]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: qgroup: Fix qgroup reserved space underflow caused by buffered write and quota...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
f361bf4a 19#include <linux/sched/signal.h>
edbd8d4e 20#include <linux/pagemap.h>
ec44a35c 21#include <linux/writeback.h>
21af804c 22#include <linux/blkdev.h>
b7a9f29f 23#include <linux/sort.h>
4184ea7f 24#include <linux/rcupdate.h>
817d52f8 25#include <linux/kthread.h>
5a0e3ad6 26#include <linux/slab.h>
dff51cd1 27#include <linux/ratelimit.h>
b150a4f1 28#include <linux/percpu_counter.h>
74493f7a 29#include "hash.h"
995946dd 30#include "tree-log.h"
fec577fb
CM
31#include "disk-io.h"
32#include "print-tree.h"
0b86a832 33#include "volumes.h"
53b381b3 34#include "raid56.h"
925baedd 35#include "locking.h"
fa9c0d79 36#include "free-space-cache.h"
1e144fb8 37#include "free-space-tree.h"
3fed40cc 38#include "math.h"
6ab0a202 39#include "sysfs.h"
fcebe456 40#include "qgroup.h"
fec577fb 41
709c0486
AJ
42#undef SCRAMBLE_DELAYED_REFS
43
9e622d6b
MX
44/*
45 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47 * if we really need one.
48 *
0e4f8f88
CM
49 * CHUNK_ALLOC_LIMITED means to only try and allocate one
50 * if we have very few chunks already allocated. This is
51 * used as part of the clustering code to help make sure
52 * we have a good pool of storage to cluster in, without
53 * filling the FS with empty chunks
54 *
9e622d6b
MX
55 * CHUNK_ALLOC_FORCE means it must try to allocate one
56 *
0e4f8f88
CM
57 */
58enum {
59 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
60 CHUNK_ALLOC_LIMITED = 1,
61 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
62};
63
ce93ec54 64static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 65 struct btrfs_fs_info *fs_info, u64 bytenr,
ce93ec54 66 u64 num_bytes, int alloc);
5d4f98a2 67static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 68 struct btrfs_fs_info *fs_info,
c682f9b3 69 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
70 u64 root_objectid, u64 owner_objectid,
71 u64 owner_offset, int refs_to_drop,
c682f9b3 72 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
73static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 struct extent_buffer *leaf,
75 struct btrfs_extent_item *ei);
76static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 77 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
78 u64 parent, u64 root_objectid,
79 u64 flags, u64 owner, u64 offset,
80 struct btrfs_key *ins, int ref_mod);
81static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 82 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
83 u64 parent, u64 root_objectid,
84 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 85 int level, struct btrfs_key *ins);
6a63209f 86static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 87 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 88 int force);
11833d66
YZ
89static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
ab8d0fc4
JM
91static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 93 int dump_block_groups);
4824f1f4 94static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 95 u64 ram_bytes, u64 num_bytes, int delalloc);
4824f1f4
WX
96static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 u64 num_bytes, int delalloc);
5d80366e
JB
98static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 u64 num_bytes);
c1c4919b 100static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
c1c4919b
JM
103 enum btrfs_reserve_flush_enum flush,
104 bool system_chunk);
957780eb
JB
105static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106 struct btrfs_space_info *space_info,
107 u64 num_bytes);
108static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109 struct btrfs_space_info *space_info,
110 u64 num_bytes);
6a63209f 111
817d52f8
JB
112static noinline int
113block_group_cache_done(struct btrfs_block_group_cache *cache)
114{
115 smp_mb();
36cce922
JB
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
118}
119
0f9dd46c
JB
120static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121{
122 return (cache->flags & bits) == bits;
123}
124
758f2dfc 125void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
126{
127 atomic_inc(&cache->count);
128}
129
130void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131{
f0486c68
YZ
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
0966a7b1
QW
135
136 /*
137 * If not empty, someone is still holding mutex of
138 * full_stripe_lock, which can only be released by caller.
139 * And it will definitely cause use-after-free when caller
140 * tries to release full stripe lock.
141 *
142 * No better way to resolve, but only to warn.
143 */
144 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 145 kfree(cache->free_space_ctl);
11dfe35a 146 kfree(cache);
f0486c68 147 }
11dfe35a
JB
148}
149
0f9dd46c
JB
150/*
151 * this adds the block group to the fs_info rb tree for the block group
152 * cache
153 */
b2950863 154static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
155 struct btrfs_block_group_cache *block_group)
156{
157 struct rb_node **p;
158 struct rb_node *parent = NULL;
159 struct btrfs_block_group_cache *cache;
160
161 spin_lock(&info->block_group_cache_lock);
162 p = &info->block_group_cache_tree.rb_node;
163
164 while (*p) {
165 parent = *p;
166 cache = rb_entry(parent, struct btrfs_block_group_cache,
167 cache_node);
168 if (block_group->key.objectid < cache->key.objectid) {
169 p = &(*p)->rb_left;
170 } else if (block_group->key.objectid > cache->key.objectid) {
171 p = &(*p)->rb_right;
172 } else {
173 spin_unlock(&info->block_group_cache_lock);
174 return -EEXIST;
175 }
176 }
177
178 rb_link_node(&block_group->cache_node, parent, p);
179 rb_insert_color(&block_group->cache_node,
180 &info->block_group_cache_tree);
a1897fdd
LB
181
182 if (info->first_logical_byte > block_group->key.objectid)
183 info->first_logical_byte = block_group->key.objectid;
184
0f9dd46c
JB
185 spin_unlock(&info->block_group_cache_lock);
186
187 return 0;
188}
189
190/*
191 * This will return the block group at or after bytenr if contains is 0, else
192 * it will return the block group that contains the bytenr
193 */
194static struct btrfs_block_group_cache *
195block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
196 int contains)
197{
198 struct btrfs_block_group_cache *cache, *ret = NULL;
199 struct rb_node *n;
200 u64 end, start;
201
202 spin_lock(&info->block_group_cache_lock);
203 n = info->block_group_cache_tree.rb_node;
204
205 while (n) {
206 cache = rb_entry(n, struct btrfs_block_group_cache,
207 cache_node);
208 end = cache->key.objectid + cache->key.offset - 1;
209 start = cache->key.objectid;
210
211 if (bytenr < start) {
212 if (!contains && (!ret || start < ret->key.objectid))
213 ret = cache;
214 n = n->rb_left;
215 } else if (bytenr > start) {
216 if (contains && bytenr <= end) {
217 ret = cache;
218 break;
219 }
220 n = n->rb_right;
221 } else {
222 ret = cache;
223 break;
224 }
225 }
a1897fdd 226 if (ret) {
11dfe35a 227 btrfs_get_block_group(ret);
a1897fdd
LB
228 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
229 info->first_logical_byte = ret->key.objectid;
230 }
0f9dd46c
JB
231 spin_unlock(&info->block_group_cache_lock);
232
233 return ret;
234}
235
2ff7e61e 236static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 237 u64 start, u64 num_bytes)
817d52f8 238{
11833d66 239 u64 end = start + num_bytes - 1;
0b246afa 240 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 241 start, end, EXTENT_UPTODATE);
0b246afa 242 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 243 start, end, EXTENT_UPTODATE);
11833d66
YZ
244 return 0;
245}
817d52f8 246
2ff7e61e 247static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
248 struct btrfs_block_group_cache *cache)
249{
250 u64 start, end;
817d52f8 251
11833d66
YZ
252 start = cache->key.objectid;
253 end = start + cache->key.offset - 1;
254
0b246afa 255 clear_extent_bits(&fs_info->freed_extents[0],
91166212 256 start, end, EXTENT_UPTODATE);
0b246afa 257 clear_extent_bits(&fs_info->freed_extents[1],
91166212 258 start, end, EXTENT_UPTODATE);
817d52f8
JB
259}
260
2ff7e61e 261static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 262 struct btrfs_block_group_cache *cache)
817d52f8 263{
817d52f8
JB
264 u64 bytenr;
265 u64 *logical;
266 int stripe_len;
267 int i, nr, ret;
268
06b2331f
YZ
269 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
270 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
271 cache->bytes_super += stripe_len;
2ff7e61e 272 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 273 stripe_len);
835d974f
JB
274 if (ret)
275 return ret;
06b2331f
YZ
276 }
277
817d52f8
JB
278 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
279 bytenr = btrfs_sb_offset(i);
0b246afa 280 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
ab8d0fc4 281 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
282 if (ret)
283 return ret;
11833d66 284
817d52f8 285 while (nr--) {
51bf5f0b
JB
286 u64 start, len;
287
288 if (logical[nr] > cache->key.objectid +
289 cache->key.offset)
290 continue;
291
292 if (logical[nr] + stripe_len <= cache->key.objectid)
293 continue;
294
295 start = logical[nr];
296 if (start < cache->key.objectid) {
297 start = cache->key.objectid;
298 len = (logical[nr] + stripe_len) - start;
299 } else {
300 len = min_t(u64, stripe_len,
301 cache->key.objectid +
302 cache->key.offset - start);
303 }
304
305 cache->bytes_super += len;
2ff7e61e 306 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
307 if (ret) {
308 kfree(logical);
309 return ret;
310 }
817d52f8 311 }
11833d66 312
817d52f8
JB
313 kfree(logical);
314 }
817d52f8
JB
315 return 0;
316}
317
11833d66
YZ
318static struct btrfs_caching_control *
319get_caching_control(struct btrfs_block_group_cache *cache)
320{
321 struct btrfs_caching_control *ctl;
322
323 spin_lock(&cache->lock);
dde5abee
JB
324 if (!cache->caching_ctl) {
325 spin_unlock(&cache->lock);
11833d66
YZ
326 return NULL;
327 }
328
329 ctl = cache->caching_ctl;
1e4f4714 330 refcount_inc(&ctl->count);
11833d66
YZ
331 spin_unlock(&cache->lock);
332 return ctl;
333}
334
335static void put_caching_control(struct btrfs_caching_control *ctl)
336{
1e4f4714 337 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
338 kfree(ctl);
339}
340
d0bd4560 341#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 342static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 343{
2ff7e61e 344 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
345 u64 start = block_group->key.objectid;
346 u64 len = block_group->key.offset;
347 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 348 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
349 u64 step = chunk << 1;
350
351 while (len > chunk) {
352 btrfs_remove_free_space(block_group, start, chunk);
353 start += step;
354 if (len < step)
355 len = 0;
356 else
357 len -= step;
358 }
359}
360#endif
361
0f9dd46c
JB
362/*
363 * this is only called by cache_block_group, since we could have freed extents
364 * we need to check the pinned_extents for any extents that can't be used yet
365 * since their free space will be released as soon as the transaction commits.
366 */
a5ed9182
OS
367u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
368 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 369{
817d52f8 370 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
371 int ret;
372
373 while (start < end) {
11833d66 374 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 375 &extent_start, &extent_end,
e6138876
JB
376 EXTENT_DIRTY | EXTENT_UPTODATE,
377 NULL);
0f9dd46c
JB
378 if (ret)
379 break;
380
06b2331f 381 if (extent_start <= start) {
0f9dd46c
JB
382 start = extent_end + 1;
383 } else if (extent_start > start && extent_start < end) {
384 size = extent_start - start;
817d52f8 385 total_added += size;
ea6a478e
JB
386 ret = btrfs_add_free_space(block_group, start,
387 size);
79787eaa 388 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
389 start = extent_end + 1;
390 } else {
391 break;
392 }
393 }
394
395 if (start < end) {
396 size = end - start;
817d52f8 397 total_added += size;
ea6a478e 398 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 399 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
400 }
401
817d52f8 402 return total_added;
0f9dd46c
JB
403}
404
73fa48b6 405static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 406{
0b246afa
JM
407 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
408 struct btrfs_fs_info *fs_info = block_group->fs_info;
409 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 410 struct btrfs_path *path;
5f39d397 411 struct extent_buffer *leaf;
11833d66 412 struct btrfs_key key;
817d52f8 413 u64 total_found = 0;
11833d66
YZ
414 u64 last = 0;
415 u32 nritems;
73fa48b6 416 int ret;
d0bd4560 417 bool wakeup = true;
f510cfec 418
e37c9e69
CM
419 path = btrfs_alloc_path();
420 if (!path)
73fa48b6 421 return -ENOMEM;
7d7d6068 422
817d52f8 423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 424
d0bd4560
JB
425#ifdef CONFIG_BTRFS_DEBUG
426 /*
427 * If we're fragmenting we don't want to make anybody think we can
428 * allocate from this block group until we've had a chance to fragment
429 * the free space.
430 */
2ff7e61e 431 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
432 wakeup = false;
433#endif
5cd57b2c 434 /*
817d52f8
JB
435 * We don't want to deadlock with somebody trying to allocate a new
436 * extent for the extent root while also trying to search the extent
437 * root to add free space. So we skip locking and search the commit
438 * root, since its read-only
5cd57b2c
CM
439 */
440 path->skip_locking = 1;
817d52f8 441 path->search_commit_root = 1;
e4058b54 442 path->reada = READA_FORWARD;
817d52f8 443
e4404d6e 444 key.objectid = last;
e37c9e69 445 key.offset = 0;
11833d66 446 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 447
52ee28d2 448next:
11833d66 449 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 450 if (ret < 0)
73fa48b6 451 goto out;
a512bbf8 452
11833d66
YZ
453 leaf = path->nodes[0];
454 nritems = btrfs_header_nritems(leaf);
455
d397712b 456 while (1) {
7841cb28 457 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 458 last = (u64)-1;
817d52f8 459 break;
f25784b3 460 }
817d52f8 461
11833d66
YZ
462 if (path->slots[0] < nritems) {
463 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
464 } else {
465 ret = find_next_key(path, 0, &key);
466 if (ret)
e37c9e69 467 break;
817d52f8 468
c9ea7b24 469 if (need_resched() ||
9e351cc8 470 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
471 if (wakeup)
472 caching_ctl->progress = last;
ff5714cc 473 btrfs_release_path(path);
9e351cc8 474 up_read(&fs_info->commit_root_sem);
589d8ade 475 mutex_unlock(&caching_ctl->mutex);
11833d66 476 cond_resched();
73fa48b6
OS
477 mutex_lock(&caching_ctl->mutex);
478 down_read(&fs_info->commit_root_sem);
479 goto next;
589d8ade 480 }
0a3896d0
JB
481
482 ret = btrfs_next_leaf(extent_root, path);
483 if (ret < 0)
73fa48b6 484 goto out;
0a3896d0
JB
485 if (ret)
486 break;
589d8ade
JB
487 leaf = path->nodes[0];
488 nritems = btrfs_header_nritems(leaf);
489 continue;
11833d66 490 }
817d52f8 491
52ee28d2
LB
492 if (key.objectid < last) {
493 key.objectid = last;
494 key.offset = 0;
495 key.type = BTRFS_EXTENT_ITEM_KEY;
496
d0bd4560
JB
497 if (wakeup)
498 caching_ctl->progress = last;
52ee28d2
LB
499 btrfs_release_path(path);
500 goto next;
501 }
502
11833d66
YZ
503 if (key.objectid < block_group->key.objectid) {
504 path->slots[0]++;
817d52f8 505 continue;
e37c9e69 506 }
0f9dd46c 507
e37c9e69 508 if (key.objectid >= block_group->key.objectid +
0f9dd46c 509 block_group->key.offset)
e37c9e69 510 break;
7d7d6068 511
3173a18f
JB
512 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
513 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
514 total_found += add_new_free_space(block_group,
515 fs_info, last,
516 key.objectid);
3173a18f
JB
517 if (key.type == BTRFS_METADATA_ITEM_KEY)
518 last = key.objectid +
da17066c 519 fs_info->nodesize;
3173a18f
JB
520 else
521 last = key.objectid + key.offset;
817d52f8 522
73fa48b6 523 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 524 total_found = 0;
d0bd4560
JB
525 if (wakeup)
526 wake_up(&caching_ctl->wait);
11833d66 527 }
817d52f8 528 }
e37c9e69
CM
529 path->slots[0]++;
530 }
817d52f8 531 ret = 0;
e37c9e69 532
817d52f8
JB
533 total_found += add_new_free_space(block_group, fs_info, last,
534 block_group->key.objectid +
535 block_group->key.offset);
11833d66 536 caching_ctl->progress = (u64)-1;
817d52f8 537
73fa48b6
OS
538out:
539 btrfs_free_path(path);
540 return ret;
541}
542
543static noinline void caching_thread(struct btrfs_work *work)
544{
545 struct btrfs_block_group_cache *block_group;
546 struct btrfs_fs_info *fs_info;
547 struct btrfs_caching_control *caching_ctl;
b4570aa9 548 struct btrfs_root *extent_root;
73fa48b6
OS
549 int ret;
550
551 caching_ctl = container_of(work, struct btrfs_caching_control, work);
552 block_group = caching_ctl->block_group;
553 fs_info = block_group->fs_info;
b4570aa9 554 extent_root = fs_info->extent_root;
73fa48b6
OS
555
556 mutex_lock(&caching_ctl->mutex);
557 down_read(&fs_info->commit_root_sem);
558
1e144fb8
OS
559 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
560 ret = load_free_space_tree(caching_ctl);
561 else
562 ret = load_extent_tree_free(caching_ctl);
73fa48b6 563
817d52f8 564 spin_lock(&block_group->lock);
11833d66 565 block_group->caching_ctl = NULL;
73fa48b6 566 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 567 spin_unlock(&block_group->lock);
0f9dd46c 568
d0bd4560 569#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 570 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
571 u64 bytes_used;
572
573 spin_lock(&block_group->space_info->lock);
574 spin_lock(&block_group->lock);
575 bytes_used = block_group->key.offset -
576 btrfs_block_group_used(&block_group->item);
577 block_group->space_info->bytes_used += bytes_used >> 1;
578 spin_unlock(&block_group->lock);
579 spin_unlock(&block_group->space_info->lock);
2ff7e61e 580 fragment_free_space(block_group);
d0bd4560
JB
581 }
582#endif
583
584 caching_ctl->progress = (u64)-1;
11833d66 585
9e351cc8 586 up_read(&fs_info->commit_root_sem);
2ff7e61e 587 free_excluded_extents(fs_info, block_group);
11833d66 588 mutex_unlock(&caching_ctl->mutex);
73fa48b6 589
11833d66
YZ
590 wake_up(&caching_ctl->wait);
591
592 put_caching_control(caching_ctl);
11dfe35a 593 btrfs_put_block_group(block_group);
817d52f8
JB
594}
595
9d66e233 596static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 597 int load_cache_only)
817d52f8 598{
291c7d2f 599 DEFINE_WAIT(wait);
11833d66
YZ
600 struct btrfs_fs_info *fs_info = cache->fs_info;
601 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
602 int ret = 0;
603
291c7d2f 604 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
605 if (!caching_ctl)
606 return -ENOMEM;
291c7d2f
JB
607
608 INIT_LIST_HEAD(&caching_ctl->list);
609 mutex_init(&caching_ctl->mutex);
610 init_waitqueue_head(&caching_ctl->wait);
611 caching_ctl->block_group = cache;
612 caching_ctl->progress = cache->key.objectid;
1e4f4714 613 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
614 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
615 caching_thread, NULL, NULL);
291c7d2f
JB
616
617 spin_lock(&cache->lock);
618 /*
619 * This should be a rare occasion, but this could happen I think in the
620 * case where one thread starts to load the space cache info, and then
621 * some other thread starts a transaction commit which tries to do an
622 * allocation while the other thread is still loading the space cache
623 * info. The previous loop should have kept us from choosing this block
624 * group, but if we've moved to the state where we will wait on caching
625 * block groups we need to first check if we're doing a fast load here,
626 * so we can wait for it to finish, otherwise we could end up allocating
627 * from a block group who's cache gets evicted for one reason or
628 * another.
629 */
630 while (cache->cached == BTRFS_CACHE_FAST) {
631 struct btrfs_caching_control *ctl;
632
633 ctl = cache->caching_ctl;
1e4f4714 634 refcount_inc(&ctl->count);
291c7d2f
JB
635 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
636 spin_unlock(&cache->lock);
637
638 schedule();
639
640 finish_wait(&ctl->wait, &wait);
641 put_caching_control(ctl);
642 spin_lock(&cache->lock);
643 }
644
645 if (cache->cached != BTRFS_CACHE_NO) {
646 spin_unlock(&cache->lock);
647 kfree(caching_ctl);
11833d66 648 return 0;
291c7d2f
JB
649 }
650 WARN_ON(cache->caching_ctl);
651 cache->caching_ctl = caching_ctl;
652 cache->cached = BTRFS_CACHE_FAST;
653 spin_unlock(&cache->lock);
11833d66 654
d53ba474 655 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 656 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
657 ret = load_free_space_cache(fs_info, cache);
658
659 spin_lock(&cache->lock);
660 if (ret == 1) {
291c7d2f 661 cache->caching_ctl = NULL;
9d66e233
JB
662 cache->cached = BTRFS_CACHE_FINISHED;
663 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 664 caching_ctl->progress = (u64)-1;
9d66e233 665 } else {
291c7d2f
JB
666 if (load_cache_only) {
667 cache->caching_ctl = NULL;
668 cache->cached = BTRFS_CACHE_NO;
669 } else {
670 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 671 cache->has_caching_ctl = 1;
291c7d2f 672 }
9d66e233
JB
673 }
674 spin_unlock(&cache->lock);
d0bd4560
JB
675#ifdef CONFIG_BTRFS_DEBUG
676 if (ret == 1 &&
2ff7e61e 677 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
678 u64 bytes_used;
679
680 spin_lock(&cache->space_info->lock);
681 spin_lock(&cache->lock);
682 bytes_used = cache->key.offset -
683 btrfs_block_group_used(&cache->item);
684 cache->space_info->bytes_used += bytes_used >> 1;
685 spin_unlock(&cache->lock);
686 spin_unlock(&cache->space_info->lock);
2ff7e61e 687 fragment_free_space(cache);
d0bd4560
JB
688 }
689#endif
cb83b7b8
JB
690 mutex_unlock(&caching_ctl->mutex);
691
291c7d2f 692 wake_up(&caching_ctl->wait);
3c14874a 693 if (ret == 1) {
291c7d2f 694 put_caching_control(caching_ctl);
2ff7e61e 695 free_excluded_extents(fs_info, cache);
9d66e233 696 return 0;
3c14874a 697 }
291c7d2f
JB
698 } else {
699 /*
1e144fb8
OS
700 * We're either using the free space tree or no caching at all.
701 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
702 */
703 spin_lock(&cache->lock);
704 if (load_cache_only) {
705 cache->caching_ctl = NULL;
706 cache->cached = BTRFS_CACHE_NO;
707 } else {
708 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 709 cache->has_caching_ctl = 1;
291c7d2f
JB
710 }
711 spin_unlock(&cache->lock);
712 wake_up(&caching_ctl->wait);
9d66e233
JB
713 }
714
291c7d2f
JB
715 if (load_cache_only) {
716 put_caching_control(caching_ctl);
11833d66 717 return 0;
817d52f8 718 }
817d52f8 719
9e351cc8 720 down_write(&fs_info->commit_root_sem);
1e4f4714 721 refcount_inc(&caching_ctl->count);
11833d66 722 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 723 up_write(&fs_info->commit_root_sem);
11833d66 724
11dfe35a 725 btrfs_get_block_group(cache);
11833d66 726
e66f0bb1 727 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 728
ef8bbdfe 729 return ret;
e37c9e69
CM
730}
731
0f9dd46c
JB
732/*
733 * return the block group that starts at or after bytenr
734 */
d397712b
CM
735static struct btrfs_block_group_cache *
736btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 737{
e2c89907 738 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
739}
740
0f9dd46c 741/*
9f55684c 742 * return the block group that contains the given bytenr
0f9dd46c 743 */
d397712b
CM
744struct btrfs_block_group_cache *btrfs_lookup_block_group(
745 struct btrfs_fs_info *info,
746 u64 bytenr)
be744175 747{
e2c89907 748 return block_group_cache_tree_search(info, bytenr, 1);
be744175 749}
0b86a832 750
0f9dd46c
JB
751static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
752 u64 flags)
6324fbf3 753{
0f9dd46c 754 struct list_head *head = &info->space_info;
0f9dd46c 755 struct btrfs_space_info *found;
4184ea7f 756
52ba6929 757 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 758
4184ea7f
CM
759 rcu_read_lock();
760 list_for_each_entry_rcu(found, head, list) {
67377734 761 if (found->flags & flags) {
4184ea7f 762 rcu_read_unlock();
0f9dd46c 763 return found;
4184ea7f 764 }
0f9dd46c 765 }
4184ea7f 766 rcu_read_unlock();
0f9dd46c 767 return NULL;
6324fbf3
CM
768}
769
0d9f824d
OS
770static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
771 u64 owner, u64 root_objectid)
772{
773 struct btrfs_space_info *space_info;
774 u64 flags;
775
776 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
777 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
778 flags = BTRFS_BLOCK_GROUP_SYSTEM;
779 else
780 flags = BTRFS_BLOCK_GROUP_METADATA;
781 } else {
782 flags = BTRFS_BLOCK_GROUP_DATA;
783 }
784
785 space_info = __find_space_info(fs_info, flags);
55e8196a 786 ASSERT(space_info);
0d9f824d
OS
787 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
788}
789
4184ea7f
CM
790/*
791 * after adding space to the filesystem, we need to clear the full flags
792 * on all the space infos.
793 */
794void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
795{
796 struct list_head *head = &info->space_info;
797 struct btrfs_space_info *found;
798
799 rcu_read_lock();
800 list_for_each_entry_rcu(found, head, list)
801 found->full = 0;
802 rcu_read_unlock();
803}
804
1a4ed8fd 805/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 806int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
807{
808 int ret;
809 struct btrfs_key key;
31840ae1 810 struct btrfs_path *path;
e02119d5 811
31840ae1 812 path = btrfs_alloc_path();
d8926bb3
MF
813 if (!path)
814 return -ENOMEM;
815
e02119d5
CM
816 key.objectid = start;
817 key.offset = len;
3173a18f 818 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 819 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 820 btrfs_free_path(path);
7bb86316
CM
821 return ret;
822}
823
a22285a6 824/*
3173a18f 825 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
826 *
827 * the head node for delayed ref is used to store the sum of all the
828 * reference count modifications queued up in the rbtree. the head
829 * node may also store the extent flags to set. This way you can check
830 * to see what the reference count and extent flags would be if all of
831 * the delayed refs are not processed.
832 */
833int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 834 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 835 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
836{
837 struct btrfs_delayed_ref_head *head;
838 struct btrfs_delayed_ref_root *delayed_refs;
839 struct btrfs_path *path;
840 struct btrfs_extent_item *ei;
841 struct extent_buffer *leaf;
842 struct btrfs_key key;
843 u32 item_size;
844 u64 num_refs;
845 u64 extent_flags;
846 int ret;
847
3173a18f
JB
848 /*
849 * If we don't have skinny metadata, don't bother doing anything
850 * different
851 */
0b246afa
JM
852 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
853 offset = fs_info->nodesize;
3173a18f
JB
854 metadata = 0;
855 }
856
a22285a6
YZ
857 path = btrfs_alloc_path();
858 if (!path)
859 return -ENOMEM;
860
a22285a6
YZ
861 if (!trans) {
862 path->skip_locking = 1;
863 path->search_commit_root = 1;
864 }
639eefc8
FDBM
865
866search_again:
867 key.objectid = bytenr;
868 key.offset = offset;
869 if (metadata)
870 key.type = BTRFS_METADATA_ITEM_KEY;
871 else
872 key.type = BTRFS_EXTENT_ITEM_KEY;
873
0b246afa 874 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
875 if (ret < 0)
876 goto out_free;
877
3173a18f 878 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
879 if (path->slots[0]) {
880 path->slots[0]--;
881 btrfs_item_key_to_cpu(path->nodes[0], &key,
882 path->slots[0]);
883 if (key.objectid == bytenr &&
884 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 885 key.offset == fs_info->nodesize)
74be9510
FDBM
886 ret = 0;
887 }
3173a18f
JB
888 }
889
a22285a6
YZ
890 if (ret == 0) {
891 leaf = path->nodes[0];
892 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
893 if (item_size >= sizeof(*ei)) {
894 ei = btrfs_item_ptr(leaf, path->slots[0],
895 struct btrfs_extent_item);
896 num_refs = btrfs_extent_refs(leaf, ei);
897 extent_flags = btrfs_extent_flags(leaf, ei);
898 } else {
899#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
900 struct btrfs_extent_item_v0 *ei0;
901 BUG_ON(item_size != sizeof(*ei0));
902 ei0 = btrfs_item_ptr(leaf, path->slots[0],
903 struct btrfs_extent_item_v0);
904 num_refs = btrfs_extent_refs_v0(leaf, ei0);
905 /* FIXME: this isn't correct for data */
906 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
907#else
908 BUG();
909#endif
910 }
911 BUG_ON(num_refs == 0);
912 } else {
913 num_refs = 0;
914 extent_flags = 0;
915 ret = 0;
916 }
917
918 if (!trans)
919 goto out;
920
921 delayed_refs = &trans->transaction->delayed_refs;
922 spin_lock(&delayed_refs->lock);
f72ad18e 923 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
924 if (head) {
925 if (!mutex_trylock(&head->mutex)) {
6df8cdf5 926 refcount_inc(&head->node.refs);
a22285a6
YZ
927 spin_unlock(&delayed_refs->lock);
928
b3b4aa74 929 btrfs_release_path(path);
a22285a6 930
8cc33e5c
DS
931 /*
932 * Mutex was contended, block until it's released and try
933 * again
934 */
a22285a6
YZ
935 mutex_lock(&head->mutex);
936 mutex_unlock(&head->mutex);
937 btrfs_put_delayed_ref(&head->node);
639eefc8 938 goto search_again;
a22285a6 939 }
d7df2c79 940 spin_lock(&head->lock);
a22285a6
YZ
941 if (head->extent_op && head->extent_op->update_flags)
942 extent_flags |= head->extent_op->flags_to_set;
943 else
944 BUG_ON(num_refs == 0);
945
946 num_refs += head->node.ref_mod;
d7df2c79 947 spin_unlock(&head->lock);
a22285a6
YZ
948 mutex_unlock(&head->mutex);
949 }
950 spin_unlock(&delayed_refs->lock);
951out:
952 WARN_ON(num_refs == 0);
953 if (refs)
954 *refs = num_refs;
955 if (flags)
956 *flags = extent_flags;
957out_free:
958 btrfs_free_path(path);
959 return ret;
960}
961
d8d5f3e1
CM
962/*
963 * Back reference rules. Back refs have three main goals:
964 *
965 * 1) differentiate between all holders of references to an extent so that
966 * when a reference is dropped we can make sure it was a valid reference
967 * before freeing the extent.
968 *
969 * 2) Provide enough information to quickly find the holders of an extent
970 * if we notice a given block is corrupted or bad.
971 *
972 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
973 * maintenance. This is actually the same as #2, but with a slightly
974 * different use case.
975 *
5d4f98a2
YZ
976 * There are two kinds of back refs. The implicit back refs is optimized
977 * for pointers in non-shared tree blocks. For a given pointer in a block,
978 * back refs of this kind provide information about the block's owner tree
979 * and the pointer's key. These information allow us to find the block by
980 * b-tree searching. The full back refs is for pointers in tree blocks not
981 * referenced by their owner trees. The location of tree block is recorded
982 * in the back refs. Actually the full back refs is generic, and can be
983 * used in all cases the implicit back refs is used. The major shortcoming
984 * of the full back refs is its overhead. Every time a tree block gets
985 * COWed, we have to update back refs entry for all pointers in it.
986 *
987 * For a newly allocated tree block, we use implicit back refs for
988 * pointers in it. This means most tree related operations only involve
989 * implicit back refs. For a tree block created in old transaction, the
990 * only way to drop a reference to it is COW it. So we can detect the
991 * event that tree block loses its owner tree's reference and do the
992 * back refs conversion.
993 *
01327610 994 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
995 *
996 * The reference count of the block is one and the tree is the block's
997 * owner tree. Nothing to do in this case.
998 *
999 * The reference count of the block is one and the tree is not the
1000 * block's owner tree. In this case, full back refs is used for pointers
1001 * in the block. Remove these full back refs, add implicit back refs for
1002 * every pointers in the new block.
1003 *
1004 * The reference count of the block is greater than one and the tree is
1005 * the block's owner tree. In this case, implicit back refs is used for
1006 * pointers in the block. Add full back refs for every pointers in the
1007 * block, increase lower level extents' reference counts. The original
1008 * implicit back refs are entailed to the new block.
1009 *
1010 * The reference count of the block is greater than one and the tree is
1011 * not the block's owner tree. Add implicit back refs for every pointer in
1012 * the new block, increase lower level extents' reference count.
1013 *
1014 * Back Reference Key composing:
1015 *
1016 * The key objectid corresponds to the first byte in the extent,
1017 * The key type is used to differentiate between types of back refs.
1018 * There are different meanings of the key offset for different types
1019 * of back refs.
1020 *
d8d5f3e1
CM
1021 * File extents can be referenced by:
1022 *
1023 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1024 * - different files inside a single subvolume
d8d5f3e1
CM
1025 * - different offsets inside a file (bookend extents in file.c)
1026 *
5d4f98a2 1027 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1028 *
1029 * - Objectid of the subvolume root
d8d5f3e1 1030 * - objectid of the file holding the reference
5d4f98a2
YZ
1031 * - original offset in the file
1032 * - how many bookend extents
d8d5f3e1 1033 *
5d4f98a2
YZ
1034 * The key offset for the implicit back refs is hash of the first
1035 * three fields.
d8d5f3e1 1036 *
5d4f98a2 1037 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1038 *
5d4f98a2 1039 * - number of pointers in the tree leaf
d8d5f3e1 1040 *
5d4f98a2
YZ
1041 * The key offset for the implicit back refs is the first byte of
1042 * the tree leaf
d8d5f3e1 1043 *
5d4f98a2
YZ
1044 * When a file extent is allocated, The implicit back refs is used.
1045 * the fields are filled in:
d8d5f3e1 1046 *
5d4f98a2 1047 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1048 *
5d4f98a2
YZ
1049 * When a file extent is removed file truncation, we find the
1050 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1051 *
5d4f98a2 1052 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1053 *
5d4f98a2 1054 * Btree extents can be referenced by:
d8d5f3e1 1055 *
5d4f98a2 1056 * - Different subvolumes
d8d5f3e1 1057 *
5d4f98a2
YZ
1058 * Both the implicit back refs and the full back refs for tree blocks
1059 * only consist of key. The key offset for the implicit back refs is
1060 * objectid of block's owner tree. The key offset for the full back refs
1061 * is the first byte of parent block.
d8d5f3e1 1062 *
5d4f98a2
YZ
1063 * When implicit back refs is used, information about the lowest key and
1064 * level of the tree block are required. These information are stored in
1065 * tree block info structure.
d8d5f3e1 1066 */
31840ae1 1067
5d4f98a2
YZ
1068#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1069static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1070 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1071 struct btrfs_path *path,
1072 u64 owner, u32 extra_size)
7bb86316 1073{
87bde3cd 1074 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1075 struct btrfs_extent_item *item;
1076 struct btrfs_extent_item_v0 *ei0;
1077 struct btrfs_extent_ref_v0 *ref0;
1078 struct btrfs_tree_block_info *bi;
1079 struct extent_buffer *leaf;
7bb86316 1080 struct btrfs_key key;
5d4f98a2
YZ
1081 struct btrfs_key found_key;
1082 u32 new_size = sizeof(*item);
1083 u64 refs;
1084 int ret;
1085
1086 leaf = path->nodes[0];
1087 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1088
1089 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1090 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1091 struct btrfs_extent_item_v0);
1092 refs = btrfs_extent_refs_v0(leaf, ei0);
1093
1094 if (owner == (u64)-1) {
1095 while (1) {
1096 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1097 ret = btrfs_next_leaf(root, path);
1098 if (ret < 0)
1099 return ret;
79787eaa 1100 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1101 leaf = path->nodes[0];
1102 }
1103 btrfs_item_key_to_cpu(leaf, &found_key,
1104 path->slots[0]);
1105 BUG_ON(key.objectid != found_key.objectid);
1106 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1107 path->slots[0]++;
1108 continue;
1109 }
1110 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1111 struct btrfs_extent_ref_v0);
1112 owner = btrfs_ref_objectid_v0(leaf, ref0);
1113 break;
1114 }
1115 }
b3b4aa74 1116 btrfs_release_path(path);
5d4f98a2
YZ
1117
1118 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1119 new_size += sizeof(*bi);
1120
1121 new_size -= sizeof(*ei0);
1122 ret = btrfs_search_slot(trans, root, &key, path,
1123 new_size + extra_size, 1);
1124 if (ret < 0)
1125 return ret;
79787eaa 1126 BUG_ON(ret); /* Corruption */
5d4f98a2 1127
87bde3cd 1128 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1129
1130 leaf = path->nodes[0];
1131 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1132 btrfs_set_extent_refs(leaf, item, refs);
1133 /* FIXME: get real generation */
1134 btrfs_set_extent_generation(leaf, item, 0);
1135 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1136 btrfs_set_extent_flags(leaf, item,
1137 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1138 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1139 bi = (struct btrfs_tree_block_info *)(item + 1);
1140 /* FIXME: get first key of the block */
b159fa28 1141 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1142 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1143 } else {
1144 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1145 }
1146 btrfs_mark_buffer_dirty(leaf);
1147 return 0;
1148}
1149#endif
1150
1151static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1152{
1153 u32 high_crc = ~(u32)0;
1154 u32 low_crc = ~(u32)0;
1155 __le64 lenum;
1156
1157 lenum = cpu_to_le64(root_objectid);
14a958e6 1158 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1159 lenum = cpu_to_le64(owner);
14a958e6 1160 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1161 lenum = cpu_to_le64(offset);
14a958e6 1162 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1163
1164 return ((u64)high_crc << 31) ^ (u64)low_crc;
1165}
1166
1167static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1168 struct btrfs_extent_data_ref *ref)
1169{
1170 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1171 btrfs_extent_data_ref_objectid(leaf, ref),
1172 btrfs_extent_data_ref_offset(leaf, ref));
1173}
1174
1175static int match_extent_data_ref(struct extent_buffer *leaf,
1176 struct btrfs_extent_data_ref *ref,
1177 u64 root_objectid, u64 owner, u64 offset)
1178{
1179 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1180 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1181 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1182 return 0;
1183 return 1;
1184}
1185
1186static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1187 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1188 struct btrfs_path *path,
1189 u64 bytenr, u64 parent,
1190 u64 root_objectid,
1191 u64 owner, u64 offset)
1192{
87bde3cd 1193 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1194 struct btrfs_key key;
1195 struct btrfs_extent_data_ref *ref;
31840ae1 1196 struct extent_buffer *leaf;
5d4f98a2 1197 u32 nritems;
74493f7a 1198 int ret;
5d4f98a2
YZ
1199 int recow;
1200 int err = -ENOENT;
74493f7a 1201
31840ae1 1202 key.objectid = bytenr;
5d4f98a2
YZ
1203 if (parent) {
1204 key.type = BTRFS_SHARED_DATA_REF_KEY;
1205 key.offset = parent;
1206 } else {
1207 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1208 key.offset = hash_extent_data_ref(root_objectid,
1209 owner, offset);
1210 }
1211again:
1212 recow = 0;
1213 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1214 if (ret < 0) {
1215 err = ret;
1216 goto fail;
1217 }
31840ae1 1218
5d4f98a2
YZ
1219 if (parent) {
1220 if (!ret)
1221 return 0;
1222#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1223 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1224 btrfs_release_path(path);
5d4f98a2
YZ
1225 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1226 if (ret < 0) {
1227 err = ret;
1228 goto fail;
1229 }
1230 if (!ret)
1231 return 0;
1232#endif
1233 goto fail;
31840ae1
ZY
1234 }
1235
1236 leaf = path->nodes[0];
5d4f98a2
YZ
1237 nritems = btrfs_header_nritems(leaf);
1238 while (1) {
1239 if (path->slots[0] >= nritems) {
1240 ret = btrfs_next_leaf(root, path);
1241 if (ret < 0)
1242 err = ret;
1243 if (ret)
1244 goto fail;
1245
1246 leaf = path->nodes[0];
1247 nritems = btrfs_header_nritems(leaf);
1248 recow = 1;
1249 }
1250
1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252 if (key.objectid != bytenr ||
1253 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1254 goto fail;
1255
1256 ref = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_extent_data_ref);
1258
1259 if (match_extent_data_ref(leaf, ref, root_objectid,
1260 owner, offset)) {
1261 if (recow) {
b3b4aa74 1262 btrfs_release_path(path);
5d4f98a2
YZ
1263 goto again;
1264 }
1265 err = 0;
1266 break;
1267 }
1268 path->slots[0]++;
31840ae1 1269 }
5d4f98a2
YZ
1270fail:
1271 return err;
31840ae1
ZY
1272}
1273
5d4f98a2 1274static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1275 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1276 struct btrfs_path *path,
1277 u64 bytenr, u64 parent,
1278 u64 root_objectid, u64 owner,
1279 u64 offset, int refs_to_add)
31840ae1 1280{
87bde3cd 1281 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1282 struct btrfs_key key;
1283 struct extent_buffer *leaf;
5d4f98a2 1284 u32 size;
31840ae1
ZY
1285 u32 num_refs;
1286 int ret;
74493f7a 1287
74493f7a 1288 key.objectid = bytenr;
5d4f98a2
YZ
1289 if (parent) {
1290 key.type = BTRFS_SHARED_DATA_REF_KEY;
1291 key.offset = parent;
1292 size = sizeof(struct btrfs_shared_data_ref);
1293 } else {
1294 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1295 key.offset = hash_extent_data_ref(root_objectid,
1296 owner, offset);
1297 size = sizeof(struct btrfs_extent_data_ref);
1298 }
74493f7a 1299
5d4f98a2
YZ
1300 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1301 if (ret && ret != -EEXIST)
1302 goto fail;
1303
1304 leaf = path->nodes[0];
1305 if (parent) {
1306 struct btrfs_shared_data_ref *ref;
31840ae1 1307 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1308 struct btrfs_shared_data_ref);
1309 if (ret == 0) {
1310 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1311 } else {
1312 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1313 num_refs += refs_to_add;
1314 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1315 }
5d4f98a2
YZ
1316 } else {
1317 struct btrfs_extent_data_ref *ref;
1318 while (ret == -EEXIST) {
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 if (match_extent_data_ref(leaf, ref, root_objectid,
1322 owner, offset))
1323 break;
b3b4aa74 1324 btrfs_release_path(path);
5d4f98a2
YZ
1325 key.offset++;
1326 ret = btrfs_insert_empty_item(trans, root, path, &key,
1327 size);
1328 if (ret && ret != -EEXIST)
1329 goto fail;
31840ae1 1330
5d4f98a2
YZ
1331 leaf = path->nodes[0];
1332 }
1333 ref = btrfs_item_ptr(leaf, path->slots[0],
1334 struct btrfs_extent_data_ref);
1335 if (ret == 0) {
1336 btrfs_set_extent_data_ref_root(leaf, ref,
1337 root_objectid);
1338 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1339 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1340 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1341 } else {
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1343 num_refs += refs_to_add;
1344 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1345 }
31840ae1 1346 }
5d4f98a2
YZ
1347 btrfs_mark_buffer_dirty(leaf);
1348 ret = 0;
1349fail:
b3b4aa74 1350 btrfs_release_path(path);
7bb86316 1351 return ret;
74493f7a
CM
1352}
1353
5d4f98a2 1354static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1355 struct btrfs_fs_info *fs_info,
5d4f98a2 1356 struct btrfs_path *path,
fcebe456 1357 int refs_to_drop, int *last_ref)
31840ae1 1358{
5d4f98a2
YZ
1359 struct btrfs_key key;
1360 struct btrfs_extent_data_ref *ref1 = NULL;
1361 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1362 struct extent_buffer *leaf;
5d4f98a2 1363 u32 num_refs = 0;
31840ae1
ZY
1364 int ret = 0;
1365
1366 leaf = path->nodes[0];
5d4f98a2
YZ
1367 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1368
1369 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1370 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1371 struct btrfs_extent_data_ref);
1372 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1373 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1374 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1375 struct btrfs_shared_data_ref);
1376 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1377#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1378 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1379 struct btrfs_extent_ref_v0 *ref0;
1380 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1381 struct btrfs_extent_ref_v0);
1382 num_refs = btrfs_ref_count_v0(leaf, ref0);
1383#endif
1384 } else {
1385 BUG();
1386 }
1387
56bec294
CM
1388 BUG_ON(num_refs < refs_to_drop);
1389 num_refs -= refs_to_drop;
5d4f98a2 1390
31840ae1 1391 if (num_refs == 0) {
87bde3cd 1392 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1393 *last_ref = 1;
31840ae1 1394 } else {
5d4f98a2
YZ
1395 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1396 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1397 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1398 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1399#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1400 else {
1401 struct btrfs_extent_ref_v0 *ref0;
1402 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1403 struct btrfs_extent_ref_v0);
1404 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1405 }
1406#endif
31840ae1
ZY
1407 btrfs_mark_buffer_dirty(leaf);
1408 }
31840ae1
ZY
1409 return ret;
1410}
1411
9ed0dea0 1412static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1413 struct btrfs_extent_inline_ref *iref)
15916de8 1414{
5d4f98a2
YZ
1415 struct btrfs_key key;
1416 struct extent_buffer *leaf;
1417 struct btrfs_extent_data_ref *ref1;
1418 struct btrfs_shared_data_ref *ref2;
1419 u32 num_refs = 0;
1420
1421 leaf = path->nodes[0];
1422 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1423 if (iref) {
1424 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1425 BTRFS_EXTENT_DATA_REF_KEY) {
1426 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1427 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1428 } else {
1429 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1430 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1431 }
1432 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1433 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1434 struct btrfs_extent_data_ref);
1435 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1436 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1437 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1438 struct btrfs_shared_data_ref);
1439 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1440#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1441 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1442 struct btrfs_extent_ref_v0 *ref0;
1443 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1444 struct btrfs_extent_ref_v0);
1445 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1446#endif
5d4f98a2
YZ
1447 } else {
1448 WARN_ON(1);
1449 }
1450 return num_refs;
1451}
15916de8 1452
5d4f98a2 1453static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1454 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1455 struct btrfs_path *path,
1456 u64 bytenr, u64 parent,
1457 u64 root_objectid)
1f3c79a2 1458{
87bde3cd 1459 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1460 struct btrfs_key key;
1f3c79a2 1461 int ret;
1f3c79a2 1462
5d4f98a2
YZ
1463 key.objectid = bytenr;
1464 if (parent) {
1465 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1466 key.offset = parent;
1467 } else {
1468 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1469 key.offset = root_objectid;
1f3c79a2
LH
1470 }
1471
5d4f98a2
YZ
1472 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1473 if (ret > 0)
1474 ret = -ENOENT;
1475#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1476 if (ret == -ENOENT && parent) {
b3b4aa74 1477 btrfs_release_path(path);
5d4f98a2
YZ
1478 key.type = BTRFS_EXTENT_REF_V0_KEY;
1479 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1480 if (ret > 0)
1481 ret = -ENOENT;
1482 }
1f3c79a2 1483#endif
5d4f98a2 1484 return ret;
1f3c79a2
LH
1485}
1486
5d4f98a2 1487static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1488 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1489 struct btrfs_path *path,
1490 u64 bytenr, u64 parent,
1491 u64 root_objectid)
31840ae1 1492{
5d4f98a2 1493 struct btrfs_key key;
31840ae1 1494 int ret;
31840ae1 1495
5d4f98a2
YZ
1496 key.objectid = bytenr;
1497 if (parent) {
1498 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1499 key.offset = parent;
1500 } else {
1501 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1502 key.offset = root_objectid;
1503 }
1504
87bde3cd
JM
1505 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1506 path, &key, 0);
b3b4aa74 1507 btrfs_release_path(path);
31840ae1
ZY
1508 return ret;
1509}
1510
5d4f98a2 1511static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1512{
5d4f98a2
YZ
1513 int type;
1514 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1515 if (parent > 0)
1516 type = BTRFS_SHARED_BLOCK_REF_KEY;
1517 else
1518 type = BTRFS_TREE_BLOCK_REF_KEY;
1519 } else {
1520 if (parent > 0)
1521 type = BTRFS_SHARED_DATA_REF_KEY;
1522 else
1523 type = BTRFS_EXTENT_DATA_REF_KEY;
1524 }
1525 return type;
31840ae1 1526}
56bec294 1527
2c47e605
YZ
1528static int find_next_key(struct btrfs_path *path, int level,
1529 struct btrfs_key *key)
56bec294 1530
02217ed2 1531{
2c47e605 1532 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1533 if (!path->nodes[level])
1534 break;
5d4f98a2
YZ
1535 if (path->slots[level] + 1 >=
1536 btrfs_header_nritems(path->nodes[level]))
1537 continue;
1538 if (level == 0)
1539 btrfs_item_key_to_cpu(path->nodes[level], key,
1540 path->slots[level] + 1);
1541 else
1542 btrfs_node_key_to_cpu(path->nodes[level], key,
1543 path->slots[level] + 1);
1544 return 0;
1545 }
1546 return 1;
1547}
037e6390 1548
5d4f98a2
YZ
1549/*
1550 * look for inline back ref. if back ref is found, *ref_ret is set
1551 * to the address of inline back ref, and 0 is returned.
