a3b636
ES
8268static struct extent_buffer *
8269btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8270 u64 bytenr, int level)
65b51a00 8271{
0b246afa 8272 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8273 struct extent_buffer *buf;
8274
2ff7e61e 8275 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8276 if (IS_ERR(buf))
8277 return buf;
8278
65b51a00 8279 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8280 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8281 btrfs_tree_lock(buf);
7c302b49 8282 clean_tree_block(fs_info, buf);
3083ee2e 8283 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8284
8285 btrfs_set_lock_blocking(buf);
4db8c528 8286 set_extent_buffer_uptodate(buf);
b4ce94de 8287
d0c803c4 8288 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8289 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8290 /*
8291 * we allow two log transactions at a time, use different
8292 * EXENT bit to differentiate dirty pages.
8293 */
656f30db 8294 if (buf->log_index == 0)
8cef4e16
YZ
8295 set_extent_dirty(&root->dirty_log_pages, buf->start,
8296 buf->start + buf->len - 1, GFP_NOFS);
8297 else
8298 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8299 buf->start + buf->len - 1);
d0c803c4 8300 } else {
656f30db 8301 buf->log_index = -1;
d0c803c4 8302 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8303 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8304 }
64c12921 8305 trans->dirty = true;
b4ce94de 8306 /* this returns a buffer locked for blocking */
65b51a00
CM
8307 return buf;
8308}
8309
f0486c68
YZ
8310static struct btrfs_block_rsv *
8311use_block_rsv(struct btrfs_trans_handle *trans,
8312 struct btrfs_root *root, u32 blocksize)
8313{
0b246afa 8314 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8315 struct btrfs_block_rsv *block_rsv;
0b246afa 8316 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8317 int ret;
d88033db 8318 bool global_updated = false;
f0486c68
YZ
8319
8320 block_rsv = get_block_rsv(trans, root);
8321
b586b323
MX
8322 if (unlikely(block_rsv->size == 0))
8323 goto try_reserve;
d88033db 8324again:
f0486c68
YZ
8325 ret = block_rsv_use_bytes(block_rsv, blocksize);
8326 if (!ret)
8327 return block_rsv;
8328
b586b323
MX
8329 if (block_rsv->failfast)
8330 return ERR_PTR(ret);
8331
d88033db
MX
8332 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8333 global_updated = true;
0b246afa 8334 update_global_block_rsv(fs_info);
d88033db
MX
8335 goto again;
8336 }
8337
0b246afa 8338 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8339 static DEFINE_RATELIMIT_STATE(_rs,
8340 DEFAULT_RATELIMIT_INTERVAL * 10,
8341 /*DEFAULT_RATELIMIT_BURST*/ 1);
8342 if (__ratelimit(&_rs))
8343 WARN(1, KERN_DEBUG
efe120a0 8344 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8345 }
8346try_reserve:
8347 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8348 BTRFS_RESERVE_NO_FLUSH);
8349 if (!ret)
8350 return block_rsv;
8351 /*
8352 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8353 * the global reserve if its space type is the same as the global
8354 * reservation.
b586b323 8355 */
5881cfc9
MX
8356 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8357 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8358 ret = block_rsv_use_bytes(global_rsv, blocksize);
8359 if (!ret)
8360 return global_rsv;
8361 }
8362 return ERR_PTR(ret);
f0486c68
YZ
8363}
8364
8c2a3ca2
JB
8365static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8366 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8367{
8368 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8369 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8370}
8371
fec577fb 8372/*
f0486c68 8373 * finds a free extent and does all the dirty work required for allocation
67b7859e 8374 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8375 */
4d75f8a9 8376struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8377 struct btrfs_root *root,
8378 u64 parent, u64 root_objectid,
8379 const struct btrfs_disk_key *key,
8380 int level, u64 hint,
8381 u64 empty_size)
fec577fb 8382{
0b246afa 8383 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8384 struct btrfs_key ins;
f0486c68 8385 struct btrfs_block_rsv *block_rsv;
5f39d397 8386 struct extent_buffer *buf;
67b7859e 8387 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8388 u64 flags = 0;
8389 int ret;
0b246afa
JM
8390 u32 blocksize = fs_info->nodesize;
8391 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8392
05653ef3 8393#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8394 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8395 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8396 level);
faa2dbf0
JB
8397 if (!IS_ERR(buf))
8398 root->alloc_bytenr += blocksize;
8399 return buf;
8400 }
05653ef3 8401#endif
fccb84c9 8402
f0486c68
YZ
8403 block_rsv = use_block_rsv(trans, root, blocksize);
8404 if (IS_ERR(block_rsv))
8405 return ERR_CAST(block_rsv);
8406
18513091 8407 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8408 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8409 if (ret)
8410 goto out_unuse;
55c69072 8411
fe864576 8412 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8413 if (IS_ERR(buf)) {
8414 ret = PTR_ERR(buf);
8415 goto out_free_reserved;
8416 }
f0486c68
YZ
8417
8418 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8419 if (parent == 0)
8420 parent = ins.objectid;
8421 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8422 } else
8423 BUG_ON(parent > 0);
8424
8425 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8426 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8427 if (!extent_op) {
8428 ret = -ENOMEM;
8429 goto out_free_buf;
8430 }
f0486c68
YZ
8431 if (key)
8432 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8433 else
8434 memset(&extent_op->key, 0, sizeof(extent_op->key));
8435 extent_op->flags_to_set = flags;
35b3ad50
DS
8436 extent_op->update_key = skinny_metadata ? false : true;
8437 extent_op->update_flags = true;
8438 extent_op->is_data = false;
b1c79e09 8439 extent_op->level = level;
f0486c68 8440
7be07912
OS
8441 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8442 ins.offset, parent,
8443 root_objectid, level,
67b7859e 8444 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8445 extent_op, NULL, NULL);
67b7859e
OS
8446 if (ret)
8447 goto out_free_delayed;
f0486c68 8448 }
fec577fb 8449 return buf;
67b7859e
OS
8450
8451out_free_delayed:
8452 btrfs_free_delayed_extent_op(extent_op);
8453out_free_buf:
8454 free_extent_buffer(buf);
8455out_free_reserved:
2ff7e61e 8456 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8457out_unuse:
0b246afa 8458 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8459 return ERR_PTR(ret);
fec577fb 8460}
a28ec197 8461
2c47e605
YZ
8462struct walk_control {
8463 u64 refs[BTRFS_MAX_LEVEL];
8464 u64 flags[BTRFS_MAX_LEVEL];
8465 struct btrfs_key update_progress;
8466 int stage;
8467 int level;
8468 int shared_level;
8469 int update_ref;
8470 int keep_locks;
1c4850e2
YZ
8471 int reada_slot;
8472 int reada_count;
66d7e7f0 8473 int for_reloc;
2c47e605
YZ
8474};
8475
8476#define DROP_REFERENCE 1
8477#define UPDATE_BACKREF 2
8478
1c4850e2
YZ
8479static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8480 struct btrfs_root *root,
8481 struct walk_control *wc,
8482 struct btrfs_path *path)
6407bf6d 8483{
0b246afa 8484 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8485 u64 bytenr;
8486 u64 generation;
8487 u64 refs;
94fcca9f 8488 u64 flags;
5d4f98a2 8489 u32 nritems;
1c4850e2
YZ
8490 struct btrfs_key key;
8491 struct extent_buffer *eb;
6407bf6d 8492 int ret;
1c4850e2
YZ
8493 int slot;
8494 int nread = 0;
6407bf6d 8495
1c4850e2
YZ
8496 if (path->slots[wc->level] < wc->reada_slot) {
8497 wc->reada_count = wc->reada_count * 2 / 3;
8498 wc->reada_count = max(wc->reada_count, 2);
8499 } else {
8500 wc->reada_count = wc->reada_count * 3 / 2;
8501 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8502 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8503 }
7bb86316 8504
1c4850e2
YZ
8505 eb = path->nodes[wc->level];
8506 nritems = btrfs_header_nritems(eb);
bd56b302 8507
1c4850e2
YZ
8508 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8509 if (nread >= wc->reada_count)
8510 break;
bd56b302 8511
2dd3e67b 8512 cond_resched();
1c4850e2
YZ
8513 bytenr = btrfs_node_blockptr(eb, slot);
8514 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8515
1c4850e2
YZ
8516 if (slot == path->slots[wc->level])
8517 goto reada;
5d4f98a2 8518
1c4850e2
YZ
8519 if (wc->stage == UPDATE_BACKREF &&
8520 generation <= root->root_key.offset)
bd56b302
CM
8521 continue;
8522
94fcca9f 8523 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8524 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8525 wc->level - 1, 1, &refs,
8526 &flags);
79787eaa
JM
8527 /* We don't care about errors in readahead. */
8528 if (ret < 0)
8529 continue;
94fcca9f
YZ
8530 BUG_ON(refs == 0);
8531
1c4850e2 8532 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8533 if (refs == 1)
8534 goto reada;
bd56b302 8535
94fcca9f
YZ
8536 if (wc->level == 1 &&
8537 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8538 continue;
1c4850e2
YZ
8539 if (!wc->update_ref ||
8540 generation <= root->root_key.offset)
8541 continue;
8542 btrfs_node_key_to_cpu(eb, &key, slot);
8543 ret = btrfs_comp_cpu_keys(&key,
8544 &wc->update_progress);
8545 if (ret < 0)
8546 continue;
94fcca9f
YZ
8547 } else {
8548 if (wc->level == 1 &&
8549 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8550 continue;
6407bf6d 8551 }
1c4850e2 8552reada:
2ff7e61e 8553 readahead_tree_block(fs_info, bytenr);
1c4850e2 8554 nread++;
20524f02 8555 }
1c4850e2 8556 wc->reada_slot = slot;
20524f02 8557}
2c47e605 8558
f82d02d9 8559/*
2c016dc2 8560 * helper to process tree block while walking down the tree.
2c47e605 8561 *
2c47e605
YZ
8562 * when wc->stage == UPDATE_BACKREF, this function updates
8563 * back refs for pointers in the block.
8564 *
8565 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8566 */
2c47e605 8567static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8568 struct btrfs_root *root,
2c47e605 8569 struct btrfs_path *path,
94fcca9f 8570 struct walk_control *wc, int lookup_info)
f82d02d9 8571{
2ff7e61e 8572 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8573 int level = wc->level;
8574 struct extent_buffer *eb = path->nodes[level];
2c47e605 8575 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8576 int ret;
8577
2c47e605
YZ
8578 if (wc->stage == UPDATE_BACKREF &&
8579 btrfs_header_owner(eb) != root->root_key.objectid)
8580 return 1;
f82d02d9 8581
2c47e605
YZ
8582 /*
8583 * when reference count of tree block is 1, it won't increase
8584 * again. once full backref flag is set, we never clear it.
