]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: fix memory leak in update_space_info failure path
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
f361bf4a 19#include <linux/sched/signal.h>
edbd8d4e 20#include <linux/pagemap.h>
ec44a35c 21#include <linux/writeback.h>
21af804c 22#include <linux/blkdev.h>
b7a9f29f 23#include <linux/sort.h>
4184ea7f 24#include <linux/rcupdate.h>
817d52f8 25#include <linux/kthread.h>
5a0e3ad6 26#include <linux/slab.h>
dff51cd1 27#include <linux/ratelimit.h>
b150a4f1 28#include <linux/percpu_counter.h>
74493f7a 29#include "hash.h"
995946dd 30#include "tree-log.h"
fec577fb
CM
31#include "disk-io.h"
32#include "print-tree.h"
0b86a832 33#include "volumes.h"
53b381b3 34#include "raid56.h"
925baedd 35#include "locking.h"
fa9c0d79 36#include "free-space-cache.h"
1e144fb8 37#include "free-space-tree.h"
3fed40cc 38#include "math.h"
6ab0a202 39#include "sysfs.h"
fcebe456 40#include "qgroup.h"
fec577fb 41
709c0486
AJ
42#undef SCRAMBLE_DELAYED_REFS
43
9e622d6b
MX
44/*
45 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
48 *
0e4f8f88
CM
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
54 *
9e622d6b
MX
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 *
0e4f8f88
CM
57 */
58enum {
59 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
60 CHUNK_ALLOC_LIMITED = 1,
61 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
62};
63
ce93ec54 64static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 65 struct btrfs_fs_info *fs_info, u64 bytenr,
ce93ec54 66 u64 num_bytes, int alloc);
5d4f98a2 67static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 68 struct btrfs_fs_info *fs_info,
c682f9b3 69 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
70 u64 root_objectid, u64 owner_objectid,
71 u64 owner_offset, int refs_to_drop,
c682f9b3 72 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
73static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 struct extent_buffer *leaf,
75 struct btrfs_extent_item *ei);
76static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 77 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
78 u64 parent, u64 root_objectid,
79 u64 flags, u64 owner, u64 offset,
80 struct btrfs_key *ins, int ref_mod);
81static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 82 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
83 u64 parent, u64 root_objectid,
84 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 85 int level, struct btrfs_key *ins);
6a63209f 86static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 87 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 88 int force);
11833d66
YZ
89static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
ab8d0fc4
JM
91static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 93 int dump_block_groups);
4824f1f4 94static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 95 u64 ram_bytes, u64 num_bytes, int delalloc);
4824f1f4
WX
96static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 u64 num_bytes, int delalloc);
5d80366e
JB
98static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 u64 num_bytes);
957780eb
JB
100static int __reserve_metadata_bytes(struct btrfs_root *root,
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
103 enum btrfs_reserve_flush_enum flush);
104static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105 struct btrfs_space_info *space_info,
106 u64 num_bytes);
107static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108 struct btrfs_space_info *space_info,
109 u64 num_bytes);
6a63209f 110
817d52f8
JB
111static noinline int
112block_group_cache_done(struct btrfs_block_group_cache *cache)
113{
114 smp_mb();
36cce922
JB
115 return cache->cached == BTRFS_CACHE_FINISHED ||
116 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
117}
118
0f9dd46c
JB
119static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120{
121 return (cache->flags & bits) == bits;
122}
123
758f2dfc 124void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
125{
126 atomic_inc(&cache->count);
127}
128
129void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130{
f0486c68
YZ
131 if (atomic_dec_and_test(&cache->count)) {
132 WARN_ON(cache->pinned > 0);
133 WARN_ON(cache->reserved > 0);
0966a7b1
QW
134
135 /*
136 * If not empty, someone is still holding mutex of
137 * full_stripe_lock, which can only be released by caller.
138 * And it will definitely cause use-after-free when caller
139 * tries to release full stripe lock.
140 *
141 * No better way to resolve, but only to warn.
142 */
143 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 144 kfree(cache->free_space_ctl);
11dfe35a 145 kfree(cache);
f0486c68 146 }
11dfe35a
JB
147}
148
0f9dd46c
JB
149/*
150 * this adds the block group to the fs_info rb tree for the block group
151 * cache
152 */
b2950863 153static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
154 struct btrfs_block_group_cache *block_group)
155{
156 struct rb_node **p;
157 struct rb_node *parent = NULL;
158 struct btrfs_block_group_cache *cache;
159
160 spin_lock(&info->block_group_cache_lock);
161 p = &info->block_group_cache_tree.rb_node;
162
163 while (*p) {
164 parent = *p;
165 cache = rb_entry(parent, struct btrfs_block_group_cache,
166 cache_node);
167 if (block_group->key.objectid < cache->key.objectid) {
168 p = &(*p)->rb_left;
169 } else if (block_group->key.objectid > cache->key.objectid) {
170 p = &(*p)->rb_right;
171 } else {
172 spin_unlock(&info->block_group_cache_lock);
173 return -EEXIST;
174 }
175 }
176
177 rb_link_node(&block_group->cache_node, parent, p);
178 rb_insert_color(&block_group->cache_node,
179 &info->block_group_cache_tree);
a1897fdd
LB
180
181 if (info->first_logical_byte > block_group->key.objectid)
182 info->first_logical_byte = block_group->key.objectid;
183
0f9dd46c
JB
184 spin_unlock(&info->block_group_cache_lock);
185
186 return 0;
187}
188
189/*
190 * This will return the block group at or after bytenr if contains is 0, else
191 * it will return the block group that contains the bytenr
192 */
193static struct btrfs_block_group_cache *
194block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
195 int contains)
196{
197 struct btrfs_block_group_cache *cache, *ret = NULL;
198 struct rb_node *n;
199 u64 end, start;
200
201 spin_lock(&info->block_group_cache_lock);
202 n = info->block_group_cache_tree.rb_node;
203
204 while (n) {
205 cache = rb_entry(n, struct btrfs_block_group_cache,
206 cache_node);
207 end = cache->key.objectid + cache->key.offset - 1;
208 start = cache->key.objectid;
209
210 if (bytenr < start) {
211 if (!contains && (!ret || start < ret->key.objectid))
212 ret = cache;
213 n = n->rb_left;
214 } else if (bytenr > start) {
215 if (contains && bytenr <= end) {
216 ret = cache;
217 break;
218 }
219 n = n->rb_right;
220 } else {
221 ret = cache;
222 break;
223 }
224 }
a1897fdd 225 if (ret) {
11dfe35a 226 btrfs_get_block_group(ret);
a1897fdd
LB
227 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
228 info->first_logical_byte = ret->key.objectid;
229 }
0f9dd46c
JB
230 spin_unlock(&info->block_group_cache_lock);
231
232 return ret;
233}
234
2ff7e61e 235static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 236 u64 start, u64 num_bytes)
817d52f8 237{
11833d66 238 u64 end = start + num_bytes - 1;
0b246afa 239 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 240 start, end, EXTENT_UPTODATE);
0b246afa 241 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 242 start, end, EXTENT_UPTODATE);
11833d66
YZ
243 return 0;
244}
817d52f8 245
2ff7e61e 246static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
247 struct btrfs_block_group_cache *cache)
248{
249 u64 start, end;
817d52f8 250
11833d66
YZ
251 start = cache->key.objectid;
252 end = start + cache->key.offset - 1;
253
0b246afa 254 clear_extent_bits(&fs_info->freed_extents[0],
91166212 255 start, end, EXTENT_UPTODATE);
0b246afa 256 clear_extent_bits(&fs_info->freed_extents[1],
91166212 257 start, end, EXTENT_UPTODATE);
817d52f8
JB
258}
259
2ff7e61e 260static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 261 struct btrfs_block_group_cache *cache)
817d52f8 262{
817d52f8
JB
263 u64 bytenr;
264 u64 *logical;
265 int stripe_len;
266 int i, nr, ret;
267
06b2331f
YZ
268 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
269 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
270 cache->bytes_super += stripe_len;
2ff7e61e 271 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 272 stripe_len);
835d974f
JB
273 if (ret)
274 return ret;
06b2331f
YZ
275 }
276
817d52f8
JB
277 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
278 bytenr = btrfs_sb_offset(i);
0b246afa 279 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
ab8d0fc4 280 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
281 if (ret)
282 return ret;
11833d66 283
817d52f8 284 while (nr--) {
51bf5f0b
JB
285 u64 start, len;
286
287 if (logical[nr] > cache->key.objectid +
288 cache->key.offset)
289 continue;
290
291 if (logical[nr] + stripe_len <= cache->key.objectid)
292 continue;
293
294 start = logical[nr];
295 if (start < cache->key.objectid) {
296 start = cache->key.objectid;
297 len = (logical[nr] + stripe_len) - start;
298 } else {
299 len = min_t(u64, stripe_len,
300 cache->key.objectid +
301 cache->key.offset - start);
302 }
303
304 cache->bytes_super += len;
2ff7e61e 305 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
306 if (ret) {
307 kfree(logical);
308 return ret;
309 }
817d52f8 310 }
11833d66 311
817d52f8
JB
312 kfree(logical);
313 }
817d52f8
JB
314 return 0;
315}
316
11833d66
YZ
317static struct btrfs_caching_control *
318get_caching_control(struct btrfs_block_group_cache *cache)
319{
320 struct btrfs_caching_control *ctl;
321
322 spin_lock(&cache->lock);
dde5abee
JB
323 if (!cache->caching_ctl) {
324 spin_unlock(&cache->lock);
11833d66
YZ
325 return NULL;
326 }
327
328 ctl = cache->caching_ctl;
1e4f4714 329 refcount_inc(&ctl->count);
11833d66
YZ
330 spin_unlock(&cache->lock);
331 return ctl;
332}
333
334static void put_caching_control(struct btrfs_caching_control *ctl)
335{
1e4f4714 336 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
337 kfree(ctl);
338}
339
d0bd4560 340#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 341static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 342{
2ff7e61e 343 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
344 u64 start = block_group->key.objectid;
345 u64 len = block_group->key.offset;
346 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 347 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
348 u64 step = chunk << 1;
349
350 while (len > chunk) {
351 btrfs_remove_free_space(block_group, start, chunk);
352 start += step;
353 if (len < step)
354 len = 0;
355 else
356 len -= step;
357 }
358}
359#endif
360
0f9dd46c
JB
361/*
362 * this is only called by cache_block_group, since we could have freed extents
363 * we need to check the pinned_extents for any extents that can't be used yet
364 * since their free space will be released as soon as the transaction commits.
365 */
a5ed9182
OS
366u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
367 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 368{
817d52f8 369 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
370 int ret;
371
372 while (start < end) {
11833d66 373 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 374 &extent_start, &extent_end,
e6138876
JB
375 EXTENT_DIRTY | EXTENT_UPTODATE,
376 NULL);
0f9dd46c
JB
377 if (ret)
378 break;
379
06b2331f 380 if (extent_start <= start) {
0f9dd46c
JB
381 start = extent_end + 1;
382 } else if (extent_start > start && extent_start < end) {
383 size = extent_start - start;
817d52f8 384 total_added += size;
ea6a478e
JB
385 ret = btrfs_add_free_space(block_group, start,
386 size);
79787eaa 387 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
388 start = extent_end + 1;
389 } else {
390 break;
391 }
392 }
393
394 if (start < end) {
395 size = end - start;
817d52f8 396 total_added += size;
ea6a478e 397 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 398 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
399 }
400
817d52f8 401 return total_added;
0f9dd46c
JB
402}
403
73fa48b6 404static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 405{
0b246afa
JM
406 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
407 struct btrfs_fs_info *fs_info = block_group->fs_info;
408 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 409 struct btrfs_path *path;
5f39d397 410 struct extent_buffer *leaf;
11833d66 411 struct btrfs_key key;
817d52f8 412 u64 total_found = 0;
11833d66
YZ
413 u64 last = 0;
414 u32 nritems;
73fa48b6 415 int ret;
d0bd4560 416 bool wakeup = true;
f510cfec 417
e37c9e69
CM
418 path = btrfs_alloc_path();
419 if (!path)
73fa48b6 420 return -ENOMEM;
7d7d6068 421
817d52f8 422 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 423
d0bd4560
JB
424#ifdef CONFIG_BTRFS_DEBUG
425 /*
426 * If we're fragmenting we don't want to make anybody think we can
427 * allocate from this block group until we've had a chance to fragment
428 * the free space.
429 */
2ff7e61e 430 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
431 wakeup = false;
432#endif
5cd57b2c 433 /*
817d52f8
JB
434 * We don't want to deadlock with somebody trying to allocate a new
435 * extent for the extent root while also trying to search the extent
436 * root to add free space. So we skip locking and search the commit
437 * root, since its read-only
5cd57b2c
CM
438 */
439 path->skip_locking = 1;
817d52f8 440 path->search_commit_root = 1;
e4058b54 441 path->reada = READA_FORWARD;
817d52f8 442
e4404d6e 443 key.objectid = last;
e37c9e69 444 key.offset = 0;
11833d66 445 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 446
52ee28d2 447next:
11833d66 448 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 449 if (ret < 0)
73fa48b6 450 goto out;
a512bbf8 451
11833d66
YZ
452 leaf = path->nodes[0];
453 nritems = btrfs_header_nritems(leaf);
454
d397712b 455 while (1) {
7841cb28 456 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 457 last = (u64)-1;
817d52f8 458 break;
f25784b3 459 }
817d52f8 460
11833d66
YZ
461 if (path->slots[0] < nritems) {
462 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
463 } else {
464 ret = find_next_key(path, 0, &key);
465 if (ret)
e37c9e69 466 break;
817d52f8 467
c9ea7b24 468 if (need_resched() ||
9e351cc8 469 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
470 if (wakeup)
471 caching_ctl->progress = last;
ff5714cc 472 btrfs_release_path(path);
9e351cc8 473 up_read(&fs_info->commit_root_sem);
589d8ade 474 mutex_unlock(&caching_ctl->mutex);
11833d66 475 cond_resched();
73fa48b6
OS
476 mutex_lock(&caching_ctl->mutex);
477 down_read(&fs_info->commit_root_sem);
478 goto next;
589d8ade 479 }
0a3896d0
JB
480
481 ret = btrfs_next_leaf(extent_root, path);
482 if (ret < 0)
73fa48b6 483 goto out;
0a3896d0
JB
484 if (ret)
485 break;
589d8ade
JB
486 leaf = path->nodes[0];
487 nritems = btrfs_header_nritems(leaf);
488 continue;
11833d66 489 }
817d52f8 490
52ee28d2
LB
491 if (key.objectid < last) {
492 key.objectid = last;
493 key.offset = 0;
494 key.type = BTRFS_EXTENT_ITEM_KEY;
495
d0bd4560
JB
496 if (wakeup)
497 caching_ctl->progress = last;
52ee28d2
LB
498 btrfs_release_path(path);
499 goto next;
500 }
501
11833d66
YZ
502 if (key.objectid < block_group->key.objectid) {
503 path->slots[0]++;
817d52f8 504 continue;
e37c9e69 505 }
0f9dd46c 506
e37c9e69 507 if (key.objectid >= block_group->key.objectid +
0f9dd46c 508 block_group->key.offset)
e37c9e69 509 break;
7d7d6068 510
3173a18f
JB
511 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
512 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
513 total_found += add_new_free_space(block_group,
514 fs_info, last,
515 key.objectid);
3173a18f
JB
516 if (key.type == BTRFS_METADATA_ITEM_KEY)
517 last = key.objectid +
da17066c 518 fs_info->nodesize;
3173a18f
JB
519 else
520 last = key.objectid + key.offset;
817d52f8 521
73fa48b6 522 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 523 total_found = 0;
d0bd4560
JB
524 if (wakeup)
525 wake_up(&caching_ctl->wait);
11833d66 526 }
817d52f8 527 }
e37c9e69
CM
528 path->slots[0]++;
529 }
817d52f8 530 ret = 0;
e37c9e69 531
817d52f8
JB
532 total_found += add_new_free_space(block_group, fs_info, last,
533 block_group->key.objectid +
534 block_group->key.offset);
11833d66 535 caching_ctl->progress = (u64)-1;
817d52f8 536
73fa48b6
OS
537out:
538 btrfs_free_path(path);
539 return ret;
540}
541
542static noinline void caching_thread(struct btrfs_work *work)
543{
544 struct btrfs_block_group_cache *block_group;
545 struct btrfs_fs_info *fs_info;
546 struct btrfs_caching_control *caching_ctl;
b4570aa9 547 struct btrfs_root *extent_root;
73fa48b6
OS
548 int ret;
549
550 caching_ctl = container_of(work, struct btrfs_caching_control, work);
551 block_group = caching_ctl->block_group;
552 fs_info = block_group->fs_info;
b4570aa9 553 extent_root = fs_info->extent_root;
73fa48b6
OS
554
555 mutex_lock(&caching_ctl->mutex);
556 down_read(&fs_info->commit_root_sem);
557
1e144fb8
OS
558 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
559 ret = load_free_space_tree(caching_ctl);
560 else
561 ret = load_extent_tree_free(caching_ctl);
73fa48b6 562
817d52f8 563 spin_lock(&block_group->lock);
11833d66 564 block_group->caching_ctl = NULL;
73fa48b6 565 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 566 spin_unlock(&block_group->lock);
0f9dd46c 567
d0bd4560 568#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 569 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
570 u64 bytes_used;
571
572 spin_lock(&block_group->space_info->lock);
573 spin_lock(&block_group->lock);
574 bytes_used = block_group->key.offset -
575 btrfs_block_group_used(&block_group->item);
576 block_group->space_info->bytes_used += bytes_used >> 1;
577 spin_unlock(&block_group->lock);
578 spin_unlock(&block_group->space_info->lock);
2ff7e61e 579 fragment_free_space(block_group);
d0bd4560
JB
580 }
581#endif
582
583 caching_ctl->progress = (u64)-1;
11833d66 584
9e351cc8 585 up_read(&fs_info->commit_root_sem);
2ff7e61e 586 free_excluded_extents(fs_info, block_group);
11833d66 587 mutex_unlock(&caching_ctl->mutex);
73fa48b6 588
11833d66
YZ
589 wake_up(&caching_ctl->wait);
590
591 put_caching_control(caching_ctl);
11dfe35a 592 btrfs_put_block_group(block_group);
817d52f8
JB
593}
594
9d66e233 595static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 596 int load_cache_only)
817d52f8 597{
291c7d2f 598 DEFINE_WAIT(wait);
11833d66
YZ
599 struct btrfs_fs_info *fs_info = cache->fs_info;
600 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
601 int ret = 0;
602
291c7d2f 603 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
604 if (!caching_ctl)
605 return -ENOMEM;
291c7d2f
JB
606
607 INIT_LIST_HEAD(&caching_ctl->list);
608 mutex_init(&caching_ctl->mutex);
609 init_waitqueue_head(&caching_ctl->wait);
610 caching_ctl->block_group = cache;
611 caching_ctl->progress = cache->key.objectid;
1e4f4714 612 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
613 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
614 caching_thread, NULL, NULL);
291c7d2f
JB
615
616 spin_lock(&cache->lock);
617 /*
618 * This should be a rare occasion, but this could happen I think in the
619 * case where one thread starts to load the space cache info, and then
620 * some other thread starts a transaction commit which tries to do an
621 * allocation while the other thread is still loading the space cache
622 * info. The previous loop should have kept us from choosing this block
623 * group, but if we've moved to the state where we will wait on caching
624 * block groups we need to first check if we're doing a fast load here,
625 * so we can wait for it to finish, otherwise we could end up allocating
626 * from a block group who's cache gets evicted for one reason or
627 * another.
628 */
629 while (cache->cached == BTRFS_CACHE_FAST) {
630 struct btrfs_caching_control *ctl;
631
632 ctl = cache->caching_ctl;
1e4f4714 633 refcount_inc(&ctl->count);
291c7d2f
JB
634 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
635 spin_unlock(&cache->lock);
636
637 schedule();
638
639 finish_wait(&ctl->wait, &wait);
640 put_caching_control(ctl);
641 spin_lock(&cache->lock);
642 }
643
644 if (cache->cached != BTRFS_CACHE_NO) {
645 spin_unlock(&cache->lock);
646 kfree(caching_ctl);
11833d66 647 return 0;
291c7d2f
JB
648 }
649 WARN_ON(cache->caching_ctl);
650 cache->caching_ctl = caching_ctl;
651 cache->cached = BTRFS_CACHE_FAST;
652 spin_unlock(&cache->lock);
11833d66 653
d53ba474 654 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 655 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
656 ret = load_free_space_cache(fs_info, cache);
657
658 spin_lock(&cache->lock);
659 if (ret == 1) {
291c7d2f 660 cache->caching_ctl = NULL;
9d66e233
JB
661 cache->cached = BTRFS_CACHE_FINISHED;
662 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 663 caching_ctl->progress = (u64)-1;
9d66e233 664 } else {
291c7d2f
JB
665 if (load_cache_only) {
666 cache->caching_ctl = NULL;
667 cache->cached = BTRFS_CACHE_NO;
668 } else {
669 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 670 cache->has_caching_ctl = 1;
291c7d2f 671 }
9d66e233
JB
672 }
673 spin_unlock(&cache->lock);
d0bd4560
JB
674#ifdef CONFIG_BTRFS_DEBUG
675 if (ret == 1 &&
2ff7e61e 676 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
677 u64 bytes_used;
678
679 spin_lock(&cache->space_info->lock);
680 spin_lock(&cache->lock);
681 bytes_used = cache->key.offset -
682 btrfs_block_group_used(&cache->item);
683 cache->space_info->bytes_used += bytes_used >> 1;
684 spin_unlock(&cache->lock);
685 spin_unlock(&cache->space_info->lock);
2ff7e61e 686 fragment_free_space(cache);
d0bd4560
JB
687 }
688#endif
cb83b7b8
JB
689 mutex_unlock(&caching_ctl->mutex);
690
291c7d2f 691 wake_up(&caching_ctl->wait);
3c14874a 692 if (ret == 1) {
291c7d2f 693 put_caching_control(caching_ctl);
2ff7e61e 694 free_excluded_extents(fs_info, cache);
9d66e233 695 return 0;
3c14874a 696 }
291c7d2f
JB
697 } else {
698 /*
1e144fb8
OS
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
701 */
702 spin_lock(&cache->lock);
703 if (load_cache_only) {
704 cache->caching_ctl = NULL;
705 cache->cached = BTRFS_CACHE_NO;
706 } else {
707 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 708 cache->has_caching_ctl = 1;
291c7d2f
JB
709 }
710 spin_unlock(&cache->lock);
711 wake_up(&caching_ctl->wait);
9d66e233
JB
712 }
713
291c7d2f
JB
714 if (load_cache_only) {
715 put_caching_control(caching_ctl);
11833d66 716 return 0;
817d52f8 717 }
817d52f8 718
9e351cc8 719 down_write(&fs_info->commit_root_sem);
1e4f4714 720 refcount_inc(&caching_ctl->count);
11833d66 721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 722 up_write(&fs_info->commit_root_sem);
11833d66 723
11dfe35a 724 btrfs_get_block_group(cache);
11833d66 725
e66f0bb1 726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 727
ef8bbdfe 728 return ret;
e37c9e69
CM
729}
730
0f9dd46c
JB
731/*
732 * return the block group that starts at or after bytenr
733 */
d397712b
CM
734static struct btrfs_block_group_cache *
735btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 736{
e2c89907 737 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
738}
739
0f9dd46c 740/*
9f55684c 741 * return the block group that contains the given bytenr
0f9dd46c 742 */
d397712b
CM
743struct btrfs_block_group_cache *btrfs_lookup_block_group(
744 struct btrfs_fs_info *info,
745 u64 bytenr)
be744175 746{
e2c89907 747 return block_group_cache_tree_search(info, bytenr, 1);
be744175 748}
0b86a832 749
0f9dd46c
JB
750static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
751 u64 flags)
6324fbf3 752{
0f9dd46c 753 struct list_head *head = &info->space_info;
0f9dd46c 754 struct btrfs_space_info *found;
4184ea7f 755
52ba6929 756 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 757
4184ea7f
CM
758 rcu_read_lock();
759 list_for_each_entry_rcu(found, head, list) {
67377734 760 if (found->flags & flags) {
4184ea7f 761 rcu_read_unlock();
0f9dd46c 762 return found;
4184ea7f 763 }
0f9dd46c 764 }
4184ea7f 765 rcu_read_unlock();
0f9dd46c 766 return NULL;
6324fbf3
CM
767}
768
4184ea7f
CM
769/*
770 * after adding space to the filesystem, we need to clear the full flags
771 * on all the space infos.
772 */
773void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
774{
775 struct list_head *head = &info->space_info;
776 struct btrfs_space_info *found;
777
778 rcu_read_lock();
779 list_for_each_entry_rcu(found, head, list)
780 found->full = 0;
781 rcu_read_unlock();
782}
783
1a4ed8fd 784/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 785int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
786{
787 int ret;
788 struct btrfs_key key;
31840ae1 789 struct btrfs_path *path;
e02119d5 790
31840ae1 791 path = btrfs_alloc_path();
d8926bb3
MF
792 if (!path)
793 return -ENOMEM;
794
e02119d5
CM
795 key.objectid = start;
796 key.offset = len;
3173a18f 797 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 798 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 799 btrfs_free_path(path);
7bb86316
CM
800 return ret;
801}
802
a22285a6 803/*
3173a18f 804 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
805 *
806 * the head node for delayed ref is used to store the sum of all the
807 * reference count modifications queued up in the rbtree. the head
808 * node may also store the extent flags to set. This way you can check
809 * to see what the reference count and extent flags would be if all of
810 * the delayed refs are not processed.
811 */
812int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 813 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 814 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
815{
816 struct btrfs_delayed_ref_head *head;
817 struct btrfs_delayed_ref_root *delayed_refs;
818 struct btrfs_path *path;
819 struct btrfs_extent_item *ei;
820 struct extent_buffer *leaf;
821 struct btrfs_key key;
822 u32 item_size;
823 u64 num_refs;
824 u64 extent_flags;
825 int ret;
826
3173a18f
JB
827 /*
828 * If we don't have skinny metadata, don't bother doing anything
829 * different
830 */
0b246afa
JM
831 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
832 offset = fs_info->nodesize;
3173a18f
JB
833 metadata = 0;
834 }
835
a22285a6
YZ
836 path = btrfs_alloc_path();
837 if (!path)
838 return -ENOMEM;
839
a22285a6
YZ
840 if (!trans) {
841 path->skip_locking = 1;
842 path->search_commit_root = 1;
843 }
639eefc8
FDBM
844
845search_again:
846 key.objectid = bytenr;
847 key.offset = offset;
848 if (metadata)
849 key.type = BTRFS_METADATA_ITEM_KEY;
850 else
851 key.type = BTRFS_EXTENT_ITEM_KEY;
852
0b246afa 853 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
854 if (ret < 0)
855 goto out_free;
856
3173a18f 857 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
858 if (path->slots[0]) {
859 path->slots[0]--;
860 btrfs_item_key_to_cpu(path->nodes[0], &key,
861 path->slots[0]);
862 if (key.objectid == bytenr &&
863 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 864 key.offset == fs_info->nodesize)
74be9510
FDBM
865 ret = 0;
866 }
3173a18f
JB
867 }
868
a22285a6
YZ
869 if (ret == 0) {
870 leaf = path->nodes[0];
871 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
872 if (item_size >= sizeof(*ei)) {
873 ei = btrfs_item_ptr(leaf, path->slots[0],
874 struct btrfs_extent_item);
875 num_refs = btrfs_extent_refs(leaf, ei);
876 extent_flags = btrfs_extent_flags(leaf, ei);
877 } else {
878#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
879 struct btrfs_extent_item_v0 *ei0;
880 BUG_ON(item_size != sizeof(*ei0));
881 ei0 = btrfs_item_ptr(leaf, path->slots[0],
882 struct btrfs_extent_item_v0);
883 num_refs = btrfs_extent_refs_v0(leaf, ei0);
884 /* FIXME: this isn't correct for data */
885 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
886#else
887 BUG();
888#endif
889 }
890 BUG_ON(num_refs == 0);
891 } else {
892 num_refs = 0;
893 extent_flags = 0;
894 ret = 0;
895 }
896
897 if (!trans)
898 goto out;
899
900 delayed_refs = &trans->transaction->delayed_refs;
901 spin_lock(&delayed_refs->lock);
f72ad18e 902 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
903 if (head) {
904 if (!mutex_trylock(&head->mutex)) {
6df8cdf5 905 refcount_inc(&head->node.refs);
a22285a6
YZ
906 spin_unlock(&delayed_refs->lock);
907
b3b4aa74 908 btrfs_release_path(path);
a22285a6 909
8cc33e5c
DS
910 /*
911 * Mutex was contended, block until it's released and try
912 * again
913 */
a22285a6
YZ
914 mutex_lock(&head->mutex);
915 mutex_unlock(&head->mutex);
916 btrfs_put_delayed_ref(&head->node);
639eefc8 917 goto search_again;
a22285a6 918 }
d7df2c79 919 spin_lock(&head->lock);
a22285a6
YZ
920 if (head->extent_op && head->extent_op->update_flags)
921 extent_flags |= head->extent_op->flags_to_set;
922 else
923 BUG_ON(num_refs == 0);
924
925 num_refs += head->node.ref_mod;
d7df2c79 926 spin_unlock(&head->lock);
a22285a6
YZ
927 mutex_unlock(&head->mutex);
928 }
929 spin_unlock(&delayed_refs->lock);
930out:
931 WARN_ON(num_refs == 0);
932 if (refs)
933 *refs = num_refs;
934 if (flags)
935 *flags = extent_flags;
936out_free:
937 btrfs_free_path(path);
938 return ret;
939}
940
d8d5f3e1
CM
941/*
942 * Back reference rules. Back refs have three main goals:
943 *
944 * 1) differentiate between all holders of references to an extent so that
945 * when a reference is dropped we can make sure it was a valid reference
946 * before freeing the extent.
947 *
948 * 2) Provide enough information to quickly find the holders of an extent
949 * if we notice a given block is corrupted or bad.
950 *
951 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
952 * maintenance. This is actually the same as #2, but with a slightly
953 * different use case.
954 *
5d4f98a2
YZ
955 * There are two kinds of back refs. The implicit back refs is optimized
956 * for pointers in non-shared tree blocks. For a given pointer in a block,
957 * back refs of this kind provide information about the block's owner tree
958 * and the pointer's key. These information allow us to find the block by
959 * b-tree searching. The full back refs is for pointers in tree blocks not
960 * referenced by their owner trees. The location of tree block is recorded
961 * in the back refs. Actually the full back refs is generic, and can be
962 * used in all cases the implicit back refs is used. The major shortcoming
963 * of the full back refs is its overhead. Every time a tree block gets
964 * COWed, we have to update back refs entry for all pointers in it.
965 *
966 * For a newly allocated tree block, we use implicit back refs for
967 * pointers in it. This means most tree related operations only involve
968 * implicit back refs. For a tree block created in old transaction, the
969 * only way to drop a reference to it is COW it. So we can detect the
970 * event that tree block loses its owner tree's reference and do the
971 * back refs conversion.
972 *
01327610 973 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
974 *
975 * The reference count of the block is one and the tree is the block's
976 * owner tree. Nothing to do in this case.
977 *
978 * The reference count of the block is one and the tree is not the
979 * block's owner tree. In this case, full back refs is used for pointers
980 * in the block. Remove these full back refs, add implicit back refs for
981 * every pointers in the new block.
982 *
983 * The reference count of the block is greater than one and the tree is
984 * the block's owner tree. In this case, implicit back refs is used for
985 * pointers in the block. Add full back refs for every pointers in the
986 * block, increase lower level extents' reference counts. The original
987 * implicit back refs are entailed to the new block.
988 *
989 * The reference count of the block is greater than one and the tree is
990 * not the block's owner tree. Add implicit back refs for every pointer in
991 * the new block, increase lower level extents' reference count.
992 *
993 * Back Reference Key composing:
994 *
995 * The key objectid corresponds to the first byte in the extent,
996 * The key type is used to differentiate between types of back refs.
997 * There are different meanings of the key offset for different types
998 * of back refs.
999 *
d8d5f3e1
CM
1000 * File extents can be referenced by:
1001 *
1002 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1003 * - different files inside a single subvolume
d8d5f3e1
CM
1004 * - different offsets inside a file (bookend extents in file.c)
1005 *
5d4f98a2 1006 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1007 *
1008 * - Objectid of the subvolume root
d8d5f3e1 1009 * - objectid of the file holding the reference
5d4f98a2
YZ
1010 * - original offset in the file
1011 * - how many bookend extents
d8d5f3e1 1012 *
5d4f98a2
YZ
1013 * The key offset for the implicit back refs is hash of the first
1014 * three fields.
d8d5f3e1 1015 *
5d4f98a2 1016 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1017 *
5d4f98a2 1018 * - number of pointers in the tree leaf
d8d5f3e1 1019 *
5d4f98a2
YZ
1020 * The key offset for the implicit back refs is the first byte of
1021 * the tree leaf
d8d5f3e1 1022 *
5d4f98a2
YZ
1023 * When a file extent is allocated, The implicit back refs is used.
1024 * the fields are filled in:
d8d5f3e1 1025 *
5d4f98a2 1026 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1027 *
5d4f98a2
YZ
1028 * When a file extent is removed file truncation, we find the
1029 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1030 *
5d4f98a2 1031 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1032 *
5d4f98a2 1033 * Btree extents can be referenced by:
d8d5f3e1 1034 *
5d4f98a2 1035 * - Different subvolumes
d8d5f3e1 1036 *
5d4f98a2
YZ
1037 * Both the implicit back refs and the full back refs for tree blocks
1038 * only consist of key. The key offset for the implicit back refs is
1039 * objectid of block's owner tree. The key offset for the full back refs
1040 * is the first byte of parent block.
d8d5f3e1 1041 *
5d4f98a2
YZ
1042 * When implicit back refs is used, information about the lowest key and
1043 * level of the tree block are required. These information are stored in
1044 * tree block info structure.
d8d5f3e1 1045 */
31840ae1 1046
5d4f98a2
YZ
1047#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1048static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1049 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1050 struct btrfs_path *path,
1051 u64 owner, u32 extra_size)
7bb86316 1052{
87bde3cd 1053 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1054 struct btrfs_extent_item *item;
1055 struct btrfs_extent_item_v0 *ei0;
1056 struct btrfs_extent_ref_v0 *ref0;
1057 struct btrfs_tree_block_info *bi;
1058 struct extent_buffer *leaf;
7bb86316 1059 struct btrfs_key key;
5d4f98a2
YZ
1060 struct btrfs_key found_key;
1061 u32 new_size = sizeof(*item);
1062 u64 refs;
1063 int ret;
1064
1065 leaf = path->nodes[0];
1066 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1067
1068 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1069 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1070 struct btrfs_extent_item_v0);
1071 refs = btrfs_extent_refs_v0(leaf, ei0);
1072
1073 if (owner == (u64)-1) {
1074 while (1) {
1075 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1076 ret = btrfs_next_leaf(root, path);
1077 if (ret < 0)
1078 return ret;
79787eaa 1079 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1080 leaf = path->nodes[0];
1081 }
1082 btrfs_item_key_to_cpu(leaf, &found_key,
1083 path->slots[0]);
1084 BUG_ON(key.objectid != found_key.objectid);
1085 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1086 path->slots[0]++;
1087 continue;
1088 }
1089 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1090 struct btrfs_extent_ref_v0);
1091 owner = btrfs_ref_objectid_v0(leaf, ref0);
1092 break;
1093 }
1094 }
b3b4aa74 1095 btrfs_release_path(path);
5d4f98a2
YZ
1096
1097 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1098 new_size += sizeof(*bi);
1099
1100 new_size -= sizeof(*ei0);
1101 ret = btrfs_search_slot(trans, root, &key, path,
1102 new_size + extra_size, 1);
1103 if (ret < 0)
1104 return ret;
79787eaa 1105 BUG_ON(ret); /* Corruption */
5d4f98a2 1106
87bde3cd 1107 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1108
1109 leaf = path->nodes[0];
1110 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1111 btrfs_set_extent_refs(leaf, item, refs);
1112 /* FIXME: get real generation */
1113 btrfs_set_extent_generation(leaf, item, 0);
1114 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1115 btrfs_set_extent_flags(leaf, item,
1116 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1117 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1118 bi = (struct btrfs_tree_block_info *)(item + 1);
1119 /* FIXME: get first key of the block */
b159fa28 1120 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1121 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1122 } else {
1123 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1124 }
1125 btrfs_mark_buffer_dirty(leaf);
1126 return 0;
1127}
1128#endif
1129
1130static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1131{
1132 u32 high_crc = ~(u32)0;
1133 u32 low_crc = ~(u32)0;
1134 __le64 lenum;
1135
1136 lenum = cpu_to_le64(root_objectid);
14a958e6 1137 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1138 lenum = cpu_to_le64(owner);
14a958e6 1139 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1140 lenum = cpu_to_le64(offset);
14a958e6 1141 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1142
1143 return ((u64)high_crc << 31) ^ (u64)low_crc;
1144}
1145
1146static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1147 struct btrfs_extent_data_ref *ref)
1148{
1149 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1150 btrfs_extent_data_ref_objectid(leaf, ref),
1151 btrfs_extent_data_ref_offset(leaf, ref));
1152}
1153
1154static int match_extent_data_ref(struct extent_buffer *leaf,
1155 struct btrfs_extent_data_ref *ref,
1156 u64 root_objectid, u64 owner, u64 offset)
1157{
1158 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1159 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1160 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1161 return 0;
1162 return 1;
1163}
1164
1165static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1166 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1167 struct btrfs_path *path,
1168 u64 bytenr, u64 parent,
1169 u64 root_objectid,
1170 u64 owner, u64 offset)
1171{
87bde3cd 1172 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1173 struct btrfs_key key;
1174 struct btrfs_extent_data_ref *ref;
31840ae1 1175 struct extent_buffer *leaf;
5d4f98a2 1176 u32 nritems;
74493f7a 1177 int ret;
5d4f98a2
YZ
1178 int recow;
1179 int err = -ENOENT;
74493f7a 1180
31840ae1 1181 key.objectid = bytenr;
5d4f98a2
YZ
1182 if (parent) {
1183 key.type = BTRFS_SHARED_DATA_REF_KEY;
1184 key.offset = parent;
1185 } else {
1186 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1187 key.offset = hash_extent_data_ref(root_objectid,
1188 owner, offset);
1189 }
1190again:
1191 recow = 0;
1192 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1193 if (ret < 0) {
1194 err = ret;
1195 goto fail;
1196 }
31840ae1 1197
5d4f98a2
YZ
1198 if (parent) {
1199 if (!ret)
1200 return 0;
1201#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1202 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1203 btrfs_release_path(path);
5d4f98a2
YZ
1204 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1205 if (ret < 0) {
1206 err = ret;
1207 goto fail;
1208 }
1209 if (!ret)
1210 return 0;
1211#endif
1212 goto fail;
31840ae1
ZY
1213 }
1214
1215 leaf = path->nodes[0];
5d4f98a2
YZ
1216 nritems = btrfs_header_nritems(leaf);
1217 while (1) {
1218 if (path->slots[0] >= nritems) {
1219 ret = btrfs_next_leaf(root, path);
1220 if (ret < 0)
1221 err = ret;
1222 if (ret)
1223 goto fail;
1224
1225 leaf = path->nodes[0];
1226 nritems = btrfs_header_nritems(leaf);
1227 recow = 1;
1228 }
1229
1230 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1231 if (key.objectid != bytenr ||
1232 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1233 goto fail;
1234
1235 ref = btrfs_item_ptr(leaf, path->slots[0],
1236 struct btrfs_extent_data_ref);
1237
1238 if (match_extent_data_ref(leaf, ref, root_objectid,
1239 owner, offset)) {
1240 if (recow) {
b3b4aa74 1241 btrfs_release_path(path);
5d4f98a2
YZ
1242 goto again;
1243 }
1244 err = 0;
1245 break;
1246 }
1247 path->slots[0]++;
31840ae1 1248 }
5d4f98a2
YZ
1249fail:
1250 return err;
31840ae1
ZY
1251}
1252
5d4f98a2 1253static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1254 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1255 struct btrfs_path *path,
1256 u64 bytenr, u64 parent,
1257 u64 root_objectid, u64 owner,
1258 u64 offset, int refs_to_add)
31840ae1 1259{
87bde3cd 1260 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1261 struct btrfs_key key;
1262 struct extent_buffer *leaf;
5d4f98a2 1263 u32 size;
31840ae1
ZY
1264 u32 num_refs;
1265 int ret;
74493f7a 1266
74493f7a 1267 key.objectid = bytenr;
5d4f98a2
YZ
1268 if (parent) {
1269 key.type = BTRFS_SHARED_DATA_REF_KEY;
1270 key.offset = parent;
1271 size = sizeof(struct btrfs_shared_data_ref);
1272 } else {
1273 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1274 key.offset = hash_extent_data_ref(root_objectid,
1275 owner, offset);
1276 size = sizeof(struct btrfs_extent_data_ref);
1277 }
74493f7a 1278
5d4f98a2
YZ
1279 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1280 if (ret && ret != -EEXIST)
1281 goto fail;
1282
1283 leaf = path->nodes[0];
1284 if (parent) {
1285 struct btrfs_shared_data_ref *ref;
31840ae1 1286 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1287 struct btrfs_shared_data_ref);
1288 if (ret == 0) {
1289 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1290 } else {
1291 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1292 num_refs += refs_to_add;
1293 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1294 }
5d4f98a2
YZ
1295 } else {
1296 struct btrfs_extent_data_ref *ref;
1297 while (ret == -EEXIST) {
1298 ref = btrfs_item_ptr(leaf, path->slots[0],
1299 struct btrfs_extent_data_ref);
1300 if (match_extent_data_ref(leaf, ref, root_objectid,
1301 owner, offset))
1302 break;
b3b4aa74 1303 btrfs_release_path(path);
5d4f98a2
YZ
1304 key.offset++;
1305 ret = btrfs_insert_empty_item(trans, root, path, &key,
1306 size);
1307 if (ret && ret != -EEXIST)
1308 goto fail;
31840ae1 1309
5d4f98a2
YZ
1310 leaf = path->nodes[0];
1311 }
1312 ref = btrfs_item_ptr(leaf, path->slots[0],
1313 struct btrfs_extent_data_ref);
1314 if (ret == 0) {
1315 btrfs_set_extent_data_ref_root(leaf, ref,
1316 root_objectid);
1317 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1318 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1319 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1320 } else {
1321 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1322 num_refs += refs_to_add;
1323 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1324 }
31840ae1 1325 }
5d4f98a2
YZ
1326 btrfs_mark_buffer_dirty(leaf);
1327 ret = 0;
1328fail:
b3b4aa74 1329 btrfs_release_path(path);
7bb86316 1330 return ret;
74493f7a
CM
1331}
1332
5d4f98a2 1333static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1334 struct btrfs_fs_info *fs_info,
5d4f98a2 1335 struct btrfs_path *path,
fcebe456 1336 int refs_to_drop, int *last_ref)
31840ae1 1337{
5d4f98a2
YZ
1338 struct btrfs_key key;
1339 struct btrfs_extent_data_ref *ref1 = NULL;
1340 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1341 struct extent_buffer *leaf;
5d4f98a2 1342 u32 num_refs = 0;
31840ae1
ZY
1343 int ret = 0;
1344
1345 leaf = path->nodes[0];
5d4f98a2
YZ
1346 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1347
1348 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1349 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1350 struct btrfs_extent_data_ref);
1351 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1352 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1353 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_shared_data_ref);
1355 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1356#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1358 struct btrfs_extent_ref_v0 *ref0;
1359 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1360 struct btrfs_extent_ref_v0);
1361 num_refs = btrfs_ref_count_v0(leaf, ref0);
1362#endif
1363 } else {
1364 BUG();
1365 }
1366
56bec294
CM
1367 BUG_ON(num_refs < refs_to_drop);
1368 num_refs -= refs_to_drop;
5d4f98a2 1369
31840ae1 1370 if (num_refs == 0) {
87bde3cd 1371 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1372 *last_ref = 1;
31840ae1 1373 } else {
5d4f98a2
YZ
1374 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1375 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1376 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1377 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1378#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1379 else {
1380 struct btrfs_extent_ref_v0 *ref0;
1381 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1382 struct btrfs_extent_ref_v0);
1383 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1384 }
1385#endif
31840ae1
ZY
1386 btrfs_mark_buffer_dirty(leaf);
1387 }
31840ae1
ZY
1388 return ret;
1389}
1390
9ed0dea0 1391static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1392 struct btrfs_extent_inline_ref *iref)
15916de8 1393{
5d4f98a2
YZ
1394 struct btrfs_key key;
1395 struct extent_buffer *leaf;
1396 struct btrfs_extent_data_ref *ref1;
1397 struct btrfs_shared_data_ref *ref2;
1398 u32 num_refs = 0;
1399
1400 leaf = path->nodes[0];
1401 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1402 if (iref) {
1403 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1404 BTRFS_EXTENT_DATA_REF_KEY) {
1405 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 } else {
1408 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1409 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1410 }
1411 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1412 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1413 struct btrfs_extent_data_ref);
1414 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1415 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1416 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1417 struct btrfs_shared_data_ref);
1418 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1419#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1420 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1421 struct btrfs_extent_ref_v0 *ref0;
1422 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1423 struct btrfs_extent_ref_v0);
1424 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1425#endif
5d4f98a2
YZ
1426 } else {
1427 WARN_ON(1);
1428 }
1429 return num_refs;
1430}
15916de8 1431
5d4f98a2 1432static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1433 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1434 struct btrfs_path *path,
1435 u64 bytenr, u64 parent,
1436 u64 root_objectid)
1f3c79a2 1437{
87bde3cd 1438 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1439 struct btrfs_key key;
1f3c79a2 1440 int ret;
1f3c79a2 1441
5d4f98a2
YZ
1442 key.objectid = bytenr;
1443 if (parent) {
1444 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1445 key.offset = parent;
1446 } else {
1447 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1448 key.offset = root_objectid;
1f3c79a2
LH
1449 }
1450
5d4f98a2
YZ
1451 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1452 if (ret > 0)
1453 ret = -ENOENT;
1454#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1455 if (ret == -ENOENT && parent) {
b3b4aa74 1456 btrfs_release_path(path);
5d4f98a2
YZ
1457 key.type = BTRFS_EXTENT_REF_V0_KEY;
1458 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1459 if (ret > 0)
1460 ret = -ENOENT;
1461 }
1f3c79a2 1462#endif
5d4f98a2 1463 return ret;
1f3c79a2
LH
1464}
1465
5d4f98a2 1466static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1467 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1468 struct btrfs_path *path,
1469 u64 bytenr, u64 parent,
1470 u64 root_objectid)
31840ae1 1471{
5d4f98a2 1472 struct btrfs_key key;
31840ae1 1473 int ret;
31840ae1 1474
5d4f98a2
YZ
1475 key.objectid = bytenr;
1476 if (parent) {
1477 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1478 key.offset = parent;
1479 } else {
1480 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1481 key.offset = root_objectid;
1482 }
1483
87bde3cd
JM
1484 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1485 path, &key, 0);
b3b4aa74 1486 btrfs_release_path(path);
31840ae1
ZY
1487 return ret;
1488}
1489
5d4f98a2 1490static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1491{
5d4f98a2
YZ
1492 int type;
1493 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1494 if (parent > 0)
1495 type = BTRFS_SHARED_BLOCK_REF_KEY;
1496 else
1497 type = BTRFS_TREE_BLOCK_REF_KEY;
1498 } else {
1499 if (parent > 0)
1500 type = BTRFS_SHARED_DATA_REF_KEY;
1501 else
1502 type = BTRFS_EXTENT_DATA_REF_KEY;
1503 }
1504 return type;
31840ae1 1505}
56bec294 1506
2c47e605
YZ
1507static int find_next_key(struct btrfs_path *path, int level,
1508 struct btrfs_key *key)
56bec294 1509
02217ed2 1510{
2c47e605 1511 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1512 if (!path->nodes[level])
1513 break;
5d4f98a2
YZ
1514 if (path->slots[level] + 1 >=
1515 btrfs_header_nritems(path->nodes[level]))
1516 continue;
1517 if (level == 0)
1518 btrfs_item_key_to_cpu(path->nodes[level], key,
1519 path->slots[level] + 1);
1520 else
1521 btrfs_node_key_to_cpu(path->nodes[level], key,
1522 path->slots[level] + 1);
1523 return 0;
1524 }
1525 return 1;
1526}
037e6390 1527
5d4f98a2
YZ
1528/*
1529 * look for inline back ref. if back ref is found, *ref_ret is set
1530 * to the address of inline back ref, and 0 is returned.