1552 *
1553 * if back ref isn't found, *ref_ret is set to the address where it
1554 * should be inserted, and -ENOENT is returned.
1555 *
1556 * if insert is true and there are too many inline back refs, the path
1557 * points to the extent item, and -EAGAIN is returned.
1558 *
1559 * NOTE: inline back refs are ordered in the same way that back ref
1560 * items in the tree are ordered.
1561 */
1562static noinline_for_stack
1563int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1564 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1565 struct btrfs_path *path,
1566 struct btrfs_extent_inline_ref **ref_ret,
1567 u64 bytenr, u64 num_bytes,
1568 u64 parent, u64 root_objectid,
1569 u64 owner, u64 offset, int insert)
1570{
87bde3cd 1571 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1572 struct btrfs_key key;
1573 struct extent_buffer *leaf;
1574 struct btrfs_extent_item *ei;
1575 struct btrfs_extent_inline_ref *iref;
1576 u64 flags;
1577 u64 item_size;
1578 unsigned long ptr;
1579 unsigned long end;
1580 int extra_size;
1581 int type;
1582 int want;
1583 int ret;
1584 int err = 0;
0b246afa 1585 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
26b8003f 1586
db94535d 1587 key.objectid = bytenr;
31840ae1 1588 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1589 key.offset = num_bytes;
31840ae1 1590
5d4f98a2
YZ
1591 want = extent_ref_type(parent, owner);
1592 if (insert) {
1593 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1594 path->keep_locks = 1;
5d4f98a2
YZ
1595 } else
1596 extra_size = -1;
3173a18f
JB
1597
1598 /*
1599 * Owner is our parent level, so we can just add one to get the level
1600 * for the block we are interested in.
1601 */
1602 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1603 key.type = BTRFS_METADATA_ITEM_KEY;
1604 key.offset = owner;
1605 }
1606
1607again:
5d4f98a2 1608 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1609 if (ret < 0) {
5d4f98a2
YZ
1610 err = ret;
1611 goto out;
1612 }
3173a18f
JB
1613
1614 /*
1615 * We may be a newly converted file system which still has the old fat
1616 * extent entries for metadata, so try and see if we have one of those.
1617 */
1618 if (ret > 0 && skinny_metadata) {
1619 skinny_metadata = false;
1620 if (path->slots[0]) {
1621 path->slots[0]--;
1622 btrfs_item_key_to_cpu(path->nodes[0], &key,
1623 path->slots[0]);
1624 if (key.objectid == bytenr &&
1625 key.type == BTRFS_EXTENT_ITEM_KEY &&
1626 key.offset == num_bytes)
1627 ret = 0;
1628 }
1629 if (ret) {
9ce49a0b 1630 key.objectid = bytenr;
3173a18f
JB
1631 key.type = BTRFS_EXTENT_ITEM_KEY;
1632 key.offset = num_bytes;
1633 btrfs_release_path(path);
1634 goto again;
1635 }
1636 }
1637
79787eaa
JM
1638 if (ret && !insert) {
1639 err = -ENOENT;
1640 goto out;
fae7f21c 1641 } else if (WARN_ON(ret)) {
492104c8 1642 err = -EIO;
492104c8 1643 goto out;
79787eaa 1644 }
5d4f98a2
YZ
1645
1646 leaf = path->nodes[0];
1647 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1648#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1649 if (item_size < sizeof(*ei)) {
1650 if (!insert) {
1651 err = -ENOENT;
1652 goto out;
1653 }
87bde3cd 1654 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1655 extra_size);
1656 if (ret < 0) {
1657 err = ret;
1658 goto out;
1659 }
1660 leaf = path->nodes[0];
1661 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1662 }
1663#endif
1664 BUG_ON(item_size < sizeof(*ei));
1665
5d4f98a2
YZ
1666 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1667 flags = btrfs_extent_flags(leaf, ei);
1668
1669 ptr = (unsigned long)(ei + 1);
1670 end = (unsigned long)ei + item_size;
1671
3173a18f 1672 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1673 ptr += sizeof(struct btrfs_tree_block_info);
1674 BUG_ON(ptr > end);
5d4f98a2
YZ
1675 }
1676
1677 err = -ENOENT;
1678 while (1) {
1679 if (ptr >= end) {
1680 WARN_ON(ptr > end);
1681 break;
1682 }
1683 iref = (struct btrfs_extent_inline_ref *)ptr;
1684 type = btrfs_extent_inline_ref_type(leaf, iref);
1685 if (want < type)
1686 break;
1687 if (want > type) {
1688 ptr += btrfs_extent_inline_ref_size(type);
1689 continue;
1690 }
1691
1692 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1693 struct btrfs_extent_data_ref *dref;
1694 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1695 if (match_extent_data_ref(leaf, dref, root_objectid,
1696 owner, offset)) {
1697 err = 0;
1698 break;
1699 }
1700 if (hash_extent_data_ref_item(leaf, dref) <
1701 hash_extent_data_ref(root_objectid, owner, offset))
1702 break;
1703 } else {
1704 u64 ref_offset;
1705 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1706 if (parent > 0) {
1707 if (parent == ref_offset) {
1708 err = 0;
1709 break;
1710 }
1711 if (ref_offset < parent)
1712 break;
1713 } else {
1714 if (root_objectid == ref_offset) {
1715 err = 0;
1716 break;
1717 }
1718 if (ref_offset < root_objectid)
1719 break;
1720 }
1721 }
1722 ptr += btrfs_extent_inline_ref_size(type);
1723 }
1724 if (err == -ENOENT && insert) {
1725 if (item_size + extra_size >=
1726 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1727 err = -EAGAIN;
1728 goto out;
1729 }
1730 /*
1731 * To add new inline back ref, we have to make sure
1732 * there is no corresponding back ref item.
1733 * For simplicity, we just do not add new inline back
1734 * ref if there is any kind of item for this block
1735 */
2c47e605
YZ
1736 if (find_next_key(path, 0, &key) == 0 &&
1737 key.objectid == bytenr &&
85d4198e 1738 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1739 err = -EAGAIN;
1740 goto out;
1741 }
1742 }
1743 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1744out:
85d4198e 1745 if (insert) {
5d4f98a2
YZ
1746 path->keep_locks = 0;
1747 btrfs_unlock_up_safe(path, 1);
1748 }
1749 return err;
1750}
1751
1752/*
1753 * helper to add new inline back ref
1754 */
1755static noinline_for_stack
87bde3cd 1756void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1757 struct btrfs_path *path,
1758 struct btrfs_extent_inline_ref *iref,
1759 u64 parent, u64 root_objectid,
1760 u64 owner, u64 offset, int refs_to_add,
1761 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1762{
1763 struct extent_buffer *leaf;
1764 struct btrfs_extent_item *ei;
1765 unsigned long ptr;
1766 unsigned long end;
1767 unsigned long item_offset;
1768 u64 refs;
1769 int size;
1770 int type;
5d4f98a2
YZ
1771
1772 leaf = path->nodes[0];
1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 item_offset = (unsigned long)iref - (unsigned long)ei;
1775
1776 type = extent_ref_type(parent, owner);
1777 size = btrfs_extent_inline_ref_size(type);
1778
87bde3cd 1779 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1780
1781 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1782 refs = btrfs_extent_refs(leaf, ei);
1783 refs += refs_to_add;
1784 btrfs_set_extent_refs(leaf, ei, refs);
1785 if (extent_op)
1786 __run_delayed_extent_op(extent_op, leaf, ei);
1787
1788 ptr = (unsigned long)ei + item_offset;
1789 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1790 if (ptr < end - size)
1791 memmove_extent_buffer(leaf, ptr + size, ptr,
1792 end - size - ptr);
1793
1794 iref = (struct btrfs_extent_inline_ref *)ptr;
1795 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1796 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1797 struct btrfs_extent_data_ref *dref;
1798 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1799 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1800 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1801 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1802 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1803 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1804 struct btrfs_shared_data_ref *sref;
1805 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1806 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1807 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1808 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1809 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1810 } else {
1811 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1814}
1815
1816static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1817 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1818 struct btrfs_path *path,
1819 struct btrfs_extent_inline_ref **ref_ret,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner, u64 offset)
1822{
1823 int ret;
1824
87bde3cd 1825 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1826 bytenr, num_bytes, parent,
1827 root_objectid, owner, offset, 0);
1828 if (ret != -ENOENT)
54aa1f4d 1829 return ret;
5d4f98a2 1830
b3b4aa74 1831 btrfs_release_path(path);
5d4f98a2
YZ
1832 *ref_ret = NULL;
1833
1834 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1835 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1836 parent, root_objectid);
5d4f98a2 1837 } else {
87bde3cd
JM
1838 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1839 parent, root_objectid, owner,
1840 offset);
b9473439 1841 }
5d4f98a2
YZ
1842 return ret;
1843}
31840ae1 1844
5d4f98a2
YZ
1845/*
1846 * helper to update/remove inline back ref
1847 */
1848static noinline_for_stack
87bde3cd 1849void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1850 struct btrfs_path *path,
1851 struct btrfs_extent_inline_ref *iref,
1852 int refs_to_mod,
fcebe456
JB
1853 struct btrfs_delayed_extent_op *extent_op,
1854 int *last_ref)
5d4f98a2
YZ
1855{
1856 struct extent_buffer *leaf;
1857 struct btrfs_extent_item *ei;
1858 struct btrfs_extent_data_ref *dref = NULL;
1859 struct btrfs_shared_data_ref *sref = NULL;
1860 unsigned long ptr;
1861 unsigned long end;
1862 u32 item_size;
1863 int size;
1864 int type;
5d4f98a2
YZ
1865 u64 refs;
1866
1867 leaf = path->nodes[0];
1868 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1869 refs = btrfs_extent_refs(leaf, ei);
1870 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1871 refs += refs_to_mod;
1872 btrfs_set_extent_refs(leaf, ei, refs);
1873 if (extent_op)
1874 __run_delayed_extent_op(extent_op, leaf, ei);
1875
1876 type = btrfs_extent_inline_ref_type(leaf, iref);
1877
1878 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1879 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1880 refs = btrfs_extent_data_ref_count(leaf, dref);
1881 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1882 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1883 refs = btrfs_shared_data_ref_count(leaf, sref);
1884 } else {
1885 refs = 1;
1886 BUG_ON(refs_to_mod != -1);
56bec294 1887 }
31840ae1 1888
5d4f98a2
YZ
1889 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1890 refs += refs_to_mod;
1891
1892 if (refs > 0) {
1893 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1894 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1895 else
1896 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1897 } else {
fcebe456 1898 *last_ref = 1;
5d4f98a2
YZ
1899 size = btrfs_extent_inline_ref_size(type);
1900 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1901 ptr = (unsigned long)iref;
1902 end = (unsigned long)ei + item_size;
1903 if (ptr + size < end)
1904 memmove_extent_buffer(leaf, ptr, ptr + size,
1905 end - ptr - size);
1906 item_size -= size;
87bde3cd 1907 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1908 }
1909 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1910}
1911
1912static noinline_for_stack
1913int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1914 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1915 struct btrfs_path *path,
1916 u64 bytenr, u64 num_bytes, u64 parent,
1917 u64 root_objectid, u64 owner,
1918 u64 offset, int refs_to_add,
1919 struct btrfs_delayed_extent_op *extent_op)
1920{
1921 struct btrfs_extent_inline_ref *iref;
1922 int ret;
1923
87bde3cd 1924 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1925 bytenr, num_bytes, parent,
1926 root_objectid, owner, offset, 1);
1927 if (ret == 0) {
1928 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1929 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1930 refs_to_add, extent_op, NULL);
5d4f98a2 1931 } else if (ret == -ENOENT) {
87bde3cd 1932 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
1933 root_objectid, owner, offset,
1934 refs_to_add, extent_op);
1935 ret = 0;
771ed689 1936 }
5d4f98a2
YZ
1937 return ret;
1938}
31840ae1 1939
5d4f98a2 1940static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1941 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1942 struct btrfs_path *path,
1943 u64 bytenr, u64 parent, u64 root_objectid,
1944 u64 owner, u64 offset, int refs_to_add)
1945{
1946 int ret;
1947 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1948 BUG_ON(refs_to_add != 1);
87bde3cd 1949 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
1950 parent, root_objectid);
1951 } else {
87bde3cd 1952 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
1953 parent, root_objectid,
1954 owner, offset, refs_to_add);
1955 }
1956 return ret;
1957}
56bec294 1958
5d4f98a2 1959static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1960 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1961 struct btrfs_path *path,
1962 struct btrfs_extent_inline_ref *iref,
fcebe456 1963 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1964{
143bede5 1965 int ret = 0;
b9473439 1966
5d4f98a2
YZ
1967 BUG_ON(!is_data && refs_to_drop != 1);
1968 if (iref) {
87bde3cd 1969 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1970 -refs_to_drop, NULL, last_ref);
5d4f98a2 1971 } else if (is_data) {
87bde3cd 1972 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 1973 last_ref);
5d4f98a2 1974 } else {
fcebe456 1975 *last_ref = 1;
87bde3cd 1976 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
1977 }
1978 return ret;
1979}
1980
86557861 1981#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1982static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1983 u64 *discarded_bytes)
5d4f98a2 1984{
86557861
JM
1985 int j, ret = 0;
1986 u64 bytes_left, end;
4d89d377 1987 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1988
4d89d377
JM
1989 if (WARN_ON(start != aligned_start)) {
1990 len -= aligned_start - start;
1991 len = round_down(len, 1 << 9);
1992 start = aligned_start;
1993 }
d04c6b88 1994
4d89d377 1995 *discarded_bytes = 0;
86557861
JM
1996
1997 if (!len)
1998 return 0;
1999
2000 end = start + len;
2001 bytes_left = len;
2002
2003 /* Skip any superblocks on this device. */
2004 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2005 u64 sb_start = btrfs_sb_offset(j);
2006 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2007 u64 size = sb_start - start;
2008
2009 if (!in_range(sb_start, start, bytes_left) &&
2010 !in_range(sb_end, start, bytes_left) &&
2011 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2012 continue;
2013
2014 /*
2015 * Superblock spans beginning of range. Adjust start and
2016 * try again.
2017 */
2018 if (sb_start <= start) {
2019 start += sb_end - start;
2020 if (start > end) {
2021 bytes_left = 0;
2022 break;
2023 }
2024 bytes_left = end - start;
2025 continue;
2026 }
2027
2028 if (size) {
2029 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2030 GFP_NOFS, 0);
2031 if (!ret)
2032 *discarded_bytes += size;
2033 else if (ret != -EOPNOTSUPP)
2034 return ret;
2035 }
2036
2037 start = sb_end;
2038 if (start > end) {
2039 bytes_left = 0;
2040 break;
2041 }
2042 bytes_left = end - start;
2043 }
2044
2045 if (bytes_left) {
2046 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2047 GFP_NOFS, 0);
2048 if (!ret)
86557861 2049 *discarded_bytes += bytes_left;
4d89d377 2050 }
d04c6b88 2051 return ret;
5d4f98a2 2052}
5d4f98a2 2053
2ff7e61e 2054int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2055 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2056{
5d4f98a2 2057 int ret;
5378e607 2058 u64 discarded_bytes = 0;
a1d3c478 2059 struct btrfs_bio *bbio = NULL;
5d4f98a2 2060
e244a0ae 2061
2999241d
FM
2062 /*
2063 * Avoid races with device replace and make sure our bbio has devices
2064 * associated to its stripes that don't go away while we are discarding.
2065 */
0b246afa 2066 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2067 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2068 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2069 &bbio, 0);
79787eaa 2070 /* Error condition is -ENOMEM */
5d4f98a2 2071 if (!ret) {
a1d3c478 2072 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2073 int i;
2074
5d4f98a2 2075
a1d3c478 2076 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2077 u64 bytes;
d5e2003c
JB
2078 if (!stripe->dev->can_discard)
2079 continue;
2080
5378e607
LD
2081 ret = btrfs_issue_discard(stripe->dev->bdev,
2082 stripe->physical,
d04c6b88
JM
2083 stripe->length,
2084 &bytes);
5378e607 2085 if (!ret)
d04c6b88 2086 discarded_bytes += bytes;
5378e607 2087 else if (ret != -EOPNOTSUPP)
79787eaa 2088 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2089
2090 /*
2091 * Just in case we get back EOPNOTSUPP for some reason,
2092 * just ignore the return value so we don't screw up
2093 * people calling discard_extent.
2094 */
2095 ret = 0;
5d4f98a2 2096 }
6e9606d2 2097 btrfs_put_bbio(bbio);
5d4f98a2 2098 }
0b246afa 2099 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2100
2101 if (actual_bytes)
2102 *actual_bytes = discarded_bytes;
2103
5d4f98a2 2104
53b381b3
DW
2105 if (ret == -EOPNOTSUPP)
2106 ret = 0;
5d4f98a2 2107 return ret;
5d4f98a2
YZ
2108}
2109
79787eaa 2110/* Can return -ENOMEM */
5d4f98a2 2111int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2112 struct btrfs_fs_info *fs_info,
5d4f98a2 2113 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2114 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2115{
d7eae340 2116 int old_ref_mod, new_ref_mod;
5d4f98a2 2117 int ret;
66d7e7f0 2118
5d4f98a2
YZ
2119 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2120 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2121
2122 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 2123 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
2124 num_bytes, parent,
2125 root_objectid, (int)owner,
2126 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2127 &old_ref_mod, &new_ref_mod);
5d4f98a2 2128 } else {
66d7e7f0 2129 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
2130 num_bytes, parent,
2131 root_objectid, owner, offset,
d7eae340
OS
2132 0, BTRFS_ADD_DELAYED_REF,
2133 &old_ref_mod, &new_ref_mod);
5d4f98a2 2134 }
d7eae340
OS
2135
2136 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2137 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2138
5d4f98a2
YZ
2139 return ret;
2140}
2141
2142static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2143 struct btrfs_fs_info *fs_info,
c682f9b3 2144 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2145 u64 parent, u64 root_objectid,
2146 u64 owner, u64 offset, int refs_to_add,
2147 struct btrfs_delayed_extent_op *extent_op)
2148{
2149 struct btrfs_path *path;
2150 struct extent_buffer *leaf;
2151 struct btrfs_extent_item *item;
fcebe456 2152 struct btrfs_key key;
c682f9b3
QW
2153 u64 bytenr = node->bytenr;
2154 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2155 u64 refs;
2156 int ret;
5d4f98a2
YZ
2157
2158 path = btrfs_alloc_path();
2159 if (!path)
2160 return -ENOMEM;
2161
e4058b54 2162 path->reada = READA_FORWARD;
5d4f98a2
YZ
2163 path->leave_spinning = 1;
2164 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2165 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2166 num_bytes, parent, root_objectid,
2167 owner, offset,
5d4f98a2 2168 refs_to_add, extent_op);
0ed4792a 2169 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2170 goto out;
fcebe456
JB
2171
2172 /*
2173 * Ok we had -EAGAIN which means we didn't have space to insert and
2174 * inline extent ref, so just update the reference count and add a
2175 * normal backref.
2176 */
5d4f98a2 2177 leaf = path->nodes[0];
fcebe456 2178 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2179 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2180 refs = btrfs_extent_refs(leaf, item);
2181 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2182 if (extent_op)
2183 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2184
5d4f98a2 2185 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2186 btrfs_release_path(path);
56bec294 2187
e4058b54 2188 path->reada = READA_FORWARD;
b9473439 2189 path->leave_spinning = 1;
56bec294 2190 /* now insert the actual backref */
87bde3cd
JM
2191 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2192 root_objectid, owner, offset, refs_to_add);
79787eaa 2193 if (ret)
66642832 2194 btrfs_abort_transaction(trans, ret);
5d4f98a2 2195out:
56bec294 2196 btrfs_free_path(path);
30d133fc 2197 return ret;
56bec294
CM
2198}
2199
5d4f98a2 2200static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2201 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2202 struct btrfs_delayed_ref_node *node,
2203 struct btrfs_delayed_extent_op *extent_op,
2204 int insert_reserved)
56bec294 2205{
5d4f98a2
YZ
2206 int ret = 0;
2207 struct btrfs_delayed_data_ref *ref;
2208 struct btrfs_key ins;
2209 u64 parent = 0;
2210 u64 ref_root = 0;
2211 u64 flags = 0;
2212
2213 ins.objectid = node->bytenr;
2214 ins.offset = node->num_bytes;
2215 ins.type = BTRFS_EXTENT_ITEM_KEY;
2216
2217 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2218 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2219
5d4f98a2
YZ
2220 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2221 parent = ref->parent;
fcebe456 2222 ref_root = ref->root;
5d4f98a2
YZ
2223
2224 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2225 if (extent_op)
5d4f98a2 2226 flags |= extent_op->flags_to_set;
2ff7e61e 2227 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2228 parent, ref_root, flags,
2229 ref->objectid, ref->offset,
2230 &ins, node->ref_mod);
5d4f98a2 2231 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2232 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2233 ref_root, ref->objectid,
2234 ref->offset, node->ref_mod,
c682f9b3 2235 extent_op);
5d4f98a2 2236 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2237 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2238 ref_root, ref->objectid,
2239 ref->offset, node->ref_mod,
c682f9b3 2240 extent_op);
5d4f98a2
YZ
2241 } else {
2242 BUG();
2243 }
2244 return ret;
2245}
2246
2247static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2248 struct extent_buffer *leaf,
2249 struct btrfs_extent_item *ei)
2250{
2251 u64 flags = btrfs_extent_flags(leaf, ei);
2252 if (extent_op->update_flags) {
2253 flags |= extent_op->flags_to_set;
2254 btrfs_set_extent_flags(leaf, ei, flags);
2255 }
2256
2257 if (extent_op->update_key) {
2258 struct btrfs_tree_block_info *bi;
2259 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2260 bi = (struct btrfs_tree_block_info *)(ei + 1);
2261 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2262 }
2263}
2264
2265static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2266 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2267 struct btrfs_delayed_ref_node *node,
2268 struct btrfs_delayed_extent_op *extent_op)
2269{
2270 struct btrfs_key key;
2271 struct btrfs_path *path;
2272 struct btrfs_extent_item *ei;
2273 struct extent_buffer *leaf;
2274 u32 item_size;
56bec294 2275 int ret;
5d4f98a2 2276 int err = 0;
b1c79e09 2277 int metadata = !extent_op->is_data;
5d4f98a2 2278
79787eaa
JM
2279 if (trans->aborted)
2280 return 0;
2281
0b246afa 2282 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2283 metadata = 0;
2284
5d4f98a2
YZ
2285 path = btrfs_alloc_path();
2286 if (!path)
2287 return -ENOMEM;
2288
2289 key.objectid = node->bytenr;
5d4f98a2 2290
3173a18f 2291 if (metadata) {
3173a18f 2292 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2293 key.offset = extent_op->level;
3173a18f
JB
2294 } else {
2295 key.type = BTRFS_EXTENT_ITEM_KEY;
2296 key.offset = node->num_bytes;
2297 }
2298
2299again:
e4058b54 2300 path->reada = READA_FORWARD;
5d4f98a2 2301 path->leave_spinning = 1;
0b246afa 2302 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2303 if (ret < 0) {
2304 err = ret;
2305 goto out;
2306 }
2307 if (ret > 0) {
3173a18f 2308 if (metadata) {
55994887
FDBM
2309 if (path->slots[0] > 0) {
2310 path->slots[0]--;
2311 btrfs_item_key_to_cpu(path->nodes[0], &key,
2312 path->slots[0]);
2313 if (key.objectid == node->bytenr &&
2314 key.type == BTRFS_EXTENT_ITEM_KEY &&
2315 key.offset == node->num_bytes)
2316 ret = 0;
2317 }
2318 if (ret > 0) {
2319 btrfs_release_path(path);
2320 metadata = 0;
3173a18f 2321
55994887
FDBM
2322 key.objectid = node->bytenr;
2323 key.offset = node->num_bytes;
2324 key.type = BTRFS_EXTENT_ITEM_KEY;
2325 goto again;
2326 }
2327 } else {
2328 err = -EIO;
2329 goto out;
3173a18f 2330 }
5d4f98a2
YZ
2331 }
2332
2333 leaf = path->nodes[0];
2334 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2335#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2336 if (item_size < sizeof(*ei)) {
87bde3cd 2337 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2338 if (ret < 0) {
2339 err = ret;
2340 goto out;
2341 }
2342 leaf = path->nodes[0];
2343 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2344 }
2345#endif
2346 BUG_ON(item_size < sizeof(*ei));
2347 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2348 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2349
5d4f98a2
YZ
2350 btrfs_mark_buffer_dirty(leaf);
2351out:
2352 btrfs_free_path(path);
2353 return err;
56bec294
CM
2354}
2355
5d4f98a2 2356static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2357 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2358 struct btrfs_delayed_ref_node *node,
2359 struct btrfs_delayed_extent_op *extent_op,
2360 int insert_reserved)
56bec294
CM
2361{
2362 int ret = 0;
5d4f98a2
YZ
2363 struct btrfs_delayed_tree_ref *ref;
2364 struct btrfs_key ins;
2365 u64 parent = 0;
2366 u64 ref_root = 0;
0b246afa 2367 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
56bec294 2368
5d4f98a2 2369 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2370 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2371
5d4f98a2
YZ
2372 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2373 parent = ref->parent;
fcebe456 2374 ref_root = ref->root;
5d4f98a2 2375
3173a18f
JB
2376 ins.objectid = node->bytenr;
2377 if (skinny_metadata) {
2378 ins.offset = ref->level;
2379 ins.type = BTRFS_METADATA_ITEM_KEY;
2380 } else {
2381 ins.offset = node->num_bytes;
2382 ins.type = BTRFS_EXTENT_ITEM_KEY;
2383 }
2384
02794222 2385 if (node->ref_mod != 1) {
2ff7e61e 2386 btrfs_err(fs_info,
02794222
LB
2387 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2388 node->bytenr, node->ref_mod, node->action, ref_root,
2389 parent);
2390 return -EIO;
2391 }
5d4f98a2 2392 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2393 BUG_ON(!extent_op || !extent_op->update_flags);
2ff7e61e 2394 ret = alloc_reserved_tree_block(trans, fs_info,
5d4f98a2
YZ
2395 parent, ref_root,
2396 extent_op->flags_to_set,
2397 &extent_op->key,
b06c4bf5 2398 ref->level, &ins);
5d4f98a2 2399 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2400 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2401 parent, ref_root,
2402 ref->level, 0, 1,
fcebe456 2403 extent_op);
5d4f98a2 2404 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2405 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2406 parent, ref_root,
2407 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2408 } else {
2409 BUG();
2410 }
56bec294
CM
2411 return ret;
2412}
2413
2414/* helper function to actually process a single delayed ref entry */
5d4f98a2 2415static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2416 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2417 struct btrfs_delayed_ref_node *node,
2418 struct btrfs_delayed_extent_op *extent_op,
2419 int insert_reserved)
56bec294 2420{
79787eaa
JM
2421 int ret = 0;
2422
857cc2fc
JB
2423 if (trans->aborted) {
2424 if (insert_reserved)
2ff7e61e 2425 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2426 node->num_bytes, 1);
79787eaa 2427 return 0;
857cc2fc 2428 }
79787eaa 2429
5d4f98a2 2430 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2431 struct btrfs_delayed_ref_head *head;
2432 /*
2433 * we've hit the end of the chain and we were supposed
2434 * to insert this extent into the tree. But, it got
2435 * deleted before we ever needed to insert it, so all
2436 * we have to do is clean up the accounting
2437 */
5d4f98a2
YZ
2438 BUG_ON(extent_op);
2439 head = btrfs_delayed_node_to_head(node);
0b246afa 2440 trace_run_delayed_ref_head(fs_info, node, head, node->action);
599c75ec 2441
d7eae340
OS
2442 if (head->total_ref_mod < 0) {
2443 struct btrfs_block_group_cache *cache;
2444
2445 cache = btrfs_lookup_block_group(fs_info, node->bytenr);
2446 ASSERT(cache);
2447 percpu_counter_add(&cache->space_info->total_bytes_pinned,
2448 -node->num_bytes);
2449 btrfs_put_block_group(cache);
2450 }
2451
56bec294 2452 if (insert_reserved) {
2ff7e61e 2453 btrfs_pin_extent(fs_info, node->bytenr,
f0486c68 2454 node->num_bytes, 1);
5d4f98a2 2455 if (head->is_data) {
0b246afa 2456 ret = btrfs_del_csums(trans, fs_info,
5d4f98a2
YZ
2457 node->bytenr,
2458 node->num_bytes);
5d4f98a2 2459 }
56bec294 2460 }
297d750b
QW
2461
2462 /* Also free its reserved qgroup space */
0b246afa 2463 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
297d750b 2464 head->qgroup_reserved);
79787eaa 2465 return ret;
56bec294
CM
2466 }
2467
5d4f98a2
YZ
2468 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2469 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2470 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2471 insert_reserved);
2472 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2473 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2474 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2475 insert_reserved);
2476 else
2477 BUG();
2478 return ret;
56bec294
CM
2479}
2480
c6fc2454 2481static inline struct btrfs_delayed_ref_node *
56bec294
CM
2482select_delayed_ref(struct btrfs_delayed_ref_head *head)
2483{
cffc3374
FM
2484 struct btrfs_delayed_ref_node *ref;
2485
c6fc2454
QW
2486 if (list_empty(&head->ref_list))
2487 return NULL;
d7df2c79 2488
cffc3374
FM
2489 /*
2490 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2491 * This is to prevent a ref count from going down to zero, which deletes
2492 * the extent item from the extent tree, when there still are references
2493 * to add, which would fail because they would not find the extent item.
2494 */
1d57ee94
WX
2495 if (!list_empty(&head->ref_add_list))
2496 return list_first_entry(&head->ref_add_list,
2497 struct btrfs_delayed_ref_node, add_list);
2498
2499 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2500 list);
2501 ASSERT(list_empty(&ref->add_list));
2502 return ref;
56bec294
CM
2503}
2504
79787eaa
JM
2505/*
2506 * Returns 0 on success or if called with an already aborted transaction.
2507 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2508 */
d7df2c79 2509static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2510 struct btrfs_fs_info *fs_info,
d7df2c79 2511 unsigned long nr)
56bec294 2512{
56bec294
CM
2513 struct btrfs_delayed_ref_root *delayed_refs;
2514 struct btrfs_delayed_ref_node *ref;
2515 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2516 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2517 ktime_t start = ktime_get();
56bec294 2518 int ret;
d7df2c79 2519 unsigned long count = 0;
0a2b2a84 2520 unsigned long actual_count = 0;
56bec294 2521 int must_insert_reserved = 0;
56bec294
CM
2522
2523 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2524 while (1) {
2525 if (!locked_ref) {
d7df2c79 2526 if (count >= nr)
56bec294 2527 break;
56bec294 2528
d7df2c79
JB
2529 spin_lock(&delayed_refs->lock);
2530 locked_ref = btrfs_select_ref_head(trans);
2531 if (!locked_ref) {
2532 spin_unlock(&delayed_refs->lock);
2533 break;
2534 }
c3e69d58
CM
2535
2536 /* grab the lock that says we are going to process
2537 * all the refs for this head */
2538 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2539 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2540 /*
2541 * we may have dropped the spin lock to get the head
2542 * mutex lock, and that might have given someone else
2543 * time to free the head. If that's true, it has been
2544 * removed from our list and we can move on.
2545 */
2546 if (ret == -EAGAIN) {
2547 locked_ref = NULL;
2548 count++;
2549 continue;
56bec294
CM
2550 }
2551 }
a28ec197 2552
2c3cf7d5
FM
2553 /*
2554 * We need to try and merge add/drops of the same ref since we
2555 * can run into issues with relocate dropping the implicit ref
2556 * and then it being added back again before the drop can
2557 * finish. If we merged anything we need to re-loop so we can
2558 * get a good ref.
2559 * Or we can get node references of the same type that weren't
2560 * merged when created due to bumps in the tree mod seq, and
2561 * we need to merge them to prevent adding an inline extent
2562 * backref before dropping it (triggering a BUG_ON at
2563 * insert_inline_extent_backref()).
2564 */
d7df2c79 2565 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2566 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2567 locked_ref);
ae1e206b 2568
d1270cd9
AJ
2569 /*
2570 * locked_ref is the head node, so we have to go one
2571 * node back for any delayed ref updates
2572 */
2573 ref = select_delayed_ref(locked_ref);
2574
2575 if (ref && ref->seq &&
097b8a7c 2576 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2577 spin_unlock(&locked_ref->lock);
d7df2c79
JB
2578 spin_lock(&delayed_refs->lock);
2579 locked_ref->processing = 0;
d1270cd9
AJ
2580 delayed_refs->num_heads_ready++;
2581 spin_unlock(&delayed_refs->lock);
d0280996 2582 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79 2583 locked_ref = NULL;
d1270cd9 2584 cond_resched();
27a377db 2585 count++;
d1270cd9
AJ
2586 continue;
2587 }
2588
56bec294
CM
2589 /*
2590 * record the must insert reserved flag before we
2591 * drop the spin lock.
2592 */
2593 must_insert_reserved = locked_ref->must_insert_reserved;
2594 locked_ref->must_insert_reserved = 0;
7bb86316 2595
5d4f98a2
YZ
2596 extent_op = locked_ref->extent_op;
2597 locked_ref->extent_op = NULL;
2598
56bec294 2599 if (!ref) {
d7df2c79
JB
2600
2601
56bec294
CM
2602 /* All delayed refs have been processed, Go ahead
2603 * and send the head node to run_one_delayed_ref,
2604 * so that any accounting fixes can happen
2605 */
2606 ref = &locked_ref->node;
5d4f98a2
YZ
2607
2608 if (extent_op && must_insert_reserved) {
78a6184a 2609 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2610 extent_op = NULL;
2611 }
2612
2613 if (extent_op) {
d7df2c79 2614 spin_unlock(&locked_ref->lock);
2ff7e61e 2615 ret = run_delayed_extent_op(trans, fs_info,
5d4f98a2 2616 ref, extent_op);
78a6184a 2617 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2618
79787eaa 2619 if (ret) {
857cc2fc
JB
2620 /*
2621 * Need to reset must_insert_reserved if
2622 * there was an error so the abort stuff
2623 * can cleanup the reserved space
2624 * properly.
2625 */
2626 if (must_insert_reserved)
2627 locked_ref->must_insert_reserved = 1;
aa7c8da3 2628 spin_lock(&delayed_refs->lock);
d7df2c79 2629 locked_ref->processing = 0;
aa7c8da3
JM
2630 delayed_refs->num_heads_ready++;
2631 spin_unlock(&delayed_refs->lock);
5d163e0e
JM
2632 btrfs_debug(fs_info,
2633 "run_delayed_extent_op returned %d",
2634 ret);
093486c4 2635 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2636 return ret;
2637 }
d7df2c79 2638 continue;
5d4f98a2 2639 }
02217ed2 2640
d7df2c79 2641 /*
01327610 2642 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2643 * delayed ref lock and then re-check to make sure
2644 * nobody got added.
2645 */
2646 spin_unlock(&locked_ref->lock);
2647 spin_lock(&delayed_refs->lock);
2648 spin_lock(&locked_ref->lock);
c6fc2454 2649 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2650 locked_ref->extent_op) {
d7df2c79
JB
2651 spin_unlock(&locked_ref->lock);
2652 spin_unlock(&delayed_refs->lock);
2653 continue;
2654 }
2655 ref->in_tree = 0;
2656 delayed_refs->num_heads--;
c46effa6
LB
2657 rb_erase(&locked_ref->href_node,
2658 &delayed_refs->href_root);
d7df2c79
JB
2659 spin_unlock(&delayed_refs->lock);
2660 } else {
0a2b2a84 2661 actual_count++;
d7df2c79 2662 ref->in_tree = 0;
c6fc2454 2663 list_del(&ref->list);
1d57ee94
WX
2664 if (!list_empty(&ref->add_list))
2665 list_del(&ref->add_list);
c46effa6 2666 }
d7df2c79
JB
2667 atomic_dec(&delayed_refs->num_entries);
2668
093486c4 2669 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2670 /*
2671 * when we play the delayed ref, also correct the
2672 * ref_mod on head
2673 */
2674 switch (ref->action) {
2675 case BTRFS_ADD_DELAYED_REF:
2676 case BTRFS_ADD_DELAYED_EXTENT:
2677 locked_ref->node.ref_mod -= ref->ref_mod;
2678 break;
2679 case BTRFS_DROP_DELAYED_REF:
2680 locked_ref->node.ref_mod += ref->ref_mod;
2681 break;
2682 default:
2683 WARN_ON(1);
2684 }
2685 }
d7df2c79 2686 spin_unlock(&locked_ref->lock);
925baedd 2687
2ff7e61e 2688 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2689 must_insert_reserved);
eb099670 2690
78a6184a 2691 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2692 if (ret) {
9d1032cc 2693 spin_lock(&delayed_refs->lock);
d7df2c79 2694 locked_ref->processing = 0;
9d1032cc
WX
2695 delayed_refs->num_heads_ready++;
2696 spin_unlock(&delayed_refs->lock);
093486c4
MX
2697 btrfs_delayed_ref_unlock(locked_ref);
2698 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2699 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2700 ret);
79787eaa
JM
2701 return ret;
2702 }
2703
093486c4
MX
2704 /*
2705 * If this node is a head, that means all the refs in this head
2706 * have been dealt with, and we will pick the next head to deal
2707 * with, so we must unlock the head and drop it from the cluster
2708 * list before we release it.
2709 */
2710 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2711 if (locked_ref->is_data &&
2712 locked_ref->total_ref_mod < 0) {
2713 spin_lock(&delayed_refs->lock);
2714 delayed_refs->pending_csums -= ref->num_bytes;
2715 spin_unlock(&delayed_refs->lock);
2716 }
093486c4
MX
2717 btrfs_delayed_ref_unlock(locked_ref);
2718 locked_ref = NULL;
2719 }
2720 btrfs_put_delayed_ref(ref);
2721 count++;
c3e69d58 2722 cond_resched();
c3e69d58 2723 }
0a2b2a84
JB
2724
2725 /*
2726 * We don't want to include ref heads since we can have empty ref heads
2727 * and those will drastically skew our runtime down since we just do
2728 * accounting, no actual extent tree updates.
2729 */
2730 if (actual_count > 0) {
2731 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2732 u64 avg;
2733
2734 /*
2735 * We weigh the current average higher than our current runtime
2736 * to avoid large swings in the average.
2737 */
2738 spin_lock(&delayed_refs->lock);
2739 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2740 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2741 spin_unlock(&delayed_refs->lock);
2742 }
d7df2c79 2743 return 0;
c3e69d58
CM
2744}
2745
709c0486
AJ
2746#ifdef SCRAMBLE_DELAYED_REFS
2747/*
2748 * Normally delayed refs get processed in ascending bytenr order. This
2749 * correlates in most cases to the order added. To expose dependencies on this
2750 * order, we start to process the tree in the middle instead of the beginning
2751 */
2752static u64 find_middle(struct rb_root *root)
2753{
2754 struct rb_node *n = root->rb_node;
2755 struct btrfs_delayed_ref_node *entry;
2756 int alt = 1;
2757 u64 middle;
2758 u64 first = 0, last = 0;
2759
2760 n = rb_first(root);
2761 if (n) {
2762 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2763 first = entry->bytenr;
2764 }
2765 n = rb_last(root);
2766 if (n) {
2767 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2768 last = entry->bytenr;
2769 }
2770 n = root->rb_node;
2771
2772 while (n) {
2773 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2774 WARN_ON(!entry->in_tree);
2775
2776 middle = entry->bytenr;
2777
2778 if (alt)
2779 n = n->rb_left;
2780 else
2781 n = n->rb_right;
2782
2783 alt = 1 - alt;
2784 }
2785 return middle;
2786}
2787#endif
2788
2ff7e61e 2789static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2790{
2791 u64 num_bytes;
2792
2793 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2794 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2795 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2796 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2797
2798 /*
2799 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2800 * closer to what we're really going to want to use.
1be41b78 2801 */
0b246afa 2802 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2803}
2804
1262133b
JB
2805/*
2806 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2807 * would require to store the csums for that many bytes.
2808 */
2ff7e61e 2809u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2810{
2811 u64 csum_size;
2812 u64 num_csums_per_leaf;
2813 u64 num_csums;
2814
0b246afa 2815 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2816 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2817 (u64)btrfs_super_csum_size(fs_info->super_copy));
2818 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2819 num_csums += num_csums_per_leaf - 1;
2820 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2821 return num_csums;
2822}
2823
0a2b2a84 2824int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2825 struct btrfs_fs_info *fs_info)
1be41b78
JB
2826{
2827 struct btrfs_block_rsv *global_rsv;
2828 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2829 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2830 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2831 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2832 int ret = 0;
2833
0b246afa 2834 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2835 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2836 if (num_heads > 1)
0b246afa 2837 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2838 num_bytes <<= 1;
2ff7e61e
JM
2839 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2840 fs_info->nodesize;
0b246afa 2841 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2842 num_dirty_bgs);
0b246afa 2843 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2844
2845 /*
2846 * If we can't allocate any more chunks lets make sure we have _lots_ of
2847 * wiggle room since running delayed refs can create more delayed refs.
