]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: qgroup: Cleanup open-coded old/new_refcnt update and read.
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
fcebe456
JB
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
5d4f98a2
YZ
87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
99 int level, struct btrfs_key *ins,
100 int no_quota);
6a63209f 101static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
11833d66
YZ
104static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
9ed74f2d
JB
106static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
fb25e914 108static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
109 u64 num_bytes, int reserve,
110 int delalloc);
5d80366e
JB
111static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
48a3b636
ES
113int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 115
817d52f8
JB
116static noinline int
117block_group_cache_done(struct btrfs_block_group_cache *cache)
118{
119 smp_mb();
36cce922
JB
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
122}
123
0f9dd46c
JB
124static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125{
126 return (cache->flags & bits) == bits;
127}
128
62a45b60 129static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
130{
131 atomic_inc(&cache->count);
132}
133
134void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135{
f0486c68
YZ
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
34d52cb6 139 kfree(cache->free_space_ctl);
11dfe35a 140 kfree(cache);
f0486c68 141 }
11dfe35a
JB
142}
143
0f9dd46c
JB
144/*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
b2950863 148static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
149 struct btrfs_block_group_cache *block_group)
150{
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
a1897fdd
LB
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
0f9dd46c
JB
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182}
183
184/*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188static struct btrfs_block_group_cache *
189block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191{
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
a1897fdd 220 if (ret) {
11dfe35a 221 btrfs_get_block_group(ret);
a1897fdd
LB
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
0f9dd46c
JB
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228}
229
11833d66
YZ
230static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
817d52f8 232{
11833d66
YZ
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239}
817d52f8 240
11833d66
YZ
241static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243{
244 u64 start, end;
817d52f8 245
11833d66
YZ
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
253}
254
11833d66
YZ
255static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
817d52f8 257{
817d52f8
JB
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
06b2331f
YZ
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
835d974f
JB
268 if (ret)
269 return ret;
06b2331f
YZ
270 }
271
817d52f8
JB
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
835d974f
JB
277 if (ret)
278 return ret;
11833d66 279
817d52f8 280 while (nr--) {
51bf5f0b
JB
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
835d974f
JB
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
817d52f8 306 }
11833d66 307
817d52f8
JB
308 kfree(logical);
309 }
817d52f8
JB
310 return 0;
311}
312
11833d66
YZ
313static struct btrfs_caching_control *
314get_caching_control(struct btrfs_block_group_cache *cache)
315{
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
dde5abee
JB
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
11833d66
YZ
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328}
329
330static void put_caching_control(struct btrfs_caching_control *ctl)
331{
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334}
335
0f9dd46c
JB
336/*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
817d52f8 341static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
342 struct btrfs_fs_info *info, u64 start, u64 end)
343{
817d52f8 344 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
345 int ret;
346
347 while (start < end) {
11833d66 348 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 349 &extent_start, &extent_end,
e6138876
JB
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
0f9dd46c
JB
352 if (ret)
353 break;
354
06b2331f 355 if (extent_start <= start) {
0f9dd46c
JB
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
817d52f8 359 total_added += size;
ea6a478e
JB
360 ret = btrfs_add_free_space(block_group, start,
361 size);
79787eaa 362 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
817d52f8 371 total_added += size;
ea6a478e 372 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 373 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
374 }
375
817d52f8 376 return total_added;
0f9dd46c
JB
377}
378
d458b054 379static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 380{
bab39bf9
JB
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
e37c9e69 385 struct btrfs_path *path;
5f39d397 386 struct extent_buffer *leaf;
11833d66 387 struct btrfs_key key;
817d52f8 388 u64 total_found = 0;
11833d66
YZ
389 u64 last = 0;
390 u32 nritems;
36cce922 391 int ret = -ENOMEM;
f510cfec 392
bab39bf9
JB
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
e37c9e69
CM
398 path = btrfs_alloc_path();
399 if (!path)
bab39bf9 400 goto out;
7d7d6068 401
817d52f8 402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 403
5cd57b2c 404 /*
817d52f8
JB
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
5cd57b2c
CM
409 */
410 path->skip_locking = 1;
817d52f8 411 path->search_commit_root = 1;
026fd317 412 path->reada = 1;
817d52f8 413
e4404d6e 414 key.objectid = last;
e37c9e69 415 key.offset = 0;
11833d66 416 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 417again:
11833d66 418 mutex_lock(&caching_ctl->mutex);
013f1b12 419 /* need to make sure the commit_root doesn't disappear */
9e351cc8 420 down_read(&fs_info->commit_root_sem);
013f1b12 421
52ee28d2 422next:
11833d66 423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 424 if (ret < 0)
ef8bbdfe 425 goto err;
a512bbf8 426
11833d66
YZ
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
d397712b 430 while (1) {
7841cb28 431 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 432 last = (u64)-1;
817d52f8 433 break;
f25784b3 434 }
817d52f8 435
11833d66
YZ
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
e37c9e69 441 break;
817d52f8 442
c9ea7b24 443 if (need_resched() ||
9e351cc8 444 rwsem_is_contended(&fs_info->commit_root_sem)) {
589d8ade 445 caching_ctl->progress = last;
ff5714cc 446 btrfs_release_path(path);
9e351cc8 447 up_read(&fs_info->commit_root_sem);
589d8ade 448 mutex_unlock(&caching_ctl->mutex);
11833d66 449 cond_resched();
589d8ade
JB
450 goto again;
451 }
0a3896d0
JB
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
589d8ade
JB
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
11833d66 461 }
817d52f8 462
52ee28d2
LB
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
11833d66
YZ
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
817d52f8 475 continue;
e37c9e69 476 }
0f9dd46c 477
e37c9e69 478 if (key.objectid >= block_group->key.objectid +
0f9dd46c 479 block_group->key.offset)
e37c9e69 480 break;
7d7d6068 481
3173a18f
JB
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
3173a18f
JB
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
707e8a07 489 fs_info->tree_root->nodesize;
3173a18f
JB
490 else
491 last = key.objectid + key.offset;
817d52f8 492
11833d66
YZ
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
817d52f8 497 }
e37c9e69
CM
498 path->slots[0]++;
499 }
817d52f8 500 ret = 0;
e37c9e69 501
817d52f8
JB
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
11833d66 505 caching_ctl->progress = (u64)-1;
817d52f8
JB
506
507 spin_lock(&block_group->lock);
11833d66 508 block_group->caching_ctl = NULL;
817d52f8
JB
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
0f9dd46c 511
54aa1f4d 512err:
e37c9e69 513 btrfs_free_path(path);
9e351cc8 514 up_read(&fs_info->commit_root_sem);
817d52f8 515
11833d66
YZ
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
bab39bf9 519out:
36cce922
JB
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
11833d66
YZ
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
11dfe35a 529 btrfs_put_block_group(block_group);
817d52f8
JB
530}
531
9d66e233 532static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 533 int load_cache_only)
817d52f8 534{
291c7d2f 535 DEFINE_WAIT(wait);
11833d66
YZ
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
538 int ret = 0;
539
291c7d2f 540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
541 if (!caching_ctl)
542 return -ENOMEM;
291c7d2f
JB
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
291c7d2f
JB
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
11833d66 584 return 0;
291c7d2f
JB
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
11833d66 590
d53ba474 591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 592 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
291c7d2f 597 cache->caching_ctl = NULL;
9d66e233
JB
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 600 caching_ctl->progress = (u64)-1;
9d66e233 601 } else {
291c7d2f
JB
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 607 cache->has_caching_ctl = 1;
291c7d2f 608 }
9d66e233
JB
609 }
610 spin_unlock(&cache->lock);
cb83b7b8
JB
611 mutex_unlock(&caching_ctl->mutex);
612
291c7d2f 613 wake_up(&caching_ctl->wait);
3c14874a 614 if (ret == 1) {
291c7d2f 615 put_caching_control(caching_ctl);
3c14874a 616 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 617 return 0;
3c14874a 618 }
291c7d2f
JB
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 630 cache->has_caching_ctl = 1;
291c7d2f
JB
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
9d66e233
JB
634 }
635
291c7d2f
JB
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
11833d66 638 return 0;
817d52f8 639 }
817d52f8 640
9e351cc8 641 down_write(&fs_info->commit_root_sem);
291c7d2f 642 atomic_inc(&caching_ctl->count);
11833d66 643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 644 up_write(&fs_info->commit_root_sem);
11833d66 645
11dfe35a 646 btrfs_get_block_group(cache);
11833d66 647
e66f0bb1 648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 649
ef8bbdfe 650 return ret;
e37c9e69
CM
651}
652
0f9dd46c
JB
653/*
654 * return the block group that starts at or after bytenr
655 */
d397712b
CM
656static struct btrfs_block_group_cache *
657btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 658{
0f9dd46c 659 struct btrfs_block_group_cache *cache;
0ef3e66b 660
0f9dd46c 661 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 662
0f9dd46c 663 return cache;
0ef3e66b
CM
664}
665
0f9dd46c 666/*
9f55684c 667 * return the block group that contains the given bytenr
0f9dd46c 668 */
d397712b
CM
669struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
be744175 672{
0f9dd46c 673 struct btrfs_block_group_cache *cache;
be744175 674
0f9dd46c 675 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 676
0f9dd46c 677 return cache;
be744175 678}
0b86a832 679
0f9dd46c
JB
680static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
6324fbf3 682{
0f9dd46c 683 struct list_head *head = &info->space_info;
0f9dd46c 684 struct btrfs_space_info *found;
4184ea7f 685
52ba6929 686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 687
4184ea7f
CM
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
67377734 690 if (found->flags & flags) {
4184ea7f 691 rcu_read_unlock();
0f9dd46c 692 return found;
4184ea7f 693 }
0f9dd46c 694 }
4184ea7f 695 rcu_read_unlock();
0f9dd46c 696 return NULL;
6324fbf3
CM
697}
698
4184ea7f
CM
699/*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704{
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712}
713
1a4ed8fd
FM
714/* simple helper to search for an existing data extent at a given offset */
715int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
716{
717 int ret;
718 struct btrfs_key key;
31840ae1 719 struct btrfs_path *path;
e02119d5 720
31840ae1 721 path = btrfs_alloc_path();
d8926bb3
MF
722 if (!path)
723 return -ENOMEM;
724
e02119d5
CM
725 key.objectid = start;
726 key.offset = len;
3173a18f 727 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
31840ae1 730 btrfs_free_path(path);
7bb86316
CM
731 return ret;
732}
733
a22285a6 734/*
3173a18f 735 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
3173a18f 745 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
746{
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
3173a18f
JB
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 763 offset = root->nodesize;
3173a18f
JB
764 metadata = 0;
765 }
766
a22285a6
YZ
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
a22285a6
YZ
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
639eefc8
FDBM
775
776search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
a22285a6
YZ
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
3173a18f 789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 796 key.offset == root->nodesize)
74be9510
FDBM
797 ret = 0;
798 }
3173a18f
JB
799 }
800
a22285a6
YZ
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818#else
819 BUG();
820#endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
b3b4aa74 840 btrfs_release_path(path);
a22285a6 841
8cc33e5c
DS
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
a22285a6
YZ
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
639eefc8 849 goto search_again;
a22285a6 850 }
d7df2c79 851 spin_lock(&head->lock);
a22285a6
YZ
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
d7df2c79 858 spin_unlock(&head->lock);
a22285a6
YZ
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868out_free:
869 btrfs_free_path(path);
870 return ret;
871}
872
d8d5f3e1
CM
873/*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
5d4f98a2
YZ
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
d8d5f3e1
CM
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 935 * - different files inside a single subvolume
d8d5f3e1
CM
936 * - different offsets inside a file (bookend extents in file.c)
937 *
5d4f98a2 938 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
939 *
940 * - Objectid of the subvolume root
d8d5f3e1 941 * - objectid of the file holding the reference
5d4f98a2
YZ
942 * - original offset in the file
943 * - how many bookend extents
d8d5f3e1 944 *
5d4f98a2
YZ
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
d8d5f3e1 947 *
5d4f98a2 948 * The extent ref structure for the full back refs has field for:
d8d5f3e1 949 *
5d4f98a2 950 * - number of pointers in the tree leaf
d8d5f3e1 951 *
5d4f98a2
YZ
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
d8d5f3e1 954 *
5d4f98a2
YZ
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
d8d5f3e1 957 *
5d4f98a2 958 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 959 *
5d4f98a2
YZ
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
d8d5f3e1 962 *
5d4f98a2 963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 964 *
5d4f98a2 965 * Btree extents can be referenced by:
d8d5f3e1 966 *
5d4f98a2 967 * - Different subvolumes
d8d5f3e1 968 *
5d4f98a2
YZ
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
d8d5f3e1 973 *
5d4f98a2
YZ
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
d8d5f3e1 977 */
31840ae1 978
5d4f98a2
YZ
979#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
7bb86316 984{
5d4f98a2
YZ
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
7bb86316 990 struct btrfs_key key;
5d4f98a2
YZ
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
79787eaa 1010 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
b3b4aa74 1026 btrfs_release_path(path);
5d4f98a2
YZ
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
79787eaa 1036 BUG_ON(ret); /* Corruption */
5d4f98a2 1037
4b90c680 1038 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058}
1059#endif
1060
1061static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062{
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
14a958e6 1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1069 lenum = cpu_to_le64(owner);
14a958e6 1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1071 lenum = cpu_to_le64(offset);
14a958e6 1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075}
1076
1077static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079{
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083}
1084
1085static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088{
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094}
1095
1096static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102{
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
31840ae1 1105 struct extent_buffer *leaf;
5d4f98a2 1106 u32 nritems;
74493f7a 1107 int ret;
5d4f98a2
YZ
1108 int recow;
1109 int err = -ENOENT;
74493f7a 1110
31840ae1 1111 key.objectid = bytenr;
5d4f98a2
YZ
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
31840ae1 1127
5d4f98a2
YZ
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1133 btrfs_release_path(path);
5d4f98a2
YZ
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141#endif
1142 goto fail;
31840ae1
ZY
1143 }
1144
1145 leaf = path->nodes[0];
5d4f98a2
YZ
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
b3b4aa74 1171 btrfs_release_path(path);
5d4f98a2
YZ
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
31840ae1 1178 }
5d4f98a2
YZ
1179fail:
1180 return err;
31840ae1
ZY
1181}
1182
5d4f98a2
YZ
1183static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
31840ae1
ZY
1189{
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
5d4f98a2 1192 u32 size;
31840ae1
ZY
1193 u32 num_refs;
1194 int ret;
74493f7a 1195
74493f7a 1196 key.objectid = bytenr;
5d4f98a2
YZ
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
74493f7a 1207
5d4f98a2
YZ
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
31840ae1 1215 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1223 }
5d4f98a2
YZ
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
b3b4aa74 1232 btrfs_release_path(path);
5d4f98a2
YZ
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
31840ae1 1238
5d4f98a2
YZ
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1253 }
31840ae1 1254 }
5d4f98a2
YZ
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257fail:
b3b4aa74 1258 btrfs_release_path(path);
7bb86316 1259 return ret;
74493f7a
CM
1260}
1261
5d4f98a2
YZ
1262static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
fcebe456 1265 int refs_to_drop, int *last_ref)
31840ae1 1266{
5d4f98a2
YZ
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1270 struct extent_buffer *leaf;
5d4f98a2 1271 u32 num_refs = 0;
31840ae1
ZY
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
5d4f98a2
YZ
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291#endif
1292 } else {
1293 BUG();
1294 }
1295
56bec294
CM
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
5d4f98a2 1298
31840ae1
ZY
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
fcebe456 1301 *last_ref = 1;
31840ae1 1302 } else {
5d4f98a2
YZ
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314#endif
31840ae1
ZY
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
31840ae1
ZY
1317 return ret;
1318}
1319
5d4f98a2
YZ
1320static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
15916de8 1323{
5d4f98a2
YZ
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1355#endif
5d4f98a2
YZ
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360}
15916de8 1361
5d4f98a2
YZ
1362static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1f3c79a2 1367{
5d4f98a2 1368 struct btrfs_key key;
1f3c79a2 1369 int ret;
1f3c79a2 1370
5d4f98a2
YZ
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1f3c79a2
LH
1378 }
1379
5d4f98a2
YZ
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
b3b4aa74 1385 btrfs_release_path(path);
5d4f98a2
YZ
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1f3c79a2 1391#endif
5d4f98a2 1392 return ret;
1f3c79a2
LH
1393}
1394
5d4f98a2
YZ
1395static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
31840ae1 1400{
5d4f98a2 1401 struct btrfs_key key;
31840ae1 1402 int ret;
31840ae1 1403
5d4f98a2
YZ
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1414 btrfs_release_path(path);
31840ae1
ZY
1415 return ret;
1416}
1417
5d4f98a2 1418static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1419{
5d4f98a2
YZ
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
31840ae1 1433}
56bec294 1434
2c47e605
YZ
1435static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
56bec294 1437
02217ed2 1438{
2c47e605 1439 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1440 if (!path->nodes[level])
1441 break;
5d4f98a2
YZ
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454}
037e6390 1455
5d4f98a2
YZ
1456/*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469static noinline_for_stack
1470int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477{
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
3173a18f
JB
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
26b8003f 1493
db94535d 1494 key.objectid = bytenr;
31840ae1 1495 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1496 key.offset = num_bytes;
31840ae1 1497
5d4f98a2
YZ
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1501 path->keep_locks = 1;
5d4f98a2
YZ
1502 } else
1503 extra_size = -1;
3173a18f
JB
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514again:
5d4f98a2 1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1516 if (ret < 0) {
5d4f98a2
YZ
1517 err = ret;
1518 goto out;
1519 }
3173a18f
JB
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
9ce49a0b 1537 key.objectid = bytenr;
3173a18f
JB
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
79787eaa
JM
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
fae7f21c 1548 } else if (WARN_ON(ret)) {
492104c8 1549 err = -EIO;
492104c8 1550 goto out;
79787eaa 1551 }
5d4f98a2
YZ
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570#endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
5d4f98a2
YZ
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
3173a18f 1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
5d4f98a2
YZ
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
2c47e605
YZ
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
85d4198e 1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651out:
85d4198e 1652 if (insert) {
5d4f98a2
YZ
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657}
1658
1659/*
1660 * helper to add new inline back ref
1661 */
1662static noinline_for_stack
fd279fae 1663void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1669{
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
5d4f98a2
YZ
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
4b90c680 1686 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1721}
1722
1723static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729{
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
54aa1f4d 1736 return ret;
5d4f98a2 1737
b3b4aa74 1738 btrfs_release_path(path);
5d4f98a2
YZ
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
b9473439 1747 }
5d4f98a2
YZ
1748 return ret;
1749}
31840ae1 1750
5d4f98a2
YZ
1751/*
1752 * helper to update/remove inline back ref
1753 */
1754static noinline_for_stack
afe5fea7 1755void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
fcebe456
JB
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
5d4f98a2
YZ
1761{
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
5d4f98a2
YZ
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
56bec294 1793 }
31840ae1 1794
5d4f98a2
YZ
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
fcebe456 1804 *last_ref = 1;
5d4f98a2
YZ
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
afe5fea7 1813 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1816}
1817
1818static noinline_for_stack
1819int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826{
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1835 update_inline_extent_backref(root, path, iref,
fcebe456 1836 refs_to_add, extent_op, NULL);
5d4f98a2 1837 } else if (ret == -ENOENT) {
fd279fae 1838 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
771ed689 1842 }
5d4f98a2
YZ
1843 return ret;
1844}
31840ae1 1845
5d4f98a2
YZ
1846static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851{
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863}
56bec294 1864
5d4f98a2
YZ
1865static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
fcebe456 1869 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1870{
143bede5 1871 int ret = 0;
b9473439 1872
5d4f98a2
YZ
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
afe5fea7 1875 update_inline_extent_backref(root, path, iref,
fcebe456 1876 -refs_to_drop, NULL, last_ref);
5d4f98a2 1877 } else if (is_data) {
fcebe456
JB
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
5d4f98a2 1880 } else {
fcebe456 1881 *last_ref = 1;
5d4f98a2
YZ
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885}
1886
5378e607 1887static int btrfs_issue_discard(struct block_device *bdev,
5d4f98a2
YZ
1888 u64 start, u64 len)
1889{
5378e607 1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
5d4f98a2 1891}
5d4f98a2 1892
1edb647b
FM
1893int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1895{
5d4f98a2 1896 int ret;
5378e607 1897 u64 discarded_bytes = 0;
a1d3c478 1898 struct btrfs_bio *bbio = NULL;
5d4f98a2 1899
e244a0ae 1900
5d4f98a2 1901 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 1903 bytenr, &num_bytes, &bbio, 0);
79787eaa 1904 /* Error condition is -ENOMEM */
5d4f98a2 1905 if (!ret) {
a1d3c478 1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1907 int i;
1908
5d4f98a2 1909
a1d3c478 1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d5e2003c
JB
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
5378e607
LD
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
79787eaa 1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
5d4f98a2 1928 }
6e9606d2 1929 btrfs_put_bbio(bbio);
5d4f98a2 1930 }
5378e607
LD
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
5d4f98a2 1935
53b381b3
DW
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
5d4f98a2 1938 return ret;
5d4f98a2
YZ
1939}
1940
79787eaa 1941/* Can return -ENOMEM */
5d4f98a2
YZ
1942int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
5d4f98a2
YZ
1947{
1948 int ret;
66d7e7f0
AJ
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
5d4f98a2
YZ
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
5d4f98a2 1957 parent, root_objectid, (int)owner,
fcebe456 1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 1959 } else {
66d7e7f0
AJ
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
5d4f98a2 1962 parent, root_objectid, owner, offset,
fcebe456 1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
1964 }
1965 return ret;
1966}
1967
1968static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
fcebe456 1973 int no_quota,
5d4f98a2
YZ
1974 struct btrfs_delayed_extent_op *extent_op)
1975{
fcebe456 1976 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
fcebe456 1980 struct btrfs_key key;
5d4f98a2
YZ
1981 u64 refs;
1982 int ret;
fcebe456 1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
5d4f98a2
YZ
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
fcebe456
JB
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
5d4f98a2
YZ
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
5d4f98a2
YZ
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
fcebe456 1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
5d4f98a2 2000 goto out;
fcebe456
JB
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
5d4f98a2 2014
fcebe456
JB
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
5d4f98a2 2025 leaf = path->nodes[0];
fcebe456 2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
fcebe456
JB
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
5d4f98a2
YZ
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2034
5d4f98a2 2035 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2036 btrfs_release_path(path);
56bec294 2037
fcebe456
JB
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
56bec294 2045 path->reada = 1;
b9473439 2046 path->leave_spinning = 1;
56bec294
CM
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
79787eaa
JM
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2053out:
56bec294 2054 btrfs_free_path(path);
30d133fc 2055 return ret;
56bec294
CM
2056}
2057
5d4f98a2
YZ
2058static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
56bec294 2063{
5d4f98a2
YZ
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
5d4f98a2
YZ
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
fcebe456 2080 ref_root = ref->root;
5d4f98a2
YZ
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2083 if (extent_op)
5d4f98a2 2084 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
5d4f98a2
YZ
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
fcebe456 2094 node->no_quota, extent_op);
5d4f98a2
YZ
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
fcebe456 2100 extent_op, node->no_quota);
5d4f98a2
YZ
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105}
2106
2107static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110{
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123}
2124
2125static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129{
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
56bec294 2135 int ret;
5d4f98a2 2136 int err = 0;
b1c79e09 2137 int metadata = !extent_op->is_data;
5d4f98a2 2138
79787eaa
JM
2139 if (trans->aborted)
2140 return 0;
2141
3173a18f
JB
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
5d4f98a2
YZ
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
5d4f98a2 2150
3173a18f 2151 if (metadata) {
3173a18f 2152 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2153 key.offset = extent_op->level;
3173a18f
JB
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159again:
5d4f98a2
YZ
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
3173a18f 2169 if (metadata) {
55994887
FDBM
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
3173a18f 2182
55994887
FDBM
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
3173a18f 2191 }
5d4f98a2
YZ
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207#endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2211
5d4f98a2
YZ
2212 btrfs_mark_buffer_dirty(leaf);
2213out:
2214 btrfs_free_path(path);
2215 return err;
56bec294
CM
2216}
2217
5d4f98a2
YZ
2218static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
56bec294
CM
2223{
2224 int ret = 0;
5d4f98a2
YZ
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
3173a18f
JB
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
56bec294 2231
5d4f98a2 2232 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
5d4f98a2
YZ
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
fcebe456 2237 ref_root = ref->root;
5d4f98a2 2238
3173a18f
JB
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
5d4f98a2
YZ
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2250 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
fcebe456
JB
2255 ref->level, &ins,
2256 node->no_quota);
5d4f98a2
YZ
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
fcebe456
JB
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
5d4f98a2
YZ
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
fcebe456
JB
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
5d4f98a2
YZ
2267 } else {
2268 BUG();
2269 }
56bec294
CM
2270 return ret;
2271}
2272
2273/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2274static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
56bec294 2279{
79787eaa
JM
2280 int ret = 0;
2281
857cc2fc
JB
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
79787eaa 2286 return 0;
857cc2fc 2287 }
79787eaa 2288
5d4f98a2 2289 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
5d4f98a2
YZ
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
56bec294 2301 if (insert_reserved) {
f0486c68
YZ
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
5d4f98a2
YZ
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
5d4f98a2 2308 }
56bec294 2309 }
79787eaa 2310 return ret;
56bec294
CM
2311 }
2312
5d4f98a2
YZ
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
56bec294
CM
2324}
2325
c6fc2454 2326static inline struct btrfs_delayed_ref_node *
56bec294
CM
2327select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328{
c6fc2454
QW
2329 if (list_empty(&head->ref_list))
2330 return NULL;
d7df2c79 2331
c6fc2454
QW
2332 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2333 list);
56bec294
CM
2334}
2335
79787eaa
JM
2336/*
2337 * Returns 0 on success or if called with an already aborted transaction.
2338 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2339 */
d7df2c79
JB
2340static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2341 struct btrfs_root *root,
2342 unsigned long nr)
56bec294 2343{
56bec294
CM
2344 struct btrfs_delayed_ref_root *delayed_refs;
2345 struct btrfs_delayed_ref_node *ref;
2346 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2347 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2348 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2349 ktime_t start = ktime_get();
56bec294 2350 int ret;
d7df2c79 2351 unsigned long count = 0;
0a2b2a84 2352 unsigned long actual_count = 0;
56bec294 2353 int must_insert_reserved = 0;
56bec294
CM
2354
2355 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2356 while (1) {
2357 if (!locked_ref) {
d7df2c79 2358 if (count >= nr)
56bec294 2359 break;
56bec294 2360
d7df2c79
JB
2361 spin_lock(&delayed_refs->lock);
2362 locked_ref = btrfs_select_ref_head(trans);
2363 if (!locked_ref) {
2364 spin_unlock(&delayed_refs->lock);
2365 break;
2366 }
c3e69d58
CM
2367
2368 /* grab the lock that says we are going to process
2369 * all the refs for this head */
2370 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2371 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2372 /*
2373 * we may have dropped the spin lock to get the head
2374 * mutex lock, and that might have given someone else
2375 * time to free the head. If that's true, it has been
2376 * removed from our list and we can move on.
2377 */
2378 if (ret == -EAGAIN) {
2379 locked_ref = NULL;
2380 count++;
2381 continue;
56bec294
CM
2382 }
2383 }
a28ec197 2384
d7df2c79 2385 spin_lock(&locked_ref->lock);
ae1e206b 2386
d1270cd9
AJ
2387 /*
2388 * locked_ref is the head node, so we have to go one
2389 * node back for any delayed ref updates
2390 */
2391 ref = select_delayed_ref(locked_ref);
2392
2393 if (ref && ref->seq &&
097b8a7c 2394 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2395 spin_unlock(&locked_ref->lock);
093486c4 2396 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2397 spin_lock(&delayed_refs->lock);
2398 locked_ref->processing = 0;
d1270cd9
AJ
2399 delayed_refs->num_heads_ready++;
2400 spin_unlock(&delayed_refs->lock);
d7df2c79 2401 locked_ref = NULL;
d1270cd9 2402 cond_resched();
27a377db 2403 count++;
d1270cd9
AJ
2404 continue;
2405 }
2406
56bec294
CM
2407 /*
2408 * record the must insert reserved flag before we
2409 * drop the spin lock.
2410 */
2411 must_insert_reserved = locked_ref->must_insert_reserved;
2412 locked_ref->must_insert_reserved = 0;
7bb86316 2413
5d4f98a2
YZ
2414 extent_op = locked_ref->extent_op;
2415 locked_ref->extent_op = NULL;
2416
56bec294 2417 if (!ref) {
d7df2c79
JB
2418
2419
56bec294
CM
2420 /* All delayed refs have been processed, Go ahead
2421 * and send the head node to run_one_delayed_ref,
2422 * so that any accounting fixes can happen
2423 */
2424 ref = &locked_ref->node;
5d4f98a2
YZ
2425
2426 if (extent_op && must_insert_reserved) {
78a6184a 2427 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2428 extent_op = NULL;
2429 }
2430
2431 if (extent_op) {
d7df2c79 2432 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2433 ret = run_delayed_extent_op(trans, root,
2434 ref, extent_op);
78a6184a 2435 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2436
79787eaa 2437 if (ret) {
857cc2fc
JB
2438 /*
2439 * Need to reset must_insert_reserved if
2440 * there was an error so the abort stuff
2441 * can cleanup the reserved space
2442 * properly.
2443 */
2444 if (must_insert_reserved)
2445 locked_ref->must_insert_reserved = 1;
d7df2c79 2446 locked_ref->processing = 0;
c2cf52eb 2447 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2448 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2449 return ret;
2450 }
d7df2c79 2451 continue;
5d4f98a2 2452 }
02217ed2 2453
d7df2c79
JB
2454 /*
2455 * Need to drop our head ref lock and re-aqcuire the
2456 * delayed ref lock and then re-check to make sure
2457 * nobody got added.
2458 */
2459 spin_unlock(&locked_ref->lock);
2460 spin_lock(&delayed_refs->lock);
2461 spin_lock(&locked_ref->lock);
c6fc2454 2462 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2463 locked_ref->extent_op) {
d7df2c79
JB
2464 spin_unlock(&locked_ref->lock);
2465 spin_unlock(&delayed_refs->lock);
2466 continue;
2467 }
2468 ref->in_tree = 0;
2469 delayed_refs->num_heads--;
c46effa6
LB
2470 rb_erase(&locked_ref->href_node,
2471 &delayed_refs->href_root);
d7df2c79
JB
2472 spin_unlock(&delayed_refs->lock);
2473 } else {
0a2b2a84 2474 actual_count++;
d7df2c79 2475 ref->in_tree = 0;
c6fc2454 2476 list_del(&ref->list);
c46effa6 2477 }
d7df2c79
JB
2478 atomic_dec(&delayed_refs->num_entries);
2479
093486c4 2480 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2481 /*
2482 * when we play the delayed ref, also correct the
2483 * ref_mod on head
2484 */
2485 switch (ref->action) {
2486 case BTRFS_ADD_DELAYED_REF:
2487 case BTRFS_ADD_DELAYED_EXTENT:
2488 locked_ref->node.ref_mod -= ref->ref_mod;
2489 break;
2490 case BTRFS_DROP_DELAYED_REF:
2491 locked_ref->node.ref_mod += ref->ref_mod;
2492 break;
2493 default:
2494 WARN_ON(1);
2495 }
2496 }
d7df2c79 2497 spin_unlock(&locked_ref->lock);
925baedd 2498
5d4f98a2 2499 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2500 must_insert_reserved);
eb099670 2501
78a6184a 2502 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2503 if (ret) {
d7df2c79 2504 locked_ref->processing = 0;
093486c4
MX
2505 btrfs_delayed_ref_unlock(locked_ref);
2506 btrfs_put_delayed_ref(ref);
c2cf52eb 2507 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2508 return ret;
2509 }
2510
093486c4
MX
2511 /*
2512 * If this node is a head, that means all the refs in this head
2513 * have been dealt with, and we will pick the next head to deal
2514 * with, so we must unlock the head and drop it from the cluster
2515 * list before we release it.
2516 */
2517 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2518 if (locked_ref->is_data &&
2519 locked_ref->total_ref_mod < 0) {
2520 spin_lock(&delayed_refs->lock);
2521 delayed_refs->pending_csums -= ref->num_bytes;
2522 spin_unlock(&delayed_refs->lock);
2523 }
093486c4
MX
2524 btrfs_delayed_ref_unlock(locked_ref);
2525 locked_ref = NULL;
2526 }
2527 btrfs_put_delayed_ref(ref);
2528 count++;
c3e69d58 2529 cond_resched();
c3e69d58 2530 }
0a2b2a84
JB
2531
2532 /*
2533 * We don't want to include ref heads since we can have empty ref heads
2534 * and those will drastically skew our runtime down since we just do
2535 * accounting, no actual extent tree updates.
2536 */
2537 if (actual_count > 0) {
2538 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2539 u64 avg;
2540
2541 /*
2542 * We weigh the current average higher than our current runtime
2543 * to avoid large swings in the average.
2544 */
2545 spin_lock(&delayed_refs->lock);
2546 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2547 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2548 spin_unlock(&delayed_refs->lock);
2549 }
d7df2c79 2550 return 0;
c3e69d58
CM
2551}
2552
709c0486
AJ
2553#ifdef SCRAMBLE_DELAYED_REFS
2554/*
2555 * Normally delayed refs get processed in ascending bytenr order. This
2556 * correlates in most cases to the order added. To expose dependencies on this
2557 * order, we start to process the tree in the middle instead of the beginning
2558 */
2559static u64 find_middle(struct rb_root *root)
2560{
2561 struct rb_node *n = root->rb_node;
2562 struct btrfs_delayed_ref_node *entry;
2563 int alt = 1;
2564 u64 middle;
2565 u64 first = 0, last = 0;
2566
2567 n = rb_first(root);
2568 if (n) {
2569 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2570 first = entry->bytenr;
2571 }
2572 n = rb_last(root);
2573 if (n) {
2574 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2575 last = entry->bytenr;
2576 }
2577 n = root->rb_node;
2578
2579 while (n) {
2580 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2581 WARN_ON(!entry->in_tree);
2582
2583 middle = entry->bytenr;
2584
2585 if (alt)
2586 n = n->rb_left;
2587 else
2588 n = n->rb_right;
2589
2590 alt = 1 - alt;
2591 }
2592 return middle;
2593}
2594#endif
2595
1be41b78
JB
2596static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2597{
2598 u64 num_bytes;
2599
2600 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2601 sizeof(struct btrfs_extent_inline_ref));
2602 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2603 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2604
2605 /*
2606 * We don't ever fill up leaves all the way so multiply by 2 just to be
2607 * closer to what we're really going to want to ouse.
2608 */
f8c269d7 2609 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2610}
2611
1262133b
JB
2612/*
2613 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2614 * would require to store the csums for that many bytes.
2615 */
28f75a0e 2616u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2617{
2618 u64 csum_size;
2619 u64 num_csums_per_leaf;
2620 u64 num_csums;
2621
2622 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2623 num_csums_per_leaf = div64_u64(csum_size,
2624 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2625 num_csums = div64_u64(csum_bytes, root->sectorsize);
2626 num_csums += num_csums_per_leaf - 1;
2627 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2628 return num_csums;
2629}
2630
0a2b2a84 2631int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2632 struct btrfs_root *root)
2633{
2634 struct btrfs_block_rsv *global_rsv;
2635 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2636 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2637 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2638 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2639 int ret = 0;
2640
2641 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2642 num_heads = heads_to_leaves(root, num_heads);
2643 if (num_heads > 1)
707e8a07 2644 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2645 num_bytes <<= 1;
28f75a0e 2646 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2647 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2648 num_dirty_bgs);
1be41b78
JB
2649 global_rsv = &root->fs_info->global_block_rsv;
2650
2651 /*
2652 * If we can't allocate any more chunks lets make sure we have _lots_ of
2653 * wiggle room since running delayed refs can create more delayed refs.