1531 *
1532 * if back ref isn't found, *ref_ret is set to the address where it
1533 * should be inserted, and -ENOENT is returned.
1534 *
1535 * if insert is true and there are too many inline back refs, the path
1536 * points to the extent item, and -EAGAIN is returned.
1537 *
1538 * NOTE: inline back refs are ordered in the same way that back ref
1539 * items in the tree are ordered.
1540 */
1541static noinline_for_stack
1542int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1543 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1544 struct btrfs_path *path,
1545 struct btrfs_extent_inline_ref **ref_ret,
1546 u64 bytenr, u64 num_bytes,
1547 u64 parent, u64 root_objectid,
1548 u64 owner, u64 offset, int insert)
1549{
87bde3cd 1550 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1551 struct btrfs_key key;
1552 struct extent_buffer *leaf;
1553 struct btrfs_extent_item *ei;
1554 struct btrfs_extent_inline_ref *iref;
1555 u64 flags;
1556 u64 item_size;
1557 unsigned long ptr;
1558 unsigned long end;
1559 int extra_size;
1560 int type;
1561 int want;
1562 int ret;
1563 int err = 0;
0b246afa 1564 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
26b8003f 1565
db94535d 1566 key.objectid = bytenr;
31840ae1 1567 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1568 key.offset = num_bytes;
31840ae1 1569
5d4f98a2
YZ
1570 want = extent_ref_type(parent, owner);
1571 if (insert) {
1572 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1573 path->keep_locks = 1;
5d4f98a2
YZ
1574 } else
1575 extra_size = -1;
3173a18f
JB
1576
1577 /*
1578 * Owner is our parent level, so we can just add one to get the level
1579 * for the block we are interested in.
1580 */
1581 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1582 key.type = BTRFS_METADATA_ITEM_KEY;
1583 key.offset = owner;
1584 }
1585
1586again:
5d4f98a2 1587 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1588 if (ret < 0) {
5d4f98a2
YZ
1589 err = ret;
1590 goto out;
1591 }
3173a18f
JB
1592
1593 /*
1594 * We may be a newly converted file system which still has the old fat
1595 * extent entries for metadata, so try and see if we have one of those.
1596 */
1597 if (ret > 0 && skinny_metadata) {
1598 skinny_metadata = false;
1599 if (path->slots[0]) {
1600 path->slots[0]--;
1601 btrfs_item_key_to_cpu(path->nodes[0], &key,
1602 path->slots[0]);
1603 if (key.objectid == bytenr &&
1604 key.type == BTRFS_EXTENT_ITEM_KEY &&
1605 key.offset == num_bytes)
1606 ret = 0;
1607 }
1608 if (ret) {
9ce49a0b 1609 key.objectid = bytenr;
3173a18f
JB
1610 key.type = BTRFS_EXTENT_ITEM_KEY;
1611 key.offset = num_bytes;
1612 btrfs_release_path(path);
1613 goto again;
1614 }
1615 }
1616
79787eaa
JM
1617 if (ret && !insert) {
1618 err = -ENOENT;
1619 goto out;
fae7f21c 1620 } else if (WARN_ON(ret)) {
492104c8 1621 err = -EIO;
492104c8 1622 goto out;
79787eaa 1623 }
5d4f98a2
YZ
1624
1625 leaf = path->nodes[0];
1626 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1627#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1628 if (item_size < sizeof(*ei)) {
1629 if (!insert) {
1630 err = -ENOENT;
1631 goto out;
1632 }
87bde3cd 1633 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1634 extra_size);
1635 if (ret < 0) {
1636 err = ret;
1637 goto out;
1638 }
1639 leaf = path->nodes[0];
1640 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1641 }
1642#endif
1643 BUG_ON(item_size < sizeof(*ei));
1644
5d4f98a2
YZ
1645 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1646 flags = btrfs_extent_flags(leaf, ei);
1647
1648 ptr = (unsigned long)(ei + 1);
1649 end = (unsigned long)ei + item_size;
1650
3173a18f 1651 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1652 ptr += sizeof(struct btrfs_tree_block_info);
1653 BUG_ON(ptr > end);
5d4f98a2
YZ
1654 }
1655
1656 err = -ENOENT;
1657 while (1) {
1658 if (ptr >= end) {
1659 WARN_ON(ptr > end);
1660 break;
1661 }
1662 iref = (struct btrfs_extent_inline_ref *)ptr;
1663 type = btrfs_extent_inline_ref_type(leaf, iref);
1664 if (want < type)
1665 break;
1666 if (want > type) {
1667 ptr += btrfs_extent_inline_ref_size(type);
1668 continue;
1669 }
1670
1671 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1672 struct btrfs_extent_data_ref *dref;
1673 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1674 if (match_extent_data_ref(leaf, dref, root_objectid,
1675 owner, offset)) {
1676 err = 0;
1677 break;
1678 }
1679 if (hash_extent_data_ref_item(leaf, dref) <
1680 hash_extent_data_ref(root_objectid, owner, offset))
1681 break;
1682 } else {
1683 u64 ref_offset;
1684 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1685 if (parent > 0) {
1686 if (parent == ref_offset) {
1687 err = 0;
1688 break;
1689 }
1690 if (ref_offset < parent)
1691 break;
1692 } else {
1693 if (root_objectid == ref_offset) {
1694 err = 0;
1695 break;
1696 }
1697 if (ref_offset < root_objectid)
1698 break;
1699 }
1700 }
1701 ptr += btrfs_extent_inline_ref_size(type);
1702 }
1703 if (err == -ENOENT && insert) {
1704 if (item_size + extra_size >=
1705 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1706 err = -EAGAIN;
1707 goto out;
1708 }
1709 /*
1710 * To add new inline back ref, we have to make sure
1711 * there is no corresponding back ref item.
1712 * For simplicity, we just do not add new inline back
1713 * ref if there is any kind of item for this block
1714 */
2c47e605
YZ
1715 if (find_next_key(path, 0, &key) == 0 &&
1716 key.objectid == bytenr &&
85d4198e 1717 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1718 err = -EAGAIN;
1719 goto out;
1720 }
1721 }
1722 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1723out:
85d4198e 1724 if (insert) {
5d4f98a2
YZ
1725 path->keep_locks = 0;
1726 btrfs_unlock_up_safe(path, 1);
1727 }
1728 return err;
1729}
1730
1731/*
1732 * helper to add new inline back ref
1733 */
1734static noinline_for_stack
87bde3cd 1735void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1736 struct btrfs_path *path,
1737 struct btrfs_extent_inline_ref *iref,
1738 u64 parent, u64 root_objectid,
1739 u64 owner, u64 offset, int refs_to_add,
1740 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1741{
1742 struct extent_buffer *leaf;
1743 struct btrfs_extent_item *ei;
1744 unsigned long ptr;
1745 unsigned long end;
1746 unsigned long item_offset;
1747 u64 refs;
1748 int size;
1749 int type;
5d4f98a2
YZ
1750
1751 leaf = path->nodes[0];
1752 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1753 item_offset = (unsigned long)iref - (unsigned long)ei;
1754
1755 type = extent_ref_type(parent, owner);
1756 size = btrfs_extent_inline_ref_size(type);
1757
87bde3cd 1758 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1759
1760 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1761 refs = btrfs_extent_refs(leaf, ei);
1762 refs += refs_to_add;
1763 btrfs_set_extent_refs(leaf, ei, refs);
1764 if (extent_op)
1765 __run_delayed_extent_op(extent_op, leaf, ei);
1766
1767 ptr = (unsigned long)ei + item_offset;
1768 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1769 if (ptr < end - size)
1770 memmove_extent_buffer(leaf, ptr + size, ptr,
1771 end - size - ptr);
1772
1773 iref = (struct btrfs_extent_inline_ref *)ptr;
1774 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1775 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1776 struct btrfs_extent_data_ref *dref;
1777 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1778 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1779 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1780 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1781 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1782 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1783 struct btrfs_shared_data_ref *sref;
1784 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1785 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1786 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1787 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1788 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1789 } else {
1790 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1791 }
1792 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1793}
1794
1795static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1796 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1797 struct btrfs_path *path,
1798 struct btrfs_extent_inline_ref **ref_ret,
1799 u64 bytenr, u64 num_bytes, u64 parent,
1800 u64 root_objectid, u64 owner, u64 offset)
1801{
1802 int ret;
1803
87bde3cd 1804 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1805 bytenr, num_bytes, parent,
1806 root_objectid, owner, offset, 0);
1807 if (ret != -ENOENT)
54aa1f4d 1808 return ret;
5d4f98a2 1809
b3b4aa74 1810 btrfs_release_path(path);
5d4f98a2
YZ
1811 *ref_ret = NULL;
1812
1813 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1814 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1815 parent, root_objectid);
5d4f98a2 1816 } else {
87bde3cd
JM
1817 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1818 parent, root_objectid, owner,
1819 offset);
b9473439 1820 }
5d4f98a2
YZ
1821 return ret;
1822}
31840ae1 1823
5d4f98a2
YZ
1824/*
1825 * helper to update/remove inline back ref
1826 */
1827static noinline_for_stack
87bde3cd 1828void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1829 struct btrfs_path *path,
1830 struct btrfs_extent_inline_ref *iref,
1831 int refs_to_mod,
fcebe456
JB
1832 struct btrfs_delayed_extent_op *extent_op,
1833 int *last_ref)
5d4f98a2
YZ
1834{
1835 struct extent_buffer *leaf;
1836 struct btrfs_extent_item *ei;
1837 struct btrfs_extent_data_ref *dref = NULL;
1838 struct btrfs_shared_data_ref *sref = NULL;
1839 unsigned long ptr;
1840 unsigned long end;
1841 u32 item_size;
1842 int size;
1843 int type;
5d4f98a2
YZ
1844 u64 refs;
1845
1846 leaf = path->nodes[0];
1847 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1848 refs = btrfs_extent_refs(leaf, ei);
1849 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1850 refs += refs_to_mod;
1851 btrfs_set_extent_refs(leaf, ei, refs);
1852 if (extent_op)
1853 __run_delayed_extent_op(extent_op, leaf, ei);
1854
1855 type = btrfs_extent_inline_ref_type(leaf, iref);
1856
1857 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1858 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1859 refs = btrfs_extent_data_ref_count(leaf, dref);
1860 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1861 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1862 refs = btrfs_shared_data_ref_count(leaf, sref);
1863 } else {
1864 refs = 1;
1865 BUG_ON(refs_to_mod != -1);
56bec294 1866 }
31840ae1 1867
5d4f98a2
YZ
1868 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1869 refs += refs_to_mod;
1870
1871 if (refs > 0) {
1872 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1873 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1874 else
1875 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1876 } else {
fcebe456 1877 *last_ref = 1;
5d4f98a2
YZ
1878 size = btrfs_extent_inline_ref_size(type);
1879 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1880 ptr = (unsigned long)iref;
1881 end = (unsigned long)ei + item_size;
1882 if (ptr + size < end)
1883 memmove_extent_buffer(leaf, ptr, ptr + size,
1884 end - ptr - size);
1885 item_size -= size;
87bde3cd 1886 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1887 }
1888 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1889}
1890
1891static noinline_for_stack
1892int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1893 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1894 struct btrfs_path *path,
1895 u64 bytenr, u64 num_bytes, u64 parent,
1896 u64 root_objectid, u64 owner,
1897 u64 offset, int refs_to_add,
1898 struct btrfs_delayed_extent_op *extent_op)
1899{
1900 struct btrfs_extent_inline_ref *iref;
1901 int ret;
1902
87bde3cd 1903 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1904 bytenr, num_bytes, parent,
1905 root_objectid, owner, offset, 1);
1906 if (ret == 0) {
1907 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1908 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1909 refs_to_add, extent_op, NULL);
5d4f98a2 1910 } else if (ret == -ENOENT) {
87bde3cd 1911 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
1912 root_objectid, owner, offset,
1913 refs_to_add, extent_op);
1914 ret = 0;
771ed689 1915 }
5d4f98a2
YZ
1916 return ret;
1917}
31840ae1 1918
5d4f98a2 1919static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1920 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1921 struct btrfs_path *path,
1922 u64 bytenr, u64 parent, u64 root_objectid,
1923 u64 owner, u64 offset, int refs_to_add)
1924{
1925 int ret;
1926 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1927 BUG_ON(refs_to_add != 1);
87bde3cd 1928 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
1929 parent, root_objectid);
1930 } else {
87bde3cd 1931 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
1932 parent, root_objectid,
1933 owner, offset, refs_to_add);
1934 }
1935 return ret;
1936}
56bec294 1937
5d4f98a2 1938static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1939 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1940 struct btrfs_path *path,
1941 struct btrfs_extent_inline_ref *iref,
fcebe456 1942 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1943{
143bede5 1944 int ret = 0;
b9473439 1945
5d4f98a2
YZ
1946 BUG_ON(!is_data && refs_to_drop != 1);
1947 if (iref) {
87bde3cd 1948 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1949 -refs_to_drop, NULL, last_ref);
5d4f98a2 1950 } else if (is_data) {
87bde3cd 1951 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 1952 last_ref);
5d4f98a2 1953 } else {
fcebe456 1954 *last_ref = 1;
87bde3cd 1955 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
1956 }
1957 return ret;
1958}
1959
86557861 1960#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1961static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1962 u64 *discarded_bytes)
5d4f98a2 1963{
86557861
JM
1964 int j, ret = 0;
1965 u64 bytes_left, end;
4d89d377 1966 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1967
4d89d377
JM
1968 if (WARN_ON(start != aligned_start)) {
1969 len -= aligned_start - start;
1970 len = round_down(len, 1 << 9);
1971 start = aligned_start;
1972 }
d04c6b88 1973
4d89d377 1974 *discarded_bytes = 0;
86557861
JM
1975
1976 if (!len)
1977 return 0;
1978
1979 end = start + len;
1980 bytes_left = len;
1981
1982 /* Skip any superblocks on this device. */
1983 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1984 u64 sb_start = btrfs_sb_offset(j);
1985 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1986 u64 size = sb_start - start;
1987
1988 if (!in_range(sb_start, start, bytes_left) &&
1989 !in_range(sb_end, start, bytes_left) &&
1990 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1991 continue;
1992
1993 /*
1994 * Superblock spans beginning of range. Adjust start and
1995 * try again.
1996 */
1997 if (sb_start <= start) {
1998 start += sb_end - start;
1999 if (start > end) {
2000 bytes_left = 0;
2001 break;
2002 }
2003 bytes_left = end - start;
2004 continue;
2005 }
2006
2007 if (size) {
2008 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2009 GFP_NOFS, 0);
2010 if (!ret)
2011 *discarded_bytes += size;
2012 else if (ret != -EOPNOTSUPP)
2013 return ret;
2014 }
2015
2016 start = sb_end;
2017 if (start > end) {
2018 bytes_left = 0;
2019 break;
2020 }
2021 bytes_left = end - start;
2022 }
2023
2024 if (bytes_left) {
2025 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2026 GFP_NOFS, 0);
2027 if (!ret)
86557861 2028 *discarded_bytes += bytes_left;
4d89d377 2029 }
d04c6b88 2030 return ret;
5d4f98a2 2031}
5d4f98a2 2032
2ff7e61e 2033int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2034 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2035{
5d4f98a2 2036 int ret;
5378e607 2037 u64 discarded_bytes = 0;
a1d3c478 2038 struct btrfs_bio *bbio = NULL;
5d4f98a2 2039
e244a0ae 2040
2999241d
FM
2041 /*
2042 * Avoid races with device replace and make sure our bbio has devices
2043 * associated to its stripes that don't go away while we are discarding.
2044 */
0b246afa 2045 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2046 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2047 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2048 &bbio, 0);
79787eaa 2049 /* Error condition is -ENOMEM */
5d4f98a2 2050 if (!ret) {
a1d3c478 2051 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2052 int i;
2053
5d4f98a2 2054
a1d3c478 2055 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2056 u64 bytes;
d5e2003c
JB
2057 if (!stripe->dev->can_discard)
2058 continue;
2059
5378e607
LD
2060 ret = btrfs_issue_discard(stripe->dev->bdev,
2061 stripe->physical,
d04c6b88
JM
2062 stripe->length,
2063 &bytes);
5378e607 2064 if (!ret)
d04c6b88 2065 discarded_bytes += bytes;
5378e607 2066 else if (ret != -EOPNOTSUPP)
79787eaa 2067 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2068
2069 /*
2070 * Just in case we get back EOPNOTSUPP for some reason,
2071 * just ignore the return value so we don't screw up
2072 * people calling discard_extent.
2073 */
2074 ret = 0;
5d4f98a2 2075 }
6e9606d2 2076 btrfs_put_bbio(bbio);
5d4f98a2 2077 }
0b246afa 2078 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2079
2080 if (actual_bytes)
2081 *actual_bytes = discarded_bytes;
2082
5d4f98a2 2083
53b381b3
DW
2084 if (ret == -EOPNOTSUPP)
2085 ret = 0;
5d4f98a2 2086 return ret;
5d4f98a2
YZ
2087}
2088
79787eaa 2089/* Can return -ENOMEM */
5d4f98a2 2090int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2091 struct btrfs_fs_info *fs_info,
5d4f98a2 2092 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2093 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2094{
2095 int ret;
66d7e7f0 2096
5d4f98a2
YZ
2097 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2098 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2099
2100 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2101 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2102 num_bytes,
5d4f98a2 2103 parent, root_objectid, (int)owner,
b06c4bf5 2104 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2 2105 } else {
66d7e7f0 2106 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5846a3c2
QW
2107 num_bytes, parent, root_objectid,
2108 owner, offset, 0,
fef394f7 2109 BTRFS_ADD_DELAYED_REF);
5d4f98a2
YZ
2110 }
2111 return ret;
2112}
2113
2114static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2115 struct btrfs_fs_info *fs_info,
c682f9b3 2116 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2117 u64 parent, u64 root_objectid,
2118 u64 owner, u64 offset, int refs_to_add,
2119 struct btrfs_delayed_extent_op *extent_op)
2120{
2121 struct btrfs_path *path;
2122 struct extent_buffer *leaf;
2123 struct btrfs_extent_item *item;
fcebe456 2124 struct btrfs_key key;
c682f9b3
QW
2125 u64 bytenr = node->bytenr;
2126 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2127 u64 refs;
2128 int ret;
5d4f98a2
YZ
2129
2130 path = btrfs_alloc_path();
2131 if (!path)
2132 return -ENOMEM;
2133
e4058b54 2134 path->reada = READA_FORWARD;
5d4f98a2
YZ
2135 path->leave_spinning = 1;
2136 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2137 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2138 num_bytes, parent, root_objectid,
2139 owner, offset,
5d4f98a2 2140 refs_to_add, extent_op);
0ed4792a 2141 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2142 goto out;
fcebe456
JB
2143
2144 /*
2145 * Ok we had -EAGAIN which means we didn't have space to insert and
2146 * inline extent ref, so just update the reference count and add a
2147 * normal backref.
2148 */
5d4f98a2 2149 leaf = path->nodes[0];
fcebe456 2150 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2151 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2152 refs = btrfs_extent_refs(leaf, item);
2153 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2154 if (extent_op)
2155 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2156
5d4f98a2 2157 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2158 btrfs_release_path(path);
56bec294 2159
e4058b54 2160 path->reada = READA_FORWARD;
b9473439 2161 path->leave_spinning = 1;
56bec294 2162 /* now insert the actual backref */
87bde3cd
JM
2163 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2164 root_objectid, owner, offset, refs_to_add);
79787eaa 2165 if (ret)
66642832 2166 btrfs_abort_transaction(trans, ret);
5d4f98a2 2167out:
56bec294 2168 btrfs_free_path(path);
30d133fc 2169 return ret;
56bec294
CM
2170}
2171
5d4f98a2 2172static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2173 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2174 struct btrfs_delayed_ref_node *node,
2175 struct btrfs_delayed_extent_op *extent_op,
2176 int insert_reserved)
56bec294 2177{
5d4f98a2
YZ
2178 int ret = 0;
2179 struct btrfs_delayed_data_ref *ref;
2180 struct btrfs_key ins;
2181 u64 parent = 0;
2182 u64 ref_root = 0;
2183 u64 flags = 0;
2184
2185 ins.objectid = node->bytenr;
2186 ins.offset = node->num_bytes;
2187 ins.type = BTRFS_EXTENT_ITEM_KEY;
2188
2189 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2190 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2191
5d4f98a2
YZ
2192 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2193 parent = ref->parent;
fcebe456 2194 ref_root = ref->root;
5d4f98a2
YZ
2195
2196 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2197 if (extent_op)
5d4f98a2 2198 flags |= extent_op->flags_to_set;
2ff7e61e 2199 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2200 parent, ref_root, flags,
2201 ref->objectid, ref->offset,
2202 &ins, node->ref_mod);
5d4f98a2 2203 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2204 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2205 ref_root, ref->objectid,
2206 ref->offset, node->ref_mod,
c682f9b3 2207 extent_op);
5d4f98a2 2208 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2209 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2210 ref_root, ref->objectid,
2211 ref->offset, node->ref_mod,
c682f9b3 2212 extent_op);
5d4f98a2
YZ
2213 } else {
2214 BUG();
2215 }
2216 return ret;
2217}
2218
2219static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2220 struct extent_buffer *leaf,
2221 struct btrfs_extent_item *ei)
2222{
2223 u64 flags = btrfs_extent_flags(leaf, ei);
2224 if (extent_op->update_flags) {
2225 flags |= extent_op->flags_to_set;
2226 btrfs_set_extent_flags(leaf, ei, flags);
2227 }
2228
2229 if (extent_op->update_key) {
2230 struct btrfs_tree_block_info *bi;
2231 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2232 bi = (struct btrfs_tree_block_info *)(ei + 1);
2233 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2234 }
2235}
2236
2237static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2238 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2239 struct btrfs_delayed_ref_node *node,
2240 struct btrfs_delayed_extent_op *extent_op)
2241{
2242 struct btrfs_key key;
2243 struct btrfs_path *path;
2244 struct btrfs_extent_item *ei;
2245 struct extent_buffer *leaf;
2246 u32 item_size;
56bec294 2247 int ret;
5d4f98a2 2248 int err = 0;
b1c79e09 2249 int metadata = !extent_op->is_data;
5d4f98a2 2250
79787eaa
JM
2251 if (trans->aborted)
2252 return 0;
2253
0b246afa 2254 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2255 metadata = 0;
2256
5d4f98a2
YZ
2257 path = btrfs_alloc_path();
2258 if (!path)
2259 return -ENOMEM;
2260
2261 key.objectid = node->bytenr;
5d4f98a2 2262
3173a18f 2263 if (metadata) {
3173a18f 2264 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2265 key.offset = extent_op->level;
3173a18f
JB
2266 } else {
2267 key.type = BTRFS_EXTENT_ITEM_KEY;
2268 key.offset = node->num_bytes;
2269 }
2270
2271again:
e4058b54 2272 path->reada = READA_FORWARD;
5d4f98a2 2273 path->leave_spinning = 1;
0b246afa 2274 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2275 if (ret < 0) {
2276 err = ret;
2277 goto out;
2278 }
2279 if (ret > 0) {
3173a18f 2280 if (metadata) {
55994887
FDBM
2281 if (path->slots[0] > 0) {
2282 path->slots[0]--;
2283 btrfs_item_key_to_cpu(path->nodes[0], &key,
2284 path->slots[0]);
2285 if (key.objectid == node->bytenr &&
2286 key.type == BTRFS_EXTENT_ITEM_KEY &&
2287 key.offset == node->num_bytes)
2288 ret = 0;
2289 }
2290 if (ret > 0) {
2291 btrfs_release_path(path);
2292 metadata = 0;
3173a18f 2293
55994887
FDBM
2294 key.objectid = node->bytenr;
2295 key.offset = node->num_bytes;
2296 key.type = BTRFS_EXTENT_ITEM_KEY;
2297 goto again;
2298 }
2299 } else {
2300 err = -EIO;
2301 goto out;
3173a18f 2302 }
5d4f98a2
YZ
2303 }
2304
2305 leaf = path->nodes[0];
2306 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2307#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2308 if (item_size < sizeof(*ei)) {
87bde3cd 2309 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2310 if (ret < 0) {
2311 err = ret;
2312 goto out;
2313 }
2314 leaf = path->nodes[0];
2315 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2316 }
2317#endif
2318 BUG_ON(item_size < sizeof(*ei));
2319 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2320 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2321
5d4f98a2
YZ
2322 btrfs_mark_buffer_dirty(leaf);
2323out:
2324 btrfs_free_path(path);
2325 return err;
56bec294
CM
2326}
2327
5d4f98a2 2328static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2329 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2330 struct btrfs_delayed_ref_node *node,
2331 struct btrfs_delayed_extent_op *extent_op,
2332 int insert_reserved)
56bec294
CM
2333{
2334 int ret = 0;
5d4f98a2
YZ
2335 struct btrfs_delayed_tree_ref *ref;
2336 struct btrfs_key ins;
2337 u64 parent = 0;
2338 u64 ref_root = 0;
0b246afa 2339 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
56bec294 2340
5d4f98a2 2341 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2342 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2343
5d4f98a2
YZ
2344 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2345 parent = ref->parent;
fcebe456 2346 ref_root = ref->root;
5d4f98a2 2347
3173a18f
JB
2348 ins.objectid = node->bytenr;
2349 if (skinny_metadata) {
2350 ins.offset = ref->level;
2351 ins.type = BTRFS_METADATA_ITEM_KEY;
2352 } else {
2353 ins.offset = node->num_bytes;
2354 ins.type = BTRFS_EXTENT_ITEM_KEY;
2355 }
2356
02794222 2357 if (node->ref_mod != 1) {
2ff7e61e 2358 btrfs_err(fs_info,
02794222
LB
2359 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2360 node->bytenr, node->ref_mod, node->action, ref_root,
2361 parent);
2362 return -EIO;
2363 }
5d4f98a2 2364 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2365 BUG_ON(!extent_op || !extent_op->update_flags);
2ff7e61e 2366 ret = alloc_reserved_tree_block(trans, fs_info,
5d4f98a2
YZ
2367 parent, ref_root,
2368 extent_op->flags_to_set,
2369 &extent_op->key,
b06c4bf5 2370 ref->level, &ins);
5d4f98a2 2371 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2372 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2373 parent, ref_root,
2374 ref->level, 0, 1,
fcebe456 2375 extent_op);
5d4f98a2 2376 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2377 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2378 parent, ref_root,
2379 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2380 } else {
2381 BUG();
2382 }
56bec294
CM
2383 return ret;
2384}
2385
2386/* helper function to actually process a single delayed ref entry */
5d4f98a2 2387static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2388 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2389 struct btrfs_delayed_ref_node *node,
2390 struct btrfs_delayed_extent_op *extent_op,
2391 int insert_reserved)
56bec294 2392{
79787eaa
JM
2393 int ret = 0;
2394
857cc2fc
JB
2395 if (trans->aborted) {
2396 if (insert_reserved)
2ff7e61e 2397 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2398 node->num_bytes, 1);
79787eaa 2399 return 0;
857cc2fc 2400 }
79787eaa 2401
5d4f98a2 2402 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2403 struct btrfs_delayed_ref_head *head;
2404 /*
2405 * we've hit the end of the chain and we were supposed
2406 * to insert this extent into the tree. But, it got
2407 * deleted before we ever needed to insert it, so all
2408 * we have to do is clean up the accounting
2409 */
5d4f98a2
YZ
2410 BUG_ON(extent_op);
2411 head = btrfs_delayed_node_to_head(node);
0b246afa 2412 trace_run_delayed_ref_head(fs_info, node, head, node->action);
599c75ec 2413
56bec294 2414 if (insert_reserved) {
2ff7e61e 2415 btrfs_pin_extent(fs_info, node->bytenr,
f0486c68 2416 node->num_bytes, 1);
5d4f98a2 2417 if (head->is_data) {
0b246afa 2418 ret = btrfs_del_csums(trans, fs_info,
5d4f98a2
YZ
2419 node->bytenr,
2420 node->num_bytes);
5d4f98a2 2421 }
56bec294 2422 }
297d750b
QW
2423
2424 /* Also free its reserved qgroup space */
0b246afa 2425 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
297d750b 2426 head->qgroup_reserved);
79787eaa 2427 return ret;
56bec294
CM
2428 }
2429
5d4f98a2
YZ
2430 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2431 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2432 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2433 insert_reserved);
2434 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2435 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2436 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2437 insert_reserved);
2438 else
2439 BUG();
2440 return ret;
56bec294
CM
2441}
2442
c6fc2454 2443static inline struct btrfs_delayed_ref_node *
56bec294
CM
2444select_delayed_ref(struct btrfs_delayed_ref_head *head)
2445{
cffc3374
FM
2446 struct btrfs_delayed_ref_node *ref;
2447
c6fc2454
QW
2448 if (list_empty(&head->ref_list))
2449 return NULL;
d7df2c79 2450
cffc3374
FM
2451 /*
2452 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2453 * This is to prevent a ref count from going down to zero, which deletes
2454 * the extent item from the extent tree, when there still are references
2455 * to add, which would fail because they would not find the extent item.
2456 */
1d57ee94
WX
2457 if (!list_empty(&head->ref_add_list))
2458 return list_first_entry(&head->ref_add_list,
2459 struct btrfs_delayed_ref_node, add_list);
2460
2461 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2462 list);
2463 ASSERT(list_empty(&ref->add_list));
2464 return ref;
56bec294
CM
2465}
2466
79787eaa
JM
2467/*
2468 * Returns 0 on success or if called with an already aborted transaction.
2469 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2470 */
d7df2c79 2471static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2472 struct btrfs_fs_info *fs_info,
d7df2c79 2473 unsigned long nr)
56bec294 2474{
56bec294
CM
2475 struct btrfs_delayed_ref_root *delayed_refs;
2476 struct btrfs_delayed_ref_node *ref;
2477 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2478 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2479 ktime_t start = ktime_get();
56bec294 2480 int ret;
d7df2c79 2481 unsigned long count = 0;
0a2b2a84 2482 unsigned long actual_count = 0;
56bec294 2483 int must_insert_reserved = 0;
56bec294
CM
2484
2485 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2486 while (1) {
2487 if (!locked_ref) {
d7df2c79 2488 if (count >= nr)
56bec294 2489 break;
56bec294 2490
d7df2c79
JB
2491 spin_lock(&delayed_refs->lock);
2492 locked_ref = btrfs_select_ref_head(trans);
2493 if (!locked_ref) {
2494 spin_unlock(&delayed_refs->lock);
2495 break;
2496 }
c3e69d58
CM
2497
2498 /* grab the lock that says we are going to process
2499 * all the refs for this head */
2500 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2501 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2502 /*
2503 * we may have dropped the spin lock to get the head
2504 * mutex lock, and that might have given someone else
2505 * time to free the head. If that's true, it has been
2506 * removed from our list and we can move on.
2507 */
2508 if (ret == -EAGAIN) {
2509 locked_ref = NULL;
2510 count++;
2511 continue;
56bec294
CM
2512 }
2513 }
a28ec197 2514
2c3cf7d5
FM
2515 /*
2516 * We need to try and merge add/drops of the same ref since we
2517 * can run into issues with relocate dropping the implicit ref
2518 * and then it being added back again before the drop can
2519 * finish. If we merged anything we need to re-loop so we can
2520 * get a good ref.
2521 * Or we can get node references of the same type that weren't
2522 * merged when created due to bumps in the tree mod seq, and
2523 * we need to merge them to prevent adding an inline extent
2524 * backref before dropping it (triggering a BUG_ON at
2525 * insert_inline_extent_backref()).
2526 */
d7df2c79 2527 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2528 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2529 locked_ref);
ae1e206b 2530
d1270cd9
AJ
2531 /*
2532 * locked_ref is the head node, so we have to go one
2533 * node back for any delayed ref updates
2534 */
2535 ref = select_delayed_ref(locked_ref);
2536
2537 if (ref && ref->seq &&
097b8a7c 2538 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2539 spin_unlock(&locked_ref->lock);
d7df2c79
JB
2540 spin_lock(&delayed_refs->lock);
2541 locked_ref->processing = 0;
d1270cd9
AJ
2542 delayed_refs->num_heads_ready++;
2543 spin_unlock(&delayed_refs->lock);
d0280996 2544 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79 2545 locked_ref = NULL;
d1270cd9 2546 cond_resched();
27a377db 2547 count++;
d1270cd9
AJ
2548 continue;
2549 }
2550
56bec294
CM
2551 /*
2552 * record the must insert reserved flag before we
2553 * drop the spin lock.
2554 */
2555 must_insert_reserved = locked_ref->must_insert_reserved;
2556 locked_ref->must_insert_reserved = 0;
7bb86316 2557
5d4f98a2
YZ
2558 extent_op = locked_ref->extent_op;
2559 locked_ref->extent_op = NULL;
2560
56bec294 2561 if (!ref) {
d7df2c79
JB
2562
2563
56bec294
CM
2564 /* All delayed refs have been processed, Go ahead
2565 * and send the head node to run_one_delayed_ref,
2566 * so that any accounting fixes can happen
2567 */
2568 ref = &locked_ref->node;
5d4f98a2
YZ
2569
2570 if (extent_op && must_insert_reserved) {
78a6184a 2571 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2572 extent_op = NULL;
2573 }
2574
2575 if (extent_op) {
d7df2c79 2576 spin_unlock(&locked_ref->lock);
2ff7e61e 2577 ret = run_delayed_extent_op(trans, fs_info,
5d4f98a2 2578 ref, extent_op);
78a6184a 2579 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2580
79787eaa 2581 if (ret) {
857cc2fc
JB
2582 /*
2583 * Need to reset must_insert_reserved if
2584 * there was an error so the abort stuff
2585 * can cleanup the reserved space
2586 * properly.
2587 */
2588 if (must_insert_reserved)
2589 locked_ref->must_insert_reserved = 1;
aa7c8da3 2590 spin_lock(&delayed_refs->lock);
d7df2c79 2591 locked_ref->processing = 0;
aa7c8da3
JM
2592 delayed_refs->num_heads_ready++;
2593 spin_unlock(&delayed_refs->lock);
5d163e0e
JM
2594 btrfs_debug(fs_info,
2595 "run_delayed_extent_op returned %d",
2596 ret);
093486c4 2597 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2598 return ret;
2599 }
d7df2c79 2600 continue;
5d4f98a2 2601 }
02217ed2 2602
d7df2c79 2603 /*
01327610 2604 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2605 * delayed ref lock and then re-check to make sure
2606 * nobody got added.
2607 */
2608 spin_unlock(&locked_ref->lock);
2609 spin_lock(&delayed_refs->lock);
2610 spin_lock(&locked_ref->lock);
c6fc2454 2611 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2612 locked_ref->extent_op) {
d7df2c79
JB
2613 spin_unlock(&locked_ref->lock);
2614 spin_unlock(&delayed_refs->lock);
2615 continue;
2616 }
2617 ref->in_tree = 0;
2618 delayed_refs->num_heads--;
c46effa6
LB
2619 rb_erase(&locked_ref->href_node,
2620 &delayed_refs->href_root);
d7df2c79
JB
2621 spin_unlock(&delayed_refs->lock);
2622 } else {
0a2b2a84 2623 actual_count++;
d7df2c79 2624 ref->in_tree = 0;
c6fc2454 2625 list_del(&ref->list);
1d57ee94
WX
2626 if (!list_empty(&ref->add_list))
2627 list_del(&ref->add_list);
c46effa6 2628 }
d7df2c79
JB
2629 atomic_dec(&delayed_refs->num_entries);
2630
093486c4 2631 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2632 /*
2633 * when we play the delayed ref, also correct the
2634 * ref_mod on head
2635 */
2636 switch (ref->action) {
2637 case BTRFS_ADD_DELAYED_REF:
2638 case BTRFS_ADD_DELAYED_EXTENT:
2639 locked_ref->node.ref_mod -= ref->ref_mod;
2640 break;
2641 case BTRFS_DROP_DELAYED_REF:
2642 locked_ref->node.ref_mod += ref->ref_mod;
2643 break;
2644 default:
2645 WARN_ON(1);
2646 }
2647 }
d7df2c79 2648 spin_unlock(&locked_ref->lock);
925baedd 2649
2ff7e61e 2650 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2651 must_insert_reserved);
eb099670 2652
78a6184a 2653 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2654 if (ret) {
9d1032cc 2655 spin_lock(&delayed_refs->lock);
d7df2c79 2656 locked_ref->processing = 0;
9d1032cc
WX
2657 delayed_refs->num_heads_ready++;
2658 spin_unlock(&delayed_refs->lock);
093486c4
MX
2659 btrfs_delayed_ref_unlock(locked_ref);
2660 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2661 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2662 ret);
79787eaa
JM
2663 return ret;
2664 }
2665
093486c4
MX
2666 /*
2667 * If this node is a head, that means all the refs in this head
2668 * have been dealt with, and we will pick the next head to deal
2669 * with, so we must unlock the head and drop it from the cluster
2670 * list before we release it.
2671 */
2672 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2673 if (locked_ref->is_data &&
2674 locked_ref->total_ref_mod < 0) {
2675 spin_lock(&delayed_refs->lock);
2676 delayed_refs->pending_csums -= ref->num_bytes;
2677 spin_unlock(&delayed_refs->lock);
2678 }
093486c4
MX
2679 btrfs_delayed_ref_unlock(locked_ref);
2680 locked_ref = NULL;
2681 }
2682 btrfs_put_delayed_ref(ref);
2683 count++;
c3e69d58 2684 cond_resched();
c3e69d58 2685 }
0a2b2a84
JB
2686
2687 /*
2688 * We don't want to include ref heads since we can have empty ref heads
2689 * and those will drastically skew our runtime down since we just do
2690 * accounting, no actual extent tree updates.
2691 */
2692 if (actual_count > 0) {
2693 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2694 u64 avg;
2695
2696 /*
2697 * We weigh the current average higher than our current runtime
2698 * to avoid large swings in the average.
2699 */
2700 spin_lock(&delayed_refs->lock);
2701 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2702 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2703 spin_unlock(&delayed_refs->lock);
2704 }
d7df2c79 2705 return 0;
c3e69d58
CM
2706}
2707
709c0486
AJ
2708#ifdef SCRAMBLE_DELAYED_REFS
2709/*
2710 * Normally delayed refs get processed in ascending bytenr order. This
2711 * correlates in most cases to the order added. To expose dependencies on this
2712 * order, we start to process the tree in the middle instead of the beginning
2713 */
2714static u64 find_middle(struct rb_root *root)
2715{
2716 struct rb_node *n = root->rb_node;
2717 struct btrfs_delayed_ref_node *entry;
2718 int alt = 1;
2719 u64 middle;
2720 u64 first = 0, last = 0;
2721
2722 n = rb_first(root);
2723 if (n) {
2724 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2725 first = entry->bytenr;
2726 }
2727 n = rb_last(root);
2728 if (n) {
2729 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 last = entry->bytenr;
2731 }
2732 n = root->rb_node;
2733
2734 while (n) {
2735 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2736 WARN_ON(!entry->in_tree);
2737
2738 middle = entry->bytenr;
2739
2740 if (alt)
2741 n = n->rb_left;
2742 else
2743 n = n->rb_right;
2744
2745 alt = 1 - alt;
2746 }
2747 return middle;
2748}
2749#endif
2750
2ff7e61e 2751static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2752{
2753 u64 num_bytes;
2754
2755 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2756 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2757 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2758 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2759
2760 /*
2761 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2762 * closer to what we're really going to want to use.
1be41b78 2763 */
0b246afa 2764 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2765}
2766
1262133b
JB
2767/*
2768 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2769 * would require to store the csums for that many bytes.
2770 */
2ff7e61e 2771u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2772{
2773 u64 csum_size;
2774 u64 num_csums_per_leaf;
2775 u64 num_csums;
2776
0b246afa 2777 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2778 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2779 (u64)btrfs_super_csum_size(fs_info->super_copy));
2780 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2781 num_csums += num_csums_per_leaf - 1;
2782 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2783 return num_csums;
2784}
2785
0a2b2a84 2786int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2787 struct btrfs_fs_info *fs_info)
1be41b78
JB
2788{
2789 struct btrfs_block_rsv *global_rsv;
2790 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2791 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2792 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2793 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2794 int ret = 0;
2795
0b246afa 2796 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2797 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2798 if (num_heads > 1)
0b246afa 2799 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2800 num_bytes <<= 1;
2ff7e61e
JM
2801 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2802 fs_info->nodesize;
0b246afa 2803 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2804 num_dirty_bgs);
0b246afa 2805 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2806
2807 /*
2808 * If we can't allocate any more chunks lets make sure we have _lots_ of
2809 * wiggle room since running delayed refs can create more delayed refs.
2810 */
cb723e49
JB
2811 if (global_rsv->space_info->full) {
2812 num_dirty_bgs_bytes <<= 1;
1be41b78 2813 num_bytes <<= 1;
cb723e49 2814 }
1be41b78
JB
2815
2816 spin_lock(&global_rsv->lock);
cb723e49 2817 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2818 ret = 1;
2819 spin_unlock(&global_rsv->lock);
2820 return ret;
2821}
2822
0a2b2a84 2823int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2824 struct btrfs_fs_info *fs_info)
0a2b2a84 2825{
0a2b2a84
JB
2826 u64 num_entries =
2827 atomic_read(&trans->transaction->delayed_refs.num_entries);
2828 u64 avg_runtime;
a79b7d4b 2829 u64 val;
0a2b2a84
JB
2830
2831 smp_mb();
2832 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2833 val = num_entries * avg_runtime;
dc1a90c6 2834 if (val >= NSEC_PER_SEC)
0a2b2a84 2835 return 1;
a79b7d4b
CM
2836 if (val >= NSEC_PER_SEC / 2)
2837 return 2;
0a2b2a84 2838
2ff7e61e 2839 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2840}
2841
a79b7d4b
CM
2842struct async_delayed_refs {
2843 struct btrfs_root *root;
31b9655f 2844 u64 transid;
a79b7d4b
CM
2845 int count;
2846 int error;
2847 int sync;
2848 struct completion wait;
2849 struct btrfs_work work;
2850};
2851
2ff7e61e
JM
2852static inline struct async_delayed_refs *
2853to_async_delayed_refs(struct btrfs_work *work)
2854{
2855 return container_of(work, struct async_delayed_refs, work);
2856}
2857
a79b7d4b
CM
2858static void delayed_ref_async_start(struct btrfs_work *work)
2859{
2ff7e61e 2860 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2861 struct btrfs_trans_handle *trans;
2ff7e61e 2862 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2863 int ret;
2864
0f873eca 2865 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2866 if (btrfs_transaction_blocked(fs_info))
31b9655f 2867 goto done;
31b9655f 2868
0f873eca
CM
2869 trans = btrfs_join_transaction(async->root);
2870 if (IS_ERR(trans)) {
2871 async->error = PTR_ERR(trans);
a79b7d4b
CM
2872 goto done;
2873 }
2874
2875 /*
01327610 2876 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2877 * wait on delayed refs
2878 */
2879 trans->sync = true;
0f873eca
CM
2880
2881 /* Don't bother flushing if we got into a different transaction */
2882 if (trans->transid > async->transid)
2883 goto end;
2884
2ff7e61e 2885 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
a79b7d4b
CM
2886 if (ret)
2887 async->error = ret;
0f873eca 2888end:
3a45bb20 2889 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2890 if (ret && !async->error)
2891 async->error = ret;
2892done:
2893 if (async->sync)
2894 complete(&async->wait);
2895 else
2896 kfree(async);
2897}
2898
2ff7e61e 2899int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2900 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2901{
2902 struct async_delayed_refs *async;
2903 int ret;
2904
2905 async = kmalloc(sizeof(*async), GFP_NOFS);
2906 if (!async)
2907 return -ENOMEM;
2908
0b246afa 2909 async->root = fs_info->tree_root;
a79b7d4b
CM
2910 async->count = count;
2911 async->error = 0;
31b9655f 2912 async->transid = transid;
a79b7d4b
CM
2913 if (wait)
2914 async->sync = 1;
2915 else
2916 async->sync = 0;
2917 init_completion(&async->wait);
2918
9e0af237
LB
2919 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2920 delayed_ref_async_start, NULL, NULL);
a79b7d4b 2921
0b246afa 2922 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
2923
2924 if (wait) {
2925 wait_for_completion(&async->wait);
2926 ret = async->error;
2927 kfree(async);
2928 return ret;
2929 }
2930 return 0;
2931}
2932
c3e69d58
CM
2933/*
2934 * this starts processing the delayed reference count updates and
2935 * extent insertions we have queued up so far. count can be
2936 * 0, which means to process everything in the tree at the start
2937 * of the run (but not newly added entries), or it can be some target
2938 * number you'd like to process.
