]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: catch cow on deleting snapshots
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
9f9b8e8d
QW
54/*
55 * Declare a helper function to detect underflow of various space info members
56 */
57#define DECLARE_SPACE_INFO_UPDATE(name) \
58static inline void update_##name(struct btrfs_space_info *sinfo, \
59 s64 bytes) \
60{ \
61 if (bytes < 0 && sinfo->name < -bytes) { \
62 WARN_ON(1); \
63 sinfo->name = 0; \
64 return; \
65 } \
66 sinfo->name += bytes; \
67}
68
69DECLARE_SPACE_INFO_UPDATE(bytes_may_use);
e2907c1a 70DECLARE_SPACE_INFO_UPDATE(bytes_pinned);
9f9b8e8d 71
5d4f98a2 72static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
73 struct btrfs_delayed_ref_node *node, u64 parent,
74 u64 root_objectid, u64 owner_objectid,
75 u64 owner_offset, int refs_to_drop,
76 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
77static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
78 struct extent_buffer *leaf,
79 struct btrfs_extent_item *ei);
80static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
81 u64 parent, u64 root_objectid,
82 u64 flags, u64 owner, u64 offset,
83 struct btrfs_key *ins, int ref_mod);
84static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 85 struct btrfs_delayed_ref_node *node,
21ebfbe7 86 struct btrfs_delayed_extent_op *extent_op);
01458828 87static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
698d0082 88 int force);
11833d66
YZ
89static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
ab8d0fc4
JM
91static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 93 int dump_block_groups);
5d80366e
JB
94static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
95 u64 num_bytes);
957780eb
JB
96static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
97 struct btrfs_space_info *space_info,
98 u64 num_bytes);
99static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
100 struct btrfs_space_info *space_info,
101 u64 num_bytes);
6a63209f 102
817d52f8
JB
103static noinline int
104block_group_cache_done(struct btrfs_block_group_cache *cache)
105{
106 smp_mb();
36cce922
JB
107 return cache->cached == BTRFS_CACHE_FINISHED ||
108 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
109}
110
0f9dd46c
JB
111static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112{
113 return (cache->flags & bits) == bits;
114}
115
758f2dfc 116void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
117{
118 atomic_inc(&cache->count);
119}
120
121void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122{
f0486c68
YZ
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
0966a7b1
QW
126
127 /*
128 * If not empty, someone is still holding mutex of
129 * full_stripe_lock, which can only be released by caller.
130 * And it will definitely cause use-after-free when caller
131 * tries to release full stripe lock.
132 *
133 * No better way to resolve, but only to warn.
134 */
135 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 136 kfree(cache->free_space_ctl);
11dfe35a 137 kfree(cache);
f0486c68 138 }
11dfe35a
JB
139}
140
0f9dd46c
JB
141/*
142 * this adds the block group to the fs_info rb tree for the block group
143 * cache
144 */
b2950863 145static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
146 struct btrfs_block_group_cache *block_group)
147{
148 struct rb_node **p;
149 struct rb_node *parent = NULL;
150 struct btrfs_block_group_cache *cache;
151
152 spin_lock(&info->block_group_cache_lock);
153 p = &info->block_group_cache_tree.rb_node;
154
155 while (*p) {
156 parent = *p;
157 cache = rb_entry(parent, struct btrfs_block_group_cache,
158 cache_node);
159 if (block_group->key.objectid < cache->key.objectid) {
160 p = &(*p)->rb_left;
161 } else if (block_group->key.objectid > cache->key.objectid) {
162 p = &(*p)->rb_right;
163 } else {
164 spin_unlock(&info->block_group_cache_lock);
165 return -EEXIST;
166 }
167 }
168
169 rb_link_node(&block_group->cache_node, parent, p);
170 rb_insert_color(&block_group->cache_node,
171 &info->block_group_cache_tree);
a1897fdd
LB
172
173 if (info->first_logical_byte > block_group->key.objectid)
174 info->first_logical_byte = block_group->key.objectid;
175
0f9dd46c
JB
176 spin_unlock(&info->block_group_cache_lock);
177
178 return 0;
179}
180
181/*
182 * This will return the block group at or after bytenr if contains is 0, else
183 * it will return the block group that contains the bytenr
184 */
185static struct btrfs_block_group_cache *
186block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
187 int contains)
188{
189 struct btrfs_block_group_cache *cache, *ret = NULL;
190 struct rb_node *n;
191 u64 end, start;
192
193 spin_lock(&info->block_group_cache_lock);
194 n = info->block_group_cache_tree.rb_node;
195
196 while (n) {
197 cache = rb_entry(n, struct btrfs_block_group_cache,
198 cache_node);
199 end = cache->key.objectid + cache->key.offset - 1;
200 start = cache->key.objectid;
201
202 if (bytenr < start) {
203 if (!contains && (!ret || start < ret->key.objectid))
204 ret = cache;
205 n = n->rb_left;
206 } else if (bytenr > start) {
207 if (contains && bytenr <= end) {
208 ret = cache;
209 break;
210 }
211 n = n->rb_right;
212 } else {
213 ret = cache;
214 break;
215 }
216 }
a1897fdd 217 if (ret) {
11dfe35a 218 btrfs_get_block_group(ret);
a1897fdd
LB
219 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
220 info->first_logical_byte = ret->key.objectid;
221 }
0f9dd46c
JB
222 spin_unlock(&info->block_group_cache_lock);
223
224 return ret;
225}
226
2ff7e61e 227static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 228 u64 start, u64 num_bytes)
817d52f8 229{
11833d66 230 u64 end = start + num_bytes - 1;
0b246afa 231 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 232 start, end, EXTENT_UPTODATE);
0b246afa 233 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 234 start, end, EXTENT_UPTODATE);
11833d66
YZ
235 return 0;
236}
817d52f8 237
9e715da8 238static void free_excluded_extents(struct btrfs_block_group_cache *cache)
11833d66 239{
9e715da8 240 struct btrfs_fs_info *fs_info = cache->fs_info;
11833d66 241 u64 start, end;
817d52f8 242
11833d66
YZ
243 start = cache->key.objectid;
244 end = start + cache->key.offset - 1;
245
0b246afa 246 clear_extent_bits(&fs_info->freed_extents[0],
91166212 247 start, end, EXTENT_UPTODATE);
0b246afa 248 clear_extent_bits(&fs_info->freed_extents[1],
91166212 249 start, end, EXTENT_UPTODATE);
817d52f8
JB
250}
251
3c4da657 252static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
817d52f8 253{
3c4da657 254 struct btrfs_fs_info *fs_info = cache->fs_info;
817d52f8
JB
255 u64 bytenr;
256 u64 *logical;
257 int stripe_len;
258 int i, nr, ret;
259
06b2331f
YZ
260 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
261 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
262 cache->bytes_super += stripe_len;
2ff7e61e 263 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 264 stripe_len);
835d974f
JB
265 if (ret)
266 return ret;
06b2331f
YZ
267 }
268
817d52f8
JB
269 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
270 bytenr = btrfs_sb_offset(i);
0b246afa 271 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
63a9c7b9 272 bytenr, &logical, &nr, &stripe_len);
835d974f
JB
273 if (ret)
274 return ret;
11833d66 275
817d52f8 276 while (nr--) {
51bf5f0b
JB
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
2ff7e61e 297 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
817d52f8 302 }
11833d66 303
817d52f8
JB
304 kfree(logical);
305 }
817d52f8
JB
306 return 0;
307}
308
11833d66
YZ
309static struct btrfs_caching_control *
310get_caching_control(struct btrfs_block_group_cache *cache)
311{
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
dde5abee
JB
315 if (!cache->caching_ctl) {
316 spin_unlock(&cache->lock);
11833d66
YZ
317 return NULL;
318 }
319
320 ctl = cache->caching_ctl;
1e4f4714 321 refcount_inc(&ctl->count);
11833d66
YZ
322 spin_unlock(&cache->lock);
323 return ctl;
324}
325
326static void put_caching_control(struct btrfs_caching_control *ctl)
327{
1e4f4714 328 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
329 kfree(ctl);
330}
331
d0bd4560 332#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 333static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 334{
2ff7e61e 335 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
336 u64 start = block_group->key.objectid;
337 u64 len = block_group->key.offset;
338 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 339 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
340 u64 step = chunk << 1;
341
342 while (len > chunk) {
343 btrfs_remove_free_space(block_group, start, chunk);
344 start += step;
345 if (len < step)
346 len = 0;
347 else
348 len -= step;
349 }
350}
351#endif
352
0f9dd46c
JB
353/*
354 * this is only called by cache_block_group, since we could have freed extents
355 * we need to check the pinned_extents for any extents that can't be used yet
356 * since their free space will be released as soon as the transaction commits.
357 */
a5ed9182 358u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
4457c1c7 359 u64 start, u64 end)
0f9dd46c 360{
4457c1c7 361 struct btrfs_fs_info *info = block_group->fs_info;
817d52f8 362 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
363 int ret;
364
365 while (start < end) {
11833d66 366 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 367 &extent_start, &extent_end,
e6138876
JB
368 EXTENT_DIRTY | EXTENT_UPTODATE,
369 NULL);
0f9dd46c
JB
370 if (ret)
371 break;
372
06b2331f 373 if (extent_start <= start) {
0f9dd46c
JB
374 start = extent_end + 1;
375 } else if (extent_start > start && extent_start < end) {
376 size = extent_start - start;
817d52f8 377 total_added += size;
ea6a478e
JB
378 ret = btrfs_add_free_space(block_group, start,
379 size);
79787eaa 380 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
381 start = extent_end + 1;
382 } else {
383 break;
384 }
385 }
386
387 if (start < end) {
388 size = end - start;
817d52f8 389 total_added += size;
ea6a478e 390 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 391 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
392 }
393
817d52f8 394 return total_added;
0f9dd46c
JB
395}
396
73fa48b6 397static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 398{
0b246afa
JM
399 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
400 struct btrfs_fs_info *fs_info = block_group->fs_info;
401 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 402 struct btrfs_path *path;
5f39d397 403 struct extent_buffer *leaf;
11833d66 404 struct btrfs_key key;
817d52f8 405 u64 total_found = 0;
11833d66
YZ
406 u64 last = 0;
407 u32 nritems;
73fa48b6 408 int ret;
d0bd4560 409 bool wakeup = true;
f510cfec 410
e37c9e69
CM
411 path = btrfs_alloc_path();
412 if (!path)
73fa48b6 413 return -ENOMEM;
7d7d6068 414
817d52f8 415 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 416
d0bd4560
JB
417#ifdef CONFIG_BTRFS_DEBUG
418 /*
419 * If we're fragmenting we don't want to make anybody think we can
420 * allocate from this block group until we've had a chance to fragment
421 * the free space.
422 */
2ff7e61e 423 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
424 wakeup = false;
425#endif
5cd57b2c 426 /*
817d52f8
JB
427 * We don't want to deadlock with somebody trying to allocate a new
428 * extent for the extent root while also trying to search the extent
429 * root to add free space. So we skip locking and search the commit
430 * root, since its read-only
5cd57b2c
CM
431 */
432 path->skip_locking = 1;
817d52f8 433 path->search_commit_root = 1;
e4058b54 434 path->reada = READA_FORWARD;
817d52f8 435
e4404d6e 436 key.objectid = last;
e37c9e69 437 key.offset = 0;
11833d66 438 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 439
52ee28d2 440next:
11833d66 441 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 442 if (ret < 0)
73fa48b6 443 goto out;
a512bbf8 444
11833d66
YZ
445 leaf = path->nodes[0];
446 nritems = btrfs_header_nritems(leaf);
447
d397712b 448 while (1) {
7841cb28 449 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 450 last = (u64)-1;
817d52f8 451 break;
f25784b3 452 }
817d52f8 453
11833d66
YZ
454 if (path->slots[0] < nritems) {
455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
456 } else {
457 ret = find_next_key(path, 0, &key);
458 if (ret)
e37c9e69 459 break;
817d52f8 460
c9ea7b24 461 if (need_resched() ||
9e351cc8 462 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
463 if (wakeup)
464 caching_ctl->progress = last;
ff5714cc 465 btrfs_release_path(path);
9e351cc8 466 up_read(&fs_info->commit_root_sem);
589d8ade 467 mutex_unlock(&caching_ctl->mutex);
11833d66 468 cond_resched();
73fa48b6
OS
469 mutex_lock(&caching_ctl->mutex);
470 down_read(&fs_info->commit_root_sem);
471 goto next;
589d8ade 472 }
0a3896d0
JB
473
474 ret = btrfs_next_leaf(extent_root, path);
475 if (ret < 0)
73fa48b6 476 goto out;
0a3896d0
JB
477 if (ret)
478 break;
589d8ade
JB
479 leaf = path->nodes[0];
480 nritems = btrfs_header_nritems(leaf);
481 continue;
11833d66 482 }
817d52f8 483
52ee28d2
LB
484 if (key.objectid < last) {
485 key.objectid = last;
486 key.offset = 0;
487 key.type = BTRFS_EXTENT_ITEM_KEY;
488
d0bd4560
JB
489 if (wakeup)
490 caching_ctl->progress = last;
52ee28d2
LB
491 btrfs_release_path(path);
492 goto next;
493 }
494
11833d66
YZ
495 if (key.objectid < block_group->key.objectid) {
496 path->slots[0]++;
817d52f8 497 continue;
e37c9e69 498 }
0f9dd46c 499
e37c9e69 500 if (key.objectid >= block_group->key.objectid +
0f9dd46c 501 block_group->key.offset)
e37c9e69 502 break;
7d7d6068 503
3173a18f
JB
504 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
505 key.type == BTRFS_METADATA_ITEM_KEY) {
4457c1c7 506 total_found += add_new_free_space(block_group, last,
817d52f8 507 key.objectid);
3173a18f
JB
508 if (key.type == BTRFS_METADATA_ITEM_KEY)
509 last = key.objectid +
da17066c 510 fs_info->nodesize;
3173a18f
JB
511 else
512 last = key.objectid + key.offset;
817d52f8 513
73fa48b6 514 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 515 total_found = 0;
d0bd4560
JB
516 if (wakeup)
517 wake_up(&caching_ctl->wait);
11833d66 518 }
817d52f8 519 }
e37c9e69
CM
520 path->slots[0]++;
521 }
817d52f8 522 ret = 0;
e37c9e69 523
4457c1c7 524 total_found += add_new_free_space(block_group, last,
817d52f8
JB
525 block_group->key.objectid +
526 block_group->key.offset);
11833d66 527 caching_ctl->progress = (u64)-1;
817d52f8 528
73fa48b6
OS
529out:
530 btrfs_free_path(path);
531 return ret;
532}
533
534static noinline void caching_thread(struct btrfs_work *work)
535{
536 struct btrfs_block_group_cache *block_group;
537 struct btrfs_fs_info *fs_info;
538 struct btrfs_caching_control *caching_ctl;
539 int ret;
540
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
544
545 mutex_lock(&caching_ctl->mutex);
546 down_read(&fs_info->commit_root_sem);
547
1e144fb8
OS
548 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549 ret = load_free_space_tree(caching_ctl);
550 else
551 ret = load_extent_tree_free(caching_ctl);
73fa48b6 552
817d52f8 553 spin_lock(&block_group->lock);
11833d66 554 block_group->caching_ctl = NULL;
73fa48b6 555 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 556 spin_unlock(&block_group->lock);
0f9dd46c 557
d0bd4560 558#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 559 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
560 u64 bytes_used;
561
562 spin_lock(&block_group->space_info->lock);
563 spin_lock(&block_group->lock);
564 bytes_used = block_group->key.offset -
565 btrfs_block_group_used(&block_group->item);
566 block_group->space_info->bytes_used += bytes_used >> 1;
567 spin_unlock(&block_group->lock);
568 spin_unlock(&block_group->space_info->lock);
2ff7e61e 569 fragment_free_space(block_group);
d0bd4560
JB
570 }
571#endif
572
573 caching_ctl->progress = (u64)-1;
11833d66 574
9e351cc8 575 up_read(&fs_info->commit_root_sem);
9e715da8 576 free_excluded_extents(block_group);
11833d66 577 mutex_unlock(&caching_ctl->mutex);
73fa48b6 578
11833d66
YZ
579 wake_up(&caching_ctl->wait);
580
581 put_caching_control(caching_ctl);
11dfe35a 582 btrfs_put_block_group(block_group);
817d52f8
JB
583}
584
9d66e233 585static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 586 int load_cache_only)
817d52f8 587{
291c7d2f 588 DEFINE_WAIT(wait);
11833d66
YZ
589 struct btrfs_fs_info *fs_info = cache->fs_info;
590 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
591 int ret = 0;
592
291c7d2f 593 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
594 if (!caching_ctl)
595 return -ENOMEM;
291c7d2f
JB
596
597 INIT_LIST_HEAD(&caching_ctl->list);
598 mutex_init(&caching_ctl->mutex);
599 init_waitqueue_head(&caching_ctl->wait);
600 caching_ctl->block_group = cache;
601 caching_ctl->progress = cache->key.objectid;
1e4f4714 602 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
603 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604 caching_thread, NULL, NULL);
291c7d2f
JB
605
606 spin_lock(&cache->lock);
607 /*
608 * This should be a rare occasion, but this could happen I think in the
609 * case where one thread starts to load the space cache info, and then
610 * some other thread starts a transaction commit which tries to do an
611 * allocation while the other thread is still loading the space cache
612 * info. The previous loop should have kept us from choosing this block
613 * group, but if we've moved to the state where we will wait on caching
614 * block groups we need to first check if we're doing a fast load here,
615 * so we can wait for it to finish, otherwise we could end up allocating
616 * from a block group who's cache gets evicted for one reason or
617 * another.
618 */
619 while (cache->cached == BTRFS_CACHE_FAST) {
620 struct btrfs_caching_control *ctl;
621
622 ctl = cache->caching_ctl;
1e4f4714 623 refcount_inc(&ctl->count);
291c7d2f
JB
624 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625 spin_unlock(&cache->lock);
626
627 schedule();
628
629 finish_wait(&ctl->wait, &wait);
630 put_caching_control(ctl);
631 spin_lock(&cache->lock);
632 }
633
634 if (cache->cached != BTRFS_CACHE_NO) {
635 spin_unlock(&cache->lock);
636 kfree(caching_ctl);
11833d66 637 return 0;
291c7d2f
JB
638 }
639 WARN_ON(cache->caching_ctl);
640 cache->caching_ctl = caching_ctl;
641 cache->cached = BTRFS_CACHE_FAST;
642 spin_unlock(&cache->lock);
11833d66 643
d8953d69 644 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 645 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
646 ret = load_free_space_cache(fs_info, cache);
647
648 spin_lock(&cache->lock);
649 if (ret == 1) {
291c7d2f 650 cache->caching_ctl = NULL;
9d66e233
JB
651 cache->cached = BTRFS_CACHE_FINISHED;
652 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 653 caching_ctl->progress = (u64)-1;
9d66e233 654 } else {
291c7d2f
JB
655 if (load_cache_only) {
656 cache->caching_ctl = NULL;
657 cache->cached = BTRFS_CACHE_NO;
658 } else {
659 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 660 cache->has_caching_ctl = 1;
291c7d2f 661 }
9d66e233
JB
662 }
663 spin_unlock(&cache->lock);
d0bd4560
JB
664#ifdef CONFIG_BTRFS_DEBUG
665 if (ret == 1 &&
2ff7e61e 666 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
667 u64 bytes_used;
668
669 spin_lock(&cache->space_info->lock);
670 spin_lock(&cache->lock);
671 bytes_used = cache->key.offset -
672 btrfs_block_group_used(&cache->item);
673 cache->space_info->bytes_used += bytes_used >> 1;
674 spin_unlock(&cache->lock);
675 spin_unlock(&cache->space_info->lock);
2ff7e61e 676 fragment_free_space(cache);
d0bd4560
JB
677 }
678#endif
cb83b7b8
JB
679 mutex_unlock(&caching_ctl->mutex);
680
291c7d2f 681 wake_up(&caching_ctl->wait);
3c14874a 682 if (ret == 1) {
291c7d2f 683 put_caching_control(caching_ctl);
9e715da8 684 free_excluded_extents(cache);
9d66e233 685 return 0;
3c14874a 686 }
291c7d2f
JB
687 } else {
688 /*
1e144fb8
OS
689 * We're either using the free space tree or no caching at all.
690 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
691 */
692 spin_lock(&cache->lock);
693 if (load_cache_only) {
694 cache->caching_ctl = NULL;
695 cache->cached = BTRFS_CACHE_NO;
696 } else {
697 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 698 cache->has_caching_ctl = 1;
291c7d2f
JB
699 }
700 spin_unlock(&cache->lock);
701 wake_up(&caching_ctl->wait);
9d66e233
JB
702 }
703
291c7d2f
JB
704 if (load_cache_only) {
705 put_caching_control(caching_ctl);
11833d66 706 return 0;
817d52f8 707 }
817d52f8 708
9e351cc8 709 down_write(&fs_info->commit_root_sem);
1e4f4714 710 refcount_inc(&caching_ctl->count);
11833d66 711 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 712 up_write(&fs_info->commit_root_sem);
11833d66 713
11dfe35a 714 btrfs_get_block_group(cache);
11833d66 715
e66f0bb1 716 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 717
ef8bbdfe 718 return ret;
e37c9e69
CM
719}
720
0f9dd46c
JB
721/*
722 * return the block group that starts at or after bytenr
723 */
d397712b
CM
724static struct btrfs_block_group_cache *
725btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 726{
e2c89907 727 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
728}
729
0f9dd46c 730/*
9f55684c 731 * return the block group that contains the given bytenr
0f9dd46c 732 */
d397712b
CM
733struct btrfs_block_group_cache *btrfs_lookup_block_group(
734 struct btrfs_fs_info *info,
735 u64 bytenr)
be744175 736{
e2c89907 737 return block_group_cache_tree_search(info, bytenr, 1);
be744175 738}
0b86a832 739
0f9dd46c
JB
740static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
741 u64 flags)
6324fbf3 742{
0f9dd46c 743 struct list_head *head = &info->space_info;
0f9dd46c 744 struct btrfs_space_info *found;
4184ea7f 745
52ba6929 746 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 747
4184ea7f
CM
748 rcu_read_lock();
749 list_for_each_entry_rcu(found, head, list) {
67377734 750 if (found->flags & flags) {
4184ea7f 751 rcu_read_unlock();
0f9dd46c 752 return found;
4184ea7f 753 }
0f9dd46c 754 }
4184ea7f 755 rcu_read_unlock();
0f9dd46c 756 return NULL;
6324fbf3
CM
757}
758
0d9f824d 759static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
29d2b84c 760 bool metadata, u64 root_objectid)
0d9f824d
OS
761{
762 struct btrfs_space_info *space_info;
763 u64 flags;
764
29d2b84c 765 if (metadata) {
0d9f824d
OS
766 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
767 flags = BTRFS_BLOCK_GROUP_SYSTEM;
768 else
769 flags = BTRFS_BLOCK_GROUP_METADATA;
770 } else {
771 flags = BTRFS_BLOCK_GROUP_DATA;
772 }
773
774 space_info = __find_space_info(fs_info, flags);
55e8196a 775 ASSERT(space_info);
dec59fa3
EL
776 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
777 BTRFS_TOTAL_BYTES_PINNED_BATCH);
0d9f824d
OS
778}
779
4184ea7f
CM
780/*
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
783 */
784void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785{
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
788
789 rcu_read_lock();
790 list_for_each_entry_rcu(found, head, list)
791 found->full = 0;
792 rcu_read_unlock();
793}
794
1a4ed8fd 795/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 796int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
797{
798 int ret;
799 struct btrfs_key key;
31840ae1 800 struct btrfs_path *path;
e02119d5 801
31840ae1 802 path = btrfs_alloc_path();
d8926bb3
MF
803 if (!path)
804 return -ENOMEM;
805
e02119d5
CM
806 key.objectid = start;
807 key.offset = len;
3173a18f 808 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 810 btrfs_free_path(path);
7bb86316
CM
811 return ret;
812}
813
a22285a6 814/*
3173a18f 815 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
816 *
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
822 */
823int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 824 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 825 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
826{
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
833 u32 item_size;
834 u64 num_refs;
835 u64 extent_flags;
836 int ret;
837
3173a18f
JB
838 /*
839 * If we don't have skinny metadata, don't bother doing anything
840 * different
841 */
0b246afa
JM
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
3173a18f
JB
844 metadata = 0;
845 }
846
a22285a6
YZ
847 path = btrfs_alloc_path();
848 if (!path)
849 return -ENOMEM;
850
a22285a6
YZ
851 if (!trans) {
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
854 }
639eefc8
FDBM
855
856search_again:
857 key.objectid = bytenr;
858 key.offset = offset;
859 if (metadata)
860 key.type = BTRFS_METADATA_ITEM_KEY;
861 else
862 key.type = BTRFS_EXTENT_ITEM_KEY;
863
0b246afa 864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
865 if (ret < 0)
866 goto out_free;
867
3173a18f 868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
869 if (path->slots[0]) {
870 path->slots[0]--;
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 path->slots[0]);
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 875 key.offset == fs_info->nodesize)
74be9510
FDBM
876 ret = 0;
877 }
3173a18f
JB
878 }
879
a22285a6
YZ
880 if (ret == 0) {
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
888 } else {
ba3c2b19
NB
889 ret = -EINVAL;
890 btrfs_print_v0_err(fs_info);
891 if (trans)
892 btrfs_abort_transaction(trans, ret);
893 else
894 btrfs_handle_fs_error(fs_info, ret, NULL);
895
896 goto out_free;
a22285a6 897 }
ba3c2b19 898
a22285a6
YZ
899 BUG_ON(num_refs == 0);
900 } else {
901 num_refs = 0;
902 extent_flags = 0;
903 ret = 0;
904 }
905
906 if (!trans)
907 goto out;
908
909 delayed_refs = &trans->transaction->delayed_refs;
910 spin_lock(&delayed_refs->lock);
f72ad18e 911 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
912 if (head) {
913 if (!mutex_trylock(&head->mutex)) {
d278850e 914 refcount_inc(&head->refs);
a22285a6
YZ
915 spin_unlock(&delayed_refs->lock);
916
b3b4aa74 917 btrfs_release_path(path);
a22285a6 918
8cc33e5c
DS
919 /*
920 * Mutex was contended, block until it's released and try
921 * again
922 */
a22285a6
YZ
923 mutex_lock(&head->mutex);
924 mutex_unlock(&head->mutex);
d278850e 925 btrfs_put_delayed_ref_head(head);
639eefc8 926 goto search_again;
a22285a6 927 }
d7df2c79 928 spin_lock(&head->lock);
a22285a6
YZ
929 if (head->extent_op && head->extent_op->update_flags)
930 extent_flags |= head->extent_op->flags_to_set;
931 else
932 BUG_ON(num_refs == 0);
933
d278850e 934 num_refs += head->ref_mod;
d7df2c79 935 spin_unlock(&head->lock);
a22285a6
YZ
936 mutex_unlock(&head->mutex);
937 }
938 spin_unlock(&delayed_refs->lock);
939out:
940 WARN_ON(num_refs == 0);
941 if (refs)
942 *refs = num_refs;
943 if (flags)
944 *flags = extent_flags;
945out_free:
946 btrfs_free_path(path);
947 return ret;
948}
949
d8d5f3e1
CM
950/*
951 * Back reference rules. Back refs have three main goals:
952 *
953 * 1) differentiate between all holders of references to an extent so that
954 * when a reference is dropped we can make sure it was a valid reference
955 * before freeing the extent.
956 *
957 * 2) Provide enough information to quickly find the holders of an extent
958 * if we notice a given block is corrupted or bad.
959 *
960 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
961 * maintenance. This is actually the same as #2, but with a slightly
962 * different use case.
963 *
5d4f98a2
YZ
964 * There are two kinds of back refs. The implicit back refs is optimized
965 * for pointers in non-shared tree blocks. For a given pointer in a block,
966 * back refs of this kind provide information about the block's owner tree
967 * and the pointer's key. These information allow us to find the block by
968 * b-tree searching. The full back refs is for pointers in tree blocks not
969 * referenced by their owner trees. The location of tree block is recorded
970 * in the back refs. Actually the full back refs is generic, and can be
971 * used in all cases the implicit back refs is used. The major shortcoming
972 * of the full back refs is its overhead. Every time a tree block gets
973 * COWed, we have to update back refs entry for all pointers in it.
974 *
975 * For a newly allocated tree block, we use implicit back refs for
976 * pointers in it. This means most tree related operations only involve
977 * implicit back refs. For a tree block created in old transaction, the
978 * only way to drop a reference to it is COW it. So we can detect the
979 * event that tree block loses its owner tree's reference and do the
980 * back refs conversion.
981 *
01327610 982 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
983 *
984 * The reference count of the block is one and the tree is the block's
985 * owner tree. Nothing to do in this case.
986 *
987 * The reference count of the block is one and the tree is not the
988 * block's owner tree. In this case, full back refs is used for pointers
989 * in the block. Remove these full back refs, add implicit back refs for
990 * every pointers in the new block.
991 *
992 * The reference count of the block is greater than one and the tree is
993 * the block's owner tree. In this case, implicit back refs is used for
994 * pointers in the block. Add full back refs for every pointers in the
995 * block, increase lower level extents' reference counts. The original
996 * implicit back refs are entailed to the new block.
997 *
998 * The reference count of the block is greater than one and the tree is
999 * not the block's owner tree. Add implicit back refs for every pointer in
1000 * the new block, increase lower level extents' reference count.
1001 *
1002 * Back Reference Key composing:
1003 *
1004 * The key objectid corresponds to the first byte in the extent,
1005 * The key type is used to differentiate between types of back refs.
1006 * There are different meanings of the key offset for different types
1007 * of back refs.
1008 *
d8d5f3e1
CM
1009 * File extents can be referenced by:
1010 *
1011 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1012 * - different files inside a single subvolume
d8d5f3e1
CM
1013 * - different offsets inside a file (bookend extents in file.c)
1014 *
5d4f98a2 1015 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1016 *
1017 * - Objectid of the subvolume root
d8d5f3e1 1018 * - objectid of the file holding the reference
5d4f98a2
YZ
1019 * - original offset in the file
1020 * - how many bookend extents
d8d5f3e1 1021 *
5d4f98a2
YZ
1022 * The key offset for the implicit back refs is hash of the first
1023 * three fields.
d8d5f3e1 1024 *
5d4f98a2 1025 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1026 *
5d4f98a2 1027 * - number of pointers in the tree leaf
d8d5f3e1 1028 *
5d4f98a2
YZ
1029 * The key offset for the implicit back refs is the first byte of
1030 * the tree leaf
d8d5f3e1 1031 *
5d4f98a2
YZ
1032 * When a file extent is allocated, The implicit back refs is used.
1033 * the fields are filled in:
d8d5f3e1 1034 *
5d4f98a2 1035 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1036 *
5d4f98a2
YZ
1037 * When a file extent is removed file truncation, we find the
1038 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1039 *
5d4f98a2 1040 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1041 *
5d4f98a2 1042 * Btree extents can be referenced by:
d8d5f3e1 1043 *
5d4f98a2 1044 * - Different subvolumes
d8d5f3e1 1045 *
5d4f98a2
YZ
1046 * Both the implicit back refs and the full back refs for tree blocks
1047 * only consist of key. The key offset for the implicit back refs is
1048 * objectid of block's owner tree. The key offset for the full back refs
1049 * is the first byte of parent block.
d8d5f3e1 1050 *
5d4f98a2
YZ
1051 * When implicit back refs is used, information about the lowest key and
1052 * level of the tree block are required. These information are stored in
1053 * tree block info structure.
d8d5f3e1 1054 */
31840ae1 1055
167ce953
LB
1056/*
1057 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1058 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1059 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1060 */
1061int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1062 struct btrfs_extent_inline_ref *iref,
1063 enum btrfs_inline_ref_type is_data)
1064{
1065 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1066 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1067
1068 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1069 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1070 type == BTRFS_SHARED_DATA_REF_KEY ||
1071 type == BTRFS_EXTENT_DATA_REF_KEY) {
1072 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1073 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1074 return type;
64ecdb64
LB
1075 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1076 ASSERT(eb->fs_info);
1077 /*
1078 * Every shared one has parent tree
1079 * block, which must be aligned to
1080 * nodesize.
1081 */
1082 if (offset &&
1083 IS_ALIGNED(offset, eb->fs_info->nodesize))
1084 return type;
1085 }
167ce953 1086 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1087 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1088 return type;
64ecdb64
LB
1089 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1090 ASSERT(eb->fs_info);
1091 /*
1092 * Every shared one has parent tree
1093 * block, which must be aligned to
1094 * nodesize.
1095 */
1096 if (offset &&
1097 IS_ALIGNED(offset, eb->fs_info->nodesize))
1098 return type;
1099 }
167ce953
LB
1100 } else {
1101 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1102 return type;
1103 }
1104 }
1105
1106 btrfs_print_leaf((struct extent_buffer *)eb);
1107 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1108 eb->start, type);
1109 WARN_ON(1);
1110
1111 return BTRFS_REF_TYPE_INVALID;
1112}
1113
5d4f98a2
YZ
1114static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1115{
1116 u32 high_crc = ~(u32)0;
1117 u32 low_crc = ~(u32)0;
1118 __le64 lenum;
1119
1120 lenum = cpu_to_le64(root_objectid);
9678c543 1121 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1122 lenum = cpu_to_le64(owner);
9678c543 1123 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1124 lenum = cpu_to_le64(offset);
9678c543 1125 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1126
1127 return ((u64)high_crc << 31) ^ (u64)low_crc;
1128}
1129
1130static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1131 struct btrfs_extent_data_ref *ref)
1132{
1133 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1134 btrfs_extent_data_ref_objectid(leaf, ref),
1135 btrfs_extent_data_ref_offset(leaf, ref));
1136}
1137
1138static int match_extent_data_ref(struct extent_buffer *leaf,
1139 struct btrfs_extent_data_ref *ref,
1140 u64 root_objectid, u64 owner, u64 offset)
1141{
1142 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1143 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1144 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1145 return 0;
1146 return 1;
1147}
1148
1149static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1150 struct btrfs_path *path,
1151 u64 bytenr, u64 parent,
1152 u64 root_objectid,
1153 u64 owner, u64 offset)
1154{
bd1d53ef 1155 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2
YZ
1156 struct btrfs_key key;
1157 struct btrfs_extent_data_ref *ref;
31840ae1 1158 struct extent_buffer *leaf;
5d4f98a2 1159 u32 nritems;
74493f7a 1160 int ret;
5d4f98a2
YZ
1161 int recow;
1162 int err = -ENOENT;
74493f7a 1163
31840ae1 1164 key.objectid = bytenr;
5d4f98a2
YZ
1165 if (parent) {
1166 key.type = BTRFS_SHARED_DATA_REF_KEY;
1167 key.offset = parent;
1168 } else {
1169 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1170 key.offset = hash_extent_data_ref(root_objectid,
1171 owner, offset);
1172 }
1173again:
1174 recow = 0;
1175 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1176 if (ret < 0) {
1177 err = ret;
1178 goto fail;
1179 }
31840ae1 1180
5d4f98a2
YZ
1181 if (parent) {
1182 if (!ret)
1183 return 0;
5d4f98a2 1184 goto fail;
31840ae1
ZY
1185 }
1186
1187 leaf = path->nodes[0];
5d4f98a2
YZ
1188 nritems = btrfs_header_nritems(leaf);
1189 while (1) {
1190 if (path->slots[0] >= nritems) {
1191 ret = btrfs_next_leaf(root, path);
1192 if (ret < 0)
1193 err = ret;
1194 if (ret)
1195 goto fail;
1196
1197 leaf = path->nodes[0];
1198 nritems = btrfs_header_nritems(leaf);
1199 recow = 1;
1200 }
1201
1202 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1203 if (key.objectid != bytenr ||
1204 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1205 goto fail;
1206
1207 ref = btrfs_item_ptr(leaf, path->slots[0],
1208 struct btrfs_extent_data_ref);
1209
1210 if (match_extent_data_ref(leaf, ref, root_objectid,
1211 owner, offset)) {
1212 if (recow) {
b3b4aa74 1213 btrfs_release_path(path);
5d4f98a2
YZ
1214 goto again;
1215 }
1216 err = 0;
1217 break;
1218 }
1219 path->slots[0]++;
31840ae1 1220 }
5d4f98a2
YZ
1221fail:
1222 return err;
31840ae1
ZY
1223}
1224
5d4f98a2 1225static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1226 struct btrfs_path *path,
1227 u64 bytenr, u64 parent,
1228 u64 root_objectid, u64 owner,
1229 u64 offset, int refs_to_add)
31840ae1 1230{
62b895af 1231 struct btrfs_root *root = trans->fs_info->extent_root;
31840ae1
ZY
1232 struct btrfs_key key;
1233 struct extent_buffer *leaf;
5d4f98a2 1234 u32 size;
31840ae1
ZY
1235 u32 num_refs;
1236 int ret;
74493f7a 1237
74493f7a 1238 key.objectid = bytenr;
5d4f98a2
YZ
1239 if (parent) {
1240 key.type = BTRFS_SHARED_DATA_REF_KEY;
1241 key.offset = parent;
1242 size = sizeof(struct btrfs_shared_data_ref);
1243 } else {
1244 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1245 key.offset = hash_extent_data_ref(root_objectid,
1246 owner, offset);
1247 size = sizeof(struct btrfs_extent_data_ref);
1248 }
74493f7a 1249
5d4f98a2
YZ
1250 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1251 if (ret && ret != -EEXIST)
1252 goto fail;
1253
1254 leaf = path->nodes[0];
1255 if (parent) {
1256 struct btrfs_shared_data_ref *ref;
31840ae1 1257 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1258 struct btrfs_shared_data_ref);
1259 if (ret == 0) {
1260 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1261 } else {
1262 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1263 num_refs += refs_to_add;
1264 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1265 }
5d4f98a2
YZ
1266 } else {
1267 struct btrfs_extent_data_ref *ref;
1268 while (ret == -EEXIST) {
1269 ref = btrfs_item_ptr(leaf, path->slots[0],
1270 struct btrfs_extent_data_ref);
1271 if (match_extent_data_ref(leaf, ref, root_objectid,
1272 owner, offset))
1273 break;
b3b4aa74 1274 btrfs_release_path(path);
5d4f98a2
YZ
1275 key.offset++;
1276 ret = btrfs_insert_empty_item(trans, root, path, &key,
1277 size);
1278 if (ret && ret != -EEXIST)
1279 goto fail;
31840ae1 1280
5d4f98a2
YZ
1281 leaf = path->nodes[0];
1282 }
1283 ref = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_data_ref);
1285 if (ret == 0) {
1286 btrfs_set_extent_data_ref_root(leaf, ref,
1287 root_objectid);
1288 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1289 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1290 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1291 } else {
1292 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1293 num_refs += refs_to_add;
1294 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1295 }
31840ae1 1296 }
5d4f98a2
YZ
1297 btrfs_mark_buffer_dirty(leaf);
1298 ret = 0;
1299fail:
b3b4aa74 1300 btrfs_release_path(path);
7bb86316 1301 return ret;
74493f7a
CM
1302}
1303
5d4f98a2 1304static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2 1305 struct btrfs_path *path,
fcebe456 1306 int refs_to_drop, int *last_ref)
31840ae1 1307{
5d4f98a2
YZ
1308 struct btrfs_key key;
1309 struct btrfs_extent_data_ref *ref1 = NULL;
1310 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1311 struct extent_buffer *leaf;
5d4f98a2 1312 u32 num_refs = 0;
31840ae1
ZY
1313 int ret = 0;
1314
1315 leaf = path->nodes[0];
5d4f98a2
YZ
1316 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1317
1318 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1319 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1322 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1323 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1324 struct btrfs_shared_data_ref);
1325 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
6d8ff4e4 1326 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
ba3c2b19
NB
1327 btrfs_print_v0_err(trans->fs_info);
1328 btrfs_abort_transaction(trans, -EINVAL);
1329 return -EINVAL;
5d4f98a2
YZ
1330 } else {
1331 BUG();
1332 }
1333
56bec294
CM
1334 BUG_ON(num_refs < refs_to_drop);
1335 num_refs -= refs_to_drop;
5d4f98a2 1336
31840ae1 1337 if (num_refs == 0) {
e9f6290d 1338 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
fcebe456 1339 *last_ref = 1;
31840ae1 1340 } else {
5d4f98a2
YZ
1341 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1342 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1343 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1344 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
31840ae1
ZY
1345 btrfs_mark_buffer_dirty(leaf);
1346 }
31840ae1
ZY
1347 return ret;
1348}
1349
9ed0dea0 1350static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1351 struct btrfs_extent_inline_ref *iref)
15916de8 1352{
5d4f98a2
YZ
1353 struct btrfs_key key;
1354 struct extent_buffer *leaf;
1355 struct btrfs_extent_data_ref *ref1;
1356 struct btrfs_shared_data_ref *ref2;
1357 u32 num_refs = 0;
3de28d57 1358 int type;
5d4f98a2
YZ
1359
1360 leaf = path->nodes[0];
1361 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
ba3c2b19
NB
1362
1363 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
5d4f98a2 1364 if (iref) {
3de28d57
LB
1365 /*
1366 * If type is invalid, we should have bailed out earlier than
1367 * this call.
1368 */
1369 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1370 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1371 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1372 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1373 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1374 } else {
1375 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1376 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1377 }
1378 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1379 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1380 struct btrfs_extent_data_ref);
1381 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1382 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1383 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1384 struct btrfs_shared_data_ref);
1385 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
5d4f98a2
YZ
1386 } else {
1387 WARN_ON(1);
1388 }
1389 return num_refs;
1390}
15916de8 1391
5d4f98a2 1392static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1393 struct btrfs_path *path,
1394 u64 bytenr, u64 parent,
1395 u64 root_objectid)
1f3c79a2 1396{
b8582eea 1397 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2 1398 struct btrfs_key key;
1f3c79a2 1399 int ret;
1f3c79a2 1400
5d4f98a2
YZ
1401 key.objectid = bytenr;
1402 if (parent) {
1403 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1404 key.offset = parent;
1405 } else {
1406 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1407 key.offset = root_objectid;
1f3c79a2
LH
1408 }
1409
5d4f98a2
YZ
1410 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1411 if (ret > 0)
1412 ret = -ENOENT;
5d4f98a2 1413 return ret;
1f3c79a2
LH
1414}
1415
5d4f98a2 1416static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1417 struct btrfs_path *path,
1418 u64 bytenr, u64 parent,
1419 u64 root_objectid)
31840ae1 1420{
5d4f98a2 1421 struct btrfs_key key;
31840ae1 1422 int ret;
31840ae1 1423
5d4f98a2
YZ
1424 key.objectid = bytenr;
1425 if (parent) {
1426 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 key.offset = parent;
1428 } else {
1429 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1430 key.offset = root_objectid;
1431 }
1432
10728404 1433 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
87bde3cd 1434 path, &key, 0);
b3b4aa74 1435 btrfs_release_path(path);
31840ae1
ZY
1436 return ret;
1437}
1438
5d4f98a2 1439static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1440{
5d4f98a2
YZ
1441 int type;
1442 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1443 if (parent > 0)
1444 type = BTRFS_SHARED_BLOCK_REF_KEY;
1445 else
1446 type = BTRFS_TREE_BLOCK_REF_KEY;
1447 } else {
1448 if (parent > 0)
1449 type = BTRFS_SHARED_DATA_REF_KEY;
1450 else
1451 type = BTRFS_EXTENT_DATA_REF_KEY;
1452 }
1453 return type;
31840ae1 1454}
56bec294 1455
2c47e605
YZ
1456static int find_next_key(struct btrfs_path *path, int level,
1457 struct btrfs_key *key)
56bec294 1458
02217ed2 1459{
2c47e605 1460 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1461 if (!path->nodes[level])
1462 break;
5d4f98a2
YZ
1463 if (path->slots[level] + 1 >=
1464 btrfs_header_nritems(path->nodes[level]))
1465 continue;
1466 if (level == 0)
1467 btrfs_item_key_to_cpu(path->nodes[level], key,
1468 path->slots[level] + 1);
1469 else
1470 btrfs_node_key_to_cpu(path->nodes[level], key,
1471 path->slots[level] + 1);
1472 return 0;
1473 }
1474 return 1;
1475}
037e6390 1476
5d4f98a2
YZ
1477/*
1478 * look for inline back ref. if back ref is found, *ref_ret is set
1479 * to the address of inline back ref, and 0 is returned.
1480 *
1481 * if back ref isn't found, *ref_ret is set to the address where it
1482 * should be inserted, and -ENOENT is returned.
1483 *
1484 * if insert is true and there are too many inline back refs, the path
1485 * points to the extent item, and -EAGAIN is returned.
1486 *
1487 * NOTE: inline back refs are ordered in the same way that back ref
1488 * items in the tree are ordered.
1489 */
1490static noinline_for_stack
1491int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1492 struct btrfs_path *path,
1493 struct btrfs_extent_inline_ref **ref_ret,
1494 u64 bytenr, u64 num_bytes,
1495 u64 parent, u64 root_objectid,
1496 u64 owner, u64 offset, int insert)
1497{
867cc1fb 1498 struct btrfs_fs_info *fs_info = trans->fs_info;
87bde3cd 1499 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1500 struct btrfs_key key;
1501 struct extent_buffer *leaf;
1502 struct btrfs_extent_item *ei;
1503 struct btrfs_extent_inline_ref *iref;
1504 u64 flags;
1505 u64 item_size;
1506 unsigned long ptr;
1507 unsigned long end;
1508 int extra_size;
1509 int type;
1510 int want;
1511 int ret;
1512 int err = 0;
0b246afa 1513 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1514 int needed;
26b8003f 1515
db94535d 1516 key.objectid = bytenr;
31840ae1 1517 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1518 key.offset = num_bytes;
31840ae1 1519
5d4f98a2
YZ
1520 want = extent_ref_type(parent, owner);
1521 if (insert) {
1522 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1523 path->keep_locks = 1;
5d4f98a2
YZ
1524 } else
1525 extra_size = -1;
3173a18f
JB
1526
1527 /*
16d1c062
NB
1528 * Owner is our level, so we can just add one to get the level for the
1529 * block we are interested in.
3173a18f
JB
1530 */
1531 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1532 key.type = BTRFS_METADATA_ITEM_KEY;
1533 key.offset = owner;
1534 }
1535
1536again:
5d4f98a2 1537 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1538 if (ret < 0) {
5d4f98a2
YZ
1539 err = ret;
1540 goto out;
1541 }
3173a18f
JB
1542
1543 /*
1544 * We may be a newly converted file system which still has the old fat
1545 * extent entries for metadata, so try and see if we have one of those.