2848 */
cb723e49
JB
2849 if (global_rsv->space_info->full) {
2850 num_dirty_bgs_bytes <<= 1;
1be41b78 2851 num_bytes <<= 1;
cb723e49 2852 }
1be41b78
JB
2853
2854 spin_lock(&global_rsv->lock);
cb723e49 2855 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2856 ret = 1;
2857 spin_unlock(&global_rsv->lock);
2858 return ret;
2859}
2860
0a2b2a84 2861int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2862 struct btrfs_fs_info *fs_info)
0a2b2a84 2863{
0a2b2a84
JB
2864 u64 num_entries =
2865 atomic_read(&trans->transaction->delayed_refs.num_entries);
2866 u64 avg_runtime;
a79b7d4b 2867 u64 val;
0a2b2a84
JB
2868
2869 smp_mb();
2870 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2871 val = num_entries * avg_runtime;
dc1a90c6 2872 if (val >= NSEC_PER_SEC)
0a2b2a84 2873 return 1;
a79b7d4b
CM
2874 if (val >= NSEC_PER_SEC / 2)
2875 return 2;
0a2b2a84 2876
2ff7e61e 2877 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2878}
2879
a79b7d4b
CM
2880struct async_delayed_refs {
2881 struct btrfs_root *root;
31b9655f 2882 u64 transid;
a79b7d4b
CM
2883 int count;
2884 int error;
2885 int sync;
2886 struct completion wait;
2887 struct btrfs_work work;
2888};
2889
2ff7e61e
JM
2890static inline struct async_delayed_refs *
2891to_async_delayed_refs(struct btrfs_work *work)
2892{
2893 return container_of(work, struct async_delayed_refs, work);
2894}
2895
a79b7d4b
CM
2896static void delayed_ref_async_start(struct btrfs_work *work)
2897{
2ff7e61e 2898 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2899 struct btrfs_trans_handle *trans;
2ff7e61e 2900 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2901 int ret;
2902
0f873eca 2903 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2904 if (btrfs_transaction_blocked(fs_info))
31b9655f 2905 goto done;
31b9655f 2906
0f873eca
CM
2907 trans = btrfs_join_transaction(async->root);
2908 if (IS_ERR(trans)) {
2909 async->error = PTR_ERR(trans);
a79b7d4b
CM
2910 goto done;
2911 }
2912
2913 /*
01327610 2914 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2915 * wait on delayed refs
2916 */
2917 trans->sync = true;
0f873eca
CM
2918
2919 /* Don't bother flushing if we got into a different transaction */
2920 if (trans->transid > async->transid)
2921 goto end;
2922
2ff7e61e 2923 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
a79b7d4b
CM
2924 if (ret)
2925 async->error = ret;
0f873eca 2926end:
3a45bb20 2927 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2928 if (ret && !async->error)
2929 async->error = ret;
2930done:
2931 if (async->sync)
2932 complete(&async->wait);
2933 else
2934 kfree(async);
2935}
2936
2ff7e61e 2937int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2938 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2939{
2940 struct async_delayed_refs *async;
2941 int ret;
2942
2943 async = kmalloc(sizeof(*async), GFP_NOFS);
2944 if (!async)
2945 return -ENOMEM;
2946
0b246afa 2947 async->root = fs_info->tree_root;
a79b7d4b
CM
2948 async->count = count;
2949 async->error = 0;
31b9655f 2950 async->transid = transid;
a79b7d4b
CM
2951 if (wait)
2952 async->sync = 1;
2953 else
2954 async->sync = 0;
2955 init_completion(&async->wait);
2956
9e0af237
LB
2957 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2958 delayed_ref_async_start, NULL, NULL);
a79b7d4b 2959
0b246afa 2960 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
2961
2962 if (wait) {
2963 wait_for_completion(&async->wait);
2964 ret = async->error;
2965 kfree(async);
2966 return ret;
2967 }
2968 return 0;
2969}
2970
c3e69d58
CM
2971/*
2972 * this starts processing the delayed reference count updates and
2973 * extent insertions we have queued up so far. count can be
2974 * 0, which means to process everything in the tree at the start
2975 * of the run (but not newly added entries), or it can be some target
2976 * number you'd like to process.
79787eaa
JM
2977 *
2978 * Returns 0 on success or if called with an aborted transaction
2979 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2980 */
2981int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2982 struct btrfs_fs_info *fs_info, unsigned long count)
c3e69d58
CM
2983{
2984 struct rb_node *node;
2985 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2986 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2987 int ret;
2988 int run_all = count == (unsigned long)-1;
d9a0540a 2989 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2990
79787eaa
JM
2991 /* We'll clean this up in btrfs_cleanup_transaction */
2992 if (trans->aborted)
2993 return 0;
2994
0b246afa 2995 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2996 return 0;
2997
c3e69d58 2998 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2999 if (count == 0)
d7df2c79 3000 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3001
c3e69d58 3002again:
709c0486
AJ
3003#ifdef SCRAMBLE_DELAYED_REFS
3004 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3005#endif
d9a0540a 3006 trans->can_flush_pending_bgs = false;
2ff7e61e 3007 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
d7df2c79 3008 if (ret < 0) {
66642832 3009 btrfs_abort_transaction(trans, ret);
d7df2c79 3010 return ret;
eb099670 3011 }
c3e69d58 3012
56bec294 3013 if (run_all) {
d7df2c79 3014 if (!list_empty(&trans->new_bgs))
2ff7e61e 3015 btrfs_create_pending_block_groups(trans, fs_info);
ea658bad 3016
d7df2c79 3017 spin_lock(&delayed_refs->lock);
c46effa6 3018 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
3019 if (!node) {
3020 spin_unlock(&delayed_refs->lock);
56bec294 3021 goto out;
d7df2c79 3022 }
e9d0b13b 3023
56bec294 3024 while (node) {
c46effa6
LB
3025 head = rb_entry(node, struct btrfs_delayed_ref_head,
3026 href_node);
3027 if (btrfs_delayed_ref_is_head(&head->node)) {
3028 struct btrfs_delayed_ref_node *ref;
5caf2a00 3029
c46effa6 3030 ref = &head->node;
6df8cdf5 3031 refcount_inc(&ref->refs);
56bec294
CM
3032
3033 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
3034 /*
3035 * Mutex was contended, block until it's
3036 * released and try again
3037 */
56bec294
CM
3038 mutex_lock(&head->mutex);
3039 mutex_unlock(&head->mutex);
3040
3041 btrfs_put_delayed_ref(ref);
1887be66 3042 cond_resched();
56bec294 3043 goto again;
c46effa6
LB
3044 } else {
3045 WARN_ON(1);
56bec294
CM
3046 }
3047 node = rb_next(node);
3048 }
3049 spin_unlock(&delayed_refs->lock);
d7df2c79 3050 cond_resched();
56bec294 3051 goto again;
5f39d397 3052 }
54aa1f4d 3053out:
d9a0540a 3054 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3055 return 0;
3056}
3057
5d4f98a2 3058int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3059 struct btrfs_fs_info *fs_info,
5d4f98a2 3060 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3061 int level, int is_data)
5d4f98a2
YZ
3062{
3063 struct btrfs_delayed_extent_op *extent_op;
3064 int ret;
3065
78a6184a 3066 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3067 if (!extent_op)
3068 return -ENOMEM;
3069
3070 extent_op->flags_to_set = flags;
35b3ad50
DS
3071 extent_op->update_flags = true;
3072 extent_op->update_key = false;
3073 extent_op->is_data = is_data ? true : false;
b1c79e09 3074 extent_op->level = level;
5d4f98a2 3075
0b246afa 3076 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3077 num_bytes, extent_op);
5d4f98a2 3078 if (ret)
78a6184a 3079 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3080 return ret;
3081}
3082
e4c3b2dc 3083static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3084 struct btrfs_path *path,
3085 u64 objectid, u64 offset, u64 bytenr)
3086{
3087 struct btrfs_delayed_ref_head *head;
3088 struct btrfs_delayed_ref_node *ref;
3089 struct btrfs_delayed_data_ref *data_ref;
3090 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3091 struct btrfs_transaction *cur_trans;
5d4f98a2
YZ
3092 int ret = 0;
3093
e4c3b2dc
LB
3094 cur_trans = root->fs_info->running_transaction;
3095 if (!cur_trans)
3096 return 0;
3097
3098 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3099 spin_lock(&delayed_refs->lock);
f72ad18e 3100 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3101 if (!head) {
3102 spin_unlock(&delayed_refs->lock);
3103 return 0;
3104 }
5d4f98a2
YZ
3105
3106 if (!mutex_trylock(&head->mutex)) {
6df8cdf5 3107 refcount_inc(&head->node.refs);
5d4f98a2
YZ
3108 spin_unlock(&delayed_refs->lock);
3109
b3b4aa74 3110 btrfs_release_path(path);
5d4f98a2 3111
8cc33e5c
DS
3112 /*
3113 * Mutex was contended, block until it's released and let
3114 * caller try again
3115 */
5d4f98a2
YZ
3116 mutex_lock(&head->mutex);
3117 mutex_unlock(&head->mutex);
3118 btrfs_put_delayed_ref(&head->node);
3119 return -EAGAIN;
3120 }
d7df2c79 3121 spin_unlock(&delayed_refs->lock);
5d4f98a2 3122
d7df2c79 3123 spin_lock(&head->lock);
c6fc2454 3124 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3125 /* If it's a shared ref we know a cross reference exists */
3126 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3127 ret = 1;
3128 break;
3129 }
5d4f98a2 3130
d7df2c79 3131 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3132
d7df2c79
JB
3133 /*
3134 * If our ref doesn't match the one we're currently looking at
3135 * then we have a cross reference.
3136 */
3137 if (data_ref->root != root->root_key.objectid ||
3138 data_ref->objectid != objectid ||
3139 data_ref->offset != offset) {
3140 ret = 1;
3141 break;
3142 }
5d4f98a2 3143 }
d7df2c79 3144 spin_unlock(&head->lock);
5d4f98a2 3145 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3146 return ret;
3147}
3148
e4c3b2dc 3149static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3150 struct btrfs_path *path,
3151 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3152{
0b246afa
JM
3153 struct btrfs_fs_info *fs_info = root->fs_info;
3154 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3155 struct extent_buffer *leaf;
5d4f98a2
YZ
3156 struct btrfs_extent_data_ref *ref;
3157 struct btrfs_extent_inline_ref *iref;
3158 struct btrfs_extent_item *ei;
f321e491 3159 struct btrfs_key key;
5d4f98a2 3160 u32 item_size;
be20aa9d 3161 int ret;
925baedd 3162
be20aa9d 3163 key.objectid = bytenr;
31840ae1 3164 key.offset = (u64)-1;
f321e491 3165 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3166
be20aa9d
CM
3167 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3168 if (ret < 0)
3169 goto out;
79787eaa 3170 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3171
3172 ret = -ENOENT;
3173 if (path->slots[0] == 0)
31840ae1 3174 goto out;
be20aa9d 3175
31840ae1 3176 path->slots[0]--;
f321e491 3177 leaf = path->nodes[0];
5d4f98a2 3178 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3179
5d4f98a2 3180 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3181 goto out;
f321e491 3182
5d4f98a2
YZ
3183 ret = 1;
3184 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3185#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3186 if (item_size < sizeof(*ei)) {
3187 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3188 goto out;
3189 }
3190#endif
3191 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3192
5d4f98a2
YZ
3193 if (item_size != sizeof(*ei) +
3194 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3195 goto out;
be20aa9d 3196
5d4f98a2
YZ
3197 if (btrfs_extent_generation(leaf, ei) <=
3198 btrfs_root_last_snapshot(&root->root_item))
3199 goto out;
3200
3201 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3202 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3203 BTRFS_EXTENT_DATA_REF_KEY)
3204 goto out;
3205
3206 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3207 if (btrfs_extent_refs(leaf, ei) !=
3208 btrfs_extent_data_ref_count(leaf, ref) ||
3209 btrfs_extent_data_ref_root(leaf, ref) !=
3210 root->root_key.objectid ||
3211 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3212 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3213 goto out;
3214
3215 ret = 0;
3216out:
3217 return ret;
3218}
3219
e4c3b2dc
LB
3220int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3221 u64 bytenr)
5d4f98a2
YZ
3222{
3223 struct btrfs_path *path;
3224 int ret;
3225 int ret2;
3226
3227 path = btrfs_alloc_path();
3228 if (!path)
3229 return -ENOENT;
3230
3231 do {
e4c3b2dc 3232 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3233 offset, bytenr);
3234 if (ret && ret != -ENOENT)
f321e491 3235 goto out;
80ff3856 3236
e4c3b2dc 3237 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3238 offset, bytenr);
3239 } while (ret2 == -EAGAIN);
3240
3241 if (ret2 && ret2 != -ENOENT) {
3242 ret = ret2;
3243 goto out;
f321e491 3244 }
5d4f98a2
YZ
3245
3246 if (ret != -ENOENT || ret2 != -ENOENT)
3247 ret = 0;
be20aa9d 3248out:
80ff3856 3249 btrfs_free_path(path);
f0486c68
YZ
3250 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3251 WARN_ON(ret > 0);
f321e491 3252 return ret;
be20aa9d 3253}
c5739bba 3254
5d4f98a2 3255static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3256 struct btrfs_root *root,
5d4f98a2 3257 struct extent_buffer *buf,
e339a6b0 3258 int full_backref, int inc)
31840ae1 3259{
0b246afa 3260 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3261 u64 bytenr;
5d4f98a2
YZ
3262 u64 num_bytes;
3263 u64 parent;
31840ae1 3264 u64 ref_root;
31840ae1 3265 u32 nritems;
31840ae1
ZY
3266 struct btrfs_key key;
3267 struct btrfs_file_extent_item *fi;
3268 int i;
3269 int level;
3270 int ret = 0;
2ff7e61e
JM
3271 int (*process_func)(struct btrfs_trans_handle *,
3272 struct btrfs_fs_info *,
b06c4bf5 3273 u64, u64, u64, u64, u64, u64);
31840ae1 3274
fccb84c9 3275
0b246afa 3276 if (btrfs_is_testing(fs_info))
faa2dbf0 3277 return 0;
fccb84c9 3278
31840ae1 3279 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3280 nritems = btrfs_header_nritems(buf);
3281 level = btrfs_header_level(buf);
3282
27cdeb70 3283 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3284 return 0;
31840ae1 3285
5d4f98a2
YZ
3286 if (inc)
3287 process_func = btrfs_inc_extent_ref;
3288 else
3289 process_func = btrfs_free_extent;
31840ae1 3290
5d4f98a2
YZ
3291 if (full_backref)
3292 parent = buf->start;
3293 else
3294 parent = 0;
3295
3296 for (i = 0; i < nritems; i++) {
31840ae1 3297 if (level == 0) {
5d4f98a2 3298 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3299 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3300 continue;
5d4f98a2 3301 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3302 struct btrfs_file_extent_item);
3303 if (btrfs_file_extent_type(buf, fi) ==
3304 BTRFS_FILE_EXTENT_INLINE)
3305 continue;
3306 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3307 if (bytenr == 0)
3308 continue;
5d4f98a2
YZ
3309
3310 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3311 key.offset -= btrfs_file_extent_offset(buf, fi);
2ff7e61e 3312 ret = process_func(trans, fs_info, bytenr, num_bytes,
5d4f98a2 3313 parent, ref_root, key.objectid,
b06c4bf5 3314 key.offset);
31840ae1
ZY
3315 if (ret)
3316 goto fail;
3317 } else {
5d4f98a2 3318 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3319 num_bytes = fs_info->nodesize;
2ff7e61e 3320 ret = process_func(trans, fs_info, bytenr, num_bytes,
b06c4bf5 3321 parent, ref_root, level - 1, 0);
31840ae1
ZY
3322 if (ret)
3323 goto fail;
3324 }
3325 }
3326 return 0;
3327fail:
5d4f98a2
YZ
3328 return ret;
3329}
3330
3331int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3332 struct extent_buffer *buf, int full_backref)
5d4f98a2 3333{
e339a6b0 3334 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3335}
3336
3337int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3338 struct extent_buffer *buf, int full_backref)
5d4f98a2 3339{
e339a6b0 3340 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3341}
3342
9078a3e1 3343static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3344 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3345 struct btrfs_path *path,
3346 struct btrfs_block_group_cache *cache)
3347{
3348 int ret;
0b246afa 3349 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3350 unsigned long bi;
3351 struct extent_buffer *leaf;
9078a3e1 3352
9078a3e1 3353 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3354 if (ret) {
3355 if (ret > 0)
3356 ret = -ENOENT;
54aa1f4d 3357 goto fail;
df95e7f0 3358 }
5f39d397
CM
3359
3360 leaf = path->nodes[0];
3361 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3362 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3363 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3364fail:
24b89d08 3365 btrfs_release_path(path);
df95e7f0 3366 return ret;
9078a3e1
CM
3367
3368}
3369
4a8c9a62 3370static struct btrfs_block_group_cache *
2ff7e61e 3371next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3372 struct btrfs_block_group_cache *cache)
3373{
3374 struct rb_node *node;
292cbd51 3375
0b246afa 3376 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3377
3378 /* If our block group was removed, we need a full search. */
3379 if (RB_EMPTY_NODE(&cache->cache_node)) {
3380 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3381
0b246afa 3382 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3383 btrfs_put_block_group(cache);
0b246afa 3384 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3385 }
4a8c9a62
YZ
3386 node = rb_next(&cache->cache_node);
3387 btrfs_put_block_group(cache);
3388 if (node) {
3389 cache = rb_entry(node, struct btrfs_block_group_cache,
3390 cache_node);
11dfe35a 3391 btrfs_get_block_group(cache);
4a8c9a62
YZ
3392 } else
3393 cache = NULL;
0b246afa 3394 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3395 return cache;
3396}
3397
0af3d00b
JB
3398static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3399 struct btrfs_trans_handle *trans,
3400 struct btrfs_path *path)
3401{
0b246afa
JM
3402 struct btrfs_fs_info *fs_info = block_group->fs_info;
3403 struct btrfs_root *root = fs_info->tree_root;
0af3d00b
JB
3404 struct inode *inode = NULL;
3405 u64 alloc_hint = 0;
2b20982e 3406 int dcs = BTRFS_DC_ERROR;
f8c269d7 3407 u64 num_pages = 0;
0af3d00b
JB
3408 int retries = 0;
3409 int ret = 0;
3410
3411 /*
3412 * If this block group is smaller than 100 megs don't bother caching the
3413 * block group.
3414 */
ee22184b 3415 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3416 spin_lock(&block_group->lock);
3417 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3418 spin_unlock(&block_group->lock);
3419 return 0;
3420 }
3421
0c0ef4bc
JB
3422 if (trans->aborted)
3423 return 0;
0af3d00b 3424again:
77ab86bf 3425 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3426 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3427 ret = PTR_ERR(inode);
b3b4aa74 3428 btrfs_release_path(path);
0af3d00b
JB
3429 goto out;
3430 }
3431
3432 if (IS_ERR(inode)) {
3433 BUG_ON(retries);
3434 retries++;
3435
3436 if (block_group->ro)
3437 goto out_free;
3438
77ab86bf
JM
3439 ret = create_free_space_inode(fs_info, trans, block_group,
3440 path);
0af3d00b
JB
3441 if (ret)
3442 goto out_free;
3443 goto again;
3444 }
3445
5b0e95bf
JB
3446 /* We've already setup this transaction, go ahead and exit */
3447 if (block_group->cache_generation == trans->transid &&
3448 i_size_read(inode)) {
3449 dcs = BTRFS_DC_SETUP;
3450 goto out_put;
3451 }
3452
0af3d00b
JB
3453 /*
3454 * We want to set the generation to 0, that way if anything goes wrong
3455 * from here on out we know not to trust this cache when we load up next
3456 * time.
3457 */
3458 BTRFS_I(inode)->generation = 0;
3459 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3460 if (ret) {
3461 /*
3462 * So theoretically we could recover from this, simply set the
3463 * super cache generation to 0 so we know to invalidate the
3464 * cache, but then we'd have to keep track of the block groups
3465 * that fail this way so we know we _have_ to reset this cache
3466 * before the next commit or risk reading stale cache. So to
3467 * limit our exposure to horrible edge cases lets just abort the
3468 * transaction, this only happens in really bad situations
3469 * anyway.
3470 */
66642832 3471 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3472 goto out_put;
3473 }
0af3d00b
JB
3474 WARN_ON(ret);
3475
3476 if (i_size_read(inode) > 0) {
2ff7e61e 3477 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3478 &fs_info->global_block_rsv);
7b61cd92
MX
3479 if (ret)
3480 goto out_put;
3481
77ab86bf 3482 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3483 if (ret)
3484 goto out_put;
3485 }
3486
3487 spin_lock(&block_group->lock);
cf7c1ef6 3488 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3489 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3490 /*
3491 * don't bother trying to write stuff out _if_
3492 * a) we're not cached,
1a79c1f2
LB
3493 * b) we're with nospace_cache mount option,
3494 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3495 */
2b20982e 3496 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3497 spin_unlock(&block_group->lock);
3498 goto out_put;
3499 }
3500 spin_unlock(&block_group->lock);
3501
2968b1f4
JB
3502 /*
3503 * We hit an ENOSPC when setting up the cache in this transaction, just
3504 * skip doing the setup, we've already cleared the cache so we're safe.
3505 */
3506 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3507 ret = -ENOSPC;
3508 goto out_put;
3509 }
3510
6fc823b1
JB
3511 /*
3512 * Try to preallocate enough space based on how big the block group is.
3513 * Keep in mind this has to include any pinned space which could end up
3514 * taking up quite a bit since it's not folded into the other space
3515 * cache.
3516 */
ee22184b 3517 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3518 if (!num_pages)
3519 num_pages = 1;
3520
0af3d00b 3521 num_pages *= 16;
09cbfeaf 3522 num_pages *= PAGE_SIZE;
0af3d00b 3523
7cf5b976 3524 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3525 if (ret)
3526 goto out_put;
3527
3528 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3529 num_pages, num_pages,
3530 &alloc_hint);
2968b1f4
JB
3531 /*
3532 * Our cache requires contiguous chunks so that we don't modify a bunch
3533 * of metadata or split extents when writing the cache out, which means
3534 * we can enospc if we are heavily fragmented in addition to just normal
3535 * out of space conditions. So if we hit this just skip setting up any
3536 * other block groups for this transaction, maybe we'll unpin enough
3537 * space the next time around.
3538 */
2b20982e
JB
3539 if (!ret)
3540 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3541 else if (ret == -ENOSPC)
3542 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3543
0af3d00b
JB
3544out_put:
3545 iput(inode);
3546out_free:
b3b4aa74 3547 btrfs_release_path(path);
0af3d00b
JB
3548out:
3549 spin_lock(&block_group->lock);
e65cbb94 3550 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3551 block_group->cache_generation = trans->transid;
2b20982e 3552 block_group->disk_cache_state = dcs;
0af3d00b
JB
3553 spin_unlock(&block_group->lock);
3554
3555 return ret;
3556}
3557
dcdf7f6d 3558int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3559 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3560{
3561 struct btrfs_block_group_cache *cache, *tmp;
3562 struct btrfs_transaction *cur_trans = trans->transaction;
3563 struct btrfs_path *path;
3564
3565 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3566 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3567 return 0;
3568
3569 path = btrfs_alloc_path();
3570 if (!path)
3571 return -ENOMEM;
3572
3573 /* Could add new block groups, use _safe just in case */
3574 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3575 dirty_list) {
3576 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3577 cache_save_setup(cache, trans, path);
3578 }
3579
3580 btrfs_free_path(path);
3581 return 0;
3582}
3583
1bbc621e
CM
3584/*
3585 * transaction commit does final block group cache writeback during a
3586 * critical section where nothing is allowed to change the FS. This is
3587 * required in order for the cache to actually match the block group,
3588 * but can introduce a lot of latency into the commit.
3589 *
3590 * So, btrfs_start_dirty_block_groups is here to kick off block group
3591 * cache IO. There's a chance we'll have to redo some of it if the
3592 * block group changes again during the commit, but it greatly reduces
3593 * the commit latency by getting rid of the easy block groups while
3594 * we're still allowing others to join the commit.
3595 */
3596int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3597 struct btrfs_fs_info *fs_info)
9078a3e1 3598{
4a8c9a62 3599 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3600 struct btrfs_transaction *cur_trans = trans->transaction;
3601 int ret = 0;
c9dc4c65 3602 int should_put;
1bbc621e
CM
3603 struct btrfs_path *path = NULL;
3604 LIST_HEAD(dirty);
3605 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3606 int num_started = 0;
1bbc621e
CM
3607 int loops = 0;
3608
3609 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3610 if (list_empty(&cur_trans->dirty_bgs)) {
3611 spin_unlock(&cur_trans->dirty_bgs_lock);
3612 return 0;
1bbc621e 3613 }
b58d1a9e 3614 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3615 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3616
1bbc621e 3617again:
1bbc621e
CM
3618 /*
3619 * make sure all the block groups on our dirty list actually
3620 * exist
3621 */
2ff7e61e 3622 btrfs_create_pending_block_groups(trans, fs_info);
1bbc621e
CM
3623
3624 if (!path) {
3625 path = btrfs_alloc_path();
3626 if (!path)
3627 return -ENOMEM;
3628 }
3629
b58d1a9e
FM
3630 /*
3631 * cache_write_mutex is here only to save us from balance or automatic
3632 * removal of empty block groups deleting this block group while we are
3633 * writing out the cache
3634 */
3635 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3636 while (!list_empty(&dirty)) {
3637 cache = list_first_entry(&dirty,
3638 struct btrfs_block_group_cache,
3639 dirty_list);
1bbc621e
CM
3640 /*
3641 * this can happen if something re-dirties a block
3642 * group that is already under IO. Just wait for it to
3643 * finish and then do it all again
3644 */
3645 if (!list_empty(&cache->io_list)) {
3646 list_del_init(&cache->io_list);
afdb5718 3647 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3648 btrfs_put_block_group(cache);
3649 }
3650
3651
3652 /*
3653 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3654 * if it should update the cache_state. Don't delete
3655 * until after we wait.
3656 *
3657 * Since we're not running in the commit critical section
3658 * we need the dirty_bgs_lock to protect from update_block_group
3659 */
3660 spin_lock(&cur_trans->dirty_bgs_lock);
3661 list_del_init(&cache->dirty_list);
3662 spin_unlock(&cur_trans->dirty_bgs_lock);
3663
3664 should_put = 1;
3665
3666 cache_save_setup(cache, trans, path);
3667
3668 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3669 cache->io_ctl.inode = NULL;
0b246afa 3670 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3671 cache, path);
1bbc621e
CM
3672 if (ret == 0 && cache->io_ctl.inode) {
3673 num_started++;
3674 should_put = 0;
3675
3676 /*
3677 * the cache_write_mutex is protecting
3678 * the io_list
3679 */
3680 list_add_tail(&cache->io_list, io);
3681 } else {
3682 /*
3683 * if we failed to write the cache, the
3684 * generation will be bad and life goes on
3685 */
3686 ret = 0;
3687 }
3688 }
ff1f8250 3689 if (!ret) {
2ff7e61e
JM
3690 ret = write_one_cache_group(trans, fs_info,
3691 path, cache);
ff1f8250
FM
3692 /*
3693 * Our block group might still be attached to the list
3694 * of new block groups in the transaction handle of some
3695 * other task (struct btrfs_trans_handle->new_bgs). This
3696 * means its block group item isn't yet in the extent
3697 * tree. If this happens ignore the error, as we will
3698 * try again later in the critical section of the
3699 * transaction commit.
3700 */
3701 if (ret == -ENOENT) {
3702 ret = 0;
3703 spin_lock(&cur_trans->dirty_bgs_lock);
3704 if (list_empty(&cache->dirty_list)) {
3705 list_add_tail(&cache->dirty_list,
3706 &cur_trans->dirty_bgs);
3707 btrfs_get_block_group(cache);
3708 }
3709 spin_unlock(&cur_trans->dirty_bgs_lock);
3710 } else if (ret) {
66642832 3711 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3712 }
3713 }
1bbc621e
CM
3714
3715 /* if its not on the io list, we need to put the block group */
3716 if (should_put)
3717 btrfs_put_block_group(cache);
3718
3719 if (ret)
3720 break;
b58d1a9e
FM
3721
3722 /*
3723 * Avoid blocking other tasks for too long. It might even save
3724 * us from writing caches for block groups that are going to be
3725 * removed.
3726 */
3727 mutex_unlock(&trans->transaction->cache_write_mutex);
3728 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3729 }
b58d1a9e 3730 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3731
3732 /*
3733 * go through delayed refs for all the stuff we've just kicked off
3734 * and then loop back (just once)
3735 */
2ff7e61e 3736 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1bbc621e
CM
3737 if (!ret && loops == 0) {
3738 loops++;
3739 spin_lock(&cur_trans->dirty_bgs_lock);
3740 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3741 /*
3742 * dirty_bgs_lock protects us from concurrent block group
3743 * deletes too (not just cache_write_mutex).
3744 */
3745 if (!list_empty(&dirty)) {
3746 spin_unlock(&cur_trans->dirty_bgs_lock);
3747 goto again;
3748 }
1bbc621e 3749 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3750 } else if (ret < 0) {
2ff7e61e 3751 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3752 }
3753
3754 btrfs_free_path(path);
3755 return ret;
3756}
3757
3758int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3759 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3760{
3761 struct btrfs_block_group_cache *cache;
3762 struct btrfs_transaction *cur_trans = trans->transaction;
3763 int ret = 0;
3764 int should_put;
3765 struct btrfs_path *path;
3766 struct list_head *io = &cur_trans->io_bgs;
3767 int num_started = 0;
9078a3e1
CM
3768
3769 path = btrfs_alloc_path();
3770 if (!path)
3771 return -ENOMEM;
3772
ce93ec54 3773 /*
e44081ef
FM
3774 * Even though we are in the critical section of the transaction commit,
3775 * we can still have concurrent tasks adding elements to this
3776 * transaction's list of dirty block groups. These tasks correspond to
3777 * endio free space workers started when writeback finishes for a
3778 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3779 * allocate new block groups as a result of COWing nodes of the root
3780 * tree when updating the free space inode. The writeback for the space
3781 * caches is triggered by an earlier call to
3782 * btrfs_start_dirty_block_groups() and iterations of the following
3783 * loop.
3784 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3785 * delayed refs to make sure we have the best chance at doing this all
3786 * in one shot.
3787 */
e44081ef 3788 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3789 while (!list_empty(&cur_trans->dirty_bgs)) {
3790 cache = list_first_entry(&cur_trans->dirty_bgs,
3791 struct btrfs_block_group_cache,
3792 dirty_list);
c9dc4c65
CM
3793
3794 /*
3795 * this can happen if cache_save_setup re-dirties a block
3796 * group that is already under IO. Just wait for it to
3797 * finish and then do it all again
3798 */
3799 if (!list_empty(&cache->io_list)) {
e44081ef 3800 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3801 list_del_init(&cache->io_list);
afdb5718 3802 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3803 btrfs_put_block_group(cache);
e44081ef 3804 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3805 }
3806
1bbc621e
CM
3807 /*
3808 * don't remove from the dirty list until after we've waited
3809 * on any pending IO
3810 */
ce93ec54 3811 list_del_init(&cache->dirty_list);
e44081ef 3812 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3813 should_put = 1;
3814
1bbc621e 3815 cache_save_setup(cache, trans, path);
c9dc4c65 3816
ce93ec54 3817 if (!ret)
2ff7e61e
JM
3818 ret = btrfs_run_delayed_refs(trans, fs_info,
3819 (unsigned long) -1);
c9dc4c65
CM
3820
3821 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3822 cache->io_ctl.inode = NULL;
0b246afa 3823 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3824 cache, path);
c9dc4c65
CM
3825 if (ret == 0 && cache->io_ctl.inode) {
3826 num_started++;
3827 should_put = 0;
1bbc621e 3828 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3829 } else {
3830 /*
3831 * if we failed to write the cache, the
3832 * generation will be bad and life goes on
3833 */
3834 ret = 0;
3835 }
3836 }
ff1f8250 3837 if (!ret) {
2ff7e61e
JM
3838 ret = write_one_cache_group(trans, fs_info,
3839 path, cache);
2bc0bb5f
FM
3840 /*
3841 * One of the free space endio workers might have
3842 * created a new block group while updating a free space
3843 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3844 * and hasn't released its transaction handle yet, in
3845 * which case the new block group is still attached to
3846 * its transaction handle and its creation has not
3847 * finished yet (no block group item in the extent tree
3848 * yet, etc). If this is the case, wait for all free
3849 * space endio workers to finish and retry. This is a
3850 * a very rare case so no need for a more efficient and
3851 * complex approach.
3852 */
3853 if (ret == -ENOENT) {
3854 wait_event(cur_trans->writer_wait,
3855 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3856 ret = write_one_cache_group(trans, fs_info,
3857 path, cache);
2bc0bb5f 3858 }
ff1f8250 3859 if (ret)
66642832 3860 btrfs_abort_transaction(trans, ret);
ff1f8250 3861 }
c9dc4c65
CM
3862
3863 /* if its not on the io list, we need to put the block group */
3864 if (should_put)
3865 btrfs_put_block_group(cache);
e44081ef 3866 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3867 }
e44081ef 3868 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3869
1bbc621e
CM
3870 while (!list_empty(io)) {
3871 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3872 io_list);
3873 list_del_init(&cache->io_list);
afdb5718 3874 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3875 btrfs_put_block_group(cache);
3876 }
3877
9078a3e1 3878 btrfs_free_path(path);
ce93ec54 3879 return ret;
9078a3e1
CM
3880}
3881
2ff7e61e 3882int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3883{
3884 struct btrfs_block_group_cache *block_group;
3885 int readonly = 0;
3886
0b246afa 3887 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3888 if (!block_group || block_group->ro)
3889 readonly = 1;
3890 if (block_group)
fa9c0d79 3891 btrfs_put_block_group(block_group);
d2fb3437
YZ
3892 return readonly;
3893}
3894
f78c436c
FM
3895bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3896{
3897 struct btrfs_block_group_cache *bg;
3898 bool ret = true;
3899
3900 bg = btrfs_lookup_block_group(fs_info, bytenr);
3901 if (!bg)
3902 return false;
3903
3904 spin_lock(&bg->lock);
3905 if (bg->ro)
3906 ret = false;
3907 else
3908 atomic_inc(&bg->nocow_writers);
3909 spin_unlock(&bg->lock);
3910
3911 /* no put on block group, done by btrfs_dec_nocow_writers */
3912 if (!ret)
3913 btrfs_put_block_group(bg);
3914
3915 return ret;
3916
3917}
3918
3919void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3920{
3921 struct btrfs_block_group_cache *bg;
3922
3923 bg = btrfs_lookup_block_group(fs_info, bytenr);
3924 ASSERT(bg);
3925 if (atomic_dec_and_test(&bg->nocow_writers))
3926 wake_up_atomic_t(&bg->nocow_writers);
3927 /*
3928 * Once for our lookup and once for the lookup done by a previous call
3929 * to btrfs_inc_nocow_writers()
3930 */
3931 btrfs_put_block_group(bg);
3932 btrfs_put_block_group(bg);
3933}
3934
3935static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3936{
3937 schedule();
3938 return 0;
3939}
3940
3941void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3942{
3943 wait_on_atomic_t(&bg->nocow_writers,
3944 btrfs_wait_nocow_writers_atomic_t,
3945 TASK_UNINTERRUPTIBLE);
3946}
3947
6ab0a202
JM
3948static const char *alloc_name(u64 flags)
3949{
3950 switch (flags) {
3951 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3952 return "mixed";
3953 case BTRFS_BLOCK_GROUP_METADATA:
3954 return "metadata";
3955 case BTRFS_BLOCK_GROUP_DATA:
3956 return "data";
3957 case BTRFS_BLOCK_GROUP_SYSTEM:
3958 return "system";
3959 default:
3960 WARN_ON(1);
3961 return "invalid-combination";
3962 };
3963}
3964
2be12ef7
NB
3965static int create_space_info(struct btrfs_fs_info *info, u64 flags,
3966 struct btrfs_space_info **new)
3967{
3968
3969 struct btrfs_space_info *space_info;
3970 int i;
3971 int ret;
3972
3973 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3974 if (!space_info)
3975 return -ENOMEM;
3976
3977 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3978 GFP_KERNEL);
3979 if (ret) {
3980 kfree(space_info);
3981 return ret;
3982 }
3983
3984 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3985 INIT_LIST_HEAD(&space_info->block_groups[i]);
3986 init_rwsem(&space_info->groups_sem);
3987 spin_lock_init(&space_info->lock);
3988 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3989 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3990 init_waitqueue_head(&space_info->wait);
3991 INIT_LIST_HEAD(&space_info->ro_bgs);
3992 INIT_LIST_HEAD(&space_info->tickets);
3993 INIT_LIST_HEAD(&space_info->priority_tickets);
3994
3995 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3996 info->space_info_kobj, "%s",
3997 alloc_name(space_info->flags));
3998 if (ret) {
3999 percpu_counter_destroy(&space_info->total_bytes_pinned);
4000 kfree(space_info);
4001 return ret;
4002 }
4003
4004 *new = space_info;
4005 list_add_rcu(&space_info->list, &info->space_info);
4006 if (flags & BTRFS_BLOCK_GROUP_DATA)
4007 info->data_sinfo = space_info;
4008
4009 return ret;
4010}
4011
d2006e6d 4012static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4013 u64 total_bytes, u64 bytes_used,
e40edf2d 4014 u64 bytes_readonly,
593060d7
CM
4015 struct btrfs_space_info **space_info)
4016{
4017 struct btrfs_space_info *found;
b742bb82
YZ
4018 int factor;
4019
4020 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4021 BTRFS_BLOCK_GROUP_RAID10))
4022 factor = 2;
4023 else
4024 factor = 1;
593060d7
CM
4025
4026 found = __find_space_info(info, flags);
d2006e6d
NB
4027 ASSERT(found);
4028 spin_lock(&found->lock);
4029 found->total_bytes += total_bytes;
4030 found->disk_total += total_bytes * factor;
4031 found->bytes_used += bytes_used;
4032 found->disk_used += bytes_used * factor;
4033 found->bytes_readonly += bytes_readonly;
4034 if (total_bytes > 0)
4035 found->full = 0;
4036 space_info_add_new_bytes(info, found, total_bytes -
4037 bytes_used - bytes_readonly);
4038 spin_unlock(&found->lock);
4039 *space_info = found;
593060d7
CM
4040}
4041
8790d502
CM
4042static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4043{
899c81ea
ID
4044 u64 extra_flags = chunk_to_extended(flags) &
4045 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4046
de98ced9 4047 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4048 if (flags & BTRFS_BLOCK_GROUP_DATA)
4049 fs_info->avail_data_alloc_bits |= extra_flags;
4050 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4051 fs_info->avail_metadata_alloc_bits |= extra_flags;
4052 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4053 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4054 write_sequnlock(&fs_info->profiles_lock);
8790d502 4055}
593060d7 4056
fc67c450
ID
4057/*
4058 * returns target flags in extended format or 0 if restripe for this
4059 * chunk_type is not in progress
c6664b42
ID
4060 *
4061 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4062 */
4063static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4064{
4065 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4066 u64 target = 0;
4067
fc67c450
ID
4068 if (!bctl)
4069 return 0;
4070
4071 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4072 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4073 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4074 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4075 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4076 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4077 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4078 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4079 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4080 }
4081
4082 return target;
4083}
4084
a46d11a8
ID
4085/*
4086 * @flags: available profiles in extended format (see ctree.h)
4087 *
e4d8ec0f
ID
4088 * Returns reduced profile in chunk format. If profile changing is in
4089 * progress (either running or paused) picks the target profile (if it's
4090 * already available), otherwise falls back to plain reducing.
a46d11a8 4091 */
2ff7e61e 4092static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4093{
0b246afa 4094 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4095 u64 target;
9c170b26
ZL
4096 u64 raid_type;
4097 u64 allowed = 0;
a061fc8d 4098
fc67c450
ID
4099 /*
4100 * see if restripe for this chunk_type is in progress, if so
4101 * try to reduce to the target profile
4102 */
0b246afa
JM
4103 spin_lock(&fs_info->balance_lock);
4104 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4105 if (target) {
4106 /* pick target profile only if it's already available */
4107 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4108 spin_unlock(&fs_info->balance_lock);
fc67c450 4109 return extended_to_chunk(target);
e4d8ec0f
ID
4110 }
4111 }
0b246afa 4112 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4113
53b381b3 4114 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4115 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4116 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4117 allowed |= btrfs_raid_group[raid_type];
4118 }
4119 allowed &= flags;
4120
4121 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4122 allowed = BTRFS_BLOCK_GROUP_RAID6;
4123 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4124 allowed = BTRFS_BLOCK_GROUP_RAID5;
4125 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4126 allowed = BTRFS_BLOCK_GROUP_RAID10;
4127 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4128 allowed = BTRFS_BLOCK_GROUP_RAID1;
4129 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4130 allowed = BTRFS_BLOCK_GROUP_RAID0;
4131
4132 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4133
4134 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4135}
4136
2ff7e61e 4137static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4138{
de98ced9 4139 unsigned seq;
f8213bdc 4140 u64 flags;
de98ced9
MX
4141
4142 do {
f8213bdc 4143 flags = orig_flags;
0b246afa 4144 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4145
4146 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4147 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4148 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4149 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4150 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4151 flags |= fs_info->avail_metadata_alloc_bits;
4152 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4153
2ff7e61e 4154 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4155}
4156
1b86826d 4157static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4158{
0b246afa 4159 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4160 u64 flags;
53b381b3 4161 u64 ret;
9ed74f2d 4162
b742bb82
YZ
4163 if (data)
4164 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4165 else if (root == fs_info->chunk_root)
b742bb82 4166 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4167 else
b742bb82 4168 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4169
2ff7e61e 4170 ret = get_alloc_profile(fs_info, flags);
53b381b3 4171 return ret;
6a63209f 4172}
9ed74f2d 4173
1b86826d
JM
4174u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4175{
4176 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4177}
4178
4179u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4180{
4181 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4182}
4183
4184u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4185{
4186 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4187}
4188
4136135b
LB
4189static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4190 bool may_use_included)
4191{
4192 ASSERT(s_info);
4193 return s_info->bytes_used + s_info->bytes_reserved +
4194 s_info->bytes_pinned + s_info->bytes_readonly +
4195 (may_use_included ? s_info->bytes_may_use : 0);
4196}
4197
04f4f916 4198int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4199{
6a63209f 4200 struct btrfs_space_info *data_sinfo;
04f4f916 4201 struct btrfs_root *root = inode->root;
b4d7c3c9 4202 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4203 u64 used;
94b947b2 4204 int ret = 0;
c99f1b0c
ZL
4205 int need_commit = 2;
4206 int have_pinned_space;
6a63209f 4207
6a63209f 4208 /* make sure bytes are sectorsize aligned */
0b246afa 4209 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4210
9dced186 4211 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4212 need_commit = 0;
9dced186 4213 ASSERT(current->journal_info);
0af3d00b
JB
4214 }
4215
b4d7c3c9 4216 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4217 if (!data_sinfo)
4218 goto alloc;
9ed74f2d 4219
6a63209f
JB
4220again:
4221 /* make sure we have enough space to handle the data first */
4222 spin_lock(&data_sinfo->lock);
4136135b 4223 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4224
4225 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4226 struct btrfs_trans_handle *trans;
9ed74f2d 4227
6a63209f
JB
4228 /*
4229 * if we don't have enough free bytes in this space then we need
4230 * to alloc a new chunk.
4231 */
b9fd47cd 4232 if (!data_sinfo->full) {
6a63209f 4233 u64 alloc_target;
9ed74f2d 4234
0e4f8f88 4235 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4236 spin_unlock(&data_sinfo->lock);
33b4d47f 4237alloc:
1b86826d 4238 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4239 /*
4240 * It is ugly that we don't call nolock join
4241 * transaction for the free space inode case here.
4242 * But it is safe because we only do the data space
4243 * reservation for the free space cache in the
4244 * transaction context, the common join transaction
4245 * just increase the counter of the current transaction
4246 * handler, doesn't try to acquire the trans_lock of
4247 * the fs.
4248 */
7a7eaa40 4249 trans = btrfs_join_transaction(root);
a22285a6
YZ
4250 if (IS_ERR(trans))
4251 return PTR_ERR(trans);
9ed74f2d 4252
2ff7e61e 4253 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4254 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4255 btrfs_end_transaction(trans);
d52a5b5f
MX
4256 if (ret < 0) {
4257 if (ret != -ENOSPC)
4258 return ret;
c99f1b0c
ZL
4259 else {
4260 have_pinned_space = 1;
d52a5b5f 4261 goto commit_trans;
c99f1b0c 4262 }
d52a5b5f 4263 }
9ed74f2d 4264
b4d7c3c9
LZ
4265 if (!data_sinfo)
4266 data_sinfo = fs_info->data_sinfo;
4267
6a63209f
JB
4268 goto again;
4269 }
f2bb8f5c
JB
4270
4271 /*
b150a4f1 4272 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4273 * allocation, and no removed chunk in current transaction,
4274 * don't bother committing the transaction.
f2bb8f5c 4275 */
c99f1b0c
ZL
4276 have_pinned_space = percpu_counter_compare(
4277 &data_sinfo->total_bytes_pinned,
4278 used + bytes - data_sinfo->total_bytes);
6a63209f 4279 spin_unlock(&data_sinfo->lock);
6a63209f 4280
4e06bdd6 4281 /* commit the current transaction and try again */
d52a5b5f 4282commit_trans:
c99f1b0c 4283 if (need_commit &&
0b246afa 4284 !atomic_read(&fs_info->open_ioctl_trans)) {
c99f1b0c 4285 need_commit--;
b150a4f1 4286
e1746e83
ZL
4287 if (need_commit > 0) {
4288 btrfs_start_delalloc_roots(fs_info, 0, -1);
0b246afa
JM
4289 btrfs_wait_ordered_roots(fs_info, -1, 0,
4290 (u64)-1);
e1746e83 4291 }
9a4e7276 4292
7a7eaa40 4293 trans = btrfs_join_transaction(root);
a22285a6
YZ
4294 if (IS_ERR(trans))
4295 return PTR_ERR(trans);
c99f1b0c 4296 if (have_pinned_space >= 0 ||
3204d33c
JB
4297 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4298 &trans->transaction->flags) ||
c99f1b0c 4299 need_commit > 0) {
3a45bb20 4300 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4301 if (ret)
4302 return ret;
d7c15171 4303 /*
c2d6cb16
FM
4304 * The cleaner kthread might still be doing iput
4305 * operations. Wait for it to finish so that
4306 * more space is released.
d7c15171 4307 */
0b246afa
JM
4308 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4309 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4310 goto again;
4311 } else {
3a45bb20 4312 btrfs_end_transaction(trans);
94b947b2 4313 }
4e06bdd6 4314 }
9ed74f2d 4315
0b246afa 4316 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4317 "space_info:enospc",
4318 data_sinfo->flags, bytes, 1);
6a63209f
JB
4319 return -ENOSPC;
4320 }
4321 data_sinfo->bytes_may_use += bytes;
0b246afa 4322 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4323 data_sinfo->flags, bytes, 1);
6a63209f 4324 spin_unlock(&data_sinfo->lock);
6a63209f 4325
237c0e9f 4326 return ret;
9ed74f2d 4327}
6a63209f 4328
4ceff079
QW
4329/*
4330 * New check_data_free_space() with ability for precious data reservation
4331 * Will replace old btrfs_check_data_free_space(), but for patch split,
4332 * add a new function first and then replace it.