8585 */
94fcca9f
YZ
8586 if (lookup_info &&
8587 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8588 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8589 BUG_ON(!path->locks[level]);
2ff7e61e 8590 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8591 eb->start, level, 1,
2c47e605
YZ
8592 &wc->refs[level],
8593 &wc->flags[level]);
79787eaa
JM
8594 BUG_ON(ret == -ENOMEM);
8595 if (ret)
8596 return ret;
2c47e605
YZ
8597 BUG_ON(wc->refs[level] == 0);
8598 }
5d4f98a2 8599
2c47e605
YZ
8600 if (wc->stage == DROP_REFERENCE) {
8601 if (wc->refs[level] > 1)
8602 return 1;
f82d02d9 8603
2c47e605 8604 if (path->locks[level] && !wc->keep_locks) {
bd681513 8605 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8606 path->locks[level] = 0;
8607 }
8608 return 0;
8609 }
f82d02d9 8610
2c47e605
YZ
8611 /* wc->stage == UPDATE_BACKREF */
8612 if (!(wc->flags[level] & flag)) {
8613 BUG_ON(!path->locks[level]);
e339a6b0 8614 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8615 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8616 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8617 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8618 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8619 eb->len, flag,
8620 btrfs_header_level(eb), 0);
79787eaa 8621 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8622 wc->flags[level] |= flag;
8623 }
8624
8625 /*
8626 * the block is shared by multiple trees, so it's not good to
8627 * keep the tree lock
8628 */
8629 if (path->locks[level] && level > 0) {
bd681513 8630 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8631 path->locks[level] = 0;
8632 }
8633 return 0;
8634}
8635
1c4850e2 8636/*
2c016dc2 8637 * helper to process tree block pointer.
1c4850e2
YZ
8638 *
8639 * when wc->stage == DROP_REFERENCE, this function checks
8640 * reference count of the block pointed to. if the block
8641 * is shared and we need update back refs for the subtree
8642 * rooted at the block, this function changes wc->stage to
8643 * UPDATE_BACKREF. if the block is shared and there is no
8644 * need to update back, this function drops the reference
8645 * to the block.
8646 *
8647 * NOTE: return value 1 means we should stop walking down.
8648 */
8649static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8650 struct btrfs_root *root,
8651 struct btrfs_path *path,
94fcca9f 8652 struct walk_control *wc, int *lookup_info)
1c4850e2 8653{
0b246afa 8654 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8655 u64 bytenr;
8656 u64 generation;
8657 u64 parent;
8658 u32 blocksize;
8659 struct btrfs_key key;
8660 struct extent_buffer *next;
8661 int level = wc->level;
8662 int reada = 0;
8663 int ret = 0;
1152651a 8664 bool need_account = false;
1c4850e2
YZ
8665
8666 generation = btrfs_node_ptr_generation(path->nodes[level],
8667 path->slots[level]);
8668 /*
8669 * if the lower level block was created before the snapshot
8670 * was created, we know there is no need to update back refs
8671 * for the subtree
8672 */
8673 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8674 generation <= root->root_key.offset) {
8675 *lookup_info = 1;
1c4850e2 8676 return 1;
94fcca9f 8677 }
1c4850e2
YZ
8678
8679 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
0b246afa 8680 blocksize = fs_info->nodesize;
1c4850e2 8681
0b246afa 8682 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8683 if (!next) {
2ff7e61e 8684 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8685 if (IS_ERR(next))
8686 return PTR_ERR(next);
8687
b2aaaa3b
JB
8688 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8689 level - 1);
1c4850e2
YZ
8690 reada = 1;
8691 }
8692 btrfs_tree_lock(next);
8693 btrfs_set_lock_blocking(next);
8694
2ff7e61e 8695 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8696 &wc->refs[level - 1],
8697 &wc->flags[level - 1]);
4867268c
JB
8698 if (ret < 0)
8699 goto out_unlock;
79787eaa 8700
c2cf52eb 8701 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8702 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8703 ret = -EIO;
8704 goto out_unlock;
c2cf52eb 8705 }
94fcca9f 8706 *lookup_info = 0;
1c4850e2 8707
94fcca9f 8708 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8709 if (wc->refs[level - 1] > 1) {
1152651a 8710 need_account = true;
94fcca9f
YZ
8711 if (level == 1 &&
8712 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8713 goto skip;
8714
1c4850e2
YZ
8715 if (!wc->update_ref ||
8716 generation <= root->root_key.offset)
8717 goto skip;
8718
8719 btrfs_node_key_to_cpu(path->nodes[level], &key,
8720 path->slots[level]);
8721 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8722 if (ret < 0)
8723 goto skip;
8724
8725 wc->stage = UPDATE_BACKREF;
8726 wc->shared_level = level - 1;
8727 }
94fcca9f
YZ
8728 } else {
8729 if (level == 1 &&
8730 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8731 goto skip;
1c4850e2
YZ
8732 }
8733
b9fab919 8734 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8735 btrfs_tree_unlock(next);
8736 free_extent_buffer(next);
8737 next = NULL;
94fcca9f 8738 *lookup_info = 1;
1c4850e2
YZ
8739 }
8740
8741 if (!next) {
8742 if (reada && level == 1)
8743 reada_walk_down(trans, root, wc, path);
2ff7e61e 8744 next = read_tree_block(fs_info, bytenr, generation);
64c043de
LB
8745 if (IS_ERR(next)) {
8746 return PTR_ERR(next);
8747 } else if (!extent_buffer_uptodate(next)) {
416bc658 8748 free_extent_buffer(next);
97d9a8a4 8749 return -EIO;
416bc658 8750 }
1c4850e2
YZ
8751 btrfs_tree_lock(next);
8752 btrfs_set_lock_blocking(next);
8753 }
8754
8755 level--;
4867268c
JB
8756 ASSERT(level == btrfs_header_level(next));
8757 if (level != btrfs_header_level(next)) {
8758 btrfs_err(root->fs_info, "mismatched level");
8759 ret = -EIO;
8760 goto out_unlock;
8761 }
1c4850e2
YZ
8762 path->nodes[level] = next;
8763 path->slots[level] = 0;
bd681513 8764 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8765 wc->level = level;
8766 if (wc->level == 1)
8767 wc->reada_slot = 0;
8768 return 0;
8769skip:
8770 wc->refs[level - 1] = 0;
8771 wc->flags[level - 1] = 0;
94fcca9f
YZ
8772 if (wc->stage == DROP_REFERENCE) {
8773 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8774 parent = path->nodes[level]->start;
8775 } else {
4867268c 8776 ASSERT(root->root_key.objectid ==
94fcca9f 8777 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8778 if (root->root_key.objectid !=
8779 btrfs_header_owner(path->nodes[level])) {
8780 btrfs_err(root->fs_info,
8781 "mismatched block owner");
8782 ret = -EIO;
8783 goto out_unlock;
8784 }
94fcca9f
YZ
8785 parent = 0;
8786 }
1c4850e2 8787
1152651a 8788 if (need_account) {
33d1f05c
QW
8789 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8790 generation, level - 1);
1152651a 8791 if (ret) {
0b246afa 8792 btrfs_err_rl(fs_info,
5d163e0e
JM
8793 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8794 ret);
1152651a
MF
8795 }
8796 }
2ff7e61e
JM
8797 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8798 parent, root->root_key.objectid,
8799 level - 1, 0);
4867268c
JB
8800 if (ret)
8801 goto out_unlock;
1c4850e2 8802 }
4867268c
JB
8803
8804 *lookup_info = 1;
8805 ret = 1;
8806
8807out_unlock:
1c4850e2
YZ
8808 btrfs_tree_unlock(next);
8809 free_extent_buffer(next);
4867268c
JB
8810
8811 return ret;
1c4850e2
YZ
8812}
8813
2c47e605 8814/*
2c016dc2 8815 * helper to process tree block while walking up the tree.
2c47e605
YZ
8816 *
8817 * when wc->stage == DROP_REFERENCE, this function drops
8818 * reference count on the block.
8819 *
8820 * when wc->stage == UPDATE_BACKREF, this function changes
8821 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8822 * to UPDATE_BACKREF previously while processing the block.
8823 *
8824 * NOTE: return value 1 means we should stop walking up.
8825 */
8826static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8827 struct btrfs_root *root,
8828 struct btrfs_path *path,
8829 struct walk_control *wc)
8830{
0b246afa 8831 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8832 int ret;
2c47e605
YZ
8833 int level = wc->level;
8834 struct extent_buffer *eb = path->nodes[level];
8835 u64 parent = 0;
8836
8837 if (wc->stage == UPDATE_BACKREF) {
8838 BUG_ON(wc->shared_level < level);
8839 if (level < wc->shared_level)
8840 goto out;
8841
2c47e605
YZ
8842 ret = find_next_key(path, level + 1, &wc->update_progress);
8843 if (ret > 0)
8844 wc->update_ref = 0;
8845
8846 wc->stage = DROP_REFERENCE;
8847 wc->shared_level = -1;
8848 path->slots[level] = 0;
8849
8850 /*
8851 * check reference count again if the block isn't locked.
8852 * we should start walking down the tree again if reference
8853 * count is one.
8854 */
8855 if (!path->locks[level]) {
8856 BUG_ON(level == 0);
8857 btrfs_tree_lock(eb);
8858 btrfs_set_lock_blocking(eb);
bd681513 8859 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8860
2ff7e61e 8861 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8862 eb->start, level, 1,
2c47e605
YZ
8863 &wc->refs[level],
8864 &wc->flags[level]);
79787eaa
JM
8865 if (ret < 0) {
8866 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8867 path->locks[level] = 0;
79787eaa
JM
8868 return ret;
8869 }
2c47e605
YZ
8870 BUG_ON(wc->refs[level] == 0);
8871 if (wc->refs[level] == 1) {
bd681513 8872 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8873 path->locks[level] = 0;
2c47e605
YZ
8874 return 1;
8875 }
f82d02d9 8876 }
2c47e605 8877 }
f82d02d9 8878
2c47e605
YZ
8879 /* wc->stage == DROP_REFERENCE */
8880 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8881
2c47e605
YZ
8882 if (wc->refs[level] == 1) {
8883 if (level == 0) {
8884 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8885 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8886 else
e339a6b0 8887 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8888 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8889 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8890 if (ret) {
0b246afa 8891 btrfs_err_rl(fs_info,
5d163e0e
JM
8892 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8893 ret);
1152651a 8894 }
2c47e605
YZ
8895 }
8896 /* make block locked assertion in clean_tree_block happy */
8897 if (!path->locks[level] &&
8898 btrfs_header_generation(eb) == trans->transid) {
8899 btrfs_tree_lock(eb);
8900 btrfs_set_lock_blocking(eb);
bd681513 8901 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8902 }
7c302b49 8903 clean_tree_block(fs_info, eb);
2c47e605
YZ
8904 }
8905
8906 if (eb == root->node) {
8907 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8908 parent = eb->start;
8909 else
8910 BUG_ON(root->root_key.objectid !=
8911 btrfs_header_owner(eb));
8912 } else {
8913 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8914 parent = path->nodes[level + 1]->start;
8915 else
8916 BUG_ON(root->root_key.objectid !=
8917 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8918 }
f82d02d9 8919
5581a51a 8920 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8921out:
8922 wc->refs[level] = 0;
8923 wc->flags[level] = 0;
f0486c68 8924 return 0;
2c47e605
YZ
8925}
8926
8927static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8928 struct btrfs_root *root,
8929 struct btrfs_path *path,
8930 struct walk_control *wc)
8931{
2c47e605 8932 int level = wc->level;
94fcca9f 8933 int lookup_info = 1;
2c47e605
YZ
8934 int ret;
8935
8936 while (level >= 0) {
94fcca9f 8937 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8938 if (ret > 0)
8939 break;
8940
8941 if (level == 0)
8942 break;
8943
7a7965f8
YZ
8944 if (path->slots[level] >=
8945 btrfs_header_nritems(path->nodes[level]))
8946 break;
8947
94fcca9f 8948 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8949 if (ret > 0) {
8950 path->slots[level]++;
8951 continue;
90d2c51d
MX
8952 } else if (ret < 0)
8953 return ret;
1c4850e2 8954 level = wc->level;
f82d02d9 8955 }
f82d02d9
YZ
8956 return 0;
8957}
8958
d397712b 8959static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8960 struct btrfs_root *root,
f82d02d9 8961 struct btrfs_path *path,
2c47e605 8962 struct walk_control *wc, int max_level)
20524f02 8963{
2c47e605 8964 int level = wc->level;
20524f02 8965 int ret;
9f3a7427 8966
2c47e605
YZ
8967 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8968 while (level < max_level && path->nodes[level]) {
8969 wc->level = level;
8970 if (path->slots[level] + 1 <
8971 btrfs_header_nritems(path->nodes[level])) {
8972 path->slots[level]++;
20524f02
CM
8973 return 0;
8974 } else {
2c47e605
YZ
8975 ret = walk_up_proc(trans, root, path, wc);
8976 if (ret > 0)
8977 return 0;
bd56b302 8978
2c47e605 8979 if (path->locks[level]) {
bd681513
CM
8980 btrfs_tree_unlock_rw(path->nodes[level],
8981 path->locks[level]);
2c47e605 8982 path->locks[level] = 0;
f82d02d9 8983 }
2c47e605
YZ
8984 free_extent_buffer(path->nodes[level]);
8985 path->nodes[level] = NULL;
8986 level++;
20524f02
CM
8987 }
8988 }
8989 return 1;
8990}
8991
9aca1d51 8992/*
2c47e605
YZ
8993 * drop a subvolume tree.