1546 */
1547 if (ret > 0 && skinny_metadata) {
1548 skinny_metadata = false;
1549 if (path->slots[0]) {
1550 path->slots[0]--;
1551 btrfs_item_key_to_cpu(path->nodes[0], &key,
1552 path->slots[0]);
1553 if (key.objectid == bytenr &&
1554 key.type == BTRFS_EXTENT_ITEM_KEY &&
1555 key.offset == num_bytes)
1556 ret = 0;
1557 }
1558 if (ret) {
9ce49a0b 1559 key.objectid = bytenr;
3173a18f
JB
1560 key.type = BTRFS_EXTENT_ITEM_KEY;
1561 key.offset = num_bytes;
1562 btrfs_release_path(path);
1563 goto again;
1564 }
1565 }
1566
79787eaa
JM
1567 if (ret && !insert) {
1568 err = -ENOENT;
1569 goto out;
fae7f21c 1570 } else if (WARN_ON(ret)) {
492104c8 1571 err = -EIO;
492104c8 1572 goto out;
79787eaa 1573 }
5d4f98a2
YZ
1574
1575 leaf = path->nodes[0];
1576 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6d8ff4e4 1577 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
1578 err = -EINVAL;
1579 btrfs_print_v0_err(fs_info);
1580 btrfs_abort_transaction(trans, err);
1581 goto out;
1582 }
5d4f98a2 1583
5d4f98a2
YZ
1584 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1585 flags = btrfs_extent_flags(leaf, ei);
1586
1587 ptr = (unsigned long)(ei + 1);
1588 end = (unsigned long)ei + item_size;
1589
3173a18f 1590 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1591 ptr += sizeof(struct btrfs_tree_block_info);
1592 BUG_ON(ptr > end);
5d4f98a2
YZ
1593 }
1594
3de28d57
LB
1595 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1596 needed = BTRFS_REF_TYPE_DATA;
1597 else
1598 needed = BTRFS_REF_TYPE_BLOCK;
1599
5d4f98a2
YZ
1600 err = -ENOENT;
1601 while (1) {
1602 if (ptr >= end) {
1603 WARN_ON(ptr > end);
1604 break;
1605 }
1606 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1607 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1608 if (type == BTRFS_REF_TYPE_INVALID) {
af431dcb 1609 err = -EUCLEAN;
3de28d57
LB
1610 goto out;
1611 }
1612
5d4f98a2
YZ
1613 if (want < type)
1614 break;
1615 if (want > type) {
1616 ptr += btrfs_extent_inline_ref_size(type);
1617 continue;
1618 }
1619
1620 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1621 struct btrfs_extent_data_ref *dref;
1622 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1623 if (match_extent_data_ref(leaf, dref, root_objectid,
1624 owner, offset)) {
1625 err = 0;
1626 break;
1627 }
1628 if (hash_extent_data_ref_item(leaf, dref) <
1629 hash_extent_data_ref(root_objectid, owner, offset))
1630 break;
1631 } else {
1632 u64 ref_offset;
1633 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1634 if (parent > 0) {
1635 if (parent == ref_offset) {
1636 err = 0;
1637 break;
1638 }
1639 if (ref_offset < parent)
1640 break;
1641 } else {
1642 if (root_objectid == ref_offset) {
1643 err = 0;
1644 break;
1645 }
1646 if (ref_offset < root_objectid)
1647 break;
1648 }
1649 }
1650 ptr += btrfs_extent_inline_ref_size(type);
1651 }
1652 if (err == -ENOENT && insert) {
1653 if (item_size + extra_size >=
1654 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1655 err = -EAGAIN;
1656 goto out;
1657 }
1658 /*
1659 * To add new inline back ref, we have to make sure
1660 * there is no corresponding back ref item.
1661 * For simplicity, we just do not add new inline back
1662 * ref if there is any kind of item for this block
1663 */
2c47e605
YZ
1664 if (find_next_key(path, 0, &key) == 0 &&
1665 key.objectid == bytenr &&
85d4198e 1666 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1667 err = -EAGAIN;
1668 goto out;
1669 }
1670 }
1671 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1672out:
85d4198e 1673 if (insert) {
5d4f98a2
YZ
1674 path->keep_locks = 0;
1675 btrfs_unlock_up_safe(path, 1);
1676 }
1677 return err;
1678}
1679
1680/*
1681 * helper to add new inline back ref
1682 */
1683static noinline_for_stack
87bde3cd 1684void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1685 struct btrfs_path *path,
1686 struct btrfs_extent_inline_ref *iref,
1687 u64 parent, u64 root_objectid,
1688 u64 owner, u64 offset, int refs_to_add,
1689 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1690{
1691 struct extent_buffer *leaf;
1692 struct btrfs_extent_item *ei;
1693 unsigned long ptr;
1694 unsigned long end;
1695 unsigned long item_offset;
1696 u64 refs;
1697 int size;
1698 int type;
5d4f98a2
YZ
1699
1700 leaf = path->nodes[0];
1701 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1702 item_offset = (unsigned long)iref - (unsigned long)ei;
1703
1704 type = extent_ref_type(parent, owner);
1705 size = btrfs_extent_inline_ref_size(type);
1706
87bde3cd 1707 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1708
1709 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1710 refs = btrfs_extent_refs(leaf, ei);
1711 refs += refs_to_add;
1712 btrfs_set_extent_refs(leaf, ei, refs);
1713 if (extent_op)
1714 __run_delayed_extent_op(extent_op, leaf, ei);
1715
1716 ptr = (unsigned long)ei + item_offset;
1717 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1718 if (ptr < end - size)
1719 memmove_extent_buffer(leaf, ptr + size, ptr,
1720 end - size - ptr);
1721
1722 iref = (struct btrfs_extent_inline_ref *)ptr;
1723 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1724 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1725 struct btrfs_extent_data_ref *dref;
1726 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1727 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1728 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1729 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1730 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1731 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1732 struct btrfs_shared_data_ref *sref;
1733 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1734 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1735 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1736 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1737 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1738 } else {
1739 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1740 }
1741 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1742}
1743
1744static int lookup_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1745 struct btrfs_path *path,
1746 struct btrfs_extent_inline_ref **ref_ret,
1747 u64 bytenr, u64 num_bytes, u64 parent,
1748 u64 root_objectid, u64 owner, u64 offset)
1749{
1750 int ret;
1751
867cc1fb
NB
1752 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1753 num_bytes, parent, root_objectid,
1754 owner, offset, 0);
5d4f98a2 1755 if (ret != -ENOENT)
54aa1f4d 1756 return ret;
5d4f98a2 1757
b3b4aa74 1758 btrfs_release_path(path);
5d4f98a2
YZ
1759 *ref_ret = NULL;
1760
1761 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
b8582eea
NB
1762 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1763 root_objectid);
5d4f98a2 1764 } else {
bd1d53ef
NB
1765 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1766 root_objectid, owner, offset);
b9473439 1767 }
5d4f98a2
YZ
1768 return ret;
1769}
31840ae1 1770
5d4f98a2
YZ
1771/*
1772 * helper to update/remove inline back ref
1773 */
1774static noinline_for_stack
61a18f1c 1775void update_inline_extent_backref(struct btrfs_path *path,
143bede5
JM
1776 struct btrfs_extent_inline_ref *iref,
1777 int refs_to_mod,
fcebe456
JB
1778 struct btrfs_delayed_extent_op *extent_op,
1779 int *last_ref)
5d4f98a2 1780{
61a18f1c
NB
1781 struct extent_buffer *leaf = path->nodes[0];
1782 struct btrfs_fs_info *fs_info = leaf->fs_info;
5d4f98a2
YZ
1783 struct btrfs_extent_item *ei;
1784 struct btrfs_extent_data_ref *dref = NULL;
1785 struct btrfs_shared_data_ref *sref = NULL;
1786 unsigned long ptr;
1787 unsigned long end;
1788 u32 item_size;
1789 int size;
1790 int type;
5d4f98a2
YZ
1791 u64 refs;
1792
5d4f98a2
YZ
1793 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1794 refs = btrfs_extent_refs(leaf, ei);
1795 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1796 refs += refs_to_mod;
1797 btrfs_set_extent_refs(leaf, ei, refs);
1798 if (extent_op)
1799 __run_delayed_extent_op(extent_op, leaf, ei);
1800
3de28d57
LB
1801 /*
1802 * If type is invalid, we should have bailed out after
1803 * lookup_inline_extent_backref().
1804 */
1805 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1806 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1807
1808 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1809 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1810 refs = btrfs_extent_data_ref_count(leaf, dref);
1811 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1812 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1813 refs = btrfs_shared_data_ref_count(leaf, sref);
1814 } else {
1815 refs = 1;
1816 BUG_ON(refs_to_mod != -1);
56bec294 1817 }
31840ae1 1818
5d4f98a2
YZ
1819 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1820 refs += refs_to_mod;
1821
1822 if (refs > 0) {
1823 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1824 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1825 else
1826 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1827 } else {
fcebe456 1828 *last_ref = 1;
5d4f98a2
YZ
1829 size = btrfs_extent_inline_ref_size(type);
1830 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1831 ptr = (unsigned long)iref;
1832 end = (unsigned long)ei + item_size;
1833 if (ptr + size < end)
1834 memmove_extent_buffer(leaf, ptr, ptr + size,
1835 end - ptr - size);
1836 item_size -= size;
87bde3cd 1837 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1838 }
1839 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1840}
1841
1842static noinline_for_stack
1843int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1844 struct btrfs_path *path,
1845 u64 bytenr, u64 num_bytes, u64 parent,
1846 u64 root_objectid, u64 owner,
1847 u64 offset, int refs_to_add,
1848 struct btrfs_delayed_extent_op *extent_op)
1849{
1850 struct btrfs_extent_inline_ref *iref;
1851 int ret;
1852
867cc1fb
NB
1853 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1854 num_bytes, parent, root_objectid,
1855 owner, offset, 1);
5d4f98a2
YZ
1856 if (ret == 0) {
1857 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
61a18f1c
NB
1858 update_inline_extent_backref(path, iref, refs_to_add,
1859 extent_op, NULL);
5d4f98a2 1860 } else if (ret == -ENOENT) {
a639cdeb 1861 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
143bede5
JM
1862 root_objectid, owner, offset,
1863 refs_to_add, extent_op);
1864 ret = 0;
771ed689 1865 }
5d4f98a2
YZ
1866 return ret;
1867}
31840ae1 1868
5d4f98a2 1869static int insert_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1870 struct btrfs_path *path,
1871 u64 bytenr, u64 parent, u64 root_objectid,
1872 u64 owner, u64 offset, int refs_to_add)
1873{
1874 int ret;
1875 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1876 BUG_ON(refs_to_add != 1);
10728404
NB
1877 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1878 root_objectid);
5d4f98a2 1879 } else {
62b895af
NB
1880 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1881 root_objectid, owner, offset,
1882 refs_to_add);
5d4f98a2
YZ
1883 }
1884 return ret;
1885}
56bec294 1886
5d4f98a2 1887static int remove_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1888 struct btrfs_path *path,
1889 struct btrfs_extent_inline_ref *iref,
fcebe456 1890 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1891{
143bede5 1892 int ret = 0;
b9473439 1893
5d4f98a2
YZ
1894 BUG_ON(!is_data && refs_to_drop != 1);
1895 if (iref) {
61a18f1c
NB
1896 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1897 last_ref);
5d4f98a2 1898 } else if (is_data) {
e9f6290d 1899 ret = remove_extent_data_ref(trans, path, refs_to_drop,
fcebe456 1900 last_ref);
5d4f98a2 1901 } else {
fcebe456 1902 *last_ref = 1;
87cc7a8a 1903 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
5d4f98a2
YZ
1904 }
1905 return ret;
1906}
1907
86557861 1908#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1909static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1910 u64 *discarded_bytes)
5d4f98a2 1911{
86557861
JM
1912 int j, ret = 0;
1913 u64 bytes_left, end;
4d89d377 1914 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1915
4d89d377
JM
1916 if (WARN_ON(start != aligned_start)) {
1917 len -= aligned_start - start;
1918 len = round_down(len, 1 << 9);
1919 start = aligned_start;
1920 }
d04c6b88 1921
4d89d377 1922 *discarded_bytes = 0;
86557861
JM
1923
1924 if (!len)
1925 return 0;
1926
1927 end = start + len;
1928 bytes_left = len;
1929
1930 /* Skip any superblocks on this device. */
1931 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1932 u64 sb_start = btrfs_sb_offset(j);
1933 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1934 u64 size = sb_start - start;
1935
1936 if (!in_range(sb_start, start, bytes_left) &&
1937 !in_range(sb_end, start, bytes_left) &&
1938 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1939 continue;
1940
1941 /*
1942 * Superblock spans beginning of range. Adjust start and
1943 * try again.
1944 */
1945 if (sb_start <= start) {
1946 start += sb_end - start;
1947 if (start > end) {
1948 bytes_left = 0;
1949 break;
1950 }
1951 bytes_left = end - start;
1952 continue;
1953 }
1954
1955 if (size) {
1956 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1957 GFP_NOFS, 0);
1958 if (!ret)
1959 *discarded_bytes += size;
1960 else if (ret != -EOPNOTSUPP)
1961 return ret;
1962 }
1963
1964 start = sb_end;
1965 if (start > end) {
1966 bytes_left = 0;
1967 break;
1968 }
1969 bytes_left = end - start;
1970 }
1971
1972 if (bytes_left) {
1973 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1974 GFP_NOFS, 0);
1975 if (!ret)
86557861 1976 *discarded_bytes += bytes_left;
4d89d377 1977 }
d04c6b88 1978 return ret;
5d4f98a2 1979}
5d4f98a2 1980
2ff7e61e 1981int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 1982 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1983{
5d4f98a2 1984 int ret;
5378e607 1985 u64 discarded_bytes = 0;
a1d3c478 1986 struct btrfs_bio *bbio = NULL;
5d4f98a2 1987
e244a0ae 1988
2999241d
FM
1989 /*
1990 * Avoid races with device replace and make sure our bbio has devices
1991 * associated to its stripes that don't go away while we are discarding.
1992 */
0b246afa 1993 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 1994 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
1995 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1996 &bbio, 0);
79787eaa 1997 /* Error condition is -ENOMEM */
5d4f98a2 1998 if (!ret) {
a1d3c478 1999 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2000 int i;
2001
5d4f98a2 2002
a1d3c478 2003 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2004 u64 bytes;
38b5f68e
AJ
2005 struct request_queue *req_q;
2006
627e0873
FM
2007 if (!stripe->dev->bdev) {
2008 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2009 continue;
2010 }
38b5f68e
AJ
2011 req_q = bdev_get_queue(stripe->dev->bdev);
2012 if (!blk_queue_discard(req_q))
d5e2003c
JB
2013 continue;
2014
5378e607
LD
2015 ret = btrfs_issue_discard(stripe->dev->bdev,
2016 stripe->physical,
d04c6b88
JM
2017 stripe->length,
2018 &bytes);
5378e607 2019 if (!ret)
d04c6b88 2020 discarded_bytes += bytes;
5378e607 2021 else if (ret != -EOPNOTSUPP)
79787eaa 2022 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2023
2024 /*
2025 * Just in case we get back EOPNOTSUPP for some reason,
2026 * just ignore the return value so we don't screw up
2027 * people calling discard_extent.
2028 */
2029 ret = 0;
5d4f98a2 2030 }
6e9606d2 2031 btrfs_put_bbio(bbio);
5d4f98a2 2032 }
0b246afa 2033 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2034
2035 if (actual_bytes)
2036 *actual_bytes = discarded_bytes;
2037
5d4f98a2 2038
53b381b3
DW
2039 if (ret == -EOPNOTSUPP)
2040 ret = 0;
5d4f98a2 2041 return ret;
5d4f98a2
YZ
2042}
2043
79787eaa 2044/* Can return -ENOMEM */
5d4f98a2 2045int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2046 struct btrfs_root *root,
5d4f98a2 2047 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2048 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2049{
84f7d8e6 2050 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2051 int old_ref_mod, new_ref_mod;
5d4f98a2 2052 int ret;
66d7e7f0 2053
5d4f98a2
YZ
2054 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2055 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2056
fd708b81
JB
2057 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2058 owner, offset, BTRFS_ADD_DELAYED_REF);
2059
5d4f98a2 2060 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
44e1c47d 2061 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7be07912
OS
2062 num_bytes, parent,
2063 root_objectid, (int)owner,
2064 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2065 &old_ref_mod, &new_ref_mod);
5d4f98a2 2066 } else {
88a979c6 2067 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7be07912
OS
2068 num_bytes, parent,
2069 root_objectid, owner, offset,
d7eae340
OS
2070 0, BTRFS_ADD_DELAYED_REF,
2071 &old_ref_mod, &new_ref_mod);
5d4f98a2 2072 }
d7eae340 2073
29d2b84c
NB
2074 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2075 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2076
2077 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2078 }
d7eae340 2079
5d4f98a2
YZ
2080 return ret;
2081}
2082
bd3c685e
NB
2083/*
2084 * __btrfs_inc_extent_ref - insert backreference for a given extent
2085 *
2086 * @trans: Handle of transaction
2087 *
2088 * @node: The delayed ref node used to get the bytenr/length for
2089 * extent whose references are incremented.
2090 *
2091 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2092 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2093 * bytenr of the parent block. Since new extents are always
2094 * created with indirect references, this will only be the case
2095 * when relocating a shared extent. In that case, root_objectid
2096 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2097 * be 0
2098 *
2099 * @root_objectid: The id of the root where this modification has originated,
2100 * this can be either one of the well-known metadata trees or
2101 * the subvolume id which references this extent.
2102 *
2103 * @owner: For data extents it is the inode number of the owning file.
2104 * For metadata extents this parameter holds the level in the
2105 * tree of the extent.
2106 *
2107 * @offset: For metadata extents the offset is ignored and is currently
2108 * always passed as 0. For data extents it is the fileoffset
2109 * this extent belongs to.
2110 *
2111 * @refs_to_add Number of references to add
2112 *
2113 * @extent_op Pointer to a structure, holding information necessary when
2114 * updating a tree block's flags
2115 *
2116 */
5d4f98a2 2117static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
c682f9b3 2118 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2119 u64 parent, u64 root_objectid,
2120 u64 owner, u64 offset, int refs_to_add,
2121 struct btrfs_delayed_extent_op *extent_op)
2122{
2123 struct btrfs_path *path;
2124 struct extent_buffer *leaf;
2125 struct btrfs_extent_item *item;
fcebe456 2126 struct btrfs_key key;
c682f9b3
QW
2127 u64 bytenr = node->bytenr;
2128 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2129 u64 refs;
2130 int ret;
5d4f98a2
YZ
2131
2132 path = btrfs_alloc_path();
2133 if (!path)
2134 return -ENOMEM;
2135
e4058b54 2136 path->reada = READA_FORWARD;
5d4f98a2
YZ
2137 path->leave_spinning = 1;
2138 /* this will setup the path even if it fails to insert the back ref */
a639cdeb
NB
2139 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2140 parent, root_objectid, owner,
2141 offset, refs_to_add, extent_op);
0ed4792a 2142 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2143 goto out;
fcebe456
JB
2144
2145 /*
2146 * Ok we had -EAGAIN which means we didn't have space to insert and
2147 * inline extent ref, so just update the reference count and add a
2148 * normal backref.
2149 */
5d4f98a2 2150 leaf = path->nodes[0];
fcebe456 2151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2152 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2153 refs = btrfs_extent_refs(leaf, item);
2154 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2155 if (extent_op)
2156 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2157
5d4f98a2 2158 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2159 btrfs_release_path(path);
56bec294 2160
e4058b54 2161 path->reada = READA_FORWARD;
b9473439 2162 path->leave_spinning = 1;
56bec294 2163 /* now insert the actual backref */
37593410
NB
2164 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2165 owner, offset, refs_to_add);
79787eaa 2166 if (ret)
66642832 2167 btrfs_abort_transaction(trans, ret);
5d4f98a2 2168out:
56bec294 2169 btrfs_free_path(path);
30d133fc 2170 return ret;
56bec294
CM
2171}
2172
5d4f98a2 2173static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2174 struct btrfs_delayed_ref_node *node,
2175 struct btrfs_delayed_extent_op *extent_op,
2176 int insert_reserved)
56bec294 2177{
5d4f98a2
YZ
2178 int ret = 0;
2179 struct btrfs_delayed_data_ref *ref;
2180 struct btrfs_key ins;
2181 u64 parent = 0;
2182 u64 ref_root = 0;
2183 u64 flags = 0;
2184
2185 ins.objectid = node->bytenr;
2186 ins.offset = node->num_bytes;
2187 ins.type = BTRFS_EXTENT_ITEM_KEY;
2188
2189 ref = btrfs_delayed_node_to_data_ref(node);
2bf98ef3 2190 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
599c75ec 2191
5d4f98a2
YZ
2192 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2193 parent = ref->parent;
fcebe456 2194 ref_root = ref->root;
5d4f98a2
YZ
2195
2196 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2197 if (extent_op)
5d4f98a2 2198 flags |= extent_op->flags_to_set;
ef89b824
NB
2199 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2200 flags, ref->objectid,
2201 ref->offset, &ins,
2202 node->ref_mod);
5d4f98a2 2203 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2204 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2205 ref->objectid, ref->offset,
2206 node->ref_mod, extent_op);
5d4f98a2 2207 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2208 ret = __btrfs_free_extent(trans, node, parent,
5d4f98a2
YZ
2209 ref_root, ref->objectid,
2210 ref->offset, node->ref_mod,
c682f9b3 2211 extent_op);
5d4f98a2
YZ
2212 } else {
2213 BUG();
2214 }
2215 return ret;
2216}
2217
2218static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2219 struct extent_buffer *leaf,
2220 struct btrfs_extent_item *ei)
2221{
2222 u64 flags = btrfs_extent_flags(leaf, ei);
2223 if (extent_op->update_flags) {
2224 flags |= extent_op->flags_to_set;
2225 btrfs_set_extent_flags(leaf, ei, flags);
2226 }
2227
2228 if (extent_op->update_key) {
2229 struct btrfs_tree_block_info *bi;
2230 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2231 bi = (struct btrfs_tree_block_info *)(ei + 1);
2232 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2233 }
2234}
2235
2236static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
d278850e 2237 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2238 struct btrfs_delayed_extent_op *extent_op)
2239{
20b9a2d6 2240 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
2241 struct btrfs_key key;
2242 struct btrfs_path *path;
2243 struct btrfs_extent_item *ei;
2244 struct extent_buffer *leaf;
2245 u32 item_size;
56bec294 2246 int ret;
5d4f98a2 2247 int err = 0;
b1c79e09 2248 int metadata = !extent_op->is_data;
5d4f98a2 2249
79787eaa
JM
2250 if (trans->aborted)
2251 return 0;
2252
0b246afa 2253 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2254 metadata = 0;
2255
5d4f98a2
YZ
2256 path = btrfs_alloc_path();
2257 if (!path)
2258 return -ENOMEM;
2259
d278850e 2260 key.objectid = head->bytenr;
5d4f98a2 2261
3173a18f 2262 if (metadata) {
3173a18f 2263 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2264 key.offset = extent_op->level;
3173a18f
JB
2265 } else {
2266 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2267 key.offset = head->num_bytes;
3173a18f
JB
2268 }
2269
2270again:
e4058b54 2271 path->reada = READA_FORWARD;
5d4f98a2 2272 path->leave_spinning = 1;
0b246afa 2273 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2274 if (ret < 0) {
2275 err = ret;
2276 goto out;
2277 }
2278 if (ret > 0) {
3173a18f 2279 if (metadata) {
55994887
FDBM
2280 if (path->slots[0] > 0) {
2281 path->slots[0]--;
2282 btrfs_item_key_to_cpu(path->nodes[0], &key,
2283 path->slots[0]);
d278850e 2284 if (key.objectid == head->bytenr &&
55994887 2285 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2286 key.offset == head->num_bytes)
55994887
FDBM
2287 ret = 0;
2288 }
2289 if (ret > 0) {
2290 btrfs_release_path(path);
2291 metadata = 0;
3173a18f 2292
d278850e
JB
2293 key.objectid = head->bytenr;
2294 key.offset = head->num_bytes;
55994887
FDBM
2295 key.type = BTRFS_EXTENT_ITEM_KEY;
2296 goto again;
2297 }
2298 } else {
2299 err = -EIO;
2300 goto out;
3173a18f 2301 }
5d4f98a2
YZ
2302 }
2303
2304 leaf = path->nodes[0];
2305 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ba3c2b19 2306
6d8ff4e4 2307 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
2308 err = -EINVAL;
2309 btrfs_print_v0_err(fs_info);
2310 btrfs_abort_transaction(trans, err);
2311 goto out;
2312 }
2313
5d4f98a2
YZ
2314 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2315 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2316
5d4f98a2
YZ
2317 btrfs_mark_buffer_dirty(leaf);
2318out:
2319 btrfs_free_path(path);
2320 return err;
56bec294
CM
2321}
2322
5d4f98a2 2323static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2324 struct btrfs_delayed_ref_node *node,
2325 struct btrfs_delayed_extent_op *extent_op,
2326 int insert_reserved)
56bec294
CM
2327{
2328 int ret = 0;
5d4f98a2 2329 struct btrfs_delayed_tree_ref *ref;
5d4f98a2
YZ
2330 u64 parent = 0;
2331 u64 ref_root = 0;
56bec294 2332
5d4f98a2 2333 ref = btrfs_delayed_node_to_tree_ref(node);
f97806f2 2334 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
599c75ec 2335
5d4f98a2
YZ
2336 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2337 parent = ref->parent;
fcebe456 2338 ref_root = ref->root;
5d4f98a2 2339
02794222 2340 if (node->ref_mod != 1) {
f97806f2 2341 btrfs_err(trans->fs_info,
02794222
LB
2342 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2343 node->bytenr, node->ref_mod, node->action, ref_root,
2344 parent);
2345 return -EIO;
2346 }
5d4f98a2 2347 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2348 BUG_ON(!extent_op || !extent_op->update_flags);
21ebfbe7 2349 ret = alloc_reserved_tree_block(trans, node, extent_op);
5d4f98a2 2350 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2351 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2352 ref->level, 0, 1, extent_op);
5d4f98a2 2353 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2354 ret = __btrfs_free_extent(trans, node, parent, ref_root,
c682f9b3 2355 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2356 } else {
2357 BUG();
2358 }
56bec294
CM
2359 return ret;
2360}
2361
2362/* helper function to actually process a single delayed ref entry */
5d4f98a2 2363static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2364 struct btrfs_delayed_ref_node *node,
2365 struct btrfs_delayed_extent_op *extent_op,
2366 int insert_reserved)
56bec294 2367{
79787eaa
JM
2368 int ret = 0;
2369
857cc2fc
JB
2370 if (trans->aborted) {
2371 if (insert_reserved)
5fac7f9e 2372 btrfs_pin_extent(trans->fs_info, node->bytenr,
857cc2fc 2373 node->num_bytes, 1);
79787eaa 2374 return 0;
857cc2fc 2375 }
79787eaa 2376
5d4f98a2
YZ
2377 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2378 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
f97806f2 2379 ret = run_delayed_tree_ref(trans, node, extent_op,
5d4f98a2
YZ
2380 insert_reserved);
2381 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2382 node->type == BTRFS_SHARED_DATA_REF_KEY)
2bf98ef3 2383 ret = run_delayed_data_ref(trans, node, extent_op,
5d4f98a2
YZ
2384 insert_reserved);
2385 else
2386 BUG();
80ee54bf
JB
2387 if (ret && insert_reserved)
2388 btrfs_pin_extent(trans->fs_info, node->bytenr,
2389 node->num_bytes, 1);
5d4f98a2 2390 return ret;
56bec294
CM
2391}
2392
c6fc2454 2393static inline struct btrfs_delayed_ref_node *
56bec294
CM
2394select_delayed_ref(struct btrfs_delayed_ref_head *head)
2395{
cffc3374
FM
2396 struct btrfs_delayed_ref_node *ref;
2397
e3d03965 2398 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
c6fc2454 2399 return NULL;
d7df2c79 2400
cffc3374
FM
2401 /*
2402 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2403 * This is to prevent a ref count from going down to zero, which deletes
2404 * the extent item from the extent tree, when there still are references
2405 * to add, which would fail because they would not find the extent item.
2406 */
1d57ee94
WX
2407 if (!list_empty(&head->ref_add_list))
2408 return list_first_entry(&head->ref_add_list,
2409 struct btrfs_delayed_ref_node, add_list);
2410
e3d03965 2411 ref = rb_entry(rb_first_cached(&head->ref_tree),
0e0adbcf 2412 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2413 ASSERT(list_empty(&ref->add_list));
2414 return ref;
56bec294
CM
2415}
2416
2eadaa22
JB
2417static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2418 struct btrfs_delayed_ref_head *head)
2419{
2420 spin_lock(&delayed_refs->lock);
2421 head->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 btrfs_delayed_ref_unlock(head);
2425}
2426
bedc6617
JB
2427static struct btrfs_delayed_extent_op *cleanup_extent_op(
2428 struct btrfs_delayed_ref_head *head)
b00e6250
JB
2429{
2430 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
b00e6250
JB
2431
2432 if (!extent_op)
bedc6617
JB
2433 return NULL;
2434
b00e6250 2435 if (head->must_insert_reserved) {
bedc6617 2436 head->extent_op = NULL;
b00e6250 2437 btrfs_free_delayed_extent_op(extent_op);
bedc6617 2438 return NULL;
b00e6250 2439 }
bedc6617
JB
2440 return extent_op;
2441}
2442
2443static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
2444 struct btrfs_delayed_ref_head *head)
2445{
2446 struct btrfs_delayed_extent_op *extent_op;
2447 int ret;
2448
2449 extent_op = cleanup_extent_op(head);
2450 if (!extent_op)
2451 return 0;
2452 head->extent_op = NULL;
b00e6250 2453 spin_unlock(&head->lock);
20b9a2d6 2454 ret = run_delayed_extent_op(trans, head, extent_op);
b00e6250
JB
2455 btrfs_free_delayed_extent_op(extent_op);
2456 return ret ? ret : 1;
2457}
2458
07c47775
JB
2459static void cleanup_ref_head_accounting(struct btrfs_trans_handle *trans,
2460 struct btrfs_delayed_ref_head *head)
2461{
2462 struct btrfs_fs_info *fs_info = trans->fs_info;
2463 struct btrfs_delayed_ref_root *delayed_refs =
2464 &trans->transaction->delayed_refs;
ba2c4d4e 2465 int nr_items = 1; /* Dropping this ref head update. */
07c47775
JB
2466
2467 if (head->total_ref_mod < 0) {
2468 struct btrfs_space_info *space_info;
2469 u64 flags;
2470
2471 if (head->is_data)
2472 flags = BTRFS_BLOCK_GROUP_DATA;
2473 else if (head->is_system)
2474 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2475 else
2476 flags = BTRFS_BLOCK_GROUP_METADATA;
2477 space_info = __find_space_info(fs_info, flags);
2478 ASSERT(space_info);
2479 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2480 -head->num_bytes,
2481 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2482
ba2c4d4e
JB
2483 /*
2484 * We had csum deletions accounted for in our delayed refs rsv,
2485 * we need to drop the csum leaves for this update from our
2486 * delayed_refs_rsv.
2487 */
07c47775
JB
2488 if (head->is_data) {
2489 spin_lock(&delayed_refs->lock);
2490 delayed_refs->pending_csums -= head->num_bytes;
2491 spin_unlock(&delayed_refs->lock);
ba2c4d4e
JB
2492 nr_items += btrfs_csum_bytes_to_leaves(fs_info,
2493 head->num_bytes);
07c47775
JB
2494 }
2495 }
2496
2497 /* Also free its reserved qgroup space */
2498 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2499 head->qgroup_reserved);
ba2c4d4e 2500 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
07c47775
JB
2501}
2502
194ab0bc 2503static int cleanup_ref_head(struct btrfs_trans_handle *trans,
194ab0bc
JB
2504 struct btrfs_delayed_ref_head *head)
2505{
f9871edd
NB
2506
2507 struct btrfs_fs_info *fs_info = trans->fs_info;
194ab0bc
JB
2508 struct btrfs_delayed_ref_root *delayed_refs;
2509 int ret;
2510
2511 delayed_refs = &trans->transaction->delayed_refs;
2512
bedc6617 2513 ret = run_and_cleanup_extent_op(trans, head);
194ab0bc
JB
2514 if (ret < 0) {
2515 unselect_delayed_ref_head(delayed_refs, head);
2516 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2517 return ret;
2518 } else if (ret) {
2519 return ret;
2520 }
2521
2522 /*
2523 * Need to drop our head ref lock and re-acquire the delayed ref lock
2524 * and then re-check to make sure nobody got added.
2525 */
2526 spin_unlock(&head->lock);
2527 spin_lock(&delayed_refs->lock);
2528 spin_lock(&head->lock);
e3d03965 2529 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
194ab0bc
JB
2530 spin_unlock(&head->lock);
2531 spin_unlock(&delayed_refs->lock);
2532 return 1;
2533 }
d7baffda 2534 btrfs_delete_ref_head(delayed_refs, head);
c1103f7a 2535 spin_unlock(&head->lock);
1e7a1421 2536 spin_unlock(&delayed_refs->lock);
c1103f7a 2537
c1103f7a 2538 if (head->must_insert_reserved) {
d278850e
JB
2539 btrfs_pin_extent(fs_info, head->bytenr,
2540 head->num_bytes, 1);
c1103f7a 2541 if (head->is_data) {
d278850e
JB
2542 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2543 head->num_bytes);
c1103f7a
JB
2544 }
2545 }
2546
07c47775
JB
2547 cleanup_ref_head_accounting(trans, head);
2548
2549 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a 2550 btrfs_delayed_ref_unlock(head);
d278850e 2551 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2552 return 0;
2553}
2554
b1cdbcb5
NB
2555static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2556 struct btrfs_trans_handle *trans)
2557{
2558 struct btrfs_delayed_ref_root *delayed_refs =
2559 &trans->transaction->delayed_refs;
2560 struct btrfs_delayed_ref_head *head = NULL;
2561 int ret;
2562
2563 spin_lock(&delayed_refs->lock);
5637c74b 2564 head = btrfs_select_ref_head(delayed_refs);
b1cdbcb5
NB
2565 if (!head) {
2566 spin_unlock(&delayed_refs->lock);
2567 return head;
2568 }
2569
2570 /*
2571 * Grab the lock that says we are going to process all the refs for
2572 * this head
2573 */
9e920a6f 2574 ret = btrfs_delayed_ref_lock(delayed_refs, head);
b1cdbcb5
NB
2575 spin_unlock(&delayed_refs->lock);
2576
2577 /*
2578 * We may have dropped the spin lock to get the head mutex lock, and
2579 * that might have given someone else time to free the head. If that's
2580 * true, it has been removed from our list and we can move on.
2581 */
2582 if (ret == -EAGAIN)
2583 head = ERR_PTR(-EAGAIN);
2584
2585 return head;
2586}
2587
e7261386
NB
2588static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2589 struct btrfs_delayed_ref_head *locked_ref,
2590 unsigned long *run_refs)
2591{
2592 struct btrfs_fs_info *fs_info = trans->fs_info;
2593 struct btrfs_delayed_ref_root *delayed_refs;
2594 struct btrfs_delayed_extent_op *extent_op;
2595 struct btrfs_delayed_ref_node *ref;
2596 int must_insert_reserved = 0;
2597 int ret;
2598
2599 delayed_refs = &trans->transaction->delayed_refs;
2600
0110a4c4
NB
2601 lockdep_assert_held(&locked_ref->mutex);
2602 lockdep_assert_held(&locked_ref->lock);
2603
e7261386
NB
2604 while ((ref = select_delayed_ref(locked_ref))) {
2605 if (ref->seq &&
2606 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2607 spin_unlock(&locked_ref->lock);
2608 unselect_delayed_ref_head(delayed_refs, locked_ref);
2609 return -EAGAIN;
2610 }
2611
2612 (*run_refs)++;
2613 ref->in_tree = 0;
2614 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2615 RB_CLEAR_NODE(&ref->ref_node);
2616 if (!list_empty(&ref->add_list))
2617 list_del(&ref->add_list);
2618 /*
2619 * When we play the delayed ref, also correct the ref_mod on
2620 * head
2621 */
2622 switch (ref->action) {
2623 case BTRFS_ADD_DELAYED_REF:
2624 case BTRFS_ADD_DELAYED_EXTENT:
2625 locked_ref->ref_mod -= ref->ref_mod;
2626 break;
2627 case BTRFS_DROP_DELAYED_REF:
2628 locked_ref->ref_mod += ref->ref_mod;
2629 break;
2630 default:
2631 WARN_ON(1);
2632 }
2633 atomic_dec(&delayed_refs->num_entries);
2634
2635 /*
2636 * Record the must_insert_reserved flag before we drop the
2637 * spin lock.
2638 */
2639 must_insert_reserved = locked_ref->must_insert_reserved;
2640 locked_ref->must_insert_reserved = 0;
2641
2642 extent_op = locked_ref->extent_op;
2643 locked_ref->extent_op = NULL;
2644 spin_unlock(&locked_ref->lock);
2645
2646 ret = run_one_delayed_ref(trans, ref, extent_op,
2647 must_insert_reserved);
2648
2649 btrfs_free_delayed_extent_op(extent_op);
2650 if (ret) {
2651 unselect_delayed_ref_head(delayed_refs, locked_ref);
2652 btrfs_put_delayed_ref(ref);
2653 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2654 ret);
2655 return ret;
2656 }
2657
2658 btrfs_put_delayed_ref(ref);
2659 cond_resched();
2660
2661 spin_lock(&locked_ref->lock);
2662 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2663 }
2664
2665 return 0;
2666}
2667
79787eaa
JM
2668/*
2669 * Returns 0 on success or if called with an already aborted transaction.
2670 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2671 */
d7df2c79 2672static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2673 unsigned long nr)
56bec294 2674{
0a1e458a 2675 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294 2676 struct btrfs_delayed_ref_root *delayed_refs;
56bec294 2677 struct btrfs_delayed_ref_head *locked_ref = NULL;
0a2b2a84 2678 ktime_t start = ktime_get();
56bec294 2679 int ret;
d7df2c79 2680 unsigned long count = 0;
0a2b2a84 2681 unsigned long actual_count = 0;
56bec294
CM
2682
2683 delayed_refs = &trans->transaction->delayed_refs;
0110a4c4 2684 do {
56bec294 2685 if (!locked_ref) {
b1cdbcb5 2686 locked_ref = btrfs_obtain_ref_head(trans);
0110a4c4
NB
2687 if (IS_ERR_OR_NULL(locked_ref)) {
2688 if (PTR_ERR(locked_ref) == -EAGAIN) {
2689 continue;
2690 } else {
2691 break;
2692 }
56bec294 2693 }
0110a4c4 2694 count++;
56bec294 2695 }
2c3cf7d5
FM
2696 /*
2697 * We need to try and merge add/drops of the same ref since we
2698 * can run into issues with relocate dropping the implicit ref
2699 * and then it being added back again before the drop can
2700 * finish. If we merged anything we need to re-loop so we can
2701 * get a good ref.
2702 * Or we can get node references of the same type that weren't
2703 * merged when created due to bumps in the tree mod seq, and
2704 * we need to merge them to prevent adding an inline extent
2705 * backref before dropping it (triggering a BUG_ON at
2706 * insert_inline_extent_backref()).
2707 */
d7df2c79 2708 spin_lock(&locked_ref->lock);
be97f133 2709 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
ae1e206b 2710
0110a4c4
NB
2711 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2712 &actual_count);
2713 if (ret < 0 && ret != -EAGAIN) {
2714 /*
2715 * Error, btrfs_run_delayed_refs_for_head already
2716 * unlocked everything so just bail out
2717 */
2718 return ret;
2719 } else if (!ret) {
2720 /*
2721 * Success, perform the usual cleanup of a processed
2722 * head
2723 */
f9871edd 2724 ret = cleanup_ref_head(trans, locked_ref);
194ab0bc 2725 if (ret > 0 ) {
b00e6250
JB
2726 /* We dropped our lock, we need to loop. */
2727 ret = 0;
d7df2c79 2728 continue;
194ab0bc
JB
2729 } else if (ret) {
2730 return ret;
5d4f98a2 2731 }
22cd2e7d 2732 }
1ce7a5ec 2733
b00e6250 2734 /*
0110a4c4
NB
2735 * Either success case or btrfs_run_delayed_refs_for_head
2736 * returned -EAGAIN, meaning we need to select another head
b00e6250 2737 */
b00e6250 2738
0110a4c4 2739 locked_ref = NULL;
c3e69d58 2740 cond_resched();
0110a4c4 2741 } while ((nr != -1 && count < nr) || locked_ref);
0a2b2a84
JB
2742
2743 /*
2744 * We don't want to include ref heads since we can have empty ref heads
2745 * and those will drastically skew our runtime down since we just do
2746 * accounting, no actual extent tree updates.
2747 */
2748 if (actual_count > 0) {
2749 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2750 u64 avg;
2751
2752 /*
2753 * We weigh the current average higher than our current runtime
2754 * to avoid large swings in the average.
2755 */
2756 spin_lock(&delayed_refs->lock);
2757 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2758 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2759 spin_unlock(&delayed_refs->lock);
2760 }
d7df2c79 2761 return 0;
c3e69d58
CM
2762}
2763
709c0486
AJ
2764#ifdef SCRAMBLE_DELAYED_REFS
2765/*
2766 * Normally delayed refs get processed in ascending bytenr order. This
2767 * correlates in most cases to the order added. To expose dependencies on this
2768 * order, we start to process the tree in the middle instead of the beginning
2769 */
2770static u64 find_middle(struct rb_root *root)
2771{
2772 struct rb_node *n = root->rb_node;
2773 struct btrfs_delayed_ref_node *entry;
2774 int alt = 1;
2775 u64 middle;
2776 u64 first = 0, last = 0;
2777
2778 n = rb_first(root);
2779 if (n) {
2780 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2781 first = entry->bytenr;
2782 }
2783 n = rb_last(root);
2784 if (n) {
2785 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2786 last = entry->bytenr;
2787 }
2788 n = root->rb_node;
2789
2790 while (n) {
2791 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2792 WARN_ON(!entry->in_tree);
2793
2794 middle = entry->bytenr;
2795
2796 if (alt)
2797 n = n->rb_left;
2798 else
2799 n = n->rb_right;
2800
2801 alt = 1 - alt;
2802 }
2803 return middle;
2804}
2805#endif
2806
2ff7e61e 2807static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2808{
2809 u64 num_bytes;
2810
2811 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2812 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2813 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2814 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2815
2816 /*
2817 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2818 * closer to what we're really going to want to use.
1be41b78 2819 */
0b246afa 2820 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2821}
2822
1262133b
JB
2823/*
2824 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2825 * would require to store the csums for that many bytes.
2826 */
2ff7e61e 2827u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2828{
2829 u64 csum_size;
2830 u64 num_csums_per_leaf;
2831 u64 num_csums;
2832
0b246afa 2833 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2834 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2835 (u64)btrfs_super_csum_size(fs_info->super_copy));
2836 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2837 num_csums += num_csums_per_leaf - 1;
2838 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2839 return num_csums;
2840}
2841
64403612 2842bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
1be41b78 2843{
64403612
JB
2844 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
2845 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2846 bool ret = false;
2847 u64 reserved;
1be41b78 2848
64403612
JB
2849 spin_lock(&global_rsv->lock);
2850 reserved = global_rsv->reserved;
2851 spin_unlock(&global_rsv->lock);
1be41b78
JB
2852
2853 /*
64403612
JB
2854 * Since the global reserve is just kind of magic we don't really want
2855 * to rely on it to save our bacon, so if our size is more than the
2856 * delayed_refs_rsv and the global rsv then it's time to think about
2857 * bailing.
1be41b78 2858 */
64403612
JB
2859 spin_lock(&delayed_refs_rsv->lock);
2860 reserved += delayed_refs_rsv->reserved;
2861 if (delayed_refs_rsv->size >= reserved)
2862 ret = true;
2863 spin_unlock(&delayed_refs_rsv->lock);
1be41b78
JB
2864 return ret;
2865}
2866
7c861627 2867int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
0a2b2a84 2868{
0a2b2a84
JB
2869 u64 num_entries =
2870 atomic_read(&trans->transaction->delayed_refs.num_entries);
2871 u64 avg_runtime;
a79b7d4b 2872 u64 val;
0a2b2a84
JB
2873
2874 smp_mb();
7c861627 2875 avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
a79b7d4b 2876 val = num_entries * avg_runtime;
dc1a90c6 2877 if (val >= NSEC_PER_SEC)
0a2b2a84 2878 return 1;
a79b7d4b
CM
2879 if (val >= NSEC_PER_SEC / 2)
2880 return 2;
0a2b2a84 2881
64403612 2882 return btrfs_check_space_for_delayed_refs(trans->fs_info);
0a2b2a84
JB
2883}
2884
a79b7d4b
CM
2885struct async_delayed_refs {
2886 struct btrfs_root *root;
31b9655f 2887 u64 transid;
a79b7d4b
CM
2888 int count;
2889 int error;
2890 int sync;
2891 struct completion wait;
2892 struct btrfs_work work;
2893};
2894
2ff7e61e
JM
2895static inline struct async_delayed_refs *
2896to_async_delayed_refs(struct btrfs_work *work)
2897{
2898 return container_of(work, struct async_delayed_refs, work);
2899}
2900
a79b7d4b
CM
2901static void delayed_ref_async_start(struct btrfs_work *work)
2902{
2ff7e61e 2903 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2904 struct btrfs_trans_handle *trans;
2ff7e61e 2905 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2906 int ret;
2907
0f873eca 2908 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2909 if (btrfs_transaction_blocked(fs_info))
31b9655f 2910 goto done;
31b9655f 2911
0f873eca
CM
2912 trans = btrfs_join_transaction(async->root);
2913 if (IS_ERR(trans)) {
2914 async->error = PTR_ERR(trans);
a79b7d4b
CM
2915 goto done;
2916 }
2917
2918 /*
01327610 2919 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2920 * wait on delayed refs
2921 */
2922 trans->sync = true;
0f873eca
CM
2923
2924 /* Don't bother flushing if we got into a different transaction */
2925 if (trans->transid > async->transid)
2926 goto end;
2927
c79a70b1 2928 ret = btrfs_run_delayed_refs(trans, async->count);
a79b7d4b
CM
2929 if (ret)
2930 async->error = ret;
0f873eca 2931end:
3a45bb20 2932 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2933 if (ret && !async->error)
2934 async->error = ret;
2935done:
2936 if (async->sync)
2937 complete(&async->wait);
2938 else
2939 kfree(async);
2940}
2941
2ff7e61e 2942int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2943 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2944{
2945 struct async_delayed_refs *async;
2946 int ret;
2947
2948 async = kmalloc(sizeof(*async), GFP_NOFS);
2949 if (!async)
2950 return -ENOMEM;
2951
0b246afa 2952 async->root = fs_info->tree_root;
a79b7d4b
CM
2953 async->count = count;
2954 async->error = 0;
31b9655f 2955 async->transid = transid;
a79b7d4b
CM
2956 if (wait)
2957 async->sync = 1;
2958 else
2959 async->sync = 0;
2960 init_completion(&async->wait);
2961
9e0af237
LB
2962 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2963 delayed_ref_async_start, NULL, NULL);
a79b7d4b 2964
0b246afa 2965 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
2966
2967 if (wait) {
2968 wait_for_completion(&async->wait);
2969 ret = async->error;
2970 kfree(async);
2971 return ret;
2972 }
2973 return 0;
2974}
2975
c3e69d58
CM
2976/*
2977 * this starts processing the delayed reference count updates and
2978 * extent insertions we have queued up so far. count can be
2979 * 0, which means to process everything in the tree at the start
2980 * of the run (but not newly added entries), or it can be some target
2981 * number you'd like to process.