79787eaa
JM
2939 *
2940 * Returns 0 on success or if called with an aborted transaction
2941 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2942 */
2943int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2944 struct btrfs_fs_info *fs_info, unsigned long count)
c3e69d58
CM
2945{
2946 struct rb_node *node;
2947 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2948 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2949 int ret;
2950 int run_all = count == (unsigned long)-1;
d9a0540a 2951 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2952
79787eaa
JM
2953 /* We'll clean this up in btrfs_cleanup_transaction */
2954 if (trans->aborted)
2955 return 0;
2956
0b246afa 2957 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2958 return 0;
2959
c3e69d58 2960 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2961 if (count == 0)
d7df2c79 2962 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2963
c3e69d58 2964again:
709c0486
AJ
2965#ifdef SCRAMBLE_DELAYED_REFS
2966 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2967#endif
d9a0540a 2968 trans->can_flush_pending_bgs = false;
2ff7e61e 2969 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
d7df2c79 2970 if (ret < 0) {
66642832 2971 btrfs_abort_transaction(trans, ret);
d7df2c79 2972 return ret;
eb099670 2973 }
c3e69d58 2974
56bec294 2975 if (run_all) {
d7df2c79 2976 if (!list_empty(&trans->new_bgs))
2ff7e61e 2977 btrfs_create_pending_block_groups(trans, fs_info);
ea658bad 2978
d7df2c79 2979 spin_lock(&delayed_refs->lock);
c46effa6 2980 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2981 if (!node) {
2982 spin_unlock(&delayed_refs->lock);
56bec294 2983 goto out;
d7df2c79 2984 }
e9d0b13b 2985
56bec294 2986 while (node) {
c46effa6
LB
2987 head = rb_entry(node, struct btrfs_delayed_ref_head,
2988 href_node);
2989 if (btrfs_delayed_ref_is_head(&head->node)) {
2990 struct btrfs_delayed_ref_node *ref;
5caf2a00 2991
c46effa6 2992 ref = &head->node;
6df8cdf5 2993 refcount_inc(&ref->refs);
56bec294
CM
2994
2995 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2996 /*
2997 * Mutex was contended, block until it's
2998 * released and try again
2999 */
56bec294
CM
3000 mutex_lock(&head->mutex);
3001 mutex_unlock(&head->mutex);
3002
3003 btrfs_put_delayed_ref(ref);
1887be66 3004 cond_resched();
56bec294 3005 goto again;
c46effa6
LB
3006 } else {
3007 WARN_ON(1);
56bec294
CM
3008 }
3009 node = rb_next(node);
3010 }
3011 spin_unlock(&delayed_refs->lock);
d7df2c79 3012 cond_resched();
56bec294 3013 goto again;
5f39d397 3014 }
54aa1f4d 3015out:
d9a0540a 3016 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3017 return 0;
3018}
3019
5d4f98a2 3020int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3021 struct btrfs_fs_info *fs_info,
5d4f98a2 3022 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3023 int level, int is_data)
5d4f98a2
YZ
3024{
3025 struct btrfs_delayed_extent_op *extent_op;
3026 int ret;
3027
78a6184a 3028 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3029 if (!extent_op)
3030 return -ENOMEM;
3031
3032 extent_op->flags_to_set = flags;
35b3ad50
DS
3033 extent_op->update_flags = true;
3034 extent_op->update_key = false;
3035 extent_op->is_data = is_data ? true : false;
b1c79e09 3036 extent_op->level = level;
5d4f98a2 3037
0b246afa 3038 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3039 num_bytes, extent_op);
5d4f98a2 3040 if (ret)
78a6184a 3041 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3042 return ret;
3043}
3044
e4c3b2dc 3045static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3046 struct btrfs_path *path,
3047 u64 objectid, u64 offset, u64 bytenr)
3048{
3049 struct btrfs_delayed_ref_head *head;
3050 struct btrfs_delayed_ref_node *ref;
3051 struct btrfs_delayed_data_ref *data_ref;
3052 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3053 struct btrfs_transaction *cur_trans;
5d4f98a2
YZ
3054 int ret = 0;
3055
e4c3b2dc
LB
3056 cur_trans = root->fs_info->running_transaction;
3057 if (!cur_trans)
3058 return 0;
3059
3060 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3061 spin_lock(&delayed_refs->lock);
f72ad18e 3062 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3063 if (!head) {
3064 spin_unlock(&delayed_refs->lock);
3065 return 0;
3066 }
5d4f98a2
YZ
3067
3068 if (!mutex_trylock(&head->mutex)) {
6df8cdf5 3069 refcount_inc(&head->node.refs);
5d4f98a2
YZ
3070 spin_unlock(&delayed_refs->lock);
3071
b3b4aa74 3072 btrfs_release_path(path);
5d4f98a2 3073
8cc33e5c
DS
3074 /*
3075 * Mutex was contended, block until it's released and let
3076 * caller try again
3077 */
5d4f98a2
YZ
3078 mutex_lock(&head->mutex);
3079 mutex_unlock(&head->mutex);
3080 btrfs_put_delayed_ref(&head->node);
3081 return -EAGAIN;
3082 }
d7df2c79 3083 spin_unlock(&delayed_refs->lock);
5d4f98a2 3084
d7df2c79 3085 spin_lock(&head->lock);
c6fc2454 3086 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3087 /* If it's a shared ref we know a cross reference exists */
3088 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3089 ret = 1;
3090 break;
3091 }
5d4f98a2 3092
d7df2c79 3093 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3094
d7df2c79
JB
3095 /*
3096 * If our ref doesn't match the one we're currently looking at
3097 * then we have a cross reference.
3098 */
3099 if (data_ref->root != root->root_key.objectid ||
3100 data_ref->objectid != objectid ||
3101 data_ref->offset != offset) {
3102 ret = 1;
3103 break;
3104 }
5d4f98a2 3105 }
d7df2c79 3106 spin_unlock(&head->lock);
5d4f98a2 3107 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3108 return ret;
3109}
3110
e4c3b2dc 3111static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3112 struct btrfs_path *path,
3113 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3114{
0b246afa
JM
3115 struct btrfs_fs_info *fs_info = root->fs_info;
3116 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3117 struct extent_buffer *leaf;
5d4f98a2
YZ
3118 struct btrfs_extent_data_ref *ref;
3119 struct btrfs_extent_inline_ref *iref;
3120 struct btrfs_extent_item *ei;
f321e491 3121 struct btrfs_key key;
5d4f98a2 3122 u32 item_size;
be20aa9d 3123 int ret;
925baedd 3124
be20aa9d 3125 key.objectid = bytenr;
31840ae1 3126 key.offset = (u64)-1;
f321e491 3127 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3128
be20aa9d
CM
3129 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3130 if (ret < 0)
3131 goto out;
79787eaa 3132 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3133
3134 ret = -ENOENT;
3135 if (path->slots[0] == 0)
31840ae1 3136 goto out;
be20aa9d 3137
31840ae1 3138 path->slots[0]--;
f321e491 3139 leaf = path->nodes[0];
5d4f98a2 3140 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3141
5d4f98a2 3142 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3143 goto out;
f321e491 3144
5d4f98a2
YZ
3145 ret = 1;
3146 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3147#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3148 if (item_size < sizeof(*ei)) {
3149 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3150 goto out;
3151 }
3152#endif
3153 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3154
5d4f98a2
YZ
3155 if (item_size != sizeof(*ei) +
3156 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3157 goto out;
be20aa9d 3158
5d4f98a2
YZ
3159 if (btrfs_extent_generation(leaf, ei) <=
3160 btrfs_root_last_snapshot(&root->root_item))
3161 goto out;
3162
3163 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3164 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3165 BTRFS_EXTENT_DATA_REF_KEY)
3166 goto out;
3167
3168 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3169 if (btrfs_extent_refs(leaf, ei) !=
3170 btrfs_extent_data_ref_count(leaf, ref) ||
3171 btrfs_extent_data_ref_root(leaf, ref) !=
3172 root->root_key.objectid ||
3173 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3174 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3175 goto out;
3176
3177 ret = 0;
3178out:
3179 return ret;
3180}
3181
e4c3b2dc
LB
3182int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3183 u64 bytenr)
5d4f98a2
YZ
3184{
3185 struct btrfs_path *path;
3186 int ret;
3187 int ret2;
3188
3189 path = btrfs_alloc_path();
3190 if (!path)
3191 return -ENOENT;
3192
3193 do {
e4c3b2dc 3194 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3195 offset, bytenr);
3196 if (ret && ret != -ENOENT)
f321e491 3197 goto out;
80ff3856 3198
e4c3b2dc 3199 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3200 offset, bytenr);
3201 } while (ret2 == -EAGAIN);
3202
3203 if (ret2 && ret2 != -ENOENT) {
3204 ret = ret2;
3205 goto out;
f321e491 3206 }
5d4f98a2
YZ
3207
3208 if (ret != -ENOENT || ret2 != -ENOENT)
3209 ret = 0;
be20aa9d 3210out:
80ff3856 3211 btrfs_free_path(path);
f0486c68
YZ
3212 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3213 WARN_ON(ret > 0);
f321e491 3214 return ret;
be20aa9d 3215}
c5739bba 3216
5d4f98a2 3217static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3218 struct btrfs_root *root,
5d4f98a2 3219 struct extent_buffer *buf,
e339a6b0 3220 int full_backref, int inc)
31840ae1 3221{
0b246afa 3222 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3223 u64 bytenr;
5d4f98a2
YZ
3224 u64 num_bytes;
3225 u64 parent;
31840ae1 3226 u64 ref_root;
31840ae1 3227 u32 nritems;
31840ae1
ZY
3228 struct btrfs_key key;
3229 struct btrfs_file_extent_item *fi;
3230 int i;
3231 int level;
3232 int ret = 0;
2ff7e61e
JM
3233 int (*process_func)(struct btrfs_trans_handle *,
3234 struct btrfs_fs_info *,
b06c4bf5 3235 u64, u64, u64, u64, u64, u64);
31840ae1 3236
fccb84c9 3237
0b246afa 3238 if (btrfs_is_testing(fs_info))
faa2dbf0 3239 return 0;
fccb84c9 3240
31840ae1 3241 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3242 nritems = btrfs_header_nritems(buf);
3243 level = btrfs_header_level(buf);
3244
27cdeb70 3245 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3246 return 0;
31840ae1 3247
5d4f98a2
YZ
3248 if (inc)
3249 process_func = btrfs_inc_extent_ref;
3250 else
3251 process_func = btrfs_free_extent;
31840ae1 3252
5d4f98a2
YZ
3253 if (full_backref)
3254 parent = buf->start;
3255 else
3256 parent = 0;
3257
3258 for (i = 0; i < nritems; i++) {
31840ae1 3259 if (level == 0) {
5d4f98a2 3260 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3261 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3262 continue;
5d4f98a2 3263 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3264 struct btrfs_file_extent_item);
3265 if (btrfs_file_extent_type(buf, fi) ==
3266 BTRFS_FILE_EXTENT_INLINE)
3267 continue;
3268 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3269 if (bytenr == 0)
3270 continue;
5d4f98a2
YZ
3271
3272 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3273 key.offset -= btrfs_file_extent_offset(buf, fi);
2ff7e61e 3274 ret = process_func(trans, fs_info, bytenr, num_bytes,
5d4f98a2 3275 parent, ref_root, key.objectid,
b06c4bf5 3276 key.offset);
31840ae1
ZY
3277 if (ret)
3278 goto fail;
3279 } else {
5d4f98a2 3280 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3281 num_bytes = fs_info->nodesize;
2ff7e61e 3282 ret = process_func(trans, fs_info, bytenr, num_bytes,
b06c4bf5 3283 parent, ref_root, level - 1, 0);
31840ae1
ZY
3284 if (ret)
3285 goto fail;
3286 }
3287 }
3288 return 0;
3289fail:
5d4f98a2
YZ
3290 return ret;
3291}
3292
3293int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3294 struct extent_buffer *buf, int full_backref)
5d4f98a2 3295{
e339a6b0 3296 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3297}
3298
3299int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3300 struct extent_buffer *buf, int full_backref)
5d4f98a2 3301{
e339a6b0 3302 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3303}
3304
9078a3e1 3305static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3306 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3307 struct btrfs_path *path,
3308 struct btrfs_block_group_cache *cache)
3309{
3310 int ret;
0b246afa 3311 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3312 unsigned long bi;
3313 struct extent_buffer *leaf;
9078a3e1 3314
9078a3e1 3315 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3316 if (ret) {
3317 if (ret > 0)
3318 ret = -ENOENT;
54aa1f4d 3319 goto fail;
df95e7f0 3320 }
5f39d397
CM
3321
3322 leaf = path->nodes[0];
3323 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3324 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3325 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3326fail:
24b89d08 3327 btrfs_release_path(path);
df95e7f0 3328 return ret;
9078a3e1
CM
3329
3330}
3331
4a8c9a62 3332static struct btrfs_block_group_cache *
2ff7e61e 3333next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3334 struct btrfs_block_group_cache *cache)
3335{
3336 struct rb_node *node;
292cbd51 3337
0b246afa 3338 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3339
3340 /* If our block group was removed, we need a full search. */
3341 if (RB_EMPTY_NODE(&cache->cache_node)) {
3342 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3343
0b246afa 3344 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3345 btrfs_put_block_group(cache);
0b246afa 3346 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3347 }
4a8c9a62
YZ
3348 node = rb_next(&cache->cache_node);
3349 btrfs_put_block_group(cache);
3350 if (node) {
3351 cache = rb_entry(node, struct btrfs_block_group_cache,
3352 cache_node);
11dfe35a 3353 btrfs_get_block_group(cache);
4a8c9a62
YZ
3354 } else
3355 cache = NULL;
0b246afa 3356 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3357 return cache;
3358}
3359
0af3d00b
JB
3360static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3361 struct btrfs_trans_handle *trans,
3362 struct btrfs_path *path)
3363{
0b246afa
JM
3364 struct btrfs_fs_info *fs_info = block_group->fs_info;
3365 struct btrfs_root *root = fs_info->tree_root;
0af3d00b
JB
3366 struct inode *inode = NULL;
3367 u64 alloc_hint = 0;
2b20982e 3368 int dcs = BTRFS_DC_ERROR;
f8c269d7 3369 u64 num_pages = 0;
0af3d00b
JB
3370 int retries = 0;
3371 int ret = 0;
3372
3373 /*
3374 * If this block group is smaller than 100 megs don't bother caching the
3375 * block group.
3376 */
ee22184b 3377 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3378 spin_lock(&block_group->lock);
3379 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3380 spin_unlock(&block_group->lock);
3381 return 0;
3382 }
3383
0c0ef4bc
JB
3384 if (trans->aborted)
3385 return 0;
0af3d00b 3386again:
77ab86bf 3387 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3388 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3389 ret = PTR_ERR(inode);
b3b4aa74 3390 btrfs_release_path(path);
0af3d00b
JB
3391 goto out;
3392 }
3393
3394 if (IS_ERR(inode)) {
3395 BUG_ON(retries);
3396 retries++;
3397
3398 if (block_group->ro)
3399 goto out_free;
3400
77ab86bf
JM
3401 ret = create_free_space_inode(fs_info, trans, block_group,
3402 path);
0af3d00b
JB
3403 if (ret)
3404 goto out_free;
3405 goto again;
3406 }
3407
5b0e95bf
JB
3408 /* We've already setup this transaction, go ahead and exit */
3409 if (block_group->cache_generation == trans->transid &&
3410 i_size_read(inode)) {
3411 dcs = BTRFS_DC_SETUP;
3412 goto out_put;
3413 }
3414
0af3d00b
JB
3415 /*
3416 * We want to set the generation to 0, that way if anything goes wrong
3417 * from here on out we know not to trust this cache when we load up next
3418 * time.
3419 */
3420 BTRFS_I(inode)->generation = 0;
3421 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3422 if (ret) {
3423 /*
3424 * So theoretically we could recover from this, simply set the
3425 * super cache generation to 0 so we know to invalidate the
3426 * cache, but then we'd have to keep track of the block groups
3427 * that fail this way so we know we _have_ to reset this cache
3428 * before the next commit or risk reading stale cache. So to
3429 * limit our exposure to horrible edge cases lets just abort the
3430 * transaction, this only happens in really bad situations
3431 * anyway.
3432 */
66642832 3433 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3434 goto out_put;
3435 }
0af3d00b
JB
3436 WARN_ON(ret);
3437
3438 if (i_size_read(inode) > 0) {
2ff7e61e 3439 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3440 &fs_info->global_block_rsv);
7b61cd92
MX
3441 if (ret)
3442 goto out_put;
3443
77ab86bf 3444 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3445 if (ret)
3446 goto out_put;
3447 }
3448
3449 spin_lock(&block_group->lock);
cf7c1ef6 3450 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3451 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3452 /*
3453 * don't bother trying to write stuff out _if_
3454 * a) we're not cached,
1a79c1f2
LB
3455 * b) we're with nospace_cache mount option,
3456 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3457 */
2b20982e 3458 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3459 spin_unlock(&block_group->lock);
3460 goto out_put;
3461 }
3462 spin_unlock(&block_group->lock);
3463
2968b1f4
JB
3464 /*
3465 * We hit an ENOSPC when setting up the cache in this transaction, just
3466 * skip doing the setup, we've already cleared the cache so we're safe.
3467 */
3468 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3469 ret = -ENOSPC;
3470 goto out_put;
3471 }
3472
6fc823b1
JB
3473 /*
3474 * Try to preallocate enough space based on how big the block group is.
3475 * Keep in mind this has to include any pinned space which could end up
3476 * taking up quite a bit since it's not folded into the other space
3477 * cache.
3478 */
ee22184b 3479 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3480 if (!num_pages)
3481 num_pages = 1;
3482
0af3d00b 3483 num_pages *= 16;
09cbfeaf 3484 num_pages *= PAGE_SIZE;
0af3d00b 3485
7cf5b976 3486 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3487 if (ret)
3488 goto out_put;
3489
3490 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3491 num_pages, num_pages,
3492 &alloc_hint);
2968b1f4
JB
3493 /*
3494 * Our cache requires contiguous chunks so that we don't modify a bunch
3495 * of metadata or split extents when writing the cache out, which means
3496 * we can enospc if we are heavily fragmented in addition to just normal
3497 * out of space conditions. So if we hit this just skip setting up any
3498 * other block groups for this transaction, maybe we'll unpin enough
3499 * space the next time around.
3500 */
2b20982e
JB
3501 if (!ret)
3502 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3503 else if (ret == -ENOSPC)
3504 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3505
0af3d00b
JB
3506out_put:
3507 iput(inode);
3508out_free:
b3b4aa74 3509 btrfs_release_path(path);
0af3d00b
JB
3510out:
3511 spin_lock(&block_group->lock);
e65cbb94 3512 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3513 block_group->cache_generation = trans->transid;
2b20982e 3514 block_group->disk_cache_state = dcs;
0af3d00b
JB
3515 spin_unlock(&block_group->lock);
3516
3517 return ret;
3518}
3519
dcdf7f6d 3520int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3521 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3522{
3523 struct btrfs_block_group_cache *cache, *tmp;
3524 struct btrfs_transaction *cur_trans = trans->transaction;
3525 struct btrfs_path *path;
3526
3527 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3528 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3529 return 0;
3530
3531 path = btrfs_alloc_path();
3532 if (!path)
3533 return -ENOMEM;
3534
3535 /* Could add new block groups, use _safe just in case */
3536 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3537 dirty_list) {
3538 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3539 cache_save_setup(cache, trans, path);
3540 }
3541
3542 btrfs_free_path(path);
3543 return 0;
3544}
3545
1bbc621e
CM
3546/*
3547 * transaction commit does final block group cache writeback during a
3548 * critical section where nothing is allowed to change the FS. This is
3549 * required in order for the cache to actually match the block group,
3550 * but can introduce a lot of latency into the commit.
3551 *
3552 * So, btrfs_start_dirty_block_groups is here to kick off block group
3553 * cache IO. There's a chance we'll have to redo some of it if the
3554 * block group changes again during the commit, but it greatly reduces
3555 * the commit latency by getting rid of the easy block groups while
3556 * we're still allowing others to join the commit.
3557 */
3558int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3559 struct btrfs_fs_info *fs_info)
9078a3e1 3560{
4a8c9a62 3561 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3562 struct btrfs_transaction *cur_trans = trans->transaction;
3563 int ret = 0;
c9dc4c65 3564 int should_put;
1bbc621e
CM
3565 struct btrfs_path *path = NULL;
3566 LIST_HEAD(dirty);
3567 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3568 int num_started = 0;
1bbc621e
CM
3569 int loops = 0;
3570
3571 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3572 if (list_empty(&cur_trans->dirty_bgs)) {
3573 spin_unlock(&cur_trans->dirty_bgs_lock);
3574 return 0;
1bbc621e 3575 }
b58d1a9e 3576 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3577 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3578
1bbc621e 3579again:
1bbc621e
CM
3580 /*
3581 * make sure all the block groups on our dirty list actually
3582 * exist
3583 */
2ff7e61e 3584 btrfs_create_pending_block_groups(trans, fs_info);
1bbc621e
CM
3585
3586 if (!path) {
3587 path = btrfs_alloc_path();
3588 if (!path)
3589 return -ENOMEM;
3590 }
3591
b58d1a9e
FM
3592 /*
3593 * cache_write_mutex is here only to save us from balance or automatic
3594 * removal of empty block groups deleting this block group while we are
3595 * writing out the cache
3596 */
3597 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3598 while (!list_empty(&dirty)) {
3599 cache = list_first_entry(&dirty,
3600 struct btrfs_block_group_cache,
3601 dirty_list);
1bbc621e
CM
3602 /*
3603 * this can happen if something re-dirties a block
3604 * group that is already under IO. Just wait for it to
3605 * finish and then do it all again
3606 */
3607 if (!list_empty(&cache->io_list)) {
3608 list_del_init(&cache->io_list);
afdb5718 3609 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3610 btrfs_put_block_group(cache);
3611 }
3612
3613
3614 /*
3615 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3616 * if it should update the cache_state. Don't delete
3617 * until after we wait.
3618 *
3619 * Since we're not running in the commit critical section
3620 * we need the dirty_bgs_lock to protect from update_block_group
3621 */
3622 spin_lock(&cur_trans->dirty_bgs_lock);
3623 list_del_init(&cache->dirty_list);
3624 spin_unlock(&cur_trans->dirty_bgs_lock);
3625
3626 should_put = 1;
3627
3628 cache_save_setup(cache, trans, path);
3629
3630 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3631 cache->io_ctl.inode = NULL;
0b246afa 3632 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3633 cache, path);
1bbc621e
CM
3634 if (ret == 0 && cache->io_ctl.inode) {
3635 num_started++;
3636 should_put = 0;
3637
3638 /*
3639 * the cache_write_mutex is protecting
3640 * the io_list
3641 */
3642 list_add_tail(&cache->io_list, io);
3643 } else {
3644 /*
3645 * if we failed to write the cache, the
3646 * generation will be bad and life goes on
3647 */
3648 ret = 0;
3649 }
3650 }
ff1f8250 3651 if (!ret) {
2ff7e61e
JM
3652 ret = write_one_cache_group(trans, fs_info,
3653 path, cache);
ff1f8250
FM
3654 /*
3655 * Our block group might still be attached to the list
3656 * of new block groups in the transaction handle of some
3657 * other task (struct btrfs_trans_handle->new_bgs). This
3658 * means its block group item isn't yet in the extent
3659 * tree. If this happens ignore the error, as we will
3660 * try again later in the critical section of the
3661 * transaction commit.
3662 */
3663 if (ret == -ENOENT) {
3664 ret = 0;
3665 spin_lock(&cur_trans->dirty_bgs_lock);
3666 if (list_empty(&cache->dirty_list)) {
3667 list_add_tail(&cache->dirty_list,
3668 &cur_trans->dirty_bgs);
3669 btrfs_get_block_group(cache);
3670 }
3671 spin_unlock(&cur_trans->dirty_bgs_lock);
3672 } else if (ret) {
66642832 3673 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3674 }
3675 }
1bbc621e
CM
3676
3677 /* if its not on the io list, we need to put the block group */
3678 if (should_put)
3679 btrfs_put_block_group(cache);
3680
3681 if (ret)
3682 break;
b58d1a9e
FM
3683
3684 /*
3685 * Avoid blocking other tasks for too long. It might even save
3686 * us from writing caches for block groups that are going to be
3687 * removed.
3688 */
3689 mutex_unlock(&trans->transaction->cache_write_mutex);
3690 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3691 }
b58d1a9e 3692 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3693
3694 /*
3695 * go through delayed refs for all the stuff we've just kicked off
3696 * and then loop back (just once)
3697 */
2ff7e61e 3698 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1bbc621e
CM
3699 if (!ret && loops == 0) {
3700 loops++;
3701 spin_lock(&cur_trans->dirty_bgs_lock);
3702 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3703 /*
3704 * dirty_bgs_lock protects us from concurrent block group
3705 * deletes too (not just cache_write_mutex).
3706 */
3707 if (!list_empty(&dirty)) {
3708 spin_unlock(&cur_trans->dirty_bgs_lock);
3709 goto again;
3710 }
1bbc621e 3711 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3712 } else if (ret < 0) {
2ff7e61e 3713 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3714 }
3715
3716 btrfs_free_path(path);
3717 return ret;
3718}
3719
3720int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3721 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3722{
3723 struct btrfs_block_group_cache *cache;
3724 struct btrfs_transaction *cur_trans = trans->transaction;
3725 int ret = 0;
3726 int should_put;
3727 struct btrfs_path *path;
3728 struct list_head *io = &cur_trans->io_bgs;
3729 int num_started = 0;
9078a3e1
CM
3730
3731 path = btrfs_alloc_path();
3732 if (!path)
3733 return -ENOMEM;
3734
ce93ec54 3735 /*
e44081ef
FM
3736 * Even though we are in the critical section of the transaction commit,
3737 * we can still have concurrent tasks adding elements to this
3738 * transaction's list of dirty block groups. These tasks correspond to
3739 * endio free space workers started when writeback finishes for a
3740 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3741 * allocate new block groups as a result of COWing nodes of the root
3742 * tree when updating the free space inode. The writeback for the space
3743 * caches is triggered by an earlier call to
3744 * btrfs_start_dirty_block_groups() and iterations of the following
3745 * loop.
3746 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3747 * delayed refs to make sure we have the best chance at doing this all
3748 * in one shot.
3749 */
e44081ef 3750 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3751 while (!list_empty(&cur_trans->dirty_bgs)) {
3752 cache = list_first_entry(&cur_trans->dirty_bgs,
3753 struct btrfs_block_group_cache,
3754 dirty_list);
c9dc4c65
CM
3755
3756 /*
3757 * this can happen if cache_save_setup re-dirties a block
3758 * group that is already under IO. Just wait for it to
3759 * finish and then do it all again
3760 */
3761 if (!list_empty(&cache->io_list)) {
e44081ef 3762 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3763 list_del_init(&cache->io_list);
afdb5718 3764 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3765 btrfs_put_block_group(cache);
e44081ef 3766 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3767 }
3768
1bbc621e
CM
3769 /*
3770 * don't remove from the dirty list until after we've waited
3771 * on any pending IO
3772 */
ce93ec54 3773 list_del_init(&cache->dirty_list);
e44081ef 3774 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3775 should_put = 1;
3776
1bbc621e 3777 cache_save_setup(cache, trans, path);
c9dc4c65 3778
ce93ec54 3779 if (!ret)
2ff7e61e
JM
3780 ret = btrfs_run_delayed_refs(trans, fs_info,
3781 (unsigned long) -1);
c9dc4c65
CM
3782
3783 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3784 cache->io_ctl.inode = NULL;
0b246afa 3785 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3786 cache, path);
c9dc4c65
CM
3787 if (ret == 0 && cache->io_ctl.inode) {
3788 num_started++;
3789 should_put = 0;
1bbc621e 3790 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3791 } else {
3792 /*
3793 * if we failed to write the cache, the
3794 * generation will be bad and life goes on
3795 */
3796 ret = 0;
3797 }
3798 }
ff1f8250 3799 if (!ret) {
2ff7e61e
JM
3800 ret = write_one_cache_group(trans, fs_info,
3801 path, cache);
2bc0bb5f
FM
3802 /*
3803 * One of the free space endio workers might have
3804 * created a new block group while updating a free space
3805 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3806 * and hasn't released its transaction handle yet, in
3807 * which case the new block group is still attached to
3808 * its transaction handle and its creation has not
3809 * finished yet (no block group item in the extent tree
3810 * yet, etc). If this is the case, wait for all free
3811 * space endio workers to finish and retry. This is a
3812 * a very rare case so no need for a more efficient and
3813 * complex approach.
3814 */
3815 if (ret == -ENOENT) {
3816 wait_event(cur_trans->writer_wait,
3817 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3818 ret = write_one_cache_group(trans, fs_info,
3819 path, cache);
2bc0bb5f 3820 }
ff1f8250 3821 if (ret)
66642832 3822 btrfs_abort_transaction(trans, ret);
ff1f8250 3823 }
c9dc4c65
CM
3824
3825 /* if its not on the io list, we need to put the block group */
3826 if (should_put)
3827 btrfs_put_block_group(cache);
e44081ef 3828 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3829 }
e44081ef 3830 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3831
1bbc621e
CM
3832 while (!list_empty(io)) {
3833 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3834 io_list);
3835 list_del_init(&cache->io_list);
afdb5718 3836 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3837 btrfs_put_block_group(cache);
3838 }
3839
9078a3e1 3840 btrfs_free_path(path);
ce93ec54 3841 return ret;
9078a3e1
CM
3842}
3843
2ff7e61e 3844int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3845{
3846 struct btrfs_block_group_cache *block_group;
3847 int readonly = 0;
3848
0b246afa 3849 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3850 if (!block_group || block_group->ro)
3851 readonly = 1;
3852 if (block_group)
fa9c0d79 3853 btrfs_put_block_group(block_group);
d2fb3437
YZ
3854 return readonly;
3855}
3856
f78c436c
FM
3857bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3858{
3859 struct btrfs_block_group_cache *bg;
3860 bool ret = true;
3861
3862 bg = btrfs_lookup_block_group(fs_info, bytenr);
3863 if (!bg)
3864 return false;
3865
3866 spin_lock(&bg->lock);
3867 if (bg->ro)
3868 ret = false;
3869 else
3870 atomic_inc(&bg->nocow_writers);
3871 spin_unlock(&bg->lock);
3872
3873 /* no put on block group, done by btrfs_dec_nocow_writers */
3874 if (!ret)
3875 btrfs_put_block_group(bg);
3876
3877 return ret;
3878
3879}
3880
3881void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3882{
3883 struct btrfs_block_group_cache *bg;
3884
3885 bg = btrfs_lookup_block_group(fs_info, bytenr);
3886 ASSERT(bg);
3887 if (atomic_dec_and_test(&bg->nocow_writers))
3888 wake_up_atomic_t(&bg->nocow_writers);
3889 /*
3890 * Once for our lookup and once for the lookup done by a previous call
3891 * to btrfs_inc_nocow_writers()
3892 */
3893 btrfs_put_block_group(bg);
3894 btrfs_put_block_group(bg);
3895}
3896
3897static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3898{
3899 schedule();
3900 return 0;
3901}
3902
3903void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3904{
3905 wait_on_atomic_t(&bg->nocow_writers,
3906 btrfs_wait_nocow_writers_atomic_t,
3907 TASK_UNINTERRUPTIBLE);
3908}
3909
6ab0a202
JM
3910static const char *alloc_name(u64 flags)
3911{
3912 switch (flags) {
3913 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3914 return "mixed";
3915 case BTRFS_BLOCK_GROUP_METADATA:
3916 return "metadata";
3917 case BTRFS_BLOCK_GROUP_DATA:
3918 return "data";
3919 case BTRFS_BLOCK_GROUP_SYSTEM:
3920 return "system";
3921 default:
3922 WARN_ON(1);
3923 return "invalid-combination";
3924 };
3925}
3926
593060d7
CM
3927static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3928 u64 total_bytes, u64 bytes_used,
e40edf2d 3929 u64 bytes_readonly,
593060d7
CM
3930 struct btrfs_space_info **space_info)
3931{
3932 struct btrfs_space_info *found;
b742bb82
YZ
3933 int i;
3934 int factor;
b150a4f1 3935 int ret;
b742bb82
YZ
3936
3937 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3938 BTRFS_BLOCK_GROUP_RAID10))
3939 factor = 2;
3940 else
3941 factor = 1;
593060d7
CM
3942
3943 found = __find_space_info(info, flags);
3944 if (found) {
25179201 3945 spin_lock(&found->lock);
593060d7 3946 found->total_bytes += total_bytes;
89a55897 3947 found->disk_total += total_bytes * factor;
593060d7 3948 found->bytes_used += bytes_used;
b742bb82 3949 found->disk_used += bytes_used * factor;
e40edf2d 3950 found->bytes_readonly += bytes_readonly;
2e6e5183
FM
3951 if (total_bytes > 0)
3952 found->full = 0;
957780eb
JB
3953 space_info_add_new_bytes(info, found, total_bytes -
3954 bytes_used - bytes_readonly);
25179201 3955 spin_unlock(&found->lock);
593060d7
CM
3956 *space_info = found;
3957 return 0;
3958 }
c146afad 3959 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3960 if (!found)
3961 return -ENOMEM;
3962
908c7f19 3963 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3964 if (ret) {
3965 kfree(found);
3966 return ret;
3967 }
3968
c1895442 3969 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3970 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3971 init_rwsem(&found->groups_sem);
0f9dd46c 3972 spin_lock_init(&found->lock);
52ba6929 3973 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3974 found->total_bytes = total_bytes;
89a55897 3975 found->disk_total = total_bytes * factor;
593060d7 3976 found->bytes_used = bytes_used;
b742bb82 3977 found->disk_used = bytes_used * factor;
593060d7 3978 found->bytes_pinned = 0;
e8569813 3979 found->bytes_reserved = 0;
e40edf2d 3980 found->bytes_readonly = bytes_readonly;
f0486c68 3981 found->bytes_may_use = 0;
6af3e3ad 3982 found->full = 0;
4f4db217 3983 found->max_extent_size = 0;
0e4f8f88 3984 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3985 found->chunk_alloc = 0;
fdb5effd
JB
3986 found->flush = 0;
3987 init_waitqueue_head(&found->wait);
633c0aad 3988 INIT_LIST_HEAD(&found->ro_bgs);
957780eb
JB
3989 INIT_LIST_HEAD(&found->tickets);
3990 INIT_LIST_HEAD(&found->priority_tickets);
6ab0a202
JM
3991
3992 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3993 info->space_info_kobj, "%s",
3994 alloc_name(found->flags));
3995 if (ret) {
896533a7 3996 percpu_counter_destroy(&found->total_bytes_pinned);
6ab0a202
JM
3997 kfree(found);
3998 return ret;
3999 }
4000
593060d7 4001 *space_info = found;
4184ea7f 4002 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
4003 if (flags & BTRFS_BLOCK_GROUP_DATA)
4004 info->data_sinfo = found;
6ab0a202
JM
4005
4006 return ret;
593060d7
CM
4007}
4008
8790d502
CM
4009static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4010{
899c81ea
ID
4011 u64 extra_flags = chunk_to_extended(flags) &
4012 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4013
de98ced9 4014 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4015 if (flags & BTRFS_BLOCK_GROUP_DATA)
4016 fs_info->avail_data_alloc_bits |= extra_flags;
4017 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4018 fs_info->avail_metadata_alloc_bits |= extra_flags;
4019 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4020 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4021 write_sequnlock(&fs_info->profiles_lock);
8790d502 4022}
593060d7 4023
fc67c450
ID
4024/*
4025 * returns target flags in extended format or 0 if restripe for this
4026 * chunk_type is not in progress
c6664b42
ID
4027 *
4028 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4029 */
4030static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4031{
4032 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4033 u64 target = 0;
4034
fc67c450
ID
4035 if (!bctl)
4036 return 0;
4037
4038 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4039 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4040 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4041 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4042 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4043 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4044 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4045 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4046 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4047 }
4048
4049 return target;
4050}
4051
a46d11a8
ID
4052/*
4053 * @flags: available profiles in extended format (see ctree.h)
4054 *
e4d8ec0f
ID
4055 * Returns reduced profile in chunk format. If profile changing is in
4056 * progress (either running or paused) picks the target profile (if it's
4057 * already available), otherwise falls back to plain reducing.
a46d11a8 4058 */
2ff7e61e 4059static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4060{
0b246afa 4061 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4062 u64 target;
9c170b26
ZL
4063 u64 raid_type;
4064 u64 allowed = 0;
a061fc8d 4065
fc67c450
ID
4066 /*
4067 * see if restripe for this chunk_type is in progress, if so
4068 * try to reduce to the target profile
4069 */
0b246afa
JM
4070 spin_lock(&fs_info->balance_lock);
4071 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4072 if (target) {
4073 /* pick target profile only if it's already available */
4074 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4075 spin_unlock(&fs_info->balance_lock);
fc67c450 4076 return extended_to_chunk(target);
e4d8ec0f
ID
4077 }
4078 }
0b246afa 4079 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4080
53b381b3 4081 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4082 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4083 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4084 allowed |= btrfs_raid_group[raid_type];
4085 }
4086 allowed &= flags;
4087
4088 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4089 allowed = BTRFS_BLOCK_GROUP_RAID6;
4090 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4091 allowed = BTRFS_BLOCK_GROUP_RAID5;
4092 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4093 allowed = BTRFS_BLOCK_GROUP_RAID10;
4094 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4095 allowed = BTRFS_BLOCK_GROUP_RAID1;
4096 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4097 allowed = BTRFS_BLOCK_GROUP_RAID0;
4098
4099 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4100
4101 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4102}
4103
2ff7e61e 4104static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4105{
de98ced9 4106 unsigned seq;
f8213bdc 4107 u64 flags;
de98ced9
MX
4108
4109 do {
f8213bdc 4110 flags = orig_flags;
0b246afa 4111 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4112
4113 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4114 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4115 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4116 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4117 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4118 flags |= fs_info->avail_metadata_alloc_bits;
4119 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4120
2ff7e61e 4121 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4122}
4123
6d07bcec 4124u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 4125{
0b246afa 4126 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4127 u64 flags;
53b381b3 4128 u64 ret;
9ed74f2d 4129
b742bb82
YZ
4130 if (data)
4131 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4132 else if (root == fs_info->chunk_root)
b742bb82 4133 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4134 else
b742bb82 4135 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4136
2ff7e61e 4137 ret = get_alloc_profile(fs_info, flags);
53b381b3 4138 return ret;
6a63209f 4139}
9ed74f2d 4140
4136135b
LB
4141static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4142 bool may_use_included)
4143{
4144 ASSERT(s_info);
4145 return s_info->bytes_used + s_info->bytes_reserved +
4146 s_info->bytes_pinned + s_info->bytes_readonly +
4147 (may_use_included ? s_info->bytes_may_use : 0);
4148}
4149
04f4f916 4150int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4151{
6a63209f 4152 struct btrfs_space_info *data_sinfo;
04f4f916 4153 struct btrfs_root *root = inode->root;
b4d7c3c9 4154 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4155 u64 used;
94b947b2 4156 int ret = 0;
c99f1b0c
ZL
4157 int need_commit = 2;
4158 int have_pinned_space;
6a63209f 4159
6a63209f 4160 /* make sure bytes are sectorsize aligned */
0b246afa 4161 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4162
9dced186 4163 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4164 need_commit = 0;
9dced186 4165 ASSERT(current->journal_info);
0af3d00b
JB
4166 }
4167
b4d7c3c9 4168 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4169 if (!data_sinfo)
4170 goto alloc;
9ed74f2d 4171
6a63209f
JB
4172again:
4173 /* make sure we have enough space to handle the data first */
4174 spin_lock(&data_sinfo->lock);
4136135b 4175 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4176
4177 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4178 struct btrfs_trans_handle *trans;
9ed74f2d 4179
6a63209f
JB
4180 /*
4181 * if we don't have enough free bytes in this space then we need
4182 * to alloc a new chunk.
4183 */
b9fd47cd 4184 if (!data_sinfo->full) {
6a63209f 4185 u64 alloc_target;
9ed74f2d 4186
0e4f8f88 4187 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4188 spin_unlock(&data_sinfo->lock);
33b4d47f 4189alloc:
6a63209f 4190 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4191 /*
4192 * It is ugly that we don't call nolock join
4193 * transaction for the free space inode case here.
4194 * But it is safe because we only do the data space
4195 * reservation for the free space cache in the
4196 * transaction context, the common join transaction
4197 * just increase the counter of the current transaction
4198 * handler, doesn't try to acquire the trans_lock of
4199 * the fs.
4200 */
7a7eaa40 4201 trans = btrfs_join_transaction(root);
a22285a6
YZ
4202 if (IS_ERR(trans))
4203 return PTR_ERR(trans);
9ed74f2d 4204
2ff7e61e 4205 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4206 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4207 btrfs_end_transaction(trans);
d52a5b5f
MX
4208 if (ret < 0) {
4209 if (ret != -ENOSPC)
4210 return ret;
c99f1b0c
ZL
4211 else {
4212 have_pinned_space = 1;
d52a5b5f 4213 goto commit_trans;
c99f1b0c 4214 }
d52a5b5f 4215 }
9ed74f2d 4216
b4d7c3c9
LZ
4217 if (!data_sinfo)
4218 data_sinfo = fs_info->data_sinfo;
4219
6a63209f
JB
4220 goto again;
4221 }
f2bb8f5c
JB
4222
4223 /*
b150a4f1 4224 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4225 * allocation, and no removed chunk in current transaction,
4226 * don't bother committing the transaction.
f2bb8f5c 4227 */
c99f1b0c
ZL
4228 have_pinned_space = percpu_counter_compare(
4229 &data_sinfo->total_bytes_pinned,
4230 used + bytes - data_sinfo->total_bytes);
6a63209f 4231 spin_unlock(&data_sinfo->lock);
6a63209f 4232
4e06bdd6 4233 /* commit the current transaction and try again */
d52a5b5f 4234commit_trans:
c99f1b0c 4235 if (need_commit &&
0b246afa 4236 !atomic_read(&fs_info->open_ioctl_trans)) {
c99f1b0c 4237 need_commit--;
b150a4f1 4238
e1746e83
ZL
4239 if (need_commit > 0) {
4240 btrfs_start_delalloc_roots(fs_info, 0, -1);
0b246afa
JM
4241 btrfs_wait_ordered_roots(fs_info, -1, 0,
4242 (u64)-1);
e1746e83 4243 }
9a4e7276 4244
7a7eaa40 4245 trans = btrfs_join_transaction(root);
a22285a6
YZ
4246 if (IS_ERR(trans))
4247 return PTR_ERR(trans);
c99f1b0c 4248 if (have_pinned_space >= 0 ||
3204d33c
JB
4249 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4250 &trans->transaction->flags) ||
c99f1b0c 4251 need_commit > 0) {
3a45bb20 4252 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4253 if (ret)
4254 return ret;
d7c15171 4255 /*
c2d6cb16
FM
4256 * The cleaner kthread might still be doing iput
4257 * operations. Wait for it to finish so that
4258 * more space is released.
d7c15171 4259 */
0b246afa
JM
4260 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4261 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4262 goto again;
4263 } else {
3a45bb20 4264 btrfs_end_transaction(trans);
94b947b2 4265 }
4e06bdd6 4266 }
9ed74f2d 4267
0b246afa 4268 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4269 "space_info:enospc",
4270 data_sinfo->flags, bytes, 1);
6a63209f
JB
4271 return -ENOSPC;
4272 }
4273 data_sinfo->bytes_may_use += bytes;
0b246afa 4274 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4275 data_sinfo->flags, bytes, 1);
6a63209f 4276 spin_unlock(&data_sinfo->lock);
6a63209f 4277
237c0e9f 4278 return ret;
9ed74f2d 4279}
6a63209f 4280
4ceff079
QW
4281/*
4282 * New check_data_free_space() with ability for precious data reservation
4283 * Will replace old btrfs_check_data_free_space(), but for patch split,
4284 * add a new function first and then replace it.