4333 */
7cf5b976 4334int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079 4335{
0b246afa 4336 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4337 int ret;
4338
4339 /* align the range */
0b246afa
JM
4340 len = round_up(start + len, fs_info->sectorsize) -
4341 round_down(start, fs_info->sectorsize);
4342 start = round_down(start, fs_info->sectorsize);
4ceff079 4343
04f4f916 4344 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4345 if (ret < 0)
4346 return ret;
4347
1e5ec2e7 4348 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4ceff079 4349 ret = btrfs_qgroup_reserve_data(inode, start, len);
7bc329c1 4350 if (ret < 0)
1e5ec2e7 4351 btrfs_free_reserved_data_space_noquota(inode, start, len);
4ceff079
QW
4352 return ret;
4353}
4354
4ceff079
QW
4355/*
4356 * Called if we need to clear a data reservation for this inode
4357 * Normally in a error case.
4358 *
51773bec
QW
4359 * This one will *NOT* use accurate qgroup reserved space API, just for case
4360 * which we can't sleep and is sure it won't affect qgroup reserved space.
4361 * Like clear_bit_hook().
4ceff079 4362 */
51773bec
QW
4363void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4364 u64 len)
4ceff079 4365{
0b246afa 4366 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4367 struct btrfs_space_info *data_sinfo;
4368
4369 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4370 len = round_up(start + len, fs_info->sectorsize) -
4371 round_down(start, fs_info->sectorsize);
4372 start = round_down(start, fs_info->sectorsize);
4ceff079 4373
0b246afa 4374 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4375 spin_lock(&data_sinfo->lock);
4376 if (WARN_ON(data_sinfo->bytes_may_use < len))
4377 data_sinfo->bytes_may_use = 0;
4378 else
4379 data_sinfo->bytes_may_use -= len;
0b246afa 4380 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4381 data_sinfo->flags, len, 0);
4382 spin_unlock(&data_sinfo->lock);
4383}
4384
51773bec
QW
4385/*
4386 * Called if we need to clear a data reservation for this inode
4387 * Normally in a error case.
4388 *
01327610 4389 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4390 * space framework.
4391 */
4392void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4393{
0c476a5d
JM
4394 struct btrfs_root *root = BTRFS_I(inode)->root;
4395
4396 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4397 len = round_up(start + len, root->fs_info->sectorsize) -
4398 round_down(start, root->fs_info->sectorsize);
4399 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4400
51773bec
QW
4401 btrfs_free_reserved_data_space_noquota(inode, start, len);
4402 btrfs_qgroup_free_data(inode, start, len);
4403}
4404
97e728d4 4405static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4406{
97e728d4
JB
4407 struct list_head *head = &info->space_info;
4408 struct btrfs_space_info *found;
e3ccfa98 4409
97e728d4
JB
4410 rcu_read_lock();
4411 list_for_each_entry_rcu(found, head, list) {
4412 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4413 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4414 }
97e728d4 4415 rcu_read_unlock();
e3ccfa98
JB
4416}
4417
3c76cd84
MX
4418static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4419{
4420 return (global->size << 1);
4421}
4422
2ff7e61e 4423static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4424 struct btrfs_space_info *sinfo, int force)
32c00aff 4425{
0b246afa 4426 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
424499db 4427 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4428 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4429 u64 thresh;
e3ccfa98 4430
0e4f8f88
CM
4431 if (force == CHUNK_ALLOC_FORCE)
4432 return 1;
4433
fb25e914
JB
4434 /*
4435 * We need to take into account the global rsv because for all intents
4436 * and purposes it's used space. Don't worry about locking the
4437 * global_rsv, it doesn't change except when the transaction commits.
4438 */
54338b5c 4439 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4440 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4441
0e4f8f88
CM
4442 /*
4443 * in limited mode, we want to have some free space up to
4444 * about 1% of the FS size.
4445 */
4446 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4447 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4448 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4449
4450 if (num_bytes - num_allocated < thresh)
4451 return 1;
4452 }
0e4f8f88 4453
ee22184b 4454 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4455 return 0;
424499db 4456 return 1;
32c00aff
JB
4457}
4458
2ff7e61e 4459static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4460{
4461 u64 num_dev;
4462
53b381b3
DW
4463 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4464 BTRFS_BLOCK_GROUP_RAID0 |
4465 BTRFS_BLOCK_GROUP_RAID5 |
4466 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4467 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4468 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4469 num_dev = 2;
4470 else
4471 num_dev = 1; /* DUP or single */
4472
39c2d7fa 4473 return num_dev;
15d1ff81
LB
4474}
4475
39c2d7fa
FM
4476/*
4477 * If @is_allocation is true, reserve space in the system space info necessary
4478 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4479 * removing a chunk.
4480 */
4481void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4482 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4483{
4484 struct btrfs_space_info *info;
4485 u64 left;
4486 u64 thresh;
4fbcdf66 4487 int ret = 0;
39c2d7fa 4488 u64 num_devs;
4fbcdf66
FM
4489
4490 /*
4491 * Needed because we can end up allocating a system chunk and for an
4492 * atomic and race free space reservation in the chunk block reserve.
4493 */
0b246afa 4494 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
15d1ff81 4495
0b246afa 4496 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4497 spin_lock(&info->lock);
4136135b 4498 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4499 spin_unlock(&info->lock);
4500
2ff7e61e 4501 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4502
4503 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4504 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4505 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4506
0b246afa
JM
4507 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4508 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4509 left, thresh, type);
4510 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4511 }
4512
4513 if (left < thresh) {
1b86826d 4514 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4515
4fbcdf66
FM
4516 /*
4517 * Ignore failure to create system chunk. We might end up not
4518 * needing it, as we might not need to COW all nodes/leafs from
4519 * the paths we visit in the chunk tree (they were already COWed
4520 * or created in the current transaction for example).
4521 */
2ff7e61e 4522 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4523 }
4524
4525 if (!ret) {
0b246afa
JM
4526 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4527 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4528 thresh, BTRFS_RESERVE_NO_FLUSH);
4529 if (!ret)
4530 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4531 }
4532}
4533
28b737f6
LB
4534/*
4535 * If force is CHUNK_ALLOC_FORCE:
4536 * - return 1 if it successfully allocates a chunk,
4537 * - return errors including -ENOSPC otherwise.
4538 * If force is NOT CHUNK_ALLOC_FORCE:
4539 * - return 0 if it doesn't need to allocate a new chunk,
4540 * - return 1 if it successfully allocates a chunk,
4541 * - return errors including -ENOSPC otherwise.
4542 */
6324fbf3 4543static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4544 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4545{
6324fbf3 4546 struct btrfs_space_info *space_info;
6d74119f 4547 int wait_for_alloc = 0;
9ed74f2d 4548 int ret = 0;
9ed74f2d 4549
c6b305a8
JB
4550 /* Don't re-enter if we're already allocating a chunk */
4551 if (trans->allocating_chunk)
4552 return -ENOSPC;
4553
0b246afa 4554 space_info = __find_space_info(fs_info, flags);
593060d7 4555 if (!space_info) {
2be12ef7
NB
4556 ret = create_space_info(fs_info, flags, &space_info);
4557 if (ret)
4558 return ret;
9ed74f2d
JB
4559 }
4560
6d74119f 4561again:
25179201 4562 spin_lock(&space_info->lock);
9e622d6b 4563 if (force < space_info->force_alloc)
0e4f8f88 4564 force = space_info->force_alloc;
25179201 4565 if (space_info->full) {
2ff7e61e 4566 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4567 ret = -ENOSPC;
4568 else
4569 ret = 0;
25179201 4570 spin_unlock(&space_info->lock);
09fb99a6 4571 return ret;
9ed74f2d
JB
4572 }
4573
2ff7e61e 4574 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4575 spin_unlock(&space_info->lock);
6d74119f
JB
4576 return 0;
4577 } else if (space_info->chunk_alloc) {
4578 wait_for_alloc = 1;
4579 } else {
4580 space_info->chunk_alloc = 1;
9ed74f2d 4581 }
0e4f8f88 4582
25179201 4583 spin_unlock(&space_info->lock);
9ed74f2d 4584
6d74119f
JB
4585 mutex_lock(&fs_info->chunk_mutex);
4586
4587 /*
4588 * The chunk_mutex is held throughout the entirety of a chunk
4589 * allocation, so once we've acquired the chunk_mutex we know that the
4590 * other guy is done and we need to recheck and see if we should
4591 * allocate.
4592 */
4593 if (wait_for_alloc) {
4594 mutex_unlock(&fs_info->chunk_mutex);
4595 wait_for_alloc = 0;
4596 goto again;
4597 }
4598
c6b305a8
JB
4599 trans->allocating_chunk = true;
4600
67377734
JB
4601 /*
4602 * If we have mixed data/metadata chunks we want to make sure we keep
4603 * allocating mixed chunks instead of individual chunks.
4604 */
4605 if (btrfs_mixed_space_info(space_info))
4606 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4607
97e728d4
JB
4608 /*
4609 * if we're doing a data chunk, go ahead and make sure that
4610 * we keep a reasonable number of metadata chunks allocated in the
4611 * FS as well.
4612 */
9ed74f2d 4613 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4614 fs_info->data_chunk_allocations++;
4615 if (!(fs_info->data_chunk_allocations %
4616 fs_info->metadata_ratio))
4617 force_metadata_allocation(fs_info);
9ed74f2d
JB
4618 }
4619
15d1ff81
LB
4620 /*
4621 * Check if we have enough space in SYSTEM chunk because we may need
4622 * to update devices.
4623 */
2ff7e61e 4624 check_system_chunk(trans, fs_info, flags);
15d1ff81 4625
2ff7e61e 4626 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4627 trans->allocating_chunk = false;
92b8e897 4628
9ed74f2d 4629 spin_lock(&space_info->lock);
a81cb9a2
AO
4630 if (ret < 0 && ret != -ENOSPC)
4631 goto out;
9ed74f2d 4632 if (ret)
6324fbf3 4633 space_info->full = 1;
424499db
YZ
4634 else
4635 ret = 1;
6d74119f 4636
0e4f8f88 4637 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4638out:
6d74119f 4639 space_info->chunk_alloc = 0;
9ed74f2d 4640 spin_unlock(&space_info->lock);
a25c75d5 4641 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4642 /*
4643 * When we allocate a new chunk we reserve space in the chunk block
4644 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4645 * add new nodes/leafs to it if we end up needing to do it when
4646 * inserting the chunk item and updating device items as part of the
4647 * second phase of chunk allocation, performed by
4648 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4649 * large number of new block groups to create in our transaction
4650 * handle's new_bgs list to avoid exhausting the chunk block reserve
4651 * in extreme cases - like having a single transaction create many new
4652 * block groups when starting to write out the free space caches of all
4653 * the block groups that were made dirty during the lifetime of the
4654 * transaction.
4655 */
d9a0540a 4656 if (trans->can_flush_pending_bgs &&
ee22184b 4657 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
2ff7e61e 4658 btrfs_create_pending_block_groups(trans, fs_info);
00d80e34
FM
4659 btrfs_trans_release_chunk_metadata(trans);
4660 }
0f9dd46c 4661 return ret;
6324fbf3 4662}
9ed74f2d 4663
c1c4919b 4664static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4665 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4666 enum btrfs_reserve_flush_enum flush,
4667 bool system_chunk)
a80c8dcf 4668{
0b246afa 4669 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4670 u64 profile;
3c76cd84 4671 u64 space_size;
a80c8dcf
JB
4672 u64 avail;
4673 u64 used;
4674
957780eb
JB
4675 /* Don't overcommit when in mixed mode. */
4676 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4677 return 0;
4678
c1c4919b
JM
4679 if (system_chunk)
4680 profile = btrfs_system_alloc_profile(fs_info);
4681 else
4682 profile = btrfs_metadata_alloc_profile(fs_info);
4683
4136135b 4684 used = btrfs_space_info_used(space_info, false);
96f1bb57 4685
96f1bb57
JB
4686 /*
4687 * We only want to allow over committing if we have lots of actual space
4688 * free, but if we don't have enough space to handle the global reserve
4689 * space then we could end up having a real enospc problem when trying
4690 * to allocate a chunk or some other such important allocation.
4691 */
3c76cd84
MX
4692 spin_lock(&global_rsv->lock);
4693 space_size = calc_global_rsv_need_space(global_rsv);
4694 spin_unlock(&global_rsv->lock);
4695 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4696 return 0;
4697
4698 used += space_info->bytes_may_use;
a80c8dcf 4699
a5ed45f8 4700 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4701
4702 /*
4703 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4704 * space is actually useable. For raid56, the space info used
4705 * doesn't include the parity drive, so we don't have to
4706 * change the math
a80c8dcf
JB
4707 */
4708 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4709 BTRFS_BLOCK_GROUP_RAID1 |
4710 BTRFS_BLOCK_GROUP_RAID10))
4711 avail >>= 1;
4712
4713 /*
561c294d
MX
4714 * If we aren't flushing all things, let us overcommit up to
4715 * 1/2th of the space. If we can flush, don't let us overcommit
4716 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4717 */
08e007d2 4718 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4719 avail >>= 3;
a80c8dcf 4720 else
14575aef 4721 avail >>= 1;
a80c8dcf 4722
14575aef 4723 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4724 return 1;
4725 return 0;
4726}
4727
2ff7e61e 4728static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4729 unsigned long nr_pages, int nr_items)
da633a42 4730{
0b246afa 4731 struct super_block *sb = fs_info->sb;
da633a42 4732
925a6efb
JB
4733 if (down_read_trylock(&sb->s_umount)) {
4734 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4735 up_read(&sb->s_umount);
4736 } else {
da633a42
MX
4737 /*
4738 * We needn't worry the filesystem going from r/w to r/o though
4739 * we don't acquire ->s_umount mutex, because the filesystem
4740 * should guarantee the delalloc inodes list be empty after
4741 * the filesystem is readonly(all dirty pages are written to
4742 * the disk).
4743 */
0b246afa 4744 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
98ad69cf 4745 if (!current->journal_info)
0b246afa 4746 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4747 }
4748}
4749
2ff7e61e
JM
4750static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4751 u64 to_reclaim)
18cd8ea6
MX
4752{
4753 u64 bytes;
4754 int nr;
4755
2ff7e61e 4756 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
18cd8ea6
MX
4757 nr = (int)div64_u64(to_reclaim, bytes);
4758 if (!nr)
4759 nr = 1;
4760 return nr;
4761}
4762
ee22184b 4763#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4764
9ed74f2d 4765/*
5da9d01b 4766 * shrink metadata reservation for delalloc
9ed74f2d 4767 */
c1c4919b
JM
4768static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4769 u64 orig, bool wait_ordered)
5da9d01b 4770{
0ca1f7ce 4771 struct btrfs_block_rsv *block_rsv;
0019f10d 4772 struct btrfs_space_info *space_info;
663350ac 4773 struct btrfs_trans_handle *trans;
f4c738c2 4774 u64 delalloc_bytes;
5da9d01b 4775 u64 max_reclaim;
b1953bce 4776 long time_left;
d3ee29e3
MX
4777 unsigned long nr_pages;
4778 int loops;
b0244199 4779 int items;
08e007d2 4780 enum btrfs_reserve_flush_enum flush;
5da9d01b 4781
c61a16a7 4782 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4783 items = calc_reclaim_items_nr(fs_info, to_reclaim);
8eb0dfdb 4784 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4785
663350ac 4786 trans = (struct btrfs_trans_handle *)current->journal_info;
0b246afa 4787 block_rsv = &fs_info->delalloc_block_rsv;
0019f10d 4788 space_info = block_rsv->space_info;
bf9022e0 4789
963d678b 4790 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4791 &fs_info->delalloc_bytes);
f4c738c2 4792 if (delalloc_bytes == 0) {
fdb5effd 4793 if (trans)
f4c738c2 4794 return;
38c135af 4795 if (wait_ordered)
0b246afa 4796 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4797 return;
fdb5effd
JB
4798 }
4799
d3ee29e3 4800 loops = 0;
f4c738c2
JB
4801 while (delalloc_bytes && loops < 3) {
4802 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4803 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4804 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4805 /*
4806 * We need to wait for the async pages to actually start before
4807 * we do anything.
4808 */
0b246afa 4809 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4810 if (!max_reclaim)
4811 goto skip_async;
4812
4813 if (max_reclaim <= nr_pages)
4814 max_reclaim = 0;
4815 else
4816 max_reclaim -= nr_pages;
dea31f52 4817
0b246afa
JM
4818 wait_event(fs_info->async_submit_wait,
4819 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4820 (int)max_reclaim);
4821skip_async:
08e007d2
MX
4822 if (!trans)
4823 flush = BTRFS_RESERVE_FLUSH_ALL;
4824 else
4825 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4826 spin_lock(&space_info->lock);
c1c4919b 4827 if (can_overcommit(fs_info, space_info, orig, flush, false)) {
f4c738c2
JB
4828 spin_unlock(&space_info->lock);
4829 break;
4830 }
957780eb
JB
4831 if (list_empty(&space_info->tickets) &&
4832 list_empty(&space_info->priority_tickets)) {
4833 spin_unlock(&space_info->lock);
4834 break;
4835 }
0019f10d 4836 spin_unlock(&space_info->lock);
5da9d01b 4837
36e39c40 4838 loops++;
f104d044 4839 if (wait_ordered && !trans) {
0b246afa 4840 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4841 } else {
f4c738c2 4842 time_left = schedule_timeout_killable(1);
f104d044
JB
4843 if (time_left)
4844 break;
4845 }
963d678b 4846 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4847 &fs_info->delalloc_bytes);
5da9d01b 4848 }
5da9d01b
YZ
4849}
4850
663350ac
JB
4851/**
4852 * maybe_commit_transaction - possibly commit the transaction if its ok to
4853 * @root - the root we're allocating for
4854 * @bytes - the number of bytes we want to reserve
4855 * @force - force the commit
8bb8ab2e 4856 *
663350ac
JB
4857 * This will check to make sure that committing the transaction will actually
4858 * get us somewhere and then commit the transaction if it does. Otherwise it
4859 * will return -ENOSPC.
8bb8ab2e 4860 */
0c9ab349 4861static int may_commit_transaction(struct btrfs_fs_info *fs_info,
663350ac
JB
4862 struct btrfs_space_info *space_info,
4863 u64 bytes, int force)
4864{
0b246afa 4865 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac
JB
4866 struct btrfs_trans_handle *trans;
4867
4868 trans = (struct btrfs_trans_handle *)current->journal_info;
4869 if (trans)
4870 return -EAGAIN;
4871
4872 if (force)
4873 goto commit;
4874
4875 /* See if there is enough pinned space to make this reservation */
b150a4f1 4876 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4877 bytes) >= 0)
663350ac 4878 goto commit;
663350ac
JB
4879
4880 /*
4881 * See if there is some space in the delayed insertion reservation for
4882 * this reservation.
4883 */
4884 if (space_info != delayed_rsv->space_info)
4885 return -ENOSPC;
4886
4887 spin_lock(&delayed_rsv->lock);
b150a4f1 4888 if (percpu_counter_compare(&space_info->total_bytes_pinned,
28785f70 4889 bytes - delayed_rsv->size) < 0) {
663350ac
JB
4890 spin_unlock(&delayed_rsv->lock);
4891 return -ENOSPC;
4892 }
4893 spin_unlock(&delayed_rsv->lock);
4894
4895commit:
a9b3311e 4896 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4897 if (IS_ERR(trans))
4898 return -ENOSPC;
4899
3a45bb20 4900 return btrfs_commit_transaction(trans);
663350ac
JB
4901}
4902
957780eb
JB
4903struct reserve_ticket {
4904 u64 bytes;
4905 int error;
4906 struct list_head list;
4907 wait_queue_head_t wait;
96c3f433
JB
4908};
4909
0c9ab349 4910static int flush_space(struct btrfs_fs_info *fs_info,
96c3f433
JB
4911 struct btrfs_space_info *space_info, u64 num_bytes,
4912 u64 orig_bytes, int state)
4913{
a9b3311e 4914 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4915 struct btrfs_trans_handle *trans;
4916 int nr;
f4c738c2 4917 int ret = 0;
96c3f433
JB
4918
4919 switch (state) {
96c3f433
JB
4920 case FLUSH_DELAYED_ITEMS_NR:
4921 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4922 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4923 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4924 else
96c3f433 4925 nr = -1;
18cd8ea6 4926
96c3f433
JB
4927 trans = btrfs_join_transaction(root);
4928 if (IS_ERR(trans)) {
4929 ret = PTR_ERR(trans);
4930 break;
4931 }
2ff7e61e 4932 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
3a45bb20 4933 btrfs_end_transaction(trans);
96c3f433 4934 break;
67b0fd63
JB
4935 case FLUSH_DELALLOC:
4936 case FLUSH_DELALLOC_WAIT:
c1c4919b 4937 shrink_delalloc(fs_info, num_bytes * 2, orig_bytes,
67b0fd63
JB
4938 state == FLUSH_DELALLOC_WAIT);
4939 break;
ea658bad
JB
4940 case ALLOC_CHUNK:
4941 trans = btrfs_join_transaction(root);
4942 if (IS_ERR(trans)) {
4943 ret = PTR_ERR(trans);
4944 break;
4945 }
2ff7e61e 4946 ret = do_chunk_alloc(trans, fs_info,
1b86826d 4947 btrfs_metadata_alloc_profile(fs_info),
ea658bad 4948 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4949 btrfs_end_transaction(trans);
eecba891 4950 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4951 ret = 0;
4952 break;
96c3f433 4953 case COMMIT_TRANS:
0c9ab349
JM
4954 ret = may_commit_transaction(fs_info, space_info,
4955 orig_bytes, 0);
96c3f433
JB
4956 break;
4957 default:
4958 ret = -ENOSPC;
4959 break;
4960 }
4961
0b246afa 4962 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
f376df2b 4963 orig_bytes, state, ret);
96c3f433
JB
4964 return ret;
4965}
21c7e756
MX
4966
4967static inline u64
c1c4919b
JM
4968btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4969 struct btrfs_space_info *space_info,
4970 bool system_chunk)
21c7e756 4971{
957780eb 4972 struct reserve_ticket *ticket;
21c7e756
MX
4973 u64 used;
4974 u64 expected;
957780eb 4975 u64 to_reclaim = 0;
21c7e756 4976
957780eb
JB
4977 list_for_each_entry(ticket, &space_info->tickets, list)
4978 to_reclaim += ticket->bytes;
4979 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4980 to_reclaim += ticket->bytes;
4981 if (to_reclaim)
4982 return to_reclaim;
21c7e756 4983
e0af2484 4984 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
4985 if (can_overcommit(fs_info, space_info, to_reclaim,
4986 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
4987 return 0;
4988
0eee8a49
NB
4989 used = btrfs_space_info_used(space_info, true);
4990
c1c4919b
JM
4991 if (can_overcommit(fs_info, space_info, SZ_1M,
4992 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
4993 expected = div_factor_fine(space_info->total_bytes, 95);
4994 else
4995 expected = div_factor_fine(space_info->total_bytes, 90);
4996
4997 if (used > expected)
4998 to_reclaim = used - expected;
4999 else
5000 to_reclaim = 0;
5001 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5002 space_info->bytes_reserved);
21c7e756
MX
5003 return to_reclaim;
5004}
5005
c1c4919b
JM
5006static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5007 struct btrfs_space_info *space_info,
5008 u64 used, bool system_chunk)
21c7e756 5009{
365c5313
JB
5010 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5011
5012 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5013 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5014 return 0;
5015
c1c4919b
JM
5016 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5017 system_chunk))
d38b349c
JB
5018 return 0;
5019
0b246afa
JM
5020 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5021 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5022}
5023
957780eb 5024static void wake_all_tickets(struct list_head *head)
21c7e756 5025{
957780eb 5026 struct reserve_ticket *ticket;
25ce459c 5027
957780eb
JB
5028 while (!list_empty(head)) {
5029 ticket = list_first_entry(head, struct reserve_ticket, list);
5030 list_del_init(&ticket->list);
5031 ticket->error = -ENOSPC;
5032 wake_up(&ticket->wait);
21c7e756 5033 }
21c7e756
MX
5034}
5035
957780eb
JB
5036/*
5037 * This is for normal flushers, we can wait all goddamned day if we want to. We
5038 * will loop and continuously try to flush as long as we are making progress.
5039 * We count progress as clearing off tickets each time we have to loop.
5040 */
21c7e756
MX
5041static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5042{
5043 struct btrfs_fs_info *fs_info;
5044 struct btrfs_space_info *space_info;
5045 u64 to_reclaim;
5046 int flush_state;
957780eb 5047 int commit_cycles = 0;
ce129655 5048 u64 last_tickets_id;
21c7e756
MX
5049
5050 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5051 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5052
957780eb 5053 spin_lock(&space_info->lock);
c1c4919b
JM
5054 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5055 false);
957780eb
JB
5056 if (!to_reclaim) {
5057 space_info->flush = 0;
5058 spin_unlock(&space_info->lock);
21c7e756 5059 return;
957780eb 5060 }
ce129655 5061 last_tickets_id = space_info->tickets_id;
957780eb 5062 spin_unlock(&space_info->lock);
21c7e756
MX
5063
5064 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb
JB
5065 do {
5066 struct reserve_ticket *ticket;
5067 int ret;
5068
0c9ab349
JM
5069 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5070 flush_state);
957780eb
JB
5071 spin_lock(&space_info->lock);
5072 if (list_empty(&space_info->tickets)) {
5073 space_info->flush = 0;
5074 spin_unlock(&space_info->lock);
5075 return;
5076 }
c1c4919b
JM
5077 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5078 space_info,
5079 false);
957780eb
JB
5080 ticket = list_first_entry(&space_info->tickets,
5081 struct reserve_ticket, list);
ce129655 5082 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5083 flush_state++;
5084 } else {
ce129655 5085 last_tickets_id = space_info->tickets_id;
957780eb
JB
5086 flush_state = FLUSH_DELAYED_ITEMS_NR;
5087 if (commit_cycles)
5088 commit_cycles--;
5089 }
5090
5091 if (flush_state > COMMIT_TRANS) {
5092 commit_cycles++;
5093 if (commit_cycles > 2) {
5094 wake_all_tickets(&space_info->tickets);
5095 space_info->flush = 0;
5096 } else {
5097 flush_state = FLUSH_DELAYED_ITEMS_NR;
5098 }
5099 }
5100 spin_unlock(&space_info->lock);
5101 } while (flush_state <= COMMIT_TRANS);
5102}
5103
5104void btrfs_init_async_reclaim_work(struct work_struct *work)
5105{
5106 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5107}
5108
5109static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5110 struct btrfs_space_info *space_info,
5111 struct reserve_ticket *ticket)
5112{
5113 u64 to_reclaim;
5114 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5115
5116 spin_lock(&space_info->lock);
c1c4919b
JM
5117 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5118 false);
957780eb
JB
5119 if (!to_reclaim) {
5120 spin_unlock(&space_info->lock);
5121 return;
5122 }
5123 spin_unlock(&space_info->lock);
5124
21c7e756 5125 do {
0c9ab349
JM
5126 flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5127 flush_state);
21c7e756 5128 flush_state++;
957780eb
JB
5129 spin_lock(&space_info->lock);
5130 if (ticket->bytes == 0) {
5131 spin_unlock(&space_info->lock);
21c7e756 5132 return;
957780eb
JB
5133 }
5134 spin_unlock(&space_info->lock);
5135
5136 /*
5137 * Priority flushers can't wait on delalloc without
5138 * deadlocking.
5139 */
5140 if (flush_state == FLUSH_DELALLOC ||
5141 flush_state == FLUSH_DELALLOC_WAIT)
5142 flush_state = ALLOC_CHUNK;
365c5313 5143 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5144}
5145
957780eb
JB
5146static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5147 struct btrfs_space_info *space_info,
5148 struct reserve_ticket *ticket, u64 orig_bytes)
5149
21c7e756 5150{
957780eb
JB
5151 DEFINE_WAIT(wait);
5152 int ret = 0;
5153
5154 spin_lock(&space_info->lock);
5155 while (ticket->bytes > 0 && ticket->error == 0) {
5156 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5157 if (ret) {
5158 ret = -EINTR;
5159 break;
5160 }
5161 spin_unlock(&space_info->lock);
5162
5163 schedule();
5164
5165 finish_wait(&ticket->wait, &wait);
5166 spin_lock(&space_info->lock);
5167 }
5168 if (!ret)
5169 ret = ticket->error;
5170 if (!list_empty(&ticket->list))
5171 list_del_init(&ticket->list);
5172 if (ticket->bytes && ticket->bytes < orig_bytes) {
5173 u64 num_bytes = orig_bytes - ticket->bytes;
5174 space_info->bytes_may_use -= num_bytes;
5175 trace_btrfs_space_reservation(fs_info, "space_info",
5176 space_info->flags, num_bytes, 0);
5177 }
5178 spin_unlock(&space_info->lock);
5179
5180 return ret;
21c7e756
MX
5181}
5182
4a92b1b8
JB
5183/**
5184 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5185 * @root - the root we're allocating for
957780eb 5186 * @space_info - the space info we want to allocate from
4a92b1b8 5187 * @orig_bytes - the number of bytes we want
48fc7f7e 5188 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5189 *
01327610 5190 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5191 * with the block_rsv. If there is not enough space it will make an attempt to
5192 * flush out space to make room. It will do this by flushing delalloc if
5193 * possible or committing the transaction. If flush is 0 then no attempts to
5194 * regain reservations will be made and this will fail if there is not enough
5195 * space already.
8bb8ab2e 5196 */
c1c4919b 5197static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5198 struct btrfs_space_info *space_info,
5199 u64 orig_bytes,
c1c4919b
JM
5200 enum btrfs_reserve_flush_enum flush,
5201 bool system_chunk)
9ed74f2d 5202{
957780eb 5203 struct reserve_ticket ticket;
2bf64758 5204 u64 used;
8bb8ab2e 5205 int ret = 0;
9ed74f2d 5206
957780eb 5207 ASSERT(orig_bytes);
8ca17f0f 5208 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5209
8bb8ab2e 5210 spin_lock(&space_info->lock);
fdb5effd 5211 ret = -ENOSPC;
4136135b 5212 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5213
8bb8ab2e 5214 /*
957780eb
JB
5215 * If we have enough space then hooray, make our reservation and carry
5216 * on. If not see if we can overcommit, and if we can, hooray carry on.
5217 * If not things get more complicated.
8bb8ab2e 5218 */
957780eb
JB
5219 if (used + orig_bytes <= space_info->total_bytes) {
5220 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5221 trace_btrfs_space_reservation(fs_info, "space_info",
5222 space_info->flags, orig_bytes, 1);
957780eb 5223 ret = 0;
c1c4919b
JM
5224 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5225 system_chunk)) {
44734ed1 5226 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5227 trace_btrfs_space_reservation(fs_info, "space_info",
5228 space_info->flags, orig_bytes, 1);
44734ed1 5229 ret = 0;
2bf64758
JB
5230 }
5231
8bb8ab2e 5232 /*
957780eb
JB
5233 * If we couldn't make a reservation then setup our reservation ticket
5234 * and kick the async worker if it's not already running.
08e007d2 5235 *
957780eb
JB
5236 * If we are a priority flusher then we just need to add our ticket to
5237 * the list and we will do our own flushing further down.
8bb8ab2e 5238 */
72bcd99d 5239 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5240 ticket.bytes = orig_bytes;
5241 ticket.error = 0;
5242 init_waitqueue_head(&ticket.wait);
5243 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5244 list_add_tail(&ticket.list, &space_info->tickets);
5245 if (!space_info->flush) {
5246 space_info->flush = 1;
0b246afa 5247 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5248 space_info->flags,
5249 orig_bytes, flush,
5250 "enospc");
957780eb 5251 queue_work(system_unbound_wq,
c1c4919b 5252 &fs_info->async_reclaim_work);
957780eb
JB
5253 }
5254 } else {
5255 list_add_tail(&ticket.list,
5256 &space_info->priority_tickets);
5257 }
21c7e756
MX
5258 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5259 used += orig_bytes;
f6acfd50
JB
5260 /*
5261 * We will do the space reservation dance during log replay,
5262 * which means we won't have fs_info->fs_root set, so don't do
5263 * the async reclaim as we will panic.
5264 */
0b246afa 5265 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5266 need_do_async_reclaim(fs_info, space_info,
5267 used, system_chunk) &&
0b246afa
JM
5268 !work_busy(&fs_info->async_reclaim_work)) {
5269 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5270 orig_bytes, flush, "preempt");
21c7e756 5271 queue_work(system_unbound_wq,
0b246afa 5272 &fs_info->async_reclaim_work);
f376df2b 5273 }
8bb8ab2e 5274 }
f0486c68 5275 spin_unlock(&space_info->lock);
08e007d2 5276 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5277 return ret;
f0486c68 5278
957780eb 5279 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5280 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5281 orig_bytes);
08e007d2 5282
957780eb 5283 ret = 0;
0b246afa 5284 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5285 spin_lock(&space_info->lock);
5286 if (ticket.bytes) {
5287 if (ticket.bytes < orig_bytes) {
5288 u64 num_bytes = orig_bytes - ticket.bytes;
5289 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5290 trace_btrfs_space_reservation(fs_info, "space_info",
5291 space_info->flags,
5292 num_bytes, 0);
08e007d2 5293
957780eb
JB
5294 }
5295 list_del_init(&ticket.list);
5296 ret = -ENOSPC;
5297 }
5298 spin_unlock(&space_info->lock);
5299 ASSERT(list_empty(&ticket.list));
5300 return ret;
5301}
8bb8ab2e 5302
957780eb
JB
5303/**
5304 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5305 * @root - the root we're allocating for
5306 * @block_rsv - the block_rsv we're allocating for
5307 * @orig_bytes - the number of bytes we want
5308 * @flush - whether or not we can flush to make our reservation
5309 *
5310 * This will reserve orgi_bytes number of bytes from the space info associated
5311 * with the block_rsv. If there is not enough space it will make an attempt to
5312 * flush out space to make room. It will do this by flushing delalloc if
5313 * possible or committing the transaction. If flush is 0 then no attempts to
5314 * regain reservations will be made and this will fail if there is not enough
5315 * space already.
5316 */
5317static int reserve_metadata_bytes(struct btrfs_root *root,
5318 struct btrfs_block_rsv *block_rsv,
5319 u64 orig_bytes,
5320 enum btrfs_reserve_flush_enum flush)
5321{
0b246afa
JM
5322 struct btrfs_fs_info *fs_info = root->fs_info;
5323 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5324 int ret;
c1c4919b 5325 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5326
c1c4919b
JM
5327 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5328 orig_bytes, flush, system_chunk);
5d80366e
JB
5329 if (ret == -ENOSPC &&
5330 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5331 if (block_rsv != global_rsv &&
5332 !block_rsv_use_bytes(global_rsv, orig_bytes))
5333 ret = 0;
5334 }
cab45e22 5335 if (ret == -ENOSPC)
0b246afa 5336 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5337 block_rsv->space_info->flags,
5338 orig_bytes, 1);
f0486c68
YZ
5339 return ret;
5340}
5341
79787eaa
JM
5342static struct btrfs_block_rsv *get_block_rsv(
5343 const struct btrfs_trans_handle *trans,
5344 const struct btrfs_root *root)
f0486c68 5345{
0b246afa 5346 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5347 struct btrfs_block_rsv *block_rsv = NULL;
5348
e9cf439f 5349 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5350 (root == fs_info->csum_root && trans->adding_csums) ||
5351 (root == fs_info->uuid_root))
f7a81ea4
SB
5352 block_rsv = trans->block_rsv;
5353
4c13d758 5354 if (!block_rsv)
f0486c68
YZ
5355 block_rsv = root->block_rsv;
5356
5357 if (!block_rsv)
0b246afa 5358 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5359
5360 return block_rsv;
5361}
5362
5363static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5364 u64 num_bytes)
5365{
5366 int ret = -ENOSPC;
5367 spin_lock(&block_rsv->lock);
5368 if (block_rsv->reserved >= num_bytes) {
5369 block_rsv->reserved -= num_bytes;
5370 if (block_rsv->reserved < block_rsv->size)
5371 block_rsv->full = 0;
5372 ret = 0;
5373 }
5374 spin_unlock(&block_rsv->lock);
5375 return ret;
5376}
5377
5378static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5379 u64 num_bytes, int update_size)
5380{
5381 spin_lock(&block_rsv->lock);
5382 block_rsv->reserved += num_bytes;
5383 if (update_size)
5384 block_rsv->size += num_bytes;
5385 else if (block_rsv->reserved >= block_rsv->size)
5386 block_rsv->full = 1;
5387 spin_unlock(&block_rsv->lock);
5388}
5389
d52be818
JB
5390int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5391 struct btrfs_block_rsv *dest, u64 num_bytes,
5392 int min_factor)
5393{
5394 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5395 u64 min_bytes;
5396
5397 if (global_rsv->space_info != dest->space_info)
5398 return -ENOSPC;
5399
5400 spin_lock(&global_rsv->lock);
5401 min_bytes = div_factor(global_rsv->size, min_factor);
5402 if (global_rsv->reserved < min_bytes + num_bytes) {
5403 spin_unlock(&global_rsv->lock);
5404 return -ENOSPC;
5405 }
5406 global_rsv->reserved -= num_bytes;
5407 if (global_rsv->reserved < global_rsv->size)
5408 global_rsv->full = 0;
5409 spin_unlock(&global_rsv->lock);
5410
5411 block_rsv_add_bytes(dest, num_bytes, 1);
5412 return 0;
5413}
5414
957780eb
JB
5415/*
5416 * This is for space we already have accounted in space_info->bytes_may_use, so
5417 * basically when we're returning space from block_rsv's.
5418 */
5419static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5420 struct btrfs_space_info *space_info,
5421 u64 num_bytes)
5422{
5423 struct reserve_ticket *ticket;
5424 struct list_head *head;
5425 u64 used;
5426 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5427 bool check_overcommit = false;
5428
5429 spin_lock(&space_info->lock);
5430 head = &space_info->priority_tickets;
5431
5432 /*
5433 * If we are over our limit then we need to check and see if we can
5434 * overcommit, and if we can't then we just need to free up our space
5435 * and not satisfy any requests.
5436 */
0eee8a49 5437 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5438 if (used - num_bytes >= space_info->total_bytes)
5439 check_overcommit = true;
5440again:
5441 while (!list_empty(head) && num_bytes) {
5442 ticket = list_first_entry(head, struct reserve_ticket,
5443 list);
5444 /*
5445 * We use 0 bytes because this space is already reserved, so
5446 * adding the ticket space would be a double count.
5447 */
5448 if (check_overcommit &&
c1c4919b 5449 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5450 break;
5451 if (num_bytes >= ticket->bytes) {
5452 list_del_init(&ticket->list);
5453 num_bytes -= ticket->bytes;
5454 ticket->bytes = 0;
ce129655 5455 space_info->tickets_id++;
957780eb
JB
5456 wake_up(&ticket->wait);
5457 } else {
5458 ticket->bytes -= num_bytes;
5459 num_bytes = 0;
5460 }
5461 }
5462
5463 if (num_bytes && head == &space_info->priority_tickets) {
5464 head = &space_info->tickets;
5465 flush = BTRFS_RESERVE_FLUSH_ALL;
5466 goto again;
5467 }
5468 space_info->bytes_may_use -= num_bytes;
5469 trace_btrfs_space_reservation(fs_info, "space_info",
5470 space_info->flags, num_bytes, 0);
5471 spin_unlock(&space_info->lock);
5472}
5473
5474/*
5475 * This is for newly allocated space that isn't accounted in
5476 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5477 * we use this helper.
5478 */
5479static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5480 struct btrfs_space_info *space_info,
5481 u64 num_bytes)
5482{
5483 struct reserve_ticket *ticket;
5484 struct list_head *head = &space_info->priority_tickets;
5485
5486again:
5487 while (!list_empty(head) && num_bytes) {
5488 ticket = list_first_entry(head, struct reserve_ticket,
5489 list);
5490 if (num_bytes >= ticket->bytes) {
5491 trace_btrfs_space_reservation(fs_info, "space_info",
5492 space_info->flags,
5493 ticket->bytes, 1);
5494 list_del_init(&ticket->list);
5495 num_bytes -= ticket->bytes;
5496 space_info->bytes_may_use += ticket->bytes;
5497 ticket->bytes = 0;
ce129655 5498 space_info->tickets_id++;
957780eb
JB
5499 wake_up(&ticket->wait);
5500 } else {
5501 trace_btrfs_space_reservation(fs_info, "space_info",
5502 space_info->flags,
5503 num_bytes, 1);
5504 space_info->bytes_may_use += num_bytes;
5505 ticket->bytes -= num_bytes;
5506 num_bytes = 0;
5507 }
5508 }
5509
5510 if (num_bytes && head == &space_info->priority_tickets) {
5511 head = &space_info->tickets;
5512 goto again;
5513 }
5514}
5515
8c2a3ca2
JB
5516static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5517 struct btrfs_block_rsv *block_rsv,
62a45b60 5518 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5519{
5520 struct btrfs_space_info *space_info = block_rsv->space_info;
5521
5522 spin_lock(&block_rsv->lock);
5523 if (num_bytes == (u64)-1)
5524 num_bytes = block_rsv->size;
5525 block_rsv->size -= num_bytes;
5526 if (block_rsv->reserved >= block_rsv->size) {
5527 num_bytes = block_rsv->reserved - block_rsv->size;
5528 block_rsv->reserved = block_rsv->size;
5529 block_rsv->full = 1;
5530 } else {
5531 num_bytes = 0;
5532 }
5533 spin_unlock(&block_rsv->lock);
5534
5535 if (num_bytes > 0) {
5536 if (dest) {
e9e22899
JB
5537 spin_lock(&dest->lock);
5538 if (!dest->full) {
5539 u64 bytes_to_add;
5540
5541 bytes_to_add = dest->size - dest->reserved;
5542 bytes_to_add = min(num_bytes, bytes_to_add);
5543 dest->reserved += bytes_to_add;
5544 if (dest->reserved >= dest->size)
5545 dest->full = 1;
5546 num_bytes -= bytes_to_add;
5547 }
5548 spin_unlock(&dest->lock);
5549 }
957780eb
JB
5550 if (num_bytes)
5551 space_info_add_old_bytes(fs_info, space_info,
5552 num_bytes);
9ed74f2d 5553 }
f0486c68 5554}
4e06bdd6 5555
25d609f8
JB
5556int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5557 struct btrfs_block_rsv *dst, u64 num_bytes,
5558 int update_size)
f0486c68
YZ
5559{
5560 int ret;
9ed74f2d 5561
f0486c68
YZ
5562 ret = block_rsv_use_bytes(src, num_bytes);
5563 if (ret)
5564 return ret;
9ed74f2d 5565
25d609f8 5566 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5567 return 0;
5568}
5569
66d8f3dd 5570void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5571{
f0486c68
YZ
5572 memset(rsv, 0, sizeof(*rsv));
5573 spin_lock_init(&rsv->lock);
66d8f3dd 5574 rsv->type = type;
f0486c68
YZ
5575}
5576
2ff7e61e 5577struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5578 unsigned short type)
f0486c68
YZ
5579{
5580 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5581
f0486c68
YZ
5582 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5583 if (!block_rsv)
5584 return NULL;
9ed74f2d 5585
66d8f3dd 5586 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5587 block_rsv->space_info = __find_space_info(fs_info,
5588 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5589 return block_rsv;
5590}
9ed74f2d 5591
2ff7e61e 5592void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5593 struct btrfs_block_rsv *rsv)
5594{
2aaa6655
JB
5595 if (!rsv)
5596 return;
2ff7e61e 5597 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5598 kfree(rsv);
9ed74f2d
JB
5599}
5600
cdfb080e
CM
5601void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5602{
5603 kfree(rsv);
5604}
5605
08e007d2
MX
5606int btrfs_block_rsv_add(struct btrfs_root *root,
5607 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5608 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5609{
f0486c68 5610 int ret;
9ed74f2d 5611
f0486c68
YZ
5612 if (num_bytes == 0)
5613 return 0;
8bb8ab2e 5614
61b520a9 5615 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5616 if (!ret) {
5617 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5618 return 0;
5619 }
9ed74f2d 5620
f0486c68 5621 return ret;
f0486c68 5622}
9ed74f2d 5623
2ff7e61e 5624int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5625{
5626 u64 num_bytes = 0;
f0486c68 5627 int ret = -ENOSPC;
9ed74f2d 5628
f0486c68
YZ
5629 if (!block_rsv)
5630 return 0;
9ed74f2d 5631
f0486c68 5632 spin_lock(&block_rsv->lock);
36ba022a
JB
5633 num_bytes = div_factor(block_rsv->size, min_factor);
5634 if (block_rsv->reserved >= num_bytes)
5635 ret = 0;
5636 spin_unlock(&block_rsv->lock);
9ed74f2d 5637
36ba022a
JB
5638 return ret;
5639}
5640
08e007d2
MX
5641int btrfs_block_rsv_refill(struct btrfs_root *root,
5642 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5643 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5644{
5645 u64 num_bytes = 0;
5646 int ret = -ENOSPC;
5647
5648 if (!block_rsv)
5649 return 0;
5650
5651 spin_lock(&block_rsv->lock);
5652 num_bytes = min_reserved;
13553e52 5653 if (block_rsv->reserved >= num_bytes)
f0486c68 5654 ret = 0;
13553e52 5655 else
f0486c68 5656 num_bytes -= block_rsv->reserved;
f0486c68 5657 spin_unlock(&block_rsv->lock);
13553e52 5658
f0486c68
YZ
5659 if (!ret)
5660 return 0;
5661
aa38a711 5662 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5663 if (!ret) {
5664 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5665 return 0;
6a63209f 5666 }
9ed74f2d 5667
13553e52 5668 return ret;
f0486c68
YZ
5669}
5670
2ff7e61e 5671void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5672 struct btrfs_block_rsv *block_rsv,
5673 u64 num_bytes)
5674{
0b246afa
JM
5675 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5676
17504584 5677 if (global_rsv == block_rsv ||
f0486c68
YZ
5678 block_rsv->space_info != global_rsv->space_info)
5679 global_rsv = NULL;
0b246afa 5680 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
6a63209f
JB
5681}
5682
8929ecfa
YZ
5683static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5684{
5685 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5686 struct btrfs_space_info *sinfo = block_rsv->space_info;
5687 u64 num_bytes;
6a63209f 5688
ae2e4728
JB
5689 /*
5690 * The global block rsv is based on the size of the extent tree, the
5691 * checksum tree and the root tree. If the fs is empty we want to set
5692 * it to a minimal amount for safety.