79787eaa
JM
2982 *
2983 * Returns 0 on success or if called with an aborted transaction
2984 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2985 */
2986int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 2987 unsigned long count)
c3e69d58 2988{
c79a70b1 2989 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
2990 struct rb_node *node;
2991 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2992 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2993 int ret;
2994 int run_all = count == (unsigned long)-1;
c3e69d58 2995
79787eaa
JM
2996 /* We'll clean this up in btrfs_cleanup_transaction */
2997 if (trans->aborted)
2998 return 0;
2999
0b246afa 3000 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
3001 return 0;
3002
c3e69d58 3003 delayed_refs = &trans->transaction->delayed_refs;
26455d33 3004 if (count == 0)
d7df2c79 3005 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3006
c3e69d58 3007again:
709c0486
AJ
3008#ifdef SCRAMBLE_DELAYED_REFS
3009 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3010#endif
0a1e458a 3011 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 3012 if (ret < 0) {
66642832 3013 btrfs_abort_transaction(trans, ret);
d7df2c79 3014 return ret;
eb099670 3015 }
c3e69d58 3016
56bec294 3017 if (run_all) {
d7df2c79 3018 if (!list_empty(&trans->new_bgs))
6c686b35 3019 btrfs_create_pending_block_groups(trans);
ea658bad 3020
d7df2c79 3021 spin_lock(&delayed_refs->lock);
5c9d028b 3022 node = rb_first_cached(&delayed_refs->href_root);
d7df2c79
JB
3023 if (!node) {
3024 spin_unlock(&delayed_refs->lock);
56bec294 3025 goto out;
d7df2c79 3026 }
d278850e
JB
3027 head = rb_entry(node, struct btrfs_delayed_ref_head,
3028 href_node);
3029 refcount_inc(&head->refs);
3030 spin_unlock(&delayed_refs->lock);
e9d0b13b 3031
d278850e
JB
3032 /* Mutex was contended, block until it's released and retry. */
3033 mutex_lock(&head->mutex);
3034 mutex_unlock(&head->mutex);
56bec294 3035
d278850e 3036 btrfs_put_delayed_ref_head(head);
d7df2c79 3037 cond_resched();
56bec294 3038 goto again;
5f39d397 3039 }
54aa1f4d 3040out:
a28ec197
CM
3041 return 0;
3042}
3043
5d4f98a2 3044int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3045 struct btrfs_fs_info *fs_info,
5d4f98a2 3046 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3047 int level, int is_data)
5d4f98a2
YZ
3048{
3049 struct btrfs_delayed_extent_op *extent_op;
3050 int ret;
3051
78a6184a 3052 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3053 if (!extent_op)
3054 return -ENOMEM;
3055
3056 extent_op->flags_to_set = flags;
35b3ad50
DS
3057 extent_op->update_flags = true;
3058 extent_op->update_key = false;
3059 extent_op->is_data = is_data ? true : false;
b1c79e09 3060 extent_op->level = level;
5d4f98a2 3061
0b246afa 3062 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3063 num_bytes, extent_op);
5d4f98a2 3064 if (ret)
78a6184a 3065 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3066 return ret;
3067}
3068
e4c3b2dc 3069static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3070 struct btrfs_path *path,
3071 u64 objectid, u64 offset, u64 bytenr)
3072{
3073 struct btrfs_delayed_ref_head *head;
3074 struct btrfs_delayed_ref_node *ref;
3075 struct btrfs_delayed_data_ref *data_ref;
3076 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3077 struct btrfs_transaction *cur_trans;
0e0adbcf 3078 struct rb_node *node;
5d4f98a2
YZ
3079 int ret = 0;
3080
998ac6d2 3081 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 3082 cur_trans = root->fs_info->running_transaction;
998ac6d2 3083 if (cur_trans)
3084 refcount_inc(&cur_trans->use_count);
3085 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
3086 if (!cur_trans)
3087 return 0;
3088
3089 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3090 spin_lock(&delayed_refs->lock);
f72ad18e 3091 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3092 if (!head) {
3093 spin_unlock(&delayed_refs->lock);
998ac6d2 3094 btrfs_put_transaction(cur_trans);
d7df2c79
JB
3095 return 0;
3096 }
5d4f98a2
YZ
3097
3098 if (!mutex_trylock(&head->mutex)) {
d278850e 3099 refcount_inc(&head->refs);
5d4f98a2
YZ
3100 spin_unlock(&delayed_refs->lock);
3101
b3b4aa74 3102 btrfs_release_path(path);
5d4f98a2 3103
8cc33e5c
DS
3104 /*
3105 * Mutex was contended, block until it's released and let
3106 * caller try again
3107 */
5d4f98a2
YZ
3108 mutex_lock(&head->mutex);
3109 mutex_unlock(&head->mutex);
d278850e 3110 btrfs_put_delayed_ref_head(head);
998ac6d2 3111 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3112 return -EAGAIN;
3113 }
d7df2c79 3114 spin_unlock(&delayed_refs->lock);
5d4f98a2 3115
d7df2c79 3116 spin_lock(&head->lock);
0e0adbcf
JB
3117 /*
3118 * XXX: We should replace this with a proper search function in the
3119 * future.
3120 */
e3d03965
LB
3121 for (node = rb_first_cached(&head->ref_tree); node;
3122 node = rb_next(node)) {
0e0adbcf 3123 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3124 /* If it's a shared ref we know a cross reference exists */
3125 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3126 ret = 1;
3127 break;
3128 }
5d4f98a2 3129
d7df2c79 3130 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3131
d7df2c79
JB
3132 /*
3133 * If our ref doesn't match the one we're currently looking at
3134 * then we have a cross reference.
3135 */
3136 if (data_ref->root != root->root_key.objectid ||
3137 data_ref->objectid != objectid ||
3138 data_ref->offset != offset) {
3139 ret = 1;
3140 break;
3141 }
5d4f98a2 3142 }
d7df2c79 3143 spin_unlock(&head->lock);
5d4f98a2 3144 mutex_unlock(&head->mutex);
998ac6d2 3145 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3146 return ret;
3147}
3148
e4c3b2dc 3149static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3150 struct btrfs_path *path,
3151 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3152{
0b246afa
JM
3153 struct btrfs_fs_info *fs_info = root->fs_info;
3154 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3155 struct extent_buffer *leaf;
5d4f98a2
YZ
3156 struct btrfs_extent_data_ref *ref;
3157 struct btrfs_extent_inline_ref *iref;
3158 struct btrfs_extent_item *ei;
f321e491 3159 struct btrfs_key key;
5d4f98a2 3160 u32 item_size;
3de28d57 3161 int type;
be20aa9d 3162 int ret;
925baedd 3163
be20aa9d 3164 key.objectid = bytenr;
31840ae1 3165 key.offset = (u64)-1;
f321e491 3166 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3167
be20aa9d
CM
3168 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3169 if (ret < 0)
3170 goto out;
79787eaa 3171 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3172
3173 ret = -ENOENT;
3174 if (path->slots[0] == 0)
31840ae1 3175 goto out;
be20aa9d 3176
31840ae1 3177 path->slots[0]--;
f321e491 3178 leaf = path->nodes[0];
5d4f98a2 3179 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3180
5d4f98a2 3181 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3182 goto out;
f321e491 3183
5d4f98a2
YZ
3184 ret = 1;
3185 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5d4f98a2 3186 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3187
5d4f98a2
YZ
3188 if (item_size != sizeof(*ei) +
3189 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3190 goto out;
be20aa9d 3191
5d4f98a2
YZ
3192 if (btrfs_extent_generation(leaf, ei) <=
3193 btrfs_root_last_snapshot(&root->root_item))
3194 goto out;
3195
3196 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3197
3198 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3199 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3200 goto out;
3201
3202 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3203 if (btrfs_extent_refs(leaf, ei) !=
3204 btrfs_extent_data_ref_count(leaf, ref) ||
3205 btrfs_extent_data_ref_root(leaf, ref) !=
3206 root->root_key.objectid ||
3207 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3208 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3209 goto out;
3210
3211 ret = 0;
3212out:
3213 return ret;
3214}
3215
e4c3b2dc
LB
3216int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3217 u64 bytenr)
5d4f98a2
YZ
3218{
3219 struct btrfs_path *path;
3220 int ret;
5d4f98a2
YZ
3221
3222 path = btrfs_alloc_path();
3223 if (!path)
9132c4ff 3224 return -ENOMEM;
5d4f98a2
YZ
3225
3226 do {
e4c3b2dc 3227 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3228 offset, bytenr);
3229 if (ret && ret != -ENOENT)
f321e491 3230 goto out;
80ff3856 3231
380fd066
MT
3232 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3233 } while (ret == -EAGAIN);
5d4f98a2 3234
be20aa9d 3235out:
80ff3856 3236 btrfs_free_path(path);
f0486c68
YZ
3237 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3238 WARN_ON(ret > 0);
f321e491 3239 return ret;
be20aa9d 3240}
c5739bba 3241
5d4f98a2 3242static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3243 struct btrfs_root *root,
5d4f98a2 3244 struct extent_buffer *buf,
e339a6b0 3245 int full_backref, int inc)
31840ae1 3246{
0b246afa 3247 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3248 u64 bytenr;
5d4f98a2
YZ
3249 u64 num_bytes;
3250 u64 parent;
31840ae1 3251 u64 ref_root;
31840ae1 3252 u32 nritems;
31840ae1
ZY
3253 struct btrfs_key key;
3254 struct btrfs_file_extent_item *fi;
3255 int i;
3256 int level;
3257 int ret = 0;
2ff7e61e 3258 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3259 struct btrfs_root *,
b06c4bf5 3260 u64, u64, u64, u64, u64, u64);
31840ae1 3261
fccb84c9 3262
0b246afa 3263 if (btrfs_is_testing(fs_info))
faa2dbf0 3264 return 0;
fccb84c9 3265
31840ae1 3266 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3267 nritems = btrfs_header_nritems(buf);
3268 level = btrfs_header_level(buf);
3269
27cdeb70 3270 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3271 return 0;
31840ae1 3272
5d4f98a2
YZ
3273 if (inc)
3274 process_func = btrfs_inc_extent_ref;
3275 else
3276 process_func = btrfs_free_extent;
31840ae1 3277
5d4f98a2
YZ
3278 if (full_backref)
3279 parent = buf->start;
3280 else
3281 parent = 0;
3282
3283 for (i = 0; i < nritems; i++) {
31840ae1 3284 if (level == 0) {
5d4f98a2 3285 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3286 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3287 continue;
5d4f98a2 3288 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3289 struct btrfs_file_extent_item);
3290 if (btrfs_file_extent_type(buf, fi) ==
3291 BTRFS_FILE_EXTENT_INLINE)
3292 continue;
3293 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3294 if (bytenr == 0)
3295 continue;
5d4f98a2
YZ
3296
3297 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3298 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3299 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3300 parent, ref_root, key.objectid,
b06c4bf5 3301 key.offset);
31840ae1
ZY
3302 if (ret)
3303 goto fail;
3304 } else {
5d4f98a2 3305 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3306 num_bytes = fs_info->nodesize;
84f7d8e6 3307 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3308 parent, ref_root, level - 1, 0);
31840ae1
ZY
3309 if (ret)
3310 goto fail;
3311 }
3312 }
3313 return 0;
3314fail:
5d4f98a2
YZ
3315 return ret;
3316}
3317
3318int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3319 struct extent_buffer *buf, int full_backref)
5d4f98a2 3320{
e339a6b0 3321 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3322}
3323
3324int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3325 struct extent_buffer *buf, int full_backref)
5d4f98a2 3326{
e339a6b0 3327 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3328}
3329
9078a3e1 3330static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3331 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3332 struct btrfs_path *path,
3333 struct btrfs_block_group_cache *cache)
3334{
3335 int ret;
0b246afa 3336 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3337 unsigned long bi;
3338 struct extent_buffer *leaf;
9078a3e1 3339
9078a3e1 3340 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3341 if (ret) {
3342 if (ret > 0)
3343 ret = -ENOENT;
54aa1f4d 3344 goto fail;
df95e7f0 3345 }
5f39d397
CM
3346
3347 leaf = path->nodes[0];
3348 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3349 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3350 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3351fail:
24b89d08 3352 btrfs_release_path(path);
df95e7f0 3353 return ret;
9078a3e1
CM
3354
3355}
3356
4a8c9a62 3357static struct btrfs_block_group_cache *
2ff7e61e 3358next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3359 struct btrfs_block_group_cache *cache)
3360{
3361 struct rb_node *node;
292cbd51 3362
0b246afa 3363 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3364
3365 /* If our block group was removed, we need a full search. */
3366 if (RB_EMPTY_NODE(&cache->cache_node)) {
3367 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3368
0b246afa 3369 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3370 btrfs_put_block_group(cache);
0b246afa 3371 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3372 }
4a8c9a62
YZ
3373 node = rb_next(&cache->cache_node);
3374 btrfs_put_block_group(cache);
3375 if (node) {
3376 cache = rb_entry(node, struct btrfs_block_group_cache,
3377 cache_node);
11dfe35a 3378 btrfs_get_block_group(cache);
4a8c9a62
YZ
3379 } else
3380 cache = NULL;
0b246afa 3381 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3382 return cache;
3383}
3384
0af3d00b
JB
3385static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3386 struct btrfs_trans_handle *trans,
3387 struct btrfs_path *path)
3388{
0b246afa
JM
3389 struct btrfs_fs_info *fs_info = block_group->fs_info;
3390 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3391 struct inode *inode = NULL;
364ecf36 3392 struct extent_changeset *data_reserved = NULL;
0af3d00b 3393 u64 alloc_hint = 0;
2b20982e 3394 int dcs = BTRFS_DC_ERROR;
f8c269d7 3395 u64 num_pages = 0;
0af3d00b
JB
3396 int retries = 0;
3397 int ret = 0;
3398
3399 /*
3400 * If this block group is smaller than 100 megs don't bother caching the
3401 * block group.
3402 */
ee22184b 3403 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3404 spin_lock(&block_group->lock);
3405 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3406 spin_unlock(&block_group->lock);
3407 return 0;
3408 }
3409
0c0ef4bc
JB
3410 if (trans->aborted)
3411 return 0;
0af3d00b 3412again:
77ab86bf 3413 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3414 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3415 ret = PTR_ERR(inode);
b3b4aa74 3416 btrfs_release_path(path);
0af3d00b
JB
3417 goto out;
3418 }
3419
3420 if (IS_ERR(inode)) {
3421 BUG_ON(retries);
3422 retries++;
3423
3424 if (block_group->ro)
3425 goto out_free;
3426
77ab86bf
JM
3427 ret = create_free_space_inode(fs_info, trans, block_group,
3428 path);
0af3d00b
JB
3429 if (ret)
3430 goto out_free;
3431 goto again;
3432 }
3433
3434 /*
3435 * We want to set the generation to 0, that way if anything goes wrong
3436 * from here on out we know not to trust this cache when we load up next
3437 * time.
3438 */
3439 BTRFS_I(inode)->generation = 0;
3440 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3441 if (ret) {
3442 /*
3443 * So theoretically we could recover from this, simply set the
3444 * super cache generation to 0 so we know to invalidate the
3445 * cache, but then we'd have to keep track of the block groups
3446 * that fail this way so we know we _have_ to reset this cache
3447 * before the next commit or risk reading stale cache. So to
3448 * limit our exposure to horrible edge cases lets just abort the
3449 * transaction, this only happens in really bad situations
3450 * anyway.
3451 */
66642832 3452 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3453 goto out_put;
3454 }
0af3d00b
JB
3455 WARN_ON(ret);
3456
8e138e0d
JB
3457 /* We've already setup this transaction, go ahead and exit */
3458 if (block_group->cache_generation == trans->transid &&
3459 i_size_read(inode)) {
3460 dcs = BTRFS_DC_SETUP;
3461 goto out_put;
3462 }
3463
0af3d00b 3464 if (i_size_read(inode) > 0) {
2ff7e61e 3465 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3466 &fs_info->global_block_rsv);
7b61cd92
MX
3467 if (ret)
3468 goto out_put;
3469
77ab86bf 3470 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3471 if (ret)
3472 goto out_put;
3473 }
3474
3475 spin_lock(&block_group->lock);
cf7c1ef6 3476 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3477 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3478 /*
3479 * don't bother trying to write stuff out _if_
3480 * a) we're not cached,
1a79c1f2
LB
3481 * b) we're with nospace_cache mount option,
3482 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3483 */
2b20982e 3484 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3485 spin_unlock(&block_group->lock);
3486 goto out_put;
3487 }
3488 spin_unlock(&block_group->lock);
3489
2968b1f4
JB
3490 /*
3491 * We hit an ENOSPC when setting up the cache in this transaction, just
3492 * skip doing the setup, we've already cleared the cache so we're safe.
3493 */
3494 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3495 ret = -ENOSPC;
3496 goto out_put;
3497 }
3498
6fc823b1
JB
3499 /*
3500 * Try to preallocate enough space based on how big the block group is.
3501 * Keep in mind this has to include any pinned space which could end up
3502 * taking up quite a bit since it's not folded into the other space
3503 * cache.
3504 */
ee22184b 3505 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3506 if (!num_pages)
3507 num_pages = 1;
3508
0af3d00b 3509 num_pages *= 16;
09cbfeaf 3510 num_pages *= PAGE_SIZE;
0af3d00b 3511
364ecf36 3512 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3513 if (ret)
3514 goto out_put;
3515
3516 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3517 num_pages, num_pages,
3518 &alloc_hint);
2968b1f4
JB
3519 /*
3520 * Our cache requires contiguous chunks so that we don't modify a bunch
3521 * of metadata or split extents when writing the cache out, which means
3522 * we can enospc if we are heavily fragmented in addition to just normal
3523 * out of space conditions. So if we hit this just skip setting up any
3524 * other block groups for this transaction, maybe we'll unpin enough
3525 * space the next time around.
3526 */
2b20982e
JB
3527 if (!ret)
3528 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3529 else if (ret == -ENOSPC)
3530 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3531
0af3d00b
JB
3532out_put:
3533 iput(inode);
3534out_free:
b3b4aa74 3535 btrfs_release_path(path);
0af3d00b
JB
3536out:
3537 spin_lock(&block_group->lock);
e65cbb94 3538 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3539 block_group->cache_generation = trans->transid;
2b20982e 3540 block_group->disk_cache_state = dcs;
0af3d00b
JB
3541 spin_unlock(&block_group->lock);
3542
364ecf36 3543 extent_changeset_free(data_reserved);
0af3d00b
JB
3544 return ret;
3545}
3546
dcdf7f6d 3547int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3548 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3549{
3550 struct btrfs_block_group_cache *cache, *tmp;
3551 struct btrfs_transaction *cur_trans = trans->transaction;
3552 struct btrfs_path *path;
3553
3554 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3555 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3556 return 0;
3557
3558 path = btrfs_alloc_path();
3559 if (!path)
3560 return -ENOMEM;
3561
3562 /* Could add new block groups, use _safe just in case */
3563 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3564 dirty_list) {
3565 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3566 cache_save_setup(cache, trans, path);
3567 }
3568
3569 btrfs_free_path(path);
3570 return 0;
3571}
3572
1bbc621e
CM
3573/*
3574 * transaction commit does final block group cache writeback during a
3575 * critical section where nothing is allowed to change the FS. This is
3576 * required in order for the cache to actually match the block group,
3577 * but can introduce a lot of latency into the commit.
3578 *
3579 * So, btrfs_start_dirty_block_groups is here to kick off block group
3580 * cache IO. There's a chance we'll have to redo some of it if the
3581 * block group changes again during the commit, but it greatly reduces
3582 * the commit latency by getting rid of the easy block groups while
3583 * we're still allowing others to join the commit.
3584 */
21217054 3585int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3586{
21217054 3587 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3588 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3589 struct btrfs_transaction *cur_trans = trans->transaction;
3590 int ret = 0;
c9dc4c65 3591 int should_put;
1bbc621e
CM
3592 struct btrfs_path *path = NULL;
3593 LIST_HEAD(dirty);
3594 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3595 int num_started = 0;
1bbc621e
CM
3596 int loops = 0;
3597
3598 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3599 if (list_empty(&cur_trans->dirty_bgs)) {
3600 spin_unlock(&cur_trans->dirty_bgs_lock);
3601 return 0;
1bbc621e 3602 }
b58d1a9e 3603 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3604 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3605
1bbc621e 3606again:
1bbc621e
CM
3607 /*
3608 * make sure all the block groups on our dirty list actually
3609 * exist
3610 */
6c686b35 3611 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3612
3613 if (!path) {
3614 path = btrfs_alloc_path();
3615 if (!path)
3616 return -ENOMEM;
3617 }
3618
b58d1a9e
FM
3619 /*
3620 * cache_write_mutex is here only to save us from balance or automatic
3621 * removal of empty block groups deleting this block group while we are
3622 * writing out the cache
3623 */
3624 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3625 while (!list_empty(&dirty)) {
ba2c4d4e
JB
3626 bool drop_reserve = true;
3627
1bbc621e
CM
3628 cache = list_first_entry(&dirty,
3629 struct btrfs_block_group_cache,
3630 dirty_list);
1bbc621e
CM
3631 /*
3632 * this can happen if something re-dirties a block
3633 * group that is already under IO. Just wait for it to
3634 * finish and then do it all again
3635 */
3636 if (!list_empty(&cache->io_list)) {
3637 list_del_init(&cache->io_list);
afdb5718 3638 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3639 btrfs_put_block_group(cache);
3640 }
3641
3642
3643 /*
3644 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3645 * if it should update the cache_state. Don't delete
3646 * until after we wait.
3647 *
3648 * Since we're not running in the commit critical section
3649 * we need the dirty_bgs_lock to protect from update_block_group
3650 */
3651 spin_lock(&cur_trans->dirty_bgs_lock);
3652 list_del_init(&cache->dirty_list);
3653 spin_unlock(&cur_trans->dirty_bgs_lock);
3654
3655 should_put = 1;
3656
3657 cache_save_setup(cache, trans, path);
3658
3659 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3660 cache->io_ctl.inode = NULL;
0b246afa 3661 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3662 cache, path);
1bbc621e
CM
3663 if (ret == 0 && cache->io_ctl.inode) {
3664 num_started++;
3665 should_put = 0;
3666
3667 /*
45ae2c18
NB
3668 * The cache_write_mutex is protecting the
3669 * io_list, also refer to the definition of
3670 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3671 */
3672 list_add_tail(&cache->io_list, io);
3673 } else {
3674 /*
3675 * if we failed to write the cache, the
3676 * generation will be bad and life goes on
3677 */
3678 ret = 0;
3679 }
3680 }
ff1f8250 3681 if (!ret) {
2ff7e61e
JM
3682 ret = write_one_cache_group(trans, fs_info,
3683 path, cache);
ff1f8250
FM
3684 /*
3685 * Our block group might still be attached to the list
3686 * of new block groups in the transaction handle of some
3687 * other task (struct btrfs_trans_handle->new_bgs). This
3688 * means its block group item isn't yet in the extent
3689 * tree. If this happens ignore the error, as we will
3690 * try again later in the critical section of the
3691 * transaction commit.
3692 */
3693 if (ret == -ENOENT) {
3694 ret = 0;
3695 spin_lock(&cur_trans->dirty_bgs_lock);
3696 if (list_empty(&cache->dirty_list)) {
3697 list_add_tail(&cache->dirty_list,
3698 &cur_trans->dirty_bgs);
3699 btrfs_get_block_group(cache);
ba2c4d4e 3700 drop_reserve = false;
ff1f8250
FM
3701 }
3702 spin_unlock(&cur_trans->dirty_bgs_lock);
3703 } else if (ret) {
66642832 3704 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3705 }
3706 }
1bbc621e
CM
3707
3708 /* if its not on the io list, we need to put the block group */
3709 if (should_put)
3710 btrfs_put_block_group(cache);
ba2c4d4e
JB
3711 if (drop_reserve)
3712 btrfs_delayed_refs_rsv_release(fs_info, 1);
1bbc621e
CM
3713
3714 if (ret)
3715 break;
b58d1a9e
FM
3716
3717 /*
3718 * Avoid blocking other tasks for too long. It might even save
3719 * us from writing caches for block groups that are going to be
3720 * removed.
3721 */
3722 mutex_unlock(&trans->transaction->cache_write_mutex);
3723 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3724 }
b58d1a9e 3725 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3726
3727 /*
3728 * go through delayed refs for all the stuff we've just kicked off
3729 * and then loop back (just once)
3730 */
c79a70b1 3731 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3732 if (!ret && loops == 0) {
3733 loops++;
3734 spin_lock(&cur_trans->dirty_bgs_lock);
3735 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3736 /*
3737 * dirty_bgs_lock protects us from concurrent block group
3738 * deletes too (not just cache_write_mutex).
3739 */
3740 if (!list_empty(&dirty)) {
3741 spin_unlock(&cur_trans->dirty_bgs_lock);
3742 goto again;
3743 }
1bbc621e 3744 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3745 } else if (ret < 0) {
2ff7e61e 3746 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3747 }
3748
3749 btrfs_free_path(path);
3750 return ret;
3751}
3752
3753int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3754 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3755{
3756 struct btrfs_block_group_cache *cache;
3757 struct btrfs_transaction *cur_trans = trans->transaction;
3758 int ret = 0;
3759 int should_put;
3760 struct btrfs_path *path;
3761 struct list_head *io = &cur_trans->io_bgs;
3762 int num_started = 0;
9078a3e1
CM
3763
3764 path = btrfs_alloc_path();
3765 if (!path)
3766 return -ENOMEM;
3767
ce93ec54 3768 /*
e44081ef
FM
3769 * Even though we are in the critical section of the transaction commit,
3770 * we can still have concurrent tasks adding elements to this
3771 * transaction's list of dirty block groups. These tasks correspond to
3772 * endio free space workers started when writeback finishes for a
3773 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3774 * allocate new block groups as a result of COWing nodes of the root
3775 * tree when updating the free space inode. The writeback for the space
3776 * caches is triggered by an earlier call to
3777 * btrfs_start_dirty_block_groups() and iterations of the following
3778 * loop.
3779 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3780 * delayed refs to make sure we have the best chance at doing this all
3781 * in one shot.
3782 */
e44081ef 3783 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3784 while (!list_empty(&cur_trans->dirty_bgs)) {
3785 cache = list_first_entry(&cur_trans->dirty_bgs,
3786 struct btrfs_block_group_cache,
3787 dirty_list);
c9dc4c65
CM
3788
3789 /*
3790 * this can happen if cache_save_setup re-dirties a block
3791 * group that is already under IO. Just wait for it to
3792 * finish and then do it all again
3793 */
3794 if (!list_empty(&cache->io_list)) {
e44081ef 3795 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3796 list_del_init(&cache->io_list);
afdb5718 3797 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3798 btrfs_put_block_group(cache);
e44081ef 3799 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3800 }
3801
1bbc621e
CM
3802 /*
3803 * don't remove from the dirty list until after we've waited
3804 * on any pending IO
3805 */
ce93ec54 3806 list_del_init(&cache->dirty_list);
e44081ef 3807 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3808 should_put = 1;
3809
1bbc621e 3810 cache_save_setup(cache, trans, path);
c9dc4c65 3811
ce93ec54 3812 if (!ret)
c79a70b1 3813 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3814 (unsigned long) -1);
c9dc4c65
CM
3815
3816 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3817 cache->io_ctl.inode = NULL;
0b246afa 3818 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3819 cache, path);
c9dc4c65
CM
3820 if (ret == 0 && cache->io_ctl.inode) {
3821 num_started++;
3822 should_put = 0;
1bbc621e 3823 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3824 } else {
3825 /*
3826 * if we failed to write the cache, the
3827 * generation will be bad and life goes on
3828 */
3829 ret = 0;
3830 }
3831 }
ff1f8250 3832 if (!ret) {
2ff7e61e
JM
3833 ret = write_one_cache_group(trans, fs_info,
3834 path, cache);
2bc0bb5f
FM
3835 /*
3836 * One of the free space endio workers might have
3837 * created a new block group while updating a free space
3838 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3839 * and hasn't released its transaction handle yet, in
3840 * which case the new block group is still attached to
3841 * its transaction handle and its creation has not
3842 * finished yet (no block group item in the extent tree
3843 * yet, etc). If this is the case, wait for all free
3844 * space endio workers to finish and retry. This is a
3845 * a very rare case so no need for a more efficient and
3846 * complex approach.
3847 */
3848 if (ret == -ENOENT) {
3849 wait_event(cur_trans->writer_wait,
3850 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3851 ret = write_one_cache_group(trans, fs_info,
3852 path, cache);
2bc0bb5f 3853 }
ff1f8250 3854 if (ret)
66642832 3855 btrfs_abort_transaction(trans, ret);
ff1f8250 3856 }
c9dc4c65
CM
3857
3858 /* if its not on the io list, we need to put the block group */
3859 if (should_put)
3860 btrfs_put_block_group(cache);
ba2c4d4e 3861 btrfs_delayed_refs_rsv_release(fs_info, 1);
e44081ef 3862 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3863 }
e44081ef 3864 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3865
45ae2c18
NB
3866 /*
3867 * Refer to the definition of io_bgs member for details why it's safe
3868 * to use it without any locking
3869 */
1bbc621e
CM
3870 while (!list_empty(io)) {
3871 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3872 io_list);
3873 list_del_init(&cache->io_list);
afdb5718 3874 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3875 btrfs_put_block_group(cache);
3876 }
3877
9078a3e1 3878 btrfs_free_path(path);
ce93ec54 3879 return ret;
9078a3e1
CM
3880}
3881
2ff7e61e 3882int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3883{
3884 struct btrfs_block_group_cache *block_group;
3885 int readonly = 0;
3886
0b246afa 3887 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3888 if (!block_group || block_group->ro)
3889 readonly = 1;
3890 if (block_group)
fa9c0d79 3891 btrfs_put_block_group(block_group);
d2fb3437
YZ
3892 return readonly;
3893}
3894
f78c436c
FM
3895bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3896{
3897 struct btrfs_block_group_cache *bg;
3898 bool ret = true;
3899
3900 bg = btrfs_lookup_block_group(fs_info, bytenr);
3901 if (!bg)
3902 return false;
3903
3904 spin_lock(&bg->lock);
3905 if (bg->ro)
3906 ret = false;
3907 else
3908 atomic_inc(&bg->nocow_writers);
3909 spin_unlock(&bg->lock);
3910
3911 /* no put on block group, done by btrfs_dec_nocow_writers */
3912 if (!ret)
3913 btrfs_put_block_group(bg);
3914
3915 return ret;
3916
3917}
3918
3919void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3920{
3921 struct btrfs_block_group_cache *bg;
3922
3923 bg = btrfs_lookup_block_group(fs_info, bytenr);
3924 ASSERT(bg);
3925 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 3926 wake_up_var(&bg->nocow_writers);
f78c436c
FM
3927 /*
3928 * Once for our lookup and once for the lookup done by a previous call
3929 * to btrfs_inc_nocow_writers()
3930 */
3931 btrfs_put_block_group(bg);
3932 btrfs_put_block_group(bg);
3933}
3934
f78c436c
FM
3935void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3936{
4625956a 3937 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
3938}
3939
6ab0a202
JM
3940static const char *alloc_name(u64 flags)
3941{
3942 switch (flags) {
3943 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3944 return "mixed";
3945 case BTRFS_BLOCK_GROUP_METADATA:
3946 return "metadata";
3947 case BTRFS_BLOCK_GROUP_DATA:
3948 return "data";
3949 case BTRFS_BLOCK_GROUP_SYSTEM:
3950 return "system";
3951 default:
3952 WARN_ON(1);
3953 return "invalid-combination";
3954 };
3955}
3956
4ca61683 3957static int create_space_info(struct btrfs_fs_info *info, u64 flags)
2be12ef7
NB
3958{
3959
3960 struct btrfs_space_info *space_info;
3961 int i;
3962 int ret;
3963
3964 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3965 if (!space_info)
3966 return -ENOMEM;
3967
3968 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3969 GFP_KERNEL);
3970 if (ret) {
3971 kfree(space_info);
3972 return ret;
3973 }
3974
3975 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3976 INIT_LIST_HEAD(&space_info->block_groups[i]);
3977 init_rwsem(&space_info->groups_sem);
3978 spin_lock_init(&space_info->lock);
3979 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3980 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3981 init_waitqueue_head(&space_info->wait);
3982 INIT_LIST_HEAD(&space_info->ro_bgs);
3983 INIT_LIST_HEAD(&space_info->tickets);
3984 INIT_LIST_HEAD(&space_info->priority_tickets);
3985
3986 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3987 info->space_info_kobj, "%s",
3988 alloc_name(space_info->flags));
3989 if (ret) {
3990 percpu_counter_destroy(&space_info->total_bytes_pinned);
3991 kfree(space_info);
3992 return ret;
3993 }
3994
2be12ef7
NB
3995 list_add_rcu(&space_info->list, &info->space_info);
3996 if (flags & BTRFS_BLOCK_GROUP_DATA)
3997 info->data_sinfo = space_info;
3998
3999 return ret;
4000}
4001
d2006e6d 4002static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4003 u64 total_bytes, u64 bytes_used,
e40edf2d 4004 u64 bytes_readonly,
593060d7
CM
4005 struct btrfs_space_info **space_info)
4006{
4007 struct btrfs_space_info *found;
b742bb82
YZ
4008 int factor;
4009
46df06b8 4010 factor = btrfs_bg_type_to_factor(flags);
593060d7
CM
4011
4012 found = __find_space_info(info, flags);
d2006e6d
NB
4013 ASSERT(found);
4014 spin_lock(&found->lock);
4015 found->total_bytes += total_bytes;
4016 found->disk_total += total_bytes * factor;
4017 found->bytes_used += bytes_used;
4018 found->disk_used += bytes_used * factor;
4019 found->bytes_readonly += bytes_readonly;
4020 if (total_bytes > 0)
4021 found->full = 0;
4022 space_info_add_new_bytes(info, found, total_bytes -
4023 bytes_used - bytes_readonly);
4024 spin_unlock(&found->lock);
4025 *space_info = found;
593060d7
CM
4026}
4027
8790d502
CM
4028static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4029{
899c81ea
ID
4030 u64 extra_flags = chunk_to_extended(flags) &
4031 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4032
de98ced9 4033 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4034 if (flags & BTRFS_BLOCK_GROUP_DATA)
4035 fs_info->avail_data_alloc_bits |= extra_flags;
4036 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4037 fs_info->avail_metadata_alloc_bits |= extra_flags;
4038 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4039 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4040 write_sequnlock(&fs_info->profiles_lock);
8790d502 4041}
593060d7 4042
fc67c450
ID
4043/*
4044 * returns target flags in extended format or 0 if restripe for this
4045 * chunk_type is not in progress
c6664b42 4046 *
dccdb07b 4047 * should be called with balance_lock held
fc67c450
ID
4048 */
4049static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4050{
4051 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4052 u64 target = 0;
4053
fc67c450
ID
4054 if (!bctl)
4055 return 0;
4056
4057 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4058 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4059 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4060 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4061 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4062 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4063 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4064 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4065 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4066 }
4067
4068 return target;
4069}
4070
a46d11a8
ID
4071/*
4072 * @flags: available profiles in extended format (see ctree.h)
4073 *
e4d8ec0f
ID
4074 * Returns reduced profile in chunk format. If profile changing is in
4075 * progress (either running or paused) picks the target profile (if it's
4076 * already available), otherwise falls back to plain reducing.
a46d11a8 4077 */
2ff7e61e 4078static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4079{
0b246afa 4080 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4081 u64 target;
9c170b26
ZL
4082 u64 raid_type;
4083 u64 allowed = 0;
a061fc8d 4084
fc67c450
ID
4085 /*
4086 * see if restripe for this chunk_type is in progress, if so
4087 * try to reduce to the target profile
4088 */
0b246afa
JM
4089 spin_lock(&fs_info->balance_lock);
4090 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4091 if (target) {
4092 /* pick target profile only if it's already available */
4093 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4094 spin_unlock(&fs_info->balance_lock);
fc67c450 4095 return extended_to_chunk(target);
e4d8ec0f
ID
4096 }
4097 }
0b246afa 4098 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4099
53b381b3 4100 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4101 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4102 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
41a6e891 4103 allowed |= btrfs_raid_array[raid_type].bg_flag;
9c170b26
ZL
4104 }
4105 allowed &= flags;
4106
4107 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4108 allowed = BTRFS_BLOCK_GROUP_RAID6;
4109 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4110 allowed = BTRFS_BLOCK_GROUP_RAID5;
4111 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4112 allowed = BTRFS_BLOCK_GROUP_RAID10;
4113 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4114 allowed = BTRFS_BLOCK_GROUP_RAID1;
4115 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4116 allowed = BTRFS_BLOCK_GROUP_RAID0;
4117
4118 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4119
4120 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4121}
4122
2ff7e61e 4123static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4124{
de98ced9 4125 unsigned seq;
f8213bdc 4126 u64 flags;
de98ced9
MX
4127
4128 do {
f8213bdc 4129 flags = orig_flags;
0b246afa 4130 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4131
4132 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4133 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4134 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4135 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4136 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4137 flags |= fs_info->avail_metadata_alloc_bits;
4138 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4139
2ff7e61e 4140 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4141}
4142
1b86826d 4143static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4144{
0b246afa 4145 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4146 u64 flags;
53b381b3 4147 u64 ret;
9ed74f2d 4148
b742bb82
YZ
4149 if (data)
4150 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4151 else if (root == fs_info->chunk_root)
b742bb82 4152 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4153 else
b742bb82 4154 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4155
2ff7e61e 4156 ret = get_alloc_profile(fs_info, flags);
53b381b3 4157 return ret;
6a63209f 4158}
9ed74f2d 4159
1b86826d
JM
4160u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4161{
4162 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4163}
4164
4165u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4166{
4167 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4168}
4169
4170u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4171{
4172 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4173}
4174
4136135b
LB
4175static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4176 bool may_use_included)
4177{
4178 ASSERT(s_info);
4179 return s_info->bytes_used + s_info->bytes_reserved +
4180 s_info->bytes_pinned + s_info->bytes_readonly +
4181 (may_use_included ? s_info->bytes_may_use : 0);
4182}
4183
04f4f916 4184int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4185{
04f4f916 4186 struct btrfs_root *root = inode->root;
b4d7c3c9 4187 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4188 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4189 u64 used;
94b947b2 4190 int ret = 0;
c99f1b0c
ZL
4191 int need_commit = 2;
4192 int have_pinned_space;
6a63209f 4193
6a63209f 4194 /* make sure bytes are sectorsize aligned */
0b246afa 4195 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4196
9dced186 4197 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4198 need_commit = 0;
9dced186 4199 ASSERT(current->journal_info);
0af3d00b
JB
4200 }
4201
6a63209f
JB
4202again:
4203 /* make sure we have enough space to handle the data first */
4204 spin_lock(&data_sinfo->lock);
4136135b 4205 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4206
4207 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4208 struct btrfs_trans_handle *trans;
9ed74f2d 4209
6a63209f
JB
4210 /*
4211 * if we don't have enough free bytes in this space then we need
4212 * to alloc a new chunk.
4213 */
b9fd47cd 4214 if (!data_sinfo->full) {
6a63209f 4215 u64 alloc_target;
9ed74f2d 4216
0e4f8f88 4217 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4218 spin_unlock(&data_sinfo->lock);
1174cade 4219
1b86826d 4220 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4221 /*
4222 * It is ugly that we don't call nolock join
4223 * transaction for the free space inode case here.
4224 * But it is safe because we only do the data space
4225 * reservation for the free space cache in the
4226 * transaction context, the common join transaction
4227 * just increase the counter of the current transaction
4228 * handler, doesn't try to acquire the trans_lock of
4229 * the fs.
4230 */
7a7eaa40 4231 trans = btrfs_join_transaction(root);
a22285a6
YZ
4232 if (IS_ERR(trans))
4233 return PTR_ERR(trans);
9ed74f2d 4234
01458828 4235 ret = do_chunk_alloc(trans, alloc_target,
0e4f8f88 4236 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4237 btrfs_end_transaction(trans);
d52a5b5f
MX
4238 if (ret < 0) {
4239 if (ret != -ENOSPC)
4240 return ret;
c99f1b0c
ZL
4241 else {
4242 have_pinned_space = 1;
d52a5b5f 4243 goto commit_trans;
c99f1b0c 4244 }
d52a5b5f 4245 }
9ed74f2d 4246
6a63209f
JB
4247 goto again;
4248 }
f2bb8f5c
JB
4249
4250 /*
b150a4f1 4251 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4252 * allocation, and no removed chunk in current transaction,
4253 * don't bother committing the transaction.
f2bb8f5c 4254 */
dec59fa3 4255 have_pinned_space = __percpu_counter_compare(
c99f1b0c 4256 &data_sinfo->total_bytes_pinned,
dec59fa3
EL
4257 used + bytes - data_sinfo->total_bytes,
4258 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6a63209f 4259 spin_unlock(&data_sinfo->lock);
6a63209f 4260
4e06bdd6 4261 /* commit the current transaction and try again */
d52a5b5f 4262commit_trans:
92e2f7e3 4263 if (need_commit) {
c99f1b0c 4264 need_commit--;
b150a4f1 4265
e1746e83 4266 if (need_commit > 0) {
82b3e53b 4267 btrfs_start_delalloc_roots(fs_info, -1);
6374e57a 4268 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4269 (u64)-1);
e1746e83 4270 }
9a4e7276 4271
7a7eaa40 4272 trans = btrfs_join_transaction(root);
a22285a6
YZ
4273 if (IS_ERR(trans))
4274 return PTR_ERR(trans);
c99f1b0c 4275 if (have_pinned_space >= 0 ||
3204d33c
JB
4276 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4277 &trans->transaction->flags) ||
c99f1b0c 4278 need_commit > 0) {
3a45bb20 4279 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4280 if (ret)
4281 return ret;
d7c15171 4282 /*
c2d6cb16
FM
4283 * The cleaner kthread might still be doing iput
4284 * operations. Wait for it to finish so that
4285 * more space is released.
d7c15171 4286 */
0b246afa
JM
4287 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4288 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4289 goto again;
4290 } else {
3a45bb20 4291 btrfs_end_transaction(trans);
94b947b2 4292 }
4e06bdd6 4293 }
9ed74f2d 4294
0b246afa 4295 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4296 "space_info:enospc",
4297 data_sinfo->flags, bytes, 1);
6a63209f
JB
4298 return -ENOSPC;
4299 }
9f9b8e8d 4300 update_bytes_may_use(data_sinfo, bytes);
0b246afa 4301 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4302 data_sinfo->flags, bytes, 1);
6a63209f 4303 spin_unlock(&data_sinfo->lock);
6a63209f 4304
4559b0a7 4305 return 0;
9ed74f2d 4306}
6a63209f 4307
364ecf36
QW
4308int btrfs_check_data_free_space(struct inode *inode,
4309 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4310{
0b246afa 4311 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4312 int ret;
4313
4314 /* align the range */
0b246afa
JM
4315 len = round_up(start + len, fs_info->sectorsize) -
4316 round_down(start, fs_info->sectorsize);
4317 start = round_down(start, fs_info->sectorsize);
4ceff079 4318
04f4f916 4319 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4320 if (ret < 0)
4321 return ret;
4322
1e5ec2e7 4323 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4324 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4325 if (ret < 0)
1e5ec2e7 4326 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4327 else
4328 ret = 0;
4ceff079
QW
4329 return ret;
4330}
4331
4ceff079
QW
4332/*
4333 * Called if we need to clear a data reservation for this inode
4334 * Normally in a error case.
4335 *
51773bec
QW
4336 * This one will *NOT* use accurate qgroup reserved space API, just for case
4337 * which we can't sleep and is sure it won't affect qgroup reserved space.
4338 * Like clear_bit_hook().
4ceff079 4339 */
51773bec
QW
4340void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4341 u64 len)
4ceff079 4342{
0b246afa 4343 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4344 struct btrfs_space_info *data_sinfo;
4345
4346 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4347 len = round_up(start + len, fs_info->sectorsize) -
4348 round_down(start, fs_info->sectorsize);
4349 start = round_down(start, fs_info->sectorsize);
4ceff079 4350
0b246afa 4351 data_sinfo = fs_info->data_sinfo;
4ceff079 4352 spin_lock(&data_sinfo->lock);
9f9b8e8d 4353 update_bytes_may_use(data_sinfo, -len);
0b246afa 4354 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4355 data_sinfo->flags, len, 0);
4356 spin_unlock(&data_sinfo->lock);
4357}
4358
51773bec
QW
4359/*
4360 * Called if we need to clear a data reservation for this inode
4361 * Normally in a error case.
4362 *
01327610 4363 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4364 * space framework.
4365 */
bc42bda2
QW
4366void btrfs_free_reserved_data_space(struct inode *inode,
4367 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4368{
0c476a5d
JM
4369 struct btrfs_root *root = BTRFS_I(inode)->root;
4370
4371 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4372 len = round_up(start + len, root->fs_info->sectorsize) -
4373 round_down(start, root->fs_info->sectorsize);
4374 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4375
51773bec 4376 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4377 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4378}
4379
97e728d4 4380static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4381{
97e728d4
JB
4382 struct list_head *head = &info->space_info;
4383 struct btrfs_space_info *found;
e3ccfa98 4384
97e728d4
JB
4385 rcu_read_lock();
4386 list_for_each_entry_rcu(found, head, list) {
4387 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4388 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4389 }
97e728d4 4390 rcu_read_unlock();
e3ccfa98
JB
4391}
4392
3c76cd84
MX
4393static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4394{
4395 return (global->size << 1);
4396}
4397
2ff7e61e 4398static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4399 struct btrfs_space_info *sinfo, int force)
32c00aff 4400{
0b246afa 4401 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4402 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4403 u64 thresh;
e3ccfa98 4404
0e4f8f88
CM
4405 if (force == CHUNK_ALLOC_FORCE)
4406 return 1;
4407
fb25e914
JB
4408 /*
4409 * We need to take into account the global rsv because for all intents
4410 * and purposes it's used space. Don't worry about locking the
4411 * global_rsv, it doesn't change except when the transaction commits.
4412 */
54338b5c 4413 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4414 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4415
0e4f8f88
CM
4416 /*
4417 * in limited mode, we want to have some free space up to
4418 * about 1% of the FS size.
4419 */
4420 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4421 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4422 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4423
8d8aafee 4424 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4425 return 1;
4426 }
0e4f8f88 4427
8d8aafee 4428 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4429 return 0;
424499db 4430 return 1;
32c00aff
JB
4431}
4432
2ff7e61e 4433static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4434{
4435 u64 num_dev;
4436
53b381b3
DW
4437 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4438 BTRFS_BLOCK_GROUP_RAID0 |
4439 BTRFS_BLOCK_GROUP_RAID5 |
4440 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4441 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4442 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4443 num_dev = 2;
4444 else
4445 num_dev = 1; /* DUP or single */
4446
39c2d7fa 4447 return num_dev;
15d1ff81
LB
4448}
4449
39c2d7fa
FM
4450/*
4451 * If @is_allocation is true, reserve space in the system space info necessary
4452 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4453 * removing a chunk.
4454 */
451a2c13 4455void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
15d1ff81 4456{
451a2c13 4457 struct btrfs_fs_info *fs_info = trans->fs_info;
15d1ff81
LB
4458 struct btrfs_space_info *info;
4459 u64 left;
4460 u64 thresh;
4fbcdf66 4461 int ret = 0;
39c2d7fa 4462 u64 num_devs;
4fbcdf66
FM
4463
4464 /*
4465 * Needed because we can end up allocating a system chunk and for an
4466 * atomic and race free space reservation in the chunk block reserve.
4467 */
a32bf9a3 4468 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4469
0b246afa 4470 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4471 spin_lock(&info->lock);
4136135b 4472 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4473 spin_unlock(&info->lock);
4474
2ff7e61e 4475 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4476
4477 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4478 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4479 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4480
0b246afa
JM
4481 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4482 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4483 left, thresh, type);
4484 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4485 }
4486
4487 if (left < thresh) {
1b86826d 4488 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4489
4fbcdf66
FM
4490 /*
4491 * Ignore failure to create system chunk. We might end up not
4492 * needing it, as we might not need to COW all nodes/leafs from
4493 * the paths we visit in the chunk tree (they were already COWed
4494 * or created in the current transaction for example).
4495 */
c216b203 4496 ret = btrfs_alloc_chunk(trans, flags);
4fbcdf66
FM
4497 }
4498
4499 if (!ret) {
0b246afa
JM
4500 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4501 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4502 thresh, BTRFS_RESERVE_NO_FLUSH);
4503 if (!ret)
4504 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4505 }
4506}
4507
28b737f6
LB
4508/*
4509 * If force is CHUNK_ALLOC_FORCE:
4510 * - return 1 if it successfully allocates a chunk,
4511 * - return errors including -ENOSPC otherwise.