4285 */
7cf5b976 4286int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079 4287{
0b246afa 4288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4289 int ret;
4290
4291 /* align the range */
0b246afa
JM
4292 len = round_up(start + len, fs_info->sectorsize) -
4293 round_down(start, fs_info->sectorsize);
4294 start = round_down(start, fs_info->sectorsize);
4ceff079 4295
04f4f916 4296 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4297 if (ret < 0)
4298 return ret;
4299
1e5ec2e7 4300 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4ceff079 4301 ret = btrfs_qgroup_reserve_data(inode, start, len);
1e5ec2e7
JB
4302 if (ret)
4303 btrfs_free_reserved_data_space_noquota(inode, start, len);
4ceff079
QW
4304 return ret;
4305}
4306
4ceff079
QW
4307/*
4308 * Called if we need to clear a data reservation for this inode
4309 * Normally in a error case.
4310 *
51773bec
QW
4311 * This one will *NOT* use accurate qgroup reserved space API, just for case
4312 * which we can't sleep and is sure it won't affect qgroup reserved space.
4313 * Like clear_bit_hook().
4ceff079 4314 */
51773bec
QW
4315void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4316 u64 len)
4ceff079 4317{
0b246afa 4318 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4319 struct btrfs_space_info *data_sinfo;
4320
4321 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4322 len = round_up(start + len, fs_info->sectorsize) -
4323 round_down(start, fs_info->sectorsize);
4324 start = round_down(start, fs_info->sectorsize);
4ceff079 4325
0b246afa 4326 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4327 spin_lock(&data_sinfo->lock);
4328 if (WARN_ON(data_sinfo->bytes_may_use < len))
4329 data_sinfo->bytes_may_use = 0;
4330 else
4331 data_sinfo->bytes_may_use -= len;
0b246afa 4332 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4333 data_sinfo->flags, len, 0);
4334 spin_unlock(&data_sinfo->lock);
4335}
4336
51773bec
QW
4337/*
4338 * Called if we need to clear a data reservation for this inode
4339 * Normally in a error case.
4340 *
01327610 4341 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4342 * space framework.
4343 */
4344void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4345{
0c476a5d
JM
4346 struct btrfs_root *root = BTRFS_I(inode)->root;
4347
4348 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4349 len = round_up(start + len, root->fs_info->sectorsize) -
4350 round_down(start, root->fs_info->sectorsize);
4351 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4352
51773bec
QW
4353 btrfs_free_reserved_data_space_noquota(inode, start, len);
4354 btrfs_qgroup_free_data(inode, start, len);
4355}
4356
97e728d4 4357static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4358{
97e728d4
JB
4359 struct list_head *head = &info->space_info;
4360 struct btrfs_space_info *found;
e3ccfa98 4361
97e728d4
JB
4362 rcu_read_lock();
4363 list_for_each_entry_rcu(found, head, list) {
4364 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4365 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4366 }
97e728d4 4367 rcu_read_unlock();
e3ccfa98
JB
4368}
4369
3c76cd84
MX
4370static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4371{
4372 return (global->size << 1);
4373}
4374
2ff7e61e 4375static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4376 struct btrfs_space_info *sinfo, int force)
32c00aff 4377{
0b246afa 4378 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
424499db 4379 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4380 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4381 u64 thresh;
e3ccfa98 4382
0e4f8f88
CM
4383 if (force == CHUNK_ALLOC_FORCE)
4384 return 1;
4385
fb25e914
JB
4386 /*
4387 * We need to take into account the global rsv because for all intents
4388 * and purposes it's used space. Don't worry about locking the
4389 * global_rsv, it doesn't change except when the transaction commits.
4390 */
54338b5c 4391 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4392 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4393
0e4f8f88
CM
4394 /*
4395 * in limited mode, we want to have some free space up to
4396 * about 1% of the FS size.
4397 */
4398 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4399 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4400 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4401
4402 if (num_bytes - num_allocated < thresh)
4403 return 1;
4404 }
0e4f8f88 4405
ee22184b 4406 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4407 return 0;
424499db 4408 return 1;
32c00aff
JB
4409}
4410
2ff7e61e 4411static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4412{
4413 u64 num_dev;
4414
53b381b3
DW
4415 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4416 BTRFS_BLOCK_GROUP_RAID0 |
4417 BTRFS_BLOCK_GROUP_RAID5 |
4418 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4419 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4420 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4421 num_dev = 2;
4422 else
4423 num_dev = 1; /* DUP or single */
4424
39c2d7fa 4425 return num_dev;
15d1ff81
LB
4426}
4427
39c2d7fa
FM
4428/*
4429 * If @is_allocation is true, reserve space in the system space info necessary
4430 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4431 * removing a chunk.
4432 */
4433void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4434 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4435{
4436 struct btrfs_space_info *info;
4437 u64 left;
4438 u64 thresh;
4fbcdf66 4439 int ret = 0;
39c2d7fa 4440 u64 num_devs;
4fbcdf66
FM
4441
4442 /*
4443 * Needed because we can end up allocating a system chunk and for an
4444 * atomic and race free space reservation in the chunk block reserve.
4445 */
0b246afa 4446 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
15d1ff81 4447
0b246afa 4448 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4449 spin_lock(&info->lock);
4136135b 4450 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4451 spin_unlock(&info->lock);
4452
2ff7e61e 4453 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4454
4455 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4456 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4457 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4458
0b246afa
JM
4459 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4460 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4461 left, thresh, type);
4462 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4463 }
4464
4465 if (left < thresh) {
4466 u64 flags;
4467
0b246afa 4468 flags = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4fbcdf66
FM
4469 /*
4470 * Ignore failure to create system chunk. We might end up not
4471 * needing it, as we might not need to COW all nodes/leafs from
4472 * the paths we visit in the chunk tree (they were already COWed
4473 * or created in the current transaction for example).
4474 */
2ff7e61e 4475 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4476 }
4477
4478 if (!ret) {
0b246afa
JM
4479 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4480 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4481 thresh, BTRFS_RESERVE_NO_FLUSH);
4482 if (!ret)
4483 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4484 }
4485}
4486
28b737f6
LB
4487/*
4488 * If force is CHUNK_ALLOC_FORCE:
4489 * - return 1 if it successfully allocates a chunk,
4490 * - return errors including -ENOSPC otherwise.
4491 * If force is NOT CHUNK_ALLOC_FORCE:
4492 * - return 0 if it doesn't need to allocate a new chunk,
4493 * - return 1 if it successfully allocates a chunk,
4494 * - return errors including -ENOSPC otherwise.
4495 */
6324fbf3 4496static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4497 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4498{
6324fbf3 4499 struct btrfs_space_info *space_info;
6d74119f 4500 int wait_for_alloc = 0;
9ed74f2d 4501 int ret = 0;
9ed74f2d 4502
c6b305a8
JB
4503 /* Don't re-enter if we're already allocating a chunk */
4504 if (trans->allocating_chunk)
4505 return -ENOSPC;
4506
0b246afa 4507 space_info = __find_space_info(fs_info, flags);
593060d7 4508 if (!space_info) {
0b246afa 4509 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
79787eaa 4510 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4511 }
79787eaa 4512 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4513
6d74119f 4514again:
25179201 4515 spin_lock(&space_info->lock);
9e622d6b 4516 if (force < space_info->force_alloc)
0e4f8f88 4517 force = space_info->force_alloc;
25179201 4518 if (space_info->full) {
2ff7e61e 4519 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4520 ret = -ENOSPC;
4521 else
4522 ret = 0;
25179201 4523 spin_unlock(&space_info->lock);
09fb99a6 4524 return ret;
9ed74f2d
JB
4525 }
4526
2ff7e61e 4527 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4528 spin_unlock(&space_info->lock);
6d74119f
JB
4529 return 0;
4530 } else if (space_info->chunk_alloc) {
4531 wait_for_alloc = 1;
4532 } else {
4533 space_info->chunk_alloc = 1;
9ed74f2d 4534 }
0e4f8f88 4535
25179201 4536 spin_unlock(&space_info->lock);
9ed74f2d 4537
6d74119f
JB
4538 mutex_lock(&fs_info->chunk_mutex);
4539
4540 /*
4541 * The chunk_mutex is held throughout the entirety of a chunk
4542 * allocation, so once we've acquired the chunk_mutex we know that the
4543 * other guy is done and we need to recheck and see if we should
4544 * allocate.
4545 */
4546 if (wait_for_alloc) {
4547 mutex_unlock(&fs_info->chunk_mutex);
4548 wait_for_alloc = 0;
4549 goto again;
4550 }
4551
c6b305a8
JB
4552 trans->allocating_chunk = true;
4553
67377734
JB
4554 /*
4555 * If we have mixed data/metadata chunks we want to make sure we keep
4556 * allocating mixed chunks instead of individual chunks.
4557 */
4558 if (btrfs_mixed_space_info(space_info))
4559 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4560
97e728d4
JB
4561 /*
4562 * if we're doing a data chunk, go ahead and make sure that
4563 * we keep a reasonable number of metadata chunks allocated in the
4564 * FS as well.
4565 */
9ed74f2d 4566 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4567 fs_info->data_chunk_allocations++;
4568 if (!(fs_info->data_chunk_allocations %
4569 fs_info->metadata_ratio))
4570 force_metadata_allocation(fs_info);
9ed74f2d
JB
4571 }
4572
15d1ff81
LB
4573 /*
4574 * Check if we have enough space in SYSTEM chunk because we may need
4575 * to update devices.
4576 */
2ff7e61e 4577 check_system_chunk(trans, fs_info, flags);
15d1ff81 4578
2ff7e61e 4579 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4580 trans->allocating_chunk = false;
92b8e897 4581
9ed74f2d 4582 spin_lock(&space_info->lock);
a81cb9a2
AO
4583 if (ret < 0 && ret != -ENOSPC)
4584 goto out;
9ed74f2d 4585 if (ret)
6324fbf3 4586 space_info->full = 1;
424499db
YZ
4587 else
4588 ret = 1;
6d74119f 4589
0e4f8f88 4590 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4591out:
6d74119f 4592 space_info->chunk_alloc = 0;
9ed74f2d 4593 spin_unlock(&space_info->lock);
a25c75d5 4594 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4595 /*
4596 * When we allocate a new chunk we reserve space in the chunk block
4597 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4598 * add new nodes/leafs to it if we end up needing to do it when
4599 * inserting the chunk item and updating device items as part of the
4600 * second phase of chunk allocation, performed by
4601 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4602 * large number of new block groups to create in our transaction
4603 * handle's new_bgs list to avoid exhausting the chunk block reserve
4604 * in extreme cases - like having a single transaction create many new
4605 * block groups when starting to write out the free space caches of all
4606 * the block groups that were made dirty during the lifetime of the
4607 * transaction.
4608 */
d9a0540a 4609 if (trans->can_flush_pending_bgs &&
ee22184b 4610 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
2ff7e61e 4611 btrfs_create_pending_block_groups(trans, fs_info);
00d80e34
FM
4612 btrfs_trans_release_chunk_metadata(trans);
4613 }
0f9dd46c 4614 return ret;
6324fbf3 4615}
9ed74f2d 4616
a80c8dcf
JB
4617static int can_overcommit(struct btrfs_root *root,
4618 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4619 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4620{
0b246afa
JM
4621 struct btrfs_fs_info *fs_info = root->fs_info;
4622 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4623 u64 profile;
3c76cd84 4624 u64 space_size;
a80c8dcf
JB
4625 u64 avail;
4626 u64 used;
4627
957780eb
JB
4628 /* Don't overcommit when in mixed mode. */
4629 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4630 return 0;
4631
957780eb 4632 profile = btrfs_get_alloc_profile(root, 0);
4136135b 4633 used = btrfs_space_info_used(space_info, false);
96f1bb57 4634
96f1bb57
JB
4635 /*
4636 * We only want to allow over committing if we have lots of actual space
4637 * free, but if we don't have enough space to handle the global reserve
4638 * space then we could end up having a real enospc problem when trying
4639 * to allocate a chunk or some other such important allocation.
4640 */
3c76cd84
MX
4641 spin_lock(&global_rsv->lock);
4642 space_size = calc_global_rsv_need_space(global_rsv);
4643 spin_unlock(&global_rsv->lock);
4644 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4645 return 0;
4646
4647 used += space_info->bytes_may_use;
a80c8dcf 4648
0b246afa
JM
4649 spin_lock(&fs_info->free_chunk_lock);
4650 avail = fs_info->free_chunk_space;
4651 spin_unlock(&fs_info->free_chunk_lock);
a80c8dcf
JB
4652
4653 /*
4654 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4655 * space is actually useable. For raid56, the space info used
4656 * doesn't include the parity drive, so we don't have to
4657 * change the math
a80c8dcf
JB
4658 */
4659 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4660 BTRFS_BLOCK_GROUP_RAID1 |
4661 BTRFS_BLOCK_GROUP_RAID10))
4662 avail >>= 1;
4663
4664 /*
561c294d
MX
4665 * If we aren't flushing all things, let us overcommit up to
4666 * 1/2th of the space. If we can flush, don't let us overcommit
4667 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4668 */
08e007d2 4669 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4670 avail >>= 3;
a80c8dcf 4671 else
14575aef 4672 avail >>= 1;
a80c8dcf 4673
14575aef 4674 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4675 return 1;
4676 return 0;
4677}
4678
2ff7e61e 4679static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4680 unsigned long nr_pages, int nr_items)
da633a42 4681{
0b246afa 4682 struct super_block *sb = fs_info->sb;
da633a42 4683
925a6efb
JB
4684 if (down_read_trylock(&sb->s_umount)) {
4685 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4686 up_read(&sb->s_umount);
4687 } else {
da633a42
MX
4688 /*
4689 * We needn't worry the filesystem going from r/w to r/o though
4690 * we don't acquire ->s_umount mutex, because the filesystem
4691 * should guarantee the delalloc inodes list be empty after
4692 * the filesystem is readonly(all dirty pages are written to
4693 * the disk).
4694 */
0b246afa 4695 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
98ad69cf 4696 if (!current->journal_info)
0b246afa 4697 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4698 }
4699}
4700
2ff7e61e
JM
4701static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4702 u64 to_reclaim)
18cd8ea6
MX
4703{
4704 u64 bytes;
4705 int nr;
4706
2ff7e61e 4707 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
18cd8ea6
MX
4708 nr = (int)div64_u64(to_reclaim, bytes);
4709 if (!nr)
4710 nr = 1;
4711 return nr;
4712}
4713
ee22184b 4714#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4715
9ed74f2d 4716/*
5da9d01b 4717 * shrink metadata reservation for delalloc
9ed74f2d 4718 */
f4c738c2
JB
4719static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4720 bool wait_ordered)
5da9d01b 4721{
0b246afa 4722 struct btrfs_fs_info *fs_info = root->fs_info;
0ca1f7ce 4723 struct btrfs_block_rsv *block_rsv;
0019f10d 4724 struct btrfs_space_info *space_info;
663350ac 4725 struct btrfs_trans_handle *trans;
f4c738c2 4726 u64 delalloc_bytes;
5da9d01b 4727 u64 max_reclaim;
b1953bce 4728 long time_left;
d3ee29e3
MX
4729 unsigned long nr_pages;
4730 int loops;
b0244199 4731 int items;
08e007d2 4732 enum btrfs_reserve_flush_enum flush;
5da9d01b 4733
c61a16a7 4734 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4735 items = calc_reclaim_items_nr(fs_info, to_reclaim);
8eb0dfdb 4736 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4737
663350ac 4738 trans = (struct btrfs_trans_handle *)current->journal_info;
0b246afa 4739 block_rsv = &fs_info->delalloc_block_rsv;
0019f10d 4740 space_info = block_rsv->space_info;
bf9022e0 4741
963d678b 4742 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4743 &fs_info->delalloc_bytes);
f4c738c2 4744 if (delalloc_bytes == 0) {
fdb5effd 4745 if (trans)
f4c738c2 4746 return;
38c135af 4747 if (wait_ordered)
0b246afa 4748 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4749 return;
fdb5effd
JB
4750 }
4751
d3ee29e3 4752 loops = 0;
f4c738c2
JB
4753 while (delalloc_bytes && loops < 3) {
4754 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4755 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4756 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4757 /*
4758 * We need to wait for the async pages to actually start before
4759 * we do anything.
4760 */
0b246afa 4761 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4762 if (!max_reclaim)
4763 goto skip_async;
4764
4765 if (max_reclaim <= nr_pages)
4766 max_reclaim = 0;
4767 else
4768 max_reclaim -= nr_pages;
dea31f52 4769
0b246afa
JM
4770 wait_event(fs_info->async_submit_wait,
4771 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4772 (int)max_reclaim);
4773skip_async:
08e007d2
MX
4774 if (!trans)
4775 flush = BTRFS_RESERVE_FLUSH_ALL;
4776 else
4777 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4778 spin_lock(&space_info->lock);
08e007d2 4779 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4780 spin_unlock(&space_info->lock);
4781 break;
4782 }
957780eb
JB
4783 if (list_empty(&space_info->tickets) &&
4784 list_empty(&space_info->priority_tickets)) {
4785 spin_unlock(&space_info->lock);
4786 break;
4787 }
0019f10d 4788 spin_unlock(&space_info->lock);
5da9d01b 4789
36e39c40 4790 loops++;
f104d044 4791 if (wait_ordered && !trans) {
0b246afa 4792 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4793 } else {
f4c738c2 4794 time_left = schedule_timeout_killable(1);
f104d044
JB
4795 if (time_left)
4796 break;
4797 }
963d678b 4798 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4799 &fs_info->delalloc_bytes);
5da9d01b 4800 }
5da9d01b
YZ
4801}
4802
663350ac
JB
4803/**
4804 * maybe_commit_transaction - possibly commit the transaction if its ok to
4805 * @root - the root we're allocating for
4806 * @bytes - the number of bytes we want to reserve
4807 * @force - force the commit
8bb8ab2e 4808 *
663350ac
JB
4809 * This will check to make sure that committing the transaction will actually
4810 * get us somewhere and then commit the transaction if it does. Otherwise it
4811 * will return -ENOSPC.
8bb8ab2e 4812 */
0c9ab349 4813static int may_commit_transaction(struct btrfs_fs_info *fs_info,
663350ac
JB
4814 struct btrfs_space_info *space_info,
4815 u64 bytes, int force)
4816{
0b246afa 4817 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac
JB
4818 struct btrfs_trans_handle *trans;
4819
4820 trans = (struct btrfs_trans_handle *)current->journal_info;
4821 if (trans)
4822 return -EAGAIN;
4823
4824 if (force)
4825 goto commit;
4826
4827 /* See if there is enough pinned space to make this reservation */
b150a4f1 4828 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4829 bytes) >= 0)
663350ac 4830 goto commit;
663350ac
JB
4831
4832 /*
4833 * See if there is some space in the delayed insertion reservation for
4834 * this reservation.
4835 */
4836 if (space_info != delayed_rsv->space_info)
4837 return -ENOSPC;
4838
4839 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4840 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4841 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4842 spin_unlock(&delayed_rsv->lock);
4843 return -ENOSPC;
4844 }
4845 spin_unlock(&delayed_rsv->lock);
4846
4847commit:
0c9ab349 4848 trans = btrfs_join_transaction(fs_info->fs_root);
663350ac
JB
4849 if (IS_ERR(trans))
4850 return -ENOSPC;
4851
3a45bb20 4852 return btrfs_commit_transaction(trans);
663350ac
JB
4853}
4854
957780eb
JB
4855struct reserve_ticket {
4856 u64 bytes;
4857 int error;
4858 struct list_head list;
4859 wait_queue_head_t wait;
96c3f433
JB
4860};
4861
0c9ab349 4862static int flush_space(struct btrfs_fs_info *fs_info,
96c3f433
JB
4863 struct btrfs_space_info *space_info, u64 num_bytes,
4864 u64 orig_bytes, int state)
4865{
0c9ab349 4866 struct btrfs_root *root = fs_info->fs_root;
96c3f433
JB
4867 struct btrfs_trans_handle *trans;
4868 int nr;
f4c738c2 4869 int ret = 0;
96c3f433
JB
4870
4871 switch (state) {
96c3f433
JB
4872 case FLUSH_DELAYED_ITEMS_NR:
4873 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4874 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4875 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4876 else
96c3f433 4877 nr = -1;
18cd8ea6 4878
96c3f433
JB
4879 trans = btrfs_join_transaction(root);
4880 if (IS_ERR(trans)) {
4881 ret = PTR_ERR(trans);
4882 break;
4883 }
2ff7e61e 4884 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
3a45bb20 4885 btrfs_end_transaction(trans);
96c3f433 4886 break;
67b0fd63
JB
4887 case FLUSH_DELALLOC:
4888 case FLUSH_DELALLOC_WAIT:
24af7dd1 4889 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4890 state == FLUSH_DELALLOC_WAIT);
4891 break;
ea658bad
JB
4892 case ALLOC_CHUNK:
4893 trans = btrfs_join_transaction(root);
4894 if (IS_ERR(trans)) {
4895 ret = PTR_ERR(trans);
4896 break;
4897 }
2ff7e61e 4898 ret = do_chunk_alloc(trans, fs_info,
ea658bad
JB
4899 btrfs_get_alloc_profile(root, 0),
4900 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4901 btrfs_end_transaction(trans);
eecba891 4902 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4903 ret = 0;
4904 break;
96c3f433 4905 case COMMIT_TRANS:
0c9ab349
JM
4906 ret = may_commit_transaction(fs_info, space_info,
4907 orig_bytes, 0);
96c3f433
JB
4908 break;
4909 default:
4910 ret = -ENOSPC;
4911 break;
4912 }
4913
0b246afa 4914 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
f376df2b 4915 orig_bytes, state, ret);
96c3f433
JB
4916 return ret;
4917}
21c7e756
MX
4918
4919static inline u64
4920btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4921 struct btrfs_space_info *space_info)
4922{
957780eb 4923 struct reserve_ticket *ticket;
21c7e756
MX
4924 u64 used;
4925 u64 expected;
957780eb 4926 u64 to_reclaim = 0;
21c7e756 4927
957780eb
JB
4928 list_for_each_entry(ticket, &space_info->tickets, list)
4929 to_reclaim += ticket->bytes;
4930 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4931 to_reclaim += ticket->bytes;
4932 if (to_reclaim)
4933 return to_reclaim;
21c7e756 4934
e0af2484
WX
4935 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4936 if (can_overcommit(root, space_info, to_reclaim,
4937 BTRFS_RESERVE_FLUSH_ALL))
4938 return 0;
4939
21c7e756
MX
4940 used = space_info->bytes_used + space_info->bytes_reserved +
4941 space_info->bytes_pinned + space_info->bytes_readonly +
4942 space_info->bytes_may_use;
ee22184b 4943 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
21c7e756
MX
4944 expected = div_factor_fine(space_info->total_bytes, 95);
4945 else
4946 expected = div_factor_fine(space_info->total_bytes, 90);
4947
4948 if (used > expected)
4949 to_reclaim = used - expected;
4950 else
4951 to_reclaim = 0;
4952 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4953 space_info->bytes_reserved);
21c7e756
MX
4954 return to_reclaim;
4955}
4956
4957static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
87241c2e 4958 struct btrfs_root *root, u64 used)
21c7e756 4959{
0b246afa 4960 struct btrfs_fs_info *fs_info = root->fs_info;
365c5313
JB
4961 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4962
4963 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4964 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4965 return 0;
4966
87241c2e 4967 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
d38b349c
JB
4968 return 0;
4969
0b246afa
JM
4970 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4971 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
4972}
4973
957780eb 4974static void wake_all_tickets(struct list_head *head)
21c7e756 4975{
957780eb 4976 struct reserve_ticket *ticket;
25ce459c 4977
957780eb
JB
4978 while (!list_empty(head)) {
4979 ticket = list_first_entry(head, struct reserve_ticket, list);
4980 list_del_init(&ticket->list);
4981 ticket->error = -ENOSPC;
4982 wake_up(&ticket->wait);
21c7e756 4983 }
21c7e756
MX
4984}
4985
957780eb
JB
4986/*
4987 * This is for normal flushers, we can wait all goddamned day if we want to. We
4988 * will loop and continuously try to flush as long as we are making progress.
4989 * We count progress as clearing off tickets each time we have to loop.
4990 */
21c7e756
MX
4991static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4992{
4993 struct btrfs_fs_info *fs_info;
4994 struct btrfs_space_info *space_info;
4995 u64 to_reclaim;
4996 int flush_state;
957780eb 4997 int commit_cycles = 0;
ce129655 4998 u64 last_tickets_id;
21c7e756
MX
4999
5000 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5001 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5002
957780eb 5003 spin_lock(&space_info->lock);
21c7e756
MX
5004 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5005 space_info);
957780eb
JB
5006 if (!to_reclaim) {
5007 space_info->flush = 0;
5008 spin_unlock(&space_info->lock);
21c7e756 5009 return;
957780eb 5010 }
ce129655 5011 last_tickets_id = space_info->tickets_id;
957780eb 5012 spin_unlock(&space_info->lock);
21c7e756
MX
5013
5014 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb
JB
5015 do {
5016 struct reserve_ticket *ticket;
5017 int ret;
5018
0c9ab349
JM
5019 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5020 flush_state);
957780eb
JB
5021 spin_lock(&space_info->lock);
5022 if (list_empty(&space_info->tickets)) {
5023 space_info->flush = 0;
5024 spin_unlock(&space_info->lock);
5025 return;
5026 }
5027 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5028 space_info);
5029 ticket = list_first_entry(&space_info->tickets,
5030 struct reserve_ticket, list);
ce129655 5031 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5032 flush_state++;
5033 } else {
ce129655 5034 last_tickets_id = space_info->tickets_id;
957780eb
JB
5035 flush_state = FLUSH_DELAYED_ITEMS_NR;
5036 if (commit_cycles)
5037 commit_cycles--;
5038 }
5039
5040 if (flush_state > COMMIT_TRANS) {
5041 commit_cycles++;
5042 if (commit_cycles > 2) {
5043 wake_all_tickets(&space_info->tickets);
5044 space_info->flush = 0;
5045 } else {
5046 flush_state = FLUSH_DELAYED_ITEMS_NR;
5047 }
5048 }
5049 spin_unlock(&space_info->lock);
5050 } while (flush_state <= COMMIT_TRANS);
5051}
5052
5053void btrfs_init_async_reclaim_work(struct work_struct *work)
5054{
5055 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5056}
5057
5058static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5059 struct btrfs_space_info *space_info,
5060 struct reserve_ticket *ticket)
5061{
5062 u64 to_reclaim;
5063 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5064
5065 spin_lock(&space_info->lock);
5066 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5067 space_info);
5068 if (!to_reclaim) {
5069 spin_unlock(&space_info->lock);
5070 return;
5071 }
5072 spin_unlock(&space_info->lock);
5073
21c7e756 5074 do {
0c9ab349
JM
5075 flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5076 flush_state);
21c7e756 5077 flush_state++;
957780eb
JB
5078 spin_lock(&space_info->lock);
5079 if (ticket->bytes == 0) {
5080 spin_unlock(&space_info->lock);
21c7e756 5081 return;
957780eb
JB
5082 }
5083 spin_unlock(&space_info->lock);
5084
5085 /*
5086 * Priority flushers can't wait on delalloc without
5087 * deadlocking.
5088 */
5089 if (flush_state == FLUSH_DELALLOC ||
5090 flush_state == FLUSH_DELALLOC_WAIT)
5091 flush_state = ALLOC_CHUNK;
365c5313 5092 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5093}
5094
957780eb
JB
5095static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5096 struct btrfs_space_info *space_info,
5097 struct reserve_ticket *ticket, u64 orig_bytes)
5098
21c7e756 5099{
957780eb
JB
5100 DEFINE_WAIT(wait);
5101 int ret = 0;
5102
5103 spin_lock(&space_info->lock);
5104 while (ticket->bytes > 0 && ticket->error == 0) {
5105 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5106 if (ret) {
5107 ret = -EINTR;
5108 break;
5109 }
5110 spin_unlock(&space_info->lock);
5111
5112 schedule();
5113
5114 finish_wait(&ticket->wait, &wait);
5115 spin_lock(&space_info->lock);
5116 }
5117 if (!ret)
5118 ret = ticket->error;
5119 if (!list_empty(&ticket->list))
5120 list_del_init(&ticket->list);
5121 if (ticket->bytes && ticket->bytes < orig_bytes) {
5122 u64 num_bytes = orig_bytes - ticket->bytes;
5123 space_info->bytes_may_use -= num_bytes;
5124 trace_btrfs_space_reservation(fs_info, "space_info",
5125 space_info->flags, num_bytes, 0);
5126 }
5127 spin_unlock(&space_info->lock);
5128
5129 return ret;
21c7e756
MX
5130}
5131
4a92b1b8
JB
5132/**
5133 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5134 * @root - the root we're allocating for
957780eb 5135 * @space_info - the space info we want to allocate from
4a92b1b8 5136 * @orig_bytes - the number of bytes we want
48fc7f7e 5137 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5138 *
01327610 5139 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5140 * with the block_rsv. If there is not enough space it will make an attempt to
5141 * flush out space to make room. It will do this by flushing delalloc if
5142 * possible or committing the transaction. If flush is 0 then no attempts to
5143 * regain reservations will be made and this will fail if there is not enough
5144 * space already.
8bb8ab2e 5145 */
957780eb
JB
5146static int __reserve_metadata_bytes(struct btrfs_root *root,
5147 struct btrfs_space_info *space_info,
5148 u64 orig_bytes,
5149 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5150{
0b246afa 5151 struct btrfs_fs_info *fs_info = root->fs_info;
957780eb 5152 struct reserve_ticket ticket;
2bf64758 5153 u64 used;
8bb8ab2e 5154 int ret = 0;
9ed74f2d 5155
957780eb 5156 ASSERT(orig_bytes);
8ca17f0f 5157 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5158
8bb8ab2e 5159 spin_lock(&space_info->lock);
fdb5effd 5160 ret = -ENOSPC;
4136135b 5161 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5162
8bb8ab2e 5163 /*
957780eb
JB
5164 * If we have enough space then hooray, make our reservation and carry
5165 * on. If not see if we can overcommit, and if we can, hooray carry on.
5166 * If not things get more complicated.
8bb8ab2e 5167 */
957780eb
JB
5168 if (used + orig_bytes <= space_info->total_bytes) {
5169 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5170 trace_btrfs_space_reservation(fs_info, "space_info",
5171 space_info->flags, orig_bytes, 1);
957780eb
JB
5172 ret = 0;
5173 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
44734ed1 5174 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5175 trace_btrfs_space_reservation(fs_info, "space_info",
5176 space_info->flags, orig_bytes, 1);
44734ed1 5177 ret = 0;
2bf64758
JB
5178 }
5179
8bb8ab2e 5180 /*
957780eb
JB
5181 * If we couldn't make a reservation then setup our reservation ticket
5182 * and kick the async worker if it's not already running.
08e007d2 5183 *
957780eb
JB
5184 * If we are a priority flusher then we just need to add our ticket to
5185 * the list and we will do our own flushing further down.
8bb8ab2e 5186 */
72bcd99d 5187 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5188 ticket.bytes = orig_bytes;
5189 ticket.error = 0;
5190 init_waitqueue_head(&ticket.wait);
5191 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5192 list_add_tail(&ticket.list, &space_info->tickets);
5193 if (!space_info->flush) {
5194 space_info->flush = 1;
0b246afa 5195 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5196 space_info->flags,
5197 orig_bytes, flush,
5198 "enospc");
957780eb
JB
5199 queue_work(system_unbound_wq,
5200 &root->fs_info->async_reclaim_work);
5201 }
5202 } else {
5203 list_add_tail(&ticket.list,
5204 &space_info->priority_tickets);
5205 }
21c7e756
MX
5206 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5207 used += orig_bytes;
f6acfd50
JB
5208 /*
5209 * We will do the space reservation dance during log replay,
5210 * which means we won't have fs_info->fs_root set, so don't do
5211 * the async reclaim as we will panic.
5212 */
0b246afa 5213 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
87241c2e 5214 need_do_async_reclaim(space_info, root, used) &&
0b246afa
JM
5215 !work_busy(&fs_info->async_reclaim_work)) {
5216 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5217 orig_bytes, flush, "preempt");
21c7e756 5218 queue_work(system_unbound_wq,
0b246afa 5219 &fs_info->async_reclaim_work);
f376df2b 5220 }
8bb8ab2e 5221 }
f0486c68 5222 spin_unlock(&space_info->lock);
08e007d2 5223 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5224 return ret;
f0486c68 5225
957780eb 5226 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5227 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5228 orig_bytes);
08e007d2 5229
957780eb 5230 ret = 0;
0b246afa 5231 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5232 spin_lock(&space_info->lock);
5233 if (ticket.bytes) {
5234 if (ticket.bytes < orig_bytes) {
5235 u64 num_bytes = orig_bytes - ticket.bytes;
5236 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5237 trace_btrfs_space_reservation(fs_info, "space_info",
5238 space_info->flags,
5239 num_bytes, 0);
08e007d2 5240
957780eb
JB
5241 }
5242 list_del_init(&ticket.list);
5243 ret = -ENOSPC;
5244 }
5245 spin_unlock(&space_info->lock);
5246 ASSERT(list_empty(&ticket.list));
5247 return ret;
5248}
8bb8ab2e 5249
957780eb
JB
5250/**
5251 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5252 * @root - the root we're allocating for
5253 * @block_rsv - the block_rsv we're allocating for
5254 * @orig_bytes - the number of bytes we want
5255 * @flush - whether or not we can flush to make our reservation
5256 *
5257 * This will reserve orgi_bytes number of bytes from the space info associated
5258 * with the block_rsv. If there is not enough space it will make an attempt to
5259 * flush out space to make room. It will do this by flushing delalloc if
5260 * possible or committing the transaction. If flush is 0 then no attempts to
5261 * regain reservations will be made and this will fail if there is not enough
5262 * space already.
5263 */
5264static int reserve_metadata_bytes(struct btrfs_root *root,
5265 struct btrfs_block_rsv *block_rsv,
5266 u64 orig_bytes,
5267 enum btrfs_reserve_flush_enum flush)
5268{
0b246afa
JM
5269 struct btrfs_fs_info *fs_info = root->fs_info;
5270 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb
JB
5271 int ret;
5272
5273 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5274 flush);
5d80366e
JB
5275 if (ret == -ENOSPC &&
5276 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5277 if (block_rsv != global_rsv &&
5278 !block_rsv_use_bytes(global_rsv, orig_bytes))
5279 ret = 0;
5280 }
cab45e22 5281 if (ret == -ENOSPC)
0b246afa 5282 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5283 block_rsv->space_info->flags,
5284 orig_bytes, 1);
f0486c68
YZ
5285 return ret;
5286}
5287
79787eaa
JM
5288static struct btrfs_block_rsv *get_block_rsv(
5289 const struct btrfs_trans_handle *trans,
5290 const struct btrfs_root *root)
f0486c68 5291{
0b246afa 5292 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5293 struct btrfs_block_rsv *block_rsv = NULL;
5294
e9cf439f 5295 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5296 (root == fs_info->csum_root && trans->adding_csums) ||
5297 (root == fs_info->uuid_root))
f7a81ea4
SB
5298 block_rsv = trans->block_rsv;
5299
4c13d758 5300 if (!block_rsv)
f0486c68
YZ
5301 block_rsv = root->block_rsv;
5302
5303 if (!block_rsv)
0b246afa 5304 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5305
5306 return block_rsv;
5307}
5308
5309static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5310 u64 num_bytes)
5311{
5312 int ret = -ENOSPC;
5313 spin_lock(&block_rsv->lock);
5314 if (block_rsv->reserved >= num_bytes) {
5315 block_rsv->reserved -= num_bytes;
5316 if (block_rsv->reserved < block_rsv->size)
5317 block_rsv->full = 0;
5318 ret = 0;
5319 }
5320 spin_unlock(&block_rsv->lock);
5321 return ret;
5322}
5323
5324static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5325 u64 num_bytes, int update_size)
5326{
5327 spin_lock(&block_rsv->lock);
5328 block_rsv->reserved += num_bytes;
5329 if (update_size)
5330 block_rsv->size += num_bytes;
5331 else if (block_rsv->reserved >= block_rsv->size)
5332 block_rsv->full = 1;
5333 spin_unlock(&block_rsv->lock);
5334}
5335
d52be818
JB
5336int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5337 struct btrfs_block_rsv *dest, u64 num_bytes,
5338 int min_factor)
5339{
5340 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5341 u64 min_bytes;
5342
5343 if (global_rsv->space_info != dest->space_info)
5344 return -ENOSPC;
5345
5346 spin_lock(&global_rsv->lock);
5347 min_bytes = div_factor(global_rsv->size, min_factor);
5348 if (global_rsv->reserved < min_bytes + num_bytes) {
5349 spin_unlock(&global_rsv->lock);
5350 return -ENOSPC;
5351 }
5352 global_rsv->reserved -= num_bytes;
5353 if (global_rsv->reserved < global_rsv->size)
5354 global_rsv->full = 0;
5355 spin_unlock(&global_rsv->lock);
5356
5357 block_rsv_add_bytes(dest, num_bytes, 1);
5358 return 0;
5359}
5360
957780eb
JB
5361/*
5362 * This is for space we already have accounted in space_info->bytes_may_use, so
5363 * basically when we're returning space from block_rsv's.
5364 */
5365static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5366 struct btrfs_space_info *space_info,
5367 u64 num_bytes)
5368{
5369 struct reserve_ticket *ticket;
5370 struct list_head *head;
5371 u64 used;
5372 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5373 bool check_overcommit = false;
5374
5375 spin_lock(&space_info->lock);
5376 head = &space_info->priority_tickets;
5377
5378 /*
5379 * If we are over our limit then we need to check and see if we can
5380 * overcommit, and if we can't then we just need to free up our space
5381 * and not satisfy any requests.
5382 */
5383 used = space_info->bytes_used + space_info->bytes_reserved +
5384 space_info->bytes_pinned + space_info->bytes_readonly +
5385 space_info->bytes_may_use;
5386 if (used - num_bytes >= space_info->total_bytes)
5387 check_overcommit = true;
5388again:
5389 while (!list_empty(head) && num_bytes) {
5390 ticket = list_first_entry(head, struct reserve_ticket,
5391 list);
5392 /*
5393 * We use 0 bytes because this space is already reserved, so
5394 * adding the ticket space would be a double count.
5395 */
5396 if (check_overcommit &&
5397 !can_overcommit(fs_info->extent_root, space_info, 0,
5398 flush))
5399 break;
5400 if (num_bytes >= ticket->bytes) {
5401 list_del_init(&ticket->list);
5402 num_bytes -= ticket->bytes;
5403 ticket->bytes = 0;
ce129655 5404 space_info->tickets_id++;
957780eb
JB
5405 wake_up(&ticket->wait);
5406 } else {
5407 ticket->bytes -= num_bytes;
5408 num_bytes = 0;
5409 }
5410 }
5411
5412 if (num_bytes && head == &space_info->priority_tickets) {
5413 head = &space_info->tickets;
5414 flush = BTRFS_RESERVE_FLUSH_ALL;
5415 goto again;
5416 }
5417 space_info->bytes_may_use -= num_bytes;
5418 trace_btrfs_space_reservation(fs_info, "space_info",
5419 space_info->flags, num_bytes, 0);
5420 spin_unlock(&space_info->lock);
5421}
5422
5423/*
5424 * This is for newly allocated space that isn't accounted in
5425 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5426 * we use this helper.
5427 */
5428static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5429 struct btrfs_space_info *space_info,
5430 u64 num_bytes)
5431{
5432 struct reserve_ticket *ticket;
5433 struct list_head *head = &space_info->priority_tickets;
5434
5435again:
5436 while (!list_empty(head) && num_bytes) {
5437 ticket = list_first_entry(head, struct reserve_ticket,
5438 list);
5439 if (num_bytes >= ticket->bytes) {
5440 trace_btrfs_space_reservation(fs_info, "space_info",
5441 space_info->flags,
5442 ticket->bytes, 1);
5443 list_del_init(&ticket->list);
5444 num_bytes -= ticket->bytes;
5445 space_info->bytes_may_use += ticket->bytes;
5446 ticket->bytes = 0;
ce129655 5447 space_info->tickets_id++;
957780eb
JB
5448 wake_up(&ticket->wait);
5449 } else {
5450 trace_btrfs_space_reservation(fs_info, "space_info",
5451 space_info->flags,
5452 num_bytes, 1);
5453 space_info->bytes_may_use += num_bytes;
5454 ticket->bytes -= num_bytes;
5455 num_bytes = 0;
5456 }
5457 }
5458
5459 if (num_bytes && head == &space_info->priority_tickets) {
5460 head = &space_info->tickets;
5461 goto again;
5462 }
5463}
5464
8c2a3ca2
JB
5465static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5466 struct btrfs_block_rsv *block_rsv,
62a45b60 5467 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5468{
5469 struct btrfs_space_info *space_info = block_rsv->space_info;
5470
5471 spin_lock(&block_rsv->lock);
5472 if (num_bytes == (u64)-1)
5473 num_bytes = block_rsv->size;
5474 block_rsv->size -= num_bytes;
5475 if (block_rsv->reserved >= block_rsv->size) {
5476 num_bytes = block_rsv->reserved - block_rsv->size;
5477 block_rsv->reserved = block_rsv->size;
5478 block_rsv->full = 1;
5479 } else {
5480 num_bytes = 0;
5481 }
5482 spin_unlock(&block_rsv->lock);
5483
5484 if (num_bytes > 0) {
5485 if (dest) {
e9e22899
JB
5486 spin_lock(&dest->lock);
5487 if (!dest->full) {
5488 u64 bytes_to_add;
5489
5490 bytes_to_add = dest->size - dest->reserved;
5491 bytes_to_add = min(num_bytes, bytes_to_add);
5492 dest->reserved += bytes_to_add;
5493 if (dest->reserved >= dest->size)
5494 dest->full = 1;
5495 num_bytes -= bytes_to_add;
5496 }
5497 spin_unlock(&dest->lock);
5498 }
957780eb
JB
5499 if (num_bytes)
5500 space_info_add_old_bytes(fs_info, space_info,
5501 num_bytes);
9ed74f2d 5502 }
f0486c68 5503}
4e06bdd6 5504
25d609f8
JB
5505int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5506 struct btrfs_block_rsv *dst, u64 num_bytes,
5507 int update_size)
f0486c68
YZ
5508{
5509 int ret;
9ed74f2d 5510
f0486c68
YZ
5511 ret = block_rsv_use_bytes(src, num_bytes);
5512 if (ret)
5513 return ret;
9ed74f2d 5514
25d609f8 5515 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5516 return 0;
5517}
5518
66d8f3dd 5519void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5520{
f0486c68
YZ
5521 memset(rsv, 0, sizeof(*rsv));
5522 spin_lock_init(&rsv->lock);
66d8f3dd 5523 rsv->type = type;
f0486c68
YZ
5524}
5525
2ff7e61e 5526struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5527 unsigned short type)
f0486c68
YZ
5528{
5529 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5530
f0486c68
YZ
5531 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5532 if (!block_rsv)
5533 return NULL;
9ed74f2d 5534
66d8f3dd 5535 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5536 block_rsv->space_info = __find_space_info(fs_info,
5537 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5538 return block_rsv;
5539}
9ed74f2d 5540
2ff7e61e 5541void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5542 struct btrfs_block_rsv *rsv)
5543{
2aaa6655
JB
5544 if (!rsv)
5545 return;
2ff7e61e 5546 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5547 kfree(rsv);
9ed74f2d
JB
5548}
5549
cdfb080e
CM
5550void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5551{
5552 kfree(rsv);
5553}
5554
08e007d2
MX
5555int btrfs_block_rsv_add(struct btrfs_root *root,
5556 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5557 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5558{
f0486c68 5559 int ret;
9ed74f2d 5560
f0486c68
YZ
5561 if (num_bytes == 0)
5562 return 0;
8bb8ab2e 5563
61b520a9 5564 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5565 if (!ret) {
5566 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5567 return 0;
5568 }
9ed74f2d 5569
f0486c68 5570 return ret;
f0486c68 5571}
9ed74f2d 5572
2ff7e61e 5573int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5574{
5575 u64 num_bytes = 0;
f0486c68 5576 int ret = -ENOSPC;
9ed74f2d 5577
f0486c68
YZ
5578 if (!block_rsv)
5579 return 0;
9ed74f2d 5580
f0486c68 5581 spin_lock(&block_rsv->lock);
36ba022a
JB
5582 num_bytes = div_factor(block_rsv->size, min_factor);
5583 if (block_rsv->reserved >= num_bytes)
5584 ret = 0;
5585 spin_unlock(&block_rsv->lock);
9ed74f2d 5586
36ba022a
JB
5587 return ret;
5588}
5589
08e007d2
MX
5590int btrfs_block_rsv_refill(struct btrfs_root *root,
5591 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5592 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5593{
5594 u64 num_bytes = 0;
5595 int ret = -ENOSPC;
5596
5597 if (!block_rsv)
5598 return 0;
5599
5600 spin_lock(&block_rsv->lock);
5601 num_bytes = min_reserved;
13553e52 5602 if (block_rsv->reserved >= num_bytes)
f0486c68 5603 ret = 0;
13553e52 5604 else
f0486c68 5605 num_bytes -= block_rsv->reserved;
f0486c68 5606 spin_unlock(&block_rsv->lock);
13553e52 5607
f0486c68
YZ
5608 if (!ret)
5609 return 0;
5610
aa38a711 5611 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5612 if (!ret) {
5613 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5614 return 0;
6a63209f 5615 }
9ed74f2d 5616
13553e52 5617 return ret;
f0486c68
YZ
5618}
5619
2ff7e61e 5620void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5621 struct btrfs_block_rsv *block_rsv,
5622 u64 num_bytes)
5623{
0b246afa
JM
5624 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5625
17504584 5626 if (global_rsv == block_rsv ||
f0486c68
YZ
5627 block_rsv->space_info != global_rsv->space_info)
5628 global_rsv = NULL;
0b246afa 5629 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
6a63209f
JB
5630}
5631
8929ecfa
YZ
5632static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5633{
5634 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5635 struct btrfs_space_info *sinfo = block_rsv->space_info;
5636 u64 num_bytes;
6a63209f 5637
ae2e4728
JB
5638 /*
5639 * The global block rsv is based on the size of the extent tree, the
5640 * checksum tree and the root tree. If the fs is empty we want to set
5641 * it to a minimal amount for safety.