5693 */
5694 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5695 btrfs_root_used(&fs_info->csum_root->root_item) +
5696 btrfs_root_used(&fs_info->tree_root->root_item);
5697 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5698
8929ecfa 5699 spin_lock(&sinfo->lock);
1f699d38 5700 spin_lock(&block_rsv->lock);
4e06bdd6 5701
ee22184b 5702 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5703
fb4b10e5 5704 if (block_rsv->reserved < block_rsv->size) {
4136135b 5705 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5706 if (sinfo->total_bytes > num_bytes) {
5707 num_bytes = sinfo->total_bytes - num_bytes;
5708 num_bytes = min(num_bytes,
5709 block_rsv->size - block_rsv->reserved);
5710 block_rsv->reserved += num_bytes;
5711 sinfo->bytes_may_use += num_bytes;
5712 trace_btrfs_space_reservation(fs_info, "space_info",
5713 sinfo->flags, num_bytes,
5714 1);
5715 }
5716 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5717 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5718 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5719 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5720 sinfo->flags, num_bytes, 0);
8929ecfa 5721 block_rsv->reserved = block_rsv->size;
8929ecfa 5722 }
182608c8 5723
fb4b10e5
JB
5724 if (block_rsv->reserved == block_rsv->size)
5725 block_rsv->full = 1;
5726 else
5727 block_rsv->full = 0;
5728
8929ecfa 5729 spin_unlock(&block_rsv->lock);
1f699d38 5730 spin_unlock(&sinfo->lock);
6a63209f
JB
5731}
5732
f0486c68 5733static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5734{
f0486c68 5735 struct btrfs_space_info *space_info;
6a63209f 5736
f0486c68
YZ
5737 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5738 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5739
f0486c68 5740 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5741 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5742 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5743 fs_info->trans_block_rsv.space_info = space_info;
5744 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5745 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5746
8929ecfa
YZ
5747 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5748 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5749 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5750 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5751 if (fs_info->quota_root)
5752 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5753 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5754
8929ecfa 5755 update_global_block_rsv(fs_info);
6a63209f
JB
5756}
5757
8929ecfa 5758static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5759{
8c2a3ca2
JB
5760 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5761 (u64)-1);
8929ecfa
YZ
5762 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5763 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5764 WARN_ON(fs_info->trans_block_rsv.size > 0);
5765 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5766 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5767 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5768 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5769 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5770}
5771
a22285a6 5772void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
2ff7e61e 5773 struct btrfs_fs_info *fs_info)
6a63209f 5774{
0e721106
JB
5775 if (!trans->block_rsv)
5776 return;
5777
a22285a6
YZ
5778 if (!trans->bytes_reserved)
5779 return;
6a63209f 5780
0b246afa 5781 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 5782 trans->transid, trans->bytes_reserved, 0);
2ff7e61e
JM
5783 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5784 trans->bytes_reserved);
a22285a6
YZ
5785 trans->bytes_reserved = 0;
5786}
6a63209f 5787
4fbcdf66
FM
5788/*
5789 * To be called after all the new block groups attached to the transaction
5790 * handle have been created (btrfs_create_pending_block_groups()).
5791 */
5792void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5793{
64b63580 5794 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5795
5796 if (!trans->chunk_bytes_reserved)
5797 return;
5798
5799 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5800
5801 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5802 trans->chunk_bytes_reserved);
5803 trans->chunk_bytes_reserved = 0;
5804}
5805
79787eaa 5806/* Can only return 0 or -ENOSPC */
d68fc57b 5807int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
8ed7a2a0 5808 struct btrfs_inode *inode)
d68fc57b 5809{
8ed7a2a0
NB
5810 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5811 struct btrfs_root *root = inode->root;
40acc3ee
JB
5812 /*
5813 * We always use trans->block_rsv here as we will have reserved space
5814 * for our orphan when starting the transaction, using get_block_rsv()
5815 * here will sometimes make us choose the wrong block rsv as we could be
5816 * doing a reloc inode for a non refcounted root.
5817 */
5818 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5819 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5820
5821 /*
fcb80c2a
JB
5822 * We need to hold space in order to delete our orphan item once we've
5823 * added it, so this takes the reservation so we can release it later
5824 * when we are truly done with the orphan item.
d68fc57b 5825 */
0b246afa
JM
5826 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5827
8ed7a2a0
NB
5828 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5829 num_bytes, 1);
25d609f8 5830 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5831}
5832
703b391a 5833void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
97e728d4 5834{
703b391a
NB
5835 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5836 struct btrfs_root *root = inode->root;
0b246afa
JM
5837 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5838
703b391a
NB
5839 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5840 num_bytes, 0);
2ff7e61e 5841 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
d68fc57b 5842}
97e728d4 5843
d5c12070
MX
5844/*
5845 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5846 * root: the root of the parent directory
5847 * rsv: block reservation
5848 * items: the number of items that we need do reservation
5849 * qgroup_reserved: used to return the reserved size in qgroup
5850 *
5851 * This function is used to reserve the space for snapshot/subvolume
5852 * creation and deletion. Those operations are different with the
5853 * common file/directory operations, they change two fs/file trees
5854 * and root tree, the number of items that the qgroup reserves is
5855 * different with the free space reservation. So we can not use
01327610 5856 * the space reservation mechanism in start_transaction().
d5c12070
MX
5857 */
5858int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5859 struct btrfs_block_rsv *rsv,
5860 int items,
ee3441b4
JM
5861 u64 *qgroup_reserved,
5862 bool use_global_rsv)
a22285a6 5863{
d5c12070
MX
5864 u64 num_bytes;
5865 int ret;
0b246afa
JM
5866 struct btrfs_fs_info *fs_info = root->fs_info;
5867 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5868
0b246afa 5869 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5870 /* One for parent inode, two for dir entries */
0b246afa 5871 num_bytes = 3 * fs_info->nodesize;
003d7c59 5872 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
d5c12070
MX
5873 if (ret)
5874 return ret;
5875 } else {
5876 num_bytes = 0;
5877 }
5878
5879 *qgroup_reserved = num_bytes;
5880
0b246afa
JM
5881 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5882 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
5883 BTRFS_BLOCK_GROUP_METADATA);
5884 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5885 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5886
5887 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5888 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5889
7174109c
QW
5890 if (ret && *qgroup_reserved)
5891 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5892
5893 return ret;
5894}
5895
2ff7e61e 5896void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 5897 struct btrfs_block_rsv *rsv)
d5c12070 5898{
2ff7e61e 5899 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
5900}
5901
7709cde3
JB
5902/**
5903 * drop_outstanding_extent - drop an outstanding extent
5904 * @inode: the inode we're dropping the extent for
01327610 5905 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5906 *
5907 * This is called when we are freeing up an outstanding extent, either called
5908 * after an error or after an extent is written. This will return the number of
5909 * reserved extents that need to be freed. This must be called with
5910 * BTRFS_I(inode)->lock held.
5911 */
baa3ba39
NB
5912static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5913 u64 num_bytes)
9e0baf60 5914{
7fd2ae21 5915 unsigned drop_inode_space = 0;
9e0baf60 5916 unsigned dropped_extents = 0;
823bb20a 5917 unsigned num_extents;
9e0baf60 5918
823bb20a 5919 num_extents = count_max_extents(num_bytes);
dcab6a3b 5920 ASSERT(num_extents);
baa3ba39
NB
5921 ASSERT(inode->outstanding_extents >= num_extents);
5922 inode->outstanding_extents -= num_extents;
9e0baf60 5923
baa3ba39 5924 if (inode->outstanding_extents == 0 &&
72ac3c0d 5925 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
baa3ba39 5926 &inode->runtime_flags))
7fd2ae21 5927 drop_inode_space = 1;
7fd2ae21 5928
9e0baf60 5929 /*
01327610 5930 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5931 * reserved then we need to leave the reserved extents count alone.
5932 */
baa3ba39 5933 if (inode->outstanding_extents >= inode->reserved_extents)
7fd2ae21 5934 return drop_inode_space;
9e0baf60 5935
baa3ba39
NB
5936 dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5937 inode->reserved_extents -= dropped_extents;
7fd2ae21 5938 return dropped_extents + drop_inode_space;
9e0baf60
JB
5939}
5940
7709cde3 5941/**
01327610
NS
5942 * calc_csum_metadata_size - return the amount of metadata space that must be
5943 * reserved/freed for the given bytes.
7709cde3
JB
5944 * @inode: the inode we're manipulating
5945 * @num_bytes: the number of bytes in question
5946 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5947 *
5948 * This adjusts the number of csum_bytes in the inode and then returns the
5949 * correct amount of metadata that must either be reserved or freed. We
5950 * calculate how many checksums we can fit into one leaf and then divide the
5951 * number of bytes that will need to be checksumed by this value to figure out
5952 * how many checksums will be required. If we are adding bytes then the number
5953 * may go up and we will return the number of additional bytes that must be
5954 * reserved. If it is going down we will return the number of bytes that must
5955 * be freed.
5956 *
5957 * This must be called with BTRFS_I(inode)->lock held.
5958 */
0e6bf9b1 5959static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
7709cde3 5960 int reserve)
6324fbf3 5961{
0e6bf9b1 5962 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1262133b 5963 u64 old_csums, num_csums;
7709cde3 5964
0e6bf9b1 5965 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
7709cde3
JB
5966 return 0;
5967
0e6bf9b1 5968 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
7709cde3 5969 if (reserve)
0e6bf9b1 5970 inode->csum_bytes += num_bytes;
7709cde3 5971 else
0e6bf9b1
NB
5972 inode->csum_bytes -= num_bytes;
5973 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
7709cde3
JB
5974
5975 /* No change, no need to reserve more */
5976 if (old_csums == num_csums)
5977 return 0;
5978
5979 if (reserve)
0b246afa 5980 return btrfs_calc_trans_metadata_size(fs_info,
7709cde3
JB
5981 num_csums - old_csums);
5982
0b246afa 5983 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
0ca1f7ce 5984}
c146afad 5985
9f3db423 5986int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 5987{
9f3db423
NB
5988 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5989 struct btrfs_root *root = inode->root;
0b246afa 5990 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
9e0baf60 5991 u64 to_reserve = 0;
660d3f6c 5992 u64 csum_bytes;
823bb20a 5993 unsigned nr_extents;
08e007d2 5994 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5995 int ret = 0;
c64c2bd8 5996 bool delalloc_lock = true;
88e081bf
WS
5997 u64 to_free = 0;
5998 unsigned dropped;
48c3d480 5999 bool release_extra = false;
6324fbf3 6000
c64c2bd8
JB
6001 /* If we are a free space inode we need to not flush since we will be in
6002 * the middle of a transaction commit. We also don't need the delalloc
6003 * mutex since we won't race with anybody. We need this mostly to make
6004 * lockdep shut its filthy mouth.
bac357dc
JB
6005 *
6006 * If we have a transaction open (can happen if we call truncate_block
6007 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6008 */
6009 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6010 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6011 delalloc_lock = false;
bac357dc
JB
6012 } else if (current->journal_info) {
6013 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c64c2bd8 6014 }
c09544e0 6015
08e007d2 6016 if (flush != BTRFS_RESERVE_NO_FLUSH &&
0b246afa 6017 btrfs_transaction_in_commit(fs_info))
0ca1f7ce 6018 schedule_timeout(1);
ec44a35c 6019
c64c2bd8 6020 if (delalloc_lock)
9f3db423 6021 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6022
0b246afa 6023 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
8bb8ab2e 6024
9f3db423 6025 spin_lock(&inode->lock);
823bb20a 6026 nr_extents = count_max_extents(num_bytes);
9f3db423 6027 inode->outstanding_extents += nr_extents;
9e0baf60 6028
48c3d480 6029 nr_extents = 0;
9f3db423
NB
6030 if (inode->outstanding_extents > inode->reserved_extents)
6031 nr_extents += inode->outstanding_extents -
6032 inode->reserved_extents;
57a45ced 6033
48c3d480 6034 /* We always want to reserve a slot for updating the inode. */
0b246afa 6035 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
7709cde3 6036 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
9f3db423
NB
6037 csum_bytes = inode->csum_bytes;
6038 spin_unlock(&inode->lock);
57a45ced 6039
0b246afa 6040 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
7174109c 6041 ret = btrfs_qgroup_reserve_meta(root,
003d7c59 6042 nr_extents * fs_info->nodesize, true);
88e081bf
WS
6043 if (ret)
6044 goto out_fail;
6045 }
c5567237 6046
48c3d480 6047 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
88e081bf 6048 if (unlikely(ret)) {
da17066c 6049 btrfs_qgroup_free_meta(root,
0b246afa 6050 nr_extents * fs_info->nodesize);
88e081bf 6051 goto out_fail;
9e0baf60 6052 }
25179201 6053
9f3db423 6054 spin_lock(&inode->lock);
48c3d480 6055 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
9f3db423 6056 &inode->runtime_flags)) {
0b246afa 6057 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
48c3d480 6058 release_extra = true;
660d3f6c 6059 }
9f3db423
NB
6060 inode->reserved_extents += nr_extents;
6061 spin_unlock(&inode->lock);
c64c2bd8
JB
6062
6063 if (delalloc_lock)
9f3db423 6064 mutex_unlock(&inode->delalloc_mutex);
660d3f6c 6065
8c2a3ca2 6066 if (to_reserve)
0b246afa 6067 trace_btrfs_space_reservation(fs_info, "delalloc",
9f3db423 6068 btrfs_ino(inode), to_reserve, 1);
48c3d480 6069 if (release_extra)
2ff7e61e 6070 btrfs_block_rsv_release(fs_info, block_rsv,
0b246afa 6071 btrfs_calc_trans_metadata_size(fs_info, 1));
0ca1f7ce 6072 return 0;
88e081bf
WS
6073
6074out_fail:
9f3db423 6075 spin_lock(&inode->lock);
dcab6a3b 6076 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
6077 /*
6078 * If the inodes csum_bytes is the same as the original
6079 * csum_bytes then we know we haven't raced with any free()ers
6080 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 6081 */
9f3db423 6082 if (inode->csum_bytes == csum_bytes) {
88e081bf 6083 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7 6084 } else {
9f3db423 6085 u64 orig_csum_bytes = inode->csum_bytes;
f4881bc7
JB
6086 u64 bytes;
6087
6088 /*
6089 * This is tricky, but first we need to figure out how much we
01327610 6090 * freed from any free-ers that occurred during this
f4881bc7
JB
6091 * reservation, so we reset ->csum_bytes to the csum_bytes
6092 * before we dropped our lock, and then call the free for the
6093 * number of bytes that were freed while we were trying our
6094 * reservation.
6095 */
9f3db423
NB
6096 bytes = csum_bytes - inode->csum_bytes;
6097 inode->csum_bytes = csum_bytes;
f4881bc7
JB
6098 to_free = calc_csum_metadata_size(inode, bytes, 0);
6099
6100
6101 /*
6102 * Now we need to see how much we would have freed had we not
6103 * been making this reservation and our ->csum_bytes were not
6104 * artificially inflated.
6105 */
9f3db423 6106 inode->csum_bytes = csum_bytes - num_bytes;
f4881bc7
JB
6107 bytes = csum_bytes - orig_csum_bytes;
6108 bytes = calc_csum_metadata_size(inode, bytes, 0);
6109
6110 /*
6111 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 6112 * more than to_free then we would have freed more space had we
f4881bc7
JB
6113 * not had an artificially high ->csum_bytes, so we need to free
6114 * the remainder. If bytes is the same or less then we don't
6115 * need to do anything, the other free-ers did the correct
6116 * thing.
6117 */
9f3db423 6118 inode->csum_bytes = orig_csum_bytes - num_bytes;
f4881bc7
JB
6119 if (bytes > to_free)
6120 to_free = bytes - to_free;
6121 else
6122 to_free = 0;
6123 }
9f3db423 6124 spin_unlock(&inode->lock);
e2d1f923 6125 if (dropped)
0b246afa 6126 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
88e081bf
WS
6127
6128 if (to_free) {
2ff7e61e 6129 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
0b246afa 6130 trace_btrfs_space_reservation(fs_info, "delalloc",
9f3db423 6131 btrfs_ino(inode), to_free, 0);
88e081bf
WS
6132 }
6133 if (delalloc_lock)
9f3db423 6134 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6135 return ret;
0ca1f7ce
YZ
6136}
6137
7709cde3
JB
6138/**
6139 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6140 * @inode: the inode to release the reservation for
6141 * @num_bytes: the number of bytes we're releasing
6142 *
6143 * This will release the metadata reservation for an inode. This can be called
6144 * once we complete IO for a given set of bytes to release their metadata
6145 * reservations.
6146 */
691fa059 6147void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6148{
691fa059 6149 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
9e0baf60
JB
6150 u64 to_free = 0;
6151 unsigned dropped;
0ca1f7ce 6152
0b246afa 6153 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6154 spin_lock(&inode->lock);
dcab6a3b 6155 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 6156
0934856d
MX
6157 if (num_bytes)
6158 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
691fa059 6159 spin_unlock(&inode->lock);
9e0baf60 6160 if (dropped > 0)
0b246afa 6161 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
0ca1f7ce 6162
0b246afa 6163 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6164 return;
6165
691fa059
NB
6166 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6167 to_free, 0);
c5567237 6168
2ff7e61e 6169 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
0ca1f7ce
YZ
6170}
6171
1ada3a62 6172/**
7cf5b976 6173 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6174 * delalloc
6175 * @inode: inode we're writing to
6176 * @start: start range we are writing to
6177 * @len: how long the range we are writing to
6178 *
1ada3a62
QW
6179 * This will do the following things
6180 *
6181 * o reserve space in data space info for num bytes
6182 * and reserve precious corresponding qgroup space
6183 * (Done in check_data_free_space)
6184 *
6185 * o reserve space for metadata space, based on the number of outstanding
6186 * extents and how much csums will be needed
6187 * also reserve metadata space in a per root over-reserve method.
6188 * o add to the inodes->delalloc_bytes
6189 * o add it to the fs_info's delalloc inodes list.
6190 * (Above 3 all done in delalloc_reserve_metadata)
6191 *
6192 * Return 0 for success
6193 * Return <0 for error(-ENOSPC or -EQUOT)
6194 */
7cf5b976 6195int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6196{
6197 int ret;
6198
7cf5b976 6199 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
6200 if (ret < 0)
6201 return ret;
9f3db423 6202 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6203 if (ret < 0)
7cf5b976 6204 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
6205 return ret;
6206}
6207
7709cde3 6208/**
7cf5b976 6209 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6210 * @inode: inode we're releasing space for
6211 * @start: start position of the space already reserved
6212 * @len: the len of the space already reserved
6213 *
6214 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6215 * called in the case that we don't need the metadata AND data reservations
6216 * anymore. So if there is an error or we insert an inline extent.
6217 *
6218 * This function will release the metadata space that was not used and will
6219 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6220 * list if there are no delalloc bytes left.
6221 * Also it will handle the qgroup reserved space.
6222 */
7cf5b976 6223void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62 6224{
691fa059 6225 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
7cf5b976 6226 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
6227}
6228
ce93ec54 6229static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6230 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6231 u64 num_bytes, int alloc)
9078a3e1 6232{
0af3d00b 6233 struct btrfs_block_group_cache *cache = NULL;
db94535d 6234 u64 total = num_bytes;
9078a3e1 6235 u64 old_val;
db94535d 6236 u64 byte_in_group;
0af3d00b 6237 int factor;
3e1ad54f 6238
5d4f98a2 6239 /* block accounting for super block */
eb73c1b7 6240 spin_lock(&info->delalloc_root_lock);
6c41761f 6241 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6242 if (alloc)
6243 old_val += num_bytes;
6244 else
6245 old_val -= num_bytes;
6c41761f 6246 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6247 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6248
d397712b 6249 while (total) {
db94535d 6250 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6251 if (!cache)
79787eaa 6252 return -ENOENT;
b742bb82
YZ
6253 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6254 BTRFS_BLOCK_GROUP_RAID1 |
6255 BTRFS_BLOCK_GROUP_RAID10))
6256 factor = 2;
6257 else
6258 factor = 1;
9d66e233
JB
6259 /*
6260 * If this block group has free space cache written out, we
6261 * need to make sure to load it if we are removing space. This
6262 * is because we need the unpinning stage to actually add the
6263 * space back to the block group, otherwise we will leak space.
6264 */
6265 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6266 cache_block_group(cache, 1);
0af3d00b 6267
db94535d
CM
6268 byte_in_group = bytenr - cache->key.objectid;
6269 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6270
25179201 6271 spin_lock(&cache->space_info->lock);
c286ac48 6272 spin_lock(&cache->lock);
0af3d00b 6273
6202df69 6274 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6275 cache->disk_cache_state < BTRFS_DC_CLEAR)
6276 cache->disk_cache_state = BTRFS_DC_CLEAR;
6277
9078a3e1 6278 old_val = btrfs_block_group_used(&cache->item);
db94535d 6279 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6280 if (alloc) {
db94535d 6281 old_val += num_bytes;
11833d66
YZ
6282 btrfs_set_block_group_used(&cache->item, old_val);
6283 cache->reserved -= num_bytes;
11833d66 6284 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6285 cache->space_info->bytes_used += num_bytes;
6286 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6287 spin_unlock(&cache->lock);
25179201 6288 spin_unlock(&cache->space_info->lock);
cd1bc465 6289 } else {
db94535d 6290 old_val -= num_bytes;
ae0ab003
FM
6291 btrfs_set_block_group_used(&cache->item, old_val);
6292 cache->pinned += num_bytes;
6293 cache->space_info->bytes_pinned += num_bytes;
6294 cache->space_info->bytes_used -= num_bytes;
6295 cache->space_info->disk_used -= num_bytes * factor;
6296 spin_unlock(&cache->lock);
6297 spin_unlock(&cache->space_info->lock);
47ab2a6c 6298
0b246afa 6299 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6300 cache->space_info->flags,
6301 num_bytes, 1);
d7eae340
OS
6302 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6303 num_bytes);
ae0ab003
FM
6304 set_extent_dirty(info->pinned_extents,
6305 bytenr, bytenr + num_bytes - 1,
6306 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6307 }
1bbc621e
CM
6308
6309 spin_lock(&trans->transaction->dirty_bgs_lock);
6310 if (list_empty(&cache->dirty_list)) {
6311 list_add_tail(&cache->dirty_list,
6312 &trans->transaction->dirty_bgs);
6313 trans->transaction->num_dirty_bgs++;
6314 btrfs_get_block_group(cache);
6315 }
6316 spin_unlock(&trans->transaction->dirty_bgs_lock);
6317
036a9348
FM
6318 /*
6319 * No longer have used bytes in this block group, queue it for
6320 * deletion. We do this after adding the block group to the
6321 * dirty list to avoid races between cleaner kthread and space
6322 * cache writeout.
6323 */
6324 if (!alloc && old_val == 0) {
6325 spin_lock(&info->unused_bgs_lock);
6326 if (list_empty(&cache->bg_list)) {
6327 btrfs_get_block_group(cache);
6328 list_add_tail(&cache->bg_list,
6329 &info->unused_bgs);
6330 }
6331 spin_unlock(&info->unused_bgs_lock);
6332 }
6333
fa9c0d79 6334 btrfs_put_block_group(cache);
db94535d
CM
6335 total -= num_bytes;
6336 bytenr += num_bytes;
9078a3e1
CM
6337 }
6338 return 0;
6339}
6324fbf3 6340
2ff7e61e 6341static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6342{
0f9dd46c 6343 struct btrfs_block_group_cache *cache;
d2fb3437 6344 u64 bytenr;
0f9dd46c 6345
0b246afa
JM
6346 spin_lock(&fs_info->block_group_cache_lock);
6347 bytenr = fs_info->first_logical_byte;
6348 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6349
6350 if (bytenr < (u64)-1)
6351 return bytenr;
6352
0b246afa 6353 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6354 if (!cache)
a061fc8d 6355 return 0;
0f9dd46c 6356
d2fb3437 6357 bytenr = cache->key.objectid;
fa9c0d79 6358 btrfs_put_block_group(cache);
d2fb3437
YZ
6359
6360 return bytenr;
a061fc8d
CM
6361}
6362
2ff7e61e 6363static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6364 struct btrfs_block_group_cache *cache,
6365 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6366{
11833d66
YZ
6367 spin_lock(&cache->space_info->lock);
6368 spin_lock(&cache->lock);
6369 cache->pinned += num_bytes;
6370 cache->space_info->bytes_pinned += num_bytes;
6371 if (reserved) {
6372 cache->reserved -= num_bytes;
6373 cache->space_info->bytes_reserved -= num_bytes;
6374 }
6375 spin_unlock(&cache->lock);
6376 spin_unlock(&cache->space_info->lock);
68b38550 6377
0b246afa 6378 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6379 cache->space_info->flags, num_bytes, 1);
4da8b76d 6380 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
0b246afa 6381 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6382 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6383 return 0;
6384}
68b38550 6385
f0486c68
YZ
6386/*
6387 * this function must be called within transaction
6388 */
2ff7e61e 6389int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6390 u64 bytenr, u64 num_bytes, int reserved)
6391{
6392 struct btrfs_block_group_cache *cache;
68b38550 6393
0b246afa 6394 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6395 BUG_ON(!cache); /* Logic error */
f0486c68 6396
2ff7e61e 6397 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6398
6399 btrfs_put_block_group(cache);
11833d66
YZ
6400 return 0;
6401}
6402
f0486c68 6403/*
e688b725
CM
6404 * this function must be called within transaction
6405 */
2ff7e61e 6406int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6407 u64 bytenr, u64 num_bytes)
6408{
6409 struct btrfs_block_group_cache *cache;
b50c6e25 6410 int ret;
e688b725 6411
0b246afa 6412 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6413 if (!cache)
6414 return -EINVAL;
e688b725
CM
6415
6416 /*
6417 * pull in the free space cache (if any) so that our pin
6418 * removes the free space from the cache. We have load_only set
6419 * to one because the slow code to read in the free extents does check
6420 * the pinned extents.
6421 */
f6373bf3 6422 cache_block_group(cache, 1);
e688b725 6423
2ff7e61e 6424 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6425
6426 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6427 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6428 btrfs_put_block_group(cache);
b50c6e25 6429 return ret;
e688b725
CM
6430}
6431
2ff7e61e
JM
6432static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6433 u64 start, u64 num_bytes)
8c2a1a30
JB
6434{
6435 int ret;
6436 struct btrfs_block_group_cache *block_group;
6437 struct btrfs_caching_control *caching_ctl;
6438
0b246afa 6439 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6440 if (!block_group)
6441 return -EINVAL;
6442
6443 cache_block_group(block_group, 0);
6444 caching_ctl = get_caching_control(block_group);
6445
6446 if (!caching_ctl) {
6447 /* Logic error */
6448 BUG_ON(!block_group_cache_done(block_group));
6449 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6450 } else {
6451 mutex_lock(&caching_ctl->mutex);
6452
6453 if (start >= caching_ctl->progress) {
2ff7e61e 6454 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6455 } else if (start + num_bytes <= caching_ctl->progress) {
6456 ret = btrfs_remove_free_space(block_group,
6457 start, num_bytes);
6458 } else {
6459 num_bytes = caching_ctl->progress - start;
6460 ret = btrfs_remove_free_space(block_group,
6461 start, num_bytes);
6462 if (ret)
6463 goto out_lock;
6464
6465 num_bytes = (start + num_bytes) -
6466 caching_ctl->progress;
6467 start = caching_ctl->progress;
2ff7e61e 6468 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6469 }
6470out_lock:
6471 mutex_unlock(&caching_ctl->mutex);
6472 put_caching_control(caching_ctl);
6473 }
6474 btrfs_put_block_group(block_group);
6475 return ret;
6476}
6477
2ff7e61e 6478int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6479 struct extent_buffer *eb)
6480{
6481 struct btrfs_file_extent_item *item;
6482 struct btrfs_key key;
6483 int found_type;
6484 int i;
6485
2ff7e61e 6486 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6487 return 0;
6488
6489 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6490 btrfs_item_key_to_cpu(eb, &key, i);
6491 if (key.type != BTRFS_EXTENT_DATA_KEY)
6492 continue;
6493 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6494 found_type = btrfs_file_extent_type(eb, item);
6495 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6496 continue;
6497 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6498 continue;
6499 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6500 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6501 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6502 }
6503
6504 return 0;
6505}
6506
9cfa3e34
FM
6507static void
6508btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6509{
6510 atomic_inc(&bg->reservations);
6511}
6512
6513void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6514 const u64 start)
6515{
6516 struct btrfs_block_group_cache *bg;
6517
6518 bg = btrfs_lookup_block_group(fs_info, start);
6519 ASSERT(bg);
6520 if (atomic_dec_and_test(&bg->reservations))
6521 wake_up_atomic_t(&bg->reservations);
6522 btrfs_put_block_group(bg);
6523}
6524
6525static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6526{
6527 schedule();
6528 return 0;
6529}
6530
6531void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6532{
6533 struct btrfs_space_info *space_info = bg->space_info;
6534
6535 ASSERT(bg->ro);
6536
6537 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6538 return;
6539
6540 /*
6541 * Our block group is read only but before we set it to read only,
6542 * some task might have had allocated an extent from it already, but it
6543 * has not yet created a respective ordered extent (and added it to a
6544 * root's list of ordered extents).
6545 * Therefore wait for any task currently allocating extents, since the
6546 * block group's reservations counter is incremented while a read lock
6547 * on the groups' semaphore is held and decremented after releasing
6548 * the read access on that semaphore and creating the ordered extent.
6549 */
6550 down_write(&space_info->groups_sem);
6551 up_write(&space_info->groups_sem);
6552
6553 wait_on_atomic_t(&bg->reservations,
6554 btrfs_wait_bg_reservations_atomic_t,
6555 TASK_UNINTERRUPTIBLE);
6556}
6557
fb25e914 6558/**
4824f1f4 6559 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6560 * @cache: The cache we are manipulating
18513091
WX
6561 * @ram_bytes: The number of bytes of file content, and will be same to
6562 * @num_bytes except for the compress path.
fb25e914 6563 * @num_bytes: The number of bytes in question
e570fd27 6564 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6565 *
745699ef
XW
6566 * This is called by the allocator when it reserves space. If this is a
6567 * reservation and the block group has become read only we cannot make the
6568 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6569 */
4824f1f4 6570static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6571 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6572{
fb25e914 6573 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6574 int ret = 0;
79787eaa 6575
fb25e914
JB
6576 spin_lock(&space_info->lock);
6577 spin_lock(&cache->lock);
4824f1f4
WX
6578 if (cache->ro) {
6579 ret = -EAGAIN;
fb25e914 6580 } else {
4824f1f4
WX
6581 cache->reserved += num_bytes;
6582 space_info->bytes_reserved += num_bytes;
e570fd27 6583
18513091
WX
6584 trace_btrfs_space_reservation(cache->fs_info,
6585 "space_info", space_info->flags,
6586 ram_bytes, 0);
6587 space_info->bytes_may_use -= ram_bytes;
e570fd27 6588 if (delalloc)
4824f1f4 6589 cache->delalloc_bytes += num_bytes;
324ae4df 6590 }
fb25e914
JB
6591 spin_unlock(&cache->lock);
6592 spin_unlock(&space_info->lock);
f0486c68 6593 return ret;
324ae4df 6594}
9078a3e1 6595
4824f1f4
WX
6596/**
6597 * btrfs_free_reserved_bytes - update the block_group and space info counters
6598 * @cache: The cache we are manipulating
6599 * @num_bytes: The number of bytes in question
6600 * @delalloc: The blocks are allocated for the delalloc write
6601 *
6602 * This is called by somebody who is freeing space that was never actually used
6603 * on disk. For example if you reserve some space for a new leaf in transaction
6604 * A and before transaction A commits you free that leaf, you call this with
6605 * reserve set to 0 in order to clear the reservation.
6606 */
6607
6608static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6609 u64 num_bytes, int delalloc)
6610{
6611 struct btrfs_space_info *space_info = cache->space_info;
6612 int ret = 0;
6613
6614 spin_lock(&space_info->lock);
6615 spin_lock(&cache->lock);
6616 if (cache->ro)
6617 space_info->bytes_readonly += num_bytes;
6618 cache->reserved -= num_bytes;
6619 space_info->bytes_reserved -= num_bytes;
6620
6621 if (delalloc)
6622 cache->delalloc_bytes -= num_bytes;
6623 spin_unlock(&cache->lock);
6624 spin_unlock(&space_info->lock);
6625 return ret;
6626}
8b74c03e 6627void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6628{
11833d66
YZ
6629 struct btrfs_caching_control *next;
6630 struct btrfs_caching_control *caching_ctl;
6631 struct btrfs_block_group_cache *cache;
e8569813 6632
9e351cc8 6633 down_write(&fs_info->commit_root_sem);
25179201 6634
11833d66
YZ
6635 list_for_each_entry_safe(caching_ctl, next,
6636 &fs_info->caching_block_groups, list) {
6637 cache = caching_ctl->block_group;
6638 if (block_group_cache_done(cache)) {
6639 cache->last_byte_to_unpin = (u64)-1;
6640 list_del_init(&caching_ctl->list);
6641 put_caching_control(caching_ctl);
e8569813 6642 } else {
11833d66 6643 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6644 }
e8569813 6645 }
11833d66
YZ
6646
6647 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6648 fs_info->pinned_extents = &fs_info->freed_extents[1];
6649 else
6650 fs_info->pinned_extents = &fs_info->freed_extents[0];
6651
9e351cc8 6652 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6653
6654 update_global_block_rsv(fs_info);
e8569813
ZY
6655}
6656
c759c4e1
JB
6657/*
6658 * Returns the free cluster for the given space info and sets empty_cluster to
6659 * what it should be based on the mount options.
6660 */
6661static struct btrfs_free_cluster *
2ff7e61e
JM
6662fetch_cluster_info(struct btrfs_fs_info *fs_info,
6663 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6664{
6665 struct btrfs_free_cluster *ret = NULL;
0b246afa 6666 bool ssd = btrfs_test_opt(fs_info, SSD);
c759c4e1
JB
6667
6668 *empty_cluster = 0;
6669 if (btrfs_mixed_space_info(space_info))
6670 return ret;
6671
6672 if (ssd)
ee22184b 6673 *empty_cluster = SZ_2M;
c759c4e1 6674 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6675 ret = &fs_info->meta_alloc_cluster;
c759c4e1 6676 if (!ssd)
ee22184b 6677 *empty_cluster = SZ_64K;
c759c4e1 6678 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
0b246afa 6679 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6680 }
6681
6682 return ret;
6683}
6684
2ff7e61e
JM
6685static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6686 u64 start, u64 end,
678886bd 6687 const bool return_free_space)
ccd467d6 6688{
11833d66 6689 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6690 struct btrfs_space_info *space_info;
6691 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6692 struct btrfs_free_cluster *cluster = NULL;
11833d66 6693 u64 len;
c759c4e1
JB
6694 u64 total_unpinned = 0;
6695 u64 empty_cluster = 0;
7b398f8e 6696 bool readonly;
ccd467d6 6697
11833d66 6698 while (start <= end) {
7b398f8e 6699 readonly = false;
11833d66
YZ
6700 if (!cache ||
6701 start >= cache->key.objectid + cache->key.offset) {
6702 if (cache)
6703 btrfs_put_block_group(cache);
c759c4e1 6704 total_unpinned = 0;
11833d66 6705 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6706 BUG_ON(!cache); /* Logic error */
c759c4e1 6707
2ff7e61e 6708 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6709 cache->space_info,
6710 &empty_cluster);
6711 empty_cluster <<= 1;
11833d66
YZ
6712 }
6713
6714 len = cache->key.objectid + cache->key.offset - start;
6715 len = min(len, end + 1 - start);
6716
6717 if (start < cache->last_byte_to_unpin) {
6718 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6719 if (return_free_space)
6720 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6721 }
6722
f0486c68 6723 start += len;
c759c4e1 6724 total_unpinned += len;
7b398f8e 6725 space_info = cache->space_info;
f0486c68 6726
c759c4e1
JB
6727 /*
6728 * If this space cluster has been marked as fragmented and we've
6729 * unpinned enough in this block group to potentially allow a
6730 * cluster to be created inside of it go ahead and clear the
6731 * fragmented check.
6732 */
6733 if (cluster && cluster->fragmented &&
6734 total_unpinned > empty_cluster) {
6735 spin_lock(&cluster->lock);
6736 cluster->fragmented = 0;
6737 spin_unlock(&cluster->lock);
6738 }
6739
7b398f8e 6740 spin_lock(&space_info->lock);
11833d66
YZ
6741 spin_lock(&cache->lock);
6742 cache->pinned -= len;
7b398f8e 6743 space_info->bytes_pinned -= len;
c51e7bb1
JB
6744
6745 trace_btrfs_space_reservation(fs_info, "pinned",
6746 space_info->flags, len, 0);
4f4db217 6747 space_info->max_extent_size = 0;
d288db5d 6748 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6749 if (cache->ro) {
6750 space_info->bytes_readonly += len;
6751 readonly = true;
6752 }
11833d66 6753 spin_unlock(&cache->lock);
957780eb
JB
6754 if (!readonly && return_free_space &&
6755 global_rsv->space_info == space_info) {
6756 u64 to_add = len;
6757 WARN_ON(!return_free_space);
7b398f8e
JB
6758 spin_lock(&global_rsv->lock);
6759 if (!global_rsv->full) {
957780eb
JB
6760 to_add = min(len, global_rsv->size -
6761 global_rsv->reserved);
6762 global_rsv->reserved += to_add;
6763 space_info->bytes_may_use += to_add;
7b398f8e
JB
6764 if (global_rsv->reserved >= global_rsv->size)
6765 global_rsv->full = 1;
957780eb
JB
6766 trace_btrfs_space_reservation(fs_info,
6767 "space_info",
6768 space_info->flags,
6769 to_add, 1);
6770 len -= to_add;
7b398f8e
JB
6771 }
6772 spin_unlock(&global_rsv->lock);
957780eb
JB
6773 /* Add to any tickets we may have */
6774 if (len)
6775 space_info_add_new_bytes(fs_info, space_info,
6776 len);
7b398f8e
JB
6777 }
6778 spin_unlock(&space_info->lock);
ccd467d6 6779 }
11833d66
YZ
6780
6781 if (cache)
6782 btrfs_put_block_group(cache);
ccd467d6
CM
6783 return 0;
6784}
6785
6786int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2ff7e61e 6787 struct btrfs_fs_info *fs_info)
a28ec197 6788{
e33e17ee
JM
6789 struct btrfs_block_group_cache *block_group, *tmp;
6790 struct list_head *deleted_bgs;
11833d66 6791 struct extent_io_tree *unpin;
1a5bc167
CM
6792 u64 start;
6793 u64 end;
a28ec197 6794 int ret;
a28ec197 6795
11833d66
YZ
6796 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6797 unpin = &fs_info->freed_extents[1];
6798 else
6799 unpin = &fs_info->freed_extents[0];
6800
e33e17ee 6801 while (!trans->aborted) {
d4b450cd 6802 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6803 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6804 EXTENT_DIRTY, NULL);
d4b450cd
FM
6805 if (ret) {
6806 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6807 break;
d4b450cd 6808 }
1f3c79a2 6809
0b246afa 6810 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6811 ret = btrfs_discard_extent(fs_info, start,
5378e607 6812 end + 1 - start, NULL);
1f3c79a2 6813
af6f8f60 6814 clear_extent_dirty(unpin, start, end);
2ff7e61e 6815 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6816 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6817 cond_resched();
a28ec197 6818 }
817d52f8 6819
e33e17ee
JM
6820 /*
6821 * Transaction is finished. We don't need the lock anymore. We
6822 * do need to clean up the block groups in case of a transaction
6823 * abort.
6824 */
6825 deleted_bgs = &trans->transaction->deleted_bgs;
6826 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6827 u64 trimmed = 0;
6828
6829 ret = -EROFS;
6830 if (!trans->aborted)
2ff7e61e 6831 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6832 block_group->key.objectid,
6833 block_group->key.offset,
6834 &trimmed);
6835
6836 list_del_init(&block_group->bg_list);
6837 btrfs_put_block_group_trimming(block_group);
6838 btrfs_put_block_group(block_group);
6839
6840 if (ret) {
6841 const char *errstr = btrfs_decode_error(ret);
6842 btrfs_warn(fs_info,
6843 "Discard failed while removing blockgroup: errno=%d %s\n",
6844 ret, errstr);
6845 }
6846 }
6847
e20d96d6
CM
6848 return 0;
6849}
6850
5d4f98a2 6851static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6852 struct btrfs_fs_info *info,
c682f9b3 6853 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6854 u64 root_objectid, u64 owner_objectid,
6855 u64 owner_offset, int refs_to_drop,
c682f9b3 6856 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6857{
e2fa7227 6858 struct btrfs_key key;
5d4f98a2 6859 struct btrfs_path *path;
1261ec42 6860 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6861 struct extent_buffer *leaf;
5d4f98a2
YZ
6862 struct btrfs_extent_item *ei;
6863 struct btrfs_extent_inline_ref *iref;
a28ec197 6864 int ret;
5d4f98a2 6865 int is_data;
952fccac
CM
6866 int extent_slot = 0;
6867 int found_extent = 0;
6868 int num_to_del = 1;
5d4f98a2
YZ
6869 u32 item_size;
6870 u64 refs;
c682f9b3
QW
6871 u64 bytenr = node->bytenr;
6872 u64 num_bytes = node->num_bytes;
fcebe456 6873 int last_ref = 0;
0b246afa 6874 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6875
5caf2a00 6876 path = btrfs_alloc_path();
54aa1f4d
CM
6877 if (!path)
6878 return -ENOMEM;
5f26f772 6879
e4058b54 6880 path->reada = READA_FORWARD;
b9473439 6881 path->leave_spinning = 1;
5d4f98a2
YZ
6882
6883 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6884 BUG_ON(!is_data && refs_to_drop != 1);
6885
3173a18f
JB
6886 if (is_data)
6887 skinny_metadata = 0;
6888
87bde3cd 6889 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6890 bytenr, num_bytes, parent,
6891 root_objectid, owner_objectid,
6892 owner_offset);
7bb86316 6893 if (ret == 0) {
952fccac 6894 extent_slot = path->slots[0];
5d4f98a2
YZ
6895 while (extent_slot >= 0) {
6896 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6897 extent_slot);
5d4f98a2 6898 if (key.objectid != bytenr)
952fccac 6899 break;
5d4f98a2
YZ
6900 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6901 key.offset == num_bytes) {
952fccac
CM
6902 found_extent = 1;
6903 break;
6904 }
3173a18f
JB
6905 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6906 key.offset == owner_objectid) {
6907 found_extent = 1;
6908 break;
6909 }
952fccac
CM
6910 if (path->slots[0] - extent_slot > 5)
6911 break;
5d4f98a2 6912 extent_slot--;
952fccac 6913 }
5d4f98a2
YZ
6914#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6915 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6916 if (found_extent && item_size < sizeof(*ei))
6917 found_extent = 0;
6918#endif
31840ae1 6919 if (!found_extent) {
5d4f98a2 6920 BUG_ON(iref);
87bde3cd
JM
6921 ret = remove_extent_backref(trans, info, path, NULL,
6922 refs_to_drop,
fcebe456 6923 is_data, &last_ref);
005d6427 6924 if (ret) {
66642832 6925 btrfs_abort_transaction(trans, ret);
005d6427
DS
6926 goto out;
6927 }
b3b4aa74 6928 btrfs_release_path(path);
b9473439 6929 path->leave_spinning = 1;
5d4f98a2
YZ
6930
6931 key.objectid = bytenr;
6932 key.type = BTRFS_EXTENT_ITEM_KEY;
6933 key.offset = num_bytes;
6934
3173a18f
JB
6935 if (!is_data && skinny_metadata) {
6936 key.type = BTRFS_METADATA_ITEM_KEY;
6937 key.offset = owner_objectid;
6938 }
6939
31840ae1
ZY
6940 ret = btrfs_search_slot(trans, extent_root,
6941 &key, path, -1, 1);
3173a18f
JB
6942 if (ret > 0 && skinny_metadata && path->slots[0]) {
6943 /*
6944 * Couldn't find our skinny metadata item,
6945 * see if we have ye olde extent item.