8994 *
8995 * this function traverses the tree freeing any blocks that only
8996 * referenced by the tree.
8997 *
8998 * when a shared tree block is found. this function decreases its
8999 * reference count by one. if update_ref is true, this function
9000 * also make sure backrefs for the shared block and all lower level
9001 * blocks are properly updated.
9d1a2a3a
DS
9002 *
9003 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9004 */
2c536799 9005int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9006 struct btrfs_block_rsv *block_rsv, int update_ref,
9007 int for_reloc)
20524f02 9008{
ab8d0fc4 9009 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9010 struct btrfs_path *path;
2c47e605 9011 struct btrfs_trans_handle *trans;
ab8d0fc4 9012 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9013 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9014 struct walk_control *wc;
9015 struct btrfs_key key;
9016 int err = 0;
9017 int ret;
9018 int level;
d29a9f62 9019 bool root_dropped = false;
20524f02 9020
ab8d0fc4 9021 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9022
5caf2a00 9023 path = btrfs_alloc_path();
cb1b69f4
TI
9024 if (!path) {
9025 err = -ENOMEM;
9026 goto out;
9027 }
20524f02 9028
2c47e605 9029 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9030 if (!wc) {
9031 btrfs_free_path(path);
cb1b69f4
TI
9032 err = -ENOMEM;
9033 goto out;
38a1a919 9034 }
2c47e605 9035
a22285a6 9036 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9037 if (IS_ERR(trans)) {
9038 err = PTR_ERR(trans);
9039 goto out_free;
9040 }
98d5dc13 9041
3fd0a558
YZ
9042 if (block_rsv)
9043 trans->block_rsv = block_rsv;
2c47e605 9044
9f3a7427 9045 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9046 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9047 path->nodes[level] = btrfs_lock_root_node(root);
9048 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9049 path->slots[level] = 0;
bd681513 9050 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9051 memset(&wc->update_progress, 0,
9052 sizeof(wc->update_progress));
9f3a7427 9053 } else {
9f3a7427 9054 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9055 memcpy(&wc->update_progress, &key,
9056 sizeof(wc->update_progress));
9057
6702ed49 9058 level = root_item->drop_level;
2c47e605 9059 BUG_ON(level == 0);
6702ed49 9060 path->lowest_level = level;
2c47e605
YZ
9061 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9062 path->lowest_level = 0;
9063 if (ret < 0) {
9064 err = ret;
79787eaa 9065 goto out_end_trans;
9f3a7427 9066 }
1c4850e2 9067 WARN_ON(ret > 0);
2c47e605 9068
7d9eb12c
CM
9069 /*
9070 * unlock our path, this is safe because only this
9071 * function is allowed to delete this snapshot
9072 */
5d4f98a2 9073 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9074
9075 level = btrfs_header_level(root->node);
9076 while (1) {
9077 btrfs_tree_lock(path->nodes[level]);
9078 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9079 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9080
2ff7e61e 9081 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9082 path->nodes[level]->start,
3173a18f 9083 level, 1, &wc->refs[level],
2c47e605 9084 &wc->flags[level]);
79787eaa
JM
9085 if (ret < 0) {
9086 err = ret;
9087 goto out_end_trans;
9088 }
2c47e605
YZ
9089 BUG_ON(wc->refs[level] == 0);
9090
9091 if (level == root_item->drop_level)
9092 break;
9093
9094 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9095 path->locks[level] = 0;
2c47e605
YZ
9096 WARN_ON(wc->refs[level] != 1);
9097 level--;
9098 }
9f3a7427 9099 }
2c47e605
YZ
9100
9101 wc->level = level;
9102 wc->shared_level = -1;
9103 wc->stage = DROP_REFERENCE;
9104 wc->update_ref = update_ref;
9105 wc->keep_locks = 0;
66d7e7f0 9106 wc->for_reloc = for_reloc;
0b246afa 9107 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9108
d397712b 9109 while (1) {
9d1a2a3a 9110
2c47e605
YZ
9111 ret = walk_down_tree(trans, root, path, wc);
9112 if (ret < 0) {
9113 err = ret;
20524f02 9114 break;
2c47e605 9115 }
9aca1d51 9116
2c47e605
YZ
9117 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9118 if (ret < 0) {
9119 err = ret;
20524f02 9120 break;
2c47e605
YZ
9121 }
9122
9123 if (ret > 0) {
9124 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9125 break;
9126 }
2c47e605
YZ
9127
9128 if (wc->stage == DROP_REFERENCE) {
9129 level = wc->level;
9130 btrfs_node_key(path->nodes[level],
9131 &root_item->drop_progress,
9132 path->slots[level]);
9133 root_item->drop_level = level;
9134 }
9135
9136 BUG_ON(wc->level == 0);
3a45bb20 9137 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9138 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9139 ret = btrfs_update_root(trans, tree_root,
9140 &root->root_key,
9141 root_item);
79787eaa 9142 if (ret) {
66642832 9143 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9144 err = ret;
9145 goto out_end_trans;
9146 }
2c47e605 9147
3a45bb20 9148 btrfs_end_transaction_throttle(trans);
2ff7e61e 9149 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9150 btrfs_debug(fs_info,
9151 "drop snapshot early exit");
3c8f2422
JB
9152 err = -EAGAIN;
9153 goto out_free;
9154 }
9155
a22285a6 9156 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9157 if (IS_ERR(trans)) {
9158 err = PTR_ERR(trans);
9159 goto out_free;
9160 }
3fd0a558
YZ
9161 if (block_rsv)
9162 trans->block_rsv = block_rsv;
c3e69d58 9163 }
20524f02 9164 }
b3b4aa74 9165 btrfs_release_path(path);
79787eaa
JM
9166 if (err)
9167 goto out_end_trans;
2c47e605
YZ
9168
9169 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa 9170 if (ret) {
66642832 9171 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9172 goto out_end_trans;
9173 }
2c47e605 9174
76dda93c 9175 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9176 ret = btrfs_find_root(tree_root, &root->root_key, path,
9177 NULL, NULL);
79787eaa 9178 if (ret < 0) {
66642832 9179 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9180 err = ret;
9181 goto out_end_trans;
9182 } else if (ret > 0) {
84cd948c
JB
9183 /* if we fail to delete the orphan item this time
9184 * around, it'll get picked up the next time.
9185 *
9186 * The most common failure here is just -ENOENT.
9187 */
9188 btrfs_del_orphan_item(trans, tree_root,
9189 root->root_key.objectid);
76dda93c
YZ
9190 }
9191 }
9192
27cdeb70 9193 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9194 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9195 } else {
9196 free_extent_buffer(root->node);
9197 free_extent_buffer(root->commit_root);
b0feb9d9 9198 btrfs_put_fs_root(root);
76dda93c 9199 }
d29a9f62 9200 root_dropped = true;
79787eaa 9201out_end_trans:
3a45bb20 9202 btrfs_end_transaction_throttle(trans);
79787eaa 9203out_free:
2c47e605 9204 kfree(wc);
5caf2a00 9205 btrfs_free_path(path);
cb1b69f4 9206out:
d29a9f62
JB
9207 /*
9208 * So if we need to stop dropping the snapshot for whatever reason we
9209 * need to make sure to add it back to the dead root list so that we
9210 * keep trying to do the work later. This also cleans up roots if we
9211 * don't have it in the radix (like when we recover after a power fail
9212 * or unmount) so we don't leak memory.
9213 */
b37b39cd 9214 if (!for_reloc && root_dropped == false)
d29a9f62 9215 btrfs_add_dead_root(root);
90515e7f 9216 if (err && err != -EAGAIN)
ab8d0fc4 9217 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9218 return err;
20524f02 9219}
9078a3e1 9220
2c47e605
YZ
9221/*
9222 * drop subtree rooted at tree block 'node'.
9223 *
9224 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9225 * only used by relocation code
2c47e605 9226 */
f82d02d9
YZ
9227int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9228 struct btrfs_root *root,
9229 struct extent_buffer *node,
9230 struct extent_buffer *parent)
9231{
0b246afa 9232 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9233 struct btrfs_path *path;
2c47e605 9234 struct walk_control *wc;
f82d02d9
YZ
9235 int level;
9236 int parent_level;
9237 int ret = 0;
9238 int wret;
9239
2c47e605
YZ
9240 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9241
f82d02d9 9242 path = btrfs_alloc_path();
db5b493a
TI
9243 if (!path)
9244 return -ENOMEM;
f82d02d9 9245
2c47e605 9246 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9247 if (!wc) {
9248 btrfs_free_path(path);
9249 return -ENOMEM;
9250 }
2c47e605 9251
b9447ef8 9252 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9253 parent_level = btrfs_header_level(parent);
9254 extent_buffer_get(parent);
9255 path->nodes[parent_level] = parent;
9256 path->slots[parent_level] = btrfs_header_nritems(parent);
9257
b9447ef8 9258 btrfs_assert_tree_locked(node);
f82d02d9 9259 level = btrfs_header_level(node);
f82d02d9
YZ
9260 path->nodes[level] = node;
9261 path->slots[level] = 0;
bd681513 9262 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9263
9264 wc->refs[parent_level] = 1;
9265 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9266 wc->level = level;
9267 wc->shared_level = -1;
9268 wc->stage = DROP_REFERENCE;
9269 wc->update_ref = 0;
9270 wc->keep_locks = 1;
66d7e7f0 9271 wc->for_reloc = 1;
0b246afa 9272 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9273
9274 while (1) {
2c47e605
YZ
9275 wret = walk_down_tree(trans, root, path, wc);
9276 if (wret < 0) {
f82d02d9 9277 ret = wret;
f82d02d9 9278 break;
2c47e605 9279 }
f82d02d9 9280
2c47e605 9281 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9282 if (wret < 0)
9283 ret = wret;
9284 if (wret != 0)
9285 break;
9286 }
9287
2c47e605 9288 kfree(wc);
f82d02d9
YZ
9289 btrfs_free_path(path);
9290 return ret;
9291}
9292
6202df69 9293static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9294{
9295 u64 num_devices;
fc67c450 9296 u64 stripped;
e4d8ec0f 9297
fc67c450
ID
9298 /*
9299 * if restripe for this chunk_type is on pick target profile and
9300 * return, otherwise do the usual balance
9301 */
6202df69 9302 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9303 if (stripped)
9304 return extended_to_chunk(stripped);
e4d8ec0f 9305
6202df69 9306 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9307
fc67c450 9308 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9309 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9310 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9311
ec44a35c
CM
9312 if (num_devices == 1) {
9313 stripped |= BTRFS_BLOCK_GROUP_DUP;
9314 stripped = flags & ~stripped;
9315
9316 /* turn raid0 into single device chunks */
9317 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9318 return stripped;
9319
9320 /* turn mirroring into duplication */
9321 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9322 BTRFS_BLOCK_GROUP_RAID10))
9323 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9324 } else {
9325 /* they already had raid on here, just return */
ec44a35c
CM
9326 if (flags & stripped)
9327 return flags;
9328
9329 stripped |= BTRFS_BLOCK_GROUP_DUP;
9330 stripped = flags & ~stripped;
9331
9332 /* switch duplicated blocks with raid1 */
9333 if (flags & BTRFS_BLOCK_GROUP_DUP)
9334 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9335
e3176ca2 9336 /* this is drive concat, leave it alone */
ec44a35c 9337 }
e3176ca2 9338
ec44a35c
CM
9339 return flags;
9340}
9341
868f401a 9342static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9343{
f0486c68
YZ
9344 struct btrfs_space_info *sinfo = cache->space_info;
9345 u64 num_bytes;
199c36ea 9346 u64 min_allocable_bytes;
f0486c68 9347 int ret = -ENOSPC;
0ef3e66b 9348
199c36ea
MX
9349 /*
9350 * We need some metadata space and system metadata space for
9351 * allocating chunks in some corner cases until we force to set
9352 * it to be readonly.