2654 */
cb723e49
JB
2655 if (global_rsv->space_info->full) {
2656 num_dirty_bgs_bytes <<= 1;
1be41b78 2657 num_bytes <<= 1;
cb723e49 2658 }
1be41b78
JB
2659
2660 spin_lock(&global_rsv->lock);
cb723e49 2661 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2662 ret = 1;
2663 spin_unlock(&global_rsv->lock);
2664 return ret;
2665}
2666
0a2b2a84
JB
2667int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2668 struct btrfs_root *root)
2669{
2670 struct btrfs_fs_info *fs_info = root->fs_info;
2671 u64 num_entries =
2672 atomic_read(&trans->transaction->delayed_refs.num_entries);
2673 u64 avg_runtime;
a79b7d4b 2674 u64 val;
0a2b2a84
JB
2675
2676 smp_mb();
2677 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2678 val = num_entries * avg_runtime;
0a2b2a84
JB
2679 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2680 return 1;
a79b7d4b
CM
2681 if (val >= NSEC_PER_SEC / 2)
2682 return 2;
0a2b2a84
JB
2683
2684 return btrfs_check_space_for_delayed_refs(trans, root);
2685}
2686
a79b7d4b
CM
2687struct async_delayed_refs {
2688 struct btrfs_root *root;
2689 int count;
2690 int error;
2691 int sync;
2692 struct completion wait;
2693 struct btrfs_work work;
2694};
2695
2696static void delayed_ref_async_start(struct btrfs_work *work)
2697{
2698 struct async_delayed_refs *async;
2699 struct btrfs_trans_handle *trans;
2700 int ret;
2701
2702 async = container_of(work, struct async_delayed_refs, work);
2703
2704 trans = btrfs_join_transaction(async->root);
2705 if (IS_ERR(trans)) {
2706 async->error = PTR_ERR(trans);
2707 goto done;
2708 }
2709
2710 /*
2711 * trans->sync means that when we call end_transaciton, we won't
2712 * wait on delayed refs
2713 */
2714 trans->sync = true;
2715 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2716 if (ret)
2717 async->error = ret;
2718
2719 ret = btrfs_end_transaction(trans, async->root);
2720 if (ret && !async->error)
2721 async->error = ret;
2722done:
2723 if (async->sync)
2724 complete(&async->wait);
2725 else
2726 kfree(async);
2727}
2728
2729int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2730 unsigned long count, int wait)
2731{
2732 struct async_delayed_refs *async;
2733 int ret;
2734
2735 async = kmalloc(sizeof(*async), GFP_NOFS);
2736 if (!async)
2737 return -ENOMEM;
2738
2739 async->root = root->fs_info->tree_root;
2740 async->count = count;
2741 async->error = 0;
2742 if (wait)
2743 async->sync = 1;
2744 else
2745 async->sync = 0;
2746 init_completion(&async->wait);
2747
9e0af237
LB
2748 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2749 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2750
2751 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2752
2753 if (wait) {
2754 wait_for_completion(&async->wait);
2755 ret = async->error;
2756 kfree(async);
2757 return ret;
2758 }
2759 return 0;
2760}
2761
c3e69d58
CM
2762/*
2763 * this starts processing the delayed reference count updates and
2764 * extent insertions we have queued up so far. count can be
2765 * 0, which means to process everything in the tree at the start
2766 * of the run (but not newly added entries), or it can be some target
2767 * number you'd like to process.
79787eaa
JM
2768 *
2769 * Returns 0 on success or if called with an aborted transaction
2770 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2771 */
2772int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2773 struct btrfs_root *root, unsigned long count)
2774{
2775 struct rb_node *node;
2776 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2777 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2778 int ret;
2779 int run_all = count == (unsigned long)-1;
c3e69d58 2780
79787eaa
JM
2781 /* We'll clean this up in btrfs_cleanup_transaction */
2782 if (trans->aborted)
2783 return 0;
2784
c3e69d58
CM
2785 if (root == root->fs_info->extent_root)
2786 root = root->fs_info->tree_root;
2787
2788 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2789 if (count == 0)
d7df2c79 2790 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2791
c3e69d58 2792again:
709c0486
AJ
2793#ifdef SCRAMBLE_DELAYED_REFS
2794 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2795#endif
d7df2c79
JB
2796 ret = __btrfs_run_delayed_refs(trans, root, count);
2797 if (ret < 0) {
2798 btrfs_abort_transaction(trans, root, ret);
2799 return ret;
eb099670 2800 }
c3e69d58 2801
56bec294 2802 if (run_all) {
d7df2c79 2803 if (!list_empty(&trans->new_bgs))
ea658bad 2804 btrfs_create_pending_block_groups(trans, root);
ea658bad 2805
d7df2c79 2806 spin_lock(&delayed_refs->lock);
c46effa6 2807 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2808 if (!node) {
2809 spin_unlock(&delayed_refs->lock);
56bec294 2810 goto out;
d7df2c79 2811 }
c3e69d58 2812 count = (unsigned long)-1;
e9d0b13b 2813
56bec294 2814 while (node) {
c46effa6
LB
2815 head = rb_entry(node, struct btrfs_delayed_ref_head,
2816 href_node);
2817 if (btrfs_delayed_ref_is_head(&head->node)) {
2818 struct btrfs_delayed_ref_node *ref;
5caf2a00 2819
c46effa6 2820 ref = &head->node;
56bec294
CM
2821 atomic_inc(&ref->refs);
2822
2823 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2824 /*
2825 * Mutex was contended, block until it's
2826 * released and try again
2827 */
56bec294
CM
2828 mutex_lock(&head->mutex);
2829 mutex_unlock(&head->mutex);
2830
2831 btrfs_put_delayed_ref(ref);
1887be66 2832 cond_resched();
56bec294 2833 goto again;
c46effa6
LB
2834 } else {
2835 WARN_ON(1);
56bec294
CM
2836 }
2837 node = rb_next(node);
2838 }
2839 spin_unlock(&delayed_refs->lock);
d7df2c79 2840 cond_resched();
56bec294 2841 goto again;
5f39d397 2842 }
54aa1f4d 2843out:
fcebe456
JB
2844 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2845 if (ret)
2846 return ret;
edf39272 2847 assert_qgroups_uptodate(trans);
a28ec197
CM
2848 return 0;
2849}
2850
5d4f98a2
YZ
2851int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2852 struct btrfs_root *root,
2853 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2854 int level, int is_data)
5d4f98a2
YZ
2855{
2856 struct btrfs_delayed_extent_op *extent_op;
2857 int ret;
2858
78a6184a 2859 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2860 if (!extent_op)
2861 return -ENOMEM;
2862
2863 extent_op->flags_to_set = flags;
2864 extent_op->update_flags = 1;
2865 extent_op->update_key = 0;
2866 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2867 extent_op->level = level;
5d4f98a2 2868
66d7e7f0
AJ
2869 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2870 num_bytes, extent_op);
5d4f98a2 2871 if (ret)
78a6184a 2872 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2873 return ret;
2874}
2875
2876static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2877 struct btrfs_root *root,
2878 struct btrfs_path *path,
2879 u64 objectid, u64 offset, u64 bytenr)
2880{
2881 struct btrfs_delayed_ref_head *head;
2882 struct btrfs_delayed_ref_node *ref;
2883 struct btrfs_delayed_data_ref *data_ref;
2884 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
2885 int ret = 0;
2886
5d4f98a2
YZ
2887 delayed_refs = &trans->transaction->delayed_refs;
2888 spin_lock(&delayed_refs->lock);
2889 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
2890 if (!head) {
2891 spin_unlock(&delayed_refs->lock);
2892 return 0;
2893 }
5d4f98a2
YZ
2894
2895 if (!mutex_trylock(&head->mutex)) {
2896 atomic_inc(&head->node.refs);
2897 spin_unlock(&delayed_refs->lock);
2898
b3b4aa74 2899 btrfs_release_path(path);
5d4f98a2 2900
8cc33e5c
DS
2901 /*
2902 * Mutex was contended, block until it's released and let
2903 * caller try again
2904 */
5d4f98a2
YZ
2905 mutex_lock(&head->mutex);
2906 mutex_unlock(&head->mutex);
2907 btrfs_put_delayed_ref(&head->node);
2908 return -EAGAIN;
2909 }
d7df2c79 2910 spin_unlock(&delayed_refs->lock);
5d4f98a2 2911
d7df2c79 2912 spin_lock(&head->lock);
c6fc2454 2913 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
2914 /* If it's a shared ref we know a cross reference exists */
2915 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2916 ret = 1;
2917 break;
2918 }
5d4f98a2 2919
d7df2c79 2920 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 2921
d7df2c79
JB
2922 /*
2923 * If our ref doesn't match the one we're currently looking at
2924 * then we have a cross reference.
2925 */
2926 if (data_ref->root != root->root_key.objectid ||
2927 data_ref->objectid != objectid ||
2928 data_ref->offset != offset) {
2929 ret = 1;
2930 break;
2931 }
5d4f98a2 2932 }
d7df2c79 2933 spin_unlock(&head->lock);
5d4f98a2 2934 mutex_unlock(&head->mutex);
5d4f98a2
YZ
2935 return ret;
2936}
2937
2938static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2939 struct btrfs_root *root,
2940 struct btrfs_path *path,
2941 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
2942{
2943 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 2944 struct extent_buffer *leaf;
5d4f98a2
YZ
2945 struct btrfs_extent_data_ref *ref;
2946 struct btrfs_extent_inline_ref *iref;
2947 struct btrfs_extent_item *ei;
f321e491 2948 struct btrfs_key key;
5d4f98a2 2949 u32 item_size;
be20aa9d 2950 int ret;
925baedd 2951
be20aa9d 2952 key.objectid = bytenr;
31840ae1 2953 key.offset = (u64)-1;
f321e491 2954 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 2955
be20aa9d
CM
2956 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2957 if (ret < 0)
2958 goto out;
79787eaa 2959 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
2960
2961 ret = -ENOENT;
2962 if (path->slots[0] == 0)
31840ae1 2963 goto out;
be20aa9d 2964
31840ae1 2965 path->slots[0]--;
f321e491 2966 leaf = path->nodes[0];
5d4f98a2 2967 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 2968
5d4f98a2 2969 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 2970 goto out;
f321e491 2971
5d4f98a2
YZ
2972 ret = 1;
2973 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2974#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2975 if (item_size < sizeof(*ei)) {
2976 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2977 goto out;
2978 }
2979#endif
2980 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 2981
5d4f98a2
YZ
2982 if (item_size != sizeof(*ei) +
2983 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2984 goto out;
be20aa9d 2985
5d4f98a2
YZ
2986 if (btrfs_extent_generation(leaf, ei) <=
2987 btrfs_root_last_snapshot(&root->root_item))
2988 goto out;
2989
2990 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2991 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2992 BTRFS_EXTENT_DATA_REF_KEY)
2993 goto out;
2994
2995 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2996 if (btrfs_extent_refs(leaf, ei) !=
2997 btrfs_extent_data_ref_count(leaf, ref) ||
2998 btrfs_extent_data_ref_root(leaf, ref) !=
2999 root->root_key.objectid ||
3000 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3001 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3002 goto out;
3003
3004 ret = 0;
3005out:
3006 return ret;
3007}
3008
3009int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3010 struct btrfs_root *root,
3011 u64 objectid, u64 offset, u64 bytenr)
3012{
3013 struct btrfs_path *path;
3014 int ret;
3015 int ret2;
3016
3017 path = btrfs_alloc_path();
3018 if (!path)
3019 return -ENOENT;
3020
3021 do {
3022 ret = check_committed_ref(trans, root, path, objectid,
3023 offset, bytenr);
3024 if (ret && ret != -ENOENT)
f321e491 3025 goto out;
80ff3856 3026
5d4f98a2
YZ
3027 ret2 = check_delayed_ref(trans, root, path, objectid,
3028 offset, bytenr);
3029 } while (ret2 == -EAGAIN);
3030
3031 if (ret2 && ret2 != -ENOENT) {
3032 ret = ret2;
3033 goto out;
f321e491 3034 }
5d4f98a2
YZ
3035
3036 if (ret != -ENOENT || ret2 != -ENOENT)
3037 ret = 0;
be20aa9d 3038out:
80ff3856 3039 btrfs_free_path(path);
f0486c68
YZ
3040 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3041 WARN_ON(ret > 0);
f321e491 3042 return ret;
be20aa9d 3043}
c5739bba 3044
5d4f98a2 3045static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3046 struct btrfs_root *root,
5d4f98a2 3047 struct extent_buffer *buf,
e339a6b0 3048 int full_backref, int inc)
31840ae1
ZY
3049{
3050 u64 bytenr;
5d4f98a2
YZ
3051 u64 num_bytes;
3052 u64 parent;
31840ae1 3053 u64 ref_root;
31840ae1 3054 u32 nritems;
31840ae1
ZY
3055 struct btrfs_key key;
3056 struct btrfs_file_extent_item *fi;
3057 int i;
3058 int level;
3059 int ret = 0;
31840ae1 3060 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3061 u64, u64, u64, u64, u64, u64, int);
31840ae1 3062
fccb84c9
DS
3063
3064 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3065 return 0;
fccb84c9 3066
31840ae1 3067 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3068 nritems = btrfs_header_nritems(buf);
3069 level = btrfs_header_level(buf);
3070
27cdeb70 3071 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3072 return 0;
31840ae1 3073
5d4f98a2
YZ
3074 if (inc)
3075 process_func = btrfs_inc_extent_ref;
3076 else
3077 process_func = btrfs_free_extent;
31840ae1 3078
5d4f98a2
YZ
3079 if (full_backref)
3080 parent = buf->start;
3081 else
3082 parent = 0;
3083
3084 for (i = 0; i < nritems; i++) {
31840ae1 3085 if (level == 0) {
5d4f98a2 3086 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3087 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3088 continue;
5d4f98a2 3089 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3090 struct btrfs_file_extent_item);
3091 if (btrfs_file_extent_type(buf, fi) ==
3092 BTRFS_FILE_EXTENT_INLINE)
3093 continue;
3094 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3095 if (bytenr == 0)
3096 continue;
5d4f98a2
YZ
3097
3098 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3099 key.offset -= btrfs_file_extent_offset(buf, fi);
3100 ret = process_func(trans, root, bytenr, num_bytes,
3101 parent, ref_root, key.objectid,
e339a6b0 3102 key.offset, 1);
31840ae1
ZY
3103 if (ret)
3104 goto fail;
3105 } else {
5d4f98a2 3106 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3107 num_bytes = root->nodesize;
5d4f98a2 3108 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3109 parent, ref_root, level - 1, 0,
e339a6b0 3110 1);
31840ae1
ZY
3111 if (ret)
3112 goto fail;
3113 }
3114 }
3115 return 0;
3116fail:
5d4f98a2
YZ
3117 return ret;
3118}
3119
3120int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3121 struct extent_buffer *buf, int full_backref)
5d4f98a2 3122{
e339a6b0 3123 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3124}
3125
3126int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3127 struct extent_buffer *buf, int full_backref)
5d4f98a2 3128{
e339a6b0 3129 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3130}
3131
9078a3e1
CM
3132static int write_one_cache_group(struct btrfs_trans_handle *trans,
3133 struct btrfs_root *root,
3134 struct btrfs_path *path,
3135 struct btrfs_block_group_cache *cache)
3136{
3137 int ret;
9078a3e1 3138 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3139 unsigned long bi;
3140 struct extent_buffer *leaf;
9078a3e1 3141
9078a3e1 3142 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3143 if (ret) {
3144 if (ret > 0)
3145 ret = -ENOENT;
54aa1f4d 3146 goto fail;
df95e7f0 3147 }
5f39d397
CM
3148
3149 leaf = path->nodes[0];
3150 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3151 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3152 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3153fail:
24b89d08 3154 btrfs_release_path(path);
df95e7f0 3155 return ret;
9078a3e1
CM
3156
3157}
3158
4a8c9a62
YZ
3159static struct btrfs_block_group_cache *
3160next_block_group(struct btrfs_root *root,
3161 struct btrfs_block_group_cache *cache)
3162{
3163 struct rb_node *node;
292cbd51 3164
4a8c9a62 3165 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3166
3167 /* If our block group was removed, we need a full search. */
3168 if (RB_EMPTY_NODE(&cache->cache_node)) {
3169 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3170
3171 spin_unlock(&root->fs_info->block_group_cache_lock);
3172 btrfs_put_block_group(cache);
3173 cache = btrfs_lookup_first_block_group(root->fs_info,
3174 next_bytenr);
3175 return cache;
3176 }
4a8c9a62
YZ
3177 node = rb_next(&cache->cache_node);
3178 btrfs_put_block_group(cache);
3179 if (node) {
3180 cache = rb_entry(node, struct btrfs_block_group_cache,
3181 cache_node);
11dfe35a 3182 btrfs_get_block_group(cache);
4a8c9a62
YZ
3183 } else
3184 cache = NULL;
3185 spin_unlock(&root->fs_info->block_group_cache_lock);
3186 return cache;
3187}
3188
0af3d00b
JB
3189static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3190 struct btrfs_trans_handle *trans,
3191 struct btrfs_path *path)
3192{
3193 struct btrfs_root *root = block_group->fs_info->tree_root;
3194 struct inode *inode = NULL;
3195 u64 alloc_hint = 0;
2b20982e 3196 int dcs = BTRFS_DC_ERROR;
f8c269d7 3197 u64 num_pages = 0;
0af3d00b
JB
3198 int retries = 0;
3199 int ret = 0;
3200
3201 /*
3202 * If this block group is smaller than 100 megs don't bother caching the
3203 * block group.
3204 */
3205 if (block_group->key.offset < (100 * 1024 * 1024)) {
3206 spin_lock(&block_group->lock);
3207 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3208 spin_unlock(&block_group->lock);
3209 return 0;
3210 }
3211
0c0ef4bc
JB
3212 if (trans->aborted)
3213 return 0;
0af3d00b
JB
3214again:
3215 inode = lookup_free_space_inode(root, block_group, path);
3216 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3217 ret = PTR_ERR(inode);
b3b4aa74 3218 btrfs_release_path(path);
0af3d00b
JB
3219 goto out;
3220 }
3221
3222 if (IS_ERR(inode)) {
3223 BUG_ON(retries);
3224 retries++;
3225
3226 if (block_group->ro)
3227 goto out_free;
3228
3229 ret = create_free_space_inode(root, trans, block_group, path);
3230 if (ret)
3231 goto out_free;
3232 goto again;
3233 }
3234
5b0e95bf
JB
3235 /* We've already setup this transaction, go ahead and exit */
3236 if (block_group->cache_generation == trans->transid &&
3237 i_size_read(inode)) {
3238 dcs = BTRFS_DC_SETUP;
3239 goto out_put;
3240 }
3241
0af3d00b
JB
3242 /*
3243 * We want to set the generation to 0, that way if anything goes wrong
3244 * from here on out we know not to trust this cache when we load up next
3245 * time.
3246 */
3247 BTRFS_I(inode)->generation = 0;
3248 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3249 if (ret) {
3250 /*
3251 * So theoretically we could recover from this, simply set the
3252 * super cache generation to 0 so we know to invalidate the
3253 * cache, but then we'd have to keep track of the block groups
3254 * that fail this way so we know we _have_ to reset this cache
3255 * before the next commit or risk reading stale cache. So to
3256 * limit our exposure to horrible edge cases lets just abort the
3257 * transaction, this only happens in really bad situations
3258 * anyway.
3259 */
3260 btrfs_abort_transaction(trans, root, ret);
3261 goto out_put;
3262 }
0af3d00b
JB
3263 WARN_ON(ret);
3264
3265 if (i_size_read(inode) > 0) {
7b61cd92
MX
3266 ret = btrfs_check_trunc_cache_free_space(root,
3267 &root->fs_info->global_block_rsv);
3268 if (ret)
3269 goto out_put;
3270
1bbc621e 3271 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3272 if (ret)
3273 goto out_put;
3274 }
3275
3276 spin_lock(&block_group->lock);
cf7c1ef6 3277 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3278 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3279 /*
3280 * don't bother trying to write stuff out _if_
3281 * a) we're not cached,
3282 * b) we're with nospace_cache mount option.
3283 */
2b20982e 3284 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3285 spin_unlock(&block_group->lock);
3286 goto out_put;
3287 }
3288 spin_unlock(&block_group->lock);
3289
6fc823b1
JB
3290 /*
3291 * Try to preallocate enough space based on how big the block group is.
3292 * Keep in mind this has to include any pinned space which could end up
3293 * taking up quite a bit since it's not folded into the other space
3294 * cache.
3295 */
f8c269d7 3296 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3297 if (!num_pages)
3298 num_pages = 1;
3299
0af3d00b
JB
3300 num_pages *= 16;
3301 num_pages *= PAGE_CACHE_SIZE;
3302
e2d1f923 3303 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
0af3d00b
JB
3304 if (ret)
3305 goto out_put;
3306
3307 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3308 num_pages, num_pages,
3309 &alloc_hint);
2b20982e
JB
3310 if (!ret)
3311 dcs = BTRFS_DC_SETUP;
0af3d00b 3312 btrfs_free_reserved_data_space(inode, num_pages);
c09544e0 3313
0af3d00b
JB
3314out_put:
3315 iput(inode);
3316out_free:
b3b4aa74 3317 btrfs_release_path(path);
0af3d00b
JB
3318out:
3319 spin_lock(&block_group->lock);
e65cbb94 3320 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3321 block_group->cache_generation = trans->transid;
2b20982e 3322 block_group->disk_cache_state = dcs;
0af3d00b
JB
3323 spin_unlock(&block_group->lock);
3324
3325 return ret;
3326}
3327
dcdf7f6d
JB
3328int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3329 struct btrfs_root *root)
3330{
3331 struct btrfs_block_group_cache *cache, *tmp;
3332 struct btrfs_transaction *cur_trans = trans->transaction;
3333 struct btrfs_path *path;
3334
3335 if (list_empty(&cur_trans->dirty_bgs) ||
3336 !btrfs_test_opt(root, SPACE_CACHE))
3337 return 0;
3338
3339 path = btrfs_alloc_path();
3340 if (!path)
3341 return -ENOMEM;
3342
3343 /* Could add new block groups, use _safe just in case */
3344 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3345 dirty_list) {
3346 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3347 cache_save_setup(cache, trans, path);
3348 }
3349
3350 btrfs_free_path(path);
3351 return 0;
3352}
3353
1bbc621e
CM
3354/*
3355 * transaction commit does final block group cache writeback during a
3356 * critical section where nothing is allowed to change the FS. This is
3357 * required in order for the cache to actually match the block group,
3358 * but can introduce a lot of latency into the commit.
3359 *
3360 * So, btrfs_start_dirty_block_groups is here to kick off block group
3361 * cache IO. There's a chance we'll have to redo some of it if the
3362 * block group changes again during the commit, but it greatly reduces
3363 * the commit latency by getting rid of the easy block groups while
3364 * we're still allowing others to join the commit.
3365 */
3366int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3367 struct btrfs_root *root)
9078a3e1 3368{
4a8c9a62 3369 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3370 struct btrfs_transaction *cur_trans = trans->transaction;
3371 int ret = 0;
c9dc4c65 3372 int should_put;
1bbc621e
CM
3373 struct btrfs_path *path = NULL;
3374 LIST_HEAD(dirty);
3375 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3376 int num_started = 0;
1bbc621e
CM
3377 int loops = 0;
3378
3379 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3380 if (list_empty(&cur_trans->dirty_bgs)) {
3381 spin_unlock(&cur_trans->dirty_bgs_lock);
3382 return 0;
1bbc621e 3383 }
b58d1a9e 3384 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3385 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3386
1bbc621e 3387again:
1bbc621e
CM
3388 /*
3389 * make sure all the block groups on our dirty list actually
3390 * exist
3391 */
3392 btrfs_create_pending_block_groups(trans, root);
3393
3394 if (!path) {
3395 path = btrfs_alloc_path();
3396 if (!path)
3397 return -ENOMEM;
3398 }
3399
b58d1a9e
FM
3400 /*
3401 * cache_write_mutex is here only to save us from balance or automatic
3402 * removal of empty block groups deleting this block group while we are
3403 * writing out the cache
3404 */
3405 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3406 while (!list_empty(&dirty)) {
3407 cache = list_first_entry(&dirty,
3408 struct btrfs_block_group_cache,
3409 dirty_list);
1bbc621e
CM
3410 /*
3411 * this can happen if something re-dirties a block
3412 * group that is already under IO. Just wait for it to
3413 * finish and then do it all again
3414 */
3415 if (!list_empty(&cache->io_list)) {
3416 list_del_init(&cache->io_list);
3417 btrfs_wait_cache_io(root, trans, cache,
3418 &cache->io_ctl, path,
3419 cache->key.objectid);
3420 btrfs_put_block_group(cache);
3421 }
3422
3423
3424 /*
3425 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3426 * if it should update the cache_state. Don't delete
3427 * until after we wait.
3428 *
3429 * Since we're not running in the commit critical section
3430 * we need the dirty_bgs_lock to protect from update_block_group
3431 */
3432 spin_lock(&cur_trans->dirty_bgs_lock);
3433 list_del_init(&cache->dirty_list);
3434 spin_unlock(&cur_trans->dirty_bgs_lock);
3435
3436 should_put = 1;
3437
3438 cache_save_setup(cache, trans, path);
3439
3440 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3441 cache->io_ctl.inode = NULL;
3442 ret = btrfs_write_out_cache(root, trans, cache, path);
3443 if (ret == 0 && cache->io_ctl.inode) {
3444 num_started++;
3445 should_put = 0;
3446
3447 /*
3448 * the cache_write_mutex is protecting
3449 * the io_list
3450 */
3451 list_add_tail(&cache->io_list, io);
3452 } else {
3453 /*
3454 * if we failed to write the cache, the
3455 * generation will be bad and life goes on
3456 */
3457 ret = 0;
3458 }
3459 }
ff1f8250 3460 if (!ret) {
1bbc621e 3461 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3462 /*
3463 * Our block group might still be attached to the list
3464 * of new block groups in the transaction handle of some
3465 * other task (struct btrfs_trans_handle->new_bgs). This
3466 * means its block group item isn't yet in the extent
3467 * tree. If this happens ignore the error, as we will
3468 * try again later in the critical section of the
3469 * transaction commit.
3470 */
3471 if (ret == -ENOENT) {
3472 ret = 0;
3473 spin_lock(&cur_trans->dirty_bgs_lock);
3474 if (list_empty(&cache->dirty_list)) {
3475 list_add_tail(&cache->dirty_list,
3476 &cur_trans->dirty_bgs);
3477 btrfs_get_block_group(cache);
3478 }
3479 spin_unlock(&cur_trans->dirty_bgs_lock);
3480 } else if (ret) {
3481 btrfs_abort_transaction(trans, root, ret);
3482 }
3483 }
1bbc621e
CM
3484
3485 /* if its not on the io list, we need to put the block group */
3486 if (should_put)
3487 btrfs_put_block_group(cache);
3488
3489 if (ret)
3490 break;
b58d1a9e
FM
3491
3492 /*
3493 * Avoid blocking other tasks for too long. It might even save
3494 * us from writing caches for block groups that are going to be
3495 * removed.
3496 */
3497 mutex_unlock(&trans->transaction->cache_write_mutex);
3498 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3499 }
b58d1a9e 3500 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3501
3502 /*
3503 * go through delayed refs for all the stuff we've just kicked off
3504 * and then loop back (just once)
3505 */
3506 ret = btrfs_run_delayed_refs(trans, root, 0);
3507 if (!ret && loops == 0) {
3508 loops++;
3509 spin_lock(&cur_trans->dirty_bgs_lock);
3510 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3511 /*
3512 * dirty_bgs_lock protects us from concurrent block group
3513 * deletes too (not just cache_write_mutex).
3514 */
3515 if (!list_empty(&dirty)) {
3516 spin_unlock(&cur_trans->dirty_bgs_lock);
3517 goto again;
3518 }
1bbc621e 3519 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3520 }
3521
3522 btrfs_free_path(path);
3523 return ret;
3524}
3525
3526int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3527 struct btrfs_root *root)
3528{
3529 struct btrfs_block_group_cache *cache;
3530 struct btrfs_transaction *cur_trans = trans->transaction;
3531 int ret = 0;
3532 int should_put;
3533 struct btrfs_path *path;
3534 struct list_head *io = &cur_trans->io_bgs;
3535 int num_started = 0;
9078a3e1
CM
3536
3537 path = btrfs_alloc_path();
3538 if (!path)
3539 return -ENOMEM;
3540
ce93ec54
JB
3541 /*
3542 * We don't need the lock here since we are protected by the transaction
3543 * commit. We want to do the cache_save_setup first and then run the
3544 * delayed refs to make sure we have the best chance at doing this all
3545 * in one shot.
3546 */
3547 while (!list_empty(&cur_trans->dirty_bgs)) {
3548 cache = list_first_entry(&cur_trans->dirty_bgs,
3549 struct btrfs_block_group_cache,
3550 dirty_list);
c9dc4c65
CM
3551
3552 /*
3553 * this can happen if cache_save_setup re-dirties a block
3554 * group that is already under IO. Just wait for it to
3555 * finish and then do it all again
3556 */
3557 if (!list_empty(&cache->io_list)) {
3558 list_del_init(&cache->io_list);
3559 btrfs_wait_cache_io(root, trans, cache,
3560 &cache->io_ctl, path,
3561 cache->key.objectid);
3562 btrfs_put_block_group(cache);
c9dc4c65
CM
3563 }
3564
1bbc621e
CM
3565 /*
3566 * don't remove from the dirty list until after we've waited
3567 * on any pending IO
3568 */
ce93ec54 3569 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3570 should_put = 1;
3571
1bbc621e 3572 cache_save_setup(cache, trans, path);
c9dc4c65 3573
ce93ec54 3574 if (!ret)
c9dc4c65
CM
3575 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3576
3577 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3578 cache->io_ctl.inode = NULL;
3579 ret = btrfs_write_out_cache(root, trans, cache, path);
3580 if (ret == 0 && cache->io_ctl.inode) {
3581 num_started++;
3582 should_put = 0;
1bbc621e 3583 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3584 } else {
3585 /*
3586 * if we failed to write the cache, the
3587 * generation will be bad and life goes on
3588 */
3589 ret = 0;
3590 }
3591 }
ff1f8250 3592 if (!ret) {
ce93ec54 3593 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3594 if (ret)
3595 btrfs_abort_transaction(trans, root, ret);
3596 }
c9dc4c65
CM
3597
3598 /* if its not on the io list, we need to put the block group */
3599 if (should_put)
3600 btrfs_put_block_group(cache);
3601 }
3602
1bbc621e
CM
3603 while (!list_empty(io)) {
3604 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3605 io_list);
3606 list_del_init(&cache->io_list);
c9dc4c65
CM
3607 btrfs_wait_cache_io(root, trans, cache,
3608 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3609 btrfs_put_block_group(cache);
3610 }
3611
9078a3e1 3612 btrfs_free_path(path);
ce93ec54 3613 return ret;
9078a3e1
CM
3614}
3615
d2fb3437
YZ
3616int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3617{
3618 struct btrfs_block_group_cache *block_group;
3619 int readonly = 0;
3620
3621 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3622 if (!block_group || block_group->ro)
3623 readonly = 1;
3624 if (block_group)
fa9c0d79 3625 btrfs_put_block_group(block_group);
d2fb3437
YZ
3626 return readonly;
3627}
3628
6ab0a202
JM
3629static const char *alloc_name(u64 flags)
3630{
3631 switch (flags) {
3632 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3633 return "mixed";
3634 case BTRFS_BLOCK_GROUP_METADATA:
3635 return "metadata";
3636 case BTRFS_BLOCK_GROUP_DATA:
3637 return "data";
3638 case BTRFS_BLOCK_GROUP_SYSTEM:
3639 return "system";
3640 default:
3641 WARN_ON(1);
3642 return "invalid-combination";
3643 };
3644}
3645
593060d7
CM
3646static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3647 u64 total_bytes, u64 bytes_used,
3648 struct btrfs_space_info **space_info)
3649{
3650 struct btrfs_space_info *found;
b742bb82
YZ
3651 int i;
3652 int factor;
b150a4f1 3653 int ret;
b742bb82
YZ
3654
3655 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3656 BTRFS_BLOCK_GROUP_RAID10))
3657 factor = 2;
3658 else
3659 factor = 1;
593060d7
CM
3660
3661 found = __find_space_info(info, flags);
3662 if (found) {
25179201 3663 spin_lock(&found->lock);
593060d7 3664 found->total_bytes += total_bytes;
89a55897 3665 found->disk_total += total_bytes * factor;
593060d7 3666 found->bytes_used += bytes_used;
b742bb82 3667 found->disk_used += bytes_used * factor;
2e6e5183
FM
3668 if (total_bytes > 0)
3669 found->full = 0;
25179201 3670 spin_unlock(&found->lock);
593060d7
CM
3671 *space_info = found;
3672 return 0;
3673 }
c146afad 3674 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3675 if (!found)
3676 return -ENOMEM;
3677
908c7f19 3678 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3679 if (ret) {
3680 kfree(found);
3681 return ret;
3682 }
3683
c1895442 3684 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3685 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3686 init_rwsem(&found->groups_sem);
0f9dd46c 3687 spin_lock_init(&found->lock);
52ba6929 3688 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3689 found->total_bytes = total_bytes;
89a55897 3690 found->disk_total = total_bytes * factor;
593060d7 3691 found->bytes_used = bytes_used;
b742bb82 3692 found->disk_used = bytes_used * factor;
593060d7 3693 found->bytes_pinned = 0;
e8569813 3694 found->bytes_reserved = 0;
c146afad 3695 found->bytes_readonly = 0;
f0486c68 3696 found->bytes_may_use = 0;
2e6e5183
FM
3697 if (total_bytes > 0)
3698 found->full = 0;
3699 else
3700 found->full = 1;
0e4f8f88 3701 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3702 found->chunk_alloc = 0;
fdb5effd
JB
3703 found->flush = 0;
3704 init_waitqueue_head(&found->wait);
633c0aad 3705 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3706
3707 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3708 info->space_info_kobj, "%s",
3709 alloc_name(found->flags));
3710 if (ret) {
3711 kfree(found);
3712 return ret;
3713 }
3714
593060d7 3715 *space_info = found;
4184ea7f 3716 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3717 if (flags & BTRFS_BLOCK_GROUP_DATA)
3718 info->data_sinfo = found;
6ab0a202
JM
3719
3720 return ret;
593060d7
CM
3721}
3722
8790d502
CM
3723static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3724{
899c81ea
ID
3725 u64 extra_flags = chunk_to_extended(flags) &
3726 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3727
de98ced9 3728 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3729 if (flags & BTRFS_BLOCK_GROUP_DATA)
3730 fs_info->avail_data_alloc_bits |= extra_flags;
3731 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3732 fs_info->avail_metadata_alloc_bits |= extra_flags;
3733 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3734 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3735 write_sequnlock(&fs_info->profiles_lock);
8790d502 3736}
593060d7 3737
fc67c450
ID
3738/*
3739 * returns target flags in extended format or 0 if restripe for this
3740 * chunk_type is not in progress
c6664b42
ID
3741 *
3742 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3743 */
3744static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3745{
3746 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3747 u64 target = 0;
3748
fc67c450
ID
3749 if (!bctl)
3750 return 0;
3751
3752 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3753 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3754 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3755 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3756 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3757 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3758 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3759 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3760 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3761 }
3762
3763 return target;
3764}
3765
a46d11a8
ID
3766/*
3767 * @flags: available profiles in extended format (see ctree.h)
3768 *
e4d8ec0f
ID
3769 * Returns reduced profile in chunk format. If profile changing is in
3770 * progress (either running or paused) picks the target profile (if it's
3771 * already available), otherwise falls back to plain reducing.
a46d11a8 3772 */
48a3b636 3773static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3774{
95669976 3775 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3776 u64 target;
53b381b3 3777 u64 tmp;
a061fc8d 3778
fc67c450
ID
3779 /*
3780 * see if restripe for this chunk_type is in progress, if so
3781 * try to reduce to the target profile
3782 */
e4d8ec0f 3783 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3784 target = get_restripe_target(root->fs_info, flags);
3785 if (target) {
3786 /* pick target profile only if it's already available */
3787 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3788 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3789 return extended_to_chunk(target);
e4d8ec0f
ID
3790 }
3791 }
3792 spin_unlock(&root->fs_info->balance_lock);
3793
53b381b3 3794 /* First, mask out the RAID levels which aren't possible */
a061fc8d 3795 if (num_devices == 1)
53b381b3
DW
3796 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3797 BTRFS_BLOCK_GROUP_RAID5);
3798 if (num_devices < 3)
3799 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
a061fc8d
CM
3800 if (num_devices < 4)
3801 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3802
53b381b3
DW
3803 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3804 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3805 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3806 flags &= ~tmp;
ec44a35c 3807
53b381b3
DW
3808 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3809 tmp = BTRFS_BLOCK_GROUP_RAID6;
3810 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3811 tmp = BTRFS_BLOCK_GROUP_RAID5;
3812 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3813 tmp = BTRFS_BLOCK_GROUP_RAID10;
3814 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3815 tmp = BTRFS_BLOCK_GROUP_RAID1;
3816 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3817 tmp = BTRFS_BLOCK_GROUP_RAID0;
a46d11a8 3818
53b381b3 3819 return extended_to_chunk(flags | tmp);
ec44a35c
CM
3820}
3821
f8213bdc 3822static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3823{
de98ced9 3824 unsigned seq;
f8213bdc 3825 u64 flags;
de98ced9
MX
3826
3827 do {
f8213bdc 3828 flags = orig_flags;
de98ced9
MX
3829 seq = read_seqbegin(&root->fs_info->profiles_lock);
3830
3831 if (flags & BTRFS_BLOCK_GROUP_DATA)
3832 flags |= root->fs_info->avail_data_alloc_bits;
3833 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3834 flags |= root->fs_info->avail_system_alloc_bits;
3835 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3836 flags |= root->fs_info->avail_metadata_alloc_bits;
3837 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3838
b742bb82 3839 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3840}
3841
6d07bcec 3842u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3843{
b742bb82 3844 u64 flags;
53b381b3 3845 u64 ret;
9ed74f2d 3846
b742bb82
YZ
3847 if (data)
3848 flags = BTRFS_BLOCK_GROUP_DATA;
3849 else if (root == root->fs_info->chunk_root)
3850 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3851 else
b742bb82 3852 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3853
53b381b3
DW
3854 ret = get_alloc_profile(root, flags);
3855 return ret;
6a63209f 3856}
9ed74f2d 3857
6a63209f 3858/*
6a63209f
JB
3859 * This will check the space that the inode allocates from to make sure we have
3860 * enough space for bytes.