6946 */
6947 path->slots[0]--;
6948 btrfs_item_key_to_cpu(path->nodes[0], &key,
6949 path->slots[0]);
6950 if (key.objectid == bytenr &&
6951 key.type == BTRFS_EXTENT_ITEM_KEY &&
6952 key.offset == num_bytes)
6953 ret = 0;
6954 }
6955
6956 if (ret > 0 && skinny_metadata) {
6957 skinny_metadata = false;
9ce49a0b 6958 key.objectid = bytenr;
3173a18f
JB
6959 key.type = BTRFS_EXTENT_ITEM_KEY;
6960 key.offset = num_bytes;
6961 btrfs_release_path(path);
6962 ret = btrfs_search_slot(trans, extent_root,
6963 &key, path, -1, 1);
6964 }
6965
f3465ca4 6966 if (ret) {
5d163e0e
JM
6967 btrfs_err(info,
6968 "umm, got %d back from search, was looking for %llu",
6969 ret, bytenr);
b783e62d 6970 if (ret > 0)
2ff7e61e 6971 btrfs_print_leaf(info, path->nodes[0]);
f3465ca4 6972 }
005d6427 6973 if (ret < 0) {
66642832 6974 btrfs_abort_transaction(trans, ret);
005d6427
DS
6975 goto out;
6976 }
31840ae1
ZY
6977 extent_slot = path->slots[0];
6978 }
fae7f21c 6979 } else if (WARN_ON(ret == -ENOENT)) {
2ff7e61e 6980 btrfs_print_leaf(info, path->nodes[0]);
c2cf52eb
SK
6981 btrfs_err(info,
6982 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6983 bytenr, parent, root_objectid, owner_objectid,
6984 owner_offset);
66642832 6985 btrfs_abort_transaction(trans, ret);
c4a050bb 6986 goto out;
79787eaa 6987 } else {
66642832 6988 btrfs_abort_transaction(trans, ret);
005d6427 6989 goto out;
7bb86316 6990 }
5f39d397
CM
6991
6992 leaf = path->nodes[0];
5d4f98a2
YZ
6993 item_size = btrfs_item_size_nr(leaf, extent_slot);
6994#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6995 if (item_size < sizeof(*ei)) {
6996 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
6997 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6998 0);
005d6427 6999 if (ret < 0) {
66642832 7000 btrfs_abort_transaction(trans, ret);
005d6427
DS
7001 goto out;
7002 }
5d4f98a2 7003
b3b4aa74 7004 btrfs_release_path(path);
5d4f98a2
YZ
7005 path->leave_spinning = 1;
7006
7007 key.objectid = bytenr;
7008 key.type = BTRFS_EXTENT_ITEM_KEY;
7009 key.offset = num_bytes;
7010
7011 ret = btrfs_search_slot(trans, extent_root, &key, path,
7012 -1, 1);
7013 if (ret) {
5d163e0e
JM
7014 btrfs_err(info,
7015 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 7016 ret, bytenr);
2ff7e61e 7017 btrfs_print_leaf(info, path->nodes[0]);
5d4f98a2 7018 }
005d6427 7019 if (ret < 0) {
66642832 7020 btrfs_abort_transaction(trans, ret);
005d6427
DS
7021 goto out;
7022 }
7023
5d4f98a2
YZ
7024 extent_slot = path->slots[0];
7025 leaf = path->nodes[0];
7026 item_size = btrfs_item_size_nr(leaf, extent_slot);
7027 }
7028#endif
7029 BUG_ON(item_size < sizeof(*ei));
952fccac 7030 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7031 struct btrfs_extent_item);
3173a18f
JB
7032 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7033 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7034 struct btrfs_tree_block_info *bi;
7035 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7036 bi = (struct btrfs_tree_block_info *)(ei + 1);
7037 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7038 }
56bec294 7039
5d4f98a2 7040 refs = btrfs_extent_refs(leaf, ei);
32b02538 7041 if (refs < refs_to_drop) {
5d163e0e
JM
7042 btrfs_err(info,
7043 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7044 refs_to_drop, refs, bytenr);
32b02538 7045 ret = -EINVAL;
66642832 7046 btrfs_abort_transaction(trans, ret);
32b02538
JB
7047 goto out;
7048 }
56bec294 7049 refs -= refs_to_drop;
5f39d397 7050
5d4f98a2
YZ
7051 if (refs > 0) {
7052 if (extent_op)
7053 __run_delayed_extent_op(extent_op, leaf, ei);
7054 /*
7055 * In the case of inline back ref, reference count will
7056 * be updated by remove_extent_backref
952fccac 7057 */
5d4f98a2
YZ
7058 if (iref) {
7059 BUG_ON(!found_extent);
7060 } else {
7061 btrfs_set_extent_refs(leaf, ei, refs);
7062 btrfs_mark_buffer_dirty(leaf);
7063 }
7064 if (found_extent) {
87bde3cd 7065 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7066 iref, refs_to_drop,
fcebe456 7067 is_data, &last_ref);
005d6427 7068 if (ret) {
66642832 7069 btrfs_abort_transaction(trans, ret);
005d6427
DS
7070 goto out;
7071 }
952fccac 7072 }
5d4f98a2 7073 } else {
5d4f98a2
YZ
7074 if (found_extent) {
7075 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7076 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7077 if (iref) {
7078 BUG_ON(path->slots[0] != extent_slot);
7079 } else {
7080 BUG_ON(path->slots[0] != extent_slot + 1);
7081 path->slots[0] = extent_slot;
7082 num_to_del = 2;
7083 }
78fae27e 7084 }
b9473439 7085
fcebe456 7086 last_ref = 1;
952fccac
CM
7087 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7088 num_to_del);
005d6427 7089 if (ret) {
66642832 7090 btrfs_abort_transaction(trans, ret);
005d6427
DS
7091 goto out;
7092 }
b3b4aa74 7093 btrfs_release_path(path);
21af804c 7094
5d4f98a2 7095 if (is_data) {
5b4aacef 7096 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7097 if (ret) {
66642832 7098 btrfs_abort_transaction(trans, ret);
005d6427
DS
7099 goto out;
7100 }
459931ec
CM
7101 }
7102
0b246afa 7103 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
1e144fb8 7104 if (ret) {
66642832 7105 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7106 goto out;
7107 }
7108
0b246afa 7109 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7110 if (ret) {
66642832 7111 btrfs_abort_transaction(trans, ret);
005d6427
DS
7112 goto out;
7113 }
a28ec197 7114 }
fcebe456
JB
7115 btrfs_release_path(path);
7116
79787eaa 7117out:
5caf2a00 7118 btrfs_free_path(path);
a28ec197
CM
7119 return ret;
7120}
7121
1887be66 7122/*
f0486c68 7123 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7124 * delayed ref for that extent as well. This searches the delayed ref tree for
7125 * a given extent, and if there are no other delayed refs to be processed, it
7126 * removes it from the tree.
7127 */
7128static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7129 u64 bytenr)
1887be66
CM
7130{
7131 struct btrfs_delayed_ref_head *head;
7132 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7133 int ret = 0;
1887be66
CM
7134
7135 delayed_refs = &trans->transaction->delayed_refs;
7136 spin_lock(&delayed_refs->lock);
f72ad18e 7137 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7138 if (!head)
cf93da7b 7139 goto out_delayed_unlock;
1887be66 7140
d7df2c79 7141 spin_lock(&head->lock);
c6fc2454 7142 if (!list_empty(&head->ref_list))
1887be66
CM
7143 goto out;
7144
5d4f98a2
YZ
7145 if (head->extent_op) {
7146 if (!head->must_insert_reserved)
7147 goto out;
78a6184a 7148 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7149 head->extent_op = NULL;
7150 }
7151
1887be66
CM
7152 /*
7153 * waiting for the lock here would deadlock. If someone else has it
7154 * locked they are already in the process of dropping it anyway
7155 */
7156 if (!mutex_trylock(&head->mutex))
7157 goto out;
7158
7159 /*
7160 * at this point we have a head with no other entries. Go
7161 * ahead and process it.
7162 */
7163 head->node.in_tree = 0;
c46effa6 7164 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 7165
d7df2c79 7166 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7167
7168 /*
7169 * we don't take a ref on the node because we're removing it from the
7170 * tree, so we just steal the ref the tree was holding.
7171 */
c3e69d58 7172 delayed_refs->num_heads--;
d7df2c79 7173 if (head->processing == 0)
c3e69d58 7174 delayed_refs->num_heads_ready--;
d7df2c79
JB
7175 head->processing = 0;
7176 spin_unlock(&head->lock);
1887be66
CM
7177 spin_unlock(&delayed_refs->lock);
7178
f0486c68
YZ
7179 BUG_ON(head->extent_op);
7180 if (head->must_insert_reserved)
7181 ret = 1;
7182
7183 mutex_unlock(&head->mutex);
1887be66 7184 btrfs_put_delayed_ref(&head->node);
f0486c68 7185 return ret;
1887be66 7186out:
d7df2c79 7187 spin_unlock(&head->lock);
cf93da7b
CM
7188
7189out_delayed_unlock:
1887be66
CM
7190 spin_unlock(&delayed_refs->lock);
7191 return 0;
7192}
7193
f0486c68
YZ
7194void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7195 struct btrfs_root *root,
7196 struct extent_buffer *buf,
5581a51a 7197 u64 parent, int last_ref)
f0486c68 7198{
0b246afa 7199 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7200 int pin = 1;
f0486c68
YZ
7201 int ret;
7202
7203 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7204 int old_ref_mod, new_ref_mod;
7205
7be07912
OS
7206 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7207 buf->len, parent,
0b246afa
JM
7208 root->root_key.objectid,
7209 btrfs_header_level(buf),
7be07912 7210 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7211 &old_ref_mod, &new_ref_mod);
79787eaa 7212 BUG_ON(ret); /* -ENOMEM */
d7eae340 7213 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7214 }
7215
0a16c7d7 7216 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7217 struct btrfs_block_group_cache *cache;
7218
f0486c68 7219 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7220 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7221 if (!ret)
37be25bc 7222 goto out;
f0486c68
YZ
7223 }
7224
4da8b76d 7225 pin = 0;
0b246afa 7226 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7227
f0486c68 7228 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7229 pin_down_extent(fs_info, cache, buf->start,
7230 buf->len, 1);
6219872d 7231 btrfs_put_block_group(cache);
37be25bc 7232 goto out;
f0486c68
YZ
7233 }
7234
7235 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7236
7237 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7238 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7239 btrfs_put_block_group(cache);
71ff6437 7240 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7241 }
7242out:
b150a4f1 7243 if (pin)
0b246afa 7244 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
b150a4f1
JB
7245 root->root_key.objectid);
7246
0a16c7d7
OS
7247 if (last_ref) {
7248 /*
7249 * Deleting the buffer, clear the corrupt flag since it doesn't
7250 * matter anymore.
7251 */
7252 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7253 }
f0486c68
YZ
7254}
7255
79787eaa 7256/* Can return -ENOMEM */
2ff7e61e
JM
7257int btrfs_free_extent(struct btrfs_trans_handle *trans,
7258 struct btrfs_fs_info *fs_info,
66d7e7f0 7259 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7260 u64 owner, u64 offset)
925baedd 7261{
d7eae340 7262 int old_ref_mod, new_ref_mod;
925baedd
CM
7263 int ret;
7264
f5ee5c9a 7265 if (btrfs_is_testing(fs_info))
faa2dbf0 7266 return 0;
fccb84c9 7267
b150a4f1 7268
56bec294
CM
7269 /*
7270 * tree log blocks never actually go into the extent allocation
7271 * tree, just update pinning info and exit early.
56bec294 7272 */
5d4f98a2
YZ
7273 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7274 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7275 /* unlocks the pinned mutex */
2ff7e61e 7276 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7277 old_ref_mod = new_ref_mod = 0;
56bec294 7278 ret = 0;
5d4f98a2 7279 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 7280 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
7281 num_bytes, parent,
7282 root_objectid, (int)owner,
7283 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7284 &old_ref_mod, &new_ref_mod);
5d4f98a2 7285 } else {
66d7e7f0 7286 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
7287 num_bytes, parent,
7288 root_objectid, owner, offset,
7289 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7290 &old_ref_mod, &new_ref_mod);
56bec294 7291 }
d7eae340
OS
7292
7293 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7294 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7295
925baedd
CM
7296 return ret;
7297}
7298
817d52f8
JB
7299/*
7300 * when we wait for progress in the block group caching, its because
7301 * our allocation attempt failed at least once. So, we must sleep
7302 * and let some progress happen before we try again.
7303 *
7304 * This function will sleep at least once waiting for new free space to
7305 * show up, and then it will check the block group free space numbers
7306 * for our min num_bytes. Another option is to have it go ahead
7307 * and look in the rbtree for a free extent of a given size, but this
7308 * is a good start.
36cce922
JB
7309 *
7310 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7311 * any of the information in this block group.
817d52f8 7312 */
36cce922 7313static noinline void
817d52f8
JB
7314wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7315 u64 num_bytes)
7316{
11833d66 7317 struct btrfs_caching_control *caching_ctl;
817d52f8 7318
11833d66
YZ
7319 caching_ctl = get_caching_control(cache);
7320 if (!caching_ctl)
36cce922 7321 return;
817d52f8 7322
11833d66 7323 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7324 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7325
7326 put_caching_control(caching_ctl);
11833d66
YZ
7327}
7328
7329static noinline int
7330wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7331{
7332 struct btrfs_caching_control *caching_ctl;
36cce922 7333 int ret = 0;
11833d66
YZ
7334
7335 caching_ctl = get_caching_control(cache);
7336 if (!caching_ctl)
36cce922 7337 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7338
7339 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7340 if (cache->cached == BTRFS_CACHE_ERROR)
7341 ret = -EIO;
11833d66 7342 put_caching_control(caching_ctl);
36cce922 7343 return ret;
817d52f8
JB
7344}
7345
31e50229 7346int __get_raid_index(u64 flags)
b742bb82 7347{
7738a53a 7348 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7349 return BTRFS_RAID_RAID10;
7738a53a 7350 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7351 return BTRFS_RAID_RAID1;
7738a53a 7352 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7353 return BTRFS_RAID_DUP;
7738a53a 7354 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7355 return BTRFS_RAID_RAID0;
53b381b3 7356 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7357 return BTRFS_RAID_RAID5;
53b381b3 7358 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7359 return BTRFS_RAID_RAID6;
7738a53a 7360
e942f883 7361 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7362}
7363
6ab0a202 7364int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7365{
31e50229 7366 return __get_raid_index(cache->flags);
7738a53a
ID
7367}
7368
6ab0a202
JM
7369static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7370 [BTRFS_RAID_RAID10] = "raid10",
7371 [BTRFS_RAID_RAID1] = "raid1",
7372 [BTRFS_RAID_DUP] = "dup",
7373 [BTRFS_RAID_RAID0] = "raid0",
7374 [BTRFS_RAID_SINGLE] = "single",
7375 [BTRFS_RAID_RAID5] = "raid5",
7376 [BTRFS_RAID_RAID6] = "raid6",
7377};
7378
1b8e5df6 7379static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7380{
7381 if (type >= BTRFS_NR_RAID_TYPES)
7382 return NULL;
7383
7384 return btrfs_raid_type_names[type];
7385}
7386
817d52f8 7387enum btrfs_loop_type {
285ff5af
JB
7388 LOOP_CACHING_NOWAIT = 0,
7389 LOOP_CACHING_WAIT = 1,
7390 LOOP_ALLOC_CHUNK = 2,
7391 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7392};
7393
e570fd27
MX
7394static inline void
7395btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7396 int delalloc)
7397{
7398 if (delalloc)
7399 down_read(&cache->data_rwsem);
7400}
7401
7402static inline void
7403btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7404 int delalloc)
7405{
7406 btrfs_get_block_group(cache);
7407 if (delalloc)
7408 down_read(&cache->data_rwsem);
7409}
7410
7411static struct btrfs_block_group_cache *
7412btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7413 struct btrfs_free_cluster *cluster,
7414 int delalloc)
7415{
89771cc9 7416 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7417
e570fd27 7418 spin_lock(&cluster->refill_lock);
6719afdc
GU
7419 while (1) {
7420 used_bg = cluster->block_group;
7421 if (!used_bg)
7422 return NULL;
7423
7424 if (used_bg == block_group)
e570fd27
MX
7425 return used_bg;
7426
6719afdc 7427 btrfs_get_block_group(used_bg);
e570fd27 7428
6719afdc
GU
7429 if (!delalloc)
7430 return used_bg;
e570fd27 7431
6719afdc
GU
7432 if (down_read_trylock(&used_bg->data_rwsem))
7433 return used_bg;
e570fd27 7434
6719afdc 7435 spin_unlock(&cluster->refill_lock);
e570fd27 7436
e321f8a8
LB
7437 /* We should only have one-level nested. */
7438 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7439
6719afdc
GU
7440 spin_lock(&cluster->refill_lock);
7441 if (used_bg == cluster->block_group)
7442 return used_bg;
e570fd27 7443
6719afdc
GU
7444 up_read(&used_bg->data_rwsem);
7445 btrfs_put_block_group(used_bg);
7446 }
e570fd27
MX
7447}
7448
7449static inline void
7450btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7451 int delalloc)
7452{
7453 if (delalloc)
7454 up_read(&cache->data_rwsem);
7455 btrfs_put_block_group(cache);
7456}
7457
fec577fb
CM
7458/*
7459 * walks the btree of allocated extents and find a hole of a given size.
7460 * The key ins is changed to record the hole:
a4820398 7461 * ins->objectid == start position
62e2749e 7462 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7463 * ins->offset == the size of the hole.
fec577fb 7464 * Any available blocks before search_start are skipped.
a4820398
MX
7465 *
7466 * If there is no suitable free space, we will record the max size of
7467 * the free space extent currently.
fec577fb 7468 */
87bde3cd 7469static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7470 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7471 u64 hint_byte, struct btrfs_key *ins,
7472 u64 flags, int delalloc)
fec577fb 7473{
80eb234a 7474 int ret = 0;
0b246afa 7475 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7476 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7477 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7478 u64 search_start = 0;
a4820398 7479 u64 max_extent_size = 0;
c759c4e1 7480 u64 empty_cluster = 0;
80eb234a 7481 struct btrfs_space_info *space_info;
fa9c0d79 7482 int loop = 0;
b6919a58 7483 int index = __get_raid_index(flags);
0a24325e 7484 bool failed_cluster_refill = false;
1cdda9b8 7485 bool failed_alloc = false;
67377734 7486 bool use_cluster = true;
60d2adbb 7487 bool have_caching_bg = false;
13a0db5a 7488 bool orig_have_caching_bg = false;
a5e681d9 7489 bool full_search = false;
fec577fb 7490
0b246afa 7491 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7492 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7493 ins->objectid = 0;
7494 ins->offset = 0;
b1a4d965 7495
71ff6437 7496 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7497
0b246afa 7498 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7499 if (!space_info) {
0b246afa 7500 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7501 return -ENOSPC;
7502 }
2552d17e 7503
67377734 7504 /*
4f4db217
JB
7505 * If our free space is heavily fragmented we may not be able to make
7506 * big contiguous allocations, so instead of doing the expensive search
7507 * for free space, simply return ENOSPC with our max_extent_size so we
7508 * can go ahead and search for a more manageable chunk.
7509 *
7510 * If our max_extent_size is large enough for our allocation simply
7511 * disable clustering since we will likely not be able to find enough
7512 * space to create a cluster and induce latency trying.
67377734 7513 */
4f4db217
JB
7514 if (unlikely(space_info->max_extent_size)) {
7515 spin_lock(&space_info->lock);
7516 if (space_info->max_extent_size &&
7517 num_bytes > space_info->max_extent_size) {
7518 ins->offset = space_info->max_extent_size;
7519 spin_unlock(&space_info->lock);
7520 return -ENOSPC;
7521 } else if (space_info->max_extent_size) {
7522 use_cluster = false;
7523 }
7524 spin_unlock(&space_info->lock);
fa9c0d79 7525 }
0f9dd46c 7526
2ff7e61e 7527 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7528 if (last_ptr) {
fa9c0d79
CM
7529 spin_lock(&last_ptr->lock);
7530 if (last_ptr->block_group)
7531 hint_byte = last_ptr->window_start;
c759c4e1
JB
7532 if (last_ptr->fragmented) {
7533 /*
7534 * We still set window_start so we can keep track of the
7535 * last place we found an allocation to try and save
7536 * some time.
7537 */
7538 hint_byte = last_ptr->window_start;
7539 use_cluster = false;
7540 }
fa9c0d79 7541 spin_unlock(&last_ptr->lock);
239b14b3 7542 }
fa9c0d79 7543
2ff7e61e 7544 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7545 search_start = max(search_start, hint_byte);
2552d17e 7546 if (search_start == hint_byte) {
0b246afa 7547 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7548 /*
7549 * we don't want to use the block group if it doesn't match our
7550 * allocation bits, or if its not cached.
ccf0e725
JB
7551 *
7552 * However if we are re-searching with an ideal block group
7553 * picked out then we don't care that the block group is cached.
817d52f8 7554 */
b6919a58 7555 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7556 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7557 down_read(&space_info->groups_sem);
44fb5511
CM
7558 if (list_empty(&block_group->list) ||
7559 block_group->ro) {
7560 /*
7561 * someone is removing this block group,
7562 * we can't jump into the have_block_group
7563 * target because our list pointers are not
7564 * valid
7565 */
7566 btrfs_put_block_group(block_group);
7567 up_read(&space_info->groups_sem);
ccf0e725 7568 } else {
b742bb82 7569 index = get_block_group_index(block_group);
e570fd27 7570 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7571 goto have_block_group;
ccf0e725 7572 }
2552d17e 7573 } else if (block_group) {
fa9c0d79 7574 btrfs_put_block_group(block_group);
2552d17e 7575 }
42e70e7a 7576 }
2552d17e 7577search:
60d2adbb 7578 have_caching_bg = false;
a5e681d9
JB
7579 if (index == 0 || index == __get_raid_index(flags))
7580 full_search = true;
80eb234a 7581 down_read(&space_info->groups_sem);
b742bb82
YZ
7582 list_for_each_entry(block_group, &space_info->block_groups[index],
7583 list) {
6226cb0a 7584 u64 offset;
817d52f8 7585 int cached;
8a1413a2 7586
e570fd27 7587 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7588 search_start = block_group->key.objectid;
42e70e7a 7589
83a50de9
CM
7590 /*
7591 * this can happen if we end up cycling through all the
7592 * raid types, but we want to make sure we only allocate
7593 * for the proper type.
7594 */
b6919a58 7595 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7596 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7597 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7598 BTRFS_BLOCK_GROUP_RAID5 |
7599 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7600 BTRFS_BLOCK_GROUP_RAID10;
7601
7602 /*
7603 * if they asked for extra copies and this block group
7604 * doesn't provide them, bail. This does allow us to
7605 * fill raid0 from raid1.
7606 */
b6919a58 7607 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7608 goto loop;
7609 }
7610
2552d17e 7611have_block_group:
291c7d2f
JB
7612 cached = block_group_cache_done(block_group);
7613 if (unlikely(!cached)) {
a5e681d9 7614 have_caching_bg = true;
f6373bf3 7615 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7616 BUG_ON(ret < 0);
7617 ret = 0;
817d52f8
JB
7618 }
7619
36cce922
JB
7620 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7621 goto loop;
ea6a478e 7622 if (unlikely(block_group->ro))
2552d17e 7623 goto loop;
0f9dd46c 7624
0a24325e 7625 /*
062c05c4
AO
7626 * Ok we want to try and use the cluster allocator, so
7627 * lets look there
0a24325e 7628 */
c759c4e1 7629 if (last_ptr && use_cluster) {
215a63d1 7630 struct btrfs_block_group_cache *used_block_group;
8de972b4 7631 unsigned long aligned_cluster;
fa9c0d79
CM
7632 /*
7633 * the refill lock keeps out other
7634 * people trying to start a new cluster
7635 */
e570fd27
MX
7636 used_block_group = btrfs_lock_cluster(block_group,
7637 last_ptr,
7638 delalloc);
7639 if (!used_block_group)
44fb5511 7640 goto refill_cluster;
274bd4fb 7641
e570fd27
MX
7642 if (used_block_group != block_group &&
7643 (used_block_group->ro ||
7644 !block_group_bits(used_block_group, flags)))
7645 goto release_cluster;
44fb5511 7646
274bd4fb 7647 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7648 last_ptr,
7649 num_bytes,
7650 used_block_group->key.objectid,
7651 &max_extent_size);
fa9c0d79
CM
7652 if (offset) {
7653 /* we have a block, we're done */
7654 spin_unlock(&last_ptr->refill_lock);
71ff6437 7655 trace_btrfs_reserve_extent_cluster(fs_info,
89d4346a
MX
7656 used_block_group,
7657 search_start, num_bytes);
215a63d1 7658 if (used_block_group != block_group) {
e570fd27
MX
7659 btrfs_release_block_group(block_group,
7660 delalloc);
215a63d1
MX
7661 block_group = used_block_group;
7662 }
fa9c0d79
CM
7663 goto checks;
7664 }
7665
274bd4fb 7666 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7667release_cluster:
062c05c4
AO
7668 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7669 * set up a new clusters, so lets just skip it
7670 * and let the allocator find whatever block
7671 * it can find. If we reach this point, we
7672 * will have tried the cluster allocator
7673 * plenty of times and not have found
7674 * anything, so we are likely way too
7675 * fragmented for the clustering stuff to find
a5f6f719
AO
7676 * anything.
7677 *
7678 * However, if the cluster is taken from the
7679 * current block group, release the cluster
7680 * first, so that we stand a better chance of
7681 * succeeding in the unclustered
7682 * allocation. */
7683 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7684 used_block_group != block_group) {
062c05c4 7685 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7686 btrfs_release_block_group(used_block_group,
7687 delalloc);
062c05c4
AO
7688 goto unclustered_alloc;
7689 }
7690
fa9c0d79
CM
7691 /*
7692 * this cluster didn't work out, free it and
7693 * start over
7694 */
7695 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7696
e570fd27
MX
7697 if (used_block_group != block_group)
7698 btrfs_release_block_group(used_block_group,
7699 delalloc);
7700refill_cluster:
a5f6f719
AO
7701 if (loop >= LOOP_NO_EMPTY_SIZE) {
7702 spin_unlock(&last_ptr->refill_lock);
7703 goto unclustered_alloc;
7704 }
7705
8de972b4
CM
7706 aligned_cluster = max_t(unsigned long,
7707 empty_cluster + empty_size,
7708 block_group->full_stripe_len);
7709
fa9c0d79 7710 /* allocate a cluster in this block group */
2ff7e61e 7711 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7712 last_ptr, search_start,
7713 num_bytes,
7714 aligned_cluster);
fa9c0d79
CM
7715 if (ret == 0) {
7716 /*
7717 * now pull our allocation out of this
7718 * cluster
7719 */
7720 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7721 last_ptr,
7722 num_bytes,
7723 search_start,
7724 &max_extent_size);
fa9c0d79
CM
7725 if (offset) {
7726 /* we found one, proceed */
7727 spin_unlock(&last_ptr->refill_lock);
71ff6437 7728 trace_btrfs_reserve_extent_cluster(fs_info,
3f7de037
JB
7729 block_group, search_start,
7730 num_bytes);
fa9c0d79
CM
7731 goto checks;
7732 }
0a24325e
JB
7733 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7734 && !failed_cluster_refill) {
817d52f8
JB
7735 spin_unlock(&last_ptr->refill_lock);
7736
0a24325e 7737 failed_cluster_refill = true;
817d52f8
JB
7738 wait_block_group_cache_progress(block_group,
7739 num_bytes + empty_cluster + empty_size);
7740 goto have_block_group;
fa9c0d79 7741 }
817d52f8 7742
fa9c0d79
CM
7743 /*
7744 * at this point we either didn't find a cluster
7745 * or we weren't able to allocate a block from our
7746 * cluster. Free the cluster we've been trying
7747 * to use, and go to the next block group
7748 */
0a24325e 7749 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7750 spin_unlock(&last_ptr->refill_lock);
0a24325e 7751 goto loop;
fa9c0d79
CM
7752 }
7753
062c05c4 7754unclustered_alloc:
c759c4e1
JB
7755 /*
7756 * We are doing an unclustered alloc, set the fragmented flag so
7757 * we don't bother trying to setup a cluster again until we get
7758 * more space.
7759 */
7760 if (unlikely(last_ptr)) {
7761 spin_lock(&last_ptr->lock);
7762 last_ptr->fragmented = 1;
7763 spin_unlock(&last_ptr->lock);
7764 }
0c9b36e0
LB
7765 if (cached) {
7766 struct btrfs_free_space_ctl *ctl =
7767 block_group->free_space_ctl;
7768
7769 spin_lock(&ctl->tree_lock);
7770 if (ctl->free_space <
7771 num_bytes + empty_cluster + empty_size) {
7772 if (ctl->free_space > max_extent_size)
7773 max_extent_size = ctl->free_space;
7774 spin_unlock(&ctl->tree_lock);
7775 goto loop;
7776 }
7777 spin_unlock(&ctl->tree_lock);
a5f6f719 7778 }
a5f6f719 7779
6226cb0a 7780 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7781 num_bytes, empty_size,
7782 &max_extent_size);
1cdda9b8
JB
7783 /*
7784 * If we didn't find a chunk, and we haven't failed on this
7785 * block group before, and this block group is in the middle of
7786 * caching and we are ok with waiting, then go ahead and wait
7787 * for progress to be made, and set failed_alloc to true.
7788 *
7789 * If failed_alloc is true then we've already waited on this
7790 * block group once and should move on to the next block group.
7791 */
7792 if (!offset && !failed_alloc && !cached &&
7793 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7794 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7795 num_bytes + empty_size);
7796 failed_alloc = true;
817d52f8 7797 goto have_block_group;
1cdda9b8
JB
7798 } else if (!offset) {
7799 goto loop;
817d52f8 7800 }
fa9c0d79 7801checks:
0b246afa 7802 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7803
2552d17e
JB
7804 /* move on to the next group */
7805 if (search_start + num_bytes >
215a63d1
MX
7806 block_group->key.objectid + block_group->key.offset) {
7807 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7808 goto loop;
6226cb0a 7809 }
f5a31e16 7810
f0486c68 7811 if (offset < search_start)
215a63d1 7812 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7813 search_start - offset);
7814 BUG_ON(offset > search_start);
2552d17e 7815
18513091
WX
7816 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7817 num_bytes, delalloc);
f0486c68 7818 if (ret == -EAGAIN) {
215a63d1 7819 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7820 goto loop;
0f9dd46c 7821 }
9cfa3e34 7822 btrfs_inc_block_group_reservations(block_group);
0b86a832 7823
f0486c68 7824 /* we are all good, lets return */
2552d17e
JB
7825 ins->objectid = search_start;
7826 ins->offset = num_bytes;
d2fb3437 7827
71ff6437 7828 trace_btrfs_reserve_extent(fs_info, block_group,
3f7de037 7829 search_start, num_bytes);
e570fd27 7830 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7831 break;
7832loop:
0a24325e 7833 failed_cluster_refill = false;
1cdda9b8 7834 failed_alloc = false;
b742bb82 7835 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7836 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7837 }
7838 up_read(&space_info->groups_sem);
7839
13a0db5a 7840 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7841 && !orig_have_caching_bg)
7842 orig_have_caching_bg = true;
7843
60d2adbb
MX
7844 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7845 goto search;
7846
b742bb82
YZ
7847 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7848 goto search;
7849
285ff5af 7850 /*
ccf0e725
JB
7851 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7852 * caching kthreads as we move along
817d52f8
JB
7853 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7854 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7855 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7856 * again
fa9c0d79 7857 */
723bda20 7858 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7859 index = 0;
a5e681d9
JB
7860 if (loop == LOOP_CACHING_NOWAIT) {
7861 /*
7862 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7863 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7864 * full search through.
7865 */
13a0db5a 7866 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7867 loop = LOOP_CACHING_WAIT;
7868 else
7869 loop = LOOP_ALLOC_CHUNK;
7870 } else {
7871 loop++;
7872 }
7873
817d52f8 7874 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7875 struct btrfs_trans_handle *trans;
f017f15f
WS
7876 int exist = 0;
7877
7878 trans = current->journal_info;
7879 if (trans)
7880 exist = 1;
7881 else
7882 trans = btrfs_join_transaction(root);
00361589 7883
00361589
JB
7884 if (IS_ERR(trans)) {
7885 ret = PTR_ERR(trans);
7886 goto out;
7887 }
7888
2ff7e61e 7889 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7890 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7891
7892 /*
7893 * If we can't allocate a new chunk we've already looped
7894 * through at least once, move on to the NO_EMPTY_SIZE
7895 * case.
7896 */
7897 if (ret == -ENOSPC)
7898 loop = LOOP_NO_EMPTY_SIZE;
7899
ea658bad
JB
7900 /*
7901 * Do not bail out on ENOSPC since we
7902 * can do more things.
7903 */
00361589 7904 if (ret < 0 && ret != -ENOSPC)
66642832 7905 btrfs_abort_transaction(trans, ret);
00361589
JB
7906 else
7907 ret = 0;
f017f15f 7908 if (!exist)
3a45bb20 7909 btrfs_end_transaction(trans);
00361589 7910 if (ret)
ea658bad 7911 goto out;
2552d17e
JB
7912 }
7913
723bda20 7914 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7915 /*
7916 * Don't loop again if we already have no empty_size and
7917 * no empty_cluster.
7918 */
7919 if (empty_size == 0 &&
7920 empty_cluster == 0) {
7921 ret = -ENOSPC;
7922 goto out;
7923 }
723bda20
JB
7924 empty_size = 0;
7925 empty_cluster = 0;
fa9c0d79 7926 }
723bda20
JB
7927
7928 goto search;
2552d17e
JB
7929 } else if (!ins->objectid) {
7930 ret = -ENOSPC;
d82a6f1d 7931 } else if (ins->objectid) {
c759c4e1
JB
7932 if (!use_cluster && last_ptr) {
7933 spin_lock(&last_ptr->lock);
7934 last_ptr->window_start = ins->objectid;
7935 spin_unlock(&last_ptr->lock);
7936 }
80eb234a 7937 ret = 0;
be744175 7938 }
79787eaa 7939out:
4f4db217
JB
7940 if (ret == -ENOSPC) {
7941 spin_lock(&space_info->lock);
7942 space_info->max_extent_size = max_extent_size;
7943 spin_unlock(&space_info->lock);
a4820398 7944 ins->offset = max_extent_size;
4f4db217 7945 }
0f70abe2 7946 return ret;
fec577fb 7947}
ec44a35c 7948
ab8d0fc4
JM
7949static void dump_space_info(struct btrfs_fs_info *fs_info,
7950 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7951 int dump_block_groups)
0f9dd46c
JB
7952{
7953 struct btrfs_block_group_cache *cache;
b742bb82 7954 int index = 0;
0f9dd46c 7955
9ed74f2d 7956 spin_lock(&info->lock);
ab8d0fc4
JM
7957 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7958 info->flags,
4136135b
LB
7959 info->total_bytes - btrfs_space_info_used(info, true),
7960 info->full ? "" : "not ");
ab8d0fc4
JM
7961 btrfs_info(fs_info,
7962 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7963 info->total_bytes, info->bytes_used, info->bytes_pinned,
7964 info->bytes_reserved, info->bytes_may_use,
7965 info->bytes_readonly);
9ed74f2d
JB
7966 spin_unlock(&info->lock);
7967
7968 if (!dump_block_groups)
7969 return;
0f9dd46c 7970
80eb234a 7971 down_read(&info->groups_sem);
b742bb82
YZ
7972again:
7973 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7974 spin_lock(&cache->lock);
ab8d0fc4
JM
7975 btrfs_info(fs_info,
7976 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7977 cache->key.objectid, cache->key.offset,
7978 btrfs_block_group_used(&cache->item), cache->pinned,
7979 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7980 btrfs_dump_free_space(cache, bytes);
7981 spin_unlock(&cache->lock);
7982 }
b742bb82
YZ
7983 if (++index < BTRFS_NR_RAID_TYPES)
7984 goto again;
80eb234a 7985 up_read(&info->groups_sem);
0f9dd46c 7986}
e8569813 7987
18513091 7988int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7989 u64 num_bytes, u64 min_alloc_size,
7990 u64 empty_size, u64 hint_byte,
e570fd27 7991 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7992{
ab8d0fc4 7993 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7994 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7995 u64 flags;
fec577fb 7996 int ret;
925baedd 7997
1b86826d 7998 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 7999again:
0b246afa 8000 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8001 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8002 hint_byte, ins, flags, delalloc);
9cfa3e34 8003 if (!ret && !is_data) {
ab8d0fc4 8004 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8005 } else if (ret == -ENOSPC) {
a4820398
MX
8006 if (!final_tried && ins->offset) {
8007 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8008 num_bytes = round_down(num_bytes,
0b246afa 8009 fs_info->sectorsize);
9e622d6b 8010 num_bytes = max(num_bytes, min_alloc_size);
18513091 8011 ram_bytes = num_bytes;
9e622d6b
MX
8012 if (num_bytes == min_alloc_size)
8013 final_tried = true;
8014 goto again;
ab8d0fc4 8015 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8016 struct btrfs_space_info *sinfo;
8017
ab8d0fc4 8018 sinfo = __find_space_info(fs_info, flags);
0b246afa 8019 btrfs_err(fs_info,
5d163e0e
JM
8020 "allocation failed flags %llu, wanted %llu",
8021 flags, num_bytes);
53804280 8022 if (sinfo)
ab8d0fc4 8023 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8024 }
925baedd 8025 }
0f9dd46c
JB
8026
8027 return ret;
e6dcd2dc
CM
8028}
8029
2ff7e61e 8030static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8031 u64 start, u64 len,
8032 int pin, int delalloc)
65b51a00 8033{
0f9dd46c 8034 struct btrfs_block_group_cache *cache;
1f3c79a2 8035 int ret = 0;
0f9dd46c 8036
0b246afa 8037 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8038 if (!cache) {
0b246afa
JM
8039 btrfs_err(fs_info, "Unable to find block group for %llu",
8040 start);
0f9dd46c
JB
8041 return -ENOSPC;
8042 }
1f3c79a2 8043
e688b725 8044 if (pin)
2ff7e61e 8045 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8046 else {
0b246afa 8047 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8048 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8049 btrfs_add_free_space(cache, start, len);
4824f1f4 8050 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8051 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8052 }
31193213 8053
fa9c0d79 8054 btrfs_put_block_group(cache);
e6dcd2dc
CM
8055 return ret;
8056}
8057
2ff7e61e 8058int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8059 u64 start, u64 len, int delalloc)
e688b725 8060{
2ff7e61e 8061 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8062}
8063
2ff7e61e 8064int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8065 u64 start, u64 len)
8066{
2ff7e61e 8067 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8068}
8069
5d4f98a2 8070static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8071 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8072 u64 parent, u64 root_objectid,
8073 u64 flags, u64 owner, u64 offset,
8074 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8075{
8076 int ret;
e6dcd2dc 8077 struct btrfs_extent_item *extent_item;
5d4f98a2 8078 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8079 struct btrfs_path *path;
5d4f98a2
YZ
8080 struct extent_buffer *leaf;
8081 int type;
8082 u32 size;
26b8003f 8083
5d4f98a2
YZ
8084 if (parent > 0)
8085 type = BTRFS_SHARED_DATA_REF_KEY;
8086 else
8087 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8088
5d4f98a2 8089 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8090
8091 path = btrfs_alloc_path();
db5b493a
TI
8092 if (!path)
8093 return -ENOMEM;
47e4bb98 8094
b9473439 8095 path->leave_spinning = 1;
5d4f98a2
YZ
8096 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8097 ins, size);
79787eaa
JM
8098 if (ret) {
8099 btrfs_free_path(path);
8100 return ret;
8101 }
0f9dd46c 8102
5d4f98a2
YZ
8103 leaf = path->nodes[0];
8104 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8105 struct btrfs_extent_item);
5d4f98a2
YZ
8106 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8107 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8108 btrfs_set_extent_flags(leaf, extent_item,
8109 flags | BTRFS_EXTENT_FLAG_DATA);
8110
8111 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8112 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8113 if (parent > 0) {
8114 struct btrfs_shared_data_ref *ref;
8115 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8116 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8117 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8118 } else {
8119 struct btrfs_extent_data_ref *ref;
8120 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8121 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8122 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8123 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8124 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8125 }
47e4bb98
CM
8126
8127 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8128 btrfs_free_path(path);
f510cfec 8129
1e144fb8
OS
8130 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8131 ins->offset);
8132 if (ret)
8133 return ret;
8134
6202df69 8135 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8136 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8137 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8138 ins->objectid, ins->offset);
f5947066
CM
8139 BUG();
8140 }
71ff6437 8141 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8142 return ret;
8143}
8144
5d4f98a2 8145static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 8146 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8147 u64 parent, u64 root_objectid,
8148 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8149 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8150{
8151 int ret;
5d4f98a2
YZ
8152 struct btrfs_extent_item *extent_item;
8153 struct btrfs_tree_block_info *block_info;
8154 struct btrfs_extent_inline_ref *iref;
8155 struct btrfs_path *path;
8156 struct extent_buffer *leaf;
3173a18f 8157 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8158 u64 num_bytes = ins->offset;
0b246afa 8159 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f
JB
8160
8161 if (!skinny_metadata)
8162 size += sizeof(*block_info);
1c2308f8 8163
5d4f98a2 8164 path = btrfs_alloc_path();
857cc2fc 8165 if (!path) {
2ff7e61e 8166 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8167 fs_info->nodesize);
d8926bb3 8168 return -ENOMEM;
857cc2fc 8169 }
56bec294 8170
5d4f98a2
YZ
8171 path->leave_spinning = 1;
8172 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8173 ins, size);
79787eaa 8174 if (ret) {
dd825259 8175 btrfs_free_path(path);
2ff7e61e 8176 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8177 fs_info->nodesize);
79787eaa
JM
8178 return ret;
8179 }
5d4f98a2
YZ
8180
8181 leaf = path->nodes[0];
8182 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8183 struct btrfs_extent_item);
8184 btrfs_set_extent_refs(leaf, extent_item, 1);
8185 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8186 btrfs_set_extent_flags(leaf, extent_item,
8187 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8188
3173a18f
JB
8189 if (skinny_metadata) {
8190 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
0b246afa 8191 num_bytes = fs_info->nodesize;
3173a18f
JB
8192 } else {
8193 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8194 btrfs_set_tree_block_key(leaf, block_info, key);
8195 btrfs_set_tree_block_level(leaf, block_info, level);
8196 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8197 }
5d4f98a2 8198
5d4f98a2
YZ
8199 if (parent > 0) {
8200 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8201 btrfs_set_extent_inline_ref_type(leaf, iref,
8202 BTRFS_SHARED_BLOCK_REF_KEY);
8203 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8204 } else {
8205 btrfs_set_extent_inline_ref_type(leaf, iref,
8206 BTRFS_TREE_BLOCK_REF_KEY);
8207 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8208 }
8209
8210 btrfs_mark_buffer_dirty(leaf);
8211 btrfs_free_path(path);
8212
1e144fb8
OS
8213 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8214 num_bytes);
8215 if (ret)
8216 return ret;
8217
6202df69
JM
8218 ret = update_block_group(trans, fs_info, ins->objectid,
8219 fs_info->nodesize, 1);
79787eaa 8220 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8221 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8222 ins->objectid, ins->offset);
5d4f98a2
YZ
8223 BUG();
8224 }
0be5dc67 8225
71ff6437 8226 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
0b246afa 8227 fs_info->nodesize);
5d4f98a2
YZ
8228 return ret;
8229}
8230
8231int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2 8232 u64 root_objectid, u64 owner,
5846a3c2
QW
8233 u64 offset, u64 ram_bytes,
8234 struct btrfs_key *ins)
5d4f98a2 8235{
2ff7e61e 8236 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
8237 int ret;
8238
8239 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8240
0b246afa 8241 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
7be07912
OS
8242 ins->offset, 0, root_objectid, owner,
8243 offset, ram_bytes,
8244 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8245 return ret;
8246}
e02119d5
CM
8247
8248/*
8249 * this is used by the tree logging recovery code. It records that
8250 * an extent has been allocated and makes sure to clear the free
8251 * space cache bits as well
8252 */
5d4f98a2 8253int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8254 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8255 u64 root_objectid, u64 owner, u64 offset,
8256 struct btrfs_key *ins)
e02119d5
CM
8257{
8258 int ret;
8259 struct btrfs_block_group_cache *block_group;
ed7a6948 8260 struct btrfs_space_info *space_info;
11833d66 8261
8c2a1a30
JB
8262 /*
8263 * Mixed block groups will exclude before processing the log so we only
01327610 8264 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8265 */
0b246afa 8266 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8267 ret = __exclude_logged_extent(fs_info, ins->objectid,
8268 ins->offset);
b50c6e25 8269 if (ret)
8c2a1a30 8270 return ret;
11833d66
YZ
8271 }
8272
0b246afa 8273 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8274 if (!block_group)
8275 return -EINVAL;
8276
ed7a6948
WX
8277 space_info = block_group->space_info;
8278 spin_lock(&space_info->lock);
8279 spin_lock(&block_group->lock);
8280 space_info->bytes_reserved += ins->offset;
8281 block_group->reserved += ins->offset;
8282 spin_unlock(&block_group->lock);
8283 spin_unlock(&space_info->lock);
8284
2ff7e61e 8285 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8286 0, owner, offset, ins, 1);
b50c6e25 8287 btrfs_put_block_group(block_group);
e02119d5
CM
8288 return ret;
8289}
8290
48a3b636
ES
8291static struct extent_buffer *
8292btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8293 u64 bytenr, int level)
65b51a00 8294{
0b246afa 8295 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8296 struct extent_buffer *buf;
8297
2ff7e61e 8298 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8299 if (IS_ERR(buf))
8300 return buf;
8301
65b51a00 8302 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8303 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8304 btrfs_tree_lock(buf);
7c302b49 8305 clean_tree_block(fs_info, buf);
3083ee2e 8306 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8307
8308 btrfs_set_lock_blocking(buf);
4db8c528 8309 set_extent_buffer_uptodate(buf);
b4ce94de 8310
d0c803c4 8311 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8312 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8313 /*
8314 * we allow two log transactions at a time, use different
8315 * EXENT bit to differentiate dirty pages.