9353 */
9354 if ((sinfo->flags &
9355 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9356 !force)
ee22184b 9357 min_allocable_bytes = SZ_1M;
199c36ea
MX
9358 else
9359 min_allocable_bytes = 0;
9360
f0486c68
YZ
9361 spin_lock(&sinfo->lock);
9362 spin_lock(&cache->lock);
61cfea9b
W
9363
9364 if (cache->ro) {
868f401a 9365 cache->ro++;
61cfea9b
W
9366 ret = 0;
9367 goto out;
9368 }
9369
f0486c68
YZ
9370 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9371 cache->bytes_super - btrfs_block_group_used(&cache->item);
9372
4136135b 9373 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9374 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9375 sinfo->bytes_readonly += num_bytes;
868f401a 9376 cache->ro++;
633c0aad 9377 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9378 ret = 0;
9379 }
61cfea9b 9380out:
f0486c68
YZ
9381 spin_unlock(&cache->lock);
9382 spin_unlock(&sinfo->lock);
9383 return ret;
9384}
7d9eb12c 9385
5e00f193 9386int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9387 struct btrfs_block_group_cache *cache)
c286ac48 9388
f0486c68
YZ
9389{
9390 struct btrfs_trans_handle *trans;
9391 u64 alloc_flags;
9392 int ret;
7d9eb12c 9393
1bbc621e 9394again:
5e00f193 9395 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9396 if (IS_ERR(trans))
9397 return PTR_ERR(trans);
5d4f98a2 9398
1bbc621e
CM
9399 /*
9400 * we're not allowed to set block groups readonly after the dirty
9401 * block groups cache has started writing. If it already started,
9402 * back off and let this transaction commit
9403 */
0b246afa 9404 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9405 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9406 u64 transid = trans->transid;
9407
0b246afa 9408 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9409 btrfs_end_transaction(trans);
1bbc621e 9410
2ff7e61e 9411 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9412 if (ret)
9413 return ret;
9414 goto again;
9415 }
9416
153c35b6
CM
9417 /*
9418 * if we are changing raid levels, try to allocate a corresponding
9419 * block group with the new raid level.
9420 */
0b246afa 9421 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9422 if (alloc_flags != cache->flags) {
2ff7e61e 9423 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9424 CHUNK_ALLOC_FORCE);
9425 /*
9426 * ENOSPC is allowed here, we may have enough space
9427 * already allocated at the new raid level to
9428 * carry on
9429 */
9430 if (ret == -ENOSPC)
9431 ret = 0;
9432 if (ret < 0)
9433 goto out;
9434 }
1bbc621e 9435
868f401a 9436 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9437 if (!ret)
9438 goto out;
2ff7e61e
JM
9439 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9440 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9441 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9442 if (ret < 0)
9443 goto out;
868f401a 9444 ret = inc_block_group_ro(cache, 0);
f0486c68 9445out:
2f081088 9446 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9447 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9448 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9449 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9450 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9451 }
0b246afa 9452 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9453
3a45bb20 9454 btrfs_end_transaction(trans);
f0486c68
YZ
9455 return ret;
9456}
5d4f98a2 9457
c87f08ca 9458int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9459 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9460{
2ff7e61e
JM
9461 u64 alloc_flags = get_alloc_profile(fs_info, type);
9462
9463 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9464}
9465
6d07bcec
MX
9466/*
9467 * helper to account the unused space of all the readonly block group in the
633c0aad 9468 * space_info. takes mirrors into account.
6d07bcec 9469 */
633c0aad 9470u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9471{
9472 struct btrfs_block_group_cache *block_group;
9473 u64 free_bytes = 0;
9474 int factor;
9475
01327610 9476 /* It's df, we don't care if it's racy */
633c0aad
JB
9477 if (list_empty(&sinfo->ro_bgs))
9478 return 0;
9479
9480 spin_lock(&sinfo->lock);
9481 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9482 spin_lock(&block_group->lock);
9483
9484 if (!block_group->ro) {
9485 spin_unlock(&block_group->lock);
9486 continue;
9487 }
9488
9489 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9490 BTRFS_BLOCK_GROUP_RAID10 |
9491 BTRFS_BLOCK_GROUP_DUP))
9492 factor = 2;
9493 else
9494 factor = 1;
9495
9496 free_bytes += (block_group->key.offset -
9497 btrfs_block_group_used(&block_group->item)) *
9498 factor;
9499
9500 spin_unlock(&block_group->lock);
9501 }
6d07bcec
MX
9502 spin_unlock(&sinfo->lock);
9503
9504 return free_bytes;
9505}
9506
2ff7e61e 9507void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9508{
f0486c68
YZ
9509 struct btrfs_space_info *sinfo = cache->space_info;
9510 u64 num_bytes;
9511
9512 BUG_ON(!cache->ro);
9513
9514 spin_lock(&sinfo->lock);
9515 spin_lock(&cache->lock);
868f401a
Z
9516 if (!--cache->ro) {
9517 num_bytes = cache->key.offset - cache->reserved -
9518 cache->pinned - cache->bytes_super -
9519 btrfs_block_group_used(&cache->item);
9520 sinfo->bytes_readonly -= num_bytes;
9521 list_del_init(&cache->ro_list);
9522 }
f0486c68
YZ
9523 spin_unlock(&cache->lock);
9524 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9525}
9526
ba1bf481
JB
9527/*
9528 * checks to see if its even possible to relocate this block group.
9529 *
9530 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9531 * ok to go ahead and try.
9532 */
6bccf3ab 9533int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9534{
6bccf3ab 9535 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9536 struct btrfs_block_group_cache *block_group;
9537 struct btrfs_space_info *space_info;
0b246afa 9538 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9539 struct btrfs_device *device;
6df9a95e 9540 struct btrfs_trans_handle *trans;
cdcb725c 9541 u64 min_free;
6719db6a
JB
9542 u64 dev_min = 1;
9543 u64 dev_nr = 0;
4a5e98f5 9544 u64 target;
0305bc27 9545 int debug;
cdcb725c 9546 int index;
ba1bf481
JB
9547 int full = 0;
9548 int ret = 0;
1a40e23b 9549
0b246afa 9550 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9551
0b246afa 9552 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9553
ba1bf481 9554 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9555 if (!block_group) {
9556 if (debug)
0b246afa 9557 btrfs_warn(fs_info,
0305bc27
QW
9558 "can't find block group for bytenr %llu",
9559 bytenr);
ba1bf481 9560 return -1;
0305bc27 9561 }
1a40e23b 9562
cdcb725c 9563 min_free = btrfs_block_group_used(&block_group->item);
9564
ba1bf481 9565 /* no bytes used, we're good */
cdcb725c 9566 if (!min_free)
1a40e23b
ZY
9567 goto out;
9568
ba1bf481
JB
9569 space_info = block_group->space_info;
9570 spin_lock(&space_info->lock);
17d217fe 9571
ba1bf481 9572 full = space_info->full;
17d217fe 9573
ba1bf481
JB
9574 /*
9575 * if this is the last block group we have in this space, we can't
7ce618db
CM
9576 * relocate it unless we're able to allocate a new chunk below.
9577 *
9578 * Otherwise, we need to make sure we have room in the space to handle
9579 * all of the extents from this block group. If we can, we're good
ba1bf481 9580 */
7ce618db 9581 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9582 (btrfs_space_info_used(space_info, false) + min_free <
9583 space_info->total_bytes)) {
ba1bf481
JB
9584 spin_unlock(&space_info->lock);
9585 goto out;
17d217fe 9586 }
ba1bf481 9587 spin_unlock(&space_info->lock);
ea8c2819 9588
ba1bf481
JB
9589 /*
9590 * ok we don't have enough space, but maybe we have free space on our
9591 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9592 * alloc devices and guess if we have enough space. if this block
9593 * group is going to be restriped, run checks against the target
9594 * profile instead of the current one.
ba1bf481
JB
9595 */
9596 ret = -1;
ea8c2819 9597
cdcb725c 9598 /*
9599 * index:
9600 * 0: raid10
9601 * 1: raid1
9602 * 2: dup
9603 * 3: raid0
9604 * 4: single
9605 */
0b246afa 9606 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9607 if (target) {
31e50229 9608 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9609 } else {
9610 /*
9611 * this is just a balance, so if we were marked as full
9612 * we know there is no space for a new chunk
9613 */
0305bc27
QW
9614 if (full) {
9615 if (debug)
0b246afa
JM
9616 btrfs_warn(fs_info,
9617 "no space to alloc new chunk for block group %llu",
9618 block_group->key.objectid);
4a5e98f5 9619 goto out;
0305bc27 9620 }
4a5e98f5
ID
9621
9622 index = get_block_group_index(block_group);
9623 }
9624
e6ec716f 9625 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9626 dev_min = 4;
6719db6a
JB
9627 /* Divide by 2 */
9628 min_free >>= 1;
e6ec716f 9629 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9630 dev_min = 2;
e6ec716f 9631 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9632 /* Multiply by 2 */
9633 min_free <<= 1;
e6ec716f 9634 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9635 dev_min = fs_devices->rw_devices;
47c5713f 9636 min_free = div64_u64(min_free, dev_min);
cdcb725c 9637 }
9638
6df9a95e
JB
9639 /* We need to do this so that we can look at pending chunks */
9640 trans = btrfs_join_transaction(root);
9641 if (IS_ERR(trans)) {
9642 ret = PTR_ERR(trans);
9643 goto out;
9644 }
9645
0b246afa 9646 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9647 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9648 u64 dev_offset;
56bec294 9649
ba1bf481
JB
9650 /*
9651 * check to make sure we can actually find a chunk with enough
9652 * space to fit our block group in.