4512 * If force is NOT CHUNK_ALLOC_FORCE:
4513 * - return 0 if it doesn't need to allocate a new chunk,
4514 * - return 1 if it successfully allocates a chunk,
4515 * - return errors including -ENOSPC otherwise.
4516 */
01458828
NB
4517static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4518 int force)
9ed74f2d 4519{
01458828 4520 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 4521 struct btrfs_space_info *space_info;
2556fbb0
NB
4522 bool wait_for_alloc = false;
4523 bool should_alloc = false;
9ed74f2d 4524 int ret = 0;
9ed74f2d 4525
c6b305a8
JB
4526 /* Don't re-enter if we're already allocating a chunk */
4527 if (trans->allocating_chunk)
4528 return -ENOSPC;
4529
0b246afa 4530 space_info = __find_space_info(fs_info, flags);
dc2d3005 4531 ASSERT(space_info);
9ed74f2d 4532
2556fbb0
NB
4533 do {
4534 spin_lock(&space_info->lock);
4535 if (force < space_info->force_alloc)
4536 force = space_info->force_alloc;
4537 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4538 if (space_info->full) {
4539 /* No more free physical space */
4540 if (should_alloc)
4541 ret = -ENOSPC;
4542 else
4543 ret = 0;
4544 spin_unlock(&space_info->lock);
4545 return ret;
4546 } else if (!should_alloc) {
4547 spin_unlock(&space_info->lock);
4548 return 0;
4549 } else if (space_info->chunk_alloc) {
4550 /*
4551 * Someone is already allocating, so we need to block
4552 * until this someone is finished and then loop to
4553 * recheck if we should continue with our allocation
4554 * attempt.
4555 */
4556 wait_for_alloc = true;
4557 spin_unlock(&space_info->lock);
4558 mutex_lock(&fs_info->chunk_mutex);
4559 mutex_unlock(&fs_info->chunk_mutex);
4560 } else {
4561 /* Proceed with allocation */
4562 space_info->chunk_alloc = 1;
4563 wait_for_alloc = false;
4564 spin_unlock(&space_info->lock);
4565 }
6d74119f 4566
1e1c50a9 4567 cond_resched();
2556fbb0 4568 } while (wait_for_alloc);
6d74119f 4569
2556fbb0 4570 mutex_lock(&fs_info->chunk_mutex);
c6b305a8
JB
4571 trans->allocating_chunk = true;
4572
67377734
JB
4573 /*
4574 * If we have mixed data/metadata chunks we want to make sure we keep
4575 * allocating mixed chunks instead of individual chunks.
4576 */
4577 if (btrfs_mixed_space_info(space_info))
4578 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4579
97e728d4
JB
4580 /*
4581 * if we're doing a data chunk, go ahead and make sure that
4582 * we keep a reasonable number of metadata chunks allocated in the
4583 * FS as well.
4584 */
9ed74f2d 4585 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4586 fs_info->data_chunk_allocations++;
4587 if (!(fs_info->data_chunk_allocations %
4588 fs_info->metadata_ratio))
4589 force_metadata_allocation(fs_info);
9ed74f2d
JB
4590 }
4591
15d1ff81
LB
4592 /*
4593 * Check if we have enough space in SYSTEM chunk because we may need
4594 * to update devices.
4595 */
451a2c13 4596 check_system_chunk(trans, flags);
15d1ff81 4597
c216b203 4598 ret = btrfs_alloc_chunk(trans, flags);
c6b305a8 4599 trans->allocating_chunk = false;
92b8e897 4600
9ed74f2d 4601 spin_lock(&space_info->lock);
57f1642e
NB
4602 if (ret < 0) {
4603 if (ret == -ENOSPC)
4604 space_info->full = 1;
4605 else
4606 goto out;
4607 } else {
424499db 4608 ret = 1;
21a94f7a 4609 space_info->max_extent_size = 0;
57f1642e 4610 }
6d74119f 4611
0e4f8f88 4612 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4613out:
6d74119f 4614 space_info->chunk_alloc = 0;
9ed74f2d 4615 spin_unlock(&space_info->lock);
a25c75d5 4616 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4617 /*
4618 * When we allocate a new chunk we reserve space in the chunk block
4619 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4620 * add new nodes/leafs to it if we end up needing to do it when
4621 * inserting the chunk item and updating device items as part of the
4622 * second phase of chunk allocation, performed by
4623 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4624 * large number of new block groups to create in our transaction
4625 * handle's new_bgs list to avoid exhausting the chunk block reserve
4626 * in extreme cases - like having a single transaction create many new
4627 * block groups when starting to write out the free space caches of all
4628 * the block groups that were made dirty during the lifetime of the
4629 * transaction.
4630 */
5ce55557 4631 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
6c686b35 4632 btrfs_create_pending_block_groups(trans);
5ce55557 4633
0f9dd46c 4634 return ret;
6324fbf3 4635}
9ed74f2d 4636
c1c4919b 4637static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4638 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4639 enum btrfs_reserve_flush_enum flush,
4640 bool system_chunk)
a80c8dcf 4641{
0b246afa 4642 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4643 u64 profile;
3c76cd84 4644 u64 space_size;
a80c8dcf
JB
4645 u64 avail;
4646 u64 used;
46df06b8 4647 int factor;
a80c8dcf 4648
957780eb
JB
4649 /* Don't overcommit when in mixed mode. */
4650 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4651 return 0;
4652
c1c4919b
JM
4653 if (system_chunk)
4654 profile = btrfs_system_alloc_profile(fs_info);
4655 else
4656 profile = btrfs_metadata_alloc_profile(fs_info);
4657
4136135b 4658 used = btrfs_space_info_used(space_info, false);
96f1bb57 4659
96f1bb57
JB
4660 /*
4661 * We only want to allow over committing if we have lots of actual space
4662 * free, but if we don't have enough space to handle the global reserve
4663 * space then we could end up having a real enospc problem when trying
4664 * to allocate a chunk or some other such important allocation.
4665 */
3c76cd84
MX
4666 spin_lock(&global_rsv->lock);
4667 space_size = calc_global_rsv_need_space(global_rsv);
4668 spin_unlock(&global_rsv->lock);
4669 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4670 return 0;
4671
4672 used += space_info->bytes_may_use;
a80c8dcf 4673
a5ed45f8 4674 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4675
4676 /*
4677 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4678 * space is actually useable. For raid56, the space info used
4679 * doesn't include the parity drive, so we don't have to
4680 * change the math
a80c8dcf 4681 */
46df06b8
DS
4682 factor = btrfs_bg_type_to_factor(profile);
4683 avail = div_u64(avail, factor);
a80c8dcf
JB
4684
4685 /*
561c294d
MX
4686 * If we aren't flushing all things, let us overcommit up to
4687 * 1/2th of the space. If we can flush, don't let us overcommit
4688 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4689 */
08e007d2 4690 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4691 avail >>= 3;
a80c8dcf 4692 else
14575aef 4693 avail >>= 1;
a80c8dcf 4694
14575aef 4695 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4696 return 1;
4697 return 0;
4698}
4699
2ff7e61e 4700static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4701 unsigned long nr_pages, int nr_items)
da633a42 4702{
0b246afa 4703 struct super_block *sb = fs_info->sb;
da633a42 4704
925a6efb
JB
4705 if (down_read_trylock(&sb->s_umount)) {
4706 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4707 up_read(&sb->s_umount);
4708 } else {
da633a42
MX
4709 /*
4710 * We needn't worry the filesystem going from r/w to r/o though
4711 * we don't acquire ->s_umount mutex, because the filesystem
4712 * should guarantee the delalloc inodes list be empty after
4713 * the filesystem is readonly(all dirty pages are written to
4714 * the disk).
4715 */
82b3e53b 4716 btrfs_start_delalloc_roots(fs_info, nr_items);
98ad69cf 4717 if (!current->journal_info)
0b246afa 4718 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4719 }
4720}
4721
6374e57a 4722static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4723 u64 to_reclaim)
18cd8ea6
MX
4724{
4725 u64 bytes;
6374e57a 4726 u64 nr;
18cd8ea6 4727
2ff7e61e 4728 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4729 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4730 if (!nr)
4731 nr = 1;
4732 return nr;
4733}
4734
ee22184b 4735#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4736
9ed74f2d 4737/*
5da9d01b 4738 * shrink metadata reservation for delalloc
9ed74f2d 4739 */
c1c4919b
JM
4740static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4741 u64 orig, bool wait_ordered)
5da9d01b 4742{
0019f10d 4743 struct btrfs_space_info *space_info;
663350ac 4744 struct btrfs_trans_handle *trans;
f4c738c2 4745 u64 delalloc_bytes;
5da9d01b 4746 u64 max_reclaim;
6374e57a 4747 u64 items;
b1953bce 4748 long time_left;
d3ee29e3
MX
4749 unsigned long nr_pages;
4750 int loops;
5da9d01b 4751
c61a16a7 4752 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4753 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4754 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4755
663350ac 4756 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4757 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4758
963d678b 4759 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4760 &fs_info->delalloc_bytes);
f4c738c2 4761 if (delalloc_bytes == 0) {
fdb5effd 4762 if (trans)
f4c738c2 4763 return;
38c135af 4764 if (wait_ordered)
0b246afa 4765 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4766 return;
fdb5effd
JB
4767 }
4768
d3ee29e3 4769 loops = 0;
f4c738c2
JB
4770 while (delalloc_bytes && loops < 3) {
4771 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4772 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4773 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4774 /*
4775 * We need to wait for the async pages to actually start before
4776 * we do anything.
4777 */
0b246afa 4778 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4779 if (!max_reclaim)
4780 goto skip_async;
4781
4782 if (max_reclaim <= nr_pages)
4783 max_reclaim = 0;
4784 else
4785 max_reclaim -= nr_pages;
dea31f52 4786
0b246afa
JM
4787 wait_event(fs_info->async_submit_wait,
4788 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4789 (int)max_reclaim);
4790skip_async:
0019f10d 4791 spin_lock(&space_info->lock);
957780eb
JB
4792 if (list_empty(&space_info->tickets) &&
4793 list_empty(&space_info->priority_tickets)) {
4794 spin_unlock(&space_info->lock);
4795 break;
4796 }
0019f10d 4797 spin_unlock(&space_info->lock);
5da9d01b 4798
36e39c40 4799 loops++;
f104d044 4800 if (wait_ordered && !trans) {
0b246afa 4801 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4802 } else {
f4c738c2 4803 time_left = schedule_timeout_killable(1);
f104d044
JB
4804 if (time_left)
4805 break;
4806 }
963d678b 4807 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4808 &fs_info->delalloc_bytes);
5da9d01b 4809 }
5da9d01b
YZ
4810}
4811
996478ca
JB
4812struct reserve_ticket {
4813 u64 bytes;
4814 int error;
4815 struct list_head list;
4816 wait_queue_head_t wait;
4817};
4818
663350ac
JB
4819/**
4820 * maybe_commit_transaction - possibly commit the transaction if its ok to
4821 * @root - the root we're allocating for
4822 * @bytes - the number of bytes we want to reserve
4823 * @force - force the commit
8bb8ab2e 4824 *
663350ac
JB
4825 * This will check to make sure that committing the transaction will actually
4826 * get us somewhere and then commit the transaction if it does. Otherwise it
4827 * will return -ENOSPC.
8bb8ab2e 4828 */
0c9ab349 4829static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4830 struct btrfs_space_info *space_info)
663350ac 4831{
996478ca 4832 struct reserve_ticket *ticket = NULL;
0b246afa 4833 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4c8edbc7 4834 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
663350ac 4835 struct btrfs_trans_handle *trans;
4c8edbc7
JB
4836 u64 bytes_needed;
4837 u64 reclaim_bytes = 0;
663350ac
JB
4838
4839 trans = (struct btrfs_trans_handle *)current->journal_info;
4840 if (trans)
4841 return -EAGAIN;
4842
996478ca
JB
4843 spin_lock(&space_info->lock);
4844 if (!list_empty(&space_info->priority_tickets))
4845 ticket = list_first_entry(&space_info->priority_tickets,
4846 struct reserve_ticket, list);
4847 else if (!list_empty(&space_info->tickets))
4848 ticket = list_first_entry(&space_info->tickets,
4849 struct reserve_ticket, list);
4c8edbc7 4850 bytes_needed = (ticket) ? ticket->bytes : 0;
996478ca
JB
4851 spin_unlock(&space_info->lock);
4852
4c8edbc7 4853 if (!bytes_needed)
996478ca 4854 return 0;
663350ac
JB
4855
4856 /* See if there is enough pinned space to make this reservation */
dec59fa3 4857 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4c8edbc7 4858 bytes_needed,
dec59fa3 4859 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
663350ac 4860 goto commit;
663350ac
JB
4861
4862 /*
4863 * See if there is some space in the delayed insertion reservation for
4864 * this reservation.
4865 */
4866 if (space_info != delayed_rsv->space_info)
4867 return -ENOSPC;
4868
4869 spin_lock(&delayed_rsv->lock);
4c8edbc7 4870 reclaim_bytes += delayed_rsv->reserved;
057aac3e
NB
4871 spin_unlock(&delayed_rsv->lock);
4872
4c8edbc7
JB
4873 spin_lock(&delayed_refs_rsv->lock);
4874 reclaim_bytes += delayed_refs_rsv->reserved;
4875 spin_unlock(&delayed_refs_rsv->lock);
4876 if (reclaim_bytes >= bytes_needed)
4877 goto commit;
4878 bytes_needed -= reclaim_bytes;
4879
dec59fa3 4880 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4c8edbc7 4881 bytes_needed,
dec59fa3 4882 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
663350ac
JB
4883 return -ENOSPC;
4884 }
663350ac
JB
4885
4886commit:
a9b3311e 4887 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4888 if (IS_ERR(trans))
4889 return -ENOSPC;
4890
3a45bb20 4891 return btrfs_commit_transaction(trans);
663350ac
JB
4892}
4893
e38ae7a0
NB
4894/*
4895 * Try to flush some data based on policy set by @state. This is only advisory
4896 * and may fail for various reasons. The caller is supposed to examine the
4897 * state of @space_info to detect the outcome.
4898 */
4899static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4900 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4901 int state)
96c3f433 4902{
a9b3311e 4903 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4904 struct btrfs_trans_handle *trans;
4905 int nr;
f4c738c2 4906 int ret = 0;
96c3f433
JB
4907
4908 switch (state) {
96c3f433
JB
4909 case FLUSH_DELAYED_ITEMS_NR:
4910 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4911 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4912 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4913 else
96c3f433 4914 nr = -1;
18cd8ea6 4915
96c3f433
JB
4916 trans = btrfs_join_transaction(root);
4917 if (IS_ERR(trans)) {
4918 ret = PTR_ERR(trans);
4919 break;
4920 }
e5c304e6 4921 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4922 btrfs_end_transaction(trans);
96c3f433 4923 break;
67b0fd63
JB
4924 case FLUSH_DELALLOC:
4925 case FLUSH_DELALLOC_WAIT:
7bdd6277 4926 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4927 state == FLUSH_DELALLOC_WAIT);
4928 break;
413df725
JB
4929 case FLUSH_DELAYED_REFS_NR:
4930 case FLUSH_DELAYED_REFS:
4931 trans = btrfs_join_transaction(root);
4932 if (IS_ERR(trans)) {
4933 ret = PTR_ERR(trans);
4934 break;
4935 }
4936 if (state == FLUSH_DELAYED_REFS_NR)
4937 nr = calc_reclaim_items_nr(fs_info, num_bytes);
4938 else
4939 nr = 0;
4940 btrfs_run_delayed_refs(trans, nr);
4941 btrfs_end_transaction(trans);
4942 break;
ea658bad
JB
4943 case ALLOC_CHUNK:
4944 trans = btrfs_join_transaction(root);
4945 if (IS_ERR(trans)) {
4946 ret = PTR_ERR(trans);
4947 break;
4948 }
01458828 4949 ret = do_chunk_alloc(trans,
1b86826d 4950 btrfs_metadata_alloc_profile(fs_info),
ea658bad 4951 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4952 btrfs_end_transaction(trans);
eecba891 4953 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4954 ret = 0;
4955 break;
96c3f433 4956 case COMMIT_TRANS:
996478ca 4957 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
4958 break;
4959 default:
4960 ret = -ENOSPC;
4961 break;
4962 }
4963
7bdd6277
NB
4964 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4965 ret);
e38ae7a0 4966 return;
96c3f433 4967}
21c7e756
MX
4968
4969static inline u64
c1c4919b
JM
4970btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4971 struct btrfs_space_info *space_info,
4972 bool system_chunk)
21c7e756 4973{
957780eb 4974 struct reserve_ticket *ticket;
21c7e756
MX
4975 u64 used;
4976 u64 expected;
957780eb 4977 u64 to_reclaim = 0;
21c7e756 4978
957780eb
JB
4979 list_for_each_entry(ticket, &space_info->tickets, list)
4980 to_reclaim += ticket->bytes;
4981 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4982 to_reclaim += ticket->bytes;
4983 if (to_reclaim)
4984 return to_reclaim;
21c7e756 4985
e0af2484 4986 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
4987 if (can_overcommit(fs_info, space_info, to_reclaim,
4988 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
4989 return 0;
4990
0eee8a49
NB
4991 used = btrfs_space_info_used(space_info, true);
4992
c1c4919b
JM
4993 if (can_overcommit(fs_info, space_info, SZ_1M,
4994 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
4995 expected = div_factor_fine(space_info->total_bytes, 95);
4996 else
4997 expected = div_factor_fine(space_info->total_bytes, 90);
4998
4999 if (used > expected)
5000 to_reclaim = used - expected;
5001 else
5002 to_reclaim = 0;
5003 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5004 space_info->bytes_reserved);
21c7e756
MX
5005 return to_reclaim;
5006}
5007
c1c4919b
JM
5008static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5009 struct btrfs_space_info *space_info,
5010 u64 used, bool system_chunk)
21c7e756 5011{
365c5313
JB
5012 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5013
5014 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5015 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5016 return 0;
5017
c1c4919b
JM
5018 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5019 system_chunk))
d38b349c
JB
5020 return 0;
5021
0b246afa
JM
5022 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5023 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5024}
5025
957780eb 5026static void wake_all_tickets(struct list_head *head)
21c7e756 5027{
957780eb 5028 struct reserve_ticket *ticket;
25ce459c 5029
957780eb
JB
5030 while (!list_empty(head)) {
5031 ticket = list_first_entry(head, struct reserve_ticket, list);
5032 list_del_init(&ticket->list);
5033 ticket->error = -ENOSPC;
5034 wake_up(&ticket->wait);
21c7e756 5035 }
21c7e756
MX
5036}
5037
957780eb
JB
5038/*
5039 * This is for normal flushers, we can wait all goddamned day if we want to. We
5040 * will loop and continuously try to flush as long as we are making progress.
5041 * We count progress as clearing off tickets each time we have to loop.
5042 */
21c7e756
MX
5043static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5044{
5045 struct btrfs_fs_info *fs_info;
5046 struct btrfs_space_info *space_info;
5047 u64 to_reclaim;
5048 int flush_state;
957780eb 5049 int commit_cycles = 0;
ce129655 5050 u64 last_tickets_id;
21c7e756
MX
5051
5052 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5053 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5054
957780eb 5055 spin_lock(&space_info->lock);
c1c4919b
JM
5056 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5057 false);
957780eb
JB
5058 if (!to_reclaim) {
5059 space_info->flush = 0;
5060 spin_unlock(&space_info->lock);
21c7e756 5061 return;
957780eb 5062 }
ce129655 5063 last_tickets_id = space_info->tickets_id;
957780eb 5064 spin_unlock(&space_info->lock);
21c7e756
MX
5065
5066 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5067 do {
e38ae7a0 5068 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5069 spin_lock(&space_info->lock);
5070 if (list_empty(&space_info->tickets)) {
5071 space_info->flush = 0;
5072 spin_unlock(&space_info->lock);
5073 return;
5074 }
c1c4919b
JM
5075 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5076 space_info,
5077 false);
ce129655 5078 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5079 flush_state++;
5080 } else {
ce129655 5081 last_tickets_id = space_info->tickets_id;
957780eb
JB
5082 flush_state = FLUSH_DELAYED_ITEMS_NR;
5083 if (commit_cycles)
5084 commit_cycles--;
5085 }
5086
5087 if (flush_state > COMMIT_TRANS) {
5088 commit_cycles++;
5089 if (commit_cycles > 2) {
5090 wake_all_tickets(&space_info->tickets);
5091 space_info->flush = 0;
5092 } else {
5093 flush_state = FLUSH_DELAYED_ITEMS_NR;
5094 }
5095 }
5096 spin_unlock(&space_info->lock);
5097 } while (flush_state <= COMMIT_TRANS);
5098}
5099
5100void btrfs_init_async_reclaim_work(struct work_struct *work)
5101{
5102 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5103}
5104
5105static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5106 struct btrfs_space_info *space_info,
5107 struct reserve_ticket *ticket)
5108{
5109 u64 to_reclaim;
5110 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5111
5112 spin_lock(&space_info->lock);
c1c4919b
JM
5113 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5114 false);
957780eb
JB
5115 if (!to_reclaim) {
5116 spin_unlock(&space_info->lock);
5117 return;
5118 }
5119 spin_unlock(&space_info->lock);
5120
21c7e756 5121 do {
7bdd6277 5122 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5123 flush_state++;
957780eb
JB
5124 spin_lock(&space_info->lock);
5125 if (ticket->bytes == 0) {
5126 spin_unlock(&space_info->lock);
21c7e756 5127 return;
957780eb
JB
5128 }
5129 spin_unlock(&space_info->lock);
5130
5131 /*
5132 * Priority flushers can't wait on delalloc without
5133 * deadlocking.
5134 */
5135 if (flush_state == FLUSH_DELALLOC ||
5136 flush_state == FLUSH_DELALLOC_WAIT)
5137 flush_state = ALLOC_CHUNK;
365c5313 5138 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5139}
5140
957780eb
JB
5141static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5142 struct btrfs_space_info *space_info,
5143 struct reserve_ticket *ticket, u64 orig_bytes)
5144
21c7e756 5145{
957780eb
JB
5146 DEFINE_WAIT(wait);
5147 int ret = 0;
5148
5149 spin_lock(&space_info->lock);
5150 while (ticket->bytes > 0 && ticket->error == 0) {
5151 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5152 if (ret) {
5153 ret = -EINTR;
5154 break;
5155 }
5156 spin_unlock(&space_info->lock);
5157
5158 schedule();
5159
5160 finish_wait(&ticket->wait, &wait);
5161 spin_lock(&space_info->lock);
5162 }
5163 if (!ret)
5164 ret = ticket->error;
5165 if (!list_empty(&ticket->list))
5166 list_del_init(&ticket->list);
5167 if (ticket->bytes && ticket->bytes < orig_bytes) {
5168 u64 num_bytes = orig_bytes - ticket->bytes;
9f9b8e8d 5169 update_bytes_may_use(space_info, -num_bytes);
957780eb
JB
5170 trace_btrfs_space_reservation(fs_info, "space_info",
5171 space_info->flags, num_bytes, 0);
5172 }
5173 spin_unlock(&space_info->lock);
5174
5175 return ret;
21c7e756
MX
5176}
5177
4a92b1b8
JB
5178/**
5179 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5180 * @root - the root we're allocating for
957780eb 5181 * @space_info - the space info we want to allocate from
4a92b1b8 5182 * @orig_bytes - the number of bytes we want
48fc7f7e 5183 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5184 *
01327610 5185 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5186 * with the block_rsv. If there is not enough space it will make an attempt to
5187 * flush out space to make room. It will do this by flushing delalloc if
5188 * possible or committing the transaction. If flush is 0 then no attempts to
5189 * regain reservations will be made and this will fail if there is not enough
5190 * space already.
8bb8ab2e 5191 */
c1c4919b 5192static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5193 struct btrfs_space_info *space_info,
5194 u64 orig_bytes,
c1c4919b
JM
5195 enum btrfs_reserve_flush_enum flush,
5196 bool system_chunk)
9ed74f2d 5197{
957780eb 5198 struct reserve_ticket ticket;
2bf64758 5199 u64 used;
8bb8ab2e 5200 int ret = 0;
9ed74f2d 5201
957780eb 5202 ASSERT(orig_bytes);
8ca17f0f 5203 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5204
8bb8ab2e 5205 spin_lock(&space_info->lock);
fdb5effd 5206 ret = -ENOSPC;
4136135b 5207 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5208
8bb8ab2e 5209 /*
957780eb
JB
5210 * If we have enough space then hooray, make our reservation and carry
5211 * on. If not see if we can overcommit, and if we can, hooray carry on.
5212 * If not things get more complicated.
8bb8ab2e 5213 */
957780eb 5214 if (used + orig_bytes <= space_info->total_bytes) {
9f9b8e8d 5215 update_bytes_may_use(space_info, orig_bytes);
0b246afa
JM
5216 trace_btrfs_space_reservation(fs_info, "space_info",
5217 space_info->flags, orig_bytes, 1);
957780eb 5218 ret = 0;
c1c4919b
JM
5219 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5220 system_chunk)) {
9f9b8e8d 5221 update_bytes_may_use(space_info, orig_bytes);
0b246afa
JM
5222 trace_btrfs_space_reservation(fs_info, "space_info",
5223 space_info->flags, orig_bytes, 1);
44734ed1 5224 ret = 0;
2bf64758
JB
5225 }
5226
8bb8ab2e 5227 /*
957780eb
JB
5228 * If we couldn't make a reservation then setup our reservation ticket
5229 * and kick the async worker if it's not already running.
08e007d2 5230 *
957780eb
JB
5231 * If we are a priority flusher then we just need to add our ticket to
5232 * the list and we will do our own flushing further down.
8bb8ab2e 5233 */
72bcd99d 5234 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5235 ticket.bytes = orig_bytes;
5236 ticket.error = 0;
5237 init_waitqueue_head(&ticket.wait);
5238 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5239 list_add_tail(&ticket.list, &space_info->tickets);
5240 if (!space_info->flush) {
5241 space_info->flush = 1;
0b246afa 5242 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5243 space_info->flags,
5244 orig_bytes, flush,
5245 "enospc");
957780eb 5246 queue_work(system_unbound_wq,
c1c4919b 5247 &fs_info->async_reclaim_work);
957780eb
JB
5248 }
5249 } else {
5250 list_add_tail(&ticket.list,
5251 &space_info->priority_tickets);
5252 }
21c7e756
MX
5253 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5254 used += orig_bytes;
f6acfd50
JB
5255 /*
5256 * We will do the space reservation dance during log replay,
5257 * which means we won't have fs_info->fs_root set, so don't do
5258 * the async reclaim as we will panic.
5259 */
0b246afa 5260 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5261 need_do_async_reclaim(fs_info, space_info,
5262 used, system_chunk) &&
0b246afa
JM
5263 !work_busy(&fs_info->async_reclaim_work)) {
5264 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5265 orig_bytes, flush, "preempt");
21c7e756 5266 queue_work(system_unbound_wq,
0b246afa 5267 &fs_info->async_reclaim_work);
f376df2b 5268 }
8bb8ab2e 5269 }
f0486c68 5270 spin_unlock(&space_info->lock);
08e007d2 5271 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5272 return ret;
f0486c68 5273
957780eb 5274 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5275 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5276 orig_bytes);
08e007d2 5277
957780eb 5278 ret = 0;
0b246afa 5279 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5280 spin_lock(&space_info->lock);
5281 if (ticket.bytes) {
5282 if (ticket.bytes < orig_bytes) {
5283 u64 num_bytes = orig_bytes - ticket.bytes;
9f9b8e8d 5284 update_bytes_may_use(space_info, -num_bytes);
0b246afa
JM
5285 trace_btrfs_space_reservation(fs_info, "space_info",
5286 space_info->flags,
5287 num_bytes, 0);
08e007d2 5288
957780eb
JB
5289 }
5290 list_del_init(&ticket.list);
5291 ret = -ENOSPC;
5292 }
5293 spin_unlock(&space_info->lock);
5294 ASSERT(list_empty(&ticket.list));
5295 return ret;
5296}
8bb8ab2e 5297
957780eb
JB
5298/**
5299 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5300 * @root - the root we're allocating for
5301 * @block_rsv - the block_rsv we're allocating for
5302 * @orig_bytes - the number of bytes we want
5303 * @flush - whether or not we can flush to make our reservation
5304 *
5305 * This will reserve orgi_bytes number of bytes from the space info associated
5306 * with the block_rsv. If there is not enough space it will make an attempt to
5307 * flush out space to make room. It will do this by flushing delalloc if
5308 * possible or committing the transaction. If flush is 0 then no attempts to
5309 * regain reservations will be made and this will fail if there is not enough
5310 * space already.
5311 */
5312static int reserve_metadata_bytes(struct btrfs_root *root,
5313 struct btrfs_block_rsv *block_rsv,
5314 u64 orig_bytes,
5315 enum btrfs_reserve_flush_enum flush)
5316{
0b246afa
JM
5317 struct btrfs_fs_info *fs_info = root->fs_info;
5318 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5319 int ret;
c1c4919b 5320 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5321
c1c4919b
JM
5322 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5323 orig_bytes, flush, system_chunk);
5d80366e
JB
5324 if (ret == -ENOSPC &&
5325 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5326 if (block_rsv != global_rsv &&
5327 !block_rsv_use_bytes(global_rsv, orig_bytes))
5328 ret = 0;
5329 }
9a3daff3 5330 if (ret == -ENOSPC) {
0b246afa 5331 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5332 block_rsv->space_info->flags,
5333 orig_bytes, 1);
9a3daff3
NB
5334
5335 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5336 dump_space_info(fs_info, block_rsv->space_info,
5337 orig_bytes, 0);
5338 }
f0486c68
YZ
5339 return ret;
5340}
5341
79787eaa
JM
5342static struct btrfs_block_rsv *get_block_rsv(
5343 const struct btrfs_trans_handle *trans,
5344 const struct btrfs_root *root)
f0486c68 5345{
0b246afa 5346 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5347 struct btrfs_block_rsv *block_rsv = NULL;
5348
e9cf439f 5349 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5350 (root == fs_info->csum_root && trans->adding_csums) ||
5351 (root == fs_info->uuid_root))
f7a81ea4
SB
5352 block_rsv = trans->block_rsv;
5353
4c13d758 5354 if (!block_rsv)
f0486c68
YZ
5355 block_rsv = root->block_rsv;
5356
5357 if (!block_rsv)
0b246afa 5358 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5359
5360 return block_rsv;
5361}
5362
5363static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5364 u64 num_bytes)
5365{
5366 int ret = -ENOSPC;
5367 spin_lock(&block_rsv->lock);
5368 if (block_rsv->reserved >= num_bytes) {
5369 block_rsv->reserved -= num_bytes;
5370 if (block_rsv->reserved < block_rsv->size)
5371 block_rsv->full = 0;
5372 ret = 0;
5373 }
5374 spin_unlock(&block_rsv->lock);
5375 return ret;
5376}
5377
5378static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3a584174 5379 u64 num_bytes, bool update_size)
f0486c68
YZ
5380{
5381 spin_lock(&block_rsv->lock);
5382 block_rsv->reserved += num_bytes;
5383 if (update_size)
5384 block_rsv->size += num_bytes;
5385 else if (block_rsv->reserved >= block_rsv->size)
5386 block_rsv->full = 1;
5387 spin_unlock(&block_rsv->lock);
5388}
5389
d52be818
JB
5390int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5391 struct btrfs_block_rsv *dest, u64 num_bytes,
5392 int min_factor)
5393{
5394 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5395 u64 min_bytes;
5396
5397 if (global_rsv->space_info != dest->space_info)
5398 return -ENOSPC;
5399
5400 spin_lock(&global_rsv->lock);
5401 min_bytes = div_factor(global_rsv->size, min_factor);
5402 if (global_rsv->reserved < min_bytes + num_bytes) {
5403 spin_unlock(&global_rsv->lock);
5404 return -ENOSPC;
5405 }
5406 global_rsv->reserved -= num_bytes;
5407 if (global_rsv->reserved < global_rsv->size)
5408 global_rsv->full = 0;
5409 spin_unlock(&global_rsv->lock);
5410
3a584174 5411 block_rsv_add_bytes(dest, num_bytes, true);
d52be818
JB
5412 return 0;
5413}
5414
ba2c4d4e
JB
5415/**
5416 * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
5417 * @fs_info - the fs info for our fs.
5418 * @src - the source block rsv to transfer from.
5419 * @num_bytes - the number of bytes to transfer.
5420 *
5421 * This transfers up to the num_bytes amount from the src rsv to the
5422 * delayed_refs_rsv. Any extra bytes are returned to the space info.
5423 */
5424void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
5425 struct btrfs_block_rsv *src,
5426 u64 num_bytes)
5427{
5428 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
5429 u64 to_free = 0;
5430
5431 spin_lock(&src->lock);
5432 src->reserved -= num_bytes;
5433 src->size -= num_bytes;
5434 spin_unlock(&src->lock);
5435
5436 spin_lock(&delayed_refs_rsv->lock);
5437 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
5438 u64 delta = delayed_refs_rsv->size -
5439 delayed_refs_rsv->reserved;
5440 if (num_bytes > delta) {
5441 to_free = num_bytes - delta;
5442 num_bytes = delta;
5443 }
5444 } else {
5445 to_free = num_bytes;
5446 num_bytes = 0;
5447 }
5448
5449 if (num_bytes)
5450 delayed_refs_rsv->reserved += num_bytes;
5451 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
5452 delayed_refs_rsv->full = 1;
5453 spin_unlock(&delayed_refs_rsv->lock);
5454
5455 if (num_bytes)
5456 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5457 0, num_bytes, 1);
5458 if (to_free)
5459 space_info_add_old_bytes(fs_info, delayed_refs_rsv->space_info,
5460 to_free);
5461}
5462
5463/**
5464 * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
5465 * @fs_info - the fs_info for our fs.
5466 * @flush - control how we can flush for this reservation.
5467 *
5468 * This will refill the delayed block_rsv up to 1 items size worth of space and
5469 * will return -ENOSPC if we can't make the reservation.
5470 */
5471int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
5472 enum btrfs_reserve_flush_enum flush)
5473{
5474 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5475 u64 limit = btrfs_calc_trans_metadata_size(fs_info, 1);
5476 u64 num_bytes = 0;
5477 int ret = -ENOSPC;
5478
5479 spin_lock(&block_rsv->lock);
5480 if (block_rsv->reserved < block_rsv->size) {
5481 num_bytes = block_rsv->size - block_rsv->reserved;
5482 num_bytes = min(num_bytes, limit);
5483 }
5484 spin_unlock(&block_rsv->lock);
5485
5486 if (!num_bytes)
5487 return 0;
5488
5489 ret = reserve_metadata_bytes(fs_info->extent_root, block_rsv,
5490 num_bytes, flush);
5491 if (ret)
5492 return ret;
5493 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5494 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5495 0, num_bytes, 1);
5496 return 0;
5497}
5498
957780eb
JB
5499/*
5500 * This is for space we already have accounted in space_info->bytes_may_use, so
5501 * basically when we're returning space from block_rsv's.
5502 */
5503static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5504 struct btrfs_space_info *space_info,
5505 u64 num_bytes)
5506{
5507 struct reserve_ticket *ticket;
5508 struct list_head *head;
5509 u64 used;
5510 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5511 bool check_overcommit = false;
5512
5513 spin_lock(&space_info->lock);
5514 head = &space_info->priority_tickets;
5515
5516 /*
5517 * If we are over our limit then we need to check and see if we can
5518 * overcommit, and if we can't then we just need to free up our space
5519 * and not satisfy any requests.
5520 */
0eee8a49 5521 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5522 if (used - num_bytes >= space_info->total_bytes)
5523 check_overcommit = true;
5524again:
5525 while (!list_empty(head) && num_bytes) {
5526 ticket = list_first_entry(head, struct reserve_ticket,
5527 list);
5528 /*
5529 * We use 0 bytes because this space is already reserved, so
5530 * adding the ticket space would be a double count.
5531 */
5532 if (check_overcommit &&
c1c4919b 5533 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5534 break;
5535 if (num_bytes >= ticket->bytes) {
5536 list_del_init(&ticket->list);
5537 num_bytes -= ticket->bytes;
5538 ticket->bytes = 0;
ce129655 5539 space_info->tickets_id++;
957780eb
JB
5540 wake_up(&ticket->wait);
5541 } else {
5542 ticket->bytes -= num_bytes;
5543 num_bytes = 0;
5544 }
5545 }
5546
5547 if (num_bytes && head == &space_info->priority_tickets) {
5548 head = &space_info->tickets;
5549 flush = BTRFS_RESERVE_FLUSH_ALL;
5550 goto again;
5551 }
9f9b8e8d 5552 update_bytes_may_use(space_info, -num_bytes);
957780eb
JB
5553 trace_btrfs_space_reservation(fs_info, "space_info",
5554 space_info->flags, num_bytes, 0);
5555 spin_unlock(&space_info->lock);
5556}
5557
5558/*
5559 * This is for newly allocated space that isn't accounted in
5560 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5561 * we use this helper.
5562 */
5563static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5564 struct btrfs_space_info *space_info,
5565 u64 num_bytes)
5566{
5567 struct reserve_ticket *ticket;
5568 struct list_head *head = &space_info->priority_tickets;
5569
5570again:
5571 while (!list_empty(head) && num_bytes) {
5572 ticket = list_first_entry(head, struct reserve_ticket,
5573 list);
5574 if (num_bytes >= ticket->bytes) {
5575 trace_btrfs_space_reservation(fs_info, "space_info",
5576 space_info->flags,
5577 ticket->bytes, 1);
5578 list_del_init(&ticket->list);
5579 num_bytes -= ticket->bytes;
9f9b8e8d 5580 update_bytes_may_use(space_info, ticket->bytes);
957780eb 5581 ticket->bytes = 0;
ce129655 5582 space_info->tickets_id++;
957780eb
JB
5583 wake_up(&ticket->wait);
5584 } else {
5585 trace_btrfs_space_reservation(fs_info, "space_info",
5586 space_info->flags,
5587 num_bytes, 1);
9f9b8e8d 5588 update_bytes_may_use(space_info, num_bytes);
957780eb
JB
5589 ticket->bytes -= num_bytes;
5590 num_bytes = 0;
5591 }
5592 }
5593
5594 if (num_bytes && head == &space_info->priority_tickets) {
5595 head = &space_info->tickets;
5596 goto again;
5597 }
5598}
5599
69fe2d75 5600static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5601 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5602 struct btrfs_block_rsv *dest, u64 num_bytes,
5603 u64 *qgroup_to_release_ret)
f0486c68
YZ
5604{
5605 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5606 u64 qgroup_to_release = 0;
69fe2d75 5607 u64 ret;
f0486c68
YZ
5608
5609 spin_lock(&block_rsv->lock);
ff6bc37e 5610 if (num_bytes == (u64)-1) {
f0486c68 5611 num_bytes = block_rsv->size;
ff6bc37e
QW
5612 qgroup_to_release = block_rsv->qgroup_rsv_size;
5613 }
f0486c68
YZ
5614 block_rsv->size -= num_bytes;
5615 if (block_rsv->reserved >= block_rsv->size) {
5616 num_bytes = block_rsv->reserved - block_rsv->size;
5617 block_rsv->reserved = block_rsv->size;
5618 block_rsv->full = 1;
5619 } else {
5620 num_bytes = 0;
5621 }
ff6bc37e
QW
5622 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5623 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5624 block_rsv->qgroup_rsv_size;
5625 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5626 } else {
5627 qgroup_to_release = 0;
5628 }
f0486c68
YZ
5629 spin_unlock(&block_rsv->lock);
5630
69fe2d75 5631 ret = num_bytes;
f0486c68
YZ
5632 if (num_bytes > 0) {
5633 if (dest) {
e9e22899
JB
5634 spin_lock(&dest->lock);
5635 if (!dest->full) {
5636 u64 bytes_to_add;
5637
5638 bytes_to_add = dest->size - dest->reserved;
5639 bytes_to_add = min(num_bytes, bytes_to_add);
5640 dest->reserved += bytes_to_add;
5641 if (dest->reserved >= dest->size)
5642 dest->full = 1;
5643 num_bytes -= bytes_to_add;
5644 }
5645 spin_unlock(&dest->lock);
5646 }
957780eb
JB
5647 if (num_bytes)
5648 space_info_add_old_bytes(fs_info, space_info,
5649 num_bytes);
9ed74f2d 5650 }
ff6bc37e
QW
5651 if (qgroup_to_release_ret)
5652 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5653 return ret;
f0486c68 5654}
4e06bdd6 5655
25d609f8
JB
5656int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5657 struct btrfs_block_rsv *dst, u64 num_bytes,
3a584174 5658 bool update_size)
f0486c68
YZ
5659{
5660 int ret;
9ed74f2d 5661
f0486c68
YZ
5662 ret = block_rsv_use_bytes(src, num_bytes);
5663 if (ret)
5664 return ret;
9ed74f2d 5665
25d609f8 5666 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5667 return 0;
5668}
5669
66d8f3dd 5670void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5671{
f0486c68
YZ
5672 memset(rsv, 0, sizeof(*rsv));
5673 spin_lock_init(&rsv->lock);
66d8f3dd 5674 rsv->type = type;
f0486c68
YZ
5675}
5676
69fe2d75
JB
5677void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5678 struct btrfs_block_rsv *rsv,
5679 unsigned short type)
5680{
5681 btrfs_init_block_rsv(rsv, type);
5682 rsv->space_info = __find_space_info(fs_info,
5683 BTRFS_BLOCK_GROUP_METADATA);
5684}
5685
2ff7e61e 5686struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5687 unsigned short type)
f0486c68
YZ
5688{
5689 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5690
f0486c68
YZ
5691 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5692 if (!block_rsv)
5693 return NULL;
9ed74f2d 5694
69fe2d75 5695 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5696 return block_rsv;
5697}
9ed74f2d 5698
2ff7e61e 5699void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5700 struct btrfs_block_rsv *rsv)
5701{
2aaa6655
JB
5702 if (!rsv)
5703 return;
2ff7e61e 5704 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5705 kfree(rsv);
9ed74f2d
JB
5706}
5707
08e007d2
MX
5708int btrfs_block_rsv_add(struct btrfs_root *root,
5709 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5710 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5711{
f0486c68 5712 int ret;
9ed74f2d 5713
f0486c68
YZ
5714 if (num_bytes == 0)
5715 return 0;
8bb8ab2e 5716
61b520a9 5717 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5a2cb25a 5718 if (!ret)
3a584174 5719 block_rsv_add_bytes(block_rsv, num_bytes, true);
9ed74f2d 5720
f0486c68 5721 return ret;
f0486c68 5722}
9ed74f2d 5723
2ff7e61e 5724int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5725{
5726 u64 num_bytes = 0;
f0486c68 5727 int ret = -ENOSPC;
9ed74f2d 5728
f0486c68
YZ
5729 if (!block_rsv)
5730 return 0;
9ed74f2d 5731
f0486c68 5732 spin_lock(&block_rsv->lock);
36ba022a
JB
5733 num_bytes = div_factor(block_rsv->size, min_factor);
5734 if (block_rsv->reserved >= num_bytes)
5735 ret = 0;
5736 spin_unlock(&block_rsv->lock);
9ed74f2d 5737
36ba022a
JB
5738 return ret;
5739}
5740
08e007d2
MX
5741int btrfs_block_rsv_refill(struct btrfs_root *root,
5742 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5743 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5744{
5745 u64 num_bytes = 0;
5746 int ret = -ENOSPC;
5747
5748 if (!block_rsv)
5749 return 0;
5750
5751 spin_lock(&block_rsv->lock);
5752 num_bytes = min_reserved;
13553e52 5753 if (block_rsv->reserved >= num_bytes)
f0486c68 5754 ret = 0;
13553e52 5755 else
f0486c68 5756 num_bytes -= block_rsv->reserved;
f0486c68 5757 spin_unlock(&block_rsv->lock);
13553e52 5758
f0486c68
YZ
5759 if (!ret)
5760 return 0;
5761
aa38a711 5762 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640 5763 if (!ret) {
3a584174 5764 block_rsv_add_bytes(block_rsv, num_bytes, false);
f0486c68 5765 return 0;
6a63209f 5766 }
9ed74f2d 5767
13553e52 5768 return ret;
f0486c68
YZ
5769}
5770
69fe2d75
JB
5771/**
5772 * btrfs_inode_rsv_refill - refill the inode block rsv.
5773 * @inode - the inode we are refilling.
5774 * @flush - the flusing restriction.
5775 *
5776 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5777 * block_rsv->size as the minimum size. We'll either refill the missing amount
5778 * or return if we already have enough space. This will also handle the resreve
5779 * tracepoint for the reserved amount.
5780 */
3f2dd7a0
QW
5781static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5782 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5783{
5784 struct btrfs_root *root = inode->root;
5785 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5786 u64 num_bytes = 0;
ff6bc37e 5787 u64 qgroup_num_bytes = 0;
69fe2d75
JB
5788 int ret = -ENOSPC;
5789
5790 spin_lock(&block_rsv->lock);
5791 if (block_rsv->reserved < block_rsv->size)
5792 num_bytes = block_rsv->size - block_rsv->reserved;
ff6bc37e
QW
5793 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5794 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5795 block_rsv->qgroup_rsv_reserved;
69fe2d75
JB
5796 spin_unlock(&block_rsv->lock);
5797
5798 if (num_bytes == 0)
5799 return 0;
5800
ff6bc37e 5801 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
43b18595
QW
5802 if (ret)
5803 return ret;
69fe2d75
JB
5804 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5805 if (!ret) {
3a584174 5806 block_rsv_add_bytes(block_rsv, num_bytes, false);
69fe2d75
JB
5807 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5808 btrfs_ino(inode), num_bytes, 1);
ff6bc37e
QW
5809
5810 /* Don't forget to increase qgroup_rsv_reserved */
5811 spin_lock(&block_rsv->lock);
5812 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5813 spin_unlock(&block_rsv->lock);
5814 } else
5815 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
69fe2d75
JB
5816 return ret;
5817}
5818
ba2c4d4e
JB
5819static u64 __btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5820 struct btrfs_block_rsv *block_rsv,
5821 u64 num_bytes, u64 *qgroup_to_release)
5822{
5823 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5824 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5825 struct btrfs_block_rsv *target = delayed_rsv;
5826
5827 if (target->full || target == block_rsv)
5828 target = global_rsv;
5829
5830 if (block_rsv->space_info != target->space_info)
5831 target = NULL;
5832
5833 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
5834 qgroup_to_release);
5835}
5836
5837void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5838 struct btrfs_block_rsv *block_rsv,
5839 u64 num_bytes)
5840{
5841 __btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
5842}
5843
69fe2d75
JB
5844/**
5845 * btrfs_inode_rsv_release - release any excessive reservation.
5846 * @inode - the inode we need to release from.
43b18595
QW
5847 * @qgroup_free - free or convert qgroup meta.
5848 * Unlike normal operation, qgroup meta reservation needs to know if we are
5849 * freeing qgroup reservation or just converting it into per-trans. Normally
5850 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5851 *
5852 * This is the same as btrfs_block_rsv_release, except that it handles the
5853 * tracepoint for the reservation.
5854 */
43b18595 5855static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5856{
5857 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75
JB
5858 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5859 u64 released = 0;
ff6bc37e 5860 u64 qgroup_to_release = 0;
69fe2d75
JB
5861
5862 /*
5863 * Since we statically set the block_rsv->size we just want to say we
5864 * are releasing 0 bytes, and then we'll just get the reservation over
5865 * the size free'd.