8316 */
656f30db 8317 if (buf->log_index == 0)
8cef4e16
YZ
8318 set_extent_dirty(&root->dirty_log_pages, buf->start,
8319 buf->start + buf->len - 1, GFP_NOFS);
8320 else
8321 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8322 buf->start + buf->len - 1);
d0c803c4 8323 } else {
656f30db 8324 buf->log_index = -1;
d0c803c4 8325 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8326 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8327 }
64c12921 8328 trans->dirty = true;
b4ce94de 8329 /* this returns a buffer locked for blocking */
65b51a00
CM
8330 return buf;
8331}
8332
f0486c68
YZ
8333static struct btrfs_block_rsv *
8334use_block_rsv(struct btrfs_trans_handle *trans,
8335 struct btrfs_root *root, u32 blocksize)
8336{
0b246afa 8337 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8338 struct btrfs_block_rsv *block_rsv;
0b246afa 8339 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8340 int ret;
d88033db 8341 bool global_updated = false;
f0486c68
YZ
8342
8343 block_rsv = get_block_rsv(trans, root);
8344
b586b323
MX
8345 if (unlikely(block_rsv->size == 0))
8346 goto try_reserve;
d88033db 8347again:
f0486c68
YZ
8348 ret = block_rsv_use_bytes(block_rsv, blocksize);
8349 if (!ret)
8350 return block_rsv;
8351
b586b323
MX
8352 if (block_rsv->failfast)
8353 return ERR_PTR(ret);
8354
d88033db
MX
8355 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8356 global_updated = true;
0b246afa 8357 update_global_block_rsv(fs_info);
d88033db
MX
8358 goto again;
8359 }
8360
0b246afa 8361 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8362 static DEFINE_RATELIMIT_STATE(_rs,
8363 DEFAULT_RATELIMIT_INTERVAL * 10,
8364 /*DEFAULT_RATELIMIT_BURST*/ 1);
8365 if (__ratelimit(&_rs))
8366 WARN(1, KERN_DEBUG
efe120a0 8367 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8368 }
8369try_reserve:
8370 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8371 BTRFS_RESERVE_NO_FLUSH);
8372 if (!ret)
8373 return block_rsv;
8374 /*
8375 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8376 * the global reserve if its space type is the same as the global
8377 * reservation.
b586b323 8378 */
5881cfc9
MX
8379 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8380 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8381 ret = block_rsv_use_bytes(global_rsv, blocksize);
8382 if (!ret)
8383 return global_rsv;
8384 }
8385 return ERR_PTR(ret);
f0486c68
YZ
8386}
8387
8c2a3ca2
JB
8388static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8389 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8390{
8391 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8392 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8393}
8394
fec577fb 8395/*
f0486c68 8396 * finds a free extent and does all the dirty work required for allocation
67b7859e 8397 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8398 */
4d75f8a9 8399struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8400 struct btrfs_root *root,
8401 u64 parent, u64 root_objectid,
8402 const struct btrfs_disk_key *key,
8403 int level, u64 hint,
8404 u64 empty_size)
fec577fb 8405{
0b246afa 8406 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8407 struct btrfs_key ins;
f0486c68 8408 struct btrfs_block_rsv *block_rsv;
5f39d397 8409 struct extent_buffer *buf;
67b7859e 8410 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8411 u64 flags = 0;
8412 int ret;
0b246afa
JM
8413 u32 blocksize = fs_info->nodesize;
8414 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8415
05653ef3 8416#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8417 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8418 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8419 level);
faa2dbf0
JB
8420 if (!IS_ERR(buf))
8421 root->alloc_bytenr += blocksize;
8422 return buf;
8423 }
05653ef3 8424#endif
fccb84c9 8425
f0486c68
YZ
8426 block_rsv = use_block_rsv(trans, root, blocksize);
8427 if (IS_ERR(block_rsv))
8428 return ERR_CAST(block_rsv);
8429
18513091 8430 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8431 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8432 if (ret)
8433 goto out_unuse;
55c69072 8434
fe864576 8435 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8436 if (IS_ERR(buf)) {
8437 ret = PTR_ERR(buf);
8438 goto out_free_reserved;
8439 }
f0486c68
YZ
8440
8441 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8442 if (parent == 0)
8443 parent = ins.objectid;
8444 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8445 } else
8446 BUG_ON(parent > 0);
8447
8448 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8449 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8450 if (!extent_op) {
8451 ret = -ENOMEM;
8452 goto out_free_buf;
8453 }
f0486c68
YZ
8454 if (key)
8455 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8456 else
8457 memset(&extent_op->key, 0, sizeof(extent_op->key));
8458 extent_op->flags_to_set = flags;
35b3ad50
DS
8459 extent_op->update_key = skinny_metadata ? false : true;
8460 extent_op->update_flags = true;
8461 extent_op->is_data = false;
b1c79e09 8462 extent_op->level = level;
f0486c68 8463
7be07912
OS
8464 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8465 ins.offset, parent,
8466 root_objectid, level,
67b7859e 8467 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8468 extent_op, NULL, NULL);
67b7859e
OS
8469 if (ret)
8470 goto out_free_delayed;
f0486c68 8471 }
fec577fb 8472 return buf;
67b7859e
OS
8473
8474out_free_delayed:
8475 btrfs_free_delayed_extent_op(extent_op);
8476out_free_buf:
8477 free_extent_buffer(buf);
8478out_free_reserved:
2ff7e61e 8479 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8480out_unuse:
0b246afa 8481 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8482 return ERR_PTR(ret);
fec577fb 8483}
a28ec197 8484
2c47e605
YZ
8485struct walk_control {
8486 u64 refs[BTRFS_MAX_LEVEL];
8487 u64 flags[BTRFS_MAX_LEVEL];
8488 struct btrfs_key update_progress;
8489 int stage;
8490 int level;
8491 int shared_level;
8492 int update_ref;
8493 int keep_locks;
1c4850e2
YZ
8494 int reada_slot;
8495 int reada_count;
66d7e7f0 8496 int for_reloc;
2c47e605
YZ
8497};
8498
8499#define DROP_REFERENCE 1
8500#define UPDATE_BACKREF 2
8501
1c4850e2
YZ
8502static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8503 struct btrfs_root *root,
8504 struct walk_control *wc,
8505 struct btrfs_path *path)
6407bf6d 8506{
0b246afa 8507 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8508 u64 bytenr;
8509 u64 generation;
8510 u64 refs;
94fcca9f 8511 u64 flags;
5d4f98a2 8512 u32 nritems;
1c4850e2
YZ
8513 struct btrfs_key key;
8514 struct extent_buffer *eb;
6407bf6d 8515 int ret;
1c4850e2
YZ
8516 int slot;
8517 int nread = 0;
6407bf6d 8518
1c4850e2
YZ
8519 if (path->slots[wc->level] < wc->reada_slot) {
8520 wc->reada_count = wc->reada_count * 2 / 3;
8521 wc->reada_count = max(wc->reada_count, 2);
8522 } else {
8523 wc->reada_count = wc->reada_count * 3 / 2;
8524 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8525 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8526 }
7bb86316 8527
1c4850e2
YZ
8528 eb = path->nodes[wc->level];
8529 nritems = btrfs_header_nritems(eb);
bd56b302 8530
1c4850e2
YZ
8531 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8532 if (nread >= wc->reada_count)
8533 break;
bd56b302 8534
2dd3e67b 8535 cond_resched();
1c4850e2
YZ
8536 bytenr = btrfs_node_blockptr(eb, slot);
8537 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8538
1c4850e2
YZ
8539 if (slot == path->slots[wc->level])
8540 goto reada;
5d4f98a2 8541
1c4850e2
YZ
8542 if (wc->stage == UPDATE_BACKREF &&
8543 generation <= root->root_key.offset)
bd56b302
CM
8544 continue;
8545
94fcca9f 8546 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8547 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8548 wc->level - 1, 1, &refs,
8549 &flags);
79787eaa
JM
8550 /* We don't care about errors in readahead. */
8551 if (ret < 0)
8552 continue;
94fcca9f
YZ
8553 BUG_ON(refs == 0);
8554
1c4850e2 8555 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8556 if (refs == 1)
8557 goto reada;
bd56b302 8558
94fcca9f
YZ
8559 if (wc->level == 1 &&
8560 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8561 continue;
1c4850e2
YZ
8562 if (!wc->update_ref ||
8563 generation <= root->root_key.offset)
8564 continue;
8565 btrfs_node_key_to_cpu(eb, &key, slot);
8566 ret = btrfs_comp_cpu_keys(&key,
8567 &wc->update_progress);
8568 if (ret < 0)
8569 continue;
94fcca9f
YZ
8570 } else {
8571 if (wc->level == 1 &&
8572 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8573 continue;
6407bf6d 8574 }
1c4850e2 8575reada:
2ff7e61e 8576 readahead_tree_block(fs_info, bytenr);
1c4850e2 8577 nread++;
20524f02 8578 }
1c4850e2 8579 wc->reada_slot = slot;
20524f02 8580}
2c47e605 8581
f82d02d9 8582/*
2c016dc2 8583 * helper to process tree block while walking down the tree.
2c47e605 8584 *
2c47e605
YZ
8585 * when wc->stage == UPDATE_BACKREF, this function updates
8586 * back refs for pointers in the block.
8587 *
8588 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8589 */
2c47e605 8590static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8591 struct btrfs_root *root,
2c47e605 8592 struct btrfs_path *path,
94fcca9f 8593 struct walk_control *wc, int lookup_info)
f82d02d9 8594{
2ff7e61e 8595 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8596 int level = wc->level;
8597 struct extent_buffer *eb = path->nodes[level];
2c47e605 8598 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8599 int ret;
8600
2c47e605
YZ
8601 if (wc->stage == UPDATE_BACKREF &&
8602 btrfs_header_owner(eb) != root->root_key.objectid)
8603 return 1;
f82d02d9 8604
2c47e605
YZ
8605 /*
8606 * when reference count of tree block is 1, it won't increase
8607 * again. once full backref flag is set, we never clear it.
8608 */
94fcca9f
YZ
8609 if (lookup_info &&
8610 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8611 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8612 BUG_ON(!path->locks[level]);
2ff7e61e 8613 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8614 eb->start, level, 1,
2c47e605
YZ
8615 &wc->refs[level],
8616 &wc->flags[level]);
79787eaa
JM
8617 BUG_ON(ret == -ENOMEM);
8618 if (ret)
8619 return ret;
2c47e605
YZ
8620 BUG_ON(wc->refs[level] == 0);
8621 }
5d4f98a2 8622
2c47e605
YZ
8623 if (wc->stage == DROP_REFERENCE) {
8624 if (wc->refs[level] > 1)
8625 return 1;
f82d02d9 8626
2c47e605 8627 if (path->locks[level] && !wc->keep_locks) {
bd681513 8628 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8629 path->locks[level] = 0;
8630 }
8631 return 0;
8632 }
f82d02d9 8633
2c47e605
YZ
8634 /* wc->stage == UPDATE_BACKREF */
8635 if (!(wc->flags[level] & flag)) {
8636 BUG_ON(!path->locks[level]);
e339a6b0 8637 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8638 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8639 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8640 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8641 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8642 eb->len, flag,
8643 btrfs_header_level(eb), 0);
79787eaa 8644 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8645 wc->flags[level] |= flag;
8646 }
8647
8648 /*
8649 * the block is shared by multiple trees, so it's not good to
8650 * keep the tree lock
8651 */
8652 if (path->locks[level] && level > 0) {
bd681513 8653 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8654 path->locks[level] = 0;
8655 }
8656 return 0;
8657}
8658
1c4850e2 8659/*
2c016dc2 8660 * helper to process tree block pointer.
1c4850e2
YZ
8661 *
8662 * when wc->stage == DROP_REFERENCE, this function checks
8663 * reference count of the block pointed to. if the block
8664 * is shared and we need update back refs for the subtree
8665 * rooted at the block, this function changes wc->stage to
8666 * UPDATE_BACKREF. if the block is shared and there is no
8667 * need to update back, this function drops the reference
8668 * to the block.
8669 *
8670 * NOTE: return value 1 means we should stop walking down.
8671 */
8672static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8673 struct btrfs_root *root,
8674 struct btrfs_path *path,
94fcca9f 8675 struct walk_control *wc, int *lookup_info)
1c4850e2 8676{
0b246afa 8677 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8678 u64 bytenr;
8679 u64 generation;
8680 u64 parent;
8681 u32 blocksize;
8682 struct btrfs_key key;
8683 struct extent_buffer *next;
8684 int level = wc->level;
8685 int reada = 0;
8686 int ret = 0;
1152651a 8687 bool need_account = false;
1c4850e2
YZ
8688
8689 generation = btrfs_node_ptr_generation(path->nodes[level],
8690 path->slots[level]);
8691 /*
8692 * if the lower level block was created before the snapshot
8693 * was created, we know there is no need to update back refs
8694 * for the subtree
8695 */
8696 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8697 generation <= root->root_key.offset) {
8698 *lookup_info = 1;
1c4850e2 8699 return 1;
94fcca9f 8700 }
1c4850e2
YZ
8701
8702 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
0b246afa 8703 blocksize = fs_info->nodesize;
1c4850e2 8704
0b246afa 8705 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8706 if (!next) {
2ff7e61e 8707 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8708 if (IS_ERR(next))
8709 return PTR_ERR(next);
8710
b2aaaa3b
JB
8711 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8712 level - 1);
1c4850e2
YZ
8713 reada = 1;
8714 }
8715 btrfs_tree_lock(next);
8716 btrfs_set_lock_blocking(next);
8717
2ff7e61e 8718 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8719 &wc->refs[level - 1],
8720 &wc->flags[level - 1]);
4867268c
JB
8721 if (ret < 0)
8722 goto out_unlock;
79787eaa 8723
c2cf52eb 8724 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8725 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8726 ret = -EIO;
8727 goto out_unlock;
c2cf52eb 8728 }
94fcca9f 8729 *lookup_info = 0;
1c4850e2 8730
94fcca9f 8731 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8732 if (wc->refs[level - 1] > 1) {
1152651a 8733 need_account = true;
94fcca9f
YZ
8734 if (level == 1 &&
8735 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8736 goto skip;
8737
1c4850e2
YZ
8738 if (!wc->update_ref ||
8739 generation <= root->root_key.offset)
8740 goto skip;
8741
8742 btrfs_node_key_to_cpu(path->nodes[level], &key,
8743 path->slots[level]);
8744 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8745 if (ret < 0)
8746 goto skip;
8747
8748 wc->stage = UPDATE_BACKREF;
8749 wc->shared_level = level - 1;
8750 }
94fcca9f
YZ
8751 } else {
8752 if (level == 1 &&
8753 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8754 goto skip;
1c4850e2
YZ
8755 }
8756
b9fab919 8757 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8758 btrfs_tree_unlock(next);
8759 free_extent_buffer(next);
8760 next = NULL;
94fcca9f 8761 *lookup_info = 1;
1c4850e2
YZ
8762 }
8763
8764 if (!next) {
8765 if (reada && level == 1)
8766 reada_walk_down(trans, root, wc, path);
2ff7e61e 8767 next = read_tree_block(fs_info, bytenr, generation);
64c043de
LB
8768 if (IS_ERR(next)) {
8769 return PTR_ERR(next);
8770 } else if (!extent_buffer_uptodate(next)) {
416bc658 8771 free_extent_buffer(next);
97d9a8a4 8772 return -EIO;
416bc658 8773 }
1c4850e2
YZ
8774 btrfs_tree_lock(next);
8775 btrfs_set_lock_blocking(next);
8776 }
8777
8778 level--;
4867268c
JB
8779 ASSERT(level == btrfs_header_level(next));
8780 if (level != btrfs_header_level(next)) {
8781 btrfs_err(root->fs_info, "mismatched level");
8782 ret = -EIO;
8783 goto out_unlock;
8784 }
1c4850e2
YZ
8785 path->nodes[level] = next;
8786 path->slots[level] = 0;
bd681513 8787 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8788 wc->level = level;
8789 if (wc->level == 1)
8790 wc->reada_slot = 0;
8791 return 0;
8792skip:
8793 wc->refs[level - 1] = 0;
8794 wc->flags[level - 1] = 0;
94fcca9f
YZ
8795 if (wc->stage == DROP_REFERENCE) {
8796 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8797 parent = path->nodes[level]->start;
8798 } else {
4867268c 8799 ASSERT(root->root_key.objectid ==
94fcca9f 8800 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8801 if (root->root_key.objectid !=
8802 btrfs_header_owner(path->nodes[level])) {
8803 btrfs_err(root->fs_info,
8804 "mismatched block owner");
8805 ret = -EIO;
8806 goto out_unlock;
8807 }
94fcca9f
YZ
8808 parent = 0;
8809 }
1c4850e2 8810
1152651a 8811 if (need_account) {
33d1f05c
QW
8812 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8813 generation, level - 1);
1152651a 8814 if (ret) {
0b246afa 8815 btrfs_err_rl(fs_info,
5d163e0e
JM
8816 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8817 ret);
1152651a
MF
8818 }
8819 }
2ff7e61e
JM
8820 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8821 parent, root->root_key.objectid,
8822 level - 1, 0);
4867268c
JB
8823 if (ret)
8824 goto out_unlock;
1c4850e2 8825 }
4867268c
JB
8826
8827 *lookup_info = 1;
8828 ret = 1;
8829
8830out_unlock:
1c4850e2
YZ
8831 btrfs_tree_unlock(next);
8832 free_extent_buffer(next);
4867268c
JB
8833
8834 return ret;
1c4850e2
YZ
8835}
8836
2c47e605 8837/*
2c016dc2 8838 * helper to process tree block while walking up the tree.
2c47e605
YZ
8839 *
8840 * when wc->stage == DROP_REFERENCE, this function drops
8841 * reference count on the block.
8842 *
8843 * when wc->stage == UPDATE_BACKREF, this function changes
8844 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8845 * to UPDATE_BACKREF previously while processing the block.
8846 *
8847 * NOTE: return value 1 means we should stop walking up.
8848 */
8849static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8850 struct btrfs_root *root,
8851 struct btrfs_path *path,
8852 struct walk_control *wc)
8853{
0b246afa 8854 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8855 int ret;
2c47e605
YZ
8856 int level = wc->level;
8857 struct extent_buffer *eb = path->nodes[level];
8858 u64 parent = 0;
8859
8860 if (wc->stage == UPDATE_BACKREF) {
8861 BUG_ON(wc->shared_level < level);
8862 if (level < wc->shared_level)
8863 goto out;
8864
2c47e605
YZ
8865 ret = find_next_key(path, level + 1, &wc->update_progress);
8866 if (ret > 0)
8867 wc->update_ref = 0;
8868
8869 wc->stage = DROP_REFERENCE;
8870 wc->shared_level = -1;
8871 path->slots[level] = 0;
8872
8873 /*
8874 * check reference count again if the block isn't locked.
8875 * we should start walking down the tree again if reference
8876 * count is one.
8877 */
8878 if (!path->locks[level]) {
8879 BUG_ON(level == 0);
8880 btrfs_tree_lock(eb);
8881 btrfs_set_lock_blocking(eb);
bd681513 8882 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8883
2ff7e61e 8884 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8885 eb->start, level, 1,
2c47e605
YZ
8886 &wc->refs[level],
8887 &wc->flags[level]);
79787eaa
JM
8888 if (ret < 0) {
8889 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8890 path->locks[level] = 0;
79787eaa
JM
8891 return ret;
8892 }
2c47e605
YZ
8893 BUG_ON(wc->refs[level] == 0);
8894 if (wc->refs[level] == 1) {
bd681513 8895 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8896 path->locks[level] = 0;
2c47e605
YZ
8897 return 1;
8898 }
f82d02d9 8899 }
2c47e605 8900 }
f82d02d9 8901
2c47e605
YZ
8902 /* wc->stage == DROP_REFERENCE */
8903 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8904
2c47e605
YZ
8905 if (wc->refs[level] == 1) {
8906 if (level == 0) {
8907 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8908 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8909 else
e339a6b0 8910 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8911 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8912 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8913 if (ret) {
0b246afa 8914 btrfs_err_rl(fs_info,
5d163e0e
JM
8915 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8916 ret);
1152651a 8917 }
2c47e605
YZ
8918 }
8919 /* make block locked assertion in clean_tree_block happy */
8920 if (!path->locks[level] &&
8921 btrfs_header_generation(eb) == trans->transid) {
8922 btrfs_tree_lock(eb);
8923 btrfs_set_lock_blocking(eb);
bd681513 8924 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8925 }
7c302b49 8926 clean_tree_block(fs_info, eb);
2c47e605
YZ
8927 }
8928
8929 if (eb == root->node) {
8930 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8931 parent = eb->start;
8932 else
8933 BUG_ON(root->root_key.objectid !=
8934 btrfs_header_owner(eb));
8935 } else {
8936 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8937 parent = path->nodes[level + 1]->start;
8938 else
8939 BUG_ON(root->root_key.objectid !=
8940 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8941 }
f82d02d9 8942
5581a51a 8943 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8944out:
8945 wc->refs[level] = 0;
8946 wc->flags[level] = 0;
f0486c68 8947 return 0;
2c47e605
YZ
8948}
8949
8950static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8951 struct btrfs_root *root,
8952 struct btrfs_path *path,
8953 struct walk_control *wc)
8954{
2c47e605 8955 int level = wc->level;
94fcca9f 8956 int lookup_info = 1;
2c47e605
YZ
8957 int ret;
8958
8959 while (level >= 0) {
94fcca9f 8960 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8961 if (ret > 0)
8962 break;
8963
8964 if (level == 0)
8965 break;
8966
7a7965f8
YZ
8967 if (path->slots[level] >=
8968 btrfs_header_nritems(path->nodes[level]))
8969 break;
8970
94fcca9f 8971 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8972 if (ret > 0) {
8973 path->slots[level]++;
8974 continue;
90d2c51d
MX
8975 } else if (ret < 0)
8976 return ret;
1c4850e2 8977 level = wc->level;
f82d02d9 8978 }
f82d02d9
YZ
8979 return 0;
8980}
8981
d397712b 8982static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8983 struct btrfs_root *root,
f82d02d9 8984 struct btrfs_path *path,
2c47e605 8985 struct walk_control *wc, int max_level)
20524f02 8986{
2c47e605 8987 int level = wc->level;
20524f02 8988 int ret;
9f3a7427 8989
2c47e605
YZ
8990 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8991 while (level < max_level && path->nodes[level]) {
8992 wc->level = level;
8993 if (path->slots[level] + 1 <
8994 btrfs_header_nritems(path->nodes[level])) {
8995 path->slots[level]++;
20524f02
CM
8996 return 0;
8997 } else {
2c47e605
YZ
8998 ret = walk_up_proc(trans, root, path, wc);
8999 if (ret > 0)
9000 return 0;
bd56b302 9001
2c47e605 9002 if (path->locks[level]) {
bd681513
CM
9003 btrfs_tree_unlock_rw(path->nodes[level],
9004 path->locks[level]);
2c47e605 9005 path->locks[level] = 0;
f82d02d9 9006 }
2c47e605
YZ
9007 free_extent_buffer(path->nodes[level]);
9008 path->nodes[level] = NULL;
9009 level++;
20524f02
CM
9010 }
9011 }
9012 return 1;
9013}
9014
9aca1d51 9015/*
2c47e605
YZ
9016 * drop a subvolume tree.
9017 *
9018 * this function traverses the tree freeing any blocks that only
9019 * referenced by the tree.
9020 *
9021 * when a shared tree block is found. this function decreases its
9022 * reference count by one. if update_ref is true, this function
9023 * also make sure backrefs for the shared block and all lower level
9024 * blocks are properly updated.
9d1a2a3a
DS
9025 *
9026 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9027 */
2c536799 9028int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9029 struct btrfs_block_rsv *block_rsv, int update_ref,
9030 int for_reloc)
20524f02 9031{
ab8d0fc4 9032 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9033 struct btrfs_path *path;
2c47e605 9034 struct btrfs_trans_handle *trans;
ab8d0fc4 9035 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9036 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9037 struct walk_control *wc;
9038 struct btrfs_key key;
9039 int err = 0;
9040 int ret;
9041 int level;
d29a9f62 9042 bool root_dropped = false;
20524f02 9043
ab8d0fc4 9044 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9045
5caf2a00 9046 path = btrfs_alloc_path();
cb1b69f4
TI
9047 if (!path) {
9048 err = -ENOMEM;
9049 goto out;
9050 }
20524f02 9051
2c47e605 9052 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9053 if (!wc) {
9054 btrfs_free_path(path);
cb1b69f4
TI
9055 err = -ENOMEM;
9056 goto out;
38a1a919 9057 }
2c47e605 9058
a22285a6 9059 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9060 if (IS_ERR(trans)) {
9061 err = PTR_ERR(trans);
9062 goto out_free;
9063 }
98d5dc13 9064
3fd0a558
YZ
9065 if (block_rsv)
9066 trans->block_rsv = block_rsv;
2c47e605 9067
9f3a7427 9068 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9069 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9070 path->nodes[level] = btrfs_lock_root_node(root);
9071 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9072 path->slots[level] = 0;
bd681513 9073 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9074 memset(&wc->update_progress, 0,
9075 sizeof(wc->update_progress));
9f3a7427 9076 } else {
9f3a7427 9077 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9078 memcpy(&wc->update_progress, &key,
9079 sizeof(wc->update_progress));
9080
6702ed49 9081 level = root_item->drop_level;
2c47e605 9082 BUG_ON(level == 0);
6702ed49 9083 path->lowest_level = level;
2c47e605
YZ
9084 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9085 path->lowest_level = 0;
9086 if (ret < 0) {
9087 err = ret;
79787eaa 9088 goto out_end_trans;
9f3a7427 9089 }
1c4850e2 9090 WARN_ON(ret > 0);
2c47e605 9091
7d9eb12c
CM
9092 /*
9093 * unlock our path, this is safe because only this
9094 * function is allowed to delete this snapshot
9095 */
5d4f98a2 9096 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9097
9098 level = btrfs_header_level(root->node);
9099 while (1) {
9100 btrfs_tree_lock(path->nodes[level]);
9101 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9102 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9103
2ff7e61e 9104 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9105 path->nodes[level]->start,
3173a18f 9106 level, 1, &wc->refs[level],
2c47e605 9107 &wc->flags[level]);
79787eaa
JM
9108 if (ret < 0) {
9109 err = ret;
9110 goto out_end_trans;
9111 }
2c47e605
YZ
9112 BUG_ON(wc->refs[level] == 0);
9113
9114 if (level == root_item->drop_level)
9115 break;
9116
9117 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9118 path->locks[level] = 0;
2c47e605
YZ
9119 WARN_ON(wc->refs[level] != 1);
9120 level--;
9121 }
9f3a7427 9122 }
2c47e605
YZ
9123
9124 wc->level = level;
9125 wc->shared_level = -1;
9126 wc->stage = DROP_REFERENCE;
9127 wc->update_ref = update_ref;
9128 wc->keep_locks = 0;
66d7e7f0 9129 wc->for_reloc = for_reloc;
0b246afa 9130 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9131
d397712b 9132 while (1) {
9d1a2a3a 9133
2c47e605
YZ
9134 ret = walk_down_tree(trans, root, path, wc);
9135 if (ret < 0) {
9136 err = ret;
20524f02 9137 break;
2c47e605 9138 }
9aca1d51 9139
2c47e605
YZ
9140 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9141 if (ret < 0) {
9142 err = ret;
20524f02 9143 break;
2c47e605
YZ
9144 }
9145
9146 if (ret > 0) {
9147 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9148 break;
9149 }
2c47e605
YZ
9150
9151 if (wc->stage == DROP_REFERENCE) {
9152 level = wc->level;
9153 btrfs_node_key(path->nodes[level],
9154 &root_item->drop_progress,
9155 path->slots[level]);
9156 root_item->drop_level = level;
9157 }
9158
9159 BUG_ON(wc->level == 0);
3a45bb20 9160 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9161 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9162 ret = btrfs_update_root(trans, tree_root,
9163 &root->root_key,
9164 root_item);
79787eaa 9165 if (ret) {
66642832 9166 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9167 err = ret;
9168 goto out_end_trans;
9169 }
2c47e605 9170
3a45bb20 9171 btrfs_end_transaction_throttle(trans);
2ff7e61e 9172 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9173 btrfs_debug(fs_info,
9174 "drop snapshot early exit");
3c8f2422
JB
9175 err = -EAGAIN;
9176 goto out_free;
9177 }
9178
a22285a6 9179 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9180 if (IS_ERR(trans)) {
9181 err = PTR_ERR(trans);
9182 goto out_free;
9183 }
3fd0a558
YZ
9184 if (block_rsv)
9185 trans->block_rsv = block_rsv;
c3e69d58 9186 }
20524f02 9187 }
b3b4aa74 9188 btrfs_release_path(path);
79787eaa
JM
9189 if (err)
9190 goto out_end_trans;
2c47e605
YZ
9191
9192 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa 9193 if (ret) {
66642832 9194 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9195 goto out_end_trans;
9196 }
2c47e605 9197
76dda93c 9198 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9199 ret = btrfs_find_root(tree_root, &root->root_key, path,
9200 NULL, NULL);
79787eaa 9201 if (ret < 0) {
66642832 9202 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9203 err = ret;
9204 goto out_end_trans;
9205 } else if (ret > 0) {
84cd948c
JB
9206 /* if we fail to delete the orphan item this time
9207 * around, it'll get picked up the next time.
9208 *
9209 * The most common failure here is just -ENOENT.
9210 */
9211 btrfs_del_orphan_item(trans, tree_root,
9212 root->root_key.objectid);
76dda93c
YZ
9213 }
9214 }
9215
27cdeb70 9216 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9217 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9218 } else {
9219 free_extent_buffer(root->node);
9220 free_extent_buffer(root->commit_root);
b0feb9d9 9221 btrfs_put_fs_root(root);
76dda93c 9222 }
d29a9f62 9223 root_dropped = true;
79787eaa 9224out_end_trans:
3a45bb20 9225 btrfs_end_transaction_throttle(trans);
79787eaa 9226out_free:
2c47e605 9227 kfree(wc);
5caf2a00 9228 btrfs_free_path(path);
cb1b69f4 9229out:
d29a9f62
JB
9230 /*
9231 * So if we need to stop dropping the snapshot for whatever reason we
9232 * need to make sure to add it back to the dead root list so that we
9233 * keep trying to do the work later. This also cleans up roots if we
9234 * don't have it in the radix (like when we recover after a power fail
9235 * or unmount) so we don't leak memory.
9236 */
b37b39cd 9237 if (!for_reloc && root_dropped == false)
d29a9f62 9238 btrfs_add_dead_root(root);
90515e7f 9239 if (err && err != -EAGAIN)
ab8d0fc4 9240 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9241 return err;
20524f02 9242}
9078a3e1 9243
2c47e605
YZ
9244/*
9245 * drop subtree rooted at tree block 'node'.
9246 *
9247 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9248 * only used by relocation code
2c47e605 9249 */
f82d02d9
YZ
9250int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9251 struct btrfs_root *root,
9252 struct extent_buffer *node,
9253 struct extent_buffer *parent)
9254{
0b246afa 9255 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9256 struct btrfs_path *path;
2c47e605 9257 struct walk_control *wc;
f82d02d9
YZ
9258 int level;
9259 int parent_level;
9260 int ret = 0;
9261 int wret;
9262
2c47e605
YZ
9263 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9264
f82d02d9 9265 path = btrfs_alloc_path();
db5b493a
TI
9266 if (!path)
9267 return -ENOMEM;
f82d02d9 9268
2c47e605 9269 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9270 if (!wc) {
9271 btrfs_free_path(path);
9272 return -ENOMEM;
9273 }
2c47e605 9274
b9447ef8 9275 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9276 parent_level = btrfs_header_level(parent);
9277 extent_buffer_get(parent);
9278 path->nodes[parent_level] = parent;
9279 path->slots[parent_level] = btrfs_header_nritems(parent);
9280
b9447ef8 9281 btrfs_assert_tree_locked(node);
f82d02d9 9282 level = btrfs_header_level(node);
f82d02d9
YZ
9283 path->nodes[level] = node;
9284 path->slots[level] = 0;
bd681513 9285 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9286
9287 wc->refs[parent_level] = 1;
9288 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9289 wc->level = level;
9290 wc->shared_level = -1;
9291 wc->stage = DROP_REFERENCE;
9292 wc->update_ref = 0;
9293 wc->keep_locks = 1;
66d7e7f0 9294 wc->for_reloc = 1;
0b246afa 9295 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9296
9297 while (1) {
2c47e605
YZ
9298 wret = walk_down_tree(trans, root, path, wc);
9299 if (wret < 0) {
f82d02d9 9300 ret = wret;
f82d02d9 9301 break;
2c47e605 9302 }
f82d02d9 9303
2c47e605 9304 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9305 if (wret < 0)
9306 ret = wret;
9307 if (wret != 0)
9308 break;
9309 }
9310
2c47e605 9311 kfree(wc);
f82d02d9
YZ
9312 btrfs_free_path(path);
9313 return ret;
9314}
9315
6202df69 9316static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9317{
9318 u64 num_devices;
fc67c450 9319 u64 stripped;
e4d8ec0f 9320
fc67c450
ID
9321 /*
9322 * if restripe for this chunk_type is on pick target profile and
9323 * return, otherwise do the usual balance
9324 */
6202df69 9325 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9326 if (stripped)
9327 return extended_to_chunk(stripped);
e4d8ec0f 9328
6202df69 9329 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9330
fc67c450 9331 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9332 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9333 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9334
ec44a35c
CM
9335 if (num_devices == 1) {
9336 stripped |= BTRFS_BLOCK_GROUP_DUP;
9337 stripped = flags & ~stripped;
9338
9339 /* turn raid0 into single device chunks */
9340 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9341 return stripped;
9342
9343 /* turn mirroring into duplication */
9344 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9345 BTRFS_BLOCK_GROUP_RAID10))
9346 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9347 } else {
9348 /* they already had raid on here, just return */
ec44a35c
CM
9349 if (flags & stripped)
9350 return flags;
9351
9352 stripped |= BTRFS_BLOCK_GROUP_DUP;
9353 stripped = flags & ~stripped;
9354
9355 /* switch duplicated blocks with raid1 */
9356 if (flags & BTRFS_BLOCK_GROUP_DUP)
9357 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9358
e3176ca2 9359 /* this is drive concat, leave it alone */
ec44a35c 9360 }
e3176ca2 9361
ec44a35c
CM
9362 return flags;
9363}
9364
868f401a 9365static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9366{
f0486c68
YZ
9367 struct btrfs_space_info *sinfo = cache->space_info;
9368 u64 num_bytes;
199c36ea 9369 u64 min_allocable_bytes;
f0486c68 9370 int ret = -ENOSPC;
0ef3e66b 9371
199c36ea
MX
9372 /*
9373 * We need some metadata space and system metadata space for
9374 * allocating chunks in some corner cases until we force to set
9375 * it to be readonly.
9376 */
9377 if ((sinfo->flags &
9378 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9379 !force)
ee22184b 9380 min_allocable_bytes = SZ_1M;
199c36ea
MX
9381 else
9382 min_allocable_bytes = 0;
9383
f0486c68
YZ
9384 spin_lock(&sinfo->lock);
9385 spin_lock(&cache->lock);
61cfea9b
W
9386
9387 if (cache->ro) {
868f401a 9388 cache->ro++;
61cfea9b
W
9389 ret = 0;
9390 goto out;
9391 }
9392
f0486c68
YZ
9393 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9394 cache->bytes_super - btrfs_block_group_used(&cache->item);
9395
4136135b 9396 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9397 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9398 sinfo->bytes_readonly += num_bytes;
868f401a 9399 cache->ro++;
633c0aad 9400 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9401 ret = 0;
9402 }
61cfea9b 9403out:
f0486c68
YZ
9404 spin_unlock(&cache->lock);
9405 spin_unlock(&sinfo->lock);
9406 return ret;
9407}
7d9eb12c 9408
5e00f193 9409int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9410 struct btrfs_block_group_cache *cache)
c286ac48 9411
f0486c68
YZ
9412{
9413 struct btrfs_trans_handle *trans;
9414 u64 alloc_flags;
9415 int ret;
7d9eb12c 9416
1bbc621e 9417again:
5e00f193 9418 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9419 if (IS_ERR(trans))
9420 return PTR_ERR(trans);
5d4f98a2 9421
1bbc621e
CM
9422 /*
9423 * we're not allowed to set block groups readonly after the dirty
9424 * block groups cache has started writing. If it already started,
9425 * back off and let this transaction commit
9426 */
0b246afa 9427 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9428 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9429 u64 transid = trans->transid;
9430
0b246afa 9431 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9432 btrfs_end_transaction(trans);
1bbc621e 9433
2ff7e61e 9434 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9435 if (ret)
9436 return ret;
9437 goto again;
9438 }
9439
153c35b6
CM
9440 /*
9441 * if we are changing raid levels, try to allocate a corresponding
9442 * block group with the new raid level.
9443 */
0b246afa 9444 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9445 if (alloc_flags != cache->flags) {
2ff7e61e 9446 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9447 CHUNK_ALLOC_FORCE);
9448 /*
9449 * ENOSPC is allowed here, we may have enough space
9450 * already allocated at the new raid level to
9451 * carry on
9452 */
9453 if (ret == -ENOSPC)
9454 ret = 0;
9455 if (ret < 0)
9456 goto out;
9457 }
1bbc621e 9458
868f401a 9459 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9460 if (!ret)
9461 goto out;
2ff7e61e
JM
9462 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9463 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9464 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9465 if (ret < 0)
9466 goto out;
868f401a 9467 ret = inc_block_group_ro(cache, 0);
f0486c68 9468out:
2f081088 9469 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9470 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9471 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9472 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9473 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9474 }
0b246afa 9475 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9476
3a45bb20 9477 btrfs_end_transaction(trans);
f0486c68
YZ
9478 return ret;
9479}
5d4f98a2 9480
c87f08ca 9481int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9482 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9483{
2ff7e61e
JM
9484 u64 alloc_flags = get_alloc_profile(fs_info, type);
9485
9486 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9487}
9488
6d07bcec
MX
9489/*
9490 * helper to account the unused space of all the readonly block group in the
633c0aad 9491 * space_info. takes mirrors into account.
6d07bcec 9492 */
633c0aad 9493u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9494{
9495 struct btrfs_block_group_cache *block_group;
9496 u64 free_bytes = 0;
9497 int factor;
9498
01327610 9499 /* It's df, we don't care if it's racy */
633c0aad
JB
9500 if (list_empty(&sinfo->ro_bgs))
9501 return 0;
9502
9503 spin_lock(&sinfo->lock);
9504 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9505 spin_lock(&block_group->lock);
9506
9507 if (!block_group->ro) {
9508 spin_unlock(&block_group->lock);
9509 continue;
9510 }
9511
9512 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9513 BTRFS_BLOCK_GROUP_RAID10 |
9514 BTRFS_BLOCK_GROUP_DUP))
9515 factor = 2;
9516 else
9517 factor = 1;
9518
9519 free_bytes += (block_group->key.offset -
9520 btrfs_block_group_used(&block_group->item)) *
9521 factor;
9522
9523 spin_unlock(&block_group->lock);
9524 }
6d07bcec
MX
9525 spin_unlock(&sinfo->lock);
9526
9527 return free_bytes;
9528}
9529
2ff7e61e 9530void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9531{
f0486c68
YZ
9532 struct btrfs_space_info *sinfo = cache->space_info;
9533 u64 num_bytes;
9534
9535 BUG_ON(!cache->ro);
9536
9537 spin_lock(&sinfo->lock);
9538 spin_lock(&cache->lock);
868f401a
Z
9539 if (!--cache->ro) {
9540 num_bytes = cache->key.offset - cache->reserved -
9541 cache->pinned - cache->bytes_super -
9542 btrfs_block_group_used(&cache->item);
9543 sinfo->bytes_readonly -= num_bytes;
9544 list_del_init(&cache->ro_list);
9545 }
f0486c68
YZ
9546 spin_unlock(&cache->lock);
9547 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9548}
9549
ba1bf481
JB
9550/*
9551 * checks to see if its even possible to relocate this block group.
9552 *
9553 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9554 * ok to go ahead and try.
9555 */
6bccf3ab 9556int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9557{
6bccf3ab 9558 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9559 struct btrfs_block_group_cache *block_group;
9560 struct btrfs_space_info *space_info;
0b246afa 9561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9562 struct btrfs_device *device;
6df9a95e 9563 struct btrfs_trans_handle *trans;
cdcb725c 9564 u64 min_free;
6719db6a
JB
9565 u64 dev_min = 1;
9566 u64 dev_nr = 0;
4a5e98f5 9567 u64 target;
0305bc27 9568 int debug;
cdcb725c 9569 int index;
ba1bf481
JB
9570 int full = 0;
9571 int ret = 0;
1a40e23b 9572
0b246afa 9573 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9574
0b246afa 9575 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9576
ba1bf481 9577 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9578 if (!block_group) {
9579 if (debug)
0b246afa 9580 btrfs_warn(fs_info,
0305bc27
QW
9581 "can't find block group for bytenr %llu",
9582 bytenr);
ba1bf481 9583 return -1;
0305bc27 9584 }
1a40e23b 9585
cdcb725c 9586 min_free = btrfs_block_group_used(&block_group->item);
9587
ba1bf481 9588 /* no bytes used, we're good */
cdcb725c 9589 if (!min_free)
1a40e23b
ZY
9590 goto out;
9591
ba1bf481
JB
9592 space_info = block_group->space_info;
9593 spin_lock(&space_info->lock);
17d217fe 9594
ba1bf481 9595 full = space_info->full;
17d217fe 9596
ba1bf481
JB
9597 /*
9598 * if this is the last block group we have in this space, we can't
7ce618db
CM
9599 * relocate it unless we're able to allocate a new chunk below.
9600 *
9601 * Otherwise, we need to make sure we have room in the space to handle
9602 * all of the extents from this block group. If we can, we're good
ba1bf481 9603 */
7ce618db 9604 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9605 (btrfs_space_info_used(space_info, false) + min_free <
9606 space_info->total_bytes)) {
ba1bf481
JB
9607 spin_unlock(&space_info->lock);
9608 goto out;
17d217fe 9609 }
ba1bf481 9610 spin_unlock(&space_info->lock);
ea8c2819 9611
ba1bf481
JB
9612 /*
9613 * ok we don't have enough space, but maybe we have free space on our
9614 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9615 * alloc devices and guess if we have enough space. if this block
9616 * group is going to be restriped, run checks against the target
9617 * profile instead of the current one.
ba1bf481
JB
9618 */
9619 ret = -1;
ea8c2819 9620
cdcb725c 9621 /*
9622 * index:
9623 * 0: raid10
9624 * 1: raid1
9625 * 2: dup
9626 * 3: raid0
9627 * 4: single
9628 */
0b246afa 9629 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9630 if (target) {
31e50229 9631 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9632 } else {
9633 /*
9634 * this is just a balance, so if we were marked as full
9635 * we know there is no space for a new chunk
9636 */
0305bc27
QW
9637 if (full) {
9638 if (debug)
0b246afa
JM
9639 btrfs_warn(fs_info,
9640 "no space to alloc new chunk for block group %llu",
9641 block_group->key.objectid);
4a5e98f5 9642 goto out;
0305bc27 9643 }
4a5e98f5
ID
9644
9645 index = get_block_group_index(block_group);
9646 }
9647
e6ec716f 9648 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9649 dev_min = 4;
6719db6a
JB
9650 /* Divide by 2 */
9651 min_free >>= 1;
e6ec716f 9652 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9653 dev_min = 2;
e6ec716f 9654 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9655 /* Multiply by 2 */
9656 min_free <<= 1;
e6ec716f 9657 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9658 dev_min = fs_devices->rw_devices;
47c5713f 9659 min_free = div64_u64(min_free, dev_min);
cdcb725c 9660 }
9661
6df9a95e
JB
9662 /* We need to do this so that we can look at pending chunks */
9663 trans = btrfs_join_transaction(root);
9664 if (IS_ERR(trans)) {
9665 ret = PTR_ERR(trans);
9666 goto out;
9667 }
9668
0b246afa 9669 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9670 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9671 u64 dev_offset;
56bec294 9672
ba1bf481
JB
9673 /*
9674 * check to make sure we can actually find a chunk with enough
9675 * space to fit our block group in.