9653 */
63a212ab
SB
9654 if (device->total_bytes > device->bytes_used + min_free &&
9655 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9656 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9657 &dev_offset, NULL);
ba1bf481 9658 if (!ret)
cdcb725c 9659 dev_nr++;
9660
9661 if (dev_nr >= dev_min)
73e48b27 9662 break;
cdcb725c 9663
ba1bf481 9664 ret = -1;
725c8463 9665 }
edbd8d4e 9666 }
0305bc27 9667 if (debug && ret == -1)
0b246afa
JM
9668 btrfs_warn(fs_info,
9669 "no space to allocate a new chunk for block group %llu",
9670 block_group->key.objectid);
9671 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9672 btrfs_end_transaction(trans);
edbd8d4e 9673out:
ba1bf481 9674 btrfs_put_block_group(block_group);
edbd8d4e
CM
9675 return ret;
9676}
9677
6bccf3ab
JM
9678static int find_first_block_group(struct btrfs_fs_info *fs_info,
9679 struct btrfs_path *path,
9680 struct btrfs_key *key)
0b86a832 9681{
6bccf3ab 9682 struct btrfs_root *root = fs_info->extent_root;
925baedd 9683 int ret = 0;
0b86a832
CM
9684 struct btrfs_key found_key;
9685 struct extent_buffer *leaf;
9686 int slot;
edbd8d4e 9687
0b86a832
CM
9688 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9689 if (ret < 0)
925baedd
CM
9690 goto out;
9691
d397712b 9692 while (1) {
0b86a832 9693 slot = path->slots[0];
edbd8d4e 9694 leaf = path->nodes[0];
0b86a832
CM
9695 if (slot >= btrfs_header_nritems(leaf)) {
9696 ret = btrfs_next_leaf(root, path);
9697 if (ret == 0)
9698 continue;
9699 if (ret < 0)
925baedd 9700 goto out;
0b86a832 9701 break;
edbd8d4e 9702 }
0b86a832 9703 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9704
0b86a832 9705 if (found_key.objectid >= key->objectid &&
925baedd 9706 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9707 struct extent_map_tree *em_tree;
9708 struct extent_map *em;
9709
9710 em_tree = &root->fs_info->mapping_tree.map_tree;
9711 read_lock(&em_tree->lock);
9712 em = lookup_extent_mapping(em_tree, found_key.objectid,
9713 found_key.offset);
9714 read_unlock(&em_tree->lock);
9715 if (!em) {
0b246afa 9716 btrfs_err(fs_info,
6fb37b75
LB
9717 "logical %llu len %llu found bg but no related chunk",
9718 found_key.objectid, found_key.offset);
9719 ret = -ENOENT;
9720 } else {
9721 ret = 0;
9722 }
187ee58c 9723 free_extent_map(em);
925baedd
CM
9724 goto out;
9725 }
0b86a832 9726 path->slots[0]++;
edbd8d4e 9727 }
925baedd 9728out:
0b86a832 9729 return ret;
edbd8d4e
CM
9730}
9731
0af3d00b
JB
9732void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9733{
9734 struct btrfs_block_group_cache *block_group;
9735 u64 last = 0;
9736
9737 while (1) {
9738 struct inode *inode;
9739
9740 block_group = btrfs_lookup_first_block_group(info, last);
9741 while (block_group) {
9742 spin_lock(&block_group->lock);
9743 if (block_group->iref)
9744 break;
9745 spin_unlock(&block_group->lock);
2ff7e61e 9746 block_group = next_block_group(info, block_group);
0af3d00b
JB
9747 }
9748 if (!block_group) {
9749 if (last == 0)
9750 break;
9751 last = 0;
9752 continue;
9753 }
9754
9755 inode = block_group->inode;
9756 block_group->iref = 0;
9757 block_group->inode = NULL;
9758 spin_unlock(&block_group->lock);
f3bca802 9759 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9760 iput(inode);
9761 last = block_group->key.objectid + block_group->key.offset;
9762 btrfs_put_block_group(block_group);
9763 }
9764}
9765
5cdd7db6
FM
9766/*
9767 * Must be called only after stopping all workers, since we could have block
9768 * group caching kthreads running, and therefore they could race with us if we
9769 * freed the block groups before stopping them.
9770 */
1a40e23b
ZY
9771int btrfs_free_block_groups(struct btrfs_fs_info *info)
9772{
9773 struct btrfs_block_group_cache *block_group;
4184ea7f 9774 struct btrfs_space_info *space_info;
11833d66 9775 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9776 struct rb_node *n;
9777
9e351cc8 9778 down_write(&info->commit_root_sem);
11833d66
YZ
9779 while (!list_empty(&info->caching_block_groups)) {
9780 caching_ctl = list_entry(info->caching_block_groups.next,
9781 struct btrfs_caching_control, list);
9782 list_del(&caching_ctl->list);
9783 put_caching_control(caching_ctl);
9784 }
9e351cc8 9785 up_write(&info->commit_root_sem);
11833d66 9786
47ab2a6c
JB
9787 spin_lock(&info->unused_bgs_lock);
9788 while (!list_empty(&info->unused_bgs)) {
9789 block_group = list_first_entry(&info->unused_bgs,
9790 struct btrfs_block_group_cache,
9791 bg_list);
9792 list_del_init(&block_group->bg_list);
9793 btrfs_put_block_group(block_group);
9794 }
9795 spin_unlock(&info->unused_bgs_lock);
9796
1a40e23b
ZY
9797 spin_lock(&info->block_group_cache_lock);
9798 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9799 block_group = rb_entry(n, struct btrfs_block_group_cache,
9800 cache_node);
1a40e23b
ZY
9801 rb_erase(&block_group->cache_node,
9802 &info->block_group_cache_tree);
01eacb27 9803 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9804 spin_unlock(&info->block_group_cache_lock);
9805
80eb234a 9806 down_write(&block_group->space_info->groups_sem);
1a40e23b 9807 list_del(&block_group->list);
80eb234a 9808 up_write(&block_group->space_info->groups_sem);
d2fb3437 9809
3c14874a
JB
9810 /*
9811 * We haven't cached this block group, which means we could
9812 * possibly have excluded extents on this block group.
9813 */
36cce922
JB
9814 if (block_group->cached == BTRFS_CACHE_NO ||
9815 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9816 free_excluded_extents(info, block_group);
3c14874a 9817
817d52f8 9818 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9819 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9820 ASSERT(list_empty(&block_group->dirty_list));
9821 ASSERT(list_empty(&block_group->io_list));
9822 ASSERT(list_empty(&block_group->bg_list));
9823 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9824 btrfs_put_block_group(block_group);
d899e052
YZ
9825
9826 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9827 }
9828 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9829
9830 /* now that all the block groups are freed, go through and
9831 * free all the space_info structs. This is only called during
9832 * the final stages of unmount, and so we know nobody is
9833 * using them. We call synchronize_rcu() once before we start,
9834 * just to be on the safe side.
9835 */
9836 synchronize_rcu();
9837
8929ecfa
YZ
9838 release_global_block_rsv(info);
9839
67871254 9840 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9841 int i;
9842
4184ea7f
CM
9843 space_info = list_entry(info->space_info.next,
9844 struct btrfs_space_info,
9845 list);
d555b6c3
JB
9846
9847 /*
9848 * Do not hide this behind enospc_debug, this is actually
9849 * important and indicates a real bug if this happens.
9850 */
9851 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9852 space_info->bytes_reserved > 0 ||
d555b6c3 9853 space_info->bytes_may_use > 0))
ab8d0fc4 9854 dump_space_info(info, space_info, 0, 0);
4184ea7f 9855 list_del(&space_info->list);
6ab0a202
JM
9856 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9857 struct kobject *kobj;
c1895442
JM
9858 kobj = space_info->block_group_kobjs[i];
9859 space_info->block_group_kobjs[i] = NULL;
9860 if (kobj) {
6ab0a202
JM
9861 kobject_del(kobj);
9862 kobject_put(kobj);
9863 }
9864 }
9865 kobject_del(&space_info->kobj);
9866 kobject_put(&space_info->kobj);
4184ea7f 9867 }
1a40e23b
ZY
9868 return 0;
9869}
9870
b742bb82
YZ
9871static void __link_block_group(struct btrfs_space_info *space_info,
9872 struct btrfs_block_group_cache *cache)
9873{
9874 int index = get_block_group_index(cache);
ed55b6ac 9875 bool first = false;
b742bb82
YZ
9876
9877 down_write(&space_info->groups_sem);
ed55b6ac
JM
9878 if (list_empty(&space_info->block_groups[index]))
9879 first = true;
9880 list_add_tail(&cache->list, &space_info->block_groups[index]);
9881 up_write(&space_info->groups_sem);
9882
9883 if (first) {
c1895442 9884 struct raid_kobject *rkobj;
6ab0a202
JM
9885 int ret;
9886
c1895442
JM
9887 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9888 if (!rkobj)
9889 goto out_err;
9890 rkobj->raid_type = index;
9891 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9892 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9893 "%s", get_raid_name(index));
6ab0a202 9894 if (ret) {
c1895442
JM
9895 kobject_put(&rkobj->kobj);
9896 goto out_err;
6ab0a202 9897 }
c1895442 9898 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9899 }
c1895442
JM
9900
9901 return;
9902out_err:
ab8d0fc4
JM
9903 btrfs_warn(cache->fs_info,
9904 "failed to add kobject for block cache, ignoring");
b742bb82
YZ
9905}
9906
920e4a58 9907static struct btrfs_block_group_cache *
2ff7e61e
JM
9908btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9909 u64 start, u64 size)
920e4a58
MX
9910{
9911 struct btrfs_block_group_cache *cache;
9912
9913 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9914 if (!cache)
9915 return NULL;
9916
9917 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9918 GFP_NOFS);
9919 if (!cache->free_space_ctl) {
9920 kfree(cache);
9921 return NULL;
9922 }
9923
9924 cache->key.objectid = start;
9925 cache->key.offset = size;
9926 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9927
0b246afa
JM
9928 cache->sectorsize = fs_info->sectorsize;
9929 cache->fs_info = fs_info;
2ff7e61e
JM
9930 cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9931 &fs_info->mapping_tree,
9932 start);
1e144fb8
OS
9933 set_free_space_tree_thresholds(cache);
9934
920e4a58
MX
9935 atomic_set(&cache->count, 1);
9936 spin_lock_init(&cache->lock);
e570fd27 9937 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9938 INIT_LIST_HEAD(&cache->list);
9939 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9940 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9941 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9942 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9943 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9944 btrfs_init_free_space_ctl(cache);
04216820 9945 atomic_set(&cache->trimming, 0);
a5ed9182 9946 mutex_init(&cache->free_space_lock);
0966a7b1 9947 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
9948
9949 return cache;
9950}
9951
5b4aacef 9952int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
9953{
9954 struct btrfs_path *path;
9955 int ret;
9078a3e1 9956 struct btrfs_block_group_cache *cache;
6324fbf3 9957 struct btrfs_space_info *space_info;
9078a3e1
CM
9958 struct btrfs_key key;
9959 struct btrfs_key found_key;
5f39d397 9960 struct extent_buffer *leaf;
0af3d00b
JB
9961 int need_clear = 0;
9962 u64 cache_gen;
49303381
LB
9963 u64 feature;
9964 int mixed;
9965
9966 feature = btrfs_super_incompat_flags(info->super_copy);
9967 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 9968
9078a3e1 9969 key.objectid = 0;
0b86a832 9970 key.offset = 0;
962a298f 9971 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9972 path = btrfs_alloc_path();
9973 if (!path)
9974 return -ENOMEM;
e4058b54 9975 path->reada = READA_FORWARD;
9078a3e1 9976
0b246afa
JM
9977 cache_gen = btrfs_super_cache_generation(info->super_copy);
9978 if (btrfs_test_opt(info, SPACE_CACHE) &&
9979 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 9980 need_clear = 1;
0b246afa 9981 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 9982 need_clear = 1;
0af3d00b 9983
d397712b 9984 while (1) {
6bccf3ab 9985 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
9986 if (ret > 0)
9987 break;
0b86a832
CM
9988 if (ret != 0)
9989 goto error;
920e4a58 9990
5f39d397
CM
9991 leaf = path->nodes[0];
9992 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 9993
2ff7e61e 9994 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 9995 found_key.offset);
9078a3e1 9996 if (!cache) {
0b86a832 9997 ret = -ENOMEM;
f0486c68 9998 goto error;
9078a3e1 9999 }
96303081 10000
cf7c1ef6
LB
10001 if (need_clear) {
10002 /*
10003 * When we mount with old space cache, we need to
10004 * set BTRFS_DC_CLEAR and set dirty flag.