6a63209f 3861 */
e2d1f923 3862int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
6a63209f 3863{
6a63209f 3864 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3865 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3866 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3867 u64 used;
94b947b2 3868 int ret = 0;
c99f1b0c
ZL
3869 int need_commit = 2;
3870 int have_pinned_space;
6a63209f 3871
6a63209f 3872 /* make sure bytes are sectorsize aligned */
fda2832f 3873 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3874
9dced186 3875 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 3876 need_commit = 0;
9dced186 3877 ASSERT(current->journal_info);
0af3d00b
JB
3878 }
3879
b4d7c3c9 3880 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3881 if (!data_sinfo)
3882 goto alloc;
9ed74f2d 3883
6a63209f
JB
3884again:
3885 /* make sure we have enough space to handle the data first */
3886 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3887 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3888 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3889 data_sinfo->bytes_may_use;
ab6e2410
JB
3890
3891 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 3892 struct btrfs_trans_handle *trans;
9ed74f2d 3893
6a63209f
JB
3894 /*
3895 * if we don't have enough free bytes in this space then we need
3896 * to alloc a new chunk.
3897 */
b9fd47cd 3898 if (!data_sinfo->full) {
6a63209f 3899 u64 alloc_target;
9ed74f2d 3900
0e4f8f88 3901 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 3902 spin_unlock(&data_sinfo->lock);
33b4d47f 3903alloc:
6a63209f 3904 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
3905 /*
3906 * It is ugly that we don't call nolock join
3907 * transaction for the free space inode case here.
3908 * But it is safe because we only do the data space
3909 * reservation for the free space cache in the
3910 * transaction context, the common join transaction
3911 * just increase the counter of the current transaction
3912 * handler, doesn't try to acquire the trans_lock of
3913 * the fs.
3914 */
7a7eaa40 3915 trans = btrfs_join_transaction(root);
a22285a6
YZ
3916 if (IS_ERR(trans))
3917 return PTR_ERR(trans);
9ed74f2d 3918
6a63209f 3919 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
3920 alloc_target,
3921 CHUNK_ALLOC_NO_FORCE);
6a63209f 3922 btrfs_end_transaction(trans, root);
d52a5b5f
MX
3923 if (ret < 0) {
3924 if (ret != -ENOSPC)
3925 return ret;
c99f1b0c
ZL
3926 else {
3927 have_pinned_space = 1;
d52a5b5f 3928 goto commit_trans;
c99f1b0c 3929 }
d52a5b5f 3930 }
9ed74f2d 3931
b4d7c3c9
LZ
3932 if (!data_sinfo)
3933 data_sinfo = fs_info->data_sinfo;
3934
6a63209f
JB
3935 goto again;
3936 }
f2bb8f5c
JB
3937
3938 /*
b150a4f1 3939 * If we don't have enough pinned space to deal with this
94b947b2
ZL
3940 * allocation, and no removed chunk in current transaction,
3941 * don't bother committing the transaction.
f2bb8f5c 3942 */
c99f1b0c
ZL
3943 have_pinned_space = percpu_counter_compare(
3944 &data_sinfo->total_bytes_pinned,
3945 used + bytes - data_sinfo->total_bytes);
6a63209f 3946 spin_unlock(&data_sinfo->lock);
6a63209f 3947
4e06bdd6 3948 /* commit the current transaction and try again */
d52a5b5f 3949commit_trans:
c99f1b0c 3950 if (need_commit &&
a4abeea4 3951 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 3952 need_commit--;
b150a4f1 3953
7a7eaa40 3954 trans = btrfs_join_transaction(root);
a22285a6
YZ
3955 if (IS_ERR(trans))
3956 return PTR_ERR(trans);
c99f1b0c
ZL
3957 if (have_pinned_space >= 0 ||
3958 trans->transaction->have_free_bgs ||
3959 need_commit > 0) {
94b947b2
ZL
3960 ret = btrfs_commit_transaction(trans, root);
3961 if (ret)
3962 return ret;
d7c15171
ZL
3963 /*
3964 * make sure that all running delayed iput are
3965 * done
3966 */
3967 down_write(&root->fs_info->delayed_iput_sem);
3968 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
3969 goto again;
3970 } else {
3971 btrfs_end_transaction(trans, root);
3972 }
4e06bdd6 3973 }
9ed74f2d 3974
cab45e22
JM
3975 trace_btrfs_space_reservation(root->fs_info,
3976 "space_info:enospc",
3977 data_sinfo->flags, bytes, 1);
6a63209f
JB
3978 return -ENOSPC;
3979 }
e2d1f923 3980 ret = btrfs_qgroup_reserve(root, write_bytes);
237c0e9f
DY
3981 if (ret)
3982 goto out;
6a63209f 3983 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 3984 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 3985 data_sinfo->flags, bytes, 1);
237c0e9f 3986out:
6a63209f 3987 spin_unlock(&data_sinfo->lock);
6a63209f 3988
237c0e9f 3989 return ret;
9ed74f2d 3990}
6a63209f 3991
6a63209f 3992/*
fb25e914 3993 * Called if we need to clear a data reservation for this inode.
6a63209f 3994 */
0ca1f7ce 3995void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 3996{
0ca1f7ce 3997 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 3998 struct btrfs_space_info *data_sinfo;
e3ccfa98 3999
6a63209f 4000 /* make sure bytes are sectorsize aligned */
fda2832f 4001 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 4002
b4d7c3c9 4003 data_sinfo = root->fs_info->data_sinfo;
6a63209f 4004 spin_lock(&data_sinfo->lock);
7ee9e440 4005 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 4006 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 4007 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4008 data_sinfo->flags, bytes, 0);
6a63209f 4009 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
4010}
4011
97e728d4 4012static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4013{
97e728d4
JB
4014 struct list_head *head = &info->space_info;
4015 struct btrfs_space_info *found;
e3ccfa98 4016
97e728d4
JB
4017 rcu_read_lock();
4018 list_for_each_entry_rcu(found, head, list) {
4019 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4020 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4021 }
97e728d4 4022 rcu_read_unlock();
e3ccfa98
JB
4023}
4024
3c76cd84
MX
4025static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4026{
4027 return (global->size << 1);
4028}
4029
e5bc2458 4030static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4031 struct btrfs_space_info *sinfo, int force)
32c00aff 4032{
fb25e914 4033 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4034 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4035 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4036 u64 thresh;
e3ccfa98 4037
0e4f8f88
CM
4038 if (force == CHUNK_ALLOC_FORCE)
4039 return 1;
4040
fb25e914
JB
4041 /*
4042 * We need to take into account the global rsv because for all intents
4043 * and purposes it's used space. Don't worry about locking the
4044 * global_rsv, it doesn't change except when the transaction commits.
4045 */
54338b5c 4046 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4047 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4048
0e4f8f88
CM
4049 /*
4050 * in limited mode, we want to have some free space up to
4051 * about 1% of the FS size.
4052 */
4053 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4054 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4055 thresh = max_t(u64, 64 * 1024 * 1024,
4056 div_factor_fine(thresh, 1));
4057
4058 if (num_bytes - num_allocated < thresh)
4059 return 1;
4060 }
0e4f8f88 4061
698d0082 4062 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4063 return 0;
424499db 4064 return 1;
32c00aff
JB
4065}
4066
39c2d7fa 4067static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4068{
4069 u64 num_dev;
4070
53b381b3
DW
4071 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4072 BTRFS_BLOCK_GROUP_RAID0 |
4073 BTRFS_BLOCK_GROUP_RAID5 |
4074 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4075 num_dev = root->fs_info->fs_devices->rw_devices;
4076 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4077 num_dev = 2;
4078 else
4079 num_dev = 1; /* DUP or single */
4080
39c2d7fa 4081 return num_dev;
15d1ff81
LB
4082}
4083
39c2d7fa
FM
4084/*
4085 * If @is_allocation is true, reserve space in the system space info necessary
4086 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4087 * removing a chunk.
4088 */
4089void check_system_chunk(struct btrfs_trans_handle *trans,
4090 struct btrfs_root *root,
4617ea3a 4091 u64 type)
15d1ff81
LB
4092{
4093 struct btrfs_space_info *info;
4094 u64 left;
4095 u64 thresh;
4fbcdf66 4096 int ret = 0;
39c2d7fa 4097 u64 num_devs;
4fbcdf66
FM
4098
4099 /*
4100 * Needed because we can end up allocating a system chunk and for an
4101 * atomic and race free space reservation in the chunk block reserve.
4102 */
4103 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4104
4105 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4106 spin_lock(&info->lock);
4107 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4108 info->bytes_reserved - info->bytes_readonly -
4109 info->bytes_may_use;
15d1ff81
LB
4110 spin_unlock(&info->lock);
4111
39c2d7fa
FM
4112 num_devs = get_profile_num_devs(root, type);
4113
4114 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4115 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4116 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4117
15d1ff81 4118 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4119 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4120 left, thresh, type);
15d1ff81
LB
4121 dump_space_info(info, 0, 0);
4122 }
4123
4124 if (left < thresh) {
4125 u64 flags;
4126
4127 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4128 /*
4129 * Ignore failure to create system chunk. We might end up not
4130 * needing it, as we might not need to COW all nodes/leafs from
4131 * the paths we visit in the chunk tree (they were already COWed
4132 * or created in the current transaction for example).
4133 */
4134 ret = btrfs_alloc_chunk(trans, root, flags);
4135 }
4136
4137 if (!ret) {
4138 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4139 &root->fs_info->chunk_block_rsv,
4140 thresh, BTRFS_RESERVE_NO_FLUSH);
4141 if (!ret)
4142 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4143 }
4144}
4145
6324fbf3 4146static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4147 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4148{
6324fbf3 4149 struct btrfs_space_info *space_info;
97e728d4 4150 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4151 int wait_for_alloc = 0;
9ed74f2d 4152 int ret = 0;
9ed74f2d 4153
c6b305a8
JB
4154 /* Don't re-enter if we're already allocating a chunk */
4155 if (trans->allocating_chunk)
4156 return -ENOSPC;
4157
6324fbf3 4158 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4159 if (!space_info) {
4160 ret = update_space_info(extent_root->fs_info, flags,
4161 0, 0, &space_info);
79787eaa 4162 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4163 }
79787eaa 4164 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4165
6d74119f 4166again:
25179201 4167 spin_lock(&space_info->lock);
9e622d6b 4168 if (force < space_info->force_alloc)
0e4f8f88 4169 force = space_info->force_alloc;
25179201 4170 if (space_info->full) {
09fb99a6
FDBM
4171 if (should_alloc_chunk(extent_root, space_info, force))
4172 ret = -ENOSPC;
4173 else
4174 ret = 0;
25179201 4175 spin_unlock(&space_info->lock);
09fb99a6 4176 return ret;
9ed74f2d
JB
4177 }
4178
698d0082 4179 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4180 spin_unlock(&space_info->lock);
6d74119f
JB
4181 return 0;
4182 } else if (space_info->chunk_alloc) {
4183 wait_for_alloc = 1;
4184 } else {
4185 space_info->chunk_alloc = 1;
9ed74f2d 4186 }
0e4f8f88 4187
25179201 4188 spin_unlock(&space_info->lock);
9ed74f2d 4189
6d74119f
JB
4190 mutex_lock(&fs_info->chunk_mutex);
4191
4192 /*
4193 * The chunk_mutex is held throughout the entirety of a chunk
4194 * allocation, so once we've acquired the chunk_mutex we know that the
4195 * other guy is done and we need to recheck and see if we should
4196 * allocate.
4197 */
4198 if (wait_for_alloc) {
4199 mutex_unlock(&fs_info->chunk_mutex);
4200 wait_for_alloc = 0;
4201 goto again;
4202 }
4203
c6b305a8
JB
4204 trans->allocating_chunk = true;
4205
67377734
JB
4206 /*
4207 * If we have mixed data/metadata chunks we want to make sure we keep
4208 * allocating mixed chunks instead of individual chunks.
4209 */
4210 if (btrfs_mixed_space_info(space_info))
4211 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4212
97e728d4
JB
4213 /*
4214 * if we're doing a data chunk, go ahead and make sure that
4215 * we keep a reasonable number of metadata chunks allocated in the
4216 * FS as well.
4217 */
9ed74f2d 4218 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4219 fs_info->data_chunk_allocations++;
4220 if (!(fs_info->data_chunk_allocations %
4221 fs_info->metadata_ratio))
4222 force_metadata_allocation(fs_info);
9ed74f2d
JB
4223 }
4224
15d1ff81
LB
4225 /*
4226 * Check if we have enough space in SYSTEM chunk because we may need
4227 * to update devices.
4228 */
4617ea3a 4229 check_system_chunk(trans, extent_root, flags);
15d1ff81 4230
2b82032c 4231 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4232 trans->allocating_chunk = false;
92b8e897 4233
9ed74f2d 4234 spin_lock(&space_info->lock);
a81cb9a2
AO
4235 if (ret < 0 && ret != -ENOSPC)
4236 goto out;
9ed74f2d 4237 if (ret)
6324fbf3 4238 space_info->full = 1;
424499db
YZ
4239 else
4240 ret = 1;
6d74119f 4241
0e4f8f88 4242 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4243out:
6d74119f 4244 space_info->chunk_alloc = 0;
9ed74f2d 4245 spin_unlock(&space_info->lock);
a25c75d5 4246 mutex_unlock(&fs_info->chunk_mutex);
0f9dd46c 4247 return ret;
6324fbf3 4248}
9ed74f2d 4249
a80c8dcf
JB
4250static int can_overcommit(struct btrfs_root *root,
4251 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4252 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4253{
96f1bb57 4254 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4255 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4256 u64 space_size;
a80c8dcf
JB
4257 u64 avail;
4258 u64 used;
4259
4260 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4261 space_info->bytes_pinned + space_info->bytes_readonly;
4262
96f1bb57
JB
4263 /*
4264 * We only want to allow over committing if we have lots of actual space
4265 * free, but if we don't have enough space to handle the global reserve
4266 * space then we could end up having a real enospc problem when trying
4267 * to allocate a chunk or some other such important allocation.
4268 */
3c76cd84
MX
4269 spin_lock(&global_rsv->lock);
4270 space_size = calc_global_rsv_need_space(global_rsv);
4271 spin_unlock(&global_rsv->lock);
4272 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4273 return 0;
4274
4275 used += space_info->bytes_may_use;
a80c8dcf
JB
4276
4277 spin_lock(&root->fs_info->free_chunk_lock);
4278 avail = root->fs_info->free_chunk_space;
4279 spin_unlock(&root->fs_info->free_chunk_lock);
4280
4281 /*
4282 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4283 * space is actually useable. For raid56, the space info used
4284 * doesn't include the parity drive, so we don't have to
4285 * change the math
a80c8dcf
JB
4286 */
4287 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4288 BTRFS_BLOCK_GROUP_RAID1 |
4289 BTRFS_BLOCK_GROUP_RAID10))
4290 avail >>= 1;
4291
4292 /*
561c294d
MX
4293 * If we aren't flushing all things, let us overcommit up to
4294 * 1/2th of the space. If we can flush, don't let us overcommit
4295 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4296 */
08e007d2 4297 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4298 avail >>= 3;
a80c8dcf 4299 else
14575aef 4300 avail >>= 1;
a80c8dcf 4301
14575aef 4302 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4303 return 1;
4304 return 0;
4305}
4306
48a3b636 4307static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4308 unsigned long nr_pages, int nr_items)
da633a42
MX
4309{
4310 struct super_block *sb = root->fs_info->sb;
da633a42 4311
925a6efb
JB
4312 if (down_read_trylock(&sb->s_umount)) {
4313 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4314 up_read(&sb->s_umount);
4315 } else {
da633a42
MX
4316 /*
4317 * We needn't worry the filesystem going from r/w to r/o though
4318 * we don't acquire ->s_umount mutex, because the filesystem
4319 * should guarantee the delalloc inodes list be empty after
4320 * the filesystem is readonly(all dirty pages are written to
4321 * the disk).
4322 */
6c255e67 4323 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4324 if (!current->journal_info)
6c255e67 4325 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4326 }
4327}
4328
18cd8ea6
MX
4329static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4330{
4331 u64 bytes;
4332 int nr;
4333
4334 bytes = btrfs_calc_trans_metadata_size(root, 1);
4335 nr = (int)div64_u64(to_reclaim, bytes);
4336 if (!nr)
4337 nr = 1;
4338 return nr;
4339}
4340
c61a16a7
MX
4341#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4342
9ed74f2d 4343/*
5da9d01b 4344 * shrink metadata reservation for delalloc
9ed74f2d 4345 */
f4c738c2
JB
4346static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4347 bool wait_ordered)
5da9d01b 4348{
0ca1f7ce 4349 struct btrfs_block_rsv *block_rsv;
0019f10d 4350 struct btrfs_space_info *space_info;
663350ac 4351 struct btrfs_trans_handle *trans;
f4c738c2 4352 u64 delalloc_bytes;
5da9d01b 4353 u64 max_reclaim;
b1953bce 4354 long time_left;
d3ee29e3
MX
4355 unsigned long nr_pages;
4356 int loops;
b0244199 4357 int items;
08e007d2 4358 enum btrfs_reserve_flush_enum flush;
5da9d01b 4359
c61a16a7 4360 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4361 items = calc_reclaim_items_nr(root, to_reclaim);
4362 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4363
663350ac 4364 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4365 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4366 space_info = block_rsv->space_info;
bf9022e0 4367
963d678b
MX
4368 delalloc_bytes = percpu_counter_sum_positive(
4369 &root->fs_info->delalloc_bytes);
f4c738c2 4370 if (delalloc_bytes == 0) {
fdb5effd 4371 if (trans)
f4c738c2 4372 return;
38c135af 4373 if (wait_ordered)
b0244199 4374 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4375 return;
fdb5effd
JB
4376 }
4377
d3ee29e3 4378 loops = 0;
f4c738c2
JB
4379 while (delalloc_bytes && loops < 3) {
4380 max_reclaim = min(delalloc_bytes, to_reclaim);
4381 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4382 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4383 /*
4384 * We need to wait for the async pages to actually start before
4385 * we do anything.
4386 */
9f3a074d
MX
4387 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4388 if (!max_reclaim)
4389 goto skip_async;
4390
4391 if (max_reclaim <= nr_pages)
4392 max_reclaim = 0;
4393 else
4394 max_reclaim -= nr_pages;
dea31f52 4395
9f3a074d
MX
4396 wait_event(root->fs_info->async_submit_wait,
4397 atomic_read(&root->fs_info->async_delalloc_pages) <=
4398 (int)max_reclaim);
4399skip_async:
08e007d2
MX
4400 if (!trans)
4401 flush = BTRFS_RESERVE_FLUSH_ALL;
4402 else
4403 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4404 spin_lock(&space_info->lock);
08e007d2 4405 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4406 spin_unlock(&space_info->lock);
4407 break;
4408 }
0019f10d 4409 spin_unlock(&space_info->lock);
5da9d01b 4410
36e39c40 4411 loops++;
f104d044 4412 if (wait_ordered && !trans) {
b0244199 4413 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4414 } else {
f4c738c2 4415 time_left = schedule_timeout_killable(1);
f104d044
JB
4416 if (time_left)
4417 break;
4418 }
963d678b
MX
4419 delalloc_bytes = percpu_counter_sum_positive(
4420 &root->fs_info->delalloc_bytes);
5da9d01b 4421 }
5da9d01b
YZ
4422}
4423
663350ac
JB
4424/**
4425 * maybe_commit_transaction - possibly commit the transaction if its ok to
4426 * @root - the root we're allocating for
4427 * @bytes - the number of bytes we want to reserve
4428 * @force - force the commit
8bb8ab2e 4429 *
663350ac
JB
4430 * This will check to make sure that committing the transaction will actually
4431 * get us somewhere and then commit the transaction if it does. Otherwise it
4432 * will return -ENOSPC.
8bb8ab2e 4433 */
663350ac
JB
4434static int may_commit_transaction(struct btrfs_root *root,
4435 struct btrfs_space_info *space_info,
4436 u64 bytes, int force)
4437{
4438 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4439 struct btrfs_trans_handle *trans;
4440
4441 trans = (struct btrfs_trans_handle *)current->journal_info;
4442 if (trans)
4443 return -EAGAIN;
4444
4445 if (force)
4446 goto commit;
4447
4448 /* See if there is enough pinned space to make this reservation */
b150a4f1 4449 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4450 bytes) >= 0)
663350ac 4451 goto commit;
663350ac
JB
4452
4453 /*
4454 * See if there is some space in the delayed insertion reservation for
4455 * this reservation.
4456 */
4457 if (space_info != delayed_rsv->space_info)
4458 return -ENOSPC;
4459
4460 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4461 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4462 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4463 spin_unlock(&delayed_rsv->lock);
4464 return -ENOSPC;
4465 }
4466 spin_unlock(&delayed_rsv->lock);
4467
4468commit:
4469 trans = btrfs_join_transaction(root);
4470 if (IS_ERR(trans))
4471 return -ENOSPC;
4472
4473 return btrfs_commit_transaction(trans, root);
4474}
4475
96c3f433 4476enum flush_state {
67b0fd63
JB
4477 FLUSH_DELAYED_ITEMS_NR = 1,
4478 FLUSH_DELAYED_ITEMS = 2,
4479 FLUSH_DELALLOC = 3,
4480 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4481 ALLOC_CHUNK = 5,
4482 COMMIT_TRANS = 6,
96c3f433
JB
4483};
4484
4485static int flush_space(struct btrfs_root *root,
4486 struct btrfs_space_info *space_info, u64 num_bytes,
4487 u64 orig_bytes, int state)
4488{
4489 struct btrfs_trans_handle *trans;
4490 int nr;
f4c738c2 4491 int ret = 0;
96c3f433
JB
4492
4493 switch (state) {
96c3f433
JB
4494 case FLUSH_DELAYED_ITEMS_NR:
4495 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4496 if (state == FLUSH_DELAYED_ITEMS_NR)
4497 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4498 else
96c3f433 4499 nr = -1;
18cd8ea6 4500
96c3f433
JB
4501 trans = btrfs_join_transaction(root);
4502 if (IS_ERR(trans)) {
4503 ret = PTR_ERR(trans);
4504 break;
4505 }
4506 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4507 btrfs_end_transaction(trans, root);
4508 break;
67b0fd63
JB
4509 case FLUSH_DELALLOC:
4510 case FLUSH_DELALLOC_WAIT:
24af7dd1 4511 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4512 state == FLUSH_DELALLOC_WAIT);
4513 break;
ea658bad
JB
4514 case ALLOC_CHUNK:
4515 trans = btrfs_join_transaction(root);
4516 if (IS_ERR(trans)) {
4517 ret = PTR_ERR(trans);
4518 break;
4519 }
4520 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4521 btrfs_get_alloc_profile(root, 0),
4522 CHUNK_ALLOC_NO_FORCE);
4523 btrfs_end_transaction(trans, root);
4524 if (ret == -ENOSPC)
4525 ret = 0;
4526 break;
96c3f433
JB
4527 case COMMIT_TRANS:
4528 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4529 break;
4530 default:
4531 ret = -ENOSPC;
4532 break;
4533 }
4534
4535 return ret;
4536}
21c7e756
MX
4537
4538static inline u64
4539btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4540 struct btrfs_space_info *space_info)
4541{
4542 u64 used;
4543 u64 expected;
4544 u64 to_reclaim;
4545
4546 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4547 16 * 1024 * 1024);
4548 spin_lock(&space_info->lock);
4549 if (can_overcommit(root, space_info, to_reclaim,
4550 BTRFS_RESERVE_FLUSH_ALL)) {
4551 to_reclaim = 0;
4552 goto out;
4553 }
4554
4555 used = space_info->bytes_used + space_info->bytes_reserved +
4556 space_info->bytes_pinned + space_info->bytes_readonly +
4557 space_info->bytes_may_use;
4558 if (can_overcommit(root, space_info, 1024 * 1024,
4559 BTRFS_RESERVE_FLUSH_ALL))
4560 expected = div_factor_fine(space_info->total_bytes, 95);
4561 else
4562 expected = div_factor_fine(space_info->total_bytes, 90);
4563
4564 if (used > expected)
4565 to_reclaim = used - expected;
4566 else
4567 to_reclaim = 0;
4568 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4569 space_info->bytes_reserved);
4570out:
4571 spin_unlock(&space_info->lock);
4572
4573 return to_reclaim;
4574}
4575
4576static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4577 struct btrfs_fs_info *fs_info, u64 used)
4578{
365c5313
JB
4579 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4580
4581 /* If we're just plain full then async reclaim just slows us down. */
4582 if (space_info->bytes_used >= thresh)
4583 return 0;
4584
4585 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4586 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4587}
4588
4589static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4590 struct btrfs_fs_info *fs_info,
4591 int flush_state)
21c7e756
MX
4592{
4593 u64 used;
4594
4595 spin_lock(&space_info->lock);
25ce459c
LB
4596 /*
4597 * We run out of space and have not got any free space via flush_space,
4598 * so don't bother doing async reclaim.
4599 */
4600 if (flush_state > COMMIT_TRANS && space_info->full) {
4601 spin_unlock(&space_info->lock);
4602 return 0;
4603 }
4604
21c7e756
MX
4605 used = space_info->bytes_used + space_info->bytes_reserved +
4606 space_info->bytes_pinned + space_info->bytes_readonly +
4607 space_info->bytes_may_use;
4608 if (need_do_async_reclaim(space_info, fs_info, used)) {
4609 spin_unlock(&space_info->lock);
4610 return 1;
4611 }
4612 spin_unlock(&space_info->lock);
4613
4614 return 0;
4615}
4616
4617static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4618{
4619 struct btrfs_fs_info *fs_info;
4620 struct btrfs_space_info *space_info;
4621 u64 to_reclaim;
4622 int flush_state;
4623
4624 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4625 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4626
4627 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4628 space_info);
4629 if (!to_reclaim)
4630 return;
4631
4632 flush_state = FLUSH_DELAYED_ITEMS_NR;
4633 do {
4634 flush_space(fs_info->fs_root, space_info, to_reclaim,
4635 to_reclaim, flush_state);
4636 flush_state++;
25ce459c
LB
4637 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4638 flush_state))
21c7e756 4639 return;
365c5313 4640 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4641}
4642
4643void btrfs_init_async_reclaim_work(struct work_struct *work)
4644{
4645 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4646}
4647
4a92b1b8
JB
4648/**
4649 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4650 * @root - the root we're allocating for
4651 * @block_rsv - the block_rsv we're allocating for
4652 * @orig_bytes - the number of bytes we want
48fc7f7e 4653 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4654 *
4a92b1b8
JB
4655 * This will reserve orgi_bytes number of bytes from the space info associated
4656 * with the block_rsv. If there is not enough space it will make an attempt to
4657 * flush out space to make room. It will do this by flushing delalloc if
4658 * possible or committing the transaction. If flush is 0 then no attempts to
4659 * regain reservations will be made and this will fail if there is not enough
4660 * space already.
8bb8ab2e 4661 */
4a92b1b8 4662static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4663 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4664 u64 orig_bytes,
4665 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4666{
f0486c68 4667 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4668 u64 used;
8bb8ab2e 4669 u64 num_bytes = orig_bytes;
67b0fd63 4670 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4671 int ret = 0;
fdb5effd 4672 bool flushing = false;
9ed74f2d 4673
8bb8ab2e 4674again:
fdb5effd 4675 ret = 0;
8bb8ab2e 4676 spin_lock(&space_info->lock);
fdb5effd 4677 /*
08e007d2
MX
4678 * We only want to wait if somebody other than us is flushing and we
4679 * are actually allowed to flush all things.
fdb5effd 4680 */
08e007d2
MX
4681 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4682 space_info->flush) {
fdb5effd
JB
4683 spin_unlock(&space_info->lock);
4684 /*
4685 * If we have a trans handle we can't wait because the flusher
4686 * may have to commit the transaction, which would mean we would
4687 * deadlock since we are waiting for the flusher to finish, but
4688 * hold the current transaction open.
4689 */
663350ac 4690 if (current->journal_info)
fdb5effd 4691 return -EAGAIN;
b9688bb8
AJ
4692 ret = wait_event_killable(space_info->wait, !space_info->flush);
4693 /* Must have been killed, return */
4694 if (ret)
fdb5effd
JB
4695 return -EINTR;
4696
4697 spin_lock(&space_info->lock);
4698 }
4699
4700 ret = -ENOSPC;
2bf64758
JB
4701 used = space_info->bytes_used + space_info->bytes_reserved +
4702 space_info->bytes_pinned + space_info->bytes_readonly +
4703 space_info->bytes_may_use;
9ed74f2d 4704
8bb8ab2e
JB
4705 /*
4706 * The idea here is that we've not already over-reserved the block group
4707 * then we can go ahead and save our reservation first and then start
4708 * flushing if we need to. Otherwise if we've already overcommitted
4709 * lets start flushing stuff first and then come back and try to make
4710 * our reservation.
4711 */
2bf64758
JB
4712 if (used <= space_info->total_bytes) {
4713 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4714 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4715 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4716 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4717 ret = 0;
4718 } else {
4719 /*
4720 * Ok set num_bytes to orig_bytes since we aren't
4721 * overocmmitted, this way we only try and reclaim what
4722 * we need.
4723 */
4724 num_bytes = orig_bytes;
4725 }
4726 } else {
4727 /*
4728 * Ok we're over committed, set num_bytes to the overcommitted
4729 * amount plus the amount of bytes that we need for this
4730 * reservation.
4731 */
2bf64758 4732 num_bytes = used - space_info->total_bytes +
96c3f433 4733 (orig_bytes * 2);
8bb8ab2e 4734 }
9ed74f2d 4735
44734ed1
JB
4736 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4737 space_info->bytes_may_use += orig_bytes;
4738 trace_btrfs_space_reservation(root->fs_info, "space_info",
4739 space_info->flags, orig_bytes,
4740 1);
4741 ret = 0;
2bf64758
JB
4742 }
4743
8bb8ab2e
JB
4744 /*
4745 * Couldn't make our reservation, save our place so while we're trying
4746 * to reclaim space we can actually use it instead of somebody else
4747 * stealing it from us.
08e007d2
MX
4748 *
4749 * We make the other tasks wait for the flush only when we can flush
4750 * all things.
8bb8ab2e 4751 */
72bcd99d 4752 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4753 flushing = true;
4754 space_info->flush = 1;
21c7e756
MX
4755 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4756 used += orig_bytes;
f6acfd50
JB
4757 /*
4758 * We will do the space reservation dance during log replay,
4759 * which means we won't have fs_info->fs_root set, so don't do
4760 * the async reclaim as we will panic.
4761 */
4762 if (!root->fs_info->log_root_recovering &&
4763 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4764 !work_busy(&root->fs_info->async_reclaim_work))
4765 queue_work(system_unbound_wq,
4766 &root->fs_info->async_reclaim_work);
8bb8ab2e 4767 }
f0486c68 4768 spin_unlock(&space_info->lock);
9ed74f2d 4769
08e007d2 4770 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4771 goto out;
f0486c68 4772
96c3f433
JB
4773 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4774 flush_state);
4775 flush_state++;
08e007d2
MX
4776
4777 /*
4778 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4779 * would happen. So skip delalloc flush.