5642 */
5643 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5644 btrfs_root_used(&fs_info->csum_root->root_item) +
5645 btrfs_root_used(&fs_info->tree_root->root_item);
5646 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5647
8929ecfa 5648 spin_lock(&sinfo->lock);
1f699d38 5649 spin_lock(&block_rsv->lock);
4e06bdd6 5650
ee22184b 5651 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5652
fb4b10e5 5653 if (block_rsv->reserved < block_rsv->size) {
4136135b 5654 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5655 if (sinfo->total_bytes > num_bytes) {
5656 num_bytes = sinfo->total_bytes - num_bytes;
5657 num_bytes = min(num_bytes,
5658 block_rsv->size - block_rsv->reserved);
5659 block_rsv->reserved += num_bytes;
5660 sinfo->bytes_may_use += num_bytes;
5661 trace_btrfs_space_reservation(fs_info, "space_info",
5662 sinfo->flags, num_bytes,
5663 1);
5664 }
5665 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5666 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5667 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5668 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5669 sinfo->flags, num_bytes, 0);
8929ecfa 5670 block_rsv->reserved = block_rsv->size;
8929ecfa 5671 }
182608c8 5672
fb4b10e5
JB
5673 if (block_rsv->reserved == block_rsv->size)
5674 block_rsv->full = 1;
5675 else
5676 block_rsv->full = 0;
5677
8929ecfa 5678 spin_unlock(&block_rsv->lock);
1f699d38 5679 spin_unlock(&sinfo->lock);
6a63209f
JB
5680}
5681
f0486c68 5682static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5683{
f0486c68 5684 struct btrfs_space_info *space_info;
6a63209f 5685
f0486c68
YZ
5686 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5687 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5688
f0486c68 5689 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5690 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5691 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5692 fs_info->trans_block_rsv.space_info = space_info;
5693 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5694 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5695
8929ecfa
YZ
5696 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5697 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5698 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5699 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5700 if (fs_info->quota_root)
5701 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5702 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5703
8929ecfa 5704 update_global_block_rsv(fs_info);
6a63209f
JB
5705}
5706
8929ecfa 5707static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5708{
8c2a3ca2
JB
5709 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5710 (u64)-1);
8929ecfa
YZ
5711 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5712 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5713 WARN_ON(fs_info->trans_block_rsv.size > 0);
5714 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5715 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5716 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5717 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5718 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5719}
5720
a22285a6 5721void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
2ff7e61e 5722 struct btrfs_fs_info *fs_info)
6a63209f 5723{
0e721106
JB
5724 if (!trans->block_rsv)
5725 return;
5726
a22285a6
YZ
5727 if (!trans->bytes_reserved)
5728 return;
6a63209f 5729
0b246afa 5730 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 5731 trans->transid, trans->bytes_reserved, 0);
2ff7e61e
JM
5732 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5733 trans->bytes_reserved);
a22285a6
YZ
5734 trans->bytes_reserved = 0;
5735}
6a63209f 5736
4fbcdf66
FM
5737/*
5738 * To be called after all the new block groups attached to the transaction
5739 * handle have been created (btrfs_create_pending_block_groups()).
5740 */
5741void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5742{
64b63580 5743 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5744
5745 if (!trans->chunk_bytes_reserved)
5746 return;
5747
5748 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5749
5750 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5751 trans->chunk_bytes_reserved);
5752 trans->chunk_bytes_reserved = 0;
5753}
5754
79787eaa 5755/* Can only return 0 or -ENOSPC */
d68fc57b 5756int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
8ed7a2a0 5757 struct btrfs_inode *inode)
d68fc57b 5758{
8ed7a2a0
NB
5759 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5760 struct btrfs_root *root = inode->root;
40acc3ee
JB
5761 /*
5762 * We always use trans->block_rsv here as we will have reserved space
5763 * for our orphan when starting the transaction, using get_block_rsv()
5764 * here will sometimes make us choose the wrong block rsv as we could be
5765 * doing a reloc inode for a non refcounted root.
5766 */
5767 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5768 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5769
5770 /*
fcb80c2a
JB
5771 * We need to hold space in order to delete our orphan item once we've
5772 * added it, so this takes the reservation so we can release it later
5773 * when we are truly done with the orphan item.
d68fc57b 5774 */
0b246afa
JM
5775 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5776
8ed7a2a0
NB
5777 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5778 num_bytes, 1);
25d609f8 5779 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5780}
5781
703b391a 5782void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
97e728d4 5783{
703b391a
NB
5784 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5785 struct btrfs_root *root = inode->root;
0b246afa
JM
5786 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5787
703b391a
NB
5788 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5789 num_bytes, 0);
2ff7e61e 5790 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
d68fc57b 5791}
97e728d4 5792
d5c12070
MX
5793/*
5794 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5795 * root: the root of the parent directory
5796 * rsv: block reservation
5797 * items: the number of items that we need do reservation
5798 * qgroup_reserved: used to return the reserved size in qgroup
5799 *
5800 * This function is used to reserve the space for snapshot/subvolume
5801 * creation and deletion. Those operations are different with the
5802 * common file/directory operations, they change two fs/file trees
5803 * and root tree, the number of items that the qgroup reserves is
5804 * different with the free space reservation. So we can not use
01327610 5805 * the space reservation mechanism in start_transaction().
d5c12070
MX
5806 */
5807int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5808 struct btrfs_block_rsv *rsv,
5809 int items,
ee3441b4
JM
5810 u64 *qgroup_reserved,
5811 bool use_global_rsv)
a22285a6 5812{
d5c12070
MX
5813 u64 num_bytes;
5814 int ret;
0b246afa
JM
5815 struct btrfs_fs_info *fs_info = root->fs_info;
5816 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5817
0b246afa 5818 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5819 /* One for parent inode, two for dir entries */
0b246afa 5820 num_bytes = 3 * fs_info->nodesize;
003d7c59 5821 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
d5c12070
MX
5822 if (ret)
5823 return ret;
5824 } else {
5825 num_bytes = 0;
5826 }
5827
5828 *qgroup_reserved = num_bytes;
5829
0b246afa
JM
5830 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5831 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
5832 BTRFS_BLOCK_GROUP_METADATA);
5833 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5834 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5835
5836 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5837 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5838
7174109c
QW
5839 if (ret && *qgroup_reserved)
5840 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5841
5842 return ret;
5843}
5844
2ff7e61e 5845void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 5846 struct btrfs_block_rsv *rsv)
d5c12070 5847{
2ff7e61e 5848 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
5849}
5850
7709cde3
JB
5851/**
5852 * drop_outstanding_extent - drop an outstanding extent
5853 * @inode: the inode we're dropping the extent for
01327610 5854 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5855 *
5856 * This is called when we are freeing up an outstanding extent, either called
5857 * after an error or after an extent is written. This will return the number of
5858 * reserved extents that need to be freed. This must be called with
5859 * BTRFS_I(inode)->lock held.
5860 */
baa3ba39
NB
5861static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5862 u64 num_bytes)
9e0baf60 5863{
7fd2ae21 5864 unsigned drop_inode_space = 0;
9e0baf60 5865 unsigned dropped_extents = 0;
823bb20a 5866 unsigned num_extents;
9e0baf60 5867
823bb20a 5868 num_extents = count_max_extents(num_bytes);
dcab6a3b 5869 ASSERT(num_extents);
baa3ba39
NB
5870 ASSERT(inode->outstanding_extents >= num_extents);
5871 inode->outstanding_extents -= num_extents;
9e0baf60 5872
baa3ba39 5873 if (inode->outstanding_extents == 0 &&
72ac3c0d 5874 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
baa3ba39 5875 &inode->runtime_flags))
7fd2ae21 5876 drop_inode_space = 1;
7fd2ae21 5877
9e0baf60 5878 /*
01327610 5879 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5880 * reserved then we need to leave the reserved extents count alone.
5881 */
baa3ba39 5882 if (inode->outstanding_extents >= inode->reserved_extents)
7fd2ae21 5883 return drop_inode_space;
9e0baf60 5884
baa3ba39
NB
5885 dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5886 inode->reserved_extents -= dropped_extents;
7fd2ae21 5887 return dropped_extents + drop_inode_space;
9e0baf60
JB
5888}
5889
7709cde3 5890/**
01327610
NS
5891 * calc_csum_metadata_size - return the amount of metadata space that must be
5892 * reserved/freed for the given bytes.
7709cde3
JB
5893 * @inode: the inode we're manipulating
5894 * @num_bytes: the number of bytes in question
5895 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5896 *
5897 * This adjusts the number of csum_bytes in the inode and then returns the
5898 * correct amount of metadata that must either be reserved or freed. We
5899 * calculate how many checksums we can fit into one leaf and then divide the
5900 * number of bytes that will need to be checksumed by this value to figure out
5901 * how many checksums will be required. If we are adding bytes then the number
5902 * may go up and we will return the number of additional bytes that must be
5903 * reserved. If it is going down we will return the number of bytes that must
5904 * be freed.
5905 *
5906 * This must be called with BTRFS_I(inode)->lock held.
5907 */
0e6bf9b1 5908static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
7709cde3 5909 int reserve)
6324fbf3 5910{
0e6bf9b1 5911 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1262133b 5912 u64 old_csums, num_csums;
7709cde3 5913
0e6bf9b1 5914 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
7709cde3
JB
5915 return 0;
5916
0e6bf9b1 5917 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
7709cde3 5918 if (reserve)
0e6bf9b1 5919 inode->csum_bytes += num_bytes;
7709cde3 5920 else
0e6bf9b1
NB
5921 inode->csum_bytes -= num_bytes;
5922 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
7709cde3
JB
5923
5924 /* No change, no need to reserve more */
5925 if (old_csums == num_csums)
5926 return 0;
5927
5928 if (reserve)
0b246afa 5929 return btrfs_calc_trans_metadata_size(fs_info,
7709cde3
JB
5930 num_csums - old_csums);
5931
0b246afa 5932 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
0ca1f7ce 5933}
c146afad 5934
9f3db423 5935int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 5936{
9f3db423
NB
5937 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5938 struct btrfs_root *root = inode->root;
0b246afa 5939 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
9e0baf60 5940 u64 to_reserve = 0;
660d3f6c 5941 u64 csum_bytes;
823bb20a 5942 unsigned nr_extents;
08e007d2 5943 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5944 int ret = 0;
c64c2bd8 5945 bool delalloc_lock = true;
88e081bf
WS
5946 u64 to_free = 0;
5947 unsigned dropped;
48c3d480 5948 bool release_extra = false;
6324fbf3 5949
c64c2bd8
JB
5950 /* If we are a free space inode we need to not flush since we will be in
5951 * the middle of a transaction commit. We also don't need the delalloc
5952 * mutex since we won't race with anybody. We need this mostly to make
5953 * lockdep shut its filthy mouth.
bac357dc
JB
5954 *
5955 * If we have a transaction open (can happen if we call truncate_block
5956 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
5957 */
5958 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5959 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 5960 delalloc_lock = false;
bac357dc
JB
5961 } else if (current->journal_info) {
5962 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c64c2bd8 5963 }
c09544e0 5964
08e007d2 5965 if (flush != BTRFS_RESERVE_NO_FLUSH &&
0b246afa 5966 btrfs_transaction_in_commit(fs_info))
0ca1f7ce 5967 schedule_timeout(1);
ec44a35c 5968
c64c2bd8 5969 if (delalloc_lock)
9f3db423 5970 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 5971
0b246afa 5972 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
8bb8ab2e 5973
9f3db423 5974 spin_lock(&inode->lock);
823bb20a 5975 nr_extents = count_max_extents(num_bytes);
9f3db423 5976 inode->outstanding_extents += nr_extents;
9e0baf60 5977
48c3d480 5978 nr_extents = 0;
9f3db423
NB
5979 if (inode->outstanding_extents > inode->reserved_extents)
5980 nr_extents += inode->outstanding_extents -
5981 inode->reserved_extents;
57a45ced 5982
48c3d480 5983 /* We always want to reserve a slot for updating the inode. */
0b246afa 5984 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
7709cde3 5985 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
9f3db423
NB
5986 csum_bytes = inode->csum_bytes;
5987 spin_unlock(&inode->lock);
57a45ced 5988
0b246afa 5989 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
7174109c 5990 ret = btrfs_qgroup_reserve_meta(root,
003d7c59 5991 nr_extents * fs_info->nodesize, true);
88e081bf
WS
5992 if (ret)
5993 goto out_fail;
5994 }
c5567237 5995
48c3d480 5996 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
88e081bf 5997 if (unlikely(ret)) {
da17066c 5998 btrfs_qgroup_free_meta(root,
0b246afa 5999 nr_extents * fs_info->nodesize);
88e081bf 6000 goto out_fail;
9e0baf60 6001 }
25179201 6002
9f3db423 6003 spin_lock(&inode->lock);
48c3d480 6004 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
9f3db423 6005 &inode->runtime_flags)) {
0b246afa 6006 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
48c3d480 6007 release_extra = true;
660d3f6c 6008 }
9f3db423
NB
6009 inode->reserved_extents += nr_extents;
6010 spin_unlock(&inode->lock);
c64c2bd8
JB
6011
6012 if (delalloc_lock)
9f3db423 6013 mutex_unlock(&inode->delalloc_mutex);
660d3f6c 6014
8c2a3ca2 6015 if (to_reserve)
0b246afa 6016 trace_btrfs_space_reservation(fs_info, "delalloc",
9f3db423 6017 btrfs_ino(inode), to_reserve, 1);
48c3d480 6018 if (release_extra)
2ff7e61e 6019 btrfs_block_rsv_release(fs_info, block_rsv,
0b246afa 6020 btrfs_calc_trans_metadata_size(fs_info, 1));
0ca1f7ce 6021 return 0;
88e081bf
WS
6022
6023out_fail:
9f3db423 6024 spin_lock(&inode->lock);
dcab6a3b 6025 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
6026 /*
6027 * If the inodes csum_bytes is the same as the original
6028 * csum_bytes then we know we haven't raced with any free()ers
6029 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 6030 */
9f3db423 6031 if (inode->csum_bytes == csum_bytes) {
88e081bf 6032 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7 6033 } else {
9f3db423 6034 u64 orig_csum_bytes = inode->csum_bytes;
f4881bc7
JB
6035 u64 bytes;
6036
6037 /*
6038 * This is tricky, but first we need to figure out how much we
01327610 6039 * freed from any free-ers that occurred during this
f4881bc7
JB
6040 * reservation, so we reset ->csum_bytes to the csum_bytes
6041 * before we dropped our lock, and then call the free for the
6042 * number of bytes that were freed while we were trying our
6043 * reservation.
6044 */
9f3db423
NB
6045 bytes = csum_bytes - inode->csum_bytes;
6046 inode->csum_bytes = csum_bytes;
f4881bc7
JB
6047 to_free = calc_csum_metadata_size(inode, bytes, 0);
6048
6049
6050 /*
6051 * Now we need to see how much we would have freed had we not
6052 * been making this reservation and our ->csum_bytes were not
6053 * artificially inflated.
6054 */
9f3db423 6055 inode->csum_bytes = csum_bytes - num_bytes;
f4881bc7
JB
6056 bytes = csum_bytes - orig_csum_bytes;
6057 bytes = calc_csum_metadata_size(inode, bytes, 0);
6058
6059 /*
6060 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 6061 * more than to_free then we would have freed more space had we
f4881bc7
JB
6062 * not had an artificially high ->csum_bytes, so we need to free
6063 * the remainder. If bytes is the same or less then we don't
6064 * need to do anything, the other free-ers did the correct
6065 * thing.
6066 */
9f3db423 6067 inode->csum_bytes = orig_csum_bytes - num_bytes;
f4881bc7
JB
6068 if (bytes > to_free)
6069 to_free = bytes - to_free;
6070 else
6071 to_free = 0;
6072 }
9f3db423 6073 spin_unlock(&inode->lock);
e2d1f923 6074 if (dropped)
0b246afa 6075 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
88e081bf
WS
6076
6077 if (to_free) {
2ff7e61e 6078 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
0b246afa 6079 trace_btrfs_space_reservation(fs_info, "delalloc",
9f3db423 6080 btrfs_ino(inode), to_free, 0);
88e081bf
WS
6081 }
6082 if (delalloc_lock)
9f3db423 6083 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6084 return ret;
0ca1f7ce
YZ
6085}
6086
7709cde3
JB
6087/**
6088 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6089 * @inode: the inode to release the reservation for
6090 * @num_bytes: the number of bytes we're releasing
6091 *
6092 * This will release the metadata reservation for an inode. This can be called
6093 * once we complete IO for a given set of bytes to release their metadata
6094 * reservations.
6095 */
691fa059 6096void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6097{
691fa059 6098 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
9e0baf60
JB
6099 u64 to_free = 0;
6100 unsigned dropped;
0ca1f7ce 6101
0b246afa 6102 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6103 spin_lock(&inode->lock);
dcab6a3b 6104 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 6105
0934856d
MX
6106 if (num_bytes)
6107 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
691fa059 6108 spin_unlock(&inode->lock);
9e0baf60 6109 if (dropped > 0)
0b246afa 6110 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
0ca1f7ce 6111
0b246afa 6112 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6113 return;
6114
691fa059
NB
6115 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6116 to_free, 0);
c5567237 6117
2ff7e61e 6118 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
0ca1f7ce
YZ
6119}
6120
1ada3a62 6121/**
7cf5b976 6122 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6123 * delalloc
6124 * @inode: inode we're writing to
6125 * @start: start range we are writing to
6126 * @len: how long the range we are writing to
6127 *
1ada3a62
QW
6128 * This will do the following things
6129 *
6130 * o reserve space in data space info for num bytes
6131 * and reserve precious corresponding qgroup space
6132 * (Done in check_data_free_space)
6133 *
6134 * o reserve space for metadata space, based on the number of outstanding
6135 * extents and how much csums will be needed
6136 * also reserve metadata space in a per root over-reserve method.
6137 * o add to the inodes->delalloc_bytes
6138 * o add it to the fs_info's delalloc inodes list.
6139 * (Above 3 all done in delalloc_reserve_metadata)
6140 *
6141 * Return 0 for success
6142 * Return <0 for error(-ENOSPC or -EQUOT)
6143 */
7cf5b976 6144int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6145{
6146 int ret;
6147
7cf5b976 6148 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
6149 if (ret < 0)
6150 return ret;
9f3db423 6151 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6152 if (ret < 0)
7cf5b976 6153 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
6154 return ret;
6155}
6156
7709cde3 6157/**
7cf5b976 6158 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6159 * @inode: inode we're releasing space for
6160 * @start: start position of the space already reserved
6161 * @len: the len of the space already reserved
6162 *
6163 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6164 * called in the case that we don't need the metadata AND data reservations
6165 * anymore. So if there is an error or we insert an inline extent.
6166 *
6167 * This function will release the metadata space that was not used and will
6168 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6169 * list if there are no delalloc bytes left.
6170 * Also it will handle the qgroup reserved space.
6171 */
7cf5b976 6172void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62 6173{
691fa059 6174 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
7cf5b976 6175 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
6176}
6177
ce93ec54 6178static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6179 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6180 u64 num_bytes, int alloc)
9078a3e1 6181{
0af3d00b 6182 struct btrfs_block_group_cache *cache = NULL;
db94535d 6183 u64 total = num_bytes;
9078a3e1 6184 u64 old_val;
db94535d 6185 u64 byte_in_group;
0af3d00b 6186 int factor;
3e1ad54f 6187
5d4f98a2 6188 /* block accounting for super block */
eb73c1b7 6189 spin_lock(&info->delalloc_root_lock);
6c41761f 6190 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6191 if (alloc)
6192 old_val += num_bytes;
6193 else
6194 old_val -= num_bytes;
6c41761f 6195 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6196 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6197
d397712b 6198 while (total) {
db94535d 6199 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6200 if (!cache)
79787eaa 6201 return -ENOENT;
b742bb82
YZ
6202 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6203 BTRFS_BLOCK_GROUP_RAID1 |
6204 BTRFS_BLOCK_GROUP_RAID10))
6205 factor = 2;
6206 else
6207 factor = 1;
9d66e233
JB
6208 /*
6209 * If this block group has free space cache written out, we
6210 * need to make sure to load it if we are removing space. This
6211 * is because we need the unpinning stage to actually add the
6212 * space back to the block group, otherwise we will leak space.
6213 */
6214 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6215 cache_block_group(cache, 1);
0af3d00b 6216
db94535d
CM
6217 byte_in_group = bytenr - cache->key.objectid;
6218 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6219
25179201 6220 spin_lock(&cache->space_info->lock);
c286ac48 6221 spin_lock(&cache->lock);
0af3d00b 6222
6202df69 6223 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6224 cache->disk_cache_state < BTRFS_DC_CLEAR)
6225 cache->disk_cache_state = BTRFS_DC_CLEAR;
6226
9078a3e1 6227 old_val = btrfs_block_group_used(&cache->item);
db94535d 6228 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6229 if (alloc) {
db94535d 6230 old_val += num_bytes;
11833d66
YZ
6231 btrfs_set_block_group_used(&cache->item, old_val);
6232 cache->reserved -= num_bytes;
11833d66 6233 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6234 cache->space_info->bytes_used += num_bytes;
6235 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6236 spin_unlock(&cache->lock);
25179201 6237 spin_unlock(&cache->space_info->lock);
cd1bc465 6238 } else {
db94535d 6239 old_val -= num_bytes;
ae0ab003
FM
6240 btrfs_set_block_group_used(&cache->item, old_val);
6241 cache->pinned += num_bytes;
6242 cache->space_info->bytes_pinned += num_bytes;
6243 cache->space_info->bytes_used -= num_bytes;
6244 cache->space_info->disk_used -= num_bytes * factor;
6245 spin_unlock(&cache->lock);
6246 spin_unlock(&cache->space_info->lock);
47ab2a6c 6247
0b246afa 6248 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6249 cache->space_info->flags,
6250 num_bytes, 1);
ae0ab003
FM
6251 set_extent_dirty(info->pinned_extents,
6252 bytenr, bytenr + num_bytes - 1,
6253 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6254 }
1bbc621e
CM
6255
6256 spin_lock(&trans->transaction->dirty_bgs_lock);
6257 if (list_empty(&cache->dirty_list)) {
6258 list_add_tail(&cache->dirty_list,
6259 &trans->transaction->dirty_bgs);
6260 trans->transaction->num_dirty_bgs++;
6261 btrfs_get_block_group(cache);
6262 }
6263 spin_unlock(&trans->transaction->dirty_bgs_lock);
6264
036a9348
FM
6265 /*
6266 * No longer have used bytes in this block group, queue it for
6267 * deletion. We do this after adding the block group to the
6268 * dirty list to avoid races between cleaner kthread and space
6269 * cache writeout.
6270 */
6271 if (!alloc && old_val == 0) {
6272 spin_lock(&info->unused_bgs_lock);
6273 if (list_empty(&cache->bg_list)) {
6274 btrfs_get_block_group(cache);
6275 list_add_tail(&cache->bg_list,
6276 &info->unused_bgs);
6277 }
6278 spin_unlock(&info->unused_bgs_lock);
6279 }
6280
fa9c0d79 6281 btrfs_put_block_group(cache);
db94535d
CM
6282 total -= num_bytes;
6283 bytenr += num_bytes;
9078a3e1
CM
6284 }
6285 return 0;
6286}
6324fbf3 6287
2ff7e61e 6288static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6289{
0f9dd46c 6290 struct btrfs_block_group_cache *cache;
d2fb3437 6291 u64 bytenr;
0f9dd46c 6292
0b246afa
JM
6293 spin_lock(&fs_info->block_group_cache_lock);
6294 bytenr = fs_info->first_logical_byte;
6295 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6296
6297 if (bytenr < (u64)-1)
6298 return bytenr;
6299
0b246afa 6300 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6301 if (!cache)
a061fc8d 6302 return 0;
0f9dd46c 6303
d2fb3437 6304 bytenr = cache->key.objectid;
fa9c0d79 6305 btrfs_put_block_group(cache);
d2fb3437
YZ
6306
6307 return bytenr;
a061fc8d
CM
6308}
6309
2ff7e61e 6310static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6311 struct btrfs_block_group_cache *cache,
6312 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6313{
11833d66
YZ
6314 spin_lock(&cache->space_info->lock);
6315 spin_lock(&cache->lock);
6316 cache->pinned += num_bytes;
6317 cache->space_info->bytes_pinned += num_bytes;
6318 if (reserved) {
6319 cache->reserved -= num_bytes;
6320 cache->space_info->bytes_reserved -= num_bytes;
6321 }
6322 spin_unlock(&cache->lock);
6323 spin_unlock(&cache->space_info->lock);
68b38550 6324
0b246afa 6325 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6326 cache->space_info->flags, num_bytes, 1);
0b246afa 6327 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6328 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6329 return 0;
6330}
68b38550 6331
f0486c68
YZ
6332/*
6333 * this function must be called within transaction
6334 */
2ff7e61e 6335int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6336 u64 bytenr, u64 num_bytes, int reserved)
6337{
6338 struct btrfs_block_group_cache *cache;
68b38550 6339
0b246afa 6340 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6341 BUG_ON(!cache); /* Logic error */
f0486c68 6342
2ff7e61e 6343 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6344
6345 btrfs_put_block_group(cache);
11833d66
YZ
6346 return 0;
6347}
6348
f0486c68 6349/*
e688b725
CM
6350 * this function must be called within transaction
6351 */
2ff7e61e 6352int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6353 u64 bytenr, u64 num_bytes)
6354{
6355 struct btrfs_block_group_cache *cache;
b50c6e25 6356 int ret;
e688b725 6357
0b246afa 6358 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6359 if (!cache)
6360 return -EINVAL;
e688b725
CM
6361
6362 /*
6363 * pull in the free space cache (if any) so that our pin
6364 * removes the free space from the cache. We have load_only set
6365 * to one because the slow code to read in the free extents does check
6366 * the pinned extents.
6367 */
f6373bf3 6368 cache_block_group(cache, 1);
e688b725 6369
2ff7e61e 6370 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6371
6372 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6373 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6374 btrfs_put_block_group(cache);
b50c6e25 6375 return ret;
e688b725
CM
6376}
6377
2ff7e61e
JM
6378static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6379 u64 start, u64 num_bytes)
8c2a1a30
JB
6380{
6381 int ret;
6382 struct btrfs_block_group_cache *block_group;
6383 struct btrfs_caching_control *caching_ctl;
6384
0b246afa 6385 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6386 if (!block_group)
6387 return -EINVAL;
6388
6389 cache_block_group(block_group, 0);
6390 caching_ctl = get_caching_control(block_group);
6391
6392 if (!caching_ctl) {
6393 /* Logic error */
6394 BUG_ON(!block_group_cache_done(block_group));
6395 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6396 } else {
6397 mutex_lock(&caching_ctl->mutex);
6398
6399 if (start >= caching_ctl->progress) {
2ff7e61e 6400 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6401 } else if (start + num_bytes <= caching_ctl->progress) {
6402 ret = btrfs_remove_free_space(block_group,
6403 start, num_bytes);
6404 } else {
6405 num_bytes = caching_ctl->progress - start;
6406 ret = btrfs_remove_free_space(block_group,
6407 start, num_bytes);
6408 if (ret)
6409 goto out_lock;
6410
6411 num_bytes = (start + num_bytes) -
6412 caching_ctl->progress;
6413 start = caching_ctl->progress;
2ff7e61e 6414 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6415 }
6416out_lock:
6417 mutex_unlock(&caching_ctl->mutex);
6418 put_caching_control(caching_ctl);
6419 }
6420 btrfs_put_block_group(block_group);
6421 return ret;
6422}
6423
2ff7e61e 6424int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6425 struct extent_buffer *eb)
6426{
6427 struct btrfs_file_extent_item *item;
6428 struct btrfs_key key;
6429 int found_type;
6430 int i;
6431
2ff7e61e 6432 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6433 return 0;
6434
6435 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6436 btrfs_item_key_to_cpu(eb, &key, i);
6437 if (key.type != BTRFS_EXTENT_DATA_KEY)
6438 continue;
6439 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6440 found_type = btrfs_file_extent_type(eb, item);
6441 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6442 continue;
6443 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6444 continue;
6445 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6446 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6447 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6448 }
6449
6450 return 0;
6451}
6452
9cfa3e34
FM
6453static void
6454btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6455{
6456 atomic_inc(&bg->reservations);
6457}
6458
6459void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6460 const u64 start)
6461{
6462 struct btrfs_block_group_cache *bg;
6463
6464 bg = btrfs_lookup_block_group(fs_info, start);
6465 ASSERT(bg);
6466 if (atomic_dec_and_test(&bg->reservations))
6467 wake_up_atomic_t(&bg->reservations);
6468 btrfs_put_block_group(bg);
6469}
6470
6471static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6472{
6473 schedule();
6474 return 0;
6475}
6476
6477void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6478{
6479 struct btrfs_space_info *space_info = bg->space_info;
6480
6481 ASSERT(bg->ro);
6482
6483 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6484 return;
6485
6486 /*
6487 * Our block group is read only but before we set it to read only,
6488 * some task might have had allocated an extent from it already, but it
6489 * has not yet created a respective ordered extent (and added it to a
6490 * root's list of ordered extents).
6491 * Therefore wait for any task currently allocating extents, since the
6492 * block group's reservations counter is incremented while a read lock
6493 * on the groups' semaphore is held and decremented after releasing
6494 * the read access on that semaphore and creating the ordered extent.
6495 */
6496 down_write(&space_info->groups_sem);
6497 up_write(&space_info->groups_sem);
6498
6499 wait_on_atomic_t(&bg->reservations,
6500 btrfs_wait_bg_reservations_atomic_t,
6501 TASK_UNINTERRUPTIBLE);
6502}
6503
fb25e914 6504/**
4824f1f4 6505 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6506 * @cache: The cache we are manipulating
18513091
WX
6507 * @ram_bytes: The number of bytes of file content, and will be same to
6508 * @num_bytes except for the compress path.
fb25e914 6509 * @num_bytes: The number of bytes in question
e570fd27 6510 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6511 *
745699ef
XW
6512 * This is called by the allocator when it reserves space. If this is a
6513 * reservation and the block group has become read only we cannot make the
6514 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6515 */
4824f1f4 6516static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6517 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6518{
fb25e914 6519 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6520 int ret = 0;
79787eaa 6521
fb25e914
JB
6522 spin_lock(&space_info->lock);
6523 spin_lock(&cache->lock);
4824f1f4
WX
6524 if (cache->ro) {
6525 ret = -EAGAIN;
fb25e914 6526 } else {
4824f1f4
WX
6527 cache->reserved += num_bytes;
6528 space_info->bytes_reserved += num_bytes;
e570fd27 6529
18513091
WX
6530 trace_btrfs_space_reservation(cache->fs_info,
6531 "space_info", space_info->flags,
6532 ram_bytes, 0);
6533 space_info->bytes_may_use -= ram_bytes;
e570fd27 6534 if (delalloc)
4824f1f4 6535 cache->delalloc_bytes += num_bytes;
324ae4df 6536 }
fb25e914
JB
6537 spin_unlock(&cache->lock);
6538 spin_unlock(&space_info->lock);
f0486c68 6539 return ret;
324ae4df 6540}
9078a3e1 6541
4824f1f4
WX
6542/**
6543 * btrfs_free_reserved_bytes - update the block_group and space info counters
6544 * @cache: The cache we are manipulating
6545 * @num_bytes: The number of bytes in question
6546 * @delalloc: The blocks are allocated for the delalloc write
6547 *
6548 * This is called by somebody who is freeing space that was never actually used
6549 * on disk. For example if you reserve some space for a new leaf in transaction
6550 * A and before transaction A commits you free that leaf, you call this with
6551 * reserve set to 0 in order to clear the reservation.
6552 */
6553
6554static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6555 u64 num_bytes, int delalloc)
6556{
6557 struct btrfs_space_info *space_info = cache->space_info;
6558 int ret = 0;
6559
6560 spin_lock(&space_info->lock);
6561 spin_lock(&cache->lock);
6562 if (cache->ro)
6563 space_info->bytes_readonly += num_bytes;
6564 cache->reserved -= num_bytes;
6565 space_info->bytes_reserved -= num_bytes;
6566
6567 if (delalloc)
6568 cache->delalloc_bytes -= num_bytes;
6569 spin_unlock(&cache->lock);
6570 spin_unlock(&space_info->lock);
6571 return ret;
6572}
8b74c03e 6573void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6574{
11833d66
YZ
6575 struct btrfs_caching_control *next;
6576 struct btrfs_caching_control *caching_ctl;
6577 struct btrfs_block_group_cache *cache;
e8569813 6578
9e351cc8 6579 down_write(&fs_info->commit_root_sem);
25179201 6580
11833d66
YZ
6581 list_for_each_entry_safe(caching_ctl, next,
6582 &fs_info->caching_block_groups, list) {
6583 cache = caching_ctl->block_group;
6584 if (block_group_cache_done(cache)) {
6585 cache->last_byte_to_unpin = (u64)-1;
6586 list_del_init(&caching_ctl->list);
6587 put_caching_control(caching_ctl);
e8569813 6588 } else {
11833d66 6589 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6590 }
e8569813 6591 }
11833d66
YZ
6592
6593 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6594 fs_info->pinned_extents = &fs_info->freed_extents[1];
6595 else
6596 fs_info->pinned_extents = &fs_info->freed_extents[0];
6597
9e351cc8 6598 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6599
6600 update_global_block_rsv(fs_info);
e8569813
ZY
6601}
6602
c759c4e1
JB
6603/*
6604 * Returns the free cluster for the given space info and sets empty_cluster to
6605 * what it should be based on the mount options.
6606 */
6607static struct btrfs_free_cluster *
2ff7e61e
JM
6608fetch_cluster_info(struct btrfs_fs_info *fs_info,
6609 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6610{
6611 struct btrfs_free_cluster *ret = NULL;
0b246afa 6612 bool ssd = btrfs_test_opt(fs_info, SSD);
c759c4e1
JB
6613
6614 *empty_cluster = 0;
6615 if (btrfs_mixed_space_info(space_info))
6616 return ret;
6617
6618 if (ssd)
ee22184b 6619 *empty_cluster = SZ_2M;
c759c4e1 6620 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6621 ret = &fs_info->meta_alloc_cluster;
c759c4e1 6622 if (!ssd)
ee22184b 6623 *empty_cluster = SZ_64K;
c759c4e1 6624 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
0b246afa 6625 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6626 }
6627
6628 return ret;
6629}
6630
2ff7e61e
JM
6631static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6632 u64 start, u64 end,
678886bd 6633 const bool return_free_space)
ccd467d6 6634{
11833d66 6635 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6636 struct btrfs_space_info *space_info;
6637 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6638 struct btrfs_free_cluster *cluster = NULL;
11833d66 6639 u64 len;
c759c4e1
JB
6640 u64 total_unpinned = 0;
6641 u64 empty_cluster = 0;
7b398f8e 6642 bool readonly;
ccd467d6 6643
11833d66 6644 while (start <= end) {
7b398f8e 6645 readonly = false;
11833d66
YZ
6646 if (!cache ||
6647 start >= cache->key.objectid + cache->key.offset) {
6648 if (cache)
6649 btrfs_put_block_group(cache);
c759c4e1 6650 total_unpinned = 0;
11833d66 6651 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6652 BUG_ON(!cache); /* Logic error */
c759c4e1 6653
2ff7e61e 6654 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6655 cache->space_info,
6656 &empty_cluster);
6657 empty_cluster <<= 1;
11833d66
YZ
6658 }
6659
6660 len = cache->key.objectid + cache->key.offset - start;
6661 len = min(len, end + 1 - start);
6662
6663 if (start < cache->last_byte_to_unpin) {
6664 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6665 if (return_free_space)
6666 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6667 }
6668
f0486c68 6669 start += len;
c759c4e1 6670 total_unpinned += len;
7b398f8e 6671 space_info = cache->space_info;
f0486c68 6672
c759c4e1
JB
6673 /*
6674 * If this space cluster has been marked as fragmented and we've
6675 * unpinned enough in this block group to potentially allow a
6676 * cluster to be created inside of it go ahead and clear the
6677 * fragmented check.
6678 */
6679 if (cluster && cluster->fragmented &&
6680 total_unpinned > empty_cluster) {
6681 spin_lock(&cluster->lock);
6682 cluster->fragmented = 0;
6683 spin_unlock(&cluster->lock);
6684 }
6685
7b398f8e 6686 spin_lock(&space_info->lock);
11833d66
YZ
6687 spin_lock(&cache->lock);
6688 cache->pinned -= len;
7b398f8e 6689 space_info->bytes_pinned -= len;
c51e7bb1
JB
6690
6691 trace_btrfs_space_reservation(fs_info, "pinned",
6692 space_info->flags, len, 0);
4f4db217 6693 space_info->max_extent_size = 0;
d288db5d 6694 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6695 if (cache->ro) {
6696 space_info->bytes_readonly += len;
6697 readonly = true;
6698 }
11833d66 6699 spin_unlock(&cache->lock);
957780eb
JB
6700 if (!readonly && return_free_space &&
6701 global_rsv->space_info == space_info) {
6702 u64 to_add = len;
6703 WARN_ON(!return_free_space);
7b398f8e
JB
6704 spin_lock(&global_rsv->lock);
6705 if (!global_rsv->full) {
957780eb
JB
6706 to_add = min(len, global_rsv->size -
6707 global_rsv->reserved);
6708 global_rsv->reserved += to_add;
6709 space_info->bytes_may_use += to_add;
7b398f8e
JB
6710 if (global_rsv->reserved >= global_rsv->size)
6711 global_rsv->full = 1;
957780eb
JB
6712 trace_btrfs_space_reservation(fs_info,
6713 "space_info",
6714 space_info->flags,
6715 to_add, 1);
6716 len -= to_add;
7b398f8e
JB
6717 }
6718 spin_unlock(&global_rsv->lock);
957780eb
JB
6719 /* Add to any tickets we may have */
6720 if (len)
6721 space_info_add_new_bytes(fs_info, space_info,
6722 len);
7b398f8e
JB
6723 }
6724 spin_unlock(&space_info->lock);
ccd467d6 6725 }
11833d66
YZ
6726
6727 if (cache)
6728 btrfs_put_block_group(cache);
ccd467d6
CM
6729 return 0;
6730}
6731
6732int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2ff7e61e 6733 struct btrfs_fs_info *fs_info)
a28ec197 6734{
e33e17ee
JM
6735 struct btrfs_block_group_cache *block_group, *tmp;
6736 struct list_head *deleted_bgs;
11833d66 6737 struct extent_io_tree *unpin;
1a5bc167
CM
6738 u64 start;
6739 u64 end;
a28ec197 6740 int ret;
a28ec197 6741
11833d66
YZ
6742 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6743 unpin = &fs_info->freed_extents[1];
6744 else
6745 unpin = &fs_info->freed_extents[0];
6746
e33e17ee 6747 while (!trans->aborted) {
d4b450cd 6748 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6749 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6750 EXTENT_DIRTY, NULL);
d4b450cd
FM
6751 if (ret) {
6752 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6753 break;
d4b450cd 6754 }
1f3c79a2 6755
0b246afa 6756 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6757 ret = btrfs_discard_extent(fs_info, start,
5378e607 6758 end + 1 - start, NULL);
1f3c79a2 6759
af6f8f60 6760 clear_extent_dirty(unpin, start, end);
2ff7e61e 6761 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6762 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6763 cond_resched();
a28ec197 6764 }
817d52f8 6765
e33e17ee
JM
6766 /*
6767 * Transaction is finished. We don't need the lock anymore. We
6768 * do need to clean up the block groups in case of a transaction
6769 * abort.
6770 */
6771 deleted_bgs = &trans->transaction->deleted_bgs;
6772 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6773 u64 trimmed = 0;
6774
6775 ret = -EROFS;
6776 if (!trans->aborted)
2ff7e61e 6777 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6778 block_group->key.objectid,
6779 block_group->key.offset,
6780 &trimmed);
6781
6782 list_del_init(&block_group->bg_list);
6783 btrfs_put_block_group_trimming(block_group);
6784 btrfs_put_block_group(block_group);
6785
6786 if (ret) {
6787 const char *errstr = btrfs_decode_error(ret);
6788 btrfs_warn(fs_info,
6789 "Discard failed while removing blockgroup: errno=%d %s\n",
6790 ret, errstr);
6791 }
6792 }
6793
e20d96d6
CM
6794 return 0;
6795}
6796
b150a4f1
JB
6797static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6798 u64 owner, u64 root_objectid)
6799{
6800 struct btrfs_space_info *space_info;
6801 u64 flags;
6802
6803 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6804 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6805 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6806 else
6807 flags = BTRFS_BLOCK_GROUP_METADATA;
6808 } else {
6809 flags = BTRFS_BLOCK_GROUP_DATA;
6810 }
6811
6812 space_info = __find_space_info(fs_info, flags);
6813 BUG_ON(!space_info); /* Logic bug */
6814 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6815}
6816
6817
5d4f98a2 6818static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6819 struct btrfs_fs_info *info,
c682f9b3 6820 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6821 u64 root_objectid, u64 owner_objectid,
6822 u64 owner_offset, int refs_to_drop,
c682f9b3 6823 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6824{
e2fa7227 6825 struct btrfs_key key;
5d4f98a2 6826 struct btrfs_path *path;
1261ec42 6827 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6828 struct extent_buffer *leaf;
5d4f98a2
YZ
6829 struct btrfs_extent_item *ei;
6830 struct btrfs_extent_inline_ref *iref;
a28ec197 6831 int ret;
5d4f98a2 6832 int is_data;
952fccac
CM
6833 int extent_slot = 0;
6834 int found_extent = 0;
6835 int num_to_del = 1;
5d4f98a2
YZ
6836 u32 item_size;
6837 u64 refs;
c682f9b3
QW
6838 u64 bytenr = node->bytenr;
6839 u64 num_bytes = node->num_bytes;
fcebe456 6840 int last_ref = 0;
0b246afa 6841 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6842
5caf2a00 6843 path = btrfs_alloc_path();
54aa1f4d
CM
6844 if (!path)
6845 return -ENOMEM;
5f26f772 6846
e4058b54 6847 path->reada = READA_FORWARD;
b9473439 6848 path->leave_spinning = 1;
5d4f98a2
YZ
6849
6850 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6851 BUG_ON(!is_data && refs_to_drop != 1);
6852
3173a18f
JB
6853 if (is_data)
6854 skinny_metadata = 0;
6855
87bde3cd 6856 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6857 bytenr, num_bytes, parent,
6858 root_objectid, owner_objectid,
6859 owner_offset);
7bb86316 6860 if (ret == 0) {
952fccac 6861 extent_slot = path->slots[0];
5d4f98a2
YZ
6862 while (extent_slot >= 0) {
6863 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6864 extent_slot);
5d4f98a2 6865 if (key.objectid != bytenr)
952fccac 6866 break;
5d4f98a2
YZ
6867 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6868 key.offset == num_bytes) {
952fccac
CM
6869 found_extent = 1;
6870 break;
6871 }
3173a18f
JB
6872 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6873 key.offset == owner_objectid) {
6874 found_extent = 1;
6875 break;
6876 }
952fccac
CM
6877 if (path->slots[0] - extent_slot > 5)
6878 break;
5d4f98a2 6879 extent_slot--;
952fccac 6880 }
5d4f98a2
YZ
6881#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6882 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6883 if (found_extent && item_size < sizeof(*ei))
6884 found_extent = 0;
6885#endif
31840ae1 6886 if (!found_extent) {
5d4f98a2 6887 BUG_ON(iref);
87bde3cd
JM
6888 ret = remove_extent_backref(trans, info, path, NULL,
6889 refs_to_drop,
fcebe456 6890 is_data, &last_ref);
005d6427 6891 if (ret) {
66642832 6892 btrfs_abort_transaction(trans, ret);
005d6427
DS
6893 goto out;
6894 }
b3b4aa74 6895 btrfs_release_path(path);
b9473439 6896 path->leave_spinning = 1;
5d4f98a2
YZ
6897
6898 key.objectid = bytenr;
6899 key.type = BTRFS_EXTENT_ITEM_KEY;
6900 key.offset = num_bytes;
6901
3173a18f
JB
6902 if (!is_data && skinny_metadata) {
6903 key.type = BTRFS_METADATA_ITEM_KEY;
6904 key.offset = owner_objectid;
6905 }
6906
31840ae1
ZY
6907 ret = btrfs_search_slot(trans, extent_root,
6908 &key, path, -1, 1);
3173a18f
JB
6909 if (ret > 0 && skinny_metadata && path->slots[0]) {
6910 /*
6911 * Couldn't find our skinny metadata item,
6912 * see if we have ye olde extent item.