9676 */
63a212ab
SB
9677 if (device->total_bytes > device->bytes_used + min_free &&
9678 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9679 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9680 &dev_offset, NULL);
ba1bf481 9681 if (!ret)
cdcb725c 9682 dev_nr++;
9683
9684 if (dev_nr >= dev_min)
73e48b27 9685 break;
cdcb725c 9686
ba1bf481 9687 ret = -1;
725c8463 9688 }
edbd8d4e 9689 }
0305bc27 9690 if (debug && ret == -1)
0b246afa
JM
9691 btrfs_warn(fs_info,
9692 "no space to allocate a new chunk for block group %llu",
9693 block_group->key.objectid);
9694 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9695 btrfs_end_transaction(trans);
edbd8d4e 9696out:
ba1bf481 9697 btrfs_put_block_group(block_group);
edbd8d4e
CM
9698 return ret;
9699}
9700
6bccf3ab
JM
9701static int find_first_block_group(struct btrfs_fs_info *fs_info,
9702 struct btrfs_path *path,
9703 struct btrfs_key *key)
0b86a832 9704{
6bccf3ab 9705 struct btrfs_root *root = fs_info->extent_root;
925baedd 9706 int ret = 0;
0b86a832
CM
9707 struct btrfs_key found_key;
9708 struct extent_buffer *leaf;
9709 int slot;
edbd8d4e 9710
0b86a832
CM
9711 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9712 if (ret < 0)
925baedd
CM
9713 goto out;
9714
d397712b 9715 while (1) {
0b86a832 9716 slot = path->slots[0];
edbd8d4e 9717 leaf = path->nodes[0];
0b86a832
CM
9718 if (slot >= btrfs_header_nritems(leaf)) {
9719 ret = btrfs_next_leaf(root, path);
9720 if (ret == 0)
9721 continue;
9722 if (ret < 0)
925baedd 9723 goto out;
0b86a832 9724 break;
edbd8d4e 9725 }
0b86a832 9726 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9727
0b86a832 9728 if (found_key.objectid >= key->objectid &&
925baedd 9729 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9730 struct extent_map_tree *em_tree;
9731 struct extent_map *em;
9732
9733 em_tree = &root->fs_info->mapping_tree.map_tree;
9734 read_lock(&em_tree->lock);
9735 em = lookup_extent_mapping(em_tree, found_key.objectid,
9736 found_key.offset);
9737 read_unlock(&em_tree->lock);
9738 if (!em) {
0b246afa 9739 btrfs_err(fs_info,
6fb37b75
LB
9740 "logical %llu len %llu found bg but no related chunk",
9741 found_key.objectid, found_key.offset);
9742 ret = -ENOENT;
9743 } else {
9744 ret = 0;
9745 }
187ee58c 9746 free_extent_map(em);
925baedd
CM
9747 goto out;
9748 }
0b86a832 9749 path->slots[0]++;
edbd8d4e 9750 }
925baedd 9751out:
0b86a832 9752 return ret;
edbd8d4e
CM
9753}
9754
0af3d00b
JB
9755void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9756{
9757 struct btrfs_block_group_cache *block_group;
9758 u64 last = 0;
9759
9760 while (1) {
9761 struct inode *inode;
9762
9763 block_group = btrfs_lookup_first_block_group(info, last);
9764 while (block_group) {
9765 spin_lock(&block_group->lock);
9766 if (block_group->iref)
9767 break;
9768 spin_unlock(&block_group->lock);
2ff7e61e 9769 block_group = next_block_group(info, block_group);
0af3d00b
JB
9770 }
9771 if (!block_group) {
9772 if (last == 0)
9773 break;
9774 last = 0;
9775 continue;
9776 }
9777
9778 inode = block_group->inode;
9779 block_group->iref = 0;
9780 block_group->inode = NULL;
9781 spin_unlock(&block_group->lock);
f3bca802 9782 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9783 iput(inode);
9784 last = block_group->key.objectid + block_group->key.offset;
9785 btrfs_put_block_group(block_group);
9786 }
9787}
9788
5cdd7db6
FM
9789/*
9790 * Must be called only after stopping all workers, since we could have block
9791 * group caching kthreads running, and therefore they could race with us if we
9792 * freed the block groups before stopping them.
9793 */
1a40e23b
ZY
9794int btrfs_free_block_groups(struct btrfs_fs_info *info)
9795{
9796 struct btrfs_block_group_cache *block_group;
4184ea7f 9797 struct btrfs_space_info *space_info;
11833d66 9798 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9799 struct rb_node *n;
9800
9e351cc8 9801 down_write(&info->commit_root_sem);
11833d66
YZ
9802 while (!list_empty(&info->caching_block_groups)) {
9803 caching_ctl = list_entry(info->caching_block_groups.next,
9804 struct btrfs_caching_control, list);
9805 list_del(&caching_ctl->list);
9806 put_caching_control(caching_ctl);
9807 }
9e351cc8 9808 up_write(&info->commit_root_sem);
11833d66 9809
47ab2a6c
JB
9810 spin_lock(&info->unused_bgs_lock);
9811 while (!list_empty(&info->unused_bgs)) {
9812 block_group = list_first_entry(&info->unused_bgs,
9813 struct btrfs_block_group_cache,
9814 bg_list);
9815 list_del_init(&block_group->bg_list);
9816 btrfs_put_block_group(block_group);
9817 }
9818 spin_unlock(&info->unused_bgs_lock);
9819
1a40e23b
ZY
9820 spin_lock(&info->block_group_cache_lock);
9821 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9822 block_group = rb_entry(n, struct btrfs_block_group_cache,
9823 cache_node);
1a40e23b
ZY
9824 rb_erase(&block_group->cache_node,
9825 &info->block_group_cache_tree);
01eacb27 9826 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9827 spin_unlock(&info->block_group_cache_lock);
9828
80eb234a 9829 down_write(&block_group->space_info->groups_sem);
1a40e23b 9830 list_del(&block_group->list);
80eb234a 9831 up_write(&block_group->space_info->groups_sem);
d2fb3437 9832
3c14874a
JB
9833 /*
9834 * We haven't cached this block group, which means we could
9835 * possibly have excluded extents on this block group.
9836 */
36cce922
JB
9837 if (block_group->cached == BTRFS_CACHE_NO ||
9838 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9839 free_excluded_extents(info, block_group);
3c14874a 9840
817d52f8 9841 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9842 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9843 ASSERT(list_empty(&block_group->dirty_list));
9844 ASSERT(list_empty(&block_group->io_list));
9845 ASSERT(list_empty(&block_group->bg_list));
9846 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9847 btrfs_put_block_group(block_group);
d899e052
YZ
9848
9849 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9850 }
9851 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9852
9853 /* now that all the block groups are freed, go through and
9854 * free all the space_info structs. This is only called during
9855 * the final stages of unmount, and so we know nobody is
9856 * using them. We call synchronize_rcu() once before we start,
9857 * just to be on the safe side.
9858 */
9859 synchronize_rcu();
9860
8929ecfa
YZ
9861 release_global_block_rsv(info);
9862
67871254 9863 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9864 int i;
9865
4184ea7f
CM
9866 space_info = list_entry(info->space_info.next,
9867 struct btrfs_space_info,
9868 list);
d555b6c3
JB
9869
9870 /*
9871 * Do not hide this behind enospc_debug, this is actually
9872 * important and indicates a real bug if this happens.
9873 */
9874 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9875 space_info->bytes_reserved > 0 ||
d555b6c3 9876 space_info->bytes_may_use > 0))
ab8d0fc4 9877 dump_space_info(info, space_info, 0, 0);
4184ea7f 9878 list_del(&space_info->list);
6ab0a202
JM
9879 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9880 struct kobject *kobj;
c1895442
JM
9881 kobj = space_info->block_group_kobjs[i];
9882 space_info->block_group_kobjs[i] = NULL;
9883 if (kobj) {
6ab0a202
JM
9884 kobject_del(kobj);
9885 kobject_put(kobj);
9886 }
9887 }
9888 kobject_del(&space_info->kobj);
9889 kobject_put(&space_info->kobj);
4184ea7f 9890 }
1a40e23b
ZY
9891 return 0;
9892}
9893
b742bb82
YZ
9894static void __link_block_group(struct btrfs_space_info *space_info,
9895 struct btrfs_block_group_cache *cache)
9896{
9897 int index = get_block_group_index(cache);
ed55b6ac 9898 bool first = false;
b742bb82
YZ
9899
9900 down_write(&space_info->groups_sem);
ed55b6ac
JM
9901 if (list_empty(&space_info->block_groups[index]))
9902 first = true;
9903 list_add_tail(&cache->list, &space_info->block_groups[index]);
9904 up_write(&space_info->groups_sem);
9905
9906 if (first) {
c1895442 9907 struct raid_kobject *rkobj;
6ab0a202
JM
9908 int ret;
9909
c1895442
JM
9910 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9911 if (!rkobj)
9912 goto out_err;
9913 rkobj->raid_type = index;
9914 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9915 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9916 "%s", get_raid_name(index));
6ab0a202 9917 if (ret) {
c1895442
JM
9918 kobject_put(&rkobj->kobj);
9919 goto out_err;
6ab0a202 9920 }
c1895442 9921 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9922 }
c1895442
JM
9923
9924 return;
9925out_err:
ab8d0fc4
JM
9926 btrfs_warn(cache->fs_info,
9927 "failed to add kobject for block cache, ignoring");
b742bb82
YZ
9928}
9929
920e4a58 9930static struct btrfs_block_group_cache *
2ff7e61e
JM
9931btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9932 u64 start, u64 size)
920e4a58
MX
9933{
9934 struct btrfs_block_group_cache *cache;
9935
9936 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9937 if (!cache)
9938 return NULL;
9939
9940 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9941 GFP_NOFS);
9942 if (!cache->free_space_ctl) {
9943 kfree(cache);
9944 return NULL;
9945 }
9946
9947 cache->key.objectid = start;
9948 cache->key.offset = size;
9949 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9950
0b246afa
JM
9951 cache->sectorsize = fs_info->sectorsize;
9952 cache->fs_info = fs_info;
2ff7e61e
JM
9953 cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9954 &fs_info->mapping_tree,
9955 start);
1e144fb8
OS
9956 set_free_space_tree_thresholds(cache);
9957
920e4a58
MX
9958 atomic_set(&cache->count, 1);
9959 spin_lock_init(&cache->lock);
e570fd27 9960 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9961 INIT_LIST_HEAD(&cache->list);
9962 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9963 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9964 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9965 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9966 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9967 btrfs_init_free_space_ctl(cache);
04216820 9968 atomic_set(&cache->trimming, 0);
a5ed9182 9969 mutex_init(&cache->free_space_lock);
0966a7b1 9970 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
9971
9972 return cache;
9973}
9974
5b4aacef 9975int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
9976{
9977 struct btrfs_path *path;
9978 int ret;
9078a3e1 9979 struct btrfs_block_group_cache *cache;
6324fbf3 9980 struct btrfs_space_info *space_info;
9078a3e1
CM
9981 struct btrfs_key key;
9982 struct btrfs_key found_key;
5f39d397 9983 struct extent_buffer *leaf;
0af3d00b
JB
9984 int need_clear = 0;
9985 u64 cache_gen;
49303381
LB
9986 u64 feature;
9987 int mixed;
9988
9989 feature = btrfs_super_incompat_flags(info->super_copy);
9990 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 9991
9078a3e1 9992 key.objectid = 0;
0b86a832 9993 key.offset = 0;
962a298f 9994 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9995 path = btrfs_alloc_path();
9996 if (!path)
9997 return -ENOMEM;
e4058b54 9998 path->reada = READA_FORWARD;
9078a3e1 9999
0b246afa
JM
10000 cache_gen = btrfs_super_cache_generation(info->super_copy);
10001 if (btrfs_test_opt(info, SPACE_CACHE) &&
10002 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10003 need_clear = 1;
0b246afa 10004 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10005 need_clear = 1;
0af3d00b 10006
d397712b 10007 while (1) {
6bccf3ab 10008 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10009 if (ret > 0)
10010 break;
0b86a832
CM
10011 if (ret != 0)
10012 goto error;
920e4a58 10013
5f39d397
CM
10014 leaf = path->nodes[0];
10015 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10016
2ff7e61e 10017 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10018 found_key.offset);
9078a3e1 10019 if (!cache) {
0b86a832 10020 ret = -ENOMEM;
f0486c68 10021 goto error;
9078a3e1 10022 }
96303081 10023
cf7c1ef6
LB
10024 if (need_clear) {
10025 /*
10026 * When we mount with old space cache, we need to
10027 * set BTRFS_DC_CLEAR and set dirty flag.
10028 *
10029 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10030 * truncate the old free space cache inode and
10031 * setup a new one.
10032 * b) Setting 'dirty flag' makes sure that we flush
10033 * the new space cache info onto disk.
10034 */
0b246afa 10035 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10036 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10037 }
0af3d00b 10038
5f39d397
CM
10039 read_extent_buffer(leaf, &cache->item,
10040 btrfs_item_ptr_offset(leaf, path->slots[0]),
10041 sizeof(cache->item));
920e4a58 10042 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10043 if (!mixed &&
10044 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10045 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10046 btrfs_err(info,
10047"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10048 cache->key.objectid);
10049 ret = -EINVAL;
10050 goto error;
10051 }
0b86a832 10052
9078a3e1 10053 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10054 btrfs_release_path(path);
34d52cb6 10055
3c14874a
JB
10056 /*
10057 * We need to exclude the super stripes now so that the space
10058 * info has super bytes accounted for, otherwise we'll think
10059 * we have more space than we actually do.
10060 */
2ff7e61e 10061 ret = exclude_super_stripes(info, cache);
835d974f
JB
10062 if (ret) {
10063 /*
10064 * We may have excluded something, so call this just in
10065 * case.
10066 */
2ff7e61e 10067 free_excluded_extents(info, cache);
920e4a58 10068 btrfs_put_block_group(cache);
835d974f
JB
10069 goto error;
10070 }
3c14874a 10071
817d52f8
JB
10072 /*
10073 * check for two cases, either we are full, and therefore
10074 * don't need to bother with the caching work since we won't
10075 * find any space, or we are empty, and we can just add all
10076 * the space in and be done with it. This saves us _alot_ of
10077 * time, particularly in the full case.
10078 */
10079 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10080 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10081 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10082 free_excluded_extents(info, cache);
817d52f8 10083 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10084 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10085 cache->cached = BTRFS_CACHE_FINISHED;
0b246afa 10086 add_new_free_space(cache, info,
817d52f8
JB
10087 found_key.objectid,
10088 found_key.objectid +
10089 found_key.offset);
2ff7e61e 10090 free_excluded_extents(info, cache);
817d52f8 10091 }
96b5179d 10092
0b246afa 10093 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10094 if (ret) {
10095 btrfs_remove_free_space_cache(cache);
10096 btrfs_put_block_group(cache);
10097 goto error;
10098 }
10099
0b246afa 10100 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10101 update_space_info(info, cache->flags, found_key.offset,
10102 btrfs_block_group_used(&cache->item),
10103 cache->bytes_super, &space_info);
8c579fe7 10104
6324fbf3 10105 cache->space_info = space_info;
1b2da372 10106
b742bb82 10107 __link_block_group(space_info, cache);
0f9dd46c 10108
0b246afa 10109 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10110 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10111 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10112 } else if (btrfs_block_group_used(&cache->item) == 0) {
10113 spin_lock(&info->unused_bgs_lock);
10114 /* Should always be true but just in case. */
10115 if (list_empty(&cache->bg_list)) {
10116 btrfs_get_block_group(cache);
10117 list_add_tail(&cache->bg_list,
10118 &info->unused_bgs);
10119 }
10120 spin_unlock(&info->unused_bgs_lock);
10121 }
9078a3e1 10122 }
b742bb82 10123
0b246afa 10124 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10125 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10126 (BTRFS_BLOCK_GROUP_RAID10 |
10127 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10128 BTRFS_BLOCK_GROUP_RAID5 |
10129 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10130 BTRFS_BLOCK_GROUP_DUP)))
10131 continue;
10132 /*
10133 * avoid allocating from un-mirrored block group if there are
10134 * mirrored block groups.
10135 */
1095cc0d 10136 list_for_each_entry(cache,
10137 &space_info->block_groups[BTRFS_RAID_RAID0],
10138 list)
868f401a 10139 inc_block_group_ro(cache, 1);
1095cc0d 10140 list_for_each_entry(cache,
10141 &space_info->block_groups[BTRFS_RAID_SINGLE],
10142 list)
868f401a 10143 inc_block_group_ro(cache, 1);
9078a3e1 10144 }
f0486c68
YZ
10145
10146 init_global_block_rsv(info);
0b86a832
CM
10147 ret = 0;
10148error:
9078a3e1 10149 btrfs_free_path(path);
0b86a832 10150 return ret;
9078a3e1 10151}
6324fbf3 10152
ea658bad 10153void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 10154 struct btrfs_fs_info *fs_info)
ea658bad
JB
10155{
10156 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10157 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10158 struct btrfs_block_group_item item;
10159 struct btrfs_key key;
10160 int ret = 0;
d9a0540a 10161 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10162
d9a0540a 10163 trans->can_flush_pending_bgs = false;
47ab2a6c 10164 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10165 if (ret)
c92f6be3 10166 goto next;
ea658bad
JB
10167
10168 spin_lock(&block_group->lock);
10169 memcpy(&item, &block_group->item, sizeof(item));
10170 memcpy(&key, &block_group->key, sizeof(key));
10171 spin_unlock(&block_group->lock);
10172
10173 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10174 sizeof(item));
10175 if (ret)
66642832 10176 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10177 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10178 key.offset);
6df9a95e 10179 if (ret)
66642832 10180 btrfs_abort_transaction(trans, ret);
0b246afa 10181 add_block_group_free_space(trans, fs_info, block_group);
1e144fb8 10182 /* already aborted the transaction if it failed. */
c92f6be3
FM
10183next:
10184 list_del_init(&block_group->bg_list);
ea658bad 10185 }
d9a0540a 10186 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10187}
10188
6324fbf3 10189int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10190 struct btrfs_fs_info *fs_info, u64 bytes_used,
e17cade2 10191 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10192 u64 size)
10193{
6324fbf3 10194 struct btrfs_block_group_cache *cache;
0b246afa 10195 int ret;
6324fbf3 10196
0b246afa 10197 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10198
2ff7e61e 10199 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10200 if (!cache)
10201 return -ENOMEM;
34d52cb6 10202
6324fbf3 10203 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10204 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10205 btrfs_set_block_group_flags(&cache->item, type);
10206
920e4a58 10207 cache->flags = type;
11833d66 10208 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10209 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10210 cache->needs_free_space = 1;
2ff7e61e 10211 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10212 if (ret) {
10213 /*
10214 * We may have excluded something, so call this just in
10215 * case.
10216 */
2ff7e61e 10217 free_excluded_extents(fs_info, cache);
920e4a58 10218 btrfs_put_block_group(cache);
835d974f
JB
10219 return ret;
10220 }
96303081 10221
0b246afa 10222 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
817d52f8 10223
2ff7e61e 10224 free_excluded_extents(fs_info, cache);
11833d66 10225
d0bd4560 10226#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10227 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10228 u64 new_bytes_used = size - bytes_used;
10229
10230 bytes_used += new_bytes_used >> 1;
2ff7e61e 10231 fragment_free_space(cache);
d0bd4560
JB
10232 }
10233#endif
2e6e5183 10234 /*
2be12ef7
NB
10235 * Ensure the corresponding space_info object is created and
10236 * assigned to our block group. We want our bg to be added to the rbtree
10237 * with its ->space_info set.
2e6e5183 10238 */
2be12ef7
NB
10239 cache->space_info = __find_space_info(fs_info, cache->flags);
10240 if (!cache->space_info) {
10241 ret = create_space_info(fs_info, cache->flags,
10242 &cache->space_info);
10243 if (ret) {
10244 btrfs_remove_free_space_cache(cache);
10245 btrfs_put_block_group(cache);
10246 return ret;
10247 }
2e6e5183
FM
10248 }
10249
0b246afa 10250 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10251 if (ret) {
10252 btrfs_remove_free_space_cache(cache);
10253 btrfs_put_block_group(cache);
10254 return ret;
10255 }
10256
2e6e5183
FM
10257 /*
10258 * Now that our block group has its ->space_info set and is inserted in
10259 * the rbtree, update the space info's counters.
10260 */
0b246afa 10261 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10262 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10263 cache->bytes_super, &cache->space_info);
0b246afa 10264 update_global_block_rsv(fs_info);
1b2da372 10265
b742bb82 10266 __link_block_group(cache->space_info, cache);
6324fbf3 10267
47ab2a6c 10268 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10269
0b246afa 10270 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10271 return 0;
10272}
1a40e23b 10273
10ea00f5
ID
10274static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10275{
899c81ea
ID
10276 u64 extra_flags = chunk_to_extended(flags) &
10277 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10278
de98ced9 10279 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10280 if (flags & BTRFS_BLOCK_GROUP_DATA)
10281 fs_info->avail_data_alloc_bits &= ~extra_flags;
10282 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10283 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10284 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10285 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10286 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10287}
10288
1a40e23b 10289int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10290 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10291 struct extent_map *em)
1a40e23b 10292{
6bccf3ab 10293 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10294 struct btrfs_path *path;
10295 struct btrfs_block_group_cache *block_group;
44fb5511 10296 struct btrfs_free_cluster *cluster;
0b246afa 10297 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10298 struct btrfs_key key;
0af3d00b 10299 struct inode *inode;
c1895442 10300 struct kobject *kobj = NULL;
1a40e23b 10301 int ret;
10ea00f5 10302 int index;
89a55897 10303 int factor;
4f69cb98 10304 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10305 bool remove_em;
1a40e23b 10306
6bccf3ab 10307 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10308 BUG_ON(!block_group);
c146afad 10309 BUG_ON(!block_group->ro);
1a40e23b 10310
9f7c43c9 10311 /*
10312 * Free the reserved super bytes from this block group before
10313 * remove it.
10314 */
2ff7e61e 10315 free_excluded_extents(fs_info, block_group);
9f7c43c9 10316
1a40e23b 10317 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10318 index = get_block_group_index(block_group);
89a55897
JB
10319 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10320 BTRFS_BLOCK_GROUP_RAID1 |
10321 BTRFS_BLOCK_GROUP_RAID10))
10322 factor = 2;
10323 else
10324 factor = 1;
1a40e23b 10325
44fb5511 10326 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10327 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10328 spin_lock(&cluster->refill_lock);
10329 btrfs_return_cluster_to_free_space(block_group, cluster);
10330 spin_unlock(&cluster->refill_lock);
10331
10332 /*
10333 * make sure this block group isn't part of a metadata
10334 * allocation cluster
10335 */
0b246afa 10336 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10337 spin_lock(&cluster->refill_lock);
10338 btrfs_return_cluster_to_free_space(block_group, cluster);
10339 spin_unlock(&cluster->refill_lock);
10340
1a40e23b 10341 path = btrfs_alloc_path();
d8926bb3
MF
10342 if (!path) {
10343 ret = -ENOMEM;
10344 goto out;
10345 }
1a40e23b 10346
1bbc621e
CM
10347 /*
10348 * get the inode first so any iput calls done for the io_list
10349 * aren't the final iput (no unlinks allowed now)
10350 */
77ab86bf 10351 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10352
10353 mutex_lock(&trans->transaction->cache_write_mutex);
10354 /*
10355 * make sure our free spache cache IO is done before remove the
10356 * free space inode
10357 */
10358 spin_lock(&trans->transaction->dirty_bgs_lock);
10359 if (!list_empty(&block_group->io_list)) {
10360 list_del_init(&block_group->io_list);
10361
10362 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10363
10364 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10365 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10366 btrfs_put_block_group(block_group);
10367 spin_lock(&trans->transaction->dirty_bgs_lock);
10368 }
10369
10370 if (!list_empty(&block_group->dirty_list)) {
10371 list_del_init(&block_group->dirty_list);
10372 btrfs_put_block_group(block_group);
10373 }
10374 spin_unlock(&trans->transaction->dirty_bgs_lock);
10375 mutex_unlock(&trans->transaction->cache_write_mutex);
10376
0af3d00b 10377 if (!IS_ERR(inode)) {
73f2e545 10378 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10379 if (ret) {
10380 btrfs_add_delayed_iput(inode);
10381 goto out;
10382 }
0af3d00b
JB
10383 clear_nlink(inode);
10384 /* One for the block groups ref */
10385 spin_lock(&block_group->lock);
10386 if (block_group->iref) {
10387 block_group->iref = 0;
10388 block_group->inode = NULL;
10389 spin_unlock(&block_group->lock);
10390 iput(inode);
10391 } else {
10392 spin_unlock(&block_group->lock);
10393 }
10394 /* One for our lookup ref */
455757c3 10395 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10396 }
10397
10398 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10399 key.offset = block_group->key.objectid;
10400 key.type = 0;
10401
10402 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10403 if (ret < 0)
10404 goto out;
10405 if (ret > 0)
b3b4aa74 10406 btrfs_release_path(path);
0af3d00b
JB
10407 if (ret == 0) {
10408 ret = btrfs_del_item(trans, tree_root, path);
10409 if (ret)
10410 goto out;
b3b4aa74 10411 btrfs_release_path(path);
0af3d00b
JB
10412 }
10413
0b246afa 10414 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10415 rb_erase(&block_group->cache_node,
0b246afa 10416 &fs_info->block_group_cache_tree);
292cbd51 10417 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10418
0b246afa
JM
10419 if (fs_info->first_logical_byte == block_group->key.objectid)
10420 fs_info->first_logical_byte = (u64)-1;
10421 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10422
80eb234a 10423 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10424 /*
10425 * we must use list_del_init so people can check to see if they
10426 * are still on the list after taking the semaphore
10427 */
10428 list_del_init(&block_group->list);
6ab0a202 10429 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10430 kobj = block_group->space_info->block_group_kobjs[index];
10431 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10432 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10433 }
80eb234a 10434 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10435 if (kobj) {
10436 kobject_del(kobj);
10437 kobject_put(kobj);
10438 }
1a40e23b 10439
4f69cb98
FM
10440 if (block_group->has_caching_ctl)
10441 caching_ctl = get_caching_control(block_group);
817d52f8 10442 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10443 wait_block_group_cache_done(block_group);
4f69cb98 10444 if (block_group->has_caching_ctl) {
0b246afa 10445 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10446 if (!caching_ctl) {
10447 struct btrfs_caching_control *ctl;
10448
10449 list_for_each_entry(ctl,
0b246afa 10450 &fs_info->caching_block_groups, list)
4f69cb98
FM
10451 if (ctl->block_group == block_group) {
10452 caching_ctl = ctl;
1e4f4714 10453 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10454 break;
10455 }
10456 }
10457 if (caching_ctl)
10458 list_del_init(&caching_ctl->list);
0b246afa 10459 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10460 if (caching_ctl) {
10461 /* Once for the caching bgs list and once for us. */
10462 put_caching_control(caching_ctl);
10463 put_caching_control(caching_ctl);
10464 }
10465 }
817d52f8 10466
ce93ec54
JB
10467 spin_lock(&trans->transaction->dirty_bgs_lock);
10468 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10469 WARN_ON(1);
10470 }
10471 if (!list_empty(&block_group->io_list)) {
10472 WARN_ON(1);
ce93ec54
JB
10473 }
10474 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10475 btrfs_remove_free_space_cache(block_group);
10476
c146afad 10477 spin_lock(&block_group->space_info->lock);
75c68e9f 10478 list_del_init(&block_group->ro_list);
18d018ad 10479
0b246afa 10480 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10481 WARN_ON(block_group->space_info->total_bytes
10482 < block_group->key.offset);
10483 WARN_ON(block_group->space_info->bytes_readonly
10484 < block_group->key.offset);
10485 WARN_ON(block_group->space_info->disk_total
10486 < block_group->key.offset * factor);
10487 }
c146afad
YZ
10488 block_group->space_info->total_bytes -= block_group->key.offset;
10489 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10490 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10491
c146afad 10492 spin_unlock(&block_group->space_info->lock);
283bb197 10493
0af3d00b
JB
10494 memcpy(&key, &block_group->key, sizeof(key));
10495
34441361 10496 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10497 if (!list_empty(&em->list)) {
10498 /* We're in the transaction->pending_chunks list. */
10499 free_extent_map(em);
10500 }
04216820
FM
10501 spin_lock(&block_group->lock);
10502 block_group->removed = 1;
10503 /*
10504 * At this point trimming can't start on this block group, because we
10505 * removed the block group from the tree fs_info->block_group_cache_tree
10506 * so no one can't find it anymore and even if someone already got this
10507 * block group before we removed it from the rbtree, they have already
10508 * incremented block_group->trimming - if they didn't, they won't find
10509 * any free space entries because we already removed them all when we
10510 * called btrfs_remove_free_space_cache().
10511 *
10512 * And we must not remove the extent map from the fs_info->mapping_tree
10513 * to prevent the same logical address range and physical device space
10514 * ranges from being reused for a new block group. This is because our
10515 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10516 * completely transactionless, so while it is trimming a range the
10517 * currently running transaction might finish and a new one start,
10518 * allowing for new block groups to be created that can reuse the same
10519 * physical device locations unless we take this special care.
e33e17ee
JM
10520 *
10521 * There may also be an implicit trim operation if the file system
10522 * is mounted with -odiscard. The same protections must remain
10523 * in place until the extents have been discarded completely when
10524 * the transaction commit has completed.
04216820
FM
10525 */
10526 remove_em = (atomic_read(&block_group->trimming) == 0);
10527 /*
10528 * Make sure a trimmer task always sees the em in the pinned_chunks list
10529 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10530 * before checking block_group->removed).
10531 */
10532 if (!remove_em) {
10533 /*
10534 * Our em might be in trans->transaction->pending_chunks which
10535 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10536 * and so is the fs_info->pinned_chunks list.
10537 *
10538 * So at this point we must be holding the chunk_mutex to avoid
10539 * any races with chunk allocation (more specifically at
10540 * volumes.c:contains_pending_extent()), to ensure it always
10541 * sees the em, either in the pending_chunks list or in the
10542 * pinned_chunks list.
10543 */
0b246afa 10544 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10545 }
10546 spin_unlock(&block_group->lock);
04216820
FM
10547
10548 if (remove_em) {
10549 struct extent_map_tree *em_tree;
10550
0b246afa 10551 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10552 write_lock(&em_tree->lock);
8dbcd10f
FM
10553 /*
10554 * The em might be in the pending_chunks list, so make sure the
10555 * chunk mutex is locked, since remove_extent_mapping() will
10556 * delete us from that list.
10557 */
04216820
FM
10558 remove_extent_mapping(em_tree, em);
10559 write_unlock(&em_tree->lock);
10560 /* once for the tree */
10561 free_extent_map(em);
10562 }
10563
34441361 10564 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10565
0b246afa 10566 ret = remove_block_group_free_space(trans, fs_info, block_group);
1e144fb8
OS
10567 if (ret)
10568 goto out;
10569
fa9c0d79
CM
10570 btrfs_put_block_group(block_group);
10571 btrfs_put_block_group(block_group);
1a40e23b
ZY
10572
10573 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10574 if (ret > 0)
10575 ret = -EIO;
10576 if (ret < 0)
10577 goto out;
10578
10579 ret = btrfs_del_item(trans, root, path);
10580out:
10581 btrfs_free_path(path);
10582 return ret;
10583}
acce952b 10584
8eab77ff 10585struct btrfs_trans_handle *
7fd01182
FM
10586btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10587 const u64 chunk_offset)
8eab77ff 10588{
7fd01182
FM
10589 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10590 struct extent_map *em;
10591 struct map_lookup *map;
10592 unsigned int num_items;
10593
10594 read_lock(&em_tree->lock);
10595 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10596 read_unlock(&em_tree->lock);
10597 ASSERT(em && em->start == chunk_offset);
10598
8eab77ff 10599 /*
7fd01182
FM
10600 * We need to reserve 3 + N units from the metadata space info in order
10601 * to remove a block group (done at btrfs_remove_chunk() and at
10602 * btrfs_remove_block_group()), which are used for:
10603 *
8eab77ff
FM
10604 * 1 unit for adding the free space inode's orphan (located in the tree
10605 * of tree roots).
7fd01182
FM
10606 * 1 unit for deleting the block group item (located in the extent
10607 * tree).
10608 * 1 unit for deleting the free space item (located in tree of tree
10609 * roots).
10610 * N units for deleting N device extent items corresponding to each
10611 * stripe (located in the device tree).
10612 *
10613 * In order to remove a block group we also need to reserve units in the
10614 * system space info in order to update the chunk tree (update one or
10615 * more device items and remove one chunk item), but this is done at
10616 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10617 */
95617d69 10618 map = em->map_lookup;
7fd01182
FM
10619 num_items = 3 + map->num_stripes;
10620 free_extent_map(em);
10621
8eab77ff 10622 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10623 num_items, 1);
8eab77ff
FM
10624}
10625
47ab2a6c
JB
10626/*
10627 * Process the unused_bgs list and remove any that don't have any allocated
10628 * space inside of them.
10629 */
10630void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10631{
10632 struct btrfs_block_group_cache *block_group;
10633 struct btrfs_space_info *space_info;
47ab2a6c
JB
10634 struct btrfs_trans_handle *trans;
10635 int ret = 0;
10636
afcdd129 10637 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10638 return;
10639
10640 spin_lock(&fs_info->unused_bgs_lock);
10641 while (!list_empty(&fs_info->unused_bgs)) {
10642 u64 start, end;
e33e17ee 10643 int trimming;
47ab2a6c
JB
10644
10645 block_group = list_first_entry(&fs_info->unused_bgs,
10646 struct btrfs_block_group_cache,
10647 bg_list);
47ab2a6c 10648 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10649
10650 space_info = block_group->space_info;
10651
47ab2a6c
JB
10652 if (ret || btrfs_mixed_space_info(space_info)) {
10653 btrfs_put_block_group(block_group);
10654 continue;
10655 }
10656 spin_unlock(&fs_info->unused_bgs_lock);
10657
d5f2e33b 10658 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10659
47ab2a6c
JB
10660 /* Don't want to race with allocators so take the groups_sem */
10661 down_write(&space_info->groups_sem);
10662 spin_lock(&block_group->lock);
10663 if (block_group->reserved ||
10664 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10665 block_group->ro ||
aefbe9a6 10666 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10667 /*
10668 * We want to bail if we made new allocations or have
10669 * outstanding allocations in this block group. We do
10670 * the ro check in case balance is currently acting on
10671 * this block group.
10672 */
10673 spin_unlock(&block_group->lock);
10674 up_write(&space_info->groups_sem);
10675 goto next;
10676 }
10677 spin_unlock(&block_group->lock);
10678
10679 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10680 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10681 up_write(&space_info->groups_sem);
10682 if (ret < 0) {
10683 ret = 0;
10684 goto next;
10685 }
10686
10687 /*
10688 * Want to do this before we do anything else so we can recover
10689 * properly if we fail to join the transaction.
10690 */
7fd01182
FM
10691 trans = btrfs_start_trans_remove_block_group(fs_info,
10692 block_group->key.objectid);
47ab2a6c 10693 if (IS_ERR(trans)) {
2ff7e61e 10694 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10695 ret = PTR_ERR(trans);
10696 goto next;
10697 }
10698
10699 /*
10700 * We could have pending pinned extents for this block group,
10701 * just delete them, we don't care about them anymore.
10702 */
10703 start = block_group->key.objectid;
10704 end = start + block_group->key.offset - 1;
d4b450cd
FM
10705 /*
10706 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10707 * btrfs_finish_extent_commit(). If we are at transaction N,
10708 * another task might be running finish_extent_commit() for the
10709 * previous transaction N - 1, and have seen a range belonging
10710 * to the block group in freed_extents[] before we were able to
10711 * clear the whole block group range from freed_extents[]. This
10712 * means that task can lookup for the block group after we
10713 * unpinned it from freed_extents[] and removed it, leading to
10714 * a BUG_ON() at btrfs_unpin_extent_range().
10715 */
10716 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10717 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10718 EXTENT_DIRTY);
758eb51e 10719 if (ret) {
d4b450cd 10720 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10721 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10722 goto end_trans;
10723 }
10724 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10725 EXTENT_DIRTY);
758eb51e 10726 if (ret) {
d4b450cd 10727 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10728 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10729 goto end_trans;
10730 }
d4b450cd 10731 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10732
10733 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10734 spin_lock(&space_info->lock);
10735 spin_lock(&block_group->lock);
10736
10737 space_info->bytes_pinned -= block_group->pinned;
10738 space_info->bytes_readonly += block_group->pinned;
10739 percpu_counter_add(&space_info->total_bytes_pinned,
10740 -block_group->pinned);
47ab2a6c
JB
10741 block_group->pinned = 0;
10742
c30666d4
ZL
10743 spin_unlock(&block_group->lock);
10744 spin_unlock(&space_info->lock);
10745
e33e17ee 10746 /* DISCARD can flip during remount */
0b246afa 10747 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10748
10749 /* Implicit trim during transaction commit. */
10750 if (trimming)
10751 btrfs_get_block_group_trimming(block_group);
10752
47ab2a6c
JB
10753 /*
10754 * Btrfs_remove_chunk will abort the transaction if things go
10755 * horribly wrong.
10756 */
5b4aacef 10757 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10758 block_group->key.objectid);
e33e17ee
JM
10759
10760 if (ret) {
10761 if (trimming)
10762 btrfs_put_block_group_trimming(block_group);
10763 goto end_trans;
10764 }
10765
10766 /*
10767 * If we're not mounted with -odiscard, we can just forget
10768 * about this block group. Otherwise we'll need to wait
10769 * until transaction commit to do the actual discard.
10770 */
10771 if (trimming) {
348a0013
FM
10772 spin_lock(&fs_info->unused_bgs_lock);
10773 /*
10774 * A concurrent scrub might have added us to the list
10775 * fs_info->unused_bgs, so use a list_move operation
10776 * to add the block group to the deleted_bgs list.
10777 */
e33e17ee
JM
10778 list_move(&block_group->bg_list,
10779 &trans->transaction->deleted_bgs);
348a0013 10780 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10781 btrfs_get_block_group(block_group);
10782 }
758eb51e 10783end_trans:
3a45bb20 10784 btrfs_end_transaction(trans);
47ab2a6c 10785next:
d5f2e33b 10786 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10787 btrfs_put_block_group(block_group);
10788 spin_lock(&fs_info->unused_bgs_lock);
10789 }
10790 spin_unlock(&fs_info->unused_bgs_lock);
10791}
10792
c59021f8 10793int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10794{
10795 struct btrfs_space_info *space_info;
1aba86d6 10796 struct btrfs_super_block *disk_super;
10797 u64 features;
10798 u64 flags;
10799 int mixed = 0;
c59021f8 10800 int ret;
10801
6c41761f 10802 disk_super = fs_info->super_copy;
1aba86d6 10803 if (!btrfs_super_root(disk_super))
0dc924c5 10804 return -EINVAL;
c59021f8 10805
1aba86d6 10806 features = btrfs_super_incompat_flags(disk_super);
10807 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10808 mixed = 1;
c59021f8 10809
1aba86d6 10810 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2be12ef7 10811 ret = create_space_info(fs_info, flags, &space_info);
c59021f8 10812 if (ret)
1aba86d6 10813 goto out;
c59021f8 10814
1aba86d6 10815 if (mixed) {
10816 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10817 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10818 } else {
10819 flags = BTRFS_BLOCK_GROUP_METADATA;
2be12ef7 10820 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10821 if (ret)
10822 goto out;
10823
10824 flags = BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10825 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10826 }
10827out:
c59021f8 10828 return ret;
10829}
10830
2ff7e61e
JM
10831int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10832 u64 start, u64 end)
acce952b 10833{
2ff7e61e 10834 return unpin_extent_range(fs_info, start, end, false);
acce952b 10835}
10836
499f377f
JM
10837/*
10838 * It used to be that old block groups would be left around forever.
10839 * Iterating over them would be enough to trim unused space. Since we
10840 * now automatically remove them, we also need to iterate over unallocated
10841 * space.
10842 *
10843 * We don't want a transaction for this since the discard may take a
10844 * substantial amount of time. We don't require that a transaction be
10845 * running, but we do need to take a running transaction into account
10846 * to ensure that we're not discarding chunks that were released in
10847 * the current transaction.
10848 *
10849 * Holding the chunks lock will prevent other threads from allocating
10850 * or releasing chunks, but it won't prevent a running transaction
10851 * from committing and releasing the memory that the pending chunks
10852 * list head uses. For that, we need to take a reference to the
10853 * transaction.
10854 */
10855static int btrfs_trim_free_extents(struct btrfs_device *device,
10856 u64 minlen, u64 *trimmed)
10857{
10858 u64 start = 0, len = 0;
10859 int ret;
10860
10861 *trimmed = 0;
10862
10863 /* Not writeable = nothing to do. */
10864 if (!device->writeable)
10865 return 0;
10866
10867 /* No free space = nothing to do. */
10868 if (device->total_bytes <= device->bytes_used)
10869 return 0;
10870
10871 ret = 0;
10872
10873 while (1) {
fb456252 10874 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10875 struct btrfs_transaction *trans;
10876 u64 bytes;
10877
10878 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10879 if (ret)
10880 return ret;
10881
10882 down_read(&fs_info->commit_root_sem);
10883
10884 spin_lock(&fs_info->trans_lock);
10885 trans = fs_info->running_transaction;
10886 if (trans)
9b64f57d 10887 refcount_inc(&trans->use_count);
499f377f
JM
10888 spin_unlock(&fs_info->trans_lock);
10889
10890 ret = find_free_dev_extent_start(trans, device, minlen, start,
10891 &start, &len);
10892 if (trans)
10893 btrfs_put_transaction(trans);
10894
10895 if (ret) {
10896 up_read(&fs_info->commit_root_sem);
10897 mutex_unlock(&fs_info->chunk_mutex);
10898 if (ret == -ENOSPC)
10899 ret = 0;
10900 break;
10901 }
10902
10903 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10904 up_read(&fs_info->commit_root_sem);
10905 mutex_unlock(&fs_info->chunk_mutex);
10906
10907 if (ret)
10908 break;
10909
10910 start += len;
10911 *trimmed += bytes;
10912
10913 if (fatal_signal_pending(current)) {
10914 ret = -ERESTARTSYS;
10915 break;
10916 }
10917
10918 cond_resched();
10919 }
10920
10921 return ret;
10922}
10923
2ff7e61e 10924int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10925{
f7039b1d 10926 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10927 struct btrfs_device *device;
10928 struct list_head *devices;
f7039b1d
LD
10929 u64 group_trimmed;
10930 u64 start;
10931 u64 end;
10932 u64 trimmed = 0;
2cac13e4 10933 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10934 int ret = 0;
10935
2cac13e4
LB
10936 /*
10937 * try to trim all FS space, our block group may start from non-zero.
10938 */
10939 if (range->len == total_bytes)
10940 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10941 else
10942 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10943
10944 while (cache) {
10945 if (cache->key.objectid >= (range->start + range->len)) {
10946 btrfs_put_block_group(cache);
10947 break;
10948 }
10949
10950 start = max(range->start, cache->key.objectid);
10951 end = min(range->start + range->len,
10952 cache->key.objectid + cache->key.offset);
10953
10954 if (end - start >= range->minlen) {
10955 if (!block_group_cache_done(cache)) {
f6373bf3 10956 ret = cache_block_group(cache, 0);
1be41b78
JB
10957 if (ret) {
10958 btrfs_put_block_group(cache);
10959 break;
10960 }
10961 ret = wait_block_group_cache_done(cache);
10962 if (ret) {
10963 btrfs_put_block_group(cache);
10964 break;
10965 }
f7039b1d
LD
10966 }
10967 ret = btrfs_trim_block_group(cache,
10968 &group_trimmed,
10969 start,
10970 end,
10971 range->minlen);
10972
10973 trimmed += group_trimmed;
10974 if (ret) {
10975 btrfs_put_block_group(cache);
10976 break;
10977 }
10978 }
10979
2ff7e61e 10980 cache = next_block_group(fs_info, cache);
f7039b1d
LD
10981 }
10982
0b246afa
JM
10983 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10984 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
10985 list_for_each_entry(device, devices, dev_alloc_list) {
10986 ret = btrfs_trim_free_extents(device, range->minlen,
10987 &group_trimmed);
10988 if (ret)
10989 break;
10990
10991 trimmed += group_trimmed;
10992 }
0b246afa 10993 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 10994
f7039b1d
LD
10995 range->len = trimmed;
10996 return ret;
10997}
8257b2dc
MX
10998
10999/*
9ea24bbe
FM
11000 * btrfs_{start,end}_write_no_snapshoting() are similar to
11001 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11002 * data into the page cache through nocow before the subvolume is snapshoted,
11003 * but flush the data into disk after the snapshot creation, or to prevent
11004 * operations while snapshoting is ongoing and that cause the snapshot to be
11005 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11006 */
9ea24bbe 11007void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
11008{
11009 percpu_counter_dec(&root->subv_writers->counter);
11010 /*
a83342aa 11011 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
11012 */
11013 smp_mb();
11014 if (waitqueue_active(&root->subv_writers->wait))
11015 wake_up(&root->subv_writers->wait);
11016}
11017
9ea24bbe 11018int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 11019{
ee39b432 11020 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
11021 return 0;
11022
11023 percpu_counter_inc(&root->subv_writers->counter);
11024 /*
11025 * Make sure counter is updated before we check for snapshot creation.
11026 */
11027 smp_mb();
ee39b432 11028 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 11029 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
11030 return 0;
11031 }
11032 return 1;
11033}
0bc19f90
ZL
11034
11035static int wait_snapshoting_atomic_t(atomic_t *a)
11036{
11037 schedule();
11038 return 0;
11039}
11040
11041void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11042{
11043 while (true) {
11044 int ret;
11045
11046 ret = btrfs_start_write_no_snapshoting(root);
11047 if (ret)
11048 break;
11049 wait_on_atomic_t(&root->will_be_snapshoted,
11050 wait_snapshoting_atomic_t,
11051 TASK_UNINTERRUPTIBLE);
11052 }
11053}