4780 */
4781 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4782 (flush_state == FLUSH_DELALLOC ||
4783 flush_state == FLUSH_DELALLOC_WAIT))
4784 flush_state = ALLOC_CHUNK;
4785
96c3f433 4786 if (!ret)
8bb8ab2e 4787 goto again;
08e007d2
MX
4788 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4789 flush_state < COMMIT_TRANS)
4790 goto again;
4791 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4792 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4793 goto again;
4794
4795out:
5d80366e
JB
4796 if (ret == -ENOSPC &&
4797 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4798 struct btrfs_block_rsv *global_rsv =
4799 &root->fs_info->global_block_rsv;
4800
4801 if (block_rsv != global_rsv &&
4802 !block_rsv_use_bytes(global_rsv, orig_bytes))
4803 ret = 0;
4804 }
cab45e22
JM
4805 if (ret == -ENOSPC)
4806 trace_btrfs_space_reservation(root->fs_info,
4807 "space_info:enospc",
4808 space_info->flags, orig_bytes, 1);
fdb5effd 4809 if (flushing) {
8bb8ab2e 4810 spin_lock(&space_info->lock);
fdb5effd
JB
4811 space_info->flush = 0;
4812 wake_up_all(&space_info->wait);
8bb8ab2e 4813 spin_unlock(&space_info->lock);
f0486c68 4814 }
f0486c68
YZ
4815 return ret;
4816}
4817
79787eaa
JM
4818static struct btrfs_block_rsv *get_block_rsv(
4819 const struct btrfs_trans_handle *trans,
4820 const struct btrfs_root *root)
f0486c68 4821{
4c13d758
JB
4822 struct btrfs_block_rsv *block_rsv = NULL;
4823
27cdeb70 4824 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0e721106
JB
4825 block_rsv = trans->block_rsv;
4826
4827 if (root == root->fs_info->csum_root && trans->adding_csums)
f0486c68 4828 block_rsv = trans->block_rsv;
4c13d758 4829
f7a81ea4
SB
4830 if (root == root->fs_info->uuid_root)
4831 block_rsv = trans->block_rsv;
4832
4c13d758 4833 if (!block_rsv)
f0486c68
YZ
4834 block_rsv = root->block_rsv;
4835
4836 if (!block_rsv)
4837 block_rsv = &root->fs_info->empty_block_rsv;
4838
4839 return block_rsv;
4840}
4841
4842static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4843 u64 num_bytes)
4844{
4845 int ret = -ENOSPC;
4846 spin_lock(&block_rsv->lock);
4847 if (block_rsv->reserved >= num_bytes) {
4848 block_rsv->reserved -= num_bytes;
4849 if (block_rsv->reserved < block_rsv->size)
4850 block_rsv->full = 0;
4851 ret = 0;
4852 }
4853 spin_unlock(&block_rsv->lock);
4854 return ret;
4855}
4856
4857static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4858 u64 num_bytes, int update_size)
4859{
4860 spin_lock(&block_rsv->lock);
4861 block_rsv->reserved += num_bytes;
4862 if (update_size)
4863 block_rsv->size += num_bytes;
4864 else if (block_rsv->reserved >= block_rsv->size)
4865 block_rsv->full = 1;
4866 spin_unlock(&block_rsv->lock);
4867}
4868
d52be818
JB
4869int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4870 struct btrfs_block_rsv *dest, u64 num_bytes,
4871 int min_factor)
4872{
4873 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4874 u64 min_bytes;
4875
4876 if (global_rsv->space_info != dest->space_info)
4877 return -ENOSPC;
4878
4879 spin_lock(&global_rsv->lock);
4880 min_bytes = div_factor(global_rsv->size, min_factor);
4881 if (global_rsv->reserved < min_bytes + num_bytes) {
4882 spin_unlock(&global_rsv->lock);
4883 return -ENOSPC;
4884 }
4885 global_rsv->reserved -= num_bytes;
4886 if (global_rsv->reserved < global_rsv->size)
4887 global_rsv->full = 0;
4888 spin_unlock(&global_rsv->lock);
4889
4890 block_rsv_add_bytes(dest, num_bytes, 1);
4891 return 0;
4892}
4893
8c2a3ca2
JB
4894static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4895 struct btrfs_block_rsv *block_rsv,
62a45b60 4896 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
4897{
4898 struct btrfs_space_info *space_info = block_rsv->space_info;
4899
4900 spin_lock(&block_rsv->lock);
4901 if (num_bytes == (u64)-1)
4902 num_bytes = block_rsv->size;
4903 block_rsv->size -= num_bytes;
4904 if (block_rsv->reserved >= block_rsv->size) {
4905 num_bytes = block_rsv->reserved - block_rsv->size;
4906 block_rsv->reserved = block_rsv->size;
4907 block_rsv->full = 1;
4908 } else {
4909 num_bytes = 0;
4910 }
4911 spin_unlock(&block_rsv->lock);
4912
4913 if (num_bytes > 0) {
4914 if (dest) {
e9e22899
JB
4915 spin_lock(&dest->lock);
4916 if (!dest->full) {
4917 u64 bytes_to_add;
4918
4919 bytes_to_add = dest->size - dest->reserved;
4920 bytes_to_add = min(num_bytes, bytes_to_add);
4921 dest->reserved += bytes_to_add;
4922 if (dest->reserved >= dest->size)
4923 dest->full = 1;
4924 num_bytes -= bytes_to_add;
4925 }
4926 spin_unlock(&dest->lock);
4927 }
4928 if (num_bytes) {
f0486c68 4929 spin_lock(&space_info->lock);
fb25e914 4930 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 4931 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4932 space_info->flags, num_bytes, 0);
f0486c68 4933 spin_unlock(&space_info->lock);
4e06bdd6 4934 }
9ed74f2d 4935 }
f0486c68 4936}
4e06bdd6 4937
f0486c68
YZ
4938static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4939 struct btrfs_block_rsv *dst, u64 num_bytes)
4940{
4941 int ret;
9ed74f2d 4942
f0486c68
YZ
4943 ret = block_rsv_use_bytes(src, num_bytes);
4944 if (ret)
4945 return ret;
9ed74f2d 4946
f0486c68 4947 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
4948 return 0;
4949}
4950
66d8f3dd 4951void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 4952{
f0486c68
YZ
4953 memset(rsv, 0, sizeof(*rsv));
4954 spin_lock_init(&rsv->lock);
66d8f3dd 4955 rsv->type = type;
f0486c68
YZ
4956}
4957
66d8f3dd
MX
4958struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4959 unsigned short type)
f0486c68
YZ
4960{
4961 struct btrfs_block_rsv *block_rsv;
4962 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 4963
f0486c68
YZ
4964 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4965 if (!block_rsv)
4966 return NULL;
9ed74f2d 4967
66d8f3dd 4968 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
4969 block_rsv->space_info = __find_space_info(fs_info,
4970 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
4971 return block_rsv;
4972}
9ed74f2d 4973
f0486c68
YZ
4974void btrfs_free_block_rsv(struct btrfs_root *root,
4975 struct btrfs_block_rsv *rsv)
4976{
2aaa6655
JB
4977 if (!rsv)
4978 return;
dabdb640
JB
4979 btrfs_block_rsv_release(root, rsv, (u64)-1);
4980 kfree(rsv);
9ed74f2d
JB
4981}
4982
cdfb080e
CM
4983void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4984{
4985 kfree(rsv);
4986}
4987
08e007d2
MX
4988int btrfs_block_rsv_add(struct btrfs_root *root,
4989 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4990 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4991{
f0486c68 4992 int ret;
9ed74f2d 4993
f0486c68
YZ
4994 if (num_bytes == 0)
4995 return 0;
8bb8ab2e 4996
61b520a9 4997 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
4998 if (!ret) {
4999 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5000 return 0;
5001 }
9ed74f2d 5002
f0486c68 5003 return ret;
f0486c68 5004}
9ed74f2d 5005
4a92b1b8 5006int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5007 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5008{
5009 u64 num_bytes = 0;
f0486c68 5010 int ret = -ENOSPC;
9ed74f2d 5011
f0486c68
YZ
5012 if (!block_rsv)
5013 return 0;
9ed74f2d 5014
f0486c68 5015 spin_lock(&block_rsv->lock);
36ba022a
JB
5016 num_bytes = div_factor(block_rsv->size, min_factor);
5017 if (block_rsv->reserved >= num_bytes)
5018 ret = 0;
5019 spin_unlock(&block_rsv->lock);
9ed74f2d 5020
36ba022a
JB
5021 return ret;
5022}
5023
08e007d2
MX
5024int btrfs_block_rsv_refill(struct btrfs_root *root,
5025 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5026 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5027{
5028 u64 num_bytes = 0;
5029 int ret = -ENOSPC;
5030
5031 if (!block_rsv)
5032 return 0;
5033
5034 spin_lock(&block_rsv->lock);
5035 num_bytes = min_reserved;
13553e52 5036 if (block_rsv->reserved >= num_bytes)
f0486c68 5037 ret = 0;
13553e52 5038 else
f0486c68 5039 num_bytes -= block_rsv->reserved;
f0486c68 5040 spin_unlock(&block_rsv->lock);
13553e52 5041
f0486c68
YZ
5042 if (!ret)
5043 return 0;
5044
aa38a711 5045 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5046 if (!ret) {
5047 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5048 return 0;
6a63209f 5049 }
9ed74f2d 5050
13553e52 5051 return ret;
f0486c68
YZ
5052}
5053
5054int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5055 struct btrfs_block_rsv *dst_rsv,
5056 u64 num_bytes)
5057{
5058 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5059}
5060
5061void btrfs_block_rsv_release(struct btrfs_root *root,
5062 struct btrfs_block_rsv *block_rsv,
5063 u64 num_bytes)
5064{
5065 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5066 if (global_rsv == block_rsv ||
f0486c68
YZ
5067 block_rsv->space_info != global_rsv->space_info)
5068 global_rsv = NULL;
8c2a3ca2
JB
5069 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5070 num_bytes);
6a63209f
JB
5071}
5072
5073/*
8929ecfa
YZ
5074 * helper to calculate size of global block reservation.
5075 * the desired value is sum of space used by extent tree,
5076 * checksum tree and root tree
6a63209f 5077 */
8929ecfa 5078static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5079{
8929ecfa
YZ
5080 struct btrfs_space_info *sinfo;
5081 u64 num_bytes;
5082 u64 meta_used;
5083 u64 data_used;
6c41761f 5084 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5085
8929ecfa
YZ
5086 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5087 spin_lock(&sinfo->lock);
5088 data_used = sinfo->bytes_used;
5089 spin_unlock(&sinfo->lock);
33b4d47f 5090
8929ecfa
YZ
5091 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5092 spin_lock(&sinfo->lock);
6d48755d
JB
5093 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5094 data_used = 0;
8929ecfa
YZ
5095 meta_used = sinfo->bytes_used;
5096 spin_unlock(&sinfo->lock);
ab6e2410 5097
8929ecfa
YZ
5098 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5099 csum_size * 2;
f8c269d7 5100 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5101
8929ecfa 5102 if (num_bytes * 3 > meta_used)
f8c269d7 5103 num_bytes = div_u64(meta_used, 3);
ab6e2410 5104
707e8a07 5105 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5106}
6a63209f 5107
8929ecfa
YZ
5108static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5109{
5110 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5111 struct btrfs_space_info *sinfo = block_rsv->space_info;
5112 u64 num_bytes;
6a63209f 5113
8929ecfa 5114 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5115
8929ecfa 5116 spin_lock(&sinfo->lock);
1f699d38 5117 spin_lock(&block_rsv->lock);
4e06bdd6 5118
fdf30d1c 5119 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5120
8929ecfa 5121 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5122 sinfo->bytes_reserved + sinfo->bytes_readonly +
5123 sinfo->bytes_may_use;
8929ecfa
YZ
5124
5125 if (sinfo->total_bytes > num_bytes) {
5126 num_bytes = sinfo->total_bytes - num_bytes;
5127 block_rsv->reserved += num_bytes;
fb25e914 5128 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5129 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5130 sinfo->flags, num_bytes, 1);
6a63209f 5131 }
6a63209f 5132
8929ecfa
YZ
5133 if (block_rsv->reserved >= block_rsv->size) {
5134 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5135 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5136 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5137 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5138 block_rsv->reserved = block_rsv->size;
5139 block_rsv->full = 1;
5140 }
182608c8 5141
8929ecfa 5142 spin_unlock(&block_rsv->lock);
1f699d38 5143 spin_unlock(&sinfo->lock);
6a63209f
JB
5144}
5145
f0486c68 5146static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5147{
f0486c68 5148 struct btrfs_space_info *space_info;
6a63209f 5149
f0486c68
YZ
5150 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5151 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5152
f0486c68 5153 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5154 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5155 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5156 fs_info->trans_block_rsv.space_info = space_info;
5157 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5158 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5159
8929ecfa
YZ
5160 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5161 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5162 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5163 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5164 if (fs_info->quota_root)
5165 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5166 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5167
8929ecfa 5168 update_global_block_rsv(fs_info);
6a63209f
JB
5169}
5170
8929ecfa 5171static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5172{
8c2a3ca2
JB
5173 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5174 (u64)-1);
8929ecfa
YZ
5175 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5176 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5177 WARN_ON(fs_info->trans_block_rsv.size > 0);
5178 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5179 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5180 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5181 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5182 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5183}
5184
a22285a6
YZ
5185void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5186 struct btrfs_root *root)
6a63209f 5187{
0e721106
JB
5188 if (!trans->block_rsv)
5189 return;
5190
a22285a6
YZ
5191 if (!trans->bytes_reserved)
5192 return;
6a63209f 5193
e77266e4 5194 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5195 trans->transid, trans->bytes_reserved, 0);
b24e03db 5196 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5197 trans->bytes_reserved = 0;
5198}
6a63209f 5199
4fbcdf66
FM
5200/*
5201 * To be called after all the new block groups attached to the transaction
5202 * handle have been created (btrfs_create_pending_block_groups()).
5203 */
5204void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5205{
5206 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5207
5208 if (!trans->chunk_bytes_reserved)
5209 return;
5210
5211 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5212
5213 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5214 trans->chunk_bytes_reserved);
5215 trans->chunk_bytes_reserved = 0;
5216}
5217
79787eaa 5218/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5219int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5220 struct inode *inode)
5221{
5222 struct btrfs_root *root = BTRFS_I(inode)->root;
5223 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5224 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5225
5226 /*
fcb80c2a
JB
5227 * We need to hold space in order to delete our orphan item once we've
5228 * added it, so this takes the reservation so we can release it later
5229 * when we are truly done with the orphan item.
d68fc57b 5230 */
ff5714cc 5231 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5232 trace_btrfs_space_reservation(root->fs_info, "orphan",
5233 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5234 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5235}
5236
d68fc57b 5237void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5238{
d68fc57b 5239 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5240 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5241 trace_btrfs_space_reservation(root->fs_info, "orphan",
5242 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5243 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5244}
97e728d4 5245
d5c12070
MX
5246/*
5247 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5248 * root: the root of the parent directory
5249 * rsv: block reservation
5250 * items: the number of items that we need do reservation
5251 * qgroup_reserved: used to return the reserved size in qgroup
5252 *
5253 * This function is used to reserve the space for snapshot/subvolume
5254 * creation and deletion. Those operations are different with the
5255 * common file/directory operations, they change two fs/file trees
5256 * and root tree, the number of items that the qgroup reserves is
5257 * different with the free space reservation. So we can not use
5258 * the space reseravtion mechanism in start_transaction().
5259 */
5260int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5261 struct btrfs_block_rsv *rsv,
5262 int items,
ee3441b4
JM
5263 u64 *qgroup_reserved,
5264 bool use_global_rsv)
a22285a6 5265{
d5c12070
MX
5266 u64 num_bytes;
5267 int ret;
ee3441b4 5268 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5269
5270 if (root->fs_info->quota_enabled) {
5271 /* One for parent inode, two for dir entries */
707e8a07 5272 num_bytes = 3 * root->nodesize;
d5c12070
MX
5273 ret = btrfs_qgroup_reserve(root, num_bytes);
5274 if (ret)
5275 return ret;
5276 } else {
5277 num_bytes = 0;
5278 }
5279
5280 *qgroup_reserved = num_bytes;
5281
5282 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5283 rsv->space_info = __find_space_info(root->fs_info,
5284 BTRFS_BLOCK_GROUP_METADATA);
5285 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5286 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5287
5288 if (ret == -ENOSPC && use_global_rsv)
5289 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5290
d5c12070
MX
5291 if (ret) {
5292 if (*qgroup_reserved)
5293 btrfs_qgroup_free(root, *qgroup_reserved);
5294 }
5295
5296 return ret;
5297}
5298
5299void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5300 struct btrfs_block_rsv *rsv,
5301 u64 qgroup_reserved)
5302{
5303 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5304}
5305
7709cde3
JB
5306/**
5307 * drop_outstanding_extent - drop an outstanding extent
5308 * @inode: the inode we're dropping the extent for
dcab6a3b 5309 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5310 *
5311 * This is called when we are freeing up an outstanding extent, either called
5312 * after an error or after an extent is written. This will return the number of
5313 * reserved extents that need to be freed. This must be called with
5314 * BTRFS_I(inode)->lock held.
5315 */
dcab6a3b 5316static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5317{
7fd2ae21 5318 unsigned drop_inode_space = 0;
9e0baf60 5319 unsigned dropped_extents = 0;
dcab6a3b 5320 unsigned num_extents = 0;
9e0baf60 5321
dcab6a3b
JB
5322 num_extents = (unsigned)div64_u64(num_bytes +
5323 BTRFS_MAX_EXTENT_SIZE - 1,
5324 BTRFS_MAX_EXTENT_SIZE);
5325 ASSERT(num_extents);
5326 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5327 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5328
7fd2ae21 5329 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5330 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5331 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5332 drop_inode_space = 1;
7fd2ae21 5333
9e0baf60
JB
5334 /*
5335 * If we have more or the same amount of outsanding extents than we have
5336 * reserved then we need to leave the reserved extents count alone.
5337 */
5338 if (BTRFS_I(inode)->outstanding_extents >=
5339 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5340 return drop_inode_space;
9e0baf60
JB
5341
5342 dropped_extents = BTRFS_I(inode)->reserved_extents -
5343 BTRFS_I(inode)->outstanding_extents;
5344 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5345 return dropped_extents + drop_inode_space;
9e0baf60
JB
5346}
5347
7709cde3
JB
5348/**
5349 * calc_csum_metadata_size - return the amount of metada space that must be
5350 * reserved/free'd for the given bytes.
5351 * @inode: the inode we're manipulating
5352 * @num_bytes: the number of bytes in question
5353 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5354 *
5355 * This adjusts the number of csum_bytes in the inode and then returns the
5356 * correct amount of metadata that must either be reserved or freed. We
5357 * calculate how many checksums we can fit into one leaf and then divide the
5358 * number of bytes that will need to be checksumed by this value to figure out
5359 * how many checksums will be required. If we are adding bytes then the number
5360 * may go up and we will return the number of additional bytes that must be
5361 * reserved. If it is going down we will return the number of bytes that must
5362 * be freed.
5363 *
5364 * This must be called with BTRFS_I(inode)->lock held.
5365 */
5366static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5367 int reserve)
6324fbf3 5368{
7709cde3 5369 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5370 u64 old_csums, num_csums;
7709cde3
JB
5371
5372 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5373 BTRFS_I(inode)->csum_bytes == 0)
5374 return 0;
5375
28f75a0e 5376 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5377 if (reserve)
5378 BTRFS_I(inode)->csum_bytes += num_bytes;
5379 else
5380 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5381 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5382
5383 /* No change, no need to reserve more */
5384 if (old_csums == num_csums)
5385 return 0;
5386
5387 if (reserve)
5388 return btrfs_calc_trans_metadata_size(root,
5389 num_csums - old_csums);
5390
5391 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5392}
c146afad 5393
0ca1f7ce
YZ
5394int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5395{
5396 struct btrfs_root *root = BTRFS_I(inode)->root;
5397 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5398 u64 to_reserve = 0;
660d3f6c 5399 u64 csum_bytes;
9e0baf60 5400 unsigned nr_extents = 0;
660d3f6c 5401 int extra_reserve = 0;
08e007d2 5402 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5403 int ret = 0;
c64c2bd8 5404 bool delalloc_lock = true;
88e081bf
WS
5405 u64 to_free = 0;
5406 unsigned dropped;
6324fbf3 5407
c64c2bd8
JB
5408 /* If we are a free space inode we need to not flush since we will be in
5409 * the middle of a transaction commit. We also don't need the delalloc
5410 * mutex since we won't race with anybody. We need this mostly to make
5411 * lockdep shut its filthy mouth.
5412 */
5413 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5414 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5415 delalloc_lock = false;
5416 }
c09544e0 5417
08e007d2
MX
5418 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5419 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5420 schedule_timeout(1);
ec44a35c 5421
c64c2bd8
JB
5422 if (delalloc_lock)
5423 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5424
0ca1f7ce 5425 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5426
9e0baf60 5427 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5428 nr_extents = (unsigned)div64_u64(num_bytes +
5429 BTRFS_MAX_EXTENT_SIZE - 1,
5430 BTRFS_MAX_EXTENT_SIZE);
5431 BTRFS_I(inode)->outstanding_extents += nr_extents;
5432 nr_extents = 0;
9e0baf60
JB
5433
5434 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5435 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5436 nr_extents = BTRFS_I(inode)->outstanding_extents -
5437 BTRFS_I(inode)->reserved_extents;
57a45ced 5438
7fd2ae21
JB
5439 /*
5440 * Add an item to reserve for updating the inode when we complete the
5441 * delalloc io.
5442 */
72ac3c0d
JB
5443 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5444 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5445 nr_extents++;
660d3f6c 5446 extra_reserve = 1;
593060d7 5447 }
7fd2ae21
JB
5448
5449 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5450 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5451 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5452 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5453
88e081bf 5454 if (root->fs_info->quota_enabled) {
237c0e9f 5455 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
88e081bf
WS
5456 if (ret)
5457 goto out_fail;
5458 }
c5567237 5459
88e081bf
WS
5460 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5461 if (unlikely(ret)) {
5462 if (root->fs_info->quota_enabled)
237c0e9f 5463 btrfs_qgroup_free(root, nr_extents * root->nodesize);
88e081bf 5464 goto out_fail;
9e0baf60 5465 }
25179201 5466
660d3f6c
JB
5467 spin_lock(&BTRFS_I(inode)->lock);
5468 if (extra_reserve) {
72ac3c0d
JB
5469 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5470 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5471 nr_extents--;
5472 }
5473 BTRFS_I(inode)->reserved_extents += nr_extents;
5474 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5475
5476 if (delalloc_lock)
5477 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5478
8c2a3ca2 5479 if (to_reserve)
67871254 5480 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5481 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5482 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5483
0ca1f7ce 5484 return 0;
88e081bf
WS
5485
5486out_fail:
5487 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5488 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5489 /*
5490 * If the inodes csum_bytes is the same as the original
5491 * csum_bytes then we know we haven't raced with any free()ers
5492 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5493 */
f4881bc7 5494 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5495 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5496 } else {
5497 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5498 u64 bytes;
5499
5500 /*
5501 * This is tricky, but first we need to figure out how much we
5502 * free'd from any free-ers that occured during this
5503 * reservation, so we reset ->csum_bytes to the csum_bytes
5504 * before we dropped our lock, and then call the free for the
5505 * number of bytes that were freed while we were trying our
5506 * reservation.
5507 */
5508 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5509 BTRFS_I(inode)->csum_bytes = csum_bytes;
5510 to_free = calc_csum_metadata_size(inode, bytes, 0);
5511
5512
5513 /*
5514 * Now we need to see how much we would have freed had we not
5515 * been making this reservation and our ->csum_bytes were not
5516 * artificially inflated.
5517 */
5518 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5519 bytes = csum_bytes - orig_csum_bytes;
5520 bytes = calc_csum_metadata_size(inode, bytes, 0);
5521
5522 /*
5523 * Now reset ->csum_bytes to what it should be. If bytes is
5524 * more than to_free then we would have free'd more space had we
5525 * not had an artificially high ->csum_bytes, so we need to free
5526 * the remainder. If bytes is the same or less then we don't
5527 * need to do anything, the other free-ers did the correct
5528 * thing.
5529 */
5530 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5531 if (bytes > to_free)
5532 to_free = bytes - to_free;
5533 else
5534 to_free = 0;
5535 }
88e081bf 5536 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5537 if (dropped)
88e081bf
WS
5538 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5539
5540 if (to_free) {
5541 btrfs_block_rsv_release(root, block_rsv, to_free);
5542 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5543 btrfs_ino(inode), to_free, 0);
5544 }
5545 if (delalloc_lock)
5546 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5547 return ret;
0ca1f7ce
YZ
5548}
5549
7709cde3
JB
5550/**
5551 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5552 * @inode: the inode to release the reservation for
5553 * @num_bytes: the number of bytes we're releasing
5554 *
5555 * This will release the metadata reservation for an inode. This can be called
5556 * once we complete IO for a given set of bytes to release their metadata
5557 * reservations.
5558 */
0ca1f7ce
YZ
5559void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5560{
5561 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5562 u64 to_free = 0;
5563 unsigned dropped;
0ca1f7ce
YZ
5564
5565 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5566 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5567 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5568
0934856d
MX
5569 if (num_bytes)
5570 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5571 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5572 if (dropped > 0)
5573 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5574
6a3891c5
JB
5575 if (btrfs_test_is_dummy_root(root))
5576 return;
5577
8c2a3ca2
JB
5578 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5579 btrfs_ino(inode), to_free, 0);
c5567237 5580
0ca1f7ce
YZ
5581 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5582 to_free);
5583}
5584
7709cde3
JB
5585/**
5586 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5587 * @inode: inode we're writing to
5588 * @num_bytes: the number of bytes we want to allocate
5589 *
5590 * This will do the following things
5591 *
5592 * o reserve space in the data space info for num_bytes
5593 * o reserve space in the metadata space info based on number of outstanding
5594 * extents and how much csums will be needed
5595 * o add to the inodes ->delalloc_bytes
5596 * o add it to the fs_info's delalloc inodes list.
5597 *
5598 * This will return 0 for success and -ENOSPC if there is no space left.
5599 */
0ca1f7ce
YZ
5600int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5601{
5602 int ret;
5603
e2d1f923 5604 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
d397712b 5605 if (ret)
0ca1f7ce
YZ
5606 return ret;
5607
5608 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5609 if (ret) {
5610 btrfs_free_reserved_data_space(inode, num_bytes);
5611 return ret;
5612 }
5613
5614 return 0;
5615}
5616
7709cde3
JB
5617/**
5618 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5619 * @inode: inode we're releasing space for
5620 * @num_bytes: the number of bytes we want to free up
5621 *
5622 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5623 * called in the case that we don't need the metadata AND data reservations
5624 * anymore. So if there is an error or we insert an inline extent.
5625 *
5626 * This function will release the metadata space that was not used and will
5627 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5628 * list if there are no delalloc bytes left.
5629 */
0ca1f7ce
YZ
5630void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5631{
5632 btrfs_delalloc_release_metadata(inode, num_bytes);
5633 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5634}
5635
ce93ec54
JB
5636static int update_block_group(struct btrfs_trans_handle *trans,
5637 struct btrfs_root *root, u64 bytenr,
5638 u64 num_bytes, int alloc)
9078a3e1 5639{
0af3d00b 5640 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5641 struct btrfs_fs_info *info = root->fs_info;
db94535d 5642 u64 total = num_bytes;
9078a3e1 5643 u64 old_val;
db94535d 5644 u64 byte_in_group;
0af3d00b 5645 int factor;
3e1ad54f 5646
5d4f98a2 5647 /* block accounting for super block */
eb73c1b7 5648 spin_lock(&info->delalloc_root_lock);
6c41761f 5649 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5650 if (alloc)
5651 old_val += num_bytes;
5652 else
5653 old_val -= num_bytes;
6c41761f 5654 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5655 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5656
d397712b 5657 while (total) {
db94535d 5658 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5659 if (!cache)
79787eaa 5660 return -ENOENT;
b742bb82
YZ
5661 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5662 BTRFS_BLOCK_GROUP_RAID1 |
5663 BTRFS_BLOCK_GROUP_RAID10))
5664 factor = 2;
5665 else
5666 factor = 1;
9d66e233
JB
5667 /*
5668 * If this block group has free space cache written out, we
5669 * need to make sure to load it if we are removing space. This
5670 * is because we need the unpinning stage to actually add the
5671 * space back to the block group, otherwise we will leak space.
5672 */
5673 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5674 cache_block_group(cache, 1);
0af3d00b 5675
db94535d
CM
5676 byte_in_group = bytenr - cache->key.objectid;
5677 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5678
25179201 5679 spin_lock(&cache->space_info->lock);
c286ac48 5680 spin_lock(&cache->lock);
0af3d00b 5681
73bc1876 5682 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5683 cache->disk_cache_state < BTRFS_DC_CLEAR)
5684 cache->disk_cache_state = BTRFS_DC_CLEAR;
5685
9078a3e1 5686 old_val = btrfs_block_group_used(&cache->item);
db94535d 5687 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5688 if (alloc) {
db94535d 5689 old_val += num_bytes;
11833d66
YZ
5690 btrfs_set_block_group_used(&cache->item, old_val);
5691 cache->reserved -= num_bytes;
11833d66 5692 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5693 cache->space_info->bytes_used += num_bytes;
5694 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5695 spin_unlock(&cache->lock);
25179201 5696 spin_unlock(&cache->space_info->lock);
cd1bc465 5697 } else {
db94535d 5698 old_val -= num_bytes;
ae0ab003
FM
5699 btrfs_set_block_group_used(&cache->item, old_val);
5700 cache->pinned += num_bytes;
5701 cache->space_info->bytes_pinned += num_bytes;
5702 cache->space_info->bytes_used -= num_bytes;
5703 cache->space_info->disk_used -= num_bytes * factor;
5704 spin_unlock(&cache->lock);
5705 spin_unlock(&cache->space_info->lock);
47ab2a6c 5706
ae0ab003
FM
5707 set_extent_dirty(info->pinned_extents,
5708 bytenr, bytenr + num_bytes - 1,
5709 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5710 /*
5711 * No longer have used bytes in this block group, queue
5712 * it for deletion.
5713 */
5714 if (old_val == 0) {
5715 spin_lock(&info->unused_bgs_lock);
5716 if (list_empty(&cache->bg_list)) {
5717 btrfs_get_block_group(cache);
5718 list_add_tail(&cache->bg_list,
5719 &info->unused_bgs);
5720 }
5721 spin_unlock(&info->unused_bgs_lock);
5722 }
cd1bc465 5723 }
1bbc621e
CM
5724
5725 spin_lock(&trans->transaction->dirty_bgs_lock);
5726 if (list_empty(&cache->dirty_list)) {
5727 list_add_tail(&cache->dirty_list,
5728 &trans->transaction->dirty_bgs);
5729 trans->transaction->num_dirty_bgs++;
5730 btrfs_get_block_group(cache);
5731 }
5732 spin_unlock(&trans->transaction->dirty_bgs_lock);
5733
fa9c0d79 5734 btrfs_put_block_group(cache);
db94535d
CM
5735 total -= num_bytes;
5736 bytenr += num_bytes;
9078a3e1
CM
5737 }
5738 return 0;
5739}
6324fbf3 5740
a061fc8d
CM
5741static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5742{
0f9dd46c 5743 struct btrfs_block_group_cache *cache;
d2fb3437 5744 u64 bytenr;
0f9dd46c 5745
a1897fdd
LB
5746 spin_lock(&root->fs_info->block_group_cache_lock);
5747 bytenr = root->fs_info->first_logical_byte;
5748 spin_unlock(&root->fs_info->block_group_cache_lock);
5749
5750 if (bytenr < (u64)-1)
5751 return bytenr;
5752
0f9dd46c
JB
5753 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5754 if (!cache)
a061fc8d 5755 return 0;
0f9dd46c 5756
d2fb3437 5757 bytenr = cache->key.objectid;
fa9c0d79 5758 btrfs_put_block_group(cache);
d2fb3437
YZ
5759
5760 return bytenr;
a061fc8d
CM
5761}
5762
f0486c68
YZ
5763static int pin_down_extent(struct btrfs_root *root,
5764 struct btrfs_block_group_cache *cache,
5765 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5766{
11833d66
YZ
5767 spin_lock(&cache->space_info->lock);
5768 spin_lock(&cache->lock);
5769 cache->pinned += num_bytes;
5770 cache->space_info->bytes_pinned += num_bytes;
5771 if (reserved) {
5772 cache->reserved -= num_bytes;
5773 cache->space_info->bytes_reserved -= num_bytes;
5774 }
5775 spin_unlock(&cache->lock);
5776 spin_unlock(&cache->space_info->lock);
68b38550 5777
f0486c68
YZ
5778 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5779 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5780 if (reserved)
0be5dc67 5781 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5782 return 0;
5783}
68b38550 5784
f0486c68
YZ
5785/*
5786 * this function must be called within transaction
5787 */
5788int btrfs_pin_extent(struct btrfs_root *root,
5789 u64 bytenr, u64 num_bytes, int reserved)
5790{
5791 struct btrfs_block_group_cache *cache;
68b38550 5792
f0486c68 5793 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5794 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5795
5796 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5797
5798 btrfs_put_block_group(cache);
11833d66
YZ
5799 return 0;
5800}
5801
f0486c68 5802/*
e688b725
CM
5803 * this function must be called within transaction
5804 */
dcfac415 5805int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5806 u64 bytenr, u64 num_bytes)
5807{
5808 struct btrfs_block_group_cache *cache;
b50c6e25 5809 int ret;
e688b725
CM
5810
5811 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5812 if (!cache)
5813 return -EINVAL;
e688b725
CM
5814
5815 /*
5816 * pull in the free space cache (if any) so that our pin
5817 * removes the free space from the cache. We have load_only set
5818 * to one because the slow code to read in the free extents does check
5819 * the pinned extents.
5820 */
f6373bf3 5821 cache_block_group(cache, 1);
e688b725
CM
5822
5823 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5824
5825 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5826 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5827 btrfs_put_block_group(cache);
b50c6e25 5828 return ret;
e688b725
CM
5829}
5830
8c2a1a30
JB
5831static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5832{
5833 int ret;
5834 struct btrfs_block_group_cache *block_group;
5835 struct btrfs_caching_control *caching_ctl;
5836
5837 block_group = btrfs_lookup_block_group(root->fs_info, start);
5838 if (!block_group)
5839 return -EINVAL;
5840
5841 cache_block_group(block_group, 0);
5842 caching_ctl = get_caching_control(block_group);
5843
5844 if (!caching_ctl) {
5845 /* Logic error */
5846 BUG_ON(!block_group_cache_done(block_group));
5847 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5848 } else {
5849 mutex_lock(&caching_ctl->mutex);
5850
5851 if (start >= caching_ctl->progress) {
5852 ret = add_excluded_extent(root, start, num_bytes);
5853 } else if (start + num_bytes <= caching_ctl->progress) {
5854 ret = btrfs_remove_free_space(block_group,
5855 start, num_bytes);
5856 } else {
5857 num_bytes = caching_ctl->progress - start;
5858 ret = btrfs_remove_free_space(block_group,
5859 start, num_bytes);
5860 if (ret)
5861 goto out_lock;
5862
5863 num_bytes = (start + num_bytes) -
5864 caching_ctl->progress;
5865 start = caching_ctl->progress;
5866 ret = add_excluded_extent(root, start, num_bytes);
5867 }
5868out_lock:
5869 mutex_unlock(&caching_ctl->mutex);
5870 put_caching_control(caching_ctl);
5871 }
5872 btrfs_put_block_group(block_group);
5873 return ret;
5874}
5875
5876int btrfs_exclude_logged_extents(struct btrfs_root *log,
5877 struct extent_buffer *eb)
5878{
5879 struct btrfs_file_extent_item *item;
5880 struct btrfs_key key;
5881 int found_type;
5882 int i;
5883
5884 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5885 return 0;
5886
5887 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5888 btrfs_item_key_to_cpu(eb, &key, i);
5889 if (key.type != BTRFS_EXTENT_DATA_KEY)
5890 continue;
5891 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5892 found_type = btrfs_file_extent_type(eb, item);
5893 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5894 continue;
5895 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5896 continue;
5897 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5898 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5899 __exclude_logged_extent(log, key.objectid, key.offset);
5900 }
5901
5902 return 0;
5903}
5904
fb25e914
JB
5905/**
5906 * btrfs_update_reserved_bytes - update the block_group and space info counters
5907 * @cache: The cache we are manipulating
5908 * @num_bytes: The number of bytes in question
5909 * @reserve: One of the reservation enums
e570fd27 5910 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
5911 *
5912 * This is called by the allocator when it reserves space, or by somebody who is
5913 * freeing space that was never actually used on disk. For example if you
5914 * reserve some space for a new leaf in transaction A and before transaction A
5915 * commits you free that leaf, you call this with reserve set to 0 in order to
5916 * clear the reservation.
5917 *
5918 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5919 * ENOSPC accounting. For data we handle the reservation through clearing the
5920 * delalloc bits in the io_tree. We have to do this since we could end up
5921 * allocating less disk space for the amount of data we have reserved in the
5922 * case of compression.