10005 *
10006 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10007 * truncate the old free space cache inode and
10008 * setup a new one.
10009 * b) Setting 'dirty flag' makes sure that we flush
10010 * the new space cache info onto disk.
10011 */
0b246afa 10012 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10013 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10014 }
0af3d00b 10015
5f39d397
CM
10016 read_extent_buffer(leaf, &cache->item,
10017 btrfs_item_ptr_offset(leaf, path->slots[0]),
10018 sizeof(cache->item));
920e4a58 10019 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10020 if (!mixed &&
10021 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10022 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10023 btrfs_err(info,
10024"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10025 cache->key.objectid);
10026 ret = -EINVAL;
10027 goto error;
10028 }
0b86a832 10029
9078a3e1 10030 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10031 btrfs_release_path(path);
34d52cb6 10032
3c14874a
JB
10033 /*
10034 * We need to exclude the super stripes now so that the space
10035 * info has super bytes accounted for, otherwise we'll think
10036 * we have more space than we actually do.
10037 */
2ff7e61e 10038 ret = exclude_super_stripes(info, cache);
835d974f
JB
10039 if (ret) {
10040 /*
10041 * We may have excluded something, so call this just in
10042 * case.
10043 */
2ff7e61e 10044 free_excluded_extents(info, cache);
920e4a58 10045 btrfs_put_block_group(cache);
835d974f
JB
10046 goto error;
10047 }
3c14874a 10048
817d52f8
JB
10049 /*
10050 * check for two cases, either we are full, and therefore
10051 * don't need to bother with the caching work since we won't
10052 * find any space, or we are empty, and we can just add all
10053 * the space in and be done with it. This saves us _alot_ of
10054 * time, particularly in the full case.
10055 */
10056 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10057 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10058 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10059 free_excluded_extents(info, cache);
817d52f8 10060 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10061 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10062 cache->cached = BTRFS_CACHE_FINISHED;
0b246afa 10063 add_new_free_space(cache, info,
817d52f8
JB
10064 found_key.objectid,
10065 found_key.objectid +
10066 found_key.offset);
2ff7e61e 10067 free_excluded_extents(info, cache);
817d52f8 10068 }
96b5179d 10069
0b246afa 10070 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10071 if (ret) {
10072 btrfs_remove_free_space_cache(cache);
10073 btrfs_put_block_group(cache);
10074 goto error;
10075 }
10076
0b246afa 10077 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10078 update_space_info(info, cache->flags, found_key.offset,
10079 btrfs_block_group_used(&cache->item),
10080 cache->bytes_super, &space_info);
8c579fe7 10081
6324fbf3 10082 cache->space_info = space_info;
1b2da372 10083
b742bb82 10084 __link_block_group(space_info, cache);
0f9dd46c 10085
0b246afa 10086 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10087 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10088 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10089 } else if (btrfs_block_group_used(&cache->item) == 0) {
10090 spin_lock(&info->unused_bgs_lock);
10091 /* Should always be true but just in case. */
10092 if (list_empty(&cache->bg_list)) {
10093 btrfs_get_block_group(cache);
10094 list_add_tail(&cache->bg_list,
10095 &info->unused_bgs);
10096 }
10097 spin_unlock(&info->unused_bgs_lock);
10098 }
9078a3e1 10099 }
b742bb82 10100
0b246afa 10101 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10102 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10103 (BTRFS_BLOCK_GROUP_RAID10 |
10104 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10105 BTRFS_BLOCK_GROUP_RAID5 |
10106 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10107 BTRFS_BLOCK_GROUP_DUP)))
10108 continue;
10109 /*
10110 * avoid allocating from un-mirrored block group if there are
10111 * mirrored block groups.
10112 */
1095cc0d 10113 list_for_each_entry(cache,
10114 &space_info->block_groups[BTRFS_RAID_RAID0],
10115 list)
868f401a 10116 inc_block_group_ro(cache, 1);
1095cc0d 10117 list_for_each_entry(cache,
10118 &space_info->block_groups[BTRFS_RAID_SINGLE],
10119 list)
868f401a 10120 inc_block_group_ro(cache, 1);
9078a3e1 10121 }
f0486c68
YZ
10122
10123 init_global_block_rsv(info);
0b86a832
CM
10124 ret = 0;
10125error:
9078a3e1 10126 btrfs_free_path(path);
0b86a832 10127 return ret;
9078a3e1 10128}
6324fbf3 10129
ea658bad 10130void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 10131 struct btrfs_fs_info *fs_info)
ea658bad
JB
10132{
10133 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10134 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10135 struct btrfs_block_group_item item;
10136 struct btrfs_key key;
10137 int ret = 0;
d9a0540a 10138 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10139
d9a0540a 10140 trans->can_flush_pending_bgs = false;
47ab2a6c 10141 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10142 if (ret)
c92f6be3 10143 goto next;
ea658bad
JB
10144
10145 spin_lock(&block_group->lock);
10146 memcpy(&item, &block_group->item, sizeof(item));
10147 memcpy(&key, &block_group->key, sizeof(key));
10148 spin_unlock(&block_group->lock);
10149
10150 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10151 sizeof(item));
10152 if (ret)
66642832 10153 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10154 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10155 key.offset);
6df9a95e 10156 if (ret)
66642832 10157 btrfs_abort_transaction(trans, ret);
0b246afa 10158 add_block_group_free_space(trans, fs_info, block_group);
1e144fb8 10159 /* already aborted the transaction if it failed. */
c92f6be3
FM
10160next:
10161 list_del_init(&block_group->bg_list);
ea658bad 10162 }
d9a0540a 10163 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10164}
10165
6324fbf3 10166int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10167 struct btrfs_fs_info *fs_info, u64 bytes_used,
e17cade2 10168 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10169 u64 size)
10170{
6324fbf3 10171 struct btrfs_block_group_cache *cache;
0b246afa 10172 int ret;
6324fbf3 10173
0b246afa 10174 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10175
2ff7e61e 10176 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10177 if (!cache)
10178 return -ENOMEM;
34d52cb6 10179
6324fbf3 10180 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10181 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10182 btrfs_set_block_group_flags(&cache->item, type);
10183
920e4a58 10184 cache->flags = type;
11833d66 10185 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10186 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10187 cache->needs_free_space = 1;
2ff7e61e 10188 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10189 if (ret) {
10190 /*
10191 * We may have excluded something, so call this just in
10192 * case.
10193 */
2ff7e61e 10194 free_excluded_extents(fs_info, cache);
920e4a58 10195 btrfs_put_block_group(cache);
835d974f
JB
10196 return ret;
10197 }
96303081 10198
0b246afa 10199 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
817d52f8 10200
2ff7e61e 10201 free_excluded_extents(fs_info, cache);
11833d66 10202
d0bd4560 10203#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10204 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10205 u64 new_bytes_used = size - bytes_used;
10206
10207 bytes_used += new_bytes_used >> 1;
2ff7e61e 10208 fragment_free_space(cache);
d0bd4560
JB
10209 }
10210#endif
2e6e5183 10211 /*
2be12ef7
NB
10212 * Ensure the corresponding space_info object is created and
10213 * assigned to our block group. We want our bg to be added to the rbtree
10214 * with its ->space_info set.
2e6e5183 10215 */
2be12ef7
NB
10216 cache->space_info = __find_space_info(fs_info, cache->flags);
10217 if (!cache->space_info) {
10218 ret = create_space_info(fs_info, cache->flags,
10219 &cache->space_info);
10220 if (ret) {
10221 btrfs_remove_free_space_cache(cache);
10222 btrfs_put_block_group(cache);
10223 return ret;
10224 }
2e6e5183
FM
10225 }
10226
0b246afa 10227 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10228 if (ret) {
10229 btrfs_remove_free_space_cache(cache);
10230 btrfs_put_block_group(cache);
10231 return ret;
10232 }
10233
2e6e5183
FM
10234 /*
10235 * Now that our block group has its ->space_info set and is inserted in
10236 * the rbtree, update the space info's counters.
10237 */
0b246afa 10238 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10239 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10240 cache->bytes_super, &cache->space_info);
0b246afa 10241 update_global_block_rsv(fs_info);
1b2da372 10242
b742bb82 10243 __link_block_group(cache->space_info, cache);
6324fbf3 10244
47ab2a6c 10245 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10246
0b246afa 10247 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10248 return 0;
10249}
1a40e23b 10250
10ea00f5
ID
10251static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10252{
899c81ea
ID
10253 u64 extra_flags = chunk_to_extended(flags) &
10254 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10255
de98ced9 10256 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10257 if (flags & BTRFS_BLOCK_GROUP_DATA)
10258 fs_info->avail_data_alloc_bits &= ~extra_flags;
10259 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10260 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10261 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10262 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10263 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10264}
10265
1a40e23b 10266int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10267 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10268 struct extent_map *em)
1a40e23b 10269{
6bccf3ab 10270 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10271 struct btrfs_path *path;
10272 struct btrfs_block_group_cache *block_group;
44fb5511 10273 struct btrfs_free_cluster *cluster;
0b246afa 10274 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10275 struct btrfs_key key;
0af3d00b 10276 struct inode *inode;
c1895442 10277 struct kobject *kobj = NULL;
1a40e23b 10278 int ret;
10ea00f5 10279 int index;
89a55897 10280 int factor;
4f69cb98 10281 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10282 bool remove_em;
1a40e23b 10283
6bccf3ab 10284 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10285 BUG_ON(!block_group);
c146afad 10286 BUG_ON(!block_group->ro);
1a40e23b 10287
9f7c43c9 10288 /*
10289 * Free the reserved super bytes from this block group before
10290 * remove it.