5866 */
ba2c4d4e
JB
5867 released = __btrfs_block_rsv_release(fs_info, block_rsv, 0,
5868 &qgroup_to_release);
69fe2d75
JB
5869 if (released > 0)
5870 trace_btrfs_space_reservation(fs_info, "delalloc",
5871 btrfs_ino(inode), released, 0);
43b18595 5872 if (qgroup_free)
ff6bc37e 5873 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5874 else
ff6bc37e
QW
5875 btrfs_qgroup_convert_reserved_meta(inode->root,
5876 qgroup_to_release);
69fe2d75
JB
5877}
5878
ba2c4d4e
JB
5879/**
5880 * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
5881 * @fs_info - the fs_info for our fs.
5882 * @nr - the number of items to drop.
5883 *
5884 * This drops the delayed ref head's count from the delayed refs rsv and frees
5885 * any excess reservation we had.
5886 */
5887void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
f0486c68 5888{
ba2c4d4e 5889 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
0b246afa 5890 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
ba2c4d4e
JB
5891 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, nr);
5892 u64 released = 0;
0b246afa 5893
ba2c4d4e
JB
5894 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv,
5895 num_bytes, NULL);
5896 if (released)
5897 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5898 0, released, 0);
6a63209f
JB
5899}
5900
8929ecfa
YZ
5901static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5902{
5903 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5904 struct btrfs_space_info *sinfo = block_rsv->space_info;
5905 u64 num_bytes;
6a63209f 5906
ae2e4728
JB
5907 /*
5908 * The global block rsv is based on the size of the extent tree, the
5909 * checksum tree and the root tree. If the fs is empty we want to set
5910 * it to a minimal amount for safety.
5911 */
5912 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5913 btrfs_root_used(&fs_info->csum_root->root_item) +
5914 btrfs_root_used(&fs_info->tree_root->root_item);
5915 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5916
8929ecfa 5917 spin_lock(&sinfo->lock);
1f699d38 5918 spin_lock(&block_rsv->lock);
4e06bdd6 5919
ee22184b 5920 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5921
fb4b10e5 5922 if (block_rsv->reserved < block_rsv->size) {
4136135b 5923 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5924 if (sinfo->total_bytes > num_bytes) {
5925 num_bytes = sinfo->total_bytes - num_bytes;
5926 num_bytes = min(num_bytes,
5927 block_rsv->size - block_rsv->reserved);
5928 block_rsv->reserved += num_bytes;
9f9b8e8d 5929 update_bytes_may_use(sinfo, num_bytes);
fb4b10e5
JB
5930 trace_btrfs_space_reservation(fs_info, "space_info",
5931 sinfo->flags, num_bytes,
5932 1);
5933 }
5934 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5935 num_bytes = block_rsv->reserved - block_rsv->size;
9f9b8e8d 5936 update_bytes_may_use(sinfo, -num_bytes);
8c2a3ca2 5937 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5938 sinfo->flags, num_bytes, 0);
8929ecfa 5939 block_rsv->reserved = block_rsv->size;
8929ecfa 5940 }
182608c8 5941
fb4b10e5
JB
5942 if (block_rsv->reserved == block_rsv->size)
5943 block_rsv->full = 1;
5944 else
5945 block_rsv->full = 0;
5946
8929ecfa 5947 spin_unlock(&block_rsv->lock);
1f699d38 5948 spin_unlock(&sinfo->lock);
6a63209f
JB
5949}
5950
f0486c68 5951static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5952{
f0486c68 5953 struct btrfs_space_info *space_info;
6a63209f 5954
f0486c68
YZ
5955 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5956 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5957
f0486c68 5958 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5959 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5960 fs_info->trans_block_rsv.space_info = space_info;
5961 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5962 fs_info->delayed_block_rsv.space_info = space_info;
ba2c4d4e 5963 fs_info->delayed_refs_rsv.space_info = space_info;
f0486c68 5964
ba2c4d4e
JB
5965 fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
5966 fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
8929ecfa
YZ
5967 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5968 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5969 if (fs_info->quota_root)
5970 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5971 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5972
8929ecfa 5973 update_global_block_rsv(fs_info);
6a63209f
JB
5974}
5975
8929ecfa 5976static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5977{
8c2a3ca2 5978 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 5979 (u64)-1, NULL);
8929ecfa
YZ
5980 WARN_ON(fs_info->trans_block_rsv.size > 0);
5981 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5982 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5983 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5984 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5985 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
ba2c4d4e
JB
5986 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
5987 WARN_ON(fs_info->delayed_refs_rsv.size > 0);
fcb80c2a
JB
5988}
5989
ba2c4d4e
JB
5990/*
5991 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
5992 * @trans - the trans that may have generated delayed refs
5993 *
5994 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
5995 * it'll calculate the additional size and add it to the delayed_refs_rsv.
5996 */
5997void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
5998{
5999 struct btrfs_fs_info *fs_info = trans->fs_info;
6000 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
6001 u64 num_bytes;
6002
6003 if (!trans->delayed_ref_updates)
6004 return;
6005
6006 num_bytes = btrfs_calc_trans_metadata_size(fs_info,
6007 trans->delayed_ref_updates);
6008 spin_lock(&delayed_rsv->lock);
6009 delayed_rsv->size += num_bytes;
6010 delayed_rsv->full = 0;
6011 spin_unlock(&delayed_rsv->lock);
6012 trans->delayed_ref_updates = 0;
6013}
6a63209f 6014
4fbcdf66
FM
6015/*
6016 * To be called after all the new block groups attached to the transaction
6017 * handle have been created (btrfs_create_pending_block_groups()).
6018 */
6019void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
6020{
64b63580 6021 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
6022
6023 if (!trans->chunk_bytes_reserved)
6024 return;
6025
6026 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
6027
6028 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 6029 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
6030 trans->chunk_bytes_reserved = 0;
6031}
6032
d5c12070
MX
6033/*
6034 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
6035 * root: the root of the parent directory
6036 * rsv: block reservation
6037 * items: the number of items that we need do reservation
a5b7f429 6038 * use_global_rsv: allow fallback to the global block reservation
d5c12070
MX
6039 *
6040 * This function is used to reserve the space for snapshot/subvolume
6041 * creation and deletion. Those operations are different with the
6042 * common file/directory operations, they change two fs/file trees
6043 * and root tree, the number of items that the qgroup reserves is
6044 * different with the free space reservation. So we can not use
01327610 6045 * the space reservation mechanism in start_transaction().
d5c12070
MX
6046 */
6047int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
a5b7f429 6048 struct btrfs_block_rsv *rsv, int items,
ee3441b4 6049 bool use_global_rsv)
a22285a6 6050{
a5b7f429 6051 u64 qgroup_num_bytes = 0;
d5c12070
MX
6052 u64 num_bytes;
6053 int ret;
0b246afa
JM
6054 struct btrfs_fs_info *fs_info = root->fs_info;
6055 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 6056
0b246afa 6057 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 6058 /* One for parent inode, two for dir entries */
a5b7f429
LF
6059 qgroup_num_bytes = 3 * fs_info->nodesize;
6060 ret = btrfs_qgroup_reserve_meta_prealloc(root,
6061 qgroup_num_bytes, true);
d5c12070
MX
6062 if (ret)
6063 return ret;
d5c12070
MX
6064 }
6065
0b246afa
JM
6066 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6067 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
6068 BTRFS_BLOCK_GROUP_METADATA);
6069 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6070 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
6071
6072 if (ret == -ENOSPC && use_global_rsv)
3a584174 6073 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
ee3441b4 6074
a5b7f429
LF
6075 if (ret && qgroup_num_bytes)
6076 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
d5c12070
MX
6077
6078 return ret;
6079}
6080
2ff7e61e 6081void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 6082 struct btrfs_block_rsv *rsv)
d5c12070 6083{
2ff7e61e 6084 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
6085}
6086
69fe2d75
JB
6087static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6088 struct btrfs_inode *inode)
9e0baf60 6089{
69fe2d75
JB
6090 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6091 u64 reserve_size = 0;
ff6bc37e 6092 u64 qgroup_rsv_size = 0;
69fe2d75
JB
6093 u64 csum_leaves;
6094 unsigned outstanding_extents;
9e0baf60 6095
69fe2d75
JB
6096 lockdep_assert_held(&inode->lock);
6097 outstanding_extents = inode->outstanding_extents;
6098 if (outstanding_extents)
6099 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6100 outstanding_extents + 1);
6101 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6102 inode->csum_bytes);
6103 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6104 csum_leaves);
ff6bc37e
QW
6105 /*
6106 * For qgroup rsv, the calculation is very simple:
6107 * account one nodesize for each outstanding extent
6108 *
6109 * This is overestimating in most cases.
6110 */
6111 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
9e0baf60 6112
69fe2d75
JB
6113 spin_lock(&block_rsv->lock);
6114 block_rsv->size = reserve_size;
ff6bc37e 6115 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 6116 spin_unlock(&block_rsv->lock);
0ca1f7ce 6117}
c146afad 6118
9f3db423 6119int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6120{
3ffbd68c 6121 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75 6122 unsigned nr_extents;
08e007d2 6123 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6124 int ret = 0;
c64c2bd8 6125 bool delalloc_lock = true;
6324fbf3 6126
c64c2bd8
JB
6127 /* If we are a free space inode we need to not flush since we will be in
6128 * the middle of a transaction commit. We also don't need the delalloc
6129 * mutex since we won't race with anybody. We need this mostly to make
6130 * lockdep shut its filthy mouth.
bac357dc
JB
6131 *
6132 * If we have a transaction open (can happen if we call truncate_block
6133 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6134 */
6135 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6136 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6137 delalloc_lock = false;
da07d4ab
NB
6138 } else {
6139 if (current->journal_info)
6140 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 6141
da07d4ab
NB
6142 if (btrfs_transaction_in_commit(fs_info))
6143 schedule_timeout(1);
6144 }
ec44a35c 6145
c64c2bd8 6146 if (delalloc_lock)
9f3db423 6147 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6148
0b246afa 6149 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6150
6151 /* Add our new extents and calculate the new rsv size. */
9f3db423 6152 spin_lock(&inode->lock);
69fe2d75 6153 nr_extents = count_max_extents(num_bytes);
8b62f87b 6154 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6155 inode->csum_bytes += num_bytes;
6156 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6157 spin_unlock(&inode->lock);
57a45ced 6158
69fe2d75 6159 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 6160 if (unlikely(ret))
88e081bf 6161 goto out_fail;
25179201 6162
c64c2bd8 6163 if (delalloc_lock)
9f3db423 6164 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6165 return 0;
88e081bf
WS
6166
6167out_fail:
9f3db423 6168 spin_lock(&inode->lock);
8b62f87b
JB
6169 nr_extents = count_max_extents(num_bytes);
6170 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6171 inode->csum_bytes -= num_bytes;
6172 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6173 spin_unlock(&inode->lock);
88e081bf 6174
43b18595 6175 btrfs_inode_rsv_release(inode, true);
88e081bf 6176 if (delalloc_lock)
9f3db423 6177 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6178 return ret;
0ca1f7ce
YZ
6179}
6180
7709cde3
JB
6181/**
6182 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6183 * @inode: the inode to release the reservation for.
6184 * @num_bytes: the number of bytes we are releasing.
43b18595 6185 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
6186 *
6187 * This will release the metadata reservation for an inode. This can be called
6188 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6189 * reservations, or on error for the same reason.
7709cde3 6190 */
43b18595
QW
6191void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6192 bool qgroup_free)
0ca1f7ce 6193{
3ffbd68c 6194 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0ca1f7ce 6195
0b246afa 6196 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6197 spin_lock(&inode->lock);
69fe2d75
JB
6198 inode->csum_bytes -= num_bytes;
6199 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6200 spin_unlock(&inode->lock);
0ca1f7ce 6201
0b246afa 6202 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6203 return;
6204
43b18595 6205 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
6206}
6207
8b62f87b
JB
6208/**
6209 * btrfs_delalloc_release_extents - release our outstanding_extents
6210 * @inode: the inode to balance the reservation for.
6211 * @num_bytes: the number of bytes we originally reserved with
43b18595 6212 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
6213 *
6214 * When we reserve space we increase outstanding_extents for the extents we may
6215 * add. Once we've set the range as delalloc or created our ordered extents we
6216 * have outstanding_extents to track the real usage, so we use this to free our
6217 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6218 * with btrfs_delalloc_reserve_metadata.
6219 */
43b18595
QW
6220void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6221 bool qgroup_free)
8b62f87b 6222{
3ffbd68c 6223 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8b62f87b 6224 unsigned num_extents;
8b62f87b
JB
6225
6226 spin_lock(&inode->lock);
6227 num_extents = count_max_extents(num_bytes);
6228 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6229 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6230 spin_unlock(&inode->lock);
6231
8b62f87b
JB
6232 if (btrfs_is_testing(fs_info))
6233 return;
6234
43b18595 6235 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
6236}
6237
1ada3a62 6238/**
7cf5b976 6239 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6240 * delalloc
6241 * @inode: inode we're writing to
6242 * @start: start range we are writing to
6243 * @len: how long the range we are writing to
364ecf36
QW
6244 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6245 * current reservation.
1ada3a62 6246 *
1ada3a62
QW
6247 * This will do the following things
6248 *
6249 * o reserve space in data space info for num bytes
6250 * and reserve precious corresponding qgroup space
6251 * (Done in check_data_free_space)
6252 *
6253 * o reserve space for metadata space, based on the number of outstanding
6254 * extents and how much csums will be needed
6255 * also reserve metadata space in a per root over-reserve method.
6256 * o add to the inodes->delalloc_bytes
6257 * o add it to the fs_info's delalloc inodes list.
6258 * (Above 3 all done in delalloc_reserve_metadata)
6259 *
6260 * Return 0 for success
6261 * Return <0 for error(-ENOSPC or -EQUOT)
6262 */
364ecf36
QW
6263int btrfs_delalloc_reserve_space(struct inode *inode,
6264 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6265{
6266 int ret;
6267
364ecf36 6268 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6269 if (ret < 0)
6270 return ret;
9f3db423 6271 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6272 if (ret < 0)
bc42bda2 6273 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6274 return ret;
6275}
6276
7709cde3 6277/**
7cf5b976 6278 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6279 * @inode: inode we're releasing space for
6280 * @start: start position of the space already reserved
6281 * @len: the len of the space already reserved
8b62f87b 6282 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6283 *
6284 * This function will release the metadata space that was not used and will
6285 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6286 * list if there are no delalloc bytes left.
6287 * Also it will handle the qgroup reserved space.
6288 */
bc42bda2 6289void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6290 struct extent_changeset *reserved,
43b18595 6291 u64 start, u64 len, bool qgroup_free)
1ada3a62 6292{
43b18595 6293 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6294 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6295}
6296
ce93ec54 6297static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6298 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6299 u64 num_bytes, int alloc)
9078a3e1 6300{
0af3d00b 6301 struct btrfs_block_group_cache *cache = NULL;
db94535d 6302 u64 total = num_bytes;
9078a3e1 6303 u64 old_val;
db94535d 6304 u64 byte_in_group;
0af3d00b 6305 int factor;
ba2c4d4e 6306 int ret = 0;
3e1ad54f 6307
5d4f98a2 6308 /* block accounting for super block */
eb73c1b7 6309 spin_lock(&info->delalloc_root_lock);
6c41761f 6310 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6311 if (alloc)
6312 old_val += num_bytes;
6313 else
6314 old_val -= num_bytes;
6c41761f 6315 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6316 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6317
d397712b 6318 while (total) {
db94535d 6319 cache = btrfs_lookup_block_group(info, bytenr);
ba2c4d4e
JB
6320 if (!cache) {
6321 ret = -ENOENT;
6322 break;
6323 }
46df06b8
DS
6324 factor = btrfs_bg_type_to_factor(cache->flags);
6325
9d66e233
JB
6326 /*
6327 * If this block group has free space cache written out, we
6328 * need to make sure to load it if we are removing space. This
6329 * is because we need the unpinning stage to actually add the
6330 * space back to the block group, otherwise we will leak space.
6331 */
6332 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6333 cache_block_group(cache, 1);
0af3d00b 6334
db94535d
CM
6335 byte_in_group = bytenr - cache->key.objectid;
6336 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6337
25179201 6338 spin_lock(&cache->space_info->lock);
c286ac48 6339 spin_lock(&cache->lock);
0af3d00b 6340
6202df69 6341 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6342 cache->disk_cache_state < BTRFS_DC_CLEAR)
6343 cache->disk_cache_state = BTRFS_DC_CLEAR;
6344
9078a3e1 6345 old_val = btrfs_block_group_used(&cache->item);
db94535d 6346 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6347 if (alloc) {
db94535d 6348 old_val += num_bytes;
11833d66
YZ
6349 btrfs_set_block_group_used(&cache->item, old_val);
6350 cache->reserved -= num_bytes;
11833d66 6351 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6352 cache->space_info->bytes_used += num_bytes;
6353 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6354 spin_unlock(&cache->lock);
25179201 6355 spin_unlock(&cache->space_info->lock);
cd1bc465 6356 } else {
db94535d 6357 old_val -= num_bytes;
ae0ab003
FM
6358 btrfs_set_block_group_used(&cache->item, old_val);
6359 cache->pinned += num_bytes;
e2907c1a 6360 update_bytes_pinned(cache->space_info, num_bytes);
ae0ab003
FM
6361 cache->space_info->bytes_used -= num_bytes;
6362 cache->space_info->disk_used -= num_bytes * factor;
6363 spin_unlock(&cache->lock);
6364 spin_unlock(&cache->space_info->lock);
47ab2a6c 6365
0b246afa 6366 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6367 cache->space_info->flags,
6368 num_bytes, 1);
dec59fa3
EL
6369 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6370 num_bytes,
6371 BTRFS_TOTAL_BYTES_PINNED_BATCH);
ae0ab003
FM
6372 set_extent_dirty(info->pinned_extents,
6373 bytenr, bytenr + num_bytes - 1,
6374 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6375 }
1bbc621e
CM
6376
6377 spin_lock(&trans->transaction->dirty_bgs_lock);
6378 if (list_empty(&cache->dirty_list)) {
6379 list_add_tail(&cache->dirty_list,
6380 &trans->transaction->dirty_bgs);
bece2e82 6381 trans->transaction->num_dirty_bgs++;
ba2c4d4e 6382 trans->delayed_ref_updates++;
1bbc621e
CM
6383 btrfs_get_block_group(cache);
6384 }
6385 spin_unlock(&trans->transaction->dirty_bgs_lock);
6386
036a9348
FM
6387 /*
6388 * No longer have used bytes in this block group, queue it for
6389 * deletion. We do this after adding the block group to the
6390 * dirty list to avoid races between cleaner kthread and space
6391 * cache writeout.
6392 */
031f24da
QW
6393 if (!alloc && old_val == 0)
6394 btrfs_mark_bg_unused(cache);
036a9348 6395
fa9c0d79 6396 btrfs_put_block_group(cache);
db94535d
CM
6397 total -= num_bytes;
6398 bytenr += num_bytes;
9078a3e1 6399 }
ba2c4d4e
JB
6400
6401 /* Modified block groups are accounted for in the delayed_refs_rsv. */
6402 btrfs_update_delayed_refs_rsv(trans);
6403 return ret;
9078a3e1 6404}
6324fbf3 6405
2ff7e61e 6406static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6407{
0f9dd46c 6408 struct btrfs_block_group_cache *cache;
d2fb3437 6409 u64 bytenr;
0f9dd46c 6410
0b246afa
JM
6411 spin_lock(&fs_info->block_group_cache_lock);
6412 bytenr = fs_info->first_logical_byte;
6413 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6414
6415 if (bytenr < (u64)-1)
6416 return bytenr;
6417
0b246afa 6418 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6419 if (!cache)
a061fc8d 6420 return 0;
0f9dd46c 6421
d2fb3437 6422 bytenr = cache->key.objectid;
fa9c0d79 6423 btrfs_put_block_group(cache);
d2fb3437
YZ
6424
6425 return bytenr;
a061fc8d
CM
6426}
6427
2ff7e61e 6428static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6429 struct btrfs_block_group_cache *cache,
6430 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6431{
11833d66
YZ
6432 spin_lock(&cache->space_info->lock);
6433 spin_lock(&cache->lock);
6434 cache->pinned += num_bytes;
e2907c1a 6435 update_bytes_pinned(cache->space_info, num_bytes);
11833d66
YZ
6436 if (reserved) {
6437 cache->reserved -= num_bytes;
6438 cache->space_info->bytes_reserved -= num_bytes;
6439 }
6440 spin_unlock(&cache->lock);
6441 spin_unlock(&cache->space_info->lock);
68b38550 6442
0b246afa 6443 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6444 cache->space_info->flags, num_bytes, 1);
dec59fa3
EL
6445 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6446 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
0b246afa 6447 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6448 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6449 return 0;
6450}
68b38550 6451
f0486c68
YZ
6452/*
6453 * this function must be called within transaction
6454 */
2ff7e61e 6455int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6456 u64 bytenr, u64 num_bytes, int reserved)
6457{
6458 struct btrfs_block_group_cache *cache;
68b38550 6459
0b246afa 6460 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6461 BUG_ON(!cache); /* Logic error */
f0486c68 6462
2ff7e61e 6463 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6464
6465 btrfs_put_block_group(cache);
11833d66
YZ
6466 return 0;
6467}
6468
f0486c68 6469/*
e688b725
CM
6470 * this function must be called within transaction
6471 */
2ff7e61e 6472int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6473 u64 bytenr, u64 num_bytes)
6474{
6475 struct btrfs_block_group_cache *cache;
b50c6e25 6476 int ret;
e688b725 6477
0b246afa 6478 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6479 if (!cache)
6480 return -EINVAL;
e688b725
CM
6481
6482 /*
6483 * pull in the free space cache (if any) so that our pin
6484 * removes the free space from the cache. We have load_only set
6485 * to one because the slow code to read in the free extents does check
6486 * the pinned extents.
6487 */
f6373bf3 6488 cache_block_group(cache, 1);
e688b725 6489
2ff7e61e 6490 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6491
6492 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6493 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6494 btrfs_put_block_group(cache);
b50c6e25 6495 return ret;
e688b725
CM
6496}
6497
2ff7e61e
JM
6498static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6499 u64 start, u64 num_bytes)
8c2a1a30
JB
6500{
6501 int ret;
6502 struct btrfs_block_group_cache *block_group;
6503 struct btrfs_caching_control *caching_ctl;
6504
0b246afa 6505 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6506 if (!block_group)
6507 return -EINVAL;
6508
6509 cache_block_group(block_group, 0);
6510 caching_ctl = get_caching_control(block_group);
6511
6512 if (!caching_ctl) {
6513 /* Logic error */
6514 BUG_ON(!block_group_cache_done(block_group));
6515 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6516 } else {
6517 mutex_lock(&caching_ctl->mutex);
6518
6519 if (start >= caching_ctl->progress) {
2ff7e61e 6520 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6521 } else if (start + num_bytes <= caching_ctl->progress) {
6522 ret = btrfs_remove_free_space(block_group,
6523 start, num_bytes);
6524 } else {
6525 num_bytes = caching_ctl->progress - start;
6526 ret = btrfs_remove_free_space(block_group,
6527 start, num_bytes);
6528 if (ret)
6529 goto out_lock;
6530
6531 num_bytes = (start + num_bytes) -
6532 caching_ctl->progress;
6533 start = caching_ctl->progress;
2ff7e61e 6534 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6535 }
6536out_lock:
6537 mutex_unlock(&caching_ctl->mutex);
6538 put_caching_control(caching_ctl);
6539 }
6540 btrfs_put_block_group(block_group);
6541 return ret;
6542}
6543
2ff7e61e 6544int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6545 struct extent_buffer *eb)
6546{
6547 struct btrfs_file_extent_item *item;
6548 struct btrfs_key key;
6549 int found_type;
6550 int i;
b89311ef 6551 int ret = 0;
8c2a1a30 6552
2ff7e61e 6553 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6554 return 0;
6555
6556 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6557 btrfs_item_key_to_cpu(eb, &key, i);
6558 if (key.type != BTRFS_EXTENT_DATA_KEY)
6559 continue;
6560 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6561 found_type = btrfs_file_extent_type(eb, item);
6562 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6563 continue;
6564 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6565 continue;
6566 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6567 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
b89311ef
GJ
6568 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6569 if (ret)
6570 break;
8c2a1a30
JB
6571 }
6572
b89311ef 6573 return ret;
8c2a1a30
JB
6574}
6575
9cfa3e34
FM
6576static void
6577btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6578{
6579 atomic_inc(&bg->reservations);
6580}
6581
6582void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6583 const u64 start)
6584{
6585 struct btrfs_block_group_cache *bg;
6586
6587 bg = btrfs_lookup_block_group(fs_info, start);
6588 ASSERT(bg);
6589 if (atomic_dec_and_test(&bg->reservations))
4625956a 6590 wake_up_var(&bg->reservations);
9cfa3e34
FM
6591 btrfs_put_block_group(bg);
6592}
6593
9cfa3e34
FM
6594void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6595{
6596 struct btrfs_space_info *space_info = bg->space_info;
6597
6598 ASSERT(bg->ro);
6599
6600 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6601 return;
6602
6603 /*
6604 * Our block group is read only but before we set it to read only,
6605 * some task might have had allocated an extent from it already, but it
6606 * has not yet created a respective ordered extent (and added it to a
6607 * root's list of ordered extents).
6608 * Therefore wait for any task currently allocating extents, since the
6609 * block group's reservations counter is incremented while a read lock
6610 * on the groups' semaphore is held and decremented after releasing
6611 * the read access on that semaphore and creating the ordered extent.
6612 */
6613 down_write(&space_info->groups_sem);
6614 up_write(&space_info->groups_sem);
6615
4625956a 6616 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6617}
6618
fb25e914 6619/**
4824f1f4 6620 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6621 * @cache: The cache we are manipulating
18513091
WX
6622 * @ram_bytes: The number of bytes of file content, and will be same to
6623 * @num_bytes except for the compress path.
fb25e914 6624 * @num_bytes: The number of bytes in question
e570fd27 6625 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6626 *
745699ef
XW
6627 * This is called by the allocator when it reserves space. If this is a
6628 * reservation and the block group has become read only we cannot make the
6629 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6630 */
4824f1f4 6631static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6632 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6633{
fb25e914 6634 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6635 int ret = 0;
79787eaa 6636
fb25e914
JB
6637 spin_lock(&space_info->lock);
6638 spin_lock(&cache->lock);
4824f1f4
WX
6639 if (cache->ro) {
6640 ret = -EAGAIN;
fb25e914 6641 } else {
4824f1f4
WX
6642 cache->reserved += num_bytes;
6643 space_info->bytes_reserved += num_bytes;
9f9b8e8d 6644 update_bytes_may_use(space_info, -ram_bytes);
e570fd27 6645 if (delalloc)
4824f1f4 6646 cache->delalloc_bytes += num_bytes;
324ae4df 6647 }
fb25e914
JB
6648 spin_unlock(&cache->lock);
6649 spin_unlock(&space_info->lock);
f0486c68 6650 return ret;
324ae4df 6651}
9078a3e1 6652
4824f1f4
WX
6653/**
6654 * btrfs_free_reserved_bytes - update the block_group and space info counters
6655 * @cache: The cache we are manipulating
6656 * @num_bytes: The number of bytes in question
6657 * @delalloc: The blocks are allocated for the delalloc write
6658 *
6659 * This is called by somebody who is freeing space that was never actually used
6660 * on disk. For example if you reserve some space for a new leaf in transaction
6661 * A and before transaction A commits you free that leaf, you call this with
6662 * reserve set to 0 in order to clear the reservation.
6663 */
6664
556f3ca8 6665static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6666 u64 num_bytes, int delalloc)
4824f1f4
WX
6667{
6668 struct btrfs_space_info *space_info = cache->space_info;
4824f1f4
WX
6669
6670 spin_lock(&space_info->lock);
6671 spin_lock(&cache->lock);
6672 if (cache->ro)
6673 space_info->bytes_readonly += num_bytes;
6674 cache->reserved -= num_bytes;
6675 space_info->bytes_reserved -= num_bytes;
21a94f7a 6676 space_info->max_extent_size = 0;
4824f1f4
WX
6677
6678 if (delalloc)
6679 cache->delalloc_bytes -= num_bytes;
6680 spin_unlock(&cache->lock);
6681 spin_unlock(&space_info->lock);
4824f1f4 6682}
8b74c03e 6683void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6684{
11833d66
YZ
6685 struct btrfs_caching_control *next;
6686 struct btrfs_caching_control *caching_ctl;
6687 struct btrfs_block_group_cache *cache;
e8569813 6688
9e351cc8 6689 down_write(&fs_info->commit_root_sem);
25179201 6690
11833d66
YZ
6691 list_for_each_entry_safe(caching_ctl, next,
6692 &fs_info->caching_block_groups, list) {
6693 cache = caching_ctl->block_group;
6694 if (block_group_cache_done(cache)) {
6695 cache->last_byte_to_unpin = (u64)-1;
6696 list_del_init(&caching_ctl->list);
6697 put_caching_control(caching_ctl);
e8569813 6698 } else {
11833d66 6699 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6700 }
e8569813 6701 }
11833d66
YZ
6702
6703 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6704 fs_info->pinned_extents = &fs_info->freed_extents[1];
6705 else
6706 fs_info->pinned_extents = &fs_info->freed_extents[0];
6707
9e351cc8 6708 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6709
6710 update_global_block_rsv(fs_info);
e8569813
ZY
6711}
6712
c759c4e1
JB
6713/*
6714 * Returns the free cluster for the given space info and sets empty_cluster to
6715 * what it should be based on the mount options.
6716 */
6717static struct btrfs_free_cluster *
2ff7e61e
JM
6718fetch_cluster_info(struct btrfs_fs_info *fs_info,
6719 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6720{
6721 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6722
6723 *empty_cluster = 0;
6724 if (btrfs_mixed_space_info(space_info))
6725 return ret;
6726
c759c4e1 6727 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6728 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6729 if (btrfs_test_opt(fs_info, SSD))
6730 *empty_cluster = SZ_2M;
6731 else
ee22184b 6732 *empty_cluster = SZ_64K;
583b7231
HK
6733 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6734 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6735 *empty_cluster = SZ_2M;
0b246afa 6736 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6737 }
6738
6739 return ret;
6740}
6741
2ff7e61e
JM
6742static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6743 u64 start, u64 end,
678886bd 6744 const bool return_free_space)
ccd467d6 6745{
11833d66 6746 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6747 struct btrfs_space_info *space_info;
6748 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6749 struct btrfs_free_cluster *cluster = NULL;
11833d66 6750 u64 len;
c759c4e1
JB
6751 u64 total_unpinned = 0;
6752 u64 empty_cluster = 0;
7b398f8e 6753 bool readonly;
ccd467d6 6754
11833d66 6755 while (start <= end) {
7b398f8e 6756 readonly = false;
11833d66
YZ
6757 if (!cache ||
6758 start >= cache->key.objectid + cache->key.offset) {
6759 if (cache)
6760 btrfs_put_block_group(cache);
c759c4e1 6761 total_unpinned = 0;
11833d66 6762 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6763 BUG_ON(!cache); /* Logic error */
c759c4e1 6764
2ff7e61e 6765 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6766 cache->space_info,
6767 &empty_cluster);
6768 empty_cluster <<= 1;
11833d66
YZ
6769 }
6770
6771 len = cache->key.objectid + cache->key.offset - start;
6772 len = min(len, end + 1 - start);
6773
6774 if (start < cache->last_byte_to_unpin) {
6775 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6776 if (return_free_space)
6777 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6778 }
6779
f0486c68 6780 start += len;
c759c4e1 6781 total_unpinned += len;
7b398f8e 6782 space_info = cache->space_info;
f0486c68 6783
c759c4e1
JB
6784 /*
6785 * If this space cluster has been marked as fragmented and we've
6786 * unpinned enough in this block group to potentially allow a
6787 * cluster to be created inside of it go ahead and clear the
6788 * fragmented check.
6789 */
6790 if (cluster && cluster->fragmented &&
6791 total_unpinned > empty_cluster) {
6792 spin_lock(&cluster->lock);
6793 cluster->fragmented = 0;
6794 spin_unlock(&cluster->lock);
6795 }
6796
7b398f8e 6797 spin_lock(&space_info->lock);
11833d66
YZ
6798 spin_lock(&cache->lock);
6799 cache->pinned -= len;
e2907c1a 6800 update_bytes_pinned(space_info, -len);
c51e7bb1
JB
6801
6802 trace_btrfs_space_reservation(fs_info, "pinned",
6803 space_info->flags, len, 0);
4f4db217 6804 space_info->max_extent_size = 0;
dec59fa3
EL
6805 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6806 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
7b398f8e
JB
6807 if (cache->ro) {
6808 space_info->bytes_readonly += len;
6809 readonly = true;
6810 }
11833d66 6811 spin_unlock(&cache->lock);
957780eb
JB
6812 if (!readonly && return_free_space &&
6813 global_rsv->space_info == space_info) {
6814 u64 to_add = len;
92ac58ec 6815
7b398f8e
JB
6816 spin_lock(&global_rsv->lock);
6817 if (!global_rsv->full) {
957780eb
JB
6818 to_add = min(len, global_rsv->size -
6819 global_rsv->reserved);
6820 global_rsv->reserved += to_add;
9f9b8e8d 6821 update_bytes_may_use(space_info, to_add);
7b398f8e
JB
6822 if (global_rsv->reserved >= global_rsv->size)
6823 global_rsv->full = 1;
957780eb
JB
6824 trace_btrfs_space_reservation(fs_info,
6825 "space_info",
6826 space_info->flags,
6827 to_add, 1);
6828 len -= to_add;
7b398f8e
JB
6829 }
6830 spin_unlock(&global_rsv->lock);
957780eb
JB
6831 /* Add to any tickets we may have */
6832 if (len)
6833 space_info_add_new_bytes(fs_info, space_info,
6834 len);
7b398f8e
JB
6835 }
6836 spin_unlock(&space_info->lock);
ccd467d6 6837 }
11833d66
YZ
6838
6839 if (cache)
6840 btrfs_put_block_group(cache);
ccd467d6
CM
6841 return 0;
6842}
6843
5ead2dd0 6844int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6845{
5ead2dd0 6846 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6847 struct btrfs_block_group_cache *block_group, *tmp;
6848 struct list_head *deleted_bgs;
11833d66 6849 struct extent_io_tree *unpin;
1a5bc167
CM
6850 u64 start;
6851 u64 end;
a28ec197 6852 int ret;
a28ec197 6853
11833d66
YZ
6854 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6855 unpin = &fs_info->freed_extents[1];
6856 else
6857 unpin = &fs_info->freed_extents[0];
6858
e33e17ee 6859 while (!trans->aborted) {
0e6ec385
FM
6860 struct extent_state *cached_state = NULL;
6861
d4b450cd 6862 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6863 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 6864 EXTENT_DIRTY, &cached_state);
d4b450cd
FM
6865 if (ret) {
6866 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6867 break;
d4b450cd 6868 }
1f3c79a2 6869
0b246afa 6870 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6871 ret = btrfs_discard_extent(fs_info, start,
5378e607 6872 end + 1 - start, NULL);
1f3c79a2 6873
0e6ec385 6874 clear_extent_dirty(unpin, start, end, &cached_state);
2ff7e61e 6875 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6876 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
0e6ec385 6877 free_extent_state(cached_state);
b9473439 6878 cond_resched();
a28ec197 6879 }
817d52f8 6880
e33e17ee
JM
6881 /*
6882 * Transaction is finished. We don't need the lock anymore. We
6883 * do need to clean up the block groups in case of a transaction
6884 * abort.
6885 */
6886 deleted_bgs = &trans->transaction->deleted_bgs;
6887 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6888 u64 trimmed = 0;
6889
6890 ret = -EROFS;
6891 if (!trans->aborted)
2ff7e61e 6892 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6893 block_group->key.objectid,
6894 block_group->key.offset,
6895 &trimmed);
6896
6897 list_del_init(&block_group->bg_list);
6898 btrfs_put_block_group_trimming(block_group);
6899 btrfs_put_block_group(block_group);
6900
6901 if (ret) {
6902 const char *errstr = btrfs_decode_error(ret);
6903 btrfs_warn(fs_info,
913e1535 6904 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6905 ret, errstr);
6906 }
6907 }
6908
e20d96d6
CM
6909 return 0;
6910}
6911
5d4f98a2 6912static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
6913 struct btrfs_delayed_ref_node *node, u64 parent,
6914 u64 root_objectid, u64 owner_objectid,
6915 u64 owner_offset, int refs_to_drop,
6916 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6917{
e72cb923 6918 struct btrfs_fs_info *info = trans->fs_info;
e2fa7227 6919 struct btrfs_key key;
5d4f98a2 6920 struct btrfs_path *path;
1261ec42 6921 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6922 struct extent_buffer *leaf;
5d4f98a2
YZ
6923 struct btrfs_extent_item *ei;
6924 struct btrfs_extent_inline_ref *iref;
a28ec197 6925 int ret;
5d4f98a2 6926 int is_data;
952fccac
CM
6927 int extent_slot = 0;
6928 int found_extent = 0;
6929 int num_to_del = 1;
5d4f98a2
YZ
6930 u32 item_size;
6931 u64 refs;
c682f9b3
QW
6932 u64 bytenr = node->bytenr;
6933 u64 num_bytes = node->num_bytes;
fcebe456 6934 int last_ref = 0;
0b246afa 6935 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6936
5caf2a00 6937 path = btrfs_alloc_path();
54aa1f4d
CM
6938 if (!path)
6939 return -ENOMEM;
5f26f772 6940
e4058b54 6941 path->reada = READA_FORWARD;
b9473439 6942 path->leave_spinning = 1;
5d4f98a2
YZ
6943
6944 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6945 BUG_ON(!is_data && refs_to_drop != 1);
6946
3173a18f 6947 if (is_data)
897ca819 6948 skinny_metadata = false;
3173a18f 6949
fbe4801b
NB
6950 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6951 parent, root_objectid, owner_objectid,
5d4f98a2 6952 owner_offset);
7bb86316 6953 if (ret == 0) {
952fccac 6954 extent_slot = path->slots[0];
5d4f98a2
YZ
6955 while (extent_slot >= 0) {
6956 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6957 extent_slot);
5d4f98a2 6958 if (key.objectid != bytenr)
952fccac 6959 break;
5d4f98a2
YZ
6960 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6961 key.offset == num_bytes) {
952fccac
CM
6962 found_extent = 1;
6963 break;
6964 }
3173a18f
JB
6965 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6966 key.offset == owner_objectid) {
6967 found_extent = 1;
6968 break;
6969 }
952fccac
CM
6970 if (path->slots[0] - extent_slot > 5)
6971 break;
5d4f98a2 6972 extent_slot--;
952fccac 6973 }
a79865c6 6974
31840ae1 6975 if (!found_extent) {
5d4f98a2 6976 BUG_ON(iref);
87cc7a8a 6977 ret = remove_extent_backref(trans, path, NULL,
87bde3cd 6978 refs_to_drop,
fcebe456 6979 is_data, &last_ref);
005d6427 6980 if (ret) {
66642832 6981 btrfs_abort_transaction(trans, ret);
005d6427
DS
6982 goto out;
6983 }
b3b4aa74 6984 btrfs_release_path(path);
b9473439 6985 path->leave_spinning = 1;
5d4f98a2
YZ
6986
6987 key.objectid = bytenr;
6988 key.type = BTRFS_EXTENT_ITEM_KEY;
6989 key.offset = num_bytes;
6990
3173a18f
JB
6991 if (!is_data && skinny_metadata) {
6992 key.type = BTRFS_METADATA_ITEM_KEY;
6993 key.offset = owner_objectid;
6994 }
6995
31840ae1
ZY
6996 ret = btrfs_search_slot(trans, extent_root,
6997 &key, path, -1, 1);
3173a18f
JB
6998 if (ret > 0 && skinny_metadata && path->slots[0]) {
6999 /*
7000 * Couldn't find our skinny metadata item,
7001 * see if we have ye olde extent item.
7002 */
7003 path->slots[0]--;
7004 btrfs_item_key_to_cpu(path->nodes[0], &key,
7005 path->slots[0]);
7006 if (key.objectid == bytenr &&
7007 key.type == BTRFS_EXTENT_ITEM_KEY &&
7008 key.offset == num_bytes)
7009 ret = 0;
7010 }
7011
7012 if (ret > 0 && skinny_metadata) {
7013 skinny_metadata = false;
9ce49a0b 7014 key.objectid = bytenr;
3173a18f
JB
7015 key.type = BTRFS_EXTENT_ITEM_KEY;
7016 key.offset = num_bytes;
7017 btrfs_release_path(path);
7018 ret = btrfs_search_slot(trans, extent_root,
7019 &key, path, -1, 1);
7020 }
7021
f3465ca4 7022 if (ret) {
5d163e0e
JM
7023 btrfs_err(info,
7024 "umm, got %d back from search, was looking for %llu",
7025 ret, bytenr);
b783e62d 7026 if (ret > 0)
a4f78750 7027 btrfs_print_leaf(path->nodes[0]);
f3465ca4 7028 }
005d6427 7029 if (ret < 0) {
66642832 7030 btrfs_abort_transaction(trans, ret);
005d6427
DS
7031 goto out;
7032 }
31840ae1
ZY
7033 extent_slot = path->slots[0];
7034 }
fae7f21c 7035 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 7036 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
7037 btrfs_err(info,
7038 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
7039 bytenr, parent, root_objectid, owner_objectid,
7040 owner_offset);
66642832 7041 btrfs_abort_transaction(trans, ret);
c4a050bb 7042 goto out;
79787eaa 7043 } else {
66642832 7044 btrfs_abort_transaction(trans, ret);
005d6427 7045 goto out;
7bb86316 7046 }
5f39d397
CM
7047
7048 leaf = path->nodes[0];
5d4f98a2 7049 item_size = btrfs_item_size_nr(leaf, extent_slot);
6d8ff4e4 7050 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
7051 ret = -EINVAL;
7052 btrfs_print_v0_err(info);
7053 btrfs_abort_transaction(trans, ret);
7054 goto out;
7055 }
952fccac 7056 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7057 struct btrfs_extent_item);
3173a18f
JB
7058 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7059 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7060 struct btrfs_tree_block_info *bi;
7061 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7062 bi = (struct btrfs_tree_block_info *)(ei + 1);
7063 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7064 }
56bec294 7065
5d4f98a2 7066 refs = btrfs_extent_refs(leaf, ei);
32b02538 7067 if (refs < refs_to_drop) {
5d163e0e
JM
7068 btrfs_err(info,
7069 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7070 refs_to_drop, refs, bytenr);
32b02538 7071 ret = -EINVAL;
66642832 7072 btrfs_abort_transaction(trans, ret);
32b02538
JB
7073 goto out;
7074 }
56bec294 7075 refs -= refs_to_drop;
5f39d397 7076
5d4f98a2
YZ
7077 if (refs > 0) {
7078 if (extent_op)
7079 __run_delayed_extent_op(extent_op, leaf, ei);
7080 /*
7081 * In the case of inline back ref, reference count will
7082 * be updated by remove_extent_backref
952fccac 7083 */
5d4f98a2
YZ
7084 if (iref) {
7085 BUG_ON(!found_extent);
7086 } else {
7087 btrfs_set_extent_refs(leaf, ei, refs);
7088 btrfs_mark_buffer_dirty(leaf);
7089 }
7090 if (found_extent) {
87cc7a8a
NB
7091 ret = remove_extent_backref(trans, path, iref,
7092 refs_to_drop, is_data,
7093 &last_ref);
005d6427 7094 if (ret) {
66642832 7095 btrfs_abort_transaction(trans, ret);
005d6427
DS
7096 goto out;
7097 }
952fccac 7098 }
5d4f98a2 7099 } else {
5d4f98a2
YZ
7100 if (found_extent) {
7101 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7102 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7103 if (iref) {
7104 BUG_ON(path->slots[0] != extent_slot);
7105 } else {
7106 BUG_ON(path->slots[0] != extent_slot + 1);
7107 path->slots[0] = extent_slot;
7108 num_to_del = 2;
7109 }
78fae27e 7110 }
b9473439 7111
fcebe456 7112 last_ref = 1;
952fccac
CM
7113 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7114 num_to_del);
005d6427 7115 if (ret) {
66642832 7116 btrfs_abort_transaction(trans, ret);
005d6427
DS
7117 goto out;
7118 }
b3b4aa74 7119 btrfs_release_path(path);
21af804c 7120
5d4f98a2 7121 if (is_data) {
5b4aacef 7122 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7123 if (ret) {
66642832 7124 btrfs_abort_transaction(trans, ret);
005d6427
DS
7125 goto out;
7126 }
459931ec
CM
7127 }
7128
e7355e50 7129 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
1e144fb8 7130 if (ret) {
66642832 7131 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7132 goto out;
7133 }
7134
0b246afa 7135 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7136 if (ret) {
66642832 7137 btrfs_abort_transaction(trans, ret);
005d6427
DS
7138 goto out;
7139 }
a28ec197 7140 }
fcebe456
JB
7141 btrfs_release_path(path);
7142
79787eaa 7143out:
5caf2a00 7144 btrfs_free_path(path);
a28ec197
CM
7145 return ret;
7146}
7147
1887be66 7148/*
f0486c68 7149 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7150 * delayed ref for that extent as well. This searches the delayed ref tree for
7151 * a given extent, and if there are no other delayed refs to be processed, it
7152 * removes it from the tree.
7153 */
7154static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7155 u64 bytenr)
1887be66
CM
7156{
7157 struct btrfs_delayed_ref_head *head;
7158 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7159 int ret = 0;
1887be66
CM
7160
7161 delayed_refs = &trans->transaction->delayed_refs;
7162 spin_lock(&delayed_refs->lock);
f72ad18e 7163 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7164 if (!head)
cf93da7b 7165 goto out_delayed_unlock;
1887be66 7166
d7df2c79 7167 spin_lock(&head->lock);
e3d03965 7168 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1887be66
CM
7169 goto out;
7170
bedc6617
JB
7171 if (cleanup_extent_op(head) != NULL)
7172 goto out;
5d4f98a2 7173
1887be66
CM
7174 /*
7175 * waiting for the lock here would deadlock. If someone else has it
7176 * locked they are already in the process of dropping it anyway
7177 */
7178 if (!mutex_trylock(&head->mutex))
7179 goto out;
7180
d7baffda 7181 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79 7182 head->processing = 0;
d7baffda 7183
d7df2c79 7184 spin_unlock(&head->lock);
1887be66
CM
7185 spin_unlock(&delayed_refs->lock);
7186
f0486c68
YZ
7187 BUG_ON(head->extent_op);
7188 if (head->must_insert_reserved)
7189 ret = 1;
7190
07c47775 7191 cleanup_ref_head_accounting(trans, head);
f0486c68 7192 mutex_unlock(&head->mutex);
d278850e 7193 btrfs_put_delayed_ref_head(head);
f0486c68 7194 return ret;
1887be66 7195out:
d7df2c79 7196 spin_unlock(&head->lock);
cf93da7b
CM
7197
7198out_delayed_unlock:
1887be66
CM
7199 spin_unlock(&delayed_refs->lock);
7200 return 0;
7201}
7202
f0486c68
YZ
7203void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7204 struct btrfs_root *root,
7205 struct extent_buffer *buf,
5581a51a 7206 u64 parent, int last_ref)
f0486c68 7207{
0b246afa 7208 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7209 int pin = 1;
f0486c68
YZ
7210 int ret;
7211
7212 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7213 int old_ref_mod, new_ref_mod;
7214
fd708b81
JB
7215 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7216 root->root_key.objectid,
7217 btrfs_header_level(buf), 0,
7218 BTRFS_DROP_DELAYED_REF);
44e1c47d 7219 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7be07912 7220 buf->len, parent,
0b246afa
JM
7221 root->root_key.objectid,
7222 btrfs_header_level(buf),
7be07912 7223 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7224 &old_ref_mod, &new_ref_mod);
79787eaa 7225 BUG_ON(ret); /* -ENOMEM */
d7eae340 7226 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7227 }
7228
0a16c7d7 7229 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7230 struct btrfs_block_group_cache *cache;
7231
f0486c68 7232 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7233 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7234 if (!ret)
37be25bc 7235 goto out;
f0486c68
YZ
7236 }
7237
4da8b76d 7238 pin = 0;
0b246afa 7239 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7240
f0486c68 7241 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7242 pin_down_extent(fs_info, cache, buf->start,
7243 buf->len, 1);
6219872d 7244 btrfs_put_block_group(cache);
37be25bc 7245 goto out;
f0486c68
YZ
7246 }
7247
7248 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7249
7250 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7251 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7252 btrfs_put_block_group(cache);
71ff6437 7253 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7254 }
7255out:
b150a4f1 7256 if (pin)
29d2b84c 7257 add_pinned_bytes(fs_info, buf->len, true,
b150a4f1
JB
7258 root->root_key.objectid);
7259
0a16c7d7
OS
7260 if (last_ref) {
7261 /*
7262 * Deleting the buffer, clear the corrupt flag since it doesn't
7263 * matter anymore.