5923 *
5924 * If this is a reservation and the block group has become read only we cannot
5925 * make the reservation and return -EAGAIN, otherwise this function always
5926 * succeeds.
f0486c68 5927 */
fb25e914 5928static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 5929 u64 num_bytes, int reserve, int delalloc)
11833d66 5930{
fb25e914 5931 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 5932 int ret = 0;
79787eaa 5933
fb25e914
JB
5934 spin_lock(&space_info->lock);
5935 spin_lock(&cache->lock);
5936 if (reserve != RESERVE_FREE) {
f0486c68
YZ
5937 if (cache->ro) {
5938 ret = -EAGAIN;
5939 } else {
fb25e914
JB
5940 cache->reserved += num_bytes;
5941 space_info->bytes_reserved += num_bytes;
5942 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 5943 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
5944 "space_info", space_info->flags,
5945 num_bytes, 0);
fb25e914
JB
5946 space_info->bytes_may_use -= num_bytes;
5947 }
e570fd27
MX
5948
5949 if (delalloc)
5950 cache->delalloc_bytes += num_bytes;
f0486c68 5951 }
fb25e914
JB
5952 } else {
5953 if (cache->ro)
5954 space_info->bytes_readonly += num_bytes;
5955 cache->reserved -= num_bytes;
5956 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
5957
5958 if (delalloc)
5959 cache->delalloc_bytes -= num_bytes;
324ae4df 5960 }
fb25e914
JB
5961 spin_unlock(&cache->lock);
5962 spin_unlock(&space_info->lock);
f0486c68 5963 return ret;
324ae4df 5964}
9078a3e1 5965
143bede5 5966void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 5967 struct btrfs_root *root)
e8569813 5968{
e8569813 5969 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
5970 struct btrfs_caching_control *next;
5971 struct btrfs_caching_control *caching_ctl;
5972 struct btrfs_block_group_cache *cache;
e8569813 5973
9e351cc8 5974 down_write(&fs_info->commit_root_sem);
25179201 5975
11833d66
YZ
5976 list_for_each_entry_safe(caching_ctl, next,
5977 &fs_info->caching_block_groups, list) {
5978 cache = caching_ctl->block_group;
5979 if (block_group_cache_done(cache)) {
5980 cache->last_byte_to_unpin = (u64)-1;
5981 list_del_init(&caching_ctl->list);
5982 put_caching_control(caching_ctl);
e8569813 5983 } else {
11833d66 5984 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 5985 }
e8569813 5986 }
11833d66
YZ
5987
5988 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5989 fs_info->pinned_extents = &fs_info->freed_extents[1];
5990 else
5991 fs_info->pinned_extents = &fs_info->freed_extents[0];
5992
9e351cc8 5993 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
5994
5995 update_global_block_rsv(fs_info);
e8569813
ZY
5996}
5997
678886bd
FM
5998static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5999 const bool return_free_space)
ccd467d6 6000{
11833d66
YZ
6001 struct btrfs_fs_info *fs_info = root->fs_info;
6002 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6003 struct btrfs_space_info *space_info;
6004 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 6005 u64 len;
7b398f8e 6006 bool readonly;
ccd467d6 6007
11833d66 6008 while (start <= end) {
7b398f8e 6009 readonly = false;
11833d66
YZ
6010 if (!cache ||
6011 start >= cache->key.objectid + cache->key.offset) {
6012 if (cache)
6013 btrfs_put_block_group(cache);
6014 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6015 BUG_ON(!cache); /* Logic error */
11833d66
YZ
6016 }
6017
6018 len = cache->key.objectid + cache->key.offset - start;
6019 len = min(len, end + 1 - start);
6020
6021 if (start < cache->last_byte_to_unpin) {
6022 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6023 if (return_free_space)
6024 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6025 }
6026
f0486c68 6027 start += len;
7b398f8e 6028 space_info = cache->space_info;
f0486c68 6029
7b398f8e 6030 spin_lock(&space_info->lock);
11833d66
YZ
6031 spin_lock(&cache->lock);
6032 cache->pinned -= len;
7b398f8e 6033 space_info->bytes_pinned -= len;
d288db5d 6034 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6035 if (cache->ro) {
6036 space_info->bytes_readonly += len;
6037 readonly = true;
6038 }
11833d66 6039 spin_unlock(&cache->lock);
7b398f8e
JB
6040 if (!readonly && global_rsv->space_info == space_info) {
6041 spin_lock(&global_rsv->lock);
6042 if (!global_rsv->full) {
6043 len = min(len, global_rsv->size -
6044 global_rsv->reserved);
6045 global_rsv->reserved += len;
6046 space_info->bytes_may_use += len;
6047 if (global_rsv->reserved >= global_rsv->size)
6048 global_rsv->full = 1;
6049 }
6050 spin_unlock(&global_rsv->lock);
6051 }
6052 spin_unlock(&space_info->lock);
ccd467d6 6053 }
11833d66
YZ
6054
6055 if (cache)
6056 btrfs_put_block_group(cache);
ccd467d6
CM
6057 return 0;
6058}
6059
6060int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6061 struct btrfs_root *root)
a28ec197 6062{
11833d66
YZ
6063 struct btrfs_fs_info *fs_info = root->fs_info;
6064 struct extent_io_tree *unpin;
1a5bc167
CM
6065 u64 start;
6066 u64 end;
a28ec197 6067 int ret;
a28ec197 6068
79787eaa
JM
6069 if (trans->aborted)
6070 return 0;
6071
11833d66
YZ
6072 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6073 unpin = &fs_info->freed_extents[1];
6074 else
6075 unpin = &fs_info->freed_extents[0];
6076
d397712b 6077 while (1) {
d4b450cd 6078 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6079 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6080 EXTENT_DIRTY, NULL);
d4b450cd
FM
6081 if (ret) {
6082 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6083 break;
d4b450cd 6084 }
1f3c79a2 6085
5378e607
LD
6086 if (btrfs_test_opt(root, DISCARD))
6087 ret = btrfs_discard_extent(root, start,
6088 end + 1 - start, NULL);
1f3c79a2 6089
1a5bc167 6090 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6091 unpin_extent_range(root, start, end, true);
d4b450cd 6092 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6093 cond_resched();
a28ec197 6094 }
817d52f8 6095
e20d96d6
CM
6096 return 0;
6097}
6098
b150a4f1
JB
6099static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6100 u64 owner, u64 root_objectid)
6101{
6102 struct btrfs_space_info *space_info;
6103 u64 flags;
6104
6105 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6106 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6107 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6108 else
6109 flags = BTRFS_BLOCK_GROUP_METADATA;
6110 } else {
6111 flags = BTRFS_BLOCK_GROUP_DATA;
6112 }
6113
6114 space_info = __find_space_info(fs_info, flags);
6115 BUG_ON(!space_info); /* Logic bug */
6116 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6117}
6118
6119
5d4f98a2
YZ
6120static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6121 struct btrfs_root *root,
6122 u64 bytenr, u64 num_bytes, u64 parent,
6123 u64 root_objectid, u64 owner_objectid,
6124 u64 owner_offset, int refs_to_drop,
fcebe456
JB
6125 struct btrfs_delayed_extent_op *extent_op,
6126 int no_quota)
a28ec197 6127{
e2fa7227 6128 struct btrfs_key key;
5d4f98a2 6129 struct btrfs_path *path;
1261ec42
CM
6130 struct btrfs_fs_info *info = root->fs_info;
6131 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6132 struct extent_buffer *leaf;
5d4f98a2
YZ
6133 struct btrfs_extent_item *ei;
6134 struct btrfs_extent_inline_ref *iref;
a28ec197 6135 int ret;
5d4f98a2 6136 int is_data;
952fccac
CM
6137 int extent_slot = 0;
6138 int found_extent = 0;
6139 int num_to_del = 1;
5d4f98a2
YZ
6140 u32 item_size;
6141 u64 refs;
fcebe456
JB
6142 int last_ref = 0;
6143 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
3173a18f
JB
6144 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6145 SKINNY_METADATA);
037e6390 6146
fcebe456
JB
6147 if (!info->quota_enabled || !is_fstree(root_objectid))
6148 no_quota = 1;
6149
5caf2a00 6150 path = btrfs_alloc_path();
54aa1f4d
CM
6151 if (!path)
6152 return -ENOMEM;
5f26f772 6153
3c12ac72 6154 path->reada = 1;
b9473439 6155 path->leave_spinning = 1;
5d4f98a2
YZ
6156
6157 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6158 BUG_ON(!is_data && refs_to_drop != 1);
6159
3173a18f
JB
6160 if (is_data)
6161 skinny_metadata = 0;
6162
5d4f98a2
YZ
6163 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6164 bytenr, num_bytes, parent,
6165 root_objectid, owner_objectid,
6166 owner_offset);
7bb86316 6167 if (ret == 0) {
952fccac 6168 extent_slot = path->slots[0];
5d4f98a2
YZ
6169 while (extent_slot >= 0) {
6170 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6171 extent_slot);
5d4f98a2 6172 if (key.objectid != bytenr)
952fccac 6173 break;
5d4f98a2
YZ
6174 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6175 key.offset == num_bytes) {
952fccac
CM
6176 found_extent = 1;
6177 break;
6178 }
3173a18f
JB
6179 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6180 key.offset == owner_objectid) {
6181 found_extent = 1;
6182 break;
6183 }
952fccac
CM
6184 if (path->slots[0] - extent_slot > 5)
6185 break;
5d4f98a2 6186 extent_slot--;
952fccac 6187 }
5d4f98a2
YZ
6188#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6189 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6190 if (found_extent && item_size < sizeof(*ei))
6191 found_extent = 0;
6192#endif
31840ae1 6193 if (!found_extent) {
5d4f98a2 6194 BUG_ON(iref);
56bec294 6195 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6196 NULL, refs_to_drop,
fcebe456 6197 is_data, &last_ref);
005d6427
DS
6198 if (ret) {
6199 btrfs_abort_transaction(trans, extent_root, ret);
6200 goto out;
6201 }
b3b4aa74 6202 btrfs_release_path(path);
b9473439 6203 path->leave_spinning = 1;
5d4f98a2
YZ
6204
6205 key.objectid = bytenr;
6206 key.type = BTRFS_EXTENT_ITEM_KEY;
6207 key.offset = num_bytes;
6208
3173a18f
JB
6209 if (!is_data && skinny_metadata) {
6210 key.type = BTRFS_METADATA_ITEM_KEY;
6211 key.offset = owner_objectid;
6212 }
6213
31840ae1
ZY
6214 ret = btrfs_search_slot(trans, extent_root,
6215 &key, path, -1, 1);
3173a18f
JB
6216 if (ret > 0 && skinny_metadata && path->slots[0]) {
6217 /*
6218 * Couldn't find our skinny metadata item,
6219 * see if we have ye olde extent item.
6220 */
6221 path->slots[0]--;
6222 btrfs_item_key_to_cpu(path->nodes[0], &key,
6223 path->slots[0]);
6224 if (key.objectid == bytenr &&
6225 key.type == BTRFS_EXTENT_ITEM_KEY &&
6226 key.offset == num_bytes)
6227 ret = 0;
6228 }
6229
6230 if (ret > 0 && skinny_metadata) {
6231 skinny_metadata = false;
9ce49a0b 6232 key.objectid = bytenr;
3173a18f
JB
6233 key.type = BTRFS_EXTENT_ITEM_KEY;
6234 key.offset = num_bytes;
6235 btrfs_release_path(path);
6236 ret = btrfs_search_slot(trans, extent_root,
6237 &key, path, -1, 1);
6238 }
6239
f3465ca4 6240 if (ret) {
c2cf52eb 6241 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6242 ret, bytenr);
b783e62d
JB
6243 if (ret > 0)
6244 btrfs_print_leaf(extent_root,
6245 path->nodes[0]);
f3465ca4 6246 }
005d6427
DS
6247 if (ret < 0) {
6248 btrfs_abort_transaction(trans, extent_root, ret);
6249 goto out;
6250 }
31840ae1
ZY
6251 extent_slot = path->slots[0];
6252 }
fae7f21c 6253 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6254 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6255 btrfs_err(info,
6256 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6257 bytenr, parent, root_objectid, owner_objectid,
6258 owner_offset);
c4a050bb
JB
6259 btrfs_abort_transaction(trans, extent_root, ret);
6260 goto out;
79787eaa 6261 } else {
005d6427
DS
6262 btrfs_abort_transaction(trans, extent_root, ret);
6263 goto out;
7bb86316 6264 }
5f39d397
CM
6265
6266 leaf = path->nodes[0];
5d4f98a2
YZ
6267 item_size = btrfs_item_size_nr(leaf, extent_slot);
6268#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6269 if (item_size < sizeof(*ei)) {
6270 BUG_ON(found_extent || extent_slot != path->slots[0]);
6271 ret = convert_extent_item_v0(trans, extent_root, path,
6272 owner_objectid, 0);
005d6427
DS
6273 if (ret < 0) {
6274 btrfs_abort_transaction(trans, extent_root, ret);
6275 goto out;
6276 }
5d4f98a2 6277
b3b4aa74 6278 btrfs_release_path(path);
5d4f98a2
YZ
6279 path->leave_spinning = 1;
6280
6281 key.objectid = bytenr;
6282 key.type = BTRFS_EXTENT_ITEM_KEY;
6283 key.offset = num_bytes;
6284
6285 ret = btrfs_search_slot(trans, extent_root, &key, path,
6286 -1, 1);
6287 if (ret) {
c2cf52eb 6288 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6289 ret, bytenr);
5d4f98a2
YZ
6290 btrfs_print_leaf(extent_root, path->nodes[0]);
6291 }
005d6427
DS
6292 if (ret < 0) {
6293 btrfs_abort_transaction(trans, extent_root, ret);
6294 goto out;
6295 }
6296
5d4f98a2
YZ
6297 extent_slot = path->slots[0];
6298 leaf = path->nodes[0];
6299 item_size = btrfs_item_size_nr(leaf, extent_slot);
6300 }
6301#endif
6302 BUG_ON(item_size < sizeof(*ei));
952fccac 6303 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6304 struct btrfs_extent_item);
3173a18f
JB
6305 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6306 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6307 struct btrfs_tree_block_info *bi;
6308 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6309 bi = (struct btrfs_tree_block_info *)(ei + 1);
6310 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6311 }
56bec294 6312
5d4f98a2 6313 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6314 if (refs < refs_to_drop) {
6315 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6316 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6317 ret = -EINVAL;
6318 btrfs_abort_transaction(trans, extent_root, ret);
6319 goto out;
6320 }
56bec294 6321 refs -= refs_to_drop;
5f39d397 6322
5d4f98a2 6323 if (refs > 0) {
fcebe456 6324 type = BTRFS_QGROUP_OPER_SUB_SHARED;
5d4f98a2
YZ
6325 if (extent_op)
6326 __run_delayed_extent_op(extent_op, leaf, ei);
6327 /*
6328 * In the case of inline back ref, reference count will
6329 * be updated by remove_extent_backref
952fccac 6330 */
5d4f98a2
YZ
6331 if (iref) {
6332 BUG_ON(!found_extent);
6333 } else {
6334 btrfs_set_extent_refs(leaf, ei, refs);
6335 btrfs_mark_buffer_dirty(leaf);
6336 }
6337 if (found_extent) {
6338 ret = remove_extent_backref(trans, extent_root, path,
6339 iref, refs_to_drop,
fcebe456 6340 is_data, &last_ref);
005d6427
DS
6341 if (ret) {
6342 btrfs_abort_transaction(trans, extent_root, ret);
6343 goto out;
6344 }
952fccac 6345 }
b150a4f1
JB
6346 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6347 root_objectid);
5d4f98a2 6348 } else {
5d4f98a2
YZ
6349 if (found_extent) {
6350 BUG_ON(is_data && refs_to_drop !=
6351 extent_data_ref_count(root, path, iref));
6352 if (iref) {
6353 BUG_ON(path->slots[0] != extent_slot);
6354 } else {
6355 BUG_ON(path->slots[0] != extent_slot + 1);
6356 path->slots[0] = extent_slot;
6357 num_to_del = 2;
6358 }
78fae27e 6359 }
b9473439 6360
fcebe456 6361 last_ref = 1;
952fccac
CM
6362 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6363 num_to_del);
005d6427
DS
6364 if (ret) {
6365 btrfs_abort_transaction(trans, extent_root, ret);
6366 goto out;
6367 }
b3b4aa74 6368 btrfs_release_path(path);
21af804c 6369
5d4f98a2 6370 if (is_data) {
459931ec 6371 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6372 if (ret) {
6373 btrfs_abort_transaction(trans, extent_root, ret);
6374 goto out;
6375 }
459931ec
CM
6376 }
6377
ce93ec54 6378 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6379 if (ret) {
6380 btrfs_abort_transaction(trans, extent_root, ret);
6381 goto out;
6382 }
a28ec197 6383 }
fcebe456
JB
6384 btrfs_release_path(path);
6385
6386 /* Deal with the quota accounting */
6387 if (!ret && last_ref && !no_quota) {
6388 int mod_seq = 0;
6389
6390 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6391 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6392 mod_seq = 1;
6393
6394 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6395 bytenr, num_bytes, type,
6396 mod_seq);
6397 }
79787eaa 6398out:
5caf2a00 6399 btrfs_free_path(path);
a28ec197
CM
6400 return ret;
6401}
6402
1887be66 6403/*
f0486c68 6404 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6405 * delayed ref for that extent as well. This searches the delayed ref tree for
6406 * a given extent, and if there are no other delayed refs to be processed, it
6407 * removes it from the tree.
6408 */
6409static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6410 struct btrfs_root *root, u64 bytenr)
6411{
6412 struct btrfs_delayed_ref_head *head;
6413 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6414 int ret = 0;
1887be66
CM
6415
6416 delayed_refs = &trans->transaction->delayed_refs;
6417 spin_lock(&delayed_refs->lock);
6418 head = btrfs_find_delayed_ref_head(trans, bytenr);
6419 if (!head)
cf93da7b 6420 goto out_delayed_unlock;
1887be66 6421
d7df2c79 6422 spin_lock(&head->lock);
c6fc2454 6423 if (!list_empty(&head->ref_list))
1887be66
CM
6424 goto out;
6425
5d4f98a2
YZ
6426 if (head->extent_op) {
6427 if (!head->must_insert_reserved)
6428 goto out;
78a6184a 6429 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6430 head->extent_op = NULL;
6431 }
6432
1887be66
CM
6433 /*
6434 * waiting for the lock here would deadlock. If someone else has it
6435 * locked they are already in the process of dropping it anyway
6436 */
6437 if (!mutex_trylock(&head->mutex))
6438 goto out;
6439
6440 /*
6441 * at this point we have a head with no other entries. Go
6442 * ahead and process it.
6443 */
6444 head->node.in_tree = 0;
c46effa6 6445 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6446
d7df2c79 6447 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6448
6449 /*
6450 * we don't take a ref on the node because we're removing it from the
6451 * tree, so we just steal the ref the tree was holding.
6452 */
c3e69d58 6453 delayed_refs->num_heads--;
d7df2c79 6454 if (head->processing == 0)
c3e69d58 6455 delayed_refs->num_heads_ready--;
d7df2c79
JB
6456 head->processing = 0;
6457 spin_unlock(&head->lock);
1887be66
CM
6458 spin_unlock(&delayed_refs->lock);
6459
f0486c68
YZ
6460 BUG_ON(head->extent_op);
6461 if (head->must_insert_reserved)
6462 ret = 1;
6463
6464 mutex_unlock(&head->mutex);
1887be66 6465 btrfs_put_delayed_ref(&head->node);
f0486c68 6466 return ret;
1887be66 6467out:
d7df2c79 6468 spin_unlock(&head->lock);
cf93da7b
CM
6469
6470out_delayed_unlock:
1887be66
CM
6471 spin_unlock(&delayed_refs->lock);
6472 return 0;
6473}
6474
f0486c68
YZ
6475void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6476 struct btrfs_root *root,
6477 struct extent_buffer *buf,
5581a51a 6478 u64 parent, int last_ref)
f0486c68 6479{
b150a4f1 6480 int pin = 1;
f0486c68
YZ
6481 int ret;
6482
6483 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6484 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6485 buf->start, buf->len,
6486 parent, root->root_key.objectid,
6487 btrfs_header_level(buf),
5581a51a 6488 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6489 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6490 }
6491
6492 if (!last_ref)
6493 return;
6494
f0486c68 6495 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6496 struct btrfs_block_group_cache *cache;
6497
f0486c68
YZ
6498 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6499 ret = check_ref_cleanup(trans, root, buf->start);
6500 if (!ret)
37be25bc 6501 goto out;
f0486c68
YZ
6502 }
6503
6219872d
FM
6504 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6505
f0486c68
YZ
6506 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6507 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6508 btrfs_put_block_group(cache);
37be25bc 6509 goto out;
f0486c68
YZ
6510 }
6511
6512 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6513
6514 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6515 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6516 btrfs_put_block_group(cache);
0be5dc67 6517 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6518 pin = 0;
f0486c68
YZ
6519 }
6520out:
b150a4f1
JB
6521 if (pin)
6522 add_pinned_bytes(root->fs_info, buf->len,
6523 btrfs_header_level(buf),
6524 root->root_key.objectid);
6525
a826d6dc
JB
6526 /*
6527 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6528 * anymore.
6529 */
6530 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6531}
6532
79787eaa 6533/* Can return -ENOMEM */
66d7e7f0
AJ
6534int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6535 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6536 u64 owner, u64 offset, int no_quota)
925baedd
CM
6537{
6538 int ret;
66d7e7f0 6539 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6540
fccb84c9 6541 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6542 return 0;
fccb84c9 6543
b150a4f1
JB
6544 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6545
56bec294
CM
6546 /*
6547 * tree log blocks never actually go into the extent allocation
6548 * tree, just update pinning info and exit early.
56bec294 6549 */
5d4f98a2
YZ
6550 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6551 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6552 /* unlocks the pinned mutex */
11833d66 6553 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6554 ret = 0;
5d4f98a2 6555 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6556 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6557 num_bytes,
5d4f98a2 6558 parent, root_objectid, (int)owner,
fcebe456 6559 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6560 } else {
66d7e7f0
AJ
6561 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6562 num_bytes,
6563 parent, root_objectid, owner,
6564 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6565 NULL, no_quota);
56bec294 6566 }
925baedd
CM
6567 return ret;
6568}
6569
817d52f8
JB
6570/*
6571 * when we wait for progress in the block group caching, its because
6572 * our allocation attempt failed at least once. So, we must sleep
6573 * and let some progress happen before we try again.
6574 *
6575 * This function will sleep at least once waiting for new free space to
6576 * show up, and then it will check the block group free space numbers
6577 * for our min num_bytes. Another option is to have it go ahead
6578 * and look in the rbtree for a free extent of a given size, but this
6579 * is a good start.
36cce922
JB
6580 *
6581 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6582 * any of the information in this block group.
817d52f8 6583 */
36cce922 6584static noinline void
817d52f8
JB
6585wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6586 u64 num_bytes)
6587{
11833d66 6588 struct btrfs_caching_control *caching_ctl;
817d52f8 6589
11833d66
YZ
6590 caching_ctl = get_caching_control(cache);
6591 if (!caching_ctl)
36cce922 6592 return;
817d52f8 6593
11833d66 6594 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6595 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6596
6597 put_caching_control(caching_ctl);
11833d66
YZ
6598}
6599
6600static noinline int
6601wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6602{
6603 struct btrfs_caching_control *caching_ctl;
36cce922 6604 int ret = 0;
11833d66
YZ
6605
6606 caching_ctl = get_caching_control(cache);
6607 if (!caching_ctl)
36cce922 6608 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6609
6610 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6611 if (cache->cached == BTRFS_CACHE_ERROR)
6612 ret = -EIO;
11833d66 6613 put_caching_control(caching_ctl);
36cce922 6614 return ret;
817d52f8
JB
6615}
6616
31e50229 6617int __get_raid_index(u64 flags)
b742bb82 6618{
7738a53a 6619 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6620 return BTRFS_RAID_RAID10;
7738a53a 6621 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6622 return BTRFS_RAID_RAID1;
7738a53a 6623 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6624 return BTRFS_RAID_DUP;
7738a53a 6625 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6626 return BTRFS_RAID_RAID0;
53b381b3 6627 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6628 return BTRFS_RAID_RAID5;
53b381b3 6629 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6630 return BTRFS_RAID_RAID6;
7738a53a 6631
e942f883 6632 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6633}
6634
6ab0a202 6635int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6636{
31e50229 6637 return __get_raid_index(cache->flags);
7738a53a
ID
6638}
6639
6ab0a202
JM
6640static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6641 [BTRFS_RAID_RAID10] = "raid10",
6642 [BTRFS_RAID_RAID1] = "raid1",
6643 [BTRFS_RAID_DUP] = "dup",
6644 [BTRFS_RAID_RAID0] = "raid0",
6645 [BTRFS_RAID_SINGLE] = "single",
6646 [BTRFS_RAID_RAID5] = "raid5",
6647 [BTRFS_RAID_RAID6] = "raid6",
6648};
6649
1b8e5df6 6650static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6651{
6652 if (type >= BTRFS_NR_RAID_TYPES)
6653 return NULL;
6654
6655 return btrfs_raid_type_names[type];
6656}
6657
817d52f8 6658enum btrfs_loop_type {
285ff5af
JB
6659 LOOP_CACHING_NOWAIT = 0,
6660 LOOP_CACHING_WAIT = 1,
6661 LOOP_ALLOC_CHUNK = 2,
6662 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6663};
6664
e570fd27
MX
6665static inline void
6666btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6667 int delalloc)
6668{
6669 if (delalloc)
6670 down_read(&cache->data_rwsem);
6671}
6672
6673static inline void
6674btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6675 int delalloc)
6676{
6677 btrfs_get_block_group(cache);
6678 if (delalloc)
6679 down_read(&cache->data_rwsem);
6680}
6681
6682static struct btrfs_block_group_cache *
6683btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6684 struct btrfs_free_cluster *cluster,
6685 int delalloc)
6686{
6687 struct btrfs_block_group_cache *used_bg;
6688 bool locked = false;
6689again:
6690 spin_lock(&cluster->refill_lock);
6691 if (locked) {
6692 if (used_bg == cluster->block_group)
6693 return used_bg;
6694
6695 up_read(&used_bg->data_rwsem);
6696 btrfs_put_block_group(used_bg);
6697 }
6698
6699 used_bg = cluster->block_group;
6700 if (!used_bg)
6701 return NULL;
6702
6703 if (used_bg == block_group)
6704 return used_bg;
6705
6706 btrfs_get_block_group(used_bg);
6707
6708 if (!delalloc)
6709 return used_bg;
6710
6711 if (down_read_trylock(&used_bg->data_rwsem))
6712 return used_bg;
6713
6714 spin_unlock(&cluster->refill_lock);
6715 down_read(&used_bg->data_rwsem);
6716 locked = true;
6717 goto again;
6718}
6719
6720static inline void
6721btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6722 int delalloc)
6723{
6724 if (delalloc)
6725 up_read(&cache->data_rwsem);
6726 btrfs_put_block_group(cache);
6727}
6728
fec577fb
CM
6729/*
6730 * walks the btree of allocated extents and find a hole of a given size.
6731 * The key ins is changed to record the hole:
a4820398 6732 * ins->objectid == start position
62e2749e 6733 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6734 * ins->offset == the size of the hole.
fec577fb 6735 * Any available blocks before search_start are skipped.
a4820398
MX
6736 *
6737 * If there is no suitable free space, we will record the max size of
6738 * the free space extent currently.
fec577fb 6739 */
00361589 6740static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6741 u64 num_bytes, u64 empty_size,
98ed5174 6742 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6743 u64 flags, int delalloc)
fec577fb 6744{
80eb234a 6745 int ret = 0;
d397712b 6746 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6747 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6748 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6749 u64 search_start = 0;
a4820398 6750 u64 max_extent_size = 0;
239b14b3 6751 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6752 struct btrfs_space_info *space_info;
fa9c0d79 6753 int loop = 0;
b6919a58
DS
6754 int index = __get_raid_index(flags);
6755 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6756 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6757 bool failed_cluster_refill = false;
1cdda9b8 6758 bool failed_alloc = false;
67377734 6759 bool use_cluster = true;
60d2adbb 6760 bool have_caching_bg = false;
fec577fb 6761
db94535d 6762 WARN_ON(num_bytes < root->sectorsize);
962a298f 6763 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6764 ins->objectid = 0;
6765 ins->offset = 0;
b1a4d965 6766
b6919a58 6767 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6768
b6919a58 6769 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6770 if (!space_info) {
b6919a58 6771 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6772 return -ENOSPC;
6773 }
2552d17e 6774
67377734
JB
6775 /*
6776 * If the space info is for both data and metadata it means we have a
6777 * small filesystem and we can't use the clustering stuff.
6778 */
6779 if (btrfs_mixed_space_info(space_info))
6780 use_cluster = false;
6781
b6919a58 6782 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6783 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6784 if (!btrfs_test_opt(root, SSD))
6785 empty_cluster = 64 * 1024;
239b14b3
CM
6786 }
6787
b6919a58 6788 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6789 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6790 last_ptr = &root->fs_info->data_alloc_cluster;
6791 }
0f9dd46c 6792
239b14b3 6793 if (last_ptr) {
fa9c0d79
CM
6794 spin_lock(&last_ptr->lock);
6795 if (last_ptr->block_group)
6796 hint_byte = last_ptr->window_start;
6797 spin_unlock(&last_ptr->lock);
239b14b3 6798 }
fa9c0d79 6799
a061fc8d 6800 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6801 search_start = max(search_start, hint_byte);
0b86a832 6802
817d52f8 6803 if (!last_ptr)
fa9c0d79 6804 empty_cluster = 0;
fa9c0d79 6805
2552d17e 6806 if (search_start == hint_byte) {
2552d17e
JB
6807 block_group = btrfs_lookup_block_group(root->fs_info,
6808 search_start);
817d52f8
JB
6809 /*
6810 * we don't want to use the block group if it doesn't match our
6811 * allocation bits, or if its not cached.
ccf0e725
JB
6812 *
6813 * However if we are re-searching with an ideal block group
6814 * picked out then we don't care that the block group is cached.
817d52f8 6815 */
b6919a58 6816 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 6817 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 6818 down_read(&space_info->groups_sem);
44fb5511
CM
6819 if (list_empty(&block_group->list) ||
6820 block_group->ro) {
6821 /*
6822 * someone is removing this block group,
6823 * we can't jump into the have_block_group
6824 * target because our list pointers are not
6825 * valid
6826 */
6827 btrfs_put_block_group(block_group);
6828 up_read(&space_info->groups_sem);
ccf0e725 6829 } else {
b742bb82 6830 index = get_block_group_index(block_group);
e570fd27 6831 btrfs_lock_block_group(block_group, delalloc);
44fb5511 6832 goto have_block_group;
ccf0e725 6833 }
2552d17e 6834 } else if (block_group) {
fa9c0d79 6835 btrfs_put_block_group(block_group);
2552d17e 6836 }
42e70e7a 6837 }
2552d17e 6838search:
60d2adbb 6839 have_caching_bg = false;
80eb234a 6840 down_read(&space_info->groups_sem);
b742bb82
YZ
6841 list_for_each_entry(block_group, &space_info->block_groups[index],
6842 list) {
6226cb0a 6843 u64 offset;
817d52f8 6844 int cached;
8a1413a2 6845
e570fd27 6846 btrfs_grab_block_group(block_group, delalloc);
2552d17e 6847 search_start = block_group->key.objectid;
42e70e7a 6848
83a50de9
CM
6849 /*
6850 * this can happen if we end up cycling through all the
6851 * raid types, but we want to make sure we only allocate
6852 * for the proper type.
6853 */
b6919a58 6854 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
6855 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6856 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
6857 BTRFS_BLOCK_GROUP_RAID5 |
6858 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
6859 BTRFS_BLOCK_GROUP_RAID10;
6860
6861 /*
6862 * if they asked for extra copies and this block group
6863 * doesn't provide them, bail. This does allow us to
6864 * fill raid0 from raid1.
6865 */
b6919a58 6866 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
6867 goto loop;
6868 }
6869
2552d17e 6870have_block_group:
291c7d2f
JB
6871 cached = block_group_cache_done(block_group);
6872 if (unlikely(!cached)) {
f6373bf3 6873 ret = cache_block_group(block_group, 0);
1d4284bd
CM
6874 BUG_ON(ret < 0);
6875 ret = 0;
817d52f8
JB
6876 }
6877
36cce922
JB
6878 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6879 goto loop;
ea6a478e 6880 if (unlikely(block_group->ro))
2552d17e 6881 goto loop;
0f9dd46c 6882
0a24325e 6883 /*
062c05c4
AO
6884 * Ok we want to try and use the cluster allocator, so
6885 * lets look there
0a24325e 6886 */
062c05c4 6887 if (last_ptr) {
215a63d1 6888 struct btrfs_block_group_cache *used_block_group;
8de972b4 6889 unsigned long aligned_cluster;
fa9c0d79
CM
6890 /*
6891 * the refill lock keeps out other
6892 * people trying to start a new cluster
6893 */
e570fd27
MX
6894 used_block_group = btrfs_lock_cluster(block_group,
6895 last_ptr,
6896 delalloc);
6897 if (!used_block_group)
44fb5511 6898 goto refill_cluster;
274bd4fb 6899
e570fd27
MX
6900 if (used_block_group != block_group &&
6901 (used_block_group->ro ||
6902 !block_group_bits(used_block_group, flags)))
6903 goto release_cluster;
44fb5511 6904
274bd4fb 6905 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
6906 last_ptr,
6907 num_bytes,
6908 used_block_group->key.objectid,
6909 &max_extent_size);
fa9c0d79
CM
6910 if (offset) {
6911 /* we have a block, we're done */
6912 spin_unlock(&last_ptr->refill_lock);
3f7de037 6913 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
6914 used_block_group,
6915 search_start, num_bytes);
215a63d1 6916 if (used_block_group != block_group) {
e570fd27
MX
6917 btrfs_release_block_group(block_group,
6918 delalloc);
215a63d1
MX
6919 block_group = used_block_group;
6920 }
fa9c0d79
CM
6921 goto checks;
6922 }
6923
274bd4fb 6924 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 6925release_cluster:
062c05c4
AO
6926 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6927 * set up a new clusters, so lets just skip it
6928 * and let the allocator find whatever block
6929 * it can find. If we reach this point, we
6930 * will have tried the cluster allocator
6931 * plenty of times and not have found
6932 * anything, so we are likely way too
6933 * fragmented for the clustering stuff to find
a5f6f719
AO
6934 * anything.