10291 */
2ff7e61e 10292 free_excluded_extents(fs_info, block_group);
9f7c43c9 10293
1a40e23b 10294 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10295 index = get_block_group_index(block_group);
89a55897
JB
10296 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10297 BTRFS_BLOCK_GROUP_RAID1 |
10298 BTRFS_BLOCK_GROUP_RAID10))
10299 factor = 2;
10300 else
10301 factor = 1;
1a40e23b 10302
44fb5511 10303 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10304 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10305 spin_lock(&cluster->refill_lock);
10306 btrfs_return_cluster_to_free_space(block_group, cluster);
10307 spin_unlock(&cluster->refill_lock);
10308
10309 /*
10310 * make sure this block group isn't part of a metadata
10311 * allocation cluster
10312 */
0b246afa 10313 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10314 spin_lock(&cluster->refill_lock);
10315 btrfs_return_cluster_to_free_space(block_group, cluster);
10316 spin_unlock(&cluster->refill_lock);
10317
1a40e23b 10318 path = btrfs_alloc_path();
d8926bb3
MF
10319 if (!path) {
10320 ret = -ENOMEM;
10321 goto out;
10322 }
1a40e23b 10323
1bbc621e
CM
10324 /*
10325 * get the inode first so any iput calls done for the io_list
10326 * aren't the final iput (no unlinks allowed now)
10327 */
77ab86bf 10328 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10329
10330 mutex_lock(&trans->transaction->cache_write_mutex);
10331 /*
10332 * make sure our free spache cache IO is done before remove the
10333 * free space inode
10334 */
10335 spin_lock(&trans->transaction->dirty_bgs_lock);
10336 if (!list_empty(&block_group->io_list)) {
10337 list_del_init(&block_group->io_list);
10338
10339 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10340
10341 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10342 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10343 btrfs_put_block_group(block_group);
10344 spin_lock(&trans->transaction->dirty_bgs_lock);
10345 }
10346
10347 if (!list_empty(&block_group->dirty_list)) {
10348 list_del_init(&block_group->dirty_list);
10349 btrfs_put_block_group(block_group);
10350 }
10351 spin_unlock(&trans->transaction->dirty_bgs_lock);
10352 mutex_unlock(&trans->transaction->cache_write_mutex);
10353
0af3d00b 10354 if (!IS_ERR(inode)) {
73f2e545 10355 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10356 if (ret) {
10357 btrfs_add_delayed_iput(inode);
10358 goto out;
10359 }
0af3d00b
JB
10360 clear_nlink(inode);
10361 /* One for the block groups ref */
10362 spin_lock(&block_group->lock);
10363 if (block_group->iref) {
10364 block_group->iref = 0;
10365 block_group->inode = NULL;
10366 spin_unlock(&block_group->lock);
10367 iput(inode);
10368 } else {
10369 spin_unlock(&block_group->lock);
10370 }
10371 /* One for our lookup ref */
455757c3 10372 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10373 }
10374
10375 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10376 key.offset = block_group->key.objectid;
10377 key.type = 0;
10378
10379 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10380 if (ret < 0)
10381 goto out;
10382 if (ret > 0)
b3b4aa74 10383 btrfs_release_path(path);
0af3d00b
JB
10384 if (ret == 0) {
10385 ret = btrfs_del_item(trans, tree_root, path);
10386 if (ret)
10387 goto out;
b3b4aa74 10388 btrfs_release_path(path);
0af3d00b
JB
10389 }
10390
0b246afa 10391 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10392 rb_erase(&block_group->cache_node,
0b246afa 10393 &fs_info->block_group_cache_tree);
292cbd51 10394 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10395
0b246afa
JM
10396 if (fs_info->first_logical_byte == block_group->key.objectid)
10397 fs_info->first_logical_byte = (u64)-1;
10398 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10399
80eb234a 10400 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10401 /*
10402 * we must use list_del_init so people can check to see if they
10403 * are still on the list after taking the semaphore
10404 */
10405 list_del_init(&block_group->list);
6ab0a202 10406 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10407 kobj = block_group->space_info->block_group_kobjs[index];
10408 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10409 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10410 }
80eb234a 10411 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10412 if (kobj) {
10413 kobject_del(kobj);
10414 kobject_put(kobj);
10415 }
1a40e23b 10416
4f69cb98
FM
10417 if (block_group->has_caching_ctl)
10418 caching_ctl = get_caching_control(block_group);
817d52f8 10419 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10420 wait_block_group_cache_done(block_group);
4f69cb98 10421 if (block_group->has_caching_ctl) {
0b246afa 10422 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10423 if (!caching_ctl) {
10424 struct btrfs_caching_control *ctl;
10425
10426 list_for_each_entry(ctl,
0b246afa 10427 &fs_info->caching_block_groups, list)
4f69cb98
FM
10428 if (ctl->block_group == block_group) {
10429 caching_ctl = ctl;
1e4f4714 10430 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10431 break;
10432 }
10433 }
10434 if (caching_ctl)
10435 list_del_init(&caching_ctl->list);
0b246afa 10436 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10437 if (caching_ctl) {
10438 /* Once for the caching bgs list and once for us. */
10439 put_caching_control(caching_ctl);
10440 put_caching_control(caching_ctl);
10441 }
10442 }
817d52f8 10443
ce93ec54
JB
10444 spin_lock(&trans->transaction->dirty_bgs_lock);
10445 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10446 WARN_ON(1);
10447 }
10448 if (!list_empty(&block_group->io_list)) {
10449 WARN_ON(1);
ce93ec54
JB
10450 }
10451 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10452 btrfs_remove_free_space_cache(block_group);
10453
c146afad 10454 spin_lock(&block_group->space_info->lock);
75c68e9f 10455 list_del_init(&block_group->ro_list);
18d018ad 10456
0b246afa 10457 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10458 WARN_ON(block_group->space_info->total_bytes
10459 < block_group->key.offset);
10460 WARN_ON(block_group->space_info->bytes_readonly
10461 < block_group->key.offset);
10462 WARN_ON(block_group->space_info->disk_total
10463 < block_group->key.offset * factor);
10464 }
c146afad
YZ
10465 block_group->space_info->total_bytes -= block_group->key.offset;
10466 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10467 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10468
c146afad 10469 spin_unlock(&block_group->space_info->lock);
283bb197 10470
0af3d00b
JB
10471 memcpy(&key, &block_group->key, sizeof(key));
10472
34441361 10473 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10474 if (!list_empty(&em->list)) {
10475 /* We're in the transaction->pending_chunks list. */
10476 free_extent_map(em);
10477 }
04216820
FM
10478 spin_lock(&block_group->lock);
10479 block_group->removed = 1;
10480 /*
10481 * At this point trimming can't start on this block group, because we
10482 * removed the block group from the tree fs_info->block_group_cache_tree
10483 * so no one can't find it anymore and even if someone already got this
10484 * block group before we removed it from the rbtree, they have already
10485 * incremented block_group->trimming - if they didn't, they won't find
10486 * any free space entries because we already removed them all when we
10487 * called btrfs_remove_free_space_cache().
10488 *
10489 * And we must not remove the extent map from the fs_info->mapping_tree
10490 * to prevent the same logical address range and physical device space
10491 * ranges from being reused for a new block group. This is because our
10492 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10493 * completely transactionless, so while it is trimming a range the
10494 * currently running transaction might finish and a new one start,
10495 * allowing for new block groups to be created that can reuse the same
10496 * physical device locations unless we take this special care.
e33e17ee
JM
10497 *
10498 * There may also be an implicit trim operation if the file system
10499 * is mounted with -odiscard. The same protections must remain
10500 * in place until the extents have been discarded completely when
10501 * the transaction commit has completed.
04216820
FM
10502 */
10503 remove_em = (atomic_read(&block_group->trimming) == 0);
10504 /*
10505 * Make sure a trimmer task always sees the em in the pinned_chunks list
10506 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10507 * before checking block_group->removed).
10508 */
10509 if (!remove_em) {
10510 /*
10511 * Our em might be in trans->transaction->pending_chunks which
10512 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10513 * and so is the fs_info->pinned_chunks list.
10514 *
10515 * So at this point we must be holding the chunk_mutex to avoid
10516 * any races with chunk allocation (more specifically at
10517 * volumes.c:contains_pending_extent()), to ensure it always
10518 * sees the em, either in the pending_chunks list or in the
10519 * pinned_chunks list.
10520 */
0b246afa 10521 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10522 }
10523 spin_unlock(&block_group->lock);
04216820
FM
10524
10525 if (remove_em) {
10526 struct extent_map_tree *em_tree;
10527
0b246afa 10528 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10529 write_lock(&em_tree->lock);
8dbcd10f
FM
10530 /*
10531 * The em might be in the pending_chunks list, so make sure the
10532 * chunk mutex is locked, since remove_extent_mapping() will
10533 * delete us from that list.
10534 */
04216820
FM
10535 remove_extent_mapping(em_tree, em);
10536 write_unlock(&em_tree->lock);
10537 /* once for the tree */
10538 free_extent_map(em);
10539 }
10540
34441361 10541 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10542
0b246afa 10543 ret = remove_block_group_free_space(trans, fs_info, block_group);
1e144fb8
OS
10544 if (ret)
10545 goto out;
10546
fa9c0d79
CM
10547 btrfs_put_block_group(block_group);
10548 btrfs_put_block_group(block_group);
1a40e23b
ZY
10549
10550 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10551 if (ret > 0)
10552 ret = -EIO;
10553 if (ret < 0)
10554 goto out;
10555
10556 ret = btrfs_del_item(trans, root, path);
10557out:
10558 btrfs_free_path(path);
10559 return ret;
10560}
acce952b 10561
8eab77ff 10562struct btrfs_trans_handle *
7fd01182
FM
10563btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10564 const u64 chunk_offset)
8eab77ff 10565{
7fd01182
FM
10566 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10567 struct extent_map *em;
10568 struct map_lookup *map;
10569 unsigned int num_items;
10570
10571 read_lock(&em_tree->lock);
10572 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10573 read_unlock(&em_tree->lock);
10574 ASSERT(em && em->start == chunk_offset);
10575
8eab77ff 10576 /*
7fd01182
FM
10577 * We need to reserve 3 + N units from the metadata space info in order
10578 * to remove a block group (done at btrfs_remove_chunk() and at
10579 * btrfs_remove_block_group()), which are used for:
10580 *
8eab77ff
FM
10581 * 1 unit for adding the free space inode's orphan (located in the tree
10582 * of tree roots).
7fd01182
FM
10583 * 1 unit for deleting the block group item (located in the extent
10584 * tree).
10585 * 1 unit for deleting the free space item (located in tree of tree
10586 * roots).
10587 * N units for deleting N device extent items corresponding to each
10588 * stripe (located in the device tree).
10589 *
10590 * In order to remove a block group we also need to reserve units in the
10591 * system space info in order to update the chunk tree (update one or
10592 * more device items and remove one chunk item), but this is done at
10593 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10594 */
95617d69 10595 map = em->map_lookup;
7fd01182
FM
10596 num_items = 3 + map->num_stripes;
10597 free_extent_map(em);
10598
8eab77ff 10599 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10600 num_items, 1);
8eab77ff
FM
10601}
10602
47ab2a6c
JB
10603/*
10604 * Process the unused_bgs list and remove any that don't have any allocated
10605 * space inside of them.
10606 */
10607void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10608{
10609 struct btrfs_block_group_cache *block_group;
10610 struct btrfs_space_info *space_info;
47ab2a6c
JB
10611 struct btrfs_trans_handle *trans;
10612 int ret = 0;
10613
afcdd129 10614 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10615 return;
10616
10617 spin_lock(&fs_info->unused_bgs_lock);
10618 while (!list_empty(&fs_info->unused_bgs)) {
10619 u64 start, end;
e33e17ee 10620 int trimming;
47ab2a6c
JB
10621
10622 block_group = list_first_entry(&fs_info->unused_bgs,
10623 struct btrfs_block_group_cache,
10624 bg_list);
47ab2a6c 10625 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10626
10627 space_info = block_group->space_info;
10628
47ab2a6c
JB
10629 if (ret || btrfs_mixed_space_info(space_info)) {
10630 btrfs_put_block_group(block_group);
10631 continue;
10632 }
10633 spin_unlock(&fs_info->unused_bgs_lock);
10634
d5f2e33b 10635 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10636
47ab2a6c
JB
10637 /* Don't want to race with allocators so take the groups_sem */
10638 down_write(&space_info->groups_sem);
10639 spin_lock(&block_group->lock);
10640 if (block_group->reserved ||
10641 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10642 block_group->ro ||
aefbe9a6 10643 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10644 /*
10645 * We want to bail if we made new allocations or have
10646 * outstanding allocations in this block group. We do
10647 * the ro check in case balance is currently acting on
10648 * this block group.
10649 */
10650 spin_unlock(&block_group->lock);
10651 up_write(&space_info->groups_sem);
10652 goto next;
10653 }
10654 spin_unlock(&block_group->lock);
10655
10656 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10657 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10658 up_write(&space_info->groups_sem);
10659 if (ret < 0) {
10660 ret = 0;
10661 goto next;
10662 }
10663
10664 /*
10665 * Want to do this before we do anything else so we can recover
10666 * properly if we fail to join the transaction.