6913 */
6914 path->slots[0]--;
6915 btrfs_item_key_to_cpu(path->nodes[0], &key,
6916 path->slots[0]);
6917 if (key.objectid == bytenr &&
6918 key.type == BTRFS_EXTENT_ITEM_KEY &&
6919 key.offset == num_bytes)
6920 ret = 0;
6921 }
6922
6923 if (ret > 0 && skinny_metadata) {
6924 skinny_metadata = false;
9ce49a0b 6925 key.objectid = bytenr;
3173a18f
JB
6926 key.type = BTRFS_EXTENT_ITEM_KEY;
6927 key.offset = num_bytes;
6928 btrfs_release_path(path);
6929 ret = btrfs_search_slot(trans, extent_root,
6930 &key, path, -1, 1);
6931 }
6932
f3465ca4 6933 if (ret) {
5d163e0e
JM
6934 btrfs_err(info,
6935 "umm, got %d back from search, was looking for %llu",
6936 ret, bytenr);
b783e62d 6937 if (ret > 0)
2ff7e61e 6938 btrfs_print_leaf(info, path->nodes[0]);
f3465ca4 6939 }
005d6427 6940 if (ret < 0) {
66642832 6941 btrfs_abort_transaction(trans, ret);
005d6427
DS
6942 goto out;
6943 }
31840ae1
ZY
6944 extent_slot = path->slots[0];
6945 }
fae7f21c 6946 } else if (WARN_ON(ret == -ENOENT)) {
2ff7e61e 6947 btrfs_print_leaf(info, path->nodes[0]);
c2cf52eb
SK
6948 btrfs_err(info,
6949 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6950 bytenr, parent, root_objectid, owner_objectid,
6951 owner_offset);
66642832 6952 btrfs_abort_transaction(trans, ret);
c4a050bb 6953 goto out;
79787eaa 6954 } else {
66642832 6955 btrfs_abort_transaction(trans, ret);
005d6427 6956 goto out;
7bb86316 6957 }
5f39d397
CM
6958
6959 leaf = path->nodes[0];
5d4f98a2
YZ
6960 item_size = btrfs_item_size_nr(leaf, extent_slot);
6961#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6962 if (item_size < sizeof(*ei)) {
6963 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
6964 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6965 0);
005d6427 6966 if (ret < 0) {
66642832 6967 btrfs_abort_transaction(trans, ret);
005d6427
DS
6968 goto out;
6969 }
5d4f98a2 6970
b3b4aa74 6971 btrfs_release_path(path);
5d4f98a2
YZ
6972 path->leave_spinning = 1;
6973
6974 key.objectid = bytenr;
6975 key.type = BTRFS_EXTENT_ITEM_KEY;
6976 key.offset = num_bytes;
6977
6978 ret = btrfs_search_slot(trans, extent_root, &key, path,
6979 -1, 1);
6980 if (ret) {
5d163e0e
JM
6981 btrfs_err(info,
6982 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6983 ret, bytenr);
2ff7e61e 6984 btrfs_print_leaf(info, path->nodes[0]);
5d4f98a2 6985 }
005d6427 6986 if (ret < 0) {
66642832 6987 btrfs_abort_transaction(trans, ret);
005d6427
DS
6988 goto out;
6989 }
6990
5d4f98a2
YZ
6991 extent_slot = path->slots[0];
6992 leaf = path->nodes[0];
6993 item_size = btrfs_item_size_nr(leaf, extent_slot);
6994 }
6995#endif
6996 BUG_ON(item_size < sizeof(*ei));
952fccac 6997 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6998 struct btrfs_extent_item);
3173a18f
JB
6999 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7000 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7001 struct btrfs_tree_block_info *bi;
7002 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7003 bi = (struct btrfs_tree_block_info *)(ei + 1);
7004 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7005 }
56bec294 7006
5d4f98a2 7007 refs = btrfs_extent_refs(leaf, ei);
32b02538 7008 if (refs < refs_to_drop) {
5d163e0e
JM
7009 btrfs_err(info,
7010 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7011 refs_to_drop, refs, bytenr);
32b02538 7012 ret = -EINVAL;
66642832 7013 btrfs_abort_transaction(trans, ret);
32b02538
JB
7014 goto out;
7015 }
56bec294 7016 refs -= refs_to_drop;
5f39d397 7017
5d4f98a2
YZ
7018 if (refs > 0) {
7019 if (extent_op)
7020 __run_delayed_extent_op(extent_op, leaf, ei);
7021 /*
7022 * In the case of inline back ref, reference count will
7023 * be updated by remove_extent_backref
952fccac 7024 */
5d4f98a2
YZ
7025 if (iref) {
7026 BUG_ON(!found_extent);
7027 } else {
7028 btrfs_set_extent_refs(leaf, ei, refs);
7029 btrfs_mark_buffer_dirty(leaf);
7030 }
7031 if (found_extent) {
87bde3cd 7032 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7033 iref, refs_to_drop,
fcebe456 7034 is_data, &last_ref);
005d6427 7035 if (ret) {
66642832 7036 btrfs_abort_transaction(trans, ret);
005d6427
DS
7037 goto out;
7038 }
952fccac 7039 }
0b246afa 7040 add_pinned_bytes(info, -num_bytes, owner_objectid,
b150a4f1 7041 root_objectid);
5d4f98a2 7042 } else {
5d4f98a2
YZ
7043 if (found_extent) {
7044 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7045 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7046 if (iref) {
7047 BUG_ON(path->slots[0] != extent_slot);
7048 } else {
7049 BUG_ON(path->slots[0] != extent_slot + 1);
7050 path->slots[0] = extent_slot;
7051 num_to_del = 2;
7052 }
78fae27e 7053 }
b9473439 7054
fcebe456 7055 last_ref = 1;
952fccac
CM
7056 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7057 num_to_del);
005d6427 7058 if (ret) {
66642832 7059 btrfs_abort_transaction(trans, ret);
005d6427
DS
7060 goto out;
7061 }
b3b4aa74 7062 btrfs_release_path(path);
21af804c 7063
5d4f98a2 7064 if (is_data) {
5b4aacef 7065 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7066 if (ret) {
66642832 7067 btrfs_abort_transaction(trans, ret);
005d6427
DS
7068 goto out;
7069 }
459931ec
CM
7070 }
7071
0b246afa 7072 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
1e144fb8 7073 if (ret) {
66642832 7074 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7075 goto out;
7076 }
7077
0b246afa 7078 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7079 if (ret) {
66642832 7080 btrfs_abort_transaction(trans, ret);
005d6427
DS
7081 goto out;
7082 }
a28ec197 7083 }
fcebe456
JB
7084 btrfs_release_path(path);
7085
79787eaa 7086out:
5caf2a00 7087 btrfs_free_path(path);
a28ec197
CM
7088 return ret;
7089}
7090
1887be66 7091/*
f0486c68 7092 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7093 * delayed ref for that extent as well. This searches the delayed ref tree for
7094 * a given extent, and if there are no other delayed refs to be processed, it
7095 * removes it from the tree.
7096 */
7097static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7098 u64 bytenr)
1887be66
CM
7099{
7100 struct btrfs_delayed_ref_head *head;
7101 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7102 int ret = 0;
1887be66
CM
7103
7104 delayed_refs = &trans->transaction->delayed_refs;
7105 spin_lock(&delayed_refs->lock);
f72ad18e 7106 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7107 if (!head)
cf93da7b 7108 goto out_delayed_unlock;
1887be66 7109
d7df2c79 7110 spin_lock(&head->lock);
c6fc2454 7111 if (!list_empty(&head->ref_list))
1887be66
CM
7112 goto out;
7113
5d4f98a2
YZ
7114 if (head->extent_op) {
7115 if (!head->must_insert_reserved)
7116 goto out;
78a6184a 7117 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7118 head->extent_op = NULL;
7119 }
7120
1887be66
CM
7121 /*
7122 * waiting for the lock here would deadlock. If someone else has it
7123 * locked they are already in the process of dropping it anyway
7124 */
7125 if (!mutex_trylock(&head->mutex))
7126 goto out;
7127
7128 /*
7129 * at this point we have a head with no other entries. Go
7130 * ahead and process it.
7131 */
7132 head->node.in_tree = 0;
c46effa6 7133 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 7134
d7df2c79 7135 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7136
7137 /*
7138 * we don't take a ref on the node because we're removing it from the
7139 * tree, so we just steal the ref the tree was holding.
7140 */
c3e69d58 7141 delayed_refs->num_heads--;
d7df2c79 7142 if (head->processing == 0)
c3e69d58 7143 delayed_refs->num_heads_ready--;
d7df2c79
JB
7144 head->processing = 0;
7145 spin_unlock(&head->lock);
1887be66
CM
7146 spin_unlock(&delayed_refs->lock);
7147
f0486c68
YZ
7148 BUG_ON(head->extent_op);
7149 if (head->must_insert_reserved)
7150 ret = 1;
7151
7152 mutex_unlock(&head->mutex);
1887be66 7153 btrfs_put_delayed_ref(&head->node);
f0486c68 7154 return ret;
1887be66 7155out:
d7df2c79 7156 spin_unlock(&head->lock);
cf93da7b
CM
7157
7158out_delayed_unlock:
1887be66
CM
7159 spin_unlock(&delayed_refs->lock);
7160 return 0;
7161}
7162
f0486c68
YZ
7163void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7164 struct btrfs_root *root,
7165 struct extent_buffer *buf,
5581a51a 7166 u64 parent, int last_ref)
f0486c68 7167{
0b246afa 7168 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7169 int pin = 1;
f0486c68
YZ
7170 int ret;
7171
7172 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
0b246afa
JM
7173 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
7174 buf->start, buf->len,
7175 parent,
7176 root->root_key.objectid,
7177 btrfs_header_level(buf),
7178 BTRFS_DROP_DELAYED_REF, NULL);
79787eaa 7179 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
7180 }
7181
7182 if (!last_ref)
7183 return;
7184
f0486c68 7185 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7186 struct btrfs_block_group_cache *cache;
7187
f0486c68 7188 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7189 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7190 if (!ret)
37be25bc 7191 goto out;
f0486c68
YZ
7192 }
7193
0b246afa 7194 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7195
f0486c68 7196 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7197 pin_down_extent(fs_info, cache, buf->start,
7198 buf->len, 1);
6219872d 7199 btrfs_put_block_group(cache);
37be25bc 7200 goto out;
f0486c68
YZ
7201 }
7202
7203 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7204
7205 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7206 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7207 btrfs_put_block_group(cache);
71ff6437 7208 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
b150a4f1 7209 pin = 0;
f0486c68
YZ
7210 }
7211out:
b150a4f1 7212 if (pin)
0b246afa 7213 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
b150a4f1
JB
7214 root->root_key.objectid);
7215
a826d6dc
JB
7216 /*
7217 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7218 * anymore.
7219 */
7220 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
7221}
7222
79787eaa 7223/* Can return -ENOMEM */
2ff7e61e
JM
7224int btrfs_free_extent(struct btrfs_trans_handle *trans,
7225 struct btrfs_fs_info *fs_info,
66d7e7f0 7226 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7227 u64 owner, u64 offset)
925baedd
CM
7228{
7229 int ret;
7230
f5ee5c9a 7231 if (btrfs_is_testing(fs_info))
faa2dbf0 7232 return 0;
fccb84c9 7233
0b246afa 7234 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
b150a4f1 7235
56bec294
CM
7236 /*
7237 * tree log blocks never actually go into the extent allocation
7238 * tree, just update pinning info and exit early.
56bec294 7239 */
5d4f98a2
YZ
7240 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7241 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7242 /* unlocks the pinned mutex */
2ff7e61e 7243 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
56bec294 7244 ret = 0;
5d4f98a2 7245 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
7246 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7247 num_bytes,
5d4f98a2 7248 parent, root_objectid, (int)owner,
b06c4bf5 7249 BTRFS_DROP_DELAYED_REF, NULL);
5d4f98a2 7250 } else {
66d7e7f0
AJ
7251 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7252 num_bytes,
7253 parent, root_objectid, owner,
5846a3c2 7254 offset, 0,
fef394f7 7255 BTRFS_DROP_DELAYED_REF);
56bec294 7256 }
925baedd
CM
7257 return ret;
7258}
7259
817d52f8
JB
7260/*
7261 * when we wait for progress in the block group caching, its because
7262 * our allocation attempt failed at least once. So, we must sleep
7263 * and let some progress happen before we try again.
7264 *
7265 * This function will sleep at least once waiting for new free space to
7266 * show up, and then it will check the block group free space numbers
7267 * for our min num_bytes. Another option is to have it go ahead
7268 * and look in the rbtree for a free extent of a given size, but this
7269 * is a good start.
36cce922
JB
7270 *
7271 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7272 * any of the information in this block group.
817d52f8 7273 */
36cce922 7274static noinline void
817d52f8
JB
7275wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7276 u64 num_bytes)
7277{
11833d66 7278 struct btrfs_caching_control *caching_ctl;
817d52f8 7279
11833d66
YZ
7280 caching_ctl = get_caching_control(cache);
7281 if (!caching_ctl)
36cce922 7282 return;
817d52f8 7283
11833d66 7284 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7285 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7286
7287 put_caching_control(caching_ctl);
11833d66
YZ
7288}
7289
7290static noinline int
7291wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7292{
7293 struct btrfs_caching_control *caching_ctl;
36cce922 7294 int ret = 0;
11833d66
YZ
7295
7296 caching_ctl = get_caching_control(cache);
7297 if (!caching_ctl)
36cce922 7298 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7299
7300 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7301 if (cache->cached == BTRFS_CACHE_ERROR)
7302 ret = -EIO;
11833d66 7303 put_caching_control(caching_ctl);
36cce922 7304 return ret;
817d52f8
JB
7305}
7306
31e50229 7307int __get_raid_index(u64 flags)
b742bb82 7308{
7738a53a 7309 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7310 return BTRFS_RAID_RAID10;
7738a53a 7311 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7312 return BTRFS_RAID_RAID1;
7738a53a 7313 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7314 return BTRFS_RAID_DUP;
7738a53a 7315 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7316 return BTRFS_RAID_RAID0;
53b381b3 7317 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7318 return BTRFS_RAID_RAID5;
53b381b3 7319 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7320 return BTRFS_RAID_RAID6;
7738a53a 7321
e942f883 7322 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7323}
7324
6ab0a202 7325int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7326{
31e50229 7327 return __get_raid_index(cache->flags);
7738a53a
ID
7328}
7329
6ab0a202
JM
7330static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7331 [BTRFS_RAID_RAID10] = "raid10",
7332 [BTRFS_RAID_RAID1] = "raid1",
7333 [BTRFS_RAID_DUP] = "dup",
7334 [BTRFS_RAID_RAID0] = "raid0",
7335 [BTRFS_RAID_SINGLE] = "single",
7336 [BTRFS_RAID_RAID5] = "raid5",
7337 [BTRFS_RAID_RAID6] = "raid6",
7338};
7339
1b8e5df6 7340static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7341{
7342 if (type >= BTRFS_NR_RAID_TYPES)
7343 return NULL;
7344
7345 return btrfs_raid_type_names[type];
7346}
7347
817d52f8 7348enum btrfs_loop_type {
285ff5af
JB
7349 LOOP_CACHING_NOWAIT = 0,
7350 LOOP_CACHING_WAIT = 1,
7351 LOOP_ALLOC_CHUNK = 2,
7352 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7353};
7354
e570fd27
MX
7355static inline void
7356btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7357 int delalloc)
7358{
7359 if (delalloc)
7360 down_read(&cache->data_rwsem);
7361}
7362
7363static inline void
7364btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7365 int delalloc)
7366{
7367 btrfs_get_block_group(cache);
7368 if (delalloc)
7369 down_read(&cache->data_rwsem);
7370}
7371
7372static struct btrfs_block_group_cache *
7373btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7374 struct btrfs_free_cluster *cluster,
7375 int delalloc)
7376{
89771cc9 7377 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7378
e570fd27 7379 spin_lock(&cluster->refill_lock);
6719afdc
GU
7380 while (1) {
7381 used_bg = cluster->block_group;
7382 if (!used_bg)
7383 return NULL;
7384
7385 if (used_bg == block_group)
e570fd27
MX
7386 return used_bg;
7387
6719afdc 7388 btrfs_get_block_group(used_bg);
e570fd27 7389
6719afdc
GU
7390 if (!delalloc)
7391 return used_bg;
e570fd27 7392
6719afdc
GU
7393 if (down_read_trylock(&used_bg->data_rwsem))
7394 return used_bg;
e570fd27 7395
6719afdc 7396 spin_unlock(&cluster->refill_lock);
e570fd27 7397
e321f8a8
LB
7398 /* We should only have one-level nested. */
7399 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7400
6719afdc
GU
7401 spin_lock(&cluster->refill_lock);
7402 if (used_bg == cluster->block_group)
7403 return used_bg;
e570fd27 7404
6719afdc
GU
7405 up_read(&used_bg->data_rwsem);
7406 btrfs_put_block_group(used_bg);
7407 }
e570fd27
MX
7408}
7409
7410static inline void
7411btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7412 int delalloc)
7413{
7414 if (delalloc)
7415 up_read(&cache->data_rwsem);
7416 btrfs_put_block_group(cache);
7417}
7418
fec577fb
CM
7419/*
7420 * walks the btree of allocated extents and find a hole of a given size.
7421 * The key ins is changed to record the hole:
a4820398 7422 * ins->objectid == start position
62e2749e 7423 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7424 * ins->offset == the size of the hole.
fec577fb 7425 * Any available blocks before search_start are skipped.
a4820398
MX
7426 *
7427 * If there is no suitable free space, we will record the max size of
7428 * the free space extent currently.
fec577fb 7429 */
87bde3cd 7430static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7431 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7432 u64 hint_byte, struct btrfs_key *ins,
7433 u64 flags, int delalloc)
fec577fb 7434{
80eb234a 7435 int ret = 0;
0b246afa 7436 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7437 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7438 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7439 u64 search_start = 0;
a4820398 7440 u64 max_extent_size = 0;
c759c4e1 7441 u64 empty_cluster = 0;
80eb234a 7442 struct btrfs_space_info *space_info;
fa9c0d79 7443 int loop = 0;
b6919a58 7444 int index = __get_raid_index(flags);
0a24325e 7445 bool failed_cluster_refill = false;
1cdda9b8 7446 bool failed_alloc = false;
67377734 7447 bool use_cluster = true;
60d2adbb 7448 bool have_caching_bg = false;
13a0db5a 7449 bool orig_have_caching_bg = false;
a5e681d9 7450 bool full_search = false;
fec577fb 7451
0b246afa 7452 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7453 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7454 ins->objectid = 0;
7455 ins->offset = 0;
b1a4d965 7456
71ff6437 7457 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7458
0b246afa 7459 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7460 if (!space_info) {
0b246afa 7461 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7462 return -ENOSPC;
7463 }
2552d17e 7464
67377734 7465 /*
4f4db217
JB
7466 * If our free space is heavily fragmented we may not be able to make
7467 * big contiguous allocations, so instead of doing the expensive search
7468 * for free space, simply return ENOSPC with our max_extent_size so we
7469 * can go ahead and search for a more manageable chunk.
7470 *
7471 * If our max_extent_size is large enough for our allocation simply
7472 * disable clustering since we will likely not be able to find enough
7473 * space to create a cluster and induce latency trying.
67377734 7474 */
4f4db217
JB
7475 if (unlikely(space_info->max_extent_size)) {
7476 spin_lock(&space_info->lock);
7477 if (space_info->max_extent_size &&
7478 num_bytes > space_info->max_extent_size) {
7479 ins->offset = space_info->max_extent_size;
7480 spin_unlock(&space_info->lock);
7481 return -ENOSPC;
7482 } else if (space_info->max_extent_size) {
7483 use_cluster = false;
7484 }
7485 spin_unlock(&space_info->lock);
fa9c0d79 7486 }
0f9dd46c 7487
2ff7e61e 7488 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7489 if (last_ptr) {
fa9c0d79
CM
7490 spin_lock(&last_ptr->lock);
7491 if (last_ptr->block_group)
7492 hint_byte = last_ptr->window_start;
c759c4e1
JB
7493 if (last_ptr->fragmented) {
7494 /*
7495 * We still set window_start so we can keep track of the
7496 * last place we found an allocation to try and save
7497 * some time.
7498 */
7499 hint_byte = last_ptr->window_start;
7500 use_cluster = false;
7501 }
fa9c0d79 7502 spin_unlock(&last_ptr->lock);
239b14b3 7503 }
fa9c0d79 7504
2ff7e61e 7505 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7506 search_start = max(search_start, hint_byte);
2552d17e 7507 if (search_start == hint_byte) {
0b246afa 7508 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7509 /*
7510 * we don't want to use the block group if it doesn't match our
7511 * allocation bits, or if its not cached.
ccf0e725
JB
7512 *
7513 * However if we are re-searching with an ideal block group
7514 * picked out then we don't care that the block group is cached.
817d52f8 7515 */
b6919a58 7516 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7517 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7518 down_read(&space_info->groups_sem);
44fb5511
CM
7519 if (list_empty(&block_group->list) ||
7520 block_group->ro) {
7521 /*
7522 * someone is removing this block group,
7523 * we can't jump into the have_block_group
7524 * target because our list pointers are not
7525 * valid
7526 */
7527 btrfs_put_block_group(block_group);
7528 up_read(&space_info->groups_sem);
ccf0e725 7529 } else {
b742bb82 7530 index = get_block_group_index(block_group);
e570fd27 7531 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7532 goto have_block_group;
ccf0e725 7533 }
2552d17e 7534 } else if (block_group) {
fa9c0d79 7535 btrfs_put_block_group(block_group);
2552d17e 7536 }
42e70e7a 7537 }
2552d17e 7538search:
60d2adbb 7539 have_caching_bg = false;
a5e681d9
JB
7540 if (index == 0 || index == __get_raid_index(flags))
7541 full_search = true;
80eb234a 7542 down_read(&space_info->groups_sem);
b742bb82
YZ
7543 list_for_each_entry(block_group, &space_info->block_groups[index],
7544 list) {
6226cb0a 7545 u64 offset;
817d52f8 7546 int cached;
8a1413a2 7547
e570fd27 7548 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7549 search_start = block_group->key.objectid;
42e70e7a 7550
83a50de9
CM
7551 /*
7552 * this can happen if we end up cycling through all the
7553 * raid types, but we want to make sure we only allocate
7554 * for the proper type.
7555 */
b6919a58 7556 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7557 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7558 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7559 BTRFS_BLOCK_GROUP_RAID5 |
7560 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7561 BTRFS_BLOCK_GROUP_RAID10;
7562
7563 /*
7564 * if they asked for extra copies and this block group
7565 * doesn't provide them, bail. This does allow us to
7566 * fill raid0 from raid1.
7567 */
b6919a58 7568 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7569 goto loop;
7570 }
7571
2552d17e 7572have_block_group:
291c7d2f
JB
7573 cached = block_group_cache_done(block_group);
7574 if (unlikely(!cached)) {
a5e681d9 7575 have_caching_bg = true;
f6373bf3 7576 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7577 BUG_ON(ret < 0);
7578 ret = 0;
817d52f8
JB
7579 }
7580
36cce922
JB
7581 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7582 goto loop;
ea6a478e 7583 if (unlikely(block_group->ro))
2552d17e 7584 goto loop;
0f9dd46c 7585
0a24325e 7586 /*
062c05c4
AO
7587 * Ok we want to try and use the cluster allocator, so
7588 * lets look there
0a24325e 7589 */
c759c4e1 7590 if (last_ptr && use_cluster) {
215a63d1 7591 struct btrfs_block_group_cache *used_block_group;
8de972b4 7592 unsigned long aligned_cluster;
fa9c0d79
CM
7593 /*
7594 * the refill lock keeps out other
7595 * people trying to start a new cluster
7596 */
e570fd27
MX
7597 used_block_group = btrfs_lock_cluster(block_group,
7598 last_ptr,
7599 delalloc);
7600 if (!used_block_group)
44fb5511 7601 goto refill_cluster;
274bd4fb 7602
e570fd27
MX
7603 if (used_block_group != block_group &&
7604 (used_block_group->ro ||
7605 !block_group_bits(used_block_group, flags)))
7606 goto release_cluster;
44fb5511 7607
274bd4fb 7608 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7609 last_ptr,
7610 num_bytes,
7611 used_block_group->key.objectid,
7612 &max_extent_size);
fa9c0d79
CM
7613 if (offset) {
7614 /* we have a block, we're done */
7615 spin_unlock(&last_ptr->refill_lock);
71ff6437 7616 trace_btrfs_reserve_extent_cluster(fs_info,
89d4346a
MX
7617 used_block_group,
7618 search_start, num_bytes);
215a63d1 7619 if (used_block_group != block_group) {
e570fd27
MX
7620 btrfs_release_block_group(block_group,
7621 delalloc);
215a63d1
MX
7622 block_group = used_block_group;
7623 }
fa9c0d79
CM
7624 goto checks;
7625 }
7626
274bd4fb 7627 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7628release_cluster:
062c05c4
AO
7629 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7630 * set up a new clusters, so lets just skip it
7631 * and let the allocator find whatever block
7632 * it can find. If we reach this point, we
7633 * will have tried the cluster allocator
7634 * plenty of times and not have found
7635 * anything, so we are likely way too
7636 * fragmented for the clustering stuff to find
a5f6f719
AO
7637 * anything.
7638 *
7639 * However, if the cluster is taken from the
7640 * current block group, release the cluster
7641 * first, so that we stand a better chance of
7642 * succeeding in the unclustered
7643 * allocation. */
7644 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7645 used_block_group != block_group) {
062c05c4 7646 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7647 btrfs_release_block_group(used_block_group,
7648 delalloc);
062c05c4
AO
7649 goto unclustered_alloc;
7650 }
7651
fa9c0d79
CM
7652 /*
7653 * this cluster didn't work out, free it and
7654 * start over
7655 */
7656 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7657
e570fd27
MX
7658 if (used_block_group != block_group)
7659 btrfs_release_block_group(used_block_group,
7660 delalloc);
7661refill_cluster:
a5f6f719
AO
7662 if (loop >= LOOP_NO_EMPTY_SIZE) {
7663 spin_unlock(&last_ptr->refill_lock);
7664 goto unclustered_alloc;
7665 }
7666
8de972b4
CM
7667 aligned_cluster = max_t(unsigned long,
7668 empty_cluster + empty_size,
7669 block_group->full_stripe_len);
7670
fa9c0d79 7671 /* allocate a cluster in this block group */
2ff7e61e 7672 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7673 last_ptr, search_start,
7674 num_bytes,
7675 aligned_cluster);
fa9c0d79
CM
7676 if (ret == 0) {
7677 /*
7678 * now pull our allocation out of this
7679 * cluster
7680 */
7681 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7682 last_ptr,
7683 num_bytes,
7684 search_start,
7685 &max_extent_size);
fa9c0d79
CM
7686 if (offset) {
7687 /* we found one, proceed */
7688 spin_unlock(&last_ptr->refill_lock);
71ff6437 7689 trace_btrfs_reserve_extent_cluster(fs_info,
3f7de037
JB
7690 block_group, search_start,
7691 num_bytes);
fa9c0d79
CM
7692 goto checks;
7693 }
0a24325e
JB
7694 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7695 && !failed_cluster_refill) {
817d52f8
JB
7696 spin_unlock(&last_ptr->refill_lock);
7697
0a24325e 7698 failed_cluster_refill = true;
817d52f8
JB
7699 wait_block_group_cache_progress(block_group,
7700 num_bytes + empty_cluster + empty_size);
7701 goto have_block_group;
fa9c0d79 7702 }
817d52f8 7703
fa9c0d79
CM
7704 /*
7705 * at this point we either didn't find a cluster
7706 * or we weren't able to allocate a block from our
7707 * cluster. Free the cluster we've been trying
7708 * to use, and go to the next block group
7709 */
0a24325e 7710 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7711 spin_unlock(&last_ptr->refill_lock);
0a24325e 7712 goto loop;
fa9c0d79
CM
7713 }
7714
062c05c4 7715unclustered_alloc:
c759c4e1
JB
7716 /*
7717 * We are doing an unclustered alloc, set the fragmented flag so
7718 * we don't bother trying to setup a cluster again until we get
7719 * more space.
7720 */
7721 if (unlikely(last_ptr)) {
7722 spin_lock(&last_ptr->lock);
7723 last_ptr->fragmented = 1;
7724 spin_unlock(&last_ptr->lock);
7725 }
0c9b36e0
LB
7726 if (cached) {
7727 struct btrfs_free_space_ctl *ctl =
7728 block_group->free_space_ctl;
7729
7730 spin_lock(&ctl->tree_lock);
7731 if (ctl->free_space <
7732 num_bytes + empty_cluster + empty_size) {
7733 if (ctl->free_space > max_extent_size)
7734 max_extent_size = ctl->free_space;
7735 spin_unlock(&ctl->tree_lock);
7736 goto loop;
7737 }
7738 spin_unlock(&ctl->tree_lock);
a5f6f719 7739 }
a5f6f719 7740
6226cb0a 7741 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7742 num_bytes, empty_size,
7743 &max_extent_size);
1cdda9b8
JB
7744 /*
7745 * If we didn't find a chunk, and we haven't failed on this
7746 * block group before, and this block group is in the middle of
7747 * caching and we are ok with waiting, then go ahead and wait
7748 * for progress to be made, and set failed_alloc to true.
7749 *
7750 * If failed_alloc is true then we've already waited on this
7751 * block group once and should move on to the next block group.
7752 */
7753 if (!offset && !failed_alloc && !cached &&
7754 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7755 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7756 num_bytes + empty_size);
7757 failed_alloc = true;
817d52f8 7758 goto have_block_group;
1cdda9b8
JB
7759 } else if (!offset) {
7760 goto loop;
817d52f8 7761 }
fa9c0d79 7762checks:
0b246afa 7763 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7764
2552d17e
JB
7765 /* move on to the next group */
7766 if (search_start + num_bytes >
215a63d1
MX
7767 block_group->key.objectid + block_group->key.offset) {
7768 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7769 goto loop;
6226cb0a 7770 }
f5a31e16 7771
f0486c68 7772 if (offset < search_start)
215a63d1 7773 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7774 search_start - offset);
7775 BUG_ON(offset > search_start);
2552d17e 7776
18513091
WX
7777 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7778 num_bytes, delalloc);
f0486c68 7779 if (ret == -EAGAIN) {
215a63d1 7780 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7781 goto loop;
0f9dd46c 7782 }
9cfa3e34 7783 btrfs_inc_block_group_reservations(block_group);
0b86a832 7784
f0486c68 7785 /* we are all good, lets return */
2552d17e
JB
7786 ins->objectid = search_start;
7787 ins->offset = num_bytes;
d2fb3437 7788
71ff6437 7789 trace_btrfs_reserve_extent(fs_info, block_group,
3f7de037 7790 search_start, num_bytes);
e570fd27 7791 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7792 break;
7793loop:
0a24325e 7794 failed_cluster_refill = false;
1cdda9b8 7795 failed_alloc = false;
b742bb82 7796 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7797 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7798 }
7799 up_read(&space_info->groups_sem);
7800
13a0db5a 7801 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7802 && !orig_have_caching_bg)
7803 orig_have_caching_bg = true;
7804
60d2adbb
MX
7805 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7806 goto search;
7807
b742bb82
YZ
7808 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7809 goto search;
7810
285ff5af 7811 /*
ccf0e725
JB
7812 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7813 * caching kthreads as we move along
817d52f8
JB
7814 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7815 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7816 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7817 * again
fa9c0d79 7818 */
723bda20 7819 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7820 index = 0;
a5e681d9
JB
7821 if (loop == LOOP_CACHING_NOWAIT) {
7822 /*
7823 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7824 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7825 * full search through.
7826 */
13a0db5a 7827 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7828 loop = LOOP_CACHING_WAIT;
7829 else
7830 loop = LOOP_ALLOC_CHUNK;
7831 } else {
7832 loop++;
7833 }
7834
817d52f8 7835 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7836 struct btrfs_trans_handle *trans;
f017f15f
WS
7837 int exist = 0;
7838
7839 trans = current->journal_info;
7840 if (trans)
7841 exist = 1;
7842 else
7843 trans = btrfs_join_transaction(root);
00361589 7844
00361589
JB
7845 if (IS_ERR(trans)) {
7846 ret = PTR_ERR(trans);
7847 goto out;
7848 }
7849
2ff7e61e 7850 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7851 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7852
7853 /*
7854 * If we can't allocate a new chunk we've already looped
7855 * through at least once, move on to the NO_EMPTY_SIZE
7856 * case.
7857 */
7858 if (ret == -ENOSPC)
7859 loop = LOOP_NO_EMPTY_SIZE;
7860
ea658bad
JB
7861 /*
7862 * Do not bail out on ENOSPC since we
7863 * can do more things.
7864 */
00361589 7865 if (ret < 0 && ret != -ENOSPC)
66642832 7866 btrfs_abort_transaction(trans, ret);
00361589
JB
7867 else
7868 ret = 0;
f017f15f 7869 if (!exist)
3a45bb20 7870 btrfs_end_transaction(trans);
00361589 7871 if (ret)
ea658bad 7872 goto out;
2552d17e
JB
7873 }
7874
723bda20 7875 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7876 /*
7877 * Don't loop again if we already have no empty_size and
7878 * no empty_cluster.
7879 */
7880 if (empty_size == 0 &&
7881 empty_cluster == 0) {
7882 ret = -ENOSPC;
7883 goto out;
7884 }
723bda20
JB
7885 empty_size = 0;
7886 empty_cluster = 0;
fa9c0d79 7887 }
723bda20
JB
7888
7889 goto search;
2552d17e
JB
7890 } else if (!ins->objectid) {
7891 ret = -ENOSPC;
d82a6f1d 7892 } else if (ins->objectid) {
c759c4e1
JB
7893 if (!use_cluster && last_ptr) {
7894 spin_lock(&last_ptr->lock);
7895 last_ptr->window_start = ins->objectid;
7896 spin_unlock(&last_ptr->lock);
7897 }
80eb234a 7898 ret = 0;
be744175 7899 }
79787eaa 7900out:
4f4db217
JB
7901 if (ret == -ENOSPC) {
7902 spin_lock(&space_info->lock);
7903 space_info->max_extent_size = max_extent_size;
7904 spin_unlock(&space_info->lock);
a4820398 7905 ins->offset = max_extent_size;
4f4db217 7906 }
0f70abe2 7907 return ret;
fec577fb 7908}
ec44a35c 7909
ab8d0fc4
JM
7910static void dump_space_info(struct btrfs_fs_info *fs_info,
7911 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7912 int dump_block_groups)
0f9dd46c
JB
7913{
7914 struct btrfs_block_group_cache *cache;
b742bb82 7915 int index = 0;
0f9dd46c 7916
9ed74f2d 7917 spin_lock(&info->lock);
ab8d0fc4
JM
7918 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7919 info->flags,
4136135b
LB
7920 info->total_bytes - btrfs_space_info_used(info, true),
7921 info->full ? "" : "not ");
ab8d0fc4
JM
7922 btrfs_info(fs_info,
7923 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7924 info->total_bytes, info->bytes_used, info->bytes_pinned,
7925 info->bytes_reserved, info->bytes_may_use,
7926 info->bytes_readonly);
9ed74f2d
JB
7927 spin_unlock(&info->lock);
7928
7929 if (!dump_block_groups)
7930 return;
0f9dd46c 7931
80eb234a 7932 down_read(&info->groups_sem);
b742bb82
YZ
7933again:
7934 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7935 spin_lock(&cache->lock);
ab8d0fc4
JM
7936 btrfs_info(fs_info,
7937 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7938 cache->key.objectid, cache->key.offset,
7939 btrfs_block_group_used(&cache->item), cache->pinned,
7940 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7941 btrfs_dump_free_space(cache, bytes);
7942 spin_unlock(&cache->lock);
7943 }
b742bb82
YZ
7944 if (++index < BTRFS_NR_RAID_TYPES)
7945 goto again;
80eb234a 7946 up_read(&info->groups_sem);
0f9dd46c 7947}
e8569813 7948
18513091 7949int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7950 u64 num_bytes, u64 min_alloc_size,
7951 u64 empty_size, u64 hint_byte,
e570fd27 7952 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7953{
ab8d0fc4 7954 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7955 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7956 u64 flags;
fec577fb 7957 int ret;
925baedd 7958
b6919a58 7959 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7960again:
0b246afa 7961 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 7962 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 7963 hint_byte, ins, flags, delalloc);
9cfa3e34 7964 if (!ret && !is_data) {
ab8d0fc4 7965 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 7966 } else if (ret == -ENOSPC) {
a4820398
MX
7967 if (!final_tried && ins->offset) {
7968 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 7969 num_bytes = round_down(num_bytes,
0b246afa 7970 fs_info->sectorsize);
9e622d6b 7971 num_bytes = max(num_bytes, min_alloc_size);
18513091 7972 ram_bytes = num_bytes;
9e622d6b
MX
7973 if (num_bytes == min_alloc_size)
7974 final_tried = true;
7975 goto again;
ab8d0fc4 7976 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
7977 struct btrfs_space_info *sinfo;
7978
ab8d0fc4 7979 sinfo = __find_space_info(fs_info, flags);
0b246afa 7980 btrfs_err(fs_info,
5d163e0e
JM
7981 "allocation failed flags %llu, wanted %llu",
7982 flags, num_bytes);
53804280 7983 if (sinfo)
ab8d0fc4 7984 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 7985 }
925baedd 7986 }
0f9dd46c
JB
7987
7988 return ret;
e6dcd2dc
CM
7989}
7990
2ff7e61e 7991static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
7992 u64 start, u64 len,
7993 int pin, int delalloc)
65b51a00 7994{
0f9dd46c 7995 struct btrfs_block_group_cache *cache;
1f3c79a2 7996 int ret = 0;
0f9dd46c 7997
0b246afa 7998 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 7999 if (!cache) {
0b246afa
JM
8000 btrfs_err(fs_info, "Unable to find block group for %llu",
8001 start);
0f9dd46c
JB
8002 return -ENOSPC;
8003 }
1f3c79a2 8004
e688b725 8005 if (pin)
2ff7e61e 8006 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8007 else {
0b246afa 8008 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8009 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8010 btrfs_add_free_space(cache, start, len);
4824f1f4 8011 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8012 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8013 }
31193213 8014
fa9c0d79 8015 btrfs_put_block_group(cache);
e6dcd2dc
CM
8016 return ret;
8017}
8018
2ff7e61e 8019int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8020 u64 start, u64 len, int delalloc)
e688b725 8021{
2ff7e61e 8022 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8023}
8024
2ff7e61e 8025int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8026 u64 start, u64 len)
8027{
2ff7e61e 8028 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8029}
8030
5d4f98a2 8031static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8032 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8033 u64 parent, u64 root_objectid,
8034 u64 flags, u64 owner, u64 offset,
8035 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8036{
8037 int ret;
e6dcd2dc 8038 struct btrfs_extent_item *extent_item;
5d4f98a2 8039 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8040 struct btrfs_path *path;
5d4f98a2
YZ
8041 struct extent_buffer *leaf;
8042 int type;
8043 u32 size;
26b8003f 8044
5d4f98a2
YZ
8045 if (parent > 0)
8046 type = BTRFS_SHARED_DATA_REF_KEY;
8047 else
8048 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8049
5d4f98a2 8050 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8051
8052 path = btrfs_alloc_path();
db5b493a
TI
8053 if (!path)
8054 return -ENOMEM;
47e4bb98 8055
b9473439 8056 path->leave_spinning = 1;
5d4f98a2
YZ
8057 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8058 ins, size);
79787eaa
JM
8059 if (ret) {
8060 btrfs_free_path(path);
8061 return ret;
8062 }
0f9dd46c 8063
5d4f98a2
YZ
8064 leaf = path->nodes[0];
8065 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8066 struct btrfs_extent_item);
5d4f98a2
YZ
8067 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8068 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8069 btrfs_set_extent_flags(leaf, extent_item,
8070 flags | BTRFS_EXTENT_FLAG_DATA);
8071
8072 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8073 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8074 if (parent > 0) {
8075 struct btrfs_shared_data_ref *ref;
8076 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8077 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8078 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8079 } else {
8080 struct btrfs_extent_data_ref *ref;
8081 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8082 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8083 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8084 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8085 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8086 }
47e4bb98
CM
8087
8088 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8089 btrfs_free_path(path);
f510cfec 8090
1e144fb8
OS
8091 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8092 ins->offset);
8093 if (ret)
8094 return ret;
8095
6202df69 8096 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8097 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8098 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8099 ins->objectid, ins->offset);
f5947066
CM
8100 BUG();
8101 }
71ff6437 8102 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8103 return ret;
8104}
8105
5d4f98a2 8106static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 8107 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8108 u64 parent, u64 root_objectid,
8109 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8110 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8111{
8112 int ret;
5d4f98a2
YZ
8113 struct btrfs_extent_item *extent_item;
8114 struct btrfs_tree_block_info *block_info;
8115 struct btrfs_extent_inline_ref *iref;
8116 struct btrfs_path *path;
8117 struct extent_buffer *leaf;
3173a18f 8118 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8119 u64 num_bytes = ins->offset;
0b246afa 8120 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f
JB
8121
8122 if (!skinny_metadata)
8123 size += sizeof(*block_info);
1c2308f8 8124
5d4f98a2 8125 path = btrfs_alloc_path();
857cc2fc 8126 if (!path) {
2ff7e61e 8127 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8128 fs_info->nodesize);
d8926bb3 8129 return -ENOMEM;
857cc2fc 8130 }
56bec294 8131
5d4f98a2
YZ
8132 path->leave_spinning = 1;
8133 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8134 ins, size);
79787eaa 8135 if (ret) {
dd825259 8136 btrfs_free_path(path);
2ff7e61e 8137 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8138 fs_info->nodesize);
79787eaa
JM
8139 return ret;
8140 }
5d4f98a2
YZ
8141
8142 leaf = path->nodes[0];
8143 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8144 struct btrfs_extent_item);
8145 btrfs_set_extent_refs(leaf, extent_item, 1);
8146 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8147 btrfs_set_extent_flags(leaf, extent_item,
8148 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8149
3173a18f
JB
8150 if (skinny_metadata) {
8151 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
0b246afa 8152 num_bytes = fs_info->nodesize;
3173a18f
JB
8153 } else {
8154 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8155 btrfs_set_tree_block_key(leaf, block_info, key);
8156 btrfs_set_tree_block_level(leaf, block_info, level);
8157 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8158 }
5d4f98a2 8159
5d4f98a2
YZ
8160 if (parent > 0) {
8161 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8162 btrfs_set_extent_inline_ref_type(leaf, iref,
8163 BTRFS_SHARED_BLOCK_REF_KEY);
8164 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8165 } else {
8166 btrfs_set_extent_inline_ref_type(leaf, iref,
8167 BTRFS_TREE_BLOCK_REF_KEY);
8168 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8169 }
8170
8171 btrfs_mark_buffer_dirty(leaf);
8172 btrfs_free_path(path);
8173
1e144fb8
OS
8174 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8175 num_bytes);
8176 if (ret)
8177 return ret;
8178
6202df69
JM
8179 ret = update_block_group(trans, fs_info, ins->objectid,
8180 fs_info->nodesize, 1);
79787eaa 8181 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8182 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8183 ins->objectid, ins->offset);
5d4f98a2
YZ
8184 BUG();
8185 }
0be5dc67 8186
71ff6437 8187 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
0b246afa 8188 fs_info->nodesize);
5d4f98a2
YZ
8189 return ret;
8190}
8191
8192int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2 8193 u64 root_objectid, u64 owner,
5846a3c2
QW
8194 u64 offset, u64 ram_bytes,
8195 struct btrfs_key *ins)
5d4f98a2 8196{
2ff7e61e 8197 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
8198 int ret;
8199
8200 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8201
0b246afa 8202 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
66d7e7f0
AJ
8203 ins->offset, 0,
8204 root_objectid, owner, offset,
fef394f7 8205 ram_bytes, BTRFS_ADD_DELAYED_EXTENT);
e6dcd2dc
CM
8206 return ret;
8207}
e02119d5
CM
8208
8209/*
8210 * this is used by the tree logging recovery code. It records that
8211 * an extent has been allocated and makes sure to clear the free
8212 * space cache bits as well
8213 */
5d4f98a2 8214int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8215 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8216 u64 root_objectid, u64 owner, u64 offset,
8217 struct btrfs_key *ins)
e02119d5
CM
8218{
8219 int ret;
8220 struct btrfs_block_group_cache *block_group;
ed7a6948 8221 struct btrfs_space_info *space_info;
11833d66 8222
8c2a1a30
JB
8223 /*
8224 * Mixed block groups will exclude before processing the log so we only
01327610 8225 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8226 */
0b246afa 8227 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8228 ret = __exclude_logged_extent(fs_info, ins->objectid,
8229 ins->offset);
b50c6e25 8230 if (ret)
8c2a1a30 8231 return ret;
11833d66
YZ
8232 }
8233
0b246afa 8234 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8235 if (!block_group)
8236 return -EINVAL;
8237
ed7a6948
WX
8238 space_info = block_group->space_info;
8239 spin_lock(&space_info->lock);
8240 spin_lock(&block_group->lock);
8241 space_info->bytes_reserved += ins->offset;
8242 block_group->reserved += ins->offset;
8243 spin_unlock(&block_group->lock);
8244 spin_unlock(&space_info->lock);
8245
2ff7e61e 8246 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8247 0, owner, offset, ins, 1);
b50c6e25 8248 btrfs_put_block_group(block_group);
e02119d5
CM
8249 return ret;
8250}
8251
48a3b636
ES
8252static struct extent_buffer *
8253btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8254 u64 bytenr, int level)
65b51a00 8255{
0b246afa 8256 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8257 struct extent_buffer *buf;
8258
2ff7e61e 8259 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8260 if (IS_ERR(buf))
8261 return buf;
8262
65b51a00 8263 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8264 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8265 btrfs_tree_lock(buf);
7c302b49 8266 clean_tree_block(fs_info, buf);
3083ee2e 8267 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8268
8269 btrfs_set_lock_blocking(buf);
4db8c528 8270 set_extent_buffer_uptodate(buf);
b4ce94de 8271
d0c803c4 8272 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8273 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8274 /*
8275 * we allow two log transactions at a time, use different
8276 * EXENT bit to differentiate dirty pages.