6935 *
6936 * However, if the cluster is taken from the
6937 * current block group, release the cluster
6938 * first, so that we stand a better chance of
6939 * succeeding in the unclustered
6940 * allocation. */
6941 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 6942 used_block_group != block_group) {
062c05c4 6943 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
6944 btrfs_release_block_group(used_block_group,
6945 delalloc);
062c05c4
AO
6946 goto unclustered_alloc;
6947 }
6948
fa9c0d79
CM
6949 /*
6950 * this cluster didn't work out, free it and
6951 * start over
6952 */
6953 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6954
e570fd27
MX
6955 if (used_block_group != block_group)
6956 btrfs_release_block_group(used_block_group,
6957 delalloc);
6958refill_cluster:
a5f6f719
AO
6959 if (loop >= LOOP_NO_EMPTY_SIZE) {
6960 spin_unlock(&last_ptr->refill_lock);
6961 goto unclustered_alloc;
6962 }
6963
8de972b4
CM
6964 aligned_cluster = max_t(unsigned long,
6965 empty_cluster + empty_size,
6966 block_group->full_stripe_len);
6967
fa9c0d79 6968 /* allocate a cluster in this block group */
00361589
JB
6969 ret = btrfs_find_space_cluster(root, block_group,
6970 last_ptr, search_start,
6971 num_bytes,
6972 aligned_cluster);
fa9c0d79
CM
6973 if (ret == 0) {
6974 /*
6975 * now pull our allocation out of this
6976 * cluster
6977 */
6978 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
6979 last_ptr,
6980 num_bytes,
6981 search_start,
6982 &max_extent_size);
fa9c0d79
CM
6983 if (offset) {
6984 /* we found one, proceed */
6985 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
6986 trace_btrfs_reserve_extent_cluster(root,
6987 block_group, search_start,
6988 num_bytes);
fa9c0d79
CM
6989 goto checks;
6990 }
0a24325e
JB
6991 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6992 && !failed_cluster_refill) {
817d52f8
JB
6993 spin_unlock(&last_ptr->refill_lock);
6994
0a24325e 6995 failed_cluster_refill = true;
817d52f8
JB
6996 wait_block_group_cache_progress(block_group,
6997 num_bytes + empty_cluster + empty_size);
6998 goto have_block_group;
fa9c0d79 6999 }
817d52f8 7000
fa9c0d79
CM
7001 /*
7002 * at this point we either didn't find a cluster
7003 * or we weren't able to allocate a block from our
7004 * cluster. Free the cluster we've been trying
7005 * to use, and go to the next block group
7006 */
0a24325e 7007 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7008 spin_unlock(&last_ptr->refill_lock);
0a24325e 7009 goto loop;
fa9c0d79
CM
7010 }
7011
062c05c4 7012unclustered_alloc:
a5f6f719
AO
7013 spin_lock(&block_group->free_space_ctl->tree_lock);
7014 if (cached &&
7015 block_group->free_space_ctl->free_space <
7016 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7017 if (block_group->free_space_ctl->free_space >
7018 max_extent_size)
7019 max_extent_size =
7020 block_group->free_space_ctl->free_space;
a5f6f719
AO
7021 spin_unlock(&block_group->free_space_ctl->tree_lock);
7022 goto loop;
7023 }
7024 spin_unlock(&block_group->free_space_ctl->tree_lock);
7025
6226cb0a 7026 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7027 num_bytes, empty_size,
7028 &max_extent_size);
1cdda9b8
JB
7029 /*
7030 * If we didn't find a chunk, and we haven't failed on this
7031 * block group before, and this block group is in the middle of
7032 * caching and we are ok with waiting, then go ahead and wait
7033 * for progress to be made, and set failed_alloc to true.
7034 *
7035 * If failed_alloc is true then we've already waited on this
7036 * block group once and should move on to the next block group.
7037 */
7038 if (!offset && !failed_alloc && !cached &&
7039 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7040 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7041 num_bytes + empty_size);
7042 failed_alloc = true;
817d52f8 7043 goto have_block_group;
1cdda9b8 7044 } else if (!offset) {
60d2adbb
MX
7045 if (!cached)
7046 have_caching_bg = true;
1cdda9b8 7047 goto loop;
817d52f8 7048 }
fa9c0d79 7049checks:
4e54b17a 7050 search_start = ALIGN(offset, root->stripesize);
25179201 7051
2552d17e
JB
7052 /* move on to the next group */
7053 if (search_start + num_bytes >
215a63d1
MX
7054 block_group->key.objectid + block_group->key.offset) {
7055 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7056 goto loop;
6226cb0a 7057 }
f5a31e16 7058
f0486c68 7059 if (offset < search_start)
215a63d1 7060 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7061 search_start - offset);
7062 BUG_ON(offset > search_start);
2552d17e 7063
215a63d1 7064 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7065 alloc_type, delalloc);
f0486c68 7066 if (ret == -EAGAIN) {
215a63d1 7067 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7068 goto loop;
0f9dd46c 7069 }
0b86a832 7070
f0486c68 7071 /* we are all good, lets return */
2552d17e
JB
7072 ins->objectid = search_start;
7073 ins->offset = num_bytes;
d2fb3437 7074
3f7de037
JB
7075 trace_btrfs_reserve_extent(orig_root, block_group,
7076 search_start, num_bytes);
e570fd27 7077 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7078 break;
7079loop:
0a24325e 7080 failed_cluster_refill = false;
1cdda9b8 7081 failed_alloc = false;
b742bb82 7082 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7083 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7084 }
7085 up_read(&space_info->groups_sem);
7086
60d2adbb
MX
7087 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7088 goto search;
7089
b742bb82
YZ
7090 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7091 goto search;
7092
285ff5af 7093 /*
ccf0e725
JB
7094 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7095 * caching kthreads as we move along
817d52f8
JB
7096 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7097 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7098 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7099 * again
fa9c0d79 7100 */
723bda20 7101 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7102 index = 0;
723bda20 7103 loop++;
817d52f8 7104 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7105 struct btrfs_trans_handle *trans;
f017f15f
WS
7106 int exist = 0;
7107
7108 trans = current->journal_info;
7109 if (trans)
7110 exist = 1;
7111 else
7112 trans = btrfs_join_transaction(root);
00361589 7113
00361589
JB
7114 if (IS_ERR(trans)) {
7115 ret = PTR_ERR(trans);
7116 goto out;
7117 }
7118
b6919a58 7119 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7120 CHUNK_ALLOC_FORCE);
7121 /*
7122 * Do not bail out on ENOSPC since we
7123 * can do more things.
7124 */
00361589 7125 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7126 btrfs_abort_transaction(trans,
7127 root, ret);
00361589
JB
7128 else
7129 ret = 0;
f017f15f
WS
7130 if (!exist)
7131 btrfs_end_transaction(trans, root);
00361589 7132 if (ret)
ea658bad 7133 goto out;
2552d17e
JB
7134 }
7135
723bda20
JB
7136 if (loop == LOOP_NO_EMPTY_SIZE) {
7137 empty_size = 0;
7138 empty_cluster = 0;
fa9c0d79 7139 }
723bda20
JB
7140
7141 goto search;
2552d17e
JB
7142 } else if (!ins->objectid) {
7143 ret = -ENOSPC;
d82a6f1d 7144 } else if (ins->objectid) {
80eb234a 7145 ret = 0;
be744175 7146 }
79787eaa 7147out:
a4820398
MX
7148 if (ret == -ENOSPC)
7149 ins->offset = max_extent_size;
0f70abe2 7150 return ret;
fec577fb 7151}
ec44a35c 7152
9ed74f2d
JB
7153static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7154 int dump_block_groups)
0f9dd46c
JB
7155{
7156 struct btrfs_block_group_cache *cache;
b742bb82 7157 int index = 0;
0f9dd46c 7158
9ed74f2d 7159 spin_lock(&info->lock);
efe120a0 7160 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7161 info->flags,
7162 info->total_bytes - info->bytes_used - info->bytes_pinned -
7163 info->bytes_reserved - info->bytes_readonly,
d397712b 7164 (info->full) ? "" : "not ");
efe120a0 7165 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7166 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7167 info->total_bytes, info->bytes_used, info->bytes_pinned,
7168 info->bytes_reserved, info->bytes_may_use,
7169 info->bytes_readonly);
9ed74f2d
JB
7170 spin_unlock(&info->lock);
7171
7172 if (!dump_block_groups)
7173 return;
0f9dd46c 7174
80eb234a 7175 down_read(&info->groups_sem);
b742bb82
YZ
7176again:
7177 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7178 spin_lock(&cache->lock);
efe120a0
FH
7179 printk(KERN_INFO "BTRFS: "
7180 "block group %llu has %llu bytes, "
7181 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7182 cache->key.objectid, cache->key.offset,
7183 btrfs_block_group_used(&cache->item), cache->pinned,
7184 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7185 btrfs_dump_free_space(cache, bytes);
7186 spin_unlock(&cache->lock);
7187 }
b742bb82
YZ
7188 if (++index < BTRFS_NR_RAID_TYPES)
7189 goto again;
80eb234a 7190 up_read(&info->groups_sem);
0f9dd46c 7191}
e8569813 7192
00361589 7193int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7194 u64 num_bytes, u64 min_alloc_size,
7195 u64 empty_size, u64 hint_byte,
e570fd27 7196 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7197{
9e622d6b 7198 bool final_tried = false;
b6919a58 7199 u64 flags;
fec577fb 7200 int ret;
925baedd 7201
b6919a58 7202 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7203again:
db94535d 7204 WARN_ON(num_bytes < root->sectorsize);
00361589 7205 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7206 flags, delalloc);
3b951516 7207
9e622d6b 7208 if (ret == -ENOSPC) {
a4820398
MX
7209 if (!final_tried && ins->offset) {
7210 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7211 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7212 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7213 if (num_bytes == min_alloc_size)
7214 final_tried = true;
7215 goto again;
7216 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7217 struct btrfs_space_info *sinfo;
7218
b6919a58 7219 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7220 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7221 flags, num_bytes);
53804280
JM
7222 if (sinfo)
7223 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7224 }
925baedd 7225 }
0f9dd46c
JB
7226
7227 return ret;
e6dcd2dc
CM
7228}
7229
e688b725 7230static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7231 u64 start, u64 len,
7232 int pin, int delalloc)
65b51a00 7233{
0f9dd46c 7234 struct btrfs_block_group_cache *cache;
1f3c79a2 7235 int ret = 0;
0f9dd46c 7236
0f9dd46c
JB
7237 cache = btrfs_lookup_block_group(root->fs_info, start);
7238 if (!cache) {
c2cf52eb 7239 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7240 start);
0f9dd46c
JB
7241 return -ENOSPC;
7242 }
1f3c79a2 7243
e688b725
CM
7244 if (pin)
7245 pin_down_extent(root, cache, start, len, 1);
7246 else {
dcc82f47
FM
7247 if (btrfs_test_opt(root, DISCARD))
7248 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7249 btrfs_add_free_space(cache, start, len);
e570fd27 7250 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7251 }
31193213 7252
fa9c0d79 7253 btrfs_put_block_group(cache);
817d52f8 7254
1abe9b8a 7255 trace_btrfs_reserved_extent_free(root, start, len);
7256
e6dcd2dc
CM
7257 return ret;
7258}
7259
e688b725 7260int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7261 u64 start, u64 len, int delalloc)
e688b725 7262{
e570fd27 7263 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7264}
7265
7266int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7267 u64 start, u64 len)
7268{
e570fd27 7269 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7270}
7271
5d4f98a2
YZ
7272static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7273 struct btrfs_root *root,
7274 u64 parent, u64 root_objectid,
7275 u64 flags, u64 owner, u64 offset,
7276 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7277{
7278 int ret;
5d4f98a2 7279 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7280 struct btrfs_extent_item *extent_item;
5d4f98a2 7281 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7282 struct btrfs_path *path;
5d4f98a2
YZ
7283 struct extent_buffer *leaf;
7284 int type;
7285 u32 size;
26b8003f 7286
5d4f98a2
YZ
7287 if (parent > 0)
7288 type = BTRFS_SHARED_DATA_REF_KEY;
7289 else
7290 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7291
5d4f98a2 7292 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7293
7294 path = btrfs_alloc_path();
db5b493a
TI
7295 if (!path)
7296 return -ENOMEM;
47e4bb98 7297
b9473439 7298 path->leave_spinning = 1;
5d4f98a2
YZ
7299 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7300 ins, size);
79787eaa
JM
7301 if (ret) {
7302 btrfs_free_path(path);
7303 return ret;
7304 }
0f9dd46c 7305
5d4f98a2
YZ
7306 leaf = path->nodes[0];
7307 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7308 struct btrfs_extent_item);
5d4f98a2
YZ
7309 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7310 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7311 btrfs_set_extent_flags(leaf, extent_item,
7312 flags | BTRFS_EXTENT_FLAG_DATA);
7313
7314 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7315 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7316 if (parent > 0) {
7317 struct btrfs_shared_data_ref *ref;
7318 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7319 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7320 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7321 } else {
7322 struct btrfs_extent_data_ref *ref;
7323 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7324 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7325 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7326 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7327 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7328 }
47e4bb98
CM
7329
7330 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7331 btrfs_free_path(path);
f510cfec 7332
fcebe456
JB
7333 /* Always set parent to 0 here since its exclusive anyway. */
7334 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7335 ins->objectid, ins->offset,
7336 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7337 if (ret)
7338 return ret;
7339
ce93ec54 7340 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7341 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7342 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7343 ins->objectid, ins->offset);
f5947066
CM
7344 BUG();
7345 }
0be5dc67 7346 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7347 return ret;
7348}
7349
5d4f98a2
YZ
7350static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7351 struct btrfs_root *root,
7352 u64 parent, u64 root_objectid,
7353 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7354 int level, struct btrfs_key *ins,
7355 int no_quota)
e6dcd2dc
CM
7356{
7357 int ret;
5d4f98a2
YZ
7358 struct btrfs_fs_info *fs_info = root->fs_info;
7359 struct btrfs_extent_item *extent_item;
7360 struct btrfs_tree_block_info *block_info;
7361 struct btrfs_extent_inline_ref *iref;
7362 struct btrfs_path *path;
7363 struct extent_buffer *leaf;
3173a18f 7364 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7365 u64 num_bytes = ins->offset;
3173a18f
JB
7366 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7367 SKINNY_METADATA);
7368
7369 if (!skinny_metadata)
7370 size += sizeof(*block_info);
1c2308f8 7371
5d4f98a2 7372 path = btrfs_alloc_path();
857cc2fc
JB
7373 if (!path) {
7374 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7375 root->nodesize);
d8926bb3 7376 return -ENOMEM;
857cc2fc 7377 }
56bec294 7378
5d4f98a2
YZ
7379 path->leave_spinning = 1;
7380 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7381 ins, size);
79787eaa 7382 if (ret) {
dd825259 7383 btrfs_free_path(path);
857cc2fc 7384 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7385 root->nodesize);
79787eaa
JM
7386 return ret;
7387 }
5d4f98a2
YZ
7388
7389 leaf = path->nodes[0];
7390 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7391 struct btrfs_extent_item);
7392 btrfs_set_extent_refs(leaf, extent_item, 1);
7393 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7394 btrfs_set_extent_flags(leaf, extent_item,
7395 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7396
3173a18f
JB
7397 if (skinny_metadata) {
7398 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7399 num_bytes = root->nodesize;
3173a18f
JB
7400 } else {
7401 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7402 btrfs_set_tree_block_key(leaf, block_info, key);
7403 btrfs_set_tree_block_level(leaf, block_info, level);
7404 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7405 }
5d4f98a2 7406
5d4f98a2
YZ
7407 if (parent > 0) {
7408 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7409 btrfs_set_extent_inline_ref_type(leaf, iref,
7410 BTRFS_SHARED_BLOCK_REF_KEY);
7411 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7412 } else {
7413 btrfs_set_extent_inline_ref_type(leaf, iref,
7414 BTRFS_TREE_BLOCK_REF_KEY);
7415 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7416 }
7417
7418 btrfs_mark_buffer_dirty(leaf);
7419 btrfs_free_path(path);
7420
fcebe456
JB
7421 if (!no_quota) {
7422 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7423 ins->objectid, num_bytes,
7424 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7425 if (ret)
7426 return ret;
7427 }
7428
ce93ec54
JB
7429 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7430 1);
79787eaa 7431 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7432 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7433 ins->objectid, ins->offset);
5d4f98a2
YZ
7434 BUG();
7435 }
0be5dc67 7436
707e8a07 7437 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7438 return ret;
7439}
7440
7441int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7442 struct btrfs_root *root,
7443 u64 root_objectid, u64 owner,
7444 u64 offset, struct btrfs_key *ins)
7445{
7446 int ret;
7447
7448 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7449
66d7e7f0
AJ
7450 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7451 ins->offset, 0,
7452 root_objectid, owner, offset,
7453 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7454 return ret;
7455}
e02119d5
CM
7456
7457/*
7458 * this is used by the tree logging recovery code. It records that
7459 * an extent has been allocated and makes sure to clear the free
7460 * space cache bits as well
7461 */
5d4f98a2
YZ
7462int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7463 struct btrfs_root *root,
7464 u64 root_objectid, u64 owner, u64 offset,
7465 struct btrfs_key *ins)
e02119d5
CM
7466{
7467 int ret;
7468 struct btrfs_block_group_cache *block_group;
11833d66 7469
8c2a1a30
JB
7470 /*
7471 * Mixed block groups will exclude before processing the log so we only
7472 * need to do the exlude dance if this fs isn't mixed.
7473 */
7474 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7475 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7476 if (ret)
8c2a1a30 7477 return ret;
11833d66
YZ
7478 }
7479
8c2a1a30
JB
7480 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7481 if (!block_group)
7482 return -EINVAL;
7483
fb25e914 7484 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7485 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7486 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7487 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7488 0, owner, offset, ins, 1);
b50c6e25 7489 btrfs_put_block_group(block_group);
e02119d5
CM
7490 return ret;
7491}
7492
48a3b636
ES
7493static struct extent_buffer *
7494btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7495 u64 bytenr, int level)
65b51a00
CM
7496{
7497 struct extent_buffer *buf;
7498
a83fffb7 7499 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7500 if (!buf)
7501 return ERR_PTR(-ENOMEM);
7502 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7503 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7504 btrfs_tree_lock(buf);
01d58472 7505 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7506 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7507
7508 btrfs_set_lock_blocking(buf);
65b51a00 7509 btrfs_set_buffer_uptodate(buf);
b4ce94de 7510
d0c803c4 7511 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7512 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7513 /*
7514 * we allow two log transactions at a time, use different
7515 * EXENT bit to differentiate dirty pages.
7516 */
656f30db 7517 if (buf->log_index == 0)
8cef4e16
YZ
7518 set_extent_dirty(&root->dirty_log_pages, buf->start,
7519 buf->start + buf->len - 1, GFP_NOFS);
7520 else
7521 set_extent_new(&root->dirty_log_pages, buf->start,
7522 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7523 } else {
656f30db 7524 buf->log_index = -1;
d0c803c4 7525 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7526 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7527 }
65b51a00 7528 trans->blocks_used++;
b4ce94de 7529 /* this returns a buffer locked for blocking */
65b51a00
CM
7530 return buf;
7531}
7532
f0486c68
YZ
7533static struct btrfs_block_rsv *
7534use_block_rsv(struct btrfs_trans_handle *trans,
7535 struct btrfs_root *root, u32 blocksize)
7536{
7537 struct btrfs_block_rsv *block_rsv;
68a82277 7538 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7539 int ret;
d88033db 7540 bool global_updated = false;
f0486c68
YZ
7541
7542 block_rsv = get_block_rsv(trans, root);
7543
b586b323
MX
7544 if (unlikely(block_rsv->size == 0))
7545 goto try_reserve;
d88033db 7546again:
f0486c68
YZ
7547 ret = block_rsv_use_bytes(block_rsv, blocksize);
7548 if (!ret)
7549 return block_rsv;
7550
b586b323
MX
7551 if (block_rsv->failfast)
7552 return ERR_PTR(ret);
7553
d88033db
MX
7554 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7555 global_updated = true;
7556 update_global_block_rsv(root->fs_info);
7557 goto again;
7558 }
7559
b586b323
MX
7560 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7561 static DEFINE_RATELIMIT_STATE(_rs,
7562 DEFAULT_RATELIMIT_INTERVAL * 10,
7563 /*DEFAULT_RATELIMIT_BURST*/ 1);
7564 if (__ratelimit(&_rs))
7565 WARN(1, KERN_DEBUG
efe120a0 7566 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7567 }
7568try_reserve:
7569 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7570 BTRFS_RESERVE_NO_FLUSH);
7571 if (!ret)
7572 return block_rsv;
7573 /*
7574 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7575 * the global reserve if its space type is the same as the global
7576 * reservation.
b586b323 7577 */
5881cfc9
MX
7578 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7579 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7580 ret = block_rsv_use_bytes(global_rsv, blocksize);
7581 if (!ret)
7582 return global_rsv;
7583 }
7584 return ERR_PTR(ret);
f0486c68
YZ
7585}
7586
8c2a3ca2
JB
7587static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7588 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7589{
7590 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7591 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7592}
7593
fec577fb 7594/*
f0486c68
YZ
7595 * finds a free extent and does all the dirty work required for allocation
7596 * returns the key for the extent through ins, and a tree buffer for
7597 * the first block of the extent through buf.
7598 *
67b7859e 7599 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7600 */
4d75f8a9
DS
7601struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7602 struct btrfs_root *root,
5d4f98a2
YZ
7603 u64 parent, u64 root_objectid,
7604 struct btrfs_disk_key *key, int level,
5581a51a 7605 u64 hint, u64 empty_size)
fec577fb 7606{
e2fa7227 7607 struct btrfs_key ins;
f0486c68 7608 struct btrfs_block_rsv *block_rsv;
5f39d397 7609 struct extent_buffer *buf;
67b7859e 7610 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7611 u64 flags = 0;
7612 int ret;
4d75f8a9 7613 u32 blocksize = root->nodesize;
3173a18f
JB
7614 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7615 SKINNY_METADATA);
fec577fb 7616
fccb84c9 7617 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7618 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7619 level);
faa2dbf0
JB
7620 if (!IS_ERR(buf))
7621 root->alloc_bytenr += blocksize;
7622 return buf;
7623 }
fccb84c9 7624
f0486c68
YZ
7625 block_rsv = use_block_rsv(trans, root, blocksize);
7626 if (IS_ERR(block_rsv))
7627 return ERR_CAST(block_rsv);
7628
00361589 7629 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7630 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7631 if (ret)
7632 goto out_unuse;
55c69072 7633
fe864576 7634 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7635 if (IS_ERR(buf)) {
7636 ret = PTR_ERR(buf);
7637 goto out_free_reserved;
7638 }
f0486c68
YZ
7639
7640 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7641 if (parent == 0)
7642 parent = ins.objectid;
7643 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7644 } else
7645 BUG_ON(parent > 0);
7646
7647 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7648 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7649 if (!extent_op) {
7650 ret = -ENOMEM;
7651 goto out_free_buf;
7652 }
f0486c68
YZ
7653 if (key)
7654 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7655 else
7656 memset(&extent_op->key, 0, sizeof(extent_op->key));
7657 extent_op->flags_to_set = flags;
3173a18f
JB
7658 if (skinny_metadata)
7659 extent_op->update_key = 0;
7660 else
7661 extent_op->update_key = 1;
f0486c68
YZ
7662 extent_op->update_flags = 1;
7663 extent_op->is_data = 0;
b1c79e09 7664 extent_op->level = level;
f0486c68 7665
66d7e7f0 7666 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7667 ins.objectid, ins.offset,
7668 parent, root_objectid, level,
7669 BTRFS_ADD_DELAYED_EXTENT,
7670 extent_op, 0);
7671 if (ret)
7672 goto out_free_delayed;
f0486c68 7673 }
fec577fb 7674 return buf;
67b7859e
OS
7675
7676out_free_delayed:
7677 btrfs_free_delayed_extent_op(extent_op);
7678out_free_buf:
7679 free_extent_buffer(buf);
7680out_free_reserved:
7681 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7682out_unuse:
7683 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7684 return ERR_PTR(ret);
fec577fb 7685}
a28ec197 7686
2c47e605
YZ
7687struct walk_control {
7688 u64 refs[BTRFS_MAX_LEVEL];
7689 u64 flags[BTRFS_MAX_LEVEL];
7690 struct btrfs_key update_progress;
7691 int stage;
7692 int level;
7693 int shared_level;
7694 int update_ref;
7695 int keep_locks;
1c4850e2
YZ
7696 int reada_slot;
7697 int reada_count;
66d7e7f0 7698 int for_reloc;
2c47e605
YZ
7699};
7700
7701#define DROP_REFERENCE 1
7702#define UPDATE_BACKREF 2
7703
1c4850e2
YZ
7704static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7705 struct btrfs_root *root,
7706 struct walk_control *wc,
7707 struct btrfs_path *path)
6407bf6d 7708{
1c4850e2
YZ
7709 u64 bytenr;
7710 u64 generation;
7711 u64 refs;
94fcca9f 7712 u64 flags;
5d4f98a2 7713 u32 nritems;
1c4850e2
YZ
7714 u32 blocksize;
7715 struct btrfs_key key;
7716 struct extent_buffer *eb;
6407bf6d 7717 int ret;
1c4850e2
YZ
7718 int slot;
7719 int nread = 0;
6407bf6d 7720
1c4850e2
YZ
7721 if (path->slots[wc->level] < wc->reada_slot) {
7722 wc->reada_count = wc->reada_count * 2 / 3;
7723 wc->reada_count = max(wc->reada_count, 2);
7724 } else {
7725 wc->reada_count = wc->reada_count * 3 / 2;
7726 wc->reada_count = min_t(int, wc->reada_count,
7727 BTRFS_NODEPTRS_PER_BLOCK(root));
7728 }
7bb86316 7729
1c4850e2
YZ
7730 eb = path->nodes[wc->level];
7731 nritems = btrfs_header_nritems(eb);
707e8a07 7732 blocksize = root->nodesize;
bd56b302 7733
1c4850e2
YZ
7734 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7735 if (nread >= wc->reada_count)
7736 break;
bd56b302 7737
2dd3e67b 7738 cond_resched();
1c4850e2
YZ
7739 bytenr = btrfs_node_blockptr(eb, slot);
7740 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7741
1c4850e2
YZ
7742 if (slot == path->slots[wc->level])
7743 goto reada;
5d4f98a2 7744
1c4850e2
YZ
7745 if (wc->stage == UPDATE_BACKREF &&
7746 generation <= root->root_key.offset)
bd56b302
CM
7747 continue;
7748
94fcca9f 7749 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7750 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7751 wc->level - 1, 1, &refs,
7752 &flags);
79787eaa
JM
7753 /* We don't care about errors in readahead. */
7754 if (ret < 0)
7755 continue;
94fcca9f
YZ
7756 BUG_ON(refs == 0);
7757
1c4850e2 7758 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7759 if (refs == 1)
7760 goto reada;
bd56b302 7761
94fcca9f
YZ
7762 if (wc->level == 1 &&
7763 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7764 continue;
1c4850e2
YZ
7765 if (!wc->update_ref ||
7766 generation <= root->root_key.offset)
7767 continue;
7768 btrfs_node_key_to_cpu(eb, &key, slot);
7769 ret = btrfs_comp_cpu_keys(&key,
7770 &wc->update_progress);
7771 if (ret < 0)
7772 continue;
94fcca9f
YZ
7773 } else {
7774 if (wc->level == 1 &&
7775 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7776 continue;
6407bf6d 7777 }
1c4850e2 7778reada:
d3e46fea 7779 readahead_tree_block(root, bytenr);
1c4850e2 7780 nread++;
20524f02 7781 }
1c4850e2 7782 wc->reada_slot = slot;
20524f02 7783}
2c47e605 7784
1152651a
MF
7785static int account_leaf_items(struct btrfs_trans_handle *trans,
7786 struct btrfs_root *root,
7787 struct extent_buffer *eb)
7788{
7789 int nr = btrfs_header_nritems(eb);
7790 int i, extent_type, ret;
7791 struct btrfs_key key;
7792 struct btrfs_file_extent_item *fi;
7793 u64 bytenr, num_bytes;
7794
7795 for (i = 0; i < nr; i++) {
7796 btrfs_item_key_to_cpu(eb, &key, i);
7797
7798 if (key.type != BTRFS_EXTENT_DATA_KEY)
7799 continue;
7800
7801 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7802 /* filter out non qgroup-accountable extents */
7803 extent_type = btrfs_file_extent_type(eb, fi);
7804
7805 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7806 continue;
7807
7808 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7809 if (!bytenr)
7810 continue;
7811
7812 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7813
7814 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7815 root->objectid,
7816 bytenr, num_bytes,
7817 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7818 if (ret)
7819 return ret;
7820 }
7821 return 0;
7822}
7823
7824/*
7825 * Walk up the tree from the bottom, freeing leaves and any interior
7826 * nodes which have had all slots visited. If a node (leaf or
7827 * interior) is freed, the node above it will have it's slot
7828 * incremented. The root node will never be freed.
7829 *
7830 * At the end of this function, we should have a path which has all
7831 * slots incremented to the next position for a search. If we need to
7832 * read a new node it will be NULL and the node above it will have the
7833 * correct slot selected for a later read.
7834 *
7835 * If we increment the root nodes slot counter past the number of
7836 * elements, 1 is returned to signal completion of the search.
7837 */
7838static int adjust_slots_upwards(struct btrfs_root *root,
7839 struct btrfs_path *path, int root_level)
7840{
7841 int level = 0;
7842 int nr, slot;
7843 struct extent_buffer *eb;
7844
7845 if (root_level == 0)
7846 return 1;
7847
7848 while (level <= root_level) {
7849 eb = path->nodes[level];
7850 nr = btrfs_header_nritems(eb);
7851 path->slots[level]++;
7852 slot = path->slots[level];
7853 if (slot >= nr || level == 0) {
7854 /*
7855 * Don't free the root - we will detect this
7856 * condition after our loop and return a
7857 * positive value for caller to stop walking the tree.
7858 */
7859 if (level != root_level) {
7860 btrfs_tree_unlock_rw(eb, path->locks[level]);
7861 path->locks[level] = 0;
7862
7863 free_extent_buffer(eb);
7864 path->nodes[level] = NULL;
7865 path->slots[level] = 0;
7866 }
7867 } else {
7868 /*
7869 * We have a valid slot to walk back down
7870 * from. Stop here so caller can process these
7871 * new nodes.
7872 */
7873 break;
7874 }
7875
7876 level++;
7877 }
7878
7879 eb = path->nodes[root_level];
7880 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7881 return 1;
7882
7883 return 0;
7884}
7885
7886/*
7887 * root_eb is the subtree root and is locked before this function is called.
7888 */
7889static int account_shared_subtree(struct btrfs_trans_handle *trans,
7890 struct btrfs_root *root,
7891 struct extent_buffer *root_eb,
7892 u64 root_gen,
7893 int root_level)
7894{
7895 int ret = 0;
7896 int level;
7897 struct extent_buffer *eb = root_eb;
7898 struct btrfs_path *path = NULL;
7899
7900 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7901 BUG_ON(root_eb == NULL);
7902
7903 if (!root->fs_info->quota_enabled)
7904 return 0;
7905
7906 if (!extent_buffer_uptodate(root_eb)) {
7907 ret = btrfs_read_buffer(root_eb, root_gen);
7908 if (ret)
7909 goto out;
7910 }
7911
7912 if (root_level == 0) {
7913 ret = account_leaf_items(trans, root, root_eb);
7914 goto out;
7915 }
7916
7917 path = btrfs_alloc_path();
7918 if (!path)
7919 return -ENOMEM;
7920
7921 /*
7922 * Walk down the tree. Missing extent blocks are filled in as
7923 * we go. Metadata is accounted every time we read a new
7924 * extent block.
7925 *
7926 * When we reach a leaf, we account for file extent items in it,
7927 * walk back up the tree (adjusting slot pointers as we go)
7928 * and restart the search process.
7929 */
7930 extent_buffer_get(root_eb); /* For path */
7931 path->nodes[root_level] = root_eb;
7932 path->slots[root_level] = 0;
7933 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7934walk_down:
7935 level = root_level;
7936 while (level >= 0) {
7937 if (path->nodes[level] == NULL) {
1152651a
MF
7938 int parent_slot;
7939 u64 child_gen;
7940 u64 child_bytenr;
7941
7942 /* We need to get child blockptr/gen from
7943 * parent before we can read it. */
7944 eb = path->nodes[level + 1];
7945 parent_slot = path->slots[level + 1];
7946 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7947 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7948
ce86cd59 7949 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
7950 if (IS_ERR(eb)) {
7951 ret = PTR_ERR(eb);
7952 goto out;
7953 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 7954 free_extent_buffer(eb);
64c043de 7955 ret = -EIO;
1152651a
MF
7956 goto out;
7957 }
7958
7959 path->nodes[level] = eb;
7960 path->slots[level] = 0;
7961
7962 btrfs_tree_read_lock(eb);
7963 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7964 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7965
7966 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7967 root->objectid,
7968 child_bytenr,
ce86cd59 7969 root->nodesize,
1152651a
MF
7970 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7971 0);
7972 if (ret)
7973 goto out;
7974
7975 }
7976
7977 if (level == 0) {
7978 ret = account_leaf_items(trans, root, path->nodes[level]);
7979 if (ret)
7980 goto out;
7981
7982 /* Nonzero return here means we completed our search */
7983 ret = adjust_slots_upwards(root, path, root_level);
7984 if (ret)
7985 break;
7986
7987 /* Restart search with new slots */
7988 goto walk_down;
7989 }
7990
7991 level--;
7992 }
7993
7994 ret = 0;
7995out:
7996 btrfs_free_path(path);
7997
7998 return ret;
7999}
8000
f82d02d9 8001/*
2c016dc2 8002 * helper to process tree block while walking down the tree.
2c47e605 8003 *
2c47e605
YZ
8004 * when wc->stage == UPDATE_BACKREF, this function updates
8005 * back refs for pointers in the block.
8006 *
8007 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8008 */
2c47e605 8009static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8010 struct btrfs_root *root,
2c47e605 8011 struct btrfs_path *path,
94fcca9f 8012 struct walk_control *wc, int lookup_info)
f82d02d9 8013{
2c47e605
YZ
8014 int level = wc->level;
8015 struct extent_buffer *eb = path->nodes[level];
2c47e605 8016 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8017 int ret;
8018
2c47e605
YZ
8019 if (wc->stage == UPDATE_BACKREF &&
8020 btrfs_header_owner(eb) != root->root_key.objectid)
8021 return 1;
f82d02d9 8022
2c47e605
YZ
8023 /*
8024 * when reference count of tree block is 1, it won't increase
8025 * again. once full backref flag is set, we never clear it.
8026 */
94fcca9f
YZ
8027 if (lookup_info &&
8028 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8029 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8030 BUG_ON(!path->locks[level]);
8031 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8032 eb->start, level, 1,
2c47e605
YZ
8033 &wc->refs[level],
8034 &wc->flags[level]);
79787eaa
JM
8035 BUG_ON(ret == -ENOMEM);
8036 if (ret)
8037 return ret;
2c47e605
YZ
8038 BUG_ON(wc->refs[level] == 0);
8039 }
5d4f98a2 8040
2c47e605
YZ
8041 if (wc->stage == DROP_REFERENCE) {
8042 if (wc->refs[level] > 1)
8043 return 1;
f82d02d9 8044
2c47e605 8045 if (path->locks[level] && !wc->keep_locks) {
bd681513 8046 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8047 path->locks[level] = 0;
8048 }
8049 return 0;
8050 }
f82d02d9 8051
2c47e605
YZ
8052 /* wc->stage == UPDATE_BACKREF */
8053 if (!(wc->flags[level] & flag)) {
8054 BUG_ON(!path->locks[level]);
e339a6b0 8055 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8056 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8057 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8058 BUG_ON(ret); /* -ENOMEM */
2c47e605 8059 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8060 eb->len, flag,
8061 btrfs_header_level(eb), 0);
79787eaa 8062 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8063 wc->flags[level] |= flag;
8064 }
8065
8066 /*
8067 * the block is shared by multiple trees, so it's not good to
8068 * keep the tree lock
8069 */
8070 if (path->locks[level] && level > 0) {
bd681513 8071 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8072 path->locks[level] = 0;
8073 }
8074 return 0;
8075}
8076
1c4850e2 8077/*
2c016dc2 8078 * helper to process tree block pointer.
1c4850e2
YZ
8079 *
8080 * when wc->stage == DROP_REFERENCE, this function checks
8081 * reference count of the block pointed to. if the block
8082 * is shared and we need update back refs for the subtree
8083 * rooted at the block, this function changes wc->stage to
8084 * UPDATE_BACKREF. if the block is shared and there is no
8085 * need to update back, this function drops the reference
8086 * to the block.