7264 */
7265 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7266 }
f0486c68
YZ
7267}
7268
79787eaa 7269/* Can return -ENOMEM */
2ff7e61e 7270int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7271 struct btrfs_root *root,
66d7e7f0 7272 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7273 u64 owner, u64 offset)
925baedd 7274{
84f7d8e6 7275 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7276 int old_ref_mod, new_ref_mod;
925baedd
CM
7277 int ret;
7278
f5ee5c9a 7279 if (btrfs_is_testing(fs_info))
faa2dbf0 7280 return 0;
fccb84c9 7281
fd708b81
JB
7282 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7283 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7284 root_objectid, owner, offset,
7285 BTRFS_DROP_DELAYED_REF);
7286
56bec294
CM
7287 /*
7288 * tree log blocks never actually go into the extent allocation
7289 * tree, just update pinning info and exit early.
56bec294 7290 */
5d4f98a2
YZ
7291 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7292 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7293 /* unlocks the pinned mutex */
2ff7e61e 7294 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7295 old_ref_mod = new_ref_mod = 0;
56bec294 7296 ret = 0;
5d4f98a2 7297 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
44e1c47d 7298 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7be07912
OS
7299 num_bytes, parent,
7300 root_objectid, (int)owner,
7301 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7302 &old_ref_mod, &new_ref_mod);
5d4f98a2 7303 } else {
88a979c6 7304 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7be07912
OS
7305 num_bytes, parent,
7306 root_objectid, owner, offset,
7307 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7308 &old_ref_mod, &new_ref_mod);
56bec294 7309 }
d7eae340 7310
29d2b84c
NB
7311 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7312 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7313
7314 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7315 }
d7eae340 7316
925baedd
CM
7317 return ret;
7318}
7319
817d52f8
JB
7320/*
7321 * when we wait for progress in the block group caching, its because
7322 * our allocation attempt failed at least once. So, we must sleep
7323 * and let some progress happen before we try again.
7324 *
7325 * This function will sleep at least once waiting for new free space to
7326 * show up, and then it will check the block group free space numbers
7327 * for our min num_bytes. Another option is to have it go ahead
7328 * and look in the rbtree for a free extent of a given size, but this
7329 * is a good start.
36cce922
JB
7330 *
7331 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7332 * any of the information in this block group.
817d52f8 7333 */
36cce922 7334static noinline void
817d52f8
JB
7335wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7336 u64 num_bytes)
7337{
11833d66 7338 struct btrfs_caching_control *caching_ctl;
817d52f8 7339
11833d66
YZ
7340 caching_ctl = get_caching_control(cache);
7341 if (!caching_ctl)
36cce922 7342 return;
817d52f8 7343
11833d66 7344 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7345 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7346
7347 put_caching_control(caching_ctl);
11833d66
YZ
7348}
7349
7350static noinline int
7351wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7352{
7353 struct btrfs_caching_control *caching_ctl;
36cce922 7354 int ret = 0;
11833d66
YZ
7355
7356 caching_ctl = get_caching_control(cache);
7357 if (!caching_ctl)
36cce922 7358 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7359
7360 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7361 if (cache->cached == BTRFS_CACHE_ERROR)
7362 ret = -EIO;
11833d66 7363 put_caching_control(caching_ctl);
36cce922 7364 return ret;
817d52f8
JB
7365}
7366
7367enum btrfs_loop_type {
285ff5af
JB
7368 LOOP_CACHING_NOWAIT = 0,
7369 LOOP_CACHING_WAIT = 1,
7370 LOOP_ALLOC_CHUNK = 2,
7371 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7372};
7373
e570fd27
MX
7374static inline void
7375btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7376 int delalloc)
7377{
7378 if (delalloc)
7379 down_read(&cache->data_rwsem);
7380}
7381
7382static inline void
7383btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7384 int delalloc)
7385{
7386 btrfs_get_block_group(cache);
7387 if (delalloc)
7388 down_read(&cache->data_rwsem);
7389}
7390
7391static struct btrfs_block_group_cache *
7392btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7393 struct btrfs_free_cluster *cluster,
7394 int delalloc)
7395{
89771cc9 7396 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7397
e570fd27 7398 spin_lock(&cluster->refill_lock);
6719afdc
GU
7399 while (1) {
7400 used_bg = cluster->block_group;
7401 if (!used_bg)
7402 return NULL;
7403
7404 if (used_bg == block_group)
e570fd27
MX
7405 return used_bg;
7406
6719afdc 7407 btrfs_get_block_group(used_bg);
e570fd27 7408
6719afdc
GU
7409 if (!delalloc)
7410 return used_bg;
e570fd27 7411
6719afdc
GU
7412 if (down_read_trylock(&used_bg->data_rwsem))
7413 return used_bg;
e570fd27 7414
6719afdc 7415 spin_unlock(&cluster->refill_lock);
e570fd27 7416
e321f8a8
LB
7417 /* We should only have one-level nested. */
7418 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7419
6719afdc
GU
7420 spin_lock(&cluster->refill_lock);
7421 if (used_bg == cluster->block_group)
7422 return used_bg;
e570fd27 7423
6719afdc
GU
7424 up_read(&used_bg->data_rwsem);
7425 btrfs_put_block_group(used_bg);
7426 }
e570fd27
MX
7427}
7428
7429static inline void
7430btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7431 int delalloc)
7432{
7433 if (delalloc)
7434 up_read(&cache->data_rwsem);
7435 btrfs_put_block_group(cache);
7436}
7437
b4bd745d
QW
7438/*
7439 * Structure used internally for find_free_extent() function. Wraps needed
7440 * parameters.
7441 */
7442struct find_free_extent_ctl {
7443 /* Basic allocation info */
7444 u64 ram_bytes;
7445 u64 num_bytes;
7446 u64 empty_size;
7447 u64 flags;
7448 int delalloc;
7449
7450 /* Where to start the search inside the bg */
7451 u64 search_start;
7452
7453 /* For clustered allocation */
7454 u64 empty_cluster;
7455
7456 bool have_caching_bg;
7457 bool orig_have_caching_bg;
7458
7459 /* RAID index, converted from flags */
7460 int index;
7461
e72d79d6
QW
7462 /*
7463 * Current loop number, check find_free_extent_update_loop() for details
7464 */
b4bd745d
QW
7465 int loop;
7466
7467 /*
7468 * Whether we're refilling a cluster, if true we need to re-search
7469 * current block group but don't try to refill the cluster again.
7470 */
7471 bool retry_clustered;
7472
7473 /*
7474 * Whether we're updating free space cache, if true we need to re-search
7475 * current block group but don't try updating free space cache again.
7476 */
7477 bool retry_unclustered;
7478
7479 /* If current block group is cached */
7480 int cached;
7481
7482 /* Max contiguous hole found */
7483 u64 max_extent_size;
7484
7485 /* Total free space from free space cache, not always contiguous */
7486 u64 total_free_space;
7487
7488 /* Found result */
7489 u64 found_offset;
7490};
7491
d06e3bb6
QW
7492
7493/*
7494 * Helper function for find_free_extent().
7495 *
7496 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
7497 * Return -EAGAIN to inform caller that we need to re-search this block group
7498 * Return >0 to inform caller that we find nothing
7499 * Return 0 means we have found a location and set ffe_ctl->found_offset.
7500 */
7501static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
7502 struct btrfs_free_cluster *last_ptr,
7503 struct find_free_extent_ctl *ffe_ctl,
7504 struct btrfs_block_group_cache **cluster_bg_ret)
7505{
7506 struct btrfs_fs_info *fs_info = bg->fs_info;
7507 struct btrfs_block_group_cache *cluster_bg;
7508 u64 aligned_cluster;
7509 u64 offset;
7510 int ret;
7511
7512 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
7513 if (!cluster_bg)
7514 goto refill_cluster;
7515 if (cluster_bg != bg && (cluster_bg->ro ||
7516 !block_group_bits(cluster_bg, ffe_ctl->flags)))
7517 goto release_cluster;
7518
7519 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
7520 ffe_ctl->num_bytes, cluster_bg->key.objectid,
7521 &ffe_ctl->max_extent_size);
7522 if (offset) {
7523 /* We have a block, we're done */
7524 spin_unlock(&last_ptr->refill_lock);
7525 trace_btrfs_reserve_extent_cluster(cluster_bg,
7526 ffe_ctl->search_start, ffe_ctl->num_bytes);
7527 *cluster_bg_ret = cluster_bg;
7528 ffe_ctl->found_offset = offset;
7529 return 0;
7530 }
7531 WARN_ON(last_ptr->block_group != cluster_bg);
7532
7533release_cluster:
7534 /*
7535 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
7536 * lets just skip it and let the allocator find whatever block it can
7537 * find. If we reach this point, we will have tried the cluster
7538 * allocator plenty of times and not have found anything, so we are
7539 * likely way too fragmented for the clustering stuff to find anything.
7540 *
7541 * However, if the cluster is taken from the current block group,
7542 * release the cluster first, so that we stand a better chance of
7543 * succeeding in the unclustered allocation.
7544 */
7545 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
7546 spin_unlock(&last_ptr->refill_lock);
7547 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7548 return -ENOENT;
7549 }
7550
7551 /* This cluster didn't work out, free it and start over */
7552 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7553
7554 if (cluster_bg != bg)
7555 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7556
7557refill_cluster:
7558 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
7559 spin_unlock(&last_ptr->refill_lock);
7560 return -ENOENT;
7561 }
7562
7563 aligned_cluster = max_t(u64,
7564 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
7565 bg->full_stripe_len);
7566 ret = btrfs_find_space_cluster(fs_info, bg, last_ptr,
7567 ffe_ctl->search_start, ffe_ctl->num_bytes,
7568 aligned_cluster);
7569 if (ret == 0) {
7570 /* Now pull our allocation out of this cluster */
7571 offset = btrfs_alloc_from_cluster(bg, last_ptr,
7572 ffe_ctl->num_bytes, ffe_ctl->search_start,
7573 &ffe_ctl->max_extent_size);
7574 if (offset) {
7575 /* We found one, proceed */
7576 spin_unlock(&last_ptr->refill_lock);
7577 trace_btrfs_reserve_extent_cluster(bg,
7578 ffe_ctl->search_start,
7579 ffe_ctl->num_bytes);
7580 ffe_ctl->found_offset = offset;
7581 return 0;
7582 }
7583 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
7584 !ffe_ctl->retry_clustered) {
7585 spin_unlock(&last_ptr->refill_lock);
7586
7587 ffe_ctl->retry_clustered = true;
7588 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7589 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
7590 return -EAGAIN;
7591 }
7592 /*
7593 * At this point we either didn't find a cluster or we weren't able to
7594 * allocate a block from our cluster. Free the cluster we've been
7595 * trying to use, and go to the next block group.
7596 */
7597 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7598 spin_unlock(&last_ptr->refill_lock);
7599 return 1;
7600}
7601
e1a41848
QW
7602/*
7603 * Return >0 to inform caller that we find nothing
7604 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
7605 * Return -EAGAIN to inform caller that we need to re-search this block group
7606 */
7607static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
7608 struct btrfs_free_cluster *last_ptr,
7609 struct find_free_extent_ctl *ffe_ctl)
7610{
7611 u64 offset;
7612
7613 /*
7614 * We are doing an unclustered allocation, set the fragmented flag so
7615 * we don't bother trying to setup a cluster again until we get more
7616 * space.
7617 */
7618 if (unlikely(last_ptr)) {
7619 spin_lock(&last_ptr->lock);
7620 last_ptr->fragmented = 1;
7621 spin_unlock(&last_ptr->lock);
7622 }
7623 if (ffe_ctl->cached) {
7624 struct btrfs_free_space_ctl *free_space_ctl;
7625
7626 free_space_ctl = bg->free_space_ctl;
7627 spin_lock(&free_space_ctl->tree_lock);
7628 if (free_space_ctl->free_space <
7629 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
7630 ffe_ctl->empty_size) {
7631 ffe_ctl->total_free_space = max_t(u64,
7632 ffe_ctl->total_free_space,
7633 free_space_ctl->free_space);
7634 spin_unlock(&free_space_ctl->tree_lock);
7635 return 1;
7636 }
7637 spin_unlock(&free_space_ctl->tree_lock);
7638 }
7639
7640 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
7641 ffe_ctl->num_bytes, ffe_ctl->empty_size,
7642 &ffe_ctl->max_extent_size);
7643
7644 /*
7645 * If we didn't find a chunk, and we haven't failed on this block group
7646 * before, and this block group is in the middle of caching and we are
7647 * ok with waiting, then go ahead and wait for progress to be made, and
7648 * set @retry_unclustered to true.
7649 *
7650 * If @retry_unclustered is true then we've already waited on this
7651 * block group once and should move on to the next block group.
7652 */
7653 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
7654 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
7655 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7656 ffe_ctl->empty_size);
7657 ffe_ctl->retry_unclustered = true;
7658 return -EAGAIN;
7659 } else if (!offset) {
7660 return 1;
7661 }
7662 ffe_ctl->found_offset = offset;
7663 return 0;
7664}
7665
e72d79d6
QW
7666/*
7667 * Return >0 means caller needs to re-search for free extent
7668 * Return 0 means we have the needed free extent.
7669 * Return <0 means we failed to locate any free extent.
7670 */
7671static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
7672 struct btrfs_free_cluster *last_ptr,
7673 struct btrfs_key *ins,
7674 struct find_free_extent_ctl *ffe_ctl,
7675 int full_search, bool use_cluster)
7676{
7677 struct btrfs_root *root = fs_info->extent_root;
7678 int ret;
7679
7680 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
7681 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
7682 ffe_ctl->orig_have_caching_bg = true;
7683
7684 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
7685 ffe_ctl->have_caching_bg)
7686 return 1;
7687
7688 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
7689 return 1;
7690
7691 if (ins->objectid) {
7692 if (!use_cluster && last_ptr) {
7693 spin_lock(&last_ptr->lock);
7694 last_ptr->window_start = ins->objectid;
7695 spin_unlock(&last_ptr->lock);
7696 }
7697 return 0;
7698 }
7699
7700 /*
7701 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7702 * caching kthreads as we move along
7703 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7704 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7705 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7706 * again
7707 */
7708 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
7709 ffe_ctl->index = 0;
7710 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
7711 /*
7712 * We want to skip the LOOP_CACHING_WAIT step if we
7713 * don't have any uncached bgs and we've already done a
7714 * full search through.
7715 */
7716 if (ffe_ctl->orig_have_caching_bg || !full_search)
7717 ffe_ctl->loop = LOOP_CACHING_WAIT;
7718 else
7719 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
7720 } else {
7721 ffe_ctl->loop++;
7722 }
7723
7724 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
7725 struct btrfs_trans_handle *trans;
7726 int exist = 0;
7727
7728 trans = current->journal_info;
7729 if (trans)
7730 exist = 1;
7731 else
7732 trans = btrfs_join_transaction(root);
7733
7734 if (IS_ERR(trans)) {
7735 ret = PTR_ERR(trans);
7736 return ret;
7737 }
7738
7739 ret = do_chunk_alloc(trans, ffe_ctl->flags,
7740 CHUNK_ALLOC_FORCE);
7741
7742 /*
7743 * If we can't allocate a new chunk we've already looped
7744 * through at least once, move on to the NO_EMPTY_SIZE
7745 * case.
7746 */
7747 if (ret == -ENOSPC)
7748 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
7749
7750 /* Do not bail out on ENOSPC since we can do more. */
7751 if (ret < 0 && ret != -ENOSPC)
7752 btrfs_abort_transaction(trans, ret);
7753 else
7754 ret = 0;
7755 if (!exist)
7756 btrfs_end_transaction(trans);
7757 if (ret)
7758 return ret;
7759 }
7760
7761 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
7762 /*
7763 * Don't loop again if we already have no empty_size and
7764 * no empty_cluster.
7765 */
7766 if (ffe_ctl->empty_size == 0 &&
7767 ffe_ctl->empty_cluster == 0)
7768 return -ENOSPC;
7769 ffe_ctl->empty_size = 0;
7770 ffe_ctl->empty_cluster = 0;
7771 }
7772 return 1;
7773 }
7774 return -ENOSPC;
7775}
7776
fec577fb
CM
7777/*
7778 * walks the btree of allocated extents and find a hole of a given size.
7779 * The key ins is changed to record the hole:
a4820398 7780 * ins->objectid == start position
62e2749e 7781 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7782 * ins->offset == the size of the hole.
fec577fb 7783 * Any available blocks before search_start are skipped.
a4820398
MX
7784 *
7785 * If there is no suitable free space, we will record the max size of
7786 * the free space extent currently.
e72d79d6
QW
7787 *
7788 * The overall logic and call chain:
7789 *
7790 * find_free_extent()
7791 * |- Iterate through all block groups
7792 * | |- Get a valid block group
7793 * | |- Try to do clustered allocation in that block group
7794 * | |- Try to do unclustered allocation in that block group
7795 * | |- Check if the result is valid
7796 * | | |- If valid, then exit
7797 * | |- Jump to next block group
7798 * |
7799 * |- Push harder to find free extents
7800 * |- If not found, re-iterate all block groups
fec577fb 7801 */
87bde3cd 7802static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7803 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7804 u64 hint_byte, struct btrfs_key *ins,
7805 u64 flags, int delalloc)
fec577fb 7806{
80eb234a 7807 int ret = 0;
fa9c0d79 7808 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7809 struct btrfs_block_group_cache *block_group = NULL;
b4bd745d 7810 struct find_free_extent_ctl ffe_ctl = {0};
80eb234a 7811 struct btrfs_space_info *space_info;
67377734 7812 bool use_cluster = true;
a5e681d9 7813 bool full_search = false;
fec577fb 7814
0b246afa 7815 WARN_ON(num_bytes < fs_info->sectorsize);
b4bd745d
QW
7816
7817 ffe_ctl.ram_bytes = ram_bytes;
7818 ffe_ctl.num_bytes = num_bytes;
7819 ffe_ctl.empty_size = empty_size;
7820 ffe_ctl.flags = flags;
7821 ffe_ctl.search_start = 0;
7822 ffe_ctl.retry_clustered = false;
7823 ffe_ctl.retry_unclustered = false;
7824 ffe_ctl.delalloc = delalloc;
7825 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
7826 ffe_ctl.have_caching_bg = false;
7827 ffe_ctl.orig_have_caching_bg = false;
7828 ffe_ctl.found_offset = 0;
7829
962a298f 7830 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7831 ins->objectid = 0;
7832 ins->offset = 0;
b1a4d965 7833
71ff6437 7834 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7835
0b246afa 7836 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7837 if (!space_info) {
0b246afa 7838 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7839 return -ENOSPC;
7840 }
2552d17e 7841
67377734 7842 /*
4f4db217
JB
7843 * If our free space is heavily fragmented we may not be able to make
7844 * big contiguous allocations, so instead of doing the expensive search
7845 * for free space, simply return ENOSPC with our max_extent_size so we
7846 * can go ahead and search for a more manageable chunk.
7847 *
7848 * If our max_extent_size is large enough for our allocation simply
7849 * disable clustering since we will likely not be able to find enough
7850 * space to create a cluster and induce latency trying.
67377734 7851 */
4f4db217
JB
7852 if (unlikely(space_info->max_extent_size)) {
7853 spin_lock(&space_info->lock);
7854 if (space_info->max_extent_size &&
7855 num_bytes > space_info->max_extent_size) {
7856 ins->offset = space_info->max_extent_size;
7857 spin_unlock(&space_info->lock);
7858 return -ENOSPC;
7859 } else if (space_info->max_extent_size) {
7860 use_cluster = false;
7861 }
7862 spin_unlock(&space_info->lock);
fa9c0d79 7863 }
0f9dd46c 7864
b4bd745d
QW
7865 last_ptr = fetch_cluster_info(fs_info, space_info,
7866 &ffe_ctl.empty_cluster);
239b14b3 7867 if (last_ptr) {
fa9c0d79
CM
7868 spin_lock(&last_ptr->lock);
7869 if (last_ptr->block_group)
7870 hint_byte = last_ptr->window_start;
c759c4e1
JB
7871 if (last_ptr->fragmented) {
7872 /*
7873 * We still set window_start so we can keep track of the
7874 * last place we found an allocation to try and save
7875 * some time.
7876 */
7877 hint_byte = last_ptr->window_start;
7878 use_cluster = false;
7879 }
fa9c0d79 7880 spin_unlock(&last_ptr->lock);
239b14b3 7881 }
fa9c0d79 7882
b4bd745d
QW
7883 ffe_ctl.search_start = max(ffe_ctl.search_start,
7884 first_logical_byte(fs_info, 0));
7885 ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
7886 if (ffe_ctl.search_start == hint_byte) {
7887 block_group = btrfs_lookup_block_group(fs_info,
7888 ffe_ctl.search_start);
817d52f8
JB
7889 /*
7890 * we don't want to use the block group if it doesn't match our
7891 * allocation bits, or if its not cached.
ccf0e725
JB
7892 *
7893 * However if we are re-searching with an ideal block group
7894 * picked out then we don't care that the block group is cached.
817d52f8 7895 */
b6919a58 7896 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7897 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7898 down_read(&space_info->groups_sem);
44fb5511
CM
7899 if (list_empty(&block_group->list) ||
7900 block_group->ro) {
7901 /*
7902 * someone is removing this block group,
7903 * we can't jump into the have_block_group
7904 * target because our list pointers are not
7905 * valid
7906 */
7907 btrfs_put_block_group(block_group);
7908 up_read(&space_info->groups_sem);
ccf0e725 7909 } else {
b4bd745d 7910 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3e72ee88 7911 block_group->flags);
e570fd27 7912 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7913 goto have_block_group;
ccf0e725 7914 }
2552d17e 7915 } else if (block_group) {
fa9c0d79 7916 btrfs_put_block_group(block_group);
2552d17e 7917 }
42e70e7a 7918 }
2552d17e 7919search:
b4bd745d
QW
7920 ffe_ctl.have_caching_bg = false;
7921 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
7922 ffe_ctl.index == 0)
a5e681d9 7923 full_search = true;
80eb234a 7924 down_read(&space_info->groups_sem);
b4bd745d
QW
7925 list_for_each_entry(block_group,
7926 &space_info->block_groups[ffe_ctl.index], list) {
14443937
JM
7927 /* If the block group is read-only, we can skip it entirely. */
7928 if (unlikely(block_group->ro))
7929 continue;
7930
e570fd27 7931 btrfs_grab_block_group(block_group, delalloc);
b4bd745d 7932 ffe_ctl.search_start = block_group->key.objectid;
42e70e7a 7933
83a50de9
CM
7934 /*
7935 * this can happen if we end up cycling through all the
7936 * raid types, but we want to make sure we only allocate
7937 * for the proper type.
7938 */
b6919a58 7939 if (!block_group_bits(block_group, flags)) {
bece2e82 7940 u64 extra = BTRFS_BLOCK_GROUP_DUP |
83a50de9 7941 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7942 BTRFS_BLOCK_GROUP_RAID5 |
7943 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7944 BTRFS_BLOCK_GROUP_RAID10;
7945
7946 /*
7947 * if they asked for extra copies and this block group
7948 * doesn't provide them, bail. This does allow us to
7949 * fill raid0 from raid1.
7950 */
b6919a58 7951 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7952 goto loop;
7953 }
7954
2552d17e 7955have_block_group:
b4bd745d
QW
7956 ffe_ctl.cached = block_group_cache_done(block_group);
7957 if (unlikely(!ffe_ctl.cached)) {
7958 ffe_ctl.have_caching_bg = true;
f6373bf3 7959 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7960 BUG_ON(ret < 0);
7961 ret = 0;
817d52f8
JB
7962 }
7963
36cce922
JB
7964 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7965 goto loop;
0f9dd46c 7966
0a24325e 7967 /*
062c05c4
AO
7968 * Ok we want to try and use the cluster allocator, so
7969 * lets look there
0a24325e 7970 */
c759c4e1 7971 if (last_ptr && use_cluster) {
d06e3bb6 7972 struct btrfs_block_group_cache *cluster_bg = NULL;
fa9c0d79 7973
d06e3bb6
QW
7974 ret = find_free_extent_clustered(block_group, last_ptr,
7975 &ffe_ctl, &cluster_bg);
062c05c4 7976
fa9c0d79 7977 if (ret == 0) {
d06e3bb6
QW
7978 if (cluster_bg && cluster_bg != block_group) {
7979 btrfs_release_block_group(block_group,
7980 delalloc);
7981 block_group = cluster_bg;
fa9c0d79 7982 }
d06e3bb6
QW
7983 goto checks;
7984 } else if (ret == -EAGAIN) {
817d52f8 7985 goto have_block_group;
d06e3bb6
QW
7986 } else if (ret > 0) {
7987 goto loop;
fa9c0d79 7988 }
d06e3bb6 7989 /* ret == -ENOENT case falls through */
fa9c0d79
CM
7990 }
7991
e1a41848
QW
7992 ret = find_free_extent_unclustered(block_group, last_ptr,
7993 &ffe_ctl);
7994 if (ret == -EAGAIN)
817d52f8 7995 goto have_block_group;
e1a41848 7996 else if (ret > 0)
1cdda9b8 7997 goto loop;
e1a41848 7998 /* ret == 0 case falls through */
fa9c0d79 7999checks:
b4bd745d
QW
8000 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
8001 fs_info->stripesize);
25179201 8002
2552d17e 8003 /* move on to the next group */
b4bd745d 8004 if (ffe_ctl.search_start + num_bytes >
215a63d1 8005 block_group->key.objectid + block_group->key.offset) {
b4bd745d
QW
8006 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8007 num_bytes);
2552d17e 8008 goto loop;
6226cb0a 8009 }
f5a31e16 8010
b4bd745d
QW
8011 if (ffe_ctl.found_offset < ffe_ctl.search_start)
8012 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8013 ffe_ctl.search_start - ffe_ctl.found_offset);
2552d17e 8014
18513091
WX
8015 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
8016 num_bytes, delalloc);
f0486c68 8017 if (ret == -EAGAIN) {
b4bd745d
QW
8018 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8019 num_bytes);
2552d17e 8020 goto loop;
0f9dd46c 8021 }
9cfa3e34 8022 btrfs_inc_block_group_reservations(block_group);
0b86a832 8023
f0486c68 8024 /* we are all good, lets return */
b4bd745d 8025 ins->objectid = ffe_ctl.search_start;
2552d17e 8026 ins->offset = num_bytes;
d2fb3437 8027
b4bd745d
QW
8028 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
8029 num_bytes);
e570fd27 8030 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
8031 break;
8032loop:
b4bd745d
QW
8033 ffe_ctl.retry_clustered = false;
8034 ffe_ctl.retry_unclustered = false;
3e72ee88 8035 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
b4bd745d 8036 ffe_ctl.index);
e570fd27 8037 btrfs_release_block_group(block_group, delalloc);
14443937 8038 cond_resched();
2552d17e
JB
8039 }
8040 up_read(&space_info->groups_sem);
8041
e72d79d6
QW
8042 ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
8043 full_search, use_cluster);
8044 if (ret > 0)
b742bb82
YZ
8045 goto search;
8046
4f4db217 8047 if (ret == -ENOSPC) {
b4bd745d
QW
8048 /*
8049 * Use ffe_ctl->total_free_space as fallback if we can't find
8050 * any contiguous hole.
8051 */
8052 if (!ffe_ctl.max_extent_size)
8053 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4f4db217 8054 spin_lock(&space_info->lock);
b4bd745d 8055 space_info->max_extent_size = ffe_ctl.max_extent_size;
4f4db217 8056 spin_unlock(&space_info->lock);
b4bd745d 8057 ins->offset = ffe_ctl.max_extent_size;
4f4db217 8058 }
0f70abe2 8059 return ret;
fec577fb 8060}
ec44a35c 8061
ab8d0fc4
JM
8062static void dump_space_info(struct btrfs_fs_info *fs_info,
8063 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 8064 int dump_block_groups)
0f9dd46c
JB
8065{
8066 struct btrfs_block_group_cache *cache;
b742bb82 8067 int index = 0;
0f9dd46c 8068
9ed74f2d 8069 spin_lock(&info->lock);
ab8d0fc4
JM
8070 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
8071 info->flags,
4136135b
LB
8072 info->total_bytes - btrfs_space_info_used(info, true),
8073 info->full ? "" : "not ");
ab8d0fc4
JM
8074 btrfs_info(fs_info,
8075 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
8076 info->total_bytes, info->bytes_used, info->bytes_pinned,
8077 info->bytes_reserved, info->bytes_may_use,
8078 info->bytes_readonly);
9ed74f2d
JB
8079 spin_unlock(&info->lock);
8080
8081 if (!dump_block_groups)
8082 return;
0f9dd46c 8083
80eb234a 8084 down_read(&info->groups_sem);
b742bb82
YZ
8085again:
8086 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 8087 spin_lock(&cache->lock);
ab8d0fc4
JM
8088 btrfs_info(fs_info,
8089 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8090 cache->key.objectid, cache->key.offset,
8091 btrfs_block_group_used(&cache->item), cache->pinned,
8092 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
8093 btrfs_dump_free_space(cache, bytes);
8094 spin_unlock(&cache->lock);
8095 }
b742bb82
YZ
8096 if (++index < BTRFS_NR_RAID_TYPES)
8097 goto again;
80eb234a 8098 up_read(&info->groups_sem);
0f9dd46c 8099}
e8569813 8100
6f47c706
NB
8101/*
8102 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8103 * hole that is at least as big as @num_bytes.
8104 *
8105 * @root - The root that will contain this extent
8106 *
8107 * @ram_bytes - The amount of space in ram that @num_bytes take. This
8108 * is used for accounting purposes. This value differs
8109 * from @num_bytes only in the case of compressed extents.
8110 *
8111 * @num_bytes - Number of bytes to allocate on-disk.
8112 *
8113 * @min_alloc_size - Indicates the minimum amount of space that the
8114 * allocator should try to satisfy. In some cases
8115 * @num_bytes may be larger than what is required and if
8116 * the filesystem is fragmented then allocation fails.
8117 * However, the presence of @min_alloc_size gives a
8118 * chance to try and satisfy the smaller allocation.
8119 *
8120 * @empty_size - A hint that you plan on doing more COW. This is the
8121 * size in bytes the allocator should try to find free
8122 * next to the block it returns. This is just a hint and
8123 * may be ignored by the allocator.
8124 *
8125 * @hint_byte - Hint to the allocator to start searching above the byte
8126 * address passed. It might be ignored.
8127 *
8128 * @ins - This key is modified to record the found hole. It will
8129 * have the following values:
8130 * ins->objectid == start position
8131 * ins->flags = BTRFS_EXTENT_ITEM_KEY
8132 * ins->offset == the size of the hole.
8133 *
8134 * @is_data - Boolean flag indicating whether an extent is
8135 * allocated for data (true) or metadata (false)
8136 *
8137 * @delalloc - Boolean flag indicating whether this allocation is for
8138 * delalloc or not. If 'true' data_rwsem of block groups
8139 * is going to be acquired.
8140 *
8141 *
8142 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8143 * case -ENOSPC is returned then @ins->offset will contain the size of the
8144 * largest available hole the allocator managed to find.
8145 */
18513091 8146int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
8147 u64 num_bytes, u64 min_alloc_size,
8148 u64 empty_size, u64 hint_byte,
e570fd27 8149 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 8150{
ab8d0fc4 8151 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 8152 bool final_tried = num_bytes == min_alloc_size;
b6919a58 8153 u64 flags;
fec577fb 8154 int ret;
925baedd 8155
1b86826d 8156 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 8157again:
0b246afa 8158 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8159 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8160 hint_byte, ins, flags, delalloc);
9cfa3e34 8161 if (!ret && !is_data) {
ab8d0fc4 8162 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8163 } else if (ret == -ENOSPC) {
a4820398
MX
8164 if (!final_tried && ins->offset) {
8165 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8166 num_bytes = round_down(num_bytes,
0b246afa 8167 fs_info->sectorsize);
9e622d6b 8168 num_bytes = max(num_bytes, min_alloc_size);
18513091 8169 ram_bytes = num_bytes;
9e622d6b
MX
8170 if (num_bytes == min_alloc_size)
8171 final_tried = true;
8172 goto again;
ab8d0fc4 8173 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8174 struct btrfs_space_info *sinfo;
8175
ab8d0fc4 8176 sinfo = __find_space_info(fs_info, flags);
0b246afa 8177 btrfs_err(fs_info,
5d163e0e
JM
8178 "allocation failed flags %llu, wanted %llu",
8179 flags, num_bytes);
53804280 8180 if (sinfo)
ab8d0fc4 8181 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8182 }
925baedd 8183 }
0f9dd46c
JB
8184
8185 return ret;
e6dcd2dc
CM
8186}
8187
2ff7e61e 8188static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8189 u64 start, u64 len,
8190 int pin, int delalloc)
65b51a00 8191{
0f9dd46c 8192 struct btrfs_block_group_cache *cache;
1f3c79a2 8193 int ret = 0;
0f9dd46c 8194
0b246afa 8195 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8196 if (!cache) {
0b246afa
JM
8197 btrfs_err(fs_info, "Unable to find block group for %llu",
8198 start);
0f9dd46c
JB
8199 return -ENOSPC;
8200 }
1f3c79a2 8201
e688b725 8202 if (pin)
2ff7e61e 8203 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8204 else {
0b246afa 8205 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8206 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8207 btrfs_add_free_space(cache, start, len);
4824f1f4 8208 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8209 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8210 }
31193213 8211
fa9c0d79 8212 btrfs_put_block_group(cache);
e6dcd2dc
CM
8213 return ret;
8214}
8215
2ff7e61e 8216int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8217 u64 start, u64 len, int delalloc)
e688b725 8218{
2ff7e61e 8219 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8220}
8221
2ff7e61e 8222int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8223 u64 start, u64 len)
8224{
2ff7e61e 8225 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8226}
8227
5d4f98a2 8228static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8229 u64 parent, u64 root_objectid,
8230 u64 flags, u64 owner, u64 offset,
8231 struct btrfs_key *ins, int ref_mod)
e6dcd2dc 8232{
ef89b824 8233 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8234 int ret;
e6dcd2dc 8235 struct btrfs_extent_item *extent_item;
5d4f98a2 8236 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8237 struct btrfs_path *path;
5d4f98a2
YZ
8238 struct extent_buffer *leaf;
8239 int type;
8240 u32 size;
26b8003f 8241
5d4f98a2
YZ
8242 if (parent > 0)
8243 type = BTRFS_SHARED_DATA_REF_KEY;
8244 else
8245 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8246
5d4f98a2 8247 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8248
8249 path = btrfs_alloc_path();
db5b493a
TI
8250 if (!path)
8251 return -ENOMEM;
47e4bb98 8252
b9473439 8253 path->leave_spinning = 1;
5d4f98a2
YZ
8254 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8255 ins, size);
79787eaa
JM
8256 if (ret) {
8257 btrfs_free_path(path);
8258 return ret;
8259 }
0f9dd46c 8260
5d4f98a2
YZ
8261 leaf = path->nodes[0];
8262 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8263 struct btrfs_extent_item);
5d4f98a2
YZ
8264 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8265 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8266 btrfs_set_extent_flags(leaf, extent_item,
8267 flags | BTRFS_EXTENT_FLAG_DATA);
8268
8269 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8270 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8271 if (parent > 0) {
8272 struct btrfs_shared_data_ref *ref;
8273 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8274 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8275 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8276 } else {
8277 struct btrfs_extent_data_ref *ref;
8278 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8279 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8280 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8281 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8282 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8283 }
47e4bb98
CM
8284
8285 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8286 btrfs_free_path(path);
f510cfec 8287
25a356d3 8288 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
1e144fb8
OS
8289 if (ret)
8290 return ret;
8291
6202df69 8292 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8293 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8294 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8295 ins->objectid, ins->offset);
f5947066
CM
8296 BUG();
8297 }
71ff6437 8298 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8299 return ret;
8300}
8301
5d4f98a2 8302static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 8303 struct btrfs_delayed_ref_node *node,
21ebfbe7 8304 struct btrfs_delayed_extent_op *extent_op)
e6dcd2dc 8305{
9dcdbe01 8306 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8307 int ret;
5d4f98a2 8308 struct btrfs_extent_item *extent_item;
4e6bd4e0 8309 struct btrfs_key extent_key;
5d4f98a2
YZ
8310 struct btrfs_tree_block_info *block_info;
8311 struct btrfs_extent_inline_ref *iref;
8312 struct btrfs_path *path;
8313 struct extent_buffer *leaf;
4e6bd4e0 8314 struct btrfs_delayed_tree_ref *ref;
3173a18f 8315 u32 size = sizeof(*extent_item) + sizeof(*iref);
4e6bd4e0 8316 u64 num_bytes;
21ebfbe7 8317 u64 flags = extent_op->flags_to_set;
0b246afa 8318 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f 8319
4e6bd4e0
NB
8320 ref = btrfs_delayed_node_to_tree_ref(node);
8321
4e6bd4e0
NB
8322 extent_key.objectid = node->bytenr;
8323 if (skinny_metadata) {
8324 extent_key.offset = ref->level;
8325 extent_key.type = BTRFS_METADATA_ITEM_KEY;
8326 num_bytes = fs_info->nodesize;
8327 } else {
8328 extent_key.offset = node->num_bytes;
8329 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
3173a18f 8330 size += sizeof(*block_info);
4e6bd4e0
NB
8331 num_bytes = node->num_bytes;
8332 }
1c2308f8 8333
5d4f98a2 8334 path = btrfs_alloc_path();
80ee54bf 8335 if (!path)
d8926bb3 8336 return -ENOMEM;
56bec294 8337
5d4f98a2
YZ
8338 path->leave_spinning = 1;
8339 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4e6bd4e0 8340 &extent_key, size);
79787eaa 8341 if (ret) {
dd825259 8342 btrfs_free_path(path);
79787eaa
JM
8343 return ret;
8344 }
5d4f98a2
YZ
8345
8346 leaf = path->nodes[0];
8347 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8348 struct btrfs_extent_item);
8349 btrfs_set_extent_refs(leaf, extent_item, 1);
8350 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8351 btrfs_set_extent_flags(leaf, extent_item,
8352 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8353
3173a18f
JB
8354 if (skinny_metadata) {
8355 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8356 } else {
8357 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
21ebfbe7 8358 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4e6bd4e0 8359 btrfs_set_tree_block_level(leaf, block_info, ref->level);
3173a18f
JB
8360 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8361 }
5d4f98a2 8362
d4b20733 8363 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
5d4f98a2
YZ
8364 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8365 btrfs_set_extent_inline_ref_type(leaf, iref,
8366 BTRFS_SHARED_BLOCK_REF_KEY);
d4b20733 8367 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
5d4f98a2
YZ
8368 } else {
8369 btrfs_set_extent_inline_ref_type(leaf, iref,
8370 BTRFS_TREE_BLOCK_REF_KEY);
4e6bd4e0 8371 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
5d4f98a2
YZ
8372 }
8373
8374 btrfs_mark_buffer_dirty(leaf);
8375 btrfs_free_path(path);
8376
4e6bd4e0
NB
8377 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8378 num_bytes);
1e144fb8
OS
8379 if (ret)
8380 return ret;
8381
4e6bd4e0 8382 ret = update_block_group(trans, fs_info, extent_key.objectid,
6202df69 8383 fs_info->nodesize, 1);
79787eaa 8384 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8385 btrfs_err(fs_info, "update block group failed for %llu %llu",
4e6bd4e0 8386 extent_key.objectid, extent_key.offset);
5d4f98a2
YZ
8387 BUG();
8388 }
0be5dc67 8389
4e6bd4e0 8390 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
0b246afa 8391 fs_info->nodesize);
5d4f98a2
YZ
8392 return ret;
8393}
8394
8395int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8396 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8397 u64 offset, u64 ram_bytes,
8398 struct btrfs_key *ins)
5d4f98a2
YZ
8399{
8400 int ret;
8401
84f7d8e6 8402 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8403
fd708b81
JB
8404 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8405 root->root_key.objectid, owner, offset,
8406 BTRFS_ADD_DELAYED_EXTENT);
8407
88a979c6 8408 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
84f7d8e6
JB
8409 ins->offset, 0,
8410 root->root_key.objectid, owner,
7be07912
OS
8411 offset, ram_bytes,
8412 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8413 return ret;
8414}
e02119d5
CM
8415
8416/*
8417 * this is used by the tree logging recovery code. It records that
8418 * an extent has been allocated and makes sure to clear the free
8419 * space cache bits as well
8420 */
5d4f98a2 8421int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8422 u64 root_objectid, u64 owner, u64 offset,
8423 struct btrfs_key *ins)
e02119d5 8424{
61da2abf 8425 struct btrfs_fs_info *fs_info = trans->fs_info;
e02119d5
CM
8426 int ret;
8427 struct btrfs_block_group_cache *block_group;
ed7a6948 8428 struct btrfs_space_info *space_info;
11833d66 8429
8c2a1a30
JB
8430 /*
8431 * Mixed block groups will exclude before processing the log so we only
01327610 8432 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8433 */
0b246afa 8434 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8435 ret = __exclude_logged_extent(fs_info, ins->objectid,
8436 ins->offset);
b50c6e25 8437 if (ret)
8c2a1a30 8438 return ret;
11833d66
YZ
8439 }
8440
0b246afa 8441 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8442 if (!block_group)
8443 return -EINVAL;
8444
ed7a6948
WX
8445 space_info = block_group->space_info;
8446 spin_lock(&space_info->lock);
8447 spin_lock(&block_group->lock);
8448 space_info->bytes_reserved += ins->offset;
8449 block_group->reserved += ins->offset;
8450 spin_unlock(&block_group->lock);
8451 spin_unlock(&space_info->lock);
8452
ef89b824
NB
8453 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8454 offset, ins, 1);
b50c6e25 8455 btrfs_put_block_group(block_group);
e02119d5
CM
8456 return ret;
8457}
8458
48a3b636
ES
8459static struct extent_buffer *
8460btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
bc877d28 8461 u64 bytenr, int level, u64 owner)
65b51a00 8462{
0b246afa 8463 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8464 struct extent_buffer *buf;
8465
2ff7e61e 8466 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8467 if (IS_ERR(buf))
8468 return buf;
8469
b72c3aba
QW
8470 /*
8471 * Extra safety check in case the extent tree is corrupted and extent
8472 * allocator chooses to use a tree block which is already used and
8473 * locked.
8474 */
8475 if (buf->lock_owner == current->pid) {
8476 btrfs_err_rl(fs_info,
8477"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8478 buf->start, btrfs_header_owner(buf), current->pid);
8479 free_extent_buffer(buf);
8480 return ERR_PTR(-EUCLEAN);
8481 }
8482
85d4e461 8483 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8484 btrfs_tree_lock(buf);
7c302b49 8485 clean_tree_block(fs_info, buf);
3083ee2e 8486 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8487
8488 btrfs_set_lock_blocking(buf);
4db8c528 8489 set_extent_buffer_uptodate(buf);
b4ce94de 8490
bc877d28
NB
8491 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8492 btrfs_set_header_level(buf, level);
8493 btrfs_set_header_bytenr(buf, buf->start);
8494 btrfs_set_header_generation(buf, trans->transid);
8495 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8496 btrfs_set_header_owner(buf, owner);
de37aa51 8497 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
bc877d28 8498 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
d0c803c4 8499 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8500 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8501 /*
8502 * we allow two log transactions at a time, use different
8503 * EXENT bit to differentiate dirty pages.
8504 */
656f30db 8505 if (buf->log_index == 0)
8cef4e16
YZ
8506 set_extent_dirty(&root->dirty_log_pages, buf->start,
8507 buf->start + buf->len - 1, GFP_NOFS);
8508 else
8509 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8510 buf->start + buf->len - 1);
d0c803c4 8511 } else {
656f30db 8512 buf->log_index = -1;
d0c803c4 8513 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8514 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8515 }
64c12921 8516 trans->dirty = true;
b4ce94de 8517 /* this returns a buffer locked for blocking */
65b51a00
CM
8518 return buf;
8519}
8520
f0486c68
YZ
8521static struct btrfs_block_rsv *
8522use_block_rsv(struct btrfs_trans_handle *trans,
8523 struct btrfs_root *root, u32 blocksize)
8524{
0b246afa 8525 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8526 struct btrfs_block_rsv *block_rsv;
0b246afa 8527 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8528 int ret;
d88033db 8529 bool global_updated = false;
f0486c68
YZ
8530
8531 block_rsv = get_block_rsv(trans, root);
8532
b586b323
MX
8533 if (unlikely(block_rsv->size == 0))
8534 goto try_reserve;
d88033db 8535again:
f0486c68
YZ
8536 ret = block_rsv_use_bytes(block_rsv, blocksize);
8537 if (!ret)
8538 return block_rsv;
8539
b586b323
MX
8540 if (block_rsv->failfast)
8541 return ERR_PTR(ret);
8542
d88033db
MX
8543 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8544 global_updated = true;
0b246afa 8545 update_global_block_rsv(fs_info);
d88033db
MX
8546 goto again;
8547 }
8548
ba2c4d4e
JB
8549 /*
8550 * The global reserve still exists to save us from ourselves, so don't
8551 * warn_on if we are short on our delayed refs reserve.