8277 */
656f30db 8278 if (buf->log_index == 0)
8cef4e16
YZ
8279 set_extent_dirty(&root->dirty_log_pages, buf->start,
8280 buf->start + buf->len - 1, GFP_NOFS);
8281 else
8282 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8283 buf->start + buf->len - 1);
d0c803c4 8284 } else {
656f30db 8285 buf->log_index = -1;
d0c803c4 8286 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8287 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8288 }
64c12921 8289 trans->dirty = true;
b4ce94de 8290 /* this returns a buffer locked for blocking */
65b51a00
CM
8291 return buf;
8292}
8293
f0486c68
YZ
8294static struct btrfs_block_rsv *
8295use_block_rsv(struct btrfs_trans_handle *trans,
8296 struct btrfs_root *root, u32 blocksize)
8297{
0b246afa 8298 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8299 struct btrfs_block_rsv *block_rsv;
0b246afa 8300 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8301 int ret;
d88033db 8302 bool global_updated = false;
f0486c68
YZ
8303
8304 block_rsv = get_block_rsv(trans, root);
8305
b586b323
MX
8306 if (unlikely(block_rsv->size == 0))
8307 goto try_reserve;
d88033db 8308again:
f0486c68
YZ
8309 ret = block_rsv_use_bytes(block_rsv, blocksize);
8310 if (!ret)
8311 return block_rsv;
8312
b586b323
MX
8313 if (block_rsv->failfast)
8314 return ERR_PTR(ret);
8315
d88033db
MX
8316 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8317 global_updated = true;
0b246afa 8318 update_global_block_rsv(fs_info);
d88033db
MX
8319 goto again;
8320 }
8321
0b246afa 8322 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8323 static DEFINE_RATELIMIT_STATE(_rs,
8324 DEFAULT_RATELIMIT_INTERVAL * 10,
8325 /*DEFAULT_RATELIMIT_BURST*/ 1);
8326 if (__ratelimit(&_rs))
8327 WARN(1, KERN_DEBUG
efe120a0 8328 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8329 }
8330try_reserve:
8331 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8332 BTRFS_RESERVE_NO_FLUSH);
8333 if (!ret)
8334 return block_rsv;
8335 /*
8336 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8337 * the global reserve if its space type is the same as the global
8338 * reservation.
b586b323 8339 */
5881cfc9
MX
8340 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8341 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8342 ret = block_rsv_use_bytes(global_rsv, blocksize);
8343 if (!ret)
8344 return global_rsv;
8345 }
8346 return ERR_PTR(ret);
f0486c68
YZ
8347}
8348
8c2a3ca2
JB
8349static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8350 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8351{
8352 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8353 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8354}
8355
fec577fb 8356/*
f0486c68 8357 * finds a free extent and does all the dirty work required for allocation
67b7859e 8358 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8359 */
4d75f8a9 8360struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8361 struct btrfs_root *root,
8362 u64 parent, u64 root_objectid,
8363 const struct btrfs_disk_key *key,
8364 int level, u64 hint,
8365 u64 empty_size)
fec577fb 8366{
0b246afa 8367 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8368 struct btrfs_key ins;
f0486c68 8369 struct btrfs_block_rsv *block_rsv;
5f39d397 8370 struct extent_buffer *buf;
67b7859e 8371 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8372 u64 flags = 0;
8373 int ret;
0b246afa
JM
8374 u32 blocksize = fs_info->nodesize;
8375 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8376
05653ef3 8377#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8378 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8379 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8380 level);
faa2dbf0
JB
8381 if (!IS_ERR(buf))
8382 root->alloc_bytenr += blocksize;
8383 return buf;
8384 }
05653ef3 8385#endif
fccb84c9 8386
f0486c68
YZ
8387 block_rsv = use_block_rsv(trans, root, blocksize);
8388 if (IS_ERR(block_rsv))
8389 return ERR_CAST(block_rsv);
8390
18513091 8391 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8392 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8393 if (ret)
8394 goto out_unuse;
55c69072 8395
fe864576 8396 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8397 if (IS_ERR(buf)) {
8398 ret = PTR_ERR(buf);
8399 goto out_free_reserved;
8400 }
f0486c68
YZ
8401
8402 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8403 if (parent == 0)
8404 parent = ins.objectid;
8405 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8406 } else
8407 BUG_ON(parent > 0);
8408
8409 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8410 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8411 if (!extent_op) {
8412 ret = -ENOMEM;
8413 goto out_free_buf;
8414 }
f0486c68
YZ
8415 if (key)
8416 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8417 else
8418 memset(&extent_op->key, 0, sizeof(extent_op->key));
8419 extent_op->flags_to_set = flags;
35b3ad50
DS
8420 extent_op->update_key = skinny_metadata ? false : true;
8421 extent_op->update_flags = true;
8422 extent_op->is_data = false;
b1c79e09 8423 extent_op->level = level;
f0486c68 8424
0b246afa 8425 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
67b7859e
OS
8426 ins.objectid, ins.offset,
8427 parent, root_objectid, level,
8428 BTRFS_ADD_DELAYED_EXTENT,
b06c4bf5 8429 extent_op);
67b7859e
OS
8430 if (ret)
8431 goto out_free_delayed;
f0486c68 8432 }
fec577fb 8433 return buf;
67b7859e
OS
8434
8435out_free_delayed:
8436 btrfs_free_delayed_extent_op(extent_op);
8437out_free_buf:
8438 free_extent_buffer(buf);
8439out_free_reserved:
2ff7e61e 8440 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8441out_unuse:
0b246afa 8442 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8443 return ERR_PTR(ret);
fec577fb 8444}
a28ec197 8445
2c47e605
YZ
8446struct walk_control {
8447 u64 refs[BTRFS_MAX_LEVEL];
8448 u64 flags[BTRFS_MAX_LEVEL];
8449 struct btrfs_key update_progress;
8450 int stage;
8451 int level;
8452 int shared_level;
8453 int update_ref;
8454 int keep_locks;
1c4850e2
YZ
8455 int reada_slot;
8456 int reada_count;
66d7e7f0 8457 int for_reloc;
2c47e605
YZ
8458};
8459
8460#define DROP_REFERENCE 1
8461#define UPDATE_BACKREF 2
8462
1c4850e2
YZ
8463static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8464 struct btrfs_root *root,
8465 struct walk_control *wc,
8466 struct btrfs_path *path)
6407bf6d 8467{
0b246afa 8468 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8469 u64 bytenr;
8470 u64 generation;
8471 u64 refs;
94fcca9f 8472 u64 flags;
5d4f98a2 8473 u32 nritems;
1c4850e2
YZ
8474 struct btrfs_key key;
8475 struct extent_buffer *eb;
6407bf6d 8476 int ret;
1c4850e2
YZ
8477 int slot;
8478 int nread = 0;
6407bf6d 8479
1c4850e2
YZ
8480 if (path->slots[wc->level] < wc->reada_slot) {
8481 wc->reada_count = wc->reada_count * 2 / 3;
8482 wc->reada_count = max(wc->reada_count, 2);
8483 } else {
8484 wc->reada_count = wc->reada_count * 3 / 2;
8485 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8486 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8487 }
7bb86316 8488
1c4850e2
YZ
8489 eb = path->nodes[wc->level];
8490 nritems = btrfs_header_nritems(eb);
bd56b302 8491
1c4850e2
YZ
8492 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8493 if (nread >= wc->reada_count)
8494 break;
bd56b302 8495
2dd3e67b 8496 cond_resched();
1c4850e2
YZ
8497 bytenr = btrfs_node_blockptr(eb, slot);
8498 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8499
1c4850e2
YZ
8500 if (slot == path->slots[wc->level])
8501 goto reada;
5d4f98a2 8502
1c4850e2
YZ
8503 if (wc->stage == UPDATE_BACKREF &&
8504 generation <= root->root_key.offset)
bd56b302
CM
8505 continue;
8506
94fcca9f 8507 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8508 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8509 wc->level - 1, 1, &refs,
8510 &flags);
79787eaa
JM
8511 /* We don't care about errors in readahead. */
8512 if (ret < 0)
8513 continue;
94fcca9f
YZ
8514 BUG_ON(refs == 0);
8515
1c4850e2 8516 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8517 if (refs == 1)
8518 goto reada;
bd56b302 8519
94fcca9f
YZ
8520 if (wc->level == 1 &&
8521 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8522 continue;
1c4850e2
YZ
8523 if (!wc->update_ref ||
8524 generation <= root->root_key.offset)
8525 continue;
8526 btrfs_node_key_to_cpu(eb, &key, slot);
8527 ret = btrfs_comp_cpu_keys(&key,
8528 &wc->update_progress);
8529 if (ret < 0)
8530 continue;
94fcca9f
YZ
8531 } else {
8532 if (wc->level == 1 &&
8533 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8534 continue;
6407bf6d 8535 }
1c4850e2 8536reada:
2ff7e61e 8537 readahead_tree_block(fs_info, bytenr);
1c4850e2 8538 nread++;
20524f02 8539 }
1c4850e2 8540 wc->reada_slot = slot;
20524f02 8541}
2c47e605 8542
f82d02d9 8543/*
2c016dc2 8544 * helper to process tree block while walking down the tree.
2c47e605 8545 *
2c47e605
YZ
8546 * when wc->stage == UPDATE_BACKREF, this function updates
8547 * back refs for pointers in the block.
8548 *
8549 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8550 */
2c47e605 8551static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8552 struct btrfs_root *root,
2c47e605 8553 struct btrfs_path *path,
94fcca9f 8554 struct walk_control *wc, int lookup_info)
f82d02d9 8555{
2ff7e61e 8556 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8557 int level = wc->level;
8558 struct extent_buffer *eb = path->nodes[level];
2c47e605 8559 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8560 int ret;
8561
2c47e605
YZ
8562 if (wc->stage == UPDATE_BACKREF &&
8563 btrfs_header_owner(eb) != root->root_key.objectid)
8564 return 1;
f82d02d9 8565
2c47e605
YZ
8566 /*
8567 * when reference count of tree block is 1, it won't increase
8568 * again. once full backref flag is set, we never clear it.
8569 */
94fcca9f
YZ
8570 if (lookup_info &&
8571 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8572 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8573 BUG_ON(!path->locks[level]);
2ff7e61e 8574 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8575 eb->start, level, 1,
2c47e605
YZ
8576 &wc->refs[level],
8577 &wc->flags[level]);
79787eaa
JM
8578 BUG_ON(ret == -ENOMEM);
8579 if (ret)
8580 return ret;
2c47e605
YZ
8581 BUG_ON(wc->refs[level] == 0);
8582 }
5d4f98a2 8583
2c47e605
YZ
8584 if (wc->stage == DROP_REFERENCE) {
8585 if (wc->refs[level] > 1)
8586 return 1;
f82d02d9 8587
2c47e605 8588 if (path->locks[level] && !wc->keep_locks) {
bd681513 8589 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8590 path->locks[level] = 0;
8591 }
8592 return 0;
8593 }
f82d02d9 8594
2c47e605
YZ
8595 /* wc->stage == UPDATE_BACKREF */
8596 if (!(wc->flags[level] & flag)) {
8597 BUG_ON(!path->locks[level]);
e339a6b0 8598 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8599 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8600 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8601 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8602 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8603 eb->len, flag,
8604 btrfs_header_level(eb), 0);
79787eaa 8605 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8606 wc->flags[level] |= flag;
8607 }
8608
8609 /*
8610 * the block is shared by multiple trees, so it's not good to
8611 * keep the tree lock
8612 */
8613 if (path->locks[level] && level > 0) {
bd681513 8614 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8615 path->locks[level] = 0;
8616 }
8617 return 0;
8618}
8619
1c4850e2 8620/*
2c016dc2 8621 * helper to process tree block pointer.
1c4850e2
YZ
8622 *
8623 * when wc->stage == DROP_REFERENCE, this function checks
8624 * reference count of the block pointed to. if the block
8625 * is shared and we need update back refs for the subtree
8626 * rooted at the block, this function changes wc->stage to
8627 * UPDATE_BACKREF. if the block is shared and there is no
8628 * need to update back, this function drops the reference
8629 * to the block.
8630 *
8631 * NOTE: return value 1 means we should stop walking down.
8632 */
8633static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8634 struct btrfs_root *root,
8635 struct btrfs_path *path,
94fcca9f 8636 struct walk_control *wc, int *lookup_info)
1c4850e2 8637{
0b246afa 8638 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8639 u64 bytenr;
8640 u64 generation;
8641 u64 parent;
8642 u32 blocksize;
8643 struct btrfs_key key;
8644 struct extent_buffer *next;
8645 int level = wc->level;
8646 int reada = 0;
8647 int ret = 0;
1152651a 8648 bool need_account = false;
1c4850e2
YZ
8649
8650 generation = btrfs_node_ptr_generation(path->nodes[level],
8651 path->slots[level]);
8652 /*
8653 * if the lower level block was created before the snapshot
8654 * was created, we know there is no need to update back refs
8655 * for the subtree
8656 */
8657 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8658 generation <= root->root_key.offset) {
8659 *lookup_info = 1;
1c4850e2 8660 return 1;
94fcca9f 8661 }
1c4850e2
YZ
8662
8663 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
0b246afa 8664 blocksize = fs_info->nodesize;
1c4850e2 8665
0b246afa 8666 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8667 if (!next) {
2ff7e61e 8668 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8669 if (IS_ERR(next))
8670 return PTR_ERR(next);
8671
b2aaaa3b
JB
8672 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8673 level - 1);
1c4850e2
YZ
8674 reada = 1;
8675 }
8676 btrfs_tree_lock(next);
8677 btrfs_set_lock_blocking(next);
8678
2ff7e61e 8679 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8680 &wc->refs[level - 1],
8681 &wc->flags[level - 1]);
4867268c
JB
8682 if (ret < 0)
8683 goto out_unlock;
79787eaa 8684
c2cf52eb 8685 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8686 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8687 ret = -EIO;
8688 goto out_unlock;
c2cf52eb 8689 }
94fcca9f 8690 *lookup_info = 0;
1c4850e2 8691
94fcca9f 8692 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8693 if (wc->refs[level - 1] > 1) {
1152651a 8694 need_account = true;
94fcca9f
YZ
8695 if (level == 1 &&
8696 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8697 goto skip;
8698
1c4850e2
YZ
8699 if (!wc->update_ref ||
8700 generation <= root->root_key.offset)
8701 goto skip;
8702
8703 btrfs_node_key_to_cpu(path->nodes[level], &key,
8704 path->slots[level]);
8705 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8706 if (ret < 0)
8707 goto skip;
8708
8709 wc->stage = UPDATE_BACKREF;
8710 wc->shared_level = level - 1;
8711 }
94fcca9f
YZ
8712 } else {
8713 if (level == 1 &&
8714 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8715 goto skip;
1c4850e2
YZ
8716 }
8717
b9fab919 8718 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8719 btrfs_tree_unlock(next);
8720 free_extent_buffer(next);
8721 next = NULL;
94fcca9f 8722 *lookup_info = 1;
1c4850e2
YZ
8723 }
8724
8725 if (!next) {
8726 if (reada && level == 1)
8727 reada_walk_down(trans, root, wc, path);
2ff7e61e 8728 next = read_tree_block(fs_info, bytenr, generation);
64c043de
LB
8729 if (IS_ERR(next)) {
8730 return PTR_ERR(next);
8731 } else if (!extent_buffer_uptodate(next)) {
416bc658 8732 free_extent_buffer(next);
97d9a8a4 8733 return -EIO;
416bc658 8734 }
1c4850e2
YZ
8735 btrfs_tree_lock(next);
8736 btrfs_set_lock_blocking(next);
8737 }
8738
8739 level--;
4867268c
JB
8740 ASSERT(level == btrfs_header_level(next));
8741 if (level != btrfs_header_level(next)) {
8742 btrfs_err(root->fs_info, "mismatched level");
8743 ret = -EIO;
8744 goto out_unlock;
8745 }
1c4850e2
YZ
8746 path->nodes[level] = next;
8747 path->slots[level] = 0;
bd681513 8748 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8749 wc->level = level;
8750 if (wc->level == 1)
8751 wc->reada_slot = 0;
8752 return 0;
8753skip:
8754 wc->refs[level - 1] = 0;
8755 wc->flags[level - 1] = 0;
94fcca9f
YZ
8756 if (wc->stage == DROP_REFERENCE) {
8757 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8758 parent = path->nodes[level]->start;
8759 } else {
4867268c 8760 ASSERT(root->root_key.objectid ==
94fcca9f 8761 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8762 if (root->root_key.objectid !=
8763 btrfs_header_owner(path->nodes[level])) {
8764 btrfs_err(root->fs_info,
8765 "mismatched block owner");
8766 ret = -EIO;
8767 goto out_unlock;
8768 }
94fcca9f
YZ
8769 parent = 0;
8770 }
1c4850e2 8771
1152651a 8772 if (need_account) {
33d1f05c
QW
8773 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8774 generation, level - 1);
1152651a 8775 if (ret) {
0b246afa 8776 btrfs_err_rl(fs_info,
5d163e0e
JM
8777 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8778 ret);
1152651a
MF
8779 }
8780 }
2ff7e61e
JM
8781 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8782 parent, root->root_key.objectid,
8783 level - 1, 0);
4867268c
JB
8784 if (ret)
8785 goto out_unlock;
1c4850e2 8786 }
4867268c
JB
8787
8788 *lookup_info = 1;
8789 ret = 1;
8790
8791out_unlock:
1c4850e2
YZ
8792 btrfs_tree_unlock(next);
8793 free_extent_buffer(next);
4867268c
JB
8794
8795 return ret;
1c4850e2
YZ
8796}
8797
2c47e605 8798/*
2c016dc2 8799 * helper to process tree block while walking up the tree.
2c47e605
YZ
8800 *
8801 * when wc->stage == DROP_REFERENCE, this function drops
8802 * reference count on the block.
8803 *
8804 * when wc->stage == UPDATE_BACKREF, this function changes
8805 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8806 * to UPDATE_BACKREF previously while processing the block.
8807 *
8808 * NOTE: return value 1 means we should stop walking up.
8809 */
8810static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8811 struct btrfs_root *root,
8812 struct btrfs_path *path,
8813 struct walk_control *wc)
8814{
0b246afa 8815 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8816 int ret;
2c47e605
YZ
8817 int level = wc->level;
8818 struct extent_buffer *eb = path->nodes[level];
8819 u64 parent = 0;
8820
8821 if (wc->stage == UPDATE_BACKREF) {
8822 BUG_ON(wc->shared_level < level);
8823 if (level < wc->shared_level)
8824 goto out;
8825
2c47e605
YZ
8826 ret = find_next_key(path, level + 1, &wc->update_progress);
8827 if (ret > 0)
8828 wc->update_ref = 0;
8829
8830 wc->stage = DROP_REFERENCE;
8831 wc->shared_level = -1;
8832 path->slots[level] = 0;
8833
8834 /*
8835 * check reference count again if the block isn't locked.
8836 * we should start walking down the tree again if reference
8837 * count is one.
8838 */
8839 if (!path->locks[level]) {
8840 BUG_ON(level == 0);
8841 btrfs_tree_lock(eb);
8842 btrfs_set_lock_blocking(eb);
bd681513 8843 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8844
2ff7e61e 8845 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8846 eb->start, level, 1,
2c47e605
YZ
8847 &wc->refs[level],
8848 &wc->flags[level]);
79787eaa
JM
8849 if (ret < 0) {
8850 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8851 path->locks[level] = 0;
79787eaa
JM
8852 return ret;
8853 }
2c47e605
YZ
8854 BUG_ON(wc->refs[level] == 0);
8855 if (wc->refs[level] == 1) {
bd681513 8856 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8857 path->locks[level] = 0;
2c47e605
YZ
8858 return 1;
8859 }
f82d02d9 8860 }
2c47e605 8861 }
f82d02d9 8862
2c47e605
YZ
8863 /* wc->stage == DROP_REFERENCE */
8864 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8865
2c47e605
YZ
8866 if (wc->refs[level] == 1) {
8867 if (level == 0) {
8868 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8869 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8870 else
e339a6b0 8871 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8872 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8873 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8874 if (ret) {
0b246afa 8875 btrfs_err_rl(fs_info,
5d163e0e
JM
8876 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8877 ret);
1152651a 8878 }
2c47e605
YZ
8879 }
8880 /* make block locked assertion in clean_tree_block happy */
8881 if (!path->locks[level] &&
8882 btrfs_header_generation(eb) == trans->transid) {
8883 btrfs_tree_lock(eb);
8884 btrfs_set_lock_blocking(eb);
bd681513 8885 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8886 }
7c302b49 8887 clean_tree_block(fs_info, eb);
2c47e605
YZ
8888 }
8889
8890 if (eb == root->node) {
8891 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8892 parent = eb->start;
8893 else
8894 BUG_ON(root->root_key.objectid !=
8895 btrfs_header_owner(eb));
8896 } else {
8897 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8898 parent = path->nodes[level + 1]->start;
8899 else
8900 BUG_ON(root->root_key.objectid !=
8901 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8902 }
f82d02d9 8903
5581a51a 8904 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8905out:
8906 wc->refs[level] = 0;
8907 wc->flags[level] = 0;
f0486c68 8908 return 0;
2c47e605
YZ
8909}
8910
8911static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8912 struct btrfs_root *root,
8913 struct btrfs_path *path,
8914 struct walk_control *wc)
8915{
2c47e605 8916 int level = wc->level;
94fcca9f 8917 int lookup_info = 1;
2c47e605
YZ
8918 int ret;
8919
8920 while (level >= 0) {
94fcca9f 8921 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8922 if (ret > 0)
8923 break;
8924
8925 if (level == 0)
8926 break;
8927
7a7965f8
YZ
8928 if (path->slots[level] >=
8929 btrfs_header_nritems(path->nodes[level]))
8930 break;
8931
94fcca9f 8932 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8933 if (ret > 0) {
8934 path->slots[level]++;
8935 continue;
90d2c51d
MX
8936 } else if (ret < 0)
8937 return ret;
1c4850e2 8938 level = wc->level;
f82d02d9 8939 }
f82d02d9
YZ
8940 return 0;
8941}
8942
d397712b 8943static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8944 struct btrfs_root *root,
f82d02d9 8945 struct btrfs_path *path,
2c47e605 8946 struct walk_control *wc, int max_level)
20524f02 8947{
2c47e605 8948 int level = wc->level;
20524f02 8949 int ret;
9f3a7427 8950
2c47e605
YZ
8951 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8952 while (level < max_level && path->nodes[level]) {
8953 wc->level = level;
8954 if (path->slots[level] + 1 <
8955 btrfs_header_nritems(path->nodes[level])) {
8956 path->slots[level]++;
20524f02
CM
8957 return 0;
8958 } else {
2c47e605
YZ
8959 ret = walk_up_proc(trans, root, path, wc);
8960 if (ret > 0)
8961 return 0;
bd56b302 8962
2c47e605 8963 if (path->locks[level]) {
bd681513
CM
8964 btrfs_tree_unlock_rw(path->nodes[level],
8965 path->locks[level]);
2c47e605 8966 path->locks[level] = 0;
f82d02d9 8967 }
2c47e605
YZ
8968 free_extent_buffer(path->nodes[level]);
8969 path->nodes[level] = NULL;
8970 level++;
20524f02
CM
8971 }
8972 }
8973 return 1;
8974}
8975
9aca1d51 8976/*
2c47e605
YZ
8977 * drop a subvolume tree.
8978 *
8979 * this function traverses the tree freeing any blocks that only
8980 * referenced by the tree.
8981 *
8982 * when a shared tree block is found. this function decreases its
8983 * reference count by one. if update_ref is true, this function
8984 * also make sure backrefs for the shared block and all lower level
8985 * blocks are properly updated.
9d1a2a3a
DS
8986 *
8987 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8988 */
2c536799 8989int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8990 struct btrfs_block_rsv *block_rsv, int update_ref,
8991 int for_reloc)
20524f02 8992{
ab8d0fc4 8993 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 8994 struct btrfs_path *path;
2c47e605 8995 struct btrfs_trans_handle *trans;
ab8d0fc4 8996 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 8997 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8998 struct walk_control *wc;
8999 struct btrfs_key key;
9000 int err = 0;
9001 int ret;
9002 int level;
d29a9f62 9003 bool root_dropped = false;
20524f02 9004
ab8d0fc4 9005 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9006
5caf2a00 9007 path = btrfs_alloc_path();
cb1b69f4
TI
9008 if (!path) {
9009 err = -ENOMEM;
9010 goto out;
9011 }
20524f02 9012
2c47e605 9013 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9014 if (!wc) {
9015 btrfs_free_path(path);
cb1b69f4
TI
9016 err = -ENOMEM;
9017 goto out;
38a1a919 9018 }
2c47e605 9019
a22285a6 9020 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9021 if (IS_ERR(trans)) {
9022 err = PTR_ERR(trans);
9023 goto out_free;
9024 }
98d5dc13 9025
3fd0a558
YZ
9026 if (block_rsv)
9027 trans->block_rsv = block_rsv;
2c47e605 9028
9f3a7427 9029 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9030 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9031 path->nodes[level] = btrfs_lock_root_node(root);
9032 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9033 path->slots[level] = 0;
bd681513 9034 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9035 memset(&wc->update_progress, 0,
9036 sizeof(wc->update_progress));
9f3a7427 9037 } else {
9f3a7427 9038 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9039 memcpy(&wc->update_progress, &key,
9040 sizeof(wc->update_progress));
9041
6702ed49 9042 level = root_item->drop_level;
2c47e605 9043 BUG_ON(level == 0);
6702ed49 9044 path->lowest_level = level;
2c47e605
YZ
9045 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9046 path->lowest_level = 0;
9047 if (ret < 0) {
9048 err = ret;
79787eaa 9049 goto out_end_trans;
9f3a7427 9050 }
1c4850e2 9051 WARN_ON(ret > 0);
2c47e605 9052
7d9eb12c
CM
9053 /*
9054 * unlock our path, this is safe because only this
9055 * function is allowed to delete this snapshot
9056 */
5d4f98a2 9057 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9058
9059 level = btrfs_header_level(root->node);
9060 while (1) {
9061 btrfs_tree_lock(path->nodes[level]);
9062 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9063 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9064
2ff7e61e 9065 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9066 path->nodes[level]->start,
3173a18f 9067 level, 1, &wc->refs[level],
2c47e605 9068 &wc->flags[level]);
79787eaa
JM
9069 if (ret < 0) {
9070 err = ret;
9071 goto out_end_trans;
9072 }
2c47e605
YZ
9073 BUG_ON(wc->refs[level] == 0);
9074
9075 if (level == root_item->drop_level)
9076 break;
9077
9078 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9079 path->locks[level] = 0;
2c47e605
YZ
9080 WARN_ON(wc->refs[level] != 1);
9081 level--;
9082 }
9f3a7427 9083 }
2c47e605
YZ
9084
9085 wc->level = level;
9086 wc->shared_level = -1;
9087 wc->stage = DROP_REFERENCE;
9088 wc->update_ref = update_ref;
9089 wc->keep_locks = 0;
66d7e7f0 9090 wc->for_reloc = for_reloc;
0b246afa 9091 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9092
d397712b 9093 while (1) {
9d1a2a3a 9094
2c47e605
YZ
9095 ret = walk_down_tree(trans, root, path, wc);
9096 if (ret < 0) {
9097 err = ret;
20524f02 9098 break;
2c47e605 9099 }
9aca1d51 9100
2c47e605
YZ
9101 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9102 if (ret < 0) {
9103 err = ret;
20524f02 9104 break;
2c47e605
YZ
9105 }
9106
9107 if (ret > 0) {
9108 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9109 break;
9110 }
2c47e605
YZ
9111
9112 if (wc->stage == DROP_REFERENCE) {
9113 level = wc->level;
9114 btrfs_node_key(path->nodes[level],
9115 &root_item->drop_progress,
9116 path->slots[level]);
9117 root_item->drop_level = level;
9118 }
9119
9120 BUG_ON(wc->level == 0);
3a45bb20 9121 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9122 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9123 ret = btrfs_update_root(trans, tree_root,
9124 &root->root_key,
9125 root_item);
79787eaa 9126 if (ret) {
66642832 9127 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9128 err = ret;
9129 goto out_end_trans;
9130 }
2c47e605 9131
3a45bb20 9132 btrfs_end_transaction_throttle(trans);
2ff7e61e 9133 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9134 btrfs_debug(fs_info,
9135 "drop snapshot early exit");
3c8f2422
JB
9136 err = -EAGAIN;
9137 goto out_free;
9138 }
9139
a22285a6 9140 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9141 if (IS_ERR(trans)) {
9142 err = PTR_ERR(trans);
9143 goto out_free;
9144 }
3fd0a558
YZ
9145 if (block_rsv)
9146 trans->block_rsv = block_rsv;
c3e69d58 9147 }
20524f02 9148 }
b3b4aa74 9149 btrfs_release_path(path);
79787eaa
JM
9150 if (err)
9151 goto out_end_trans;
2c47e605
YZ
9152
9153 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa 9154 if (ret) {
66642832 9155 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9156 goto out_end_trans;
9157 }
2c47e605 9158
76dda93c 9159 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9160 ret = btrfs_find_root(tree_root, &root->root_key, path,
9161 NULL, NULL);
79787eaa 9162 if (ret < 0) {
66642832 9163 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9164 err = ret;
9165 goto out_end_trans;
9166 } else if (ret > 0) {
84cd948c
JB
9167 /* if we fail to delete the orphan item this time
9168 * around, it'll get picked up the next time.
9169 *
9170 * The most common failure here is just -ENOENT.
9171 */
9172 btrfs_del_orphan_item(trans, tree_root,
9173 root->root_key.objectid);
76dda93c
YZ
9174 }
9175 }
9176
27cdeb70 9177 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9178 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9179 } else {
9180 free_extent_buffer(root->node);
9181 free_extent_buffer(root->commit_root);
b0feb9d9 9182 btrfs_put_fs_root(root);
76dda93c 9183 }
d29a9f62 9184 root_dropped = true;
79787eaa 9185out_end_trans:
3a45bb20 9186 btrfs_end_transaction_throttle(trans);
79787eaa 9187out_free:
2c47e605 9188 kfree(wc);
5caf2a00 9189 btrfs_free_path(path);
cb1b69f4 9190out:
d29a9f62
JB
9191 /*
9192 * So if we need to stop dropping the snapshot for whatever reason we
9193 * need to make sure to add it back to the dead root list so that we
9194 * keep trying to do the work later. This also cleans up roots if we
9195 * don't have it in the radix (like when we recover after a power fail
9196 * or unmount) so we don't leak memory.
9197 */
b37b39cd 9198 if (!for_reloc && root_dropped == false)
d29a9f62 9199 btrfs_add_dead_root(root);
90515e7f 9200 if (err && err != -EAGAIN)
ab8d0fc4 9201 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9202 return err;
20524f02 9203}
9078a3e1 9204
2c47e605
YZ
9205/*
9206 * drop subtree rooted at tree block 'node'.
9207 *
9208 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9209 * only used by relocation code
2c47e605 9210 */
f82d02d9
YZ
9211int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9212 struct btrfs_root *root,
9213 struct extent_buffer *node,
9214 struct extent_buffer *parent)
9215{
0b246afa 9216 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9217 struct btrfs_path *path;
2c47e605 9218 struct walk_control *wc;
f82d02d9
YZ
9219 int level;
9220 int parent_level;
9221 int ret = 0;
9222 int wret;
9223
2c47e605
YZ
9224 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9225
f82d02d9 9226 path = btrfs_alloc_path();
db5b493a
TI
9227 if (!path)
9228 return -ENOMEM;
f82d02d9 9229
2c47e605 9230 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9231 if (!wc) {
9232 btrfs_free_path(path);
9233 return -ENOMEM;
9234 }
2c47e605 9235
b9447ef8 9236 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9237 parent_level = btrfs_header_level(parent);
9238 extent_buffer_get(parent);
9239 path->nodes[parent_level] = parent;
9240 path->slots[parent_level] = btrfs_header_nritems(parent);
9241
b9447ef8 9242 btrfs_assert_tree_locked(node);
f82d02d9 9243 level = btrfs_header_level(node);
f82d02d9
YZ
9244 path->nodes[level] = node;
9245 path->slots[level] = 0;
bd681513 9246 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9247
9248 wc->refs[parent_level] = 1;
9249 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9250 wc->level = level;
9251 wc->shared_level = -1;
9252 wc->stage = DROP_REFERENCE;
9253 wc->update_ref = 0;
9254 wc->keep_locks = 1;
66d7e7f0 9255 wc->for_reloc = 1;
0b246afa 9256 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9257
9258 while (1) {
2c47e605
YZ
9259 wret = walk_down_tree(trans, root, path, wc);
9260 if (wret < 0) {
f82d02d9 9261 ret = wret;
f82d02d9 9262 break;
2c47e605 9263 }
f82d02d9 9264
2c47e605 9265 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9266 if (wret < 0)
9267 ret = wret;
9268 if (wret != 0)
9269 break;
9270 }
9271
2c47e605 9272 kfree(wc);
f82d02d9
YZ
9273 btrfs_free_path(path);
9274 return ret;
9275}
9276
6202df69 9277static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9278{
9279 u64 num_devices;
fc67c450 9280 u64 stripped;
e4d8ec0f 9281
fc67c450
ID
9282 /*
9283 * if restripe for this chunk_type is on pick target profile and
9284 * return, otherwise do the usual balance
9285 */
6202df69 9286 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9287 if (stripped)
9288 return extended_to_chunk(stripped);
e4d8ec0f 9289
6202df69 9290 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9291
fc67c450 9292 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9293 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9294 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9295
ec44a35c
CM
9296 if (num_devices == 1) {
9297 stripped |= BTRFS_BLOCK_GROUP_DUP;
9298 stripped = flags & ~stripped;
9299
9300 /* turn raid0 into single device chunks */
9301 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9302 return stripped;
9303
9304 /* turn mirroring into duplication */
9305 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9306 BTRFS_BLOCK_GROUP_RAID10))
9307 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9308 } else {
9309 /* they already had raid on here, just return */
ec44a35c
CM
9310 if (flags & stripped)
9311 return flags;
9312
9313 stripped |= BTRFS_BLOCK_GROUP_DUP;
9314 stripped = flags & ~stripped;
9315
9316 /* switch duplicated blocks with raid1 */
9317 if (flags & BTRFS_BLOCK_GROUP_DUP)
9318 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9319
e3176ca2 9320 /* this is drive concat, leave it alone */
ec44a35c 9321 }
e3176ca2 9322
ec44a35c
CM
9323 return flags;
9324}
9325
868f401a 9326static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9327{
f0486c68
YZ
9328 struct btrfs_space_info *sinfo = cache->space_info;
9329 u64 num_bytes;
199c36ea 9330 u64 min_allocable_bytes;
f0486c68 9331 int ret = -ENOSPC;
0ef3e66b 9332
199c36ea
MX
9333 /*
9334 * We need some metadata space and system metadata space for
9335 * allocating chunks in some corner cases until we force to set
9336 * it to be readonly.
9337 */
9338 if ((sinfo->flags &
9339 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9340 !force)
ee22184b 9341 min_allocable_bytes = SZ_1M;
199c36ea
MX
9342 else
9343 min_allocable_bytes = 0;
9344
f0486c68
YZ
9345 spin_lock(&sinfo->lock);
9346 spin_lock(&cache->lock);
61cfea9b
W
9347
9348 if (cache->ro) {
868f401a 9349 cache->ro++;
61cfea9b
W
9350 ret = 0;
9351 goto out;
9352 }
9353
f0486c68
YZ
9354 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9355 cache->bytes_super - btrfs_block_group_used(&cache->item);
9356
4136135b 9357 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9358 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9359 sinfo->bytes_readonly += num_bytes;
868f401a 9360 cache->ro++;
633c0aad 9361 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9362 ret = 0;
9363 }
61cfea9b 9364out:
f0486c68
YZ
9365 spin_unlock(&cache->lock);
9366 spin_unlock(&sinfo->lock);
9367 return ret;
9368}
7d9eb12c 9369
5e00f193 9370int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9371 struct btrfs_block_group_cache *cache)
c286ac48 9372
f0486c68
YZ
9373{
9374 struct btrfs_trans_handle *trans;
9375 u64 alloc_flags;
9376 int ret;
7d9eb12c 9377
1bbc621e 9378again:
5e00f193 9379 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9380 if (IS_ERR(trans))
9381 return PTR_ERR(trans);
5d4f98a2 9382
1bbc621e
CM
9383 /*
9384 * we're not allowed to set block groups readonly after the dirty
9385 * block groups cache has started writing. If it already started,
9386 * back off and let this transaction commit
9387 */
0b246afa 9388 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9389 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9390 u64 transid = trans->transid;
9391
0b246afa 9392 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9393 btrfs_end_transaction(trans);
1bbc621e 9394
2ff7e61e 9395 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9396 if (ret)
9397 return ret;
9398 goto again;
9399 }
9400
153c35b6
CM
9401 /*
9402 * if we are changing raid levels, try to allocate a corresponding
9403 * block group with the new raid level.
9404 */
0b246afa 9405 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9406 if (alloc_flags != cache->flags) {
2ff7e61e 9407 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9408 CHUNK_ALLOC_FORCE);
9409 /*
9410 * ENOSPC is allowed here, we may have enough space
9411 * already allocated at the new raid level to
9412 * carry on
9413 */
9414 if (ret == -ENOSPC)
9415 ret = 0;
9416 if (ret < 0)
9417 goto out;
9418 }
1bbc621e 9419
868f401a 9420 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9421 if (!ret)
9422 goto out;
2ff7e61e
JM
9423 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9424 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9425 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9426 if (ret < 0)
9427 goto out;
868f401a 9428 ret = inc_block_group_ro(cache, 0);
f0486c68 9429out:
2f081088 9430 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9431 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9432 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9433 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9434 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9435 }
0b246afa 9436 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9437
3a45bb20 9438 btrfs_end_transaction(trans);
f0486c68
YZ
9439 return ret;
9440}
5d4f98a2 9441
c87f08ca 9442int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9443 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9444{
2ff7e61e
JM
9445 u64 alloc_flags = get_alloc_profile(fs_info, type);
9446
9447 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9448}
9449
6d07bcec
MX
9450/*
9451 * helper to account the unused space of all the readonly block group in the
633c0aad 9452 * space_info. takes mirrors into account.
6d07bcec 9453 */
633c0aad 9454u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9455{
9456 struct btrfs_block_group_cache *block_group;
9457 u64 free_bytes = 0;
9458 int factor;
9459
01327610 9460 /* It's df, we don't care if it's racy */
633c0aad
JB
9461 if (list_empty(&sinfo->ro_bgs))
9462 return 0;
9463
9464 spin_lock(&sinfo->lock);
9465 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9466 spin_lock(&block_group->lock);
9467
9468 if (!block_group->ro) {
9469 spin_unlock(&block_group->lock);
9470 continue;
9471 }
9472
9473 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9474 BTRFS_BLOCK_GROUP_RAID10 |
9475 BTRFS_BLOCK_GROUP_DUP))
9476 factor = 2;
9477 else
9478 factor = 1;
9479
9480 free_bytes += (block_group->key.offset -
9481 btrfs_block_group_used(&block_group->item)) *
9482 factor;
9483
9484 spin_unlock(&block_group->lock);
9485 }
6d07bcec
MX
9486 spin_unlock(&sinfo->lock);
9487
9488 return free_bytes;
9489}
9490
2ff7e61e 9491void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9492{
f0486c68
YZ
9493 struct btrfs_space_info *sinfo = cache->space_info;
9494 u64 num_bytes;
9495
9496 BUG_ON(!cache->ro);
9497
9498 spin_lock(&sinfo->lock);
9499 spin_lock(&cache->lock);
868f401a
Z
9500 if (!--cache->ro) {
9501 num_bytes = cache->key.offset - cache->reserved -
9502 cache->pinned - cache->bytes_super -
9503 btrfs_block_group_used(&cache->item);
9504 sinfo->bytes_readonly -= num_bytes;
9505 list_del_init(&cache->ro_list);
9506 }
f0486c68
YZ
9507 spin_unlock(&cache->lock);
9508 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9509}
9510
ba1bf481
JB
9511/*
9512 * checks to see if its even possible to relocate this block group.
9513 *
9514 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9515 * ok to go ahead and try.
9516 */
6bccf3ab 9517int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9518{
6bccf3ab 9519 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9520 struct btrfs_block_group_cache *block_group;
9521 struct btrfs_space_info *space_info;
0b246afa 9522 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9523 struct btrfs_device *device;
6df9a95e 9524 struct btrfs_trans_handle *trans;
cdcb725c 9525 u64 min_free;
6719db6a
JB
9526 u64 dev_min = 1;
9527 u64 dev_nr = 0;
4a5e98f5 9528 u64 target;
0305bc27 9529 int debug;
cdcb725c 9530 int index;
ba1bf481
JB
9531 int full = 0;
9532 int ret = 0;
1a40e23b 9533
0b246afa 9534 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9535
0b246afa 9536 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9537
ba1bf481 9538 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9539 if (!block_group) {
9540 if (debug)
0b246afa 9541 btrfs_warn(fs_info,
0305bc27
QW
9542 "can't find block group for bytenr %llu",
9543 bytenr);
ba1bf481 9544 return -1;
0305bc27 9545 }
1a40e23b 9546
cdcb725c 9547 min_free = btrfs_block_group_used(&block_group->item);
9548
ba1bf481 9549 /* no bytes used, we're good */
cdcb725c 9550 if (!min_free)
1a40e23b
ZY
9551 goto out;
9552
ba1bf481
JB
9553 space_info = block_group->space_info;
9554 spin_lock(&space_info->lock);
17d217fe 9555
ba1bf481 9556 full = space_info->full;
17d217fe 9557
ba1bf481
JB
9558 /*
9559 * if this is the last block group we have in this space, we can't
7ce618db
CM
9560 * relocate it unless we're able to allocate a new chunk below.
9561 *
9562 * Otherwise, we need to make sure we have room in the space to handle
9563 * all of the extents from this block group. If we can, we're good
ba1bf481 9564 */
7ce618db 9565 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9566 (btrfs_space_info_used(space_info, false) + min_free <
9567 space_info->total_bytes)) {
ba1bf481
JB
9568 spin_unlock(&space_info->lock);
9569 goto out;
17d217fe 9570 }
ba1bf481 9571 spin_unlock(&space_info->lock);
ea8c2819 9572
ba1bf481
JB
9573 /*
9574 * ok we don't have enough space, but maybe we have free space on our
9575 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9576 * alloc devices and guess if we have enough space. if this block
9577 * group is going to be restriped, run checks against the target
9578 * profile instead of the current one.
ba1bf481
JB
9579 */
9580 ret = -1;
ea8c2819 9581
cdcb725c 9582 /*
9583 * index:
9584 * 0: raid10
9585 * 1: raid1
9586 * 2: dup
9587 * 3: raid0
9588 * 4: single
9589 */
0b246afa 9590 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9591 if (target) {
31e50229 9592 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9593 } else {
9594 /*
9595 * this is just a balance, so if we were marked as full
9596 * we know there is no space for a new chunk
9597 */
0305bc27
QW
9598 if (full) {
9599 if (debug)
0b246afa
JM
9600 btrfs_warn(fs_info,
9601 "no space to alloc new chunk for block group %llu",
9602 block_group->key.objectid);
4a5e98f5 9603 goto out;
0305bc27 9604 }
4a5e98f5
ID
9605
9606 index = get_block_group_index(block_group);
9607 }
9608
e6ec716f 9609 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9610 dev_min = 4;
6719db6a
JB
9611 /* Divide by 2 */
9612 min_free >>= 1;
e6ec716f 9613 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9614 dev_min = 2;
e6ec716f 9615 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9616 /* Multiply by 2 */
9617 min_free <<= 1;
e6ec716f 9618 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9619 dev_min = fs_devices->rw_devices;
47c5713f 9620 min_free = div64_u64(min_free, dev_min);
cdcb725c 9621 }
9622
6df9a95e
JB
9623 /* We need to do this so that we can look at pending chunks */
9624 trans = btrfs_join_transaction(root);
9625 if (IS_ERR(trans)) {
9626 ret = PTR_ERR(trans);
9627 goto out;
9628 }
9629
0b246afa 9630 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9631 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9632 u64 dev_offset;
56bec294 9633
ba1bf481
JB
9634 /*
9635 * check to make sure we can actually find a chunk with enough
9636 * space to fit our block group in.