8087 *
8088 * NOTE: return value 1 means we should stop walking down.
8089 */
8090static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8091 struct btrfs_root *root,
8092 struct btrfs_path *path,
94fcca9f 8093 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8094{
8095 u64 bytenr;
8096 u64 generation;
8097 u64 parent;
8098 u32 blocksize;
8099 struct btrfs_key key;
8100 struct extent_buffer *next;
8101 int level = wc->level;
8102 int reada = 0;
8103 int ret = 0;
1152651a 8104 bool need_account = false;
1c4850e2
YZ
8105
8106 generation = btrfs_node_ptr_generation(path->nodes[level],
8107 path->slots[level]);
8108 /*
8109 * if the lower level block was created before the snapshot
8110 * was created, we know there is no need to update back refs
8111 * for the subtree
8112 */
8113 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8114 generation <= root->root_key.offset) {
8115 *lookup_info = 1;
1c4850e2 8116 return 1;
94fcca9f 8117 }
1c4850e2
YZ
8118
8119 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8120 blocksize = root->nodesize;
1c4850e2 8121
01d58472 8122 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8123 if (!next) {
a83fffb7 8124 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8125 if (!next)
8126 return -ENOMEM;
b2aaaa3b
JB
8127 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8128 level - 1);
1c4850e2
YZ
8129 reada = 1;
8130 }
8131 btrfs_tree_lock(next);
8132 btrfs_set_lock_blocking(next);
8133
3173a18f 8134 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8135 &wc->refs[level - 1],
8136 &wc->flags[level - 1]);
79787eaa
JM
8137 if (ret < 0) {
8138 btrfs_tree_unlock(next);
8139 return ret;
8140 }
8141
c2cf52eb
SK
8142 if (unlikely(wc->refs[level - 1] == 0)) {
8143 btrfs_err(root->fs_info, "Missing references.");
8144 BUG();
8145 }
94fcca9f 8146 *lookup_info = 0;
1c4850e2 8147
94fcca9f 8148 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8149 if (wc->refs[level - 1] > 1) {
1152651a 8150 need_account = true;
94fcca9f
YZ
8151 if (level == 1 &&
8152 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8153 goto skip;
8154
1c4850e2
YZ
8155 if (!wc->update_ref ||
8156 generation <= root->root_key.offset)
8157 goto skip;
8158
8159 btrfs_node_key_to_cpu(path->nodes[level], &key,
8160 path->slots[level]);
8161 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8162 if (ret < 0)
8163 goto skip;
8164
8165 wc->stage = UPDATE_BACKREF;
8166 wc->shared_level = level - 1;
8167 }
94fcca9f
YZ
8168 } else {
8169 if (level == 1 &&
8170 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8171 goto skip;
1c4850e2
YZ
8172 }
8173
b9fab919 8174 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8175 btrfs_tree_unlock(next);
8176 free_extent_buffer(next);
8177 next = NULL;
94fcca9f 8178 *lookup_info = 1;
1c4850e2
YZ
8179 }
8180
8181 if (!next) {
8182 if (reada && level == 1)
8183 reada_walk_down(trans, root, wc, path);
ce86cd59 8184 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8185 if (IS_ERR(next)) {
8186 return PTR_ERR(next);
8187 } else if (!extent_buffer_uptodate(next)) {
416bc658 8188 free_extent_buffer(next);
97d9a8a4 8189 return -EIO;
416bc658 8190 }
1c4850e2
YZ
8191 btrfs_tree_lock(next);
8192 btrfs_set_lock_blocking(next);
8193 }
8194
8195 level--;
8196 BUG_ON(level != btrfs_header_level(next));
8197 path->nodes[level] = next;
8198 path->slots[level] = 0;
bd681513 8199 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8200 wc->level = level;
8201 if (wc->level == 1)
8202 wc->reada_slot = 0;
8203 return 0;
8204skip:
8205 wc->refs[level - 1] = 0;
8206 wc->flags[level - 1] = 0;
94fcca9f
YZ
8207 if (wc->stage == DROP_REFERENCE) {
8208 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8209 parent = path->nodes[level]->start;
8210 } else {
8211 BUG_ON(root->root_key.objectid !=
8212 btrfs_header_owner(path->nodes[level]));
8213 parent = 0;
8214 }
1c4850e2 8215
1152651a
MF
8216 if (need_account) {
8217 ret = account_shared_subtree(trans, root, next,
8218 generation, level - 1);
8219 if (ret) {
8220 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8221 "%d accounting shared subtree. Quota "
8222 "is out of sync, rescan required.\n",
8223 root->fs_info->sb->s_id, ret);
8224 }
8225 }
94fcca9f 8226 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8227 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8228 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8229 }
1c4850e2
YZ
8230 btrfs_tree_unlock(next);
8231 free_extent_buffer(next);
94fcca9f 8232 *lookup_info = 1;
1c4850e2
YZ
8233 return 1;
8234}
8235
2c47e605 8236/*
2c016dc2 8237 * helper to process tree block while walking up the tree.
2c47e605
YZ
8238 *
8239 * when wc->stage == DROP_REFERENCE, this function drops
8240 * reference count on the block.
8241 *
8242 * when wc->stage == UPDATE_BACKREF, this function changes
8243 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8244 * to UPDATE_BACKREF previously while processing the block.
8245 *
8246 * NOTE: return value 1 means we should stop walking up.
8247 */
8248static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8249 struct btrfs_root *root,
8250 struct btrfs_path *path,
8251 struct walk_control *wc)
8252{
f0486c68 8253 int ret;
2c47e605
YZ
8254 int level = wc->level;
8255 struct extent_buffer *eb = path->nodes[level];
8256 u64 parent = 0;
8257
8258 if (wc->stage == UPDATE_BACKREF) {
8259 BUG_ON(wc->shared_level < level);
8260 if (level < wc->shared_level)
8261 goto out;
8262
2c47e605
YZ
8263 ret = find_next_key(path, level + 1, &wc->update_progress);
8264 if (ret > 0)
8265 wc->update_ref = 0;
8266
8267 wc->stage = DROP_REFERENCE;
8268 wc->shared_level = -1;
8269 path->slots[level] = 0;
8270
8271 /*
8272 * check reference count again if the block isn't locked.
8273 * we should start walking down the tree again if reference
8274 * count is one.
8275 */
8276 if (!path->locks[level]) {
8277 BUG_ON(level == 0);
8278 btrfs_tree_lock(eb);
8279 btrfs_set_lock_blocking(eb);
bd681513 8280 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8281
8282 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8283 eb->start, level, 1,
2c47e605
YZ
8284 &wc->refs[level],
8285 &wc->flags[level]);
79787eaa
JM
8286 if (ret < 0) {
8287 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8288 path->locks[level] = 0;
79787eaa
JM
8289 return ret;
8290 }
2c47e605
YZ
8291 BUG_ON(wc->refs[level] == 0);
8292 if (wc->refs[level] == 1) {
bd681513 8293 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8294 path->locks[level] = 0;
2c47e605
YZ
8295 return 1;
8296 }
f82d02d9 8297 }
2c47e605 8298 }
f82d02d9 8299
2c47e605
YZ
8300 /* wc->stage == DROP_REFERENCE */
8301 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8302
2c47e605
YZ
8303 if (wc->refs[level] == 1) {
8304 if (level == 0) {
8305 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8306 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8307 else
e339a6b0 8308 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8309 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8310 ret = account_leaf_items(trans, root, eb);
8311 if (ret) {
8312 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8313 "%d accounting leaf items. Quota "
8314 "is out of sync, rescan required.\n",
8315 root->fs_info->sb->s_id, ret);
8316 }
2c47e605
YZ
8317 }
8318 /* make block locked assertion in clean_tree_block happy */
8319 if (!path->locks[level] &&
8320 btrfs_header_generation(eb) == trans->transid) {
8321 btrfs_tree_lock(eb);
8322 btrfs_set_lock_blocking(eb);
bd681513 8323 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8324 }
01d58472 8325 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8326 }
8327
8328 if (eb == root->node) {
8329 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8330 parent = eb->start;
8331 else
8332 BUG_ON(root->root_key.objectid !=
8333 btrfs_header_owner(eb));
8334 } else {
8335 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8336 parent = path->nodes[level + 1]->start;
8337 else
8338 BUG_ON(root->root_key.objectid !=
8339 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8340 }
f82d02d9 8341
5581a51a 8342 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8343out:
8344 wc->refs[level] = 0;
8345 wc->flags[level] = 0;
f0486c68 8346 return 0;
2c47e605
YZ
8347}
8348
8349static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8350 struct btrfs_root *root,
8351 struct btrfs_path *path,
8352 struct walk_control *wc)
8353{
2c47e605 8354 int level = wc->level;
94fcca9f 8355 int lookup_info = 1;
2c47e605
YZ
8356 int ret;
8357
8358 while (level >= 0) {
94fcca9f 8359 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8360 if (ret > 0)
8361 break;
8362
8363 if (level == 0)
8364 break;
8365
7a7965f8
YZ
8366 if (path->slots[level] >=
8367 btrfs_header_nritems(path->nodes[level]))
8368 break;
8369
94fcca9f 8370 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8371 if (ret > 0) {
8372 path->slots[level]++;
8373 continue;
90d2c51d
MX
8374 } else if (ret < 0)
8375 return ret;
1c4850e2 8376 level = wc->level;
f82d02d9 8377 }
f82d02d9
YZ
8378 return 0;
8379}
8380
d397712b 8381static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8382 struct btrfs_root *root,
f82d02d9 8383 struct btrfs_path *path,
2c47e605 8384 struct walk_control *wc, int max_level)
20524f02 8385{
2c47e605 8386 int level = wc->level;
20524f02 8387 int ret;
9f3a7427 8388
2c47e605
YZ
8389 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8390 while (level < max_level && path->nodes[level]) {
8391 wc->level = level;
8392 if (path->slots[level] + 1 <
8393 btrfs_header_nritems(path->nodes[level])) {
8394 path->slots[level]++;
20524f02
CM
8395 return 0;
8396 } else {
2c47e605
YZ
8397 ret = walk_up_proc(trans, root, path, wc);
8398 if (ret > 0)
8399 return 0;
bd56b302 8400
2c47e605 8401 if (path->locks[level]) {
bd681513
CM
8402 btrfs_tree_unlock_rw(path->nodes[level],
8403 path->locks[level]);
2c47e605 8404 path->locks[level] = 0;
f82d02d9 8405 }
2c47e605
YZ
8406 free_extent_buffer(path->nodes[level]);
8407 path->nodes[level] = NULL;
8408 level++;
20524f02
CM
8409 }
8410 }
8411 return 1;
8412}
8413
9aca1d51 8414/*
2c47e605
YZ
8415 * drop a subvolume tree.
8416 *
8417 * this function traverses the tree freeing any blocks that only
8418 * referenced by the tree.
8419 *
8420 * when a shared tree block is found. this function decreases its
8421 * reference count by one. if update_ref is true, this function
8422 * also make sure backrefs for the shared block and all lower level
8423 * blocks are properly updated.
9d1a2a3a
DS
8424 *
8425 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8426 */
2c536799 8427int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8428 struct btrfs_block_rsv *block_rsv, int update_ref,
8429 int for_reloc)
20524f02 8430{
5caf2a00 8431 struct btrfs_path *path;
2c47e605
YZ
8432 struct btrfs_trans_handle *trans;
8433 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8434 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8435 struct walk_control *wc;
8436 struct btrfs_key key;
8437 int err = 0;
8438 int ret;
8439 int level;
d29a9f62 8440 bool root_dropped = false;
20524f02 8441
1152651a
MF
8442 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8443
5caf2a00 8444 path = btrfs_alloc_path();
cb1b69f4
TI
8445 if (!path) {
8446 err = -ENOMEM;
8447 goto out;
8448 }
20524f02 8449
2c47e605 8450 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8451 if (!wc) {
8452 btrfs_free_path(path);
cb1b69f4
TI
8453 err = -ENOMEM;
8454 goto out;
38a1a919 8455 }
2c47e605 8456
a22285a6 8457 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8458 if (IS_ERR(trans)) {
8459 err = PTR_ERR(trans);
8460 goto out_free;
8461 }
98d5dc13 8462
3fd0a558
YZ
8463 if (block_rsv)
8464 trans->block_rsv = block_rsv;
2c47e605 8465
9f3a7427 8466 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8467 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8468 path->nodes[level] = btrfs_lock_root_node(root);
8469 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8470 path->slots[level] = 0;
bd681513 8471 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8472 memset(&wc->update_progress, 0,
8473 sizeof(wc->update_progress));
9f3a7427 8474 } else {
9f3a7427 8475 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8476 memcpy(&wc->update_progress, &key,
8477 sizeof(wc->update_progress));
8478
6702ed49 8479 level = root_item->drop_level;
2c47e605 8480 BUG_ON(level == 0);
6702ed49 8481 path->lowest_level = level;
2c47e605
YZ
8482 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8483 path->lowest_level = 0;
8484 if (ret < 0) {
8485 err = ret;
79787eaa 8486 goto out_end_trans;
9f3a7427 8487 }
1c4850e2 8488 WARN_ON(ret > 0);
2c47e605 8489
7d9eb12c
CM
8490 /*
8491 * unlock our path, this is safe because only this
8492 * function is allowed to delete this snapshot
8493 */
5d4f98a2 8494 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8495
8496 level = btrfs_header_level(root->node);
8497 while (1) {
8498 btrfs_tree_lock(path->nodes[level]);
8499 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8500 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8501
8502 ret = btrfs_lookup_extent_info(trans, root,
8503 path->nodes[level]->start,
3173a18f 8504 level, 1, &wc->refs[level],
2c47e605 8505 &wc->flags[level]);
79787eaa
JM
8506 if (ret < 0) {
8507 err = ret;
8508 goto out_end_trans;
8509 }
2c47e605
YZ
8510 BUG_ON(wc->refs[level] == 0);
8511
8512 if (level == root_item->drop_level)
8513 break;
8514
8515 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8516 path->locks[level] = 0;
2c47e605
YZ
8517 WARN_ON(wc->refs[level] != 1);
8518 level--;
8519 }
9f3a7427 8520 }
2c47e605
YZ
8521
8522 wc->level = level;
8523 wc->shared_level = -1;
8524 wc->stage = DROP_REFERENCE;
8525 wc->update_ref = update_ref;
8526 wc->keep_locks = 0;
66d7e7f0 8527 wc->for_reloc = for_reloc;
1c4850e2 8528 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8529
d397712b 8530 while (1) {
9d1a2a3a 8531
2c47e605
YZ
8532 ret = walk_down_tree(trans, root, path, wc);
8533 if (ret < 0) {
8534 err = ret;
20524f02 8535 break;
2c47e605 8536 }
9aca1d51 8537
2c47e605
YZ
8538 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8539 if (ret < 0) {
8540 err = ret;
20524f02 8541 break;
2c47e605
YZ
8542 }
8543
8544 if (ret > 0) {
8545 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8546 break;
8547 }
2c47e605
YZ
8548
8549 if (wc->stage == DROP_REFERENCE) {
8550 level = wc->level;
8551 btrfs_node_key(path->nodes[level],
8552 &root_item->drop_progress,
8553 path->slots[level]);
8554 root_item->drop_level = level;
8555 }
8556
8557 BUG_ON(wc->level == 0);
3c8f2422
JB
8558 if (btrfs_should_end_transaction(trans, tree_root) ||
8559 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8560 ret = btrfs_update_root(trans, tree_root,
8561 &root->root_key,
8562 root_item);
79787eaa
JM
8563 if (ret) {
8564 btrfs_abort_transaction(trans, tree_root, ret);
8565 err = ret;
8566 goto out_end_trans;
8567 }
2c47e605 8568
1152651a
MF
8569 /*
8570 * Qgroup update accounting is run from
8571 * delayed ref handling. This usually works
8572 * out because delayed refs are normally the
8573 * only way qgroup updates are added. However,
8574 * we may have added updates during our tree
8575 * walk so run qgroups here to make sure we
8576 * don't lose any updates.
8577 */
8578 ret = btrfs_delayed_qgroup_accounting(trans,
8579 root->fs_info);
8580 if (ret)
8581 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8582 "running qgroup updates "
8583 "during snapshot delete. "
8584 "Quota is out of sync, "
8585 "rescan required.\n", ret);
8586
3fd0a558 8587 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8588 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8589 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8590 err = -EAGAIN;
8591 goto out_free;
8592 }
8593
a22285a6 8594 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8595 if (IS_ERR(trans)) {
8596 err = PTR_ERR(trans);
8597 goto out_free;
8598 }
3fd0a558
YZ
8599 if (block_rsv)
8600 trans->block_rsv = block_rsv;
c3e69d58 8601 }
20524f02 8602 }
b3b4aa74 8603 btrfs_release_path(path);
79787eaa
JM
8604 if (err)
8605 goto out_end_trans;
2c47e605
YZ
8606
8607 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8608 if (ret) {
8609 btrfs_abort_transaction(trans, tree_root, ret);
8610 goto out_end_trans;
8611 }
2c47e605 8612
76dda93c 8613 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8614 ret = btrfs_find_root(tree_root, &root->root_key, path,
8615 NULL, NULL);
79787eaa
JM
8616 if (ret < 0) {
8617 btrfs_abort_transaction(trans, tree_root, ret);
8618 err = ret;
8619 goto out_end_trans;
8620 } else if (ret > 0) {
84cd948c
JB
8621 /* if we fail to delete the orphan item this time
8622 * around, it'll get picked up the next time.
8623 *
8624 * The most common failure here is just -ENOENT.
8625 */
8626 btrfs_del_orphan_item(trans, tree_root,
8627 root->root_key.objectid);
76dda93c
YZ
8628 }
8629 }
8630
27cdeb70 8631 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
cb517eab 8632 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
76dda93c
YZ
8633 } else {
8634 free_extent_buffer(root->node);
8635 free_extent_buffer(root->commit_root);
b0feb9d9 8636 btrfs_put_fs_root(root);
76dda93c 8637 }
d29a9f62 8638 root_dropped = true;
79787eaa 8639out_end_trans:
1152651a
MF
8640 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8641 if (ret)
8642 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8643 "running qgroup updates "
8644 "during snapshot delete. "
8645 "Quota is out of sync, "
8646 "rescan required.\n", ret);
8647
3fd0a558 8648 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8649out_free:
2c47e605 8650 kfree(wc);
5caf2a00 8651 btrfs_free_path(path);
cb1b69f4 8652out:
d29a9f62
JB
8653 /*
8654 * So if we need to stop dropping the snapshot for whatever reason we
8655 * need to make sure to add it back to the dead root list so that we
8656 * keep trying to do the work later. This also cleans up roots if we
8657 * don't have it in the radix (like when we recover after a power fail
8658 * or unmount) so we don't leak memory.
8659 */
b37b39cd 8660 if (!for_reloc && root_dropped == false)
d29a9f62 8661 btrfs_add_dead_root(root);
90515e7f 8662 if (err && err != -EAGAIN)
cb1b69f4 8663 btrfs_std_error(root->fs_info, err);
2c536799 8664 return err;
20524f02 8665}
9078a3e1 8666
2c47e605
YZ
8667/*
8668 * drop subtree rooted at tree block 'node'.
8669 *
8670 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8671 * only used by relocation code
2c47e605 8672 */
f82d02d9
YZ
8673int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8674 struct btrfs_root *root,
8675 struct extent_buffer *node,
8676 struct extent_buffer *parent)
8677{
8678 struct btrfs_path *path;
2c47e605 8679 struct walk_control *wc;
f82d02d9
YZ
8680 int level;
8681 int parent_level;
8682 int ret = 0;
8683 int wret;
8684
2c47e605
YZ
8685 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8686
f82d02d9 8687 path = btrfs_alloc_path();
db5b493a
TI
8688 if (!path)
8689 return -ENOMEM;
f82d02d9 8690
2c47e605 8691 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8692 if (!wc) {
8693 btrfs_free_path(path);
8694 return -ENOMEM;
8695 }
2c47e605 8696
b9447ef8 8697 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8698 parent_level = btrfs_header_level(parent);
8699 extent_buffer_get(parent);
8700 path->nodes[parent_level] = parent;
8701 path->slots[parent_level] = btrfs_header_nritems(parent);
8702
b9447ef8 8703 btrfs_assert_tree_locked(node);
f82d02d9 8704 level = btrfs_header_level(node);
f82d02d9
YZ
8705 path->nodes[level] = node;
8706 path->slots[level] = 0;
bd681513 8707 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8708
8709 wc->refs[parent_level] = 1;
8710 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8711 wc->level = level;
8712 wc->shared_level = -1;
8713 wc->stage = DROP_REFERENCE;
8714 wc->update_ref = 0;
8715 wc->keep_locks = 1;
66d7e7f0 8716 wc->for_reloc = 1;
1c4850e2 8717 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8718
8719 while (1) {
2c47e605
YZ
8720 wret = walk_down_tree(trans, root, path, wc);
8721 if (wret < 0) {
f82d02d9 8722 ret = wret;
f82d02d9 8723 break;
2c47e605 8724 }
f82d02d9 8725
2c47e605 8726 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8727 if (wret < 0)
8728 ret = wret;
8729 if (wret != 0)
8730 break;
8731 }
8732
2c47e605 8733 kfree(wc);
f82d02d9
YZ
8734 btrfs_free_path(path);
8735 return ret;
8736}
8737
ec44a35c
CM
8738static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8739{
8740 u64 num_devices;
fc67c450 8741 u64 stripped;
e4d8ec0f 8742
fc67c450
ID
8743 /*
8744 * if restripe for this chunk_type is on pick target profile and
8745 * return, otherwise do the usual balance
8746 */
8747 stripped = get_restripe_target(root->fs_info, flags);
8748 if (stripped)
8749 return extended_to_chunk(stripped);
e4d8ec0f 8750
95669976 8751 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8752
fc67c450 8753 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8754 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8755 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8756
ec44a35c
CM
8757 if (num_devices == 1) {
8758 stripped |= BTRFS_BLOCK_GROUP_DUP;
8759 stripped = flags & ~stripped;
8760
8761 /* turn raid0 into single device chunks */
8762 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8763 return stripped;
8764
8765 /* turn mirroring into duplication */
8766 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8767 BTRFS_BLOCK_GROUP_RAID10))
8768 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8769 } else {
8770 /* they already had raid on here, just return */
ec44a35c
CM
8771 if (flags & stripped)
8772 return flags;
8773
8774 stripped |= BTRFS_BLOCK_GROUP_DUP;
8775 stripped = flags & ~stripped;
8776
8777 /* switch duplicated blocks with raid1 */
8778 if (flags & BTRFS_BLOCK_GROUP_DUP)
8779 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8780
e3176ca2 8781 /* this is drive concat, leave it alone */
ec44a35c 8782 }
e3176ca2 8783
ec44a35c
CM
8784 return flags;
8785}
8786
199c36ea 8787static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8788{
f0486c68
YZ
8789 struct btrfs_space_info *sinfo = cache->space_info;
8790 u64 num_bytes;
199c36ea 8791 u64 min_allocable_bytes;
f0486c68 8792 int ret = -ENOSPC;
0ef3e66b 8793
c286ac48 8794
199c36ea
MX
8795 /*
8796 * We need some metadata space and system metadata space for
8797 * allocating chunks in some corner cases until we force to set
8798 * it to be readonly.
8799 */
8800 if ((sinfo->flags &
8801 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8802 !force)
8803 min_allocable_bytes = 1 * 1024 * 1024;
8804 else
8805 min_allocable_bytes = 0;
8806
f0486c68
YZ
8807 spin_lock(&sinfo->lock);
8808 spin_lock(&cache->lock);
61cfea9b
W
8809
8810 if (cache->ro) {
8811 ret = 0;
8812 goto out;
8813 }
8814
f0486c68
YZ
8815 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8816 cache->bytes_super - btrfs_block_group_used(&cache->item);
8817
8818 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8819 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8820 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8821 sinfo->bytes_readonly += num_bytes;
f0486c68 8822 cache->ro = 1;
633c0aad 8823 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8824 ret = 0;
8825 }
61cfea9b 8826out:
f0486c68
YZ
8827 spin_unlock(&cache->lock);
8828 spin_unlock(&sinfo->lock);
8829 return ret;
8830}
7d9eb12c 8831
f0486c68
YZ
8832int btrfs_set_block_group_ro(struct btrfs_root *root,
8833 struct btrfs_block_group_cache *cache)
c286ac48 8834
f0486c68
YZ
8835{
8836 struct btrfs_trans_handle *trans;
8837 u64 alloc_flags;
8838 int ret;
7d9eb12c 8839
f0486c68 8840 BUG_ON(cache->ro);
0ef3e66b 8841
1bbc621e 8842again:
ff5714cc 8843 trans = btrfs_join_transaction(root);
79787eaa
JM
8844 if (IS_ERR(trans))
8845 return PTR_ERR(trans);
5d4f98a2 8846
1bbc621e
CM
8847 /*
8848 * we're not allowed to set block groups readonly after the dirty
8849 * block groups cache has started writing. If it already started,
8850 * back off and let this transaction commit
8851 */
8852 mutex_lock(&root->fs_info->ro_block_group_mutex);
8853 if (trans->transaction->dirty_bg_run) {
8854 u64 transid = trans->transid;
8855
8856 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8857 btrfs_end_transaction(trans, root);
8858
8859 ret = btrfs_wait_for_commit(root, transid);
8860 if (ret)
8861 return ret;
8862 goto again;
8863 }
8864
153c35b6
CM
8865 /*
8866 * if we are changing raid levels, try to allocate a corresponding
8867 * block group with the new raid level.
8868 */
8869 alloc_flags = update_block_group_flags(root, cache->flags);
8870 if (alloc_flags != cache->flags) {
8871 ret = do_chunk_alloc(trans, root, alloc_flags,
8872 CHUNK_ALLOC_FORCE);
8873 /*
8874 * ENOSPC is allowed here, we may have enough space
8875 * already allocated at the new raid level to
8876 * carry on
8877 */
8878 if (ret == -ENOSPC)
8879 ret = 0;
8880 if (ret < 0)
8881 goto out;
8882 }
1bbc621e 8883
199c36ea 8884 ret = set_block_group_ro(cache, 0);
f0486c68
YZ
8885 if (!ret)
8886 goto out;
8887 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 8888 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8889 CHUNK_ALLOC_FORCE);
f0486c68
YZ
8890 if (ret < 0)
8891 goto out;
199c36ea 8892 ret = set_block_group_ro(cache, 0);
f0486c68 8893out:
2f081088
SL
8894 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8895 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 8896 lock_chunks(root->fs_info->chunk_root);
4617ea3a 8897 check_system_chunk(trans, root, alloc_flags);
a9629596 8898 unlock_chunks(root->fs_info->chunk_root);
2f081088 8899 }
1bbc621e 8900 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 8901
f0486c68
YZ
8902 btrfs_end_transaction(trans, root);
8903 return ret;
8904}
5d4f98a2 8905
c87f08ca
CM
8906int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8907 struct btrfs_root *root, u64 type)
8908{
8909 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 8910 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8911 CHUNK_ALLOC_FORCE);
c87f08ca
CM
8912}
8913
6d07bcec
MX
8914/*
8915 * helper to account the unused space of all the readonly block group in the
633c0aad 8916 * space_info. takes mirrors into account.
6d07bcec 8917 */
633c0aad 8918u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
8919{
8920 struct btrfs_block_group_cache *block_group;
8921 u64 free_bytes = 0;
8922 int factor;
8923
633c0aad
JB
8924 /* It's df, we don't care if it's racey */
8925 if (list_empty(&sinfo->ro_bgs))
8926 return 0;
8927
8928 spin_lock(&sinfo->lock);
8929 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
8930 spin_lock(&block_group->lock);
8931
8932 if (!block_group->ro) {
8933 spin_unlock(&block_group->lock);
8934 continue;
8935 }
8936
8937 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8938 BTRFS_BLOCK_GROUP_RAID10 |
8939 BTRFS_BLOCK_GROUP_DUP))
8940 factor = 2;
8941 else
8942 factor = 1;
8943
8944 free_bytes += (block_group->key.offset -
8945 btrfs_block_group_used(&block_group->item)) *
8946 factor;
8947
8948 spin_unlock(&block_group->lock);
8949 }
6d07bcec
MX
8950 spin_unlock(&sinfo->lock);
8951
8952 return free_bytes;
8953}
8954
143bede5 8955void btrfs_set_block_group_rw(struct btrfs_root *root,
f0486c68 8956 struct btrfs_block_group_cache *cache)
5d4f98a2 8957{
f0486c68
YZ
8958 struct btrfs_space_info *sinfo = cache->space_info;
8959 u64 num_bytes;
8960
8961 BUG_ON(!cache->ro);
8962
8963 spin_lock(&sinfo->lock);
8964 spin_lock(&cache->lock);
8965 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8966 cache->bytes_super - btrfs_block_group_used(&cache->item);
8967 sinfo->bytes_readonly -= num_bytes;
8968 cache->ro = 0;
633c0aad 8969 list_del_init(&cache->ro_list);
f0486c68
YZ
8970 spin_unlock(&cache->lock);
8971 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
8972}
8973
ba1bf481
JB
8974/*
8975 * checks to see if its even possible to relocate this block group.
8976 *
8977 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8978 * ok to go ahead and try.
8979 */
8980int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 8981{
ba1bf481
JB
8982 struct btrfs_block_group_cache *block_group;
8983 struct btrfs_space_info *space_info;
8984 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8985 struct btrfs_device *device;
6df9a95e 8986 struct btrfs_trans_handle *trans;
cdcb725c 8987 u64 min_free;
6719db6a
JB
8988 u64 dev_min = 1;
8989 u64 dev_nr = 0;
4a5e98f5 8990 u64 target;
cdcb725c 8991 int index;
ba1bf481
JB
8992 int full = 0;
8993 int ret = 0;
1a40e23b 8994
ba1bf481 8995 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 8996
ba1bf481
JB
8997 /* odd, couldn't find the block group, leave it alone */
8998 if (!block_group)
8999 return -1;
1a40e23b 9000
cdcb725c 9001 min_free = btrfs_block_group_used(&block_group->item);
9002
ba1bf481 9003 /* no bytes used, we're good */
cdcb725c 9004 if (!min_free)
1a40e23b
ZY
9005 goto out;
9006
ba1bf481
JB
9007 space_info = block_group->space_info;
9008 spin_lock(&space_info->lock);
17d217fe 9009
ba1bf481 9010 full = space_info->full;
17d217fe 9011
ba1bf481
JB
9012 /*
9013 * if this is the last block group we have in this space, we can't
7ce618db
CM
9014 * relocate it unless we're able to allocate a new chunk below.
9015 *
9016 * Otherwise, we need to make sure we have room in the space to handle
9017 * all of the extents from this block group. If we can, we're good
ba1bf481 9018 */
7ce618db 9019 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9020 (space_info->bytes_used + space_info->bytes_reserved +
9021 space_info->bytes_pinned + space_info->bytes_readonly +
9022 min_free < space_info->total_bytes)) {
ba1bf481
JB
9023 spin_unlock(&space_info->lock);
9024 goto out;
17d217fe 9025 }
ba1bf481 9026 spin_unlock(&space_info->lock);
ea8c2819 9027
ba1bf481
JB
9028 /*
9029 * ok we don't have enough space, but maybe we have free space on our
9030 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9031 * alloc devices and guess if we have enough space. if this block
9032 * group is going to be restriped, run checks against the target
9033 * profile instead of the current one.
ba1bf481
JB
9034 */
9035 ret = -1;
ea8c2819 9036
cdcb725c 9037 /*
9038 * index:
9039 * 0: raid10
9040 * 1: raid1
9041 * 2: dup
9042 * 3: raid0
9043 * 4: single
9044 */
4a5e98f5
ID
9045 target = get_restripe_target(root->fs_info, block_group->flags);
9046 if (target) {
31e50229 9047 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9048 } else {
9049 /*
9050 * this is just a balance, so if we were marked as full
9051 * we know there is no space for a new chunk
9052 */
9053 if (full)
9054 goto out;
9055
9056 index = get_block_group_index(block_group);
9057 }
9058
e6ec716f 9059 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9060 dev_min = 4;
6719db6a
JB
9061 /* Divide by 2 */
9062 min_free >>= 1;
e6ec716f 9063 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9064 dev_min = 2;
e6ec716f 9065 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9066 /* Multiply by 2 */
9067 min_free <<= 1;
e6ec716f 9068 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9069 dev_min = fs_devices->rw_devices;
47c5713f 9070 min_free = div64_u64(min_free, dev_min);
cdcb725c 9071 }
9072
6df9a95e
JB
9073 /* We need to do this so that we can look at pending chunks */
9074 trans = btrfs_join_transaction(root);
9075 if (IS_ERR(trans)) {
9076 ret = PTR_ERR(trans);
9077 goto out;
9078 }
9079
ba1bf481
JB
9080 mutex_lock(&root->fs_info->chunk_mutex);
9081 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9082 u64 dev_offset;
56bec294 9083
ba1bf481
JB
9084 /*
9085 * check to make sure we can actually find a chunk with enough
9086 * space to fit our block group in.
9087 */
63a212ab
SB
9088 if (device->total_bytes > device->bytes_used + min_free &&
9089 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9090 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9091 &dev_offset, NULL);
ba1bf481 9092 if (!ret)
cdcb725c 9093 dev_nr++;
9094
9095 if (dev_nr >= dev_min)
73e48b27 9096 break;
cdcb725c 9097
ba1bf481 9098 ret = -1;
725c8463 9099 }
edbd8d4e 9100 }
ba1bf481 9101 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9102 btrfs_end_transaction(trans, root);
edbd8d4e 9103out:
ba1bf481 9104 btrfs_put_block_group(block_group);
edbd8d4e
CM
9105 return ret;
9106}
9107
b2950863
CH
9108static int find_first_block_group(struct btrfs_root *root,
9109 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9110{
925baedd 9111 int ret = 0;
0b86a832
CM
9112 struct btrfs_key found_key;
9113 struct extent_buffer *leaf;
9114 int slot;
edbd8d4e 9115
0b86a832
CM
9116 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9117 if (ret < 0)
925baedd
CM
9118 goto out;
9119
d397712b 9120 while (1) {
0b86a832 9121 slot = path->slots[0];
edbd8d4e 9122 leaf = path->nodes[0];
0b86a832
CM
9123 if (slot >= btrfs_header_nritems(leaf)) {
9124 ret = btrfs_next_leaf(root, path);
9125 if (ret == 0)
9126 continue;
9127 if (ret < 0)
925baedd 9128 goto out;
0b86a832 9129 break;
edbd8d4e 9130 }
0b86a832 9131 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9132
0b86a832 9133 if (found_key.objectid >= key->objectid &&
925baedd
CM
9134 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9135 ret = 0;
9136 goto out;
9137 }
0b86a832 9138 path->slots[0]++;
edbd8d4e 9139 }
925baedd 9140out:
0b86a832 9141 return ret;
edbd8d4e
CM
9142}
9143
0af3d00b
JB
9144void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9145{
9146 struct btrfs_block_group_cache *block_group;
9147 u64 last = 0;
9148
9149 while (1) {
9150 struct inode *inode;
9151
9152 block_group = btrfs_lookup_first_block_group(info, last);
9153 while (block_group) {
9154 spin_lock(&block_group->lock);
9155 if (block_group->iref)
9156 break;
9157 spin_unlock(&block_group->lock);
9158 block_group = next_block_group(info->tree_root,
9159 block_group);
9160 }
9161 if (!block_group) {
9162 if (last == 0)
9163 break;
9164 last = 0;
9165 continue;
9166 }
9167
9168 inode = block_group->inode;
9169 block_group->iref = 0;
9170 block_group->inode = NULL;
9171 spin_unlock(&block_group->lock);
9172 iput(inode);
9173 last = block_group->key.objectid + block_group->key.offset;
9174 btrfs_put_block_group(block_group);
9175 }
9176}
9177
1a40e23b
ZY
9178int btrfs_free_block_groups(struct btrfs_fs_info *info)
9179{
9180 struct btrfs_block_group_cache *block_group;
4184ea7f 9181 struct btrfs_space_info *space_info;
11833d66 9182 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9183 struct rb_node *n;
9184
9e351cc8 9185 down_write(&info->commit_root_sem);
11833d66
YZ
9186 while (!list_empty(&info->caching_block_groups)) {
9187 caching_ctl = list_entry(info->caching_block_groups.next,
9188 struct btrfs_caching_control, list);
9189 list_del(&caching_ctl->list);
9190 put_caching_control(caching_ctl);
9191 }
9e351cc8 9192 up_write(&info->commit_root_sem);
11833d66 9193
47ab2a6c
JB
9194 spin_lock(&info->unused_bgs_lock);
9195 while (!list_empty(&info->unused_bgs)) {
9196 block_group = list_first_entry(&info->unused_bgs,
9197 struct btrfs_block_group_cache,
9198 bg_list);
9199 list_del_init(&block_group->bg_list);
9200 btrfs_put_block_group(block_group);
9201 }
9202 spin_unlock(&info->unused_bgs_lock);
9203
1a40e23b
ZY
9204 spin_lock(&info->block_group_cache_lock);
9205 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9206 block_group = rb_entry(n, struct btrfs_block_group_cache,
9207 cache_node);
1a40e23b
ZY
9208 rb_erase(&block_group->cache_node,
9209 &info->block_group_cache_tree);
01eacb27 9210 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9211 spin_unlock(&info->block_group_cache_lock);
9212
80eb234a 9213 down_write(&block_group->space_info->groups_sem);
1a40e23b 9214 list_del(&block_group->list);
80eb234a 9215 up_write(&block_group->space_info->groups_sem);
d2fb3437 9216
817d52f8 9217 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9218 wait_block_group_cache_done(block_group);
817d52f8 9219
3c14874a
JB
9220 /*
9221 * We haven't cached this block group, which means we could
9222 * possibly have excluded extents on this block group.