8552 */
8553 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
8554 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8555 static DEFINE_RATELIMIT_STATE(_rs,
8556 DEFAULT_RATELIMIT_INTERVAL * 10,
8557 /*DEFAULT_RATELIMIT_BURST*/ 1);
8558 if (__ratelimit(&_rs))
8559 WARN(1, KERN_DEBUG
efe120a0 8560 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8561 }
8562try_reserve:
8563 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8564 BTRFS_RESERVE_NO_FLUSH);
8565 if (!ret)
8566 return block_rsv;
8567 /*
8568 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8569 * the global reserve if its space type is the same as the global
8570 * reservation.
b586b323 8571 */
5881cfc9
MX
8572 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8573 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8574 ret = block_rsv_use_bytes(global_rsv, blocksize);
8575 if (!ret)
8576 return global_rsv;
8577 }
8578 return ERR_PTR(ret);
f0486c68
YZ
8579}
8580
8c2a3ca2
JB
8581static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8582 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68 8583{
3a584174 8584 block_rsv_add_bytes(block_rsv, blocksize, false);
ff6bc37e 8585 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8586}
8587
fec577fb 8588/*
f0486c68 8589 * finds a free extent and does all the dirty work required for allocation
67b7859e 8590 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8591 */
4d75f8a9 8592struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8593 struct btrfs_root *root,
8594 u64 parent, u64 root_objectid,
8595 const struct btrfs_disk_key *key,
8596 int level, u64 hint,
8597 u64 empty_size)
fec577fb 8598{
0b246afa 8599 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8600 struct btrfs_key ins;
f0486c68 8601 struct btrfs_block_rsv *block_rsv;
5f39d397 8602 struct extent_buffer *buf;
67b7859e 8603 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8604 u64 flags = 0;
8605 int ret;
0b246afa
JM
8606 u32 blocksize = fs_info->nodesize;
8607 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8608
05653ef3 8609#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8610 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8611 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
bc877d28 8612 level, root_objectid);
faa2dbf0
JB
8613 if (!IS_ERR(buf))
8614 root->alloc_bytenr += blocksize;
8615 return buf;
8616 }
05653ef3 8617#endif
fccb84c9 8618
f0486c68
YZ
8619 block_rsv = use_block_rsv(trans, root, blocksize);
8620 if (IS_ERR(block_rsv))
8621 return ERR_CAST(block_rsv);
8622
18513091 8623 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8624 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8625 if (ret)
8626 goto out_unuse;
55c69072 8627
bc877d28
NB
8628 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8629 root_objectid);
67b7859e
OS
8630 if (IS_ERR(buf)) {
8631 ret = PTR_ERR(buf);
8632 goto out_free_reserved;
8633 }
f0486c68
YZ
8634
8635 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8636 if (parent == 0)
8637 parent = ins.objectid;
8638 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8639 } else
8640 BUG_ON(parent > 0);
8641
8642 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8643 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8644 if (!extent_op) {
8645 ret = -ENOMEM;
8646 goto out_free_buf;
8647 }
f0486c68
YZ
8648 if (key)
8649 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8650 else
8651 memset(&extent_op->key, 0, sizeof(extent_op->key));
8652 extent_op->flags_to_set = flags;
35b3ad50
DS
8653 extent_op->update_key = skinny_metadata ? false : true;
8654 extent_op->update_flags = true;
8655 extent_op->is_data = false;
b1c79e09 8656 extent_op->level = level;
f0486c68 8657
fd708b81
JB
8658 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8659 root_objectid, level, 0,
8660 BTRFS_ADD_DELAYED_EXTENT);
44e1c47d 8661 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
7be07912
OS
8662 ins.offset, parent,
8663 root_objectid, level,
67b7859e 8664 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8665 extent_op, NULL, NULL);
67b7859e
OS
8666 if (ret)
8667 goto out_free_delayed;
f0486c68 8668 }
fec577fb 8669 return buf;
67b7859e
OS
8670
8671out_free_delayed:
8672 btrfs_free_delayed_extent_op(extent_op);
8673out_free_buf:
8674 free_extent_buffer(buf);
8675out_free_reserved:
2ff7e61e 8676 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8677out_unuse:
0b246afa 8678 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8679 return ERR_PTR(ret);
fec577fb 8680}
a28ec197 8681
2c47e605
YZ
8682struct walk_control {
8683 u64 refs[BTRFS_MAX_LEVEL];
8684 u64 flags[BTRFS_MAX_LEVEL];
8685 struct btrfs_key update_progress;
8686 int stage;
8687 int level;
8688 int shared_level;
8689 int update_ref;
8690 int keep_locks;
1c4850e2
YZ
8691 int reada_slot;
8692 int reada_count;
2c47e605
YZ
8693};
8694
8695#define DROP_REFERENCE 1
8696#define UPDATE_BACKREF 2
8697
1c4850e2
YZ
8698static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8699 struct btrfs_root *root,
8700 struct walk_control *wc,
8701 struct btrfs_path *path)
6407bf6d 8702{
0b246afa 8703 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8704 u64 bytenr;
8705 u64 generation;
8706 u64 refs;
94fcca9f 8707 u64 flags;
5d4f98a2 8708 u32 nritems;
1c4850e2
YZ
8709 struct btrfs_key key;
8710 struct extent_buffer *eb;
6407bf6d 8711 int ret;
1c4850e2
YZ
8712 int slot;
8713 int nread = 0;
6407bf6d 8714
1c4850e2
YZ
8715 if (path->slots[wc->level] < wc->reada_slot) {
8716 wc->reada_count = wc->reada_count * 2 / 3;
8717 wc->reada_count = max(wc->reada_count, 2);
8718 } else {
8719 wc->reada_count = wc->reada_count * 3 / 2;
8720 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8721 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8722 }
7bb86316 8723
1c4850e2
YZ
8724 eb = path->nodes[wc->level];
8725 nritems = btrfs_header_nritems(eb);
bd56b302 8726
1c4850e2
YZ
8727 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8728 if (nread >= wc->reada_count)
8729 break;
bd56b302 8730
2dd3e67b 8731 cond_resched();
1c4850e2
YZ
8732 bytenr = btrfs_node_blockptr(eb, slot);
8733 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8734
1c4850e2
YZ
8735 if (slot == path->slots[wc->level])
8736 goto reada;
5d4f98a2 8737
1c4850e2
YZ
8738 if (wc->stage == UPDATE_BACKREF &&
8739 generation <= root->root_key.offset)
bd56b302
CM
8740 continue;
8741
94fcca9f 8742 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8743 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8744 wc->level - 1, 1, &refs,
8745 &flags);
79787eaa
JM
8746 /* We don't care about errors in readahead. */
8747 if (ret < 0)
8748 continue;
94fcca9f
YZ
8749 BUG_ON(refs == 0);
8750
1c4850e2 8751 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8752 if (refs == 1)
8753 goto reada;
bd56b302 8754
94fcca9f
YZ
8755 if (wc->level == 1 &&
8756 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8757 continue;
1c4850e2
YZ
8758 if (!wc->update_ref ||
8759 generation <= root->root_key.offset)
8760 continue;
8761 btrfs_node_key_to_cpu(eb, &key, slot);
8762 ret = btrfs_comp_cpu_keys(&key,
8763 &wc->update_progress);
8764 if (ret < 0)
8765 continue;
94fcca9f
YZ
8766 } else {
8767 if (wc->level == 1 &&
8768 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8769 continue;
6407bf6d 8770 }
1c4850e2 8771reada:
2ff7e61e 8772 readahead_tree_block(fs_info, bytenr);
1c4850e2 8773 nread++;
20524f02 8774 }
1c4850e2 8775 wc->reada_slot = slot;
20524f02 8776}
2c47e605 8777
f82d02d9 8778/*
2c016dc2 8779 * helper to process tree block while walking down the tree.
2c47e605 8780 *
2c47e605
YZ
8781 * when wc->stage == UPDATE_BACKREF, this function updates
8782 * back refs for pointers in the block.
8783 *
8784 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8785 */
2c47e605 8786static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8787 struct btrfs_root *root,
2c47e605 8788 struct btrfs_path *path,
94fcca9f 8789 struct walk_control *wc, int lookup_info)
f82d02d9 8790{
2ff7e61e 8791 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8792 int level = wc->level;
8793 struct extent_buffer *eb = path->nodes[level];
2c47e605 8794 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8795 int ret;
8796
2c47e605
YZ
8797 if (wc->stage == UPDATE_BACKREF &&
8798 btrfs_header_owner(eb) != root->root_key.objectid)
8799 return 1;
f82d02d9 8800
2c47e605
YZ
8801 /*
8802 * when reference count of tree block is 1, it won't increase
8803 * again. once full backref flag is set, we never clear it.
8804 */
94fcca9f
YZ
8805 if (lookup_info &&
8806 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8807 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8808 BUG_ON(!path->locks[level]);
2ff7e61e 8809 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8810 eb->start, level, 1,
2c47e605
YZ
8811 &wc->refs[level],
8812 &wc->flags[level]);
79787eaa
JM
8813 BUG_ON(ret == -ENOMEM);
8814 if (ret)
8815 return ret;
2c47e605
YZ
8816 BUG_ON(wc->refs[level] == 0);
8817 }
5d4f98a2 8818
2c47e605
YZ
8819 if (wc->stage == DROP_REFERENCE) {
8820 if (wc->refs[level] > 1)
8821 return 1;
f82d02d9 8822
2c47e605 8823 if (path->locks[level] && !wc->keep_locks) {
bd681513 8824 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8825 path->locks[level] = 0;
8826 }
8827 return 0;
8828 }
f82d02d9 8829
2c47e605
YZ
8830 /* wc->stage == UPDATE_BACKREF */
8831 if (!(wc->flags[level] & flag)) {
8832 BUG_ON(!path->locks[level]);
e339a6b0 8833 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8834 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8835 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8836 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8837 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8838 eb->len, flag,
8839 btrfs_header_level(eb), 0);
79787eaa 8840 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8841 wc->flags[level] |= flag;
8842 }
8843
8844 /*
8845 * the block is shared by multiple trees, so it's not good to
8846 * keep the tree lock
8847 */
8848 if (path->locks[level] && level > 0) {
bd681513 8849 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8850 path->locks[level] = 0;
8851 }
8852 return 0;
8853}
8854
1c4850e2 8855/*
2c016dc2 8856 * helper to process tree block pointer.
1c4850e2
YZ
8857 *
8858 * when wc->stage == DROP_REFERENCE, this function checks
8859 * reference count of the block pointed to. if the block
8860 * is shared and we need update back refs for the subtree
8861 * rooted at the block, this function changes wc->stage to
8862 * UPDATE_BACKREF. if the block is shared and there is no
8863 * need to update back, this function drops the reference
8864 * to the block.
8865 *
8866 * NOTE: return value 1 means we should stop walking down.
8867 */
8868static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8869 struct btrfs_root *root,
8870 struct btrfs_path *path,
94fcca9f 8871 struct walk_control *wc, int *lookup_info)
1c4850e2 8872{
0b246afa 8873 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8874 u64 bytenr;
8875 u64 generation;
8876 u64 parent;
1c4850e2 8877 struct btrfs_key key;
581c1760 8878 struct btrfs_key first_key;
1c4850e2
YZ
8879 struct extent_buffer *next;
8880 int level = wc->level;
8881 int reada = 0;
8882 int ret = 0;
1152651a 8883 bool need_account = false;
1c4850e2
YZ
8884
8885 generation = btrfs_node_ptr_generation(path->nodes[level],
8886 path->slots[level]);
8887 /*
8888 * if the lower level block was created before the snapshot
8889 * was created, we know there is no need to update back refs
8890 * for the subtree
8891 */
8892 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8893 generation <= root->root_key.offset) {
8894 *lookup_info = 1;
1c4850e2 8895 return 1;
94fcca9f 8896 }
1c4850e2
YZ
8897
8898 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8899 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8900 path->slots[level]);
1c4850e2 8901
0b246afa 8902 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8903 if (!next) {
2ff7e61e 8904 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8905 if (IS_ERR(next))
8906 return PTR_ERR(next);
8907
b2aaaa3b
JB
8908 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8909 level - 1);
1c4850e2
YZ
8910 reada = 1;
8911 }
8912 btrfs_tree_lock(next);
8913 btrfs_set_lock_blocking(next);
8914
2ff7e61e 8915 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8916 &wc->refs[level - 1],
8917 &wc->flags[level - 1]);
4867268c
JB
8918 if (ret < 0)
8919 goto out_unlock;
79787eaa 8920
c2cf52eb 8921 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8922 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8923 ret = -EIO;
8924 goto out_unlock;
c2cf52eb 8925 }
94fcca9f 8926 *lookup_info = 0;
1c4850e2 8927
94fcca9f 8928 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8929 if (wc->refs[level - 1] > 1) {
1152651a 8930 need_account = true;
94fcca9f
YZ
8931 if (level == 1 &&
8932 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8933 goto skip;
8934
1c4850e2
YZ
8935 if (!wc->update_ref ||
8936 generation <= root->root_key.offset)
8937 goto skip;
8938
8939 btrfs_node_key_to_cpu(path->nodes[level], &key,
8940 path->slots[level]);
8941 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8942 if (ret < 0)
8943 goto skip;
8944
8945 wc->stage = UPDATE_BACKREF;
8946 wc->shared_level = level - 1;
8947 }
94fcca9f
YZ
8948 } else {
8949 if (level == 1 &&
8950 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8951 goto skip;
1c4850e2
YZ
8952 }
8953
b9fab919 8954 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8955 btrfs_tree_unlock(next);
8956 free_extent_buffer(next);
8957 next = NULL;
94fcca9f 8958 *lookup_info = 1;
1c4850e2
YZ
8959 }
8960
8961 if (!next) {
8962 if (reada && level == 1)
8963 reada_walk_down(trans, root, wc, path);
581c1760
QW
8964 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8965 &first_key);
64c043de
LB
8966 if (IS_ERR(next)) {
8967 return PTR_ERR(next);
8968 } else if (!extent_buffer_uptodate(next)) {
416bc658 8969 free_extent_buffer(next);
97d9a8a4 8970 return -EIO;
416bc658 8971 }
1c4850e2
YZ
8972 btrfs_tree_lock(next);
8973 btrfs_set_lock_blocking(next);
8974 }
8975
8976 level--;
4867268c
JB
8977 ASSERT(level == btrfs_header_level(next));
8978 if (level != btrfs_header_level(next)) {
8979 btrfs_err(root->fs_info, "mismatched level");
8980 ret = -EIO;
8981 goto out_unlock;
8982 }
1c4850e2
YZ
8983 path->nodes[level] = next;
8984 path->slots[level] = 0;
bd681513 8985 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8986 wc->level = level;
8987 if (wc->level == 1)
8988 wc->reada_slot = 0;
8989 return 0;
8990skip:
8991 wc->refs[level - 1] = 0;
8992 wc->flags[level - 1] = 0;
94fcca9f
YZ
8993 if (wc->stage == DROP_REFERENCE) {
8994 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8995 parent = path->nodes[level]->start;
8996 } else {
4867268c 8997 ASSERT(root->root_key.objectid ==
94fcca9f 8998 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8999 if (root->root_key.objectid !=
9000 btrfs_header_owner(path->nodes[level])) {
9001 btrfs_err(root->fs_info,
9002 "mismatched block owner");
9003 ret = -EIO;
9004 goto out_unlock;
9005 }
94fcca9f
YZ
9006 parent = 0;
9007 }
1c4850e2 9008
2cd86d30
QW
9009 /*
9010 * Reloc tree doesn't contribute to qgroup numbers, and we have
9011 * already accounted them at merge time (replace_path),
9012 * thus we could skip expensive subtree trace here.
9013 */
9014 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
9015 need_account) {
deb40627 9016 ret = btrfs_qgroup_trace_subtree(trans, next,
33d1f05c 9017 generation, level - 1);
1152651a 9018 if (ret) {
0b246afa 9019 btrfs_err_rl(fs_info,
5d163e0e
JM
9020 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
9021 ret);
1152651a
MF
9022 }
9023 }
01e0da48 9024 ret = btrfs_free_extent(trans, root, bytenr, fs_info->nodesize,
2ff7e61e
JM
9025 parent, root->root_key.objectid,
9026 level - 1, 0);
4867268c
JB
9027 if (ret)
9028 goto out_unlock;
1c4850e2 9029 }
4867268c
JB
9030
9031 *lookup_info = 1;
9032 ret = 1;
9033
9034out_unlock:
1c4850e2
YZ
9035 btrfs_tree_unlock(next);
9036 free_extent_buffer(next);
4867268c
JB
9037
9038 return ret;
1c4850e2
YZ
9039}
9040
2c47e605 9041/*
2c016dc2 9042 * helper to process tree block while walking up the tree.
2c47e605
YZ
9043 *
9044 * when wc->stage == DROP_REFERENCE, this function drops
9045 * reference count on the block.
9046 *
9047 * when wc->stage == UPDATE_BACKREF, this function changes
9048 * wc->stage back to DROP_REFERENCE if we changed wc->stage
9049 * to UPDATE_BACKREF previously while processing the block.
9050 *
9051 * NOTE: return value 1 means we should stop walking up.
9052 */
9053static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9054 struct btrfs_root *root,
9055 struct btrfs_path *path,
9056 struct walk_control *wc)
9057{
0b246afa 9058 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 9059 int ret;
2c47e605
YZ
9060 int level = wc->level;
9061 struct extent_buffer *eb = path->nodes[level];
9062 u64 parent = 0;
9063
9064 if (wc->stage == UPDATE_BACKREF) {
9065 BUG_ON(wc->shared_level < level);
9066 if (level < wc->shared_level)
9067 goto out;
9068
2c47e605
YZ
9069 ret = find_next_key(path, level + 1, &wc->update_progress);
9070 if (ret > 0)
9071 wc->update_ref = 0;
9072
9073 wc->stage = DROP_REFERENCE;
9074 wc->shared_level = -1;
9075 path->slots[level] = 0;
9076
9077 /*
9078 * check reference count again if the block isn't locked.
9079 * we should start walking down the tree again if reference
9080 * count is one.
9081 */
9082 if (!path->locks[level]) {
9083 BUG_ON(level == 0);
9084 btrfs_tree_lock(eb);
9085 btrfs_set_lock_blocking(eb);
bd681513 9086 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9087
2ff7e61e 9088 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 9089 eb->start, level, 1,
2c47e605
YZ
9090 &wc->refs[level],
9091 &wc->flags[level]);
79787eaa
JM
9092 if (ret < 0) {
9093 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9094 path->locks[level] = 0;
79787eaa
JM
9095 return ret;
9096 }
2c47e605
YZ
9097 BUG_ON(wc->refs[level] == 0);
9098 if (wc->refs[level] == 1) {
bd681513 9099 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9100 path->locks[level] = 0;
2c47e605
YZ
9101 return 1;
9102 }
f82d02d9 9103 }
2c47e605 9104 }
f82d02d9 9105
2c47e605
YZ
9106 /* wc->stage == DROP_REFERENCE */
9107 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 9108
2c47e605
YZ
9109 if (wc->refs[level] == 1) {
9110 if (level == 0) {
9111 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 9112 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 9113 else
e339a6b0 9114 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 9115 BUG_ON(ret); /* -ENOMEM */
8d38d7eb 9116 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
1152651a 9117 if (ret) {
0b246afa 9118 btrfs_err_rl(fs_info,
5d163e0e
JM
9119 "error %d accounting leaf items. Quota is out of sync, rescan required.",
9120 ret);
1152651a 9121 }
2c47e605
YZ
9122 }
9123 /* make block locked assertion in clean_tree_block happy */
9124 if (!path->locks[level] &&
9125 btrfs_header_generation(eb) == trans->transid) {
9126 btrfs_tree_lock(eb);
9127 btrfs_set_lock_blocking(eb);
bd681513 9128 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9129 }
7c302b49 9130 clean_tree_block(fs_info, eb);
2c47e605
YZ
9131 }
9132
9133 if (eb == root->node) {
9134 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9135 parent = eb->start;
65c6e82b
QW
9136 else if (root->root_key.objectid != btrfs_header_owner(eb))
9137 goto owner_mismatch;
2c47e605
YZ
9138 } else {
9139 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9140 parent = path->nodes[level + 1]->start;
65c6e82b
QW
9141 else if (root->root_key.objectid !=
9142 btrfs_header_owner(path->nodes[level + 1]))
9143 goto owner_mismatch;
f82d02d9 9144 }
f82d02d9 9145
5581a51a 9146 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
9147out:
9148 wc->refs[level] = 0;
9149 wc->flags[level] = 0;
f0486c68 9150 return 0;
65c6e82b
QW
9151
9152owner_mismatch:
9153 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
9154 btrfs_header_owner(eb), root->root_key.objectid);
9155 return -EUCLEAN;
2c47e605
YZ
9156}
9157
9158static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9159 struct btrfs_root *root,
9160 struct btrfs_path *path,
9161 struct walk_control *wc)
9162{
2c47e605 9163 int level = wc->level;
94fcca9f 9164 int lookup_info = 1;
2c47e605
YZ
9165 int ret;
9166
9167 while (level >= 0) {
94fcca9f 9168 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
9169 if (ret > 0)
9170 break;
9171
9172 if (level == 0)
9173 break;
9174
7a7965f8
YZ
9175 if (path->slots[level] >=
9176 btrfs_header_nritems(path->nodes[level]))
9177 break;
9178
94fcca9f 9179 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9180 if (ret > 0) {
9181 path->slots[level]++;
9182 continue;
90d2c51d
MX
9183 } else if (ret < 0)
9184 return ret;
1c4850e2 9185 level = wc->level;
f82d02d9 9186 }
f82d02d9
YZ
9187 return 0;
9188}
9189
d397712b 9190static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9191 struct btrfs_root *root,
f82d02d9 9192 struct btrfs_path *path,
2c47e605 9193 struct walk_control *wc, int max_level)
20524f02 9194{
2c47e605 9195 int level = wc->level;
20524f02 9196 int ret;
9f3a7427 9197
2c47e605
YZ
9198 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9199 while (level < max_level && path->nodes[level]) {
9200 wc->level = level;
9201 if (path->slots[level] + 1 <
9202 btrfs_header_nritems(path->nodes[level])) {
9203 path->slots[level]++;
20524f02
CM
9204 return 0;
9205 } else {
2c47e605
YZ
9206 ret = walk_up_proc(trans, root, path, wc);
9207 if (ret > 0)
9208 return 0;
65c6e82b
QW
9209 if (ret < 0)
9210 return ret;
bd56b302 9211
2c47e605 9212 if (path->locks[level]) {
bd681513
CM
9213 btrfs_tree_unlock_rw(path->nodes[level],
9214 path->locks[level]);
2c47e605 9215 path->locks[level] = 0;
f82d02d9 9216 }
2c47e605
YZ
9217 free_extent_buffer(path->nodes[level]);
9218 path->nodes[level] = NULL;
9219 level++;
20524f02
CM
9220 }
9221 }
9222 return 1;
9223}
9224
9aca1d51 9225/*
2c47e605
YZ
9226 * drop a subvolume tree.
9227 *
9228 * this function traverses the tree freeing any blocks that only
9229 * referenced by the tree.
9230 *
9231 * when a shared tree block is found. this function decreases its
9232 * reference count by one. if update_ref is true, this function
9233 * also make sure backrefs for the shared block and all lower level
9234 * blocks are properly updated.
9d1a2a3a
DS
9235 *
9236 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9237 */
2c536799 9238int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9239 struct btrfs_block_rsv *block_rsv, int update_ref,
9240 int for_reloc)
20524f02 9241{
ab8d0fc4 9242 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9243 struct btrfs_path *path;
2c47e605 9244 struct btrfs_trans_handle *trans;
ab8d0fc4 9245 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9246 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9247 struct walk_control *wc;
9248 struct btrfs_key key;
9249 int err = 0;
9250 int ret;
9251 int level;
d29a9f62 9252 bool root_dropped = false;
20524f02 9253
4fd786e6 9254 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
1152651a 9255
5caf2a00 9256 path = btrfs_alloc_path();
cb1b69f4
TI
9257 if (!path) {
9258 err = -ENOMEM;
9259 goto out;
9260 }
20524f02 9261
2c47e605 9262 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9263 if (!wc) {
9264 btrfs_free_path(path);
cb1b69f4
TI
9265 err = -ENOMEM;
9266 goto out;
38a1a919 9267 }
2c47e605 9268
a22285a6 9269 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9270 if (IS_ERR(trans)) {
9271 err = PTR_ERR(trans);
9272 goto out_free;
9273 }
98d5dc13 9274
3fd0a558
YZ
9275 if (block_rsv)
9276 trans->block_rsv = block_rsv;
2c47e605 9277
83354f07
JB
9278 /*
9279 * This will help us catch people modifying the fs tree while we're
9280 * dropping it. It is unsafe to mess with the fs tree while it's being
9281 * dropped as we unlock the root node and parent nodes as we walk down
9282 * the tree, assuming nothing will change. If something does change
9283 * then we'll have stale information and drop references to blocks we've
9284 * already dropped.
9285 */
9286 set_bit(BTRFS_ROOT_DELETING, &root->state);
9f3a7427 9287 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9288 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9289 path->nodes[level] = btrfs_lock_root_node(root);
9290 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9291 path->slots[level] = 0;
bd681513 9292 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9293 memset(&wc->update_progress, 0,
9294 sizeof(wc->update_progress));
9f3a7427 9295 } else {
9f3a7427 9296 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9297 memcpy(&wc->update_progress, &key,
9298 sizeof(wc->update_progress));
9299
6702ed49 9300 level = root_item->drop_level;
2c47e605 9301 BUG_ON(level == 0);
6702ed49 9302 path->lowest_level = level;
2c47e605
YZ
9303 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9304 path->lowest_level = 0;
9305 if (ret < 0) {
9306 err = ret;
79787eaa 9307 goto out_end_trans;
9f3a7427 9308 }
1c4850e2 9309 WARN_ON(ret > 0);
2c47e605 9310
7d9eb12c
CM
9311 /*
9312 * unlock our path, this is safe because only this
9313 * function is allowed to delete this snapshot
9314 */
5d4f98a2 9315 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9316
9317 level = btrfs_header_level(root->node);
9318 while (1) {
9319 btrfs_tree_lock(path->nodes[level]);
9320 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9321 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9322
2ff7e61e 9323 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9324 path->nodes[level]->start,
3173a18f 9325 level, 1, &wc->refs[level],
2c47e605 9326 &wc->flags[level]);
79787eaa
JM
9327 if (ret < 0) {
9328 err = ret;
9329 goto out_end_trans;
9330 }
2c47e605
YZ
9331 BUG_ON(wc->refs[level] == 0);
9332
9333 if (level == root_item->drop_level)
9334 break;
9335
9336 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9337 path->locks[level] = 0;
2c47e605
YZ
9338 WARN_ON(wc->refs[level] != 1);
9339 level--;
9340 }
9f3a7427 9341 }
2c47e605
YZ
9342
9343 wc->level = level;
9344 wc->shared_level = -1;
9345 wc->stage = DROP_REFERENCE;
9346 wc->update_ref = update_ref;
9347 wc->keep_locks = 0;
0b246afa 9348 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9349
d397712b 9350 while (1) {
9d1a2a3a 9351
2c47e605
YZ
9352 ret = walk_down_tree(trans, root, path, wc);
9353 if (ret < 0) {
9354 err = ret;
20524f02 9355 break;
2c47e605 9356 }
9aca1d51 9357
2c47e605
YZ
9358 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9359 if (ret < 0) {
9360 err = ret;
20524f02 9361 break;
2c47e605
YZ
9362 }
9363
9364 if (ret > 0) {
9365 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9366 break;
9367 }
2c47e605
YZ
9368
9369 if (wc->stage == DROP_REFERENCE) {
9370 level = wc->level;
9371 btrfs_node_key(path->nodes[level],
9372 &root_item->drop_progress,
9373 path->slots[level]);
9374 root_item->drop_level = level;
9375 }
9376
9377 BUG_ON(wc->level == 0);
3a45bb20 9378 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9379 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9380 ret = btrfs_update_root(trans, tree_root,
9381 &root->root_key,
9382 root_item);
79787eaa 9383 if (ret) {
66642832 9384 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9385 err = ret;
9386 goto out_end_trans;
9387 }
2c47e605 9388
3a45bb20 9389 btrfs_end_transaction_throttle(trans);
2ff7e61e 9390 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9391 btrfs_debug(fs_info,
9392 "drop snapshot early exit");
3c8f2422
JB
9393 err = -EAGAIN;
9394 goto out_free;
9395 }
9396
a22285a6 9397 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9398 if (IS_ERR(trans)) {
9399 err = PTR_ERR(trans);
9400 goto out_free;
9401 }
3fd0a558
YZ
9402 if (block_rsv)
9403 trans->block_rsv = block_rsv;
c3e69d58 9404 }
20524f02 9405 }
b3b4aa74 9406 btrfs_release_path(path);
79787eaa
JM
9407 if (err)
9408 goto out_end_trans;
2c47e605 9409
ab9ce7d4 9410 ret = btrfs_del_root(trans, &root->root_key);
79787eaa 9411 if (ret) {
66642832 9412 btrfs_abort_transaction(trans, ret);
e19182c0 9413 err = ret;
79787eaa
JM
9414 goto out_end_trans;
9415 }
2c47e605 9416
76dda93c 9417 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9418 ret = btrfs_find_root(tree_root, &root->root_key, path,
9419 NULL, NULL);
79787eaa 9420 if (ret < 0) {
66642832 9421 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9422 err = ret;
9423 goto out_end_trans;
9424 } else if (ret > 0) {
84cd948c
JB
9425 /* if we fail to delete the orphan item this time
9426 * around, it'll get picked up the next time.
9427 *
9428 * The most common failure here is just -ENOENT.
9429 */
9430 btrfs_del_orphan_item(trans, tree_root,
9431 root->root_key.objectid);
76dda93c
YZ
9432 }
9433 }
9434
27cdeb70 9435 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9436 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9437 } else {
9438 free_extent_buffer(root->node);
9439 free_extent_buffer(root->commit_root);
b0feb9d9 9440 btrfs_put_fs_root(root);
76dda93c 9441 }
d29a9f62 9442 root_dropped = true;
79787eaa 9443out_end_trans:
3a45bb20 9444 btrfs_end_transaction_throttle(trans);
79787eaa 9445out_free:
2c47e605 9446 kfree(wc);
5caf2a00 9447 btrfs_free_path(path);
cb1b69f4 9448out:
d29a9f62
JB
9449 /*
9450 * So if we need to stop dropping the snapshot for whatever reason we
9451 * need to make sure to add it back to the dead root list so that we
9452 * keep trying to do the work later. This also cleans up roots if we
9453 * don't have it in the radix (like when we recover after a power fail
9454 * or unmount) so we don't leak memory.
9455 */
897ca819 9456 if (!for_reloc && !root_dropped)
d29a9f62 9457 btrfs_add_dead_root(root);
90515e7f 9458 if (err && err != -EAGAIN)
ab8d0fc4 9459 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9460 return err;
20524f02 9461}
9078a3e1 9462
2c47e605
YZ
9463/*
9464 * drop subtree rooted at tree block 'node'.
9465 *
9466 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9467 * only used by relocation code
2c47e605 9468 */
f82d02d9
YZ
9469int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9470 struct btrfs_root *root,
9471 struct extent_buffer *node,
9472 struct extent_buffer *parent)
9473{
0b246afa 9474 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9475 struct btrfs_path *path;
2c47e605 9476 struct walk_control *wc;
f82d02d9
YZ
9477 int level;
9478 int parent_level;
9479 int ret = 0;
9480 int wret;
9481
2c47e605
YZ
9482 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9483
f82d02d9 9484 path = btrfs_alloc_path();
db5b493a
TI
9485 if (!path)
9486 return -ENOMEM;
f82d02d9 9487
2c47e605 9488 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9489 if (!wc) {
9490 btrfs_free_path(path);
9491 return -ENOMEM;
9492 }
2c47e605 9493
b9447ef8 9494 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9495 parent_level = btrfs_header_level(parent);
9496 extent_buffer_get(parent);
9497 path->nodes[parent_level] = parent;
9498 path->slots[parent_level] = btrfs_header_nritems(parent);
9499
b9447ef8 9500 btrfs_assert_tree_locked(node);
f82d02d9 9501 level = btrfs_header_level(node);
f82d02d9
YZ
9502 path->nodes[level] = node;
9503 path->slots[level] = 0;
bd681513 9504 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9505
9506 wc->refs[parent_level] = 1;
9507 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9508 wc->level = level;
9509 wc->shared_level = -1;
9510 wc->stage = DROP_REFERENCE;
9511 wc->update_ref = 0;
9512 wc->keep_locks = 1;
0b246afa 9513 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9514
9515 while (1) {
2c47e605
YZ
9516 wret = walk_down_tree(trans, root, path, wc);
9517 if (wret < 0) {
f82d02d9 9518 ret = wret;
f82d02d9 9519 break;
2c47e605 9520 }
f82d02d9 9521
2c47e605 9522 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9523 if (wret < 0)
9524 ret = wret;
9525 if (wret != 0)
9526 break;
9527 }
9528
2c47e605 9529 kfree(wc);
f82d02d9
YZ
9530 btrfs_free_path(path);
9531 return ret;
9532}
9533
6202df69 9534static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9535{
9536 u64 num_devices;
fc67c450 9537 u64 stripped;
e4d8ec0f 9538
fc67c450
ID
9539 /*
9540 * if restripe for this chunk_type is on pick target profile and
9541 * return, otherwise do the usual balance
9542 */
6202df69 9543 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9544 if (stripped)
9545 return extended_to_chunk(stripped);
e4d8ec0f 9546
6202df69 9547 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9548
fc67c450 9549 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9550 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9551 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9552
ec44a35c
CM
9553 if (num_devices == 1) {
9554 stripped |= BTRFS_BLOCK_GROUP_DUP;
9555 stripped = flags & ~stripped;
9556
9557 /* turn raid0 into single device chunks */
9558 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9559 return stripped;
9560
9561 /* turn mirroring into duplication */
9562 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9563 BTRFS_BLOCK_GROUP_RAID10))
9564 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9565 } else {
9566 /* they already had raid on here, just return */
ec44a35c
CM
9567 if (flags & stripped)
9568 return flags;
9569
9570 stripped |= BTRFS_BLOCK_GROUP_DUP;
9571 stripped = flags & ~stripped;
9572
9573 /* switch duplicated blocks with raid1 */
9574 if (flags & BTRFS_BLOCK_GROUP_DUP)
9575 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9576
e3176ca2 9577 /* this is drive concat, leave it alone */
ec44a35c 9578 }
e3176ca2 9579
ec44a35c
CM
9580 return flags;
9581}
9582
868f401a 9583static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9584{
f0486c68
YZ
9585 struct btrfs_space_info *sinfo = cache->space_info;
9586 u64 num_bytes;
199c36ea 9587 u64 min_allocable_bytes;
f0486c68 9588 int ret = -ENOSPC;
0ef3e66b 9589
199c36ea
MX
9590 /*
9591 * We need some metadata space and system metadata space for
9592 * allocating chunks in some corner cases until we force to set
9593 * it to be readonly.
9594 */
9595 if ((sinfo->flags &
9596 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9597 !force)
ee22184b 9598 min_allocable_bytes = SZ_1M;
199c36ea
MX
9599 else
9600 min_allocable_bytes = 0;
9601
f0486c68
YZ
9602 spin_lock(&sinfo->lock);
9603 spin_lock(&cache->lock);
61cfea9b
W
9604
9605 if (cache->ro) {
868f401a 9606 cache->ro++;
61cfea9b
W
9607 ret = 0;
9608 goto out;
9609 }
9610
f0486c68
YZ
9611 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9612 cache->bytes_super - btrfs_block_group_used(&cache->item);
9613
4136135b 9614 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9615 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9616 sinfo->bytes_readonly += num_bytes;
868f401a 9617 cache->ro++;
633c0aad 9618 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9619 ret = 0;
9620 }
61cfea9b 9621out:
f0486c68
YZ
9622 spin_unlock(&cache->lock);
9623 spin_unlock(&sinfo->lock);
9624 return ret;
9625}
7d9eb12c 9626
c83488af 9627int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
c286ac48 9628
f0486c68 9629{
c83488af 9630 struct btrfs_fs_info *fs_info = cache->fs_info;
f0486c68
YZ
9631 struct btrfs_trans_handle *trans;
9632 u64 alloc_flags;
9633 int ret;
7d9eb12c 9634
1bbc621e 9635again:
5e00f193 9636 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9637 if (IS_ERR(trans))
9638 return PTR_ERR(trans);
5d4f98a2 9639
1bbc621e
CM
9640 /*
9641 * we're not allowed to set block groups readonly after the dirty
9642 * block groups cache has started writing. If it already started,
9643 * back off and let this transaction commit
9644 */
0b246afa 9645 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9646 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9647 u64 transid = trans->transid;
9648
0b246afa 9649 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9650 btrfs_end_transaction(trans);
1bbc621e 9651
2ff7e61e 9652 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9653 if (ret)
9654 return ret;
9655 goto again;
9656 }
9657
153c35b6
CM
9658 /*
9659 * if we are changing raid levels, try to allocate a corresponding
9660 * block group with the new raid level.
9661 */
0b246afa 9662 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9663 if (alloc_flags != cache->flags) {
01458828 9664 ret = do_chunk_alloc(trans, alloc_flags,
153c35b6
CM
9665 CHUNK_ALLOC_FORCE);
9666 /*
9667 * ENOSPC is allowed here, we may have enough space
9668 * already allocated at the new raid level to
9669 * carry on
9670 */
9671 if (ret == -ENOSPC)
9672 ret = 0;
9673 if (ret < 0)
9674 goto out;
9675 }
1bbc621e 9676
868f401a 9677 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9678 if (!ret)
9679 goto out;
2ff7e61e 9680 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
01458828 9681 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
f0486c68
YZ
9682 if (ret < 0)
9683 goto out;
868f401a 9684 ret = inc_block_group_ro(cache, 0);
f0486c68 9685out:
2f081088 9686 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9687 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9688 mutex_lock(&fs_info->chunk_mutex);
451a2c13 9689 check_system_chunk(trans, alloc_flags);
34441361 9690 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9691 }
0b246afa 9692 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9693
3a45bb20 9694 btrfs_end_transaction(trans);
f0486c68
YZ
9695 return ret;
9696}
5d4f98a2 9697
43a7e99d 9698int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
c87f08ca 9699{
43a7e99d 9700 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
2ff7e61e 9701
01458828 9702 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9703}
9704
6d07bcec
MX
9705/*
9706 * helper to account the unused space of all the readonly block group in the
633c0aad 9707 * space_info. takes mirrors into account.
6d07bcec 9708 */
633c0aad 9709u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9710{
9711 struct btrfs_block_group_cache *block_group;
9712 u64 free_bytes = 0;
9713 int factor;
9714
01327610 9715 /* It's df, we don't care if it's racy */
633c0aad
JB
9716 if (list_empty(&sinfo->ro_bgs))
9717 return 0;
9718
9719 spin_lock(&sinfo->lock);
9720 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9721 spin_lock(&block_group->lock);
9722
9723 if (!block_group->ro) {
9724 spin_unlock(&block_group->lock);
9725 continue;
9726 }
9727
46df06b8 9728 factor = btrfs_bg_type_to_factor(block_group->flags);
6d07bcec
MX
9729 free_bytes += (block_group->key.offset -
9730 btrfs_block_group_used(&block_group->item)) *
9731 factor;
9732
9733 spin_unlock(&block_group->lock);
9734 }
6d07bcec
MX
9735 spin_unlock(&sinfo->lock);
9736
9737 return free_bytes;
9738}
9739
2ff7e61e 9740void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9741{
f0486c68
YZ
9742 struct btrfs_space_info *sinfo = cache->space_info;
9743 u64 num_bytes;
9744
9745 BUG_ON(!cache->ro);
9746
9747 spin_lock(&sinfo->lock);
9748 spin_lock(&cache->lock);
868f401a
Z
9749 if (!--cache->ro) {
9750 num_bytes = cache->key.offset - cache->reserved -
9751 cache->pinned - cache->bytes_super -
9752 btrfs_block_group_used(&cache->item);
9753 sinfo->bytes_readonly -= num_bytes;
9754 list_del_init(&cache->ro_list);
9755 }
f0486c68
YZ
9756 spin_unlock(&cache->lock);
9757 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9758}
9759
ba1bf481
JB
9760/*
9761 * checks to see if its even possible to relocate this block group.
9762 *
9763 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9764 * ok to go ahead and try.
9765 */
6bccf3ab 9766int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9767{
6bccf3ab 9768 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9769 struct btrfs_block_group_cache *block_group;
9770 struct btrfs_space_info *space_info;
0b246afa 9771 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9772 struct btrfs_device *device;
6df9a95e 9773 struct btrfs_trans_handle *trans;
cdcb725c 9774 u64 min_free;
6719db6a
JB
9775 u64 dev_min = 1;
9776 u64 dev_nr = 0;
4a5e98f5 9777 u64 target;
0305bc27 9778 int debug;
cdcb725c 9779 int index;
ba1bf481
JB
9780 int full = 0;
9781 int ret = 0;
1a40e23b 9782
0b246afa 9783 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9784
0b246afa 9785 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9786
ba1bf481 9787 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9788 if (!block_group) {
9789 if (debug)
0b246afa 9790 btrfs_warn(fs_info,
0305bc27
QW
9791 "can't find block group for bytenr %llu",
9792 bytenr);
ba1bf481 9793 return -1;
0305bc27 9794 }
1a40e23b 9795
cdcb725c 9796 min_free = btrfs_block_group_used(&block_group->item);
9797
ba1bf481 9798 /* no bytes used, we're good */
cdcb725c 9799 if (!min_free)
1a40e23b
ZY
9800 goto out;
9801
ba1bf481
JB
9802 space_info = block_group->space_info;
9803 spin_lock(&space_info->lock);
17d217fe 9804
ba1bf481 9805 full = space_info->full;
17d217fe 9806
ba1bf481
JB
9807 /*
9808 * if this is the last block group we have in this space, we can't
7ce618db
CM
9809 * relocate it unless we're able to allocate a new chunk below.
9810 *
9811 * Otherwise, we need to make sure we have room in the space to handle
9812 * all of the extents from this block group. If we can, we're good
ba1bf481 9813 */
7ce618db 9814 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9815 (btrfs_space_info_used(space_info, false) + min_free <
9816 space_info->total_bytes)) {
ba1bf481
JB
9817 spin_unlock(&space_info->lock);
9818 goto out;
17d217fe 9819 }
ba1bf481 9820 spin_unlock(&space_info->lock);
ea8c2819 9821
ba1bf481
JB
9822 /*
9823 * ok we don't have enough space, but maybe we have free space on our
9824 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9825 * alloc devices and guess if we have enough space. if this block
9826 * group is going to be restriped, run checks against the target
9827 * profile instead of the current one.
ba1bf481
JB
9828 */
9829 ret = -1;
ea8c2819 9830
cdcb725c 9831 /*
9832 * index:
9833 * 0: raid10
9834 * 1: raid1
9835 * 2: dup
9836 * 3: raid0
9837 * 4: single
9838 */
0b246afa 9839 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9840 if (target) {
3e72ee88 9841 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9842 } else {
9843 /*
9844 * this is just a balance, so if we were marked as full
9845 * we know there is no space for a new chunk
9846 */
0305bc27
QW
9847 if (full) {
9848 if (debug)
0b246afa
JM
9849 btrfs_warn(fs_info,
9850 "no space to alloc new chunk for block group %llu",
9851 block_group->key.objectid);
4a5e98f5 9852 goto out;
0305bc27 9853 }
4a5e98f5 9854
3e72ee88 9855 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9856 }
9857
e6ec716f 9858 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9859 dev_min = 4;
6719db6a
JB
9860 /* Divide by 2 */
9861 min_free >>= 1;
e6ec716f 9862 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9863 dev_min = 2;
e6ec716f 9864 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9865 /* Multiply by 2 */
9866 min_free <<= 1;
e6ec716f 9867 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9868 dev_min = fs_devices->rw_devices;
47c5713f 9869 min_free = div64_u64(min_free, dev_min);
cdcb725c 9870 }
9871
6df9a95e
JB
9872 /* We need to do this so that we can look at pending chunks */
9873 trans = btrfs_join_transaction(root);
9874 if (IS_ERR(trans)) {
9875 ret = PTR_ERR(trans);
9876 goto out;
9877 }
9878
0b246afa 9879 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9880 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9881 u64 dev_offset;
56bec294 9882
ba1bf481
JB
9883 /*
9884 * check to make sure we can actually find a chunk with enough
9885 * space to fit our block group in.
9886 */
63a212ab 9887 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9888 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9889 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9890 &dev_offset, NULL);
ba1bf481 9891 if (!ret)
cdcb725c 9892 dev_nr++;
9893
9894 if (dev_nr >= dev_min)
73e48b27 9895 break;
cdcb725c 9896
ba1bf481 9897 ret = -1;
725c8463 9898 }
edbd8d4e 9899 }
0305bc27 9900 if (debug && ret == -1)
0b246afa
JM
9901 btrfs_warn(fs_info,
9902 "no space to allocate a new chunk for block group %llu",
9903 block_group->key.objectid);
9904 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9905 btrfs_end_transaction(trans);
edbd8d4e 9906out:
ba1bf481 9907 btrfs_put_block_group(block_group);
edbd8d4e
CM
9908 return ret;
9909}
9910
6bccf3ab
JM
9911static int find_first_block_group(struct btrfs_fs_info *fs_info,
9912 struct btrfs_path *path,
9913 struct btrfs_key *key)
0b86a832 9914{
6bccf3ab 9915 struct btrfs_root *root = fs_info->extent_root;
925baedd 9916 int ret = 0;
0b86a832
CM
9917 struct btrfs_key found_key;
9918 struct extent_buffer *leaf;
514c7dca
QW
9919 struct btrfs_block_group_item bg;
9920 u64 flags;
0b86a832 9921 int slot;
edbd8d4e 9922
0b86a832
CM
9923 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9924 if (ret < 0)
925baedd
CM
9925 goto out;
9926
d397712b 9927 while (1) {
0b86a832 9928 slot = path->slots[0];
edbd8d4e 9929 leaf = path->nodes[0];
0b86a832
CM
9930 if (slot >= btrfs_header_nritems(leaf)) {
9931 ret = btrfs_next_leaf(root, path);
9932 if (ret == 0)
9933 continue;
9934 if (ret < 0)
925baedd 9935 goto out;
0b86a832 9936 break;
edbd8d4e 9937 }
0b86a832 9938 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9939
0b86a832 9940 if (found_key.objectid >= key->objectid &&
925baedd 9941 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9942 struct extent_map_tree *em_tree;
9943 struct extent_map *em;
9944
9945 em_tree = &root->fs_info->mapping_tree.map_tree;
9946 read_lock(&em_tree->lock);
9947 em = lookup_extent_mapping(em_tree, found_key.objectid,
9948 found_key.offset);
9949 read_unlock(&em_tree->lock);
9950 if (!em) {
0b246afa 9951 btrfs_err(fs_info,
6fb37b75
LB
9952 "logical %llu len %llu found bg but no related chunk",
9953 found_key.objectid, found_key.offset);
9954 ret = -ENOENT;
514c7dca
QW
9955 } else if (em->start != found_key.objectid ||
9956 em->len != found_key.offset) {
9957 btrfs_err(fs_info,
9958 "block group %llu len %llu mismatch with chunk %llu len %llu",
9959 found_key.objectid, found_key.offset,
9960 em->start, em->len);
9961 ret = -EUCLEAN;
6fb37b75 9962 } else {
514c7dca
QW
9963 read_extent_buffer(leaf, &bg,
9964 btrfs_item_ptr_offset(leaf, slot),
9965 sizeof(bg));
9966 flags = btrfs_block_group_flags(&bg) &
9967 BTRFS_BLOCK_GROUP_TYPE_MASK;
9968
9969 if (flags != (em->map_lookup->type &
9970 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9971 btrfs_err(fs_info,
9972"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9973 found_key.objectid,
9974 found_key.offset, flags,
9975 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9976 em->map_lookup->type));
9977 ret = -EUCLEAN;
9978 } else {
9979 ret = 0;
9980 }
6fb37b75 9981 }
187ee58c 9982 free_extent_map(em);
925baedd
CM
9983 goto out;
9984 }
0b86a832 9985 path->slots[0]++;
edbd8d4e 9986 }
925baedd 9987out:
0b86a832 9988 return ret;
edbd8d4e
CM
9989}
9990
0af3d00b
JB
9991void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9992{
9993 struct btrfs_block_group_cache *block_group;
9994 u64 last = 0;
9995
9996 while (1) {
9997 struct inode *inode;
9998
9999 block_group = btrfs_lookup_first_block_group(info, last);
10000 while (block_group) {
3aa7c7a3 10001 wait_block_group_cache_done(block_group);
0af3d00b
JB
10002 spin_lock(&block_group->lock);
10003 if (block_group->iref)
10004 break;
10005 spin_unlock(&block_group->lock);
2ff7e61e 10006 block_group = next_block_group(info, block_group);
0af3d00b
JB
10007 }
10008 if (!block_group) {
10009 if (last == 0)
10010 break;
10011 last = 0;
10012 continue;
10013 }
10014
10015 inode = block_group->inode;
10016 block_group->iref = 0;
10017 block_group->inode = NULL;
10018 spin_unlock(&block_group->lock);
f3bca802 10019 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
10020 iput(inode);
10021 last = block_group->key.objectid + block_group->key.offset;
10022 btrfs_put_block_group(block_group);
10023 }
10024}
10025
5cdd7db6
FM
10026/*
10027 * Must be called only after stopping all workers, since we could have block
10028 * group caching kthreads running, and therefore they could race with us if we
10029 * freed the block groups before stopping them.