9637 */
63a212ab
SB
9638 if (device->total_bytes > device->bytes_used + min_free &&
9639 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9640 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9641 &dev_offset, NULL);
ba1bf481 9642 if (!ret)
cdcb725c 9643 dev_nr++;
9644
9645 if (dev_nr >= dev_min)
73e48b27 9646 break;
cdcb725c 9647
ba1bf481 9648 ret = -1;
725c8463 9649 }
edbd8d4e 9650 }
0305bc27 9651 if (debug && ret == -1)
0b246afa
JM
9652 btrfs_warn(fs_info,
9653 "no space to allocate a new chunk for block group %llu",
9654 block_group->key.objectid);
9655 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9656 btrfs_end_transaction(trans);
edbd8d4e 9657out:
ba1bf481 9658 btrfs_put_block_group(block_group);
edbd8d4e
CM
9659 return ret;
9660}
9661
6bccf3ab
JM
9662static int find_first_block_group(struct btrfs_fs_info *fs_info,
9663 struct btrfs_path *path,
9664 struct btrfs_key *key)
0b86a832 9665{
6bccf3ab 9666 struct btrfs_root *root = fs_info->extent_root;
925baedd 9667 int ret = 0;
0b86a832
CM
9668 struct btrfs_key found_key;
9669 struct extent_buffer *leaf;
9670 int slot;
edbd8d4e 9671
0b86a832
CM
9672 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9673 if (ret < 0)
925baedd
CM
9674 goto out;
9675
d397712b 9676 while (1) {
0b86a832 9677 slot = path->slots[0];
edbd8d4e 9678 leaf = path->nodes[0];
0b86a832
CM
9679 if (slot >= btrfs_header_nritems(leaf)) {
9680 ret = btrfs_next_leaf(root, path);
9681 if (ret == 0)
9682 continue;
9683 if (ret < 0)
925baedd 9684 goto out;
0b86a832 9685 break;
edbd8d4e 9686 }
0b86a832 9687 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9688
0b86a832 9689 if (found_key.objectid >= key->objectid &&
925baedd 9690 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9691 struct extent_map_tree *em_tree;
9692 struct extent_map *em;
9693
9694 em_tree = &root->fs_info->mapping_tree.map_tree;
9695 read_lock(&em_tree->lock);
9696 em = lookup_extent_mapping(em_tree, found_key.objectid,
9697 found_key.offset);
9698 read_unlock(&em_tree->lock);
9699 if (!em) {
0b246afa 9700 btrfs_err(fs_info,
6fb37b75
LB
9701 "logical %llu len %llu found bg but no related chunk",
9702 found_key.objectid, found_key.offset);
9703 ret = -ENOENT;
9704 } else {
9705 ret = 0;
9706 }
187ee58c 9707 free_extent_map(em);
925baedd
CM
9708 goto out;
9709 }
0b86a832 9710 path->slots[0]++;
edbd8d4e 9711 }
925baedd 9712out:
0b86a832 9713 return ret;
edbd8d4e
CM
9714}
9715
0af3d00b
JB
9716void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9717{
9718 struct btrfs_block_group_cache *block_group;
9719 u64 last = 0;
9720
9721 while (1) {
9722 struct inode *inode;
9723
9724 block_group = btrfs_lookup_first_block_group(info, last);
9725 while (block_group) {
9726 spin_lock(&block_group->lock);
9727 if (block_group->iref)
9728 break;
9729 spin_unlock(&block_group->lock);
2ff7e61e 9730 block_group = next_block_group(info, block_group);
0af3d00b
JB
9731 }
9732 if (!block_group) {
9733 if (last == 0)
9734 break;
9735 last = 0;
9736 continue;
9737 }
9738
9739 inode = block_group->inode;
9740 block_group->iref = 0;
9741 block_group->inode = NULL;
9742 spin_unlock(&block_group->lock);
f3bca802 9743 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9744 iput(inode);
9745 last = block_group->key.objectid + block_group->key.offset;
9746 btrfs_put_block_group(block_group);
9747 }
9748}
9749
5cdd7db6
FM
9750/*
9751 * Must be called only after stopping all workers, since we could have block
9752 * group caching kthreads running, and therefore they could race with us if we
9753 * freed the block groups before stopping them.
9754 */
1a40e23b
ZY
9755int btrfs_free_block_groups(struct btrfs_fs_info *info)
9756{
9757 struct btrfs_block_group_cache *block_group;
4184ea7f 9758 struct btrfs_space_info *space_info;
11833d66 9759 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9760 struct rb_node *n;
9761
9e351cc8 9762 down_write(&info->commit_root_sem);
11833d66
YZ
9763 while (!list_empty(&info->caching_block_groups)) {
9764 caching_ctl = list_entry(info->caching_block_groups.next,
9765 struct btrfs_caching_control, list);
9766 list_del(&caching_ctl->list);
9767 put_caching_control(caching_ctl);
9768 }
9e351cc8 9769 up_write(&info->commit_root_sem);
11833d66 9770
47ab2a6c
JB
9771 spin_lock(&info->unused_bgs_lock);
9772 while (!list_empty(&info->unused_bgs)) {
9773 block_group = list_first_entry(&info->unused_bgs,
9774 struct btrfs_block_group_cache,
9775 bg_list);
9776 list_del_init(&block_group->bg_list);
9777 btrfs_put_block_group(block_group);
9778 }
9779 spin_unlock(&info->unused_bgs_lock);
9780
1a40e23b
ZY
9781 spin_lock(&info->block_group_cache_lock);
9782 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9783 block_group = rb_entry(n, struct btrfs_block_group_cache,
9784 cache_node);
1a40e23b
ZY
9785 rb_erase(&block_group->cache_node,
9786 &info->block_group_cache_tree);
01eacb27 9787 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9788 spin_unlock(&info->block_group_cache_lock);
9789
80eb234a 9790 down_write(&block_group->space_info->groups_sem);
1a40e23b 9791 list_del(&block_group->list);
80eb234a 9792 up_write(&block_group->space_info->groups_sem);
d2fb3437 9793
3c14874a
JB
9794 /*
9795 * We haven't cached this block group, which means we could
9796 * possibly have excluded extents on this block group.
9797 */
36cce922
JB
9798 if (block_group->cached == BTRFS_CACHE_NO ||
9799 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9800 free_excluded_extents(info, block_group);
3c14874a 9801
817d52f8 9802 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9803 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9804 ASSERT(list_empty(&block_group->dirty_list));
9805 ASSERT(list_empty(&block_group->io_list));
9806 ASSERT(list_empty(&block_group->bg_list));
9807 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9808 btrfs_put_block_group(block_group);
d899e052
YZ
9809
9810 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9811 }
9812 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9813
9814 /* now that all the block groups are freed, go through and
9815 * free all the space_info structs. This is only called during
9816 * the final stages of unmount, and so we know nobody is
9817 * using them. We call synchronize_rcu() once before we start,
9818 * just to be on the safe side.
9819 */
9820 synchronize_rcu();
9821
8929ecfa
YZ
9822 release_global_block_rsv(info);
9823
67871254 9824 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9825 int i;
9826
4184ea7f
CM
9827 space_info = list_entry(info->space_info.next,
9828 struct btrfs_space_info,
9829 list);
d555b6c3
JB
9830
9831 /*
9832 * Do not hide this behind enospc_debug, this is actually
9833 * important and indicates a real bug if this happens.
9834 */
9835 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9836 space_info->bytes_reserved > 0 ||
d555b6c3 9837 space_info->bytes_may_use > 0))
ab8d0fc4 9838 dump_space_info(info, space_info, 0, 0);
4184ea7f 9839 list_del(&space_info->list);
6ab0a202
JM
9840 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9841 struct kobject *kobj;
c1895442
JM
9842 kobj = space_info->block_group_kobjs[i];
9843 space_info->block_group_kobjs[i] = NULL;
9844 if (kobj) {
6ab0a202
JM
9845 kobject_del(kobj);
9846 kobject_put(kobj);
9847 }
9848 }
9849 kobject_del(&space_info->kobj);
9850 kobject_put(&space_info->kobj);
4184ea7f 9851 }
1a40e23b
ZY
9852 return 0;
9853}
9854
b742bb82
YZ
9855static void __link_block_group(struct btrfs_space_info *space_info,
9856 struct btrfs_block_group_cache *cache)
9857{
9858 int index = get_block_group_index(cache);
ed55b6ac 9859 bool first = false;
b742bb82
YZ
9860
9861 down_write(&space_info->groups_sem);
ed55b6ac
JM
9862 if (list_empty(&space_info->block_groups[index]))
9863 first = true;
9864 list_add_tail(&cache->list, &space_info->block_groups[index]);
9865 up_write(&space_info->groups_sem);
9866
9867 if (first) {
c1895442 9868 struct raid_kobject *rkobj;
6ab0a202
JM
9869 int ret;
9870
c1895442
JM
9871 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9872 if (!rkobj)
9873 goto out_err;
9874 rkobj->raid_type = index;
9875 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9876 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9877 "%s", get_raid_name(index));
6ab0a202 9878 if (ret) {
c1895442
JM
9879 kobject_put(&rkobj->kobj);
9880 goto out_err;
6ab0a202 9881 }
c1895442 9882 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9883 }
c1895442
JM
9884
9885 return;
9886out_err:
ab8d0fc4
JM
9887 btrfs_warn(cache->fs_info,
9888 "failed to add kobject for block cache, ignoring");
b742bb82
YZ
9889}
9890
920e4a58 9891static struct btrfs_block_group_cache *
2ff7e61e
JM
9892btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9893 u64 start, u64 size)
920e4a58
MX
9894{
9895 struct btrfs_block_group_cache *cache;
9896
9897 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9898 if (!cache)
9899 return NULL;
9900
9901 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9902 GFP_NOFS);
9903 if (!cache->free_space_ctl) {
9904 kfree(cache);
9905 return NULL;
9906 }
9907
9908 cache->key.objectid = start;
9909 cache->key.offset = size;
9910 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9911
0b246afa
JM
9912 cache->sectorsize = fs_info->sectorsize;
9913 cache->fs_info = fs_info;
2ff7e61e
JM
9914 cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9915 &fs_info->mapping_tree,
9916 start);
1e144fb8
OS
9917 set_free_space_tree_thresholds(cache);
9918
920e4a58
MX
9919 atomic_set(&cache->count, 1);
9920 spin_lock_init(&cache->lock);
e570fd27 9921 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9922 INIT_LIST_HEAD(&cache->list);
9923 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9924 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9925 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9926 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9927 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9928 btrfs_init_free_space_ctl(cache);
04216820 9929 atomic_set(&cache->trimming, 0);
a5ed9182 9930 mutex_init(&cache->free_space_lock);
0966a7b1 9931 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
9932
9933 return cache;
9934}
9935
5b4aacef 9936int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
9937{
9938 struct btrfs_path *path;
9939 int ret;
9078a3e1 9940 struct btrfs_block_group_cache *cache;
6324fbf3 9941 struct btrfs_space_info *space_info;
9078a3e1
CM
9942 struct btrfs_key key;
9943 struct btrfs_key found_key;
5f39d397 9944 struct extent_buffer *leaf;
0af3d00b
JB
9945 int need_clear = 0;
9946 u64 cache_gen;
49303381
LB
9947 u64 feature;
9948 int mixed;
9949
9950 feature = btrfs_super_incompat_flags(info->super_copy);
9951 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 9952
9078a3e1 9953 key.objectid = 0;
0b86a832 9954 key.offset = 0;
962a298f 9955 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9956 path = btrfs_alloc_path();
9957 if (!path)
9958 return -ENOMEM;
e4058b54 9959 path->reada = READA_FORWARD;
9078a3e1 9960
0b246afa
JM
9961 cache_gen = btrfs_super_cache_generation(info->super_copy);
9962 if (btrfs_test_opt(info, SPACE_CACHE) &&
9963 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 9964 need_clear = 1;
0b246afa 9965 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 9966 need_clear = 1;
0af3d00b 9967
d397712b 9968 while (1) {
6bccf3ab 9969 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
9970 if (ret > 0)
9971 break;
0b86a832
CM
9972 if (ret != 0)
9973 goto error;
920e4a58 9974
5f39d397
CM
9975 leaf = path->nodes[0];
9976 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 9977
2ff7e61e 9978 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 9979 found_key.offset);
9078a3e1 9980 if (!cache) {
0b86a832 9981 ret = -ENOMEM;
f0486c68 9982 goto error;
9078a3e1 9983 }
96303081 9984
cf7c1ef6
LB
9985 if (need_clear) {
9986 /*
9987 * When we mount with old space cache, we need to
9988 * set BTRFS_DC_CLEAR and set dirty flag.
9989 *
9990 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9991 * truncate the old free space cache inode and
9992 * setup a new one.
9993 * b) Setting 'dirty flag' makes sure that we flush
9994 * the new space cache info onto disk.
9995 */
0b246afa 9996 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 9997 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9998 }
0af3d00b 9999
5f39d397
CM
10000 read_extent_buffer(leaf, &cache->item,
10001 btrfs_item_ptr_offset(leaf, path->slots[0]),
10002 sizeof(cache->item));
920e4a58 10003 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10004 if (!mixed &&
10005 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10006 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10007 btrfs_err(info,
10008"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10009 cache->key.objectid);
10010 ret = -EINVAL;
10011 goto error;
10012 }
0b86a832 10013
9078a3e1 10014 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10015 btrfs_release_path(path);
34d52cb6 10016
3c14874a
JB
10017 /*
10018 * We need to exclude the super stripes now so that the space
10019 * info has super bytes accounted for, otherwise we'll think
10020 * we have more space than we actually do.
10021 */
2ff7e61e 10022 ret = exclude_super_stripes(info, cache);
835d974f
JB
10023 if (ret) {
10024 /*
10025 * We may have excluded something, so call this just in
10026 * case.
10027 */
2ff7e61e 10028 free_excluded_extents(info, cache);
920e4a58 10029 btrfs_put_block_group(cache);
835d974f
JB
10030 goto error;
10031 }
3c14874a 10032
817d52f8
JB
10033 /*
10034 * check for two cases, either we are full, and therefore
10035 * don't need to bother with the caching work since we won't
10036 * find any space, or we are empty, and we can just add all
10037 * the space in and be done with it. This saves us _alot_ of
10038 * time, particularly in the full case.
10039 */
10040 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10041 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10042 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10043 free_excluded_extents(info, cache);
817d52f8 10044 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10045 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10046 cache->cached = BTRFS_CACHE_FINISHED;
0b246afa 10047 add_new_free_space(cache, info,
817d52f8
JB
10048 found_key.objectid,
10049 found_key.objectid +
10050 found_key.offset);
2ff7e61e 10051 free_excluded_extents(info, cache);
817d52f8 10052 }
96b5179d 10053
0b246afa 10054 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10055 if (ret) {
10056 btrfs_remove_free_space_cache(cache);
10057 btrfs_put_block_group(cache);
10058 goto error;
10059 }
10060
0b246afa 10061 trace_btrfs_add_block_group(info, cache, 0);
6324fbf3
CM
10062 ret = update_space_info(info, cache->flags, found_key.offset,
10063 btrfs_block_group_used(&cache->item),
e40edf2d 10064 cache->bytes_super, &space_info);
8c579fe7
JB
10065 if (ret) {
10066 btrfs_remove_free_space_cache(cache);
10067 spin_lock(&info->block_group_cache_lock);
10068 rb_erase(&cache->cache_node,
10069 &info->block_group_cache_tree);
01eacb27 10070 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10071 spin_unlock(&info->block_group_cache_lock);
10072 btrfs_put_block_group(cache);
10073 goto error;
10074 }
10075
6324fbf3 10076 cache->space_info = space_info;
1b2da372 10077
b742bb82 10078 __link_block_group(space_info, cache);
0f9dd46c 10079
0b246afa 10080 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10081 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10082 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10083 } else if (btrfs_block_group_used(&cache->item) == 0) {
10084 spin_lock(&info->unused_bgs_lock);
10085 /* Should always be true but just in case. */
10086 if (list_empty(&cache->bg_list)) {
10087 btrfs_get_block_group(cache);
10088 list_add_tail(&cache->bg_list,
10089 &info->unused_bgs);
10090 }
10091 spin_unlock(&info->unused_bgs_lock);
10092 }
9078a3e1 10093 }
b742bb82 10094
0b246afa 10095 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10096 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10097 (BTRFS_BLOCK_GROUP_RAID10 |
10098 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10099 BTRFS_BLOCK_GROUP_RAID5 |
10100 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10101 BTRFS_BLOCK_GROUP_DUP)))
10102 continue;
10103 /*
10104 * avoid allocating from un-mirrored block group if there are
10105 * mirrored block groups.
10106 */
1095cc0d 10107 list_for_each_entry(cache,
10108 &space_info->block_groups[BTRFS_RAID_RAID0],
10109 list)
868f401a 10110 inc_block_group_ro(cache, 1);
1095cc0d 10111 list_for_each_entry(cache,
10112 &space_info->block_groups[BTRFS_RAID_SINGLE],
10113 list)
868f401a 10114 inc_block_group_ro(cache, 1);
9078a3e1 10115 }
f0486c68
YZ
10116
10117 init_global_block_rsv(info);
0b86a832
CM
10118 ret = 0;
10119error:
9078a3e1 10120 btrfs_free_path(path);
0b86a832 10121 return ret;
9078a3e1 10122}
6324fbf3 10123
ea658bad 10124void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 10125 struct btrfs_fs_info *fs_info)
ea658bad
JB
10126{
10127 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10128 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10129 struct btrfs_block_group_item item;
10130 struct btrfs_key key;
10131 int ret = 0;
d9a0540a 10132 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10133
d9a0540a 10134 trans->can_flush_pending_bgs = false;
47ab2a6c 10135 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10136 if (ret)
c92f6be3 10137 goto next;
ea658bad
JB
10138
10139 spin_lock(&block_group->lock);
10140 memcpy(&item, &block_group->item, sizeof(item));
10141 memcpy(&key, &block_group->key, sizeof(key));
10142 spin_unlock(&block_group->lock);
10143
10144 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10145 sizeof(item));
10146 if (ret)
66642832 10147 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10148 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10149 key.offset);
6df9a95e 10150 if (ret)
66642832 10151 btrfs_abort_transaction(trans, ret);
0b246afa 10152 add_block_group_free_space(trans, fs_info, block_group);
1e144fb8 10153 /* already aborted the transaction if it failed. */
c92f6be3
FM
10154next:
10155 list_del_init(&block_group->bg_list);
ea658bad 10156 }
d9a0540a 10157 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10158}
10159
6324fbf3 10160int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10161 struct btrfs_fs_info *fs_info, u64 bytes_used,
e17cade2 10162 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10163 u64 size)
10164{
6324fbf3 10165 struct btrfs_block_group_cache *cache;
0b246afa 10166 int ret;
6324fbf3 10167
0b246afa 10168 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10169
2ff7e61e 10170 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10171 if (!cache)
10172 return -ENOMEM;
34d52cb6 10173
6324fbf3 10174 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10175 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10176 btrfs_set_block_group_flags(&cache->item, type);
10177
920e4a58 10178 cache->flags = type;
11833d66 10179 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10180 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10181 cache->needs_free_space = 1;
2ff7e61e 10182 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10183 if (ret) {
10184 /*
10185 * We may have excluded something, so call this just in
10186 * case.
10187 */
2ff7e61e 10188 free_excluded_extents(fs_info, cache);
920e4a58 10189 btrfs_put_block_group(cache);
835d974f
JB
10190 return ret;
10191 }
96303081 10192
0b246afa 10193 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
817d52f8 10194
2ff7e61e 10195 free_excluded_extents(fs_info, cache);
11833d66 10196
d0bd4560 10197#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10198 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10199 u64 new_bytes_used = size - bytes_used;
10200
10201 bytes_used += new_bytes_used >> 1;
2ff7e61e 10202 fragment_free_space(cache);
d0bd4560
JB
10203 }
10204#endif
2e6e5183
FM
10205 /*
10206 * Call to ensure the corresponding space_info object is created and
10207 * assigned to our block group, but don't update its counters just yet.
10208 * We want our bg to be added to the rbtree with its ->space_info set.
10209 */
0b246afa 10210 ret = update_space_info(fs_info, cache->flags, 0, 0, 0,
2e6e5183
FM
10211 &cache->space_info);
10212 if (ret) {
10213 btrfs_remove_free_space_cache(cache);
10214 btrfs_put_block_group(cache);
10215 return ret;
10216 }
10217
0b246afa 10218 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10219 if (ret) {
10220 btrfs_remove_free_space_cache(cache);
10221 btrfs_put_block_group(cache);
10222 return ret;
10223 }
10224
2e6e5183
FM
10225 /*
10226 * Now that our block group has its ->space_info set and is inserted in
10227 * the rbtree, update the space info's counters.
10228 */
0b246afa
JM
10229 trace_btrfs_add_block_group(fs_info, cache, 1);
10230 ret = update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10231 cache->bytes_super, &cache->space_info);
8c579fe7
JB
10232 if (ret) {
10233 btrfs_remove_free_space_cache(cache);
0b246afa 10234 spin_lock(&fs_info->block_group_cache_lock);
8c579fe7 10235 rb_erase(&cache->cache_node,
0b246afa 10236 &fs_info->block_group_cache_tree);
01eacb27 10237 RB_CLEAR_NODE(&cache->cache_node);
0b246afa 10238 spin_unlock(&fs_info->block_group_cache_lock);
8c579fe7
JB
10239 btrfs_put_block_group(cache);
10240 return ret;
10241 }
0b246afa 10242 update_global_block_rsv(fs_info);
1b2da372 10243
b742bb82 10244 __link_block_group(cache->space_info, cache);
6324fbf3 10245
47ab2a6c 10246 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10247
0b246afa 10248 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10249 return 0;
10250}
1a40e23b 10251
10ea00f5
ID
10252static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10253{
899c81ea
ID
10254 u64 extra_flags = chunk_to_extended(flags) &
10255 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10256
de98ced9 10257 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10258 if (flags & BTRFS_BLOCK_GROUP_DATA)
10259 fs_info->avail_data_alloc_bits &= ~extra_flags;
10260 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10261 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10262 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10263 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10264 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10265}
10266
1a40e23b 10267int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10268 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10269 struct extent_map *em)
1a40e23b 10270{
6bccf3ab 10271 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10272 struct btrfs_path *path;
10273 struct btrfs_block_group_cache *block_group;
44fb5511 10274 struct btrfs_free_cluster *cluster;
0b246afa 10275 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10276 struct btrfs_key key;
0af3d00b 10277 struct inode *inode;
c1895442 10278 struct kobject *kobj = NULL;
1a40e23b 10279 int ret;
10ea00f5 10280 int index;
89a55897 10281 int factor;
4f69cb98 10282 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10283 bool remove_em;
1a40e23b 10284
6bccf3ab 10285 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10286 BUG_ON(!block_group);
c146afad 10287 BUG_ON(!block_group->ro);
1a40e23b 10288
9f7c43c9 10289 /*
10290 * Free the reserved super bytes from this block group before
10291 * remove it.
10292 */
2ff7e61e 10293 free_excluded_extents(fs_info, block_group);
9f7c43c9 10294
1a40e23b 10295 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10296 index = get_block_group_index(block_group);
89a55897
JB
10297 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10298 BTRFS_BLOCK_GROUP_RAID1 |
10299 BTRFS_BLOCK_GROUP_RAID10))
10300 factor = 2;
10301 else
10302 factor = 1;
1a40e23b 10303
44fb5511 10304 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10305 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10306 spin_lock(&cluster->refill_lock);
10307 btrfs_return_cluster_to_free_space(block_group, cluster);
10308 spin_unlock(&cluster->refill_lock);
10309
10310 /*
10311 * make sure this block group isn't part of a metadata
10312 * allocation cluster
10313 */
0b246afa 10314 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10315 spin_lock(&cluster->refill_lock);
10316 btrfs_return_cluster_to_free_space(block_group, cluster);
10317 spin_unlock(&cluster->refill_lock);
10318
1a40e23b 10319 path = btrfs_alloc_path();
d8926bb3
MF
10320 if (!path) {
10321 ret = -ENOMEM;
10322 goto out;
10323 }
1a40e23b 10324
1bbc621e
CM
10325 /*
10326 * get the inode first so any iput calls done for the io_list
10327 * aren't the final iput (no unlinks allowed now)
10328 */
77ab86bf 10329 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10330
10331 mutex_lock(&trans->transaction->cache_write_mutex);
10332 /*
10333 * make sure our free spache cache IO is done before remove the
10334 * free space inode
10335 */
10336 spin_lock(&trans->transaction->dirty_bgs_lock);
10337 if (!list_empty(&block_group->io_list)) {
10338 list_del_init(&block_group->io_list);
10339
10340 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10341
10342 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10343 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10344 btrfs_put_block_group(block_group);
10345 spin_lock(&trans->transaction->dirty_bgs_lock);
10346 }
10347
10348 if (!list_empty(&block_group->dirty_list)) {
10349 list_del_init(&block_group->dirty_list);
10350 btrfs_put_block_group(block_group);
10351 }
10352 spin_unlock(&trans->transaction->dirty_bgs_lock);
10353 mutex_unlock(&trans->transaction->cache_write_mutex);
10354
0af3d00b 10355 if (!IS_ERR(inode)) {
73f2e545 10356 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10357 if (ret) {
10358 btrfs_add_delayed_iput(inode);
10359 goto out;
10360 }
0af3d00b
JB
10361 clear_nlink(inode);
10362 /* One for the block groups ref */
10363 spin_lock(&block_group->lock);
10364 if (block_group->iref) {
10365 block_group->iref = 0;
10366 block_group->inode = NULL;
10367 spin_unlock(&block_group->lock);
10368 iput(inode);
10369 } else {
10370 spin_unlock(&block_group->lock);
10371 }
10372 /* One for our lookup ref */
455757c3 10373 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10374 }
10375
10376 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10377 key.offset = block_group->key.objectid;
10378 key.type = 0;
10379
10380 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10381 if (ret < 0)
10382 goto out;
10383 if (ret > 0)
b3b4aa74 10384 btrfs_release_path(path);
0af3d00b
JB
10385 if (ret == 0) {
10386 ret = btrfs_del_item(trans, tree_root, path);
10387 if (ret)
10388 goto out;
b3b4aa74 10389 btrfs_release_path(path);
0af3d00b
JB
10390 }
10391
0b246afa 10392 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10393 rb_erase(&block_group->cache_node,
0b246afa 10394 &fs_info->block_group_cache_tree);
292cbd51 10395 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10396
0b246afa
JM
10397 if (fs_info->first_logical_byte == block_group->key.objectid)
10398 fs_info->first_logical_byte = (u64)-1;
10399 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10400
80eb234a 10401 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10402 /*
10403 * we must use list_del_init so people can check to see if they
10404 * are still on the list after taking the semaphore
10405 */
10406 list_del_init(&block_group->list);
6ab0a202 10407 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10408 kobj = block_group->space_info->block_group_kobjs[index];
10409 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10410 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10411 }
80eb234a 10412 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10413 if (kobj) {
10414 kobject_del(kobj);
10415 kobject_put(kobj);
10416 }
1a40e23b 10417
4f69cb98
FM
10418 if (block_group->has_caching_ctl)
10419 caching_ctl = get_caching_control(block_group);
817d52f8 10420 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10421 wait_block_group_cache_done(block_group);
4f69cb98 10422 if (block_group->has_caching_ctl) {
0b246afa 10423 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10424 if (!caching_ctl) {
10425 struct btrfs_caching_control *ctl;
10426
10427 list_for_each_entry(ctl,
0b246afa 10428 &fs_info->caching_block_groups, list)
4f69cb98
FM
10429 if (ctl->block_group == block_group) {
10430 caching_ctl = ctl;
1e4f4714 10431 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10432 break;
10433 }
10434 }
10435 if (caching_ctl)
10436 list_del_init(&caching_ctl->list);
0b246afa 10437 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10438 if (caching_ctl) {
10439 /* Once for the caching bgs list and once for us. */
10440 put_caching_control(caching_ctl);
10441 put_caching_control(caching_ctl);
10442 }
10443 }
817d52f8 10444
ce93ec54
JB
10445 spin_lock(&trans->transaction->dirty_bgs_lock);
10446 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10447 WARN_ON(1);
10448 }
10449 if (!list_empty(&block_group->io_list)) {
10450 WARN_ON(1);
ce93ec54
JB
10451 }
10452 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10453 btrfs_remove_free_space_cache(block_group);
10454
c146afad 10455 spin_lock(&block_group->space_info->lock);
75c68e9f 10456 list_del_init(&block_group->ro_list);
18d018ad 10457
0b246afa 10458 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10459 WARN_ON(block_group->space_info->total_bytes
10460 < block_group->key.offset);
10461 WARN_ON(block_group->space_info->bytes_readonly
10462 < block_group->key.offset);
10463 WARN_ON(block_group->space_info->disk_total
10464 < block_group->key.offset * factor);
10465 }
c146afad
YZ
10466 block_group->space_info->total_bytes -= block_group->key.offset;
10467 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10468 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10469
c146afad 10470 spin_unlock(&block_group->space_info->lock);
283bb197 10471
0af3d00b
JB
10472 memcpy(&key, &block_group->key, sizeof(key));
10473
34441361 10474 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10475 if (!list_empty(&em->list)) {
10476 /* We're in the transaction->pending_chunks list. */
10477 free_extent_map(em);
10478 }
04216820
FM
10479 spin_lock(&block_group->lock);
10480 block_group->removed = 1;
10481 /*
10482 * At this point trimming can't start on this block group, because we
10483 * removed the block group from the tree fs_info->block_group_cache_tree
10484 * so no one can't find it anymore and even if someone already got this
10485 * block group before we removed it from the rbtree, they have already
10486 * incremented block_group->trimming - if they didn't, they won't find
10487 * any free space entries because we already removed them all when we
10488 * called btrfs_remove_free_space_cache().
10489 *
10490 * And we must not remove the extent map from the fs_info->mapping_tree
10491 * to prevent the same logical address range and physical device space
10492 * ranges from being reused for a new block group. This is because our
10493 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10494 * completely transactionless, so while it is trimming a range the
10495 * currently running transaction might finish and a new one start,
10496 * allowing for new block groups to be created that can reuse the same
10497 * physical device locations unless we take this special care.
e33e17ee
JM
10498 *
10499 * There may also be an implicit trim operation if the file system
10500 * is mounted with -odiscard. The same protections must remain
10501 * in place until the extents have been discarded completely when
10502 * the transaction commit has completed.
04216820
FM
10503 */
10504 remove_em = (atomic_read(&block_group->trimming) == 0);
10505 /*
10506 * Make sure a trimmer task always sees the em in the pinned_chunks list
10507 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10508 * before checking block_group->removed).
10509 */
10510 if (!remove_em) {
10511 /*
10512 * Our em might be in trans->transaction->pending_chunks which
10513 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10514 * and so is the fs_info->pinned_chunks list.
10515 *
10516 * So at this point we must be holding the chunk_mutex to avoid
10517 * any races with chunk allocation (more specifically at
10518 * volumes.c:contains_pending_extent()), to ensure it always
10519 * sees the em, either in the pending_chunks list or in the
10520 * pinned_chunks list.
10521 */
0b246afa 10522 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10523 }
10524 spin_unlock(&block_group->lock);
04216820
FM
10525
10526 if (remove_em) {
10527 struct extent_map_tree *em_tree;
10528
0b246afa 10529 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10530 write_lock(&em_tree->lock);
8dbcd10f
FM
10531 /*
10532 * The em might be in the pending_chunks list, so make sure the
10533 * chunk mutex is locked, since remove_extent_mapping() will
10534 * delete us from that list.
10535 */
04216820
FM
10536 remove_extent_mapping(em_tree, em);
10537 write_unlock(&em_tree->lock);
10538 /* once for the tree */
10539 free_extent_map(em);
10540 }
10541
34441361 10542 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10543
0b246afa 10544 ret = remove_block_group_free_space(trans, fs_info, block_group);
1e144fb8
OS
10545 if (ret)
10546 goto out;
10547
fa9c0d79
CM
10548 btrfs_put_block_group(block_group);
10549 btrfs_put_block_group(block_group);
1a40e23b
ZY
10550
10551 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10552 if (ret > 0)
10553 ret = -EIO;
10554 if (ret < 0)
10555 goto out;
10556
10557 ret = btrfs_del_item(trans, root, path);
10558out:
10559 btrfs_free_path(path);
10560 return ret;
10561}
acce952b 10562
8eab77ff 10563struct btrfs_trans_handle *
7fd01182
FM
10564btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10565 const u64 chunk_offset)
8eab77ff 10566{
7fd01182
FM
10567 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10568 struct extent_map *em;
10569 struct map_lookup *map;
10570 unsigned int num_items;
10571
10572 read_lock(&em_tree->lock);
10573 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10574 read_unlock(&em_tree->lock);
10575 ASSERT(em && em->start == chunk_offset);
10576
8eab77ff 10577 /*
7fd01182
FM
10578 * We need to reserve 3 + N units from the metadata space info in order
10579 * to remove a block group (done at btrfs_remove_chunk() and at
10580 * btrfs_remove_block_group()), which are used for:
10581 *
8eab77ff
FM
10582 * 1 unit for adding the free space inode's orphan (located in the tree
10583 * of tree roots).
7fd01182
FM
10584 * 1 unit for deleting the block group item (located in the extent
10585 * tree).
10586 * 1 unit for deleting the free space item (located in tree of tree
10587 * roots).
10588 * N units for deleting N device extent items corresponding to each
10589 * stripe (located in the device tree).
10590 *
10591 * In order to remove a block group we also need to reserve units in the
10592 * system space info in order to update the chunk tree (update one or
10593 * more device items and remove one chunk item), but this is done at
10594 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10595 */
95617d69 10596 map = em->map_lookup;
7fd01182
FM
10597 num_items = 3 + map->num_stripes;
10598 free_extent_map(em);
10599
8eab77ff 10600 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10601 num_items, 1);
8eab77ff
FM
10602}
10603
47ab2a6c
JB
10604/*
10605 * Process the unused_bgs list and remove any that don't have any allocated
10606 * space inside of them.
10607 */
10608void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10609{
10610 struct btrfs_block_group_cache *block_group;
10611 struct btrfs_space_info *space_info;
47ab2a6c
JB
10612 struct btrfs_trans_handle *trans;
10613 int ret = 0;
10614
afcdd129 10615 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10616 return;
10617
10618 spin_lock(&fs_info->unused_bgs_lock);
10619 while (!list_empty(&fs_info->unused_bgs)) {
10620 u64 start, end;
e33e17ee 10621 int trimming;
47ab2a6c
JB
10622
10623 block_group = list_first_entry(&fs_info->unused_bgs,
10624 struct btrfs_block_group_cache,
10625 bg_list);
47ab2a6c 10626 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10627
10628 space_info = block_group->space_info;
10629
47ab2a6c
JB
10630 if (ret || btrfs_mixed_space_info(space_info)) {
10631 btrfs_put_block_group(block_group);
10632 continue;
10633 }
10634 spin_unlock(&fs_info->unused_bgs_lock);
10635
d5f2e33b 10636 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10637
47ab2a6c
JB
10638 /* Don't want to race with allocators so take the groups_sem */
10639 down_write(&space_info->groups_sem);
10640 spin_lock(&block_group->lock);
10641 if (block_group->reserved ||
10642 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10643 block_group->ro ||
aefbe9a6 10644 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10645 /*
10646 * We want to bail if we made new allocations or have
10647 * outstanding allocations in this block group. We do
10648 * the ro check in case balance is currently acting on
10649 * this block group.
10650 */
10651 spin_unlock(&block_group->lock);
10652 up_write(&space_info->groups_sem);
10653 goto next;
10654 }
10655 spin_unlock(&block_group->lock);
10656
10657 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10658 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10659 up_write(&space_info->groups_sem);
10660 if (ret < 0) {
10661 ret = 0;
10662 goto next;
10663 }
10664
10665 /*
10666 * Want to do this before we do anything else so we can recover
10667 * properly if we fail to join the transaction.
10668 */
7fd01182
FM
10669 trans = btrfs_start_trans_remove_block_group(fs_info,
10670 block_group->key.objectid);
47ab2a6c 10671 if (IS_ERR(trans)) {
2ff7e61e 10672 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10673 ret = PTR_ERR(trans);
10674 goto next;
10675 }
10676
10677 /*
10678 * We could have pending pinned extents for this block group,
10679 * just delete them, we don't care about them anymore.
10680 */
10681 start = block_group->key.objectid;
10682 end = start + block_group->key.offset - 1;
d4b450cd
FM
10683 /*
10684 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10685 * btrfs_finish_extent_commit(). If we are at transaction N,
10686 * another task might be running finish_extent_commit() for the
10687 * previous transaction N - 1, and have seen a range belonging
10688 * to the block group in freed_extents[] before we were able to
10689 * clear the whole block group range from freed_extents[]. This
10690 * means that task can lookup for the block group after we
10691 * unpinned it from freed_extents[] and removed it, leading to
10692 * a BUG_ON() at btrfs_unpin_extent_range().
10693 */
10694 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10695 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10696 EXTENT_DIRTY);
758eb51e 10697 if (ret) {
d4b450cd 10698 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10699 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10700 goto end_trans;
10701 }
10702 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10703 EXTENT_DIRTY);
758eb51e 10704 if (ret) {
d4b450cd 10705 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10706 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10707 goto end_trans;
10708 }
d4b450cd 10709 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10710
10711 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10712 spin_lock(&space_info->lock);
10713 spin_lock(&block_group->lock);
10714
10715 space_info->bytes_pinned -= block_group->pinned;
10716 space_info->bytes_readonly += block_group->pinned;
10717 percpu_counter_add(&space_info->total_bytes_pinned,
10718 -block_group->pinned);
47ab2a6c
JB
10719 block_group->pinned = 0;
10720
c30666d4
ZL
10721 spin_unlock(&block_group->lock);
10722 spin_unlock(&space_info->lock);
10723
e33e17ee 10724 /* DISCARD can flip during remount */
0b246afa 10725 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10726
10727 /* Implicit trim during transaction commit. */
10728 if (trimming)
10729 btrfs_get_block_group_trimming(block_group);
10730
47ab2a6c
JB
10731 /*
10732 * Btrfs_remove_chunk will abort the transaction if things go
10733 * horribly wrong.
10734 */
5b4aacef 10735 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10736 block_group->key.objectid);
e33e17ee
JM
10737
10738 if (ret) {
10739 if (trimming)
10740 btrfs_put_block_group_trimming(block_group);
10741 goto end_trans;
10742 }
10743
10744 /*
10745 * If we're not mounted with -odiscard, we can just forget
10746 * about this block group. Otherwise we'll need to wait
10747 * until transaction commit to do the actual discard.
10748 */
10749 if (trimming) {
348a0013
FM
10750 spin_lock(&fs_info->unused_bgs_lock);
10751 /*
10752 * A concurrent scrub might have added us to the list
10753 * fs_info->unused_bgs, so use a list_move operation
10754 * to add the block group to the deleted_bgs list.
10755 */
e33e17ee
JM
10756 list_move(&block_group->bg_list,
10757 &trans->transaction->deleted_bgs);
348a0013 10758 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10759 btrfs_get_block_group(block_group);
10760 }
758eb51e 10761end_trans:
3a45bb20 10762 btrfs_end_transaction(trans);
47ab2a6c 10763next:
d5f2e33b 10764 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10765 btrfs_put_block_group(block_group);
10766 spin_lock(&fs_info->unused_bgs_lock);
10767 }
10768 spin_unlock(&fs_info->unused_bgs_lock);
10769}
10770
c59021f8 10771int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10772{
10773 struct btrfs_space_info *space_info;
1aba86d6 10774 struct btrfs_super_block *disk_super;
10775 u64 features;
10776 u64 flags;
10777 int mixed = 0;
c59021f8 10778 int ret;
10779
6c41761f 10780 disk_super = fs_info->super_copy;
1aba86d6 10781 if (!btrfs_super_root(disk_super))
0dc924c5 10782 return -EINVAL;
c59021f8 10783
1aba86d6 10784 features = btrfs_super_incompat_flags(disk_super);
10785 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10786 mixed = 1;
c59021f8 10787
1aba86d6 10788 flags = BTRFS_BLOCK_GROUP_SYSTEM;
e40edf2d 10789 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
c59021f8 10790 if (ret)
1aba86d6 10791 goto out;
c59021f8 10792
1aba86d6 10793 if (mixed) {
10794 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10795 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10796 } else {
10797 flags = BTRFS_BLOCK_GROUP_METADATA;
e40edf2d 10798 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10799 if (ret)
10800 goto out;
10801
10802 flags = BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10803 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10804 }
10805out:
c59021f8 10806 return ret;
10807}
10808
2ff7e61e
JM
10809int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10810 u64 start, u64 end)
acce952b 10811{
2ff7e61e 10812 return unpin_extent_range(fs_info, start, end, false);
acce952b 10813}
10814
499f377f
JM
10815/*
10816 * It used to be that old block groups would be left around forever.
10817 * Iterating over them would be enough to trim unused space. Since we
10818 * now automatically remove them, we also need to iterate over unallocated
10819 * space.
10820 *
10821 * We don't want a transaction for this since the discard may take a
10822 * substantial amount of time. We don't require that a transaction be
10823 * running, but we do need to take a running transaction into account
10824 * to ensure that we're not discarding chunks that were released in
10825 * the current transaction.
10826 *
10827 * Holding the chunks lock will prevent other threads from allocating
10828 * or releasing chunks, but it won't prevent a running transaction
10829 * from committing and releasing the memory that the pending chunks
10830 * list head uses. For that, we need to take a reference to the
10831 * transaction.
10832 */
10833static int btrfs_trim_free_extents(struct btrfs_device *device,
10834 u64 minlen, u64 *trimmed)
10835{
10836 u64 start = 0, len = 0;
10837 int ret;
10838
10839 *trimmed = 0;
10840
10841 /* Not writeable = nothing to do. */
10842 if (!device->writeable)
10843 return 0;
10844
10845 /* No free space = nothing to do. */
10846 if (device->total_bytes <= device->bytes_used)
10847 return 0;
10848
10849 ret = 0;
10850
10851 while (1) {
fb456252 10852 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10853 struct btrfs_transaction *trans;
10854 u64 bytes;
10855
10856 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10857 if (ret)
10858 return ret;
10859
10860 down_read(&fs_info->commit_root_sem);
10861
10862 spin_lock(&fs_info->trans_lock);
10863 trans = fs_info->running_transaction;
10864 if (trans)
9b64f57d 10865 refcount_inc(&trans->use_count);
499f377f
JM
10866 spin_unlock(&fs_info->trans_lock);
10867
10868 ret = find_free_dev_extent_start(trans, device, minlen, start,
10869 &start, &len);
10870 if (trans)
10871 btrfs_put_transaction(trans);
10872
10873 if (ret) {
10874 up_read(&fs_info->commit_root_sem);
10875 mutex_unlock(&fs_info->chunk_mutex);
10876 if (ret == -ENOSPC)
10877 ret = 0;
10878 break;
10879 }
10880
10881 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10882 up_read(&fs_info->commit_root_sem);
10883 mutex_unlock(&fs_info->chunk_mutex);
10884
10885 if (ret)
10886 break;
10887
10888 start += len;
10889 *trimmed += bytes;
10890
10891 if (fatal_signal_pending(current)) {
10892 ret = -ERESTARTSYS;
10893 break;
10894 }
10895
10896 cond_resched();
10897 }
10898
10899 return ret;
10900}
10901
2ff7e61e 10902int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10903{
f7039b1d 10904 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10905 struct btrfs_device *device;
10906 struct list_head *devices;
f7039b1d
LD
10907 u64 group_trimmed;
10908 u64 start;
10909 u64 end;
10910 u64 trimmed = 0;
2cac13e4 10911 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10912 int ret = 0;
10913
2cac13e4
LB
10914 /*
10915 * try to trim all FS space, our block group may start from non-zero.
10916 */
10917 if (range->len == total_bytes)
10918 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10919 else
10920 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10921
10922 while (cache) {
10923 if (cache->key.objectid >= (range->start + range->len)) {
10924 btrfs_put_block_group(cache);
10925 break;
10926 }
10927
10928 start = max(range->start, cache->key.objectid);
10929 end = min(range->start + range->len,
10930 cache->key.objectid + cache->key.offset);
10931
10932 if (end - start >= range->minlen) {
10933 if (!block_group_cache_done(cache)) {
f6373bf3 10934 ret = cache_block_group(cache, 0);
1be41b78
JB
10935 if (ret) {
10936 btrfs_put_block_group(cache);
10937 break;
10938 }
10939 ret = wait_block_group_cache_done(cache);
10940 if (ret) {
10941 btrfs_put_block_group(cache);
10942 break;
10943 }
f7039b1d
LD
10944 }
10945 ret = btrfs_trim_block_group(cache,
10946 &group_trimmed,
10947 start,
10948 end,
10949 range->minlen);
10950
10951 trimmed += group_trimmed;
10952 if (ret) {
10953 btrfs_put_block_group(cache);
10954 break;
10955 }
10956 }
10957
2ff7e61e 10958 cache = next_block_group(fs_info, cache);
f7039b1d
LD
10959 }
10960
0b246afa
JM
10961 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10962 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
10963 list_for_each_entry(device, devices, dev_alloc_list) {
10964 ret = btrfs_trim_free_extents(device, range->minlen,
10965 &group_trimmed);
10966 if (ret)
10967 break;
10968
10969 trimmed += group_trimmed;
10970 }
0b246afa 10971 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 10972
f7039b1d
LD
10973 range->len = trimmed;
10974 return ret;
10975}
8257b2dc
MX
10976
10977/*
9ea24bbe
FM
10978 * btrfs_{start,end}_write_no_snapshoting() are similar to
10979 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10980 * data into the page cache through nocow before the subvolume is snapshoted,
10981 * but flush the data into disk after the snapshot creation, or to prevent
10982 * operations while snapshoting is ongoing and that cause the snapshot to be
10983 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10984 */
9ea24bbe 10985void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10986{
10987 percpu_counter_dec(&root->subv_writers->counter);
10988 /*
a83342aa 10989 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10990 */
10991 smp_mb();
10992 if (waitqueue_active(&root->subv_writers->wait))
10993 wake_up(&root->subv_writers->wait);
10994}
10995
9ea24bbe 10996int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10997{
ee39b432 10998 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10999 return 0;
11000
11001 percpu_counter_inc(&root->subv_writers->counter);
11002 /*
11003 * Make sure counter is updated before we check for snapshot creation.
11004 */
11005 smp_mb();
ee39b432 11006 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 11007 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
11008 return 0;
11009 }
11010 return 1;
11011}
0bc19f90
ZL
11012
11013static int wait_snapshoting_atomic_t(atomic_t *a)
11014{
11015 schedule();
11016 return 0;
11017}
11018
11019void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11020{
11021 while (true) {
11022 int ret;
11023
11024 ret = btrfs_start_write_no_snapshoting(root);
11025 if (ret)
11026 break;
11027 wait_on_atomic_t(&root->will_be_snapshoted,
11028 wait_snapshoting_atomic_t,
11029 TASK_UNINTERRUPTIBLE);
11030 }
11031}