9223 */
36cce922
JB
9224 if (block_group->cached == BTRFS_CACHE_NO ||
9225 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9226 free_excluded_extents(info->extent_root, block_group);
9227
817d52f8 9228 btrfs_remove_free_space_cache(block_group);
11dfe35a 9229 btrfs_put_block_group(block_group);
d899e052
YZ
9230
9231 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9232 }
9233 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9234
9235 /* now that all the block groups are freed, go through and
9236 * free all the space_info structs. This is only called during
9237 * the final stages of unmount, and so we know nobody is
9238 * using them. We call synchronize_rcu() once before we start,
9239 * just to be on the safe side.
9240 */
9241 synchronize_rcu();
9242
8929ecfa
YZ
9243 release_global_block_rsv(info);
9244
67871254 9245 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9246 int i;
9247
4184ea7f
CM
9248 space_info = list_entry(info->space_info.next,
9249 struct btrfs_space_info,
9250 list);
b069e0c3 9251 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9252 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9253 space_info->bytes_reserved > 0 ||
fae7f21c 9254 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9255 dump_space_info(space_info, 0, 0);
9256 }
f0486c68 9257 }
4184ea7f 9258 list_del(&space_info->list);
6ab0a202
JM
9259 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9260 struct kobject *kobj;
c1895442
JM
9261 kobj = space_info->block_group_kobjs[i];
9262 space_info->block_group_kobjs[i] = NULL;
9263 if (kobj) {
6ab0a202
JM
9264 kobject_del(kobj);
9265 kobject_put(kobj);
9266 }
9267 }
9268 kobject_del(&space_info->kobj);
9269 kobject_put(&space_info->kobj);
4184ea7f 9270 }
1a40e23b
ZY
9271 return 0;
9272}
9273
b742bb82
YZ
9274static void __link_block_group(struct btrfs_space_info *space_info,
9275 struct btrfs_block_group_cache *cache)
9276{
9277 int index = get_block_group_index(cache);
ed55b6ac 9278 bool first = false;
b742bb82
YZ
9279
9280 down_write(&space_info->groups_sem);
ed55b6ac
JM
9281 if (list_empty(&space_info->block_groups[index]))
9282 first = true;
9283 list_add_tail(&cache->list, &space_info->block_groups[index]);
9284 up_write(&space_info->groups_sem);
9285
9286 if (first) {
c1895442 9287 struct raid_kobject *rkobj;
6ab0a202
JM
9288 int ret;
9289
c1895442
JM
9290 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9291 if (!rkobj)
9292 goto out_err;
9293 rkobj->raid_type = index;
9294 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9295 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9296 "%s", get_raid_name(index));
6ab0a202 9297 if (ret) {
c1895442
JM
9298 kobject_put(&rkobj->kobj);
9299 goto out_err;
6ab0a202 9300 }
c1895442 9301 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9302 }
c1895442
JM
9303
9304 return;
9305out_err:
9306 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9307}
9308
920e4a58
MX
9309static struct btrfs_block_group_cache *
9310btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9311{
9312 struct btrfs_block_group_cache *cache;
9313
9314 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9315 if (!cache)
9316 return NULL;
9317
9318 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9319 GFP_NOFS);
9320 if (!cache->free_space_ctl) {
9321 kfree(cache);
9322 return NULL;
9323 }
9324
9325 cache->key.objectid = start;
9326 cache->key.offset = size;
9327 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9328
9329 cache->sectorsize = root->sectorsize;
9330 cache->fs_info = root->fs_info;
9331 cache->full_stripe_len = btrfs_full_stripe_len(root,
9332 &root->fs_info->mapping_tree,
9333 start);
9334 atomic_set(&cache->count, 1);
9335 spin_lock_init(&cache->lock);
e570fd27 9336 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9337 INIT_LIST_HEAD(&cache->list);
9338 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9339 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9340 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9341 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9342 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9343 btrfs_init_free_space_ctl(cache);
04216820 9344 atomic_set(&cache->trimming, 0);
920e4a58
MX
9345
9346 return cache;
9347}
9348
9078a3e1
CM
9349int btrfs_read_block_groups(struct btrfs_root *root)
9350{
9351 struct btrfs_path *path;
9352 int ret;
9078a3e1 9353 struct btrfs_block_group_cache *cache;
be744175 9354 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9355 struct btrfs_space_info *space_info;
9078a3e1
CM
9356 struct btrfs_key key;
9357 struct btrfs_key found_key;
5f39d397 9358 struct extent_buffer *leaf;
0af3d00b
JB
9359 int need_clear = 0;
9360 u64 cache_gen;
96b5179d 9361
be744175 9362 root = info->extent_root;
9078a3e1 9363 key.objectid = 0;
0b86a832 9364 key.offset = 0;
962a298f 9365 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9366 path = btrfs_alloc_path();
9367 if (!path)
9368 return -ENOMEM;
026fd317 9369 path->reada = 1;
9078a3e1 9370
6c41761f 9371 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9372 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9373 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9374 need_clear = 1;
88c2ba3b
JB
9375 if (btrfs_test_opt(root, CLEAR_CACHE))
9376 need_clear = 1;
0af3d00b 9377
d397712b 9378 while (1) {
0b86a832 9379 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9380 if (ret > 0)
9381 break;
0b86a832
CM
9382 if (ret != 0)
9383 goto error;
920e4a58 9384
5f39d397
CM
9385 leaf = path->nodes[0];
9386 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9387
9388 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9389 found_key.offset);
9078a3e1 9390 if (!cache) {
0b86a832 9391 ret = -ENOMEM;
f0486c68 9392 goto error;
9078a3e1 9393 }
96303081 9394
cf7c1ef6
LB
9395 if (need_clear) {
9396 /*
9397 * When we mount with old space cache, we need to
9398 * set BTRFS_DC_CLEAR and set dirty flag.
9399 *
9400 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9401 * truncate the old free space cache inode and
9402 * setup a new one.
9403 * b) Setting 'dirty flag' makes sure that we flush
9404 * the new space cache info onto disk.
9405 */
cf7c1ef6 9406 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9407 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9408 }
0af3d00b 9409
5f39d397
CM
9410 read_extent_buffer(leaf, &cache->item,
9411 btrfs_item_ptr_offset(leaf, path->slots[0]),
9412 sizeof(cache->item));
920e4a58 9413 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9414
9078a3e1 9415 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9416 btrfs_release_path(path);
34d52cb6 9417
3c14874a
JB
9418 /*
9419 * We need to exclude the super stripes now so that the space
9420 * info has super bytes accounted for, otherwise we'll think
9421 * we have more space than we actually do.
9422 */
835d974f
JB
9423 ret = exclude_super_stripes(root, cache);
9424 if (ret) {
9425 /*
9426 * We may have excluded something, so call this just in
9427 * case.
9428 */
9429 free_excluded_extents(root, cache);
920e4a58 9430 btrfs_put_block_group(cache);
835d974f
JB
9431 goto error;
9432 }
3c14874a 9433
817d52f8
JB
9434 /*
9435 * check for two cases, either we are full, and therefore
9436 * don't need to bother with the caching work since we won't
9437 * find any space, or we are empty, and we can just add all
9438 * the space in and be done with it. This saves us _alot_ of
9439 * time, particularly in the full case.
9440 */
9441 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9442 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9443 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9444 free_excluded_extents(root, cache);
817d52f8 9445 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9446 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9447 cache->cached = BTRFS_CACHE_FINISHED;
9448 add_new_free_space(cache, root->fs_info,
9449 found_key.objectid,
9450 found_key.objectid +
9451 found_key.offset);
11833d66 9452 free_excluded_extents(root, cache);
817d52f8 9453 }
96b5179d 9454
8c579fe7
JB
9455 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9456 if (ret) {
9457 btrfs_remove_free_space_cache(cache);
9458 btrfs_put_block_group(cache);
9459 goto error;
9460 }
9461
6324fbf3
CM
9462 ret = update_space_info(info, cache->flags, found_key.offset,
9463 btrfs_block_group_used(&cache->item),
9464 &space_info);
8c579fe7
JB
9465 if (ret) {
9466 btrfs_remove_free_space_cache(cache);
9467 spin_lock(&info->block_group_cache_lock);
9468 rb_erase(&cache->cache_node,
9469 &info->block_group_cache_tree);
01eacb27 9470 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9471 spin_unlock(&info->block_group_cache_lock);
9472 btrfs_put_block_group(cache);
9473 goto error;
9474 }
9475
6324fbf3 9476 cache->space_info = space_info;
1b2da372 9477 spin_lock(&cache->space_info->lock);
f0486c68 9478 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9479 spin_unlock(&cache->space_info->lock);
9480
b742bb82 9481 __link_block_group(space_info, cache);
0f9dd46c 9482
75ccf47d 9483 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9484 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
199c36ea 9485 set_block_group_ro(cache, 1);
47ab2a6c
JB
9486 } else if (btrfs_block_group_used(&cache->item) == 0) {
9487 spin_lock(&info->unused_bgs_lock);
9488 /* Should always be true but just in case. */
9489 if (list_empty(&cache->bg_list)) {
9490 btrfs_get_block_group(cache);
9491 list_add_tail(&cache->bg_list,
9492 &info->unused_bgs);
9493 }
9494 spin_unlock(&info->unused_bgs_lock);
9495 }
9078a3e1 9496 }
b742bb82
YZ
9497
9498 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9499 if (!(get_alloc_profile(root, space_info->flags) &
9500 (BTRFS_BLOCK_GROUP_RAID10 |
9501 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9502 BTRFS_BLOCK_GROUP_RAID5 |
9503 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9504 BTRFS_BLOCK_GROUP_DUP)))
9505 continue;
9506 /*
9507 * avoid allocating from un-mirrored block group if there are
9508 * mirrored block groups.
9509 */
1095cc0d 9510 list_for_each_entry(cache,
9511 &space_info->block_groups[BTRFS_RAID_RAID0],
9512 list)
199c36ea 9513 set_block_group_ro(cache, 1);
1095cc0d 9514 list_for_each_entry(cache,
9515 &space_info->block_groups[BTRFS_RAID_SINGLE],
9516 list)
199c36ea 9517 set_block_group_ro(cache, 1);
9078a3e1 9518 }
f0486c68
YZ
9519
9520 init_global_block_rsv(info);
0b86a832
CM
9521 ret = 0;
9522error:
9078a3e1 9523 btrfs_free_path(path);
0b86a832 9524 return ret;
9078a3e1 9525}
6324fbf3 9526
ea658bad
JB
9527void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9528 struct btrfs_root *root)
9529{
9530 struct btrfs_block_group_cache *block_group, *tmp;
9531 struct btrfs_root *extent_root = root->fs_info->extent_root;
9532 struct btrfs_block_group_item item;
9533 struct btrfs_key key;
9534 int ret = 0;
9535
47ab2a6c 9536 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9537 if (ret)
c92f6be3 9538 goto next;
ea658bad
JB
9539
9540 spin_lock(&block_group->lock);
9541 memcpy(&item, &block_group->item, sizeof(item));
9542 memcpy(&key, &block_group->key, sizeof(key));
9543 spin_unlock(&block_group->lock);
9544
9545 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9546 sizeof(item));
9547 if (ret)
9548 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9549 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9550 key.objectid, key.offset);
9551 if (ret)
9552 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9553next:
9554 list_del_init(&block_group->bg_list);
ea658bad
JB
9555 }
9556}
9557
6324fbf3
CM
9558int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9559 struct btrfs_root *root, u64 bytes_used,
e17cade2 9560 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9561 u64 size)
9562{
9563 int ret;
6324fbf3
CM
9564 struct btrfs_root *extent_root;
9565 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9566
9567 extent_root = root->fs_info->extent_root;
6324fbf3 9568
995946dd 9569 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9570
920e4a58 9571 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9572 if (!cache)
9573 return -ENOMEM;
34d52cb6 9574
6324fbf3 9575 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9576 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9577 btrfs_set_block_group_flags(&cache->item, type);
9578
920e4a58 9579 cache->flags = type;
11833d66 9580 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9581 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9582 ret = exclude_super_stripes(root, cache);
9583 if (ret) {
9584 /*
9585 * We may have excluded something, so call this just in
9586 * case.
9587 */
9588 free_excluded_extents(root, cache);
920e4a58 9589 btrfs_put_block_group(cache);
835d974f
JB
9590 return ret;
9591 }
96303081 9592
817d52f8
JB
9593 add_new_free_space(cache, root->fs_info, chunk_offset,
9594 chunk_offset + size);
9595
11833d66
YZ
9596 free_excluded_extents(root, cache);
9597
2e6e5183
FM
9598 /*
9599 * Call to ensure the corresponding space_info object is created and
9600 * assigned to our block group, but don't update its counters just yet.
9601 * We want our bg to be added to the rbtree with its ->space_info set.
9602 */
9603 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9604 &cache->space_info);
9605 if (ret) {
9606 btrfs_remove_free_space_cache(cache);
9607 btrfs_put_block_group(cache);
9608 return ret;
9609 }
9610
8c579fe7
JB
9611 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9612 if (ret) {
9613 btrfs_remove_free_space_cache(cache);
9614 btrfs_put_block_group(cache);
9615 return ret;
9616 }
9617
2e6e5183
FM
9618 /*
9619 * Now that our block group has its ->space_info set and is inserted in
9620 * the rbtree, update the space info's counters.
9621 */
6324fbf3
CM
9622 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9623 &cache->space_info);
8c579fe7
JB
9624 if (ret) {
9625 btrfs_remove_free_space_cache(cache);
9626 spin_lock(&root->fs_info->block_group_cache_lock);
9627 rb_erase(&cache->cache_node,
9628 &root->fs_info->block_group_cache_tree);
01eacb27 9629 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9630 spin_unlock(&root->fs_info->block_group_cache_lock);
9631 btrfs_put_block_group(cache);
9632 return ret;
9633 }
c7c144db 9634 update_global_block_rsv(root->fs_info);
1b2da372
JB
9635
9636 spin_lock(&cache->space_info->lock);
f0486c68 9637 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9638 spin_unlock(&cache->space_info->lock);
9639
b742bb82 9640 __link_block_group(cache->space_info, cache);
6324fbf3 9641
47ab2a6c 9642 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9643
d18a2c44 9644 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9645
6324fbf3
CM
9646 return 0;
9647}
1a40e23b 9648
10ea00f5
ID
9649static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9650{
899c81ea
ID
9651 u64 extra_flags = chunk_to_extended(flags) &
9652 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9653
de98ced9 9654 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9655 if (flags & BTRFS_BLOCK_GROUP_DATA)
9656 fs_info->avail_data_alloc_bits &= ~extra_flags;
9657 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9658 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9659 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9660 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9661 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9662}
9663
1a40e23b 9664int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9665 struct btrfs_root *root, u64 group_start,
9666 struct extent_map *em)
1a40e23b
ZY
9667{
9668 struct btrfs_path *path;
9669 struct btrfs_block_group_cache *block_group;
44fb5511 9670 struct btrfs_free_cluster *cluster;
0af3d00b 9671 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9672 struct btrfs_key key;
0af3d00b 9673 struct inode *inode;
c1895442 9674 struct kobject *kobj = NULL;
1a40e23b 9675 int ret;
10ea00f5 9676 int index;
89a55897 9677 int factor;
4f69cb98 9678 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9679 bool remove_em;
1a40e23b 9680
1a40e23b
ZY
9681 root = root->fs_info->extent_root;
9682
9683 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9684 BUG_ON(!block_group);
c146afad 9685 BUG_ON(!block_group->ro);
1a40e23b 9686
9f7c43c9 9687 /*
9688 * Free the reserved super bytes from this block group before
9689 * remove it.
9690 */
9691 free_excluded_extents(root, block_group);
9692
1a40e23b 9693 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9694 index = get_block_group_index(block_group);
89a55897
JB
9695 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9696 BTRFS_BLOCK_GROUP_RAID1 |
9697 BTRFS_BLOCK_GROUP_RAID10))
9698 factor = 2;
9699 else
9700 factor = 1;
1a40e23b 9701
44fb5511
CM
9702 /* make sure this block group isn't part of an allocation cluster */
9703 cluster = &root->fs_info->data_alloc_cluster;
9704 spin_lock(&cluster->refill_lock);
9705 btrfs_return_cluster_to_free_space(block_group, cluster);
9706 spin_unlock(&cluster->refill_lock);
9707
9708 /*
9709 * make sure this block group isn't part of a metadata
9710 * allocation cluster
9711 */
9712 cluster = &root->fs_info->meta_alloc_cluster;
9713 spin_lock(&cluster->refill_lock);
9714 btrfs_return_cluster_to_free_space(block_group, cluster);
9715 spin_unlock(&cluster->refill_lock);
9716
1a40e23b 9717 path = btrfs_alloc_path();
d8926bb3
MF
9718 if (!path) {
9719 ret = -ENOMEM;
9720 goto out;
9721 }
1a40e23b 9722
1bbc621e
CM
9723 /*
9724 * get the inode first so any iput calls done for the io_list
9725 * aren't the final iput (no unlinks allowed now)
9726 */
10b2f34d 9727 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9728
9729 mutex_lock(&trans->transaction->cache_write_mutex);
9730 /*
9731 * make sure our free spache cache IO is done before remove the
9732 * free space inode
9733 */
9734 spin_lock(&trans->transaction->dirty_bgs_lock);
9735 if (!list_empty(&block_group->io_list)) {
9736 list_del_init(&block_group->io_list);
9737
9738 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9739
9740 spin_unlock(&trans->transaction->dirty_bgs_lock);
9741 btrfs_wait_cache_io(root, trans, block_group,
9742 &block_group->io_ctl, path,
9743 block_group->key.objectid);
9744 btrfs_put_block_group(block_group);
9745 spin_lock(&trans->transaction->dirty_bgs_lock);
9746 }
9747
9748 if (!list_empty(&block_group->dirty_list)) {
9749 list_del_init(&block_group->dirty_list);
9750 btrfs_put_block_group(block_group);
9751 }
9752 spin_unlock(&trans->transaction->dirty_bgs_lock);
9753 mutex_unlock(&trans->transaction->cache_write_mutex);
9754
0af3d00b 9755 if (!IS_ERR(inode)) {
b532402e 9756 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9757 if (ret) {
9758 btrfs_add_delayed_iput(inode);
9759 goto out;
9760 }
0af3d00b
JB
9761 clear_nlink(inode);
9762 /* One for the block groups ref */
9763 spin_lock(&block_group->lock);
9764 if (block_group->iref) {
9765 block_group->iref = 0;
9766 block_group->inode = NULL;
9767 spin_unlock(&block_group->lock);
9768 iput(inode);
9769 } else {
9770 spin_unlock(&block_group->lock);
9771 }
9772 /* One for our lookup ref */
455757c3 9773 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9774 }
9775
9776 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9777 key.offset = block_group->key.objectid;
9778 key.type = 0;
9779
9780 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9781 if (ret < 0)
9782 goto out;
9783 if (ret > 0)
b3b4aa74 9784 btrfs_release_path(path);
0af3d00b
JB
9785 if (ret == 0) {
9786 ret = btrfs_del_item(trans, tree_root, path);
9787 if (ret)
9788 goto out;
b3b4aa74 9789 btrfs_release_path(path);
0af3d00b
JB
9790 }
9791
3dfdb934 9792 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9793 rb_erase(&block_group->cache_node,
9794 &root->fs_info->block_group_cache_tree);
292cbd51 9795 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9796
9797 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9798 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9799 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9800
80eb234a 9801 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9802 /*
9803 * we must use list_del_init so people can check to see if they
9804 * are still on the list after taking the semaphore
9805 */
9806 list_del_init(&block_group->list);
6ab0a202 9807 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9808 kobj = block_group->space_info->block_group_kobjs[index];
9809 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9810 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9811 }
80eb234a 9812 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9813 if (kobj) {
9814 kobject_del(kobj);
9815 kobject_put(kobj);
9816 }
1a40e23b 9817
4f69cb98
FM
9818 if (block_group->has_caching_ctl)
9819 caching_ctl = get_caching_control(block_group);
817d52f8 9820 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9821 wait_block_group_cache_done(block_group);
4f69cb98
FM
9822 if (block_group->has_caching_ctl) {
9823 down_write(&root->fs_info->commit_root_sem);
9824 if (!caching_ctl) {
9825 struct btrfs_caching_control *ctl;
9826
9827 list_for_each_entry(ctl,
9828 &root->fs_info->caching_block_groups, list)
9829 if (ctl->block_group == block_group) {
9830 caching_ctl = ctl;
9831 atomic_inc(&caching_ctl->count);
9832 break;
9833 }
9834 }
9835 if (caching_ctl)
9836 list_del_init(&caching_ctl->list);
9837 up_write(&root->fs_info->commit_root_sem);
9838 if (caching_ctl) {
9839 /* Once for the caching bgs list and once for us. */
9840 put_caching_control(caching_ctl);
9841 put_caching_control(caching_ctl);
9842 }
9843 }
817d52f8 9844
ce93ec54
JB
9845 spin_lock(&trans->transaction->dirty_bgs_lock);
9846 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9847 WARN_ON(1);
9848 }
9849 if (!list_empty(&block_group->io_list)) {
9850 WARN_ON(1);
ce93ec54
JB
9851 }
9852 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
9853 btrfs_remove_free_space_cache(block_group);
9854
c146afad 9855 spin_lock(&block_group->space_info->lock);
75c68e9f 9856 list_del_init(&block_group->ro_list);
18d018ad
ZL
9857
9858 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9859 WARN_ON(block_group->space_info->total_bytes
9860 < block_group->key.offset);
9861 WARN_ON(block_group->space_info->bytes_readonly
9862 < block_group->key.offset);
9863 WARN_ON(block_group->space_info->disk_total
9864 < block_group->key.offset * factor);
9865 }
c146afad
YZ
9866 block_group->space_info->total_bytes -= block_group->key.offset;
9867 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 9868 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 9869
c146afad 9870 spin_unlock(&block_group->space_info->lock);
283bb197 9871
0af3d00b
JB
9872 memcpy(&key, &block_group->key, sizeof(key));
9873
04216820 9874 lock_chunks(root);
495e64f4
FM
9875 if (!list_empty(&em->list)) {
9876 /* We're in the transaction->pending_chunks list. */
9877 free_extent_map(em);
9878 }
04216820
FM
9879 spin_lock(&block_group->lock);
9880 block_group->removed = 1;
9881 /*
9882 * At this point trimming can't start on this block group, because we
9883 * removed the block group from the tree fs_info->block_group_cache_tree
9884 * so no one can't find it anymore and even if someone already got this
9885 * block group before we removed it from the rbtree, they have already
9886 * incremented block_group->trimming - if they didn't, they won't find
9887 * any free space entries because we already removed them all when we
9888 * called btrfs_remove_free_space_cache().
9889 *
9890 * And we must not remove the extent map from the fs_info->mapping_tree
9891 * to prevent the same logical address range and physical device space
9892 * ranges from being reused for a new block group. This is because our
9893 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9894 * completely transactionless, so while it is trimming a range the
9895 * currently running transaction might finish and a new one start,
9896 * allowing for new block groups to be created that can reuse the same
9897 * physical device locations unless we take this special care.
9898 */
9899 remove_em = (atomic_read(&block_group->trimming) == 0);
9900 /*
9901 * Make sure a trimmer task always sees the em in the pinned_chunks list
9902 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9903 * before checking block_group->removed).
9904 */
9905 if (!remove_em) {
9906 /*
9907 * Our em might be in trans->transaction->pending_chunks which
9908 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9909 * and so is the fs_info->pinned_chunks list.
9910 *
9911 * So at this point we must be holding the chunk_mutex to avoid
9912 * any races with chunk allocation (more specifically at
9913 * volumes.c:contains_pending_extent()), to ensure it always
9914 * sees the em, either in the pending_chunks list or in the
9915 * pinned_chunks list.
9916 */
9917 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9918 }
9919 spin_unlock(&block_group->lock);
04216820
FM
9920
9921 if (remove_em) {
9922 struct extent_map_tree *em_tree;
9923
9924 em_tree = &root->fs_info->mapping_tree.map_tree;
9925 write_lock(&em_tree->lock);
8dbcd10f
FM
9926 /*
9927 * The em might be in the pending_chunks list, so make sure the
9928 * chunk mutex is locked, since remove_extent_mapping() will
9929 * delete us from that list.
9930 */
04216820
FM
9931 remove_extent_mapping(em_tree, em);
9932 write_unlock(&em_tree->lock);
9933 /* once for the tree */
9934 free_extent_map(em);
9935 }
9936
8dbcd10f
FM
9937 unlock_chunks(root);
9938
fa9c0d79
CM
9939 btrfs_put_block_group(block_group);
9940 btrfs_put_block_group(block_group);
1a40e23b
ZY
9941
9942 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9943 if (ret > 0)
9944 ret = -EIO;
9945 if (ret < 0)
9946 goto out;
9947
9948 ret = btrfs_del_item(trans, root, path);
9949out:
9950 btrfs_free_path(path);
9951 return ret;
9952}
acce952b 9953
47ab2a6c
JB
9954/*
9955 * Process the unused_bgs list and remove any that don't have any allocated
9956 * space inside of them.
9957 */
9958void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9959{
9960 struct btrfs_block_group_cache *block_group;
9961 struct btrfs_space_info *space_info;
9962 struct btrfs_root *root = fs_info->extent_root;
9963 struct btrfs_trans_handle *trans;
9964 int ret = 0;
9965
9966 if (!fs_info->open)
9967 return;
9968
9969 spin_lock(&fs_info->unused_bgs_lock);
9970 while (!list_empty(&fs_info->unused_bgs)) {
9971 u64 start, end;
9972
9973 block_group = list_first_entry(&fs_info->unused_bgs,
9974 struct btrfs_block_group_cache,
9975 bg_list);
9976 space_info = block_group->space_info;
9977 list_del_init(&block_group->bg_list);
9978 if (ret || btrfs_mixed_space_info(space_info)) {
9979 btrfs_put_block_group(block_group);
9980 continue;
9981 }
9982 spin_unlock(&fs_info->unused_bgs_lock);
9983
9984 /* Don't want to race with allocators so take the groups_sem */
9985 down_write(&space_info->groups_sem);
9986 spin_lock(&block_group->lock);
9987 if (block_group->reserved ||
9988 btrfs_block_group_used(&block_group->item) ||
9989 block_group->ro) {
9990 /*
9991 * We want to bail if we made new allocations or have
9992 * outstanding allocations in this block group. We do
9993 * the ro check in case balance is currently acting on
9994 * this block group.
9995 */
9996 spin_unlock(&block_group->lock);
9997 up_write(&space_info->groups_sem);
9998 goto next;
9999 }
10000 spin_unlock(&block_group->lock);
10001
10002 /* We don't want to force the issue, only flip if it's ok. */
10003 ret = set_block_group_ro(block_group, 0);
10004 up_write(&space_info->groups_sem);
10005 if (ret < 0) {
10006 ret = 0;
10007 goto next;
10008 }
10009
10010 /*
10011 * Want to do this before we do anything else so we can recover
10012 * properly if we fail to join the transaction.
10013 */
3d84be79
FL
10014 /* 1 for btrfs_orphan_reserve_metadata() */
10015 trans = btrfs_start_transaction(root, 1);
47ab2a6c
JB
10016 if (IS_ERR(trans)) {
10017 btrfs_set_block_group_rw(root, block_group);
10018 ret = PTR_ERR(trans);
10019 goto next;
10020 }
10021
10022 /*
10023 * We could have pending pinned extents for this block group,
10024 * just delete them, we don't care about them anymore.
10025 */
10026 start = block_group->key.objectid;
10027 end = start + block_group->key.offset - 1;
d4b450cd
FM
10028 /*
10029 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10030 * btrfs_finish_extent_commit(). If we are at transaction N,
10031 * another task might be running finish_extent_commit() for the
10032 * previous transaction N - 1, and have seen a range belonging
10033 * to the block group in freed_extents[] before we were able to
10034 * clear the whole block group range from freed_extents[]. This
10035 * means that task can lookup for the block group after we
10036 * unpinned it from freed_extents[] and removed it, leading to
10037 * a BUG_ON() at btrfs_unpin_extent_range().
10038 */
10039 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10040 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 10041 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10042 if (ret) {
d4b450cd 10043 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
10044 btrfs_set_block_group_rw(root, block_group);
10045 goto end_trans;
10046 }
10047 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 10048 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10049 if (ret) {
d4b450cd 10050 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
10051 btrfs_set_block_group_rw(root, block_group);
10052 goto end_trans;
10053 }
d4b450cd 10054 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10055
10056 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10057 spin_lock(&space_info->lock);
10058 spin_lock(&block_group->lock);
10059
10060 space_info->bytes_pinned -= block_group->pinned;
10061 space_info->bytes_readonly += block_group->pinned;
10062 percpu_counter_add(&space_info->total_bytes_pinned,
10063 -block_group->pinned);
47ab2a6c
JB
10064 block_group->pinned = 0;
10065
c30666d4
ZL
10066 spin_unlock(&block_group->lock);
10067 spin_unlock(&space_info->lock);
10068
47ab2a6c
JB
10069 /*
10070 * Btrfs_remove_chunk will abort the transaction if things go
10071 * horribly wrong.
10072 */
10073 ret = btrfs_remove_chunk(trans, root,
10074 block_group->key.objectid);
758eb51e 10075end_trans:
47ab2a6c
JB
10076 btrfs_end_transaction(trans, root);
10077next:
10078 btrfs_put_block_group(block_group);
10079 spin_lock(&fs_info->unused_bgs_lock);
10080 }
10081 spin_unlock(&fs_info->unused_bgs_lock);
10082}
10083
c59021f8 10084int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10085{
10086 struct btrfs_space_info *space_info;
1aba86d6 10087 struct btrfs_super_block *disk_super;
10088 u64 features;
10089 u64 flags;
10090 int mixed = 0;
c59021f8 10091 int ret;
10092
6c41761f 10093 disk_super = fs_info->super_copy;
1aba86d6 10094 if (!btrfs_super_root(disk_super))
10095 return 1;
c59021f8 10096
1aba86d6 10097 features = btrfs_super_incompat_flags(disk_super);
10098 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10099 mixed = 1;
c59021f8 10100
1aba86d6 10101 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10102 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10103 if (ret)
1aba86d6 10104 goto out;
c59021f8 10105
1aba86d6 10106 if (mixed) {
10107 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10108 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10109 } else {
10110 flags = BTRFS_BLOCK_GROUP_METADATA;
10111 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10112 if (ret)
10113 goto out;
10114
10115 flags = BTRFS_BLOCK_GROUP_DATA;
10116 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10117 }
10118out:
c59021f8 10119 return ret;
10120}
10121
acce952b 10122int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10123{
678886bd 10124 return unpin_extent_range(root, start, end, false);
acce952b 10125}
10126
f7039b1d
LD
10127int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10128{
10129 struct btrfs_fs_info *fs_info = root->fs_info;
10130 struct btrfs_block_group_cache *cache = NULL;
10131 u64 group_trimmed;
10132 u64 start;
10133 u64 end;
10134 u64 trimmed = 0;
2cac13e4 10135 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10136 int ret = 0;
10137
2cac13e4
LB
10138 /*
10139 * try to trim all FS space, our block group may start from non-zero.
10140 */
10141 if (range->len == total_bytes)
10142 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10143 else
10144 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10145
10146 while (cache) {
10147 if (cache->key.objectid >= (range->start + range->len)) {
10148 btrfs_put_block_group(cache);
10149 break;
10150 }
10151
10152 start = max(range->start, cache->key.objectid);
10153 end = min(range->start + range->len,
10154 cache->key.objectid + cache->key.offset);
10155
10156 if (end - start >= range->minlen) {
10157 if (!block_group_cache_done(cache)) {
f6373bf3 10158 ret = cache_block_group(cache, 0);
1be41b78
JB
10159 if (ret) {
10160 btrfs_put_block_group(cache);
10161 break;
10162 }
10163 ret = wait_block_group_cache_done(cache);
10164 if (ret) {
10165 btrfs_put_block_group(cache);
10166 break;
10167 }
f7039b1d
LD
10168 }
10169 ret = btrfs_trim_block_group(cache,
10170 &group_trimmed,
10171 start,
10172 end,
10173 range->minlen);
10174
10175 trimmed += group_trimmed;
10176 if (ret) {
10177 btrfs_put_block_group(cache);
10178 break;
10179 }
10180 }
10181
10182 cache = next_block_group(fs_info->tree_root, cache);
10183 }
10184
10185 range->len = trimmed;
10186 return ret;
10187}
8257b2dc
MX
10188
10189/*
9ea24bbe
FM
10190 * btrfs_{start,end}_write_no_snapshoting() are similar to
10191 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10192 * data into the page cache through nocow before the subvolume is snapshoted,
10193 * but flush the data into disk after the snapshot creation, or to prevent
10194 * operations while snapshoting is ongoing and that cause the snapshot to be
10195 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10196 */
9ea24bbe 10197void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10198{
10199 percpu_counter_dec(&root->subv_writers->counter);
10200 /*
10201 * Make sure counter is updated before we wake up
10202 * waiters.
10203 */
10204 smp_mb();
10205 if (waitqueue_active(&root->subv_writers->wait))
10206 wake_up(&root->subv_writers->wait);
10207}
10208
9ea24bbe 10209int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10210{
ee39b432 10211 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10212 return 0;
10213
10214 percpu_counter_inc(&root->subv_writers->counter);
10215 /*
10216 * Make sure counter is updated before we check for snapshot creation.
10217 */
10218 smp_mb();
ee39b432 10219 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10220 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10221 return 0;
10222 }
10223 return 1;
10224}