10030 */
1a40e23b
ZY
10031int btrfs_free_block_groups(struct btrfs_fs_info *info)
10032{
10033 struct btrfs_block_group_cache *block_group;
4184ea7f 10034 struct btrfs_space_info *space_info;
11833d66 10035 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
10036 struct rb_node *n;
10037
9e351cc8 10038 down_write(&info->commit_root_sem);
11833d66
YZ
10039 while (!list_empty(&info->caching_block_groups)) {
10040 caching_ctl = list_entry(info->caching_block_groups.next,
10041 struct btrfs_caching_control, list);
10042 list_del(&caching_ctl->list);
10043 put_caching_control(caching_ctl);
10044 }
9e351cc8 10045 up_write(&info->commit_root_sem);
11833d66 10046
47ab2a6c
JB
10047 spin_lock(&info->unused_bgs_lock);
10048 while (!list_empty(&info->unused_bgs)) {
10049 block_group = list_first_entry(&info->unused_bgs,
10050 struct btrfs_block_group_cache,
10051 bg_list);
10052 list_del_init(&block_group->bg_list);
10053 btrfs_put_block_group(block_group);
10054 }
10055 spin_unlock(&info->unused_bgs_lock);
10056
1a40e23b
ZY
10057 spin_lock(&info->block_group_cache_lock);
10058 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
10059 block_group = rb_entry(n, struct btrfs_block_group_cache,
10060 cache_node);
1a40e23b
ZY
10061 rb_erase(&block_group->cache_node,
10062 &info->block_group_cache_tree);
01eacb27 10063 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
10064 spin_unlock(&info->block_group_cache_lock);
10065
80eb234a 10066 down_write(&block_group->space_info->groups_sem);
1a40e23b 10067 list_del(&block_group->list);
80eb234a 10068 up_write(&block_group->space_info->groups_sem);
d2fb3437 10069
3c14874a
JB
10070 /*
10071 * We haven't cached this block group, which means we could
10072 * possibly have excluded extents on this block group.
10073 */
36cce922
JB
10074 if (block_group->cached == BTRFS_CACHE_NO ||
10075 block_group->cached == BTRFS_CACHE_ERROR)
9e715da8 10076 free_excluded_extents(block_group);
3c14874a 10077
817d52f8 10078 btrfs_remove_free_space_cache(block_group);
5cdd7db6 10079 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
10080 ASSERT(list_empty(&block_group->dirty_list));
10081 ASSERT(list_empty(&block_group->io_list));
10082 ASSERT(list_empty(&block_group->bg_list));
10083 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 10084 btrfs_put_block_group(block_group);
d899e052
YZ
10085
10086 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
10087 }
10088 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
10089
10090 /* now that all the block groups are freed, go through and
10091 * free all the space_info structs. This is only called during
10092 * the final stages of unmount, and so we know nobody is
10093 * using them. We call synchronize_rcu() once before we start,
10094 * just to be on the safe side.
10095 */
10096 synchronize_rcu();
10097
8929ecfa
YZ
10098 release_global_block_rsv(info);
10099
67871254 10100 while (!list_empty(&info->space_info)) {
6ab0a202
JM
10101 int i;
10102
4184ea7f
CM
10103 space_info = list_entry(info->space_info.next,
10104 struct btrfs_space_info,
10105 list);
d555b6c3
JB
10106
10107 /*
10108 * Do not hide this behind enospc_debug, this is actually
10109 * important and indicates a real bug if this happens.
10110 */
10111 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 10112 space_info->bytes_reserved > 0 ||
d555b6c3 10113 space_info->bytes_may_use > 0))
ab8d0fc4 10114 dump_space_info(info, space_info, 0, 0);
4184ea7f 10115 list_del(&space_info->list);
6ab0a202
JM
10116 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10117 struct kobject *kobj;
c1895442
JM
10118 kobj = space_info->block_group_kobjs[i];
10119 space_info->block_group_kobjs[i] = NULL;
10120 if (kobj) {
6ab0a202
JM
10121 kobject_del(kobj);
10122 kobject_put(kobj);
10123 }
10124 }
10125 kobject_del(&space_info->kobj);
10126 kobject_put(&space_info->kobj);
4184ea7f 10127 }
1a40e23b
ZY
10128 return 0;
10129}
10130
75cb379d
JM
10131/* link_block_group will queue up kobjects to add when we're reclaim-safe */
10132void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
10133{
10134 struct btrfs_space_info *space_info;
10135 struct raid_kobject *rkobj;
10136 LIST_HEAD(list);
10137 int index;
10138 int ret = 0;
10139
10140 spin_lock(&fs_info->pending_raid_kobjs_lock);
10141 list_splice_init(&fs_info->pending_raid_kobjs, &list);
10142 spin_unlock(&fs_info->pending_raid_kobjs_lock);
10143
10144 list_for_each_entry(rkobj, &list, list) {
10145 space_info = __find_space_info(fs_info, rkobj->flags);
10146 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
10147
10148 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10149 "%s", get_raid_name(index));
10150 if (ret) {
10151 kobject_put(&rkobj->kobj);
10152 break;
10153 }
10154 }
10155 if (ret)
10156 btrfs_warn(fs_info,
10157 "failed to add kobject for block cache, ignoring");
10158}
10159
c434d21c 10160static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 10161{
c434d21c 10162 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 10163 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 10164 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 10165 bool first = false;
b742bb82
YZ
10166
10167 down_write(&space_info->groups_sem);
ed55b6ac
JM
10168 if (list_empty(&space_info->block_groups[index]))
10169 first = true;
10170 list_add_tail(&cache->list, &space_info->block_groups[index]);
10171 up_write(&space_info->groups_sem);
10172
10173 if (first) {
75cb379d
JM
10174 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10175 if (!rkobj) {
10176 btrfs_warn(cache->fs_info,
10177 "couldn't alloc memory for raid level kobject");
10178 return;
6ab0a202 10179 }
75cb379d
JM
10180 rkobj->flags = cache->flags;
10181 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10182
10183 spin_lock(&fs_info->pending_raid_kobjs_lock);
10184 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10185 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 10186 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 10187 }
b742bb82
YZ
10188}
10189
920e4a58 10190static struct btrfs_block_group_cache *
2ff7e61e
JM
10191btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10192 u64 start, u64 size)
920e4a58
MX
10193{
10194 struct btrfs_block_group_cache *cache;
10195
10196 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10197 if (!cache)
10198 return NULL;
10199
10200 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10201 GFP_NOFS);
10202 if (!cache->free_space_ctl) {
10203 kfree(cache);
10204 return NULL;
10205 }
10206
10207 cache->key.objectid = start;
10208 cache->key.offset = size;
10209 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10210
0b246afa 10211 cache->fs_info = fs_info;
e4ff5fb5 10212 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
10213 set_free_space_tree_thresholds(cache);
10214
920e4a58
MX
10215 atomic_set(&cache->count, 1);
10216 spin_lock_init(&cache->lock);
e570fd27 10217 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10218 INIT_LIST_HEAD(&cache->list);
10219 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10220 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10221 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10222 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10223 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10224 btrfs_init_free_space_ctl(cache);
04216820 10225 atomic_set(&cache->trimming, 0);
a5ed9182 10226 mutex_init(&cache->free_space_lock);
0966a7b1 10227 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
10228
10229 return cache;
10230}
10231
7ef49515
QW
10232
10233/*
10234 * Iterate all chunks and verify that each of them has the corresponding block
10235 * group
10236 */
10237static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10238{
10239 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
10240 struct extent_map *em;
10241 struct btrfs_block_group_cache *bg;
10242 u64 start = 0;
10243 int ret = 0;
10244
10245 while (1) {
10246 read_lock(&map_tree->map_tree.lock);
10247 /*
10248 * lookup_extent_mapping will return the first extent map
10249 * intersecting the range, so setting @len to 1 is enough to
10250 * get the first chunk.
10251 */
10252 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10253 read_unlock(&map_tree->map_tree.lock);
10254 if (!em)
10255 break;
10256
10257 bg = btrfs_lookup_block_group(fs_info, em->start);
10258 if (!bg) {
10259 btrfs_err(fs_info,
10260 "chunk start=%llu len=%llu doesn't have corresponding block group",
10261 em->start, em->len);
10262 ret = -EUCLEAN;
10263 free_extent_map(em);
10264 break;
10265 }
10266 if (bg->key.objectid != em->start ||
10267 bg->key.offset != em->len ||
10268 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10269 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10270 btrfs_err(fs_info,
10271"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10272 em->start, em->len,
10273 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10274 bg->key.objectid, bg->key.offset,
10275 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10276 ret = -EUCLEAN;
10277 free_extent_map(em);
10278 btrfs_put_block_group(bg);
10279 break;
10280 }
10281 start = em->start + em->len;
10282 free_extent_map(em);
10283 btrfs_put_block_group(bg);
10284 }
10285 return ret;
10286}
10287
5b4aacef 10288int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10289{
10290 struct btrfs_path *path;
10291 int ret;
9078a3e1 10292 struct btrfs_block_group_cache *cache;
6324fbf3 10293 struct btrfs_space_info *space_info;
9078a3e1
CM
10294 struct btrfs_key key;
10295 struct btrfs_key found_key;
5f39d397 10296 struct extent_buffer *leaf;
0af3d00b
JB
10297 int need_clear = 0;
10298 u64 cache_gen;
49303381
LB
10299 u64 feature;
10300 int mixed;
10301
10302 feature = btrfs_super_incompat_flags(info->super_copy);
10303 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10304
9078a3e1 10305 key.objectid = 0;
0b86a832 10306 key.offset = 0;
962a298f 10307 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10308 path = btrfs_alloc_path();
10309 if (!path)
10310 return -ENOMEM;
e4058b54 10311 path->reada = READA_FORWARD;
9078a3e1 10312
0b246afa
JM
10313 cache_gen = btrfs_super_cache_generation(info->super_copy);
10314 if (btrfs_test_opt(info, SPACE_CACHE) &&
10315 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10316 need_clear = 1;
0b246afa 10317 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10318 need_clear = 1;
0af3d00b 10319
d397712b 10320 while (1) {
6bccf3ab 10321 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10322 if (ret > 0)
10323 break;
0b86a832
CM
10324 if (ret != 0)
10325 goto error;
920e4a58 10326
5f39d397
CM
10327 leaf = path->nodes[0];
10328 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10329
2ff7e61e 10330 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10331 found_key.offset);
9078a3e1 10332 if (!cache) {
0b86a832 10333 ret = -ENOMEM;
f0486c68 10334 goto error;
9078a3e1 10335 }
96303081 10336
cf7c1ef6
LB
10337 if (need_clear) {
10338 /*
10339 * When we mount with old space cache, we need to
10340 * set BTRFS_DC_CLEAR and set dirty flag.
10341 *
10342 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10343 * truncate the old free space cache inode and
10344 * setup a new one.
10345 * b) Setting 'dirty flag' makes sure that we flush
10346 * the new space cache info onto disk.
10347 */
0b246afa 10348 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10349 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10350 }
0af3d00b 10351
5f39d397
CM
10352 read_extent_buffer(leaf, &cache->item,
10353 btrfs_item_ptr_offset(leaf, path->slots[0]),
10354 sizeof(cache->item));
920e4a58 10355 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10356 if (!mixed &&
10357 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10358 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10359 btrfs_err(info,
10360"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10361 cache->key.objectid);
10362 ret = -EINVAL;
10363 goto error;
10364 }
0b86a832 10365
9078a3e1 10366 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10367 btrfs_release_path(path);
34d52cb6 10368
3c14874a
JB
10369 /*
10370 * We need to exclude the super stripes now so that the space
10371 * info has super bytes accounted for, otherwise we'll think
10372 * we have more space than we actually do.
10373 */
3c4da657 10374 ret = exclude_super_stripes(cache);
835d974f
JB
10375 if (ret) {
10376 /*
10377 * We may have excluded something, so call this just in
10378 * case.
10379 */
9e715da8 10380 free_excluded_extents(cache);
920e4a58 10381 btrfs_put_block_group(cache);
835d974f
JB
10382 goto error;
10383 }
3c14874a 10384
817d52f8
JB
10385 /*
10386 * check for two cases, either we are full, and therefore
10387 * don't need to bother with the caching work since we won't
10388 * find any space, or we are empty, and we can just add all
10389 * the space in and be done with it. This saves us _alot_ of
10390 * time, particularly in the full case.
10391 */
10392 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10393 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10394 cache->cached = BTRFS_CACHE_FINISHED;
9e715da8 10395 free_excluded_extents(cache);
817d52f8 10396 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10397 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10398 cache->cached = BTRFS_CACHE_FINISHED;
4457c1c7 10399 add_new_free_space(cache, found_key.objectid,
817d52f8
JB
10400 found_key.objectid +
10401 found_key.offset);
9e715da8 10402 free_excluded_extents(cache);
817d52f8 10403 }
96b5179d 10404
0b246afa 10405 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10406 if (ret) {
10407 btrfs_remove_free_space_cache(cache);
10408 btrfs_put_block_group(cache);
10409 goto error;
10410 }
10411
0b246afa 10412 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10413 update_space_info(info, cache->flags, found_key.offset,
10414 btrfs_block_group_used(&cache->item),
10415 cache->bytes_super, &space_info);
8c579fe7 10416
6324fbf3 10417 cache->space_info = space_info;
1b2da372 10418
c434d21c 10419 link_block_group(cache);
0f9dd46c 10420
0b246afa 10421 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10422 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10423 inc_block_group_ro(cache, 1);
47ab2a6c 10424 } else if (btrfs_block_group_used(&cache->item) == 0) {
031f24da
QW
10425 ASSERT(list_empty(&cache->bg_list));
10426 btrfs_mark_bg_unused(cache);
47ab2a6c 10427 }
9078a3e1 10428 }
b742bb82 10429
0b246afa 10430 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10431 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10432 (BTRFS_BLOCK_GROUP_RAID10 |
10433 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10434 BTRFS_BLOCK_GROUP_RAID5 |
10435 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10436 BTRFS_BLOCK_GROUP_DUP)))
10437 continue;
10438 /*
10439 * avoid allocating from un-mirrored block group if there are
10440 * mirrored block groups.
10441 */
1095cc0d 10442 list_for_each_entry(cache,
10443 &space_info->block_groups[BTRFS_RAID_RAID0],
10444 list)
868f401a 10445 inc_block_group_ro(cache, 1);
1095cc0d 10446 list_for_each_entry(cache,
10447 &space_info->block_groups[BTRFS_RAID_SINGLE],
10448 list)
868f401a 10449 inc_block_group_ro(cache, 1);
9078a3e1 10450 }
f0486c68 10451
75cb379d 10452 btrfs_add_raid_kobjects(info);
f0486c68 10453 init_global_block_rsv(info);
7ef49515 10454 ret = check_chunk_block_group_mappings(info);
0b86a832 10455error:
9078a3e1 10456 btrfs_free_path(path);
0b86a832 10457 return ret;
9078a3e1 10458}
6324fbf3 10459
6c686b35 10460void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10461{
6c686b35 10462 struct btrfs_fs_info *fs_info = trans->fs_info;
545e3366 10463 struct btrfs_block_group_cache *block_group;
0b246afa 10464 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10465 struct btrfs_block_group_item item;
10466 struct btrfs_key key;
10467 int ret = 0;
10468
5ce55557
FM
10469 if (!trans->can_flush_pending_bgs)
10470 return;
10471
545e3366
JB
10472 while (!list_empty(&trans->new_bgs)) {
10473 block_group = list_first_entry(&trans->new_bgs,
10474 struct btrfs_block_group_cache,
10475 bg_list);
ea658bad 10476 if (ret)
c92f6be3 10477 goto next;
ea658bad
JB
10478
10479 spin_lock(&block_group->lock);
10480 memcpy(&item, &block_group->item, sizeof(item));
10481 memcpy(&key, &block_group->key, sizeof(key));
10482 spin_unlock(&block_group->lock);
10483
10484 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10485 sizeof(item));
10486 if (ret)
66642832 10487 btrfs_abort_transaction(trans, ret);
97aff912 10488 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
6df9a95e 10489 if (ret)
66642832 10490 btrfs_abort_transaction(trans, ret);
e4e0711c 10491 add_block_group_free_space(trans, block_group);
1e144fb8 10492 /* already aborted the transaction if it failed. */
c92f6be3 10493next:
ba2c4d4e 10494 btrfs_delayed_refs_rsv_release(fs_info, 1);
c92f6be3 10495 list_del_init(&block_group->bg_list);
ea658bad 10496 }
5ce55557 10497 btrfs_trans_release_chunk_metadata(trans);
ea658bad
JB
10498}
10499
e7e02096 10500int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
0174484d 10501 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10502{
e7e02096 10503 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 10504 struct btrfs_block_group_cache *cache;
0b246afa 10505 int ret;
6324fbf3 10506
0b246afa 10507 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10508
2ff7e61e 10509 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10510 if (!cache)
10511 return -ENOMEM;
34d52cb6 10512
6324fbf3 10513 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10514 btrfs_set_block_group_chunk_objectid(&cache->item,
10515 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10516 btrfs_set_block_group_flags(&cache->item, type);
10517
920e4a58 10518 cache->flags = type;
11833d66 10519 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10520 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10521 cache->needs_free_space = 1;
3c4da657 10522 ret = exclude_super_stripes(cache);
835d974f
JB
10523 if (ret) {
10524 /*
10525 * We may have excluded something, so call this just in
10526 * case.
10527 */
9e715da8 10528 free_excluded_extents(cache);
920e4a58 10529 btrfs_put_block_group(cache);
835d974f
JB
10530 return ret;
10531 }
96303081 10532
4457c1c7 10533 add_new_free_space(cache, chunk_offset, chunk_offset + size);
817d52f8 10534
9e715da8 10535 free_excluded_extents(cache);
11833d66 10536
d0bd4560 10537#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10538 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10539 u64 new_bytes_used = size - bytes_used;
10540
10541 bytes_used += new_bytes_used >> 1;
2ff7e61e 10542 fragment_free_space(cache);
d0bd4560
JB
10543 }
10544#endif
2e6e5183 10545 /*
2be12ef7
NB
10546 * Ensure the corresponding space_info object is created and
10547 * assigned to our block group. We want our bg to be added to the rbtree
10548 * with its ->space_info set.
2e6e5183 10549 */
2be12ef7 10550 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10551 ASSERT(cache->space_info);
2e6e5183 10552
0b246afa 10553 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10554 if (ret) {
10555 btrfs_remove_free_space_cache(cache);
10556 btrfs_put_block_group(cache);
10557 return ret;
10558 }
10559
2e6e5183
FM
10560 /*
10561 * Now that our block group has its ->space_info set and is inserted in
10562 * the rbtree, update the space info's counters.
10563 */
0b246afa 10564 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10565 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10566 cache->bytes_super, &cache->space_info);
0b246afa 10567 update_global_block_rsv(fs_info);
1b2da372 10568
c434d21c 10569 link_block_group(cache);
6324fbf3 10570
47ab2a6c 10571 list_add_tail(&cache->bg_list, &trans->new_bgs);
ba2c4d4e
JB
10572 trans->delayed_ref_updates++;
10573 btrfs_update_delayed_refs_rsv(trans);
6324fbf3 10574
0b246afa 10575 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10576 return 0;
10577}
1a40e23b 10578
10ea00f5
ID
10579static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10580{
899c81ea
ID
10581 u64 extra_flags = chunk_to_extended(flags) &
10582 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10583
de98ced9 10584 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10585 if (flags & BTRFS_BLOCK_GROUP_DATA)
10586 fs_info->avail_data_alloc_bits &= ~extra_flags;
10587 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10588 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10589 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10590 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10591 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10592}
10593
1a40e23b 10594int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
5a98ec01 10595 u64 group_start, struct extent_map *em)
1a40e23b 10596{
5a98ec01 10597 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 10598 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10599 struct btrfs_path *path;
10600 struct btrfs_block_group_cache *block_group;
44fb5511 10601 struct btrfs_free_cluster *cluster;
0b246afa 10602 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10603 struct btrfs_key key;
0af3d00b 10604 struct inode *inode;
c1895442 10605 struct kobject *kobj = NULL;
1a40e23b 10606 int ret;
10ea00f5 10607 int index;
89a55897 10608 int factor;
4f69cb98 10609 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10610 bool remove_em;
ba2c4d4e 10611 bool remove_rsv = false;
1a40e23b 10612
6bccf3ab 10613 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10614 BUG_ON(!block_group);
c146afad 10615 BUG_ON(!block_group->ro);
1a40e23b 10616
4ed0a7a3 10617 trace_btrfs_remove_block_group(block_group);
9f7c43c9 10618 /*
10619 * Free the reserved super bytes from this block group before
10620 * remove it.
10621 */
9e715da8 10622 free_excluded_extents(block_group);
fd708b81
JB
10623 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10624 block_group->key.offset);
9f7c43c9 10625
1a40e23b 10626 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10627 index = btrfs_bg_flags_to_raid_index(block_group->flags);
46df06b8 10628 factor = btrfs_bg_type_to_factor(block_group->flags);
1a40e23b 10629
44fb5511 10630 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10631 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10632 spin_lock(&cluster->refill_lock);
10633 btrfs_return_cluster_to_free_space(block_group, cluster);
10634 spin_unlock(&cluster->refill_lock);
10635
10636 /*
10637 * make sure this block group isn't part of a metadata
10638 * allocation cluster
10639 */
0b246afa 10640 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10641 spin_lock(&cluster->refill_lock);
10642 btrfs_return_cluster_to_free_space(block_group, cluster);
10643 spin_unlock(&cluster->refill_lock);
10644
1a40e23b 10645 path = btrfs_alloc_path();
d8926bb3
MF
10646 if (!path) {
10647 ret = -ENOMEM;
10648 goto out;
10649 }
1a40e23b 10650
1bbc621e
CM
10651 /*
10652 * get the inode first so any iput calls done for the io_list
10653 * aren't the final iput (no unlinks allowed now)
10654 */
77ab86bf 10655 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10656
10657 mutex_lock(&trans->transaction->cache_write_mutex);
10658 /*
10659 * make sure our free spache cache IO is done before remove the
10660 * free space inode
10661 */
10662 spin_lock(&trans->transaction->dirty_bgs_lock);
10663 if (!list_empty(&block_group->io_list)) {
10664 list_del_init(&block_group->io_list);
10665
10666 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10667
10668 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10669 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10670 btrfs_put_block_group(block_group);
10671 spin_lock(&trans->transaction->dirty_bgs_lock);
10672 }
10673
10674 if (!list_empty(&block_group->dirty_list)) {
10675 list_del_init(&block_group->dirty_list);
ba2c4d4e 10676 remove_rsv = true;
1bbc621e
CM
10677 btrfs_put_block_group(block_group);
10678 }
10679 spin_unlock(&trans->transaction->dirty_bgs_lock);
10680 mutex_unlock(&trans->transaction->cache_write_mutex);
10681
0af3d00b 10682 if (!IS_ERR(inode)) {
73f2e545 10683 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10684 if (ret) {
10685 btrfs_add_delayed_iput(inode);
10686 goto out;
10687 }
0af3d00b
JB
10688 clear_nlink(inode);
10689 /* One for the block groups ref */
10690 spin_lock(&block_group->lock);
10691 if (block_group->iref) {
10692 block_group->iref = 0;
10693 block_group->inode = NULL;
10694 spin_unlock(&block_group->lock);
10695 iput(inode);
10696 } else {
10697 spin_unlock(&block_group->lock);
10698 }
10699 /* One for our lookup ref */
455757c3 10700 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10701 }
10702
10703 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10704 key.offset = block_group->key.objectid;
10705 key.type = 0;
10706
10707 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10708 if (ret < 0)
10709 goto out;
10710 if (ret > 0)
b3b4aa74 10711 btrfs_release_path(path);
0af3d00b
JB
10712 if (ret == 0) {
10713 ret = btrfs_del_item(trans, tree_root, path);
10714 if (ret)
10715 goto out;
b3b4aa74 10716 btrfs_release_path(path);
0af3d00b
JB
10717 }
10718
0b246afa 10719 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10720 rb_erase(&block_group->cache_node,
0b246afa 10721 &fs_info->block_group_cache_tree);
292cbd51 10722 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10723
0b246afa
JM
10724 if (fs_info->first_logical_byte == block_group->key.objectid)
10725 fs_info->first_logical_byte = (u64)-1;
10726 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10727
80eb234a 10728 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10729 /*
10730 * we must use list_del_init so people can check to see if they
10731 * are still on the list after taking the semaphore
10732 */
10733 list_del_init(&block_group->list);
6ab0a202 10734 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10735 kobj = block_group->space_info->block_group_kobjs[index];
10736 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10737 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10738 }
80eb234a 10739 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10740 if (kobj) {
10741 kobject_del(kobj);
10742 kobject_put(kobj);
10743 }
1a40e23b 10744
4f69cb98
FM
10745 if (block_group->has_caching_ctl)
10746 caching_ctl = get_caching_control(block_group);
817d52f8 10747 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10748 wait_block_group_cache_done(block_group);
4f69cb98 10749 if (block_group->has_caching_ctl) {
0b246afa 10750 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10751 if (!caching_ctl) {
10752 struct btrfs_caching_control *ctl;
10753
10754 list_for_each_entry(ctl,
0b246afa 10755 &fs_info->caching_block_groups, list)
4f69cb98
FM
10756 if (ctl->block_group == block_group) {
10757 caching_ctl = ctl;
1e4f4714 10758 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10759 break;
10760 }
10761 }
10762 if (caching_ctl)
10763 list_del_init(&caching_ctl->list);
0b246afa 10764 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10765 if (caching_ctl) {
10766 /* Once for the caching bgs list and once for us. */
10767 put_caching_control(caching_ctl);
10768 put_caching_control(caching_ctl);
10769 }
10770 }
817d52f8 10771
ce93ec54
JB
10772 spin_lock(&trans->transaction->dirty_bgs_lock);
10773 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10774 WARN_ON(1);
10775 }
10776 if (!list_empty(&block_group->io_list)) {
10777 WARN_ON(1);
ce93ec54
JB
10778 }
10779 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10780 btrfs_remove_free_space_cache(block_group);
10781
c146afad 10782 spin_lock(&block_group->space_info->lock);
75c68e9f 10783 list_del_init(&block_group->ro_list);
18d018ad 10784
0b246afa 10785 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10786 WARN_ON(block_group->space_info->total_bytes
10787 < block_group->key.offset);
10788 WARN_ON(block_group->space_info->bytes_readonly
10789 < block_group->key.offset);
10790 WARN_ON(block_group->space_info->disk_total
10791 < block_group->key.offset * factor);
10792 }
c146afad
YZ
10793 block_group->space_info->total_bytes -= block_group->key.offset;
10794 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10795 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10796
c146afad 10797 spin_unlock(&block_group->space_info->lock);
283bb197 10798
0af3d00b
JB
10799 memcpy(&key, &block_group->key, sizeof(key));
10800
34441361 10801 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10802 if (!list_empty(&em->list)) {
10803 /* We're in the transaction->pending_chunks list. */
10804 free_extent_map(em);
10805 }
04216820
FM
10806 spin_lock(&block_group->lock);
10807 block_group->removed = 1;
10808 /*
10809 * At this point trimming can't start on this block group, because we
10810 * removed the block group from the tree fs_info->block_group_cache_tree
10811 * so no one can't find it anymore and even if someone already got this
10812 * block group before we removed it from the rbtree, they have already
10813 * incremented block_group->trimming - if they didn't, they won't find
10814 * any free space entries because we already removed them all when we
10815 * called btrfs_remove_free_space_cache().
10816 *
10817 * And we must not remove the extent map from the fs_info->mapping_tree
10818 * to prevent the same logical address range and physical device space
10819 * ranges from being reused for a new block group. This is because our
10820 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10821 * completely transactionless, so while it is trimming a range the
10822 * currently running transaction might finish and a new one start,
10823 * allowing for new block groups to be created that can reuse the same
10824 * physical device locations unless we take this special care.
e33e17ee
JM
10825 *
10826 * There may also be an implicit trim operation if the file system
10827 * is mounted with -odiscard. The same protections must remain
10828 * in place until the extents have been discarded completely when
10829 * the transaction commit has completed.
04216820
FM
10830 */
10831 remove_em = (atomic_read(&block_group->trimming) == 0);
10832 /*
10833 * Make sure a trimmer task always sees the em in the pinned_chunks list
10834 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10835 * before checking block_group->removed).
10836 */
10837 if (!remove_em) {
10838 /*
10839 * Our em might be in trans->transaction->pending_chunks which
10840 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10841 * and so is the fs_info->pinned_chunks list.
10842 *
10843 * So at this point we must be holding the chunk_mutex to avoid
10844 * any races with chunk allocation (more specifically at
10845 * volumes.c:contains_pending_extent()), to ensure it always
10846 * sees the em, either in the pending_chunks list or in the
10847 * pinned_chunks list.
10848 */
0b246afa 10849 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10850 }
10851 spin_unlock(&block_group->lock);
04216820
FM
10852
10853 if (remove_em) {
10854 struct extent_map_tree *em_tree;
10855
0b246afa 10856 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10857 write_lock(&em_tree->lock);
8dbcd10f
FM
10858 /*
10859 * The em might be in the pending_chunks list, so make sure the
10860 * chunk mutex is locked, since remove_extent_mapping() will
10861 * delete us from that list.
10862 */
04216820
FM
10863 remove_extent_mapping(em_tree, em);
10864 write_unlock(&em_tree->lock);
10865 /* once for the tree */
10866 free_extent_map(em);
10867 }
10868
34441361 10869 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10870
f3f72779 10871 ret = remove_block_group_free_space(trans, block_group);
1e144fb8
OS
10872 if (ret)
10873 goto out;
10874
fa9c0d79
CM
10875 btrfs_put_block_group(block_group);
10876 btrfs_put_block_group(block_group);
1a40e23b
ZY
10877
10878 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10879 if (ret > 0)
10880 ret = -EIO;
10881 if (ret < 0)
10882 goto out;
10883
10884 ret = btrfs_del_item(trans, root, path);
10885out:
ba2c4d4e
JB
10886 if (remove_rsv)
10887 btrfs_delayed_refs_rsv_release(fs_info, 1);
1a40e23b
ZY
10888 btrfs_free_path(path);
10889 return ret;
10890}
acce952b 10891
8eab77ff 10892struct btrfs_trans_handle *
7fd01182
FM
10893btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10894 const u64 chunk_offset)
8eab77ff 10895{
7fd01182
FM
10896 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10897 struct extent_map *em;
10898 struct map_lookup *map;
10899 unsigned int num_items;
10900
10901 read_lock(&em_tree->lock);
10902 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10903 read_unlock(&em_tree->lock);
10904 ASSERT(em && em->start == chunk_offset);
10905
8eab77ff 10906 /*
7fd01182
FM
10907 * We need to reserve 3 + N units from the metadata space info in order
10908 * to remove a block group (done at btrfs_remove_chunk() and at
10909 * btrfs_remove_block_group()), which are used for:
10910 *
8eab77ff
FM
10911 * 1 unit for adding the free space inode's orphan (located in the tree
10912 * of tree roots).
7fd01182
FM
10913 * 1 unit for deleting the block group item (located in the extent
10914 * tree).
10915 * 1 unit for deleting the free space item (located in tree of tree
10916 * roots).
10917 * N units for deleting N device extent items corresponding to each
10918 * stripe (located in the device tree).
10919 *
10920 * In order to remove a block group we also need to reserve units in the
10921 * system space info in order to update the chunk tree (update one or
10922 * more device items and remove one chunk item), but this is done at
10923 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10924 */
95617d69 10925 map = em->map_lookup;
7fd01182
FM
10926 num_items = 3 + map->num_stripes;
10927 free_extent_map(em);
10928
8eab77ff 10929 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10930 num_items, 1);
8eab77ff
FM
10931}
10932
47ab2a6c
JB
10933/*
10934 * Process the unused_bgs list and remove any that don't have any allocated
10935 * space inside of them.
10936 */
10937void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10938{
10939 struct btrfs_block_group_cache *block_group;
10940 struct btrfs_space_info *space_info;
47ab2a6c
JB
10941 struct btrfs_trans_handle *trans;
10942 int ret = 0;
10943
afcdd129 10944 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10945 return;
10946
10947 spin_lock(&fs_info->unused_bgs_lock);
10948 while (!list_empty(&fs_info->unused_bgs)) {
10949 u64 start, end;
e33e17ee 10950 int trimming;
47ab2a6c
JB
10951
10952 block_group = list_first_entry(&fs_info->unused_bgs,
10953 struct btrfs_block_group_cache,
10954 bg_list);
47ab2a6c 10955 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10956
10957 space_info = block_group->space_info;
10958
47ab2a6c
JB
10959 if (ret || btrfs_mixed_space_info(space_info)) {
10960 btrfs_put_block_group(block_group);
10961 continue;
10962 }
10963 spin_unlock(&fs_info->unused_bgs_lock);
10964
d5f2e33b 10965 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10966
47ab2a6c
JB
10967 /* Don't want to race with allocators so take the groups_sem */
10968 down_write(&space_info->groups_sem);
10969 spin_lock(&block_group->lock);
43794446 10970 if (block_group->reserved || block_group->pinned ||
47ab2a6c 10971 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10972 block_group->ro ||
aefbe9a6 10973 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10974 /*
10975 * We want to bail if we made new allocations or have
10976 * outstanding allocations in this block group. We do
10977 * the ro check in case balance is currently acting on
10978 * this block group.
10979 */
4ed0a7a3 10980 trace_btrfs_skip_unused_block_group(block_group);
47ab2a6c
JB
10981 spin_unlock(&block_group->lock);
10982 up_write(&space_info->groups_sem);
10983 goto next;
10984 }
10985 spin_unlock(&block_group->lock);
10986
10987 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10988 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10989 up_write(&space_info->groups_sem);
10990 if (ret < 0) {
10991 ret = 0;
10992 goto next;
10993 }
10994
10995 /*
10996 * Want to do this before we do anything else so we can recover
10997 * properly if we fail to join the transaction.
10998 */
7fd01182
FM
10999 trans = btrfs_start_trans_remove_block_group(fs_info,
11000 block_group->key.objectid);
47ab2a6c 11001 if (IS_ERR(trans)) {
2ff7e61e 11002 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
11003 ret = PTR_ERR(trans);
11004 goto next;
11005 }
11006
11007 /*
11008 * We could have pending pinned extents for this block group,
11009 * just delete them, we don't care about them anymore.
11010 */
11011 start = block_group->key.objectid;
11012 end = start + block_group->key.offset - 1;
d4b450cd
FM
11013 /*
11014 * Hold the unused_bg_unpin_mutex lock to avoid racing with
11015 * btrfs_finish_extent_commit(). If we are at transaction N,
11016 * another task might be running finish_extent_commit() for the
11017 * previous transaction N - 1, and have seen a range belonging
11018 * to the block group in freed_extents[] before we were able to
11019 * clear the whole block group range from freed_extents[]. This
11020 * means that task can lookup for the block group after we
11021 * unpinned it from freed_extents[] and removed it, leading to
11022 * a BUG_ON() at btrfs_unpin_extent_range().
11023 */
11024 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 11025 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 11026 EXTENT_DIRTY);
758eb51e 11027 if (ret) {
d4b450cd 11028 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 11029 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
11030 goto end_trans;
11031 }
11032 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 11033 EXTENT_DIRTY);
758eb51e 11034 if (ret) {
d4b450cd 11035 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 11036 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
11037 goto end_trans;
11038 }
d4b450cd 11039 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
11040
11041 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
11042 spin_lock(&space_info->lock);
11043 spin_lock(&block_group->lock);
11044
e2907c1a 11045 update_bytes_pinned(space_info, -block_group->pinned);
c30666d4 11046 space_info->bytes_readonly += block_group->pinned;
dec59fa3
EL
11047 percpu_counter_add_batch(&space_info->total_bytes_pinned,
11048 -block_group->pinned,
11049 BTRFS_TOTAL_BYTES_PINNED_BATCH);
47ab2a6c
JB
11050 block_group->pinned = 0;
11051
c30666d4
ZL
11052 spin_unlock(&block_group->lock);
11053 spin_unlock(&space_info->lock);
11054
e33e17ee 11055 /* DISCARD can flip during remount */
0b246afa 11056 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
11057
11058 /* Implicit trim during transaction commit. */
11059 if (trimming)
11060 btrfs_get_block_group_trimming(block_group);
11061
47ab2a6c
JB
11062 /*
11063 * Btrfs_remove_chunk will abort the transaction if things go
11064 * horribly wrong.
11065 */
97aff912 11066 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
e33e17ee
JM
11067
11068 if (ret) {
11069 if (trimming)
11070 btrfs_put_block_group_trimming(block_group);
11071 goto end_trans;
11072 }
11073
11074 /*
11075 * If we're not mounted with -odiscard, we can just forget
11076 * about this block group. Otherwise we'll need to wait
11077 * until transaction commit to do the actual discard.
11078 */
11079 if (trimming) {
348a0013
FM
11080 spin_lock(&fs_info->unused_bgs_lock);
11081 /*
11082 * A concurrent scrub might have added us to the list
11083 * fs_info->unused_bgs, so use a list_move operation
11084 * to add the block group to the deleted_bgs list.
11085 */
e33e17ee
JM
11086 list_move(&block_group->bg_list,
11087 &trans->transaction->deleted_bgs);
348a0013 11088 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
11089 btrfs_get_block_group(block_group);
11090 }
758eb51e 11091end_trans:
3a45bb20 11092 btrfs_end_transaction(trans);
47ab2a6c 11093next:
d5f2e33b 11094 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
11095 btrfs_put_block_group(block_group);
11096 spin_lock(&fs_info->unused_bgs_lock);
11097 }
11098 spin_unlock(&fs_info->unused_bgs_lock);
11099}
11100
c59021f8 11101int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
11102{
1aba86d6 11103 struct btrfs_super_block *disk_super;
11104 u64 features;
11105 u64 flags;
11106 int mixed = 0;
c59021f8 11107 int ret;
11108
6c41761f 11109 disk_super = fs_info->super_copy;
1aba86d6 11110 if (!btrfs_super_root(disk_super))
0dc924c5 11111 return -EINVAL;
c59021f8 11112
1aba86d6 11113 features = btrfs_super_incompat_flags(disk_super);
11114 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11115 mixed = 1;
c59021f8 11116
1aba86d6 11117 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4ca61683 11118 ret = create_space_info(fs_info, flags);
c59021f8 11119 if (ret)
1aba86d6 11120 goto out;
c59021f8 11121
1aba86d6 11122 if (mixed) {
11123 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
4ca61683 11124 ret = create_space_info(fs_info, flags);
1aba86d6 11125 } else {
11126 flags = BTRFS_BLOCK_GROUP_METADATA;
4ca61683 11127 ret = create_space_info(fs_info, flags);
1aba86d6 11128 if (ret)
11129 goto out;
11130
11131 flags = BTRFS_BLOCK_GROUP_DATA;
4ca61683 11132 ret = create_space_info(fs_info, flags);
1aba86d6 11133 }
11134out:
c59021f8 11135 return ret;
11136}
11137
2ff7e61e
JM
11138int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
11139 u64 start, u64 end)
acce952b 11140{
2ff7e61e 11141 return unpin_extent_range(fs_info, start, end, false);
acce952b 11142}
11143
499f377f
JM
11144/*
11145 * It used to be that old block groups would be left around forever.
11146 * Iterating over them would be enough to trim unused space. Since we
11147 * now automatically remove them, we also need to iterate over unallocated
11148 * space.
11149 *
11150 * We don't want a transaction for this since the discard may take a
11151 * substantial amount of time. We don't require that a transaction be
11152 * running, but we do need to take a running transaction into account
fee7acc3
JM
11153 * to ensure that we're not discarding chunks that were released or
11154 * allocated in the current transaction.
499f377f
JM
11155 *
11156 * Holding the chunks lock will prevent other threads from allocating
11157 * or releasing chunks, but it won't prevent a running transaction
11158 * from committing and releasing the memory that the pending chunks
11159 * list head uses. For that, we need to take a reference to the
fee7acc3
JM
11160 * transaction and hold the commit root sem. We only need to hold
11161 * it while performing the free space search since we have already
11162 * held back allocations.
499f377f
JM
11163 */
11164static int btrfs_trim_free_extents(struct btrfs_device *device,
11165 u64 minlen, u64 *trimmed)
11166{
11167 u64 start = 0, len = 0;
11168 int ret;
11169
11170 *trimmed = 0;
11171
0be88e36
JM
11172 /* Discard not supported = nothing to do. */
11173 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
11174 return 0;
11175
499f377f 11176 /* Not writeable = nothing to do. */
ebbede42 11177 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
11178 return 0;
11179
11180 /* No free space = nothing to do. */
11181 if (device->total_bytes <= device->bytes_used)
11182 return 0;
11183
11184 ret = 0;
11185
11186 while (1) {
fb456252 11187 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
11188 struct btrfs_transaction *trans;
11189 u64 bytes;
11190
11191 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11192 if (ret)
fee7acc3 11193 break;
499f377f 11194
fee7acc3
JM
11195 ret = down_read_killable(&fs_info->commit_root_sem);
11196 if (ret) {
11197 mutex_unlock(&fs_info->chunk_mutex);
11198 break;
11199 }
499f377f
JM
11200
11201 spin_lock(&fs_info->trans_lock);
11202 trans = fs_info->running_transaction;
11203 if (trans)
9b64f57d 11204 refcount_inc(&trans->use_count);
499f377f
JM
11205 spin_unlock(&fs_info->trans_lock);
11206
fee7acc3
JM
11207 if (!trans)
11208 up_read(&fs_info->commit_root_sem);
11209
499f377f
JM
11210 ret = find_free_dev_extent_start(trans, device, minlen, start,
11211 &start, &len);
fee7acc3
JM
11212 if (trans) {
11213 up_read(&fs_info->commit_root_sem);
499f377f 11214 btrfs_put_transaction(trans);
fee7acc3 11215 }
499f377f
JM
11216
11217 if (ret) {
499f377f
JM
11218 mutex_unlock(&fs_info->chunk_mutex);
11219 if (ret == -ENOSPC)
11220 ret = 0;
11221 break;
11222 }
11223
11224 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
499f377f
JM
11225 mutex_unlock(&fs_info->chunk_mutex);
11226
11227 if (ret)
11228 break;
11229
11230 start += len;
11231 *trimmed += bytes;
11232
11233 if (fatal_signal_pending(current)) {
11234 ret = -ERESTARTSYS;
11235 break;
11236 }
11237
11238 cond_resched();
11239 }
11240
11241 return ret;
11242}
11243
93bba24d
QW
11244/*
11245 * Trim the whole filesystem by:
11246 * 1) trimming the free space in each block group
11247 * 2) trimming the unallocated space on each device
11248 *
11249 * This will also continue trimming even if a block group or device encounters
11250 * an error. The return value will be the last error, or 0 if nothing bad
11251 * happens.
11252 */
2ff7e61e 11253int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 11254{
f7039b1d 11255 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
11256 struct btrfs_device *device;
11257 struct list_head *devices;
f7039b1d
LD
11258 u64 group_trimmed;
11259 u64 start;
11260 u64 end;
11261 u64 trimmed = 0;
93bba24d
QW
11262 u64 bg_failed = 0;
11263 u64 dev_failed = 0;
11264 int bg_ret = 0;
11265 int dev_ret = 0;
f7039b1d
LD
11266 int ret = 0;
11267
6ba9fc8e 11268 cache = btrfs_lookup_first_block_group(fs_info, range->start);
93bba24d 11269 for (; cache; cache = next_block_group(fs_info, cache)) {
f7039b1d
LD
11270 if (cache->key.objectid >= (range->start + range->len)) {
11271 btrfs_put_block_group(cache);
11272 break;
11273 }
11274
11275 start = max(range->start, cache->key.objectid);
11276 end = min(range->start + range->len,
11277 cache->key.objectid + cache->key.offset);
11278
11279 if (end - start >= range->minlen) {
11280 if (!block_group_cache_done(cache)) {
f6373bf3 11281 ret = cache_block_group(cache, 0);
1be41b78 11282 if (ret) {
93bba24d
QW
11283 bg_failed++;
11284 bg_ret = ret;
11285 continue;
1be41b78
JB
11286 }
11287 ret = wait_block_group_cache_done(cache);
11288 if (ret) {
93bba24d
QW
11289 bg_failed++;
11290 bg_ret = ret;
11291 continue;
1be41b78 11292 }
f7039b1d
LD
11293 }
11294 ret = btrfs_trim_block_group(cache,
11295 &group_trimmed,
11296 start,
11297 end,
11298 range->minlen);
11299
11300 trimmed += group_trimmed;
11301 if (ret) {
93bba24d
QW
11302 bg_failed++;
11303 bg_ret = ret;
11304 continue;
f7039b1d
LD
11305 }
11306 }
f7039b1d
LD
11307 }
11308
93bba24d
QW
11309 if (bg_failed)
11310 btrfs_warn(fs_info,
11311 "failed to trim %llu block group(s), last error %d",
11312 bg_failed, bg_ret);
0b246afa 11313 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d4e329de
JM
11314 devices = &fs_info->fs_devices->devices;
11315 list_for_each_entry(device, devices, dev_list) {
499f377f
JM
11316 ret = btrfs_trim_free_extents(device, range->minlen,
11317 &group_trimmed);
93bba24d
QW
11318 if (ret) {
11319 dev_failed++;
11320 dev_ret = ret;
499f377f 11321 break;
93bba24d 11322 }
499f377f
JM
11323
11324 trimmed += group_trimmed;
11325 }
0b246afa 11326 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11327
93bba24d
QW
11328 if (dev_failed)
11329 btrfs_warn(fs_info,
11330 "failed to trim %llu device(s), last error %d",
11331 dev_failed, dev_ret);
f7039b1d 11332 range->len = trimmed;
93bba24d
QW
11333 if (bg_ret)
11334 return bg_ret;
11335 return dev_ret;
f7039b1d 11336}
8257b2dc
MX
11337
11338/*
ea14b57f 11339 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11340 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11341 * data into the page cache through nocow before the subvolume is snapshoted,
11342 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11343 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11344 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11345 */
ea14b57f 11346void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11347{
11348 percpu_counter_dec(&root->subv_writers->counter);
093258e6 11349 cond_wake_up(&root->subv_writers->wait);
8257b2dc
MX
11350}
11351
ea14b57f 11352int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11353{
ea14b57f 11354 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11355 return 0;
11356
11357 percpu_counter_inc(&root->subv_writers->counter);
11358 /*
11359 * Make sure counter is updated before we check for snapshot creation.
11360 */
11361 smp_mb();
ea14b57f
DS
11362 if (atomic_read(&root->will_be_snapshotted)) {
11363 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11364 return 0;
11365 }
11366 return 1;
11367}
0bc19f90 11368
0bc19f90
ZL
11369void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11370{
11371 while (true) {
11372 int ret;
11373
ea14b57f 11374 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11375 if (ret)
11376 break;
4625956a
PZ
11377 wait_var_event(&root->will_be_snapshotted,
11378 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
11379 }
11380}
031f24da
QW
11381
11382void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11383{
11384 struct btrfs_fs_info *fs_info = bg->fs_info;
11385
11386 spin_lock(&fs_info->unused_bgs_lock);
11387 if (list_empty(&bg->bg_list)) {
11388 btrfs_get_block_group(bg);
11389 trace_btrfs_add_unused_block_group(bg);
11390 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11391 }
11392 spin_unlock(&fs_info->unused_bgs_lock);
11393}