10667 */
7fd01182
FM
10668 trans = btrfs_start_trans_remove_block_group(fs_info,
10669 block_group->key.objectid);
47ab2a6c 10670 if (IS_ERR(trans)) {
2ff7e61e 10671 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10672 ret = PTR_ERR(trans);
10673 goto next;
10674 }
10675
10676 /*
10677 * We could have pending pinned extents for this block group,
10678 * just delete them, we don't care about them anymore.
10679 */
10680 start = block_group->key.objectid;
10681 end = start + block_group->key.offset - 1;
d4b450cd
FM
10682 /*
10683 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10684 * btrfs_finish_extent_commit(). If we are at transaction N,
10685 * another task might be running finish_extent_commit() for the
10686 * previous transaction N - 1, and have seen a range belonging
10687 * to the block group in freed_extents[] before we were able to
10688 * clear the whole block group range from freed_extents[]. This
10689 * means that task can lookup for the block group after we
10690 * unpinned it from freed_extents[] and removed it, leading to
10691 * a BUG_ON() at btrfs_unpin_extent_range().
10692 */
10693 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10694 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10695 EXTENT_DIRTY);
758eb51e 10696 if (ret) {
d4b450cd 10697 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10698 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10699 goto end_trans;
10700 }
10701 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10702 EXTENT_DIRTY);
758eb51e 10703 if (ret) {
d4b450cd 10704 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10705 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10706 goto end_trans;
10707 }
d4b450cd 10708 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10709
10710 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10711 spin_lock(&space_info->lock);
10712 spin_lock(&block_group->lock);
10713
10714 space_info->bytes_pinned -= block_group->pinned;
10715 space_info->bytes_readonly += block_group->pinned;
10716 percpu_counter_add(&space_info->total_bytes_pinned,
10717 -block_group->pinned);
47ab2a6c
JB
10718 block_group->pinned = 0;
10719
c30666d4
ZL
10720 spin_unlock(&block_group->lock);
10721 spin_unlock(&space_info->lock);
10722
e33e17ee 10723 /* DISCARD can flip during remount */
0b246afa 10724 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10725
10726 /* Implicit trim during transaction commit. */
10727 if (trimming)
10728 btrfs_get_block_group_trimming(block_group);
10729
47ab2a6c
JB
10730 /*
10731 * Btrfs_remove_chunk will abort the transaction if things go
10732 * horribly wrong.
10733 */
5b4aacef 10734 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10735 block_group->key.objectid);
e33e17ee
JM
10736
10737 if (ret) {
10738 if (trimming)
10739 btrfs_put_block_group_trimming(block_group);
10740 goto end_trans;
10741 }
10742
10743 /*
10744 * If we're not mounted with -odiscard, we can just forget
10745 * about this block group. Otherwise we'll need to wait
10746 * until transaction commit to do the actual discard.
10747 */
10748 if (trimming) {
348a0013
FM
10749 spin_lock(&fs_info->unused_bgs_lock);
10750 /*
10751 * A concurrent scrub might have added us to the list
10752 * fs_info->unused_bgs, so use a list_move operation
10753 * to add the block group to the deleted_bgs list.
10754 */
e33e17ee
JM
10755 list_move(&block_group->bg_list,
10756 &trans->transaction->deleted_bgs);
348a0013 10757 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10758 btrfs_get_block_group(block_group);
10759 }
758eb51e 10760end_trans:
3a45bb20 10761 btrfs_end_transaction(trans);
47ab2a6c 10762next:
d5f2e33b 10763 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10764 btrfs_put_block_group(block_group);
10765 spin_lock(&fs_info->unused_bgs_lock);
10766 }
10767 spin_unlock(&fs_info->unused_bgs_lock);
10768}
10769
c59021f8 10770int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10771{
10772 struct btrfs_space_info *space_info;
1aba86d6 10773 struct btrfs_super_block *disk_super;
10774 u64 features;
10775 u64 flags;
10776 int mixed = 0;
c59021f8 10777 int ret;
10778
6c41761f 10779 disk_super = fs_info->super_copy;
1aba86d6 10780 if (!btrfs_super_root(disk_super))
0dc924c5 10781 return -EINVAL;
c59021f8 10782
1aba86d6 10783 features = btrfs_super_incompat_flags(disk_super);
10784 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10785 mixed = 1;
c59021f8 10786
1aba86d6 10787 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2be12ef7 10788 ret = create_space_info(fs_info, flags, &space_info);
c59021f8 10789 if (ret)
1aba86d6 10790 goto out;
c59021f8 10791
1aba86d6 10792 if (mixed) {
10793 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10794 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10795 } else {
10796 flags = BTRFS_BLOCK_GROUP_METADATA;
2be12ef7 10797 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10798 if (ret)
10799 goto out;
10800
10801 flags = BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10802 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10803 }
10804out:
c59021f8 10805 return ret;
10806}
10807
2ff7e61e
JM
10808int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10809 u64 start, u64 end)
acce952b 10810{
2ff7e61e 10811 return unpin_extent_range(fs_info, start, end, false);
acce952b 10812}
10813
499f377f
JM
10814/*
10815 * It used to be that old block groups would be left around forever.
10816 * Iterating over them would be enough to trim unused space. Since we
10817 * now automatically remove them, we also need to iterate over unallocated
10818 * space.
10819 *
10820 * We don't want a transaction for this since the discard may take a
10821 * substantial amount of time. We don't require that a transaction be
10822 * running, but we do need to take a running transaction into account
10823 * to ensure that we're not discarding chunks that were released in
10824 * the current transaction.
10825 *
10826 * Holding the chunks lock will prevent other threads from allocating
10827 * or releasing chunks, but it won't prevent a running transaction
10828 * from committing and releasing the memory that the pending chunks
10829 * list head uses. For that, we need to take a reference to the
10830 * transaction.
10831 */
10832static int btrfs_trim_free_extents(struct btrfs_device *device,
10833 u64 minlen, u64 *trimmed)
10834{
10835 u64 start = 0, len = 0;
10836 int ret;
10837
10838 *trimmed = 0;
10839
10840 /* Not writeable = nothing to do. */
10841 if (!device->writeable)
10842 return 0;
10843
10844 /* No free space = nothing to do. */
10845 if (device->total_bytes <= device->bytes_used)
10846 return 0;
10847
10848 ret = 0;
10849
10850 while (1) {
fb456252 10851 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10852 struct btrfs_transaction *trans;
10853 u64 bytes;
10854
10855 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10856 if (ret)
10857 return ret;
10858
10859 down_read(&fs_info->commit_root_sem);
10860
10861 spin_lock(&fs_info->trans_lock);
10862 trans = fs_info->running_transaction;
10863 if (trans)
9b64f57d 10864 refcount_inc(&trans->use_count);
499f377f
JM
10865 spin_unlock(&fs_info->trans_lock);
10866
10867 ret = find_free_dev_extent_start(trans, device, minlen, start,
10868 &start, &len);
10869 if (trans)
10870 btrfs_put_transaction(trans);
10871
10872 if (ret) {
10873 up_read(&fs_info->commit_root_sem);
10874 mutex_unlock(&fs_info->chunk_mutex);
10875 if (ret == -ENOSPC)
10876 ret = 0;
10877 break;
10878 }
10879
10880 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10881 up_read(&fs_info->commit_root_sem);
10882 mutex_unlock(&fs_info->chunk_mutex);
10883
10884 if (ret)
10885 break;
10886
10887 start += len;
10888 *trimmed += bytes;
10889
10890 if (fatal_signal_pending(current)) {
10891 ret = -ERESTARTSYS;
10892 break;
10893 }
10894
10895 cond_resched();
10896 }
10897
10898 return ret;
10899}
10900
2ff7e61e 10901int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10902{
f7039b1d 10903 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10904 struct btrfs_device *device;
10905 struct list_head *devices;
f7039b1d
LD
10906 u64 group_trimmed;
10907 u64 start;
10908 u64 end;
10909 u64 trimmed = 0;
2cac13e4 10910 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10911 int ret = 0;
10912
2cac13e4
LB
10913 /*
10914 * try to trim all FS space, our block group may start from non-zero.
10915 */
10916 if (range->len == total_bytes)
10917 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10918 else
10919 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10920
10921 while (cache) {
10922 if (cache->key.objectid >= (range->start + range->len)) {
10923 btrfs_put_block_group(cache);
10924 break;
10925 }
10926
10927 start = max(range->start, cache->key.objectid);
10928 end = min(range->start + range->len,
10929 cache->key.objectid + cache->key.offset);
10930
10931 if (end - start >= range->minlen) {
10932 if (!block_group_cache_done(cache)) {
f6373bf3 10933 ret = cache_block_group(cache, 0);
1be41b78
JB
10934 if (ret) {
10935 btrfs_put_block_group(cache);
10936 break;
10937 }
10938 ret = wait_block_group_cache_done(cache);
10939 if (ret) {
10940 btrfs_put_block_group(cache);
10941 break;
10942 }
f7039b1d
LD
10943 }
10944 ret = btrfs_trim_block_group(cache,
10945 &group_trimmed,
10946 start,
10947 end,
10948 range->minlen);
10949
10950 trimmed += group_trimmed;
10951 if (ret) {
10952 btrfs_put_block_group(cache);
10953 break;
10954 }
10955 }
10956
2ff7e61e 10957 cache = next_block_group(fs_info, cache);
f7039b1d
LD
10958 }
10959
0b246afa
JM
10960 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10961 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
10962 list_for_each_entry(device, devices, dev_alloc_list) {
10963 ret = btrfs_trim_free_extents(device, range->minlen,
10964 &group_trimmed);
10965 if (ret)
10966 break;
10967
10968 trimmed += group_trimmed;
10969 }
0b246afa 10970 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 10971
f7039b1d
LD
10972 range->len = trimmed;
10973 return ret;
10974}
8257b2dc
MX
10975
10976/*
9ea24bbe
FM
10977 * btrfs_{start,end}_write_no_snapshoting() are similar to
10978 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10979 * data into the page cache through nocow before the subvolume is snapshoted,
10980 * but flush the data into disk after the snapshot creation, or to prevent
10981 * operations while snapshoting is ongoing and that cause the snapshot to be
10982 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10983 */
9ea24bbe 10984void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10985{
10986 percpu_counter_dec(&root->subv_writers->counter);
10987 /*
a83342aa 10988 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10989 */
10990 smp_mb();
10991 if (waitqueue_active(&root->subv_writers->wait))
10992 wake_up(&root->subv_writers->wait);
10993}
10994
9ea24bbe 10995int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10996{
ee39b432 10997 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10998 return 0;
10999
11000 percpu_counter_inc(&root->subv_writers->counter);
11001 /*
11002 * Make sure counter is updated before we check for snapshot creation.
11003 */
11004 smp_mb();
ee39b432 11005 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 11006 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
11007 return 0;
11008 }
11009 return 1;
11010}
0bc19f90
ZL
11011
11012static int wait_snapshoting_atomic_t(atomic_t *a)
11013{
11014 schedule();
11015 return 0;
11016}
11017
11018void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11019{
11020 while (true) {
11021 int ret;
11022
11023 ret = btrfs_start_write_no_snapshoting(root);
11024 if (ret)
11025 break;
11026 wait_on_atomic_t(&root->will_be_snapshoted,
11027 wait_snapshoting_atomic_t,
11028 TASK_UNINTERRUPTIBLE);
11029 }
11030}